Physics with loosely bound nuclei
Indian Academy of Sciences (India)
Chhanda Samanta
2001-08-01
The essential aspect of contemporary physics is to understand properties of nucleonic matter that constitutes the world around us. Over the years research in nuclear physics has provided strong guidance in understanding the basic principles of nuclear interactions. But, the scenario of nuclear physics changed drastically as the new generation of accelerators started providing more and more rare isotopes, which are away from the line of stability. These weakly bound nuclei are found to exhibit new forms of nuclear matter and unprecedented exotic behaviour. The low breakup thresholds of these rare nuclei are posing new challenges to both theory and experiments. Fortunately, nature has provided a few loosely bound stable nuclei that have been studied thoroughly for decades. Attempts are being made to ﬁnd a consistent picture for the unstable nuclei starting from their stable counterparts. Some signiﬁcant differences in the structure and reaction mechanisms are found.
Mishustin, I N; Buervenich, T J; Stöcker, H; Greiner, W
2005-01-01
We study the possibility of producing a new kind of nuclear systems which in addition to ordinary nucleons contain a few antibaryons (antiproton, antilambda, etc.). The properties of such systems are described within the relativistic mean-field model by employing G-parity transformed interactions for antibaryons. Calculations are first done for infinite systems and then for finite nuclei from He to Pb. It is demonstrated that the presence of a real antibaryon leads to a strong rearrangement of a target nucleus resulting in a significant increase of its binding energy and local compression. Noticeable effects remain even after the antibaryon coupling constants are reduced by factor 3-4 compared to G-parity motivated values. We have performed detailed calculations of the antibaryon annihilation rates in the nuclear environment by applying a kinetic approach. It is shown that due to significant reduction of the reaction Q-values, the in-medium annihilation rates should be strongly suppressed leading to relativel...
International Nuclear Information System (INIS)
Information on the structure, spectroscopy and target interaction potentials of exotic nuclei can be inferred by interpreting measured data from direct reactions on proton such as elastic or inelastic scattering of proton (p,p') or one-nucleon transfer reaction (p,d). A series of experimental results has been obtained at the GANIL facilities on the setting composed of the MUST telescope array used for the detection of light charged-particles and of CATS beam detectors. This setting aims at measuring reactions on light proton or deuteron targets through reverse kinematics. Particularly, results on C10, C11 and on direct reactions with the He8 beam of Spiral are presented. The first chapter is dedicated to the description of the most important theories concerning the nucleus. The experimental tools used to probe the nucleus are reported in the second chapter. The third and fourth chapters present the framework that has allowed us to analyse results from (p,p') and (p,d) reactions on weakly bound exotic nuclei. The last chapter is dedicated to the description of future experimental programs. (A.C.)
Nuclear moments of radioactive nuclei. Final report
International Nuclear Information System (INIS)
An unsuccessful attempt was made to study nuclear moments of radioactive nuclear using laser spectroscopy. Although preliminary tests had indicated a sensitivity sufficient to observe signals of fluxes less than one atom/s no resonance fluorescence was detected. Activity measurements showed several hundred nuclei per second were in the beam; therefore it was postulated that, due to the the reactivity of the 126Ba and sodium used, contaminants were the probable source of negative results. 3 refs., 2 figs
Reactions with fast radioactive beams of neutron-rich nuclei
Energy Technology Data Exchange (ETDEWEB)
Aumann, T. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)
2005-11-01
The neutron dripline has presently been reached only for the lightest nuclei up to the element oxygen. In this region of light neutron-rich nuclei, scattering experiments are feasible even for dripline nuclei by utilizing high-energy secondary beams produced by fragmentation. In the present article, reactions of high-energy radioactive beams will be exemplified using recent experimental results mainly derived from measurements of breakup reactions performed at the LAND and FRS facilities at GSI and at the S800 spectrometer at the NSCL. Nuclear and electromagnetically induced reactions allow probing different aspects of nuclear structure at the limits of stability related to the neutron-proton asymmetry and the weak binding close to the dripline. Properties of the valence-neutron wave functions are studied in the one-neutron knockout reaction, revealing the changes of shell structure when going from the beta-stability line to more asymmetric loosely bound neutron-rich systems. The vanishing of the N=8 shell gap for neutron-rich systems like {sup 11}Li and {sup 12}Be, or the new closed N=14, 16 shells for the oxygen isotopes are examples. The continuum of weakly bound nuclei and halo states can be studied by inelastic scattering. The dipole response, for instance, is found to change dramatically when going away from the valley of stability. A redistribution of the dipole strength towards lower excitation energies is observed for neutron-rich nuclei, which partly might be due to a new collective excitation mode related to the neutron-proton asymmetry. Halo nuclei in particular show strong dipole transitions to the continuum at the threshold, being directly related to the ground-state properties of the projectile. Finally, an outlook on future experimental prospects is given. (orig.)
Reactions with fast radioactive beams of neutron-rich nuclei
International Nuclear Information System (INIS)
The neutron dripline has presently been reached only for the lightest nuclei up to the element oxygen. In this region of light neutron-rich nuclei, scattering experiments are feasible even for dripline nuclei by utilizing high-energy secondary beams produced by fragmentation. In the present article, reactions of high-energy radioactive beams will be exemplified using recent experimental results mainly derived from measurements of breakup reactions performed at the LAND and FRS facilities at GSI and at the S800 spectrometer at the NSCL. Nuclear and electromagnetically induced reactions allow probing different aspects of nuclear structure at the limits of stability related to the neutron-proton asymmetry and the weak binding close to the dripline. Properties of the valence-neutron wave functions are studied in the one-neutron knockout reaction, revealing the changes of shell structure when going from the beta-stability line to more asymmetric loosely bound neutron-rich systems. The vanishing of the N=8 shell gap for neutron-rich systems like 11Li and 12Be, or the new closed N=14, 16 shells for the oxygen isotopes are examples. The continuum of weakly bound nuclei and halo states can be studied by inelastic scattering. The dipole response, for instance, is found to change dramatically when going away from the valley of stability. A redistribution of the dipole strength towards lower excitation energies is observed for neutron-rich nuclei, which partly might be due to a new collective excitation mode related to the neutron-proton asymmetry. Halo nuclei in particular show strong dipole transitions to the continuum at the threshold, being directly related to the ground-state properties of the projectile. Finally, an outlook on future experimental prospects is given. (orig.)
Deeply bound kaonic states in nuclei
Institute of Scientific and Technical Information of China (English)
LI Yi-He; WU Shi-Shu
2009-01-01
Using a new phenomenological (K)N interaction which reproduces A(1405) as an I = 0 bound state of (K)N, we have investigated K- -3 He(T = 0) and K- -4 He(T = 1/2) within the framework of the Brueckner-Hartree-Fock(BHF) theory. Our calculations show that the above kaonic nuclear systems are both deeply bound. The binding energy BK- is 124.4 MeV(94.1 MeV) and the width Γ is 11.8 MeV(25.8 MeV) for K- -3 He(T = 0)(K- -4 He(T= 1/2)).
Reaction dynamics for fusion of weakly-bound nuclei
Hagino, K.; Vitturi, A.
2004-01-01
We discuss several open problems of fusion reactions induced by weakly bound nuclei. For this purpose, we solve a one dimensional three-body Hamiltonian with the coupled-channels formalism. We show that the continuum-continuum couplings substantially reduce the total fusion probability at energies above the barrier compared with the no-breakup case, although the fusion probability remains enhanced at subbarrier energies. We then discuss a role of transfer process in fusion of weakly bound nuc...
Studies of nuclei using radioactive beams
International Nuclear Information System (INIS)
The 12 month period from May 1988 to July 1989 represents the first full year of our 18 month pilot program in nuclear structure research. In this period, research was initiated to develop a capability for radioactive secondary beams at Argonne National Laboratory using the Atlas and the new Fragment Mass Analyzer (FMA), which is currently under construction. Two major new detector facilities are currently in the final stages of design and testing. The Large-Area, Scintillator Telescope (LAST) detector is fully operational and will be shipped to Argonne National Laboratory in August for fit-tests and in-beam calibrations. The first segments of a new sixteen-segment neutron multiplicity detector have been built and tested. The remaining segments are currently being constructed. Research was continued in the areas of (1) Coulomb excitation studies of rare earth and actinide nuclei; (2) In-beam, gamma-ray spectroscopy of nuclei in the mass 100 region, and (3) Advanced detector design. Several journal articles and abstracts were published or submitted for publication in the reporting period, and others are currently in preparation. Three graduate students participated in the program, one from the University of Florida and two from the Royal Institute of Technology, Stockholm, Sweden
Neutron Capture Cross Sections for Radioactive Nuclei
Tonchev, Anton; Bedrossian, Peter; Escher, Jutta; Scielzo, Nicholas
2015-10-01
Accurate neutron-capture cross sections for radioactive nuclei near or far away from the line of beta stability are crucial for understanding the nucleosynthesis of heavy elements. However, neutron-capture cross sections for short-lived radionuclides are difficult to measure due to the fact that the measurements require both highly radioactive samples and intense neutron sources. Essential ingredients for describing the γ decays following neutron capture are the γ-ray strength function and level densities. We will compare different indirect approaches for obtaining observables that can constrain Hauser-Feshbach statistical model calculations of capture cross sections. Specifically, we will consider photon scattering, transfer reactions, and beta-delayed neutron emission. Challenges that exist on the path to obtaining neutron-capture cross sections for reactions on isotopes far from stability will be discussed. This work was performed under the auspices of US DOE by LLNL under contract DE-AC52-07NA27344. Funding was provided via the LDRD-ERD-069 project.
Emergent Soft Monopole Modes in Weakly-Bound Deformed Nuclei
Pei, J C; Zhang, Y N; Xu, F R
2014-01-01
Based on the Hartree-Fock-Bogoliubov solutions in large deformed coordinate spaces, the finite amplitude method for quasiparticle random phase approximation (FAM-QRPA) has been implemented, providing a suitable approach to probe collective excitations of weakly-bound nuclei embedded in the continuum. The monopole excitation modes in Magnesium isotopes up to the neutron drip line have been studied with the FAM-QRPA framework on both the coordinate-space and harmonic oscillator basis methods. Enhanced soft monopole strengths and collectivity as a result of weak-binding effects have been unambiguously demonstrated.
Proton radioactivity from proton-rich nuclei
Energy Technology Data Exchange (ETDEWEB)
Guzman, F.; Goncalves, M. [Instituto Superior de Ciencias y Tecnologia Nucleares (ISCTN), La Habana (Cuba); Tavares, O.A.P.; Duarte, S.B. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Garcia, F.; Rodriguez, O. [Sao Paulo Univ., SP (Brazil). Inst. de Fisica
1999-03-01
Half-lives for proton emission from proton-rich nuclei have been calculated by using the effective liquid drop model of heavy-particle decay of nuclei. It is shown that this model is able to offer results or spontaneous proton-emission half-life-values in excellent agreement with the existing experimental data. Predictions of half-life-values for other possible proton-emission cases are present for null orbital angular momentum. (author)
Precision mass measurements of radioactive nuclei at JYFLTRAP
Rahaman, S; Eronen, T; Hager, U; Hakala, J; Jokinen, A; Kankainen, A; Moore, I D; Pentillä, H; Rinta-Antila, S; Rissanen, J; Saastamoinen, A; Sonoda, T; Weber, C; Äystö, J
2007-01-01
The Penning trap mass spectrometer JYFLTRAP was used to measure the atomic masses of radioactive nuclei with an uncertainty better than 10 keV. The atomic masses of the neutron-deficient nuclei around the N = Z line were measured to improve the understanding of the rp-process path and the SbSnTe cycle. Furthermore, the masses of the neutron-rich gallium (Z = 31) to palladium (Z = 46) nuclei have been measured. The physics impacts on the nuclear structure and the r-process paths are reviewed. A better understanding of the nuclear deformation is presented by studying the pairing energy around A = 100.
Refractive effects in the scattering of loosely bound nuclei
International Nuclear Information System (INIS)
A study of the interaction of the loosely bound nuclei 6,7Li at 9 and 19 MeV/nucleon with light targets has been undertaken. With the determination of unambiguous optical potentials in mind, elastic data for four projectile-target combinations and one neutron transfer reaction 13C(7Li,8Li)12C have been measured over a large angular range. The kinematical regime encompasses a region where the mean field (optical potential) has a marked variation with mass and energy, but turns out to be sufficiently surface transparent to allow strong refractive effects to be manifested in elastic scattering data at intermediate angles. The identified exotic feature, a 'plateau' in the angular distributions at intermediate angles, is fully confirmed in four reaction channels and is interpreted as a pre-rainbow oscillation resulting from the interference of the barrier and internal barrier far-side scattering sub-amplitudes. (authors)
High energy beams of radioactive nuclei and their biomedical applications
International Nuclear Information System (INIS)
The availability of high-energy beams of radioactive species is the most recent advancement in the field of accelerator physics. One of the primary interactions experienced by relativistic heavy ions is the peripheral nuclear collision. Thus, radioactive nuclei are produced as secondary particles from peripheral nuclear fragmentation reactions. These nuclei have trajectories and energies differing little from that of the parent particle. Various radioactive beams produced as a result of these reactions, now available on a regular basis from the Bevalac, are: 11C, 13N, 15O, and 19Ne with sufficient intensity. Besides the interest in such beams for nuclear physics, important applications in therapeutic and diagnostic radiology and in nuclear medicine are discussed
Studies of pear-shaped nuclei using accelerated radioactive beams
Gaffney, L P; Scheck, M; Hayes, A B; Wenander, F; Albers, M; Bastin, B; Bauer, C; Blazhev, A; Bonig, S; Bree, N; Cederkall, J; Chupp, T; Cline, D; Cocolios, T E; Davinson, T; DeWitte, H; Diriken, J; Grahn, T; Herzan, A; Huyse, M; Jenkins, D G; Joss, D T; Kesteloot, N; Konki, J; Kowalczyk, M; Kroll, Th; Kwan, E; Lutter, R; Moschner, K; Napiorkowski, P; Pakarinen, J; Pfeiffer, M; Radeck, D; Reiter, P; Reynders, K; Rigby, S V; Robledo, L M; Rudigier, M; Sambi, S; Seidlitz, M; Siebeck, B; Stora, T; Thoele, P; Van Duppen, P; Vermeulen, M J; von Schmid, M; Voulot, D; Warr, N; Wimmer, K; Wrzosek-Lipska, K; Wu, C Y; Zielinska, M
2013-01-01
There is strong circumstantial evidence that certain heavy, unstable atomic nuclei are ‘octupole deformed’, that is, distorted into a pear shape. This contrasts with the more prevalent rugby-ball shape of nuclei with reflection-symmetric, quadrupole deformations. The elusive octupole deformed nuclei are of importance for nuclear structure theory, and also in searches for physics beyond the standard model; any measurable electric-dipole moment (a signature of the latter) is expected to be amplified in such nuclei. Here we determine electric octupole transition strengths (a direct measure of octupole correlations) for short-lived isotopes of radon and radium. Coulomb excitation experiments were performed using accelerated beams of heavy, radioactive ions. Our data on and $^{224}$Ra show clear evidence for stronger octupole deformation in the latter. The results enable discrimination between differing theoretical approaches to octupole correlations, and help to constrain suitable candidates for experimental...
Bound clusters on top of doubly magic nuclei
Röpke, G; Zhou, Bo; Funaki, Y; Horiuchi, H; Ren, Zhongzhou; Tohsaki, A; Xu, Chang; Yamada, T
2014-01-01
An effective $\\alpha$ particle equation is derived for cases where an $\\alpha$ particle is formed on top of a doubly magic nucleus. As an example, we consider $^{212}$Po with the $\\alpha$ on top of the $^{208}$ Pb core. We will consider the core nucleus infinitely heavy, so that the $\\alpha$ particle moves with respect to a fixed center, i.e., recoil effects are neglected. The fully quantal solution of the problem is discussed. The approach is inspired by the THSR (Tohsaki-Horiuchi-Schuck-R\\"{o}pke) wave function concept that has been successfully applied to light nuclei. Shell model calculations are improved by including four-particle ($\\alpha$-like) correlations that are of relevance when the matter density becomes low. In the region where the $\\alpha$-like cluster penetrates the core nucleus, the intrinsic bound state wave function transforms at a critical density into an unbound four-nucleon shell model state. Exploratory calculations for $^{212}$Po are presented. Such preformed cluster states are only ha...
Energy Technology Data Exchange (ETDEWEB)
Lapoux, V
2005-09-15
Information on the structure, spectroscopy and target interaction potentials of exotic nuclei can be inferred by interpreting measured data from direct reactions on proton such as elastic or inelastic scattering of proton (p,p') or one-nucleon transfer reaction (p,d). A series of experimental results has been obtained at the GANIL facilities on the setting composed of the MUST telescope array used for the detection of light charged-particles and of CATS beam detectors. This setting aims at measuring reactions on light proton or deuteron targets through reverse kinematics. Particularly, results on C{sup 10}, C{sup 11} and on direct reactions with the He{sup 8} beam of Spiral are presented. The first chapter is dedicated to the description of the most important theories concerning the nucleus. The experimental tools used to probe the nucleus are reported in the second chapter. The third and fourth chapters present the framework that has allowed us to analyse results from (p,p') and (p,d) reactions on weakly bound exotic nuclei. The last chapter is dedicated to the description of future experimental programs. (A.C.)
Study of Exotic Weakly Bound Nuclei Using Magnetic Analyzer Mavr
Maslov, V. A.; Kazacha, V. I.; Kolesov, I. V.; Lukyanov, S. M.; Melnikov, V. N.; Osipov, N. F.; Penionzhkevich, Yu. E.; Skobelev, N. K.; Sobolev, Yu. G.; Voskoboinik, E. I.
2016-06-01
A project of the high-resolution magnetic analyzer MAVR is proposed. The analyzer will comprise new magnetic optical and detecting systems for separation and identification of reaction products in a wide range of masses (5-150) and charges (1-60). The magnetic optical system consists of the MSP-144 magnet and a doublet of quadrupole lenses. This will allow the solid angle of the spectrometer to be increased by an order of magnitude up to 30 msr. The magnetic analyzer will have a high momentum resolution (10-4) and high focal-plane dispersion (1.9 m). It will allow products of nuclear reactions at energies up to 30 MeV/nucleon to be detected with the charge resolution ∼1/60. Implementation of the project is divided into two stages: conversion of the magnetic analyzer proper and construction of the nuclear reaction products identification system. The MULTI detecting system is being developed for the MAVR magnetic analyzer to allow detection of nuclear reaction products and their identification by charge Q, atomic number Z, and mass A with a high absolute accuracy. The identification will be performed by measuring the energy loss (ΔE), time of flight (TOF), and total kinetic energy (TKE) of reaction products. The particle trajectories in the analyzer will also be determined using the drift chamber developed jointly with GANIL. The MAVR analyzer will operate in both primary beams of heavy ions and beams of radioactive nuclei produced by the U400 - U400M acceleration complex. It will also be used for measuring energy spectra of nuclear reaction products and as an energy monochromator.
Mirror energy difference and the structure of loosely bound proton-rich nuclei around A = 20
Yuan, Cenxi; Xu, Furong; Suzuki, Toshio; Otsuka, Takaharu
2014-01-01
The properties of loosely bound proton-rich nuclei around A = 20 are investigated within the framework of nuclear shell model. In these nuclei, the strength of the effective interactions involving the loosely bound proton s1=2 orbit are significantly reduced in comparison with those in their mirror nuclei. We evaluate the reduction of the effective interaction by calculating the monopole-baseduniversal interaction (VMU) in the Woods-Saxon basis. The shell-model Hamiltonian in the sd shell, such as USD, can thus be modified to reproduce the binding energies and energy levels of the weakly bound proton-rich nuclei around A = 20. The effect of the reduction of the effective interaction on the structure and decay properties of these nuclei is also discussed.
Energy Technology Data Exchange (ETDEWEB)
Wang, Yifeng; Miller, Andy; Bryan, Charles R.; Kruichak, Jessica Nicole
2015-11-17
Methods of capturing and immobilizing radioactive nuclei with metal fluorite-based inorganic materials are described. For example, a method of capturing and immobilizing radioactive nuclei includes flowing a gas stream through an exhaust apparatus. The exhaust apparatus includes a metal fluorite-based inorganic material. The gas stream includes a radioactive species. The radioactive species is removed from the gas stream by adsorbing the radioactive species to the metal fluorite-based inorganic material of the exhaust apparatus.
Cluster radioactivity and alpha decay of superheavy nuclei
International Nuclear Information System (INIS)
The competition of cluster radioactivity and α decay is investigated in the region of superheavy (SH) nuclei with atomic numbers Z = 104 - 124. Calculations of half-lives within analytical super-asymmetrical fission (ASAF) model are performed by using different theoretical mass tables to determine the energy released, Q. For α decay the ASAF calculations are compared with semFIS (semi-empirical fission model). A trend toward shorter half-lives and larger branching ratios relative to alpha decay for heavier SHs was observed
Decay of radioactive nuclei in intense radiation fields
International Nuclear Information System (INIS)
The influence of intense electromagnetic fields on the decay of radioactive nuclei, an area which has recently received much attention, is examined in this thesis. In particular, the possibility of shortening nuclear lifetimes is of special interest, as it could lead to important applications (e.g. in the problem of nuclear waste). Different nuclear decay modes such as beta decay, gamma decay and electron capture in external fields of different frequencies (radio-, laser-, X-ray- and gamma-fields) are dealt with in this work. The emphasis is on ''low-frequency'' fields (e.g. photon energy << nuclear transition energy) since at present only these fields can be produced with sufficient intensity in the laboratory. The most favorable decay mode in a low-frequency field is nuclear beta decay, since the emitted electron is influenced. (orig./HSI)
Electron scattering off short-lived radioactive nuclei
International Nuclear Information System (INIS)
We have established a novel method which make electron scattering off short-lived radioactive nuclei come into being. This novel method was named SCRIT (Self-Confining RI ion Target). It was based on the well known "ion trapping" phenomenon in electron storage rings. Stable nucleus, 133Cs, was used as target nucleus in the R&D experiment. The luminosity of interaction between stored electrons and Cs ions was about 1.02(0.06) × 1026cm-2s-1 at beam current around 80 mA. The angular distribution of elastically scattered electrons from trapped Cs ions was measured. And an online luminosity monitor was used to monitor the change of luminosity during the experiment. (author)
Continuum discretised BCS approach for weakly bound nuclei
Lay, J. A.; Alonso, C. E.; Fortunato, L.; Vitturi, A.
2016-08-01
The Bardeen–Cooper–Schrieffer (BCS) formalism is extended by including the single-particle continuum in order to analyse the evolution of pairing in an isotopic chain from stability up to the drip-line. We propose a continuum discretised generalised BCS based on single-particle pseudostates (PS). These PS are generated from the diagonalisation of the single-particle Hamiltonian within a transformed harmonic oscillator basis. The consistency of the results versus the size of the basis is studied. The method is applied to neutron rich oxygen and carbon isotopes and compared with similar previous works and available experimental data. We make use of the flexibility of the proposed model in order to study the evolution of the occupation of the low-energy continuum when the system becomes weakly bound. We find an increasing influence of the non-resonant continuum as long as the Fermi level approaches the neutron separation threshold.
Nuclear dynamics of bound eta mesons: Eta-mesic nuclei and mesic compound-nucleus resonances
International Nuclear Information System (INIS)
The theory of eta-mesic nuclei is reviewed and the experiments designed to search for them are described. A theory of mesic compound nuclear resonances is presented which allow a study of the effects of eta-nucleus bound states on other meson-nucleus reactions in which the eta is not being observed. 7 refs., 8 figs
Evolution of Surface Deformations of Weakly-Bound Nuclei in the Continuum
Pei, J C; Xu, F R
2013-01-01
We study weakly-bound deformed nuclei based on coordinate-space Skyrme Hartree-Fock-Bogoliubov approach , in which a large box is employed for treating the continuum and surface diffuseness. Approaching the limit of core-halo deformation decoupling, calculations found an exotic "egg"-like structure consisting of a spherical core plus a prolate halo in $^{38}$Ne, in which the resonant continuum plays an essential role. Generally the halo probability and the decoupling effect in heavy nuclei are reduced compared to light nuclei, due to denser level densities around Fermi surfaces. However, deformed halos in medium-mass nuclei are possible with sparse levels of negative parity, for example, in $^{110}$Ge. The surface deformations of pairing density distributions are also influenced by the decoupling effect and are sensitive to the effective pairing Hamiltonian.
Spectroscopic factors for two-proton radioactive nuclei
Indian Academy of Sciences (India)
Chinmay Basu
2004-11-01
Spectroscopic factors for two-proton emitting nuclei are discussed in the framework of the BCS (Bardeen–Cooper–Schriefer) model. Calculations carried out for the two-proton unstable 45Fe, 48Ni and 54Zn nuclei are presented.
The systematic study of deeply bound kaonic nuclei with antisymmetrized molecular dynamics
International Nuclear Information System (INIS)
We have investigated systematically kaonic nuclei which are ppnK-, pppK-, pppnK- and 6BeK-. In the present study we have improved the framework of antisymmetrized molecular dynamics (AMD) so that we can treat K- - K-bar0 mixing and perform not only angular-momentum projection but also isospin projection. As a result of our calculation with a new framework of AMD, all kaonic nuclei we calculated are deeply bound by about 100 MeV. We found interesting structures in pppK- and 6BeK-. (author)
Nuclear fusion reactions involving weakly bound nuclei at near barrier energies
International Nuclear Information System (INIS)
The studies on nuclear fusion reactions involving loosely bound nuclei around barrier energies have attracted significant attention since last almost three decades. One of the primary aim of these studies is to investigate the role of unique characteristics features of nuclei lying in the close vicinity of drip lines in determination of the fusion cross section. The static effects arising because of large spatial extension of some highly neutron-rich or proton-rich nuclear isotopes have been found to enhance the fusion cross section due to barrier lowering. However regarding the role of various channel coupling dynamical effects in the description of fusion reactions conflicting results have been observed
Evolution of surface deformations of weakly bound nuclei in the continuum
Pei, J. C.; Zhang, Y. N.; Xu, F. R.
2013-05-01
We study weakly bound deformed nuclei based on the coordinate-space Skyrme Hartree-Fock-Bogoliubov (HFB) approach, in which a large box is employed for treating the continuum and large spatial extensions. When the limit of the core-halo deformation decoupling is approached, calculations found an exotic “egg”-like structure consisting of a spherical core plus a prolate halo in 38Ne, in which the near-threshold nonresonant continuum plays an essential role. Generally the halo probability and the decoupling effect in heavy nuclei can be hindered by high level densities around Fermi surfaces. However, deformed halos in medium-mass nuclei are possible as the negative-parity levels are sparse, e.g., in 110Ge. The deformation decoupling has also been demonstrated in pairing density distributions.
Low-energy fusion dynamics of weakly bound nuclei: A time dependent perspective
Diaz-Torres A.; Boselli M.
2016-01-01
Recent dynamical fusion models for weakly bound nuclei at low incident energies, based on a time-dependent perspective, are briefly presented. The main features of both the PLATYPUS model and a new quantum approach are highlighted. In contrast to existing timedependent quantum models, the present quantum approach separates the complete and incomplete fusion from the total fusion. Calculations performed within a toy model for 6Li + 209Bi at near-barrier energies show that converged excitation ...
Continuum effects for the mean-field and pairing properties of weakly bound nuclei
International Nuclear Information System (INIS)
Continuum effects in the weakly bound nuclei close to drip-line are investigated using the analytically soluble Poeschl-Teller-Ginocchio potential. Pairing correlations are studied within the Hartree-Fock-Bogoliubov method. It is shown that both resonant and non-resonant continuum phase space is active in creating the pairing field. The influence of positive-energy phase space is quantified in terms of localizations of states within the nuclear volume. (author)
Theoretical treatments of fusion processes in collisions of weakly bound nuclei
International Nuclear Information System (INIS)
We review the theoretical methods to evaluate fusion cross sections in collisions of weakly bound nuclei. We point out that in such collisions the coupling to the breakup channel leads to the appearance of different fusion processes. The extension of the coupled-channel method to coupling with the continuum is the most successful treatment for these collisions. However, evaluating separate cross section for each fusion process remains a very hard task
Studies of K-absorption on light nuclei and the search for bound nuclear kaonic states
International Nuclear Information System (INIS)
The available experimental data on K-absorption on nuclei are rather old and scarce: they are not enough to understand the possible formation of aggregates of nucleons bound together by a kaon, known as 'Bound Kaonic Nuclear States'. The existence of such structures, suggested by a few theoretical models, has not been experimentally ascertained yet. To be observed, their width should be less than their binding energy. A possible decay channel for such states is the non mesonic one, leading to hyperon-nucleon (or light nuclei) final states. Therefore, experimental investigations of possible signatures are mainly based on the analysis of hyperon-nucleon(s) correlations (for instance, of Λp(d,t) pairs) and of invariant mass spectra. Complementary information may also be gathered from missing mass distributions. Recent experiments revived, with much larger statistics, the study of K-A absorption in light nuclei: namely, KEK-E549 studied the K-interactions on 4He, while FINUDA at DAΦNE collected a large statistics on K-6,7Li, K-9Be and K-12C. The experimental results obtained so far by the various experiments studying the K-absorption in nuclei are here summarized.
Distributions of Long-Lived Radioactive Nuclei Provided by Star Forming Environments
Fatuzzo, M
2015-01-01
Radioactive nuclei play an important role in planetary evolution by providing an internal heat source, which affects planetary structure and helps facilitate plate tectonics. A minimum level of nuclear activity is thought to be necessary --- but not sufficient --- for planets to be habitable. Extending previous work that focused on short-lived nuclei, this paper considers the delivery of long-lived radioactive nuclei to circumstellar disks in star forming regions. Although the long-lived nuclear species are always present, their abundances can be enhanced through multiple mechanisms. Most stars form in embedded cluster environments, so that disks can be enriched directly by intercepting ejecta from supernovae within the birth clusters. In addition, molecular clouds often provide multiple episodes of star formation, so that nuclear abundances can accumulate within the cloud; subsequent generations of stars can thus receive elevated levels of radioactive nuclei through this distributed enrichment scenario. This...
