WorldWideScience

Sample records for bound radioactive nuclei

  1. Physics with loosely bound nuclei

    Indian Academy of Sciences (India)

    Chhanda Samanta

    2001-08-01

    The essential aspect of contemporary physics is to understand properties of nucleonic matter that constitutes the world around us. Over the years research in nuclear physics has provided strong guidance in understanding the basic principles of nuclear interactions. But, the scenario of nuclear physics changed drastically as the new generation of accelerators started providing more and more rare isotopes, which are away from the line of stability. These weakly bound nuclei are found to exhibit new forms of nuclear matter and unprecedented exotic behaviour. The low breakup thresholds of these rare nuclei are posing new challenges to both theory and experiments. Fortunately, nature has provided a few loosely bound stable nuclei that have been studied thoroughly for decades. Attempts are being made to find a consistent picture for the unstable nuclei starting from their stable counterparts. Some significant differences in the structure and reaction mechanisms are found.

  2. Reactions with fast radioactive beams of neutron-rich nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Aumann, T. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)

    2005-11-01

    The neutron dripline has presently been reached only for the lightest nuclei up to the element oxygen. In this region of light neutron-rich nuclei, scattering experiments are feasible even for dripline nuclei by utilizing high-energy secondary beams produced by fragmentation. In the present article, reactions of high-energy radioactive beams will be exemplified using recent experimental results mainly derived from measurements of breakup reactions performed at the LAND and FRS facilities at GSI and at the S800 spectrometer at the NSCL. Nuclear and electromagnetically induced reactions allow probing different aspects of nuclear structure at the limits of stability related to the neutron-proton asymmetry and the weak binding close to the dripline. Properties of the valence-neutron wave functions are studied in the one-neutron knockout reaction, revealing the changes of shell structure when going from the beta-stability line to more asymmetric loosely bound neutron-rich systems. The vanishing of the N=8 shell gap for neutron-rich systems like {sup 11}Li and {sup 12}Be, or the new closed N=14, 16 shells for the oxygen isotopes are examples. The continuum of weakly bound nuclei and halo states can be studied by inelastic scattering. The dipole response, for instance, is found to change dramatically when going away from the valley of stability. A redistribution of the dipole strength towards lower excitation energies is observed for neutron-rich nuclei, which partly might be due to a new collective excitation mode related to the neutron-proton asymmetry. Halo nuclei in particular show strong dipole transitions to the continuum at the threshold, being directly related to the ground-state properties of the projectile. Finally, an outlook on future experimental prospects is given. (orig.)

  3. Precision mass measurements of radioactive nuclei at JYFLTRAP

    CERN Document Server

    Rahaman, S; Eronen, T; Hager, U; Hakala, J; Jokinen, A; Kankainen, A; Moore, I D; Pentillä, H; Rinta-Antila, S; Rissanen, J; Saastamoinen, A; Sonoda, T; Weber, C; Äystö, J

    2007-01-01

    The Penning trap mass spectrometer JYFLTRAP was used to measure the atomic masses of radioactive nuclei with an uncertainty better than 10 keV. The atomic masses of the neutron-deficient nuclei around the N = Z line were measured to improve the understanding of the rp-process path and the SbSnTe cycle. Furthermore, the masses of the neutron-rich gallium (Z = 31) to palladium (Z = 46) nuclei have been measured. The physics impacts on the nuclear structure and the r-process paths are reviewed. A better understanding of the nuclear deformation is presented by studying the pairing energy around A = 100.

  4. Neutrino Nucleosynthesis of radioactive nuclei in supernovae

    CERN Document Server

    Sieverding, A; Langanke, K; Martínez-Pinedo, G; Heger, A

    2015-01-01

    We study the neutrino-induced production of nuclides in explosive supernova nucleosynthesis for progenitor stars with solar metallicity and initial main sequence masses between 15 M$_\\odot$ and 40 M$_\\odot$. We improve previous investigations i) by using a global set of partial differential cross sections for neutrino-induced charged- and neutral-current reactions on nuclei with charge numbers $Z < 76 $ and ii) by considering modern supernova neutrino spectra which have substantially lower average energies compared to those previously adopted in neutrino nucleosynthesis studies. We confirm the production of $^7$Li, $^{11}$B, $^{138}$La, and $^{180}$Ta by neutrino nucleosynthesis, albeit at slightly smaller abundances due to the changed neutrino spectra. We find that for stars with a mass smaller than 20 M$_\\odot$, $^{19}$F is produced mainly by explosive nucleosynthesis while for higher mass stars it is produced by the $\

  5. Studies of pear-shaped nuclei using accelerated radioactive beams

    CERN Document Server

    Gaffney, L P; Scheck, M; Hayes, A B; Wenander, F; Albers, M; Bastin, B; Bauer, C; Blazhev, A; Bonig, S; Bree, N; Cederkall, J; Chupp, T; Cline, D; Cocolios, T E; Davinson, T; DeWitte, H; Diriken, J; Grahn, T; Herzan, A; Huyse, M; Jenkins, D G; Joss, D T; Kesteloot, N; Konki, J; Kowalczyk, M; Kroll, Th; Kwan, E; Lutter, R; Moschner, K; Napiorkowski, P; Pakarinen, J; Pfeiffer, M; Radeck, D; Reiter, P; Reynders, K; Rigby, S V; Robledo, L M; Rudigier, M; Sambi, S; Seidlitz, M; Siebeck, B; Stora, T; Thoele, P; Van Duppen, P; Vermeulen, M J; von Schmid, M; Voulot, D; Warr, N; Wimmer, K; Wrzosek-Lipska, K; Wu, C Y; Zielinska, M

    2013-01-01

    There is strong circumstantial evidence that certain heavy, unstable atomic nuclei are ‘octupole deformed’, that is, distorted into a pear shape. This contrasts with the more prevalent rugby-ball shape of nuclei with reflection-symmetric, quadrupole deformations. The elusive octupole deformed nuclei are of importance for nuclear structure theory, and also in searches for physics beyond the standard model; any measurable electric-dipole moment (a signature of the latter) is expected to be amplified in such nuclei. Here we determine electric octupole transition strengths (a direct measure of octupole correlations) for short-lived isotopes of radon and radium. Coulomb excitation experiments were performed using accelerated beams of heavy, radioactive ions. Our data on and $^{224}$Ra show clear evidence for stronger octupole deformation in the latter. The results enable discrimination between differing theoretical approaches to octupole correlations, and help to constrain suitable candidates for experimental...

  6. Continuum Coupling and Pair Correlation in Weakly Bound Deformed Nuclei

    CERN Document Server

    Oba, Hiroshi

    2009-01-01

    We formulate a new Hartree-Fock-Bogoliubov method applicable to weakly bound deformed nuclei using the coordinate-space Green's function technique. An emphasis is put on treatment of quasiparticle states in the continuum, on which we impose the correct boundary condition of the asymptotic out-going wave. We illustrate this method with numerical examples.

  7. Nuclear structure of weakly bound radioactive nuclei through elastic and and inelastic scattering on proton. Impacts of the couplings induced by these exotic nuclei on direct reactions; Structure de noyaux radioactifs faiblement lies par diffusions elastiques et inelastiques sur proton. Effets des couplages induits par ces noyaux exotiques sur les reactions directes

    Energy Technology Data Exchange (ETDEWEB)

    Lapoux, V

    2005-09-15

    Information on the structure, spectroscopy and target interaction potentials of exotic nuclei can be inferred by interpreting measured data from direct reactions on proton such as elastic or inelastic scattering of proton (p,p') or one-nucleon transfer reaction (p,d). A series of experimental results has been obtained at the GANIL facilities on the setting composed of the MUST telescope array used for the detection of light charged-particles and of CATS beam detectors. This setting aims at measuring reactions on light proton or deuteron targets through reverse kinematics. Particularly, results on C{sup 10}, C{sup 11} and on direct reactions with the He{sup 8} beam of Spiral are presented. The first chapter is dedicated to the description of the most important theories concerning the nucleus. The experimental tools used to probe the nucleus are reported in the second chapter. The third and fourth chapters present the framework that has allowed us to analyse results from (p,p') and (p,d) reactions on weakly bound exotic nuclei. The last chapter is dedicated to the description of future experimental programs. (A.C.)

  8. Refractive effects in the scattering of loosely bound nuclei

    CERN Document Server

    Cãrstoiu, F; Tribble, R E; Gagliardi, C A

    2004-01-01

    A study of the interaction of loosely bound nuclei 6,7Li at 9 and 19 AMeV with light targets has been undertaken. With the determination of unambiguous optical potentials in mind, elastic data for four projectile-target combinations and one neutron transfer reaction 13C(7Li,8Li)12C have been measured on a large angular range. The kinematical regime encompasses a region where the mean field (optical potential) has a marked variation with mass and energy, but turns out to be sufficiently surface transparent to allow strong refractive effects to be manifested in elastic scattering data at intermediate angles. The identified exotic feature, a "plateau" in the angular distributions at intermediate angles, is fully confirmed in four reaction channels and interpreted as a pre-rainbow oscillation resulting from the interference of the barrier and internal barrier farside scattering subamplitudes.

  9. Spectroscopic factors for two-proton radioactive nuclei

    Indian Academy of Sciences (India)

    Chinmay Basu

    2004-11-01

    Spectroscopic factors for two-proton emitting nuclei are discussed in the framework of the BCS (Bardeen–Cooper–Schriefer) model. Calculations carried out for the two-proton unstable 45Fe, 48Ni and 54Zn nuclei are presented.

  10. Refractive effects in the scattering of loosely bound nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Carstoiu, F.; Trache, L.; Tribble, R.E.; Gagliardi, C.A. [Texas A and M Univ., College Station, TX (United States). Cyclotron Inst; Carstoiu, F. [Laboratoire de Physique Corpusculaire, IN2P3-CNRS, ISMRA, Universite de Caen, 14 - Caen (France); Carstoiu, F. [National Institute for Physics and Nuclear Engineering, Horia Hulubei, Bucharest-Magurele (Romania)

    2004-07-01

    A study of the interaction of the loosely bound nuclei {sup 6,7}Li at 9 and 19 MeV/nucleon with light targets has been undertaken. With the determination of unambiguous optical potentials in mind, elastic data for four projectile-target combinations and one neutron transfer reaction {sup 13}C({sup 7}Li,{sup 8}Li){sup 12}C have been measured over a large angular range. The kinematical regime encompasses a region where the mean field (optical potential) has a marked variation with mass and energy, but turns out to be sufficiently surface transparent to allow strong refractive effects to be manifested in elastic scattering data at intermediate angles. The identified exotic feature, a 'plateau' in the angular distributions at intermediate angles, is fully confirmed in four reaction channels and is interpreted as a pre-rainbow oscillation resulting from the interference of the barrier and internal barrier far-side scattering sub-amplitudes. (authors)

  11. Study of Exotic Weakly Bound Nuclei Using Magnetic Analyzer Mavr

    Science.gov (United States)

    Maslov, V. A.; Kazacha, V. I.; Kolesov, I. V.; Lukyanov, S. M.; Melnikov, V. N.; Osipov, N. F.; Penionzhkevich, Yu. E.; Skobelev, N. K.; Sobolev, Yu. G.; Voskoboinik, E. I.

    2016-06-01

    A project of the high-resolution magnetic analyzer MAVR is proposed. The analyzer will comprise new magnetic optical and detecting systems for separation and identification of reaction products in a wide range of masses (5-150) and charges (1-60). The magnetic optical system consists of the MSP-144 magnet and a doublet of quadrupole lenses. This will allow the solid angle of the spectrometer to be increased by an order of magnitude up to 30 msr. The magnetic analyzer will have a high momentum resolution (10-4) and high focal-plane dispersion (1.9 m). It will allow products of nuclear reactions at energies up to 30 MeV/nucleon to be detected with the charge resolution ∼1/60. Implementation of the project is divided into two stages: conversion of the magnetic analyzer proper and construction of the nuclear reaction products identification system. The MULTI detecting system is being developed for the MAVR magnetic analyzer to allow detection of nuclear reaction products and their identification by charge Q, atomic number Z, and mass A with a high absolute accuracy. The identification will be performed by measuring the energy loss (ΔE), time of flight (TOF), and total kinetic energy (TKE) of reaction products. The particle trajectories in the analyzer will also be determined using the drift chamber developed jointly with GANIL. The MAVR analyzer will operate in both primary beams of heavy ions and beams of radioactive nuclei produced by the U400 - U400M acceleration complex. It will also be used for measuring energy spectra of nuclear reaction products and as an energy monochromator.

  12. Cluster radioactivity in very heavy nuclei: a new perspective

    OpenAIRE

    Routray, T. R.; Nayak, Jagajjaya; Basu, D. N.

    2008-01-01

    Exotic cluster decay of very heavy nuclei is studied using the microscopic nuclear potentials obtained by folding density dependent M3Y effective interaction with the densities of the cluster and the daughter nuclei. The microscopic nuclear potential, Coulomb interaction and the centrifugal barrier arising out of spin-parity conservation are used to obtain the potential between the cluster and the daughter nuclei. Half life values are calculated in the WKB framework and the preformation facto...

  13. Distributions of Long-Lived Radioactive Nuclei Provided by Star Forming Environments

    CERN Document Server

    Fatuzzo, M

    2015-01-01

    Radioactive nuclei play an important role in planetary evolution by providing an internal heat source, which affects planetary structure and helps facilitate plate tectonics. A minimum level of nuclear activity is thought to be necessary --- but not sufficient --- for planets to be habitable. Extending previous work that focused on short-lived nuclei, this paper considers the delivery of long-lived radioactive nuclei to circumstellar disks in star forming regions. Although the long-lived nuclear species are always present, their abundances can be enhanced through multiple mechanisms. Most stars form in embedded cluster environments, so that disks can be enriched directly by intercepting ejecta from supernovae within the birth clusters. In addition, molecular clouds often provide multiple episodes of star formation, so that nuclear abundances can accumulate within the cloud; subsequent generations of stars can thus receive elevated levels of radioactive nuclei through this distributed enrichment scenario. This...

  14. Cluster radioactivity in very heavy nuclei: a new perspective

    Energy Technology Data Exchange (ETDEWEB)

    Routray, T.R. [P.G. Department of Physics, Sambalpur University, Jyoti Vihar, Burla, Orissa 768019 (India)], E-mail: trr1@rediffmail.com; Nayak, Jagajjaya [P.G. Department of Physics, Sambalpur University, Jyoti Vihar, Burla, Orissa 768019 (India)], E-mail: jagat.su_ph@yahoo.in; Basu, D.N. [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700 064 (India)], E-mail: dnb@veccal.ernet.in

    2009-08-01

    Exotic cluster decay of very heavy nuclei is studied using the microscopic nuclear potentials obtained by folding density dependent M3Y effective interaction with the densities of the cluster and the daughter nuclei. The microscopic nuclear potential, Coulomb interaction and the centrifugal barrier arising out of spin-parity conservation are used to obtain the potential between the cluster and the daughter nuclei. Half life values are calculated in the WKB framework and the preformation factors are extracted. The latter values are seen to have only a very weak dependence on the mass of the emitted cluster.

  15. Mirror energy difference and the structure of loosely bound proton-rich nuclei around A = 20

    CERN Document Server

    Yuan, Cenxi; Xu, Furong; Suzuki, Toshio; Otsuka, Takaharu

    2014-01-01

    The properties of loosely bound proton-rich nuclei around A = 20 are investigated within the framework of nuclear shell model. In these nuclei, the strength of the effective interactions involving the loosely bound proton s1=2 orbit are significantly reduced in comparison with those in their mirror nuclei. We evaluate the reduction of the effective interaction by calculating the monopole-baseduniversal interaction (VMU) in the Woods-Saxon basis. The shell-model Hamiltonian in the sd shell, such as USD, can thus be modified to reproduce the binding energies and energy levels of the weakly bound proton-rich nuclei around A = 20. The effect of the reduction of the effective interaction on the structure and decay properties of these nuclei is also discussed.

  16. Cluster radioactivity in very heavy nuclei: a new perspective

    CERN Document Server

    Routray, T R; Basu, D N

    2008-01-01

    Exotic cluster decay of very heavy nuclei is studied using the microscopic nuclear potentials obtained by folding density dependent M3Y effective interaction with the densities of the cluster and the daughter nuclei. The microscopic nuclear potential, Coulomb interaction and the centrifugal barrier arising out of spin parity conservation are used to obtain the potential between the cluster and the daughter. Half life values are calculated in the WKB framework and the preformation factors are extracted. The latter values are seen to have only a very weak dependence on the mass of the cluster.

  17. Analysis of proton radioactivity of nuclei by using proximity potential with a new universal function

    Science.gov (United States)

    Guo, C. L.; Zhang, G. L.

    2014-12-01

    The nuclear potential between proton and the daughter nuclei is calculated in the frame of the proximity potential with a new universal function. We obtained and analyzed the half-lives of proton radioactivity of the mother nuclei. By comparing to the experimental data and the other calculation results of ground and isomer states of proton emitters, it is found that the present calculation results can reproduce the order of magnitude of the experimental data well. It indicates that the proximity potential with a new universal function can estimate the half-life of proton radioactivity.

  18. DISTRIBUTIONS OF LONG-LIVED RADIOACTIVE NUCLEI PROVIDED BY STAR-FORMING ENVIRONMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Fatuzzo, Marco [Department of Physics, Xavier University, Cincinnati, OH 45207 (United States); Adams, Fred C. [Physics Department, University of Michigan, Ann Arbor, MI 48109 (United States)

    2015-11-01

    Radioactive nuclei play an important role in planetary evolution by providing an internal heat source, which affects planetary structure and helps facilitate plate tectonics. A minimum level of nuclear activity is thought to be necessary—but not sufficient—for planets to be habitable. Extending previous work that focused on short-lived nuclei, this paper considers the delivery of long-lived radioactive nuclei to circumstellar disks in star forming regions. Although the long-lived nuclear species are always present, their abundances can be enhanced through multiple mechanisms. Most stars form in embedded cluster environments, so that disks can be enriched directly by intercepting ejecta from supernovae within the birth clusters. In addition, molecular clouds often provide multiple episodes of star formation, so that nuclear abundances can accumulate within the cloud; subsequent generations of stars can thus receive elevated levels of radioactive nuclei through this distributed enrichment scenario. This paper calculates the distribution of additional enrichment for {sup 40}K, the most abundant of the long-lived radioactive nuclei. We find that distributed enrichment is more effective than direct enrichment. For the latter mechanism, ideal conditions lead to about 1 in 200 solar systems being directly enriched in {sup 40}K at the level inferred for the early solar nebula (thereby doubling the abundance). For distributed enrichment from adjacent clusters, about 1 in 80 solar systems are enriched at the same level. Distributed enrichment over the entire molecular cloud is more uncertain, but can be even more effective.

  19. Competition between α decay and proton radioactivity of neutron-deficient nuclei

    Science.gov (United States)

    Wang, Y. Z.; Cui, J. P.; Zhang, Y. L.; Zhang, S.; Gu, J. Z.

    2017-01-01

    The α decay and proton radioactivity half-lives of some neutron-deficient nuclei are calculated using an effective liquid drop model (ELDM). It is found that the experimental half-lives of the two decay modes and the dominant decay mode can be well reproduced by the ELDM. Moreover, the predicted penetration probabilities (P ) of proton radioactivity by the ELDM are in agreement with those by a microscopic model (MM). This allows us to make predictions on the competition of the two decay modes for nuclei whose experimental data are not available, which are useful for future measurements. In addition, the comparison between the predicted reduced proton radioactivity half-lives by the ELDM and the ones by a standard formula suggests that one is unlikely to observe large angular momentum transfers for nuclei with a very large Coulomb parameter χ . Last, we find that in most isotope chains the proton radioactivity is the dominant decay mode for nuclei that are very close to the proton drip line. But with increasing neutron number N the main decay mode is changed into α decay. With the decay energies the decay mode anomaly of 184Bi is discussed.

  20. Continuum discretized BCS approach for weakly bound nuclei

    CERN Document Server

    Lay, J A; Fortunato, L; Vitturi, A

    2015-01-01

    The Bardeen-Cooper-Schrieffer (BCS) formalism is extended by including the single-particle continuum, thus enabling the analysis of an isotopic chain from stability up to the drip line. We propose a continuum discretized generalized BCS based on single-particle pseudostates (PS). These PS are generated from the diagonalization of the single-particle Hamiltonian within a Transformed Harmonic Oscillator (THO) basis. The consistency of the results versus the size of the basis is studied. The method is applied to neutron rich Oxygen and Carbon isotopes and compared with similar previous works and available experimental data. We make use of the flexibility of the proposed model in order to study the evolution of the occupation of the low-energy continuum when the system becomes weakly bound. We find a larger influence of the non-resonant continuum as long as the Fermi level approaches zero.

  1. Eta bound states in nuclei: a probe of flavour-singlet dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Steven D. Bass; Anthony W. Thomas

    2005-07-01

    We argue that eta bound states in nuclei are sensitive to the singlet component in the eta. The bigger the singlet component, the more attraction and the greater the binding. Thus, measurements of eta bound states will yield new information about axial U(1) dynamics and glue in mesons. Eta - etaprime mixing plays an important role in understanding the value of the eta-nucleon scattering length.

  2. Unstable nuclei in dissociation of light stable and radioactive nuclei in nuclear track emulsion

    CERN Document Server

    Artemenkov, D A; Zarubin, P I

    2016-01-01

    A role of the unstable nuclei ${}^{6}$Be, ${}^{8}$Be and ${}^{9}$B in the dissociation of relativistic nuclei ${}^{7,9}$Be, ${}^{10}$B and ${}^{10,11}$C is under study on the basis of nuclear track emulsion exposed to secondary beams of the JINR Nuclotron. Contribution of the configuration ${}^{6}$Be + $\\mit{n}$ to the ${}^{7}$Be nucleus structure is 8 $\\pm$ 1% which is near the value for the configuration ${}^{6}$Li + $\\mit{p}$. Distributions over the opening angle of $\\alpha$-particle pairs indicate to a simultaneous presence of virtual ${}^{8}$Be$_{g.s.}$ and ${}^{8}$Be$_{2^+}$ states in the ground states of the ${}^{9}$Be and ${}^{10}$C nuclei. The core ${}^{9}$B is manifested in the {${}^{10}$C} nucleus with a probability of 30 $\\pm$ 4%. Selection of the ${}^{10}$C "white" stars accompanied by ${}^{8}$Be$_{g.s.}$ (${}^{9}$B) leads to appearance in the excitation energy distribution of 2$\\alpha$2$\\mit{p}$ "quartets" of the distinct peak with a maximum at 4.1 $\\pm$ 0.3 MeV. ${}^{8}$Be$_{g.s.}$ decays are p...

  3. Evolution of Surface Deformations of Weakly-Bound Nuclei in the Continuum

    CERN Document Server

    Pei, J C; Xu, F R

    2013-01-01

    We study weakly-bound deformed nuclei based on coordinate-space Skyrme Hartree-Fock-Bogoliubov approach , in which a large box is employed for treating the continuum and surface diffuseness. Approaching the limit of core-halo deformation decoupling, calculations found an exotic "egg"-like structure consisting of a spherical core plus a prolate halo in $^{38}$Ne, in which the resonant continuum plays an essential role. Generally the halo probability and the decoupling effect in heavy nuclei are reduced compared to light nuclei, due to denser level densities around Fermi surfaces. However, deformed halos in medium-mass nuclei are possible with sparse levels of negative parity, for example, in $^{110}$Ge. The surface deformations of pairing density distributions are also influenced by the decoupling effect and are sensitive to the effective pairing Hamiltonian.

  4. Distributions of Short-Lived Radioactive Nuclei Produced by Young Embedded Stellar Clusters

    CERN Document Server

    Adams, Fred C; Holden, Lisa

    2014-01-01

    Most star formation in the Galaxy takes place in clusters, where the most massive members can affect the properties of other constituent solar systems. This paper considers how clusters influence star formation and forming planetary systems through nuclear enrichment from supernova explosions, where massive stars deliver short-lived radioactive nuclei (SLRs) to their local environment. The decay of these nuclei leads to both heating and ionization, and thereby affects disk evolution, disk chemistry, and the accompanying process of planet formation. Nuclear enrichment can take place on two spatial scales: [1] Within the cluster itself ($\\ell\\sim1$pc), the SLRs are delivered to the circumstellar disks associated with other cluster members. [2] On the next larger scale ($\\ell\\sim2-10$pc), SLRs are injected into the background molecular cloud; these nuclei provide heating and ionization to nearby star-forming regions, and to the next generation of disks. For the first scenario, we construct the expected distribut...

  5. Spatial characteristics of borromean, tango, samba and all-bound halo nuclei

    Science.gov (United States)

    Yamashita, M. T.; Frederico, T.; Tomio, Lauro

    2007-02-01

    We report a renormalized zero-range interaction approach to estimate the size of generic weakly bound three-body systems where two particles are identical. We present results for the neutron-neutron root-mean-square distances of the halo nuclei 6He, 11Li, 14Be and 20C, where the systems are taken as two halo neutrons with an inert point-like core. We also report an approach to obtain the neutron-neutron correlation function in halo nuclei. In this case, our results suggest a review of the corresponding experimental data analysis.

  6. The systematic study of deeply bound kaonic nuclei with antisymmetrized molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Dote, Akinobu; Akaishi, Yoshinori [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan); Horiuchi, Hisashi [Kyoto Univ. (Japan). Dept. of Physics; Yamazaki, Toshimitsu [Institute of Physical and Chemical Research, Wako, Saitama (Japan)

    2002-09-01

    We have investigated systematically kaonic nuclei which are ppnK{sup -}, pppK{sup -}, pppnK{sup -} and {sup 6}BeK{sup -}. In the present study we have improved the framework of antisymmetrized molecular dynamics (AMD) so that we can treat K{sup -} - K-bar{sup 0} mixing and perform not only angular-momentum projection but also isospin projection. As a result of our calculation with a new framework of AMD, all kaonic nuclei we calculated are deeply bound by about 100 MeV. We found interesting structures in pppK{sup -} and {sup 6}BeK{sup -}. (author)

  7. Heavy particle radioactivity from superheavy nuclei leading to $^{298}$114 daughter nuclei

    CERN Document Server

    Santhosh, K P

    2013-01-01

    The feasibility for the alpha decay and the heavy particle decay from the even-even superheavy (SH) nuclei with Z = 116-124 have been studied within the Coulomb and proximity potential model (CPPM). The Universal formula for cluster decay (UNIV) of Poenaru et al., the Universal Decay Law (UDL) and the Scaling Law of Horoi et al., has also been used for the evaluation of the decay half lives. A comparison of our predicted half lives with the values evaluated using these empirical formulas are in agreement with each other and hence CPPM could be considered as a unified model for alpha and cluster decay studies. Within our fission model, we have studied cluster formation probability for various clusters and the maximum cluster formation probability for the decay accompanying $^{298}$114 reveals its doubly magic behavior. In the plots for log_10(T_1/2) against the neutron number of the daughter in the corresponding decay, the half life is found to be the minimum for the decay leading to $^{298}$114 (Z = 114, N = ...

  8. Heavy particle radioactivity from superheavy nuclei leading to {sup 298}114 daughter nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Santhosh, K.P., E-mail: drkpsanthosh@gmail.com; Priyanka, B.

    2014-09-15

    The feasibility for the alpha decay and the heavy particle decay from the even–even superheavy (SH) nuclei with Z=116–124 has been studied within the Coulomb and proximity potential model (CPPM). Our predicted half lives agree well with the values evaluated using the Universal formula for cluster decay (UNIV) of Poenaru et al., the Universal Decay Law (UDL) of Qi et al., and the Scaling Law of Horoi et al. The spontaneous fission half lives of the corresponding parents have also been evaluated using the semi-empirical formula of Santhosh et al. Within our fission model, we have studied the cluster formation probability for various clusters and the maximum cluster formation probability is found for the decay accompanying {sup 298}114. In the plots for log{sub 10}(T{sub 1/2}) against the neutron number of the daughter in the corresponding decay, the half life is found to be the minimum for the decay leading to {sup 298}114 (Z=114, N=184). Most of the predicted half lives are well within the present upper limit for measurements (T{sub 1/2}<10{sup 30} s) and the computed alpha half lives for {sup 290,292}Lv agree well with the experimental data.

  9. Heavy particle radioactivity from superheavy nuclei leading to 298114 daughter nuclei

    Science.gov (United States)

    Santhosh, K. P.; Priyanka, B.

    2014-09-01

    The feasibility for the alpha decay and the heavy particle decay from the even-even superheavy (SH) nuclei with Z = 116- 124 has been studied within the Coulomb and proximity potential model (CPPM). Our predicted half lives agree well with the values evaluated using the Universal formula for cluster decay (UNIV) of Poenaru et al., the Universal Decay Law (UDL) of Qi et al., and the Scaling Law of Horoi et al. The spontaneous fission half lives of the corresponding parents have also been evaluated using the semi-empirical formula of Santhosh et al. Within our fission model, we have studied the cluster formation probability for various clusters and the maximum cluster formation probability is found for the decay accompanying 298114. In the plots for log10 (T1/2) against the neutron number of the daughter in the corresponding decay, the half life is found to be the minimum for the decay leading to 298114 (Z = 114, N = 184). Most of the predicted half lives are well within the present upper limit for measurements (T1/2 <1030 s) and the computed alpha half lives for 290,292Lv agree well with the experimental data.

  10. Theory of cluster radioactive decay and of cluster formation in nuclei

    Science.gov (United States)

    Malik, S. S.; Gupta, Raj K.

    1989-05-01

    A new model is proposed for the mechanism of cluster formation and then penetration of the confining nuclear interaction barrier in radioactive nuclei. The cluster formation is treated as a quantum-mechanical fragmentation process and the WKB penetrability is found analytically. Applications of the model are made to 14C decay of 222-224Ra and 24Ne decay of 232U. The branching ratio for 14C decay of 232U is also calculated and is found to be incredibly small as compared to that for its 24Ne decay.

  11. Cluster-transfer reactions with radioactive beams: a spectroscopic tool for neutron-rich nuclei

    CERN Document Server

    AUTHOR|(CDS)2086156; Raabe, Riccardo; Bracco, Angela

    In this thesis work, an exploratory experiment to investigate cluster-transfer reactions with radioactive beams in inverse kinematics is presented. The aim of the experiment was to test the potential of cluster-transfer reactions at the Coulomb barrier, as a possible mean to perform $\\gamma$ spectroscopy studies of exotic neutron-rich nuclei at medium-high energies and spins. The experiment was performed at ISOLDE (CERN), employing the heavy-ion reaction $^{98}$Rb + $^{7}$Li at 2.85 MeV/A. Cluster-transfer reaction channels were studied through particle-$\\gamma$ coincidence measurements, using the MINIBALL Ge array coupled to the charged particle Si detectors T-REX. Sr, Y and Zr neutron-rich nuclei with A $\\approx$ 100 were populated by either triton- or $\\alpha$ transfer from $^{7}$Li to the beam nuclei and the emitted complementary charged fragment was detected in coincidence with the $\\gamma$ cascade of the residues, after few neutrons evaporation. The measured $\\gamma$ spectra were studied in detail and t...

  12. Recent Results on Fusion and Direct Reactions with Weakly Bound Stable Nuclei

    Directory of Open Access Journals (Sweden)

    Shrivastava A.

    2011-10-01

    Full Text Available Recent measurements of fusion and direct reactions in case of weakly bound stable nuclei at extreme sub-barrier energies using a sensitive off beam technique are presented. Deviation in slope of the fusion excitation function, as observed in case of medium heavy systems, is absent in the present asymmetric systems at these low energies. These results along with the study of capture reaction of the breakup fragments using particle- gamma coincidences is presented, thereby giving the current status of the field.

  13. Interplay of projectile breakup and target excitation in reactions induced by weakly bound nuclei

    Science.gov (United States)

    Gómez-Ramos, M.; Moro, A. M.

    2017-03-01

    Background: Reactions involving weakly bound nuclei require formalisms able to deal with continuum states. The majority of these formalisms struggle to treat collective excitations of the systems involved. For continuum-discretized coupled channels (CDCC), extensions to include target excitation have been developed but have only been applied to a small number of cases. Purpose: In this work, we reexamine the extension of the CDCC formalism to include target excitation and apply it to a variety of reactions to study the effect of breakup on inelastic cross sections. Methods: We use a transformed oscillator basis to discretize the continuum of the projectiles in the different reactions and use the extended CDCC method developed in this work to solve the resulting coupled differential equations. A new code has been developed to perform the calculations. Results: Reactions 58Ni(d ,d )*58Ni , 24Mg(d ,d )*24Mg , 144Sm(6Li,6Li)*144Sm , and 9Be(6Li,6Li)*9Be are studied. Satisfactory agreement is found between experimental data and extended CDCC calculations. Conclusions: The studied CDCC method has proven to be an accurate tool to describe target excitation in reactions with weakly bound nuclei. Moderate effects of breakup on inelastic observables are found for the reactions studied. Cross-section magnitudes are not modified much, but angular distributions present smoothing when opposed to calculations without breakup.

  14. Beyond designed functional margins in CANDU type NPP. Radioactive nuclei assessment in an LOCA type accident

    Directory of Open Access Journals (Sweden)

    Budu Andrei Razvan

    2015-01-01

    Full Text Available European Union's energy roadmap up to year 2050 states that in order to have an efficient and sustainable economy, with minimum or decreasing greenhouse gas emissions, along with use of renewable resources, each constituent state has the option for nuclear energy production as one desirable option. Every scenario considered for tackling climate change issues, along with security of supply positions the nuclear energy as a recommended option, an option that is highly competitive with respect to others. Nuclear energy, along with other renewable power sources are considered to be the main pillars in the energy sector for greenhouse gas emission mitigation at European level. European Union considers that nuclear energy must be treated as a highly recommended option since it can contribute to security of energy supply. Romania showed excellent track-records in operating in a safe and economically sound manner of Cernavoda NPP Units 1&2. Both Units are in top 10 worldwide in terms of capacity factor. Due to Romania's need to ensure the security of electricity supply, to meet the environmental targets and to move to low carbon generation technologies, Cernavoda Units 3&4 Project appears as a must. This Project was started in 2010 and it is expected to have the Units running by 2025. Cost effective and safety operation of a Nuclear Power Plant is made taking into consideration functional limits of its equipment. As common practice, every nuclear reactor type (technology used is tested according to the worse credible accident or equipment failure that can occur. For CANDU type reactor, this is a Loss of Cooling Accident (LOCA. In a LOCA type accident in a CANDU NPP, using RELAP/SCDAP code for fuel bundle damage assessment the radioactive nuclei are to be quantified. Recently, CANDU type NPP accidents are studied using the RELAP/SCDAP code only. The code formerly developed for PWR type reactors was adapted for the CANDU geometry and can assess the

  15. Studies of nuclei using radioactive beams. [Space Astronomy Lab. , Univ. of Florida, Gainesville, Florida

    Energy Technology Data Exchange (ETDEWEB)

    Piercey, R.B.

    1989-07-01

    The 12 month period from May 1988 to July 1989 represents the first full year of our 18 month pilot program in nuclear structure research. In this period, research was initiated to develop a capability for radioactive secondary beams at Argonne National Laboratory using the Atlas and the new Fragment Mass Analyzer (FMA), which is currently under construction. Two major new detector facilities are currently in the final stages of design and testing. The Large-Area, Scintillator Telescope (LAST) detector is fully operational and will be shipped to Argonne National Laboratory in August for fit-tests and in-beam calibrations. The first segments of a new sixteen-segment neutron multiplicity detector have been built and tested. The remaining segments are currently being constructed. Research was continued in the areas of (1) Coulomb excitation studies of rare earth and actinide nuclei; (2) In-beam, gamma-ray spectroscopy of nuclei in the mass 100 region, and (3) Advanced detector design. Several journal articles and abstracts were published or submitted for publication in the reporting period, and others are currently in preparation. Three graduate students participated in the program, one from the University of Florida and two from the Royal Institute of Technology, Stockholm, Sweden.

  16. Studies of nuclei using radioactive beams. Progress report, May 1988--July 1989

    Energy Technology Data Exchange (ETDEWEB)

    Piercey, R.B.

    1989-07-01

    The 12 month period from May 1988 to July 1989 represents the first full year of our 18 month pilot program in nuclear structure research. In this period, research was initiated to develop a capability for radioactive secondary beams at Argonne National Laboratory using the Atlas and the new Fragment Mass Analyzer (FMA), which is currently under construction. Two major new detector facilities are currently in the final stages of design and testing. The Large-Area, Scintillator Telescope (LAST) detector is fully operational and will be shipped to Argonne National Laboratory in August for fit-tests and in-beam calibrations. The first segments of a new sixteen-segment neutron multiplicity detector have been built and tested. The remaining segments are currently being constructed. Research was continued in the areas of (1) Coulomb excitation studies of rare earth and actinide nuclei; (2) In-beam, gamma-ray spectroscopy of nuclei in the mass 100 region, and (3) Advanced detector design. Several journal articles and abstracts were published or submitted for publication in the reporting period, and others are currently in preparation. Three graduate students participated in the program, one from the University of Florida and two from the Royal Institute of Technology, Stockholm, Sweden.

  17. Distributions of short-lived radioactive nuclei produced by young embedded star clusters

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Fred C. [Physics Department, University of Michigan, Ann Arbor, MI 48109 (United States); Fatuzzo, Marco [Physics Department, Xavier University, Cincinatti, OH 45255 (United States); Holden, Lisa [Department of Mathematics, Northern Kentucky University, Highland Heights, KY 41099 (United States)

    2014-07-01

    Most star formation in the Galaxy takes place in clusters, where the most massive members can affect the properties of other constituent solar systems. This paper considers how clusters influence star formation and forming planetary systems through nuclear enrichment from supernova explosions, where massive stars deliver short-lived radioactive nuclei (SLRs) to their local environment. The decay of these nuclei leads to both heating and ionization, and thereby affects disk evolution, disk chemistry, and the accompanying process of planet formation. Nuclear enrichment can take place on two spatial scales: (1) within the cluster itself (ℓ ∼ 1 pc), the SLRs are delivered to the circumstellar disks associated with other cluster members. (2) On the next larger scale (ℓ ∼ 2-10 pc), SLRs are injected into the background molecular cloud; these nuclei provide heating and ionization to nearby star-forming regions and to the next generation of disks. For the first scenario, we construct the expected distributions of radioactive enrichment levels provided by embedded clusters. Clusters can account for the SLR mass fractions inferred for the early Solar Nebula, but typical SLR abundances are lower by a factor of ∼10. For the second scenario, we find that distributed enrichment of SLRs in molecular clouds leads to comparable abundances. For both the direct and distributed enrichment processes, the masses of {sup 26}Al and {sup 60}Fe delivered to individual circumstellar disks typically fall in the range 10-100 pM {sub ☉} (where 1 pM {sub ☉} = 10{sup –12} M {sub ☉}). The corresponding ionization rate due to SLRs typically falls in the range ζ{sub SLR} ∼ 1-5 × 10{sup –19} s{sup –1}. This ionization rate is smaller than that due to cosmic rays, ζ{sub CR} ∼ 10{sup –17} s{sup –1}, but will be important in regions where cosmic rays are attenuated (e.g., disk mid-planes).

  18. Structure Effects in Collisions Induced by Halo and Weakly Bound Nuclei Around the Coulomb Barrier

    CERN Document Server

    Scuderi, V; Torresi, D; Fisichella, M; Borge, M J G; Randisi, G; Milin, M; Figuera, P; Raabe, R; Di Pietro, A; Amorini, F; Fraile, L M; Vidal, A M; Rizzo, F; Zadro, M; Gomez-Camacho, J; Pellegriti, M G; Papa, M; Jeppesen, H; Santonocito, D; Sanchez, E M R; Acosta, L; Tengblad, O; Lattuada, M; Musumarra, A; Scalia, G

    2010-01-01

    In this contribution, results concerning different reaction channels for the collisions induced by the three Be isotopes, Be-9,Be-10,Be-11, on a Zn-64 target at energies around the Coulomb barrier will be presented. The experiments with the radioactive Be-10,Be-11 beams were performed at REX-ISOLDE (CERN) whereas the experiment with the stable weakly bound Be-9 beam was performed at LNS Catania. Elastic scattering angular distributions have been measured for the three systems Be-9,Be-10,Be-11 + Zn-64 at the same center of mass energy. The angular distributions were analyzed with optical potentials and reaction cross sections were obtained from optical model calculations, performed with the code PTOLEMY. For the Be-11 + Zn-64 reaction, the break-up angular distribution was also measured.

  19. Nuclear Structure Studies of Exotic Nuclei with Radioactive Ion Beams A Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Winger, Jeff Allen [Mississippi State Univ., Mississippi State, MS (United States)

    2016-04-21

    Beta-decay spectroscopy provides important information on nuclear structure and properties needed to understand topics as widely varied as fundamental nuclear astrophysics to applied nuclear reactor design. However, there are significant limitations of our knowledge due to an inability to experimentally measure everything. Therefore, it is often necessary to rely on theoretical calculations which need to be vetted with experimental results. The focus of this report will be results from experimental research performed by the Principal Investigator (PI) and his research group at Mississippi State University in which the group played the lead role in proposing, implementing, performing and analyzing the experiment. This research was carried out at both the National Superconduction Cyclotron Laboratory (NSCL) at Michigan State University and the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory. The primary emphasis of the research was the use of \\bdec spectroscopy as a tool to understand the evolution of nuclear structure in neutron-rich nuclei which could then be applied to improve theory and to increase the overall knowledge of nuclear structure.

  20. Interplay of projectile breakup and target excitation in reactions induced by weakly-bound nuclei

    CERN Document Server

    Gomez-Ramos, M

    2016-01-01

    In this work, we reexamine the extension of the CDCC formalism to include target excitation and apply it to a variety of reactions to study the effect of breakup on inelastic cross sections. We use a transformed oscillator basis to discretize the continuum of the projectiles in the different reactions and use the extended CDCC method developed in this work to solve the resulting coupled differential equations. A new code has been developed to perform the calculations. Reactions 58Ni(d, d) 58Ni*, 24Mg(d, d) 24Mg* , 144Sm( 6Li, 6Li) 144Sm* and 9Be( 6Li, 6Li) 9Be* are studied. Satisfactory agreement is found between experimental data and extended CDCC calculations. The studied CDCC method is proved to be an accurate tool to describe target excitation in reactions with weakly-bound nuclei. Moderate effects of breakup on inelastic observables are found for the reactions studied. Cross section magnitudes are not modified much, but angular distributions present smoothing when opposed to calculations without breakup.

  1. An Improved Method of Lifetime Measurement of Nuclei in Radioactive Decay Chain

    CERN Document Server

    Puzović, J M; Nađđerđ, L J

    2016-01-01

    We present an improved statistical method for calculation of mean lifetime of nuclei in a decay chain with uncertain relation between mother and daughter nuclei. The method is based on formation of time distribution of intervals between mother and daughter nuclei, without trying to set the exact mother-daughter nuclei relationship. If there is a coincidence of mother and daughter nuclei decays, sum of these distributions has flat term on which an exponential term is superimposed. Parameters of this exponential function allow lifetime of daughter nucleus to be extracted. The method is tested on Monte Carlo simulation data.

  2. An improved method of lifetime measurement of nuclei in radioactive decay chain

    Science.gov (United States)

    Puzović, J. M.; Manić, D.; Nađđerđ, L. J.

    2017-04-01

    We present an improved statistical method for the calculation of mean lifetime of nuclei in a decay chain with an uncertain relation between mother and daughter nuclei. The method is based on the formation of time distribution of intervals between mother and daughter nuclei, without trying to set the exact mother-daughter nuclei relationship. If there is a coincidence of mother and daughter nuclei decays, the sum of these distributions has flat term on which an exponential term is superimposed. Parameters of this exponential function allow lifetime of daughter nucleus to be extracted. The method is tested on Monte Carlo simulation data.

  3. Upper Bounds on Parity Violating Gamma-Ray Asymmetries in Compound Nuclei from Polarized Cold Neutron Capture

    CERN Document Server

    Gericke, M T; Carlini, R D; Chupp, T E; Coulter, K P; Dabaghyan, M; Dawkins, M; Desai, D; Freedman, S J; Gentile, T R; Gillis, R C; Greene, G L; Hersman, F W; Ino, T; Jones, G L; Kandes, M; Lauss, B; Leuschner, M; Lozowski, W R; Mahurin, R; Mason, M; Masuda, Y; Mitchell, G S; Muto, S; Nann, H; Page, S A; Penttila, S I; Ramsay, W D; Santra, S; Seo, P N; Sharapov, E I; Smith, T B; Snow, W M; Wilburn, W S; Yuan, V; Zhu, H

    2006-01-01

    Parity-odd asymmetries in the electromagnetic decays of compound nuclei can sometimes be amplified above values expected from simple dimensional estimates by the complexity of compound nuclear states. In this work we use a statistical approach to estimate the root mean square (RMS) of the distribution of expected parity-odd correlations $\\vec{s_{n}} \\cdot \\vec{k_{\\gamma}}$, where $\\vec {s_{n}}$ is the neutron spin and $\\vec{k_{\\gamma}}$ is the momentum of the gamma, in the integrated gamma spectrum from the capture of cold polarized neutrons on Al, Cu, and In and we present measurements of the asymmetries in these and other nuclei. Based on our calculations, large enhancements of asymmetries were not predicted for the studied nuclei and the statistical estimates are consistent with our measured upper bounds on the asymmetries.

  4. Reexamining cluster radioactivity in trans-lead nuclei with consideration of specific density distributions in daughter nuclei and clusters

    Science.gov (United States)

    Qian, Yibin; Ren, Zhongzhou; Ni, Dongdong

    2016-08-01

    We further investigate the cluster emission from heavy nuclei beyond the lead region in the framework of the preformed cluster model. The refined cluster-core potential is constructed by the double-folding integral of the density distributions of the daughter nucleus and the emitted cluster, where the radius or the diffuseness parameter in the Fermi density distribution formula is determined according to the available experimental data on the charge radii and the neutron skin thickness. The Schrödinger equation of the cluster-daughter relative motion is then solved within the outgoing Coulomb wave-function boundary conditions to obtain the decay width. It is found that the present decay width of cluster emitters is clearly enhanced as compared to that in the previous case, which involved the fixed parametrization for the density distributions of daughter nuclei and clusters. Among the whole procedure, the nuclear deformation of clusters is also introduced into the calculations, and the degree of its influence on the final decay half-life is checked to some extent. Moreover, the effect from the bubble density distribution of clusters on the final decay width is carefully discussed by using the central depressed distribution.

  5. Coupled-channels effects in elastic scattering and near-barrier fusion induced by weakly bound nuclei and exotic halo nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Beck, C. [Institut Pluridisciplinaire Hubert Curien, UMR 7178, IN2P3-CNRS et Universite Louis Pasteur (Strasbourg I), 23 rue du Loess - BP28, F-67037 Strasbourg Cedex 2 (France); Keeley, N. [DSM/DAPNIA/SPhN CEA Saclay, Orme des Merisiers, F-91191 Gif-sur-Yvette Cedex (France); Diaz-Torres, A. [Department of Nuclear Physics, Research School of Physical Sciences and Engineering, The Australian National University, Canberra ACT 0200 (Australia)

    2007-03-15

    The influence on fusion of coupling to the breakup process is investigated for reactions where at least one of the colliding nuclei has a sufficiently low binding energy for breakup to become an important process. Elastic scattering, excitation functions for sub-and near-barrier fusion cross sections, and breakup yields are analyzed for {sup 6,7}Li+{sup 59}Co. Continuum-Discretized Coupled-Channels (CDCC) calculations describe well the data at and above the barrier. Elastic scattering with {sup 6}Li (as compared to {sup 7}Li) indicates the significant role of breakup for weakly bound projectiles. A study of {sup 4,6}He induced fusion reactions with a three-body CDCC method for the {sup 6}He halo nucleus is presented. The relative importance of breakup and bound-state structure effects on total fusion is discussed. (authors)

  6. New valleys of cold fission and cluster radioactivity processes from nuclei far from the {beta}-stability line

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, O.; Guzman, F.; Duarte, S.B.; Tavares, O.A.P. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Garcia, F. [Sao Paulo Univ., SP (Brazil). Inst. de Fisica; Goncalves, M. [Instituto de Radioprotecao e Dosimetria (IRD), Rio de Janeiro, RJ (Brazil)

    1998-10-01

    The present work provides new results for the half-life of cluster radioactivity and cold fission processes from neutron-deficient nuclei of atomic number near proton shell closure. Results are also reported for the half-life of possible decays leading to the neutron-deficient, doubly magic island near {sup 100} Sn. The model reproduces the well established experimental systematics of Geiger-Nuttall's diagrams for alpha decay, as well as predicts similar diagrams for heavy cluster emission and cold fission processes. (author)

  7. Cold reaction valleys in the radioactive decay of superheavy {286}^112, {292}^114 and {296}^116 nuclei

    CERN Document Server

    Santhosh, K P

    2012-01-01

    Cold reaction valleys in the radioactive decay of superheavy nuclei {286}^112, {292}^114 and {296}^116 are studied taking Coulomb and Proximity Potential as the interacting barrier. It is found that in addition to alpha particle, 8^Be, 14^C, 28^Mg, 34^Si, 50^Ca, etc. are optimal cases of cluster radioactivity since they lie in the cold valleys. Two other regions of deep minima centered on 208^Pb and 132^Sn are also found. Within our Coulomb and Proximity Potential Model half-life times and other characteristics such as barrier penetrability, decay constant for clusters ranging from alpha particle to 68^Ni are calculated. The computed alpha half-lives match with the values calculated using Viola--Seaborg--Sobiczewski systematics. The clusters 8^Be and 14^C are found to be most probable for emission with T_1/2 < 1030s. The alpha-decay chains of the three superheavy nuclei are also studied. The computed alpha decay half-lives are compared with the values predicted by Generalized Liquid Drop Model and they are...

  8. Extensions of Natural Radioactivity to 4th-Type and of the Periodic Table to Super-heavy Nuclei: Contribution of Raj K Gupta to Cold Nuclear Phenomena

    OpenAIRE

    BirBikram Singh; Sushil Kumar; Sharma, Manoj K.; S K Patra

    2014-01-01

    We have studied here the contribution of Indian Scientists associated with Prof. Raj K. Gupta to cold nuclear phenomena during the last almost four decades, which led to the discovery of fourth kind of natural radioactivity (also known as Cluster Radioactivity, CR) and to the extension of periodic table to super heavy nuclei. It is exclusively pointed out how the Quantum Mechanical Fragmentation Theory (QMFT) advanced by Prof. Raj K. Gupta and Collaborators led to the disc...

  9. The role of doubly magic {sup 208}Pb and its neighbour nuclei in cluster radioactivity

    Energy Technology Data Exchange (ETDEWEB)

    Santhosh, K.P.; Priyanka, B. [Kannur University, School of Pure and Applied Physics, Payyanur (India)

    2013-06-15

    Using the Coulomb and proximity potential model (CPPM) we have investigated the cluster decays of the isotopes {sup 212-240}Pa, {sup 219-245}Np, {sup 228-246}Pu, {sup 230-249}Am and {sup 232-252}Cm leading to doubly magic {sup 208}Pb and its neighboring nuclei, which are not experimentally detected but which may be detectable in the future. It is found that most of the decays are favourable for experimental measurements (i.e., T{sub 1/2}<10{sup 30} s) and this observation will serve as a guide to future experiments. Our study reveals the role of doubly magic {sup 208}Pb daughter nuclei and near doubly magic nuclei in the cluster decay process. In order to make a comparison with CPPM we also calculated the logarithmic half-lives using the Universal formula for the cluster decay (UNIV) by Poenaru et al., the Universal Decay Law (UDL) and the Scaling Law of Horoi et al., and they are found to be in good agreement. The Geiger-Nuttall plots of log{sub 10}(T{sub 1/2}) versus Q{sup -1/2} for various clusters from different isotopes of heavy parent nuclei have been studied and are found to be linear. (orig.)

  10. Charmed mesic nuclei Bound D and over D states with 208Pb

    CERN Document Server

    Tsushima, K; Thomas, A W; Saitô, K; Landau, Rubin H

    1999-01-01

    We show that the $D^-$ meson will inevitably form narrow bound states with $^{208}$Pb. The experimental confirmation and comparison with the $\\bar{D}^0$ and $D^0$ will provide distinctive information on the nature of the interaction between the charmed meson and matter.

  11. Role of nuclear couplings in the inelastic excitation of weakly-bound neutron-rich nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Dasso, C.H. [Niels Bohr Institute, Copenhagen (Denmark); Lenzi, S.M.; Vitturi, A. [Universita di Padova (Italy)

    1996-12-31

    Much effort is presently devoted to the study of nuclear systems far from the stability line. Particular emphasis has been placed in light systems such as {sup 11}Li, {sup 8}B and others, where the very small binding energy of the last particles causes their density distribution to extend considerably outside of the remaining nuclear core. Some of the properties associated with this feature are expected to characterize also heavier systems in the vicinity of the proton or neutron drip lines. It is by now well established that low-lying concentrations of multipole strength arise from pure configurations in which a peculiar matching between the wavelength of the continuum wavefunction of the particles and the range of the weakly-bound hole states occurs. To this end the authors consider the break-up of a weakly-bound system in a heavy-ion collision and focus attention in the inelastic excitation of the low-lying part of the continuum. They make use of the fact that previous investigations have shown that the multipole response in this region is not of a collective nature and describe their excited states as pure particle-hole configurations. Since the relevant parameter determining the strength distributions is the binding energy of the last bound orbital they find it most convenient to use single-particle wavefunctions generated by a sperical square-well potential with characteristic nuclear dimensions and whose depth has been adjusted to give rise to a situation in which the last occupied neutron orbital is loosely-bound. Spin-orbit couplings are, for the present purpose, ignored. The results of this investigation clearly indicate that nuclear couplings have the predominant role in causing projectile dissociation in many circumstances, even at bombarding energies remarkably below the Coulomb barrier.

  12. Near-barrier Fusion and Breakup/Transfer induced by Weakly Bound and Exotic Halo Nuclei

    CERN Document Server

    Beck, C

    2007-01-01

    The influence on the fusion process of coupling to collective degrees of freedom has been explored. The significant enhancement of the fusion cross section at sub-barrier energies was compared to predictions of one-dimensional barrier penetration models. This was understood in terms of the dynamical processes arising from strong couplings to collective inelastic excitations of the target and projectile. However, in the case of reactions where at least one of the colliding nuclei has a sufficiently low binding energy, for breakup to become an important process, conflicting model predictions and experimental results have been reported in the literature. Excitation functions for sub- and near-barrier total (complete + incomplete) fusion cross sections have been measured for the $^{6,7}$Li+$^{59}$Co reactions. Elastic scattering as well as breakup/transfer yields have also been measured at several incident energies. Results of Continuum-Discretized Coupled-Channel ({\\sc Cdcc}) calculations describe reasonably wel...

  13. Radioactive beam EXperiments at ISOLDE : Coulomb excitation and neutron transfer reactions of exotic nuclei.

    CERN Multimedia

    Kugler, E; Ratzinger, U; Wenander, F J C

    2002-01-01

    % IS347 \\\\ \\\\We propose to perform a pilot experiment to study very neutron rich (A<32) Na-Mg and (A<52) K-Ca isotopes in the region around the neutron shell closures of N=20 and N=28 after Coulomb excitation and neutron transfer, and to demonstrate highly efficient and cost-effective ways to bunch, charge-state breed and accelerate already existing mass-separated singly-charged radioactive ion beams. \\\\ \\\\To do this we plan to accelerate the ISOLDE beams up to 2~MeV/u by means of a novel acceleration scheme and to install an efficient $\\gamma$-ray array for low-multiplicity events around the target position.

  14. Importance of lifetime effects in breakup and suppression of complete fusion in reactions of weakly bound nuclei

    CERN Document Server

    Cook, K J; Luong, D H; Kalkal, Sunil; Dasgupta, M; Hinde, D J

    2016-01-01

    Complete fusion cross sections in collisions of light, weakly bound nuclei and high Z targets show above-barrier suppression of complete fusion. This has been interpreted as resulting from breakup of the weakly bound nucleus prior to reaching the fusion barrier, reducing the probability of complete fusion. This paper investigates how these conclusions are affected by lifetimes of the resonant states that are populated prior to breakup. If the mean life of a populated resonance is much longer than the fusion timescale, then its breakup cannot suppress complete fusion. For short-lived resonances, the situation is more complex. This work includes the mean life of the short-lived 2+ resonance in 8Be in classical dynamical model calculations to determine its effect on energy and angular correlations of the breakup fragments and on predictions of fusion suppression. Coincidence measurements of breakup fragments produced in reactions of 9Be with 144Sm, 168Er, 186W, 196Pt, 208Pb and 209Bi at energies below the barrie...

  15. {gamma}-spectroscopy and radioactive beams: search for highly deformed exotic nuclei; Detection {gamma} et faisceaux radioactifs: recherche de noyaux exotiques tres deformes

    Energy Technology Data Exchange (ETDEWEB)

    Rosse, B

    2006-07-15

    This work is devoted to the search for highly deformed nuclei under extreme conditions of isospin, located near the proton drip-line, around A {approx} 130. The experiment was performed at GANIL (Caen) with the SPIRAL radioactive beam facility. The nuclei of interest were produced by fusion-evaporation reactions induced by the neutron deficient Kr{sup 76} radioactive beam (T1/2 = 14.8 h). {gamma}-rays were detected by the EXOGAM array, composed of 11 segmented germanium clover detectors, for which a new segment calibration method has been developed. To extract fusion-evaporation events of a overwhelming background due to the radioactivity of the beam, the EXOGAM array was coupled with the light charged particle detector DIAMANT and the high acceptance VAMOS spectrometer. The latter was used for the first time to detect fusion-evaporation residues. The detailed data analysis allowed us to demonstrate that the EXOGAM + DIAMANT + VAMOS coupling is operational and essential to investigate the structure of these nuclei. Furthermore, the first {gamma} transition was observed in the very exotic odd-odd Pm{sup 130} nucleus. The results have been interpreted with static and dynamic self-consistent microscopic calculations in collaboration with the Theoretical Physicists of the IPN Lyon. (author)

  16. Cold reaction valleys in the radioactive decay of superheavy {sup 286}112, {sup 292}114, and {sup 296}116 nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Santhosh, K. P.; Sabina, S. [Kannur University, School of Pure and Applied Physics (India)

    2012-08-15

    Cold reaction valleys in the radioactive decay of superheavy nuclei {sup 286}112, {sup 292}114, and {sup 296}116 are studied taking Coulomb and Proximity Potential as the interacting barrier. It is found that in addition to alpha particle, {sup 8}Be, {sup 14}C, {sup 28}Mg, {sup 34}Si, {sup 50}Ca, etc. are optimal cases of cluster radioactivity since they lie in the cold valleys. Two other regions of deep minima centered on {sup 208}Pb and {sup 132}Sn are also found. Within our Coulomb and Proximity Potential Model half-life times and other characteristics such as barrier penetrability, decay constant for clusters ranging from alpha particle to {sup 68}Ni are calculated. The computed alpha half-lives match with the values calculated using Viola-Seaborg-Sobiczewski systematics. The clusters {sup 8}Be and {sup 14}C are found to be most probable for emission with T{sub 1/2} < 10{sup 30} s. The alpha-decay chains of the three superheavy nuclei are also studied. The computed alpha-decay half-lives are compared with the values predicted by Generalized Liquid Drop Model and they are found to match reasonably well.

  17. Extensions of Natural Radioactivity to 4th-Type and of the Periodic Table to Super-heavy Nuclei: Contribution of Raj K Gupta to Cold Nuclear Phenomena

    Directory of Open Access Journals (Sweden)

    BirBikram Singh

    2014-02-01

    Full Text Available We have studied here the contribution of Indian Scientists associated with Prof. Raj K. Gupta to cold nuclear phenomena during the last almost four decades, which led to the discovery of fourth kind of natural radioactivity (also known as Cluster Radioactivity, CR and to the extension of periodic table to super heavy nuclei. It is exclusively pointed out how the Quantum Mechanical Fragmentation Theory (QMFT advanced by Prof. Raj K. Gupta and Collaborators led to the discovery of unique phenomenon of CR along with the predictions leading to the synthesis of super heavy elements. We have also mentioned the development of dynamical theories based on QMFT, the Preformed Cluster Model(PCM and the dynamical cluster-decay model (DCM, to study the ground and excited state decays of nuclei, respectively, by Gupta and Collaborators. It is matter of great honor and pride for us to bring out this study to enthuse the young researchers to come up with novel ideas and have inspiration from the scientific contributions of Prof. Raj K. Gupta who is coincidentally celebrating his platinum jubilee birthday anniversary this year.

  18. In-beam gamma-ray spectroscopy of neutron-rich nuclei using fragmentation of radioactive beams and half-lives measurements of excited levels in nuclei closed to {sup 68}Ni; Spectroscopie {gamma} en ligne de noyaux legers riches en neutrons produits par fragmentation de faisceau radioactif et mesures de temps de vie des niveaux excites dans des noyaux proches de {sup 68}Ni

    Energy Technology Data Exchange (ETDEWEB)

    Stanoiu, M.A

    2003-01-01

    This thesis deals with studies of nuclei far from the valley of stability produced at GANIL by projectile fragmentation at intermediate energies. It consists of two parts. The first one is dedicated to the study of very light exotic nuclei around N=14. This is the first time that online {gamma}-ray spectroscopy combined with the projectile fragmentation was used with radioactive incident beams at GANIL. The advantages and the limitations of this method were established. 40 different nuclei have been produced and studied at the same time. A strong dependence of the population of excited states on the type of projectile was observed. New information was obtained on the structure of the isotopes B{sup 14,15}, C{sup 17,18,19,20}, N{sup 18,19,20,21,22}, O{sup 22,23,24}, F{sup 24,25,26} and Ne{sup 29}. The level schemes obtained from this study have been compared with shell-model predictions. In particular, the energy of 1588(20) keV found for the first 2{sup +} excited state in C{sup 20}, as well as the non-existence of a bound state in O{sup 24}, show that the proton-neutron interaction plays an important role in the structure of these nuclei. In the second part, an experiment is presented concerning the neutron-rich isomer nuclei around Ni{sup 68} produced by the LISE spectrometer. The fast-timing method was applied for the first time for the study of nuclei produced by projectile fragmentation. Subnanosecond half-lives of several levels in Ni{sup 67,69,90} and Cu{sup 71,72} were measured simultaneously and with high precision. These results have allowed us to test the shell model predictions for several E2 transitions and their associated B(E2) transition probabilities. (author)

  19. Casein kinase II protein kinase is bound to lamina-matrix and phosphorylates lamin-like protein in isolated pea nuclei

    Science.gov (United States)

    Li, H.; Roux, S. J.

    1992-01-01

    A casein kinase II (CK II)-like protein kinase was identified and partially isolated from a purified envelope-matrix fraction of pea (Pisum sativum L.) nuclei. When [gamma-32P]ATP was directly added to the envelope-matrix preparation, the three most heavily labeled protein bands had molecular masses near 71, 48, and 46 kDa. Protein kinases were removed from the preparation by sequential extraction with Triton X-100, EGTA, 0.3 M NaCl, and a pH 10.5 buffer, but an active kinase still remained bound to the remaining lamina-matrix fraction after these treatments. This kinase had properties resembling CK II kinases previously characterized from animal and plant sources: it preferred casein as an artificial substrate, could use GTP as efficiently as ATP as the phosphoryl donor, was stimulated by spermine, was calcium independent, and had a catalytic subunit of 36 kDa. Some animal and plant CK II kinases have regulatory subunits near 29 kDa, and a lamina-matrix-bound protein of this molecular mass was recognized on immunoblot by anti-Drosophila CK II polyclonal antibodies. Also found associated with the envelope-matrix fraction of pea nuclei were p34cdc2-like and Ca(2+)-dependent protein kinases, but their properties could not account for the protein kinase activity bound to the lamina. The 71-kDa substrate of the CK II-like kinase was lamin A-like, both in its molecular mass and in its cross-reactivity with anti-intermediate filament antibodies. Lamin phosphorylation is considered a crucial early step in the entry of cells into mitosis, so lamina-bound CK II kinases may be important control points for cellular proliferation.

  20. -Decay and the electric dipole moment: Searches for time-reversal violation in radioactive nuclei and atoms

    Indian Academy of Sciences (India)

    H W Wilschut; U Dammalapati; D J Van Der Hoek; K Jungmann; W Kruithof; C J G Onderwater; B Santra; P D Shidling; L Willmann

    2010-07-01

    One of the greatest successes of the Standard Model of particle physics is the explanation of time-reversal violation (TRV) in heavy mesons. It also implies that TRV is immeasurably small in normal nuclear matter. However, unifying models beyond the Standard Model predict TRV to be within reach of measurement in nuclei and atoms, thus opening an important window to search for new physics. We will discuss two complementary experiments sensitive to TRV: Correlations in the -decay of 21Na and the search for an electric dipole moment (EDM) in radium.

  1. Bound-state energy of double magic number plus one nucleon nuclei with relativistic mean-field approach

    Indian Academy of Sciences (India)

    M MOUSAVI; M R SHOJAEI

    2017-02-01

    In this work, we have obtained energy levels and charge radius for the $\\beta$-stability line nucleus, in relativistic shell model. In this model, we considered a close shell for each nucleus containing double magicnumber and a single nucleon energy level. Here we have taken $^{41}$Ca with a single neutron in the $^{40}$Ca core as an illustrative example. Then we have selected the Eckart plus Hulthen potentials for interaction between the coreand the single nucleon. By using parametric Nikiforov–Uvarov (PNU) method, we have calculated the energy values and wave function. Finally, we have calculated the charge radius for 17O, $^{41}$Ca, $^{49}$Ca and $^{57}$Ni. Our results are in agreement with experimental values and hence this model can be applied for similar nuclei.

  2. Release studies of a thin foil tantalum target for the production of short-lived radioactive nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, J.R.J. E-mail: rjb@isise.rl.ac.uk; Bergmann, U.C.; Drumm, P.V.; Lettry, J.; Nilsson, T.; Catherall, R.; Jonsson, O.C.; Ravn, H.L.; Simon, H

    2002-04-22

    Measurements have been made at ISOLDE, of the release curves and yields of radioactive beams of lithium, sodium and beryllium from a target constructed from 2 {mu}m thick foils. The release curves have been analysed by fitting to a mathematical model to determine the coefficients of diffusion of the particles in the foils and effusion through the target and ionizer at several temperatures. Through a better understanding of the rate of transport of the particles, it is possible to design targets and ionizers with improved yields. This is most important for the rare, short-lived isotopes in which there is considerable interest for physics experiments. This target has demonstrated large increases in the yields of {sup 11}Li and {sup 12}Be, in agreement with the predictions of the model.

  3. Release studies of a thin foil tantalum target for the production of short-lived radioactive nuclei

    CERN Document Server

    Bennett, J R J; Drumm, P V; Lettry, Jacques; Nilsson, T; Catherall, R; Jonsson, O C; Ravn, H L; Simon, H

    2002-01-01

    Measurements have been made at ISOLDE, of the release curves and yields of radioactive beams of lithium, sodium and beryllium from a target constructed from 2 $\\mu$m thick foils. The release curves have been analysed by fitting to a mathematical model to determine the coefficients of diffusion of the particles in the foils and effusion through the target and ionizer at several temperatures. Through a better understanding of the rate of transport of the particles, it is possible to design targets and ionizers with improved yields. This is most important for the rare, short-lived isotopes in which there is considerable interest for physics experiments. This target has demonstrated large increases in the yields of $^{11}$Li and $^{12}$Be, in agreement with the predictions of the model. (11 refs).

  4. Decay analysis of compound nuclei with mass A$\\sim 30-200$ formed in the reactions involving loosely bound projectiles

    CERN Document Server

    Kaur, Mandeep; Sharma, Manoj K; Gupta, Raj K

    2015-01-01

    The dynamics of the reactions forming compound nuclei using loosely bound projectiles is analysed within the framework of dynamical cluster decay model (DCM) of Gupta and Collaborators. We have analysed different reactions with $^{7}Li$, $^{9}Be$ and $^{7}Be$ as neutron rich and neutron deficient projectiles, respectively, on different targets at the three $E_{lab}$ values, forming compound nuclei within the mass region A$\\sim 30-200$. The contributions of light particles LPs ($A\\le4$) cross sections $\\sigma_{LP}$, energetically favoured intermediate mass fragments IMFs ($5 \\le A_2 \\le 20$) cross sections $\\sigma_{IMF}$ as well as fusion-fission $\\it{ff}$ cross sections $\\sigma_{ff}$ constitute the $\\sigma_{fus}$ (=$\\sigma_{LP}$+$\\sigma_{IMF}$+$\\sigma_{ff}$) for these reactions. The contribution of the emitted LPs, IMFs and ff fragments is added for all the angular momentum upto the $\\ell_{max}$ value, for the resepctive reactions. Interestingly, we find that the $\\Delta R^{emp}$, the only parameter of model ...

  5. Asymptotics of three-body bound state radial wave functions of halo nuclei involving two charged particles

    CERN Document Server

    Yarmukhamedov, R

    2016-01-01

    Asymptotic expressions for the radial and full wave functions of a three{body bound halo nuclear system with two charged particles in relative coordinates are obtained in explicit form, when the relative distance between two particles tends to infinity. The obtained asymptotic forms are applied to the analysis of the asymptotic behavior of the three-body (pn?) wave functions for the halo ($E^*=3.562$ MeV, $J^{\\pi}=0^+$, $T=1$) state of $^6$Li derived by D. Baye within the Lagrange-mesh method for two forms of the $\\alpha N$ -potential. The agreement between the calculated wave function and the asymptotic formula is excellent for distances up to 30 fm. Information about the values of the three-body asymptotic normalization functions is extracted. It is shown that the extracted values of the three-body asymptotic normalization function are sensitive to the form of the $\\alpha N$ -potential. The mirror symmetry is revealed for the three-body asymptotic normalization functions derived for the isobaric ($^6$He, $^...

  6. Radioactivity, radionuclides, radiation

    CERN Document Server

    Magill, Joseph

    2005-01-01

    RADIOACTIVITY – RADIONUCLIDES – RADIATION is suitable for a general audience interested in topical environmental and human health radiological issues such as radiation exposure in aircraft, food sterilisation, nuclear medicine, radon gas, radiation dispersion devices ("dirty bombs")… It leads the interested reader through the three Rs of nuclear science, to the forefront of research and developments in the field. The book is also suitable for students and professionals in the related disciplines of nuclear and radiochemistry, health physics, environmental sciences, nuclear and astrophysics. Recent developments in the areas of exotic decay modes (bound beta decay of ‘bare’ or fully ionized nuclei), laser transmutation, nuclear forensics, radiation hormesis and the LNT hypothesis are covered. Atomic mass data for over 3000 nuclides from the most recent (2003) evaluation are included.

  7. Reactions and structure of exotic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Esbensen, H.

    1993-08-01

    Radioactive beam experiments have made it possible to study the structure of light neutron rich nuclei. A characteristic feature is a large dipole strength near threshold. An excellent example is the loosely bound nucleus ``Li for which Coulomb dissociation plays a dominant role in breakup reactions on a high Z target. I will describe a three-body model and apply it to calculate the dipole response of {sup 11}Li and the momentum distributions for the three-body breakup reaction: {sup 11}Li {yields} {sup 9}Li+n+n, and comparisons will be made to recent three-body coincidence measurements.

  8. Quarks in finite nuclei

    CERN Document Server

    Guichon, P A M; Thomas, A W

    1996-01-01

    We describe the development of a theoretical description of the structure of finite nuclei based on a relativistic quark model of the structure of the bound nucleons which interact through the (self-consistent) exchange of scalar and vector mesons.

  9. Nuclear astrophysics of light nuclei

    DEFF Research Database (Denmark)

    Fynbo, Hans Otto Uldall

    2013-01-01

    A review of nuclear astrophysics of light nuclei using radioactive beams or techniques developed for radioactive beams is given. We discuss Big Bang nucleosynthesis, with special focus on the lithium problem, aspects of neutrino-physics, helium-burning and finally selected examples of studies...

  10. Study of biodistribution of lipidic nanospheres charged with cis-diaminedichloroplatinum (II) and labelled with radioactive nuclei of Indium-111; Estudio de biodistribucion de nanoesferas lipidicas cargadas con cis-diaminodicloroplatino (II) y marcadas con nucleos radioactivos de Indio-111

    Energy Technology Data Exchange (ETDEWEB)

    Lopez R, V.; Juarez O, C.; Medina L, A. [Unidad de Investigacion Biomedica en Cancer INCAN-UNAM, Mexico D.F. (Mexico); Perez C, E.; Garcia L, P. [Instituto nacional de cancerologia, Mexico D.F. (Mexico)

    2007-07-01

    The general objective of the study was to evaluate the lipidic nanospheres biodistribution charged with cis-diaminedichloroplatinum (II) (cis-DDP) and labelled with radioactive nuclei of Indium-111 (Lip-Cis-in-111) in Wistar rats and in a tumoral model of CaCu. The conclusions were: 1. The system Lip-Cis-in-111 it presents a very fast elimination probably, to a fast recognition response of the reticuloendothelial system (RES). 2. It is planned to make modifications to the formulation to increase the quantity of the hydrophilic polymer (PEG), so that its time of residence in the blood is bigger and allow a bigger accumulation in the tumor. (Author)

  11. $\\gamma$- spectroscopy of n-rich $^{95,96}$Rb nuclei by the incomplete fusion reaction of $^{94}$Kr on $^{7}$Li: Introduction to HIE-ISOLDE studies of n-rich Sb and Tl isotopes with Sn and Hg radioactive beams.

    CERN Document Server

    Fornal, B; Bednarczyk, P; Cieplicka, N; Krolas, W; Maj, A; Leoni, S; Benzoni, G; Blasi, N; Bottoni, S; Bracco, A; Camera, F; Crespi, F; Million, B; Morales, A; Wieland, O; Rusek, K; Lunardi, S; Mengoni, D; Recchia, F; Ur, CA; Valiente-Dobon, J; de France, G; Clement, E; Elseviers, J; Flavigny, F; Huyse, M; Raabe, R; Sambi, S; Van Duppen, P; Sferrazza, M; Simpson, G; Georgiev, G; Sotty, C; Blazhev, A; German, R; Siebeck, B; Seidlitz, M; Reiter, P; Warr, N; Boenig, S; Ilieva, S; Kroell, T; Scheck, M; Thurauf, M; Gernhaeuser, R; Mucher, D; Janssens, R; Carpenter, MP; Zhu, S; Marginean, NM; Balabanski, D; Kowalska, M

    2012-01-01

    $\\gamma$- spectroscopy of n-rich $^{95,96}$Rb nuclei by the incomplete fusion reaction of $^{94}$Kr on $^{7}$Li: Introduction to HIE-ISOLDE studies of n-rich Sb and Tl isotopes with Sn and Hg radioactive beams.

  12. Detnex Project: Dispersion, Structure and Tracking of Exotic Nuclei

    Science.gov (United States)

    Alvarez, M. A. G.; Gómez-Camacho, J.; Espino, J. M.; Mukha, I.; Martel, I.

    2007-05-01

    Since 1970's when double-folding model, based on M3Y interaction, had to be renormalized to fit the elastic scattering of weakly bound 6,7Li and 9Be nuclei, we learned that preconceptions based on the highly successful experience of the optical model on stable nuclei could not be simply extrapolated to the scattering of exotic nuclei. Recently, we have shown some evidences of long range mechanisms in 6He induced reactions that lead to the loss of flux in the elastic channel at kinematic conditions that suggest the nuclei are well beyond the strong absorption radius [O. R. Kakuee, M. A. G. Alvarez, M. V. Andrés, S. Cherubini, T. Davinson, A. Di Pietro, W. Galster, J. Gómez-Camacho, A. M. Laird, M. Lamehi-Rachti, I. Martel, A. M. Moro, J. Rahighi, A. M. Sánchez-Benitez, A. C. Shotter, W. B. Smith, J. Vervier, P. J. Woods. Nucl. Phys. A 765, (2006) 294]. Even so, the use of nuclear reactions as an spectroscopic tool to investigate the nuclear structure of weakly bound nuclei requires a deep understanding of the reactions induced by these nuclei. Therefore, precise experimental measurements of the elastic scattering of exotic nuclei on a variety of targets, as well as the measurements of the main reaction channels are required in order to converge experimentally and theoretically to this understanding. With this aim a campaign of experiments involving different institutions and collaborations is being carefully established and going ahead at several radioactive ion beam (RIB) facilities: ISOLDE (CERN), CRC (Be), GSI (Ge) and TRIUMPH (Ca). The main idea is to measure the scattering of He, Li, and Be isotopes, and perform an intensive theoretical treatment, besides promoting some necessary instrumental development. In particular we participate in the low energy branch of the FAIR project where we take part in the tracking studies and developments.

  13. Detnex Project: Dispersion, Structure and Tracking of Exotic Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, M.A.G. [Universidad de Sevilla, P.O. Box 1065, E-41080, Seville (Spain); Gomez-Camacho, J. [Universidad de Sevilla, P.O. Box 1065, E-41080, Seville (Spain); Espino, J.M. [Universidad de Sevilla, P.O. Box 1065, E-41080, Seville (Spain); Mukha, I. [Universidad de Sevilla, P.O. Box 1065, E-41080, Seville (Spain); Martel, I. [Universidad de Huelva, Departamento de Fisica Aplicada, E-21819 Huelva (Spain)

    2007-05-01

    Since 1970's when double-folding model, based on M3Y interaction, had to be renormalized to fit the elastic scattering of weakly bound {sup 6,7}Li and {sup 9}Be nuclei, we learned that preconceptions based on the highly successful experience of the optical model on stable nuclei could not be simply extrapolated to the scattering of exotic nuclei. Recently, we have shown some evidences of long range mechanisms in {sup 6}He induced reactions that lead to the loss of flux in the elastic channel at kinematic conditions that suggest the nuclei are well beyond the strong absorption radius [O. R. Kakuee, M. A. G. Alvarez, M. V. Andres, S. Cherubini, T. Davinson, A. Di Pietro, W. Galster, J. Gomez-Camacho, A. M. Laird, M. Lamehi-Rachti, I. Martel, A. M. Moro, J. Rahighi, A. M. Sanchez-Benitez, A. C. Shotter, W. B. Smith, J. Vervier, P. J. Woods. Nucl. Phys. A 765 (2006) 294]. Even so, the use of nuclear reactions as an spectroscopic tool to investigate the nuclear structure of weakly bound nuclei requires a deep understanding of the reactions induced by these nuclei. Therefore, precise experimental measurements of the elastic scattering of exotic nuclei on a variety of targets, as well as the measurements of the main reaction channels are required in order to converge experimentally and theoretically to this understanding. With this aim a campaign of experiments involving different institutions and collaborations is being carefully established and going ahead at several radioactive ion beam (RIB) facilities: ISOLDE (CERN), CRC (Be), GSI (Ge) and TRIUMPH (Ca). The main idea is to measure the scattering of He, Li, and Be isotopes, and perform an intensive theoretical treatment, besides promoting some necessary instrumental development. In particular we participate in the low energy branch of the FAIR project where we take part in the tracking studies and developments.

  14. Breakup of loosely bound nuclei at intermediate energies for nuclear astrophysics and the development of a position sensitive microstrip detector system and its readout electronics using ASICs technologies

    Energy Technology Data Exchange (ETDEWEB)

    Bertulani, Carlos A. [Texas A & M Univ., Commerce, TX (United States)

    2016-01-12

    The work performed under this grant has led to the development of a detection system that will be used to measure reaction rates for proton or neutron capture reactions at stellar energies on radioactive ions far from stability. The reaction rates are needed to better understand the physics of nucleosynthesis in explosive stellar processes such as supernovae and x-ray burst events. The radioactive ions will be produced at the Radioactive Ion Beam Facility (RIBF) at RIKEN near Tokyo, Japan. During the course of this work, the group involved in this project has expanded by several institutions in Europe and Japan and now involves collaborators from the U.S., Japan, Hungary, Romania, Germany, Spain, Italy, China, and South Korea. As part of the project, a novel design based on large-area silicon detectors has been built and tested. The work has involved mechanical construction of a special purpose vacuum chamber, with a precision mounting system for the silicon detectors, development of a new ASICs readout system that has applications with a wide variety of silicon detector systems, and the development of a data acquisition system that is integrated into the computer system being used at RIBF. The parts noted above that are needed to carry out the research program are completed and ready for installation. Several approved experiments that will use this system will be carried out in the near future. The experimental work has been delayed due to a large increase in the cost and availability of electrical power for RIBF that occurred following the massive earthquake and tsunami that hit Japan in the spring of 2011. Another component of the research carried out with this grant involved developing the theoretical tools that are required to extract the information from the experiments that is needed to determine the stellar reaction rates. The tools developed through this part of the work will be made freely available for general use.

  15. Breakup of loosely bound nuclei at intermediate energies for nuclear astrophysics and the development of a position sensitive microstrip detector system and its readout electronics using ASICs technologies

    Energy Technology Data Exchange (ETDEWEB)

    Tribble, Robert E. [Texas A & M Univ., College Station, TX (United States); Sobotka, Lee G. [Washington Univ., St. Louis, MO (United States); Blackmon, Jeff C. [Louisiana State Univ., Baton Rouge, LA (United States); Bertulani, Carlos A. [Texas A & M Univ., Commerce, TX (United States)

    2015-12-29

    The work performed under this grant has led to the development of a detection system that will be used to measure reaction rates for proton or neutron capture reactions at stellar energies on radioactive ions far from stability. The reaction rates are needed to better understand the physics of nucleosynthesis in explosive stellar processes such as supernovae and x-ray burst events. The radioactive ions will be produced at the Radioactive Ion Beam Facility (RIBF) at RIKEN near Tokyo, Japan. During the course of this work, the group involved in this project has expanded by several institutions in Europe and Japan and now involves collaborators from the U.S., Japan, Hungary, Romania, Germany, Spain, Italy, China, and South Korea. As part of the project, a novel design based on large-area silicon detectors has been built and tested and the performance characterized in a series of tests using particle beams with a variety of atomic numbers at the Cyclotron Institute of Texas A&M University and the Heavy Ion Medical Accelerator in Chiba facility (HIMAC) in Chiba, Japan. The work has involved mechanical construction of a special purpose vacuum chamber, with a precision mounting system for the silicon detectors, development of a new ASICs readout system that has applications with a wide variety of silicon detector systems, and the development of a data acquisition system that is integrated into the computer system being used at RIBF. The parts noted above that are needed to carry out the research program are completed and ready for installation. Several approved experiments that will use this system will be carried out in the near future. The experimental work has been delayed due to a large increase in the cost and availability of electrical power for RIBF that occurred following the massive earthquake and tsunami that hit Japan in the spring of 2011. Another component of the research carried out with this grant involved developing the theoretical tools that are required

  16. Contribution of the radioactive decay to the study of the structure of N=Z nuclei of mass A>70; Apport de la decroissance radioactive a l'etude de la structure des noyaux N=Z de masse A>70

    Energy Technology Data Exchange (ETDEWEB)

    Longour, Christophe [Institut de Recherches Subatomiques, B.P.28, 23, Rue du Loess, F-67037 Strasbourg Cedex 2 (France)

    1999-04-21

    Radioactive decay study gives an access to the interaction which rules the {beta} decay process as well as the structure of the nuclear states involved. This work describes the observation of the decay of N = Z nuclei with mass A > 70. For the odd-odd N = Z nuclei {sup 78}Y, {sup 82}Nb and {sup 86}Tc, the decay has been established as superallowed Fermi type transitions. The results pave the way for more precise measurements and extend the mass range nowadays used to understand the behaviour of the weak interaction in the nuclear matter. The observation of the decay of the even-even N = Z {sup 72}Kr leads us to build the Gamow-Teller strength distribution from which some clues about the ground state deformation of this isotope can be obtained. More complete experimental observation and some developments of the calculations used to interpret the distribution of the Gamow-Teller strength are needed. Finally, this work describes the developments and tests of a prototype detector the aim of which to determine the contribution of {beta} particles to energy distribution observed in germanium detector. The tests we have performed show that this prototype can identify and reject 80% of the {beta} particles emitted by a source with a 2,3 MeV end-point. The very satisfactory performances of this prototype need now to be confirmed under experimental conditions.

  17. Earth's magnetic field enabled scalar coupling relaxation of 13C nuclei bound to fast-relaxing quadrupolar 14N in amide groups.

    Science.gov (United States)

    Chiavazza, Enrico; Kubala, Eugen; Gringeri, Concetta V; Düwel, Stephan; Durst, Markus; Schulte, Rolf F; Menzel, Marion I

    2013-02-01

    Scalar coupling relaxation, which is usually only associated with closely resonant nuclei (e.g., (79)Br-(13)C), can be a very effective relaxation mechanism. While working on hyperpolarized [5-(13)C]glutamine, fast liquid-state polarization decay during transfer to the MRI scanner was observed. This behavior could hypothetically be explained by substantial T(1) shortening due to a scalar coupling contribution (type II) to the relaxation caused by the fast-relaxing quadrupolar (14)N adjacent to the (13)C nucleus in the amide group. This contribution is only effective in low magnetic fields (i.e., less than 800 μT) and prevents the use of molecules bearing the (13)C-amide group as hyperpolarized MRS/MRI probes. In the present work, this hypothesis is explored both theoretically and experimentally. The results show that high hyperpolarization levels can be retained using either a (15)N-labeled amide or by applying a magnetic field during transfer of the sample from the polarizer to the MRI scanner.

  18. Introduction to Astronomy with Radioactivity

    CERN Document Server

    Diehl, Roland

    2010-01-01

    In the late nineteenth century, Antoine Henri Becquerel discovered radioactivity and thus the physics of weak interactions, well before atomic and quantum physics was known. The different types of radioactive decay, alpha, beta, and gamma decay, all are different types of interactions causing the same, spontaneous, and time-independent decay of an unstable nucleus into another and more stable nucleus. Nuclear reactions in cosmic sites re-arrange the basic constituents of atomic nuclei (neutrons and protons) among the different configurations which are allowed by Nature, thus producing radioactive isotopes as a by-product. Throughout cosmic history, such reactions occur in different sites, and lead to rearrangements of the relative abundances of cosmic nuclei, a process called cosmic chemical evolution, which can be studied through the observations of radioactivity. The special role of radioactivity in such studies is contributed by the intrinsic decay of such material after it has been produced in cosmic site...

  19. Elastic scattering, fusion, and breakup of light exotic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Kolata, J.J. [University of Notre Dame, Physics Department, Notre Dame, IN (United States); Guimaraes, V. [Universidade de Sao Paulo, Instituto de Fisica, Sao Paulo, SP (Brazil); Aguilera, E.F. [Instituto Nacional de Investigaciones Nucleares, Departamento de Aceleradores, Mexico, Distrito Federal (Mexico)

    2016-05-15

    The present status of fusion reactions involving light (A< 20) radioactive projectiles at energies around the Coulomb barrier (E<10 MeV per nucleon) is reviewed, emphasizing measurements made within the last decade. Data on elastic scattering (providing total reaction cross section information) and breakup channels for the involved systems, demonstrating the relationship between these and the fusion channel, are also reviewed. Similarities and differences in the behavior of fusion and total reaction cross section data concerning halo nuclei, weakly-bound but less exotic projectiles, and strongly-bound systems are discussed. One difference in the behavior of fusion excitation functions near the Coulomb barrier seems to emerge between neutron-halo and proton-halo systems. The role of charge has been investigated by comparing the fusion excitation functions, properly scaled, for different neutron- and proton-rich systems. Possible physical explanations for the observed differences are also reviewed. (orig.)

  20. Superheavy nuclei

    CERN Document Server

    Sáro, S

    2003-01-01

    Experiments leading to transuranium and far transuranium nuclei as far as element 106 (seaborgium) are described. Physical knowledge derived from experimental data at this stage of complete synthesis nuclear reactions since the 1980s is analyzed. The effect of the shell structure on the stability of the nuclei, the extra-push effect, and the effect of isospin are discussed. Experiments leading to the synthesis of nuclei with Z = 107 - 112 by cold fusion are also described, as are hot fusion reactions resulting in superheavy nuclei Z = 114, 116 where, however, confirmation is only pending. Current state of the art in this area is also highlighted

  1. Scattering Of Light Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Quaglioni, S; Navratil, P; Roth, R

    2009-12-15

    The exact treatment of nuclei starting from the constituent nucleons and the fundamental interactions among them has been a long-standing goal in nuclear physics. Above all nuclear scattering and reactions, which require the solution of the many-body quantum-mechanical problem in the continuum, represent an extraordinary theoretical as well as computational challenge for ab initio approaches.We present a new ab initio many-body approach which derives from the combination of the ab initio no-core shell model with the resonating-group method [4]. By complementing a microscopic cluster technique with the use of realistic interactions, and a microscopic and consistent description of the nucleon clusters, this approach is capable of describing simultaneously both bound and scattering states in light nuclei. We will discuss applications to neutron and proton scattering on sand light p-shell nuclei using realistic nucleon-nucleon potentials, and outline the progress toward the treatment of more complex reactions.

  2. On Quasibound N* Nuclei

    CERN Document Server

    Kelkar, N G; Moskal, P

    2015-01-01

    The possibility for the existence of unstable bound states of the S11 nucleon resonance N$^*$(1535) and nuclei is investigated. These quasibound states are speculated to be closely related to the existence of the quasibound states of the eta mesons and nuclei. Within a simple model for the N N$^*$ interaction involving a pion and eta meson exchange, N$^*$-nucleus potentials for N*-$^3$He and N*-$^{24}$Mg are evaluated and found to be of a Woods-Saxon like form which supports two to three bound states. In case of N*-$^3$He, one state bound by only a few keV and another by 4 MeV is found. The results are however quite sensitive to the N N$^*$ $\\pi$ and N N$^*$ $\\eta$ vertex parameters. A rough estimate of the width of these states, based on the mean free path of the exchanged mesons in the nuclei leads to very broad states with $\\Gamma \\sim$ 80 and 110 MeV for N*-$^3$He and N*-$^{24}$Mg respectively.

  3. Exotic Behaviour of Angular Dispersion of Weakly Bound Nucleus 17F at Small Angles

    Institute of Scientific and Technical Information of China (English)

    WANG Qi; YUAN Xiao-Hua; XU Zhi-Guo; ZHAO Tie-Cheng; ZHANG Hong-Bin; XU Hua-Gen; QI Hui-Rong; WANG Yue; JIA Fei; WU Li-Jie; DING Xian-Li; HAN Jian-Long; GAO Qi; GAO Hui; LI Song-Lin; BAI Zhen; XIAO Guo-Qing; JIN Gen-Ming; REN Zhong-Zhou; ZHOU Shan-Gui; SERGEY Yu-Kun; XIAO Zhi-Gang; XU Hu-Shan; SUN Zhi-Yu; HU Zheng-Guo; ZHANG Xue-Ying; WANG Hong-Wei; MAO Rui-Shi

    2006-01-01

    @@ The differential cross sections of 17 F and 17 O elastic scattering products on 208Pb have been measured at the Radioactive Ion Beam Line at Lanzhou (RIBLL). Two angular dispersion plots ofln( dσ/ dθ ) versus θ2 are obtained from the angular distribution of the elastic scattering differential cross sections. The angular dispersion plot exhibits a clear turning point for 17F in the range of small scattering angles 6°-20° due to its exotic structure,but for 17 O, the turning point is not observed in the same angular range. The experimental results have been compared with previous data of other groups. Systematical analysis on the available data supports the above conclusion that there is an exotic behaviour of the angular dispersion plot of weakly bound nuclei with halo or skin structure as compared with that of the ordinary nuclei near stable line. Therefore the turning point of the angular dispersion plot appears at small angle for weakly bound nuclei with halo or skin structure, and can be used as a new probe to investigate the halo and skin phenomena of weakly bound nuclei.

  4. Study of proton radioactivities

    Energy Technology Data Exchange (ETDEWEB)

    Davids, C.N.; Back, B.B.; Henderson, D.J. [and others

    1995-08-01

    About a dozen nuclei are currently known to accomplish their radioactive decay by emitting a proton. These nuclei are situated far from the valley of stability, and mark the very limits of existence for proton-rich nuclei: the proton drip line. A new 39-ms proton radioactivity was observed following the bombardment of a {sup 96}Ru target by a beam of 420-MeV {sup 78}Kr. Using the double-sided Si strip detector implantation system at the FMA, a proton group having an energy of 1.05 MeV was observed, correlated with the implantation of ions having mass 167. The subsequent daughter decay was identified as {sup 166}Os by its characteristic alpha decay, and therefore the proton emitter is assigned to the {sup 167}Ir nucleus. Further analysis showed that a second weak proton group from the same nucleus is present, indicating an isomeric state. Two other proton emitters were discovered recently at the FMA: {sup 171}Au and {sup 185}Bi, which is the heaviest known proton radioactivity. The measured decay energies and half-lives will enable the angular momentum of the emitted protons to be determined, thus providing spectroscopic information on nuclei that are beyond the proton drip line. In addition, the decay energy yields the mass of the nucleus, providing a sensitive test of mass models in this extremely proton-rich region of the chart of the nuclides. Additional searches for proton emitters will be conducted in the future, in order to extend our knowledge of the location of the proton drip line.

  5. Nuclear Astrophysics Measurements with Radioactive Beams

    Science.gov (United States)

    Smith, Michael S.; Ernst Rehm, K.

    Radioactive nuclei play an important role in a diverse range of astrophysical phenomena including the early universe, the sun, red giant stars, nova explosions, X-ray bursts, supernova explosions, and supermassive stars. Measurements of reactions with beams of short-lived radioactive nuclei can, for the first time, probe the nuclear reactions occurring in these cosmic phenomena. This article describes the astrophysical motivation for experiments with radioactive beams, the techniques to produce these beams and perform astrophysically relevant measurements, results from recent experiments, and plans for future facilities.

  6. Proton scattering from unstable nuclei

    Indian Academy of Sciences (India)

    Y Blumenfeld; E Khan; F Maréchal; T Suomijärvi

    2001-08-01

    Recent improvements in the intensities and optical qualities of radioactive beams have made possible the study of elastic and inelastic proton scattering on unstable nuclei. The design and performances of an innovative silicon strip detector array devoted to such experiments are described. The quality of the data obtained are illustrated with recent results obtained at the GANIL facility for unstable oxygen, sulfur and argon isotopes. Methods to analyse the data using phenomenological and microscopic optical model potentials are discussed.

  7. Masses of nuclei close to the dripline

    CERN Document Server

    Herfurth, F; Beck, D; Blaum, K; Bollen, G; Kellerbauer, A G; Kluge, H J; Lunney, M D; Rodríguez, D; Schwarz, S; Sikler, G; Weber, C

    2003-01-01

    Mass measurements of radioactive nuclides are one of the cornerstones of our understanding of the nucleus. The Penning trap spectrometer ISOLTRAP performs direct mass measurements far away from the valley of stability, as well as high-precision measurements of key nuclei to anchor long decay chains. Both schemes provide valuable information on the dripline itself and on nuclei in its close vicinity. (10 refs) .

  8. Radioactive Material

    CERN Multimedia

    2004-01-01

    The Radiation Protection Group of the Safety Commission is responsible for shipping of radioactive material from CERN to any external institute or organisation. The RP group is equally responsible for the reception of radioactive material shipped to any of the CERN sites. Anyone who needs to ship from or import into CERN radioactive material must contact the Radioactive Shipping Service of the RP group in advance. Instructions are available at: http://cern.ch/rp-shipping or in the Radiation Protection Procedure PRP13: https://edms.cern.ch/document/346823 Radiation Protection Group

  9. 5He radioactivity

    OpenAIRE

    Poenaru, D.N.; Ivaşcu, M.

    1984-01-01

    The disintegration of a metastable nuclear state by emission of a light particle can be considered to be a very asymmetric fission process. An approximation of the potential barrier in the overlapping region of the two fragments leads to an analytic relationship for the life-time, allowing us to handle a large number of cases to search for new kinds of radioactivities. In this way, it is predicted that some nuclei with Z = 83-92, N = 127-137 and 97-105,145-157 are able to decay spontaneously ...

  10. Effects of fluvial processes in different order river valleys on redistribution and storage of particle-bound radioactive caesium-137 in area of significant Chernobyl fallout and impact on linked rivers with lower contamination levels

    Science.gov (United States)

    Belyaev, Vladimir; Golosov, Valentin; Shamshurina, Evgeniya; Ivanov, Maxim; Ivanova, Nadezhda; Bezukhov, Dmitry; Onda, Yuichi; Wakiyama, Yoshifumi; Evrard, Olivier

    2015-04-01

    Detailed investigations of the post-fallout fate of radionuclide contamination represent an important task in terms of environmental quality assessment. In addition, particle-bound radionuclides such as the most widespread anthropogenic isotope caesium-137 can be used as tracers for quantitative assessment of different sediment redistribution processes. In landscapes of humid plains with agriculture-dominated land use the post-fallout redistribution of caesium-137 is primarily associated with fluvial activity of various scales in cascade systems starting from soil erosion on cultivated hillslopes through gully and small dry valley network into different order perennial streams and rivers. Our investigations in the so-called Plavsk hotspot (area of very high Chernobyl caesium-137 contamination within the Plava River basin, Tula Region, Central European Russia) has been continuing for more than 15 years by now, while the time passed since the Chernobyl disaster and associated radioactive fallout (1986) is almost 29 years. Detailed information on the fluvial sediment and associated caesium-137 redistribution has been obtained for case study sites of different size from individual cultivated slopes and small catchments of different size (2-180 km2) to the entire Plava River basin scale (1856 km2). It has been shown that most of the contaminated sediment over the time passed since the fallout has remained stored within the small dry valleys of the 1-4 Hortonian order and local reservoirs (>70%), while only about 5% reached the 5-6 order valleys (main tributaries of the Plava River) and storage of the Plava floodplain itself represents as low as 0.3% of the basin-scale total sediment production from eroded cultivated hillslopes. Nevertheless, it has been shown that contaminated sediment yield from the Plava River basin exerts significant influence on less polluted downstream-linked river system. Recent progress of the investigations involved sampling of 7 detailed depth

  11. Photoproduction of mesons off nuclei

    CERN Document Server

    Krusche, B

    2011-01-01

    Recent results for the photoproduction of mesons off nuclei are reviewed. These experiments have been performed for two major lines of research related to the properties of the strong interaction. The investigation of nucleon resonances requires light nuclei as targets for the extraction of the isospin composition of the electromagnetic excitations. This is done with quasi-free meson photoproduction off the bound neutron and supplemented with the measurement of coherent photoproduction reactions, serving as spin and/or isospin filters. Furthermore, photoproduction from light and heavy nuclei is a very efficient tool for the study of the interactions of mesons with nuclear matter and the in-medium properties of hadrons. Experiments are currently rapidly developing due to the combination of high quality tagged (and polarized) photon beams with state-of-the-art 4pi detectors and polarized targets.

  12. Simulated Radioactivity

    Science.gov (United States)

    Boettler, James L.

    1972-01-01

    Describes the errors in the sugar-cube experiment related to radioactivity as described in Project Physics course. The discussion considers some of the steps overlooked in the experiment and generalizes the theory beyond the sugar-cube stage. (PS)

  13. Radioactivity Calculations

    Science.gov (United States)

    Onega, Ronald J.

    1969-01-01

    Three problems in radioactive buildup and decay are presented and solved. Matrix algebra is used to solve the second problem. The third problem deals with flux depression and is solved by the use of differential equations. (LC)

  14. Concentrating Radioactivity

    Science.gov (United States)

    Herrmann, Richard A.

    1974-01-01

    By concentrating radioactivity contained on luminous dials, a teacher can make a high reading source for classroom experiments on radiation. The preparation of the source and its uses are described. (DT)

  15. Bound entanglement and entanglement bounds

    Energy Technology Data Exchange (ETDEWEB)

    Sauer, Simeon [Physikalisch-Astronomische Fakultaet, Friedrich-Schiller-Univesitaet Jena (Germany)]|[Physikalisches Institut, Albert-Ludwigs-Universitaet Freiburg, Hermann-Herder-Strasse 3, D-79104 Freiburg (Germany); Melo, Fernando de; Mintert, Florian; Buchleitner, Andreas [Physikalisches Institut, Albert-Ludwigs-Universitaet Freiburg, Hermann-Herder-Strasse 3, D-79104 Freiburg (Germany)]|[Max-Planck-Institut fuer Physik komplexer Systeme, Noethnitzer Str.38, D-01187 Dresden (Germany); Bae, Joonwoo [School of Computational Sciences, Korea Institute for Advanced Study, Seoul 130-012 (Korea); Hiesmayr, Beatrix [Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna (Austria)

    2008-07-01

    We investigate the separability of Bell-diagonal states of two qutrits. By using lower bounds to algebraically estimate concurrence, we find convex regions of bound entangled states. Some of these regions exactly coincide with the obtained results when employing optimal entanglement witnesses, what shows that the lower bound can serve as a precise detector of entanglement. Some hitherto unknown regions of bound entangled states were discovered with this approach, and delimited efficiently.

  16. Quark Degrees of Freedom in Finite Nuclei

    CERN Document Server

    Tsushima, K; Thomas, A W; Tsushima, Kazuo; Saito, Koichi; Thomas, Anthony W.

    1996-01-01

    Properties of finite nuclei are investigated based on relativistic Hartree equations which have been derived from a relativistic quark model of the structure of bound nucleons. Nucleons are assumed to interact through the (self-consistent) exchange of scalar ($\\sigma$) and vector ($\\omega$ and and the rms charge radius in $^{40}$Ca. Calculated properties of static, closed-shell nuclei, as well as symmetric nuclear matter are compared with experimental data and with the results of Quantum Hadrodynamics (QHD).

  17. Blog life: Entropy Bound

    Science.gov (United States)

    Steinberg, Peter

    2008-06-01

    Who is the blog written by? Peter Steinberg is a nuclear physicist at the Brookhaven National Laboratory in New York, US. He is acting project manager of the PHOBOS experiment, which used Brookhaven's Relativistic Heavy Ion Collider (RHIC) to search for unusual events produced during collisions between gold nuclei. He is also involved with the PHENIX experiment, which seeks to discover a new state of matter known as the quark-gluon plasma. In addition to his own blog Entropy Bound, Steinberg is currently blogging on a website that was set up last year to publicize the involvement of US scientists with the Large Hadron Collider (LHC) at CERN.

  18. Coupled-cluster computations of atomic nuclei

    CERN Document Server

    Hagen, G; Hjorth-Jensen, M; Dean, D J

    2013-01-01

    In the past decade, coupled-cluster theory has seen a renaissance in nuclear physics, with computations of neutron-rich and medium-mass nuclei. The method is efficient for nuclei with product-state references, and it describes many aspects of weakly bound and unbound nuclei. This report reviews the technical and conceptual developments of this method in nuclear physics, and the results of coupled-cluster calculations for nucleonic matter, and for exotic isotopes of helium, oxygen, calcium, and some of their neighbors.

  19. Radioactive ion beams in nuclear astrophysics

    Science.gov (United States)

    Gialanella, L.

    2016-09-01

    Unstable nuclei play a crucial role in the Universe. In this lecture, after a short introduction to the field of Nuclear Astrophysics, few selected cases in stellar evolution and nucleosynthesis are discussed to illustrate the importance and peculiarities of processes involving unstable species. Finally, some experimental techniques useful for measurements using radioactive ion beams and the perspectives in this field are presented.

  20. Superheavy nuclei – cold synthesis and structure

    Indian Academy of Sciences (India)

    Raj K Gupta

    2001-08-01

    The quantum mechanical fragmentation theory (QMFT), given for the cold synthesis of new and superheavy elements, is reviewed and the use of radioactive nuclear beams (RNB) and targets (RNT) is discussed. The QMFT is a complete theory of cold nuclear phenomena, namely, the cold fission, cold fusion and cluster radioactivity. Also, the structure calculations based on the axially deformed relativistic mean field (DRMF) approach are presented which predict new regions of spherical magicity, namely = 120 and = 172 or 184, for superheavy nuclei. This result is discussed in the light of recent experiments reporting the cold synthesis of = 118 element.

  1. Use of electron beams for the production of radioactive nuclei through photo-fission; Utilisation de faisceaux d'electrons pour la production des noyaux radioactifs par photo-fission

    Energy Technology Data Exchange (ETDEWEB)

    M' garrech, Slah

    2004-09-01

    The IPN (institute of nuclear physics) of Orsay decided to build a linear accelerator in order to produce an electron beam of 50 MeV energy and of 10 {mu}A average intensity. It is the ALTO project (Linear Accelerator near the Tandem of Orsay). This project will be dedicated to the production of the radioactive ions using the photo-fission process. The central topic of this thesis is the study of the beam dynamics of the ALTO facility. The first part presents studies concerning the injector. The simulations made with the simulation code PARMELA allowed the optimization of the characteristics of pre-buncher (dephasing HF, accelerating field peak...) to obtain a good bunching factor at the entrance of the buncher and at the entrance of the accelerating section according to the distance separating the two systems. The second part of this thesis is related to measurements of transverse emittance of the beam at the buncher exit. The three gradients method has been selected and the optical system used is a solenoid. The results obtained are in good agreement with former measurements. Finally a calculation of the beam line was carried out to optimize the transport of the beam to the PARRNe target without degrading its characteristics. The calculation codes that have been used are BETA and TRACE-WIN. (author)

  2. Low-energy nuclear reactions with double-solenoid- based radioactive nuclear beam

    Indian Academy of Sciences (India)

    Valdir Guimarães

    2010-07-01

    The University of Notre Dame, USA (Becchetti et al, Nucl. Instrum. Methods Res. A505, 377 (2003)) and later the University of São Paulo, Brazil (Lichtenthaler et al, Eur. Phys. J. A25, S-01, 733 (2005)) adopted a system based on superconducting solenoids to produce low-energy radioactive nuclear beams. In these systems the solenoids act as thick lenses to collect, select, and focus the secondary beam into a scattering chamber. Many experiments with radioactive light particle beams (RNB) such as 6He, 7Be, 8Li, 8B have been performed at these two facilities. These low-energy RNB have been used to investigate low-energy reactions such as elastic scattering, transfer and breakup, providing useful information on the structure of light nuclei near the drip line and on astrophysics. Total reaction cross-sections, derived from elastic scattering analysis, have also been investigated for light system as a function of energy and the role of breakup of weakly bound or exotic nuclei is discussed.

  3. Few-Body Universality in Halo Nuclei

    Directory of Open Access Journals (Sweden)

    Hammer H.-W.

    2016-01-01

    Full Text Available Few-body systems with resonant S-wave interactions show universal properties which are independent of the interaction at short distances. These properties include a geometric spectrum of three- and higher-body bound states and universal correlations between few-body observables. They can be observed on a wide range of scales from hadrons and nuclei to ultracold atoms. In this contribution, we focus on few-body universality in halo nuclei which can be considered as effective few-body systems consisting of halo nucleons and a core. This concept provides a unifying framework for halo nuclei with calculable corrections. Recent progress in this field with an emphasis on the possibility of finding Efimov states in halo nuclei is discussed.

  4. Few-Body Universality in Halo Nuclei

    Science.gov (United States)

    Hammer, H.-W.

    2016-03-01

    Few-body systems with resonant S-wave interactions show universal properties which are independent of the interaction at short distances. These properties include a geometric spectrum of three- and higher-body bound states and universal correlations between few-body observables. They can be observed on a wide range of scales from hadrons and nuclei to ultracold atoms. In this contribution, we focus on few-body universality in halo nuclei which can be considered as effective few-body systems consisting of halo nucleons and a core. This concept provides a unifying framework for halo nuclei with calculable corrections. Recent progress in this field with an emphasis on the possibility of finding Efimov states in halo nuclei is discussed.

  5. Structure and reactions of light neutron rich nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Esbensen, H.

    1993-01-01

    Radioactive beam experiments have made it possible to study the structure of nuclei at the neutron drip line. Pair correlations play a crucial role in such nuclei and characteristic features include an extended neutron halo density and a large dipole strength near threshold. The most detailed studies have been performed for [sup 11]Li. I will present a 3-body model that explains the main features of the data obtained for this nucleus.

  6. Structure and reactions of light neutron rich nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Esbensen, H.

    1993-04-01

    Radioactive beam experiments have made it possible to study the structure of nuclei at the neutron drip line. Pair correlations play a crucial role in such nuclei and characteristic features include an extended neutron halo density and a large dipole strength near threshold. The most detailed studies have been performed for {sup 11}Li. I will present a 3-body model that explains the main features of the data obtained for this nucleus.

  7. Radioactive Ion Beam Development at the Holifield Radioactive Ion Beam Facility

    CERN Document Server

    Stracener, Dan; Beene, James R; Bilheux, Hassina Z; Bilheux, Jean-Christophe; Blackmon, Jeff C; Carter, Ken; Dowling, Darryl; Juras, Raymond; Kawai, Yoko; Kronenberg, Andreas; Liu, Yuan; Meigs, Martha; Müller, Paul; Spejewski, Eugene H; Tatum, A

    2005-01-01

    Radioactive beams are produced at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory using the Isotope Separator On-Line (ISOL) technique. Radioactive nuclei are produced in a thick target via irradiation with energetic light ions (protons, deuterons, helium isotopes) and then post-accelerated to a few MeV/nucleon for use in nuclear physics experiments. An overview of radioactive beam development at the HRIBF will be presented, including ion source development, improvements in the ISOL production targets, and a description of techniques to improve the quality (intensity and purity) of the beams. Facilities for radioactive ion beam development include two ion source test facilities, a target/ion source preparation and quality assurance facility, and an in-beam test facility where low intensity production beams are used. A new test facility, the High Power Target Laboratory, will be available later this year. At this facility, high intensity production beams will be available t...

  8. Studies of exotic nuclei; Etudes des noyaux exotiques

    Energy Technology Data Exchange (ETDEWEB)

    Angelique, J.C.; Orr, N.A. [Lab. de Physique Corpusculaire, Caen Univ., 14 (France); Collaboratio: CATANE (Italy), DAPNIA-Saclay, CSNSM-Orsay, GANIL-Caen, IPN-Orsay, NSCL-MSU (USA), Los Alamos (USA), University of Manchester (United Kingdom), University of Surrey (United Kingdom), FLNR JINR Dubna (Russia), IAP-Bucharest (Romania), NPI-Rez (Czech Republic), CCLRLC-Daresbury (United Kingdom)

    1997-12-31

    The study of the nuclei far off stability valley is of much interest for testing the nuclear models established for the stable nuclei but also for astrophysics to understand the nucleosynthesis. Experiments aim to measure the mass and lifetime, to build the decay schemes and also to study the structure and the properties of these nuclei. The radioactive beam group focused its research on light neutron-rich nuclei having a halo neutron structure. Mass measurements in N {approx} Z nuclei namely in A {approx} 60-80 proton-rich nuclei, important for understanding the rp process, are mentioned, as well as in nuclei in the {sup 100}Sn region. In the newly obtained {sup 26}O and {sup 28}O nuclei the lifetimes, the probabilities of emission of one for more neutrons were determined. The data analysis has permitted to determine also for the first time the lifetimes of {sup 27,29}F and {sup 30}Ne. Studies of nuclei in the {sup 100}Sn region, near the proton drip line in the ground and isomeric states are now under way. The spectroscopy (energy levels, gamma emissions, etc.) of the neutron-rich nuclei produced by the {sup 36}S fragmentation has been carried out in {sup 31}Ne, {sup 17}B and {sup 29}F. Studies by Coulomb excitation of the 2{sup +} excited states and associated probability B (E2) in O, Ne, Ni and Zn are now analysed 6 refs.

  9. Self-consistent description of deformed nuclei at the proton drip line

    Directory of Open Access Journals (Sweden)

    Ferreira Lidia S.

    2016-01-01

    Full Text Available Proton radioactivity from deformed nuclei is described for the first time by a fully self–consistent calculation based on covariant relativistic density functionals derived from meson exchange and point coupling models.

  10. Fission and Properties of Neutron-Rich Nuclei - Proceedings of the Second International Conference

    Science.gov (United States)

    Hamilton, J. H.; Phillips, W. R.; Carter, H. K.

    The Table of Contents for the book is as follows: * Preface * Structure of Elementary Matter: Cold Valleys and Their Importance in Fission, Fusion and for Superheavy Nuclei * Tunnelling Phenomena in Nuclear Physics * Heavy Nuclei Studies Using Transfer Reactions * Isomeric Properties of Nuclei Near 78Ni * Investigation of Light Actinide Nuclei at Yale and Beyond * U-Projectile Fission at Relativistic Energies * Cluster Description of Cold Fission Modes in 252Cf * Neutron-pair Transfer Theory for Pear-shaped Ba Fission Fragments * New RMFA Parameters of Normal and Exotic Nuclei * Study of Fission Fragments from 12C+238U Reactions: Prompt and Delayed Spectroscopy * γ-Ray Angular Correlations in 252Cf and 248Cm Fission Fragments * Fragment Angular Momentum and Descent Dynamics in 252Cf Spontaneous Fission * The Experimental Investigation of Neutron-Rich Nuclei * High-Spin Structure of Some Odd-Z Nuclei with A ≈ 100 From Heavy-Ion Induced Fission * Coexistence of Symmetric and Asymmetric Nuclear Shapes and 10Be Ternary Fission * Octupole Effects in the Lanthanides * High Spin Structure of the 113-1l6Cd Isotopes Produced by Heavy-Ion Induced Fission Reaction * Temperature-Dependent Fission Barriers and Mass Distributions for 239U * Strength Distributions for Gamow Teller Transitions in Very Weakly Bound Systems * High Spin Fragmentation Spectroscopy * Search for a Four-Neutron Transfer From 8He to 4He * Microsecond Isomers in Fission Fragments in the Vicinity of the Doubly Magic 132Sn * Recent On-Line NMR/on Nuclear Magnetic Dipole Moments Near 132Sn: Meson Exchange Current Effects at the Shell Closure and Shell Model Treatment of Variation with Proton and Neutron Number * High-spin K-Isomers Beyond the Fusion Limit * High Energy Neutron Induced Fission: Charge Yield Distributions and Search and Spectroscopy of New Isomers * Hartree-Fock Mean-Field Models Using Separable Interactions * Variation of Fission Characteristics Over the Nuclear Chart * Investigation of

  11. Eta nuclear bound states revisited

    CERN Document Server

    Friedman, E; Mareš, J

    2013-01-01

    The strong energy dependence of the s-wave eta-N scattering amplitude at and below threshold, as evident in coupled-channels K-matrix fits and chiral models that incorporate the S11 N*(1535) resonance, is included self consistently in eta-nuclear bound state calculations. This approach, applied recently in calculations of kaonic atoms and Kbar-nuclear bound states, is found to impose stronger constraints than ever on the onset of eta-nuclear binding, with a minimum value of Re a_{eta N} approximately 0.9 fm required to accommodate an eta-4He bound state. Binding energies and widths of eta-nuclear states are calculated within several underlying eta-N models for nuclei across the periodic table, including eta-25Mg for which some evidence was proposed in a recent COSY experiment.

  12. Use of Radioactive Ion Beams for Biomedical Research 1. in vivo labelling of monoclonal antibodies with radio-lanthanides and $^{225}$Ac

    CERN Multimedia

    2002-01-01

    % IS330 \\\\ \\\\\\begin{enumerate} \\item The aim of this study was to contribute to developments of new radiopharmaceuticals for tumour diagnosis and therapy. CERN-ISOLDE is the leading facility in the world to provide radioactive ion beams with high selectivity, purity and intensity. Radioisotope production by spallation makes available a complete range of rare earth isotopes having as complete a diversity of types and energy of radiation, of half-life, and of ionic properties as one would wish. The availability of exotic nuclei, e.g. radionuclides of rare earth elements and $^{225}$Ac, opens new possibilities for the development of radiopharmaceuticals for diagnosis and therapy.\\\\ \\\\ \\item Two approaches were followed within the experimental program. The radioactive metal ions are bound either to bio-specific ligands (monoclonal antibodies or peptides) or to unspecific low molecular weight form. The aim of the experimental program is to evaluate relationships between physico-chemical parameters of the tracer m...

  13. Relativistic mean field description of cluster radioactivity

    Science.gov (United States)

    Bhagwat, A.; Gambhir, Y. K.