International Nuclear Information System (INIS)
A new method is proposed for investigation of collective electron and electron-nuclear spin-spin interactions in hard dielectrics at very low temperatures. The method uses anisotropy of β-γ radiation in single and cascade decays of polarized nuclei. It is shown that anisotropy of radioactive nuclei radiation allows one to measure the spin temperature of nonradioactive nuclei polarized by means of dynamic cooling. Since the method is highly sensitive, it is enough to introduce ∼ 1014 radioactive nuclei in the sample to be investigated. Analytical expressions are obtained for the angular disrtibution of γ-quanta produced in the series of consequent β- and γ-decays of polarized β-active nuclei. The cascade transition 22Na(3+)→β22Ne(2+)→γ22Ne(O+) is considered in detail. 15 refs.; 1 fig.; 1 tab
Nilsson diagrams for light neutron-rich nuclei with weakly-bound neutrons
International Nuclear Information System (INIS)
Using Woods-Saxon potentials and the eigenphase formalism for one-particle resonances, one-particle bound and resonant levels for neutrons as a function of quadrupole deformation are presented, which are supposed to be useful for the interpretation of spectroscopic properties of some light neutron-rich nuclei with weakly bound neutrons. Compared with Nilsson diagrams in textbooks that are constructed using modified oscillator potentials, we point out a systematic change of the shell structure in connection with both weakly bound and resonant one-particle levels related to small orbital angular momenta l. Then, it is seen that weakly bound neutrons in nuclei such as 15-19C and 33-37Mg may prefer being deformed as a result of the Jahn-Teller effect, due to the near degeneracy of the 1d5/2-2s1/2 levels and the 1f7/2-2p3/2 levels in the spherical potential, respectively. Furthermore, the absence of some one-particle resonant levels compared with the Nilsson diagrams in textbooks is illustrated
Cluster radioactivity of Z=125 super heavy nuclei
International Nuclear Information System (INIS)
For atomic numbers larger than 121 cluster decay and spontaneous fission may compete with α decay. Hence there is a need to make reliable calculations for the cluster decay half-lives of superheavy nuclei to predict the possible isotopes super heavy nuclei. So, in the present work, we have studied the decay of clusters such as 8Be, 10Be, 12C, 14C, 16C, 18O, 20O, 22Ne, 24Ne, 25Ne, 26Ne, 28Mg, 30Mg, 32Si, 34Si, 36Si, 40S, 48Ca, 50Ca and 52Ti from the super heavy nuclei Z=125
Torres, D A
2016-01-01
The experimental study of magnetic moments for nuclear states near the ground state, $I \\ge 2$, provides a powerful tool to test nuclear structure models. The study of magnetic moments in nuclei far away from the stability line is the next frontier in such studies. Two techniques have been utilized to populated low-spin states in radioactive nuclei: coulomb excitation reactions using radioactive nuclei, and the transfer of $\\alpha$ particles to stable beams to populate low spin states in radioactive nuclei. A presentations of these two techniques, along with the experimental challenges presented for future uses with nuclei far away from the stability line, will be presented.
Low-energy fusion dynamics of weakly bound nuclei: A time dependent perspective
Diaz-Torres, A.; Boselli, M.
2016-05-01
Recent dynamical fusion models for weakly bound nuclei at low incident energies, based on a time-dependent perspective, are briefly presented. The main features of both the PLATYPUS model and a new quantum approach are highlighted. In contrast to existing timedependent quantum models, the present quantum approach separates the complete and incomplete fusion from the total fusion. Calculations performed within a toy model for 6Li + 209Bi at near-barrier energies show that converged excitation functions for total, complete and incomplete fusion can be determined with the time-dependent wavepacket dynamics.
Low-energy fusion dynamics of weakly bound nuclei: A time dependent perspective
Directory of Open Access Journals (Sweden)
Diaz-Torres A.
2016-01-01
Full Text Available Recent dynamical fusion models for weakly bound nuclei at low incident energies, based on a time-dependent perspective, are briefly presented. The main features of both the PLATYPUS model and a new quantum approach are highlighted. In contrast to existing timedependent quantum models, the present quantum approach separates the complete and incomplete fusion from the total fusion. Calculations performed within a toy model for 6Li + 209Bi at near-barrier energies show that converged excitation functions for total, complete and incomplete fusion can be determined with the time-dependent wavepacket dynamics.
Recent Results on Fusion and Direct Reactions with Weakly Bound Stable Nuclei
Directory of Open Access Journals (Sweden)
Shrivastava A.
2011-10-01
Full Text Available Recent measurements of fusion and direct reactions in case of weakly bound stable nuclei at extreme sub-barrier energies using a sensitive off beam technique are presented. Deviation in slope of the fusion excitation function, as observed in case of medium heavy systems, is absent in the present asymmetric systems at these low energies. These results along with the study of capture reaction of the breakup fragments using particle- gamma coincidences is presented, thereby giving the current status of the ﬁeld.
On the measurement of quadrupole moments of radioactive nuclei
International Nuclear Information System (INIS)
Electric quadrupole moments provide a direct insight on the single-particle structure or the collective nature of a nuclear state. This article presents a short review on some of the experimental methods available to measure quadrupole moments with emphasis on the reorientation technique in Coulomb excitation and its use in combination with radioactive ion beams.
Unstable nuclei in dissociation of light stable and radioactive nuclei in nuclear track emulsion
Artemenkov, D A; Zarubin, P I
2016-01-01
A role of the unstable nuclei ${}^{6}$Be, ${}^{8}$Be and ${}^{9}$B in the dissociation of relativistic nuclei ${}^{7,9}$Be, ${}^{10}$B and ${}^{10,11}$C is under study on the basis of nuclear track emulsion exposed to secondary beams of the JINR Nuclotron. Contribution of the configuration ${}^{6}$Be + $\\mit{n}$ to the ${}^{7}$Be nucleus structure is 8 $\\pm$ 1% which is near the value for the configuration ${}^{6}$Li + $\\mit{p}$. Distributions over the opening angle of $\\alpha$-particle pairs indicate to a simultaneous presence of virtual ${}^{8}$Be$_{g.s.}$ and ${}^{8}$Be$_{2^+}$ states in the ground states of the ${}^{9}$Be and ${}^{10}$C nuclei. The core ${}^{9}$B is manifested in the {${}^{10}$C} nucleus with a probability of 30 $\\pm$ 4%. Selection of the ${}^{10}$C "white" stars accompanied by ${}^{8}$Be$_{g.s.}$ (${}^{9}$B) leads to appearance in the excitation energy distribution of 2$\\alpha$2$\\mit{p}$ "quartets" of the distinct peak with a maximum at 4.1 $\\pm$ 0.3 MeV. ${}^{8}$Be$_{g.s.}$ decays are p...
Structure Effects in Collisions Induced by Halo and Weakly Bound Nuclei Around the Coulomb Barrier
Scuderi, V; Torresi, D; Fisichella, M; Borge, M J G; Randisi, G; Milin, M; Figuera, P; Raabe, R; Di Pietro, A; Amorini, F; Fraile, L M; Vidal, A M; Rizzo, F; Zadro, M; Gomez-Camacho, J; Pellegriti, M G; Papa, M; Jeppesen, H; Santonocito, D; Sanchez, E M R; Acosta, L; Tengblad, O; Lattuada, M; Musumarra, A; Scalia, G
2010-01-01
In this contribution, results concerning different reaction channels for the collisions induced by the three Be isotopes, Be-9,Be-10,Be-11, on a Zn-64 target at energies around the Coulomb barrier will be presented. The experiments with the radioactive Be-10,Be-11 beams were performed at REX-ISOLDE (CERN) whereas the experiment with the stable weakly bound Be-9 beam was performed at LNS Catania. Elastic scattering angular distributions have been measured for the three systems Be-9,Be-10,Be-11 + Zn-64 at the same center of mass energy. The angular distributions were analyzed with optical potentials and reaction cross sections were obtained from optical model calculations, performed with the code PTOLEMY. For the Be-11 + Zn-64 reaction, the break-up angular distribution was also measured.
γ-spectroscopy and radioactive beams: search for highly deformed exotic nuclei
International Nuclear Information System (INIS)
This work is devoted to the search for highly deformed nuclei under extreme conditions of isospin, located near the proton drip-line, around A ∼ 130. The experiment was performed at GANIL (Caen) with the SPIRAL radioactive beam facility. The nuclei of interest were produced by fusion-evaporation reactions induced by the neutron deficient Kr76 radioactive beam (T1/2 = 14.8 h). γ-rays were detected by the EXOGAM array, composed of 11 segmented germanium clover detectors, for which a new segment calibration method has been developed. To extract fusion-evaporation events of a overwhelming background due to the radioactivity of the beam, the EXOGAM array was coupled with the light charged particle detector DIAMANT and the high acceptance VAMOS spectrometer. The latter was used for the first time to detect fusion-evaporation residues. The detailed data analysis allowed us to demonstrate that the EXOGAM + DIAMANT + VAMOS coupling is operational and essential to investigate the structure of these nuclei. Furthermore, the first γ transition was observed in the very exotic odd-odd Pm130 nucleus. The results have been interpreted with static and dynamic self-consistent microscopic calculations in collaboration with the Theoretical Physicists of the IPN Lyon. (author)
Heavy particle radioactivity from superheavy nuclei leading to $^{298}$114 daughter nuclei
Santhosh, K P
2013-01-01
The feasibility for the alpha decay and the heavy particle decay from the even-even superheavy (SH) nuclei with Z = 116-124 have been studied within the Coulomb and proximity potential model (CPPM). The Universal formula for cluster decay (UNIV) of Poenaru et al., the Universal Decay Law (UDL) and the Scaling Law of Horoi et al., has also been used for the evaluation of the decay half lives. A comparison of our predicted half lives with the values evaluated using these empirical formulas are in agreement with each other and hence CPPM could be considered as a unified model for alpha and cluster decay studies. Within our fission model, we have studied cluster formation probability for various clusters and the maximum cluster formation probability for the decay accompanying $^{298}$114 reveals its doubly magic behavior. In the plots for log_10(T_1/2) against the neutron number of the daughter in the corresponding decay, the half life is found to be the minimum for the decay leading to $^{298}$114 (Z = 114, N = ...
International Nuclear Information System (INIS)
Full text: The 'Radioactive Ion Beams in Brasil' (RIBRAS) facility consists of two super-conducting solenoids of maxi- mum magnetic field B 6.5T, coupled to the 8UD-Pelletron tandem Accelerator installed at the University of Sao Paulo Physics Institute. It is the first radioactive beam facility of the Southern Hemisphere. The production mechanism of the radioactive ions is by transfer reactions, using 9Be, 3He, LiF and other production targets, and the forward focused reaction products are selected and focalized by the solenoids into a scattering chamber. Low energy (3-5 MeV/u) radioactive beams of 6He, 8Li, 7,10Be and 8,12B are produced currently and used to study elastic, inelastic, and transfer reactions on a variety of light, medium mass and heavy (9Be, 12C, 27Al, 51V and 120Sn) secondary targets. The data are analyzed, using most of the time, the Sao Paulo Potential (SPP) and compared to optical model and continuum discretized coupled-channels (CDCC) calculations. The total reaction cross section as a function of energy has been extracted from the elastic scattering data and the role of breakup of weakly bound or exotic nuclei is discussed. Some examples of reactions recently studied are 1H(8Li,4He)5He, 1H(8Li,1H)8Li using thick (CH2)n targets to measure their excitation functions. The transfer reaction 12C(8Li,4He)16N, leading to well defined excited states of 16N, through the transfer of 4H or the sequential decay 3H+n, is also being studied. (author)
Zhang, G. L.; Yao, Y. J.; Guo, M. F.; Pan, M.; Zhang, G. X.; Liu, X. X.
2016-07-01
Half-lives of large cluster radioactivity of even-even nuclei calculated by using fourteen proximity potentials are compared to experimental data. The results show that the results of BASS77 and Denisov potentials are most agreeable with the experimental data. Christensen and Winther 1976 potential gives the smallest half-lives. In comparison with the distributions of different proximity potentials and the distributions of total potentials when the values of total potentials are more than the released energy Qc, it is found that at the small distances the large differences of proximity potentials do not affect the calculation results. The different distributions of total potentials affect the penetration probability of large cluster radioactivity, and then affect the half-life of large cluster radioactivity.
Wang, Huiyuan; Zhou, Hongyan; Liu, Bo; Wang, Jianguo; Yuan, Weimin; Dong, Xiaobo
2011-01-01
There are mutually contradictory views in the literature of the kinematics and structure of high-ionization line (e.g. CIV) emitting regions in active galactic nuclei (AGNs). Two kinds of broad emission line region (BELR) models have been proposed, outflow and gravitationally bound BELR, which are supported respectively by blueshift of the CIV line and reverberation mapping observations. To reconcile these two apparently different models, we present a detailed comparison study between the CIV and MgII lines using a sample of AGNs selected from the Sloan Digital Sky Survey. We find that the kinematics of the CIV region is different from that of MgII, which is thought to be controlled by gravity. A strong correlation is found between the blueshift and asymmetry of the CIV profile and the Eddington ratio. This provides strong observational support for the postulation that the outflow is driven by radiation pressure. In particular, we find robust evidence that the CIV line region is largely dominated by outflow a...
Interplay of projectile breakup and target excitation in reactions induced by weakly-bound nuclei
Gomez-Ramos, M
2016-01-01
In this work, we reexamine the extension of the CDCC formalism to include target excitation and apply it to a variety of reactions to study the effect of breakup on inelastic cross sections. We use a transformed oscillator basis to discretize the continuum of the projectiles in the different reactions and use the extended CDCC method developed in this work to solve the resulting coupled differential equations. A new code has been developed to perform the calculations. Reactions 58Ni(d, d) 58Ni*, 24Mg(d, d) 24Mg* , 144Sm( 6Li, 6Li) 144Sm* and 9Be( 6Li, 6Li) 9Be* are studied. Satisfactory agreement is found between experimental data and extended CDCC calculations. The studied CDCC method is proved to be an accurate tool to describe target excitation in reactions with weakly-bound nuclei. Moderate effects of breakup on inelastic observables are found for the reactions studied. Cross section magnitudes are not modified much, but angular distributions present smoothing when opposed to calculations without breakup.
Beck, C; Papka, P; Courtin, S; Rousseau, M; Souza, F A; Carlin, N; Neto, F Liguori; De Moura, M M; Del Santo, M G; Suade, A A I; Munhoz, M G; Szanto, E M; De Toledo, A Szanto; Keeley, N; Diaz-Torres, A; Hagino, K
2010-01-01
An experimental overview of reactions induced by the stable, but weakly-bound nuclei 6Li, 7Li and 9Be, and by the exotic, halo nuclei 6He, 8He, 8B, and 11Be on medium-mass targets, such as 58Ni, 59Co or 64Zn, is presented. Existing data on elastic scattering, total reaction cross sections, fusion processes, breakup and transfer channels are discussed in the framework of a CDCC approach taking into account the breakup degree of freedom.
International Nuclear Information System (INIS)
Research supported in part by this contract has become totally devoted to the study of far-from-stable radioactive nuclei with the UNISOR facility [University Isotope Separator at Oak Ridge] on-line with HHIRF [Holifield Heavy Ion Research Facility]. The purpose of these UNISOR studies is to investigate the low-spin (-γt, Xγt, and αγt multiparameter coincidence measurements are carried out, and soon measurements of singles γ-ray angular distributions and magnetic moments of mass-separated, low-temperature oriented nuclei will begin using the helium dilution refrigerator on-line to the isotope separator. In particular, what is reported centers on two neutron-deficient regions of interest, one around the Z = 82 closed shell (from Z = 77 to 85) and the other in the rare earths around the new region of deformation at N 56. 30 refs., 15 figs., 8 tabs
High-Resolution Magnetic Analyzer MAVR for the Study of Exotic Weakly-Bound Nuclei
Maslov, V. A.; Kazacha, V. I.; Kolesov, I. V.; Lukyanov, S. M.; Melnikov, V. N.; Osipov, N. F.; Penionzhkevich, Yu. E.; Skobelev, N. K.; Sobolev, Yu. G.; Voskoboinik, E. I.
2015-11-01
A project of the high-resolution magnetic analyzer MAVR is proposed. The analyzer will comprise new magnetic optical and detecting systems for separation and identification of reaction products in a wide range of masses (5-150) and charges (1-60). The magnetic optical system consists of the MSP-144 magnet and a doublet of quadrupole lenses. This will allow the solid angle of the spectrometer to be increased by an order of magnitude up to 30 msr. The magnetic analyzer will have a high momentum resolution (10-4) and high focal-plane dispersion (1.9 m). It will allow products of nuclear reactions at energies up to 30 MeV/nucleon to be detected with the charge resolution ~1/60. Implementation of the project is divided into two stages: conversion of the magnetic analyzer proper and construction of the nuclear reaction products identification system. The MULTI detecting system is being developed for the MAVR magnetic analyzer to allow detection of nuclear reaction products and their identification by charge Q, atomic number Z, and mass A with a high absolute accuracy. The identification will be performed by measuring the energy loss (ΔE), time of flight (TOF), and total kinetic energy (TKE) of reaction products. The particle trajectories in the analyzer will also be determined using the drift chamber developed jointly with GANIL. The MAVR analyzer will operate in both primary beams of heavy ions and beams of radioactive nuclei produced by the U400-U400M acceleration complex. It will also be used for measuring energy spectra of nuclear reaction products and as an energy monochromator.
International Nuclear Information System (INIS)
Proton radioactivity is a decay mode found only in nuclei beyond the proton drip line.It competes with alpha decay, positron decay and electron capture. Proton decay is a quantum tunnelling phenomenon, and the decay rateis governed by a delicate interplay between the Coulomb and centrifugalbarriers. This presents the opportunity to extract spectroscopic informationon a nuclide beyond the proton drip line. Recent experimental developmentswill be presented, including gamma spectroscopy of proton emitters, and fine structure in proton decay. Theoretical attempts to calculate protondecay rates for spherical and deformed proton emitters will be discussed,and the various models will be compared. (author)
International Nuclear Information System (INIS)
This thesis deals with studies of nuclei far from the valley of stability produced at GANIL by projectile fragmentation at intermediate energies. It consists of two parts. The first one is dedicated to the study of very light exotic nuclei around N=14. This is the first time that online γ-ray spectroscopy combined with the projectile fragmentation was used with radioactive incident beams at GANIL. The advantages and the limitations of this method were established. 40 different nuclei have been produced and studied at the same time. A strong dependence of the population of excited states on the type of projectile was observed. New information was obtained on the structure of the isotopes B14,15, C17,18,19,20, N18,19,20,21,22, O22,23,24, F24,25,26 and Ne29. The level schemes obtained from this study have been compared with shell-model predictions. In particular, the energy of 1588(20) keV found for the first 2+ excited state in C20, as well as the non-existence of a bound state in O24, show that the proton-neutron interaction plays an important role in the structure of these nuclei. In the second part, an experiment is presented concerning the neutron-rich isomer nuclei around Ni68 produced by the LISE spectrometer. The fast-timing method was applied for the first time for the study of nuclei produced by projectile fragmentation. Subnanosecond half-lives of several levels in Ni67,69,90 and Cu71,72 were measured simultaneously and with high precision. These results have allowed us to test the shell model predictions for several E2 transitions and their associated B(E2) transition probabilities. (author)
Sharma, Natasha
2016-01-01
The excellent particle identification capabilities of the ALICE detector, using the time projection chamber and the time-of-flight detector, allow the detection of light nuclei and anti-nuclei. Furthermore, the high tracking resolution provided by the inner tracking system enables the separation of primary nuclei from those coming from the decay of heavier systems. This allows for the reconstruction of decays such as the hypertriton mesonic weak decay ($^3_{\\Lambda}$H$\\rightarrow ^3$He + $\\pi^-$), the decay of a hypothetical bound state of a $\\Lambda$n into a deuteron and pion or the H-dibaryon decaying into a $\\Lambda$, a proton and a $\\pi^{-}$. An overview of the production of stable nuclei and anti-nuclei in proton-proton, proton-lead and, in particular, lead-lead collisions is presented. Hypernuclei production rates in Pb--Pb are also shown, together with the upper limits estimated on the production of hypothetical exotica candidates. The results are compared with predictions for the production in thermal...
International Nuclear Information System (INIS)
The influence on fusion of coupling to the breakup process is investigated for reactions where at least one of the colliding nuclei has a sufficiently low binding energy for breakup to become an important process. Elastic scattering, excitation functions for sub-and near-barrier fusion cross sections, and breakup yields are analyzed for 6,7Li+59Co. Continuum-Discretized Coupled-Channels (CDCC) calculations describe well the data at and above the barrier. Elastic scattering with 6Li (as compared to 7Li) indicates the significant role of breakup for weakly bound projectiles. A study of 4,6He induced fusion reactions with a three-body CDCC method for the 6He halo nucleus is presented. The relative importance of breakup and bound-state structure effects on total fusion is discussed. (authors)
Energy Technology Data Exchange (ETDEWEB)
Beck, C. [Institut Pluridisciplinaire Hubert Curien, UMR 7178, IN2P3-CNRS et Universite Louis Pasteur (Strasbourg I), 23 rue du Loess - BP28, F-67037 Strasbourg Cedex 2 (France); Keeley, N. [DSM/DAPNIA/SPhN CEA Saclay, Orme des Merisiers, F-91191 Gif-sur-Yvette Cedex (France); Diaz-Torres, A. [Department of Nuclear Physics, Research School of Physical Sciences and Engineering, The Australian National University, Canberra ACT 0200 (Australia)
2007-03-15
The influence on fusion of coupling to the breakup process is investigated for reactions where at least one of the colliding nuclei has a sufficiently low binding energy for breakup to become an important process. Elastic scattering, excitation functions for sub-and near-barrier fusion cross sections, and breakup yields are analyzed for {sup 6,7}Li+{sup 59}Co. Continuum-Discretized Coupled-Channels (CDCC) calculations describe well the data at and above the barrier. Elastic scattering with {sup 6}Li (as compared to {sup 7}Li) indicates the significant role of breakup for weakly bound projectiles. A study of {sup 4,6}He induced fusion reactions with a three-body CDCC method for the {sup 6}He halo nucleus is presented. The relative importance of breakup and bound-state structure effects on total fusion is discussed. (authors)
Distributions of short-lived radioactive nuclei produced by young embedded star clusters
International Nuclear Information System (INIS)
Most star formation in the Galaxy takes place in clusters, where the most massive members can affect the properties of other constituent solar systems. This paper considers how clusters influence star formation and forming planetary systems through nuclear enrichment from supernova explosions, where massive stars deliver short-lived radioactive nuclei (SLRs) to their local environment. The decay of these nuclei leads to both heating and ionization, and thereby affects disk evolution, disk chemistry, and the accompanying process of planet formation. Nuclear enrichment can take place on two spatial scales: (1) within the cluster itself (ℓ ∼ 1 pc), the SLRs are delivered to the circumstellar disks associated with other cluster members. (2) On the next larger scale (ℓ ∼ 2-10 pc), SLRs are injected into the background molecular cloud; these nuclei provide heating and ionization to nearby star-forming regions and to the next generation of disks. For the first scenario, we construct the expected distributions of radioactive enrichment levels provided by embedded clusters. Clusters can account for the SLR mass fractions inferred for the early Solar Nebula, but typical SLR abundances are lower by a factor of ∼10. For the second scenario, we find that distributed enrichment of SLRs in molecular clouds leads to comparable abundances. For both the direct and distributed enrichment processes, the masses of 26Al and 60Fe delivered to individual circumstellar disks typically fall in the range 10-100 pM ☉ (where 1 pM ☉ = 10–12 M ☉). The corresponding ionization rate due to SLRs typically falls in the range ζSLR ∼ 1-5 × 10–19 s–1. This ionization rate is smaller than that due to cosmic rays, ζCR ∼ 10–17 s–1, but will be important in regions where cosmic rays are attenuated (e.g., disk mid-planes).
International Nuclear Information System (INIS)
In order to determine the correlations between the following atmospheric parameters: radon and condensation nuclei concentrations, total conductivity and space charge, we analysed their behavior over a long period, in connection with meteorological data. We simulaneously studied the equilibrium state between 222Rn and its short-lived daughters pointing out a radioactive desequilibrium as a function of the meteorological conditions. Simultaneously, we established average experimental curves of cumulated particle size distributions of natural radioactivity in the air, differentiating urban and marine influences. Finally, a comparison between the various parameters showed that the total conductivity greatly depends on condensation nuclei and radon concentrations in the air
Coimbra-Araújo, C H
2015-01-01
We investigate the production of magnetic flux from rotating black holes in active galactic nuclei (AGNs) and compare it with the upper limit of ultrahigh energy cosmic ray (UHECR) luminosities, calculated from observed integral flux of GeV-TeV gamma rays for nine UHECR AGN sources. We find that, for the expected range of black hole rotations (0.44bounds of theoretical magnetic luminosities from AGNs coincides with the calculated UHECR luminosity. We argue that such result possibly can contribute to constrain AGN magnetic and dynamic properties as phenomenological tools to explain the requisite conditions to proper accelerate the highest energy cosmic rays.
Directory of Open Access Journals (Sweden)
Budu Andrei Razvan
2015-01-01
Full Text Available European Union's energy roadmap up to year 2050 states that in order to have an efficient and sustainable economy, with minimum or decreasing greenhouse gas emissions, along with use of renewable resources, each constituent state has the option for nuclear energy production as one desirable option. Every scenario considered for tackling climate change issues, along with security of supply positions the nuclear energy as a recommended option, an option that is highly competitive with respect to others. Nuclear energy, along with other renewable power sources are considered to be the main pillars in the energy sector for greenhouse gas emission mitigation at European level. European Union considers that nuclear energy must be treated as a highly recommended option since it can contribute to security of energy supply. Romania showed excellent track-records in operating in a safe and economically sound manner of Cernavoda NPP Units 1&2. Both Units are in top 10 worldwide in terms of capacity factor. Due to Romania's need to ensure the security of electricity supply, to meet the environmental targets and to move to low carbon generation technologies, Cernavoda Units 3&4 Project appears as a must. This Project was started in 2010 and it is expected to have the Units running by 2025. Cost effective and safety operation of a Nuclear Power Plant is made taking into consideration functional limits of its equipment. As common practice, every nuclear reactor type (technology used is tested according to the worse credible accident or equipment failure that can occur. For CANDU type reactor, this is a Loss of Cooling Accident (LOCA. In a LOCA type accident in a CANDU NPP, using RELAP/SCDAP code for fuel bundle damage assessment the radioactive nuclei are to be quantified. Recently, CANDU type NPP accidents are studied using the RELAP/SCDAP code only. The code formerly developed for PWR type reactors was adapted for the CANDU geometry and can assess the
Studies of nuclei using radioactive beams. Progress report, May 1988--July 1989
Energy Technology Data Exchange (ETDEWEB)
Piercey, R.B.
1989-07-01
The 12 month period from May 1988 to July 1989 represents the first full year of our 18 month pilot program in nuclear structure research. In this period, research was initiated to develop a capability for radioactive secondary beams at Argonne National Laboratory using the Atlas and the new Fragment Mass Analyzer (FMA), which is currently under construction. Two major new detector facilities are currently in the final stages of design and testing. The Large-Area, Scintillator Telescope (LAST) detector is fully operational and will be shipped to Argonne National Laboratory in August for fit-tests and in-beam calibrations. The first segments of a new sixteen-segment neutron multiplicity detector have been built and tested. The remaining segments are currently being constructed. Research was continued in the areas of (1) Coulomb excitation studies of rare earth and actinide nuclei; (2) In-beam, gamma-ray spectroscopy of nuclei in the mass 100 region, and (3) Advanced detector design. Several journal articles and abstracts were published or submitted for publication in the reporting period, and others are currently in preparation. Three graduate students participated in the program, one from the University of Florida and two from the Royal Institute of Technology, Stockholm, Sweden.
Energy Technology Data Exchange (ETDEWEB)
Piercey, R.B.
1989-07-01
The 12 month period from May 1988 to July 1989 represents the first full year of our 18 month pilot program in nuclear structure research. In this period, research was initiated to develop a capability for radioactive secondary beams at Argonne National Laboratory using the Atlas and the new Fragment Mass Analyzer (FMA), which is currently under construction. Two major new detector facilities are currently in the final stages of design and testing. The Large-Area, Scintillator Telescope (LAST) detector is fully operational and will be shipped to Argonne National Laboratory in August for fit-tests and in-beam calibrations. The first segments of a new sixteen-segment neutron multiplicity detector have been built and tested. The remaining segments are currently being constructed. Research was continued in the areas of (1) Coulomb excitation studies of rare earth and actinide nuclei; (2) In-beam, gamma-ray spectroscopy of nuclei in the mass 100 region, and (3) Advanced detector design. Several journal articles and abstracts were published or submitted for publication in the reporting period, and others are currently in preparation. Three graduate students participated in the program, one from the University of Florida and two from the Royal Institute of Technology, Stockholm, Sweden.
Fragmentation of spherical radioactive heavy nuclei as a novel probe of transient effects in fission
International Nuclear Information System (INIS)
Peripheral collisions with radioactive heavy-ion beams at relativistic energies are discussed as an innovative approach for probing the transient regime experienced by fissile systems evolving toward quasiequilibrium and thereby studying the viscous nature of nuclear matter. A dedicated experiment using the advanced technical installations of GSI, Darmstadt, made it possible to realize ideal conditions for the investigation of relaxation effects in a metastable well. Combined with a highly sensitive experimental signature, it provides a measure of the transient effects with respect to the flux over the fission barrier. Within a two-step reaction process, 45 proton-rich unstable spherical isotopes between At and Th produced by projectile-fragmentation of a stable 238U beam have been used as secondary projectiles which impinge on lead target nuclei. The fragmentation of the radioactive projectiles results in nearly spherical compound nuclei that span a wide range in excitation energy and fissility. The decay of these excited systems by fission is studied with a dedicated setup which, together with the inverse kinematics of the reaction, permits the detection of both fission products in coincidence and the determination of their atomic numbers with high resolution. The information on the nuclear charges of the two fragments is used to sort the data according to the initial excitation energy and fissility of the compound nucleus. The width of the fission-fragment nuclear charge distribution is shown to be specifically sensitive to presaddle transient effects and is used to establish a clock for the passage of the saddle point. The comparison of the experimental results with model calculations points to a fission delay τtrans of (3.3±0.7)x10-21 s for initially spherical compound nuclei, independent of excitation energy and fissility. This value suggests a nuclear dissipation strength β at small deformation of (4.5±0.5)x1021 s-1. The very specific combination of the
Distributions of short-lived radioactive nuclei produced by young embedded star clusters
Energy Technology Data Exchange (ETDEWEB)
Adams, Fred C. [Physics Department, University of Michigan, Ann Arbor, MI 48109 (United States); Fatuzzo, Marco [Physics Department, Xavier University, Cincinatti, OH 45255 (United States); Holden, Lisa [Department of Mathematics, Northern Kentucky University, Highland Heights, KY 41099 (United States)
2014-07-01
Most star formation in the Galaxy takes place in clusters, where the most massive members can affect the properties of other constituent solar systems. This paper considers how clusters influence star formation and forming planetary systems through nuclear enrichment from supernova explosions, where massive stars deliver short-lived radioactive nuclei (SLRs) to their local environment. The decay of these nuclei leads to both heating and ionization, and thereby affects disk evolution, disk chemistry, and the accompanying process of planet formation. Nuclear enrichment can take place on two spatial scales: (1) within the cluster itself (ℓ ∼ 1 pc), the SLRs are delivered to the circumstellar disks associated with other cluster members. (2) On the next larger scale (ℓ ∼ 2-10 pc), SLRs are injected into the background molecular cloud; these nuclei provide heating and ionization to nearby star-forming regions and to the next generation of disks. For the first scenario, we construct the expected distributions of radioactive enrichment levels provided by embedded clusters. Clusters can account for the SLR mass fractions inferred for the early Solar Nebula, but typical SLR abundances are lower by a factor of ∼10. For the second scenario, we find that distributed enrichment of SLRs in molecular clouds leads to comparable abundances. For both the direct and distributed enrichment processes, the masses of {sup 26}Al and {sup 60}Fe delivered to individual circumstellar disks typically fall in the range 10-100 pM {sub ☉} (where 1 pM {sub ☉} = 10{sup –12} M {sub ☉}). The corresponding ionization rate due to SLRs typically falls in the range ζ{sub SLR} ∼ 1-5 × 10{sup –19} s{sup –1}. This ionization rate is smaller than that due to cosmic rays, ζ{sub CR} ∼ 10{sup –17} s{sup –1}, but will be important in regions where cosmic rays are attenuated (e.g., disk mid-planes).