    2005-01-01

    Comprehensive investigations of the observed cluster radioactivity are carried out. First, the relativistic mean field (RMF) theory is employed for the calculations of the ground-state properties of relevant nuclei. The calculations reproduce the experiment well. The calculated RMF point densities are folded with the density-dependent M3Y nucleon-nucleon interaction to obtain the cluster-daughter interaction potential. This, along with the calculated and experimental Q values, is used in the WKB approximation for estimating the half-lives of the parent nuclei against cluster decay. The calculations qualitatively agree with the experiment. Sensitive dependence of the half-lives on Q values is explicitly demonstrated.

  14. A new spin-oriented nuclei facility: POLAREX

    Directory of Open Access Journals (Sweden)

    Etilé A.

    2014-03-01

    Full Text Available Using the On-Line Nuclear Orientation method, POLAREX (POLARization of EXotic nuclei is a new facility allowing to study the anisotropic decay of spin-oriented nuclei. Based on the combination of on-line implantation of radioactive nuclei with Low Temperature Nuclear Orientation technique and Nuclear Magnetic Resonance, POLAREX allows to measure nuclear electromagnetic moments and ground-state spins, in the aim to get information about the wave function composition of the nuclear state. Polarized nuclei can also be used to study fundamental interactions involving nuclear β-decay asymmetries. The POLAREX infrastructure will be installed at Accélérateur Linéaire auprés du Tandem d’Orsay in order to study neutron-rich nuclei, some of which have not been studied yet. Will be presented here, all the possibilities of this new facility and a non exhaustive scientific program.

  15. Numerical calculations for the angular distribution of gamma radiation emitted by oriented 58Co NUCLEI

    NARCIS (Netherlands)

    Cox, J.A.M.; Groot, S.R. de; Hartogh, Chr.D.

    1953-01-01

    In this note the theoretical results for the angular distribution of γ-radiation emitted by oriented radioactive nuclei are applied to the case of 58Co nuclei. The angular distribution function of the γ-radiation has been calculated for an arbitrary degree of nuclear orientation and in dependence of

  16. Search for bound-state electron+positron pair decay

    Science.gov (United States)

    Bosch, F.; Hagmann, S.; Hillenbrand, P.-M.; Lane, G. J.; Litvinov, Yu. A.; Reed, M. W.; Sanjari, M. S.; Stöhlker, Th.; Torilov, S. Yu.; Tu, X. L.; Walke, P. M.

    2016-09-01

    The heavy ion storage rings coupled to in-flight radioactive-ion beam facilities, namely the ability to produce and store for extended periods of time radioactive nuclides in high atomic charge states, for the searchof yet unobserved decay mode - bound-state electron-positron pair decay.

  17. /sup 5/He radioactivity

    Energy Technology Data Exchange (ETDEWEB)

    Poenaru, D.N.; Ivascu, M. (Institute for Physics and Nuclear Engineering, Bucharest (Romania))

    1984-07-01

    The disintegration of a metastable nuclear state by emission of a light particle can be considered to be a very asymmetric fission process. An approximation of the potential barrier in the overlapping region of the two fragments leads to an analytic relationship for the life-time, allowing us to handle a large number of cases to search for new kinds of radioactivities. In this way, it is predicted that some nuclei with Z=83-92, N=127-137 and 97-105, 145-157 are able to decay spontaneously by emission of /sup 5/He particles. A tentative optimistic estimation leads to the result that only 15 radionuclides should have partial life-times in the range 10/sup 14/-10/sup 38/ years; all others, except some superheavies, are longer lived. The best candidate is /sup 213/Po for which the daughter is a double magic nucleus. Smaller life-times, with a better chance to be experimentally confirmed have some ..beta..-delayed /sup 5/He emitters, as for example /sup 155/Yb, /sup 175/Pt, /sup 209 -217/Ra, /sup 9 -11/Be, /sup 13 -14/B, /sup 13 -17/C and /sup 19 -21/O.

  18. (d,p)-transfer induced fission of heavy radioactive beams

    CERN Document Server

    Veselsky, Martin

    2012-01-01

    (d,p)-transfer induced fission is proposed as a tool to study low energy fission of exotic heavy nuclei. Primary goal is to directly determine the fission barrier height of proton-rich fissile nuclei, preferably using the radio-active beams of isotopes of odd elements, and thus confirm or exclude the low values of fission barrier heights, typically extracted using statistical calculations in the compound nucleus reactions at higher excitation energies. Calculated fission cross sections in transfer reactions of the radioactive beams show sufficient sensitivity to fission barrier height. In the probable case that fission rates will be high enough, mass asymmetry of fission fragments can be determined. Results will be relevant for nuclear astrophysics and for production of super-heavy nuclei. Transfer induced fission offers a possibility for systematic study the low energy fission of heavy exotic nuclei at the ISOLDE.

  19. Reflections on cavitation nuclei in water

    DEFF Research Database (Denmark)

    Mørch, Knud Aage

    2007-01-01

    The origin of cavitation bubbles, cavitation nuclei, has been a subject of debate since the early years of cavitation research. This paper presents an analysis of a representative selection of experimental investigations of cavitation inception and the tensile strength of water. At atmospheric...... on the surface of particles and bounding walls. Such nuclei can be related to the full range of tensile strengths measured, when differences of experimental conditions are taken into consideration. The absence or presence of contamination on surfaces, as well as the structure of the surfaces, are central...... to explaining why the tensile strength of water varies so dramatically between the experiments reported. A model for calculation of the critical pressure of skin-covered free gas bubbles as well as that of interfacial gaseous nuclei covered by a skin is presented. This model is able to bridge the apparently...

  20. Nuclear astrophysics with radioactive ions at FAIR

    OpenAIRE

    2016-01-01

    The nucleosynthesis of elements beyond iron is dominated by neutron captures in the s and r processes. However, 32 stable, proton-rich isotopes cannot be formed during those processes, because they are shielded from the s-process flow and r-process beta-decay chains. These nuclei are attributed to the p and rp process. For all those processes, current research in nuclear astrophysics addresses the need for more precise reaction data involving radioactive isotopes. Depending on the particular ...

  1. Radioactivities in Low- and Intermediate-Mass Stars

    CERN Document Server

    Lugaro, Maria

    2010-01-01

    Energy in stars is provided by nuclear reactions, which, in many cases, produce radioactive nuclei. When stable nuclei are irradiated by a flux of protons or neutrons, capture reactions push stable matter out of stability into the regime of unstable species. The ongoing production of radioactive nuclei in the deep interior of the Sun via proton-capture reactions is recorded by neutrinos emitted during radioactive decay and detected on Earth. Radioactive nuclei that have relatively long half lives may also be detected in stars via spectroscopic observations and in stardust recovered from primitive meteorites via laboratory analysis. The vast majority of these stardust grains originated from Asymptotic Giant Branch (AGB) stars. This is the final phase in the evolution of stars initially less massive than ~10 solar masses, during which nuclear energy is produced by alternate hydrogen and helium burning in shells above the core. The long-lived radioactive nucleus 26Al is produced in massive AGB stars (>4:5 solar ...

  2. Bounded Rationality

    Directory of Open Access Journals (Sweden)

    Ballester Pla, Coralio

    2012-03-01

    Full Text Available The observation of the actual behavior by economic decision makers in the lab and in the field justifies that bounded rationality has been a generally accepted assumption in many socio-economic models. The goal of this paper is to illustrate the difficulties involved in providing a correct definition of what a rational (or irrational agent is. In this paper we describe two frameworks that employ different approaches for analyzing bounded rationality. The first is a spatial segregation set-up that encompasses two optimization methodologies: backward induction and forward induction. The main result is that, even under the same state of knowledge, rational and non-rational agents may match their actions. The second framework elaborates on the relationship between irrationality and informational restrictions. We use the beauty contest (Nagel, 1995 as a device to explain this relationship.

    La observación del comportamiento de los agentes económicos tanto en el laboratorio como en la vida real justifica que la racionalidad acotada sea un supuesto aceptado en numerosos modelos socio-económicos. El objetivo de este artículo es ilustrar las dificultades que conlleva una correcta definición de qué es un agente racional (irracional. En este artículo se describen dos marcos que emplean diferentes metodologías para analizar la racionalidad acotada. El primero es un modelo de segregación espacial donde se contrastan dos metodologías de optimización: inducción hacia atrás y hacia adelante. El resultado principal es que, incluso con el mismo nivel de conocimiento, tanto agentes racionales como irracionales podrían coincidir en sus acciones. El segundo marco trabaja sobre la relación entre irracionalidad y restricción de información. Se utiliza el juego llamado “beauty contest” (Nagel 1995 como mecanismo para explicar dicha relación.

  3. Radioactive ion beam line in Lanzhou

    Institute of Scientific and Technical Information of China (English)

    詹文龙; 郭忠言; 刘冠华; 党建荣; 何锐荣; 周嗣信; 尹全民; 罗亦孝; 王义芳; 魏宝文; 孙志宇; 肖国青; 王金川; 江山红; 李加兴; 孟祥伟; 张万生; 秦礼军; 王全进

    1999-01-01

    Radioactive ion beam line in Lanzhou (RIBLL) has been constructed for the production of short-lived radioactive nuclei and studies of exotic nuclei far from the β-stability line. It has been put into operation recently at the National Laboratory of Heavy Ion Accelerator Lanzhou. RIBLL consists of two doubly achromatic parts with a solid acceptance ΔΩ≥6.5 msr, momentum acceptance Δp/p=±5% and maximum magnetic rigidity Bρmax=4.2 Tm. The second part of RIBLL serving as a spectrometer gives an element resolution Z/ΔZ>150 and mass resolution A/ΔA>300. The polarized secondary beams can be obtained by using a swinger dipole magnet to change the incident direction of primary projectile from 0°to 5°. The shortest lift time for secondary beams on RIBLL is less than 1μs. First experiments were performed with neutron rich nuclei for understanding the properties of halo nuclei and exotic nuclear reactions.

  4. Pairing correlations in exotic nuclei

    CERN Document Server

    Sagawa, H

    2012-01-01

    The BCS and HFB theories which can accommodate the pairing correlations in the ground states of atomic nuclei are presented. As an application of the pairing theories, we investigate the spatial extension of weakly bound Ne and C isotopes by taking into account the pairing correlation with the Hartree-Fock-Bogoliubov (HFB) method and a 3-body model, respectively. We show that the odd-even staggering in the reaction cross sections of $^{30,31,32}$Ne and $^{14,15,16}$C are successfully reproduced, and thus the staggering can be attributed to the unique role of pairing correlations in nuclei far from the stability line. A correlation between a one-neutron separation energy and the anti-halo effect is demonstrated for $s$- and p-waves using the HFB wave functions. We also propose effective density-dependent pairing interactions which reproduce both the neutron-neutron ($nn$) scattering length at zero density and the neutron pairing gap in uniform matter. Then, we apply these interactions to study pairing gaps in ...

  5. Recent topics of mesic atoms and mesic nuclei -- $\\phi$ mesic nuclei exist ?--

    CERN Document Server

    Yamagata-Sekihara, J; Cabrera, D; Vacas, M J Vicente

    2008-01-01

    We study $\\phi$-meson production in nuclei to investigate the in-medium modification of the $\\phi$-meson spectral function at finite density. We consider (${\\bar p},\\phi$), ($\\gamma,p$) and ($\\pi^-,n$) reactions to produce a $\\phi$-meson inside the nucleus and evaluate the effects of the medium modifications to reaction cross sections. The structures of the bound states, $\\phi$-mesic nuclei, are also studied. For strong absorptive interaction cases, we need to know the spectrum shape in a wide energy region to deduce the properties of $\\phi$.

  6. Radioactive beam experiments using the Fragment Mass Analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Davids, C.N.

    1994-04-01

    The Fragment Mass Analyzer (FMA) is a recoil mass spectrometer that has many potential applications in experiments with radioactive beams. The FMA can be used for spectroscopic studies of nuclei produced in reactions with radioactive beams. The FMA is also an ideal tool for studying radiative capture reactions of astrophysical interest, using inverse kinematics. The FMA has both mass and energy dispersion, which can be used to efficiently separate the reaction recoils from the primary beam. When used with radioactive beams, the FMA allows the recoils from radiative capture reactions to be detected in a low-background environment.

  7. Alpha decay as a probe for the structure of neutron-deficient nuclei

    CERN Document Server

    Qi, Chong

    2016-01-01

    The advent of radioactive ion beam facilities and new detector technologies have opened up new possibilities to investigate the radioactive decays of highly unstable nuclei, in particular the proton emission, $\\alpha$ decay and heavy cluster decays from neutron-deficient (or proton-rich) nuclei around the proton drip line. It turns out that these decay measurements can serve as a unique probe for studying the structure of the nuclei involved. On the theoretical side, the development in nuclear many-body theories and supercomputing facilities have also made it possible to simulate the nuclear clusterization and decays from a microscopic and consistent perspective. In this article we would like to review the current status of these structure and decay studies in heavy nuclei, regarding both experimental and theoretical opportunities. We then discuss in detail the recent progress in our understanding of the nuclear $\\alpha$ formation probabilities in heavy nuclei and their indication on the underlying nuclear st...

  8. Single stage ECR source for the radioactive ion beam project in Louvain- la-Neuve

    Energy Technology Data Exchange (ETDEWEB)

    Arnould, M.; Vanhorenbeeck, J.; Baeten, F.; Dom, C.; Darquennes, D.; Delbar, T.; Jongen, Y.; Huyse, M.; Reusen, G.; Van Duppen, P. and others

    1989-01-01

    In 1987 the project RIB (Radioactive Ion Beam) was started at Louvain-La - Neuve, to produce and accelerate radioactive nuclei of C, N, O, F and Ne. Within the framework of this project, a single stage E.C.R. source will be built. The general scheme of the project and the design of the source are discussed.

  9. Dynamical Relativistic Effects in Breakup Processes of Halo Nuclei

    CERN Document Server

    Ogata, Kazuyuki

    2009-01-01

    The continuum-discretized coupled-channels (CDCC) method is used to study the breakup of weakly-bound nuclei at intermediate energies collisions. For large impact parameters, the Eikonal CDCC (E-CDCC) method was applied. The effects of Lorentz contraction on the nuclear and Coulomb potentials have been investigated in details. Such effects tend to increase cross sections appreciably. We also show that, for loosely-bound nuclei, the contribution of the so-called close field is small and can be neglected.

  10. Experimental determination of re-suspension data of particle-bound radioactive materials of relevant contaminated surfaces in case of radiological emergencies for the radioactive exposure assessment of the emergency staff and affected persons due to re-suspension; Experimentelle Bestimmung von Resuspensionsdaten partikelgebundener radioaktiver Stoffe von relevanten kontaminierten Oberflaechen bei radiologischen Notfaellen zur Beurteilung einer Exposition von Einsatzpersonal und betroffenen Personen durch Resuspension

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Wolfgang; Loedding, Hubert; Lange, Florentin

    2012-01-15

    Accidental and intentional release of radioactive materials, for example in the wake of a nuclear accident, causes contamination of surfaces in the outdoor environment, in buildings and the clothing of humans. Resuspension of radioactive material from contaminated surfaces is the dominant source of radioactive inhalation exposure of first responders and emergency personnel at the accident site as well as in emergency care centres during the time period following the event. The assessment of the aerosol borne activity concentration is based on reasonable assumptions or measurements of the surface contamination and a quantitative understanding of the resuspension process. In this project the resuspension rate of respirable particles (< 10 {mu}m) and its dependence on time and influencing parameters was measured. Special emphasis was directed to the early phase after the release event. Using a versatile, small scale flow channel set-up, wind resuspension and resuspension caused by transient or continuous mechanical forces impacting on the surfaces was investigated. The flux of particles resuspended from small test surfaces was detected by an optical particle size spectrometer. Influencing parameters such properties of contaminated surfaces, wind speed, type of particle etc. could be easily varied. Well defined contaminations of the test surfaces were prepared in a settling chamber by dry and wet deposition using aerosolized dry powders of spherical (silver) and agglomerated (cerium oxide) particles, and sprays of aqueous solutions of cesium chloride, respectively. In the latter case the surface was dried after deposition of the liquid droplets leading to a surface contamination of CsCl crystals adhering stronger to the surface than particulates. The resuspension rate for surfaces contaminated by wet deposition is 2-3 orders of magnitude lower compared to the situation for dry deposition, irrespective of the resuspension mechanism. The air flow induced resuspension

  11. Radioactivity in consumer products

    Energy Technology Data Exchange (ETDEWEB)

    Moghissi, A.A.; Paras, P.; Carter, M.W.; Barker, R.F. (eds.)

    1978-08-01

    Papers presented at the conference dealt with regulations and standards; general and biological risks; radioluminous materials; mining, agricultural, and construction materials containing radioactivity; and various products containing radioactive sources.

  12. Nuclear dynamics of K¯ bound states

    Science.gov (United States)

    Mareš, J.; Friedman, E.; Gal, A.

    2006-07-01

    K¯ nuclear bound states were generated dynamically within a relativistic mean field (RMF) model. Substantial polarization of the core nucleus was found for light nuclei. The behavior of the dynamically calculated width ΓK¯ as function of the K¯ binding energy was studied. A lower limit of ΓK¯ ˜ 35 - 45 MeV for 1s K¯ nuclear states in light nuclei such as 12C was placed on the width expected for deep binding in the range B K¯ ˜ 100 - 200 MeV.

  13. Through the looking glass: probing the nucleus using accelerated radioactive beams

    CERN Document Server

    Butler, P A

    2005-01-01

    Through the advent of post-accelerated beams of radioactive nuclei, probing nuclear properties of exotic nuclear species is now possible. Recent results from the new European radioactive ion beam facilities will be presented together with the prospects offered by the planned facilities such as SPIRAL2 and HIE-ISOLDE. The current ideas for the "third generation" radioactive ion beam facility EURISOL will also be briefly presented.

  14. Through the looking glass: probing the nucleus using accelerated radioactive beams

    Science.gov (United States)

    Butler, P. A.

    2005-04-01

    Through the advent of post-accelerated beams of radioactive nuclei, probing nuclear properties of exotic nuclear species is now possible. Recent results from the new European radioactive ion beam facilities will be presented together with the prospects offered by the planned facilities such as SPIRAL2 and HIE-ISOLDE. The current ideas for the "third generation" radioactive ion beam facility EURISOL will also be briefly presented.

  15. Facilities and methods for radioactive ion beam production

    CERN Document Server

    Blumenfeld, Y; Van Duppen, P

    2013-01-01

    Radioactive ion beam facilities are transforming nuclear science by making beams of exotic nuclei with various properties available for experiments. New infrastructures and development of existing installations enlarges the scientific scope continuously. An overview of the main production, separation and beam handling methods with focus on recent developments is done, as well as a survey of existing and forthcoming facilities world-wide.

  16. Multi-K¯ nuclei and kaon condensation

    Science.gov (United States)

    Gazda, D.; Friedman, E.; Gal, A.; Mareš, J.

    2008-04-01

    We extend previous relativistic mean-field (RMF) calculations of multi-K¯ nuclei, using vector boson fields with SU(3) PPV coupling constants and scalar boson fields constrained phenomenologically. For a given core nucleus, the resulting K¯ separation energy BK¯, as well as the associated nuclear and K¯-meson densities, saturate with the number κ of K¯ mesons for κ>κsat~10. Saturation appears robust against a wide range of variations, including the RMF nuclear model used and the type of boson fields mediating the strong interactions. Because BK¯ generally does not exceed 200 MeV, it is argued that multi-K¯ nuclei do not compete with multihyperonic nuclei in providing the ground state of strange hadronic configurations and that kaon condensation is unlikely to occur in strong-interaction self-bound strange hadronic matter. Last, we explore possibly self-bound strange systems made of neutrons and K¯0 mesons, or protons and K- mesons, and study their properties.

  17. Radioactive Ions for Surface Characterization

    CERN Multimedia

    2002-01-01

    The collaboration has completed a set of pilot experiments with the aim to develop techniques for using radioactive nuclei in surface physics. The first result was a method for thermal deposition of isolated atoms (Cd, In, Rb) on clean metallic surfaces. \\\\ \\\\ Then the diffusion history of deposited Cd and In atoms on two model surfaces, Mo(110) and Pd(111), was followed through the electric field gradients (efg) acting at the probe nuclei as measured with the Perturbed Angular Correlation technique. For Mo(110) a rather simple history of the adatoms was inferred from the experiments: Atoms initially landing at terrace sites diffuse from there to ledges and then to kinks, defects always present at real surfaces. The next stage is desorption from the surface. For Pd a scenario that goes still further was found. Following the kink stage the adatoms get incorporated into ledges and finally into the top surface layer. For all these five sites the efg's could be measured.\\\\ \\\\ In preparation for a further series o...

  18. $\\gamma$ -spectroscopy of n-rich $^{95,96}$Rb nuclei by the incomplete fusion reaction of $^{94}$Kr on $^{7}$Li

    CERN Multimedia

    We propose an experiment with MINIBALL coupled to T-REX to investigate n-rich $^{95,96}$Rb nuclei by the incomplete fusion reaction of $^{94}$Kr on $^{7}$Li. The nuclei of interest will be populated by transfer of a triton into $^{94}$Kr, forming the excited $^{97}$Rb nucleus, followed by the emission of an alpha particle, which will be detected in the Si telescopes of T-REX. The $^{97}$Rb product will evaporate 1 or 2 (with the highest probability) neutrons leading to $^{96}$Rb or $^{95}$Rb, respectively. The aim of the experiment is twofold: \\\\ i) to perform a $\\gamma$- spectroscopy study of $^{95,96}$Rb nuclei with N=58,59, the structure of which is of particular interest in investigating the transition towards stable deformation at N=60, \\\\ ii) to acquire experience in using incomplete fusion reactions with the weakly bound $^{7}$Li target, in order to perform, at a later stage with HIE-ISOLDE, similar measurements induced by n-rich radioactive beams of Sn and Hg, for which at least 5 MeV/nucleon are need...

  19. Response of hot nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Broglia, R.A.

    1986-01-01

    The dipole giant resonance is reviewed, as it is the only vibration which has been experimentally identified in the decay of hot nuclei. The mechanism of exciting the resonance and the mode of the resonance are described. The methods used to calculate the vibrations from the shell model are discussed, including the Hartree-Fock approximation and random phase approximation. Nuclei formed by compound nuclear reactions, which possess high excitation energy and angular momentum, are considered. It is argued that the stability of the dipole may be used to advantage in the study of other properties of nuclei at high excitation. It is also considered possible that the discussion of the dipole giant resonance may be extended to the gamma decay of the isovector quadrupole vibration. 26 refs., 18 figs. (LEW)

  20. Weakly bound systems, continuum effects, and reactions

    CERN Document Server

    Jaganathen, Y; Ploszajczak, M

    2012-01-01

    Structure of weakly bound/unbound nuclei close to particle drip lines is different from that around the valley of beta stability. A comprehensive description of these systems goes beyond standard Shell Model and demands an open quantum system description of the nuclear many-body system. We approach this problem using the Gamow Shell Model which provides a fully microscopic description of bound and unbound nuclear states, nuclear decays, and reactions. We present in this paper the first application of the GSM for a description of the elastic and inelastic scattering of protons on 6He.

  1. The shapes of nuclei

    CERN Document Server

    Bertsch, G F

    2016-01-01

    Gerry Brown initiated some early studies on the coexistence of different nuclear shapes. The subject has continued to be of interest and is crucial for understanding nuclear fission. We now have a very good picture of the potential energy surface with respect to shape degrees of freedom in heavy nuclei, but the dynamics remain problematic. In contrast, the early studies on light nuclei were quite successful in describing the mixing between shapes. Perhaps a new approach in the spirit of the old calculations could better elucidate the character of the fission dynamics and explain phenomena that current theory does not model well.

  2. Anharmonic vibrations in nuclei

    CERN Document Server

    Fallot, M; Andrés, M V; Catara, F; Lanza, E G; Scarpaci, J A; Chomaz, Ph.

    2003-01-01

    In this letter, we show that the non-linearitites of large amplitude motions in atomic nuclei induce giant quadrupole and monopole vibrations. As a consequence, the main source of anharmonicity is the coupling with configurations including one of these two giant resonances on top of any state. Two-phonon energies are often lowered by one or two MeV because of the large matrix elements with such three phonon configurations. These effects are studied in two nuclei, 40Ca and 208Pb.

  3. Status and Perspectives of the Search for Eta-Mesic Nuclei

    CERN Document Server

    Moskal, Pawel; Krzemien, Wojciech

    2016-01-01

    In this report the search for eta-mesic nuclei is reviewed. The brief description of the experimental studies is presented with a focus on the possible production of the eta-nucleus bound states for light nuclei like 4He and 3He.

  4. Light nuclei in the vicinity of the dripline and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Chulkov, L.V. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Kurchatov Institute, Moscow (Russian Federation); Jonson, B.; Zhukov, M.V. [Chalmers Tekniska Hoegskola, Fundamental Fysik, Goeteborg (Sweden)

    2015-08-15

    After a brief historical overview of the field of physics with radioactive beams, we give an update of the most recent experimental achievements for nuclei at or beyond the nuclear driplines. Long-lived exotic nuclear states are discussed including multi-nucleon radioactivity and exotic isomers. Studies of correlations between decay products in three-body decays and analysis in a Jacobi-coordinate framework are discussed with special emphasis on the difficulty in the interpretations of data obtained in different reactions. We give examples of systematic studies that the vast amount of now existing data allows, such as shell closures, competition between single-particle states in isotopes, isotones and mirror nuclei. The Thomas-Ehrman shift, Garvey-Kelson-type mass relations and IMME analysis of isobaric multiplets with isospin T = 3/2 and 2 are also discussed as well as alternative interpretations in certain cases. (orig.)

  5. Density-dependent potential for multi-neutron halo nuclei

    Institute of Scientific and Technical Information of China (English)

    CHEN Shuang; CHU Yan-Yun; REN Zhong-Zhou

    2009-01-01

    We apply a simple density-dependent potential model to the three-body calculation of the ground-state structure of drip-line nuclei with a weakly bound core. The hyperspherical harmonics method is used to solve the Faddeev equations. There are no undetermined potential parameters in this calculation. We find that for the halo nuclei with a weakly-bound core, the calculated properties of the ground-state structure are in better agreement with experimental data than the results calculated from the standard Woods-Saxon and Gauss type potentials. We also successfully reproduce the experimental cross sections by using the density calculated from this method. This may be explained by the fact that the simple Fermi or Gaussian function can not exactly describe the density distribution of the drip-line nuclei.

  6. ENAM'04 Fourth International Conference on Exotic Nuclei and Atomic Masses

    Energy Technology Data Exchange (ETDEWEB)

    Gross, C. J.; Nazarewicz, W.; Rykaczewski, K. P.

    2005-01-01

    The conference can trace its origins to the 1950s and 1960s with the Atomic Mass and Fundamental Constants (AMCO) and the Nuclei Far From Stability (NFFS) series of conferences. Held jointly in 1992, the conferences officially merged in 1995 and the fourth conference was held at Callaway Gardens in Pine Mountain, GA and was organized by the Physics Division at Oak Ridge National Laboratory. The conference covered a broad list of topics consisting of a series of invited and contributed presentation highlighting recent research in the following fields: Atomic masses, nuclear moments, and nuclear radii; Forms of radioactivity; Nuclear structure, nuclei at the drip lines, cluster phenomena; Reactions with radioactive ion beams; Nuclear astrophysics; Fundamental symmetries and interactions; Heaviest elements and fission; Radioactive ion beam production and experimental developments; Applications of exotic nuclei

  7. Comparisons between radioactive and non-radioactive gas lantern mantles.

    Science.gov (United States)

    Furuta, E; Yoshizawa, Y; Aburai, T

    2000-12-01

    Gas lantern mantles containing radioactive thorium have been used for more than 100 years. Although thorium was once believed to be indispensable for giving a bright light, non-radioactive mantles are now available. From the radioactivities of the daughter nuclides, we estimated the levels of radioactivity of 232Th and 228Th in 11 mantles. The mantles contained various levels of radioactivity from background levels to 1410 +/- 140 Bq. Our finding that radioactive and non-radioactive mantles are equally bright suggests that there is no advantage in using radioactive mantles. A remaining problem is that gas lantern mantles are sold without any information about radioactivity.

  8. Radioactive air sampling methods

    CERN Document Server

    Maiello, Mark L

    2010-01-01

    Although the field of radioactive air sampling has matured and evolved over decades, it has lacked a single resource that assimilates technical and background information on its many facets. Edited by experts and with contributions from top practitioners and researchers, Radioactive Air Sampling Methods provides authoritative guidance on measuring airborne radioactivity from industrial, research, and nuclear power operations, as well as naturally occuring radioactivity in the environment. Designed for industrial hygienists, air quality experts, and heath physicists, the book delves into the applied research advancing and transforming practice with improvements to measurement equipment, human dose modeling of inhaled radioactivity, and radiation safety regulations. To present a wide picture of the field, it covers the international and national standards that guide the quality of air sampling measurements and equipment. It discusses emergency response issues, including radioactive fallout and the assets used ...

  9. Wait for It: Post-supernova Winds Driven by Delayed Radioactive Decays

    Science.gov (United States)

    Shen, Ken J.; Schwab, Josiah

    2017-01-01

    In most astrophysical situations, the radioactive decay of {}56{Ni} to {}56{Co} occurs via electron capture with a fixed half-life of 6.1 days. However, this decay rate is significantly slowed when the nuclei are fully ionized because K-shell electrons are unavailable for capture. In this paper, we explore the effect of these delayed decays on white dwarfs (WDs) that may survive Type Ia and Type Iax supernovae (SNe Ia and SNe Iax). The energy released by the delayed radioactive decays of {}56{Ni} and {}56{Co} drives a persistent wind from the surviving WD’s surface that contributes to the late-time appearance of these SNe after emission from the bulk of the SN ejecta has faded. We use the stellar evolution code MESA to calculate the hydrodynamic evolution and resulting light curves of these winds. Our post-SN Ia models conflict with late-time observations of SN 2011fe, but uncertainties in our initial conditions prevent us from ruling out the existence of surviving WD donors. Much better agreement with observations is achieved with our models of post-SN Iax bound remnants, providing evidence that these explosions are due to deflagrations in accreting WDs that fail to completely unbind the WDs. Future radiative transfer calculations and wind models utilizing simulations of explosions for more accurate initial conditions will extend our study of radioactively powered winds from post-SN surviving WDs and enable their use as powerful discriminants among the various SN Ia and SN Iax progenitor scenarios.

  10. Elusive active galactic nuclei

    NARCIS (Netherlands)

    Maiolino, R; Comastri, A; Gilli, R; Nagar, NM; Bianchi, S; Boker, T; Colbert, E; Krabbe, A; Marconi, A; Matt, G; Salvati, M

    2003-01-01

    A fraction of active galactic nuclei do not show the classical Seyfert-type signatures in their optical spectra, i.e. they are optically 'elusive'. X-ray observations are an optimal tool to identify this class of objects. We combine new Chandra observations with archival X-ray data in order to obtai

  11. Radioactivity and its measurement

    CERN Document Server

    Mann, W B; Garfinkel, S B

    1980-01-01

    Begins with a description of the discovery of radioactivity and the historic research of such pioneers as the Curies and Rutherford. After a discussion of the interactions of &agr;, &bgr; and &ggr; rays with matter, the energetics of the different modes of nuclear disintegration are considered in relation to the Einstein mass-energy relationship as applied to radioactive transformations. Radiation detectors and radioactivity measurements are also discussed

  12. Fusion and reactions of exotic nuclei

    Directory of Open Access Journals (Sweden)

    Sánchez-Benítez A.M.

    2011-10-01

    Full Text Available Close to the drip lines, the scattering cross sections of halo nuclei show a different behaviour as compared to the tightly bound projectiles of the stability line. Several experiments carried out in the last decade have been dedicated to investigate the competition between transfer, breakup and fusion channels at energies around and below the Coulomb barrier. The rather complex scenario gives rise to conflicting conclusions concerning the effect of breakup and transfer on reaction dynamics and the sub-barrier fusion process. In this work we discuss recent experimental findings in fusion and reactions of 6He halo nucleus at energies around the Coulomb barrier.

  13. Nuclear astrophysics with radioactive ions at FAIR

    CERN Document Server

    Reifarth, R; Göbel, K; Heftrich, T; Heil, M; Koloczek, A; Langer, C; Plag, R; Pohl, M; Sonnabend, K; Weigand, M; Adachi, T; Aksouh, F; Al-Khalili, J; AlGarawi, M; AlGhamdi, S; Alkhazov, G; Alkhomashi, N; Alvarez-Pol, H; Alvarez-Rodriguez, R; Andreev, V; Andrei, B; Atar, L; Aumann, T; Avdeichikov, V; Bacri, C; Bagchi, S; Barbieri, C; Beceiro, S; Beck, C; Beinrucker, C; Belier, G; Bemmerer, D; Bendel, M; Benlliure, J; Benzoni, G; Berjillos, R; Bertini, D; Bertulani, C; Bishop, S; Blasi, N; Bloch, T; Blumenfeld, Y; Bonaccorso, A; Boretzky, K; Botvina, A; Boudard, A; Boutachkov, P; Boztosun, I; Bracco, A; Brambilla, S; Monago, J Briz; Caamano, M; Caesar, C; Camera, F; Casarejos, E; Catford, W; Cederkall, J; Cederwall, B; Chartier, M; Chatillon, A; Cherciu, M; Chulkov, L; Coleman-Smith, P; Cortina-Gil, D; Crespi, F; Crespo, R; Cresswell, J; Csatlós, M; Déchery, F; Davids, B; Davinson, T; Derya, V; Detistov, P; Fernandez, P Diaz; DiJulio, D; Dmitry, S; Doré, D; nas, J Due\\; Dupont, E; Egelhof, P; Egorova, I; Elekes, Z; Enders, J; Endres, J; Ershov, S; Ershova, O; Fernandez-Dominguez, B; Fetisov, A; Fiori, E; Fomichev, A; Fonseca, M; Fraile, L; Freer, M; Friese, J; Borge, M G; Redondo, D Galaviz; Gannon, S; Garg, U; Gasparic, I; Gasques, L; Gastineau, B; Geissel, H; Gernhäuser, R; Ghosh, T; Gilbert, M; Glorius, J; Golubev, P; Gorshkov, A; Gourishetty, A; Grigorenko, L; Gulyas, J; Haiduc, M; Hammache, F; Harakeh, M; Hass, M; Heine, M; Hennig, A; Henriques, A; Herzberg, R; Holl, M; Ignatov, A; Ignatyuk, A; Ilieva, S; Ivanov, M; Iwasa, N; Jakobsson, B; Johansson, H; Jonson, B; Joshi, P; Junghans, A; Jurado, B; Körner, G; Kalantar, N; Kanungo, R; Kelic-Heil, A; Kezzar, K; Khan, E; Khanzadeev, A; Kiselev, O; Kogimtzis, M; Körper, D; Kräckmann, S; Kröll, T; Krücken, R; Krasznahorkay, A; Kratz, J; Kresan, D; Krings, T; Krumbholz, A; Krupko, S; Kulessa, R; Kumar, S; Kurz, N; Kuzmin, E; Labiche, M; Langanke, K; Lazarus, I; Bleis, T Le; Lederer, C; Lemasson, A; Lemmon, R; Liberati, V; Litvinov, Y; Löher, B; Herraiz, J Lopez; Münzenberg, G; Machado, J; Maev, E; Mahata, K; Mancusi, D; Marganiec, J; Perez, M Martinez; Marusov, V; Mengoni, D; Million, B; Morcelle, V; Moreno, O; Movsesyan, A; Nacher, E; Najafi, M; Nakamura, T; Naqvi, F; Nikolski, E; Nilsson, T; Nociforo, C; Nolan, P; Novatsky, B; Nyman, G; Ornelas, A; Palit, R; Pandit, S; Panin, V; Paradela, C; Parkar, V; Paschalis, S; Paw\\lowski, P; Perea, A; Pereira, J; Petrache, C; Petri, M; Pickstone, S; Pietralla, N; Pietri, S; Pivovarov, Y; Potlog, P; Prokofiev, A; Rastrepina, G; Rauscher, T; Ribeiro, G; Ricciardi, M; Richter, A; Rigollet, C; Riisager, K; Rios, A; Ritter, C; Frutos, T Rodríguez; Vignote, J Rodriguez; Röder, M; Romig, C; Rossi, D; Roussel-Chomaz, P; Rout, P; Roy, S; Söderström, P; Sarkar, M Saha; Sakuta, S; Salsac, M; Sampson, J; Saez, J Sanchez del Rio; Rosado, J Sanchez; Sanjari, S; Sarriguren, P; Sauerwein, A; Savran, D; Scheidenberger, C; Scheit, H; Schmidt, S; Schmitt, C; Schnorrenberger, L; Schrock, P; Schwengner, R; Seddon, D; Sherrill, B; Shrivastava, A; Sidorchuk, S; Silva, J; Simon, H; Simpson, E; Singh, P; Slobodan, D; Sohler, D; Spieker, M; Stach, D; Stan, E; Stanoiu, M; Stepantsov, S; Stevenson, P; Strieder, F; Stuhl, L; Suda, T; Sümmerer, K; Streicher, B; Taieb, J; Takechi, M; Tanihata, I; Taylor, J; Tengblad, O; Ter-Akopian, G; Terashima, S; Teubig, P; Thies, R; Thoennessen, M; Thomas, T; Thornhill, J; Thungstrom, G; Timar, J; Togano, Y; Tomohiro, U; Tornyi, T; Tostevin, J; Townsley, C; Trautmann, W; Trivedi, T; Typel, S; Uberseder, E; Udias, J; Uesaka, T; Uvarov, L; Vajta, Z; Velho, P; Vikhrov, V; Volknandt, M; Volkov, V; von Neumann-Cosel, P; von Schmid, M; Wagner, A; Wamers, F; Weick, H; Wells, D; Westerberg, L; Wieland, O; Wiescher, M; Wimmer, C; Wimmer, K; Winfield, J S; Winkel, M; Woods, P; Wyss, R; Yakorev, D; Yavor, M; Cardona, J Zamora; Zartova, I; Zerguerras, T; Zgura, I; Zhdanov, A; Zhukov, M; Zieblinski, M; Zilges, A; Zuber, K

    2016-01-01

    The nucleosynthesis of elements beyond iron is dominated by neutron captures in the s and r processes. However, 32 stable, proton-rich isotopes cannot be formed during those processes, because they are shielded from the s-process flow and r-process beta-decay chains. These nuclei are attributed to the p and rp process. For all those processes, current research in nuclear astrophysics addresses the need for more precise reaction data involving radioactive isotopes. Depending on the particular reaction, direct or inverse kinematics, forward or time-reversed direction are investigated to determine or at least to constrain the desired reaction cross sections. The Facility for Antiproton and Ion Research (FAIR) will offer unique, unprecedented opportunities to investigate many of the important reactions. The high yield of radioactive isotopes, even far away from the valley of stability, allows the investigation of isotopes involved in processes as exotic as the r or rp processes.

  14. Nuclear astrophysics with radioactive ions at FAIR

    Science.gov (United States)

    Reifarth, R.; Altstadt, S.; Göbel, K.; Heftrich, T.; Heil, M.; Koloczek, A.; Langer, C.; Plag, R.; Pohl, M.; Sonnabend, K.; Weigand, M.; Adachi, T.; Aksouh, F.; Al-Khalili, J.; AlGarawi, M.; AlGhamdi, S.; Alkhazov, G.; Alkhomashi, N.; Alvarez-Pol, H.; Alvarez-Rodriguez, R.; Andreev, V.; Andrei, B.; Atar, L.; Aumann, T.; Avdeichikov, V.; Bacri, C.; Bagchi, S.; Barbieri, C.; Beceiro, S.; Beck, C.; Beinrucker, C.; Belier, G.; Bemmerer, D.; Bendel, M.; Benlliure, J.; Benzoni, G.; Berjillos, R.; Bertini, D.; Bertulani, C.; Bishop, S.; Blasi, N.; Bloch, T.; Blumenfeld, Y.; Bonaccorso, A.; Boretzky, K.; Botvina, A.; Boudard, A.; Boutachkov, P.; Boztosun, I.; Bracco, A.; Brambilla, S.; Briz Monago, J.; Caamano, M.; Caesar, C.; Camera, F.; Casarejos, E.; Catford, W.; Cederkall, J.; Cederwall, B.; Chartier, M.; Chatillon, A.; Cherciu, M.; Chulkov, L.; Coleman-Smith, P.; Cortina-Gil, D.; Crespi, F.; Crespo, R.; Cresswell, J.; Csatlós, M.; Déchery, F.; Davids, B.; Davinson, T.; Derya, V.; Detistov, P.; Diaz Fernandez, P.; DiJulio, D.; Dmitry, S.; Doré, D.; Dueñas, J.; Dupont, E.; Egelhof, P.; Egorova, I.; Elekes, Z.; Enders, J.; Endres, J.; Ershov, S.; Ershova, O.; Fernandez-Dominguez, B.; Fetisov, A.; Fiori, E.; Fomichev, A.; Fonseca, M.; Fraile, L.; Freer, M.; Friese, J.; Borge, M. G.; Galaviz Redondo, D.; Gannon, S.; Garg, U.; Gasparic, I.; Gasques, L.; Gastineau, B.; Geissel, H.; Gernhäuser, R.; Ghosh, T.; Gilbert, M.; Glorius, J.; Golubev, P.; Gorshkov, A.; Gourishetty, A.; Grigorenko, L.; Gulyas, J.; Haiduc, M.; Hammache, F.; Harakeh, M.; Hass, M.; Heine, M.; Hennig, A.; Henriques, A.; Herzberg, R.; Holl, M.; Ignatov, A.; Ignatyuk, A.; Ilieva, S.; Ivanov, M.; Iwasa, N.; Jakobsson, B.; Johansson, H.; Jonson, B.; Joshi, P.; Junghans, A.; Jurado, B.; Körner, G.; Kalantar, N.; Kanungo, R.; Kelic-Heil, A.; Kezzar, K.; Khan, E.; Khanzadeev, A.; Kiselev, O.; Kogimtzis, M.; Körper, D.; Kräckmann, S.; Kröll, T.; Krücken, R.; Krasznahorkay, A.; Kratz, J.; Kresan, D.; Krings, T.; Krumbholz, A.; Krupko, S.; Kulessa, R.; Kumar, S.; Kurz, N.; Kuzmin, E.; Labiche, M.; Langanke, K.; Lazarus, I.; Le Bleis, T.; Lederer, C.; Lemasson, A.; Lemmon, R.; Liberati, V.; Litvinov, Y.; Löher, B.; Lopez Herraiz, J.; Münzenberg, G.; Machado, J.; Maev, E.; Mahata, K.; Mancusi, D.; Marganiec, J.; Martinez Perez, M.; Marusov, V.; Mengoni, D.; Million, B.; Morcelle, V.; Moreno, O.; Movsesyan, A.; Nacher, E.; Najafi, M.; Nakamura, T.; Naqvi, F.; Nikolski, E.; Nilsson, T.; Nociforo, C.; Nolan, P.; Novatsky, B.; Nyman, G.; Ornelas, A.; Palit, R.; Pandit, S.; Panin, V.; Paradela, C.; Parkar, V.; Paschalis, S.; Pawłowski, P.; Perea, A.; Pereira, J.; Petrache, C.; Petri, M.; Pickstone, S.; Pietralla, N.; Pietri, S.; Pivovarov, Y.; Potlog, P.; Prokofiev, A.; Rastrepina, G.; Rauscher, T.; Ribeiro, G.; Ricciardi, M.; Richter, A.; Rigollet, C.; Riisager, K.; Rios, A.; Ritter, C.; Rodriguez Frutos, T.; Rodriguez Vignote, J.; Röder, M.; Romig, C.; Rossi, D.; Roussel-Chomaz, P.; Rout, P.; Roy, S.; Söderström, P.; Saha Sarkar, M.; Sakuta, S.; Salsac, M.; Sampson, J.; Sanchez, J.; Rio Saez, del; Sanchez Rosado, J.; Sanjari, S.; Sarriguren, P.; Sauerwein, A.; Savran, D.; Scheidenberger, C.; Scheit, H.; Schmidt, S.; Schmitt, C.; Schnorrenberger, L.; Schrock, P.; Schwengner, R.; Seddon, D.; Sherrill, B.; Shrivastava, A.; Sidorchuk, S.; Silva, J.; Simon, H.; Simpson, E.; Singh, P.; Slobodan, D.; Sohler, D.; Spieker, M.; Stach, D.; Stan, E.; Stanoiu, M.; Stepantsov, S.; Stevenson, P.; Strieder, F.; Stuhl, L.; Suda, T.; Sümmerer, K.; Streicher, B.; Taieb, J.; Takechi, M.; Tanihata, I.; Taylor, J.; Tengblad, O.; Ter-Akopian, G.; Terashima, S.; Teubig, P.; Thies, R.; Thoennessen, M.; Thomas, T.; Thornhill, J.; Thungstrom, G.; Timar, J.; Togano, Y.; Tomohiro, U.; Tornyi, T.; Tostevin, J.; Townsley, C.; Trautmann, W.; Trivedi, T.; Typel, S.; Uberseder, E.; Udias, J.; Uesaka, T.; Uvarov, L.; Vajta, Z.; Velho, P.; Vikhrov, V.; Volknandt, M.; Volkov, V.; von Neumann-Cosel, P.; von Schmid, M.; Wagner, A.; Wamers, F.; Weick, H.; Wells, D.; Westerberg, L.; Wieland, O.; Wiescher, M.; Wimmer, C.; Wimmer, K.; Winfield, J. S.; Winkel, M.; Woods, P.; Wyss, R.; Yakorev, D.; Yavor, M.; Zamora Cardona, J.; Zartova, I.; Zerguerras, T.; Zgura, M.; Zhdanov, A.; Zhukov, M.; Zieblinski, M.; Zilges, A.; Zuber, K.

    2016-01-01

    The nucleosynthesis of elements beyond iron is dominated by neutron captures in the s and r processes. However, 32 stable, proton-rich isotopes cannot be formed during those processes, because they are shielded from the s-process flow and r-process, β-decay chains. These nuclei are attributed to the p and rp process. For all those processes, current research in nuclear astrophysics addresses the need for more precise reaction data involving radioactive isotopes. Depending on the particular reaction, direct or inverse kinematics, forward or time-reversed direction are investigated to determine or at least to constrain the desired reaction cross sections. The Facility for Antiproton and Ion Research (FAIR) will offer unique, unprecedented opportunities to investigate many of the important reactions. The high yield of radioactive isotopes, even far away from the valley of stability, allows the investigation of isotopes involved in processes as exotic as the r or rp processes.

  15. Astrophysics experiments with radioactive beams at ATLAS

    Directory of Open Access Journals (Sweden)

    B. B. Back

    2014-02-01

    Full Text Available Reactions involving short-lived nuclei play an important role in nuclear astrophysics, especially in explosive scenarios which occur in novae, supernovae or X-ray bursts. This article describes the nuclear astrophysics program with radioactive ion beams at the ATLAS accelerator at Argonne National Laboratory. The CARIBU facility as well as recent improvements for the in-flight technique are discussed. New detectors which are important for studies of the rapid proton or the rapid neutron-capture processes are described. At the end we briefly mention plans for future upgrades to enhance the intensity, purity and the range of in-flight and CARIBU beams.

  16. Experiments with radioactive beams at ATLAS

    CERN Document Server

    Rehm, K E; Blackmon, J; Borasi, F; Caggiano, J; Chen, A; Davids, C N; Greene, J; Harss, B; Heinz, A; Henderson, D; Janssens, R V F; Jiang, C L; Nolen, Jerry A; Pardo, R C; Parker, P; Paul, M; Schiffer, J P; Segel, R E; Seweryniak, D; Siemssen, R H; Smith, M S; Uusitalo, J; Wang, T F; Wiedenhöver, I

    2001-01-01

    Various beams of short- and long-lived radioactive nuclei have recently been produced at the ATLAS accelerator at Argonne National Laboratory, using either the so-called In-Flight or the Two- Accelerator method. The production techniques, as well as recent results with /sup 44/Ti (T/sub 1/2/=60y) and /sup 17/F (T/sub 1/2 /=64s) beams, which are of interest to nucleosynthesis in supernovae and X-ray bursts, are discussed. (12 refs).

  17. Studies of the neutron single-particle structure of exotic nuclei at the HRIBF

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, J.S. [Department of Physics and Astronomy, Rutgers University, New Brunswick, NJ 08903 (United States); Bardayan, D.W. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Blackmon, J.C. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Cizewski, J.A. [Department of Physics and Astronomy, Rutgers University, New Brunswick, NJ 08903 (United States); Greife, U. [Department of Physics, Colorado School of Mines, Golden, CO 80401 (United States); Gross, C.J. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Johnson, M.S. [Department of Physics and Astronomy, Rutgers University, New Brunswick, NJ 08903 (United States); Jones, K.L. [Department of Physics and Astronomy, Rutgers University, New Brunswick, NJ 08903 (United States); Kozub, R.L. [Physics Department, Tennessee Technological University, Cookeville, TN 38505 (United States); Liang, J.F. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Livesay, R.J. [Department of Physics, Colorado School of Mines, Golden, CO 80401 (United States); Ma, Z. [Physics Department, University of Tennessee, Knoxville, TN 37996 (United States); Moazen, B.H. [Physics Department, Tennessee Technological University, Cookeville, TN 38505 (United States); Nesaraja, C.D. [Physics Department, Tennessee Technological University, Cookeville, TN 38505 (United States); Shapira, D. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Smith, M.S. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2004-12-27

    The study of neutron single-particle strengths in neutron-rich nuclei is of interest for nuclear structure and nuclear astrophysics. The distribution of single-particle strengths constrains the effective Hamiltonian and pairing interactions and determines neutron interaction rates that are crucial for understanding the synthesis of heavy nuclei in supernovae via the rapid neutron capture process. Particularly important are the neutron single-particle levels in nuclei near closed neutron shells. Radioactive ion beams from the Holifield Radioactive Ion Beam Facility have been used to study (d,p) reactions in inverse kinematics in order to probe neutron single-particle states in exotic nuclei. The results of a measurement with a {sup 82}Ge beam will be presented.

  18. Are $\\eta$- and $\\omega$-nuclear states bound ?

    CERN Document Server

    Tsushima, K; Thomas, A W; Saitô, K

    1998-01-01

    We investigate theoretically whether it is feasible to detect $\\eta$- and $^{40}$Ca, $^{90}$Zr and $^{208}$Pb, we also investigate $^6$He, $^{11}$B and $^{26}$Mg, which are the final nuclei in the proposed experiment involving the (d,$^3$He) reaction at GSI. Potentials for the $\\eta$ and $\\omega$ mesons in these nuclei are calculated in local density approximation, embedding the mesons in the nucleus described by solving the mean-field equations of motion in the QMC model. Our results suggest that one should expect to find $\\eta$- and $\\omega$-nucleus bound states in all these nuclei.

  19. Shape Deformations in Atomic Nuclei

    CERN Document Server

    Hamamoto, Ikuko

    2011-01-01

    The ground states of some nuclei are described by densities and mean fields that are spherical, while others are deformed. The existence of non-spherical shape in nuclei represents a spontaneous symmetry breaking.

  20. Nuclear astrophysics with exotic nuclei and rare ion beams

    Science.gov (United States)

    Trache, Livius

    2013-02-01

    Nuclear astrophysics has become a major motivation for nuclear physics research in the latest few decades. The quests to understand grand scale cosmic phenomena, the origin of elements and isotopes, the sources of energy in stars, were advanced by studies at the microscopic scale of nuclei. Advances in the production, separation and acceleration of unstable nuclei lead not only to new knowledge in the structure of nuclei and nuclear matter, but also have revolutionized nuclear physics for astrophysics. I will review some of the many contributions that nuclear astrophysics made to our fundamental knowledge, and then will describe a few indirect methods used in nuclear astrophysics using radioactive beams, concentrating on those used by the groups I work with.

  1. Ultra High Energy Nuclei Propagation

    CERN Document Server

    Aloisio, Roberto

    2008-01-01

    We discuss the problem of ultra high energy nuclei propagation in astrophysical backgrounds. We present a new analytical computation scheme based on the hypothesis of continuos energy losses in a kinetic formulation of the particles propagation. This scheme enables the computation of the fluxes of ultra high energy nuclei as well as the fluxes of secondaries (nuclei and nucleons) produced by the process of photo-disintegration suffered by nuclei.

  2. Studies of Heavy-Ion Reactions and Transuranic Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, W. Udo [Univ. of Rochester, NY (United States). Dept. of Chemistry. Dept. of Physics

    2016-07-28

    Studies of heavy-ion reactions and transuranic nuclei performed by the University of Rochester Nuclear Science Research Group have been successful in furthering experimental systematics and theoretical understanding of the behavior of nuclear systems excited to their limits of stability. The theoretical results explain specifically the “boiling” and “vaporization” of atomic nuclei, but are more generally applicable to isolated, quantal many-particle systems which, under thermal or mechanical stresses, all disintegrate by evaporation, via surface cluster emission, or via fission-like processes. Accompanying experimental investigations by the group have demonstrated several new types of dynamical instability of nuclei: In central, “head-on” collisions, target nuclei exhibit limited ability to stop energetic projectile nuclei and to dissipate the imparted linear momentum. Substantial matter overlap (“neck”) between projectile and target nuclei, which is observed at elevated collision energies, can be stretched considerably and break at several places simultaneously. These results provide new testing grounds for microscopic theory of the cohesion of nuclear matter. This property has remained elusive, even though the elementary nucleon-nucleon forces are well known since some time. Technical R&D has resulted in a detailed characterization of a novel plastic material, which can now be used in the design of sensitive diagnostic systems for various types of radio-activity. Innovative application of powerful laser systems has produced intense, controllable sources of exotic particle radioactivity for nuclear investigations. Several students have received their Ph.D. degree in experimental nuclear science for their work on basic nuclear research or R&D projects.

  3. Studies of Heavy-Ion Reactions and Transuranic Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, W. Udo [Univ. of Rochester, NY (United States). Dept. of Chemistry. Dept. of Physics

    2016-07-28

    Studies of heavy-ion reactions and transuranic nuclei performed by the University of Rochester Nuclear Science Research Group have been successful in furthering experimental systematics and theoretical understanding of the behavior of nuclear systems excited to their limits of stability. The theoretical results explain specifically the “boiling” and “vaporization” of atomic nuclei but are more generally applicable to isolated, quantal many-particle systems which, under thermal or mechanical stresses, all disintegrate by evaporation, via surface cluster emission, or via fission-like processes. Accompanying experimental investigations by the group have demonstrated several new types of dynamical instability of nuclei: In central, “head-on” collisions, target nuclei exhibit limited ability to stop energetic projectile nuclei and to dissipate the imparted linear momentum. Substantial matter overlap (“neck”) between projectile and target nuclei, which is observed at elevated collision energies, can be stretched considerably and break at several places simultaneously. These results provide new testing grounds for microscopic theory of the cohesion of nuclear matter. This property has remained elusive, even though the elementary nucleon-nucleon forces are well known since some time. Technical R&D has resulted in a detailed characterization of a novel plastic material, which can now be used in the design of sensitive diagnostic systems for various types of radio-activity. Innovative application of powerful laser systems has produced intense, controllable sources of exotic particle radioactivity for nuclear investigations. Several students have received their Ph.D. degree in experimental nuclear science for their work on basic nuclear research or R&D projects.

  4. Induced radioactivity at CERN

    CERN Multimedia

    1970-01-01

    A description of some of the problems and some of the advantages associated with the phenomenon of induced radioactivity at accelerator centres such as CERN. The author has worked in this field for several years and has recently written a book 'Induced Radioactivity' published by North-Holland.

  5. A Remote Radioactivity Experiment

    Science.gov (United States)

    Jona, Kemi; Vondracek, Mark

    2013-01-01

    Imagine a high school with very few experimental resources and limited budgets that prevent the purchase of even basic laboratory equipment. For example, many high schools do not have the means of experimentally studying radioactivity because they lack Geiger counters and/or good radioactive sources. This was the case at the first high school one…

  6. Bubble nuclei; Noyaux Bulles

    Energy Technology Data Exchange (ETDEWEB)

    Legoll, F. [Service de Physique Theorique, CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France)

    1998-07-22

    For nuclei with very high electrical charge, the Coulomb field is expected to drive the protons away from the centre to the surface of the nucleus. Such a nucleus would be no more compact but look like a bubble. The goal of this work is to confirm this idea. We are interested in only the ground state of spherical nuclei. We use the Skyrme potential with the Sly4 parametrization to calculate the mean-field Hamiltonian. Paring correlations are described by a surface-active delta paring interaction. In its ground state the nucleus {sup A=900} X{sub Z=274} is shown to be a bubble. Another stable state is found with a little higher energy: it is also a bubble. (author) 11 refs., 18 figs., 33 tabs.

  7. Symmetries in Nuclei

    CERN Document Server

    Van Isacker, P

    2010-01-01

    The use of dynamical symmetries or spectrum generating algebras for the solution of the nuclear many-body problem is reviewed. General notions of symmetry and dynamical symmetry in quantum mechanics are introduced and illustrated with simple examples such as the SO(4) symmetry of the hydrogen atom and the isospin symmetry in nuclei. Two nuclear models, the shell model and the interacting boson model, are reviewed with particular emphasis on their use of group-theoretical techniques.

  8. Radioactive decay as a forced nuclear chemical process: Phenomenology

    Science.gov (United States)

    Timashev, S. F.

    2015-11-01

    Concepts regarding the mechanism of radioactive decay of nuclei are developed on the basis of a hypothesis that there is a dynamic relationship between the electronic and nuclear subsystems of an atom, and that fluctuating initiating effects of the electronic subsystem on a nucleus are possible. Such relationship is reflected in experimental findings that show the radioactive decay of nuclei might be determined by a positive difference between the mass of an initial nucleus and the mass of an atom's electronic subsystem, i.e., the mass of the entire atom (rather than that of its nucleus) and the total mass of the decay products. It is established that an intermediate nucleus whose charge is lower by unity than the charge of the initial radioactive nucleus is formed as a result of the above fluctuating stimuli that initiate radioactive decay, and its nuclear matter is thus in an unbalanced metastable state of inner shakeup, affecting the quark subsystem of nucleons. The intermediate nucleus thus experiences radioactive decay with the emission of α or β particles. At the same time, the high energy (with respect to the chemical scale) of electrons in plasma served as a factor initiating the processes in different nuclear chemical transformations and radioactive decays in low-temperature plasma studied earlier, particularly during the laser ablation of metals in aqueous solutions of different compositions and in near-surface cathode layers upon glow discharge. It is shown that a wide variety of nucleosynthesis processes in the Universe can be understood on the same basis, and a great many questions regarding the formation of light elements in the solar atmosphere and some heavy elements (particularly p-nuclei) in the interiors of massive stars at late stages of their evolution can also be resolved.