Directory of Open Access Journals (Sweden)
Minkov N.
2016-01-01
Full Text Available We study the effects of quadrupole-octupole deformations on the energy and magnetic properties of high-K isomeric states in even-even heavy and superheavy nuclei. The neutron two-quasiparticle (2qp isomeric energies and magnetic dipole moments are calculated within a deformed shell model with the Bardeen-Cooper- Schrieffer (BCS pairing interaction over a wide range of quadrupole and octupole deformations. We found that in most cases the magnetic moments exhibit a pronounced sensitivity to the octupole deformation, while the 2qp energies indicate regions of nuclei in which the presence of high-K isomeric states may be associated with the presence of octupole softness or even with octupole deformation. In the present work we also examine the influence of the BCS pairing strength on the energy of the blocked isomer configuration. We show that the formation of 2qp energy minima in the space of quadrupole-octupole and eventually higher multipolarity deformations is a subtle effect depending on nuclear pairing correlations.
First study of α cluster structure in the mirror light nuclei using radioactive beams of 14C and 14O
International Nuclear Information System (INIS)
Full text: Alpha clustering is a remarkable phenomenon, which plays a very important role in our understanding of nuclear forces [1]. Classical examples of alpha cluster nuclei are 12C, 16O and 20Ne. These nuclei are very well studied and the striking features of the observed alpha cluster rotational bands inspired the development of theoretical models, capable of treating clustering phenomena in nuclei. Much less is known about the alpha cluster states in nuclei with N≠Z T=1. Recent studies [2,3] indicate the richness of the alpha clustering phenomena in these nuclei, providing evidence for unusual features, such as doubling of alpha cluster rotational bands. The alpha cluster states also play a crucial role in stellar helium burning where the formation of heavier elements through fusion process is driven through alpha cluster configurations in Tz=0 and Tz=1 nuclei. This also applies to explosive alpha-induced processes such as the alpha-p-process in the thermonuclear runaway on the accreting neutron stars which is driven through alpha-cluster formation in Tz=-1 nuclei [4]. The alpha cluster structure of T=1 18O and 18Ne nuclei will be the focus of the discussion. The alpha cluster states in these nuclei were populated in an elastic scattering of radioactive beam 14C (delivered by Florida State Tandem-LINAC facility) or 14O (delivered by MARS facility of TAMU) on helium. The Thick Target Inverse Kinematics technique [5] was used. The features of molecular rotational bands will be considered together with the isotopic shifts, which is dependent upon the hidden single particle structure. (author)
Breakup of loosely bound nuclei as indirect method in nuclear astrophysics. 8B, 9C, 23Al
International Nuclear Information System (INIS)
We discuss the use of one-nucleon breakup reactions of loosely bound nuclei at intermediate energies as an indirect method in nuclear astrophysics. These are peripheral processes, therefore from breakup reaction data we can extract asymptotic normalization coefficients (ANC) from which reaction rates of astrophysical interest can be precisely evaluated. In particular, the breakup of 8B and 9C is described in detail in terms of an extended Glauber model. The results of this new analysis lead to the astrophysical factor S17(0) = 18.7 ± 1.9 eVb for the key reaction for solar neutrino production 7Be(p,γ)8B. We discuss a proposed use of the breakup of proton drip line nucleus 23Al to obtain the stellar reaction rate for 22Mg(p,γ)23Al. (author)
Nuclear Structure Studies of Exotic Nuclei with Radioactive Ion Beams A Final Report
Energy Technology Data Exchange (ETDEWEB)
Winger, Jeff Allen [Mississippi State Univ., Mississippi State, MS (United States)
2016-04-21
Beta-decay spectroscopy provides important information on nuclear structure and properties needed to understand topics as widely varied as fundamental nuclear astrophysics to applied nuclear reactor design. However, there are significant limitations of our knowledge due to an inability to experimentally measure everything. Therefore, it is often necessary to rely on theoretical calculations which need to be vetted with experimental results. The focus of this report will be results from experimental research performed by the Principal Investigator (PI) and his research group at Mississippi State University in which the group played the lead role in proposing, implementing, performing and analyzing the experiment. This research was carried out at both the National Superconduction Cyclotron Laboratory (NSCL) at Michigan State University and the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory. The primary emphasis of the research was the use of \\bdec spectroscopy as a tool to understand the evolution of nuclear structure in neutron-rich nuclei which could then be applied to improve theory and to increase the overall knowledge of nuclear structure.
International Nuclear Information System (INIS)
Measurements of the dipole continuum response of nuclei provide information on collective as well as single-particle properties. The rapidly varying electromagnetic field of a high-Z target experienced by a fast moving projectile with several hundred MeV/u kinetic energy causes dipole transitions into the continuum up to excitation energies of the giant dipole resonance. The extraction of differential cross sections with respect to excitation energy, which are directly linked to the dipole strength functions, can be accomplished by an exclusive measurement of the decay. This method was applied in a series of experiments at GSI utilizing fast secondary beams produced via fragmentation aiming at an investigation how the dipole response of nuclei evolves as a function of increasing isospin. Results of the experimental programme, which has concentrated so far on light neutron-rich nuclei ranging from helium to oxygen isotopes, are discussed. Much in contrast to stable nuclei, low-lying dipole excitations well below the giant dipole resonance region have been observed as a general phenomenon for these neutron-proton asymmetric nuclei. A quantitative analysis of low-lying threshold strength for loosely bound nuclei indicates that the characteristics of the dipole strength is directly related to the ground-state single-particle structure of the valence nucleon in the projectile. Finally, a brief outlook on future perspectives is given
Exploring Fusion at Extreme Sub-Barrier Energies with Weakly Bound Nuclei
International Nuclear Information System (INIS)
Results of measurement of residues formed in fusion of 6Li with 198Pt in the energy range of 0.68b<1.3 using a new sensitive off-beam technique are reported. The fusion excitation function and the derived average angular momenta do not indicate a change of slope at deep sub-barrier energies, contrary to recent observations. The present results for a system with weakly bound projectile confront the current understanding of the fusion hindrance at these low energies, underlying the role of internal reorganization on the dynamical path towards fusion.
International Nuclear Information System (INIS)
There are mutually contradictory views in the literature of the kinematics and structure of high-ionization line (e.g., C IV) emitting regions in active galactic nuclei (AGNs). Two kinds of broad emission line region (BELR) models have been proposed, outflow and gravitationally-bound BELR, which are supported, respectively, by blueshift of the C IV line and reverberation mapping observations. To reconcile these two apparently different models, we present a detailed comparison study between the C IV and Mg II lines using a sample of AGNs selected from the Sloan Digital Sky Survey. We find that the kinematics of the C IV region is different from that of Mg II, which is thought to be controlled by gravity. A strong correlation is found between the blueshift and asymmetry of the C IV profile and the Eddington ratio. This provides strong observational support for the postulation that the outflow is driven by radiation pressure. In particular, we find robust evidence that the C IV line region is largely dominated by outflow at high Eddington ratios, while it is primarily gravitationally-bounded at low Eddington ratios. Our results indicate that these two emitting regions coexist in most AGNs. The emission strength from these two gases varies smoothly with Eddington ratio in opposite ways. This explanation naturally reconciles the apparently contradictory views proposed in previous studies. Finally, candidate models are discussed which can account for both the enhancement of outflow emission and suppression of normal BEL in AGNs with high Eddington ratios.
Cook, K J; Luong, D H; Kalkal, Sunil; Dasgupta, M; Hinde, D J
2016-01-01
Complete fusion cross sections in collisions of light, weakly bound nuclei and high Z targets show above-barrier suppression of complete fusion. This has been interpreted as resulting from breakup of the weakly bound nucleus prior to reaching the fusion barrier, reducing the probability of complete fusion. This paper investigates how these conclusions are affected by lifetimes of the resonant states that are populated prior to breakup. If the mean life of a populated resonance is much longer than the fusion timescale, then its breakup cannot suppress complete fusion. For short-lived resonances, the situation is more complex. This work includes the mean life of the short-lived 2+ resonance in 8Be in classical dynamical model calculations to determine its effect on energy and angular correlations of the breakup fragments and on predictions of fusion suppression. Coincidence measurements of breakup fragments produced in reactions of 9Be with 144Sm, 168Er, 186W, 196Pt, 208Pb and 209Bi at energies below the barrie...
An Improved Method of Lifetime Measurement of Nuclei in Radioactive Decay Chain
Puzović, J M; Nađđerđ, L J
2016-01-01
We present an improved statistical method for calculation of mean lifetime of nuclei in a decay chain with uncertain relation between mother and daughter nuclei. The method is based on formation of time distribution of intervals between mother and daughter nuclei, without trying to set the exact mother-daughter nuclei relationship. If there is a coincidence of mother and daughter nuclei decays, sum of these distributions has flat term on which an exponential term is superimposed. Parameters of this exponential function allow lifetime of daughter nucleus to be extracted. The method is tested on Monte Carlo simulation data.
Hyperon-nucleon bound states and electroproduction of strangeness on light nuclei.
Energy Technology Data Exchange (ETDEWEB)
Dohrmann, F.; Abbott, D.; Ahmidouch, A.; Ambrozewicz, P.; Armstrong, C. S.; Arrington, J.; Bailey, K.; Cummings, W. J.; Gao, H.; Garrow, K.; Geesaman, D. F.; Hafidi, K.; Hansen, J. O.; Jackson, H. E.; Mueller, B.; O' Neill, T. G.; Potterveld, D.; Reimer, P. E.; Reinhold, J.; Zeidman, B.
2002-06-25
The A(e,e{prime}K{sup +})Y X reaction has been investigated in Hall C at Jefferson Lab. Data were taken for Q{sup 2} {approx} 0.35 and 0.5 GeV{sup 2} at a beam energy of 3.245 GeV for {sup 1}H, {sup 2}H, {sup 3}He and {sup 4}He, C and Al targets. The missing mass spectra are fitted with Monte Carlo simulations including {Lambda}, {Sigma}{sup 0}, {Sigma}{sup -} hyperon production. Models for quasifree production are compared to the data, excess yields close to threshold are attributed to FSI. Evidence for {Lambda}-hypernuclear bound states is seen for {sup 3,4}He targets.
Energy Technology Data Exchange (ETDEWEB)
Lepine-Szily, A.; Lichtenthaeler, R.; Guimaraes, V.; Alcantara Nunez, J.; Benjamim, E.A.; Faria, P.N. de; Leistenschneider, E.; Gasques, L.R.; Morais, M.C.; Pampa Condori, R.; Pires, K.C.C.; Scarduelli, V.; Zamora, J.C. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica; Mendes Junior, D.R.; Morcelle, V. [Universidade Federal Fluminense (IF/UFF), Niteroi, RJ (Brazil). Inst. de Fisica; Descouvemont, P. [Universite Libre de Bruxelles (Belgium). Physique Nucleaire Theorique et Physique Matematique; Assuncao, M. [Universidade Federal de Sao Paulo (UNIFESP), Diadema, SP (Brazil); Moro, A.M. [Universidad de Sevilla (Spain). Fac. de Fisica. Dept. de Fisica Atomica, Molecular y Nuclear (FAMN); Arazi, A. [Comision Nacional de Energia Atomica (CNEA), Buenos Aires (Argentina). Lab. TANDAR; Barioni, A. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil)
2012-07-01
Full text: The 'Radioactive Ion Beams in Brasil' (RIBRAS) facility consists of two super-conducting solenoids of maxi- mum magnetic field B 6.5T, coupled to the 8UD-Pelletron tandem Accelerator installed at the University of Sao Paulo Physics Institute. It is the first radioactive beam facility of the Southern Hemisphere. The production mechanism of the radioactive ions is by transfer reactions, using {sup 9}Be, {sup 3}He, LiF and other production targets, and the forward focused reaction products are selected and focalized by the solenoids into a scattering chamber. Low energy (3-5 MeV/u) radioactive beams of {sup 6}He, {sup 8}Li, {sup 7,10}Be and {sup 8,12}B are produced currently and used to study elastic, inelastic, and transfer reactions on a variety of light, medium mass and heavy ({sup 9}Be, {sup 12}C, {sup 27}Al, {sup 51}V and {sup 120}Sn) secondary targets. The data are analyzed, using most of the time, the Sao Paulo Potential (SPP) and compared to optical model and continuum discretized coupled-channels (CDCC) calculations. The total reaction cross section as a function of energy has been extracted from the elastic scattering data and the role of breakup of weakly bound or exotic nuclei is discussed. Some examples of reactions recently studied are {sup 1}H({sup 8}Li,{sup 4}He){sup 5}He, {sup 1}H({sup 8}Li,{sup 1}H){sup 8}Li using thick (CH{sub 2}){sub n} targets to measure their excitation functions. The transfer reaction {sup 12}C({sup 8}Li,{sup 4}He){sup 16}N, leading to well defined excited states of {sup 16}N, through the transfer of {sup 4}H or the sequential decay {sup 3}H+n, is also being studied. (author)
Qian, Yibin; Ren, Zhongzhou; Ni, Dongdong
2016-08-01
We further investigate the cluster emission from heavy nuclei beyond the lead region in the framework of the preformed cluster model. The refined cluster-core potential is constructed by the double-folding integral of the density distributions of the daughter nucleus and the emitted cluster, where the radius or the diffuseness parameter in the Fermi density distribution formula is determined according to the available experimental data on the charge radii and the neutron skin thickness. The Schrödinger equation of the cluster-daughter relative motion is then solved within the outgoing Coulomb wave-function boundary conditions to obtain the decay width. It is found that the present decay width of cluster emitters is clearly enhanced as compared to that in the previous case, which involved the fixed parametrization for the density distributions of daughter nuclei and clusters. Among the whole procedure, the nuclear deformation of clusters is also introduced into the calculations, and the degree of its influence on the final decay half-life is checked to some extent. Moreover, the effect from the bubble density distribution of clusters on the final decay width is carefully discussed by using the central depressed distribution.
Fargion, Daniele
2012-01-01
UHECR (Ultra High Cosmic Rays) made by He-like lightest nuclei might be solve main of the AUGER extragalactic clustering: He UHECR cannot arrive from Virgo because the light nuclei fragility and opacity above few Mpc; UHECR signals are clustering along Cen-A spreading as observed by horizontal galactic arms magnetic, along a vertical angles as observed clustered ones. As a consequence UHECR He, being fragile should partially fragment in secondaries at tens EeV multiplet (D,He3,p) almost as it occurs in the very recent UHECR multiplet at 20 EeV along Cen A UHECR clustering. However most remaining UHECR spread group seem to show mild correlations with other gamma (MeV-Al26) galactic sources within a wide angle. Moreover a rare UHECR clustering triplet is overlapping on Vela TeV anisotropy; other nearest galactic gamma sources may show links with UHECR. Therefore UHECR might be also heavy radioactive galactic nuclei as Ni56, Ni57 and Co57,Co60 widely bent from the sources whose radioactivity and decay in flight ...
International Nuclear Information System (INIS)
Full text: It is interesting to obtain values of asymptotical normalization coefficients (ANC) of overlapping functions for a few first levels of bound state of nuclei 14N and 20Ne for calculation of astrophysical S-factors of radiative proton capture 13C(p,γ )14N and 19F(p,γ )20Ne. For this purpose the differential cross sections of the reaction 19F(3He,d20Ne at projectile beam of 3He with energy of 22.3 MeV measured at angels of forward hemisphere and cross sections of reaction 13C(3He,d)14N at region of main stripping peak have been analyzed. The experimental values are taken from our earlier work [1]. At that work the role of coupling channels and contribution of peripheral processes into the amplitude of the reaction were analyzed. In present work in frame of modified DWBA [2, 3] empirical values of ANC of proton binding have been obtained. In frame of EPN [4, 5] method the values of asymptotical coefficients b of bound state function for bindings 14N->13C+p and 20Ne->19F+ p for a few first levels have been calculated. With the values of ANC and b the empirical values of spectroscopic factors have been calculated. The theoretical values of ANC corresponding shell model were calculated with the theoretical values of spectroscopic factors known from literature. Some comparative analysis is made. An opportunity of using the data for estimation of contribution of direct processes into cross section of radiative proton capture is discussed. The work is supported by grant Uzbek Acad. Sci. No 5-04
International Nuclear Information System (INIS)
The influence of the mechanisms of nuclear reactions on the population of 195mHg and 197mHg(7/2−), 198mTl and 196mTl(7+), and 196mAu and 198mAu(12−) isomeric nuclear states obtained in reactions induced by beams of 3He, 6Li, and 6He weakly bound nuclei is studied. The behavior of excitation functions and high values of isomeric ratios (δm/δg) for products of nuclear reactions proceeding through a compound nucleus and involving neutron evaporation are explained within statistical models. Reactions in which the emission of charged particles occurs have various isomeric ratios depending on the reaction type. The isomeric ratio is lower in direct transfer reactions involving charged-particle emission than in reactions where the evaporation of charged particles occurs. Reactions accompanied by neutron transfer usually have a lower isomeric ratio, which behaves differently for different direct-reaction types (stripping versus pickup reactions)
Cook, K. J.; Simpson, E. C.; Luong, D. H.; Kalkal, Sunil; Dasgupta, M.; Hinde, D. J.
2016-06-01
Background: Complete fusion cross sections in collisions of light weakly bound nuclei and high-Z targets show suppression of complete fusion at above-barrier energies. This has been interpreted as resulting from the breakup of the weakly bound nucleus prior to reaching the fusion barrier, reducing the probability of complete charge capture. Below-barrier studies of reactions of 9Be have found that the breakup of 8Be formed by neutron stripping dominates over direct breakup and that transfer-triggered breakup may account for the observed suppression of complete fusion. Purpose: This paper investigates how the above conclusions are affected by lifetimes of the resonant states that are populated prior to breakup. If the mean life of a populated resonance (above the breakup threshold) is much longer than the fusion time scale, then its breakup (decay) cannot suppress complete fusion. For short-lived resonances, the situation is more complex. This work explicitly includes the mean life of the short-lived 2+ resonance in 8Be in classical dynamical model calculations to determine its effect on energy and angular correlations of the breakup fragments and on model predictions of suppression of cross sections for complete fusion at above-barrier energies. Method: Previously performed coincidence measurements of breakup fragments produced in reactions of 9Be with 144Sm, 168Er, 186W, 196Pt, 208Pb, and 209Bi at energies below the barrier have been reanalyzed using an improved efficiency determination of the BALiN detector array. Predictions of breakup observables and of complete and incomplete fusion at energies above the fusion barrier are then made using the classical dynamical simulation code platypus, modified to include the effect of lifetimes of resonant states. Results: The agreement of the breakup observables is much improved when lifetime effects are included explicitly. Sensitivity to subzeptosecond lifetime is observed. The predicted suppression of complete fusion
Energy Technology Data Exchange (ETDEWEB)
Rodriguez, O.; Guzman, F.; Duarte, S.B.; Tavares, O.A.P. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Garcia, F. [Sao Paulo Univ., SP (Brazil). Inst. de Fisica; Goncalves, M. [Instituto de Radioprotecao e Dosimetria (IRD), Rio de Janeiro, RJ (Brazil)
1998-10-01
The present work provides new results for the half-life of cluster radioactivity and cold fission processes from neutron-deficient nuclei of atomic number near proton shell closure. Results are also reported for the half-life of possible decays leading to the neutron-deficient, doubly magic island near {sup 100} Sn. The model reproduces the well established experimental systematics of Geiger-Nuttall's diagrams for alpha decay, as well as predicts similar diagrams for heavy cluster emission and cold fission processes. (author)
International Nuclear Information System (INIS)
This educative booklet give a general overview of radioactivity: history, structure of matter, radiations, radioactivity law, origin of radioactivity, radioactivity uses, radioprotection and measurement units. (J.S.)
The role of doubly magic 208Pb and its neighbour nuclei in cluster radioactivity
International Nuclear Information System (INIS)
Using the Coulomb and proximity potential model (CPPM) we have investigated the cluster decays of the isotopes 212-240Pa, 219-245Np, 228-246Pu, 230-249Am and 232-252Cm leading to doubly magic 208Pb and its neighboring nuclei, which are not experimentally detected but which may be detectable in the future. It is found that most of the decays are favourable for experimental measurements (i.e., T1/230 s) and this observation will serve as a guide to future experiments. Our study reveals the role of doubly magic 208Pb daughter nuclei and near doubly magic nuclei in the cluster decay process. In order to make a comparison with CPPM we also calculated the logarithmic half-lives using the Universal formula for the cluster decay (UNIV) by Poenaru et al., the Universal Decay Law (UDL) and the Scaling Law of Horoi et al., and they are found to be in good agreement. The Geiger-Nuttall plots of log10(T1/2) versus Q-1/2 for various clusters from different isotopes of heavy parent nuclei have been studied and are found to be linear. (orig.)
BirBikram Singh; Sushil Kumar; Manoj K. Sharma; Patra, S. K.
2014-01-01
We have studied here the contribution of Indian Scientists associated with Prof. Raj K. Gupta to cold nuclear phenomena during the last almost four decades, which led to the discovery of fourth kind of natural radioactivity (also known as Cluster Radioactivity, CR) and to the extension of periodic table to super heavy nuclei. It is exclusively pointed out how the Quantum Mechanical Fragmentation Theory (QMFT) advanced by Prof. Raj K. Gupta and Collaborators led to the disc...
Beck, C; Keeley, N.; Diaz-Torres, A.
2007-01-01
The influence on fusion of coupling to the breakup process is investigated for reactions where at least one of the colliding nuclei has a sufficiently low binding energy for breakup to become an important process. Elastic scattering, excitation functions for sub-and near-barrier fusion cross sections, and breakup yields are analyzed for $^{6,7}$Li+$^{59}$Co. Continuum-Discretized Coupled-Channels (CDCC) calculations describe well the data at and above the barrier. Elastic scattering with $^{6...
International Nuclear Information System (INIS)
The general objective of the study was to evaluate the lipidic nanospheres biodistribution charged with cis-diaminedichloroplatinum (II) (cis-DDP) and labelled with radioactive nuclei of Indium-111 (Lip-Cis-in-111) in Wistar rats and in a tumoral model of CaCu. The conclusions were: 1. The system Lip-Cis-in-111 it presents a very fast elimination probably, to a fast recognition response of the reticuloendothelial system (RES). 2. It is planned to make modifications to the formulation to increase the quantity of the hydrophilic polymer (PEG), so that its time of residence in the blood is bigger and allow a bigger accumulation in the tumor. (Author)
On the possibility to search for 2β decay of initially unstable (α/β radioactive) nuclei
International Nuclear Information System (INIS)
An alternative method to search for 2β decay is discussed. Contrary to the 'conventional' approach (where only β stable 2β candidates are used), it is intended to study α/β unstable nuclei, whose 2β energy release, Qββ, is much higher in most of the cases than that of 'conventional' 2β candidates. As an example, the first experimental half-life limits on 2β decay of radioactive nuclides from U and Th families (contaminants of the CaWO4 and CdWO4 scintillators) were set by reanalyzing the data of low-background measurements in the Solotvina Underground Laboratory (1734 h with CaWO4 and 13316 h with CdWO4). (authors)
Synthesis of radioactive nuclei and $\\gamma$-line radiation from novae
Kudryashov, A D; Tutukov, A V
1999-01-01
We carried out kinetic calculations of thermonuclear burning in the hydrogen-rich matter to simulate nucleosynthesis yields in nova outbursts. These results are used to calculate the light curves of annihilation gamma-ray line from N, O and F radioactive isotopes.
Contribution of the radioactive decay to the study of the structure of N=Z nuclei of mass A>70
International Nuclear Information System (INIS)
Radioactive decay study gives an access to the interaction which rules the β decay process as well as the structure of the nuclear states involved. This work describes the observation of the decay of N = Z nuclei with mass A > 70. For the odd-odd N = Z nuclei 78Y, 82Nb and 86Tc, the decay has been established as superallowed Fermi type transitions. The results pave the way for more precise measurements and extend the mass range nowadays used to understand the behaviour of the weak interaction in the nuclear matter. The observation of the decay of the even-even N = Z 72Kr leads us to build the Gamow-Teller strength distribution from which some clues about the ground state deformation of this isotope can be obtained. More complete experimental observation and some developments of the calculations used to interpret the distribution of the Gamow-Teller strength are needed. Finally, this work describes the developments and tests of a prototype detector the aim of which to determine the contribution of β particles to energy distribution observed in germanium detector. The tests we have performed show that this prototype can identify and reject 80% of the β particles emitted by a source with a 2,3 MeV end-point. The very satisfactory performances of this prototype need now to be confirmed under experimental conditions. (author)
International Nuclear Information System (INIS)
The idea of cold reaction valleys led to the prediction and verification of very rare (fourth) kind of natural radioactivity along with the extension of periodic table (with the production of SHE). It also led to the development of dynamical theories (PCM and DCM) to successfully explain the ground-state as well as excited-state decays of nuclei
On the direct measurement method of the capture neutron cross section by radioactive nuclei
International Nuclear Information System (INIS)
Application possibility of multiplicity spectrometry for the measurement of direct capture neutron cross section by radioactive samples is considered. For the gamma-rays cascade registration on their space distribution in the multisection 4π-detector condition is introduced. It can be seen from calculation results of this condition with combination conditions of coincidence gamma-rays cascade in definite time interval and determined energy release in the detector sections which will lead to significant radiation background decrease from research sample radioactive radiation and it influence on registration system. Expected sensitivity for sample minimum quantity under cross section measurement on level 50 b consists approx 0,2 mg and sample specific activity approx 2 centre dot 1010Bk centre dot g-1
International Nuclear Information System (INIS)
For the measurement of averaging on a spectrum cross-sections of neutron interaction with the radioactive nuclei it is offered to use two-stage nuclear reactions. The first stage is the formation of an interesting radioactive nucleus, and the second - the formation of a nucleus of noble radioactive gas which it is offered to register by a flowing gas radiochemical method. The specified method uses a property of a free output from the crystalline lattice of some solid substances of atoms of inert radioactive gases formed as a result of nuclear reactions. Formed in an ampoule of the detector the inert radioactive gas is transported by gas - carrier in the proportional gas counter of a flowing type, where the measurement of decays rate of radioactive inert gas is made. This quantity is unequivocally connected with the cross-section of interaction of neutrons with the interesting radioactive nuclei. The given method was applied for monitoring of a neutron flux of the pulse neutron target 'RADEX' driven by the linear proton accelerator of INR, RAS. It is believed the use of the experience obtained can help us in the realization of the considered proposal
Li, H.; Roux, S. J.
1992-01-01
A casein kinase II (CK II)-like protein kinase was identified and partially isolated from a purified envelope-matrix fraction of pea (Pisum sativum L.) nuclei. When [gamma-32P]ATP was directly added to the envelope-matrix preparation, the three most heavily labeled protein bands had molecular masses near 71, 48, and 46 kDa. Protein kinases were removed from the preparation by sequential extraction with Triton X-100, EGTA, 0.3 M NaCl, and a pH 10.5 buffer, but an active kinase still remained bound to the remaining lamina-matrix fraction after these treatments. This kinase had properties resembling CK II kinases previously characterized from animal and plant sources: it preferred casein as an artificial substrate, could use GTP as efficiently as ATP as the phosphoryl donor, was stimulated by spermine, was calcium independent, and had a catalytic subunit of 36 kDa. Some animal and plant CK II kinases have regulatory subunits near 29 kDa, and a lamina-matrix-bound protein of this molecular mass was recognized on immunoblot by anti-Drosophila CK II polyclonal antibodies. Also found associated with the envelope-matrix fraction of pea nuclei were p34cdc2-like and Ca(2+)-dependent protein kinases, but their properties could not account for the protein kinase activity bound to the lamina. The 71-kDa substrate of the CK II-like kinase was lamin A-like, both in its molecular mass and in its cross-reactivity with anti-intermediate filament antibodies. Lamin phosphorylation is considered a crucial early step in the entry of cells into mitosis, so lamina-bound CK II kinases may be important control points for cellular proliferation.
International Nuclear Information System (INIS)
Liposomes containing anti-goat immunoglobulin were injected 24 h after administration of 125I-labelled goat antibody against the carcinoembryonic antigen (anti-CEA) to groups of nude mice bearing human tumour xenografts, and normal mice. Controls in each group received radioactively labelled anti-CEA only. In liposome-treated mice, blood 125I levels were lower than those of controls 30 min to 24 h after liposome administration, with corresponding accumulation of 125I activity in the liver and spleen for the first 2 h after liposome injection. [14C]Cholesterol or sup(99m)Tc labels in the bilayer were eliminated rapidly from the blood, with uptake in the liver and spleen. In xenograft-bearing mice, 125I activity detected in the tumours up to 6 h after liposome injection was identical to that detected in the tumours of controls. However, 24 h after liposome injection a reduction in the tumour concentration of 125I-labelled anti-CEA was obtained, but the tumour/blood radioactivity was still increased. In two mice given 27 μmol lipid, the blood radioactivity count after 24 h was only 5% of that in the controls. In rabbits, 2 h after administration of liposomes containing anti-goat second antibody, the circulating 125I activity had dropped by 28-40%. The results suggest that administration of liposome-entrapped second antibody approximately 2 h prior to external scintigraphy may clear circulating radioactively labelled primary antibody by up to 50%. (Auth.)
The nocturnal IBL over an hilly island with reference to the diffusion of radioactive nuclei
Camuffo, D.
1982-02-01
The dynamics of the nocturnal IBL over a small hilly island on the Mediterranean Sea are discussed, particularly for clear nights characterized by light wind, when typically a nocturnal inversion may grow. Among different cases, two typical situations are observed, depending on the steadiness of the wind. In the first case the inversion alternatively grows and is eroded from aloft until it is destroyed; in the second, it grows with half the speed usual at inland sites and its height is bounded by the top of the hill. The Stüve diagrams show that the warm sea surface can supply the energy required to lift airborne pollutants over the CCL.
High-energy beams of radioactive nuclei and their biomedical applications
International Nuclear Information System (INIS)
Several exploratory measurements have been conducted with radioactive beams to test the feasibility of using these beams to measure effective stopping power of heterogeneous media for heavy charged particles. Such measurements will provide direct information on the average electron density and average stopping number of a target with an unknown heterogeneous beam path. This information, once obtained with a suitable radioactive beam, can be used in equations to calculate the energy of any heavy particle of therapeutic choice so that the Bragg peak of the therapeutic beam can be placed on the tumor volume. A beam of high-energy heavy ions was collimated to a diameter of 1.58 cm (PEBA has a good positional accuracy as long as the beam diameter is less than 2 cm), and made to enter target materials (mixed or homogeneous) positioned between the detector banks and centered along the beam axis. Measurements have been made with 11C and 19Ne beams, but the short half-life of 19Ne (19 sec) allows prompt repeated measurements, making that nucleus very interesting for these purposes. Only the results obtained with it are reported
Kugler, E; Ratzinger, U; Wenander, F J C
2002-01-01
% IS347 \\\\ \\\\We propose to perform a pilot experiment to study very neutron rich (A<32) Na-Mg and (A<52) K-Ca isotopes in the region around the neutron shell closures of N=20 and N=28 after Coulomb excitation and neutron transfer, and to demonstrate highly efficient and cost-effective ways to bunch, charge-state breed and accelerate already existing mass-separated singly-charged radioactive ion beams. \\\\ \\\\To do this we plan to accelerate the ISOLDE beams up to 2~MeV/u by means of a novel acceleration scheme and to install an efficient $\\gamma$-ray array for low-multiplicity events around the target position.
Use of electron beams for the production of radioactive nuclei through photo-fission
International Nuclear Information System (INIS)
The IPN (institute of nuclear physics) of Orsay decided to build a linear accelerator in order to produce an electron beam of 50 MeV energy and of 10 μA average intensity. It is the ALTO project (Linear Accelerator near the Tandem of Orsay). This project will be dedicated to the production of the radioactive ions using the photo-fission process. The central topic of this thesis is the study of the beam dynamics of the ALTO facility. The first part presents studies concerning the injector. The simulations made with the simulation code PARMELA allowed the optimization of the characteristics of pre-buncher (dephasing HF, accelerating field peak...) to obtain a good bunching factor at the entrance of the buncher and at the entrance of the accelerating section according to the distance separating the two systems. The second part of this thesis is related to measurements of transverse emittance of the beam at the buncher exit. The three gradients method has been selected and the optical system used is a solenoid. The results obtained are in good agreement with former measurements. Finally a calculation of the beam line was carried out to optimize the transport of the beam to the PARRNe target without degrading its characteristics. The calculation codes that have been used are BETA and TRACE-WIN. (author)
Use of electrons beams for the production of radioactive nuclei by photofission
International Nuclear Information System (INIS)
The IPN of Orsay decided to build a linear accelerator in order to produce an electron beam of 50 MeV energy and of 10 mA average intensity. It is the ALTO project (Linear Accelerator near the Tandem of Orsay). This project will be dedicated to the production of the radioactive ions using the photo-fission process. The central topic of this thesis is the study of the beam dynamics of the ALTO facility. The first part presents studies concerning the injector. The simulations made with the simulation code PARMELA allowed the optimization of the characteristics of pre-buncher (dephasing HF, accelerating field peak...) to obtain a good bunching factor at the entrance of the buncher and at the entrance of the accelerating section according to the distance separating the two systems. The second part of this thesis is related to measurements of transverse emittance of the beam at the buncher exit. The three gradients method has been selected and the optical system used is a solenoid. The results obtained are in good agreement with former measurements. Finally a calculation of the beam line was carried out to optimize the transport of the beam to the PARRNe target without degrading its characteristics. The calculation codes that have been used are BETA and TRACE-WIN. (author)
Energy Technology Data Exchange (ETDEWEB)
Rosse, B
2006-07-15
This work is devoted to the search for highly deformed nuclei under extreme conditions of isospin, located near the proton drip-line, around A {approx} 130. The experiment was performed at GANIL (Caen) with the SPIRAL radioactive beam facility. The nuclei of interest were produced by fusion-evaporation reactions induced by the neutron deficient Kr{sup 76} radioactive beam (T1/2 = 14.8 h). {gamma}-rays were detected by the EXOGAM array, composed of 11 segmented germanium clover detectors, for which a new segment calibration method has been developed. To extract fusion-evaporation events of a overwhelming background due to the radioactivity of the beam, the EXOGAM array was coupled with the light charged particle detector DIAMANT and the high acceptance VAMOS spectrometer. The latter was used for the first time to detect fusion-evaporation residues. The detailed data analysis allowed us to demonstrate that the EXOGAM + DIAMANT + VAMOS coupling is operational and essential to investigate the structure of these nuclei. Furthermore, the first {gamma} transition was observed in the very exotic odd-odd Pm{sup 130} nucleus. The results have been interpreted with static and dynamic self-consistent microscopic calculations in collaboration with the Theoretical Physicists of the IPN Lyon. (author)
Kaur, Mandeep; Sharma, Manoj K; Gupta, Raj K
2015-01-01
The dynamics of the reactions forming compound nuclei using loosely bound projectiles is analysed within the framework of dynamical cluster decay model (DCM) of Gupta and Collaborators. We have analysed different reactions with $^{7}Li$, $^{9}Be$ and $^{7}Be$ as neutron rich and neutron deficient projectiles, respectively, on different targets at the three $E_{lab}$ values, forming compound nuclei within the mass region A$\\sim 30-200$. The contributions of light particles LPs ($A\\le4$) cross sections $\\sigma_{LP}$, energetically favoured intermediate mass fragments IMFs ($5 \\le A_2 \\le 20$) cross sections $\\sigma_{IMF}$ as well as fusion-fission $\\it{ff}$ cross sections $\\sigma_{ff}$ constitute the $\\sigma_{fus}$ (=$\\sigma_{LP}$+$\\sigma_{IMF}$+$\\sigma_{ff}$) for these reactions. The contribution of the emitted LPs, IMFs and ff fragments is added for all the angular momentum upto the $\\ell_{max}$ value, for the resepctive reactions. Interestingly, we find that the $\\Delta R^{emp}$, the only parameter of model ...
Importance of resonance widths in low-energy scattering of weakly-bound light-mass nuclei
Fraser, P R; Amos, K; Bray, I; Canton, L; Fossion, R; Kadyrov, A S; Karataglidis, S; Svenne, J P; van der Knijff, D
2016-01-01
What effect do particle-emitting resonances have on the scattering cross section? What physical considerations are necessary when modelling these resonances? These questions are important when theoretically describing scattering experiments with radioactive ion beams which investigate the frontiers of the table of nuclides, far from stability. Herein, a novel method is developed that describes resonant nuclear scattering from which centroids and widths in the compound nucleus are obtained when one of the interacting bodies has particle unstable resonances. The method gives cross sections without unphysical behavior that is found if simple Lorentzian forms are used to describe resonant target states. The resultant cross sections differ significantly from those obtained when the states in the coupled channel calculations are taken to have zero width, and compound-system resonances are better matched to observed values.
Energy Technology Data Exchange (ETDEWEB)
Stanoiu, M.A
2003-01-01
This thesis deals with studies of nuclei far from the valley of stability produced at GANIL by projectile fragmentation at intermediate energies. It consists of two parts. The first one is dedicated to the study of very light exotic nuclei around N=14. This is the first time that online {gamma}-ray spectroscopy combined with the projectile fragmentation was used with radioactive incident beams at GANIL. The advantages and the limitations of this method were established. 40 different nuclei have been produced and studied at the same time. A strong dependence of the population of excited states on the type of projectile was observed. New information was obtained on the structure of the isotopes B{sup 14,15}, C{sup 17,18,19,20}, N{sup 18,19,20,21,22}, O{sup 22,23,24}, F{sup 24,25,26} and Ne{sup 29}. The level schemes obtained from this study have been compared with shell-model predictions. In particular, the energy of 1588(20) keV found for the first 2{sup +} excited state in C{sup 20}, as well as the non-existence of a bound state in O{sup 24}, show that the proton-neutron interaction plays an important role in the structure of these nuclei. In the second part, an experiment is presented concerning the neutron-rich isomer nuclei around Ni{sup 68} produced by the LISE spectrometer. The fast-timing method was applied for the first time for the study of nuclei produced by projectile fragmentation. Subnanosecond half-lives of several levels in Ni{sup 67,69,90} and Cu{sup 71,72} were measured simultaneously and with high precision. These results have allowed us to test the shell model predictions for several E2 transitions and their associated B(E2) transition probabilities. (author)
Yarmukhamedov, R
2016-01-01
Asymptotic expressions for the radial and full wave functions of a three{body bound halo nuclear system with two charged particles in relative coordinates are obtained in explicit form, when the relative distance between two particles tends to infinity. The obtained asymptotic forms are applied to the analysis of the asymptotic behavior of the three-body (pn?) wave functions for the halo ($E^*=3.562$ MeV, $J^{\\pi}=0^+$, $T=1$) state of $^6$Li derived by D. Baye within the Lagrange-mesh method for two forms of the $\\alpha N$ -potential. The agreement between the calculated wave function and the asymptotic formula is excellent for distances up to 30 fm. Information about the values of the three-body asymptotic normalization functions is extracted. It is shown that the extracted values of the three-body asymptotic normalization function are sensitive to the form of the $\\alpha N$ -potential. The mirror symmetry is revealed for the three-body asymptotic normalization functions derived for the isobaric ($^6$He, $^...
International Nuclear Information System (INIS)
The nuclei far from the β-stability valley which are referred to as exotic nuclei have attracted considerable interest in recent years. Undoubtedly the study of the exotic nuclei is destined to be one of the frontier fields in nuclear structure physics. The recent experiments with radioactive beams have opened up this new era in nuclear spectroscopy. The lighter exotic nuclei are observed to show quite interesting features. For example, a halo structure has been attributed to 11Li in order to explain the observed large matter radius. Also, it is seen that 31--33Na show deformed characteristics rather than the spherical shape expected from the shell closure at N = 20. This points towards a need for a new investigation of the shell structure as one moves away from the β - stability valley. With the aforementioned interesting features observed for the lighter nuclei, clearly one question of great interest is whether similar effects can be seen in heavy nuclei. New calculations using the relativistic mean field approach have been performed for a range of nuclei over a wide range of isotopes up to those with a large excess of neutrons. In the present talk, some interesting new results obtained from these calculations win be discussed
International Nuclear Information System (INIS)
The present work investigates the anisotropy of the γ-radiation of optically orientated radioactive 203Hg atomic nuclei. Through the simultaneous action of direct and alternating magnetic fields on the optically pumped spin system, a time-dependent (dynamic) orientation structure is created which is expressed by a time-modulated, anisotropic γ-radiation. By measuring the anisotropy and the time modulations of the intensity of the γ-radiation using various outlined measuring methods, the dynamic orientation structure is examined in detail. (orig./LH)
Redon, N.; Prévost, A.; Guinet, D.; Lautesse, Ph.; Meyer, M.; Rossé, B.; Stézowski, O.; Nolan, P. J.; Andreoiu, C.; Boston, A. J.; Descovich, M.; Evans, A. O.; Gros, S.; Norman, J.; Page, R. D.; Paul, E. S.; Rainovski, G.; Sampson, J.; de France, G.; Casandjian, J. M.; Theisen, Ch.; Scheurer, J. N.; Nyakó, B. M.; Gál, J.; Kalinka, G.; Molnár, J.; Dombrádi, Zs.; Timár, J.; Zolnai, L.; Juhász, K.; Astier, A.; Deloncle, I.; Porquet, M. G.; Wadsworth, R.; Raddon, P.; Lee, Y.; Wilkinson, A.; Joshi, P.; Simpson, J.; Appelbe, D.; Joss, D.; Lemmon, R.; Smith, J.; Cullen, D.; Brondi, A.; La Rana, G.; Moro, R.; Vardacci, E.; Girod, M.
2004-02-01
The structure of the very neutron-deficient rare-earth nuclei has been investigated in the first experiment with the EXOGAM gamma array coupled to the DIAMANT light charged particle detector using radioactive beam of 76Kr delivered by the SPIRAL facility. Very neutron-deficient Pr, Nd and Pm isotopes have been populated at rather high spin by the reaction 76Kr + 58Ni at a beam energy of 328 MeV. We report here the first results of this experiment.
International Nuclear Information System (INIS)
The structure of the very neutron-deficient rare-earth nuclei has been investigated in the first experiment with the EXOGAM gamma array coupled to the DIAMANT light charged particle detector using radioactive beam of 76Kr delivered by the SPIRAL facility. Very neutron-deficient Pr, Nd and Pm isotopes have been populated at rather high spin by the reaction 76Kr + 58Ni at a beam energy of 328 MeV. We report here the first results of this experiment
International Nuclear Information System (INIS)
A new method for determining absolute activity of alpha or beta emitters by measuring daughter product radioactive decay is presented. The separation method of UX from hexahydrated uranyl nitrate UO2(NO3)2 6H2O based on its dissolution in ethyl ether is described and the accuracy of this method is shown. The factors which accuate on total efficiency of a Geiger Mueller detector for beta particles are determined. The possibility to determine the mass of precursor element by daughter nuclei activity is shown. The results are compared with the one obtained by direct measurement of the mass (or number of atoms) of precursor radioactive substance and with theoretical values calculated for isotopes in secular equilibrium. (Author)
Diaz-Torres, Alexis
2011-04-01
A self-contained Fortran-90 program based on a three-dimensional classical dynamical reaction model with stochastic breakup is presented, which is a useful tool for quantifying complete and incomplete fusion, and breakup in reactions induced by weakly-bound two-body projectiles near the Coulomb barrier. The code calculates (i) integrated complete and incomplete fusion cross sections and their angular momentum distribution, (ii) the excitation energy distribution of the primary incomplete-fusion products, (iii) the asymptotic angular distribution of the incomplete-fusion products and the surviving breakup fragments, and (iv) breakup observables, such as angle, kinetic energy and relative energy distributions. Program summaryProgram title: PLATYPUS Catalogue identifier: AEIG_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIG_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 332 342 No. of bytes in distributed program, including test data, etc.: 344 124 Distribution format: tar.gz Programming language: Fortran-90 Computer: Any Unix/Linux workstation or PC with a Fortran-90 compiler Operating system: Linux or Unix RAM: 10 MB Classification: 16.9, 17.7, 17.8, 17.11 Nature of problem: The program calculates a wide range of observables in reactions induced by weakly-bound two-body nuclei near the Coulomb barrier. These include integrated complete and incomplete fusion cross sections and their spin distribution, as well as breakup observables (e.g. the angle, kinetic energy, and relative energy distributions of the fragments). Solution method: All the observables are calculated using a three-dimensional classical dynamical model combined with the Monte Carlo sampling of probability-density distributions. See Refs. [1,2] for further details. Restrictions: The
International Nuclear Information System (INIS)
This pedagogical document presents the origin, effects and uses of radioactivity: where does radioactivity comes from, effects on the body, measurement, protection against radiations, uses in the medical field, in the electric power industry, in the food (ionization, radio-mutagenesis, irradiations) and other industries (radiography, gauges, detectors, irradiations, tracers), and in research activities (dating, preservation of cultural objects). The document ends with some examples of irradiation levels (examples of natural radioactivity, distribution of the various sources of exposure in France). (J.S.)
International Nuclear Information System (INIS)
Tables are presented of trends in annual emissions of radioactive gaseous effluents at sites of civil establishments in the U.K. Trends in the discharge to surface and coastal water sites in the U.K. and trends in the radioactivity of solid wastes dumped in the N.E. Atlantic and in the volume and activity level of wastes disposed at sites in the U.K. are presented. Tables of radioactivity in samples of fish and shellfish at selected sites are presented. Radioactivity from global fallout and the annual mean ratio of 90Sr to calcium, and concentrations of 137Cs in milk are given. Trends in estimated collective doses from the consumption of fish and shellfish in the U.K. and Europe are presented. (U.K.)
Directory of Open Access Journals (Sweden)
BirBikram Singh
2014-02-01
Full Text Available We have studied here the contribution of Indian Scientists associated with Prof. Raj K. Gupta to cold nuclear phenomena during the last almost four decades, which led to the discovery of fourth kind of natural radioactivity (also known as Cluster Radioactivity, CR and to the extension of periodic table to super heavy nuclei. It is exclusively pointed out how the Quantum Mechanical Fragmentation Theory (QMFT advanced by Prof. Raj K. Gupta and Collaborators led to the discovery of unique phenomenon of CR along with the predictions leading to the synthesis of super heavy elements. We have also mentioned the development of dynamical theories based on QMFT, the Preformed Cluster Model(PCM and the dynamical cluster-decay model (DCM, to study the ground and excited state decays of nuclei, respectively, by Gupta and Collaborators. It is matter of great honor and pride for us to bring out this study to enthuse the young researchers to come up with novel ideas and have inspiration from the scientific contributions of Prof. Raj K. Gupta who is coincidentally celebrating his platinum jubilee birthday anniversary this year.
Khoa, Dao Tien; Egelhof, Peter; Gales, Sydney; Giai, Nguyen Van; Motobayashi, Tohru
2008-04-01
Studies at the RIKEN RI beam factory / T. Motobayashi -- Dilute nuclear states / M. Freer -- Studies of exotic systems using transfer reactions at GANIL / D. Beaumel et al. -- First results from the Magnex large-acceptance spectrometer / A. Cunsolo et al. -- The ICHOR project and spin-isospin physics with unstable beams / H. Sakai -- Structure and low-lying states of the [symbol]He exotic nucleus via direct reactions on proton / V. Lapoux et al. -- Shell gap below [symbol]Sn based on the excited states in [symbol]Cd and [symbol]In / M. Górska -- Heavy neutron-rich nuclei produced in the fragmentation of a [symbol]Pb beam / Zs. Podolyák et al. -- Breakup and incomplete fusion in reactions of weakly-bound nuclei / D.J. Hinde et al. -- Excited states of [symbol]B and [symbol]He and their cluster aspect / Y. Kanada-En'yo et al. -- Nuclear reactions with weakly-bound systems: the treatment of the continuum / C. H. Dasso, A. Vitturi -- Dynamic evolution of three-body decaying resonances / A. S. Jensen et al. -- Prerainbow oscillations in [symbol]He scattering from the Hoyle state of [symbol]C and alpha particle condensation / S. Ohkubo, Y. Hirabayashi -- Angular dispersion behavior in heavy ion elastic scattering / Q. Wang et al. -- Microscopic optical potential in relativistic approach / Z.Yu. Ma et al. -- Exotic nuclei studied in direct reactions at low momentum transfer - recent results and future perspectives at fair / P. Egelhof -- Isotopic temperatures and symmetry energy in spectator fragmentation / M. De Napoli et al. -- Multi-channel algebraic scattering theory and the structure of exotic compound nuclei / K. Amos et al. -- Results for the first feasibility study for the EXL project at the experimental storage ring at GSI / N. Kalantar-Nayestanaki et al. -- Coulomb excitation of ISOLDE neutron-rich beams along the Z = 28 chain / P. Van Duppen -- The gamma decay of the pygmy resonance far from stability and the GDR at finite temperature / G. Benzoni et al
International Nuclear Information System (INIS)
Chemical separation techniques have been developed which make it possible to obtain a certain number of isotopes presenting anomalies in the fission efficiencies (near the magic shell N=82). A short description is given of the fission phenomenon by analysing the selection of isotopes investigated; it is shown how it was possible to explain the results by means of computers and the various chemical separations perfected are described. Thus a study was made of the 144La direct γ spectrum. It was shown that the anomalies in the fission efficiencies of certain nuclei are apparent only. Hence, it is the presence of isomers and the distribution of the corresponding efficiency between two isomers which are the cause of the apparent weakness of the efficiency of 134I, 136I and 136Cs, and of certain isotopes of Nb(Z=41). The nuclear spectrometry of nuclei of the area N=82 has made it possible to extend the existence of a metastable state to 136Xe and 138Ba. The value of the energies of the first 2+, 4+, 6+ levels and the half life duration of the 6+ metastable state are given. The discussion of the results and of the models show that the interpretation of the 0+, 2+, 4+ of the 82 neutron nuclei by means of a two quasi-particle (protons) model gives a fairly satisfactory description of the various experimental events: elastic scattering, gamma spectrometry and proton transfer reactions; on the other hand the interpretation of higher energy levels, requires the use of more complicated configurations
Indian Academy of Sciences (India)
H W Wilschut; U Dammalapati; D J Van Der Hoek; K Jungmann; W Kruithof; C J G Onderwater; B Santra; P D Shidling; L Willmann
2010-07-01
One of the greatest successes of the Standard Model of particle physics is the explanation of time-reversal violation (TRV) in heavy mesons. It also implies that TRV is immeasurably small in normal nuclear matter. However, unifying models beyond the Standard Model predict TRV to be within reach of measurement in nuclei and atoms, thus opening an important window to search for new physics. We will discuss two complementary experiments sensitive to TRV: Correlations in the -decay of 21Na and the search for an electric dipole moment (EDM) in radium.
International Nuclear Information System (INIS)
We discuss the structure and formation of deeply bound π- states in heavy nuclei, which are expected to be narrow due to the repulsive π--nucleus interaction. Possible experiments to produce those states are described. (author)
International Nuclear Information System (INIS)
Microscopic model for three-cluster configuration of light nuclei has been formulated in the frameworks of resonating group method in its algebraic version. The model has been applied for the ground states of 6He and 8He in configuration of α-particle plus two n-clusters and α-particle plus two 2n-clusters. The results have been obtained emphasize the importance of three-cluster moving mode for adequate description of nuclear properties, especially neutron halo
Yoshinaga, N.; Arima, A.; Zhao, Y. M.
2006-01-01
In this report we study the origin of spin-zero ground-state dominance for even-even nuclei in the presence of random two-body interactions. We evaluate the ground-state energy in terms of the energy centroid and the width of the random Hamiltonian. For both fermions and bosons in a single orbital, we obtain excellent agreement between the spin-I ground state probabilities predicted by using our formula and those obtained by diagonalizing the random Hamiltonian.
International Nuclear Information System (INIS)
The spectroscopic study of the decay modes of 21Mg, 25Si and 26P gives the opportunity to test the predictions of theoretical models when applied to the description of the properties of very unstable nuclei. Some shell model calculations and the charge independence hypothesis of nuclear forces are compared to experimental results. Finally, the observation of the rare phenomenon of the two-proton emission is the first step toward the research and study of the 2He radioactivity. (author)
Diaz-Torres, Alexis
2007-01-01
A self-contained Fortran-90 program based on a classical trajectory model with stochastic breakup is presented, which should be a powerful tool for quantifying complete and incomplete fusion, and breakup in reactions induced by weakly-bound two-body projectiles near the Coulomb barrier. The code calculates complete and incomplete fusion cross sections and their angular momentum distribution, as well as breakup observables (angle, kinetic energy and relative energy distributions).
Nuclear physics with radioactive beams
International Nuclear Information System (INIS)
Radioactive beam production through two different mechanisms: acceleration of radioactive nuclei, and production of secondary beams from projectile fragmentation is overviewed. Some topics of the applications of radioactive beams in nuclear physics, such as identification and study of exotic nuclei, neutron halos, nuclear astrophysics and medical applications are discussed. (K.A.). 24 refs., 8 figs
Energy Technology Data Exchange (ETDEWEB)
Bertulani, Carlos A. [Texas A & M Univ., Commerce, TX (United States)
2016-01-12
The work performed under this grant has led to the development of a detection system that will be used to measure reaction rates for proton or neutron capture reactions at stellar energies on radioactive ions far from stability. The reaction rates are needed to better understand the physics of nucleosynthesis in explosive stellar processes such as supernovae and x-ray burst events. The radioactive ions will be produced at the Radioactive Ion Beam Facility (RIBF) at RIKEN near Tokyo, Japan. During the course of this work, the group involved in this project has expanded by several institutions in Europe and Japan and now involves collaborators from the U.S., Japan, Hungary, Romania, Germany, Spain, Italy, China, and South Korea. As part of the project, a novel design based on large-area silicon detectors has been built and tested. The work has involved mechanical construction of a special purpose vacuum chamber, with a precision mounting system for the silicon detectors, development of a new ASICs readout system that has applications with a wide variety of silicon detector systems, and the development of a data acquisition system that is integrated into the computer system being used at RIBF. The parts noted above that are needed to carry out the research program are completed and ready for installation. Several approved experiments that will use this system will be carried out in the near future. The experimental work has been delayed due to a large increase in the cost and availability of electrical power for RIBF that occurred following the massive earthquake and tsunami that hit Japan in the spring of 2011. Another component of the research carried out with this grant involved developing the theoretical tools that are required to extract the information from the experiments that is needed to determine the stellar reaction rates. The tools developed through this part of the work will be made freely available for general use.
Energy Technology Data Exchange (ETDEWEB)
Tribble, Robert E. [Texas A & M Univ., College Station, TX (United States); Sobotka, Lee G. [Washington Univ., St. Louis, MO (United States); Blackmon, Jeff C. [Louisiana State Univ., Baton Rouge, LA (United States); Bertulani, Carlos A. [Texas A & M Univ., Commerce, TX (United States)
2015-12-29
The work performed under this grant has led to the development of a detection system that will be used to measure reaction rates for proton or neutron capture reactions at stellar energies on radioactive ions far from stability. The reaction rates are needed to better understand the physics of nucleosynthesis in explosive stellar processes such as supernovae and x-ray burst events. The radioactive ions will be produced at the Radioactive Ion Beam Facility (RIBF) at RIKEN near Tokyo, Japan. During the course of this work, the group involved in this project has expanded by several institutions in Europe and Japan and now involves collaborators from the U.S., Japan, Hungary, Romania, Germany, Spain, Italy, China, and South Korea. As part of the project, a novel design based on large-area silicon detectors has been built and tested and the performance characterized in a series of tests using particle beams with a variety of atomic numbers at the Cyclotron Institute of Texas A&M University and the Heavy Ion Medical Accelerator in Chiba facility (HIMAC) in Chiba, Japan. The work has involved mechanical construction of a special purpose vacuum chamber, with a precision mounting system for the silicon detectors, development of a new ASICs readout system that has applications with a wide variety of silicon detector systems, and the development of a data acquisition system that is integrated into the computer system being used at RIBF. The parts noted above that are needed to carry out the research program are completed and ready for installation. Several approved experiments that will use this system will be carried out in the near future. The experimental work has been delayed due to a large increase in the cost and availability of electrical power for RIBF that occurred following the massive earthquake and tsunami that hit Japan in the spring of 2011. Another component of the research carried out with this grant involved developing the theoretical tools that are required
Radioactivity, radionuclides, radiation
Magill, Joseph
2005-01-01
RADIOACTIVITY – RADIONUCLIDES – RADIATION is suitable for a general audience interested in topical environmental and human health radiological issues such as radiation exposure in aircraft, food sterilisation, nuclear medicine, radon gas, radiation dispersion devices ("dirty bombs")… It leads the interested reader through the three Rs of nuclear science, to the forefront of research and developments in the field. The book is also suitable for students and professionals in the related disciplines of nuclear and radiochemistry, health physics, environmental sciences, nuclear and astrophysics. Recent developments in the areas of exotic decay modes (bound beta decay of ‘bare’ or fully ionized nuclei), laser transmutation, nuclear forensics, radiation hormesis and the LNT hypothesis are covered. Atomic mass data for over 3000 nuclides from the most recent (2003) evaluation are included.
Nuclear astrophysics of light nuclei
DEFF Research Database (Denmark)
Fynbo, Hans Otto Uldall
2013-01-01
A review of nuclear astrophysics of light nuclei using radioactive beams or techniques developed for radioactive beams is given. We discuss Big Bang nucleosynthesis, with special focus on the lithium problem, aspects of neutrino-physics, helium-burning and finally selected examples of studies...
International Nuclear Information System (INIS)
It has been shown previously that, below a critical angular momentum, yrast bands of non-magic nuclei are well described by the two-parameter variable moment of inertia model. Some striking exceptions to this rule are found in nuclei which have the same mass number as doubly magic nuclei but possess either one (or two) proton pairs beyond a magic number and one (or two) neutron hole pairs, or vice versa. Yrast bands in these 'pseudomagic' nuclei resemble those in magic nuclei. (author)
International Nuclear Information System (INIS)
Full text: Data on nuclear masses provide a basis for creating and testing various nuclear models. A tandem system comprised of the U-400M cyclotron, the COMBAS magnetic separator and the mass spectrometric ion trap of a 'in-flight capture' type is considered as a complex for producing of the short -lived nuclei by heavy ions in fragmentation reactions and for precise mass measurement of this nuclei. In-flight transportation of the recoiled nuclei to the magnetic solenoid of the ionic trap and transformation their longitudinal kinetic energy into an azimuth rotation arc produced by the fringing magnetic field according to Bush's theorem at the off axial input. Confinement and accumulation of the rotating ions in the trap are produced by using their reflecting by the electrostatic field of the final end cap electrode of the volume quadrupole and their repelling by a magnetic valve located at the entrance. The development of mass spectroscopic ion traps of a new tape resulted in a efficient method for selecting stable isotopes of non volatile chemical elements in the weight amounts analogously needed for physical and technical aims. The system uses ionic-cyclotron resonance in homogenous magnetic and volume quadrupole electric fields. In our case there are used general rotating excitation of the accelerated ions by the off axial input in the solenoid and their high frequency electric resonance cooling. There are axial transparency volume electric quadrupole with axial GZR >0 gradients (in the Penning trap GZ>0 and GR2 H+3H=4He+n having a very large resonance cross section at very low energy (63.0 keV in the centre-of-mass frame) in the merging collisions
Kelkar, N G; Moskal, P
2015-01-01
The possibility for the existence of unstable bound states of the S11 nucleon resonance N$^*$(1535) and nuclei is investigated. These quasibound states are speculated to be closely related to the existence of the quasibound states of the eta mesons and nuclei. Within a simple model for the N N$^*$ interaction involving a pion and eta meson exchange, N$^*$-nucleus potentials for N*-$^3$He and N*-$^{24}$Mg are evaluated and found to be of a Woods-Saxon like form which supports two to three bound states. In case of N*-$^3$He, one state bound by only a few keV and another by 4 MeV is found. The results are however quite sensitive to the N N$^*$ $\\pi$ and N N$^*$ $\\eta$ vertex parameters. A rough estimate of the width of these states, based on the mean free path of the exchanged mesons in the nuclei leads to very broad states with $\\Gamma \\sim$ 80 and 110 MeV for N*-$^3$He and N*-$^{24}$Mg respectively.