  9. η-nuclear bound states revisited

    Science.gov (United States)

    Friedman, E.; Gal, A.; Mareš, J.

    2013-10-01

    The strong energy dependence of the s-wave ηN scattering amplitude at and below threshold, as evident in coupled-channels K-matrix fits and chiral models that incorporate the S11N* (1535) resonance, is included self-consistently in η-nuclear bound-state calculations. This approach, applied recently in calculations of kaonic atoms and Kbar-nuclear bound states, is found to impose stronger constraints than ever on the onset of η-nuclear binding, with a minimum value of ReaηN ≈ 0.9 fm required to accommodate an η-4He bound state. Binding energies and widths of η-nuclear states are calculated within several underlying ηN models for nuclei across the periodic table, including Mg25η for which some evidence was proposed in a recent COSY experiment.

  10. Electron and pion scattering off nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Buss, O.; Mosel, U. [Inst. fuer Theoretische Physik, Univ. Giessen (Germany); Alvarez-Ruso, L. [Dept. de Fisica Teorica and IFIC, Centro Mixto Univ. de Valencia-CSIC (Spain)

    2007-07-01

    We present a treatment of pion and electron scattering off nuclei within the framework of a Boltzmann-Uehling-Uhlenbeck (BUU) transport model. In this approach we realize a full coupled channel treatment and include medium modifications such as mean-field potentials, Fermi motion and width modifications. We have applied the GiBUU model to the description of the double charge exchange (DCX) reaction of pions with different nuclear targets at incident kinetic energies of 120-180 MeV. The DCX process is highly sensitive to details of the interactions of pions with the nuclear medium and, therefore, represents a major benchmark for any model of pion scattering off nuclei at low and intermediate energies. We discuss the impact of surface effects and the dependence on the nuclear mass number. We have achieved a good quantitative agreement with the extensive data set obtained at LAMPF. Furthermore, we present a description of electron induced reactions, i.e. pion production, off nuclei. We consider the scattering of electrons off the bound nucleons in an impulse approximation and investigate medium modifications to exclusive particle production cross sections and compare our results to available data. (orig.)

  11. Interaction of eta mesons with nuclei

    CERN Document Server

    Kelkar, N G; Upadhyay, N J; Jain, B K

    2013-01-01

    Back in the mid eighties, a new branch of investigation which was related to the interaction of eta mesons with nuclei came into existence. It started with the theoretical prediction of possible exotic states of eta mesons and nuclei bound by the strong interaction and later developed into an extensive experimental program to search for such unstable states as well as understand the underlying interaction via eta meson producing reactions. The vast literature of experimental as well as theoretical works which studied various aspects of eta producing reactions such as the $\\pi ^+$ $n$ $\\to \\eta p$, $p d \\to ^3$He $\\eta$, $p \\,^6$Li $\\to ^7$Be $\\eta$ and $\\gamma ^3$He $\\to \\eta$ X, to name a few, had but one objective in mind: to understand the eta - nucleon ($\\eta N$) and hence the $\\eta$-nucleus interaction which could explain the production data and confirm the existence of some $\\eta$-mesic nuclei. In spite of these efforts, there remain uncertainties in the knowledge of the $\\eta N$ and hence the $\\eta$-nu...

  12. Precision measurement of the mass difference between light nuclei and anti-nuclei

    CERN Document Server

    Adam, Jaroslav; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agrawal, Neelima; Ahammed, Zubayer; Ahmed, Ijaz; Ahn, Sang Un; Aimo, Ilaria; Aiola, Salvatore; Ajaz, Muhammad; Akindinov, Alexander; Alam, Sk Noor; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Alme, Johan; Alt, Torsten; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arcelli, Silvia; Armesto Perez, Nestor; Arnaldi, Roberta; Aronsson, Tomas; Arsene, Ionut Cristian; Arslandok, Mesut; Augustinus, Andre; Averbeck, Ralf Peter; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Baldisseri, Alberto; Ball, Markus; Baltasar Dos Santos Pedrosa, Fernando; Baral, Rama Chandra; Barbano, Anastasia Maria; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartalini, Paolo; Bartke, Jerzy Gustaw; Bartsch, Esther; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batista Camejo, Arianna; Batyunya, Boris; Batzing, Paul Christoph; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bello Martinez, Hector; Bellwied, Rene; Belmont Iii, Ronald John; Belmont Moreno, Ernesto; Belyaev, Vladimir; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhat, Inayat Rasool; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Biswas, Saikat; Bjelogrlic, Sandro; Blanco, Fernando; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Boldizsar, Laszlo; Bombara, Marek; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Borri, Marcello; Bossu, Francesco; Botje, Michiel; Botta, Elena; Boettger, Stefan; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Brucken, Erik Jens; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Buxton, Jesse Thomas; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calero Diaz, Liliet; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Carena, Francesco; Carena, Wisla; Castillo Castellanos, Javier Ernesto; Castro, Andrew John; Casula, Ester Anna Rita; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Chang, Beomsu; Chapeland, Sylvain; Chartier, Marielle; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chelnokov, Volodymyr; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Chochula, Peter; Choi, Kyungeon; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dahms, Torsten; Dainese, Andrea; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; De Caro, Annalisa; De Cataldo, Giacinto; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; Deisting, Alexander; Deloff, Andrzej; Denes, Ervin Sandor; D'Erasmo, Ginevra; Di Bari, Domenico; Di Mauro, Antonio; Di Nezza, Pasquale; Diaz Corchero, Miguel Angel; Dietel, Thomas; Dillenseger, Pascal; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Ehlers Iii, Raymond James; Elia, Domenico; Engel, Heiko; Erazmus, Barbara Ewa; Erhardt, Filip; Eschweiler, Dominic; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Evans, David; Evdokimov, Sergey; Eyyubova, Gyulnara; Fabbietti, Laura; Fabris, Daniela; Faivre, Julien; Fantoni, Alessandra; Fasel, Markus; Feldkamp, Linus; Felea, Daniel; Feliciello, Alessandro; Feofilov, Grigorii; Ferencei, Jozef; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Fleck, Martin Gabriel; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Furs, Artur; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Gao, Chaosong; Garabatos Cuadrado, Jose; Garcia-Solis, Edmundo Javier; Gargiulo, Corrado; Gasik, Piotr Jan; Germain, Marie; Gheata, Andrei George; Gheata, Mihaela; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Giubilato, Piero; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez Ramirez, Andres; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Grabski, Varlen; Graczykowski, Lukasz Kamil; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grynyov, Borys; Grion, Nevio; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Gulbrandsen, Kristjan Herlache; Gulkanyan, Hrant; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Haake, Rudiger; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hanratty, Luke David; Hansen, Alexander; Harris, John William; Hartmann, Helvi; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hilden, Timo Eero; Hillemanns, Hartmut; Hippolyte, Boris; Hristov, Peter Zahariev; Huang, Meidana; Humanic, Thomas; Hussain, Nur; Hussain, Tahir; Hutter, Dirk; Hwang, Dae Sung; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Ionita, Costin; Ippolitov, Mikhail; Irfan, Muhammad; Ivanov, Marian; Ivanov, Vladimir; Izucheev, Vladimir; Jacobs, Peter Martin; Jahnke, Cristiane; Jang, Haeng Jin; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Chitrasen; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jung, Hyungtaik; Jusko, Anton; Kalinak, Peter; Kalweit, Alexander Philipp; Kamin, Jason Adrian; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Keijdener, Darius Laurens; Keil, Markus; Khan, Kamal; Khan, Mohammed Mohisin; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Beomkyu; Kim, Do Won; Kim, Dong Jo; Kim, Hyeonjoong; Kim, Jinsook; Kim, Mimae; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Carsten; Klein, Jochen; Klein-Boesing, Christian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobayashi, Taiyo; Kobdaj, Chinorat; Kofarago, Monika; Kohler, Markus Konrad; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratev, Valerii; Kondratyeva, Natalia; Kondratyuk, Evgeny; Konevskikh, Artem; Kouzinopoulos, Charalampos; Kovalenko, Vladimir; Kowalski, Marek; Kox, Serge; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kravcakova, Adela; Krelina, Michal; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Kryshen, Evgeny; Krzewicki, Mikolaj; Kubera, Andrew Michael; Kucera, Vit; Kucheryaev, Yury; Kugathasan, Thanushan; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kulakov, Igor; Kumar, Jitendra; Lokesh, Kumar; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kushpil, Svetlana; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; Laudi, Elisa; Lea, Ramona; Leardini, Lucia; Lee, Graham Richard; Lee, Seongjoo; Legrand, Iosif; Lehnert, Joerg Walter; Lemmon, Roy Crawford; Lenti, Vito; Leogrande, Emilia; Leon Monzon, Ildefonso; Leoncino, Marco; Levai, Peter; Li, Shuang; Li, Xiaomei; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Lonne, Per-Ivar; Loggins, Vera Renee; Loginov, Vitaly; Loizides, Constantinos; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lowe, Andrew John; Lu, Xianguo; Luettig, Philipp Johannes; Lunardon, Marcello; Luparello, Grazia; Maevskaya, Alla; Mager, Magnus; Mahajan, Sanjay; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manceau, Loic Henri Antoine; Manko, Vladislav; Manso, Franck; Manzari, Vito; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Margutti, Jacopo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martashvili, Irakli; Martin, Nicole Alice; Martin Blanco, Javier; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-Garcia, Gines; Martinez Pedreira, Miguel; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Mastroserio, Annalisa; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzoni, Alessandra Maria; Mcdonald, Daniel; Meddi, Franco; Menchaca-Rocha, Arturo Alejandro; Meninno, Elisa; Mercado-Perez, Jorge; Meres, Michal; Miake, Yasuo; Mieskolainen, Matti Mikael; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Minervini, Lazzaro Manlio; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mohammadi, Naghmeh; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Montes Prado, Esther; Morando, Maurizio; Moreira De Godoy, Denise Aparecida; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Muller, Hans; Mulligan, James Declan; Gameiro Munhoz, Marcelo; Murray, Sean; Musa, Luciano; Musinsky, Jan; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Naru, Muhammad Umair; Nattrass, Christine; Nayak, Kishora; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Nellen, Lukas; Ng, Fabian; Nicassio, Maria; Niculescu, Mihai; Niedziela, Jeremi; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Norman, Jaime; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Ohlson, Alice Elisabeth; Okatan, Ali; Okubo, Tsubasa; Olah, Laszlo; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Oliver, Michael Henry; Onderwaater, Jacobus; Oppedisano, Chiara; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozdemir, Mahmut; Pachmayer, Yvonne Chiara; Pagano, Paola; Paic, Guy; Pajares Vales, Carlos; Pal, Susanta Kumar; Pan, Jinjin; Pandey, Ashutosh Kumar; Pant, Divyash; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Woojin; Parmar, Sonia; Passfeld, Annika; Paticchio, Vincenzo; Paul, Biswarup; Pawlak, Tomasz Jan; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitry Yurevich; Perez Lara, Carlos Eugenio; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petrov, Viacheslav; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polishchuk, Boris; Poljak, Nikola; Poonsawat, Wanchaloem; Pop, Amalia; Porteboeuf, Sarah Julie; Porter, R Jefferson; Pospisil, Jan; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Raha, Sibaji; Rajput, Sonia; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Razazi, Vahedeh; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reicher, Martijn; Reidt, Felix; Ren, Xiaowen; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Ristea, Catalin-Lucian; Rivetti, Angelo; Rocco, Elena; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roeed, Ketil; Rogochaya, Elena; Rohr, David Michael; Roehrich, Dieter; Romita, Rosa; Ronchetti, Federico; Ronflette, Lucile; Rosnet, Philippe; Rossi, Andrea; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Sadovskiy, Sergey; Safarik, Karel; Sahlmuller, Baldo; Sahoo, Pragati; Sahoo, Raghunath; Sahoo, Sarita; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Saleh, Mohammad Ahmad; Salgado Lopez, Carlos Alberto; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sanchez Castro, Xitzel; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Santagati, Gianluca; Sarkar, Debojit; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schuchmann, Simone; Schukraft, Jurgen; Schulc, Martin; Schuster, Tim Robin; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca Michelle; Seeder, Karin Soraya; Seger, Janet Elizabeth; Sekiguchi, Yuko; Selyuzhenkov, Ilya; Senosi, Kgotlaesele; Seo, Jeewon; Serradilla Rodriguez, Eulogio; Sevcenco, Adrian; Shabanov, Arseniy; Shabetai, Alexandre; Shadura, Oksana; Shahoyan, Ruben; Shangaraev, Artem; Sharma, Ankita; Sharma, Natasha; Shigaki, Kenta; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Sielewicz, Krzysztof Marek; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Slupecki, Maciej; Smirnov, Nikolai; Snellings, Raimond; Snellman, Tomas Wilhelm; Soegaard, Carsten; Soltz, Ron Ariel; Song, Jihye; Song, Myunggeun; Song, Zixuan; Soramel, Francesca; Sorensen, Soren Pontoppidan; Spacek, Michal; Spiriti, Eleuterio; Sputowska, Iwona Anna; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Steinpreis, Matthew Donald; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Sultanov, Rishat; Sumbera, Michal; Symons, Timothy; Szabo, Alexander; Szanto De Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Takahashi, Jun; Tanaka, Naoto; Tangaro, Marco-Antonio; Tapia Takaki, Daniel Jesus; Tarantola Peloni, Attilio; Tariq, Mohammad; Tarzila, Madalina-Gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terasaki, Kohei; Terrevoli, Cristina; Teyssier, Boris; Thaeder, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony Robert; Toia, Alberica; Trogolo, Stefano; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Uras, Antonio; Usai, Gianluca; Utrobicic, Antonija; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vanat, Tomas; Vande Vyvre, Pierre; Varga, Dezso; Vargas Trevino, Aurora Diozcora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vauthier, Astrid; Vechernin, Vladimir; Veen, Annelies Marianne; Veldhoen, Misha; Velure, Arild; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Vislavicius, Vytautas; Viyogi, Yogendra; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Jan; Wang, Hongkai; Wang, Mengliang; Wang, Yifei; Watanabe, Daisuke; Weber, Michael; Weber, Steffen Georg; Wessels, Johannes Peter; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Yaldo, Chris G; Yamaguchi, Yorito; Yang, Hongyan; Yang, Ping; Yano, Satoshi; Yasnopolskiy, Stanislav; Yin, Zhongbao; Yokoyama, Hiroki; Yoo, In-Kwon; Yurchenko, Volodymyr; Yushmanov, Igor; Zaborowska, Anna; Zaccolo, Valentina; Zaman, Ali; Zampolli, Chiara; Correia Zanoli, Henrique Jose; Zaporozhets, Sergey; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zhu, Xiangrong; Zichichi, Antonino; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zyzak, Maksym

    2015-01-01

    The measurement of the mass differences for systems bound by the strong force has reached a very high precision with protons and anti-protons. The extension of such measurement from (anti-)baryons to (anti-)nuclei allows one to probe any difference in the interactions between nucleons and anti-nucleons encoded in the (anti-)nuclei masses. This force is a remnant of the underlying strong interaction among quarks and gluons and can be described by effective theories, but cannot yet be directly derived from quantum chromodynamics. Here we report a measurement of the difference between the ratios of the mass and charge of deuterons (d) and anti-deuterons ($\\bar{d}$), and $^{3}{\\rm He}$ and $^3\\overline{\\rm He}$ nuclei carried out with the ALICE (A Large Ion Collider Experiment) detector in Pb-Pb collisions at a centre-of-mass energy per nucleon pair of 2.76 TeV. Our direct measurement of the mass-over-charge differences confirm CPT invariance to an unprecedented precision in the sector of light nuclei. This funda...

  13. Radioactive decay by the emission of heavy nuclear fragments

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, O.A.P.; Roberto, L.A.M.; Medeiros, E.L. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]. E-mails: oaptavares@cbpf.br; emil@cbpf.br

    2007-07-01

    Radioactive decay of nuclei by the emission of heavy ions of C, N, O, F, Ne, Na, Mg, Al, Si, and P isotopes (known as exotic decay or cluster radioactivity) is reinvestigated within the framework of a semiempirical, one-parameter model based on a quantum mechanical, tunnelling mechanism through a potential barrier, where both centrifugal and overlapping effects are considered to half-life evaluations. This treatment appeared to be very adequate at fitting all measured half-life values for the cluster emission cases observed to date. Predictions for new heavy-ion decay cases susceptible of being detected are also reported. (author)

  14. Functions of bounded variation

    OpenAIRE

    Lind, Martin

    2006-01-01

    The paper begins with a short survey of monotone functions. The functions of bounded variation are introduced and some basic properties of these functions are given. Finally the jump function of a function of bounded variation is defined.

  15. Upward Bound alum honored

    OpenAIRE

    Felker, Susan B.

    2005-01-01

    Robert Cobb Jr., of Greensboro, N.C., a 1986-89 participant in the Virginia Tech Upward Bound program, was recently named Virginia's TRIO Achiever for 2004. Federal TRIO programs include Upward Bound and Educational Talent Search.

  16. Tools for model-independent bounds in direct dark matter searches

    DEFF Research Database (Denmark)

    Cirelli, M.; Del Nobile, E.; Panci, P.

    2013-01-01

    We discuss a framework (based on non-relativistic operators) and a self-contained set of numerical tools to derive the bounds from some current direct detection experiments on virtually any arbitrary model of Dark Matter elastically scattering on nuclei.......We discuss a framework (based on non-relativistic operators) and a self-contained set of numerical tools to derive the bounds from some current direct detection experiments on virtually any arbitrary model of Dark Matter elastically scattering on nuclei....

  17. Radioactivity; La radioactivite

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This pedagogical document presents the origin, effects and uses of radioactivity: where does radioactivity comes from, effects on the body, measurement, protection against radiations, uses in the medical field, in the electric power industry, in the food (ionization, radio-mutagenesis, irradiations) and other industries (radiography, gauges, detectors, irradiations, tracers), and in research activities (dating, preservation of cultural objects). The document ends with some examples of irradiation levels (examples of natural radioactivity, distribution of the various sources of exposure in France). (J.S.)

  18. Skyrmions and Nuclei

    Science.gov (United States)

    Battye, R. A.; Manton, N. S.; Sutcliffe, P. M.

    We review recent work on the modelling of atomic nuclei as quantised Skyrmions, using Skyrme's original model with pion fields only. Skyrmions are topological soliton solutions, whose conserved topological charge B is identified with the baryon number of a nucleus. Apart from an energy and length scale, the Skyrme model has just one dimensionless parameter m, proportional to the pion mass. It has been found that a good fit to experimental nuclear data requires m to be of order 1. The Skyrmions for B up to 7 have been known for some time, and are qualitatively insensitive to whether m is zero or of order 1. However, for baryon numbers B = 8 and above, the Skyrmions have quite a compact structure for m of order 1, rather than the hollow polyhedral structure found when m = 0. One finds for baryon numbers which are multiples of four, that the Skyrmions are composed of B = 4 sub-units, as in the α-particle model of nuclei. The rational map ansatz gives a useful approximation to the Skyrmion solutions for all baryon numbers when m = 0. For m of order 1, it gives a good approximation for baryon numbers up to 7, and generalisations of this ansatz are helpful for higher baryon numbers. We briefly review the work from the 1980s and 90s on the semiclassical rigidbody quantisation of Skyrmions for B = 1, 2, 3 and 4. We then discuss more recent work extending this method to B = 6, 7, 8, 10 and 12. We determine the quantum states of the Skyrmions, finding their spins, isospins and parities, and compare with the experimental data on the ground and excited states of nuclei up to mass number 12.

  19. Active galactic nuclei

    CERN Document Server

    Blandford, RD; Woltjer, L

    1990-01-01

    Starting with this volume, the Lecture Notes of the renowned Advanced Courses of the Swiss Society for Astrophysics and Astronomy will be published annually. In each course, three extensive lectures given by leading experts in their respective fields cover different and essential aspects of the subject. The 20th course, held at Les Diablerets in April 1990, dealt with current research on active galactic nuclei; it represents the most up-to-date views on the subject, presented with particular regard for clarity. The previous courses considered a wide variety of subjects, beginning with ""Theory

  20. Active galactic nuclei

    CERN Document Server

    Beckmann, Volker

    2012-01-01

    This AGN textbook includes phenomena based on new results in the X-Ray domain from new telescopes such as Chandra and XMM Newton not mentioned in any other book. Furthermore, it considers also the Fermi Gamma Ray Space Telescope with its revolutionary advances of unprecedented sensitivity, field of view and all-sky monitoring. Those and other new developments as well as simulations of AGN merging events and formations, enabled through latest super-computing capabilities. The book gives an overview on the current knowledge of the Active Galacitc Nuclei phenomenon. The spectral energy d

  1. Silicon Burning: Formation of the Iron Peak Nuclei

    Science.gov (United States)

    Hix, Wm. Raphael; Thielemann, Friederich-Karl

    1993-12-01

    As the most tightly bound nuclei, the 'Iron Peak' nuclei are the culmination of nuclear energy generation in astrophysical environments. Our re-examination of silicon burning, the mechanism by which the nuclei of the iron peak are produced, has revealed a number of potential improvements in the treatment of this ultimate stage of astrophysical nuclear energy generation. Previous work on Nuclear Statistical Equilibrium (NSE), the end state of silicon burning, has neglected the effect that Coulomb screening of capture reactions and their reverse reactions has on the equilibrium distribution, or assumed that these effects cancel, leaving an abundance distribution identical to that predicted in the absence of such screening. We find that the proper treatment of the screening of nuclear reactions in Nuclear Statistical Equilibrium (NSE), can produce significant differences in the relative abundances of the nuclei produced. This is particularly true at high density. Further, results gleaned from simulation work done with a large nuclear network (300 nuclei and 3000 reactions) and from independent calculations of NSE abundance distributions, offer new insights into the quasi-equilibrium mechanism and the approach to NSE. We will discuss methods which use this quasi-equilibrium mechanism to preserve the most important features of the large nuclear network calculations at a significant improvement in computational speed. Such improved methods are ideally suited for hydro- dynamic calculations which involve the production of iron peak nuclei, where the larger network calculation proves unmanageable.

  2. Theoretical Aspects of Science with Radioactive Nuclear Beams

    CERN Document Server

    Dobaczewski, J; Dobaczewski, Jacek; Nazarewicz, Witold

    1997-01-01

    Physics of radioactive nuclear beams is one of the main frontiers of nuclear science today. Experimentally, thanks to technological developments, we are on the verge of invading the territory of extreme N/Z ratios in an unprecedented way. Theoretically, nuclear exotica represent a formidable challenge for the nuclear many-body theories and their power to predict nuclear properties in nuclear terra incognita. It is important to remember that the lesson learned by going to the limits of the nuclear binding is also important for normal nuclei from the neighborhood of the beta stability valley. And, of course, radioactive nuclei are crucial astrophysically; they pave the highway along which the nuclear material is transported up in the proton and neutron numbers during the complicated synthesis process in stars.

  3. Precision Atomic Physics Techniques for Nuclear Physics with Radioactive Beams

    CERN Document Server

    Blaum, Klaus; Nörtershäuser, Wilfried

    2012-01-01

    Atomic physics techniques for the determination of ground-state properties of radioactive isotopes are very sensitive and provide accurate masses, binding energies, Q-values, charge radii, spins, and electromagnetic moments. Many fields in nuclear physics benefit from these highly accurate numbers. They give insight into details of the nuclear structure for a better understanding of the underlying effective interactions, provide important input for studies of fundamental symmetries in physics, and help to understand the nucleosynthesis processes that are responsible for the observed chemical abundances in the Universe. Penning-trap and and storage-ring mass spectrometry as well as laser spectroscopy of radioactive nuclei have now been used for a long time but significant progress has been achieved in these fields within the last decade. The basic principles of laser spectroscopic investigations, Penning-trap and storage-ring mass measurements of short-lived nuclei are summarized and selected physics results a...

  4. Unified formula of half-lives for α decay and cluster radioactivity

    Science.gov (United States)

    Ni, Dongdong; Ren, Zhongzhou; Dong, Tiekuang; Xu, Chang

    2008-10-01

    In view of the fact that α decay and cluster radioactivity are physically analogical processes, we propose a general formula of half-lives and decay energies for α decay and cluster radioactivity. This new formula is directly deduced from the WKB barrier penetration probability with some approximations. It is not only simple in form and easy to see the physical meanings but also shows excellent agreement with the experimental values. Moreover, the difference between two sets of parameters to separately describe α decay and cluster radioactivity is small. Therefore, we use only one set of adjustable parameters to simultaneously describe the α decay and cluster radioactivity data for even-even nuclei. The results are also satisfactory. This indicates that this formula successfully combines the phenomenological laws of α decay and cluster radioactivity. We expect it to be a significant step toward a unified phenomenological law of α decay and cluster radioactivity.

  5. Understanding radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Murray, R.L.

    1981-12-01

    This document contains information on all aspects of radioactive wastes. Facts are presented about radioactive wastes simply, clearly and in an unbiased manner which makes the information readily accessible to the interested public. The contents are as follows: questions and concerns about wastes; atoms and chemistry; radioactivity; kinds of radiation; biological effects of radiation; radiation standards and protection; fission and fission products; the Manhattan Project; defense and development; uses of isotopes and radiation; classification of wastes; spent fuels from nuclear reactors; storage of spent fuel; reprocessing, recycling, and resources; uranium mill tailings; low-level wastes; transportation; methods of handling high-level nuclear wastes; project salt vault; multiple barrier approach; research on waste isolation; legal requiremnts; the national waste management program; societal aspects of radioactive wastes; perspectives; glossary; appendix A (scientific American articles); appendix B (reference material on wastes). (ATT)

  6. Charge-changing interactions probing point-proton radii of nuclei

    Directory of Open Access Journals (Sweden)

    Yamaki S.

    2014-03-01

    Full Text Available The question of whether charge-changing interactions can be used to probe point-proton radii of nuclei remains unanswered. Charge-changing cross sections, σcc, were systematically investigated using stable and unstable nuclear beams of intermediateenergy. The ratios of the experimental σcc values to the calculated ones obtained from a phenomenological Glauber-type model analysis are found to be nearly constant in a broad range of Z/N for light neutron-rich nuclei. This enables the determination of density distributions, i.e., the radii of protons tightly bound in nuclei. To test the applicability of the present method to all nuclei in the nuclear chart, extensive measurements were performed for medium-mass nuclei ranging from Z = 18 to 32. The present study suggests the potential capability of a new experimental approach for exploring exotic nuclei.

  7. Temporary Personal Radioactivity

    Science.gov (United States)

    Myers, Fred

    2012-01-01

    As part of a bone scan procedure to look for the spread of prostate cancer, I was injected with radioactive technetium. In an effort to occupy/distract my mind, I used a Geiger counter to determine if the radioactive count obeyed the inverse-square law as a sensor was moved away from my bladder by incremental distances. (Contains 1 table and 2…

  8. Elusive Active Galactic Nuclei

    CERN Document Server

    Maiolino, R; Gilli, R; Nagar, N M; Bianchi, S; Böker, T; Colbert, E; Krabbe, A; Marconi, A; Matt, G; Salvati, M

    2003-01-01

    A fraction of active galactic nuclei do not show the classical Seyfert-type signatures in their optical spectra, i.e. they are optically "elusive". X-ray observations are an optimal tool to identify this class of objects. We combine new Chandra observations with archival X-ray data in order to obtain a first estimate of the fraction of elusive AGN in local galaxies and to constrain their nature. Our results suggest that elusive AGN have a local density comparable to or even higher than optically classified Seyfert nuclei. Most elusive AGN are heavily absorbed in the X-rays, with gas column densities exceeding 10^24 cm^-2, suggesting that their peculiar nature is associated with obscuration. It is likely that in elusive AGN, the nuclear UV source is completely embedded and the ionizing photons cannot escape, which prevents the formation of a classical Narrow Line Region. Elusive AGN may contribute significantly to the 30 keV bump of the X-ray background.

  9. Electron scattering for exotic nuclei

    Indian Academy of Sciences (India)

    Toshimi Suda

    2014-11-01

    A brand-new electron scattering facility, the SCRIT Electron Scattering Facility, will soon start its operation at RIKEN RI Beam Factory, Japan. This is the world’s first electron scattering facility dedicated to the structure studies of short-lived nuclei. The goal of this facility is to determine the charge density distributions of short-lived exotic nuclei by elastic electron scattering. The first collision between electrons and exotic nuclei will be observed in the year 2014.

  10. Comprehensive decay law for emission of charged particles and exotic cluster radioactivity

    Indian Academy of Sciences (India)

    Basudeb Sahu

    2014-04-01

    A general decay formula for the emission of charged particles from metastable nuclei is developed based on the basic phenomenon of resonances occurring in quantum scattering process under Coulomb-nuclear potential. It relates the half-lives of radioactive decays with the values of the outgoing elements with masses and charges of the nuclei involved in the decay. The relation is found to be a generalization of the Geiger–Nuttall law in radioactivity and explains well all the known emissions of charged particles including clusters, alpha and proton.

  11. Effective field theory for halo nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, Philipp Robert

    2014-02-19

    We investigate properties of two- and three-body halo systems using effective field theory. If the two-particle scattering length a in such a system is large compared to the typical range of the interaction R, low-energy observables in the strong and the electromagnetic sector can be calculated in halo EFT in a controlled expansion in R/ vertical stroke a vertical stroke. Here we focus on universal properties and stay at leading order in the expansion. Motivated by the existence of the P-wave halo nucleus {sup 6}He, we first set up an EFT framework for a general three-body system with resonant two-particle P-wave interactions. Based on a Lagrangian description, we identify the area in the effective range parameter space where the two-particle sector of our model is renormalizable. However, we argue that for such parameters, there are two two-body bound states: a physical one and an additional deeper-bound and non-normalizable state that limits the range of applicability of our theory. With regard to the three-body sector, we then classify all angular-momentum and parity channels that display asymptotic discrete scale invariance and thus require renormalization via a cut-off dependent three-body force. In the unitary limit an Efimov effect occurs. However, this effect is purely mathematical, since, due to causality bounds, the unitary limit for P-wave interactions can not be realized in nature. Away from the unitary limit, the three-body binding energy spectrum displays an approximate Efimov effect but lies below the unphysical, deep two-body bound state and is thus unphysical. Finally, we discuss possible modifications in our halo EFT approach with P-wave interactions that might provide a suitable way to describe physical three-body bound states. We then set up a halo EFT formalism for two-neutron halo nuclei with resonant two-particle S-wave interactions. Introducing external currents via minimal coupling, we calculate observables and universal correlations for

  12. K - and η nuclei

    Science.gov (United States)

    Mareš, J.; Cieplý, A.; Friedman, E.; Gal, A.; Gazda, D.

    2015-08-01

    We report on our recent calculations of K - and η nuclear quasi-bound states. The underlying and η N scattering amplitudes are constructed within coupled-channel models that capture the physics of the Λ(1405) and N ∗(1535) resonances, respectively. The role played by the strong energy dependence of the scattering amplitudes near threshold and the importance of self-consistent treatment of the subthreshold energy shift are discussed.

  13. MULTI-bar K (hyper)nuclei and Kaon Condensation

    Science.gov (United States)

    Gazda, D.; Mareš, J.; Friedman, E.; Gal, A.

    2010-10-01

    We report on recent relativistic mean-field calculations of multi-bar K nuclei1,2 which were performed fully and self-consistently across the periodic table. The bar K separation energy B{bar K} as well as the nuclear and bar K-meson densities were found to saturate with the number of antikaons in the nuclear medium. Saturation appears robust against a wide range of variations, including the nuclear model used and the type of boson fields mediating the strong interactions. In addition, we have explored properties of kaonic hypernuclei - strange systems made of nucleons, hyperons and K- mesons. We observed saturation also in these objects. Since the bar K separation energy B{bar K} does not exceed 200 MeV, multi-bar K nuclei lie energetically well above multi-hyperonic nuclei and it is unlikely that kaon condensation could occur in strong-interaction self-bound hadronic matter.

  14. Physical Uncertainty Bounds (PUB)

    Energy Technology Data Exchange (ETDEWEB)

    Vaughan, Diane Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Preston, Dean L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-19

    This paper introduces and motivates the need for a new methodology for determining upper bounds on the uncertainties in simulations of engineered systems due to limited fidelity in the composite continuum-level physics models needed to simulate the systems. We show that traditional uncertainty quantification methods provide, at best, a lower bound on this uncertainty. We propose to obtain bounds on the simulation uncertainties by first determining bounds on the physical quantities or processes relevant to system performance. By bounding these physics processes, as opposed to carrying out statistical analyses of the parameter sets of specific physics models or simply switching out the available physics models, one can obtain upper bounds on the uncertainties in simulated quantities of interest.

  15. Multipole strength function of deformed superfluid nuclei made easy

    CERN Document Server

    Stoitsov, M; Nakatsukasa, T; Losa, C; Nazarewicz, W

    2011-01-01

    We present an efficient method for calculating strength functions using the finite amplitude method (FAM) for deformed superfluid heavy nuclei within the framework of the nuclear density functional theory. We demonstrate that FAM reproduces strength functions obtained with the fully self-consistent quasi-particle random-phase approximation (QRPA) at a fraction of computational cost. As a demonstration, we compute the isoscalar and isovector monopole strength for strongly deformed configurations in $^{240}$Pu by considering huge quasi-particle QRPA spaces. Our approach to FAM, based on Broyden's iterative procedure, opens the possibility for large-scale calculations of strength distributions in well-bound and weakly bound nuclei across the nuclear landscape.

  16. Nucleomorphs: enslaved algal nuclei.

    Science.gov (United States)

    Cavalier-Smith, T

    2002-12-01

    Nucleomorphs of cryptomonad and chlorarachnean algae are the relict, miniaturised nuclei of formerly independent red and green algae enslaved by separate eukaryote hosts over 500 million years ago. The complete 551 kb genome sequence of a cryptomonad nucleomorph confirms that cryptomonads are eukaryote-eukaryote chimeras and greatly illuminates the symbiogenetic event that created the kingdom Chromista and their alveolate protozoan sisters. Nucleomorph membranes may, like plasma membranes, be more enduring after secondary symbiogenesis than are their genomes. Partial sequences of chlorarachnean nucleomorphs indicate that genomic streamlining is limited by the mutational difficulty of removing useless introns. Nucleomorph miniaturisation emphasises that selection can dramatically reduce eukaryote genome size and eliminate most non-functional nuclear non-coding DNA. Given the differential scaling of nuclear and nucleomorph genomes with cell size, it follows that most non-coding nuclear DNA must have a bulk-sequence-independent function related to cell volume.

  17. Clusters in nuclei

    CERN Document Server

    Beck, Christian

    Following the pioneering discovery of alpha clustering and of molecular resonances, the field of nuclear clustering is today one of those domains of heavy-ion nuclear physics that faces the greatest challenges, yet also contains the greatest opportunities. After many summer schools and workshops, in particular over the last decade, the community of nuclear molecular physicists has decided to collaborate in producing a comprehensive collection of lectures and tutorial reviews covering the field. This third volume follows the successful Lect. Notes Phys. 818 (Vol. 1) and 848 (Vol. 2), and comprises six extensive lectures covering the following topics:  - Gamma Rays and Molecular Structure - Faddeev Equation Approach for Three Cluster Nuclear Reactions - Tomography of the Cluster Structure of Light Nuclei Via Relativistic Dissociation - Clustering Effects Within the Dinuclear Model : From Light to Hyper-heavy Molecules in Dynamical Mean-field Approach - Clusterization in Ternary Fission - Clusters in Light N...

  18. Gluon density in nuclei

    CERN Document Server

    Ayala, A P; Levin, E M

    1996-01-01

    In this talk we present our detail study ( theory and numbers) [1] on the shadowing corrections to the gluon structure functions for nuclei. Starting from rather contraversial information on the nucleon structure function which is originated by the recent HERA data, we develop the Glauber approach for the gluon density in a nucleus based on Mueller formula [2] and estimate the value of the shadowing corrections in this case. Than we calculate the first corrections to the Glauber approach and show that these corrections are big. Based on this practical observation we suggest the new evolution equation which takes into account the shadowing corrections and solve it. We hope to convince you that the new evolution equation gives a good theoretical tool to treat the shadowing corrections for the gluons density in a nucleus and, therefore, it is able to provide the theoretically reliable initial conditions for the time evolution of the nucleus - nucleus cascade.

  19. Pulsars: Gigantic Nuclei

    CERN Document Server

    Xu, Renxin

    2011-01-01

    What is the real nature of pulsars? This is essentially a question of the fundamental strong interaction between quarks at low-energy scale and hence of the non-perturbative quantum chromo-dynamics, the solution of which would certainly be meaningful for us to understand one of the seven millennium prize problems (i.e., "Yang-Mills Theory") named by the Clay Mathematical Institute. After a historical note, it is argued here that a pulsar is very similar to an extremely big nucleus, but is a little bit different from the {\\em gigantic nucleus} speculated 80 years ago by L. Landau. The paper demonstrates the similarity between pulsars and gigantic nuclei from both points of view: the different manifestations of compact stars and the general behavior of the strong interaction.

  20. Clusters in Light Nuclei

    CERN Document Server

    Beck, C; Zafra, A Sanchez i; Thummerer, S; Azaiez, F; Bednarczyk, P; Courtin, S; Curien, D; Dorvaux, O; Goasduff, A; ~Lebhertz, D; Nourreddine, A; ~Rousseau, M; Salsac, M -D; von Oertzen, W; Gebauer, B; Wheldon, C; Kokalova, Tz; Efimov, G; Zherebchevsky, V; Schulz, Ch; Bohlen, H G; Kamanin, D; de Angelis, G; Gadea, A; Lenzi, S; Napoli, D R; Szilner, S; Milin, M; Catford, W N; Jenkins, D G; Royer, G

    2010-01-01

    A great deal of research work has been undertaken in the alpha-clustering study since the pioneering discovery, half a century ago, of 12C+12C molecular resonances. Our knowledge of the field of the physics of nuclear molecules has increased considerably and nuclear clustering remains one of the most fruitful domains of nuclear physics, facing some of the greatest challenges and opportunities in the years ahead. In this work, the occurence of "exotic" shapes in light N=Z alpha-like nuclei is investigated. Various approaches of superdeformed and hyperdeformed bands associated with quasimolecular resonant structures are presented. Results on clustering aspects are also discussed for light neutron-rich Oxygen isotopes.

  1. Collective excitations in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Chomaz, Ph. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France); Collaboration: La Direction des Sciences de la Matiere du CEA (FR); Le Fonds National de la Recherche Scientifique de Belgique (BE)

    1998-12-31

    The properties of the nucleus cannot be reduced to the properties of its constituents: it is a complex system. The fact that many properties of the nucleus are consequences of the existence of mean-field potential is a manifestation of this complexity. In particular, the nucleons can thus self-organize in collective motions such as giant resonances. Therefore the study of this collective motions is a very good tool to understand the properties of the nucleus itself. The purpose of this article is to stress some aspects of these collective vibrations. We have studied how an ensemble of fermions as the nucleus can self-organize in collective vibrations which are behaving like a gas of bosons in weak interaction. Understanding of these phenomena remains one of the important subjects of actuality in the context of quantal systems in strong interaction. In particular, the study of the states with one or two vibration quanta provides a direct information on the structure of nuclei close to their ground states. Moreover, some collective states appear to be very robust against the onset of chaos. This is the case of the hot giant dipole built on top of a hot nucleus which seems to survive up to rather high temperatures. Their sudden disappearance is still a subject of controversy. It may be that the mean-field and the associated collective states are playing a crucial role also in catastrophic processes such as the phase-transitions. Indeed, when the system is diluted the collective vibrations may become unstable and it seems that these unstable modes provide a natural explanation to the self organization of the system in drops. Finally, considering the diversity of the different structures of exotic nuclei one may expect new vibration types. All these studies are showing the diversity of the collective motions of strongly correlated quantum systems such as the nucleus but many open questions remain to be solved. (authors) 304 refs., 53 figs., 5 tabs.

  2. Precision spectroscopy of pionic atoms and chiral symmetry in nuclei

    Directory of Open Access Journals (Sweden)

    Itahashi Kenta

    2016-01-01

    Full Text Available We conduct an experimental project to make spectroscopy of deeply bound pionic atoms systematically over wide range of nuclei. We aim at studying the strong interaction in the low energy region, which has close connection to spontaneous chiral symmetry breaking and its partial restoration in nuclear matter. First experimental results show improved spectral resolution and much better statistical sensitivity than previous experiments. Present status of the experiment is reported.

  3. Proton-neutron deformations and F -spin symmetry in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Leviatan, A.; Ginocchio, J.N. (Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM (USA)); Kirson, M.W. (Nuclear Physics Department, Weizmann Institute of Science, 76100 Rehovot (Israel))

    1990-12-03

    The purity of intrinsic states of nuclei with respect to a proton-neutron boson symmetry ({ital F} spin) is shown to be largely determined by the difference between proton and neutron deformations and not by whether the Hamiltonian is an {ital F}-spin scalar. Upper and lower bounds on {ital F}-spin mixing in the ground-state band of {sup 165}Ho are estimated using recent pion single-charge-exchange data.

  4. Radioactivity in food crops

    Energy Technology Data Exchange (ETDEWEB)

    Drury, J.S.; Baldauf, M.F.; Daniel, E.W.; Fore, C.S.; Uziel, M.S.

    1983-05-01

    Published levels of radioactivity in food crops from 21 countries and 4 island chains of Oceania are listed. The tabulation includes more than 3000 examples of 100 different crops. Data are arranged alphabetically by food crop and geographical origin. The sampling date, nuclide measured, mean radioactivity, range of radioactivities, sample basis, number of samples analyzed, and bibliographic citation are given for each entry, when available. Analyses were reported most frequently for /sup 137/Cs, /sup 40/K, /sup 90/Sr, /sup 226/Ra, /sup 228/Ra, plutonium, uranium, total alpha, and total beta, but a few authors also reported data for /sup 241/Am, /sup 7/Be, /sup 60/Co, /sup 55/Fe, /sup 3/H, /sup 131/I, /sup 54/Mn, /sup 95/Nb, /sup 210/Pb, /sup 210/Po, /sup 106/Ru, /sup 125/Sb, /sup 228/Th, /sup 232/Th, and /sup 95/Zr. Based on the reported data it appears that radioactivity from alpha emitters in food crops is usually low, on the order of 0.1 Bq.g/sup -1/ (wet weight) or less. Reported values of beta radiation in a given crop generally appear to be several orders of magnitude greater than those of alpha emitters. The most striking aspect of the data is the great range of radioactivity reported for a given nuclide in similar food crops with different geographical origins.

  5. Quarks in Few Body Nuclei

    Directory of Open Access Journals (Sweden)

    Holt Roy J.

    2016-01-01

    Full Text Available Electron scattering at very high Bjorken x from hadrons provides an excellent test of models, has an important role in high energy physics, and from nuclei, provides a window into short range correlations. Light nuclei have a key role because of the relatively well-known nuclear structure. The development of a novel tritium target for Jefferson Lab has led to renewed interest in the mass three system. For example, deep inelastic scattering experiments in the light nuclei provide a powerful means to determine the neutron structure function. The isospin dependence of electron scattering from mass-3 nuclei provide information on short range correlations in nuclei. The program using the new tritium target will be presented along with a summary of other experiments aimed at revealing the large-x structure of the nucleon.

  6. Quarks in Few Body Nuclei

    Science.gov (United States)

    Holt, Roy J.

    2016-03-01

    Electron scattering at very high Bjorken x from hadrons provides an excellent test of models, has an important role in high energy physics, and from nuclei, provides a window into short range correlations. Light nuclei have a key role because of the relatively well-known nuclear structure. The development of a novel tritium target for Jefferson Lab has led to renewed interest in the mass three system. For example, deep inelastic scattering experiments in the light nuclei provide a powerful means to determine the neutron structure function. The isospin dependence of electron scattering from mass-3 nuclei provide information on short range correlations in nuclei. The program using the new tritium target will be presented along with a summary of other experiments aimed at revealing the large-x structure of the nucleon.

  7. Trapping radioactive ions

    CERN Document Server

    Kluge, Heinz-Jürgen

    2004-01-01

    Trapping devices for atomic and nuclear physics experiments with radioactive ions are becoming more and more important at accelerator facilities. While about ten years ago only one online Penning trap experiment existed, namely ISOLTRAP at ISOLDE/CERN, meanwhile almost every radioactive beam facility has installed or plans an ion trap setup. This article gives an overview on ion traps in the operation, construction or planing phase which will be used for fundamental studies with short-lived radioactive nuclides such as mass spectrometry, laser spectroscopy and nuclear decay spectroscopy. In addition, this article summarizes the use of gas cells and radiofrequency quadrupole (Paul) traps at different facilities as a versatile tool for ion beam manipulation like retardation, cooling, bunching, and cleaning.

  8. Momentum Distribution of a Fragment and Nucleon Removal Cross Section in the Reaction of Halo Nuclei

    Institute of Scientific and Technical Information of China (English)

    ZHAOYao-Lin; MAZhong-Yu; CHENBao-Qiu

    2003-01-01

    Recently the research on the halo structure of drip-line nuclei has shown some interesting properties of the existence of one or more halo nucleons. In the framework of few-body Glauber model, the momentum distribution of a fragment and nucleon removal cross section in the reaction of halo nuclei is presented and extended to nuclei having more than one halo nucleons. The reaction mechanism is treated with and without taking account of the final-state interaction. The wave function of removal halo nucleons in the continuum state is modified by imposing an orthogonal condition to the bound state. An analytical expression of the longitudinal momentum distribution of the fragment is derived when the bound state wave function of halo nucleons is taken as a Gaussian-type function. This is useful in the further investigation on the structure of halo nuclei.

  9. Eta-mesic nuclei: past, present, future

    CERN Document Server

    Haider, Q

    2015-01-01

    Eta-mesic nucleus or the quasibound nuclear state of an eta ($\\eta$) meson in a nucleus is caused by strong-interaction force alone. This new type of nuclear species, which extends the landscape of nuclear physics, has been extensively studied since its prediction in 1986. In this paper, we review and analyze in great detail the models of the fundamental $\\eta$--nucleon interaction leading to the formation of an $\\eta$--mesic nucleus, the methods used in calculating the properties of a bound $\\eta$, and the approaches employed in the interpretation of the pertinent experimental data. In view of the successful observation of the $\\eta$--mesic nucleus $^{25}$Mg$_{\\eta}$ and other promising experimental results, future direction in searching for more $\\eta$--mesic nuclei is suggested.

  10. Are cometary nuclei primordial rubble piles?

    Science.gov (United States)

    Weissman, P. R.

    1986-01-01

    Whipple's icy conglomerate model for the cometary nucleus has had considerable sucess in explaining a variety of cometary phenomena such as gas production rates and nongravitational forces. However, as discussed here, both observational evidence and theoretical considerations suggest that the cometary nucleus may not be a well-consolidated single body, but may instead be a loosely bound agglomeration of smaller fragments, weakly bonded and subject to occasional or even frequent disruptive events. The proposed model is analogous to the 'rubble pile' model suggested for the larger main-belt asteroids, although the larger cometary fragments are expected to be primordial condensations rather than collisionally derived debris as in the asteroid case. The concept of cometary nuclei as primordial rubble piles is proposed as a modification of the basic Whipple model, not as a replacement for it.

  11. Radioactivity doubles up

    Science.gov (United States)

    Blank, Bertram

    2008-05-01

    More than a century after Henri Becquerel discovered radioactivity, there is still much that physicists do not understand about this spontaneous natural phenomenon. Through Becquerel's use of simple photographic plates to the sophisticated nuclear experiments carried out in today's laboratories, researchers have unearthed a total of nine different ways in which an atomic nucleus can decay. The most well known of these decay modes - alpha (α), beta (β) and gamma (γ) radioactivity - are widely used in applications ranging from medicine to archaeology; the others are much rarer.

  12. Bounding species distribution models

    Directory of Open Access Journals (Sweden)

    Thomas J. STOHLGREN, Catherine S. JARNEVICH, Wayne E. ESAIAS,Jeffrey T. MORISETTE

    2011-10-01

    Full Text Available Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern. Many investigators now recognize that extrapolations of these models with geographic information systems (GIS might be sensitive to the environmental bounds of the data used in their development, yet there is no recommended best practice for “clamping” model extrapolations. We relied on two commonly used modeling approaches: classification and regression tree (CART and maximum entropy (Maxent models, and we tested a simple alteration of the model extrapolations, bounding extrapolations to the maximum and minimum values of primary environmental predictors, to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States. Findings suggest that multiple models of bounding, and the most conservative bounding of species distribution models, like those presented here, should probably replace the unbounded or loosely bounded techniques currently used [Current Zoology 57 (5: 642–647, 2011].

  13. Graviton Mass Bounds

    CERN Document Server

    de Rham, Claudia; Tolley, Andrew J; Zhou, Shuang-Yong

    2016-01-01

    Recently, aLIGO has announced the first direct detections of gravitational waves, a direct manifestation of the propagating degrees of freedom of gravity. The detected signals GW150914 and GW151226 have been used to examine the basic properties of these gravitational degrees of freedom, particularly setting an upper bound on their mass. It is timely to review what the mass of these gravitational degrees of freedom means from the theoretical point of view, particularly taking into account the recent developments in constructing consistent massive gravity theories. Apart from the GW150914 mass bound, a few other observational bounds have been established from the effects of the Yukawa potential, modified dispersion relation and fifth force that are all induced when the fundamental gravitational degrees of freedom are massive. We review these different mass bounds and examine how they stand in the wake of recent theoretical developments and how they compare to the bound from GW150914.

  14. Evaluation of Nuclear Fission Barrier Parameters for 17 Nuclei

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    As well know that modern nuclear installations and applications have reached a high degree of sophistication. The effective safe and economical design of these technologies require detailed and reliable design calculations. The accuracy of these calculations is largely determined by the accuracy of the basic nuclear and atomic input parameters. In order to meet the needs on high energy fission cross section, fission spectra in waste disposal, transmutation, radioactive beams physics and so on, 17 nuclei fission barrier parameters were collected from the literature based on different experiments and

  15. Studies of Unstable Nuclei with Spin-Polarized Proton Target

    Science.gov (United States)

    Sakaguchi, Satoshi; Uesaka, Tomohiro; Wakui, Takashi; Chebotaryov, Sergey; Kawahara, Tomomi; Kawase, Shoichiro; Milman, Evgeniy; Tang, Tsz Leung; Tateishi, Kenichiro; Teranishi, Takashi

    2016-02-01

    Roles of spin-dependent interactions in unstable nuclei have been investigated via the direct reaction of radioactive ions with a solid spin-polarized proton target. The target has a unique advantage of a high polarization of 20-30% under low magnetic field of 0.1 T and at a high temperature of 100 K, which allow us to detect recoil protons with good angular resolution. Present status of on-going experimental studies at intermediate energies, such as proton elastic scattering and (p, 2p) knockout reaction, and new physics opportunities expected with low-energy RI beams are overviewed.

  16. Gluon density in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Ayala, A.L. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Inst. de Fisica][Pelotas Univ., RS (Brazil). Inst. de Fisica e Matematica; Ducati, M.B.G. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Inst. de Fisica; Levin, E.M. [Fermi National Accelerator Lab., Batavia, IL (United States)][Nuclear Physics Inst., St. Petersburg (Russian Federation)

    1996-10-01

    In this talk we present our detailed study (theory and numbers) on the shadowing corrections to the gluon structure functions for nuclei. Starting from rather controversial information on the nucleon structure function which is originated by the recent HERA data, we develop the Glauber approach for the gluon density in a nucleus based on Mueller formula and estimate the value of the shadowing corrections in this case. Then we calculate the first corrections to the Glauber approach and show that these corrections are big. Based on this practical observation we suggest the new evolution equation which takes into account the shadowing corrections and solve it. We hope to convince you that the new evolution equation gives a good theoretical tool to treat the shadowing corrections for the gluons density in a nucleus and, therefore, it is able to provide the theoretically reliable initial conditions for the time evolution of the nucleus-nucleus cascade. The initial conditions should be fixed both theoretically and phenomenologically before to attack such complicated problems as the mixture of hard and soft processes in nucleus-nucleus interactions at high energy or the theoretically reliable approach to hadron or/and parton cascades for high energy nucleus-nucleus interaction. 35 refs., 24 figs., 1 tab.

  17. Collective excitations in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Chomaz, Ph

    1997-12-31

    The properties of the nucleus cannot be reduced to the properties of its constituents: it is a complex system. The fact that many properties of the nucleus are consequences of the existence of mean-field potential is a manifestation of this complexity. In particular the nucleons can thus self-organize in collective motions such as giant resonances. Therefore the study of these collective motions is a very good to understand the properties of the nucleus itself. The purpose of this article was to stress some aspects of these collective vibrations. In particular we have studied how an ensemble of fermions as the nucleus can self-organize in collective vibrations which are behaving like a gas of bosons in weak interaction. The understanding of these phenomena remains one of the important subjects of actually in the context of quantal systems in strong interaction. In particular the study of the states with one or two vibration quanta provides a direct information on the structure if nuclei close to their ground states. (author) 270 refs.

  18. Radioactivity: A Natural Phenomenon.

    Science.gov (United States)

    Ronneau, C.

    1990-01-01

    Discussed is misinformation people have on the subject of radiation. The importance of comparing artificial source levels of radiation to natural levels is emphasized. Measurements of radioactivity, its consequences, and comparisons between the risks induced by radiation in the environment and from artificial sources are included. (KR)

  19. Viewer Makes Radioactivity "Visible"

    Science.gov (United States)

    Yin, L. I.

    1983-01-01

    Battery operated viewer demonstrates feasibility of generating threedimensional visible light simulations of objects that emit X-ray or gamma rays. Ray paths are traced for two pinhold positions to show location of reconstructed image. Images formed by pinholes are converted to intensified visible-light images. Applications range from radioactivity contamination surveys to monitoring radioisotope absorption in tumors.

  20. AIR RADIOACTIVITY MONITOR

    Science.gov (United States)

    Bradshaw, R.L.; Thomas, J.W.

    1961-04-11

    The monitor is designed to minimize undesirable background buildup. It consists of an elongated column containing peripheral electrodes in a central portion of the column, and conduits directing an axial flow of radioactively contaminated air through the center of the column and pure air through the annular portion of the column about the electrodes. (AEC)

  1. SHIPPING OF RADIOACTIVE ITEMS

    CERN Multimedia

    TIS/RP Group

    2001-01-01

    The TIS-RP group informs users that shipping of small radioactive items is normally guaranteed within 24 hours from the time the material is handed in at the TIS-RP service. This time is imposed by the necessary procedures (identification of the radionuclides, determination of dose rate and massive objects require a longer procedure and will therefore take longer.

  2. Radioactive Sources Service

    CERN Multimedia

    2007-01-01

    Please note that the radioactive sources service will be open by appointment only every Monday, Wednesday and Friday during CERN working hours (instead of alternate weeks). In addition, please note that our 2007 schedule is available on our web site: http://cern.ch/service-rp-sources

  3. Radioactive Sources Service

    CERN Multimedia

    2007-01-01

    Please note that the radioactive sources service will be open by appointment only every Monday, Wednesday and Friday during CERN working hours (instead of alternate weeks). In addition, please note that our 2007 schedule is available on our web site. http://cern.ch/service-rp-sources

  4. Monopole transitions in hot nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Sujkowski, Z. [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland)

    1994-12-31

    Monopole transitions can be a signature of shape changing in a hot, pulsating nucleus (the low energy E0 mode) and/or a measure of the compressibility of finite nuclei (GMR, the breathing mode). Experimental information pertaining to GMR is reviewed. Recipes for deducing the incompressibility modules for infinite nuclear matter from data on GMR are discussed. Astrophysical implications are outlined. The first attempts at locating the GMR strength in moderately hot nuclei are described. Prospects for improving the experimental techniques to make an observation of this strength in selected nuclei unambiguous are discussed. (author). 46 refs, 8 figs.

  5. Spectroscopy of heavy fissionable nuclei

    Indian Academy of Sciences (India)

    S K Tandel

    2015-09-01

    Structural studies of heavy nuclei are quite challenging due to increased competition from fission, particularly at high spins. Nuclei in the actinide region exhibit a variety of interesting phenomena. Recent advances in instrumentation and analysis techniques have made feasible sensitive measurements of nuclei populated with quite low cross-sections. These include isomers and rotational band structures in isotopes of Pu ( = 94) to Rf ( = 104), and octupole correlations in the Th ( = 90) region. The obtained experimental data have provided insights on various aspects like moments of inertia and nucleon alignments at high spins, quasiparticle energies and evolution of quadrupole and octupole collectivity, among others. An overview of some of these results is presented.

  6. Neutrino interactions with nuclei

    CERN Document Server

    Leitner, T; Mosel, U; Alvarez-Ruso, L

    2008-01-01

    Current long baseline experiments aim at measuring neutrino oscillation parameters with a high precision. A critical quantity is the neutrino energy which can not be measured directly but has to be reconstructed from the observed hadrons. A good knowledge of neutrino-nucleus interactions is thus necessary to minimize the systematic uncertainties in neutrino fluxes, backgrounds and detector responses. In particular final-state interactions inside the target nucleus modify considerably the particle yields through rescattering, charge-exchange and absorption. Nuclear effects can be described with our coupled channel GiBUU transport model where the neutrino first interacts with a bound nucleon producing secondary particles which are then transported out of the nucleus. In this contribution, we give some examples for the application of our model focusing in particular on the MiniBooNE and K2K experiments.