Energy Technology Data Exchange (ETDEWEB)
Lopez R, V.; Juarez O, C.; Medina L, A. [Unidad de Investigacion Biomedica en Cancer INCAN-UNAM, Mexico D.F. (Mexico); Perez C, E.; Garcia L, P. [Instituto nacional de cancerologia, Mexico D.F. (Mexico)
2007-07-01
The general objective of the study was to evaluate the lipidic nanospheres biodistribution charged with cis-diaminedichloroplatinum (II) (cis-DDP) and labelled with radioactive nuclei of Indium-111 (Lip-Cis-in-111) in Wistar rats and in a tumoral model of CaCu. The conclusions were: 1. The system Lip-Cis-in-111 it presents a very fast elimination probably, to a fast recognition response of the reticuloendothelial system (RES). 2. It is planned to make modifications to the formulation to increase the quantity of the hydrophilic polymer (PEG), so that its time of residence in the blood is bigger and allow a bigger accumulation in the tumor. (Author)
Exotic Behaviour of Angular Dispersion of Weakly Bound Nucleus 17F at Small Angles
Institute of Scientific and Technical Information of China (English)
WANG Qi; YUAN Xiao-Hua; XU Zhi-Guo; ZHAO Tie-Cheng; ZHANG Hong-Bin; XU Hua-Gen; QI Hui-Rong; WANG Yue; JIA Fei; WU Li-Jie; DING Xian-Li; HAN Jian-Long; GAO Qi; GAO Hui; LI Song-Lin; BAI Zhen; XIAO Guo-Qing; JIN Gen-Ming; REN Zhong-Zhou; ZHOU Shan-Gui; SERGEY Yu-Kun; XIAO Zhi-Gang; XU Hu-Shan; SUN Zhi-Yu; HU Zheng-Guo; ZHANG Xue-Ying; WANG Hong-Wei; MAO Rui-Shi
2006-01-01
@@ The differential cross sections of 17 F and 17 O elastic scattering products on 208Pb have been measured at the Radioactive Ion Beam Line at Lanzhou (RIBLL). Two angular dispersion plots ofln( dσ/ dθ ) versus θ2 are obtained from the angular distribution of the elastic scattering differential cross sections. The angular dispersion plot exhibits a clear turning point for 17F in the range of small scattering angles 6°-20° due to its exotic structure,but for 17 O, the turning point is not observed in the same angular range. The experimental results have been compared with previous data of other groups. Systematical analysis on the available data supports the above conclusion that there is an exotic behaviour of the angular dispersion plot of weakly bound nuclei with halo or skin structure as compared with that of the ordinary nuclei near stable line. Therefore the turning point of the angular dispersion plot appears at small angle for weakly bound nuclei with halo or skin structure, and can be used as a new probe to investigate the halo and skin phenomena of weakly bound nuclei.
International Nuclear Information System (INIS)
Full text: In the present work the peripheral two-proton (p1 and p2) transfer A(X,Y)B reaction induced by weakly bound light nuclei at low energies is considered. Herein X = ((Yp2 ) +p1) and B = ((Ap1)+p2). We consider the case when the proton p1(p2) is loosely bound in the nucleus X (B) with the binding energy εX (εB) and the binding energies of the protons p2 and p1, ε(Yp2) and ε(Yp1), in the bound (Yp2 ) and (Ap1) states, respectively, satisfy the conditions ε(Yp2) >>εX, ε(Yp1)>>εB, εX ≅εB. One of the main mechanisms of the investigated reaction corresponds to that, the amplitude of which is described by the square diagram. We have taken into account the fact that the main contribution to the amplitude of that reaction comes from the peripheral partial-wave amplitudes (l>>1), which are determined by the nearest to the physical region -1≤ cosθ≤ 1 singular point cosθ = ζ >1 ( θ is the scattering angle in the c.m.s.). In the case under consideration, the nearest singular point corresponds to the singularity of the Coulomb vertex form factors for the virtual decays X→(Yp2)+p1 and (Ap1)+p2→B (an anomalous mechanism).The explicit forms of the peripheral partial-wave amplitudes Ml (l>>1), which are determined by this singularity, as well as the peripheral partial-wave amplitudes MIDWBA corresponding to the same mechanism of the successive transfer within the conventional DWBA (a usual mechanism), have been found. One notes that the behavior of MIDWBA is determined by the singularity ζp, and ζp>ζ since a value of ζp is determined by the binding energies of εX and ε(Yp2). The asymptotic expressions for Ml and MIDWBA for l>>1 show the different dependence on l. Besides, the explicit forms of the exact amplitude at cosθ→ζ and the singular part of the amplitude corresponding to the usual mechanism of DWBA at cosθ→ζp have been derived. Investigation of analytic properties of the amplitudes of the peripheral transfer reactions 6Li(12N,10B
International Nuclear Information System (INIS)
The standard method of pionic atom formation does not produce deeply bound pionic atoms. A study is made on the properties of deeply bound pionic atom states by using the standard pion-nucleus optical potential. Another study is made to estimate the cross sections of the formation of ls pionic atom states by various methods. The pion-nucleus optical potential is determined by weakly bound pionic atom states and pion nucleus scattering. Although this potential may not be valid for deeply bound pionic atoms, it should provide some hint on binding energies and level widths of deeply bound states. The width of the ls state comes out to be 0.3 MeV and is well separated from the rest. The charge dependence of the ls state is investigated. The binding energies and the widths increase linearly with Z azbove a Z of 30. The report then discusses various methods to populate deeply bound pionic atoms. In particular, 'pion exchange' reactions are proposed. (n, pπ) reaction is discussed first. The cross section is calculated by assuming the in- and out-going nucleons on-shell and the produced pion in (n1) pionic atom states. Then, (n, dπ-) cross sections are estimated. (p, 2Heπ-) reaction would have cross sections similar to the cross section of (n, dπ-) reaction. In conclusion, it seems best to do (n, p) experiment on heavy nuclei for deeply bound pionic atom. (Nogami, K.)
Nuclei at the limits of particle stability
International Nuclear Information System (INIS)
The properties and synthesis of nuclei at the limits of particle stability are reviewed. Nuclear reactions were induced and studied by means of the 'exotic' nuclear beams, i.e. beams of radioactive drip-line nuclei. The beams are mostly generated in heavy-ion projectile fragmentation. The cases of both neutron-rich and proton-rich nuclei are discussed. (K.A.) 270 refs.; 13 figs.; 1 tab
Direct Reactions with Exotic Nuclei
International Nuclear Information System (INIS)
We discuss recent work on Coulomb dissociation and an effective-range theory of low-lying electromagnetic strength of halo nuclei. We propose to study Coulomb dissociation of a halo nucleus bound by a zero-range potential as a homework problem. We study the transition from stripping to bound and unbound states and point out in this context that the Trojan-Horse method is a suitable tool to investigate subthreshold resonances
Direct Reactions with Exotic Nuclei
Baur, G
2005-01-01
We discuss recent work on Coulomb dissociation and an effective-range theory of low-lying electromagnetic strength of halo nuclei. We propose to study Coulomb dissociation of a halo nucleus bound by a zero-range potential as a homework problem. We study the transition from stripping to bound and unbound states and point out in this context that the Trojan-Horse method is a suitable tool to investigate subthreshold resonances.
An introduction to mesic nuclei
Wilkin, Colin
2016-01-01
There is much speculation and a modest amount of evidence that certain mesons might form quasi-bound states with nuclei to produce really exotic states of matter. For this to be a practical possibility, the interaction between the meson and nucleons at low energies must be strong and attractive and the production rates "healthy". The conditions for this are surveyed for the light mesons. How this might lead to quasi-bound states is then discussed in a few typical cases.
Building a LLNL Capability in Radioactive Ion Beam Experiments
Energy Technology Data Exchange (ETDEWEB)
Bernstein, L A; Becker, J A; Garrett, P E; Younes, W; Schiller, A
2002-01-31
The purpose of this LDRD was to establish a program at LLNL in radioactive ion beam (RIB) experiments that would use these experiments to address a wide range physics issues in both stellar nucleosynthesis and stockpile stewardship radiochemistry. The LDRD was funded for a total of two years (fiscal years 2000 and 2001) and transferred to the Physical Data Research Program in fiscal year 2002. Reactions on unstable nuclei and isomeric states play a central role in the formation of elements in both stars and nuclear devices. However, the abilities of reaction models to predict cross sections on radioactive nuclei are uncertain at best. This can be attributed to the lack of experimental data to guide reaction-modeling efforts. Only the 10% of all bound nuclei that can be formed with stable targets and beams have been accessed and studied. The proposed Rare Isotope Accelerator (RIA) and existing RIB facilities offer an unprecedented opportunity to address many of the outstanding questions in nuclear structure, reactions and astrophysics by enabling the observation of nuclear reactions with radioactive targets and/or beams. The primary goal of this LDRD is to develop three experimental capabilities for use with RIB experiments: (1) Level density and {gamma}-ray strength function measurements using statistical {gamma}-rays. (2) Charged particle-induced cross sections measurements on radioactive nuclei. (3) Neutron-induced cross section measurements on a radioactive target. RIA and RIB based experiments are the new frontier for nuclear physics. The joint DOE/NSF nuclear science advisory committee has named development of a RIA facility in the United States as the highest new construction priority. In addition to addressing the questions presented above, this LDRD has helped to establish a position for LLNL at the forefront of the international nuclear science community.
Saric, Dragomir
2006-01-01
We give a short proof of the fact that bounded earthquakes of the unit disk induce quasisymmetric maps of the unit circle. By a similar method, we show that symmetric maps are induced by bounded earthquakes with asymptotically trivial measures.
Generalized parton distributions of nuclei
Guzey, V.
2009-01-01
We review recent theoretical results on generalized parton distributions (GPDs) of nuclei, emphasizing the following three roles of nuclear GPDs: (i) complementarity to free proton GPDs, (ii) the enhancement of traditional nuclear effects such as nuclear binding, EMC effect, nuclear shadowing, and (iii) an access to novel nuclear effects such as medium modifications of bound nucleons.
Czech Academy of Sciences Publication Activity Database
Mareš, Jiří; Friedman, E.; Gal, A.
-, č. 56 (2006), s. 95-98. ISSN 0323-0465 R&D Projects: GA AV ČR IAA1048305 Institutional research plan: CEZ:AV0Z10480505 Keywords : key words * kaonic nuclei * Kbar-nucleus interactions Subject RIV: BE - Theoretical Physics Impact factor: 0.647, year: 2006
International Nuclear Information System (INIS)
Superdeformation was first proposed some twenty years ago to explain the fission isomers observed in some actinide nuclei. It was later realized that superdeformed shapes can occur at high angular momentum in lighter nuclei. The interest in the mechanisms responsible for these exotic shapes has increased enormously with the discovery of a superdeformed band of nineteen discrete lines in 152Dy (8). At about the same time, evidence for highly deformed nuclei (axis ratio 3:2) was also reported near 132Ce(9). Striking properties emerged from the first experiments, such as the essentially constant energy spacing between transitions (picket-fence spectra), the unexpectedly strong population of superdeformed bands at high spins, and the apparent lack of a link between the superdeformed states and the yrast levels. These findings were reviewed by Nolan and Twin. The present article follows upon their work and discusses the wealth of information that has since become available. This includes the discovery of a new island of superdeformation near A = 190, the detailed spectroscopy of ground and excited bands in the superdeformed well near A = 150 and A = 190, the surprising occurrence of superdeformed bands with identical transition energies in nuclei differing by one or two mass units, and the improved understanding of mechanisms responsible for the feeding into and the decay out of the superdeformed states
International Nuclear Information System (INIS)
The problem of the correlation function denominator building was presented in a previous contribution to this volume. In the following, the preliminary results concerning the nn correlation function will be presented. The two-neutron correlation function is given by: C(q)=kNc(q)/Nnc(q). In this equation Nc(q) represents the yield of coincidence events and Nnc(q) the yield of uncorrelated events. The normalization constant k is obtained from the condition that C(q)=1 at large relative momenta. The relative momentum q is given by: q=1/2 mod(p1- p2), p1 and p2 being the momenta of the two coincident neutrons. The correlation functions obtained by using denominators A and B are plotted. The normalization was done in the range q=30-40 MeV/c, far away from the c.t range. The correlation function was constructed using condition B. Good agreement with the experimental points was obtained taking into consideration r0=4.2 fm. Here, r0 represents the variance of Gaussian source. The n-n separation rnn is then a Gaussian function with the variance = 20.5r0 and rnnrms = 60.5r0. Good agreement with the correlation function was obtained with denominator A taking into consideration r0 =5 fm. This value is close to the one (5.3 fm) obtained in literature where a denominator similar to A was used. A correlation function in agreement with rnnrms = 8.3 fm predicted by COSMAI model was obtained considering r0 = 3.4 fm. The present data are likely to favor the rnnrms value predicted by COSMAI. One has to mention that in paper by Marques et al. almost the double number of iterations were necessary for 11Li in comparison with 14 Be and 6 He to obtain a stable solution closer to COSMAII. A definite answer to this question will be an experiment aiming to determine the intrinsic correlation function by using 11 Li and 11 Be halo nuclei. The nucleus 11Be will be an ideal uncorrelated background source, since it contains only one halo neutron. (authors)
Ab initio many-body calculations of light nuclei neutron and proton scattering
Quaglioni, Sofia
2008-10-01
One of the greatest challenges of nuclear physics today is the development of a quantitative microscopic theory of low-energy reactions on light nuclei. At the same time, technical progress on the theoretical front is urgent to match the major experimental advances in the study of exotic nuclei at the radioactive beam facilities. We build a new ab initio many-body approachootnotetextS. Quaglioni and P. Navratil, arXiv:0804.1560. capable of describing simultaneously both bound and scattering states in light nuclei, by combining the resonating-group methodootnotetextY. C. Tang et al., Phys. Rep. 47, 167 (1978); K. Langanke and H. Friedrich, Advances in Nuclear Physics, chapter 4., Plenum, New York, 1987. with the ab initio no-core shell model.ootnotetextP. Navratil, J. P. Vary, and B. R. Barrett, Phys. Rev. Lett. 84, 5728 (2000); Phys. Rev. C 62, 054311 (2000).. In this way, we complement a microscopic-cluster technique with the use of realistic interactions, and a microscopic and consistent description of the nucleon clusters, while preserving Pauli principle and translational symmetry. I will present results for neutron and proton scattering on light nuclei, including n- and p-^4He phase shifts, and low-lying states of one-neutron halo p-shell nuclei, obtained using realistic nucleon-nucleon potentials. In particular, I will address the parity inversion of the ^11Be ground state.
International Nuclear Information System (INIS)
4 nuclei of Nickel-48 have been produced in the GANIL accelerator. This nucleus is made up of 28 protons and 20 neutrons, it has at least 10 neutrons less than natural nickel but it is doubly magic: both protons and neutrons are distributed on full shells. It appears as if being doubly magic could compensate for the instability due to the shortage of neutrons. (A.C.)
Investigations of the neutron halo by radioactive beam experiments
International Nuclear Information System (INIS)
Recently, a new tool has become available to study the behaviour of nuclei at the limits of particle stability. Heavy-ion projectile fragmentation, in combination with efficient recoil spectrometers, allows to prepare 'exotic' beams which can be used to induce secondary nuclear reactions. First experiments have revealed surprising features in the reactions of the most neutron-rich light nuclei. There is now conclusive evidence that the observed effects are due to long-tail matter distributions ('neutron halo') which occur for the last, very weakly bound neutrons. The results of some recent radioactive beam experiments, made by means of the spectrometer LISE3 at GANIL, are presented. (author) 24 refs.; 7 figs
International Nuclear Information System (INIS)
We have investigated systematically kaonic nuclei which are ppnK-, pppK-, pppnK-, 6BeK-, 9BK- and 11CK-. Since I = 0 K-barN interaction, which is very attractive, plays an essential role in kaonic nuclei, we should treat it adequately. For this purpose, we have improved the framework of antisymmetrized molecular dynamics (AMD): 1) we can treat pK-/nK-bar0 mixing and 2) perform not only angular-momentum projection but also isospin projection. As a result of our calculation with a new framework of AMD, all kaonic nuclei we calculated are deeply bound by about 100 MeV as a discrete state. They have various structures with highly dense state. We have also investigated double kaonic nuclei, ppnK-K- and ppnK-K-. They are more shrunk than single kaonic nuclei, but the binding energy per single kaon (E(K-bar)) is about 100 MeV, which is equal to that in the case of single kaonic nuclei. (author)
Gutiérrez-Rodríguez, A
2003-01-01
A bound on the nu /sup tau / magnetic moment is calculated through the reaction e/sup +/e/sup -/ to nu nu gamma at the Z/sub 1/-pole, and in the framework of a left-right symmetric model at LEP energies. We find that the bound is almost independent of the mixing angle phi of the model in the allowed experimental range for this parameter. (31 refs).
North American radioactive beam initiatives
International Nuclear Information System (INIS)
After a brief review of existing radioactive beam facilities in North America, two new initiative (the Oak Ridge Radioactive Ion Beam Facility and the IsoSpin Laboratory) are described in some detail. An evaluation of which nuclei these facilities will be able to study, that cannot be studied with stable targets and beams, also is presented
Radioactive beams and their applications
International Nuclear Information System (INIS)
The proceedings contain lectures and contributed papers submitted to the second INR (Kiev's) International School on Nuclear Physics (Kiev, June 25 -July 2, 1991). The following sections were included in the Proceedings: Radioactive Beam Facilities, Application of Radioactive Beams in the Investigations of Nuclear Reactions, Exotic Nuclei and Clusters, Polarization Phenomena, Astrophysics and Others
Proton scattering from unstable nuclei
Indian Academy of Sciences (India)
Y Blumenfeld; E Khan; F Maréchal; T Suomijärvi
2001-08-01
Recent improvements in the intensities and optical qualities of radioactive beams have made possible the study of elastic and inelastic proton scattering on unstable nuclei. The design and performances of an innovative silicon strip detector array devoted to such experiments are described. The quality of the data obtained are illustrated with recent results obtained at the GANIL facility for unstable oxygen, sulfur and argon isotopes. Methods to analyse the data using phenomenological and microscopic optical model potentials are discussed.
Cavitation inception from bubble nuclei
DEFF Research Database (Denmark)
Mørch, Knud Aage
2015-01-01
experimental investigations of bubbles and cavitation inception have been presented. These results suggest that cavitation nuclei in equilibrium are gaseous voids in the water, stabilized by a skin which allows diffusion balance between gas inside the void and gas in solution in the surrounding liquid. The...... cavitation nuclei may be free gas bubbles in the bulk of water, or interfacial gaseous voids located on the surface of particles in the water, or on bounding walls. The tensile strength of these nuclei depends not only on the water quality but also on the pressure-time history of the water. A recent model...... and associated experiments throw new light on the effects of transient pressures on the tensile strength of water, which may be notably reduced or increased by such pressure changes....
New approaches to studies of exotic nuclei
International Nuclear Information System (INIS)
New generations of 4π gamma-ray detectors, recoil mass spectrometers (RMS), and radioactive beam accelerators will open up many new areas of research, including present inaccessible in-beam and radioactive decay studies of exotic nuclei still farther off stability. The new generation RMS and radioactive beam developments at the Holifield Heavy Ion Research Facility are presented. Current research and further prospects to probe the N -- Z line up to 100Sn are described. Superdeformation in A -- 70 to 190 nuclei is described in terms of its underlying physics of reinforcing proton and neutron shell gaps which lead to new superdeformed, doubly-magic nuclei. Recent results provide new insights into the coexistence of multiple nuclear shapes near the ground states
International Nuclear Information System (INIS)
The present collection of letters from JINR, Dubna, contains ten separate records on Wien filter using in exploring on low-energy radioactive nuclei, memory effects in dissipative nucleus-nucleus collision, topological charge and topological susceptibility in connection with translation and gauge invariance, solutions of the multitime Dirac equation, the maximum entropy technique. System's statistical description, the charged conductor inside dielectric. Solution of boundary condition by means of auxiliary charges and the method of linear algebraic equations, optical constants of the TGS single crystal irradiated by power pulsed electron beam, interatomic pair potential and n-e amplitude from slow neutron scattering by noble gases, the two-coordinate multiwire proportional chamber of the high spatial resolution and neutron drip line in the region of O-Mg isotopes
Relativistic symmetry breaking in light kaonic nuclei
Yang, Rong-Yao; Jiang, Wei-Zhou; Xiang, Qian-Fei; Zhang, Dong-Rui; Wei, Si-Na
2014-01-01
As the experimental data from kaonic atoms and $K^{-}N$ scatterings imply that the $K^{-}$-nucleon interaction is strongly attractive at saturation density, there is a possibility to form $K^{-}$-nuclear bound states or kaonic nuclei. In this work, we investigate the ground-state properties of the light kaonic nuclei with the relativistic mean field theory. It is found that the strong attraction between $K^{-}$ and nucleons reshapes the scalar and vector meson fields, leading to the remarkabl...
True ternary fission of superheavy nuclei
Zagrebaev, V.I.; A. V. Karpov; Greiner, Walter
2010-01-01
We found that a true ternary fission with formation of a heavy third fragment (a new type of radioactivity) is quite possible for superheavy nuclei due to the strong shell effects leading to a three-body clusterization with the two doubly magic tin-like cores. The simplest way to discover this phenomenon in the decay of excited superheavy nuclei is a detection of two tin-like clusters with appropriate kinematics in low-energy collisions of medium mass nuclei with actinide targets. The three-b...
Cavitation inception from bubble nuclei.
Mørch, K A
2015-10-01
The tensile strength of ordinary water such as tap water or seawater is typically well below 1 bar. It is governed by cavitation nuclei in the water, not by the tensile strength of the water itself, which is extremely high. Different models of the nuclei have been suggested over the years, and experimental investigations of bubbles and cavitation inception have been presented. These results suggest that cavitation nuclei in equilibrium are gaseous voids in the water, stabilized by a skin which allows diffusion balance between gas inside the void and gas in solution in the surrounding liquid. The cavitation nuclei may be free gas bubbles in the bulk of water, or interfacial gaseous voids located on the surface of particles in the water, or on bounding walls. The tensile strength of these nuclei depends not only on the water quality but also on the pressure-time history of the water. A recent model and associated experiments throw new light on the effects of transient pressures on the tensile strength of water, which may be notably reduced or increased by such pressure changes. PMID:26442138
Institute of Scientific and Technical Information of China (English)
圣宗强; 舒良萍; 孟影; 胡继刚; 钱建发
2014-01-01
The cluster radioactivities of trans-lead nuclei are systematically investigated by using the effective liquid drop description with the varying mass asymmetry shape and effective inertial coefficient. An effective nuclear radius constant formula is used instead of the original empirical formula in calculation. The calculated half-lives are in good agreement with the available experimental data. The root-mean-square deviation between the calculated logarithmic half-lives and the experimental ones is only 0.895. From the plots of the calculated lgT1/2 values versus the neutron (or proton) number of daughter, the shell effect of neutron magic number N =126 (or proton magic number Z =82) can be clearly seen. The odd-even-stagger can be clearly seen in the odd clusters 25Ne, 29Mg. The calculated half-lives conform to the Geiger-Nuttall law. We obtain some important conclusions about the Geiger-Nuttall law from the calculated results.%利用有效液滴模型计算了超铅区结团放射半衰期.在计算Gamow势垒穿透因子时采用了碎块体积不守恒以及有效惯性系数因子,并用有效的核半径常数公式代替原来的经验公式.理论计算得到的结团放射半衰期和实验值符合得很好,其半衰期对数值的均方差只有0.895.理论结果表明,有效液滴模型能充分反映N =126和Z =82的壳效应,并且在奇数结团25Ne,29Mg中出现了明显的奇偶质量摆动现象.另外,理论计算得到的结团半衰期基本符合盖革-努塔尔定律,并基于理论结果得到了一些关于盖革-努塔尔定律的有意义的结论.
Introduction to Astronomy with Radioactivity
Diehl, Roland
2010-01-01
In the late nineteenth century, Antoine Henri Becquerel discovered radioactivity and thus the physics of weak interactions, well before atomic and quantum physics was known. The different types of radioactive decay, alpha, beta, and gamma decay, all are different types of interactions causing the same, spontaneous, and time-independent decay of an unstable nucleus into another and more stable nucleus. Nuclear reactions in cosmic sites re-arrange the basic constituents of atomic nuclei (neutrons and protons) among the different configurations which are allowed by Nature, thus producing radioactive isotopes as a by-product. Throughout cosmic history, such reactions occur in different sites, and lead to rearrangements of the relative abundances of cosmic nuclei, a process called cosmic chemical evolution, which can be studied through the observations of radioactivity. The special role of radioactivity in such studies is contributed by the intrinsic decay of such material after it has been produced in cosmic site...
Recent results on reactions with radioactive beams at RIBRAS (Radioactive Ion Beams in Brazil)
Lépine-Szily, A.; Lichtenthäler, R.; Guimarães, V.; Arazi, A.; Barioni, A.; Benjamim, E. A.; de Faria, P. N.; Descouvemont, P.; Gasques, L. R.; E; Leistenschneider; Mendes, D. R., Jr.; Morais, M. C.; Morcelle, V.; Moro, A. M.; Pampa Condori, R.; Pires, K. C. C.; Rodriguez-Gallardo, M.; Scarduelli, V.; Shorto, J. M. B.; Zamora, J. C.
2015-04-01
We present a quick description of RIBRAS (Radioactive Ion beams in Brazil), which is a superconducting double solenoid system, installed at the Pelletron Laboratory of the University of São Paulo and extends the capabilities of the original Pelletron Tandem Accelerator of 8MV terminal voltage (8UD) by producing secondary beams of unstable nuclei. The experimental program of the RIBRAS covers the study of elastic and inelastic scattering with the objective to study the interaction potential and the reaction mechanisms between weakly bound (RIB) and halo (6He and 8B) projectiles on light, medium and heavy mass targets. With highly purified beams, the study of resonant elastic scattering and resonant transfer reactions, using inverse kinematics and thick targets, have also been included in our recent experimental program.
The structure of proton rich nuclei in nuclear astrophysics
International Nuclear Information System (INIS)
The properties of exotic proton rich nuclei are of great importance for nuclear astrophysics models. In the present work, we show how to address many nuclear structure properties of these nuclei at the extremes of stability, from the analysis of proton radioactivity
A study of strange-, charmed, and beauty nuclei
International Nuclear Information System (INIS)
An analyses is made of the bound states of nuclei in the strange-, charm-, and beauty sector using a spin-dependent Gaussian two-body interaction in the microscopic formalism. Coulomb corrections are also included for the charmed nuclei. Our simple model is in reasonable agreement with other existing theoretical and experimental results and it predicts many new bound states. (author). 21 refs, 2 figs, 10 tabs
Exotic modes of excitation in atomic nuclei far from stability
Paar, N.; Vretenar, D.; Khan, E.; Colo, G.
2007-01-01
We review recent studies of the evolution of collective excitations in atomic nuclei far from the valley of $\\beta$-stability. Collective degrees of freedom govern essential aspects of nuclear structure, and for several decades the study of collective modes such as rotations and vibrations has played a vital role in our understanding of complex properties of nuclei. The multipole response of unstable nuclei and the possible occurrence of new exotic modes of excitation in weakly-bound nuclear ...
Production of light nuclei in the thermal and coalescence models
Mrowczynski, Stanislaw
2016-01-01
The thermal model properly describes the yield of light nuclei in relativistic heavy-ion collisions even so the loosely bound sizable nuclei cannot exist in the dense and hot hadron gas. Within the coalescence model, light nuclei are formed at the latest stage of nuclear collisions due to final state interactions. After discussing the models, we derive simple analytic formulas showing that the thermal and coalescence model predictions are quantitatively close to each other.
Belyaev, Vladimir; Golosov, Valentin; Shamshurina, Evgeniya; Ivanov, Maxim; Ivanova, Nadezhda; Bezukhov, Dmitry; Onda, Yuichi; Wakiyama, Yoshifumi; Evrard, Olivier
2015-04-01
Detailed investigations of the post-fallout fate of radionuclide contamination represent an important task in terms of environmental quality assessment. In addition, particle-bound radionuclides such as the most widespread anthropogenic isotope caesium-137 can be used as tracers for quantitative assessment of different sediment redistribution processes. In landscapes of humid plains with agriculture-dominated land use the post-fallout redistribution of caesium-137 is primarily associated with fluvial activity of various scales in cascade systems starting from soil erosion on cultivated hillslopes through gully and small dry valley network into different order perennial streams and rivers. Our investigations in the so-called Plavsk hotspot (area of very high Chernobyl caesium-137 contamination within the Plava River basin, Tula Region, Central European Russia) has been continuing for more than 15 years by now, while the time passed since the Chernobyl disaster and associated radioactive fallout (1986) is almost 29 years. Detailed information on the fluvial sediment and associated caesium-137 redistribution has been obtained for case study sites of different size from individual cultivated slopes and small catchments of different size (2-180 km2) to the entire Plava River basin scale (1856 km2). It has been shown that most of the contaminated sediment over the time passed since the fallout has remained stored within the small dry valleys of the 1-4 Hortonian order and local reservoirs (>70%), while only about 5% reached the 5-6 order valleys (main tributaries of the Plava River) and storage of the Plava floodplain itself represents as low as 0.3% of the basin-scale total sediment production from eroded cultivated hillslopes. Nevertheless, it has been shown that contaminated sediment yield from the Plava River basin exerts significant influence on less polluted downstream-linked river system. Recent progress of the investigations involved sampling of 7 detailed depth
From Nucleons To Nuclei To Fusion Reactions
Energy Technology Data Exchange (ETDEWEB)
Quaglioni, S; Navratil, P; Roth, R; Horiuchi, W
2012-02-15
Nuclei are prototypes of many-body open quantum systems. Complex aggregates of protons and neutrons that interact through forces arising from quantum chromo-dynamics, nuclei exhibit both bound and unbound states, which can be strongly coupled. In this respect, one of the major challenges for computational nuclear physics, is to provide a unified description of structural and reaction properties of nuclei that is based on the fundamental underlying physics: the constituent nucleons and the realistic interactions among them. This requires a combination of innovative theoretical approaches and high-performance computing. In this contribution, we present one of such promising techniques, the ab initio no-core shell model/resonating-group method, and discuss applications to light nuclei scattering and fusion reactions that power stars and Earth-base fusion facilities.
Relativistic symmetry breaking in light kaonic nuclei
Yang, Rong-Yao; Xiang, Qian-Fei; Zhang, Dong-Rui; Wei, Si-Na
2014-01-01
As the experimental data from kaonic atoms and $K^{-}N$ scatterings imply that the $K^{-}$-nucleon interaction is strongly attractive at saturation density, there is a possibility to form $K^{-}$-nuclear bound states or kaonic nuclei. In this work, we investigate the ground-state properties of the light kaonic nuclei with the relativistic mean field theory. It is found that the strong attraction between $K^{-}$ and nucleons reshapes the scalar and vector meson fields, leading to the remarkable enhancement of the nuclear density in the interior of light kaonic nuclei and the manifest shift of the single-nucleon energy spectra and magic numbers therein. As a consequence, the pseudospin symmetry is shown to be violated together with enlarged spin-orbit splittings in these kaonic nuclei.
Directory of Open Access Journals (Sweden)
Ballester Pla, Coralio
2012-03-01
Full Text Available The observation of the actual behavior by economic decision makers in the lab and in the field justifies that bounded rationality has been a generally accepted assumption in many socio-economic models. The goal of this paper is to illustrate the difficulties involved in providing a correct definition of what a rational (or irrational agent is. In this paper we describe two frameworks that employ different approaches for analyzing bounded rationality. The first is a spatial segregation set-up that encompasses two optimization methodologies: backward induction and forward induction. The main result is that, even under the same state of knowledge, rational and non-rational agents may match their actions. The second framework elaborates on the relationship between irrationality and informational restrictions. We use the beauty contest (Nagel, 1995 as a device to explain this relationship.
La observación del comportamiento de los agentes económicos tanto en el laboratorio como en la vida real justifica que la racionalidad acotada sea un supuesto aceptado en numerosos modelos socio-económicos. El objetivo de este artículo es ilustrar las dificultades que conlleva una correcta definición de qué es un agente racional (irracional. En este artículo se describen dos marcos que emplean diferentes metodologías para analizar la racionalidad acotada. El primero es un modelo de segregación espacial donde se contrastan dos metodologías de optimización: inducción hacia atrás y hacia adelante. El resultado principal es que, incluso con el mismo nivel de conocimiento, tanto agentes racionales como irracionales podrían coincidir en sus acciones. El segundo marco trabaja sobre la relación entre irracionalidad y restricción de información. Se utiliza el juego llamado “beauty contest” (Nagel 1995 como mecanismo para explicar dicha relación.
Effect of a neutron skin on collective dipoles modes in nuclei
International Nuclear Information System (INIS)
One of the principal motivations for accelerated radioactive beams is to probe nuclear structure at the limits of nuclear stability. For neutron-rich nuclei, an indication of the new phenomena which may occur has already appeared, in the guise of the neutron halo discovered in very light nuclei. More generally, a steadily increasing neutron skin thickness is expected as the neutron excess increases. The presence of such a mantle of dominantly neutron matter will then particularly affect the properties of collective modes involving the out-of-phase motion of neutrons and protons. This paper explores the effect of the neutron skin thickness on the isovector M1 and E1 modes in medium and heavy mass nuclei. A simple model is used, couched in terms of classical oscillations of neutron and proton densities. The treatment includes the open-quotes pygmyclose quotes E1 mode, which corresponds to motion of the core against the loosely-bound neutrons in the mantle and predicts a significant lowering of this mode, even at relatively modest values of the skin thickness
International Nuclear Information System (INIS)
This paper covers the following aspects of isobar excitations in nuclei: Nuclear spin response; Electromagnetic probes; Pion-nuclear reactions; Baryon charge exchange reactions; Charge exchange reactions on nuclei; and Exclusive spectra
Synthesis of transactinide nuclei in cold fusion reactions using radioative beams
Smolanczuk, Robert
2009-01-01
Chances of synthesis of transactinide nuclei in cold fusion reactions (one-neutron-out) reactions using radioactive beams are evaluated. Because intensities of radioactive beams are in most of the cases significantly lower than the ones of the stable beams, reactions with the highest radioactive beam intensities for the particular elements are considered. The results are compared with the recent ones obtained by Loveland who investigated the same nuclei.
PREFACE: Correlation Dynamics in Nuclei
Suzuki, Toshio; Otsuka, Takaharu; Ichimura, Munetake
2005-01-01
The International Symposium on `Correlation Dynamics in Nuclei' was held at the Sanjo Kaikan, the University of Tokyo, from the 31 January to 4 February 2005. This symposium was organized on the occasion of the 50th anniversary of the Configuration Mixing theory of Arima and Horie. The symposium was hosted by the University of Tokyo, and supported by the Inoue Foundation for Science, the Japan Atomic Energy Research Institute and the Ministry of Education, Culture, Sports, Science and Technology. The purpose of the symposium was to discuss theoretical and experimental developments and future prospects in physics of correlation dynamics in nuclei, including topics such as effective interactions, shell model studies of configuration mixing and spin-isospin modes in nuclei. It was shown in many ways and angles that the Arima-Horie theory has been a starting point of a variety of developments of the studies in these fields over many decades. The developments have been enhanced by the expansion of computational capabilities and the progress in accelerators, detectors and radioactive beam facilities. We enjoyed 28 excellent and lively invited talks and 30 oral presentations in the symposium with about 90 participants. A special session was dedicated to celebrate the 80th birthday of Professor Igal Talmi, who made invaluable and pioneering works in the shell model theory. Finally, we would like to thank all the speakers and the participants as well as the other organizers for their contributions which made the symposium very successful.
Study of proton radioactivities
Energy Technology Data Exchange (ETDEWEB)
Davids, C.N.; Back, B.B.; Henderson, D.J. [and others
1995-08-01
About a dozen nuclei are currently known to accomplish their radioactive decay by emitting a proton. These nuclei are situated far from the valley of stability, and mark the very limits of existence for proton-rich nuclei: the proton drip line. A new 39-ms proton radioactivity was observed following the bombardment of a {sup 96}Ru target by a beam of 420-MeV {sup 78}Kr. Using the double-sided Si strip detector implantation system at the FMA, a proton group having an energy of 1.05 MeV was observed, correlated with the implantation of ions having mass 167. The subsequent daughter decay was identified as {sup 166}Os by its characteristic alpha decay, and therefore the proton emitter is assigned to the {sup 167}Ir nucleus. Further analysis showed that a second weak proton group from the same nucleus is present, indicating an isomeric state. Two other proton emitters were discovered recently at the FMA: {sup 171}Au and {sup 185}Bi, which is the heaviest known proton radioactivity. The measured decay energies and half-lives will enable the angular momentum of the emitted protons to be determined, thus providing spectroscopic information on nuclei that are beyond the proton drip line. In addition, the decay energy yields the mass of the nucleus, providing a sensitive test of mass models in this extremely proton-rich region of the chart of the nuclides. Additional searches for proton emitters will be conducted in the future, in order to extend our knowledge of the location of the proton drip line.
Reflections on cavitation nuclei in water
DEFF Research Database (Denmark)
Mørch, Knud Aage
2007-01-01
The origin of cavitation bubbles, cavitation nuclei, has been a subject of debate since the early years of cavitation research. This paper presents an analysis of a representative selection of experimental investigations of cavitation inception and the tensile strength of water. At atmospheric...... on the surface of particles and bounding walls. Such nuclei can be related to the full range of tensile strengths measured, when differences of experimental conditions are taken into consideration. The absence or presence of contamination on surfaces, as well as the structure of the surfaces, are...
Radioactive Beams and Exploding Stars at ORNL
International Nuclear Information System (INIS)
Beams of radioactive nuclei from the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory (ORNL) are being used to make direct and indirect measurements of reactions important in novae, X-ray bursts, supernovae, and our Sun. Experimental results are used in nuclear data evaluations and element synthesis calculations to determine their astrophysical impact. Recent accomplishments include: the first neutron transfer reaction [(d, p)] measurements on nuclei in the r-process path in supernovae; precision measurements with radioactive 18F beams for novae; and a direct 7Be(p,γ)8B measurement relevant for the solar neutrino flux determination
Superheavy nuclei – cold synthesis and structure
Indian Academy of Sciences (India)
Raj K Gupta
2001-08-01
The quantum mechanical fragmentation theory (QMFT), given for the cold synthesis of new and superheavy elements, is reviewed and the use of radioactive nuclear beams (RNB) and targets (RNT) is discussed. The QMFT is a complete theory of cold nuclear phenomena, namely, the cold ﬁssion, cold fusion and cluster radioactivity. Also, the structure calculations based on the axially deformed relativistic mean ﬁeld (DRMF) approach are presented which predict new regions of spherical magicity, namely = 120 and = 172 or 184, for superheavy nuclei. This result is discussed in the light of recent experiments reporting the cold synthesis of = 118 element.
Complex bounds for multimodal maps: bounded combinatorics
Smania, Daniel
2000-01-01
We proved the so called complex bounds for multimodal, infinitely renormalizable analytic maps with bounded combinatorics: deep renormalizations have polynomial-like extensions with definite modulus. The complex bounds is the first step to extend the renormalization theory of unimodal maps to multimodal maps.
International Nuclear Information System (INIS)
The leaflet discusses the following: radioactivity; radioisotopes; uses of ionising radiations; radioactivity from (a) naturally occurring radioactive elements, and (b) artificially produced radioisotopes; uses of radioactivity in medicine, (a) clinical diagnostic, (b) therapeutic (c) sterilization of medical equipment and materials; environmental uses as tracers; industrial applications, e.g. tracers and radiography; ensuring safety. (U.K.)
Separation and spectroscopic study of exotic nuclei at GANIL
International Nuclear Information System (INIS)
A new isotopic separation method is presented. It allows the studies of radioactive atomic nuclei produced in high energy heavy ions collisions. Two experiments were performed at the GANIL facilities (Grand Accelerateur National d'Ions Lourds, Caen). They are analysed on the fields of the experimental resolution and of the spectroscopic results. Measurements of beta decay half lives and gamma spectra are brought for sixteen neutron rich nuclei at the frontier of the experimental knowledge
Structure and reactions of light neutron rich nuclei
International Nuclear Information System (INIS)
Radioactive beam experiments have made it possible to study the structure of nuclei at the neutron drip line. Pair correlations play a crucial role in such nuclei and characteristic features include an extended neutron halo density and a large dipole strength near threshold. The most detailed studies have been performed for 11Li. I will present a 3-body model that explains the main features of the data obtained for this nucleus
International Nuclear Information System (INIS)
This document gathers the slides and their commentaries that have been presented at the conference 'physics and fundamental questions' by P. Chomaz. The author reviews the different quantum aspects of nuclei: tunnel effect, symmetries, magic numbers, wave functions, size, shapes and deformations. The author shows that nuclei are quantum objects of great complexity, their structures are not yet well understood and the study of exotic nuclei will continue bringing valuable information
International Nuclear Information System (INIS)
The author describes the historical development of the physics of atoms and nuclei. After a consideration of the ancient Greek philosophy concerning atoms the behaviour of gases is discussed with regards to statistical mechanics. Then the developement of chemistry from alchemy is described. Thereafter the early studies of gas discharges are described with regards to the electronic structure of atoms. In this connection the periodic system of elements is considered. Then the detection of the α-radiation of Uranium by Becquerel and the detections of M. and P. Curie are described. Thereafter the radiactive decay of nuclei is discussed. Then a popular introduction into nuclear structure is given with special regards to artificial radioactivity and nuclear fission. Finally nuclear reactors, the atomic bombs, applications of radionuclides, and problems of radiation protection are described. (HSI)
Weakly bound systems, continuum effects, and reactions
Jaganathen, Y; Ploszajczak, M
2012-01-01
Structure of weakly bound/unbound nuclei close to particle drip lines is different from that around the valley of beta stability. A comprehensive description of these systems goes beyond standard Shell Model and demands an open quantum system description of the nuclear many-body system. We approach this problem using the Gamow Shell Model which provides a fully microscopic description of bound and unbound nuclear states, nuclear decays, and reactions. We present in this paper the first application of the GSM for a description of the elastic and inelastic scattering of protons on 6He.
Few-Body Models of Light Nuclei
Ershov, S. N.; Vaagen, J. S.; Zhukov, M. V.
2015-06-01
Experiments confirm a variety of cluster structures in many light nuclei. The observation of nuclear halos at drip-lines has accentuated the question of the degrees of freedom for bound and low-lying continuum states. In these cases the many-body dynamics of nuclear structure may be well approximated by few-body cluster models that often suggest conceptually simple approaches explaining successfully many features of light nuclei. Thus few-body cluster models have been successfully used for description of the nuclear structure of weakly bound halo nuclei and their emergent cluster degrees of freedom. They have attractive features supplying in a most transparent way the asymptotic behavior and continuum properties of weakly bound systems. Such models assume a separation in internal cluster (core) degrees of freedom and the relative motion of few-body constituents. Such separation is only an approximation, and low-lying states appear where the core cannot be considered as inert system and additional degrees of freedom connected to excited core states have to be taken into account. For fixed total angular momentum a coupling to excited core states having different spins involves additional partial waves into the consideration. This allows to account for some emergent (collective) core degrees of freedom and gives a more realistic description of nuclear properties. It is an analogue to increasing the number of shells within the framework of shell-model approaches. Some examples from recent nuclear structure exploration within few-body halo cluster models are presented.
Microscopic and self-consistent description for neutron halo in deformed nuclei
Li, Lulu; Ring, P; Zhao, En-Guang; Zhou, Shan-Gui
2013-01-01
A deformed relativistic Hartree-Bogoliubov theory in continuum has been developed for the study of neutron halos in deformed nuclei and the halo phenomenon in deformed weakly bound nuclei is investigated. Magnesium and neon isotopes are studied and some results are presented for the deformed neutron-rich and weakly bound nuclei 44Mg and 36Ne. The core of the former nucleus is prolate, but the halo has a slightly oblate shape. This indicates a decoupling of the halo orbitals from the deformation of the core. The generic conditions for the existence of halos in deformed nuclei and for the occurrence of this decoupling effect are discussed.
Superdeformation in Z = 120 superheavy nuclei
International Nuclear Information System (INIS)
Significant progress has been made in the discovery of new superheavy nuclei in the last decade. Superheavy nuclei at the extreme end of the periodic table have been synthesized in the laboratory. The stability of nuclei in superheavy mass region came into existence when the extensive shell correction calculations were added to the liquid drop binding energy. As it well known there was no existence of stable nuclides for Z ≥100 by the liquid drop model because of large coulomb repulsion. Various mocroscopic approaches such as non-relativistic density-dependent Skyrme Hartree-Fock (SHF) theory and that of MM type are used extensively to investigate the properties and structure of superheavy nuclei. In spite of impressive agreement with experimental data for the heaviest elements the theoretical uncertainties are large when extrapolating to unknown regions of the nuclear chart. Since in these nuclei the single-particle level density is relatively large, small shifting of single-particle levels can be crucial for determining the shell stability of a nucleus. So there is a need to design the new experiments with exotic radioactive beams to solve the problem of locating the precise island of stability
The Photoresponse of Atomic Nuclei: Collective Excitations and Photodissociation
Zilges, A.; Babilon, M.; van den Berg, A. M.; Galaviz, D.; Hasper, J.; Harakeh, M. N.; Lindenberg, K.; Müller, S.; Ramspeck, K.; Savran, D.; Sonnabend, K.; Volz, S.; Wörtche, H. J.; Zarza, M.
2006-04-01
The dipole strength distribution of atomic nuclei below the particle threshold has been investigated systematically in photon scattering experiments. A concentration of electric dipole strength around 7 MeV exhausting up to 1% of the Energy Weighted Sum Rule has been observed in all nuclei studied so far. The detailed structure of these excitations and the connection to a resonance-like concentration of E1 strength above the threshold found in neutron-rich radioactive nuclei is still not understood. The latest strength measurements and new experiments with hadrons to study the isospin character of the excitations are discussed.
Single particle versus collectivity, shapes of exotic nuclei
Jungclaus, Andrea
2016-03-01
In this article some selected topics of nuclear structure research will be discussed as illustration of the progress reached in this field during the last thirty years. These examples evidence the improvement of our understanding of the atomic nucleus reached on the basis of countless experiments, performed to study both exotic nuclei (nuclei far-off the valley of stability) as well as nuclei under exotic conditions (high excitation energy/temperature or large angular momentum/rotational frequency), using stable and radioactive ion beams. The experimental progress, in parallel to the advancement of modern theoretical descriptions, led us to a much richer view of this fundamental many-body system.
A new spin-oriented nuclei facility: POLAREX
Directory of Open Access Journals (Sweden)
Etilé A.
2014-03-01
Full Text Available Using the On-Line Nuclear Orientation method, POLAREX (POLARization of EXotic nuclei is a new facility allowing to study the anisotropic decay of spin-oriented nuclei. Based on the combination of on-line implantation of radioactive nuclei with Low Temperature Nuclear Orientation technique and Nuclear Magnetic Resonance, POLAREX allows to measure nuclear electromagnetic moments and ground-state spins, in the aim to get information about the wave function composition of the nuclear state. Polarized nuclei can also be used to study fundamental interactions involving nuclear β-decay asymmetries. The POLAREX infrastructure will be installed at Accélérateur Linéaire auprés du Tandem d’Orsay in order to study neutron-rich nuclei, some of which have not been studied yet. Will be presented here, all the possibilities of this new facility and a non exhaustive scientific program.
A new spin-oriented nuclei facility: POLAREX
International Nuclear Information System (INIS)
Using the On-Line Nuclear Orientation method, POLAREX (Polarization of Exotic nuclei) is a new facility allowing to study the anisotropic decay of spin-oriented nuclei. Based on the combination of on-line implantation of radioactive nuclei with Low Temperature Nuclear Orientation technique and Nuclear Magnetic Resonance, POLAREX allows the measurement of nuclear electromagnetic moments and ground-state spins, in the aim to get information about the wave function composition of the nuclear state. Polarized nuclei can also be used to study fundamental interactions involving nuclear β-decay asymmetries. The POLAREX infrastructure will be installed at the linear accelerator in Orsay in order to study neutron-rich nuclei, some of which have not been studied yet. Will be presented here, all the possibilities of this new facility and a non exhaustive scientific program. The first experiment will be the nuclear magnetic moment measurement of 125Sb as final commissioning
Photoproduction of Mesons off Light Nuclei - The Search for η-Mesic Nuclei
International Nuclear Information System (INIS)
Photoproduction of η mesons off light nuclei (d, 3He, 7Li) has been measured at the tagged photon beam of the Mainz MAMI accelerator with the combined Crystal Ball/TAPS detection system. Special attention was given to the threshold behavior of the reactions in view of possible indications for the formation of (quasi-) bound η-nucleus states, so-called η-mesic nuclei. A very strong threshold enhancement of coherent η photoproduction off 3He was found and coherent η photoproduction off 7Li was observed for the first time. Preliminary results will be discussed. (authors)
International Nuclear Information System (INIS)
If some β- emitters are particularly interesting to study in light, medium, and heavy nuclei, another (and also) difficult problem is to know systematically the properties of these neutron rich nuclei far from the stability line. A review of some of their characteristics is presented. How far is it possible to be objective in the interpretation of data is questioned and implications are discussed
International Nuclear Information System (INIS)
The purpose of 1991 Joliot-Curie Summer School is to review the most advances in the understanding of the nuclei physics after the considerable progress in gamma spectroscopy. It covers the following topics: Highly and super-deformed nuclei, nuclear structures, mean-field approach and beyond, fission isomers, nuclear excitations with long lifetime and metal clusters
Pairing correlations in exotic nuclei
Sagawa, H
2012-01-01
The BCS and HFB theories which can accommodate the pairing correlations in the ground states of atomic nuclei are presented. As an application of the pairing theories, we investigate the spatial extension of weakly bound Ne and C isotopes by taking into account the pairing correlation with the Hartree-Fock-Bogoliubov (HFB) method and a 3-body model, respectively. We show that the odd-even staggering in the reaction cross sections of $^{30,31,32}$Ne and $^{14,15,16}$C are successfully reproduced, and thus the staggering can be attributed to the unique role of pairing correlations in nuclei far from the stability line. A correlation between a one-neutron separation energy and the anti-halo effect is demonstrated for $s$- and p-waves using the HFB wave functions. We also propose effective density-dependent pairing interactions which reproduce both the neutron-neutron ($nn$) scattering length at zero density and the neutron pairing gap in uniform matter. Then, we apply these interactions to study pairing gaps in ...
Circuit lower bounds in bounded arithmetics
Czech Academy of Sciences Publication Activity Database
Pich, Ján
2015-01-01
Roč. 166, č. 1 (2015), s. 29-45. ISSN 0168-0072 R&D Projects: GA AV ČR IAA100190902 Keywords : bounded arithmetic * circuit lower bounds Subject RIV: BA - General Mathematics Impact factor: 0.548, year: 2014 http://www.sciencedirect.com/science/article/pii/S0168007214000888
Sturmian method for light exotic nuclei
International Nuclear Information System (INIS)
This research concentrates on halo like systems: Abnormally large light nuclei at the neutron dripline which exhibit a clear separation between a ''normal'' core nucleus and a loosely bound low-density veil of neutrons. This phenomenon offers very interesting possibilities for studies of neutron matter under extreme conditions in a low-density background. This work is focused on few-body theory for light halo-like nuclei: Borromean systems, i.e. while the three-body-like system is bound (but very loosely) none of the binary subsystems are bound. Three representatives were closely investigated: 6He. 11Li and 14Be. The aim of this work was to gain an insight how important are for light exotic nuclei different aspects of three-body description. The investigation was performed by applying for light halo systems a few-body model originally developed for ordinary heavy well-bound nuclei. Special features of the Borromean systems, most important of which are enormous size and weak binding, suggested the need for modifications of the method to allow more subtle treatment. Theoretical considerations and numerical tests provided evidences for importance to accurately include certain effects into the description scheme. Our calculations are based on Bisturmian three-body method. The two-particle (three body) bound state is expanded on a set of Sturm-Liouville basis functions. These basis functions are derived from a well-depth-prescription method where single-particle wave functions are used which are eigenstates in a Saxon-Woods potential with one-nucleon separation energy ε each. The basis set is in principle infinite, but discrete, and corresponds to the intuitive picture of increasingly deeper wells, all able to support bound motion with energy ε. The three-body bound state is found by diagonalising with the neutron-core and neutron-neutron potentials simultaneously. Pauli blocking is taken into account by projecting out those basis states coinciding with occupied
Self-consistent description of deformed nuclei at the proton drip line
Directory of Open Access Journals (Sweden)
Ferreira Lidia S.
2016-01-01
Full Text Available Proton radioactivity from deformed nuclei is described for the first time by a fully self–consistent calculation based on covariant relativistic density functionals derived from meson exchange and point coupling models.
Accreting Neutron Stars and Radioactive Beam Experiments
International Nuclear Information System (INIS)
The nuclear processes on accreting neutron stars in X-ray binaries are related to a number of open astrophysical questions. I review these open questions, their relation to the α p, rp and crust processes, and the nuclear data needed to solve the problems. Data on very unstable proton and neutron rich nuclei are most critical, and therefore radioactive beam experiments together with progress in the theoretical understanding of nuclei far from stability are needed. (author)
Pions in nuclei, from virtual-pion exchange to real-pion transfer
International Nuclear Information System (INIS)
Tracing the work of Miyazawa on nuclear magnetic moments, we discuss possible experimental ways to see whether a real pion exists in nuclei or not. While virtual pions are known to play an important role in nuclei, as clarified experimentally from anomalous orbital g factors of nucleons in nuclei, nearly nothing is known for the behavior of real pions in nuclei. We have shown that deeply bound hybrid states of π- are expected to exist in heavy nuclei, which can be populated by ''pion transfer'' reactions. (author)
Antibaryon-nucleus bound states
Hrtánková, J
2014-01-01
We calculated antibaryon ($\\bar{B}$ = $\\bar{p}$, $\\bar{\\Lambda}$, $\\bar{\\Sigma}$, $\\bar{\\Xi}$) bound states in selected nuclei within the relativistic mean-field (RMF) model. The G-parity motivated $\\bar{B}$-meson coupling constants were scaled to yield corresponding potentials consistent with available experimental data. Large polarization of the nuclear core caused by $\\bar{B}$ was confirmed. The $\\bar{p}$ annihilation in the nuclear medium was incorporated by including a phenomenological imaginary part of the optical potential. The calculations using a complex $\\bar{p}$-nucleus potential were performed fully self-consistently. The $\\bar{p}$ widths significantly decrease when the phase space reduction is considered for $\\bar{p}$ annihilation products, but they still remain sizeable for potentials consistent with $\\bar{p}$-atom data.
Brustein, Ram
2000-01-01
The identification of a causal-connection scale motivates us to propose a new covariant bound on entropy within a generic space-like region. This "causal entropy bound", scaling as the square root of EV, and thus lying around the geometric mean of Bekenstein's S/ER and holographic S/A bounds, is checked in various "critical" situations. In the case of limited gravity, Bekenstein's bound is the strongest while naive holography is the weakest. In the case of strong gravity, our bound and Bousso's holographic bound are stronger than Bekenstein's, while naive holography is too tight, and hence typically wrong.
International Nuclear Information System (INIS)
The topics presented at the 1989 Joliot-Curie Lectures are reported. Two main subjects were retained: a simplified description of the N-body motion of particles in the quasi-particle configuration; study of the dynamics of nuclear components which are not described by nucleons in their ground state. The following themes were presented: quasiparticles and the Green functions, relativistic aspects of the quasiparticle concept, the dimensions of nucleons in the nuclei and the EMC effect, quarks and gluons in the nuclei, the delta in the nuclei, the strangeness, quasiparticles far from the Fermi sea, diffusion of electrons, stellar evolution and nucleosynthesis
International Nuclear Information System (INIS)
Scattering of a particle by bound nucleons is discussed. Effects of nucleons that are bound in a nucleus are taken as a structure function. The way how to calculate the structure function is given. (author)
Variance bounding Markov chains
Roberts, Gareth O.; Jeffrey S. Rosenthal
2008-01-01
We introduce a new property of Markov chains, called variance bounding. We prove that, for reversible chains at least, variance bounding is weaker than, but closely related to, geometric ergodicity. Furthermore, variance bounding is equivalent to the existence of usual central limit theorems for all L2 functionals. Also, variance bounding (unlike geometric ergodicity) is preserved under the Peskun order. We close with some applications to Metropolis–Hastings algorithms.
Bound states and the Bekenstein bound
Bousso, R
2004-01-01
We explore the validity of the generalized Bekenstein bound, S <= pi M a. We define the entropy S as the logarithm of the number of states which have energy eigenvalue below M and are localized to a flat space region of width a. If boundary conditions that localize field modes are imposed by fiat, then the bound encounters well-known difficulties with negative Casimir energy and large species number, as well as novel problems arising only in the generalized form. In realistic systems, however, finite-size effects contribute additional energy. We study two different models for estimating such contributions. Our analysis suggests that the bound is both valid and nontrivial if interactions are properly included, so that the entropy S counts the bound states of interacting fields.
International Nuclear Information System (INIS)
The density functional determining the Coulomb energy of nuclei is calculated to the first order in e2. It is shown that the Coulomb energy includes three terms: the Hartree energy; the Fock energy; and the correlation Coulomb energy (CCE), which contributes considerably to the surface energy, the mass difference between mirror nuclei, and the single-particle spectrum. A CCE-based mechanism of a systematic shift of the single-particle spectrum is proposed. A dominant contribution to the CCE is shown to come from the surface region of nuclei. The CCE effect on the calculated proton drip line is examined, and the maximum charge Z of nuclei near this line is found to decrease by 2 or 3 units. The effect of Coulomb interaction on the effective proton mass is analyzed
Shaginyan, V R
2001-01-01
The density functional determining the Coulomb energy of nuclei is calculated to the first order in $e^2$. It is shown that the Coulomb energy includes three terms: the Hartree energy; the Fock energy; and the correlation Coulomb energy (CCE), which contributes considerably to the surface energy, the mass difference between mirror nuclei, and the single-particle spectrum. A CCE-based mechanism of a systematic shift of the single-particle spectrum is proposed. A dominant contribution to the CCE is shown to come from the surface region of nuclei. The CCE effect on the calculated proton drip line is examined, and the maximum charge $Z$ of nuclei near this line is found to decrease by 2 or 3 units. The effect of Coulomb interaction on the effective proton mass is analyzed.
Radioactive determination of serum thyroxine. [/sup 125/I tracer technique
Energy Technology Data Exchange (ETDEWEB)
Shannon, C.F.; Dahlstrom, R.V.
1976-03-30
A method for determining serum thyroxine (T-4) in which the T-4 is first separated from the serum by adsorption onto a montmorillonite clay and then competitively bound by exogenous thyroxine binding globulin in the presence of a known amount of radioactive T-4. The competitively bound serum T-4 and radioactive T-4 is separated from the unbound serum T-4 and radioactive T-4 by passage through an ion exchange resin column. The serum T-4 concentration is determined by measuring the amount of bound radioactive T-4 and referring to a standard curve.
Investigation of exotic nuclei with absolute transition probabilities
International Nuclear Information System (INIS)
Transition probabilities are crucial for the understanding of nuclear structure. Deep inelastic reactions, knockout reactions and projectile Coulomb excitation with fast radioactive beams are suited to populate excited states in exotic nuclei. Examples are presented which demonstrate that recoil Doppler shift lifetime measurements can be applied successfully in combination with such reactions to measure level lifetimes.
Shaginyan, V. R.
2002-01-01
The density functional determining the Coulomb energy of nuclei is calculated to the first order in $e^2$. It is shown that the Coulomb energy includes three terms: the Hartree energy; the Fock energy; and the correlation Coulomb energy (CCE), which contributes considerably to the surface energy, the mass difference between mirror nuclei, and the single-particle spectrum. A CCE-based mechanism of a systematic shift of the single-particle spectrum is proposed. A dominant contribution to the CC...
International Nuclear Information System (INIS)
A review is made of the present status concerning the production of nuclei above 5 MeV temperature. Considerable progress has been made recently on the understanding of the formation and the fate of such hot nuclei. It appears that the nucleus seems more stable against temperature than predicted by static calculations. However, the occurrence of multifragment production at high excitation energies is now well established. The various experimental features of the fragmentation process are discussed. (author) 59 refs., 12 figs
Electroweak interactions in nuclei
Henley, E. M.
1984-06-01
Nuclear and subnuclear degrees of freedom and lepton nucleus scattering were discussed. Electroweak interactions in nuclei were examined. Topics discussed include: introduction to electroweak theory; the Weinberg-Salam theory for leptons; the Weinberg-Salam theory for hadrons-the GIM mechanism; electron scattering as a probe of the electroweak interaction (observation of PV, the weak interaction for nucleons, and parity violation in atoms); and time reversed invariance and electric dipole moments of nucleons, nuclei, and atoms.
Precision spectroscopy of exotic atoms as a tool to test chiral dynamics in nuclei
International Nuclear Information System (INIS)
Exotic atoms, or meson-nucleus bound states in more general, are excellent tools for studying chiral dynamics in nuclei, since both the nuclear density and the meson wavefunction are precisely known in these systems. We here discuss pionic hydrogen, deeply-bound pionic atoms, kaonic hydrogen and kaonic helium atoms, with emphasis on experimental details which affect the accuracy of quantitative determination of chiral dynamics in nuclei. (author)
Status and Perspectives of the Search for Eta-Mesic Nuclei
Moskal, Pawel; Krzemien, Wojciech
2016-01-01
In this report the search for eta-mesic nuclei is reviewed. The brief description of the experimental studies is presented with a focus on the possible production of the eta-nucleus bound states for light nuclei like 4He and 3He.