  7. Alpha decay and cluster decay of some neutron-rich actinide nuclei

    Indian Academy of Sciences (India)

    G M CARMEL VIGILA BAI; R NITHYA AGNES

    2017-03-01

    Nuclei in the actinide region are good in exhibiting cluster radioactivity. In the present work, the half-lives of $\\alpha$-decay and heavy cluster emission from certain actinide nuclei have been calculated using cubic plus Yukawa plus exponential model ($\\bf{CYEM}$). Our model has a cubic potential for the overlapping region which is smoothly connected by a Yukawa plus exponential potential for the region after separation. The computed half-lives are compared with those of other theoretical models and are found to be in good agreement with each other. In this work, we have also studied the deformation effects on half-lives of cluster decay. These deformation effects lower the half-life values and it is also found that the neutron-rich parent nuclei slow down the cluster decay process. Geiger–Nuttal plots for various clusters are found to be linear and most of the emitted clusters are $\\alpha$-like nuclei.

  8. RIKEN radioactive isotope beam factory project – Present status and perspectives

    Indian Academy of Sciences (India)

    H Sakurai

    2010-08-01

    Programs for studying nuclear reactions and structure of exotic nuclei available at the RIKEN radioactive isotope beam factory project are introduced and discussed by demonstrating recent highlights. Special emphasis is given to the present status and future plans of new devices.

  9. Pseudospin Dynamical Symetry in Nuclei

    CERN Document Server

    Ginocchio, Joseph N

    2014-01-01

    Pseudospin symmetry has been useful in understanding atomic nuclei. We review the arguments that this symmetry is a relativistic symmetry. The condition for this symmetry is that the sum of the vector and scalar potentials in the Dirac Hamiltonian is a constant. We give the generators of pseudospin symmetry. We review some of the predictions that follow from this insight into the relativistic origins of pseudospin symmetry. Since in nuclei the sum of the scalar and vector potentials is not zero but is small, we discuss preliminary investigations into the conditions on the potentials to produce partial dynamic pseudospin symmetry. Finally we show that approximate pseudospin symmetry in nuclei predicts approximate spin symmetry in anti-nucleon scattering from nuclei.

  10. Precise Coulomb excitation B(E2) measurements for first 2+states of projectile nuclei near the doubly magic nuclei 78Ni and 132Sn

    Science.gov (United States)

    Galindo-Uribarri, A.

    2012-09-01

    Coulomb excitation is a very precise tool to measure excitation probabilities and provide insight on the collectivity of nuclear excitations and in particular on nuclear shapes. In the last few years radioactive ion beam facilities such as HRIBF opened unique opportunities to explore the structure of nuclei in the regions near the doubly magic nuclei 78Ni (Z=28 and N=50) and 132Sn (Z=50 and N=82). For this purpose we have developed specialized methods and instrumentation to measure various observables. There is also the opportunity to perform precision experiments with stable beams using exactly the same state-of-the-art instrumentation and techniques as with their radioactive ion beam counterpart. I describe some of the recent efforts at HRIBF to do more precise measurements using particle-gamma techniques.

  11. Radioactive waste management; Gerencia de rejeitos radioativos

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-11-15

    This eighth chapter presents the radioactive wastes and waste disposal; classification of radioactive wastes; basis requests of the radioactive waste management; conditions for a radioactive waste disposal; registers and inventories; transport of radioactive wastes from a facility to another and the radioactive waste management plan.

  12. Coulomb excitation of radioactive {sup 79}Pb

    Energy Technology Data Exchange (ETDEWEB)

    Lister, C.J.; Blumenthal, D.; Davids, C.N. [and others

    1995-08-01

    The technical challenges expected in experiments with radioactive beams can already be explored by using ions produced in primary reactions. In addition, the re-excitation of these ions by Coulomb excitation allows a sensitive search for collective states that are well above the yrast line. We are building an experiment to study Coulomb excitation of radioactive ions which are separated from beam particles by the Fragment Mass Analyzer. An array of gamma detectors will be mounted at the focal plane to measure the gamma radiation following re-excitation. Five Compton-suppressed Ge detectors and five planar LEPS detectors will be used. The optimum experiment of this type appears to be the study of {sup 79}Rb following the {sup 24}Mg ({sup 58}Ni,3p) reaction. We calculate that about 5 x 10{sup 5} {sup 79}Rb nuclei/second will reach the excitation foil. This rubidium isotope was selected for study as it is strongly produced and is highly deformed, so easily re-excited. The use of a {sup 58}Ni re-excitation foil offers the best yields. After re-excitation the ions will be subsequently transported into a shielded beamdump to prevent the accumulation of activity.

  13. Registration of hydrogen-like leptonic bound states (e sup -mu sup +) and (e sup +mu sup -) in reactions of high-energy scattering of polarized electrons and positrons by nuclei with Z propor to 100 and analysis of CPT invariance

    CERN Document Server

    Choban, E A

    2003-01-01

    The cross-sections for the reactions of muonium (anti-muonium) production in the high-energy electron (positron) scattering by nuclei e sup - (e sup +)+Z->Z + M sup 0 (anti M sup 0)+mu sup - (mu sup +) are calculated in dependence on energy and polarization of the initial electron (positron) and polarization of the final mu sup - (mu sup +)-meson. Since this is a coherent phenomenon the cross-sections are proportional to Z sup 2. For Z propor to 100, due to the factor Z sup 2 , the cross-sections are large enough to be measured at the energies available for the HERA Collider at DESY. The results are discussed in connection with a test of CPT invariance. (orig.)

  14. Handbook of radioactivity analysis

    CERN Document Server

    2012-01-01

    The updated and much expanded Third Edition of the "Handbook of Radioactivity Analysis" is an authoritative reference providing the principles, practical techniques, and procedures for the accurate measurement of radioactivity from the very low levels encountered in the environment to higher levels measured in radioisotope research, clinical laboratories, biological sciences, radionuclide standardization, nuclear medicine, nuclear power, fuel cycle facilities and in the implementation of nuclear forensic analysis and nuclear safeguards. The Third Edition contains seven new chapters providing a reference text much broader in scope than the previous Second Edition, and all of the other chapters have been updated and expanded many with new authors. The book describes the basic principles of radiation detection and measurement, the preparation of samples from a wide variety of matrices, assists the investigator or technician in the selection and use of appropriate radiation detectors, and presents state-of-the-ar...

  15. SHIPPING OF RADIOACTIVE ITEMS

    CERN Multimedia

    TIS/RP Group

    2001-01-01

    The TIS-RP group informs users that shipping of small radioactive items is normally guaranteed within 24 hours from the time the material is handed in at the TIS-RP service. This time is imposed by the necessary procedures (identification of the radionuclides, determination of dose rate, preparation of the package and related paperwork). Large and massive objects require a longer procedure and will therefore take longer.

  16. White sea radioactivity assessment

    Energy Technology Data Exchange (ETDEWEB)

    Aliev, R.A. [Lomonosov Moscow State Univ. (Russian Federation). Skobeltsyn Inst. of Nuclear Physics]|[Lomonosov Moscow State Univ. (Russian Federation). Chemistry Dept.]|[Russian Academy of Sciences, Moscow (Russian Federation). Shirshov Inst. of Oceanology; Kalmykov, S.N.; Lisitzin, A.P. [Lomonosov Moscow State Univ. (Russian Federation). Chemistry Dept.

    2004-07-01

    The aim of the present work is to estimate potential sources and chronology of pollution of the White Sea (Russia) by artificial radionuclides. White Sea is semi-closed water body connected with Barents Sea by a narrow strait. Thus, pollution of White Sea may be caused by highly polluted Barents waters and river (mainly Northern Dvina) run-off. This is the first detailed investigation of radioactivity of White Sea sediment records. (orig.)

  17. Radioactive waste storage issues

    Energy Technology Data Exchange (ETDEWEB)

    Kunz, Daniel E. [Colorado Christian Univ., Lakewood, CO (United States)

    1994-08-15

    In the United States we generate greater than 500 million tons of toxic waste per year which pose a threat to human health and the environment. Some of the most toxic of these wastes are those that are radioactively contaminated. This thesis explores the need for permanent disposal facilities to isolate radioactive waste materials that are being stored temporarily, and therefore potentially unsafely, at generating facilities. Because of current controversies involving the interstate transfer of toxic waste, more states are restricting the flow of wastes into - their borders with the resultant outcome of requiring the management (storage and disposal) of wastes generated solely within a state`s boundary to remain there. The purpose of this project is to study nuclear waste storage issues and public perceptions of this important matter. Temporary storage at generating facilities is a cause for safety concerns and underscores, the need for the opening of permanent disposal sites. Political controversies and public concern are forcing states to look within their own borders to find solutions to this difficult problem. Permanent disposal or retrievable storage for radioactive waste may become a necessity in the near future in Colorado. Suitable areas that could support - a nuclear storage/disposal site need to be explored to make certain the health, safety and environment of our citizens now, and that of future generations, will be protected.

  18. Elastic breakup cross sections of well-bound nucleons

    CERN Document Server

    Wimmer, K; Gade, A; Tostevin, J A; Baugher, T; Chajecki, Z; Coupland, D; Famiano, M A; Ghosh, T K; Howard, G F Grinyer M E; Kilburn, M; Lynch, W G; Manning, B; Meierbachtol, K; Quarterman, P; Ratkiewicz, A; Sanetullaev, A; Showalter, R H; Stroberg, S R; Tsang, M B; Weisshaar, D; Winkelbauer, J; Winkler, R; Youngs, M

    2014-01-01

    The 9Be(28Mg,27Na) one-proton removal reaction with a large proton separation energy of Sp(28Mg)=16.79 MeV is studied at intermediate beam energy. Coincidences of the bound 27Na residues with protons and other light charged particles are measured. These data are analyzed to determine the percentage contributions to the proton removal cross section from the elastic and inelastic nucleon removal mechanisms. These deduced contributions are compared with the eikonal reaction model predictions and with the previously measured data for reactions involving the re- moval of more weakly-bound protons from lighter nuclei. The role of transitions of the proton between different bound single-particle configurations upon the elastic breakup cross section is also quantified in this well-bound case. The measured and calculated elastic breakup fractions are found to be in good agreement.

  19. Process for the Production of Radioactive Substances

    Science.gov (United States)

    Fermi, Enrico; Amaldi, Edoardo; Pontecorvo, Bruno; Rasetti, Franco; Segré, Emilio

    In this Patent, a very detailed description of the experimental results, obtained by studying the radioactivity induced in a number of chemical elements by irradiation with slow neutrons, is reported, along with a corresponding theoretical interpretation. It is here emphasized, in order to achieve better efficiencies, the use of neutrons instead of charged particles, as considered in previous works on nuclear reactions. Moreover, since neutrons produced by bombardment of atomic nuclei with artificially accelerated particles have high average energies, a method for slowing down fast neutrons is described, by passing the neutrons through a screen of hydrogenous materials, like water or paraffin. The reduction of the energy of the neutrons is interpreted as due to their collisions against the nuclei or the entire atoms of energy reducing materials. An interpretation is provided for the experimental observations: in the case of a strong induced radio-activity following the absorption of the slow neutrons, the formation of an unstable isotope is assumed, while the formation of a stable nucleus is assumed in case no activation or, at least, no strong activation follows an anomalously large absorption. Particularly interesting is the mention of the possible discovery of "transuranic" elements given in the present Patent. Even here, some caution was adopted about its interpretation, as well as the theoretical interpretation of the effects induced by slow neutrons considered in the paper: "The theoretical statements and explanations are, of course, not conclusive and our invention is in no way dependent upon their correctness. We have found them helpful and give them for the aid of others, but our invention will be equally useful if it should prove that our theoretical conclusions are not altogether correct."1 The original Patent application, Metodo per accrescere il rendimento dei procedimenti per la produzione di radioattività artificiali mediante il bombardamento con

  20. Bounding species distribution models

    Institute of Scientific and Technical Information of China (English)

    Thomas J. STOHLGREN; Catherine S. JARNEVICH; Wayne E. ESAIAS; Jeffrey T. MORISETTE

    2011-01-01

    Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern.Many investigators now recognize that extrapolations of these models with geographic information systems (GIS) might be sensitive to the environmental bounds of the data used in their development,yet there is no recommended best practice for “clamping” model extrapolations.We relied on two commonly used modeling approaches:classification and regression tree (CART) and maximum entropy (Maxent) models,and we tested a simple alteration of the model extrapolations,bounding extrapolations to the maximum and minimum values of primary environmental predictors,to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States.Findings suggest that multiple models of bounding,and the most conservative bounding of species distribution models,like those presented here,should probably replace the unbounded or loosely bounded techniques currently used [Current Zoology 57 (5):642-647,2011].

  1. Lectures on Bound states

    CERN Document Server

    Hoyer, Paul

    2016-01-01

    Even a first approximation of bound states requires contributions of all powers in the coupling. This means that the concept of "lowest order bound state" needs to be defined. In these lectures I discuss the "Born" (no loop, lowest order in $\\hbar$) approximation. Born level states are bound by gauge fields which satisfy the classical field equations. As a check of the method, Positronium states of any momentum are determined as eigenstates of the QED Hamiltonian, quantized at equal time. Analogously, states bound by a strong external field $A^\\mu(\\xv)$ are found as eigenstates of the Dirac Hamiltonian. Their Fock states have dynamically created $e^+e^-$ pairs, whose distribution is determined by the Dirac wave function. The linear potential of $D=1+1$ dimensions confines electrons but repels positrons. As a result, the mass spectrum is continuous and the wave functions have features of both bound states and plane waves. The classical solutions of Gauss' law are explored for hadrons in QCD. A non-vanishing bo...

  2. Ultra-fast timing detectors to probe exotic properties of nuclei using RIB facility

    CERN Document Server

    Datta, Ushasi; Rahaman, A

    2016-01-01

    Recently, the facilities of radioactive ion beam (RIB) combined with advanced detector systems provide us unique opportunity to probe the exotic properties of the nuclei with unusual neutron-to-proton ratio. In this article, a study of characterization of different types of ultra-fast timing detectors: a special type of gas detector (multi-strip multi-gap resistive plate chamber, MMRPC) ($\\sigma$ $<$100 ps), scintillators array ( viz., $LaBr_3:Ce$) (timing resolution ($\\sigma<$250 ps) are being presented. A brief discussion on usage of these different types of ultra-fast timing detector systems at radioactive ion beam facilities is also included.

  3. Single-neutron excitations in neutron-rich N=51 nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, J.S.; Cizewski, J.A.; Jones, K.L. [Rutgers University, Department of Physics and Astronomy, New Brunswick, NJ (United States); Bardayan, D.W.; Blackmon, J.C.; Gross, C.J.; Liang, J.F.; Shapira, D.; Smith, M.S. [Oak Ridge National Laboratory, Physics Division, Oak Ridge, TN (United States); Fitzgerald, R.P.; Visser, D.W. [University of North Carolina, Department of Physics and Astronomy, Chapel Hill, NC (United States); Greife, U.; Livesay, R.J. [Colorado School of Mines, Physics Department, Golden, CO (United States); Johnson, M.S. [Oak Ridge Associated Universities, Oak Ridge, TN (United States); Kozub, R.L. [Tennessee Technological University, Department of Physics, Cookeville, TN (United States); Ma, Z.; Moazen, B.H. [University of Tennessee, Department of Physics and Astronomy, Knoxville, TN (United States); Nesaraja, C.D. [Oak Ridge National Laboratory, Physics Division, Oak Ridge, TN (United States); University of Tennessee, Department of Physics and Astronomy, Knoxville, TN (United States)

    2005-09-01

    Single-neutron transfer reactions have been measured on two N=50 isotones at the Holifield Radioactive Ion Beam Facility (HRIBF). The single-particle-like states of {sup 83}Ge and {sup 85}Se have been populated using radioactive ion beams of {sup 82}Ge and {sup 84}Se and the (d,p) reaction in inverse kinematics. The properties of the lowest-lying states -including excitation energies, orbital angular momenta, and spectroscopic factors- have been determined for these N=51 nuclei. (orig.)

  4. Information, Utility & Bounded Rationality

    CERN Document Server

    Ortega, Pedro A

    2011-01-01

    Perfectly rational decision-makers maximize expected utility, but crucially ignore the resource costs incurred when determining optimal actions. Here we employ an axiomatic framework for bounded rational decision-making based on a thermodynamic interpretation of resource costs as information costs. This leads to a variational "free utility" principle akin to thermodynamical free energy that trades off utility and information costs. We show that bounded optimal control solutions can be derived from this variational principle, which leads in general to stochastic policies. Furthermore, we show that risk-sensitive and robust (minimax) control schemes fall out naturally from this framework if the environment is considered as a bounded rational and perfectly rational opponent, respectively. When resource costs are ignored, the maximum expected utility principle is recovered.

  5. Bounded Computational Capacity Equilibrium

    CERN Document Server

    Hernandez, Penelope

    2010-01-01

    We study repeated games played by players with bounded computational power, where, in contrast to Abreu and Rubisntein (1988), the memory is costly. We prove a folk theorem: the limit set of equilibrium payoffs in mixed strategies, as the cost of memory goes to 0, includes the set of feasible and individually rational payoffs. This result stands in sharp contrast to Abreu and Rubisntein (1988), who proved that when memory is free, the set of equilibrium payoffs in repeated games played by players with bounded computational power is a strict subset of the set of feasible and individually rational payoffs. Our result emphasizes the role of memory cost and of mixing when players have bounded computational power.

  6. Bounding Noncommutative QCD

    CERN Document Server

    Carlson, C E; Lebed, R F; Carlson, Carl E.; Carone, Christopher D.; Lebed, Richard F.

    2001-01-01

    Jurco, Moller, Schraml, Schupp, and Wess have shown how to construct noncommutative SU(N) gauge theories from a consistency relation. Within this framework, we present the Feynman rules for noncommutative QCD and compute explicitly the most dangerous Lorentz-violating operator generated through radiative corrections. We find that interesting effects appear at the one-loop level, in contrast to conventional noncommutative U(N) gauge theories, leading to a stringent bound. Our results are consistent with others appearing recently in the literature that suggest collider limits are not competitive with low-energy tests of Lorentz violation for bounding the scale of spacetime noncommutativity.

  7. A relativistic symmetry in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Ginocchio, J N [MS B283, Theoretical Division, Los Alamos National Laboratory Los Alamos, New Mexico 87545 (Mexico)

    2007-11-15

    We review some of the empirical and theoretical evidence supporting pseudospin symmetry in nuclei as a relativistic symmetry. We review the case that the eigenfunctions of realistic relativistic nuclear mean fields approximately conserve pseudospin symmetry in nuclei. We discuss the implications of pseudospin symmetry for magnetic dipole transitions and Gamow-Teller transitions between states in pseudospin doublets. We explore a more fundamental rationale for pseudospin symmetry in terms of quantum chromodynamics (QCD), the basic theory of the strong interactions. We show that pseudospin symmetry in nuclei implies spin symmetry for an anti-nucleon in a nuclear environment. We also discuss the future and what role pseudospin symmetry may be expected to play in an effective field theory of nucleons.

  8. Photodissociation of neutron deficient nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Sonnabend, K.; Babilon, M.; Hasper, J.; Mueller, S.; Zarza, M.; Zilges, A. [TU Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany)

    2006-03-15

    The knowledge of the cross sections for photodissociation reactions like e.g. ({gamma}, n) of neutron deficient nuclei is of crucial interest for network calculations predicting the abundances of the so-called p nuclei. However, only single cross sections have been measured up to now, i.e., one has to rely nearly fully on theoretical predictions. While the cross sections of stable isotopes are accessible by experiments using real photons, the bulk of the involved reactions starts from unstable nuclei. Coulomb dissociation (CD) experiments in inverse kinematics might be a key to expand the experimental database for p-process network calculations. The approach to test the accuracy of the CD method is explained. (orig.)

  9. Studies of exotic light nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Cerny, J.

    1976-05-01

    For neutron-deficient nuclei, extension of the T/sub z/ = --3/2 series of strong beta-delayed proton precursors to /sup 61/Ge is discussed. For neutron-excess nuclei, heavy-ion induced, multi-nucleon transfer reaction studies of masses and energy levels of 2sld shell nuclei with T/sub z/ greater than or equal to 5/2 are covered. In addition, preliminary attempts to employ the (/sup 7/Li,/sup 2/He) reaction for the latter studies are shown; a new detection system capable of observing unbound final states as reaction products is demonstrated via investigations of the (..cap alpha..,/sup 2/He) reaction.

  10. Study of -nucleus interaction through the formation of -nucleus bound state

    Indian Academy of Sciences (India)

    V Jha; B J Roy; A Chatterjee; H Machner

    2006-05-01

    The question of possible existence of -mesic nuclei is quite intriguing. Answer to this question will deeply enrich our understanding of -nucleus interaction which is not so well-understood. We review the experimental efforts for the search of -mesic nuclei and describe the physics motivation behind it. We present the description of an experiment for the search of -nucleus bound state using the GeV proton beam, currently being performed at COSY.

  11. HAMLET interacts with histones and chromatin in tumor cell nuclei.

    Science.gov (United States)

    Düringer, Caroline; Hamiche, Ali; Gustafsson, Lotta; Kimura, Hiroshi; Svanborg, Catharina

    2003-10-24

    HAMLET is a folding variant of human alpha-lactalbumin in an active complex with oleic acid. HAMLET selectively enters tumor cells, accumulates in their nuclei and induces apoptosis-like cell death. This study examined the interactions of HAMLET with nuclear constituents and identified histones as targets. HAMLET was found to bind histone H3 strongly and to lesser extent histones H4 and H2B. The specificity of these interactions was confirmed using BIAcore technology and chromatin assembly assays. In vivo in tumor cells, HAMLET co-localized with histones and perturbed the chromatin structure; HAMLET was found associated with chromatin in an insoluble nuclear fraction resistant to salt extraction. In vitro, HAMLET bound strongly to histones and impaired their deposition on DNA. We conclude that HAMLET interacts with histones and chromatin in tumor cell nuclei and propose that this interaction locks the cells into the death pathway by irreversibly disrupting chromatin organization.

  12. How to Study Efimov States in Exotic Nuclei?

    Science.gov (United States)

    Macchiavelli, Augusto O.

    2015-12-01

    The existence of Efimov states in atomic nuclei has been predicted by several authors considering 3-body systems of the form Core-neutron-neutron. While these states appear elusive and very challenging experimentally, we discuss possible reactions that can be used to produce and study them in exotic (weakly-bound) nuclei. Following simple arguments, we show that cross-sections relative to the ground states should scale with the parameter {λ_0}, which is the same scale factor for binding energies and radii. We derive back of the envelope estimates for: one- and two-neutron transfer reactions, and inelastic scattering. The ( d, p) reaction appears as the most promising approach and we discuss in more detail some experimental considerations using the example of {^{19}C(d, p)^{20}C}. These initial estimates could serve as a starting point for more refined and realistic calculations, which will be required for careful experimental planning and further analysis.

  13. Octupole shapes in heavy nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, I.

    1994-08-01

    Theoretical calculations and measurements show the presence of strong octupole correlations in thecyround states and low-lying states of odd-mass and odd-odd nuclei in the RaPa region. Evidence for octupole correlations is provided by the observation of parity doublets and reductions in M1 matrix elements, decoupling parameters, and Coriolis matrix elements Involving high-j states. Enhancement of E1 transition rates has also been observed for some of the octupole deformed nuclei. The most convincing argument for octupole deformation is provided by the similarities of the reduced alpha decay rates to the two members of parity doublets.

  14. International Symposium on Exotic Nuclei

    CERN Document Server

    Sobolev, Yu G; EXON-2014

    2015-01-01

    The production and the properties of nuclei in extreme conditions, such as high isospin, temperature, angular momenta, large deformations etc., have become the subject of detailed investigations in all scientific centers. The main topics discussed at the Symposium were: Synthesis and Properties of Exotic Nuclei; Superheavy Elements; Rare Processes, Nuclear Reactions, Fission and Decays; Experimental Facilities and Scientific Projects. This book provides a comprehensive overview of the newest results of the investigations in the main scientific centers such as GSI (Darmstadt, Germany), GANIL (Caen, France), RIKEN (Wako-shi, Japan), MSU (Michigan, USA), and JINR (Dubna, Russia).

  15. Spontaneous fission of superheavy nuclei

    Indian Academy of Sciences (India)

    R A Gherghescu; D N Poenaru

    2015-09-01

    The macroscopic–microscopic method is extended to calculate the deformation energy and penetrability for binary nuclear configurations typical for fission processes. The deformed two-centre shell model is used to obtain single-particle energy levels for the transition region of two partially overlapped daughter and emitted fragment nuclei. The macroscopic part is obtained using the Yukawa-plus-exponential potential. The microscopic shell and pairing corrections are obtained using the Strutinsky and BCS approaches and the cranking formulae yield the inertia tensor. Finally, the WKB method is used to calculate penetrabilities and spontaneous fission half-lives. Calculations are performed for the decay of 282,292120 nuclei.

  16. PDFs from nucleons to nuclei

    CERN Document Server

    Accardi, Alberto

    2016-01-01

    I review recent progress in the extraction of unpolarized parton distributions in the proton and in nuclei from a unified point of view that highlights how the interplay between high energy particle physics and lower energy nuclear physics can be of mutual benefit to either field. Areas of overlap range from the search for physics beyond the standard model at the LHC, to the study of the non perturbative structure of nucleons and the emergence of nuclei from quark and gluon degrees of freedom, to the interaction of colored probes in a cold nuclear medium.

  17. The DMM Bound

    DEFF Research Database (Denmark)

    Emiris, Ioannis Z.; Mourrain, Bernard; Tsigaridas, Elias

    2010-01-01

    of variables. One application is to the bitsize of the eigenvalues and eigenvectors of an integer matrix, which also yields a new proof that the problem is polynomial. We also compare against recent lower bounds on the absolute value of the root coordinates by Brownawell and Yap [5], obtained under...

  18. Bounded variation and around

    CERN Document Server

    Appell, Jürgen; Merentes Díaz, Nelson José

    2013-01-01

    This monographis a self-contained exposition of the definition and properties of functionsof bounded variation and their various generalizations; the analytical properties of nonlinear composition operators in spaces of such functions; applications to Fourier analysis, nonlinear integral equations, and boundary value problems. The book is written for non-specialists. Every chapter closes with a list of exercises and open problems.

  19. Radioactive Materials Analytical Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Laing, W.R.; Corbin, L.T.

    1979-01-01

    The Radioactive Materials Analytical Laboratory was completed 15 years ago and has been used since as an analytical chemistry support lab for reactor, fuel development, and reprocessing programs. Additions have been made to the building on two occasions, and a third addition is planned for the future. Major maintenance items include replacement of ZnBr/sub 2/ windows, cleanup of lead glass windows, and servicing of the intercell conveyor. An upgrading program, now in progress, includes construction of new hot-cell instrumentation and the installation of new equipment such as an x-ray fluorescence analyzer and a spark source mass spectrometer.

  20. CHAPTER 5-RADIOACTIVE WASTE MANAGEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Marra, J.

    2010-05-05

    The ore pitchblende was discovered in the 1750's near Joachimstal in what is now the Czech Republic. Used as a colorant in glazes, uranium was identified in 1789 as the active ingredient by chemist Martin Klaproth. In 1896, French physicist Henri Becquerel studied uranium minerals as part of his investigations into the phenomenon of fluorescence. He discovered a strange energy emanating from the material which he dubbed 'rayons uranique.' Unable to explain the origins of this energy, he set the problem aside. About two years later, a young Polish graduate student was looking for a project for her dissertation. Marie Sklodowska Curie, working with her husband Pierre, picked up on Becquerel's work and, in the course of seeking out more information on uranium, discovered two new elements (polonium and radium) which exhibited the same phenomenon, but were even more powerful. The Curies recognized the energy, which they now called 'radioactivity,' as something very new, requiring a new interpretation, new science. This discovery led to what some view as the 'golden age of nuclear science' (1895-1945) when countries throughout Europe devoted large resources to understand the properties and potential of this material. By World War II, the potential to harness this energy for a destructive device had been recognized and by 1939, Otto Hahn and Fritz Strassman showed that fission not only released a lot of energy but that it also released additional neutrons which could cause fission in other uranium nuclei leading to a self-sustaining chain reaction and an enormous release of energy. This suggestion was soon confirmed experimentally by other scientists and the race to develop an atomic bomb was on. The rest of the development history which lead to the bombing of Hiroshima and Nagasaki in 1945 is well chronicled. After World War II, development of more powerful weapons systems by the United States and the Soviet Union continued to

  1. Radioactivity measurements principles and practice

    CERN Document Server

    Mann, W B; Spernol, A

    2012-01-01

    The authors have addressed the basic need for internationally consistent standards and methods demanded by the new and increasing use of radioactive materials, radiopharmaceuticals and labelled compounds. Particular emphasis is given to the basic and practical problems that may be encountered in measuring radioactivity. The text provides information and recommendations in the areas of radiation protection, focusing on quality control and the precautions necessary for the preparation and handling of radioactive substances. New information is also presented on the applications of both traditiona

  2. Half-lives and cluster preformation factors for various cluster emissions in trans-lead nuclei

    Science.gov (United States)

    Ni, Dongdong; Ren, Zhongzhou

    2010-08-01

    The generalized density-dependent cluster model (GDDCM) is extended to study cluster radioactivity in even-even and odd-A nuclei decaying to the doubly magic nucleus Pb208 or its neighboring nuclei. The microscopic cluster-daughter potential is numerically constructed in the double-folding model with M3Y nucleon-nucleon interactions plus proton-proton Coulomb interactions. Instead of the WKB barrier penetration probability, the exact solution of the Schrödinger equation with outgoing Coulomb wave boundary conditions is presented. The cluster preformation factor is well taken into account based on some available experimental cases. The calculated half-lives are found to be in good agreement with the experimental data. This indicates that a unified description of α decay and cluster radioactivity has been achieved by the GDDCM. Predictions of cluster emission half-lives are made for promising emitters, which may guide future experiments.

  3. Developments of dedicated plunger devices for lifetime measurements of excited states in exotic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Dewald, A.; Pissulla, T.; Hackstein, M.; Fransen, C.; Rother, W.; Iwasaki, H.; Jolie, J.; Zell, K.O. [IKP, Koeln (Germany); Gadea, A.; Valiente Dobon, J.J. [INFN-LNL, Legnaro (Italy); Starosta, K. [NSCL, MSU, (United States); Korten, W.; Goergen, A. [SPhN, CEA Saclay (France); Ur, C.A. [University of Padova, Padova (Italy); Petkov, P. [INRNE, Sofia (Bulgaria)

    2009-07-01

    The recoil distance Doppler-shift (RDDS) method is an important technique for the measurement of lifetimes of excited nuclear states from which absolute transition strengths can be derived. In order to use this technique for nuclei far from stability it has to be adapted to the special requirements imposed by the specific nuclear reactions in which these exotic nuclei can be produced and excited. E.g., reactions with radioactive beams or deep inelastic reactions have been successfully applied for this purpose in the past. In this presentation we give an overview over recent developments of plunger experiments with radioactive beams at intermediate energies ({approx}100 MeV/u). In addition we report on recent developments made for measurements at PRISMA-CLARA (LNL, Legnaro, Italy) and EXOGAM-VAMOS (GANIL, Caen, France) where deep inelastic reactions have been used. Future plans for plunger experiments at PRESPEC and HISPEC (GSI) are discussed.

  4. Wien filter for cooled low-energy radioactive ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Nummela, S. E-mail: saara.nummela@phys.jyu.fi; Dendooven, P.; Heikkinen, P.; Huikari, J.; Nieminen, A.; Jokinen, A.; Rinta-Antila, S.; Rubchenya, V.; Aeystoe, J

    2002-04-01

    A Wien filter for cooled radioactive ion beams has been designed at Ion Guide Isotope Separator On Line technique (IGISOL). The purpose of such device is to eliminate doubly charged ions from the mass separated singly charged ions, based on q=+2{yields}q=+1 charge exchange process in an ion cooler. The performance of the Wien filter has been tested off-line with a discharge ion source as well as on-line with a radioactive beam. The electron capture process of cooled q=+2 ions has been investigated in a radiofrequency quadrupole ion cooler with varying partial pressures of nitrogen. Also, the superasymmetric fission production yields of 68nuclei have been deduced.

  5. In-Trap Spectroscopy of Charge-Bred Radioactive Ions

    Science.gov (United States)

    Lennarz, A.; Grossheim, A.; Leach, K. G.; Alanssari, M.; Brunner, T.; Chaudhuri, A.; Chowdhury, U.; Crespo López-Urrutia, J. R.; Gallant, A. T.; Holl, M.; Kwiatkowski, A. A.; Lassen, J.; Macdonald, T. D.; Schultz, B. E.; Seeraji, S.; Simon, M. C.; Andreoiu, C.; Dilling, J.; Frekers, D.

    2014-08-01

    In this Letter, we introduce the concept of in-trap nuclear decay spectroscopy of highly charged radioactive ions and describe its successful application as a novel spectroscopic tool. This is demonstrated by a measurement of the decay properties of radioactive mass A=124 ions (here, In124 and Cs124) in the electron-beam ion trap of the TITAN facility at TRIUMF. By subjecting the trapped ions to an intense electron beam, the ions are charge bred to high charge states (i.e., equivalent to the removal of N-shell electrons), and an increase of storage times to the level of minutes without significant ion losses is achieved. The present technique opens the venue for precision spectroscopy of low branching ratios and is being developed in the context of measuring electron-capture branching ratios needed for determining the nuclear ground-state properties of the intermediate odd-odd nuclei in double-beta (ββ) decay.

  6. Radioactivity a very short introduction

    CERN Document Server

    Tuniz, Claudio

    2012-01-01

    Radioactivity: A Very Short Introduction explains radioactivity and discusses its fundamental role in nature. Radioactivity remains misunderstood and feared perhaps because nuclear radiation cannot be detected by human senses, and can undoubtedly do great harm if appropriate precautions are not taken. Radioactivity in the stars and in the Earth and its wide range of applications in biomedicine, science, industry, agriculture are described, as well as the mechanisms of nuclear fission and fusion, and the harnessing of nuclear power. The issues surrounding safety and security and the increasing concerns about nuclear terrorism are also considered.

  7. Induced radioactivity in a 4 MW target and its surroundings

    CERN Document Server

    Agosteo, Stefano; Otto, Thomas; Silari, Marco

    2003-01-01

    An important aspect of a future CERN Neutrino Factory is the material activation arising from a 2.2 GeV, 4 MW proton beam striking a mercury target. An estimation of the hadronic inelastic interactions and the production of residual nuclei in the target, the magnetic horn, the decay tunnel, the surrounding rock and a downstream dump was performed by the Monte Carlo hadronic cascade code FLUKA. The aim was both to assess the dose equivalent rate to be expected during maintenance work and to evaluate the amount of residual radioactivity, which will have to be disposed of after the facility has ceased operation.

  8. Proton radioactivity half-lives with Skyrme interactions

    Energy Technology Data Exchange (ETDEWEB)

    Routray, T.R.; Behera, B. [Sambalpur University, School of Physics, Orissa (India); Mishra, A.; Basu, D.N. [Variable Energy Cyclotron Centre, Kolkata (India); Tripathy, S.K. [Sambalpur University, School of Physics, Orissa (India); Govt. Engg. College, Orissa (India)

    2012-06-15

    The potential barrier impeding the spontaneous emission of protons in the proton radioactive nuclei is calculated as the sum of nuclear, Coulomb and centrifugal contributions. The nuclear part of the proton-nucleus interaction potential is obtained in the energy density formalism using the Skyrme effective interaction that results into a simple algebraic expression. The half-lives of the proton emitters are calculated for the different Skyrme sets within the improved WKB framework. The results are found to be in reasonable agreement with the earlier results obtained for more complicated calculations involving finite-range interactions. (orig.)

  9. On Entropy Bounds and Holography

    CERN Document Server

    Halyo, Edi

    2009-01-01

    We show that the holographic entropy bound for gravitational systems and the Bekenstein entropy bound for nongravitational systems are holographically related. Using the AdS/CFT correspondence, we find that the Bekenstein bound on the boundary is obtained from the holographic bound in the bulk by minimizing the boundary energy with respect the AdS radius or the cosmological constant. This relation may also ameliorate some problems associated with the Bekenstein bound.

  10. Description of alpha decay and cluster radioactivity in the dinuclear system model

    Science.gov (United States)

    Kuklin, S. N.; Adamian, G. G.; Antonenko, N. V.

    2016-03-01

    A unified description of cluster radioactivity and α-decay of cold nuclei in the dinuclear system model is proposed. Quantum dynamical fluctuations along the charge (mass) asymmetry coordinate determine the spectroscopic factor, and tunneling along the relative distance coordinate determines the penetrability of the barrier of the nucleus-nucleus interaction potential. A new method for calculating the spectroscopic factor is proposed. The hindrance factors for the orbital angular momentum transfer are studied. A potential reason for the half-life to deviate from the Geiger-Nuttall law in α-decays of neutron-deficient nuclei 194, 196Rn is found. The fine structure of α-decays of U and Th isotopes is predicted and characterized. The model is used to describe α-decays from the rotational band of even-even nuclei. The known half-lives in the regions of "lead" and "tin" radioactivities are reproduced well, and the most probable cluster yields are predicted. The cluster decay of excited nuclei is discussed. The relation of cluster radioactivity to spontaneous fission and highly deformed nuclear states is analyzed.

  11. Multiphonon giant resonances in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Aumann, T. [Mainz Univ. (Germany). Inst. fuer Kernchemie; Bortignon, P.F. [Milan Univ. (Italy). Dipt. di Fisica]|[Istituto Nazionale di Fisica Nucleare, Milan (Italy); Emling, H. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)

    1998-07-01

    We review the present knowledge of multiphonon giant resonances in nuclei. Theoretical concepts approaching the intrinsic structure and excitation mechanisms of multi-phonon states are discussed. The available experimental results are summarized, including a brief description of applied techniques. This review emphasizes electromagnetic excitations of double dipole resonances. Open questions and possible routes toward a solution are addressed. (orig.)

  12. Partial Dynamical Symmetries in Nuclei

    CERN Document Server

    Leviatan, A

    2000-01-01

    Partial dynamical symmetries (PDS) are shown to be relevant to the interpretation of the $K=0_2$ band and to the occurrence of F-spin multiplets of ground and scissors bands in deformed nuclei. Hamiltonians with bosonic and fermionic PDS are presented.

  13. Low energy + scattering on = nuclei

    Indian Academy of Sciences (India)

    Swapan Das; Arun K Jain

    2003-11-01

    The data for the total cross-section of + scattering on various nuclei have been analysed in the Glauber multiple scattering theory. Energy-dependent +-nucleus optical potential is generated using the forward +-nucleon scattering amplitude and the nuclear density distribution. Along with this, the calculated total +-nucleus cross-sections using the effective +-nucleon cross-section inside the nucleus are also presented.

  14. Fission dynamics of hot nuclei

    Indian Academy of Sciences (India)

    Santanu Pal; Jhilam Sadhukhan

    2014-04-01

    Experimental evidence accumulated during the last two decades indicates that the fission of excited heavy nuclei involves a dissipative dynamical process. We shall briefly review the relevant dynamical model, namely the Langevin equations for fission. Statistical model predictions using the Kramers’ fission width will also be discussed.

  15. Resonance scattering of 12C nuclei on protons in the Maya active target

    CERN Document Server

    Khodery, Mohammad

    This work is related to the realm of exotic nuclei. These are nuclei that exist far from the valley of stability. Study of these nuclei introduced many interesting phenomena and changed our understanding about the nuclear structure. As exotic nuclei are very short lived, their study has to be at the time of their production using radioactive beams of the exotic nuclei. The goal of the experiment was to study the $^{13}$Be low-lying energy levels. The experiment was performed at ISOLDE at CERN as $^{12}$Be beams are produced at this facility with suitable intensity and energy. The method used to study $^{13}$Be was elastic resonance reactions. This is a powerful tool to study unbound states. This thesis concentrates on the $^{12}$C nuclei that are present in the beam as isobaric contamination. $^{12}$C in the beam is scattered on the protons which is the target. The protons are introduced in the form of isobutene gas. The aim of this work is to prove the principle of the technique of elastic resonance scatteri...

  16. Bounded Satisfiability for PCTL

    CERN Document Server

    Bertrand, Nathalie; Schewe, Sven

    2012-01-01

    While model checking PCTL for Markov chains is decidable in polynomial-time, the decidability of PCTL satisfiability, as well as its finite model property, are long standing open problems. While general satisfiability is an intriguing challenge from a purely theoretical point of view, we argue that general solutions would not be of interest to practitioners: such solutions could be too big to be implementable or even infinite. Inspired by bounded synthesis techniques, we turn to the more applied problem of seeking models of a bounded size: we restrict our search to implementable -- and therefore reasonably simple -- models. We propose a procedure to decide whether or not a given PCTL formula has an implementable model by reducing it to an SMT problem. We have implemented our techniques and found that they can be applied to the practical problem of sanity checking -- a procedure that allows a system designer to check whether their formula has an unexpectedly small model.

  17. Production and β Decay of rp-Process Nuclei Cd96, In98, and Sn100

    Science.gov (United States)

    Bazin, D.; Montes, F.; Becerril, A.; Lorusso, G.; Amthor, A.; Baumann, T.; Crawford, H.; Estrade, A.; Gade, A.; Ginter, T.; Guess, C. J.; Hausmann, M.; Hitt, G. W.; Mantica, P.; Matos, M.; Meharchand, R.; Minamisono, K.; Perdikakis, G.; Pereira, J.; Pinter, J.; Portillo, M.; Schatz, H.; Smith, K.; Stoker, J.; Stolz, A.; Zegers, R. G. T.

    2008-12-01

    The β-decay properties of the N=Z nuclei Cd96, In98, and Sn100 have been studied. These nuclei were produced at the National Superconducting Cyclotron Laboratory by fragmenting a 120MeV/nucleon Sn112 primary beam on a Be target. The resulting radioactive beam was filtered in the A1900 and the newly commissioned Radio Frequency Fragment Separator to achieve a purity level suitable for decay studies. The observed production cross sections of these nuclei are lower than predicted by factors of 10 30. The half-life of Cd96, which was the last experimentally unknown waiting point half-life of the astrophysical rp process, is 1.03-0.21+0.24s. The implications of the experimental T1/2 value of Cd96 on the abundances predicted by rp process calculations and the origin of A=96 isobars such as Ru96 are explored.

  18. Study of the structure of unstable nuclei through the reaction experiments

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Along with the development of the radioactive nuclear beam facility, the study of the structure of unstable nuclei has progressed rapidly over the last few decades. Due to the weakly binding property, the structure information of the unstable nuclei comes primarily from the scattering or reaction experiments. Therefore it would be very important to understand clearly the reaction mechanism involved in the experiment. We outlined here the major reaction mechanisms which are adequate to the study of unstable nuclei, with the focus on the new phenomena and methods in comparison with those with traditional stable nucleus beam. Especially emphasized are the breakup and knockout reactions, developed as accurate tools for spectroscopy investigation into the nuclear structure with low intensity secondary beam. Couplings of the breakup channel to the elastic scattering and the fusion and transfer reactions are also reviewed.

  19. Radioactive waste: show time?

    Energy Technology Data Exchange (ETDEWEB)

    Verhoef, E.V. [COVRA N.V., Spanjeweg 1, 4455 TW Nieuwdorp (Netherlands); McCombie, Charles; Chapman, Neil [Arius Association, Taefernstrasse 1, CH-4050 Baden (Switzerland)

    2010-07-01

    The basic concept within both EC funded SAPIERR I and SAPIERR II projects (FP6) is that of one or more geological repositories developed in collaboration by two or more European countries to accept spent nuclear fuel, vitrified high-level waste and other long-lived radioactive waste from those partner countries. The SAPIERR II project (Strategic Action Plan for Implementation of Regional European Repositories) examines in detail issues that directly influence the practicability and acceptability of such facilities. This paper describes the work in the SAPIERR II project (2006-2008) on the development of a possible practical implementation strategy for shared, regional repositories in Europe and lays out the first steps in implementing that strategy. (authors)

  20. α-decay half-lives in medium mass nuclei

    Science.gov (United States)

    Qian, Yibin; Ren, Zhongzhou; Ni, Dongdong

    2011-01-01

    Systematical calculations on the α-decay half-lives of even-even medium mass nuclei with 82 cluster model using a two-potential approach. The decay width is achieved in terms of the bound state wavefunction, the scattering wavefunction and the outer potential, where the effective α-nucleus potential is obtained from the double-folded integral of the realistic nucleon-nucleon interaction with the mass distributions of α particle and daughter nucleus. Instead of the Wentzel-Kramers-Brillouin (WKB) barrier penetration probability, the numerical solution of the Schrödinger equation for the bound state is presented. In addition, the shell effect on the α-preformation factor has been taken into account for even-even N = 126 isotones. The calculated α-decay half-lives are found to agree with experimental data with a mean factor of less than 2.

  1. Exotic nuclei with charm and bottom flavor

    Directory of Open Access Journals (Sweden)

    Yasui S.

    2010-04-01

    Full Text Available We discuss the possibility of existence of exotic nuclei containing charm and bottom mesons. We study the interaction between $ar{D}$ (B mesons and nucleons from view of heavy quark symmetry, and derive the one pion exchange potentials. We apply these potentials to the two body system of $ar{D}$ (B meson and nucleon N , and find there are possible stable bound states with spin JP = 1/2− and isospin I = 0. We find that the tensor interaction mixing $ar{D}$N and $ar{D}$*N (BN and B*N plays an important role. We also qualitatively discuss the possible bound states of $ar{D}$ (B meson and two nucleons.

  2. Progress on Radioactive Waste Treatment Facilities Construction

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In 2011, five projects were undertaken by radioactive waste projects management department, which are "Cold Commissioning of the Pilot Project on Radioactive Waste Retrieval and Conditioning (abbreviation 'Pilot Project')", "Radioactive Ventilation Project Construction (abbreviation 'Ventilation

  3. PERSPECTIVE: Fireworks and radioactivity

    Science.gov (United States)

    Breitenecker, Katharina

    2009-09-01

    both reaction products and unburnt constituents of a pyrotechnic mixture. One major environmental concern in pyrotechnics focuses on the emission of heavy metals. This is the topic discussed in the article by Georg Steinhauser and Andreas Musilek in this issue [4]. A possible interrelationship between respiratory effects and fireworks emissions of barium-rich aerosols was also raised last year [5]. In recent years the potential hazard of naturally occurring radioactive material has become of importance to the scientific community. Naturally occurring radionuclides can be of terrestrial or cosmological origin. Terrestrial radionuclides were present in the presolar cloud that later contracted in order to build our solar system. These radionuclides—mainly heavy metals—and their non-radioactive isotopes are nowadays fixed in the matrix of the Earth's structure. Usually, their percentage is quite small compared to their respective stable isotopes—though there are exceptions like in the case of radium. The problem with environmental pollution due to naturally occurring radioactive material begins when this material is concentrated due to mining and milling, and later further processed [6]. Environmental pollution due to radioactive material goes back as far as the Copper and Iron Ages, when the first mines were erected in order to mine ores (gold, silver, copper, iron, etc), resulting in naturally occurring radioactive material being set free with other dusts into the atmosphere. So where is the link between pyrotechnics and radioactivity? In this article presented by Georg Steinhauser and Andreas Musilek [4], the pyrotechnic ingredients barium nitrate and strontium nitrate are explored with respect to their chemical similarities to radium. The fundamental question, therefore, was whether radium can be processed together with barium and strontium. If so, the production and ignition of these pyrotechnic ingredients could cause atmospheric pollution with radium aerosols

  4. Transmutation of radioactive nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Toor, A; Buck, R

    2000-03-15

    years. One approach to the RNW storage problem has been to transmute the radioactive elements into other radioactive isotopes with much shorter half-lives. Transmutation of both RNW components using neutrons has been discussed and studied over the past four decades. Most transmutation studies have examined the feasibility of using neutron-induced reactions where the neutrons would be provided by accelerator-based spallation neutron sources, tokamak fusion reactors, sub-critical fission reactors and other novel concepts. Studies have shown that all proposed transmutation processes to treat RNW using neutron reactions are deficient or marginal at best from the point of view of energy consumption and/or cost. We suggest an alternative approach that has not been considered to date: the transmutation of RNW elements using high-energy photons or gamma rays. The photo-disintegration of RNW may provide an effective way to treat reprocessed waste; waste that has been chemically separated or the residual waste left over after neutron processing. Photo-disintegration is attractive in that any isotope can be transmuted. This approach is now potentially practical because of the development of micropole undulators (MPUs) that allow us to use small storage rings to economically generate photons with gamma-ray energies and to tune these ''gamma rays'' to the peak of the cross-section resonance for various RNW elements. Because the cross sections for all RNW nuclei have a broad peak with the maximum in the 12-18 MeV range, a single MPU could be used to treat both actinide and fission fragment components of RNW. The goal of this study is to make estimates of the reaction rates and energy efficiency of the transmutation of typical RNW elements using gamma rays to establish whether or not gamma-ray transmutation should be examined as a viable alternative solution to RNW warranting further study.

  5. BOUNDING PYRAMIDS AND BOUNDING CONES FOR TRIANGULAR BEZIER SURFACES

    Institute of Scientific and Technical Information of China (English)

    Jian-song Deng; Fa-lai Chen; Li-li Wang

    2000-01-01

    This paper describes practical approaches on how to construct bounding pyramids and bounding cones for triangular Bézier surfaces. Examples are provided to illustrate the process of construction and comparison is made between various surface bounding volumes. Furthermore, as a starting point for the construction,we provide a way to compute hodographs of triangular Bézier surfaces and improve the algorithm for computing the bounding cone of a set of vectors.

  6. Completely general bounds on Non-Unitary leptonic mixing

    CERN Document Server

    Hernandez-Garcia, Josu

    2016-01-01

    We derive constraints on the mixing of heavy right-handed neutrinos with the SM fields in the most general Seesaw scenario where the heavy neutrinos are integrated out. Among the electroweak and flavour observables included in the global fit, $\\mu\\rightarrow e\\gamma$ sets the present strongest bound on the additional neutrino mixing, while in the future it will be dominated by $\\mu-e$ conversion in nuclei. Increasing its sensitivity in future experiments could probe Non-Unitarity in Lepton Flavour Violating processes. Nevertheless, in order to determine completely model-independent constraints, we provide a second set of bounds derived through a global fit that does not include LFV observables. These indirect constraints on the off-diagonal elements come from the diagonal bounds through the Schwarz inequality.

  7. Environmental radioactive intercomparison program and radioactive standards program

    Energy Technology Data Exchange (ETDEWEB)

    Dilbeck, G. [Environmental Monitoring Systems Laboratory, Las Vegas, NV (United States)

    1993-12-31

    The Environmental Radioactivity Intercomparison Program described herein provides quality assurance support for laboratories involved in analyzing public drinking water under the Safe Drinking Water Act (SDWA) Regulations, and to the environmental radiation monitoring activities of various agencies. More than 300 federal and state nuclear facilities and private laboratories participate in some phase of the program. This presentation describes the Intercomparison Program studies and matrices involved, summarizes the precision and accuracy requirements of various radioactive analytes, and describes the traceability determinations involved with radioactive calibration standards distributed to the participants. A summary of program participants, sample and report distributions, and additional responsibilities of this program are discussed.

  8. Scissors Mode in Gd Nuclei

    Directory of Open Access Journals (Sweden)

    Wu C.Y.

    2012-02-01

    Full Text Available Spectra of γ rays following neutron capture at isolated resonances of 6 stable Gd isotopes were measured with highly segmented BaF2 detector DANCE at the Los Alamos LANSCE spallation neutron source. The main emphasis was put on studying the γ-cascade decay of neutron resonances to get unique information on photon strength. An analysis of the accumulated γ-ray spectra within the extreme statistical model leads to an inescapable conclusion that scissors mode resonances are built not only on the ground-state, but also on excited levels in all product nuclei studied. The results on summed B(M1↑ strength and energy of the scissors mode are compared with systematics of scissors mode parameters for the ground-state transitions deduced from nuclear resonance fluorescence measurements. A specific feature of our experiments is the investigation of scissors mode of odd nuclei, for which the nuclear resonance fluorescence provides only limited information.

  9. Scissors Mode in Gd Nuclei

    Science.gov (United States)

    Kroll, J.; Baramsai, B.; Becker, J. A.; Bečvář, F.; Bredeweg, T. A.; Couture, A.; Chyzh, A.; Dashdorj, D.; Haight, R. C.; Jandel, M.; Krtička, M.; Mitchell, G. E.; O'Donnell, J. M.; Parker, W.; Rundberg, R. S.; Ullmann, J. L.; Vieira, G. J.; Walker, C. L.; Wilhelmy, J. B.; Wouters, J. M.; Wu, C. Y.

    2012-02-01

    Spectra of γ rays following neutron capture at isolated resonances of 6 stable Gd isotopes were measured with highly segmented BaF2 detector DANCE at the Los Alamos LANSCE spallation neutron source. The main emphasis was put on studying the γ-cascade decay of neutron resonances to get unique information on photon strength. An analysis of the accumulated γ-ray spectra within the extreme statistical model leads to an inescapable conclusion that scissors mode resonances are built not only on the ground-state, but also on excited levels in all product nuclei studied. The results on summed B(M1)↑ strength and energy of the scissors mode are compared with systematics of scissors mode parameters for the ground-state transitions deduced from nuclear resonance fluorescence measurements. A specific feature of our experiments is the investigation of scissors mode of odd nuclei, for which the nuclear resonance fluorescence provides only limited information.

  10. Evolution of active galactic nuclei

    CERN Document Server

    Merloni, Andrea

    2012-01-01

    [Abriged] Supermassive black holes (SMBH) lurk in the nuclei of most massive galaxies, perhaps in all of them. The tight observed scaling relations between SMBH masses and structural properties of their host spheroids likely indicate that the processes fostering the growth of both components are physically linked, despite the many orders of magnitude difference in their physical size. This chapter discusses how we constrain the evolution of SMBH, probed by their actively growing phases, when they shine as active galactic nuclei (AGN) with luminosities often in excess of that of the entire stellar population of their host galaxies. Following loosely the chronological developments of the field, we begin by discussing early evolutionary studies, when AGN represented beacons of light probing the most distant reaches of the universe and were used as tracers of the large scale structure. This early study turned into AGN "Demography", once it was realized that the strong evolution (in luminosity, number density) of ...

  11. Shape coexistence in krypton and selenium light isotopes studied through Coulomb excitation of radioactive ions beams; Etude de la coexistence de formes dans les isotopes legers du krypton et du selenium par excitation Coulombienne de faisceaux radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Clement, E

    2006-06-15

    The light krypton isotopes show two minima in their potential energy corresponding to elongated (prolate) and compressed (oblate) quadrupole deformation. Both configuration are almost equally bound and occur within an energy range of less than 1 MeV. Such phenomenon is called shape coexistence. An inversion of the ground state deformation from prolate in Kr{sup 78} to oblate in Kr{sup 72} with strong mixing of the configurations in Kr{sup 74} and Kr{sup 76} was proposed based on the systematic of isotopic chain. Coulomb excitation experiments are sensitive to the quadrupole moment. Coulomb excitation experiments of radioactive Kr{sup 74} and Kr{sup 76} beam were performed at GANIL using the SPIRAL facility and the EXOGAM spectrometer. The analysis of these experiments resulted in a complete description of the transition strength and quadrupole moments of the low-lying states. They establish the prolate character of the ground state and an oblate excited state. A complementary lifetime measurement using a 'plunger' device was also performed. Transition strength in neighboring nuclei were measured using the technique of intermediate energy Coulomb excitation at GANIL. The results on the Se{sup 68} nucleus show a sharp change in structure with respects to heavier neighboring nuclei. (author)

  12. Critical SQG in bounded domains

    OpenAIRE

    Constantin, Peter; Ignatova, Mihaela

    2016-01-01

    We consider the critical dissipative SQG equation in bounded domains, with the square root of the Dirichlet Laplacian dissipation. We prove global a priori interior $C^{\\alpha}$ and Lipschitz bounds for large data.

  13. Double pion photoproduction in nuclei

    CERN Document Server

    Vicente-Vacas, M J; Gómez-Tejedor, J A; Vicente-Vacas, M J; Oset, E; Gómez Tejedor, J A

    1994-01-01

    Abstract: The inclusive A(gamma,pi+ pi-)X reaction is studied theoretically. A sizeable enhancement of the cross section is found, in comparison with the scaling of the deuteron cross section (sigma_deuteron * A/2). This enhancement is due to the modifications in the nuclear medium of the gamma N ----> pi pi N amplitude and the pion dispersion relation. The enhancement is found to be bigger than the one already observed in the (pi,pi pi) reaction in nuclei.

  14. Triaxial rotation in atomic nuclei

    Institute of Scientific and Technical Information of China (English)

    CHEN Yong-Shou; GAO Zao-Chun

    2009-01-01

    The Projected Shell Model has been developed to include the spontaneously broken axial symmetry so that the rapidly rotating triaxial nuclei can be described microscopically. The theory provides an useful tool to gain an insight into how a triaxial nucleus rotates, a fundamental question in nuclear structure. We shall address some current interests that are strongly associated with the triaxial rotation. A feasible method to explore the problem has been suggested.

  15. Strange neutral currents in nuclei

    CERN Document Server

    Ressell, M T; Aufderheide, M B; Bloom, S D; Resler, D A

    1995-01-01

    We examine the effects on the nuclear neutral current Gamow-Teller (GT) strength of a finite contribution from a polarized strange quark sea. We perform nuclear shell model calculations of the neutral current GT strength for a number of nuclei likely to be present during stellar core collapse. We compare the GT strength when a finite strange quark contribution is included to the strength without such a contribution. As an example, the process of neutral current nuclear de-excitation via \

  16. Weak pion production from nuclei

    Indian Academy of Sciences (India)

    S K Singh; M Sajjad Athar; Shakeb Ahmad

    2006-04-01

    The charged current pion production induced by neutrinos in 12C, 16O and 56Fe nuclei has been studied. The calculations have been done for the coherent as well as the incoherent processes assuming dominance and takes into account the effect of Pauli blocking, Fermi motion and the renormalization of in the nuclear medium. The pion absorption effects have also been taken into account.

  17. Geometric symmetries in light nuclei

    CERN Document Server

    Bijker, Roelof

    2016-01-01

    The algebraic cluster model is is applied to study cluster states in the nuclei 12C and 16O. The observed level sequences can be understood in terms of the underlying discrete symmetry that characterizes the geometrical configuration of the alpha-particles, i.e. an equilateral triangle for 12C, and a regular tetrahedron for 16O. The structure of rotational bands provides a fingerprint of the underlying geometrical configuration of alpha-particles.

  18. Continuum spectroscopy of light nuclei

    Directory of Open Access Journals (Sweden)

    Charity R. J.