Brustein, R; Veneziano, G
1999-01-01
The identification of a causal-connection scale motivates us to propose a new covariant bound on entropy within a generic space-like region. This "causal entropy bound", scaling as the square root of EV, and thus lying around the geometric mean of Bekenstein's S/ER and holographic S/A bounds, is checked in various "critical" situations. In the case of limited gravity, Bekenstein's bound is the strongest while naive holography is the weakest. In the case of strong gravity, our bound and Bousso...
Low-energy nuclear reactions with double-solenoid- based radioactive nuclear beam
Indian Academy of Sciences (India)
Valdir Guimarães
2010-07-01
The University of Notre Dame, USA (Becchetti et al, Nucl. Instrum. Methods Res. A505, 377 (2003)) and later the University of São Paulo, Brazil (Lichtenthaler et al, Eur. Phys. J. A25, S-01, 733 (2005)) adopted a system based on superconducting solenoids to produce low-energy radioactive nuclear beams. In these systems the solenoids act as thick lenses to collect, select, and focus the secondary beam into a scattering chamber. Many experiments with radioactive light particle beams (RNB) such as 6He, 7Be, 8Li, 8B have been performed at these two facilities. These low-energy RNB have been used to investigate low-energy reactions such as elastic scattering, transfer and breakup, providing useful information on the structure of light nuclei near the drip line and on astrophysics. Total reaction cross-sections, derived from elastic scattering analysis, have also been investigated for light system as a function of energy and the role of breakup of weakly bound or exotic nuclei is discussed.
Energy Technology Data Exchange (ETDEWEB)
M' garrech, Slah
2004-09-01
The IPN (institute of nuclear physics) of Orsay decided to build a linear accelerator in order to produce an electron beam of 50 MeV energy and of 10 {mu}A average intensity. It is the ALTO project (Linear Accelerator near the Tandem of Orsay). This project will be dedicated to the production of the radioactive ions using the photo-fission process. The central topic of this thesis is the study of the beam dynamics of the ALTO facility. The first part presents studies concerning the injector. The simulations made with the simulation code PARMELA allowed the optimization of the characteristics of pre-buncher (dephasing HF, accelerating field peak...) to obtain a good bunching factor at the entrance of the buncher and at the entrance of the accelerating section according to the distance separating the two systems. The second part of this thesis is related to measurements of transverse emittance of the beam at the buncher exit. The three gradients method has been selected and the optical system used is a solenoid. The results obtained are in good agreement with former measurements. Finally a calculation of the beam line was carried out to optimize the transport of the beam to the PARRNe target without degrading its characteristics. The calculation codes that have been used are BETA and TRACE-WIN. (author)
Putze, A; Maurin, D
2010-01-01
On-going measurements of the cosmic radiation (nuclear, electronic, and gamma-ray) are shedding new light on cosmic-ray physics. A comprehensive picture of these data relies on an accurate determination of the transport and source parameters of propagation models. A Markov Chain Monte Carlo is used to obtain these parameters in a diffusion model. From the measurement of the B/C ratio and radioactive cosmic-ray clocks, we calculate their probability density functions, with a special emphasis on the halo size L of the Galaxy and the local underdense bubble of size r_h. The analysis relies on the USINE code for propagation and on a Markov Chain Monte Carlo technique (Putze et al. 2009, paper I of this series) for the parameter determination. As found in previous studies, the B/C best-fit model favours diffusion/convection/reacceleration (Model III) over diffusion/reacceleration (Model II). A combined fit on B/C and the isotopic ratios (10Be/9Be, 26Al/27Al, 36Cl/Cl) leads to L ~ 8 kpc and r_h ~ 120 pc for the bes...
Energy Technology Data Exchange (ETDEWEB)
Grcar, Joseph F.
2002-02-04
A matrix lower bound is defined that generalizes ideas apparently due to S. Banach and J. von Neumann. The matrix lower bound has a natural interpretation in functional analysis, and it satisfies many of the properties that von Neumann stated for it in a restricted case. Applications for the matrix lower bound are demonstrated in several areas. In linear algebra, the matrix lower bound of a full rank matrix equals the distance to the set of rank-deficient matrices. In numerical analysis, the ratio of the matrix norm to the matrix lower bound is a condition number for all consistent systems of linear equations. In optimization theory, the matrix lower bound suggests an identity for a class of min-max problems. In real analysis, a recursive construction that depends on the matrix lower bound shows that the level sets of continuously differential functions lie asymptotically near those of their tangents.
Tools for model-independent bounds in direct dark matter searches
DEFF Research Database (Denmark)
Cirelli, M.; Del Nobile, E.; Panci, P.
2013-01-01
We discuss a framework (based on non-relativistic operators) and a self-contained set of numerical tools to derive the bounds from some current direct detection experiments on virtually any arbitrary model of Dark Matter elastically scattering on nuclei.......We discuss a framework (based on non-relativistic operators) and a self-contained set of numerical tools to derive the bounds from some current direct detection experiments on virtually any arbitrary model of Dark Matter elastically scattering on nuclei....
Physical Uncertainty Bounds (PUB)
Energy Technology Data Exchange (ETDEWEB)
Vaughan, Diane Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Preston, Dean L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-03-19
This paper introduces and motivates the need for a new methodology for determining upper bounds on the uncertainties in simulations of engineered systems due to limited fidelity in the composite continuum-level physics models needed to simulate the systems. We show that traditional uncertainty quantification methods provide, at best, a lower bound on this uncertainty. We propose to obtain bounds on the simulation uncertainties by first determining bounds on the physical quantities or processes relevant to system performance. By bounding these physics processes, as opposed to carrying out statistical analyses of the parameter sets of specific physics models or simply switching out the available physics models, one can obtain upper bounds on the uncertainties in simulated quantities of interest.
Shell structure evolution in nuclei: new paradigm
International Nuclear Information System (INIS)
Shell structure evolution in nuclei situated at the extremes of neutron and proton excess are investigated using in-beam gamma spectroscopy techniques with radioactive beams at GANIL. A selection of results obtained very recently is presented: i) The reduced transition probabilities B(E2;01+ → 2+) of the neutron-rich 74Zn and 70Ni nuclei have been measured using Coulomb excitation at intermediate energy. An unexpected large proton core polarization has been found in 70Ni and interpreted as being due to the monopole interaction between the neutron g9/2 and protons f7/2 and f5/2 spin-orbit partner orbitals. ii) Two proton knock-out reactions has been performed in order to study the most neutron-rich nuclei at the N=28 shell closure. Gamma rays spectra and momentum distribution have been obtained for 42Si and neighboring nuclei. Evidences has been found for a deformed structure for 42Si and for the disappearance of the spherical N=28 shell effect. iii) The in-beam gamma spectroscopy of 36Ca performed using neutron knock-out reactions revealed that N=16 is as large sub-shell closure as large as Z=16 in 36S. The uniquely large excitation energy difference of the first 2+ state in these mirror nuclei turns out to be a consequence of the relatively pure neutron (in 36Ca) or proton (in 36S) 1p(d3/2)-1h(s1/2) nature. (author)
Bousso, Raphael
2016-01-01
We show that known entropy bounds constrain the information carried off by radiation to null infinity. We consider distant, planar null hypersurfaces in asymptotically flat spacetime. Their focussing and area loss can be computed perturbatively on a Minkowski background, yielding entropy bounds in terms of the energy flux of the outgoing radiation. In the asymptotic limit, we obtain boundary versions of the Quantum Null Energy Condition, of the Generalized Second Law, and of the Quantum Bousso Bound.
Tang, D. Y.; B. Zhao; Shen, D. Y.; Lu, C.
2009-01-01
Experimental study on the soliton dynamics of a passively mode locked fiber ring laser firstly revealed a state of bound soliton operation in the laser, where two solitons bind together tightly with fixed pulse separation. We further report on the properties of the bound-soliton emission of the laser. In particular, we demonstrate both experimentally and numerically that, like the single pulse soliton operation of the laser, the bound soliton emission is another intrinsic feature of the laser.
Enhanced subbarrier fusion for proton halo nuclei
Kumar, Raj; Lay, J. A.; Vitturi, A.
2014-02-01
In this Brief Report we use a simple model to describe the dynamical effects of break-up processes in the subbarrier fusion involving weakly bound nuclei. We model two similar cases involving either a neutron or a proton halo nucleus, both schematically coupled to the break-up channels. We find that the decrease of the Coulomb barrier in the proton break-up channel leads, ceteris paribus, to a larger enhancement of the subbarrier fusion probabilities with respect to the neutron halo case.
Enhanced subbarrier fusion for proton halo nuclei
Kumar, Raj; J.A. Lay; Vitturi, A.
2014-01-01
In this short note we use a simple model to describe the dynamical effects of break-up processes in the subbarrier fusion involving weakly bound nuclei. We model two similar cases involving either a neutron or a proton halo nucleus, both schematically coupled to the break-up channels. We find that the decrease of the coulomb barrier in the proton break-up channel leads, ceteris paribus, to a larger enhancement of the subbarier fusion probabilities with respect to the neutron-halo case.
Alpha decay as a probe for the structure of neutron-deficient nuclei
Qi, Chong
2016-01-01
The advent of radioactive ion beam facilities and new detector technologies have opened up new possibilities to investigate the radioactive decays of highly unstable nuclei, in particular the proton emission, $\\alpha$ decay and heavy cluster decays from neutron-deficient (or proton-rich) nuclei around the proton drip line. It turns out that these decay measurements can serve as a unique probe for studying the structure of the nuclei involved. On the theoretical side, the development in nuclear many-body theories and supercomputing facilities have also made it possible to simulate the nuclear clusterization and decays from a microscopic and consistent perspective. In this article we would like to review the current status of these structure and decay studies in heavy nuclei, regarding both experimental and theoretical opportunities. We then discuss in detail the recent progress in our understanding of the nuclear $\\alpha$ formation probabilities in heavy nuclei and their indication on the underlying nuclear st...
International Nuclear Information System (INIS)
The present collection of letters from JINR, Dubna, contains seven separate records on kinematic separation and mass analysis of heavy recoiling nuclei, dynamical effects prior to heavy ion fusion, VACTIV-DELPHI graphical dialog based program for the analysis of gamma-ray spectra, irradiation of nuclear emulsions in relativistic beams of 6He and3H nuclei, optical and structural investigations of PLZT x/65/35 (x = 4, 8 %) ferroelectric ceramics irradiated by a high-current pulsed electron beam, the oscillating charge and first evidence for neutrinoless double beta decay
International Nuclear Information System (INIS)
The present collection of letters from JINR, Dubna, contains seven separate records on physics from extra dimensions, new physics in the new millennium with GENIUS: double beta decay, dark matter, solar neutrinos, the (μ-, e+) conversion in nuclei mediated by light Majorana neutrinos, exotic muon-to-positron conversion in nuclei: partial transition sum evaluation by using shell model, solar neutrino problem accounting for self consistent magnetohydrodynamics solution for solar magnetic fields, first neutrino observations from the Sudbury neutrino observatory and status report on BOREXINO and results of the muon-background measurements at CERN
International Nuclear Information System (INIS)
Nuclear structure theories are reviewed concerned with nuclei rotational motion. The development of the deformed nucleus model facilitated a discovery of rotational spectra of nuclei. Comprehensive verification of the rotational scheme and a successful classification of corresponding spectra stimulated investigations of the rotational movement dynamics. Values of nuclear moments of inertia proved to fall between two marginal values corresponding to rotation of a solid and hydrodynamic pattern of an unrotating flow, respectively. The discovery of governing role of the deformation and a degree of a symmetry violence for determining rotational degrees of freedon is pointed out to pave the way for generalization of the rotational spectra
Choudri, B S; Baawain, Mahad
2015-10-01
Papers reviewed herein present a general overview of radioactive waste activities around the world in 2014. These include safety assessments, decommission and decontamination of nuclear facilities, fusion facilities, transportation and management solutions for the final disposal of low and high level radioactive wastes (LLW and HLW), interim storage and final disposal options for spent fuel (SF), and tritiated wastes, with a focus on environmental impacts due to the mobility of radionuclides in water, soil and ecosystem alongwith other progress made in the management of radioactive wastes. PMID:26420096
Choudri, B S; Baawain, Mahad
2016-10-01
Papers reviewed herein present a general overview of radioactive waste activities around the world in 2015. These include safety assessments, decommission and decontamination of nuclear facilities, fusion facilities, transportation and management solutions for the final disposal of low and high level radioactive wastes (LLW and HLW), interim storage and final disposal options for spent fuel (SF), and tritiated wastes, with a focus on environmental impacts due to the mobility of radionuclides in water, soil and ecosystem alongwith other progress made in the management of radioactive wastes. PMID:27620100
2002-01-01
% IS330 \\\\ \\\\\\begin{enumerate} \\item The aim of this study was to contribute to developments of new radiopharmaceuticals for tumour diagnosis and therapy. CERN-ISOLDE is the leading facility in the world to provide radioactive ion beams with high selectivity, purity and intensity. Radioisotope production by spallation makes available a complete range of rare earth isotopes having as complete a diversity of types and energy of radiation, of half-life, and of ionic properties as one would wish. The availability of exotic nuclei, e.g. radionuclides of rare earth elements and $^{225}$Ac, opens new possibilities for the development of radiopharmaceuticals for diagnosis and therapy.\\\\ \\\\ \\item Two approaches were followed within the experimental program. The radioactive metal ions are bound either to bio-specific ligands (monoclonal antibodies or peptides) or to unspecific low molecular weight form. The aim of the experimental program is to evaluate relationships between physico-chemical parameters of the tracer m...
Investigation of proton radioactivity with the effective liquid drop model
Sheng, Zong-Qiang; Fan, Guang-Wei; Msng, Ying; Qian, Jian-Fa
2014-01-01
Proton radioactivity has been investigated using the effective liquid drop model with varying mass asymmetry shape and effective inertial coefficient. An effective nuclear radius constant formula replaces the old empirical one in the calculations. The theoretical half-lives are in good agreement with the available experimental data. All the deviations between the calculated logarithmic half-lives and the experimental values are less than 0.8. The root-mean-square deviation is 0.523. Predictions for the half-lives of proton radioactivity are made for elements across the periodic table. From the theoretical results, there are 11 candidate nuclei for proton radioactivity in the region $Z 83$, no nuclei are suggested as probable candidate nuclei for proton radioactivity within the selected range of half-lives studied.
We propose an experiment with MINIBALL coupled to T-REX to investigate n-rich $^{95,96}$Rb nuclei by the incomplete fusion reaction of $^{94}$Kr on $^{7}$Li. The nuclei of interest will be populated by transfer of a triton into $^{94}$Kr, forming the excited $^{97}$Rb nucleus, followed by the emission of an alpha particle, which will be detected in the Si telescopes of T-REX. The $^{97}$Rb product will evaporate 1 or 2 (with the highest probability) neutrons leading to $^{96}$Rb or $^{95}$Rb, respectively. The aim of the experiment is twofold: \\\\ i) to perform a $\\gamma$- spectroscopy study of $^{95,96}$Rb nuclei with N=58,59, the structure of which is of particular interest in investigating the transition towards stable deformation at N=60, \\\\ ii) to acquire experience in using incomplete fusion reactions with the weakly bound $^{7}$Li target, in order to perform, at a later stage with HIE-ISOLDE, similar measurements induced by n-rich radioactive beams of Sn and Hg, for which at least 5 MeV/nucleon are need...
Hoyer, Paul
1995-01-01
I review hard photon initiated processes on nuclei. The space-time development of the DIS reaction as viewed in the target rest frame qualitatively describes the nuclear shadowing of quark and gluon distributions, although it may be difficult to understand the very weak $Q^2$ dependence of the low $x$ data. The current jet hadron energy distribution at large $\
Electroweak interactions in nuclei
International Nuclear Information System (INIS)
Topics include: introduction to electroweak theory; the Weinberg-Salam theory for leptons; the Weinberg-Salam theory for hadrons-the GIM mechanism; electron scattering as a probe of the electroweak interaction (observation of PV, the weak interaction for nucleons, and parity violation in atoms); and time reversed invariance and electric dipole moments of nucleons, nuclei, and atoms. 52 references
Nuclei with tetrahedral symmetry
International Nuclear Information System (INIS)
We discuss a point-group-theory based method of searching for new regions of nuclear stability. We illustrate the related strategy with realistic calculations employing the tetrahedral and the octahedral point groups. In particular, several nuclei in the rare earth region appear as excellent candidates to study the new mechanism. (author)
Octupole collectivity in nuclei
Butler, P. A.
2016-07-01
The experimental and theoretical evidence for octupole collectivity in nuclei is reviewed. Recent theoretical advances, covering a wide spectrum from mean-field theory to algebraic and cluster approaches, are discussed. The status of experimental data on the behaviour of energy levels and electric dipole and electric octupole transition moments is reviewed. Finally, an outlook is given on future prospects for this field.
Triaxiality in superheavy nuclei
International Nuclear Information System (INIS)
In this work, triaxial degree of freedom is explicitly utilized in calculating alpha decay lifetimes. The synthesis of superheavy nuclei with Z = 114-116 and 118 were detected by their decaying alpha chains with terminating spontaneous fission events. The lifetime of alpha decay chains measured are to be compared with the values evaluated theoretically
Fissibility of compound nuclei
Iwata, Yoritaka
2012-01-01
Collisions between $^{248}$Cm and $^{48}$Ca are systematically investigated by time-dependent density functional calculations with evaporation prescription. Depending on the incident energy and impact parameter, fusion, deep-inelastic and fission events are expected to appear. In this paper, a microscopic method of calculating the fissibility of compound nuclei is presented.
Bounded Gaussian process regression
DEFF Research Database (Denmark)
Jensen, Bjørn Sand; Nielsen, Jens Brehm; Larsen, Jan
2013-01-01
We extend the Gaussian process (GP) framework for bounded regression by introducing two bounded likelihood functions that model the noise on the dependent variable explicitly. This is fundamentally different from the implicit noise assumption in the previously suggested warped GP framework. We...
Herrmann, Richard A.
1974-01-01
By concentrating radioactivity contained on luminous dials, a teacher can make a high reading source for classroom experiments on radiation. The preparation of the source and its uses are described. (DT)
Boettler, James L.
1972-01-01
Describes the errors in the sugar-cube experiment related to radioactivity as described in Project Physics course. The discussion considers some of the steps overlooked in the experiment and generalizes the theory beyond the sugar-cube stage. (PS)
Onega, Ronald J.
1969-01-01
Three problems in radioactive buildup and decay are presented and solved. Matrix algebra is used to solve the second problem. The third problem deals with flux depression and is solved by the use of differential equations. (LC)
Medium-Heavy Nuclei from Nucleon-Nucleon Interactions in Lattice QCD
Inoue, Takashi; Charron, Bruno; Doi, Takumi; Hatsuda, Tetsuo; Ikeda, Yoichi; Ishii, Noriyoshi; Murano, Keiko; Nemura, Hidekatsu; Sasaki, Kenji
2014-01-01
On the basis of the Brueckner-Hartree-Fock method with the nucleon-nucleon forces obtained from lattice QCD simulations, the properties of the medium-heavy doubly-magic nuclei such as 16^O and 40^Ca are investigated. We found that those nuclei are bound for the pseudo-scalar meson mass M_PS ~ 470 MeV. The mass number dependence of the binding energies, single-particle spectra and density distributions are qualitatively consistent with those expected from empirical data at the physical point, although these hypothetical nuclei at heavy quark mass have smaller binding energies than the real nuclei.
Microscopic description of light unstable nuclei with the stochastic variational method
Varga, K; Arai, K; Ogawa, Y
1996-01-01
The structure of the light proton and neutron rich nuclei is studied in a microscopic multicluster model using the stochastic variational method. This approach enables us to describe the weakly bound nature of these nuclei in a consistent way. Applications for various nuclei ^{6-9}Li, ^7Be, ^8B, ^9C, ^{9-10}Be, ^{9-10}B presented. The paper discusses the relation of this model to other models as well as the possible extension for p and sd shell nuclei.
de Rham, Claudia; Tolley, Andrew J; Zhou, Shuang-Yong
2016-01-01
Recently, aLIGO has announced the first direct detections of gravitational waves, a direct manifestation of the propagating degrees of freedom of gravity. The detected signals GW150914 and GW151226 have been used to examine the basic properties of these gravitational degrees of freedom, particularly setting an upper bound on their mass. It is timely to review what the mass of these gravitational degrees of freedom means from the theoretical point of view, particularly taking into account the recent developments in constructing consistent massive gravity theories. Apart from the GW150914 mass bound, a few other observational bounds have been established from the effects of the Yukawa potential, modified dispersion relation and fifth force that are all induced when the fundamental gravitational degrees of freedom are massive. We review these different mass bounds and examine how they stand in the wake of recent theoretical developments and how they compare to the bound from GW150914.
Precision measurement of the mass difference between light nuclei and anti-nuclei
Adam, Jaroslav; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agrawal, Neelima; Ahammed, Zubayer; Ahmed, Ijaz; Ahn, Sang Un; Aimo, Ilaria; Aiola, Salvatore; Ajaz, Muhammad; Akindinov, Alexander; Alam, Sk Noor; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Alme, Johan; Alt, Torsten; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arcelli, Silvia; Armesto Perez, Nestor; Arnaldi, Roberta; Aronsson, Tomas; Arsene, Ionut Cristian; Arslandok, Mesut; Augustinus, Andre; Averbeck, Ralf Peter; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Baldisseri, Alberto; Ball, Markus; Baltasar Dos Santos Pedrosa, Fernando; Baral, Rama Chandra; Barbano, Anastasia Maria; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartalini, Paolo; Bartke, Jerzy Gustaw; Bartsch, Esther; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batista Camejo, Arianna; Batyunya, Boris; Batzing, Paul Christoph; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bello Martinez, Hector; Bellwied, Rene; Belmont Iii, Ronald John; Belmont Moreno, Ernesto; Belyaev, Vladimir; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhat, Inayat Rasool; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Biswas, Saikat; Bjelogrlic, Sandro; Blanco, Fernando; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Boldizsar, Laszlo; Bombara, Marek; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Borri, Marcello; Bossu, Francesco; Botje, Michiel; Botta, Elena; Boettger, Stefan; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Brucken, Erik Jens; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Buxton, Jesse Thomas; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calero Diaz, Liliet; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Carena, Francesco; Carena, Wisla; Castillo Castellanos, Javier Ernesto; Castro, Andrew John; Casula, Ester Anna Rita; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Chang, Beomsu; Chapeland, Sylvain; Chartier, Marielle; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chelnokov, Volodymyr; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Chochula, Peter; Choi, Kyungeon; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dahms, Torsten; Dainese, Andrea; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; De Caro, Annalisa; De Cataldo, Giacinto; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; Deisting, Alexander; Deloff, Andrzej; Denes, Ervin Sandor; D'Erasmo, Ginevra; Di Bari, Domenico; Di Mauro, Antonio; Di Nezza, Pasquale; Diaz Corchero, Miguel Angel; Dietel, Thomas; Dillenseger, Pascal; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Ehlers Iii, Raymond James; Elia, Domenico; Engel, Heiko; Erazmus, Barbara Ewa; Erhardt, Filip; Eschweiler, Dominic; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Evans, David; Evdokimov, Sergey; Eyyubova, Gyulnara; Fabbietti, Laura; Fabris, Daniela; Faivre, Julien; Fantoni, Alessandra; Fasel, Markus; Feldkamp, Linus; Felea, Daniel; Feliciello, Alessandro; Feofilov, Grigorii; Ferencei, Jozef; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Fleck, Martin Gabriel; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Furs, Artur; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Gao, Chaosong; Garabatos Cuadrado, Jose; Garcia-Solis, Edmundo Javier; Gargiulo, Corrado; Gasik, Piotr Jan; Germain, Marie; Gheata, Andrei George; Gheata, Mihaela; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Giubilato, Piero; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez Ramirez, Andres; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Grabski, Varlen; Graczykowski, Lukasz Kamil; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grynyov, Borys; Grion, Nevio; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Gulbrandsen, Kristjan Herlache; Gulkanyan, Hrant; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Haake, Rudiger; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hanratty, Luke David; Hansen, Alexander; Harris, John William; Hartmann, Helvi; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hilden, Timo Eero; Hillemanns, Hartmut; Hippolyte, Boris; Hristov, Peter Zahariev; Huang, Meidana; Humanic, Thomas; Hussain, Nur; Hussain, Tahir; Hutter, Dirk; Hwang, Dae Sung; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Ionita, Costin; Ippolitov, Mikhail; Irfan, Muhammad; Ivanov, Marian; Ivanov, Vladimir; Izucheev, Vladimir; Jacobs, Peter Martin; Jahnke, Cristiane; Jang, Haeng Jin; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Chitrasen; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jung, Hyungtaik; Jusko, Anton; Kalinak, Peter; Kalweit, Alexander Philipp; Kamin, Jason Adrian; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Keijdener, Darius Laurens; Keil, Markus; Khan, Kamal; Khan, Mohammed Mohisin; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Beomkyu; Kim, Do Won; Kim, Dong Jo; Kim, Hyeonjoong; Kim, Jinsook; Kim, Mimae; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Carsten; Klein, Jochen; Klein-Boesing, Christian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobayashi, Taiyo; Kobdaj, Chinorat; Kofarago, Monika; Kohler, Markus Konrad; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratev, Valerii; Kondratyeva, Natalia; Kondratyuk, Evgeny; Konevskikh, Artem; Kouzinopoulos, Charalampos; Kovalenko, Vladimir; Kowalski, Marek; Kox, Serge; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kravcakova, Adela; Krelina, Michal; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Kryshen, Evgeny; Krzewicki, Mikolaj; Kubera, Andrew Michael; Kucera, Vit; Kucheryaev, Yury; Kugathasan, Thanushan; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kulakov, Igor; Kumar, Jitendra; Lokesh, Kumar; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kushpil, Svetlana; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; Laudi, Elisa; Lea, Ramona; Leardini, Lucia; Lee, Graham Richard; Lee, Seongjoo; Legrand, Iosif; Lehnert, Joerg Walter; Lemmon, Roy Crawford; Lenti, Vito; Leogrande, Emilia; Leon Monzon, Ildefonso; Leoncino, Marco; Levai, Peter; Li, Shuang; Li, Xiaomei; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Lonne, Per-Ivar; Loggins, Vera Renee; Loginov, Vitaly; Loizides, Constantinos; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lowe, Andrew John; Lu, Xianguo; Luettig, Philipp Johannes; Lunardon, Marcello; Luparello, Grazia; Maevskaya, Alla; Mager, Magnus; Mahajan, Sanjay; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manceau, Loic Henri Antoine; Manko, Vladislav; Manso, Franck; Manzari, Vito; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Margutti, Jacopo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martashvili, Irakli; Martin, Nicole Alice; Martin Blanco, Javier; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-Garcia, Gines; Martinez Pedreira, Miguel; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Mastroserio, Annalisa; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzoni, Alessandra Maria; Mcdonald, Daniel; Meddi, Franco; Menchaca-Rocha, Arturo Alejandro; Meninno, Elisa; Mercado-Perez, Jorge; Meres, Michal; Miake, Yasuo; Mieskolainen, Matti Mikael; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Minervini, Lazzaro Manlio; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mohammadi, Naghmeh; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Montes Prado, Esther; Morando, Maurizio; Moreira De Godoy, Denise Aparecida; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Muller, Hans; Mulligan, James Declan; Gameiro Munhoz, Marcelo; Murray, Sean; Musa, Luciano; Musinsky, Jan; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Naru, Muhammad Umair; Nattrass, Christine; Nayak, Kishora; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Nellen, Lukas; Ng, Fabian; Nicassio, Maria; Niculescu, Mihai; Niedziela, Jeremi; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Norman, Jaime; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Ohlson, Alice Elisabeth; Okatan, Ali; Okubo, Tsubasa; Olah, Laszlo; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Oliver, Michael Henry; Onderwaater, Jacobus; Oppedisano, Chiara; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozdemir, Mahmut; Pachmayer, Yvonne Chiara; Pagano, Paola; Paic, Guy; Pajares Vales, Carlos; Pal, Susanta Kumar; Pan, Jinjin; Pandey, Ashutosh Kumar; Pant, Divyash; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Woojin; Parmar, Sonia; Passfeld, Annika; Paticchio, Vincenzo; Paul, Biswarup; Pawlak, Tomasz Jan; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitry Yurevich; Perez Lara, Carlos Eugenio; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petrov, Viacheslav; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polishchuk, Boris; Poljak, Nikola; Poonsawat, Wanchaloem; Pop, Amalia; Porteboeuf, Sarah Julie; Porter, R Jefferson; Pospisil, Jan; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Raha, Sibaji; Rajput, Sonia; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Razazi, Vahedeh; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reicher, Martijn; Reidt, Felix; Ren, Xiaowen; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Ristea, Catalin-Lucian; Rivetti, Angelo; Rocco, Elena; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roeed, Ketil; Rogochaya, Elena; Rohr, David Michael; Roehrich, Dieter; Romita, Rosa; Ronchetti, Federico; Ronflette, Lucile; Rosnet, Philippe; Rossi, Andrea; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Sadovskiy, Sergey; Safarik, Karel; Sahlmuller, Baldo; Sahoo, Pragati; Sahoo, Raghunath; Sahoo, Sarita; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Saleh, Mohammad Ahmad; Salgado Lopez, Carlos Alberto; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sanchez Castro, Xitzel; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Santagati, Gianluca; Sarkar, Debojit; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schuchmann, Simone; Schukraft, Jurgen; Schulc, Martin; Schuster, Tim Robin; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca Michelle; Seeder, Karin Soraya; Seger, Janet Elizabeth; Sekiguchi, Yuko; Selyuzhenkov, Ilya; Senosi, Kgotlaesele; Seo, Jeewon; Serradilla Rodriguez, Eulogio; Sevcenco, Adrian; Shabanov, Arseniy; Shabetai, Alexandre; Shadura, Oksana; Shahoyan, Ruben; Shangaraev, Artem; Sharma, Ankita; Sharma, Natasha; Shigaki, Kenta; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Sielewicz, Krzysztof Marek; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Slupecki, Maciej; Smirnov, Nikolai; Snellings, Raimond; Snellman, Tomas Wilhelm; Soegaard, Carsten; Soltz, Ron Ariel; Song, Jihye; Song, Myunggeun; Song, Zixuan; Soramel, Francesca; Sorensen, Soren Pontoppidan; Spacek, Michal; Spiriti, Eleuterio; Sputowska, Iwona Anna; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Steinpreis, Matthew Donald; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Sultanov, Rishat; Sumbera, Michal; Symons, Timothy; Szabo, Alexander; Szanto De Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Takahashi, Jun; Tanaka, Naoto; Tangaro, Marco-Antonio; Tapia Takaki, Daniel Jesus; Tarantola Peloni, Attilio; Tariq, Mohammad; Tarzila, Madalina-Gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terasaki, Kohei; Terrevoli, Cristina; Teyssier, Boris; Thaeder, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony Robert; Toia, Alberica; Trogolo, Stefano; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Uras, Antonio; Usai, Gianluca; Utrobicic, Antonija; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vanat, Tomas; Vande Vyvre, Pierre; Varga, Dezso; Vargas Trevino, Aurora Diozcora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vauthier, Astrid; Vechernin, Vladimir; Veen, Annelies Marianne; Veldhoen, Misha; Velure, Arild; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Vislavicius, Vytautas; Viyogi, Yogendra; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Jan; Wang, Hongkai; Wang, Mengliang; Wang, Yifei; Watanabe, Daisuke; Weber, Michael; Weber, Steffen Georg; Wessels, Johannes Peter; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Yaldo, Chris G; Yamaguchi, Yorito; Yang, Hongyan; Yang, Ping; Yano, Satoshi; Yasnopolskiy, Stanislav; Yin, Zhongbao; Yokoyama, Hiroki; Yoo, In-Kwon; Yurchenko, Volodymyr; Yushmanov, Igor; Zaborowska, Anna; Zaccolo, Valentina; Zaman, Ali; Zampolli, Chiara; Correia Zanoli, Henrique Jose; Zaporozhets, Sergey; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zhu, Xiangrong; Zichichi, Antonino; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zyzak, Maksym
2015-01-01
The measurement of the mass differences for systems bound by the strong force has reached a very high precision with protons and anti-protons. The extension of such measurement from (anti-)baryons to (anti-)nuclei allows one to probe any difference in the interactions between nucleons and anti-nucleons encoded in the (anti-)nuclei masses. This force is a remnant of the underlying strong interaction among quarks and gluons and can be described by effective theories, but cannot yet be directly derived from quantum chromodynamics. Here we report a measurement of the difference between the ratios of the mass and charge of deuterons (d) and anti-deuterons ($\\bar{d}$), and $^{3}{\\rm He}$ and $^3\\overline{\\rm He}$ nuclei carried out with the ALICE (A Large Ion Collider Experiment) detector in Pb-Pb collisions at a centre-of-mass energy per nucleon pair of 2.76 TeV. Our direct measurement of the mass-over-charge differences confirm CPT invariance to an unprecedented precision in the sector of light nuclei. This funda...