    2016-01-01

    Full Text Available Resonance spectroscopy of light nuclei is discussed with emphasis on the invariant-mass measurements performed with the HiRA detector. For three-body exit channels, we consider the exact conditions necessary such that the decay can be described as either sequential or prompt. However experimentally, we find some cases where the decay is intermediate between these two limits. Finally, two-proton decay from isobaric analog states is discussed.

  19. A bound on chaos

    CERN Document Server

    Maldacena, Juan; Stanford, Douglas

    2015-01-01

    We conjecture a sharp bound on the rate of growth of chaos in thermal quantum systems with a large number of degrees of freedom. Chaos can be diagnosed using an out-of-time-order correlation function closely related to the commutator of operators separated in time. We conjecture that the influence of chaos on this correlator can develop no faster than exponentially, with Lyapunov exponent $\\lambda_L \\le 2 \\pi k_B T/\\hbar$. We give a precise mathematical argument, based on plausible physical assumptions, establishing this conjecture.

  20. Systematics of half-lives for proton radioactivity

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, E.L.; Rodrigues, M.M.N.; Duarte, S.B.; Tavares, O.A.P. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]. E-mails: emil@cbpf.br; sbd@cbpf.br; oaptavares@cbpf.br

    2007-07-01

    Half-life measurements for both ground-state and isomeric transitions in proton radioactivity are systematized by using a semiempirical, one-parameter model based on tunneling through a potential barrier, where the centrifugal and overlapping effects are taken into account within the spherical nucleus approximation. This approach, which has been successfully applied to alpha decay cases covering {approx} 30 orders of magnitude in half-life, has shown, in addition, very adequate at fitting all existing data on partial half-life, T{sub 1/2p}, of proton emission from nuclei. Nearly 70 measured half-life values have been analysed, and the data could be described by two straight lines relating the pure Coulomb contribution to half life with the quantity Z{sub d}({mu}{sub 0}/Q{sub p}){sub 1/2} (Z{sub d} is the atomic number of the daughter nucleus, {mu}{sub 0} is the reduced mass, and Q{sub p} is the total nuclear energy available for decay). These straight lines are shown to correspond to different degrees of deformation, namely, very prolate ({delta}> approx. 0.1), and other shaped (delta < approx. 0.1) parent nuclei. The goodness in reproducing the data attained in the present systematics allows for half-life predictions for a few possible cases of proton radioactivity not yet experimentally accessed. (author)

  1. Bounded Fixed-Point Iteration

    DEFF Research Database (Denmark)

    Nielson, Hanne Riis; Nielson, Flemming

    1992-01-01

    they obtain a quadratic bound. These bounds are shown to be tight. Specializing the case of strict and additive functions to functionals of a form that would correspond to iterative programs they show that a linear bound is tight. This is related to several analyses studied in the literature (including...

  2. Error bounds for set inclusions

    Institute of Scientific and Technical Information of China (English)

    ZHENG; Xiyin(郑喜印)

    2003-01-01

    A variant of Robinson-Ursescu Theorem is given in normed spaces. Several error bound theorems for convex inclusions are proved and in particular a positive answer to Li and Singer's conjecture is given under weaker assumption than the assumption required in their conjecture. Perturbation error bounds are also studied. As applications, we study error bounds for convex inequality systems.

  3. Multifunctions of bounded variation

    Science.gov (United States)

    Vinter, R. B.

    2016-02-01

    Consider control systems described by a differential equation with a control term or, more generally, by a differential inclusion with velocity set F (t , x). Certain properties of state trajectories can be derived when it is assumed that F (t , x) is merely measurable w.r.t. the time variable t. But sometimes a refined analysis requires the imposition of stronger hypotheses regarding the time dependence. Stronger forms of necessary conditions for minimizing state trajectories can be derived, for example, when F (t , x) is Lipschitz continuous w.r.t. time. It has recently become apparent that significant addition properties of state trajectories can still be derived, when the Lipschitz continuity hypothesis is replaced by the weaker requirement that F (t , x) has bounded variation w.r.t. time. This paper introduces a new concept of multifunctions F (t , x) that have bounded variation w.r.t. time near a given state trajectory, of special relevance to control. We provide an application to sensitivity analysis.

  4. The structure of 100Sn and neighbouring nuclei

    Science.gov (United States)

    Faestermann, T.; Górska, M.; Grawe, H.

    2013-03-01

    The nuclear structure in the 100Sn region is reviewed. State-of-the-art experimental techniques involving stable and radioactive beam facilities have enabled access to exotic nuclei in its next neighbourhood. The analysis of experimental data has established the shell structure and its evolution towards N=Z=50, seniority conservation and proton-neutron interaction in the g9/2 orbit, the super-allowed Gamow-Teller decay of 100Sn, masses and half lives along the rp-path, and super-allowed α decay beyond 100Sn. The status of theoretical approaches in shell model and mean-field investigations is described and their predictive power assessed. Structure features of 100Sn and its doubly-magic neighbours 56Ni at N=Z, 132Sn and 78Ni at N≫Z are compared. An outlook is given on future developments of experimental and theoretical methods.

  5. Final disposal of radioactive waste

    Science.gov (United States)

    Freiesleben, H.

    2013-06-01

    In this paper the origin and properties of radioactive waste as well as its classification scheme (low-level waste - LLW, intermediate-level waste - ILW, high-level waste - HLW) are presented. The various options for conditioning of waste of different levels of radioactivity are reviewed. The composition, radiotoxicity and reprocessing of spent fuel and their effect on storage and options for final disposal are discussed. The current situation of final waste disposal in a selected number of countries is mentioned. Also, the role of the International Atomic Energy Agency with regard to the development and monitoring of international safety standards for both spent nuclear fuel and radioactive waste management is described.

  6. SELF SINTERING OF RADIOACTIVE WASTES

    Science.gov (United States)

    McVay, T.N.; Johnson, J.R.; Struxness, E.G.; Morgan, K.Z.

    1959-12-29

    A method is described for disposal of radioactive liquid waste materials. The wastes are mixed with clays and fluxes to form a ceramic slip and disposed in a thermally insulated container in a layer. The temperature of the layer rises due to conversion of the energy of radioactivity to heat boillng off the liquid to fomn a dry mass. The dry mass is then covered with thermal insulation, and the mass is self-sintered into a leach-resistant ceramic cake by further conversion of the energy of radioactivity to heat.

  7. Low-energy Antikaon Interaction with Nuclei: The AMADEUS Challenge

    CERN Document Server

    Marton, Johann; Bellotti, Giovanni; Berucci, Carolina; Bosnar, Dimitri; Bragadireanu, Mario; Curceanu, Catalina; Clozza, Alberto; Cargnelli, Michael; Butt, Aslan; Del Grande, Raffaele; Fabbietti, Laura; Fiorini, Carlo; Ghio, Francesco; Guaraldo, Carlo; Iliescu, Mihai; Sandri, Paolo Levi; Pietreanu, Dorel; Piscicchia, Kristian; Vidal, Antonio Romero; Scordo, Alessandro; Shi, Hexi; Sirghi, Diana; Sirghi, Florin; Tucakovic, Ivana; Doce, Oton Vazquez; Widmann, Eberhard; Zmeskal, Johann

    2016-01-01

    The low-energy strong interaction of antikaons (K-) with nuclei has many facets and rep- resents a lively and challenging research ?eld. It is interconnected to the peculiar role of strangeness, since the strange quark is rather light, but still much heavier than the up and down quarks. Thus, when strangeness is involved one has to deal with spontaneous and explicit symmetry breaking in QCD. It is well known that the antikaon interaction with nucleons is attractive, but how strong ? Is the interaction strong enough to bind nucleons to form kaonic nuclei and, if so, what are the properties (binding energy, decay width)? There are controversial indications for such bound states and new results are expected to come soon. The existence of antikaon mediated bound states might have important consequences since it would open the possibility for the formation of cold baryonic matter of high density which might have a severe impact in astrophysics for the understanding of the composi- tion of compact (neutron) stars. ...

  8. Determination of the fission barrier height in fission of heavy radioactive beams induced by the (d,p)-transfer

    CERN Multimedia

    A theoretical framework is described, allowing to determine the fission barrier height using the observed cross sections of fission induced by the (d,p)-transfer with accuracy, which is not achievable in another type of low-energy fission of neutron-deficient nuclei, the $\\beta$-delayed fission. The primary goal is to directly determine the fission barrier height of proton-rich fissile nuclei, preferably using the radio-active beams of isotopes of odd elements, and thus confirm or exclude the low values of fission barrier heights, typically extracted using statistical calculations in the compound nucleus reactions at higher excitation energies. Calculated fission cross sections in transfer reactions of the radioactive beams show sufficient sensitivity to fission barrier height. In the probable case that fission rates will be high enough, mass asymmetry of fission fragments can be determined. Results will be relevant for nuclear astrophysics and for production of super-heavy nuclei. Transfer induced fission of...

  9. Direct measurements of (p, {gamma}) cross-sections at astrophysical energies using radioactive beams and the Daresbury Recoil Separator

    Energy Technology Data Exchange (ETDEWEB)

    Bardayan, D.W.; Nesaraja, C.D.; Smith, M.S. [Oak Ridge National Laboratory, Physics Division, Oak Ridge, TN (United States); Chipps, K.A.; Greife, U. [Colorado School of Mines, Department of Physics, Golden, CO (United States); Fitzgerald, R.P.; Champagne, A.E. [University of North Carolina, Department of Physics and Astronomy, Chapel Hill, NC (United States); Blackmon, J.C. [Oak Ridge National Laboratory, Physics Division, Oak Ridge, TN (United States); Louisiana State University, Department of Physics and Astronomy, Baton Rouge, LA (United States); Chae, K.Y.; Moazen, B.H.; Pittman, S.T. [University of Tennessee, Department of Physics and Astronomy, Knoxville, TN (United States); Hatarik, R.; Peters, W.A. [Rutgers University, Department of Physics and Astronomy, New Brunswick, NJ (United States); Kozub, R.L.; Shriner, J.F. [Tennessee Technological University, Physics Department, Cookeville, TN (United States); Matei, C. [Oak Ridge Associated Universities, Oak Ridge, TN (United States); Pain, S.D. [Oak Ridge National Laboratory, Physics Division, Oak Ridge, TN (United States); Rutgers University, Department of Physics and Astronomy, New Brunswick, NJ (United States)

    2009-12-15

    There are a number of astrophysical environments in which the path of nucleosynthesis proceeds through proton-rich nuclei. These nuclei have traditionally not been available as beams, and thus proton-capture reactions on these nuclei could only be studied indirectly. At the Holifield Radioactive Ion Beam Facility (HRIBF), some of the first direct measurements of (p,{gamma}) cross-sections on radioactive beams have been made. The Daresbury Recoil Separator (DRS) has been used to separate the recoils of interest from the unreacted primary beam and identify them in an isobutane-filled ionization counter. First data from {sup 17}F (p,{gamma}){sup 18}Ne and {sup 7}Be(p,{gamma}){sup 8}B measurements are presented. (orig.)

  10. Theoretical Studies of Proton Radioactivity

    Institute of Scientific and Technical Information of China (English)

    Ldia S Ferreira; Enrico Maglione

    2016-01-01

    In the paper, we will discuss the most recent theoretical approaches developed by our group, to understand the mechanisms of decay by one proton emission, and the structure and shape of exotic nuclei at the limits of stability.

  11. Structure and reactions of drip-line nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, P.G. [Michigan State Univ., East Lansing, MI (United States)

    1996-12-31

    Secondary radioactive beams produced at intermediate-energy heavy-ion accelerators have in a short time span added a new dimension to the research on nuclear species at the limits of particle stability, and new detection techniques have made it possible to study reactions caused by incident beams of as little as one particle per second. Imminent developments such as the M.S.U. Coupled-Cyclotron Facility are expected to extend the range and to permit the observation of many previously inaccessible species. For a perspective on the progress in this area one only needs to go about fifteen years back to a time when it had just become possible to study the radioactivity of rare nuclear species such as {sup 11}Li. In presenting early experiments with secondary beams produced in fragmentation James Symons said {open_quotes}... In the introduction to this paper we questioned the applicability of high-energy heavy-ion accelerators to this field. Our experience at the Bevalac leads us to believe that this question does indeed have a positive answer. If the physics interest justifies it, then high-energy heavy-ion beams can certainly be expected to play a role in the study of nuclei at the limits of stability.{close_quotes} At the time, very few, if any, realized how prophetic this remark was. In the present paper the interpretation of the longitudinal-momentum distributions from the nuclear fragmentation of single-nucleon halos is discussed. It is pointed out that these measurements, at least for the cases studied so far, directly reflect the halo wave function, and that there is no direct contribution from the reaction mechanism. This is an important difference from the radial momentum distributions, for which diffractive processes play an important role. The author discusses stripping reactions of {sup 11}Be and {sup 8}B on light nuclei yielding {sup 10}Be and {sup 7}Be.

  12. Radioactive decay data tables

    Energy Technology Data Exchange (ETDEWEB)

    Kocher, D.C.

    1981-01-01

    The estimation of radiation dose to man from either external or internal exposure to radionuclides requires a knowledge of the energies and intensities of the atomic and nuclear radiations emitted during the radioactive decay process. The availability of evaluated decay data for the large number of radionuclides of interest is thus of fundamental importance for radiation dosimetry. This handbook contains a compilation of decay data for approximately 500 radionuclides. These data constitute an evaluated data file constructed for use in the radiological assessment activities of the Technology Assessments Section of the Health and Safety Research Division at Oak Ridge National Laboratory. The radionuclides selected for this handbook include those occurring naturally in the environment, those of potential importance in routine or accidental releases from the nuclear fuel cycle, those of current interest in nuclear medicine and fusion reactor technology, and some of those of interest to Committee 2 of the International Commission on Radiological Protection for the estimation of annual limits on intake via inhalation and ingestion for occupationally exposed individuals.

  13. Cluster radioactivity and very asymmetric fission through quasi-molecular shapes

    Energy Technology Data Exchange (ETDEWEB)

    Royer, G. [Centre National de la Recherche Scientifique, 44 - Nantes (France). Lab. de Physique Subatomique et des Technologies Associees; Gupta, R.K. [Panjab Univ., Chandigarh (India). Dept. of Physics; Denisov, V.Yu. [Akademyiya Nauk Ukrayini, Kiev (Ukraine)

    1997-12-31

    The decay of radioactive nuclei which emit heavy clusters like C, O, Ne, Mg and Si has been studied in the fission valley which leads one spherical nucleus towards two spherical touching nuclei before crossing the barrier. Assuming volume conservation, the deformation energy has been calculated within a generalized liquid drop model taking into account the proximity effects between the cluster and the daughter nucleus. The theoretical partial half-lives obtained within the WKB barrier penetration probability are in good agreement with the experimental data for the heaviest clusters. The Ne, Mg and Si emission looks like a very-asymmetric spontaneous fission. The {sup 14}C radioactivity is not correctly described within the fission hypothesis. The {sup 14}C and apparently also the {sup 20}O are probably pre-born in the parent nucleus, the emission being similar to the {alpha} decay process. (author). 27 refs.

  14. Trapping of radioactive {sup 21}Na

    Energy Technology Data Exchange (ETDEWEB)

    Kruithof, Wilbert L.; Hoek, Duurt J. van der; Giri, Gouri S.; Hoekstra, Ronnie; Hoekstra, Steven; Jungmann, Klaus; Onderwater, Gerco; Santra, Bodhaditya; Shildling, Praveen D.; Sohani, Moslem; Versolato, Oscar O.; Willmann, Lorenz; Wilschut, Hans W. [Kernfysisch Versneller Instituut, University Groningen (Netherlands)

    2010-07-01

    Radioactive {sup 21}Na atoms in a magneto-optical trap (MOT) provide an excellent opportunity to search for non-Standard Model contributions in the weak interactions. In particular, correlations between the {beta}-particle and the neutrino are sensitive to time reversal symmetry violating effects. The Na isotope is produced at the TRI{mu}P facility of the KVI using intense {sup 20}Ne beams from the AGOR cyclotron on a cooled deuterium target. The isotopes are stopped and re-thermalized in a Thermal Ionizer. They are transported as a low energy ion beam to a MOT cell where they are neutralized and subsequently captured by laser light. The trapped Na atoms will be transferred to a second MOT which is placed inside a reaction microscope to measure the momentum distribution of the recoiling daughter nuclei after the {beta}-decay. The {beta}-particle will be detected in a scintillation detector. These two devices have been characterized. A pulsed UV laser was used to ionize trapped Na atoms in order to simulate the {beta}-decay in the reaction microscope. The momentum distribution of the recoil ions is measured. The setup of the whole experiment will be presented.

  15. Radioactive waste material melter apparatus

    Science.gov (United States)

    Newman, D.F.; Ross, W.A.

    1990-04-24

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another. 8 figs.

  16. Environmental radioactivity survey in Suwon

    Energy Technology Data Exchange (ETDEWEB)

    Park, Won Keun; Park, Jong Mi [Kyunghee Univ., Suwon (Korea, Republic of)

    2003-12-15

    The project is carried out to monitor the change of environmental radioactivity in Suwon, and to provide a systematic data for radiation monitoring and counter measurement at a radiological emergency situation. Also the survey of natural environmental radioactivities in the samples was conducted to make the reliable data base for evaluation of internal exposure and environmental contamination of radiation. This report contains the data of gamma exposure rates and radioactivities of airborne dust, fallout, precipitation and tap water which were analyzed periodically by Suwon regional monitoring station m 2003. Also it contains the data of natural radioactivity levels of environmental samples such as soil, drinking water, indicator plant(mugwort, pine-needle), agricultural and forest products, and processed food(tea)

  17. Consumer Products Containing Radioactive Materials

    Science.gov (United States)

    ... 2010 Health Physics Society Specialists in Radiation Safety Consumer Products Containing Radioactive Materials Everything we encounter in ... eat, the ground we walk upon, and the consumer products we purchase and use. Although many might ...

  18. Radioactive Iodine Treatment for Hyperthyroidism

    Science.gov (United States)

    ... Iodine for Hyperthyroidism Fact Sheet Radioactive Iodine for Hyperthyroidism April, 2012 Download PDFs English Zulu Espanol Editors ... V. Hennessey, MD Leonard Wartofsky, MD What is hyperthyroidism? The thyroid gland, located at the front of ...

  19. Naturally Occurring Radioactive Materials (NORM)

    Energy Technology Data Exchange (ETDEWEB)

    Gray, P. [ed.

    1997-02-01

    This paper discusses the broad problems presented by Naturally Occuring Radioactive Materials (NORM). Technologically Enhanced naturally occuring radioactive material includes any radionuclides whose physical, chemical, radiological properties or radionuclide concentration have been altered from their natural state. With regard to NORM in particular, radioactive contamination is radioactive material in an undesired location. This is a concern in a range of industries: petroleum; uranium mining; phosphorus and phosphates; fertilizers; fossil fuels; forestry products; water treatment; metal mining and processing; geothermal energy. The author discusses in more detail the problem in the petroleum industry, including the isotopes of concern, the hazards they present, the contamination which they cause, ways to dispose of contaminated materials, and regulatory issues. He points out there are three key programs to reduce legal exposure and problems due to these contaminants: waste minimization; NORM assesment (surveys); NORM compliance (training).

  20. Radioactivity of the Cooling Water

    Science.gov (United States)

    Wigner, E. P.

    1943-03-01

    The most important source of radioactivity at the exit manifold of the pile will be due to O{sup 19}, formed by neutron absorption of O{sup 18}. A recent measurement of Fermi and Weil permits to estimate that it will be safe to stay about 80 minutes daily close to the exit manifolds without any shield. Estimates are given for the radioactivities from other sources both in the neighborhood and farther away from the pile.

  1. Atomic Batteries: Energy from Radioactivity

    OpenAIRE

    Kumar, Suhas

    2015-01-01

    With alternate, sustainable, natural sources of energy being sought after, there is new interest in energy from radioactivity, including natural and waste radioactive materials. A study of various atomic batteries is presented with perspectives of development and comparisons of performance parameters and cost. We discuss radioisotope thermal generators, indirect conversion batteries, direct conversion batteries, and direct charge batteries. We qualitatively describe their principles of operat...

  2. Final disposal of radioactive waste

    OpenAIRE

    Freiesleben H.

    2013-01-01

    In this paper the origin and properties of radioactive waste as well as its classification scheme (low-level waste – LLW, intermediate-level waste – ILW, high-level waste – HLW) are presented. The various options for conditioning of waste of different levels of radioactivity are reviewed. The composition, radiotoxicity and reprocessing of spent fuel and their effect on storage and options for final disposal are discussed. The current situation of final waste disposal in a selected number of c...

  3. Predicted halflives for cluster radioactivities

    Science.gov (United States)

    Poenaru, D. N.; Greiner, W.; Ivascu, M.

    1989-10-01

    The main results of the analytical superasymmetric fission model, describing in a unified manner cluster radioactivities, alpha-decay and cold fission processes, are briefly reviewed. Predicted halflives for 14C, 24, 25, 26Ne, 28, 30Mg and 32Si radioactivities in the range 10 11-10 26 s and the corresponding branching ratios relative to α-decay 10 -16 - 10 -9 have been experimentally confirmed within 1.5 orders of magnitude.

  4. Radioactive waste engineering and management

    CERN Document Server

    Nakayama, Shinichi

    2015-01-01

    This book describes essential and effective management for reliably ensuring public safety from radioactive wastes in Japan. This is the first book to cover many aspects of wastes from the nuclear fuel cycle to research and medical use, allowing readers to understand the characterization, treatment and final disposal of generated wastes, performance assessment, institutional systems, and social issues such as intergenerational ethics. Exercises at the end of each chapter help to understand radioactive waste management in context.

  5. 146Gd and 144Sm excited by the (p,t) reaction on radioactive targets

    NARCIS (Netherlands)

    Flynn, E.R.; Plicht, J. van der; Wilhelmy, J.B.; Mann, L.G.; Struble, G.L.; Lanier, R.G.

    1983-01-01

    The (p,t) reaction has been used to study the closed-shell nuclei 146Gd and 144Sm, the former exhibiting some characteristics of a doubly closed shell. Exotic radioactive targets of 148Gd (t1/2 = 75 yr) and 146Sm (t1/2 = 7×10^7 yr) obtained from chemical and isotope separation of irradiated beam-sto

  6. Half-lives for α and cluster radioactivity in a simple model

    Science.gov (United States)

    Zdeb, A.; Warda, M.; Pomorski, K.

    2013-05-01

    A simple phenomenological model based on the WKB theory for the evaluation of half-lives for α and cluster radioactivity is proposed. The model contains only one adjustable parameter, the nuclear radius constant, common for both kinds of decay and three additional hindrance factors for odd-even, even-odd and odd-odd nuclei. A good agreement with the experimental data is achieved.

  7. Tensor Effect on Bubble Nuclei

    Institute of Scientific and Technical Information of China (English)

    WANG Yan-Zhao; GU Jian-Zhong; ZHANG Xi-Zhen; DONG Jian-Min

    2011-01-01

    In the framework of the Hartree-Fock-Bogoliubov (HFB) approach with Skyrme interactions SLy5+T, SLy5+Tw and several sets of TIJ parametrizations, I.e. The Skyrme interaction parametrizations including the tensor terms, the proton density distribution in 34Si and 46Ar nuclei is calculated with and without the tensor force. It is shown that the bubble effect in 34Si does not depend a great deal on the Skyrme parametrization and the proton density distribution in 34Si is hardly influenced by the tensor force. As to 46Ar, the SLy5+Tw parametrization favors the formation of the bubble structure due to the inversion between the 2s1/2 and 1d3/2 orbits (2s1/2-ld3/2 inversion). The inversion mechanism induced by the SLy5+Tw interaction is analyzed based on the proton single-particle spectra obtained from the SLy5 and SLy5+Tw interactions as well as the wave functions of the 2s1/2 and 1d3/2 states.%In the framework of the Hartree-Fock-Bogoliubov (HFB) approach with Skyrme interactions SLy5+ T,SLy5+ Tω and several sets of TIJ parametrizations,i.e.the Skyrme interaction pararmetrizations including the tensor terms,the proton density distribution in 34Si and 46 Ar nuclei is calculated with and without the tensor force.It is shown that the bubble effect in 34Si does not depend a great deal on the Skyrme parametrization and the proton density distribution in 34Si is hardly influenced by the tensor force.As to 46Ar,the SLy5+ Tω parametrization favors the formation of the bubble structure due to the inversion between the 2s1/2 and 1d3/2 orbits (2s1/2-1d3/2 inversion).The inversion mechanism induced by the SLy5+ Tω interaction is analyzed based on the proton single-particle spectra obtained from the SLy5 and SLy5+ Tω interactions as well as the wave functions of the 2s1/2 and 1d3/2 states.The study of exotic nuclear structures has been a hot topic in nuclear physics.[1-4] Exotic nuclei are unstabile,superheavy nuclei,halo nuclei and so forth,whose structures are quite different

  8. Decay spectroscopy of N < Z nuclei around 100Sn

    Science.gov (United States)

    Park, Joochun (Jason); Eurica Collaboration

    2016-09-01

    Many interesting topics in both nuclear structure and nuclear astrophysics converge on the doubly-magic nucleus 100Sn and nuclei in its vicinity. Among them are the boundaries of proton dripline, the effect of pn interaction in self-conjugate nuclei, and the decay properties required for rp -process calculations in nucleosynthesis models. Despite many studies, experimental knowledge of these nuclides has remained scarce due to low production cross sections and a lack of intense beams. However, record quantities of exotic N = Z isotopes around 100Sn were produced at RIKEN Radioactive Isotope Beam Factory, via fragmentation of a 124Xe beam on a thin 9Be target. Based on the obtained data, 89Rh and 93Ag have been confirmed to be proton unbound. Half-lives of isotopes near the proton dripline will be presented with improved precision compared to literature values. In addition, strategies to determine Qβ for ft values, and consequently the Fermi/Gamow-Teller transition strengths of these isotope decays will be discussed. Work supported by the Natural Sciences and Engineering Research Council of Canada and the National Research Council of Canada.

  9. ISOL science at the Holifield Radioactive Ion Beam Facility

    Science.gov (United States)

    Beene, J. R.; Bardayan, D. W.; Galindo Uribarri, A.; Gross, C. J.; Jones, K. L.; Liang, J. F.; Nazarewicz, W.; Stracener, D. W.; Tatum, B. A.; Varner, R. L.

    2011-02-01

    The Holifield Radioactive Ion Beam Facility (HRIBF) provides high-quality Isotope Separator Online beams of short-lived, radioactive nuclei for nuclear structure and reaction studies, astrophysics research, and interdisciplinary applications. The primary driver, the Oak Ridge Isochronous Cyclotron, produces rare isotopes by bombarding highly refractory targets with light ions. The radioactive isotopes are ionized, formed into a beam, mass selected, injected into the 25 MV tandem, accelerated, and used in experiments. This paper reviews the HRIBF and its users' science. Note that this manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up irrevocable, world-wide license to publish or reproduce the published form of the manuscript, or allow others to do so, for United States Government purposes.

  10. Double pion photoproduction in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Gomez Tejedor, J.A. [Departamento de Fisica Teorica, Valencia (Spain); Vicente-Vacas, M.J. [Departamento de Fisica Teorica, Valencia (Spain); Oset, E. [Departamento de Fisica Teorica, Valencia (Spain)

    1995-06-19

    The inclusive A({gamma},{pi}{sup +}{pi}{sup -})X reaction is studied theoretically. A sizable enhancement of the cross section is found, in comparison with the scaling of the deuteron cross section ({sigma}{sub d} A/2). This enhancement is due to the modifications in the nuclear medium of the {gamma}N {yields}{pi}{pi}N amplitude and the pion dispersion relation. The enhancement is found to be bigger than the one already observed in the ({pi},{pi}{pi}) reaction in nuclei. ((orig.)).

  11. Breakup Densities of Hot Nuclei.

    Science.gov (United States)

    Viola, Vic

    2006-04-01

    Breakup densities of hot ^197Au-like residues have been deduced from the systematic trends of Coulomb parameters required to fit intermediate-mass-fragment kinetic-energy spectra. The results indicate emission from nuclei near normal nuclear density below an excitation energy E*/A .3ex˜x 5 MeV. Temperatures derived from these data with a density-dependent Fermi-gas model yield a nuclear caloric curve that is generally consistent with those derived from isotope ratios.

  12. Microscopic properties of superdeformed nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Lennart B

    1999-04-01

    Many high spin rotational bands in superdeformed nuclei have been found in the A 140 - 150 region, but so far no linking transitions to known normal-deformed states have been found in these nuclei. Therefore, configuration and spin assignments have to be based on indirect spectroscopic information. Identical bands were first discovered in this region of superdeformed states. At present, some identical bands have also been found at normal deformation, but such bands are more common at superdeformation. Recently lifetime measurements have given relative quadrupole moments with high accuracy. Spectroscopic quantities are calculated using the configuration constrained cranked Nilsson-Strutinsky model with the modified oscillator potential. In a statistical study the occurrence of identical bands is tested. Comparing superdeformed and normal deformed nuclei, the higher possibility for identical bands at superdeformation is understood from calculated reduced widths of the E{sub {gamma}} and J{sup (2)} distributions. The importance of high-N orbitals for identical bands is also discussed. Additivity of electric quadrupole moment contributions in the superdeformed A - 150 region is discussed with the nucleus {sup 152}Dy as a `core`. In analytic harmonic oscillator calculations, the effective electric quadrupole moment q{sub eff}, i.e. the change in the total quadrupole moment caused by the added particle, is expressed as a simple function of the single-particle mass, quadrupole moment q{sub {nu}}. Also in realistic calculations, simple relations between q{sub eff} and q{sub {nu}} can be used to estimate the total electric quadrupole moment, e.g. for the nucleus {sup 142}Sm, by adding the effect of 10 holes, to the total electric quadrupole moment of {sup 152}Dy. Furthermore, tools are given for estimating the quadrupole moment for possible configurations in the superdeformed A - 150 region. For the superdeformed region around {sup 143}Eu, configuration and spin assignments

  13. Endangered and Extinct Radioactivity

    Science.gov (United States)

    Leising, M. D.

    1993-07-01

    Gamma ray spectroscopy holds great promise for probing nucleosynthesis in individual nucleosynthesis events, via observations of short-lived radioactivity, and for measuring global galactic nucleosynthesis today with detections of longer-lived radioactivity. Many of the astrophysical issues addressed by these observations are precisely those that must be understood in order to interpret observations of extinct radioactivity in meteorites. It was somewhat surprising that the former case was realized first for a Type II supernova, when both 56Co [1] and 57Co [2] were detected in SN 1987A. These provide unprecedented constraints on models of Type II explosions. Live 26Al in the galaxy might come from Type II supernovae and their progenitors, and if this is eventually shown to be the case, can constrain massive star evolution, supernova nucleosynthesis, the galactic Type II supernova rate, and even models of the chemical evolution of the galaxy [3]. Titanium-44 is produced primarily in the alpha-rich freezeout from nuclear statistical equilibrium, possibly in Type Ia [4] and almost certainly in Type II supernovae [5]. The galactic recurrence time of these events is comparable to the 44Ti lifetime, so we expect to be able to see at most a few otherwise unseen 44Ti remnants at any given time. No such remnants have been detected yet [6]. Very simple arguments lead to the expectation that about 4 x 10^-4 M(sub)solar mass of 44Ca are produced per century. The product of the supernova frequency times the 44Ti yield per event must equal this number. Even assuming that only the latest event would be seen, rates in excess of 2 century^-1 are ruled out at >=99% confidence by the gamma ray limits. Only rates less than 0.3 century^-1 are acceptable at >5% confidence, and this means that the yield per event must be >10^-3 M(sub)solar mass to produce the requisite 44Ca. Rates this low are incompatible with current estimates for Type II supernovae and yields this high are also very

  14. Management of radioactive waste: A review

    Directory of Open Access Journals (Sweden)

    Luis Paulo Sant'ana

    2016-06-01

    Full Text Available The issue of disposal of radioactive waste around the world is not solved by now and the principal reason is the lack of an efficient technologic system. The fact that radioactive waste decays of radioactivity with time are the main reasons for setting nuclear or radioactive waste apart from the other common hazardous wastes management. Radioactive waste can be classified according to the state of matter and level of radioactivity and this classification can be differently interpreted from country to country. Furthermore, microbiological procedures, plasma vitrification process, chemical precipitation, ion exchange, evaporation and reverse osmosis are strategies used for the treatment of radioactive wastes. The major challenge is to manage these radioactive substances after being used and discharged. This report brings data from the literature published worldwide from 2009 to 2014 on radioactive waste management studies and it covers production, classification and management of radioactive solid, liquid and gas waste.

  15. Fission and Properties of Neutron-Rich Nuclei

    Science.gov (United States)

    Hamilton, Joseph H.; Ramayya, A. V.; Carter, H. K.

    2008-08-01

    Opening session. Nuclear processes in stellar explosions / M. Wiescher. In-beam [symbol]-ray spectroscopy of neutron-rich nuclei at NSCL / A. Gade -- Nuclear structure I. Shell-model structure of neutron-rich nuclei beyond [symbol]Sn / A. Covello ... [et al.]. Shell structure and evolution of collectivity in nuclei above the [symbol]Sn core / S. Sarkar and M. S. Sarkar. Heavy-ion fusion using density-constrained TDHF / A. S. Umar and V. E. Oberacker. Towards an extended microscopic theory for upper-fp shell nuclei / K. P. Drumev. Properties of the Zr and Pb isotopes near the drip-line / V. N. Tarasov ... [et al.]. Identification of high spin states in [symbol] Cs nuclei and shell model calculations / K. Li ... [et al.]. Recent measurements of spherical and deformed isomers using the Lohengrin fission-fragment spectrometer / G. S. Simpson ... [et al.] -- Nuclear structure II. Nuclear structure investigation with rare isotope spectroscopic investigations at GSI / P. Boutachkov. Exploring the evolution of the shell structures by means of deep inelastic reactions / G. de Anaelis. Probing shell closures in neutron-rich nuclei / R. Krücken for the S277 and REX-ISOLDEMINIBALL collaborations. Structure of Fe isotopes at the limits of the pf-shell / N. Hoteling ... [et al.]. Spectroscopy of K isomers in shell-stabilized trans-fermium nuclei / S. K. Tandel ... [et al.] -- Radioactive ion beam facilities. SPIRAL2 at GANIL: a world leading ISOL facility for the next decade / S. Gales. New physics at the International Facility for Antiproton and Ion Research (FAIR) next to GSI / I. Augustin ... [et al.]. Radioactive beams from a high powered ISOL system / A. C. Shotter. RlKEN RT beam factory / T. Motobayashi. NSCL - ongoing activities and future perspectives / C. K. Gelbke. Rare isotope beams at Argonne / W. F. Henning. HRIBF: scientific highlights and future prospects / J. R. Beene. Radioactive ion beam research done in Dubna / G. M. Ter-Akopian ... [et al.] -- Fission I

  16. TASISpec-A highly efficient multi-coincidence spectrometer for nuclear structure investigations of the heaviest nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, L.-L., E-mail: lla@ns.ph.liv.ac.u [University of Liverpool, Oliver Lodge Laboratory, Liverpool L69 7ZE (United Kingdom); Rudolph, D.; Golubev, P. [Lund University, S-22100 Lund (Sweden); Herzberg, R.-D. [University of Liverpool, Oliver Lodge Laboratory, Liverpool L69 7ZE (United Kingdom); Hoischen, R. [Lund University, S-22100 Lund (Sweden); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Merchan, E. [Lund University, S-22100 Lund (Sweden); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Universidad Nacional de Colombia, Bogota (Colombia); Ackermann, D.; Duellmann, Ch.E. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Eberhardt, K.; Even, J. [Johannes Gutenberg-Universitaet Mainz, D-55128 Mainz (Germany); Gerl, J.; Hessberger, F.P.; Jaeger, E.; Khuyagbaatar, J.; Kojouharov, I. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Kratz, J.V. [Johannes Gutenberg-Universitaet Mainz, D-55128 Mainz (Germany); Krier, J.; Kurz, N.; Prokopowicz, W.; Schaedel, M. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany)

    2010-10-01

    TASISpec (TASCA in Small Image mode Spectroscopy) combines composite Ge- and Si-detectors for a new detector setup aimed towards multi-coincidence {gamma}-ray, X-ray, conversion electron, fission fragment, and {alpha}-particle spectroscopy of the heaviest nuclei. It exploits the TASCA separator's unique small image focal mode, i.e. the fact that evaporation residues produced in fusion-evaporation reactions can be focused into an area of less than 3 cm in diameter. This provides the possibility to pack detectors in very close geometry, resulting in an unprecedented detection efficiency of radioactive decays in prompt and delayed coincidence with implanted nuclei.

  17. Bound Nucleon Form Factors, Quark-Hadron Duality, and Nuclear EMC Effect

    CERN Document Server

    Tsushima, K; Melnitchouk, W; Saitô, K; Thomas, A W

    2003-01-01

    We discuss the electromagnetic form factors, axial form factors, and structure functions of a bound nucleon in the quark-meson coupling (QMC) model. Free space nucleon form factors are calculated using the improved cloudy bag model (ICBM). After describing finite nuclei and nuclear matter in the quark-based QMC model, we compute the in-medium modification of the bound nucleon form factors in the same framework. Finally, limits on the medium modification of the bound nucleon $F_2$ structure function are obtained using the calculated in-medium electromagnetic form factors and local quark-hadron duality.

  18. Statistical properties of warm nuclei: Investigating the low-energy enhancement in the $\\gamma$- strength function of neutron-rich nuclei

    CERN Multimedia

    We propose to start a program to study the $\\gamma$-ray strength function of neutron rich nuclei in inverse kinematics with radioactive beams at HIE-ISOLDE. An unexpected increase in the $\\gamma$-strength function at low energy has been observed in several stable nuclei using the Oslo method. This year these results were confirmed with a different experimental technique and model independent analysis developed by iThemba/Livermore. If this enhancement of the $\\gamma$-strength function is also present in neutron-rich nuclei, it will strongly affect the neutron capture cross sections, which are important input in stellar models of synthesis of heavier elements in stars. We propose to start with an experiment using a $^{66}$Ni beam of 5.5 MeV /u, where the data will be analyzed using both methods independently, and we are sure to get enough statistics, before moving to more neutron-rich nuclei. When/if neutron-rich Ti, Fe or Mo beams will be available at ISOLDE, we will submit additional proposals.

  19. Thermal instability of cell nuclei

    Science.gov (United States)

    Warmt, Enrico; Kießling, Tobias R.; Stange, Roland; Fritsch, Anatol W.; Zink, Mareike; Käs, Josef A.

    2014-07-01

    DNA is known to be a mechanically and thermally stable structure. In its double stranded form it is densely packed within the cell nucleus and is thermo-resistant up to 70\\:^\\circ {\\rm{C}}. In contrast, we found a sudden loss of cell nuclei integrity at relatively moderate temperatures ranging from 45 to 55\\:^\\circ {\\rm{C}}. In our study, suspended cells held in an optical double beam trap were heated under controlled conditions while monitoring the nuclear shape. At specific critical temperatures, an irreversible sudden shape transition of the nuclei was observed. These temperature induced transitions differ in abundance and intensity for various normal and cancerous epithelial breast cells, which clearly characterizes different cell types. Our results show that temperatures slightly higher than physiological conditions are able to induce instabilities of nuclear structures, eventually leading to cell death. This is a surprising finding since recent thermorheological cell studies have shown that cells have a lower viscosity and are thus more deformable upon temperature increase. Since the nucleus is tightly coupled to the outer cell shape via the cytoskeleton, the force propagation of nuclear reshaping to the cell membrane was investigated in combination with the application of cytoskeletal drugs.

  20. Selfconsistent calculations for hyperdeformed nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Molique, H.; Dobaczewski, J.; Dudek, J.; Luo, W.D. [Universite Louis Pasteur, Strasbourg (France)

    1996-12-31

    Properties of the hyperdeformed nuclei in the A {approximately} 170 mass range are re-examined using the self-consistent Hartree-Fock method with the SOP parametrization. A comparison with the previous predictions that were based on a non-selfconsistent approach is made. The existence of the {open_quotes}hyper-deformed shell closures{close_quotes} at the proton and neutron numbers Z=70 and N=100 and their very weak dependence on the rotational frequency is suggested; the corresponding single-particle energy gaps are predicted to play a role similar to that of the Z=66 and N=86 gaps in the super-deformed nuclei of the A {approximately} 150 mass range. Selfconsistent calculations suggest also that the A {approximately} 170 hyperdeformed structures have neglegible mass asymmetry in their shapes. Very importantly for the experimental studies, both the fission barriers and the {open_quotes}inner{close_quotes} barriers (that separate the hyperdeformed structures from those with smaller deformations) are predicted to be relatively high, up to the factor of {approximately}2 higher than the corresponding ones in the {sup 152}Dy superdeformed nucleus used as a reference.

  1. Excited nuclei in neutron star crusts

    CERN Document Server

    Takibayev, Nurgali; Nasirova, Diana

    2012-01-01

    The paper considers the chains of successive electron capture reactions by nuclei of the iron group which take place in the crystal structures of neutron star envelopes. It is shown that as a result of such reactions the daughter nuclei in excited states accumulate within certain layers of neutron star crusts. The phonon model of interactions is proposed between the excited nuclei in the crystalline structure, as well as formation of highly excited nuclear states which emit neutrons and higher energy photons.

  2. Improved Range Searching Lower Bounds

    DEFF Research Database (Denmark)

    Larsen, Kasper Green; Nguyen, Huy L.

    2012-01-01

    and Rosenberg's theorem), are also hard for dynamic range searching in the group model. This theorem allows us to reuse decades of research on range reporting lower bounds to immediately obtain a range of new group model lower bounds. Amongst others, this includes an improved lower bound for the fundamental...... problem of dynamic d-dimensional orthogonal range searching, stating that tqtu = Ω((lg n/lg lg n)d-1). Here tq denotes the query time and tu the update time of the data structure. This is an improvement of a lg1-δn factor over the recent lower bound of Larsen [FOCS'11], where δ>0 is a small constant......Table of Contents -------------------------------------------------------------------------------- In this paper we present a number of improved lower bounds for range searching in the pointer machine and the group model. In the pointer machine, we prove lower bounds for the approximate simplex...

  3. On functions of bounded variation

    OpenAIRE

    Aistleitner, Christoph; Pausinger, Florian; Svane, Anne Marie; Tichy, Robert F.

    2015-01-01

    The recently introduced concept of $\\mathcal{D}$-variation unifies previous concepts of variation of multivariate functions. In this paper, we give an affirmative answer to the open question from Pausinger \\& Svane (J. Complexity, 2014) whether every function of bounded Hardy--Krause variation is Borel measurable and has bounded $\\mathcal{D}$-variation. Moreover, we show that the space of functions of bounded $\\mathcal{D}$-variation can be turned into a commutative Banach algebra.

  4. Bounding approaches to system identification

    CERN Document Server

    Norton, John; Piet-Lahanier, Hélène; Walter, Éric

    1996-01-01

    In response to the growing interest in bounding error approaches, the editors of this volume offer the first collection of papers to describe advances in techniques and applications of bounding of the parameters, or state variables, of uncertain dynamical systems. Contributors explore the application of the bounding approach as an alternative to the probabilistic analysis of such systems, relating its importance to robust control-system design.

  5. Upper bounds for centerlines

    CERN Document Server

    Bukh, Boris

    2011-01-01

    In 2008, Bukh, Matousek, and Nivasch conjectured that for every n-point set S in R^d and every k, 0 <= k <= d-1, there exists a k-flat f in R^d (a "centerflat") that lies at "depth" (k+1) n / (k+d+1) - O(1) in S, in the sense that every halfspace that contains f contains at least that many points of S. This claim is true and tight for k=0 (this is Rado's centerpoint theorem), as well as for k = d-1 (trivial). Bukh et al. showed the existence of a (d-2)-flat at depth (d-1) n / (2d-1) - O(1) (the case k = d-2). In this paper we concentrate on the case k=1 (the case of "centerlines"), in which the conjectured value for the leading constant is 2/(d+2). We prove that 2/(d+2) is an *upper bound* for the leading constant. Specifically, we show that for every fixed d and every n there exists an n-point set in R^d for which no line in R^d lies at depth larger than 2n/(d+2) + o(n). This point set is the "stretched grid"---a set which has been previously used by Bukh et al. for other related purposes.

  6. Review of metastable states in heavy nuclei

    Science.gov (United States)

    Dracoulis, G. D.; Walker, P. M.; Kondev, F. G.

    2016-07-01

    The structure of nuclear isomeric states is reviewed in the context of their role in contemporary nuclear physics research. Emphasis is given to high-spin isomers in heavy nuclei, with A≳ 150 . The possibility to exploit isomers to study some of the most exotic nuclei is a recurring theme. In spherical nuclei, the role of octupole collectivity is discussed in detail, while in deformed nuclei the limitations of the K quantum number are addressed. Isomer targets and isomer beams are considered, along with applications related to energy storage, astrophysics, medicine, and experimental advances.

  7. Electroweak Decay Studies of Highly Charged Radioactive Ions with TITAN at TRIUMF

    CERN Document Server

    Leach, K G; Klawitter, R; Leistenschneider, E; Lennarz, A; Brunner, T; Frekers, D; Andreiou, C; Kwiatkowski, A A; Dilling, J

    2016-01-01

    Several modes of electroweak radioactive decay require an interaction between the nucleus and bound electrons within the constituent atom. Thus, the probabilities of the respective decays are not only influenced by the structure of the initial and final states in the nucleus, but can also depend strongly on the atomic charge. Conditions suitable for the partial or complete ionization of these rare isotopes occur naturally in hot, dense astrophysical environments, but can also be artificially generated in the laboratory to selectively block certain radioactive decay modes. Direct experimental studies on such scenarios are extremely difficult due to the laboratory conditions required to generate and store radioactive ions at high charge states. A new electron-beam ion trap (EBIT) decay setup with the TITAN experiment at TRIUMF has successfully demonstrated such techniques for performing spectroscopy on the radioactive decay of highly charged ions.

  8. Laboratory measurement of radioactivity purification for 212Pb in liquid scintillator

    Science.gov (United States)

    Hu, Wei; Fang, Jian; Yu, Bo-Xiang; Zhang, Xuan; Zhou, Li; Cai, Xiao; Sun, Li-Jun; Liu, Wan-Jin; Wang, Lan; Lü, Jun-Guang

    2016-09-01

    Liquid scintillator (LS) has been widely used in past and running neutrino experiments, and is expected also to be used in future experiments. Requirements on LS radio-purity have become higher and higher. Water extraction is a powerful method to remove soluble radioactive nuclei, and a mini-extraction station has been constructed. To evaluate the extraction efficiency and optimize the operation parameters, a setup to load radioactivity to LS and a laboratory scale setup to measure radioactivity using the 212Bi-212Po-208Pb cascade decay have been developed. Experience from this laboratory study will be useful for the design of large scale water extraction plants and the optimization of working conditions in the future. Supported by The Strategic Priority Research Program of the Chinese Academy of Sciences (XDA10010500), Natural Science Foundation of China (11390384)

  9. Physics and Technology for the Next Generation of Radioactive Ion Beam Facilities: EURISOL

    CERN Document Server

    Kadi, Y; Catherall, R; Giles, T; Stora, T; Wenander, F K

    2012-01-01

    Since the discovery of artificial radioactivity in 1935, nuclear scientists have developed tools to study nuclei far from stability. A major breakthrough came in the eighties when the first high energy radioactive beams were produced at Berkeley, leading to the discovery of neutron halos. The field of nuclear structure received a new impetus, and the major accelerator facilities worldwide rivalled in ingenuity to produce more intense, purer and higher resolution rare isotope beams, leading to our much improved knowledge and understanding of the general evolution of nuclear properties throughout the nuclear chart. However, today, further progress is hampered by the weak beam intensities of current installations which correlate with the difficulty to reach the confines of nuclear binding where new phenomena are predicted, and where the r-process path for nuclear synthesis is expected to be located. The advancement of Radioactive Ion Beam (RIB) science calls for the development of so-called next-generation facil...

  10. Quarkonium-nucleus bound states from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Beane, S.  R. [Univ. of Washington, Seattle, WA (United States); Chang, E. [Univ. of Washington, Seattle, WA (United States); Cohen, S.  D. [Univ. of Washington, Seattle, WA (United States); Detmold, W. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Lin, H. -W. [Univ. of Washington, Seattle, WA (United States); Orginos, K. [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Parreño, A. [Univ., de Barcelona, Marti Franques (Spain); Savage, M.  J. [Univ. of Washington, Seattle, WA (United States)

    2015-06-11

    Quarkonium-nucleus systems are composed of two interacting hadronic states without common valence quarks, which interact primarily through multi-gluon exchanges, realizing a color van der Waals force. We present lattice QCD calculations of the interactions of strange and charm quarkonia with light nuclei. Both the strangeonium-nucleus and charmonium-nucleus systems are found to be relatively deeply bound when the masses of the three light quarks are set equal to that of the physical strange quark. Extrapolation of these results to the physical light-quark masses suggests that the binding energy of charmonium to nuclear matter is B < 40 MeV.

  11. Probing single-particle and collective states in atomic nuclei with Coulomb excitation

    CERN Document Server

    DiJulio, Douglas

    A series of experiments and developments, related to stable and radioactive isotopes, have been carried out. These studies have focused on measuring the low-lying excitations of spherical and deformed nuclei using electromagnetic (Coulomb) excitation and also on developments in detector technology for upcoming radioactive ion beams facilities. The low-lying excitations in the nuclei 107,109Sn and 107In have been investigated using low-energy Coulomb excitation at the REX-ISOLDE facility at CERN. The measured reduced transition probabilities were compared to predictions of nuclear structure models. In addition, a relativistic Coulomb excitation experiment was carried out using the FRS at GSI with the nucleus 104Sn. These radioactive ion beam experiments provide important constraints for large-scale-shell-model calculations in the region of the doubly magic nucleus 100Sn. A stable Coulomb excitation experiment was also carried out in order to explore the properties of low-lying structures in the nucleus 170Er...

  12. Theoretical studies of proton capture reactions in A~25 proton-rich nuclei

    Institute of Scientific and Technical Information of China (English)

    QI Chong; DU RenZhong; GAO Yang; ZHU JianYu; XU FuRong

    2009-01-01

    The direct proton capture and resonance proton capture properties of stellar reactions 22Mg(p,γ)23Aland 25Si(p,γ)27P are studied by employing a mean-field potential obtained from the Skyrme-Hartree-Fock (SHF) model.Calculations with the SHF potential reproduce well the loosely-bound structure of the ground states as well as the widths of the resonant states in these nuclei.With the obtained potential we estimate the reaction rates of direct proton capture and resonance proton capture to nuclei 23Al and 27p.The effect of the 27p loosely-bound structure on the S factor of the direct proton capture is also discussed.

  13. Theoretical studies of proton capture reactions in A~25 proton-rich nuclei

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The direct proton capture and resonance proton capture properties of stellar reactions 22Mg(p,γ)23Al and 26Si(p,γ)27P are studied by employing a mean-field potential obtained from the Skyrme-Hartree-Fock(SHF) model.Calculations with the SHF potential reproduce well the loosely-bound structure of the ground states as well as the widths of the resonant states in these nuclei.With the obtained potential we estimate the reaction rates of direct proton capture and resonance proton capture to nuclei 23Al and 27P.The effect of the 27P loosely-bound structure on the S factor of the direct proton capture is also discussed.

  14. Final disposal of radioactive waste

    Directory of Open Access Journals (Sweden)

    Freiesleben H.

    2013-06-01

    Full Text Available In this paper the origin and properties of radioactive waste as well as its classification scheme (low-level waste – LLW, intermediate-level waste – ILW, high-level waste – HLW are presented. The various options for conditioning of waste of different levels of radioactivity are reviewed. The composition, radiotoxicity and reprocessing of spent fuel and their effect on storage and options for final disposal are discussed. The current situation of final waste disposal in a selected number of countries is mentioned. Also, the role of the International Atomic Energy Agency with regard to the development and monitoring of international safety standards for both spent nuclear fuel and radioactive waste management is described.

  15. Low-level Radioactivity Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Hurtgen, C

    2001-04-01

    The objectives of the research performed in the area of low-level radioactivity measurements are (1) to maintain and develop techniques for the measurement of low-level environmental and biological samples, (2) to measure these samples by means of low-background counters (liquid scintillators, proportional counters, ZnS counters, alpha spectrometry), (3) to support and advice the nuclear and non-nuclear industry in matters concerning radioactive contamination and/or low-level radioactivity measurements; (4) to maintain the quality assurance system according to the EN45001/ISO17025 standard; and (5) to assess the internal dose from occupational intakes of radionuclides of workers of the nuclear industry. Progress and achievements in these areas in 2000 are reported.

  16. Low-level Radioactivity Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Hurtgen, C

    2002-04-01

    The objectives of the research performed in the area of low-level radioactivity measurements are (1) to maintain and develop techniques for the measurement of low-level environmental and biological samples, (2) to measure these samples by means of low-background counters (liquid scintillators, proportional counters, ZnS counters, alpha spectrometry), (3) to support and advise the nuclear and non-nuclear industry on problems of radioactive contamination and low-level radioactivity measurements; (4) to maintain and improve the quality assurance system according to the ISO17025 standard; and (5) to assess the internal dose from occupational intakes of radionuclides of workers of the nuclear industry. Progress and achievements in these areas in 2001 are reported.

  17. Formation of $\\phi$ mesic nuclei

    CERN Document Server

    Yamagata-Sekihara, J; Vacas, M J Vicente; Hirenzaki, S

    2010-01-01

    We study the structure and formation of the $\\phi$ mesic nuclei to investigate the in-medium modification of the $\\phi$-meson spectral function at finite density. We consider (${\\bar p},\\phi$), ($\\gamma,p$) and ($\\pi^-,n$) reactions to produce a $\\phi$-meson inside the nucleus and evaluate the effects of its medium modifications to the reaction cross sections. We also estimate the consequences of the uncertainties of the ${\\bar K}$ selfenergy in medium to the $\\phi$-nucleus interaction. We find that it may be possible to see a peak structure in the reaction spectra for the strong attractive potential cases. On the other hand, for strong absorptive interaction cases with relatively weak attractions, it is very difficult to observe clear peaks and we may need to know the spectrum shape in a wide energy region to deduce the properties of $\\phi$.

  18. Inclusive breakup of Borromean nuclei

    CERN Document Server

    Hussein, Mahir S; Frederico, Tobias

    2016-01-01

    We derive the inclusive breakup cross section of a three-fragment projectile nuclei, $a = b +x_1 + x_2$, in the spectator model. The resulting four-body cross section for observing $b$, is composed of the elastic breakup cross section which contains information about the correlation between the two participant fragments, and the inclusive non-elastic breakup cross section. This latter cross section is found to be a non-trivial four-body generalization of the Austern formula \\cite{Austern1987}, which is proportional to a matrix element of the form, $\\langle\\hat{\\rho}_{{x_1},{x_2}}\\left|\\left[W_{{x_1}} + W_{{x_2}} + W_{3B}\\right]\\right|\\hat{\\rho}_{{x_1}, {x_2}}\\rangle$. The new feature here is the three-body absorption, represented by the imaginary potential, $W_{3B}$. We analyze this type of absorption and supply ideas of how to calculate its contribution.

  19. CAVITATION NUCLEI: EXPERIMENTS AND THEORY

    Institute of Scientific and Technical Information of China (English)

    MфRCH K. A.

    2009-01-01

    The Swedish astrophysicist and Nobel Prize winner Hannes Alfvén said: Theories come and go ─ the experiment is here forever. Often a theory, which we set up to describe an observed physical phenomenon, suffers from the lack of knowledge of decisive parameters, and therefore at best the theory becomes insufficient. Contrary, the experiment always reveals nature itself, though at prevailing experimental conditions. With essential parameters being out of control and even maybe unidentified, apparently similar experiments may deviate way beyond our expectations. However, these discrepancies offer us a chance to reflect on the character of the unknown parameters. In this way non-concordant experimental results may hold the key to the development of better theories – and to new experiments for the testing of their validity. Cavitation and cavitation nuclei are phenomena of that character.

  20. Cavitation Nuclei: Experiments and Theory

    DEFF Research Database (Denmark)

    Mørch, Knud Aage

    2009-01-01

    The Swedish astrophysicist and Nobel Prize winner Hannes Alfven said: Theories come and go - the experiment is here forever. Often a theory, which we set up to describe an observed physical phenomenon, suffers from the lack of knowledge of decisive parameters, and therefore at best the theory...... becomes insufficient. Contrary, the experiment always reveals nature itself, though at prevailing experimental conditions. With essential parameters being out of control and even maybe unidentified, apparently similar experiments may deviate way beyond our expectations. However, these discrepancies offer...... us a chance to reflect on the character of the unknown parameters. In this way non-concordant experimental results may hold the key to the development of better theories - and to new experiments for the testing of their validity. Cavitation and cavitation nuclei are phenomena of that character....

  1. Direct Detection of Dark Matter Bound to the Earth

    CERN Document Server

    Catena, Riccardo

    2016-01-01

    We study the properties and direct detection prospects of an as of yet neglected population of dark matter (DM) particles moving in orbits gravitationally bound to the Earth. This DM population is expected to form via scattering by nuclei in the Earth's interior. We compute fluxes and nuclear recoil energy spectra expected at direct detection experiments for the new DM population considering detectors with and without directional sensitivity, and different types of target materials and DM-nucleon interactions. DM particles bound to the Earth manifest as a prominent rise in the low-energy part of the observed nuclear recoil energy spectrum. Ultra-low threshold energies of about 1 eV are needed to resolve this effect. Its shape is independent of the DM-nucleus scattering cross-section normalisation.

  2. Bounds for Asian basket options

    Science.gov (United States)

    Deelstra, Griselda; Diallo, Ibrahima; Vanmaele, Michèle

    2008-09-01

    In this paper we propose pricing bounds for European-style discrete arithmetic Asian basket options in a Black and Scholes framework. We start from methods used for basket options and Asian options. First, we use the general approach for deriving upper and lower bounds for stop-loss premia of sums of non-independent random variables as in Kaas et al. [Upper and lower bounds for sums of random variables, Insurance Math. Econom. 27 (2000) 151-168] or Dhaene et al. [The concept of comonotonicity in actuarial science and finance: theory, Insurance Math. Econom. 31(1) (2002) 3-33]. We generalize the methods in Deelstra et al. [Pricing of arithmetic basket options by conditioning, Insurance Math. Econom. 34 (2004) 55-57] and Vanmaele et al. [Bounds for the price of discrete sampled arithmetic Asian options, J. Comput. Appl. Math. 185(1) (2006) 51-90]. Afterwards we show how to derive an analytical closed-form expression for a lower bound in the non-comonotonic case. Finally, we derive upper bounds for Asian basket options by applying techniques as in Thompson [Fast narrow bounds on the value of Asian options, Working Paper, University of Cambridge, 1999] and Lord [Partially exact and bounded approximations for arithmetic Asian options, J. Comput. Finance 10 (2) (2006) 1-52]. Numerical results are included and on the basis of our numerical tests, we explain which method we recommend depending on moneyness and time-to-maturity.

  3. A Lower Bound on Concurrence

    Institute of Scientific and Technical Information of China (English)

    LIU Li-Guo; TIAN Cheng-Lin; CHEN Ping-Xing; YUAN Nai-Chang

    2009-01-01

    We derive an analytical lower bound on the concurrence for bipartite quantum systems with an improved computable cross norm or realignment criterion and an improved positive partial transpose criterion respectively.Furthermore we demonstrate that our bound is better than that obtained from the local uncertainty relations criterion with optimal local orthogonal observables which is known as one of the best estimations of concurrence.

  4. Induced radioactivity in LDEF components

    Science.gov (United States)

    Harmon, B. A.; Fishman, G. J.; Parnell, T. A.; Laird, C. E.

    1992-01-01

    A systematic study of the induced radioactivity of the Long Duration Exposure Facility (LDEF) is being carried out in order to gather information about the low earth orbit radiation environment and its effects on materials. The large mass of the LDEF spacecraft, its stabilized configuration, and long mission duration have presented an opportunity to determine space radiation-induced radioactivities with a precision not possible before. Data presented include preliminary activities for steel and aluminum structural samples, and activation subexperiment foils. Effects seen in the data show a clear indication of the trapped proton anisotropy in the South Atlantic Anomaly and suggest contributions from different sources of external radiation fluxes.

  5. Predicted halflives for cluster radioactivities

    Energy Technology Data Exchange (ETDEWEB)

    Poenaru, D.N. (Institutul Central de Fizica, Bucharest (Romania); Frankfurt Univ. (Germany, F.R.). Inst. fuer Theoretische Physik); Greiner, W. (Frankfurt Univ. (Germany, F.R.). Inst. fuer Theoretische Physik); Ivascu, M. (Institutul Central de Fizica, Bucharest (Romania))

    1989-10-09

    The main results of the analytical superasymmetric fission model, describing in a unified manner cluster radioactivities, alpha-decay and cold fission processes, are briefly reviewed. Predicted halflives for {sup 14}C, {sup 24,25,26}Ne, {sup 28,30}Mg and {sup 32}Si radioactivities in the range 10{sup 11}-10{sup 26} s and the corresponding branching ratios relative to {alpha}-decay 10{sup -16}-10{sup -9} have been experimentally confirmed within 1.5 orders of magnitude. (orig.).

  6. The ratio method: a new way to look at halo nuclei

    Directory of Open Access Journals (Sweden)

    Capel P.

    2014-03-01

    Full Text Available A new reaction observable is presented to study exotic loosely-bound structures, such as halo nuclei. It consists of the ratio of two angular distributions, e. g. one for breakup and one for elastic scattering. This ratio is nearly independent of the reaction mechanism and is very sensitive to the projectile structure. This new ratio method is illustrated on the particular case of 11Be, the archetypal one-neutron halo nucleus.

  7. Asynchronous Bounded Expected Delay Networks

    CERN Document Server

    Bakhshi, Rena; Fokkink, Wan; Pang, Jun

    2010-01-01

    The commonly used asynchronous bounded delay (ABD) network models assume a fixed bound on message delay. We propose a probabilistic network model, called asynchronous bounded expected delay (ABE) model. Instead of a strict bound, the ABE model requires only a bound on the expected message delay. While the conditions of ABD networks restrict the set of possible executions, in ABE networks all asynchronous executions are possible, but executions with extremely long delays are less probable. In contrast to ABD networks, ABE networks cannot be synchronised efficiently. At the example of an election algorithm, we show that the minimal assumptions of ABE networks are sufficient for the development of efficient algorithms. For anonymous, unidirectional ABE rings of known size N we devise a probabilistic leader election algorithm having average message and time complexity O(N).

  8. Decay of heavy and superheavy nuclei

    Indian Academy of Sciences (India)

    K P Santhosh

    2014-04-01

    We present here, an overview and progress of the theoretical works on the isomeric state decay, decay fine structure of even–even, even–odd, odd–even and odd–odd nuclei, a study on the feasibility of observing decay chains from the isotopes of the superheavy nuclei = 115 in the range 271 ≤ ≤ 294 and the isotopes of = 117 in the range 270 ≤ ≤ 301, within the Coulomb and proximity potential model for deformed nuclei (CPPMDN). The computed half-lives of the favoured and unfavoured decay of nuclei in the range 67 ≤ ≤ 91 from both the ground state and isomeric state, are in good agreement with the experimental data and the standard deviation of half-life is found to be 0.44. From the fine structure studies done on various ranges of nuclei, it is evident that, for nearly all the transitions, the theoretical values show good match with the experimental values. This reveals that CPPMDN is successful in explaining the fine structure of even–even, even–odd, odd–even and odd–odd nuclei. Our studies on the decay of the superheavy nuclei 271−294115 and 270−301117 predict 4 chains consistently from 284,285,286115 nuclei and 5 chains and 3 chains consistently from 288−291117 and 292117, respectively. We thus hope that these studies on 284−286115 and 288−292117 will be a guide to future experiments.

  9. Towards the exact calculation of medium nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Gandolfi, Stefano [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Carlson, Joseph Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lonardoni, Diego [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wang, Xiaobao [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-12-19

    The prediction of the structure of light and medium nuclei is crucial to test our knowledge of nuclear interactions. The calculation of the nuclei from two- and three-nucleon interactions obtained from rst principle is, however, one of the most challenging problems for many-body nuclear physics.

  10. Energy Radiation of the Active Galactic Nuclei

    Institute of Scientific and Technical Information of China (English)

    TANG Zhi-Ming; WANG Yong-Jiu

    2004-01-01

    In the Hellings-Nordtvedt theory, we obtain some expressions of energy radiation and mass defect effect for a kind of the active galactic nuclei, which is meaningful to calculating the energy radiation in the procession of forming this kind of celestial bodies. This calculation can give some interpretation for energy source of the jet from the active galactic nuclei.

  11. Variation of hadron masses in finite nuclei

    CERN Document Server

    Saitô, K; Tsushima, K; Saito, Koichi; Thomas, Anthony W.; Tsushima, Kazuo

    1997-01-01

    Using a self-consistent, Hartree description for both infinite nuclear matter and finite nuclei based on a relativistic quark model (the quark-meson coupling model), we investigate the variation of the masses of the non-strange vector mesons, the hyperons and the nucleon in infinite nuclear matter and in finite nuclei.

  12. Positron production in collision of heavy nuclei

    CERN Document Server

    Khriplovich, I B

    2016-01-01

    We consider the electromagnetic production of positron in collision of slow heavy nuclei, with the simultaneously produced electron captured by one of the nuclei. The cross-section of the discussed process exceeds essentially the cross-section of $e^+e^-$ production.

  13. Partial Dynamical Symmetry in Deformed Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Leviatan, A. [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel)

    1996-07-01

    We discuss the notion of partial dynamical symmetry in relation to nuclear spectroscopy. Explicit forms of Hamiltonians with partial SU(3) symmetry are presented in the framework of the interacting boson model of nuclei. An analysis of the resulting spectrum and electromagnetic transitions demonstrates the relevance of such partial symmetry to the spectroscopy of axially deformed nuclei. {copyright} {ital 1996 The American Physical Society.}

  14. Partial dynamical symmetry in deformed nuclei

    CERN Document Server

    Leviatan, A

    1996-01-01

    We discuss the notion of partial dynamical symmetry in relation to nuclear spectroscopy. Explicit forms of Hamiltonians with partial SU(3) symmetry are presented in the framework of the interacting boson model of nuclei. An analysis of the resulting spectrum and electromagnetic transitions demonstrates the relevance of such partial symmetry to the spectroscopy of axially deformed nuclei.

  15. Mean-field models and exotic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Bender, M.; Buervenich, T.; Maruhn, J.A.; Greiner, W. [Inst. fuer Theoretische Physik, Univ. Frankfurt (Germany); Rutz, K. [Inst. fuer Theoretische Physik, Univ. Frankfurt (Germany)]|[Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Reinhard, P.G. [Inst. fuer Theoretische Physik, Univ. Erlangen (Germany)

    1998-06-01

    We discuss two widely used nuclear mean-field models, the relativistic mean-field model and the (nonrelativistic) Skyrme-Hartree-Fock model, and their capability to describe exotic nuclei. Test cases are superheavy nuclei and neutron-rich Sn isotopes. New information in this regime helps to fix hitherto loosely determined aspects of the models. (orig.)

  16. Isovector multiphonon excitations in near spherical nuclei

    CERN Document Server

    Smirnova, N A; Pietralla, N; Van Isacker, P; Isacker, Piet Van; Mizusaki, Takahiro; Pietralla, Norbert; Smirnova, Nadya A.

    2000-01-01

    The lowest isoscalar and isovector quadrupole and octupole excitations in near spherical nuclei are studied within the the proton-neutron version of the interacting boson model including quadrupole and octupole bosons (sdf-IBM-2). The main decay modes of these states in near spherical nuclei are discussed.

  17. K¯ nuclear bound states in a dynamical model

    Science.gov (United States)

    Mareš, J.; Friedman, E.; Gal, A.

    2006-05-01

    A comprehensive data base of K-atom level shifts and widths is re-analyzed in order to study the density dependence of the K¯-nuclear optical potential. Significant departure from a tρ form is found only for ρ(r)/ρ ≲ 0.2 and extrapolation to nuclear-matter density ρ yields an attractive potential, about 170 MeV deep. Partial restoration of chiral symmetry compatible with pionic atoms and low-energy pion-nuclear data plays no role at the relevant low-density regime, but this effect is not ruled out at densities of order ρ and beyond. K¯-nuclear bound states are generated across the periodic table self consistently, using a relativistic mean-field model Lagrangian which couples the K¯ to the scalar and vector meson fields mediating the nuclear interactions. The reduced phase space available for K¯ absorption from these bound states is taken into account by adding an energy-dependent imaginary term which underlies the corresponding K¯-nuclear level widths, with a strength required by fits to the atomic data. Substantial polarization of the core nucleus is found for light nuclei, and the binding energies and widths calculated in this dynamical model differ appreciably from those calculated for a static nucleus. A wide range of binding energies is spanned by varying the K¯ couplings to the meson fields. Our calculations provide a lower limit of Γ=50±10 MeV on the width of nuclear bound states for K¯-binding energy in the range B˜100-200 MeV. Comments are made on the interpretation of the FINUDA experiment at DAΦNE which claimed evidence for deeply bound Kpp states in light nuclei.

  18. Inward Bound---The Search For Supermassive Black Holes In Galactic Nuclei

    Science.gov (United States)

    Kormendy, John; Richstone, Douglas

    Dynamical searches reveal central dark objects with masses $\\sim 10^6$to $10^{9.5}$ \\msun in the Galaxy, \\m31, \\mm32, M87, NGC 3115, NGC 3377, NGC 4258, and NGC 4594. Indirect arguments suggest but do not prove that these are supermassive black holes (BHs) like those postulated as quasar engines. This paper reviews dynamical search techniques, the robustness of the evidence, and BH demographics. Stellar-dynamical evidence is generally more robust than gas-dynamical evidence (gas velocities can be nongravitational), but gas measurements reach closer to the Schwarzschild radius, and in NGC 4258 they show a Keplerian rotation curve. A statistical survey finds BHs in $\\sim 20\\%$ of nearby E--Sbc galaxies, consistent with predictions based on quasar energetics. BH masses are proportional to the mass of the bulge component. Most candidates are inactive; in some cases, the abundance of fuel is not easily reconciled with BH starvation. Flashes caused by the accretion of individual stars may provide a test of the BH picture.

  19. Inclusive breakup of three-fragment weakly bound and Borromean nuclei

    CERN Document Server

    Carlson, Brett V; Hussein, Mahir S

    2016-01-01

    The inclusive breakup of three-fragment projectiles is discussed within a four-body spectator model. Both the elastic breakup and the non-elastic breakup are obtained in a unified framework. Originally developed in the 80's for two-fragment projectiles such as the deuteron, the theory is successfully generalized to Borromean projectiles. The expression obtained for the inclusive cross section allows the extraction of the incomplete fusion cross section, and accordingly generalizes the surrogate method to cases such as (t,p) and (t,n) reactions. It is found that two-fragment correlations inside the projectile affect in a conspicuous way the elastic breakup cross section. The inclusive non-elastic breakup cross section is found to contain the contribution of a three-body absorption term that is also strongly influenced by the two-fragment correlations.

  20. Pairing-induced localization of the particle continuum in weakly bound nuclei

    CERN Document Server

    Fayans, S A; Zawischa, D

    2000-01-01

    The Hartree-Fock-Bogolyubov (HFB) problem for the cutoff local energy-density functional is solved numerically by using the Gor'kov formalism with an exact treatment of the particle continuum. The contributions from the resonant and "gas" continuum to the spectral density of the HFB eigenstates as well as the shifting and broadening of the discrete HF hole orbitals are clearly demonstrated with the illustrative example of the drip-line nucleus ^{70}Ca. The structure of the neutron density distribution in the localized ground state is analyzed, and the formation of its extended tail ("halo") is shown to be a collective pairing effect.

  1. Total Nuclear Reaction Cross Section Induced by Halo Nuclei and Stable Nuclei

    Institute of Scientific and Technical Information of China (English)

    GUO Wen-Jun; JIANG Huan-Qing; LIU Jian-Ye; ZUO Wei; REN Zhong-Zhou; LEE Xi-Guo

    2003-01-01

    We develop a method for calculation of the total reaction cross sections induced by the halo nuclei and stable. nuclei. This approach is based on the Glauber theory, which is valid for nuclear reactions at high energies. It is extended for nuclear reactions at low energies and intermediate energies by including both the quantum correction and Coulomb correction under the assumption of the effective nuclear density distribution. The calculated results of the total reaction cross section induced by stable nuclei agree well with 30 experimental data within 10 percent accuracy. The comparison between the numerical results and 20 experimental data for the total nuclear reaction cross section induced by the neutron halo nuclei and the proton halo nuclei indicates a satisfactory agreement after considering the halo structure of these nuclei, which implies quite different mean fields for the nuclear reactions induced by halo nuclei and stable nuclei. The halo nucleon distributions and the root-mean-square radii of these nuclei can be extracted from the above comparison based on the improved Glauber model, which indicates clearly the halo structures of these nuclei. Especially,it is clear to see that the medium correction of the nucleon-nucleon collision has little effect on the total reaction cross sections induced by the halo nuclei due to the very weak binding and the very extended density distribution.

  2. Total Nuclear Reaction Cross Section Induced by Halo Nuclei and Stable Nuclei

    Institute of Scientific and Technical Information of China (English)

    GUOWen-Jun; JIANGHuan-Qing; LIUJian-Ye; ZUOWei; RENZhong-Zhou; LEEXi-Guo

    2003-01-01

    We develop a method for calculation of the total reaction cross sections induced by the halo nuclei and stable nuclei. This approach is based on the Glauber theory, which is valid for nuclear reactions at high energies. It is extended for nuclear reactions at low energies and intermediate energies by including both the quantum correction and Coulomb correction under the assumption of the effective nuclear density distribution. The calculated results of the total reaction cross section induced by stable nuclei agree well with 30 experimental data within 10 percent accuracy.The comparison between the numerical results and 20 experimental data for the total nuclear reaction cross section induced by the neutron halo nuclei and the proton halo nuclei indicates a satisfactory agreement after considering the halo structure of these nuclei, which implies quite digerent mean fields for the nuclear reactions induced by halo nuclei and stable nuclei. The halo nucleon distributions and the root-mean-square radii of these nuclei can be extracted from the above comparison based on the improved Glauber model, which indicates clearly the halo structures of these nuclei. Especially,it is clear to see that the medium correction of the nucleon-nucleon collision has little effect on the total reaction cross sections, induced by the halo nuclei due to the very weak binding and the very extended density distribution.

  3. The weak psuedoscalar coupling of the free and the bound protons

    Energy Technology Data Exchange (ETDEWEB)

    Gorringe, T.P. [Univ. of Kentucky, Lexington, KY (United States)

    1995-10-01

    The proton`s weak pseudoscalar coupling, g{sub p} is induced by the effects of its strong interaction on its weak interaction. In the Partially Conserved Axial Current hypothesis g{sub p} is due to single pion exchange between the leptonic and nucleonic currents in semi-leptonic weak processes. It predicts g{sub p} = 8.4 {plus_minus} 0.2 for the free proton but modifications of g{sub p}for the bound proton, due to modifications of the pion field of the bound proton, are possible. We will review the available data on g{sub p} for both the free and the bound proton. In the case of the free proton g{sub p} has been determined from measurements of ordinary (OMC) and radiative muon capture (RMC) on hydrogen. We will discuss the extraction of g{sub p} from the data, the importance of various {mu}-atomic and molecular processes in extracting g{sub p }and compare the results obtained from the OMC and RMC data and experiments in gaseous and liquid H{sub 2}. In the case of the bound proton we will discuss the measurements of ordinary and radiative {mu}{sup -} capture on complex nuclei and the extraction of g{sub p} from these data. The comparison of inclusive RMC and OMC rates on nuclei has led to speculations of a large enhancement of g{sub p} in light nuclei and a large quenching of g{sub p} in heavy nuclei. We will discuss the evidence for and against the renormalization, of g{sub p}in nuclei and the problems of extracting g{sub p} from the nuclear RMC and OMC data.

  4. Keeping an Eye on Radioactivity

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    China sets up a national testing system for levels of radiation from various sources Radioactive iodine had been detected in the air above several regions of China,said China’s National Nuclear Emergency Coordination Committee on March 29.The regions include Heilongjiang

  5. Mass measurement of radioactive isotopes

    CERN Document Server

    Kluge, H J; Scheidenberger, C

    2004-01-01

    The highest precision in mass measurements on short-lived radionuclides is obtained using trapping and cooling techniques. Here, the experimental storage ring (ESR) at GSI/Darmstadt and the tandem Penning trap mass spectrometer ISOLTRAP at ISOLDE/CERN play an important role. Status and recent results on mass measurements of radioactive nuclides with ESR and ISOLTRAP are summarized.

  6. Radioactivity in Dutch consumer products

    CERN Document Server

    Janssen, M P M

    2002-01-01

    This study took place within the framework of a general update of the average radiation dose for the Dutch population. It focuses on consumer products in which radionuclides have been intentionally incorporated and on radiation-emitting devices that can be supplied to members of the public without special surveillance. Eleven consumer products were studied in more detail. The radiation from these products determined 90% of the total collective dose due to consumer products in the Netherlands in 1988. Individual and collective doses are presented here for each product. The total collective dose has decreased from 130 personSv in 1988 to 4.6 personSv at present. This reduction was attributed to: a decrease in the number of radioactive products (gas mantles), lower estimates of the number of radioactive products present in the Netherlands thanks to new information (camera lenses, smoke detectors containing Ra-226), replacement of radioactive by non-radioactive products (gas mantles, dental protheses), and a lowe...

  7. A Good Statistics Study of Antiproton Interactions with Nuclei

    CERN Multimedia

    2002-01-01

    This experiment extends the study of inclusive pion production and the correlation between pions which result from hadron-nucleus collisions at intermediate and high energies to the antiproton-nucleus system. It is part of a long term systematic search for exotic nuclear phenomena. The correlation data will be used to extract, via pion interferometry, the size and coherence of the annihilation source in nuclei. In addition, the reaction @* + A @A p + A* will be studied to look for structure in the proton spectra which antiproton-nucleus bound states.\\\\ \\\\ The experimental system is based on a flexible, broad range, large acceptance (1~steradian) spectrometer which consists of an 80~cm diameter dipole magnet surrounded with detector arrays. These detectors provide momentum, energy loss, Cerenkov and time of flight information for up to ten ejectiles per event. Momentum resolution varies from 1\\% to 3\\%, depending on energy.

  8. Study of the Beta-Decay Properties of Extremely Proton-Rich Nuclei

    CERN Multimedia

    2002-01-01

    The most proton-rich nuclei known to date have isospin projections $ T _{Z} $ ~=~-3/2, -2 and -5/2. \\\\ \\\\ We propose to carry out a study of their superallowed beta decays, a phenomenon that can only be studied in this region of the nuclear chart. The main aim is to determine the ``effective charge'' in nuclei of the axial vector coupling, the quantity $ ( g'_{A} / g _{A} ) ^{2} $ , which in a recent first experiment on a ~~ $ T _{Z} $~~=~-2 nucleus was determined to be 0.49~$\\pm$~0.05. \\\\ \\\\ Because of the problems connected with the production and acceleration of radioactive ions, our proposal aims at selected elements: neon, argon and rubidium (production runs), magnesium (test and production runs) and calcium (test). Data have so far been taken for $^1

  9. Fifth International Conference on Fission and Properties of Neutron-Rich Nuclei

    CERN Document Server

    Ramayya, A V; ICFN5

    2014-01-01

    These proceedings are the fifth in the series of International Conferences covering fission and properties of neutron-rich nuclei, which are at the forefront of nuclear research. The time interval of 5 years between each conference allows for significant new results to be achieved. Recently, world leaders in theory and experiments in research and the development of new facilities for research presented their latest results in areas such as synthesis of superheavy elements, new facilities for and recent results with radioactive ion beams, structure of neutron-rich nuclei, nuclear fission process, fission yields and nuclear astrophysics. This book is a major source of the latest research in these areas and plans for the future. The conference brought together a unique group of over 100 speakers including leaders from the major nuclear laboratories in Canada, China, France, Finland, Germany, Italy, Japan, Russia, Switerzland and the US along with leading research scientists from around the world.

  10. Probing the nuclear symmetry energy with heavy-ion reactions induced by neutron-rich nuclei

    Institute of Scientific and Technical Information of China (English)

    CHEN Lie-wen; KO Che-Ming; LI Bao-an; YONG Gao-chan

    2007-01-01

    Heavy-ion reactions induced by neutron-rich nuclei provide a unique means to investigate the equation of state of isospin-asymmetric nuclear matter,especially the density dependence of the nuclear symmetry energy.In particular,recent analyses of the isospin diffusion data in heavyion reactions have already put a stringent constraint on thenuclear symmetry energy around the nuclear matter saturation density.We review this exciting result and discuss its implications on nuclear effective interactions and the neutron skin thickness of heavy nuclei.In addition,we also review the theoretical progress on probing the high density behaviors of the nuclear symmetry energy in heavy-ion reactions induced by high energy radioactive beams.

  11. Indian programme on radioactive waste management

    Indian Academy of Sciences (India)

    P K Wattal

    2013-10-01

    The primary objective of radioactive waste management is protection of human health, environment and future generation. This article describes, briefly, the Indian programme on management of different radioactive wastes arising in the entire nuclear fuel cycle adhering to this objective.

  12. The Out-bound and In-bound Travelling Market

    Institute of Scientific and Technical Information of China (English)

    Emily Yu

    2009-01-01

    @@ As the Spring Festival of China with a long vocation of seven days nationally is approaching,more and more attention is paid to the out-bound and inn-bound trayeling market.Will people hold their pockets firmly in the"cold winter"of world-wide financial crisis,or will they grab the great discount of traveling and take a good relax?

  13. Direct Reaction Experimental Studies with Beams of Radioactive Tin Ions

    Energy Technology Data Exchange (ETDEWEB)

    Jones, K. L. [University of Tennessee, Knoxville (UTK); Ahn, S.H. [University of Tennessee, Knoxville (UTK); Allmond, James M [ORNL; Ayres, A. [University of Tennessee, Knoxville (UTK); Bardayan, Daniel W [ORNL; Baugher, T. [Michigan State University, East Lansing; Bazin, D. [Michigan State University, National Superconducting Cyclotron Laboratory (NSCL); Beene, James R [ORNL; Berryman, J. S. [Michigan State University, East Lansing; Bey, A. [University of Tennessee, Knoxville (UTK); Bingham, C. R. [University of Tennessee, Knoxville (UTK); Cartegni, L. [University of Tennessee, Knoxville (UTK); Chae, K. Y. [University of Tennessee, Knoxville (UTK)/Sungkyunkwan University, Korea; Cizewski, J. A. [Rutgers University; Gade, A. [Michigan State University, National Superconducting Cyclotron Laboratory (NSCL); Galindo-Uribarri, Alfredo {nmn} [ORNL; Garcia-Ruiz, R.F. [Instituut voor Kernen Stralingsfysica, KU Leuven, B-3001, Leuven, Belgium; Grzywacz, Robert Kazimierz [ORNL; Howard, Meredith E [ORNL; Kozub, R. L. [Tennessee Technological University (TTU); Liang, J Felix [ORNL; Manning, Brett M [ORNL; Matos, M. [Louisiana State University; McDaniel, S. [Michigan State University, East Lansing; Miller, D. [University of Tennessee, Knoxville (UTK); Nesaraja, Caroline D [ORNL; O' Malley, Patrick [Rutgers University; Padgett, S [University of Tennessee, Knoxville (UTK); Padilla-Rodal, Elizabeth [Universidad Nacional Autonoma de Mexico (UNAM); Pain, Steven D [ORNL; Pittman, S. T. [University of Tennessee (UTK) and Oak Ridge National Laboratory (ORNL); Radford, David C [ORNL; Ratkiewicz, Andrew J [ORNL; Schmitt, Kyle [ORNL; Smith, Michael Scott [ORNL; Stracener, Daniel W [ORNL; Stroberg, S. [Michigan State University, East Lansing; Tostevin, Jeffrey A [ORNL; Varner Jr, Robert L [ORNL; Weisshaar, D. [Michigan State University, East Lansing; Wimmer, K. [Michigan State University, National Superconducting Cyclotron Laboratory (NSCL)/Central Michigan University; Winkler, R. [Michigan State University, East Lansing

    2015-01-01

    The tin chain of isotopes provides a unique region in which to investigate the evolution of single-particle structure, spreading from N = 50 at Sn-100, through 10 stable isotopes and the N = 82 shell closure at Sn-132 out into the r-process path. Direct reactions performed on radioactive ion beams are sensitive spectroscopic tools for studying exotic nuclei. Here we present one experiment knocking out neutrons from tin isotopes that are already neutron deficient and two reactions that add a neutron to neutron-rich Sn-130. Both techniques rely on selective particle identification and the measurement of gamma rays in coincidence with charged ions. We present the goals of the two experiments and the particle identification for the channels of interest. The final results will be presented in future publications.

  14. Cross-Section Measurements with the Radioactive Isotope Accelerator (RIA)

    Energy Technology Data Exchange (ETDEWEB)

    Stoyer, M A; Moody, K J; Wild, J F; Patin, J B; Shaughnessy, D A; Stoyer, N J; Harris, L J

    2002-11-19

    RIA will produce beams of exotic nuclei of unprecedented luminosity. Preliminary studies of the feasibility of measuring cross-sections of interest to the science based stockpile stewardship (SBSS) program will be presented, and several experimental techniques will be discussed. Cross-section modeling attempts for the A = 95 mass region will be shown. In addition, several radioactive isotopes could be collected for target production or medical isotope purposes while the main in-beam experiments are running. The inclusion of a broad range mass analyzer (BRAMA) capability at RIA will enable more effective utilization of the facility, enabling the performance of multiple experiments at the same time. This option will be briefly discussed.

  15. Direct reaction experimental studies with beams of radioactive tin ions

    Energy Technology Data Exchange (ETDEWEB)

    Jones, K. L., E-mail: kgrzywac@utk.edu; Ayres, A.; Bey, A.; Burcher, S.; Cartegni, L.; Cerizza, G. [Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996 (United States); Ahn, S. [Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996 (United States); National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Allmond, J. M.; Beene, J. R.; Galindo-Uribarri, A.; Liang, J. F.; Nesaraja, C. D.; Pain, S. D.; Radford, D. C.; Schmitt, K. T.; Smith, M. S.; Stracener, D. W.; Varner, R. L. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Bardayan, D. W. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Baugher, T. [National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Department of Physics and Astronomy, Rutgers University, New Brunswick, NJ 08903 (United States); and others

    2015-10-15

    The tin chain of isotopes provides a unique region in which to investigate the evolution of single-particle structure, spreading from N = 50 at {sup 100}Sn, through 10 stable isotopes and the N = 82 shell closure at {sup 132}Sn out into the r-process path. Direct reactions performed on radioactive ion beams are sensitive spectroscopic tools for studying exotic nuclei. Here we present one experiment knocking out neutrons from tin isotopes that are already neutron deficient and two reactions that add a neutron to neutron-rich {sup 130}Sn. Both techniques rely on selective particle identification and the measurement of γ rays in coincidence with charged ions. We present the goals of the two experiments and the particle identification for the channels of interest. The final results will be presented in future publications.

  16. Fusion probability in heavy nuclei

    Science.gov (United States)

    Banerjee, Tathagata; Nath, S.; Pal, Santanu

    2015-03-01

    Background: Fusion between two massive nuclei is a very complex process and is characterized by three stages: (a) capture inside the potential barrier, (b) formation of an equilibrated compound nucleus (CN), and (c) statistical decay of the CN leading to a cold evaporation residue (ER) or fission. The second stage is the least understood of the three and is the most crucial in predicting yield of superheavy elements (SHE) formed in complete fusion reactions. Purpose: A systematic study of average fusion probability, PCN> , is undertaken to obtain a better understanding of its dependence on various reaction parameters. The study may also help to clearly demarcate onset of non-CN fission (NCNF), which causes fusion probability, PCN, to deviate from unity. Method: ER excitation functions for 52 reactions leading to CN in the mass region 170-220, which are available in the literature, have been compared with statistical model (SM) calculations. Capture cross sections have been obtained from a coupled-channels code. In the SM, shell corrections in both the level density and the fission barrier have been included. PCN> for these reactions has been extracted by comparing experimental and theoretical ER excitation functions in the energy range ˜5 %-35% above the potential barrier, where known effects of nuclear structure are insignificant. Results: PCN> has been shown to vary with entrance channel mass asymmetry, η (or charge product, ZpZt ), as well as with fissility of the CN, χCN. No parameter has been found to be adequate as a single scaling variable to determine PCN> . Approximate boundaries have been obtained from where PCN> starts deviating from unity. Conclusions: This study quite clearly reveals the limits of applicability of the SM in interpreting experimental observables from fusion reactions involving two massive nuclei. Deviation of PCN> from unity marks the beginning of the domain of dynamical models of fusion. Availability of precise ER cross sections

  17. Bounds for Certain Character Sums

    Institute of Scientific and Technical Information of China (English)

    杨锦; 郑志勇

    2003-01-01

    This paper shows a connection between exponential sums and character sums. In particular, we introduce a character sum that is an analog of the classical Kloosterman sums and establish the analogous Weil-Estermann's upper bound for it. The paper also analyzes a generalized Hardy-Littlewood example for character sums, which shows that the upper bounds given here are the best possible. The analysis makes use of local bounds for the exponential sums and character sums. The basic theorems have been previously established.

  18. Combining Alphas via Bounded Regression

    Directory of Open Access Journals (Sweden)

    Zura Kakushadze

    2015-11-01

    Full Text Available We give an explicit algorithm and source code for combining alpha streams via bounded regression. In practical applications, typically, there is insufficient history to compute a sample covariance matrix (SCM for a large number of alphas. To compute alpha allocation weights, one then resorts to (weighted regression over SCM principal components. Regression often produces alpha weights with insufficient diversification and/or skewed distribution against, e.g., turnover. This can be rectified by imposing bounds on alpha weights within the regression procedure. Bounded regression can also be applied to stock and other asset portfolio construction. We discuss illustrative examples.

  19. Bounded Model Checking of CTL

    Institute of Scientific and Technical Information of China (English)

    Zhi-Hong Tao; Cong-Hua Zhou; Zhong Chen; Li-Fu Wang

    2007-01-01

    Bounded Model Checking has been recently introduced as an efficient verification method for reactive systems.This technique reduces model checking of linear temporal logic to propositional satisfiability.In this paper we first present how quantified Boolean decision procedures can replace BDDs.We introduce a bounded model checking procedure for temporal logic CTL* which reduces model checking to the satisfiability of quantified Boolean formulas.Our new technique avoids the space blow up of BDDs, and extends the concept of bounded model checking.

  20. $\\beta$ - decay asymmetry in mirror nuclei: A = 9

    CERN Multimedia

    Axelsson, L E; Smedberg, M

    2002-01-01

    Investigations of light nuclei close to the drip lines have revealed new and intriguing features of the nuclear structure. The occurrence of halo structures in loosely bound systems has had a great impact on the nuclear physics research in the last years. As intriguing but not yet solved is the nature of transitions with very large $\\beta$ - strength. \\\\ \\\\We report here on the investigation of this latter feature by an accurate measurement of the $\\beta$ - decay asymmetry between the mirror nuclei in the A=9 mass chain.\\\\ \\\\The possible asymmetry for the decay to the states around 12 MeV is interesting not only due to the fact that the individual B$_{GT}$ values are large (with large overlap in wave-functions, an unambiguous interpretation is much easier made), but also due to the special role played by this transition for the $^{9}$Li decay. It seems to belong to a class of high-B$_{GT}$ transitions observed at the neutron drip line and has been suggested to be due either to a lowering of the giant Gamow-Te...

  1. Radioactive waste caracterisation by neutron activation

    OpenAIRE

    Nicol, Tangi

    2016-01-01

    Nuclear activities produce radioactive wastes classified following their radioactive level and decay time. An accurate characterization is necessary for efficient classification and management. Medium and high level wastes containing long lived radioactive isotopes will be stored in deep geological storage for hundreds of thousands years. At the end of this period, it is essential to ensure that the wastes do not represent any risk for humans and environment, not only from radioactive point o...

  2. Environmental aspects of commercial radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1979-05-01

    Volume 2 contains chapters 6 through 10: environmental effects related to radioactive waste management associated with LWR fuel reprocessing - mixed-oxide fuel fabrication plant; environmental effects related to transporting radioactive wastes associated with LWR fuel reprocessing and fabrication; environmental effects related to radioactive waste management associated with LWR fuel reprocessing - retrievable waste storage facility; environmental effects related to geologic isolation of LWR fuel reprocessing wastes; and integrated systems for commercial radioactive waste management. (LK)

  3. Half lives for spontaneous emission of heavy ions from atomic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Poenaru, D.N.; Ivascu, M.; Greiner, W.

    1986-01-01

    The analytical superasymmetric fission model is used to estimate the half lives for spontaneous emission of heavy clusters from atomic nuclei. One gets a unified description of the new radioactivities, alpha decay and fission processes. Life-times shorter than 10/sup 30/s are found for the emission of more than 140 different clusters with 2-24 proton numbers and 3-31 neutron numbers. Even the 'stable' nuclides with Z > 40 are metastable with respect to several new decay modes. Solid state nuclear track detectors allow a good discrimination against other disintegration processes.

  4. 46 CFR 147.100 - Radioactive materials.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Radioactive materials. 147.100 Section 147.100 Shipping... Stowage and Other Special Requirements for Particular Materials § 147.100 Radioactive materials. (a) Radioactive materials must not be brought on board, used in any manner, or stored on the vessel, unless...

  5. 49 CFR 175.705 - Radioactive contamination.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Radioactive contamination. 175.705 Section 175.705... Regulations Applicable According to Classification of Material § 175.705 Radioactive contamination. (a) A... (radioactive) materials that may have been released from their packagings. (b) When contamination is present...

  6. Molecular outflows in starburst nuclei

    CERN Document Server

    Roy, Arpita; Sharma, Prateek; Shchekinov, Yuri

    2016-01-01

    Recent observations have detected molecular outflows in a few nearby starburst nuclei. We discuss the physical processes at work in such an environment in order to outline a scenario that can explain the observed parameters of the phenomenon, such as the molecular mass, speed and size of the outflows. We show that outflows triggered by OB associations, with $N_{OB}\\ge 10^5$ (corresponding to a star formation rate (SFR)$\\ge 1$ M$_{\\odot}$ yr$^{-1}$ in the nuclear region), in a stratified disk with mid-plane density $n_0\\sim 200\\hbox{--}1000$ cm$^{-3}$ and scale height $z_0\\ge 200 (n_0/10^2 \\, {\\rm cm}^{-3})^{-3/5}$ pc, can form molecules in a cool dense and expanding shell. The associated molecular mass is $\\ge 10^7$ M$_\\odot$ at a distance of a few hundred pc, with a speed of several tens of km s$^{-1}$. We show that a SFR surface density of $10 \\le \\Sigma_{SFR} \\le 50$ M$_\\odot$ yr$^{-1}$ kpc$^{-2}$ favours the production of molecular outflows, consistent with observed values.

  7. Radioactive Cs in the estuary sediments near Fukushima Daiichi Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Yamasaki, Shinya, E-mail: s-yamasaki@ied.tsukuba.ac.jp [Faculty of Pure and Applied Sciences and Center for Research in Isotopes and Environmental Dynamics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 (Japan); Imoto, Junpei; Furuki, Genki; Ochiai, Asumi [Department of Chemistry, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Ohnuki, Toshihiko [Advanced Science Research Center, Japan Atomic Energy Agency, Shirakata Shirane 2-4, Tokai, Ibaraki 319-1195 (Japan); Sueki, Keisuke [Faculty of Pure and Applied Sciences and Center for Research in Isotopes and Environmental Dynamics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 (Japan); Nanba, Kenji [Department of Environmental Management, Faculty of Symbiotic System Science, Fukushima University, Kanayagawa 1, Fukushima, 960-1296 (Japan); Ewing, Rodney C. [Department of Geological Sciences and Center for International Security and Cooperation, Stanford University, Stanford, CA 94305-2115 (United States); Utsunomiya, Satoshi [Department of Chemistry, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan)

    2016-05-01

    The migration and dispersion of radioactive Cs (mainly {sup 134}Cs and {sup 137}Cs) are of critical concern in the area surrounding the Fukushima Daiichi Nuclear Power Plant (FDNPP). Considerable uncertainty remains in understanding the properties and dynamics of radioactive Cs transport by surface water, particularly during rainfall-induced flood events to the ocean. Physical and chemical properties of unique estuary sediments, collected from the Kuma River, 4.0 km south of the FDNPP, were quantified in this study. These were deposited after storm events and now occur as dried platy sediments on beach sand. The platy sediments exhibit median particle sizes ranging from 28 to 32 μm. There is increasing radioactivity towards the bottom of the layers deposited; approximately 28 and 38 Bq g{sup −1} in the upper and lower layers, respectively. The difference in the radioactivity is attributed to a larger number of particles associated with radioactive Cs in the lower part of the section, suggesting that radioactive Cs in the suspended soils transported by surface water has decreased over time. Sequential chemical extractions showed that ~ 90% of {sup 137}Cs was strongly bound to the residual fraction in the estuary samples, whereas 60 ~ 80% of {sup 137}Cs was bound to clays in the six paddy soils. This high concentration in the residual fraction facilitates ease of transport of clay and silt size particles through the river system. Estuary sediments consist of particles < 100 μm. Radioactive Cs desorption experiments using the estuary samples in artificial seawater revealed that 3.4 ± 0.6% of {sup 137}Cs was desorbed within 8 h. More than 96% of {sup 137}Cs remained strongly bound to clays. Hence, particle size is a key factor that determines the travel time and distance during the dispersion of {sup 137}Cs in the ocean. - Highlights: • Cs-137 of estuary sediment impacted by the FDNPP was measured. • Physical and chemical properties were measured also.

  8. Computing Constrained Cramer Rao Bounds

    CERN Document Server

    Tune, Paul

    2012-01-01

    We revisit the problem of computing submatrices of the Cram\\'er-Rao bound (CRB), which lower bounds the variance of any unbiased estimator of a vector parameter $\\vth$. We explore iterative methods that avoid direct inversion of the Fisher information matrix, which can be computationally expensive when the dimension of $\\vth$ is large. The computation of the bound is related to the quadratic matrix program, where there are highly efficient methods for solving it. We present several methods, and show that algorithms in prior work are special instances of existing optimization algorithms. Some of these methods converge to the bound monotonically, but in particular, algorithms converging non-monotonically are much faster. We then extend the work to encompass the computation of the CRB when the Fisher information matrix is singular and when the parameter $\\vth$ is subject to constraints. As an application, we consider the design of a data streaming algorithm for network measurement.

  9. Bound states in string nets

    Science.gov (United States)

    Schulz, Marc Daniel; Dusuel, Sébastien; Vidal, Julien

    2016-11-01

    We discuss the emergence of bound states in the low-energy spectrum of the string-net Hamiltonian in the presence of a string tension. In the ladder geometry, we show that a single bound state arises either for a finite tension or in the zero-tension limit depending on the theory considered. In the latter case, we perturbatively compute the binding energy as a function of the total quantum dimension. We also address this issue in the honeycomb lattice where the number of bound states in the topological phase depends on the total quantum dimension. Finally, the internal structure of these bound states is analyzed in the zero-tension limit.

  10. Some bounds for quantum copying

    CERN Document Server

    Rastegin, A E

    2001-01-01

    We derive lower bounds on the absolute error and the relative error of an abstract copying of two-state set. We do not specify a copying transformation and a dimension of state space. Only the unitarity of quantum mechanical transformations is used. Our approach is based on the notion of angle between two states. We first prove several useful statements, simply expressed in terms of angles. We then examine a lower bound on the absolute error, that was first considered by Hillery and Buzek. Our reasonings supplement and reinforce the results, obtained by them. So, we derive more strong bounds on the absolute error, and we also consider a tradeoff between size of error and corresponding probability distributions. After that we examine a lower bound on the relative error.

  11. Bound states in string nets

    CERN Document Server

    Schulz, M D; Vidal, J

    2016-01-01

    We discuss the emergence of bound states in the low-energy spectrum of the string-net Hamiltonian in the presence of a string tension. In the ladder geometry, we show that a single bound state arises either for a finite tension or in the zero-tension limit depending on the theory considered. In the latter case, we perturbatively compute the binding energy as a function of the total quantum dimension. We also address this issue in the honeycomb lattice where the number of bound states in the topological phase depends on the total quantum dimension. Finally, the internal structure of these bound states is analyzed in the zero-tension limit.

  12. Z-DNA binding protein from chicken blood nuclei

    Science.gov (United States)

    Herbert, A. G.; Spitzner, J. R.; Lowenhaupt, K.; Rich, A.

    1993-01-01

    A protein (Z alpha) that appears to be highly specific for the left-handed Z-DNA conformer has been identified in chicken blood nuclear extracts. Z alpha activity is measured in a band-shift assay by using a radioactive probe consisting of a (dC-dG)35 oligomer that has 50% of the deoxycytosines replaced with 5-bromodeoxycytosine. In the presence of 10 mM Mg2+, the probe converts to the Z-DNA conformation and is bound by Z alpha. The binding of Z alpha to the radioactive probe is specifically blocked by competition with linear poly(dC-dG) stabilized in the Z-DNA form by chemical bromination but not by B-form poly(dC-dG) or boiled salmon-sperm DNA. In addition, the binding activity of Z alpha is competitively blocked by supercoiled plasmids containing a Z-DNA insert but not by either the linearized plasmid or by an equivalent amount of the parental supercoiled plasmid without the Z-DNA-forming insert. Z alpha can be crosslinked to the 32P-labeled brominated probe with UV light, allowing us to estimate that the minimal molecular mass of Z alpha is 39 kDa.

  13. Alpha decay chains from superheavy nuclei

    CERN Document Server

    Samanta, C

    2008-01-01

    Magic islands for extra-stable nuclei in the midst of the sea of fission-instability were predicted to be around Z=114, 124 or, 126 with N=184, and Z=120, with N=172. Whether these fission-survived superheavy nuclei with high Z and N would live long enough for detection or, undergo alpha-decay in a very short time remains an open question. Alpha-decay half lives of nuclei with 130 118 are found to have alpha-decay half lives of the order of microseconds or, less.

  14. Atomic nuclei decay modes by spontaneous emission of heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Poenaru, D.N.; Ivascu, M.; Sndulescu, A.; Greiner, W.

    1985-08-01

    The great majority of the known nuclides with Z>40, including the so-called stable nuclides, are metastable with respect to several modes of spontaneous superasymmetric splitting. A model extended from the fission theory of alpha decay allows one to estimate the lifetimes and the branching ratios relative to the alpha decay for these natural radioactivities. From a huge amount of systematic calculations it is concluded that the process should proceed with maximum intensity in the trans-lead nuclei, where the minimum lifetime is obtained from parent-emitted heavy ion combinations leading to a magic (/sup 208/Pb) or almost magic daughter nucleus. More than 140 nuclides with atomic number smaller than 25 are possible candidates to be emitted from heavy nuclei, with half-lives in the range of 10/sup 10/--10/sup 30/ s: /sup 5/He, /sup 8en-dash10/Be, /sup 11,12/B, /sup 12en-dash16/C, /sup 13en-dash17/N, /sup 15en-dash22/O, /sup 18en-dash23/F, /sup 20en-dash26/Ne, /sup 23en-dash28/Na, /sup 23en-dash30/Mg, /sup 27en-dash32/Al, /sup 28en-dash36/Si, /sup 31en-dash39/P, /sup 32en-dash42/S, /sup 35en-dash45/Cl, /sup 37en-dash47/Ar, /sup 40en-dash49/ K, . .Ca, /sup 44en-dash53/ Sc, /sup 46en-dash53/Ti, /sup 48en-dash54/V, and /sup 49en-dash55/ Cr. The shell structure and the pairing effects are clearly manifested in these new decay modes.

  15. A gas jet target for radioactive ion beam experiments

    Energy Technology Data Exchange (ETDEWEB)

    Chipps, K. A.; Greife, U.; Hager, U.; Sarazin, F. [Colorado School of Mines, Golden, CO (United States); Bardayan, D. W.; Pain, S. D.; Schmitt, K. T.; Smith, M. S. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Blackmon, J. C.; Linhardt, L. E. [Louisiana State University, Baton Rouge, LA (United States); Browne, J.; Kontos, A.; Meisel, Z.; Montes, F.; Schatz, H. [National Superconducting Cyclotron Laboratory/Michigan State University, East Lansing, MI (United States); Couder, M.; Robertson, D.; Wiescher, M. [University of Notre Dame, Notre Dame, IN (United States); Erikson, L. E. [Pacific Northwest National Laboratory, Richland, WA (United States); Lemut, A. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); and others

    2013-04-19

    New radioactive ion beam (RIB) facilities, like FRIB in the US or FAIR in Europe, will push further away from stability and enable the next generation of nuclear physics experiments. Thus, the need for improved RIB targets is more crucial than ever: developments in exotic beams should coincide with developments in targets for use with those beams, in order for nuclear physics to remain on the cutting edge. Of great importance to the future of RIB physics are scattering, transfer and capture reaction measurements of rare, exotic, and unstable nuclei on light targets such as hydrogen and helium. These measurements require targets that are dense, highly localized, and pure, and conventional targets often suffer too many drawbacks to allow for such experimental designs. Targets must also accommodate the use of large area, highly-segmented silicon detector arrays, high-efficiency gamma arrays, and novel heavy ion detectors to efficiently measure the reaction products. To address this issue, the Jet Experiments in Nuclear Structure and Astrophysics (JENSA) Collaboration led by the Colorado School of Mines (CSM) is in the process of designing, building and testing a supersonic gas jet target for use at existing and future RIB facilities. The gas jet target provides a high density and high purity of target nuclei within a tightly confined region, without the use of windows or backing materials. The design also enables the use of multiple state-of-the-art detection systems.

  16. Recent direct reaction experimental studies with radioactive tin beams

    CERN Document Server

    Jones, K L; Allmond, J M; Ayres, A; Bardayan, D W; Baugher, T; Bazin, D; Berryman, J S; Bey, A; Bingham, C; Cartegni, L; Cerizza, G; Chae, K Y; Cizewski, J A; Gade, A; Galindo-Uribarri, A; Garcia-Ruiz, R F; Grzywacz, R; Howard, M E; Kozub, R L; Liang, J F; Manning, B; Matos, M; McDaniel, S; Miller, D; Nesaraja, C D; O'Malley, P D; Padgett, S; Padilla-Rodal, E; Pain, S D; Pittman, S T; Radford, D C; Ratkiewicz, A; Schmitt, K T; Shore, A; Smith, M S; Stracener, D W; Stroberg, S R; Tostevin, J; Varner, R L; Weisshaar, D; Wimmer, K; Winkler, R

    2015-01-01

    Direct reaction techniques are powerful tools to study the single-particle nature of nuclei. Performing direct reactions on short-lived nuclei requires radioactive ion beams produced either via fragmentation or the Isotope Separation OnLine (ISOL) method. Some of the most interesting regions to study with direct reactions are close to the magic numbers where changes in shell structure can be tracked. These changes can impact the final abundances of explosive nucleosynthesis. The structure of the chain of tin isotopes is strongly influenced by the Z=50 proton shell closure, as well as the neutron shell closures lying in the neutron-rich, N=82, and neutron-deficient, N=50, regions. Here we present two examples of direct reactions on exotic tin isotopes. The first uses a one-neutron transfer reaction and a low-energy reaccelerated ISOL beam to study states in 131Sn from across the N=82 shell closure. The second example utilizes a one-neutron knockout reaction on fragmentation beams of neutron-deficient 106,108Sn...

  17. The safe transport of radioactive materials

    CERN Document Server

    Gibson, R

    1966-01-01

    The Safe Transport of Radioactive Materials is a handbook that details the safety guidelines in transporting radioactive materials. The title covers the various regulations and policies, along with the safety measures and procedures of radioactive material transport. The text first details the 1963 version of the IAEA regulation for the safe transport of radioactive materials; the regulation covers the classification of radionuclides for transport purposes and the control of external radiation hazards during the transport of radioactive materials. The next chapter deals with concerns in the im

  18. IGRIS for characterizing low-level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Peters, C.W. [Nuclear Diagnostic Systems, Springfield, VA (United States); Swanson, P.J. [Concord Associates, Knoxville, TN (United States)

    1993-03-01

    A recently developed neutron diagnostic probe system has the potential to noninvasively characterize low-level radioactive waste in bulk soil samples, containers such as 55-gallon barrels, and in pipes, valves, etc. The probe interrogates the target with a low-intensity beam of 14-MeV neutrons produced from the deuterium-tritium reaction in a specially designed sealed-tube neutron-generator (STNG) that incorporates an alpha detector to detect the alpha particle associated with each neutron. These neutrons interact with the nuclei in the target to produce inelastic-, capture-, and decay-gamma rays that are detected by gamma-ray detectors. Time-of-flight methods are used to separate the inelastic-gamma rays from other gamma rays and to determine the origin of each inelastic-gamma ray in three dimensions through Inelastic-Gamma Ray Imaging and Spectroscopy (IGRIS). The capture-gamma ray spectrum is measured simultaneously with the IGRIS measurements. The decay-gamma ray spectrum is measured with the STNG turned off. Laboratory proof-of-concept measurements were used to design prototype systems for Bulk Soil Assay, Barrel Inspection, and Decontamination and Decommissioning and to predict their minimum detectable levels for heavy toxic metals (As, Hg, Cr, Zn, Pb, Ni, and Cd), uranium and transuranics, gamma-ray emitters, and elements such as chlorine, which is found in PCBs and other pollutants. These systems are expected to be complementary and synergistic with other technologies used to characterize low-level radioactive waste.

  19. On The Structure of A=3 Nuclei

    CERN Document Server

    Abbas, Syed Afsar

    2011-01-01

    The hole in the charge distribution of $^3{\\text He}$ is a major problem in A=3 nuclei. The canonical wavefucntion of A=3 nuclei which does well for electromagnetic properties of A=3 nuclei fails to produce the hole in A=3 nuclei. The hole is normally assumed to arise from explicit quark degree of freedom. Very often quark degrees of freedom are imposed to propose a different short range part of the wavefunction for A=3 to explain the hole in $^3{\\text He}$. So an hybrid model with nucleonic degree of freedom in outer part and quark degrees of freedom in the inner part of the nucleus have been invoked to understand the above problem. Here we present a different picture with a new wavefunction working at short range within nucleonic degrees of freedom itself. So the above problem is explained here based entirely on the nucleonic degree of freedom only.

  20. Critical-Point Structure in Finite Nuclei

    CERN Document Server

    Leviatan, A

    2006-01-01

    Properties of quantum shape-phase transitions in finite nuclei are considered in the framework of the interacting boson model. Special emphasis is paid to the dynamics at the critical-point of a general first-order phase transition.

  1. GDR in Hot Nuclei: New Measurements

    Science.gov (United States)

    Camera, F.; Kmiecik, M.; Wieland, O.; Benzoni, G.; Bracco, A.; Brambilla, S.; Crespi, F.; Mason, P.; Moroni, A.; Million, B.; Leoni, S.; Maj, A.; Styczen, J.; Brekiesz, M.; Meczynski, W.; Zieblinski, M.; Gramegna, F.; Barlini, S.; Kravchuk, V. L.; Lanchais, A. L.; Mastinu, P. F.; Bruno, M.; D'Agostino, M.; Geraci, E.; Ordine, A.; Casini, G.; Chiari, M.

    2005-04-01

    The measured properties of the Giant Dipole Resonance in hot rotating nuclei are successfully described with the model of thermal fluctuations, even though there are still some open problems especially at very low (T 2.5MeV) temperatures and missing data in some mass regions. Recent experimental works have addressed more specific problems regarding the nuclear shape and its behaviour in very particular and delimited phase space regions. In this paper will be discussed new exclusive measurements of the GDR γ decay in heavy 216Rn nuclei (where the shape of nuclei surviving fission have been probed) and some preliminary data on the 132Ce nuclei at very high excitation energy.

  2. Quantum Monte Carlo Calculations of Light Nuclei

    CERN Document Server

    Pieper, Steven C

    2007-01-01

    During the last 15 years, there has been much progress in defining the nuclear Hamiltonian and applying quantum Monte Carlo methods to the calculation of light nuclei. I describe both aspects of this work and some recent results.

  3. Radioactive waste management in Austria

    Directory of Open Access Journals (Sweden)

    Neubauer Josef

    2004-01-01

    Full Text Available At the Austrian Research Centers Seibersdorf, there are several facilities in stalled for treatment of waste of low and intermediate radioactivity level (radwaste. A separate company within Centers, Nuclear Engineering Seibersdorf, has been formed recently, acting as a centralized facility for treatment, conditioning and storing of such waste within the country. The relevant treatment technology is applied depending on the waste category. In total about 6900 m3 of solid waste of low and intermediate radioactivity level originating from Austria was treated in the period between 1976 and 2002. Presently, there exists no final repository for radwaste in Austria. A study is under way to identify the structure for a long term storage facility.

  4. Radioactive Waste Management BasisApril 2006

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, B K

    2011-08-31

    This Radioactive Waste Management Basis (RWMB) documents radioactive waste management practices adopted at Lawrence Livermore National Laboratory (LLNL) pursuant to Department of Energy (DOE) Order 435.1, Radioactive Waste Management. The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  5. HMPT: Basic Radioactive Material Transportation

    Energy Technology Data Exchange (ETDEWEB)

    Hypes, Philip A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-02-29

    Hazardous Materials and Packaging and Transportation (HMPT): Basic Radioactive Material Transportation Live (#30462, suggested one time) and Test (#30463, required initially and every 36 months) address the Department of Transportation’s (DOT’s) function-specific [required for hazardous material (HAZMAT) handlers, packagers, and shippers] training requirements of the HMPT Los Alamos National Laboratory (LANL) Labwide training. This course meets the requirements of 49 CFR 172, Subpart H, Section 172.704(a)(ii), Function-Specific Training.

  6. Clays in radioactive waste disposal

    OpenAIRE

    Delage, Pierre; Cui, Yu-Jun; Tang, Anh-Minh

    2010-01-01

    Clays and argillites are considered in some countries as possible host rocks for nuclear waste disposal at great depth. The use of compacted swelling clays as engineered barriers is also considered within the framework of the multi-barrier concept. In relation to these concepts, various research programs have been conducted to assess the thermo-hydro-mechanical properties of radioactive waste disposal at great depth. After introducing the concepts of waste isolation developed in Belgium, Fran...

  7. Analysis methods for airborne radioactivity

    OpenAIRE

    Ala-Heikkilä, Jarmo J

    2008-01-01

    High-resolution gamma-ray spectrometry is an analysis method well suitable for monitoring airborne radioactivity. Many of the natural radionuclides and a majority of anthropogenic nuclides are prominent gamma-ray emitters. With gamma-ray spectrometry different radionuclides are readily observed at minute concentrations that are far from health hazards. The gamma-ray spectrometric analyses applied in air monitoring programmes can be divided into particulate measurements and gas measurements. I...

  8. Realistic level density calculation for heavy nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Cerf, N. [Institut de Physique Nucleaire, Orsay (France); Pichon, B. [Observatoire de Paris, Meudon (France); Rayet, M.; Arnould, M. [Institut d`Astronomie et d`Astrophysique, Bruxelles (Belgium)

    1994-12-31

    A microscopic calculation of the level density is performed, based on a combinatorial evaluation using a realistic single-particle level scheme. This calculation relies on a fast Monte Carlo algorithm, allowing to consider heavy nuclei (i.e., large shell model spaces) which could not be treated previously in combinatorial approaches. An exhaustive comparison of the predicted neutron s-wave resonance spacings with experimental data for a wide range of nuclei is presented.

  9. E1 strength in N = 82 nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, T.; Volz, S.; Babilon, M.; Mohr, P.; Vogt, K.; Zilges, A

    2003-05-19

    Recently the importance of small contributions of electric dipole strength near the particle threshold to the production rates of atomic nuclei has become evident. Prior estimates concentrated on the Giant Dipole Resonance (GDR) which dominates photoabsorption in all nuclei. Extrapolations to smaller excitation energies were assumed to be sufficiently reliable. However, new measurements reveal that collective E1 strength can be found in the threshold region.

  10. Statistical Properties of Quantum Spectra in Nuclei

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Some aspects of quantum chaos in a finite system have been studied based on the analysis of statistical behaviors of quantum spectrum in nuclei. The experiment data show the transition from order to chaos with increasing excitation energy in spherical nuclei. The dependence of the order to chaos transition on nuclear deformation and nuclear rotating is described. The influence of pairing effect on the order to chaos transition is also discussed. Some important experiment phenomena in nuclear

  11. Shell structure of nuclei far from stability

    CERN Document Server

    Grawe, H

    2001-01-01

    The experimental status of shell structure studies in medium-heavy nuclei far off the line of beta-stability is reviewed. Experimental techniques, signatures for shell closure and expectations for future investigations are discussed for the key regions around sup 4 sup 8 sup , sup 5 sup 6 Ni, sup 1 sup 0 sup 0 Sn for proton rich nuclei and the neutron-rich N=20 isotones, Ca, Ni and Sn isotopes.

  12. Synthesis of superheavy nuclei: Obstacles and opportunities

    Directory of Open Access Journals (Sweden)

    Zagrebaev V.I.

    2015-01-01

    Full Text Available There are only 3 methods for the production of heavy and superheavy (SH nuclei, namely, fusion reactions, a sequence of neutron capture and beta(- decay and multinucleon transfer reactions. Low values of the fusion cross sections and very short half-lives of nuclei with Z<120 put obstacles in synthesis of new elements. At the same time, an important area of SH isotopes located between those produced in the cold and hot fusion reactions remains unstudied yet. This gap could be filled in fusion reactions of 48Ca with available lighter isotopes of Pu, Am, and Cm. New neutron-enriched isotopes of SH elements may be produced with the use of a 48Ca beam if a 250Cm target would be prepared. In this case we get a real chance to reach the island of stability owing to a possible beta(+ decay of 291114 and 287112 nuclei formed in this reaction with a cross section of about 0.8 pb. A macroscopic amount of the long-living SH nuclei located at the island of stability may be produced by using the pulsed nuclear reactors of the next generation only if the neutron fluence per pulse will be increased by about three orders of magnitude. Multinucleon transfer processes look quite promising for the production and study of neutron-rich heavy nuclei located in upper part of the nuclear map not reachable by other reaction mechanisms. Reactions with actinide beams and targets are of special interest for synthesis of new neutron-enriched transfermium nuclei and not-yet-known nuclei with closed neutron shell N=126 having the largest impact on the astrophysical r-process. The estimated cross sections for the production of these nuclei allows one to plan such experiments at currently available accelerators.

  13. Radioactive materials transport accident analysis

    Energy Technology Data Exchange (ETDEWEB)

    McSweeney, T.I.; Maheras, S.J.; Ross, S.B. [Battelle Memorial Inst. (United States)

    2004-07-01

    Over the last 25 years, one of the major issues raised regarding radioactive material transportation has been the risk of severe accidents. While numerous studies have shown that traffic fatalities dominate the risk, modeling the risk of severe accidents has remained one of the most difficult analysis problems. This paper will show how models that were developed for nuclear spent fuel transport accident analysis can be adopted to obtain estimates of release fractions for other types of radioactive material such as vitrified highlevel radioactive waste. The paper will also show how some experimental results from fire experiments involving low level waste packaging can be used in modeling transport accident analysis with this waste form. The results of the analysis enable an analyst to clearly show the differences in the release fractions as a function of accident severity. The paper will also show that by placing the data in a database such as ACCESS trademark, it is possible to obtain risk measures for transporting the waste forms along proposed routes from the generator site to potential final disposal sites.

  14. Preliminary Results on the Experimental Investigation of the Structure Functions of Bound Nucleons

    CERN Document Server

    Bodek, A

    2015-01-01

    We present preliminary results on an experimental study of the nuclear modification of the longitudinal ($\\sigma_L$) and transverse ($\\sigma_T$) structure functions of nucleons bound in nuclear targets. The origin of these modifications (commonly referred as as the EMC effect) is not fully understood. Our measurements of R= $\\sigma_L / \\sigma_T$ for nuclei ($R_A$) and for deuterium ($R_D$) indicate that nuclear modifications of the structure functions of bound nucleons are different for the longitudinal and transverse structure functions, and that contrary to expectation from several theoretical models, $R_A< R_D$.

  15. Preliminary Results on the Experimental Investigation of the Structure Functions of Bound Nucleons

    Energy Technology Data Exchange (ETDEWEB)

    Bodek, Arie [Univ. of Rochester, NY (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-08-01

    We present preliminary results on an experimental study of the nuclear modification of the longitudinal ($\\sigma_L$) and transverse ($\\sigma_T$) structure functions of nucleons bound in nuclear targets. The origin of these modifications (commonly referred as as the EMC effect) is not fully understood. Our measurements of R= $\\sigma_L / \\sigma_T$ for nuclei ($R_A$) and for deuterium ($R_D$) indicate that nuclear modifications of the structure functions of bound nucleons are different for the longitudinal and transverse structure functions, and that contrary to expectation from several theoretical models, $R_A< R_D$.

  16. In-medium mathaccent "7016relax K- and eta -meson Interactions and Bound States

    Science.gov (United States)

    Gal, A.; Friedman, E.; Barnea, N.; Cieplý, A.; Mareš, J.; Gazda, D.

    The role played by subthreshold meson-baryon dynamics is demonstrated in kaonic-atom, Kbar-nuclear and eta-nuclear bound-state calculations within in-medium models of Kbar-N and eta-N interactions. New analyses of kaonic atom data reveal appreciable multi-nucleon contributions. Calculations of eta-nuclear bound states show, in particular, that the eta-N scattering length is not a useful indicator of whether or not eta mesons bind in nuclei nor of the widths anticipated for such states.

  17. Experimental activation of bound entanglement.

    Science.gov (United States)

    Kaneda, Fumihiro; Shimizu, Ryosuke; Ishizaka, Satoshi; Mitsumori, Yasuyoshi; Kosaka, Hideo; Edamatsu, Keiichi

    2012-07-27

    Entanglement is one of the essential resources in quantum information and communication technology (QICT). The entanglement thus far explored and applied to QICT has been pure and distillable entanglement. Yet, there is another type of entanglement, called "bound entanglement," which is not distillable by local operations and classical communication. We demonstrate the experimental "activation" of the bound entanglement held in the four-qubit Smolin state, unleashing its immanent entanglement in distillable form, with the help of auxiliary two-qubit entanglement and local operations and classical communication. We anticipate that it opens the way to a new class of QICT applications that utilize more general classes of entanglement than ever, including bound entanglement.

  18. Classical simulations of heavy-ion fusion reactions and weakly-bound projectile breakup reactions

    Indian Academy of Sciences (India)

    S S Godre

    2014-05-01

    Heavy-ion collision simulations in various classical models are discussed. Heavy-ion reactions with spherical and deformed nuclei are simulated in a classical rigid-body dynamics (CRBD) model which takes into account the reorientation of the deformed projectile. It is found that the barrier parameters depend not only on the initial orientations of the deformed nucleus, but also on the collision energy and the moment of inertia of the deformed nucleus. Maximum reorientation effect occurs at near- and below-barrier energies for light deformed nuclei. Calculated fusion crosssections for 24Mg + 208Pb reaction are compared with a static-barrier-penetration model (SBPM) calculation to see the effect of reorientation. Heavy-ion reactions are also simulated in a 3-stage classical molecular dynamics (3S-CMD) model in which the rigid-body constraints are relaxed when the two nuclei are close to the barrier thus, taking into account all the rotational and vibrational degrees of freedom in the same calculation. This model is extended to simulate heavy-ion reactions such as 6Li + 209Bi involving the weakly-bound projectile considered as a weakly-bound cluster of deuteron and 4He nuclei, thus, simulating a 3-body system in 3S-CMD model. All the essential features of breakup reactions, such as complete fusion, incomplete fusion, no-capture breakup and scattering are demonstrated.

  19. Lower Bounds for Sparse Recovery

    CERN Document Server

    Ba, Khanh Do; Price, Eric; Woodruff, David P

    2011-01-01

    We consider the following k-sparse recovery problem: design an m x n matrix A, such that for any signal x, given Ax we can efficiently recover x' satisfying ||x-x'||_1 <= C min_{k-sparse} x"} ||x-x"||_1. It is known that there exist matrices A with this property that have only O(k log (n/k)) rows. In this paper we show that this bound is tight. Our bound holds even for the more general /randomized/ version of the problem, where A is a random variable and the recovery algorithm is required to work for any fixed x with constant probability (over A).

  20. Variables Bounding Based Retiming Algorithm

    Institute of Scientific and Technical Information of China (English)

    宫宗伟; 林争辉; 陈后鹏

    2002-01-01

    Retiming is a technique for optimizing sequential circuits. In this paper, wediscuss this problem and propose an improved retiming algorithm based on variables bounding.Through the computation of the lower and upper bounds on variables, the algorithm can signi-ficantly reduce the number of constraints and speed up the execution of retiming. Furthermore,the elements of matrixes D and W are computed in a demand-driven way, which can reducethe capacity of memory. It is shown through the experimental results on ISCAS89 benchmarksthat our algorithm is very effective for large-scale sequential circuits.

  1. Bounds for Completely Decomposable Jacobians

    CERN Document Server

    Duursma, Iwan

    2010-01-01

    A curve over the field of two elements with completely decomposable Jacobian is shown to have at most six rational points and genus at most 26. The bounds are sharp. The previous upper bound for the genus was 145. We also show that a curve over the field of $q$ elements with more than $q^{m/2}+1$ rational points has at least one Frobenius angle in the open interval $(\\pi/m,3\\pi/m)$. The proofs make use of the explicit formula method.

  2. Measurement of reaction cross section for proton-rich nuclei (A<30) at intermediate energies

    CERN Document Server

    Zhang, H Y; Ren Zhong Zhou; Ma, Y G; Jiang, W Z; Zhu, Z Y; Cai, X Z; Fang, D Q; Zhong, C; Yu Li Ping; Wei, Y B; Zhan, W L; Guo, Z Y; Xiao, G Q; Wang, J S; Wang, J C; Wang, Q J; Li, J X; Wang, M; Chen, Z Q

    2002-01-01

    Radioactive ion beams were produced through the projectile fragmentation induced by 69 MeV/ nucleon sup 3 sup 6 Ar primary beam on a sup 9 Be target. Measurements of reaction cross sections (sigma sub R 's) for 44 nuclei with A<30 (mostly proton-rich), on carbon were performed on RIBLL (Radioactive Ion Beam Line in Lanzhou) of HIRFL (Heavy Ion Research Facility in Lanzhou) at intermediate energies around 30 MeV/nucleon by a transmission method. The experimental sigma sub R values for sup 2 sup 3 Al and sup 2 sup 7 P are abnormally large compared with their neighboring nuclei. Together with the previous experimental facts such as the binding energy and ground state data, it suggests anomalously large matter root-mean-square radii and proton halo structure in sup 2 sup 3 Al and in sup 2 sup 7 P. There is an enhancement for the sigma sub R of sup 1 sup 7 F + sup 1 sup 2 C compared with the neighboring isotopes. Considering that the ground state of sup 1 sup 7 F is 1d sub 5 sub / sub 2 , this can indicate that...

  3. Effective charges in nuclei in the vicinity of $^{100}SN$

    CERN Document Server

    Ekström, Andreas

    The shell structure of atomic nuclei far from the line of beta-stability and the properties of the nucleon-nucleon interaction in exotic isotopes are not well known. The development of radioactive ion beams (RIBs) puts certain unexplored regions of the nuclear chart within reach of detailed experimental investigations. The low-energy nuclear structure of the unstable isotopes 106,108,110Sn, 100,102,104Cd, and 106,108In have been studied using sub-barrier Coulomb excitation of postaccelerated RIBs. The experiments were carried out at the REX-ISOLDE facility at CERN. The deduced transition probabilities - B(E2) values - provide a detailed benchmark of modern models of the nucleon-nucleon interaction. The B(E2) values between the 0+ ground states and the first excited 2+ states in the Sn and Cd isotopes were compared with shell-model calculations. These are based on effective interactions derived from renormalized multi-meson and QCD-based nucleon-nucleon potentials. In order to reproduce the experimental result...

  4. Astrophysical quests for neutron capture data of unstable nuclei

    Science.gov (United States)

    Käppeler, F.

    2016-11-01

    The abundances of the chemical elements heavier than iron can be attributed in about equal parts to the r and to the s process, which are taking place in supernova explosions and during the He and C burning phases of stellar evolution, respectively. So far, quantitative studies on the extremely short-lived neutron-rich nuclei constituting the ( n, γ) network of the r process are out of reach. On the contrary, the situation for the s -process is far advanced, as the reaction path of the s process from 12C to the Pb/Bi region is located within the valley of stability. Accordingly, a comprehensive database of experimental ( n, γ) cross sections has been established. While for many stable isotopes the necessary accuracy is still to be reached, reliable cross sections for the involved unstable isotopes are almost completely missing. Because of the intrinsic γ background of radioactive samples, successful time-of-flight measurements are depending on intense pulsed neutron sources. Such data are fundamental for our understanding of branchings in the s -process reaction path, which carry important model-independent information on neutron flux and temperature in the deep stellar interior.

  5. Tom W. Bonner Prize in Nuclear Physics Talk: Finding Real Nuclei in Imaginary Time

    Science.gov (United States)

    Pieper, Steven C.

    2010-02-01

    Ab initio calculations of nuclei treat a nucleus as a system of A nucleons interacting by realistic two- (N ) and three-nucleon (N ) forces. Variational Monte Carlo (VMC) followed by Green's function Monte Carlo (GFMC) is a very successful ab initio method for light nuclei. The VMC gives an upper bound to the true energy of a nucleus for a given Hamiltonian; the closeness of the upper bound to the exact solution of the Schr"odinger equation depends on the physical insight built into the trial wave function, ψT, that is used. GFMC starts with a ψT and, by propagation in imaginary time, allows the exact lowest eigenenergy for a given set of quantum numbers to be computed. The first VMC calculations of nuclei were published in 1981 by Lomnitz-Adler, Pandharipande, and Smith. They were for ^3H and ^4He using the Reid N potential. Six years later, Carlson published the first GFMC calculations of nuclei, again for ^3H and ^4He, but using a slightly-simplified N potential; in the following year he used the full Reid V8 potential. Pudliner, Pandharipande, Carlson, and Wiringa published GFMC calculations of A=6 nuclei in 1995, using the Argonne V18 N potential and the Urbana IX N potential. Since then there has been steady progress in applying GFMC to larger nuclei. This has been from both increasing computer power and new or improved algorithms. The largest computers are increasingly difficult to use efficiently, but, as a result of a SciDAC collaboration, we now get excellent scalability up to 131,000 cores on Argonne's IBM Blue Gene/P. In addition we have found that the GFMC can be used for multiple states with the same quantum numbers. With the Argonne V18 and Illinois N potentials, we obtain an excellent description of the properties of nuclei up to A = 12. I will describe these methods, present recent advances in using the largest computers, and some recent results. )

  6. Radioactive geochronometry from the treatise on geochemistry

    CERN Document Server

    Holland, H D

    2011-01-01

    The history of Earth in the Solar System has been unraveled using natural radioactivity. The sources of this radioactivity are the original creation of the elements and the subsequent bombardment of objects, including Earth, in the Solar System by cosmic rays. Both radioactive and radiogenic nuclides are harnessed to arrive at ages of various events and processes on Earth. This collection of chapters from the "Treatise on Geochemistry" displays the range of radioactive geochronometric studies that have been addressed by researchers in various fields of Earth science. These range from the age of Earth and the Solar System to the dating of the history of Earth that assists us in defining the major events in Earth history. In addition, the use of radioactive geochronometry in describing rates of Earth surface processes, including the climate history recorded in ocean sediments and the patterns of circulation of the fluid Earth, has extended the range of utility of radioactive isotopes as chronometric and tracer ...

  7. Communication from the Radioactive Shipping Service

    CERN Multimedia

    DDGS Unit

    2011-01-01

    The radioactive materials Import/Export service reminds you that all movements of potentially radioactive material must be declared in advance. For exports, shipping requests must be made via the EDH request form, ticking the box “radioactive material”. For imports, an electronic form must be completed before the arrival of the material. Requests which do not comply with the above procedure and any unauthorized imports of radioactive material will be refused.The same applies to imports/exports of radioactive sources. All necessary information is given in the web site: http://cern.ch/service-rp-shipping Yann Donjoux / Radioactive Shipping Service Phone: +41 22 767.31.71 Fax: +41 22 766.92.00 Email: service-rp-shipping@cern.ch

  8. Variational Bounds for Creeping Composites

    Science.gov (United States)

    Procházka, Petr

    2010-05-01

    In the paper time dependent variational bounds are derived based on Extended Hashin-Shtrikman variational principles. Direct calculation leads to explicit formulas to be presented in the text. For various mechanical properties easy coding in Excel, say, can be used and verification of accuracy for numerical procedures is available using the derived formulas.

  9. Pieter Paul Rubens, "Prometheus Bound."

    Science.gov (United States)

    Shoemaker, Marla K.

    1986-01-01

    Provides a full-color reproduction of Pieter Paul Rubens' painting, "Prometheus Bound," and a lesson plan for using it with students in grades 10 through 12. The goal of the lesson is to introduce students to the techniques of design and execution used by Rubens. (JDH)

  10. Market access through bound tariffs

    DEFF Research Database (Denmark)

    Sala, Davide; Schröder, Philipp J.H.; Yalcin, Erdal

    2010-01-01

    WTO negotiations deal predominantly with bound - besides applied - tariff rates. But, how can reductions in tariffs ceilings, i.e. tariff rates that no exporter may ever actually be confronted with, generate market access? The answer to this question relates to the effects of tariff bindings on t...

  11. Market Access through Bound Tariffs

    DEFF Research Database (Denmark)

    Sala, Davide; Schröder, Philipp J.H.; Yalcin, Erdal

    WTO negotiations deal predominantly with bound - besides applied - tariff rates. But, how can reductions in tariffs ceilings, i.e. tariff rates that no exporter may ever actually be confronted with, generate market access? The answer to this question relates to the effects of tariff bindings on t...

  12. CD(4) has bounded width

    CERN Document Server

    Carvalho, Catarina; Marković, Petar; Maróti, Miklós

    2007-01-01

    We prove that the constraint languages invariant under a short sequence of J\\'onsson terms (containing at most three non-trivial ternary terms) are tractable by showing that they have bounded width. This improves the previous result by Kiss and Valeriote and presents some evidence that the Larose-Zadori conjecture holds in the congruence-distributive case.

  13. Radioactive Probes on Ferromagnetic Surfaces

    CERN Multimedia

    2002-01-01

    On the (broad) basis of our studies of nonmagnetic radioactive probe atoms on magnetic surfaces and at interfaces, we propose to investigate the magnetic interaction of magnetic probe atoms with their immediate environment, in particular of rare earth (RE) elements positioned on and in ferromagnetic surfaces. The preparation and analysis of the structural properties of such samples will be performed in the UHV chamber HYDRA at the HMI/Berlin. For the investigations of the magnetic properties of RE atoms on surfaces Perturbed Angular Correlation (PAC) measurements and Mössbauer Spectroscopy (MS) in the UHV chamber ASPIC (Apparatus for Surface Physics and Interfaces at CERN) are proposed.

  14. Fission approach to cluster radioactivity

    Indian Academy of Sciences (India)

    D N Poenaru; R A Gherghescu

    2015-09-01

    Fission theory is used to explain decay. Also, the analytical superasymmetric fission (ASAF) model is successfully employed to make a systematic search and to predict, with other models, cluster radioactivity. The macroscopic–microscopic method is illustrated for the superheavy nucleus 286Fl. Then a few results of the theoretical approach of decay (ASAF, UNIV and semFIS models), cluster decay (ASAF and UNIV) and spontaneous fission dynamics are described with Werner–Wheeler and cranking inertia. UNIV denotes universal curve and semFIS the fission-based semiempirical formula.

  15. Submicro and Nano Structured Porous Materials for the Production of High-Intensity Exotic Radioactive Ion Beams

    CERN Document Server

    Fernandes, Sandrina; Stora, Thierry

    2010-01-01

    ISOLDE, the CERN Isotope Separator On-line DEvice is a unique source of low energy beams of radioactive isotopes - atomic nuclei that have too many or too few neutrons to be stable. The facility is like a small ‘chemical factory’, giving the possibility of changing one element to another, by selecting the atomic mass of the required isotope beam in the mass separator, rather as the ‘alchemists’ once imagined. It produces a total of more than 1000 different isotopes from helium to radium, with half-lives down to milliseconds, by impinging a 1.4 GeV proton beam from the Proton Synchrotron Booster (PSB) onto special targets, yielding a wide variety of atomic fragments. Different components then extract the nuclei and separate them according to mass. The post-accelerator REX (Radioactive beam EXperiment) at ISOLDE accelerates the radioactive beams up to 3 MeV/u for many experiments. A wide international user radioactive ion beam (RIB) community investigates fundamental aspects of nuclear physics, particle...

  16. Cluster radioactivity and very asymmetric fission through compact and creviced shapes

    Science.gov (United States)

    Royer, G.; Gupta, Raj K.; Denisov, V. Yu.

    1998-03-01

    The decay of radioactive nuclei which emit heavy clusters such as C, O, Ne, Mg and Si has been studied in the fission valley which leads one spherical nucleus towards two spherical touching nuclei before crossing the barrier. Assuming volume conservation, the macroscopic deformation energy has been calculated within a generalized liquid-drop model taking into account the proximity effects between the cluster and the daughter nucleus. The microscopic corrections have been introduced empirically to reproduce the experimental Q values. The theoretical partial half-lives obtained within the WKB barrier penetration probability are in good agreement with the experimental data. The C, O, Ne, Mg and Si emission looks like a spontaneous fission through very asymmetric compact and creviced shapes formed at the early stage of the tunneling process.

  17. Analysis methods of safe Coulomb-excitation experiments with radioactive ion beams using the GOSIA code

    Energy Technology Data Exchange (ETDEWEB)

    Zielinska, M. [CEA Saclay, IRFU/SPhN, Gif-sur-Yvette (France); Gaffney, L.P. [KU Leuven, Instituut voor Kern- en Stralingsfysica, Leuven (Belgium); University of the West of Scotland, School of Engineering, Paisley (United Kingdom); Wrzosek-Lipska, K. [KU Leuven, Instituut voor Kern- en Stralingsfysica, Leuven (Belgium); University of Warsaw, Heavy Ion Laboratory, Warsaw (Poland); Clement, E. [GANIL, Caen Cedex (France); Grahn, T.; Pakarinen, J. [University of Jyvaskylae, Department of Physics, Jyvaskylae (Finland); University of Helsinki, Helsinki Institute of Physics, Helsinki (Finland); Kesteloot, N. [KU Leuven, Instituut voor Kern- en Stralingsfysica, Leuven (Belgium); SCK-CEN, Belgian Nuclear Research Centre, Mol (Belgium); Napiorkowski, P. [University of Warsaw, Heavy Ion Laboratory, Warsaw (Poland); Duppen, P. van [KU Leuven, Instituut voor Kern- en Stralingsfysica, Leuven (Belgium); Warr, N. [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany)

    2016-04-15

    With the recent advances in radioactive ion beam technology, Coulomb excitation at safe energies becomes an important experimental tool in nuclear-structure physics. The usefulness of the technique to extract key information on the electromagnetic properties of nuclei has been demonstrated since the 1960s with stable beam and target combinations. New challenges present themselves when studying exotic nuclei with this technique, including dealing with low statistics or number of data points, absolute and relative normalisation of the measured cross-sections and a lack of complementary experimental data, such as excited-state lifetimes and branching ratios. This paper addresses some of these common issues and presents analysis techniques to extract transition strengths and quadrupole moments utilising the least-squares fit code, GOSIA. (orig.)

  18. Radioactivity and thermalization in the ejecta of compact object mergers and their impact on kilonova light curves

    CERN Document Server

    Barnes, Jennifer; Wu, Meng-Ru; Mart'inez-Pinedo, Gabriel

    2016-01-01

    One of the most promising electromagnetic signatures of compact object mergers are kilonovae: approximately isotropic radioactively-powered transients that peak days to weeks post-merger. Key uncertainties in modeling kilonovae include the emission profiles of the radioactive decay products---non-thermal beta- and alpha-particles, fission fragments, and gamma-rays---and the efficiency with which they deposit their energy in the ejecta. The total radioactive energy and the efficiency of its thermalization sets the luminosity budget and is therefore necessary for predicting kilonova light curves. We outline the uncertainties in r-process decay, describe the physical processes by which the energy of the decay products is absorbed in the ejecta, and present time-dependent thermalization efficiencies for each particle type. We determine the net heating efficiency and explore its dependence on r-process yields---in particular, the production of translead nuclei that undergo alpha-decay---and on the ejecta's mass, v...

  19. Radioactive Waste and Clean-up: Introduction

    Energy Technology Data Exchange (ETDEWEB)

    Collard, G

    2000-07-01

    SCK-CEN's Radioactive Waste and Clean-up Division performs studies and develops strategies, techniques and technologies in the area of radioactive waste management, the decontamination and decommissioning of nuclear installations and the remediation of radioactive-contaminated sites. These activities are performed in the context of our responsibility towards the safety of present and future generations and contribute to achieve intrageneration equity.

  20. Radioactive Waste Management in A Hospital

    OpenAIRE

    Khan, Shoukat; Syed, AT; Ahmad, Reyaz; Rather, Tanveer A; Ajaz, M.; Jan, FA

    2010-01-01

    Most of the tertiary care hospitals use radioisotopes for diagnostic and therapeutic applications. Safe disposal of the radioactive waste is a vital component of the overall management of the hospital waste. An important objective in radioactive waste management is to ensure that the radiation exposure to an individual (Public, Radiation worker, Patient) and the environment does not exceed the prescribed safe limits. Disposal of Radioactive waste in public domain is undertaken in accordance w...

  1. A Functional Calculus for Quotient Bounded Operators

    Directory of Open Access Journals (Sweden)

    Sorin Mirel Stoian

    2006-12-01

    Full Text Available If (X, P is a sequentially locally convex space, then a quotient bounded operator T beloging to QP is regular (in the sense of Waelbroeck if and only if it is a bounded element (in the sense of Allan of algebra QP. The classic functional calculus for bounded operators on Banach space is generalized for bounded elements of algebra QP.

  2. DANCE device for measurement of (n, {gamma}) reactions on radioactive species

    Energy Technology Data Exchange (ETDEWEB)

    Wilhelmy, J.B.; Chamberlin, E.P.; Dragowsky, M.R. [Los Alamos National Laboratory, Los Alamos, New Mexico (US)] [and others

    2002-08-01

    DANCE (Device for Advanced Neutron Capture Experiments) is a 4{pi} 162 element BaF{sub 2} array under development at Los Alamos National Laboratory. It is designed to provide high granularity, fast timing and high photon detection efficiency. It will be located at the Los Alamos Neutron Scattering Center where neutrons are produced using 800 MeV proton induced spallation reactions on heavy element production targets. Using the pulsed high neutron fluence available at this facility combined with time of flight techniques it will be possible to make neutron capture measurements in the neutron energy range from eV to 100's keV on rate and radioactive target material at the milligram and below level. These measurements will provide critically needed data for the interpretation of the astrophysical s-process 'branching point' nuclei as well as information for reactions needed in understanding transmutation processes of radioactive species. (author)

  3. DANCE : Device for Measurement of (n.g.) Reactions on radioactive Species /

    Energy Technology Data Exchange (ETDEWEB)

    Chamberlin, E. P. (Edwin P.); Dragowsky, M. (Michael); Fowler, Malcolm M.; Miller, G. G. (Geoffrey G.); Palmer, P. D. (Phillip D.); Pangualt, L. N. (Laurence N.); Rundberg, R. S. (Robert S.); Haight, Robert C.; Seabury, E. H. (Edward H.); Ullmann, J. L. (John L.); Strottman, D. D. (Daniel D.); Heil, M. (Michael); Kaeppeler, F. (Franz K.); Reifarth, R. (Rene); Wisshak, K.; Wilhelmy, J. B. (Jerry B.)

    2001-01-01

    DANCE (Device for Advanced Neutron Capture Experiments) is a 4{pi} 162 element BaF{sub 2} array under development at Los Alamos National Laboratory. It is designed to provide high granularity, fast timing and high photon detection efficiency. It will be located at the Los Alamos Neutron Scattering Center where neutrons are produced using 800 MeV proton induced spallation reactions on heavy element production targets. Using the pulsed high neutron fluence available at this facility combined with time of flight techniques it will be possible to make neutron capture measurements in the neutron energy range from eV to 100's of keV on rare and radioactive target material at the milligram and below level. These measurements will provide critically needed data for the interpretation of the astrophysical s-process 'branching point' nuclei as well as information for reactions needed in understanding transmutation processes of radioactive species.

  4. TRI mu P - a radioactive isotope trapping facility under construction at KVI

    CERN Document Server

    Berg, G P; Dermois, O; Harakeh, M N; Hoekstra, R; Jungmann, Klaus; Kopecky, S; Morgenstern, R; Rogachevskiy, A; Timmermans, R; Willmann, L; Wilschut, H W

    2003-01-01

    At the Kernfysisch Versneller Instituut a new facility (TRI mu P) is under development which aims to investigate fundamental interactions using radioactive ions. A spectrum of radioactive isotopes will be produced in inverse-kinematics and fragmentation reactions using heavy-ion beams from the superconducting cyclotron AGOR. The reaction products will be separated from the primary beam in a dual-mode recoil and fragment separator. The beam of isotopes of interest will be transformed into a low-energy, high-quality, bunched beam and, after neutralization, stored in an atom trap. The emphasis will be put on studying the origin of parity violation via beta-nu angular correlations and the search for permanent electric dipole moments of atoms and nuclei. The facility will be open to outside users; suggestions for collaborations to extend the scientific program are encouraged.

  5. MANAGEMENT OF RADIOACTIVE WASTES IN CHINA

    Institute of Scientific and Technical Information of China (English)

    潘自强

    1994-01-01

    The policy and principles on management of radioactive wastes are stipulated.Cement solidification and bituminization unit has come into trial run.Solid radioactive waste is stored in tentative storage vault built in each of nuclear facilities.Seventeen storages associated with applications of nuclear technology and radioisotopes have been built for provinces.Disposal of low and intermediate level radioactive wastes pursues the policy of “regional disposal”.Four repositories have been planned to be built in northwest.southwest,south and east China respectively.A program for treatment and disposal of high level radioactive waste has been made.

  6. The Model 9977 Radioactive Material Packaging Primer

    Energy Technology Data Exchange (ETDEWEB)

    Abramczyk, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-09

    The Model 9977 Packaging is a single containment drum style radioactive material (RAM) shipping container designed, tested and analyzed to meet the performance requirements of Title 10 the Code of Federal Regulations Part 71. A radioactive material shipping package, in combination with its contents, must perform three functions (please note that the performance criteria specified in the Code of Federal Regulations have alternate limits for normal operations and after accident conditions): Containment, the package must “contain” the radioactive material within it; Shielding, the packaging must limit its users and the public to radiation doses within specified limits; and Subcriticality, the package must maintain its radioactive material as subcritical

  7. Combined in-beam gamma-ray and conversion electron spectroscopy with radioactive ion beams

    Directory of Open Access Journals (Sweden)

    Konki J.

    2013-12-01

    Full Text Available In-beam gamma-ray and electron spectroscopy have been widely used as tools to study the broad variety of phenomena in nuclear structure. The SPEDE spectrometer is a new device to be used in conjunction with the MINIBALL germanium detector array to enable the detection of internal conversion electrons in coincidence with gamma rays from de-exciting nuclei in radioactive ion beam experiments at the upcoming HIE-ISOLDE facility at CERN, Switzerland. Geant4 simulations were carried out in order to optimise the design and segmentation of the silicon detector to achieve good energy resolution and performance.

  8. Set-Up on the Basis of Multiwire Proportional and Ionization Chambers for Radioactive Beam Experiments

    CERN Document Server

    Astabatyan, R A; Kavalov, R L; Kugler, A; Kuznetsov, I V; Kushniruk, V F; Lobastov, S P; Lukyanov, S M; Markaryan, E R; Maslov, V A; Mikhailov, L; Penionzhkevich, Yu E; Poroshin, N O; Skobelev, N K; Smirnov, V I; Sobolev, Yu G; Ugryumov, V Yu

    2002-01-01

    A large-aperture set-up designed for nuclear physics experiments on beams of radioactive nuclei is described. The set-up includes Multiwire Proportional Chamber (MWPC) for measuring the beam profile, MWPC for measuring reaction product angular distributions, a CsI(Tl)-crystal detector and a longitudinal drift ionization chamber for identifying scattered particles and measuring their energy. The results of tests of coordinate MWPCs, particle identification on photon and ion beams, and preliminary measurements of the elastic scattering and the charge exchange reaction of 170 MeV ^{6}He on a CH_{2} target are presented.

  9. Nuclear Structure at the Legnaro National Laboratories:. from High Intensity Stable to Radioactive Nuclear Beams

    Science.gov (United States)

    de Angelis, G.

    2007-04-01

    To understand the properties of a nucleus, apart from establishing the interaction between its components, it is necessary to determine the arrangement of the nucleons, i.e. the structure of a nucleus. So far our knowledge about the structure of nuclei is mostly limited to nuclei close to the valley of stability, or nuclei with a deficiency of neutrons, which can be produced in fusion-evaporation reactions with stable beams and stable targets. Future perspectives in nuclear structure rely on radioactive ion beams (RIB) as well as on high intensity beams of stable ions (HISB). A world wide effort is presently going on in order to built the next generation radioactive ion beam facilities like the FAIR and the EURISOL projects. The LNL are contributing to such development through the design study of the EURISOL project as well as through the design and construction of the intermediate facility SPES. Concerning the instrumentation, particularly powerful is the combination of large acceptance spectrometers with highly segmented γ-detector arrays. An example is the CLARA γ-ray detector array coupled with the PRISMA spectrometer at the Legnaro National Laboratories (LNL). The physics aims achievable with such device complement studies performed with current radioactive beam (RIB) facilities. With this set-up we have recently investigated the stability of the N=50 shell closure. Here the comparison of the experimental data with shell model calculations seems to indicate a persistence of the N=50 shell gap down to Z=31. Also the study of proton rich nuclei can strongly benefit from the use of high intensity stable beams using fusion evaporation reactions at energies close to the Coulomb barrier. Future perspectives at LNL are based on an increase in intensity as well as on the availability of heavy ion species. Moreover a new ISOL facility (SPES) dedicated to the production and acceleration of radioactive neutron rich species is now under development at LNL. Among the new

  10. Alpha-cluster model of atomic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Sosin, Zbigniew; Kallunkathariyil, Jinesh [Jagiellonian University, M. Smoluchowski Institute of Physics, Krakow (Poland); Blocki, Jan [NCBJ, Theoretical Physics Division (BP2), Swierk (Poland); Lukasik, Jerzy; Pawlowski, Piotr [IFJ PAN, Krakow (Poland)

    2016-05-15

    The description of a nuclear system in its ground state and at low excitations based on the equation of state (EoS) around normal density is presented. In the expansion of the EoS around the saturation point, additional spin polarization terms are taken into account. These terms, together with the standard symmetry term, are responsible for the appearance of the α-like clusters in the ground-state configurations of the N=Z even-even nuclei. At the nuclear surface these clusters can be identified as alpha particles. A correction for the surface effects is introduced for atomic nuclei. Taking into account an additional interaction between clusters the binding energies and sizes of the considered nuclei are very accurately described. The limits of the EoS parameters are established from the properties of the α, {sup 3}He and t particles. (orig.)

  11. Nucleon localization in light and heavy nuclei

    CERN Document Server

    Zhang, C L; Nazarewicz, W

    2016-01-01

    An electron localization measure was originally introduced to characterize chemical bond structures in molecules. Recently, a nucleon localization based on Hartree-Fock densities has been introduced to investigate $\\alpha$-cluster structures in light nuclei. Compared to the local nucleonic densities, the nucleon localization function has been shown to be an excellent indicator of shell effects and cluster correlations. Using the spatial nucleon localization measure, we investigate the cluster structures in deformed light nuclei and study the emergence of fragments in fissioning heavy nuclei. To illustrate basic concepts of nucleon localization, we employ the deformed harmonic oscillator model. Realistic calculations are carried out using self-consistent nuclear density functional theory with quantified energy density functionals optimized for fission studies. We study particle densities and spatial nucleon localization distributions for deformed cluster configurations of $^{8}$Be and $^{20}$Ne, and also along...

  12. Shape phase mixing in critical point nuclei

    CERN Document Server

    Budaca, R

    2016-01-01

    Spectral properties of nuclei near the critical point of the quantum phase transition between spherical and axially symmetric shapes are studied in a hybrid collective model which combines the $\\gamma$-stable and $\\gamma$-rigid collective conditions through a rigidity parameter. The model in the lower and upper limits of the rigidity parameter recovers the X(5) and X(3) solutions respectively, while in the equally mixed case it corresponds to the X(4) critical point symmetry. Numerical applications of the model on nuclei from regions known for critical behavior reveal a sizable shape phase mixing and its evolution with neutron or proton numbers. The model also enables a better description of energy spectra and electromagnetic transitions for these nuclei.

  13. Import/Export Service of Radioactive Material and Radioactive Sources Service

    CERN Multimedia

    2004-01-01

    Please note that the Import/Export Service of radioactive material (http://cern.ch/service-rp-shipping/ - e-mail : service-rp-shipping@cern.ch) and the Radioactive Sources Service (http://cern.ch/service-radioactive-sources - e-mail : service-radioactive-sources@cern.ch) at bldg. 24/E-024 will be closed on FRIDAY 10 SEPTEMBER 2004. Tel. 73171

  14. Radioactive decay products in neutron star merger ejecta: heating efficiency and $\\gamma$-ray emission

    CERN Document Server

    Hotokezaka, Kenta; Tanaka, Masaomi; Bamba, Aya; Terada, Yukikatsu; Piran, Tsvi

    2015-01-01

    The radioactive decay of the freshly synthesized $r$-process nuclei ejected in compact binary mergers power optical/infrared macronovae (kilonovae) that follow these events. The light curves depend critically on the energy partition among the different products of the radioactive decay and this plays an important role in estimates of the amount of ejected $r$-process elements from a given observed signal. We study the energy partition and $\\gamma$-ray emission of the radioactive decay. We show that $20$-$50\\%$ of the total radioactive energy is released in $\\gamma$-rays on timescales from hours to a month. The number of emitted $\\gamma$-rays per unit energy interval has roughly a flat spectrum between a few dozen keV and $1$ MeV so that most of this energy is carried by $\\sim 1$ MeV $\\gamma$-rays. However at the peak of macronova emission the optical depth of the $\\gamma$-rays is $\\sim 0.02$ and most of the $\\gamma$-rays escape. The loss of these $\\gamma$-rays reduces the heat deposition into the ejecta and h...

  15. Radioactivity in the galactic plane

    Science.gov (United States)

    Walraven, G. D.; Haymes, R. C.

    1976-01-01

    The paper reports the detection of a large concentration of interstellar radioactivity during balloon-altitude measurements of gamma-ray energy spectra in the band between 0.02 and 12.27 MeV from galactic and extragalactic sources. Enhanced counting rates were observed in three directions towards the plane of the Galaxy; a power-law energy spectrum is computed for one of these directions (designated B 10). A large statistical deviation from the power law in a 1.0-FWHM interval centered near 1.16 MeV is discussed, and the existence of a nuclear gamma-ray line at 1.15 MeV in B 10 is postulated. It is suggested that Ca-44, which emits gamma radiation at 1.156 MeV following the decay of radioactive Sc-44, is a likely candidate for this line, noting that Sc-44 arises from Ti-44 according to explosive models of supernova nucleosynthesis. The 1.16-MeV line flux inferred from the present data is shown to equal the predicted flux for a supernova at a distance of approximately 3 kpc and an age not exceeding about 100 years.

  16. Charge Breeding of Radioactive Ions

    CERN Document Server

    Wenander, F J C

    2013-01-01

    Charge breeding is a technique to increase the charge state of ions, in many cases radioactive ions. The singly charged radioactive ions, produced in an isotope separator on-line facility, and extracted with a low kinetic energy of some tens of keV, are injected into a charge breeder, where the charge state is increased to Q. The transformed ions are either directed towards a dedicated experiment requiring highly charged ions, or post-accelerated to higher beam energies. In this paper the physics processes involved in the production of highly charged ions will be introduced, and the injection and extraction beam parameters of the charge breeder defined. A description of the three main charge-breeding methods is given, namely: electron stripping in gas jet or foil; external ion injection into an electron-beam ion source/trap (EBIS/T); and external ion injection into an electron cyclotron resonance ion source (ECRIS). In addition, some preparatory devices for charge breeding and practical beam delivery aspects ...

  17. Nuclei of Taxus baccata: Flavanols Linked to Chromatin Remodeling Factors

    Directory of Open Access Journals (Sweden)

    Walter Feucht

    2009-01-01

    Full Text Available Microscopic studies of young needles and shoot tips from Taxus baccata showed that flavanols are localized in the nuclei. This observation is based on the histochemical staining of flavanols with the DMACA reagent. The colour that is obtained with this reagent varies from pale to deep blue, depending on the amount of flavanols. This study is focused on nondifferentiated cell lineages and on differentiating cells. The key point to note is that all nuclei of a cell lineage showed a uniform DMACA staining pattern based on the amount and structural appearence of nuclear flavanols. This points to transcriptional and epigenetic programming. However, comparing various cell lineages from different shoot tips and needles revealed a lineage-specific expression of nuclear flavanols. This result implied that both positional and developmental signals from neighbouring cells were involved in the nuclear flavanol binding of lineages. The cells of a developmentally advanced lineage loose their intimate contact and, then, they separate from each other to undergo an autonomous, individual sequence of differentiation. This in turn was accompanied by differences in the nuclear flavanol patterns of the single cells. Investigating different mitotic stages revealed a wide spectrum in flavanol staining intensities of the chromosomes. These observations should be linked to UV-VIS spectroscopical kinetic results indicating that nuclear flavanols bound to histones are involved in epigenetically regulated modification of chromatin. The kinetic studies show that catechin is relatively rapidly degraded by oxygen in the presence of Mg2+-ions. However, this degradation reaction is strongly inhibited when histone proteins were added. This behaviour is a clear indication that coregulatory interactions exist between catechin and histones.

  18. Universal charge-mass relation: From black holes to atomic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Hod, Shahar, E-mail: shaharhod@gmail.co [The Ruppin Academic Center, Emeq Hefer 40250 (Israel); The Hadassah Institute, Jerusalem 91010 (Israel)

    2010-10-04

    The cosmic censorship hypothesis, introduced by Penrose forty years ago, is one of the corner stones of general relativity. This conjecture asserts that spacetime singularities that arise in gravitational collapse are always hidden inside of black holes. The elimination of a black-hole horizon is ruled out by this principle because that would expose naked singularities to distant observers. We test the consistency of this prediction in a gedanken experiment in which a charged object is swallowed by a charged black hole. We find that the validity of the cosmic censorship conjecture requires the existence of a charge-mass bound of the form q{<=}{mu}{sup 2/3}E{sub c}{sup -1/3}, where q and {mu} are the charge and mass of the physical system respectively, and E{sub c} is the critical electric field for pair-production. Applying this bound to charged atomic nuclei, one finds an upper limit on the number Z of protons in a nucleus of given mass number A: Z{<=}Z{sup *}={alpha}{sup -1/3}A{sup 2/3}, where {alpha}=e{sup 2}/h is the fine structure constant. We test the validity of this novel bound against the (Z,A)-relation of atomic nuclei as deduced from the Weizsaecker semi-empirical mass formula.

  19. Characteristic Signal of Neutron-Antineutron Oscillation in Argon Nuclei at DUNE.

    Science.gov (United States)

    Barrow, Joshua; Kamyshkov, Yuri; Rybolt, Ben; Deep Underground Neutrino Experiment Collaboration

    2017-01-01

    Babu et al. have recently proposed a model of post-sphaleron baryogenesis following the electroweak phase transition. Their theory naturally gives rise to a plausible baryon abundance and a ΔB =2 six-quark operator which allows for the generation of nbar from n. Using n bound in Ar, DUNE currently plans to include n-nbar events in their nucleon decay searches. Using GENIE, modeling is underway on intranuclear interactions mimicking n-nbar annihilation in Ar nuclei. Eliminating atmospheric ν background from such events will be a challenge for liquid Ar TPCs at DUNE, so simulation work must be considered for ν interactions in Ar nuclei, which produce similar signals to n-nbar annihilation. Key to understanding possible experimental signals will be the integration of these two for a proper robust analysis, which will determine the viability of any detection of this process above background levels. Department of Energy-High Energy Physics.

  20. Computer Model Of Fragmentation Of Atomic Nuclei

    Science.gov (United States)

    Wilson, John W.; Townsend, Lawrence W.; Tripathi, Ram K.; Norbury, John W.; KHAN FERDOUS; Badavi, Francis F.

    1995-01-01

    High Charge and Energy Semiempirical Nuclear Fragmentation Model (HZEFRG1) computer program developed to be computationally efficient, user-friendly, physics-based program for generating data bases on fragmentation of atomic nuclei. Data bases generated used in calculations pertaining to such radiation-transport applications as shielding against radiation in outer space, radiation dosimetry in outer space, cancer therapy in laboratories with beams of heavy ions, and simulation studies for designing detectors for experiments in nuclear physics. Provides cross sections for production of individual elements and isotopes in breakups of high-energy heavy ions by combined nuclear and Coulomb fields of interacting nuclei. Written in ANSI FORTRAN 77.

  1. Light nuclei from chiral EFT interactions

    Science.gov (United States)

    Navrátil, P.; Gueorguiev, V. G.; Vary, J. P.; Ormand, W. E.; Nogga, A.; Quaglioni, S.

    2008-12-01

    Recent developments in nuclear theory allow us to make a connection between quantum chromodynamics (QCD) and low-energy nuclear physics. First, chiral effective field theory (χEFT) provides a natural hierarchy to define two-nucleon ( NN), three-nucleon ( NNN), and even four-nucleon interactions. Second, ab-initio methods have been developed capable to test these interactions for light nuclei. In this contribution, we discuss ab-initio no-core shell-model (NCSM) calculations for s-shell and p-shell nuclei with NN and NNN interactions derived within χEFT.

  2. Statistical properties of quantum spectra in nuclei

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Some aspects of quantum chaos in a finite system have been studied based on the analysis of statistical behavior of quantum spectra in nuclei.The experiment data show the transition from order to chaos with increasing excitation energy in spherical nuclei.The dependence of the order to chaos transition on nuclear deformation and nuclear rotating is described.The influence of pairing effect on the order to chaos transition is also discussed.Some important experiment phenomena in nuclear physics have been understood from the point of view of the interplay between order and chaos.

  3. Doubly magic properties in superheavy nuclei

    Institute of Scientific and Technical Information of China (English)

    HUANG Ya-Wei; ZHU Jian-Yu

    2009-01-01

    A systematic study of global properties of superheavy nuclei in the framework of the Liquid Drop Model and the Strutinsky shell correction method is performed. The evolution equilibrium deformations, TRS graphs and α-decay energies are calculated using the TRS model. The analysis covers a wide range of even-even superheavy nuclei from Z = 102 to 122. Magic numbers and their observable influence occurring in this region have been investigated. Shell closures appear at proton number Z = 114 and at neutron number N = 184.

  4. Monte Carlo approaches to light nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, J.

    1990-01-01

    Significant progress has been made recently in the application of Monte Carlo methods to the study of light nuclei. We review new Green's function Monte Carlo results for the alpha particle, Variational Monte Carlo studies of {sup 16}O, and methods for low-energy scattering and transitions. Through these calculations, a coherent picture of the structure and electromagnetic properties of light nuclei has arisen. In particular, we examine the effect of the three-nucleon interaction and the importance of exchange currents in a variety of experimentally measured properties, including form factors and capture cross sections. 29 refs., 7 figs.

  5. Exotic nuclei from a theoretical perspective

    Energy Technology Data Exchange (ETDEWEB)

    Nazarewicz, W. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Physics]|[Oak Ridge National Lab., TN (United States). Physics Div.]|[Univ. of Warsaw (Poland). Inst. of Theoretical Physics

    1998-11-01

    One of the main frontiers of nuclear structure today is the physics of radioactive nuclear beams. Experiments with radioactive beams will make it possible to look closely into many aspects of the nuclear many-body problem. What makes this subject both exciting and difficult is: (i) the weak binding and corresponding closeness of the particle continuum, implying a large diffuseness of the nuclear surface and extreme spatial dimensions characterizing the outermost nucleons, and (ii) access to the exotic combinations of proton and neutron numbers which offer prospects for completely new structural phenomena.

  6. Lower Bounds on Paraclique Density.

    Science.gov (United States)

    Hagan, Ronald D; Langston, Michael A; Wang, Kai

    2016-05-11

    The scientific literature teems with clique-centric clustering strategies. In this paper we analyze one such method, the paraclique algorithm. Paraclique has found practical utility in a variety of application domains, and has been successfully employed to reduce the effects of noise. Nevertheless, its formal analysis and worst-case guarantees have remained elusive. We address this issue by deriving a series of lower bounds on paraclique densities.

  7. Bound Modes in Dielectric Microcavities

    CERN Document Server

    Visser, P M; Lenstra, D

    2002-01-01

    We demonstrate how exactly bound cavity modes can be realized in dielectric structures other than 3d photonic crystals. For a microcavity consisting of crossed anisotropic layers, we derive the cavity resonance frequencies, and spontaneous emission rates. For a dielectric structure with dissipative loss and central layer with gain, the beta factor of direct spontaneous emission into a cavity mode and the laser threshold is calculated.

  8. Entropy Bounds in Spherical Space

    CERN Document Server

    Brevik, I; Odintsov, S D; Brevik, Iver; Milton, Kimball A.; Odintsov, Sergei D.

    2002-01-01

    Exact calculations are given for the Casimir energy for various fields in $R\\times S^3$ geometry. The Green's function method naturally gives a result in a form convenient in the high-temperature limit, while the statistical mechanical approach gives a form appropriate for low temperatures. The equivalence of these two representations is demonstrated. Some discrepancies with previous work are noted. In no case, even for ${\\cal N}=4$ SUSY, is the ratio of entropy to energy found to be bounded.

  9. 78 FR 18326 - Agency Information Collection Activities; Comment Request; Upward Bound and Upward Bound Math...

    Science.gov (United States)

    2013-03-26

    ... Agency Information Collection Activities; Comment Request; Upward Bound and Upward Bound Math Science... Upward Bound Math Science Annual Performance Report. OMB Control Number: 1840-NEW. Type of Review: New... under the regular Upward Bound (UB) and Upward Bound Math and Science (UBMS) Programs. The Department...

  10. Structure and Vibrational Spectra of Slags Produced from Radioactive Waste

    Science.gov (United States)

    Malinina, G. A.; Stefanovsky, S. V.

    2014-05-01

    The structure of the anionic motif of aluminosilicate and aluminoborosilicate glasses containing simulated slags from a solid radioactive waste incinerator was studied by IR and Raman spectroscopy. Spectra of melted slag were consistent with Si-O tetrahedra with various numbers of bridging O ions and Al-O tetrahedra embedded in the Si-O network in the slag vitreous and crystalline phases (nepheline, nagelschmidtite). Vibrations of doubly and triply bound Si-O tetrahedra and Al-O tetrahedra embedded between them were mainly responsible for the spectra as the content of sodium disilicate fl ux and the glass fraction in the materials increased. Addition of sodium tetraborate fl ux caused the appearance of B-O vibrations of predominantly three-coordinate B and a tendency toward chemical differentiation preceding phase separation.

  11. Bounds on Generalized Huffman Codes

    CERN Document Server

    Baer, Michael B

    2007-01-01

    New lower and upper bounds are obtained for the compression of optimal binary prefix codes according to various nonlinear codeword length objectives. Like the coding bounds for Huffman coding - which concern the traditional linear code objective of minimizing average codeword length -- these are in terms of a form of entropy and the probability of the most probable input symbol. As in Huffman coding, some upper bounds can be found using sufficient conditions for the codeword corresponding to the most probable symbol being one bit long. Whereas having probability no less than 0.4 is a tight sufficient condition for this to be the case in Huffman coding, other penalties differ, some having a tighter condition, some a looser condition, and others having no such sufficient condition. The objectives explored here are ones for which optimal codes can be found using a generalized form of Huffman coding. These objectives include one related to queueing (an increasing exponential average), one related to single-shot c...

  12. The Cost of Bounded Curvature

    CERN Document Server

    Kim, Hyo-Sil

    2011-01-01

    We study the motion-planning problem for a car-like robot whose turning radius is bounded from below by one and which is allowed to move in the forward direction only (Dubins car). For two robot configurations $\\sigma, \\sigma'$, let $\\ell(\\sigma, \\sigma')$ be the shortest bounded-curvature path from $\\sigma$ to $\\sigma'$. For $d \\geq 0$, let $\\ell(d)$ be the supremum of $\\ell(\\sigma, \\sigma')$, over all pairs $(\\sigma, \\sigma')$ that are at Euclidean distance $d$. We study the function $\\dub(d) = \\ell(d) - d$, which expresses the difference between the bounded-curvature path length and the Euclidean distance of its endpoints. We show that $\\dub(d)$ decreases monotonically from $\\dub(0) = 7\\pi/3$ to $\\dub(\\ds) = 2\\pi$, and is constant for $d \\geq \\ds$. Here $\\ds \\approx 1.5874$. We describe pairs of configurations that exhibit the worst-case of $\\dub(d)$ for every distance $d$.

  13. Bounds on Black Hole Spins

    CERN Document Server

    Daly, Ruth A

    2009-01-01

    Beam powers and black hole masses of 48 extended radio sources are combined to obtain lower bounds on the spins and magnetic field strengths of supermassive black holes. This is done in the context of the models of Blandford & Znajek (1977) (the 'BZ' model) and Meier (1999); a parameterization for bounds in the context of other models is suggested. The bounds obtained for very powerful classical double radio sources in the BZ model are consistent with black hole spins of order unity for sources at high redshift. The black hole spins are largest for the highest redshift sources and decrease for sources at lower redshift; the sources studied have redshifts between zero and two. Lower power radio sources associated with central dominant galaxies may have black hole spins that are significantly less than one. Combining this analysis with other results suggests that the maximum values of black hole spin associated with powerful radio galaxies decline from values of order unity at a redshift of 2 to values of o...

  14. Observation of nuclei reassembled from demembranated Xenopus sperm nuclei and analysis of their lamina components

    Institute of Scientific and Technical Information of China (English)

    QUJIAN; CHUANMAOZHANG; 等

    1994-01-01

    A cell-free preparation obtained from extracts of activated Xenopus laevis eggs induced chromatin decondensation and nuclear formation from demembranated Xenopus sperm nuclei.Electron microscopy revealed that the reassembled nucleus had a double-layered nuclear memblane,nuclear pore complexes,and decondensed chromatin etc.Indirect immunofluorescence analysis demonstrated the presence of lamina in newly assembled nuclei.Western-blotting results showed that lamin LII was present in egg extracts and in lamina of the reassembled nuclei which were previously reported to contain only egg derived lamin LIII.

  15. Research on Calibration of Radioactive Aerosol Monitor

    Institute of Scientific and Technical Information of China (English)

    CHEN; Xi-lin; WU; Chang-ping; ZHANG; Xi; MENG; Jun; DIAO; Li-jun; CHEN; Ke-sheng

    2015-01-01

    Radioactive aerosol monitors were used to monitor the radioactive substance concentration or the total amounts in effluents from the nuclear facilities,in according to which evaluation was done if the national regulated discharged limitations or the designated object amounts were met

  16. Measurements of radioactive contaminants in semiconductor materials

    Science.gov (United States)

    Gordon, Michael S.; Rodbell, Kenneth P.; Murray, Conal E.; McNally, Brendan D.

    2016-12-01

    The emission of alpha particles from materials used to manufacture semiconductors can contribute substantially to the single-event upset rate. The alpha particles originate from contamination in the materials, or from radioactive isotopes, themselves. In this review paper, we discuss the sources of the radioactivity and the measurement methods to detect the emitted particles.

  17. Packaging and transportation of radioactive materials

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    The presentations made at the Symposium on Packaging and Transportation of Radioactive Materials are included. The purpose of the meeting was for the interchange of information on the technology and politics of radioactive material transportation. Separate abstracts were prepared for individual items. (DC)

  18. An Excel™ model of a radioactive series

    Science.gov (United States)

    Andrews, D. G. H.

    2009-01-01

    A computer model of the decay of a radioactive series, written in Visual Basic in Excel™, is presented. The model is based on the random selection of cells in an array. The results compare well with the theoretical equations. The model is a useful tool in teaching this aspect of radioactivity.

  19. Note from the Radioactive Waste Section

    CERN Multimedia

    TS Department

    2008-01-01

    The Radioactive Waste Section of the Radiation Protection Group wishes to announce that the radioactive waste treatment centre will be closed on Friday, 19 December. In addition, waste reception will be limited to a strict minimum on Thursday, 18 December. Users of the centre are requested to adjust their plans accordingly. For more information, call 73875.

  20. Fusion at the barrier with light radioactive ion beams

    CERN Document Server

    Signorini, C

    2001-01-01

    The experimental results recently obtained for fusion reactions at energies close to the Coulomb barrier with light radioactive (loosely bound) beams are reviewed and critically discussed. There have been two conflicting views on the effect of the loose binding of the projectile on the fusion cross section. On the one hand one expects an enhancement of the fusion cross section due to the loose binding while, on the other hand, the easy breakup of the projectile is expected to inhibit the fusion cross section. We critically discuss these two aspects of loose binding by comparing the experimental results for a number of radioactive beams. The data for sup 1 sup 7 F (where the last neutron binding energy S sub n =0.601 MeV), neither show breakup effects nor enhancement when compared with the fusion of the nucleus sup 1 sup 9 F. The data for a sup 6 He beam (S sub 2 sub n =0.975 MeV) show enhancement, very strong in one case, and the strong breakup (BU)+transfer cross section may be related to this. The fusion da...