Generalized Sphere Packing Bound
Fazeli, Arman; Vardy, Alexander; Yaakobi, Eitan
2014-01-01
Kulkarni and Kiyavash recently introduced a new method to establish upper bounds on the size of deletion-correcting codes. This method is based upon tools from hypergraph theory. The deletion channel is represented by a hypergraph whose edges are the deletion balls (or spheres), so that a deletion-correcting code becomes a matching in this hypergraph. Consequently, a bound on the size of such a code can be obtained from bounds on the matching number of a hypergraph. Classical results in hyper...
Radioactive waste management in Tanzania
International Nuclear Information System (INIS)
Radioactive waste, like many other hazardous wastes, is of great concern in Tanzania because of its undesirable health effects. The stochastic effects due to prolonged exposure to ionizing radiation produce cancer and hereditary effects. The deterministic effects due to higher doses cause vomiting, skin reddening, leukemia, and death to exposed victims. The aim of this paper is to give an overview of the status of radioactive wastes in Tanzania, how they are generated and managed to protect humans and the environment. As Tanzania develops, it is bound to increase the use of ionizing radiation in research and teaching, industry, health and agriculture. Already there are more than 42 Centers which use one form of radioisotopes or another for these purposes: Teletherapy (Co-60), Brach-therapy (Cs-137, Sr-89), Nuclear Medicine (P-32, Tc-99m, 1-131, 1-125, Ga-67, In-111, Tl-206), Nuclear gauge (Am-241, Cs- 137, Sr-90, Kr-85), Industrial radiography (Am-241, C-137, Co-60, lr-92), Research and Teaching (1-125, Am241/Be, Co-60, Cs-137, H-3 etc). According to IAEA definition, these radioactive sources become radioactive waste if they meet the following criteria: if they have outlived their usefulness, if they have been abandoned, if they have been displaced without authorization, and if they contaminate other substances. Besides the origin of radioactive wastes, special emphasis will also be placed on the existing radiation regulations that guide disposal of radioactive waste, and the radioactive infrastructure Tanzania needs for ultimate radioactive waste management. Specific examples of incidences (theft, loss, abandonment and illegal possession) of radioactive waste that could have led to serious deterministic radiation effects to humans will also be presented. (author)
Disintegration of comet nuclei
International Nuclear Information System (INIS)
The breaking up of comets into separate pieces, each with its own tail, was seen many times by astronomers of the past. The phenomenon was in sharp contrast to the idea of the eternal and unchangeable celestial firmament and was commonly believed to be an omen of impending disaster, especially for comets with tails stretching across half the sky. It is only now that we have efficient enough space exploration tools to see comet nuclei and even - in the particular case of small comet Hartley-2 in 2010 - to watch their disintegration stage. There are also other suspected candidates for disintegration in the vast family of comet nuclei and other Solar System bodies. (physics of our days)
Energy Technology Data Exchange (ETDEWEB)
Legoll, F. [Service de Physique Theorique, CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France)
1998-07-22
For nuclei with very high electrical charge, the Coulomb field is expected to drive the protons away from the centre to the surface of the nucleus. Such a nucleus would be no more compact but look like a bubble. The goal of this work is to confirm this idea. We are interested in only the ground state of spherical nuclei. We use the Skyrme potential with the Sly4 parametrization to calculate the mean-field Hamiltonian. Paring correlations are described by a surface-active delta paring interaction. In its ground state the nucleus {sup A=900} X{sub Z=274} is shown to be a bubble. Another stable state is found with a little higher energy: it is also a bubble. (author) 11 refs., 18 figs., 33 tabs.
International Nuclear Information System (INIS)
Nuclei in the Cosmos is the foremost bi-annual conference of nuclear physicists, astrophysicists, cosmochemists, and others to survey the recent achievements in Nuclear Astrophysics. As an interdisciplinary meeting it promotes mutual understanding and collaboration over fields fundamental to solve a range of open questions, from the origin of the elements to stellar evolution. Inherent part of the conference is a school devoted to students and young scientists where prominent scientists introduce the field of nuclear astrophysics to the participants. Conference Topics: Cosmology and big bang nucleosynthesis; Element production, stellar evolution and stellar explosions; Evidences of nucleosynthesis in stars and in presolar grains; Experiments in nuclear astrophysics; Nuclei far from stability; Nuclear theory in astrophysics; New facilities. [TRA
Effenberger, M.; Mosel, U.
1997-01-01
We calculate the total photoabsorption cross section and cross sections for inclusive pion and eta photoproduction in nuclei in the energy range from 300 MeV to 1 GeV within the framework of a semi-classical BUU transport model. Besides medium modifications like Fermi motion and Pauli blocking we focus on the collision broadening of the involved resonances. The resonance contributions to the elementary cross section are fixed by fits to partial wave amplitudes of pion photoproduction. The cro...
Ayala, A. L.; Ducati, M. B. Gay; Levin, E. M.
1996-01-01
In this talk we present our detail study ( theory and numbers) [1] on the shadowing corrections to the gluon structure functions for nuclei. Starting from rather contraversial information on the nucleon structure function which is originated by the recent HERA data, we develop the Glauber approach for the gluon density in a nucleus based on Mueller formula [2] and estimate the value of the shadowing corrections in this case. Than we calculate the first corrections to the Glauber approach and ...
International Nuclear Information System (INIS)
Discoveries of many different types of nuclear shape coexistence are being found at both low and high excitation energies throughout the periodic table, as documented in recent reviews. Many new types of shape coexistence have been observed at low excitation energies, for examples bands on more than four different overlapping and coexisting shapes are observed in 185Au, and competing triaxial and prolate shapes in 71Se and 176Pt. Discrete states in super-deformed bands with deformations β 2 ∼ 0.4-0.6, coexisting with other shapes, have been seen to high spin up to 60ℎ in 152Dy, 132Ce and 135Nd. Super-deformed nuclei with N and Z both around 38 and around Z = 38, N ≥ 60. These data led to the discovery of new shell gaps and magic numbers of 38 for N and Z and 60 for N but now for deformed shapes. Marked differences in structure are observed at spins of 6 to 20 in nuclei in this region, which differ by only two protons; for example, 68Ge and 70Se. The differences are thought to be related to the competing shell gaps in these nuclei
Synthesis and study of atomic nuclei with Z>100
International Nuclear Information System (INIS)
The studies of atomic nuclei with Z>100 are closely related to the synthesis of new chemical elements and to the investigation of stability limits for the heaviest nuclides. From the mid-50s these studies have been carried out using intense heavy-ion beams and highly sensitive techniques designed for the physical and chemical identification of rare short-lived nuclei. The studies proceeded in two stages, the first one being characterized by the use of hot-fusion reactions between the U, Pu, Am, Cm and Cf target nuclei and the C, N, O, and Ne projectiles and the second being based on the use of the cold-fusion reactions induced by Cr, Mn, and Fe projectiles on Pb and Bi target nuclei. As a result, the chemical elements with atomic numbers from 102 to 109 have first been synthesized. The radioactive properties of over 40 isotopes of these elements have been investigated and unambigous evidence has been obtained that shell effects play a decisive role for the stability of the Z>or approx.104 nuclei against spontaneous fission. This provides an experimental substantiationfor the known hypothesis that the island of nuclear stability should lie around Z∼114 and N∼178 or 184. It has been proposed to synthesize elements with Z≥110 by complete fusion reactions of uranium and adjacent element nuclei with projectile nuclei such as Ar and Ca. The spontaneous fission of a product nucleus (a total of 26 events) has been observed in Dubna experiments with the 232Th+44Ca and 236U+40Ar reactions. The authors of those studies tentatively assigned this activity to the decay of the nuclei of element 110
Determination of Matter Surface Distribution of Neutron-rich Nuclei
Kohama, A; Arima, A; Yamaji, S; Kohama, Akihisa; Seki, Ryoichi; Arima, Akito; Yamaji, Shuhei
2003-01-01
We demonstrate that the matter density distribution in the surface region is determined well by the use of the relatively low-intensity beams that become available at the upcoming radioactive beam facilities. Following the method used in the analyses of electron scattering, we examine how well the density distribution is determined in a model-independent way by generating pseudo data and by carefully applying statistical and systematic error analyses. We also study how the determination becomes deteriorated in the central region of the density, as the quality of data decreases. Determination of the density distributions of neutron-rich nuclei is performed by fixing parameters in the basis functions to the neighboring stable nuclei. The procedure allows that the knowledge of the density distributions of stable nuclei assists to strengthen the determination of their unstable isotopes.
Electromagnetic decay of nuclei by electron-positron pair conversion
Energy Technology Data Exchange (ETDEWEB)
Belov, Nikolay; Harman, Zoltan [Max-Plank-Institute for Nuclear Physics, Heidelberg (Germany)
2012-07-01
The pair production process by {gamma}-emission of nuclei has been investigated for a long time both theoretically and experimentally. But, in all theoretical works only the production of a free electron and positron was described. The case when an electron is ''born'' in the bound state of atom has been neglected as a relatively small effect. We investigate this bound-free pair productions for different multipolarities of nuclear {gamma} decay. We use a relativistic description of the electron and positron wave functions as it is necessary for heavy elements. It appeared that the contribution of this bound-free process for bare heavy ions at low {gamma}-energies gives a contribution comparable to the free-free process. These results for the bound-free pair production in bare or highly-stripped ions could be relevant in astrophysics, in the physics of heavy ion acceleration and in atomic spectroscopy.
Correlations of collective observables and the phonon structure of nuclei
International Nuclear Information System (INIS)
A ''horizontal'' view of nuclear structures is described in which various observables are correlated over broad mass ranges. This approach leads to a number of remarkable correlations, to new understanding of the evolution of structure, to a challenge to microscopic theories, and to new signatures of structure that will be especially useful with radioactive beam experiments. In particular, this and other evidence suggests a nearly universal and pervasive role of phonon and multi-phonon excitations in nuclei
Shell closure effects studied via cluster decay in heavy nuclei
Kumar, Sushil; Ramna; Kumar, Rajesh
2011-01-01
The effects of shell closure in nuclei via the cluster decay is studied. In this context, we have made use of the Preformed Cluster Model ($PCM$) of Gupta and collaborators based on the Quantum Mechanical Fragmentation Theory. The key point in the cluster radioactivity is that it involves the interplay of close shell effects of parent and daughter. Small half life for a parent indicates shell stabilized daughter and long half life indicates the stability of the parent against the decay. In th...
Possibilities of synthesis of superheavy nuclei in hot fusion reactions
International Nuclear Information System (INIS)
The actinide-based hot fusion reactions with stable projectiles heavier than 48Ca are analyzed within the dinuclear system model for compound nucleus formation. Predictions for several reactions with radioactive beams for the synthesis of heaviest elements are also presented for the future interest. Possibilities of production of new isotopes of superheavy nuclei with charge numbers 104 -108 in incomplete fusion reactions are studied
Nuclear orientation of radioactive nuclei the spin program
Czech Academy of Sciences Publication Activity Database
Dupák, Jan; Finger, M.; Finger jr., M.; Janata, A.; Kracíková, T. I.; Lebedev, N. A.; Nováková, D.; Ota, J.; Rotter, M.; Slunečka, M.; Slunečková, V.; Virus, M.; Yushkevich, Y. V.
2000-01-01
Roč. 50, Supp. S1 (2000), s. 253-268. ISSN 0011-4626. [Symmetry and Spin. Praha, 05.09.1999-12.09.1999] R&D Projects: GA AV ČR KSK1067601 Institutional research plan: CEZ:AV0Z2065902 Subject RIV: JR - Other Machinery Impact factor: 0.298, year: 2000
The method for investigation of unbound states of radioactive nuclei
International Nuclear Information System (INIS)
The coincidences between two α-particles from reactions 64 Ni(14 N, αα)X, 124 Sn(14 N,αα)X at E(14 N)=128 MeV were measured. Light particles with small relative momenta were detected by the special two-segment detectors. The experimental two-dimensional α-α coincident spectra were transformed into relative energy spectra of two α-particles. The possibility to extract information about resonance parameters, branching ratios of decay, influence of particle-spectator on observed characteristic of resonance is discussed
Hoyer, Paul
2016-01-01
Even a first approximation of bound states requires contributions of all powers in the coupling. This means that the concept of "lowest order bound state" needs to be defined. In these lectures I discuss the "Born" (no loop, lowest order in $\\hbar$) approximation. Born level states are bound by gauge fields which satisfy the classical field equations. As a check of the method, Positronium states of any momentum are determined as eigenstates of the QED Hamiltonian, quantized at equal time. Analogously, states bound by a strong external field $A^\\mu(\\xv)$ are found as eigenstates of the Dirac Hamiltonian. Their Fock states have dynamically created $e^+e^-$ pairs, whose distribution is determined by the Dirac wave function. The linear potential of $D=1+1$ dimensions confines electrons but repels positrons. As a result, the mass spectrum is continuous and the wave functions have features of both bound states and plane waves. The classical solutions of Gauss' law are explored for hadrons in QCD. A non-vanishing bo...
Bounding species distribution models
Institute of Scientific and Technical Information of China (English)
Thomas J. STOHLGREN; Catherine S. JARNEVICH; Wayne E. ESAIAS; Jeffrey T. MORISETTE
2011-01-01
Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern.Many investigators now recognize that extrapolations of these models with geographic information systems (GIS) might be sensitive to the environmental bounds of the data used in their development,yet there is no recommended best practice for “clamping” model extrapolations.We relied on two commonly used modeling approaches:classification and regression tree (CART) and maximum entropy (Maxent) models,and we tested a simple alteration of the model extrapolations,bounding extrapolations to the maximum and minimum values of primary environmental predictors,to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States.Findings suggest that multiple models of bounding,and the most conservative bounding of species distribution models,like those presented here,should probably replace the unbounded or loosely bounded techniques currently used [Current Zoology 57 (5):642-647,2011].
Effective field theory for halo nuclei
International Nuclear Information System (INIS)
We investigate properties of two- and three-body halo systems using effective field theory. If the two-particle scattering length a in such a system is large compared to the typical range of the interaction R, low-energy observables in the strong and the electromagnetic sector can be calculated in halo EFT in a controlled expansion in R/ vertical stroke a vertical stroke. Here we focus on universal properties and stay at leading order in the expansion. Motivated by the existence of the P-wave halo nucleus 6He, we first set up an EFT framework for a general three-body system with resonant two-particle P-wave interactions. Based on a Lagrangian description, we identify the area in the effective range parameter space where the two-particle sector of our model is renormalizable. However, we argue that for such parameters, there are two two-body bound states: a physical one and an additional deeper-bound and non-normalizable state that limits the range of applicability of our theory. With regard to the three-body sector, we then classify all angular-momentum and parity channels that display asymptotic discrete scale invariance and thus require renormalization via a cut-off dependent three-body force. In the unitary limit an Efimov effect occurs. However, this effect is purely mathematical, since, due to causality bounds, the unitary limit for P-wave interactions can not be realized in nature. Away from the unitary limit, the three-body binding energy spectrum displays an approximate Efimov effect but lies below the unphysical, deep two-body bound state and is thus unphysical. Finally, we discuss possible modifications in our halo EFT approach with P-wave interactions that might provide a suitable way to describe physical three-body bound states. We then set up a halo EFT formalism for two-neutron halo nuclei with resonant two-particle S-wave interactions. Introducing external currents via minimal coupling, we calculate observables and universal correlations for such
International Nuclear Information System (INIS)
Chirality has recently been proposed as a novel feature of rotating nuclei [1]. Because the chiral symmetry is dichotomic, its spontaneous breaking by the axial angular momentum vector leads to doublets of closely lying rotational bands of the same parity. To investigate nuclear chirality, next to establish the existence of almost degenerate rotational bands, it is necessary to measure also other observables and compare them to the model predictions. The crucial test for the suggested nuclei as candidates to express chirality is based on precise lifetime measurements. Two lifetime experiments and theoretical approaches for the description of the experimental results will be presented. Lifetimes of exited states in 134Pr were measured [2,3] by means of the recoil distance Doppler-shift and Doppler-shift attenuation techniques. The branching ratios and the electric or magnetic character of the transitions were also investigated [3]. The experiments were performed at IReS, Strasbourg, using the EUROBALL IV spectrometer, in conjunction with the inner bismuth germanate ball and the Cologne coincidence plunger apparatus. Exited states in 134Pr were populated in the fusion-evaporation reaction 119Sn(19F, 4n)134Pr. The possible chiral interpretation of twin bands was investigated in the two-quasiparticle triaxial rotor [1] and interacting boson-fermion-fermion models [4]. Both theoretical approaches can describe the level-scheme of 134Pr. The analysis of the wave functions has shown that the possibility for the angular momenta of the proton, neutron, and core to find themselves in the favorable, almost orthogonal geometry, is present but is far from being dominant [3,5]. The structure is characterized by large β and γ fluctuations. The existence of doublets of bands in 134Pr can be attributed to weak chirality dominated by shape fluctuations. In a second experiment branching ratios and lifetimes in 136Pm were measured by means of the recoil distance Doppler-shift and
A doorway to Borromean halo nuclei: the Samba configuration
Yamashita, M T; Hussein, M S
2005-01-01
We exploit the possibility of new configurations in three-body halo nuclei - Samba type - (the neutron-core form a bound system) as a doorway to Borromean systems. The nuclei $^{12}$Be, $^{15}$B, $^{23}$N and $^{27}$F are of such nature, in particular $^{23}$N with a half-life of 37.7 s and a halo radius of 6.36 fm is an excellent example of Samba-halo configuration. The fusion below the barrier of the Samba halo nuclei with heavy targets could reveal the so far elusive enhancement and a dominance of one-neutron over two-neutron transfers, in contrast to what was found recently for the Borromean halo nucleus $^6$He + $^{238}$U.
ENAM'04 Fourth International Conference on Exotic Nuclei and Atomic Masses
Energy Technology Data Exchange (ETDEWEB)
Gross, C. J.; Nazarewicz, W.; Rykaczewski, K. P.
2005-01-01
The conference can trace its origins to the 1950s and 1960s with the Atomic Mass and Fundamental Constants (AMCO) and the Nuclei Far From Stability (NFFS) series of conferences. Held jointly in 1992, the conferences officially merged in 1995 and the fourth conference was held at Callaway Gardens in Pine Mountain, GA and was organized by the Physics Division at Oak Ridge National Laboratory. The conference covered a broad list of topics consisting of a series of invited and contributed presentation highlighting recent research in the following fields: Atomic masses, nuclear moments, and nuclear radii; Forms of radioactivity; Nuclear structure, nuclei at the drip lines, cluster phenomena; Reactions with radioactive ion beams; Nuclear astrophysics; Fundamental symmetries and interactions; Heaviest elements and fission; Radioactive ion beam production and experimental developments; Applications of exotic nuclei
ENAM'04 Fourth International Conference on Exotic Nuclei and Atomic Masses
International Nuclear Information System (INIS)
The conference can trace its origins to the 1950s and 1960s with the Atomic Mass and Fundamental Constants (AMCO) and the Nuclei Far From Stability (NFFS) series of conferences. Held jointly in 1992, the conferences officially merged in 1995 and the fourth conference was held at Callaway Gardens in Pine Mountain, GA and was organized by the Physics Division at Oak Ridge National Laboratory. The conference covered a broad list of topics consisting of a series of invited and contributed presentation highlighting recent research in the following fields: Atomic masses, nuclear moments, and nuclear radii; Forms of radioactivity; Nuclear structure, nuclei at the drip lines, cluster phenomena; Reactions with radioactive ion beams; Nuclear astrophysics; Fundamental symmetries and interactions; Heaviest elements and fission; Radioactive ion beam production and experimental developments; Applications of exotic nuclei
Radioactive Ion Beam Development at the Holifield Radioactive Ion Beam Facility
Stracener, Dan; Beene, James R; Bilheux, Hassina Z; Bilheux, Jean-Christophe; Blackmon, Jeff C; Carter, Ken; Dowling, Darryl; Juras, Raymond; Kawai, Yoko; Kronenberg, Andreas; Liu, Yuan; Meigs, Martha; Müller, Paul; Spejewski, Eugene H; Tatum, A
2005-01-01
Radioactive beams are produced at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory using the Isotope Separator On-Line (ISOL) technique. Radioactive nuclei are produced in a thick target via irradiation with energetic light ions (protons, deuterons, helium isotopes) and then post-accelerated to a few MeV/nucleon for use in nuclear physics experiments. An overview of radioactive beam development at the HRIBF will be presented, including ion source development, improvements in the ISOL production targets, and a description of techniques to improve the quality (intensity and purity) of the beams. Facilities for radioactive ion beam development include two ion source test facilities, a target/ion source preparation and quality assurance facility, and an in-beam test facility where low intensity production beams are used. A new test facility, the High Power Target Laboratory, will be available later this year. At this facility, high intensity production beams will be available t...
Beckmann, Volker
2012-01-01
This AGN textbook includes phenomena based on new results in the X-Ray domain from new telescopes such as Chandra and XMM Newton not mentioned in any other book. Furthermore, it considers also the Fermi Gamma Ray Space Telescope with its revolutionary advances of unprecedented sensitivity, field of view and all-sky monitoring. Those and other new developments as well as simulations of AGN merging events and formations, enabled through latest super-computing capabilities. The book gives an overview on the current knowledge of the Active Galacitc Nuclei phenomenon. The spectral energy d
Blandford, RD; Woltjer, L
1990-01-01
Starting with this volume, the Lecture Notes of the renowned Advanced Courses of the Swiss Society for Astrophysics and Astronomy will be published annually. In each course, three extensive lectures given by leading experts in their respective fields cover different and essential aspects of the subject. The 20th course, held at Les Diablerets in April 1990, dealt with current research on active galactic nuclei; it represents the most up-to-date views on the subject, presented with particular regard for clarity. The previous courses considered a wide variety of subjects, beginning with ""Theory
International Nuclear Information System (INIS)
The present collection of letters from JINR, Dubna, contains eight separate records on the interaction of high energy Λ6He hypernuclear beams with atomic nuclei, the position-sensitive detector of a high spatial resolution on the basis of a multiwire gas electron multiplier, pseudorapidity hadron density at the LHC energy, high precision laser control of the ATLAS tile-calorimeter module mass production at JINR, a new approach to ECG's features recognition involving neural network, subcriticity of a uranium target enriched in 235U, beam space charge effects in high-current cyclotron injector CI-5, a homogeneous static gravitational field and the principle of equivalence
International Nuclear Information System (INIS)
The present collection of letters from JINR, Dubna, contains six separate records on the DELPHI experiment at LEP, the Fermi-surface dynamics of rotating nuclei, production of large samples of the silica dioxide aerogel in the 37-litre autoclave and test of its optical properties, preliminary radiation resource results on scintillating fibers, a new algorithm for the direct transformation method of time to digital with the high time resolution and development and design of analogue read-out electronics for HADES drift chamber system
Effenberger, M.; Hombach, A; Teis, S.; Mosel, U.
1996-01-01
We calculate the total photoabsorption cross section on nuclei in the energy range from 300 MeV to 1 GeV within the framework of a semi-classical phase space model. Besides medium modifications like Fermi motion and Pauli blocking we focus on the collision broadening of the involved resonances. The resonance contributions to the elementary cross section are fixed by fits to partial wave amplitudes of pion photoproduction. The cross sections for $N \\, R \\to N \\, N$, needed for the calculation ...
The natural radioactivity of the biosphere
International Nuclear Information System (INIS)
Of the approximately 1200 isotopes presently known more than 900 are radioactive. The nuclei of these isotopes are unstable and decay spontaneously emitting ionizing gamma-, alpha- or beta-radiation. The overwhelming majority of known radioactive isotopes have been obtained artificially; only a few are natural. Numerous investigations have shown that many of the natural radioactive isotopes can be grouped into three radioactive families. Each such family is characterized by the existence of one long-lived isotope - the family parent, one gaseous isotope of radon, intermediate radioactive decay products and final stable isotopes of atomic weights 206, 207 and 208. No such generic relationship has been established among the remaining natural radioactive isotopes. The purpose of the book, in contrast to some recent review works, is to present, in addition to a summary of reference data characterizing the radioactivity levels of various components of the biosphere, a description of those phenomena and regularities which will apparently make it possible to understand more completely the basic dynamics of the natural radioactivity of the biosphere and, consequently, contribute to a more correct interpretation of radiation-hygiene in each specific case
Elastic breakup cross sections of well-bound nucleons
Wimmer, K; Gade, A; Tostevin, J A; Baugher, T; Chajecki, Z; Coupland, D; Famiano, M A; Ghosh, T K; Howard, G F Grinyer M E; Kilburn, M; Lynch, W G; Manning, B; Meierbachtol, K; Quarterman, P; Ratkiewicz, A; Sanetullaev, A; Showalter, R H; Stroberg, S R; Tsang, M B; Weisshaar, D; Winkelbauer, J; Winkler, R; Youngs, M
2014-01-01
The 9Be(28Mg,27Na) one-proton removal reaction with a large proton separation energy of Sp(28Mg)=16.79 MeV is studied at intermediate beam energy. Coincidences of the bound 27Na residues with protons and other light charged particles are measured. These data are analyzed to determine the percentage contributions to the proton removal cross section from the elastic and inelastic nucleon removal mechanisms. These deduced contributions are compared with the eikonal reaction model predictions and with the previously measured data for reactions involving the re- moval of more weakly-bound protons from lighter nuclei. The role of transitions of the proton between different bound single-particle configurations upon the elastic breakup cross section is also quantified in this well-bound case. The measured and calculated elastic breakup fractions are found to be in good agreement.
Energy Technology Data Exchange (ETDEWEB)
Warne, L.K.; Merewether, K.O.; Chen, K.C.; Jorgenson, R.E.; Morris, M.E.; Solberg, J.E.; Lewis, J.G. [Sandia National Labs., Albuquerque, NM (United States); Derr, W. [Derr Enterprises, Albuquerque, NM (United States)
1996-07-01
Test data on canonical weapon-like fixtures are used to validate previously developed analytical bounding results. The test fixtures were constructed to simulate (but be slightly worse than) weapon ports of entry but have known geometries (and electrical points of contact). The exterior of the test fixtures exhibited exterior resonant enhancement of the incident fields at the ports of entry with magnitudes equal to those of weapon geometries. The interior consisted of loaded transmission lines adjusted to maximize received energy or voltage but incorporating practical weapon geometrical constraints. New analytical results are also presented for bounding the energies associated with multiple bolt joints and for bounding the exterior resonant enhancement of the exciting fields.
Information, Utility & Bounded Rationality
Ortega, Pedro A
2011-01-01
Perfectly rational decision-makers maximize expected utility, but crucially ignore the resource costs incurred when determining optimal actions. Here we employ an axiomatic framework for bounded rational decision-making based on a thermodynamic interpretation of resource costs as information costs. This leads to a variational "free utility" principle akin to thermodynamical free energy that trades off utility and information costs. We show that bounded optimal control solutions can be derived from this variational principle, which leads in general to stochastic policies. Furthermore, we show that risk-sensitive and robust (minimax) control schemes fall out naturally from this framework if the environment is considered as a bounded rational and perfectly rational opponent, respectively. When resource costs are ignored, the maximum expected utility principle is recovered.
Exposure of nuclear track emulsion to 8He Nuclei at the ACCULINNA separator
International Nuclear Information System (INIS)
At the ACCULINNA separator a nuclear track emulsion is exposed to a beam of radioactive 8He nuclei with energy of 60 MeV and enrichment of about 80%. Measurements of 278 decays of 8He nuclei stopped in the emulsion allow one to evaluate the possibility of α-spectrometry, as well as for the first time to observe a thermal drift of 8He atoms in matter
Ho, L C; Sargent, W L W; Ho, Luis C.; Filippenko, Alexei V.; Sargent, Wallace L. W.
1996-01-01
We describe a new sample of Seyfert nuclei discovered during the course of an optical spectroscopic survey of nearby galaxies. The majority of the objects, many recognized for the first time, have luminosities much lower than those of classical Seyferts and populate the faint end of the AGN luminosity function. A significant fraction of the nuclei emit broad H-alpha emission qualitatively similar to the broad lines seen in classical Seyfert 1 nuclei and QSOs.
Electron scattering for exotic nuclei
Indian Academy of Sciences (India)
Toshimi Suda
2014-11-01
A brand-new electron scattering facility, the SCRIT Electron Scattering Facility, will soon start its operation at RIKEN RI Beam Factory, Japan. This is the world’s first electron scattering facility dedicated to the structure studies of short-lived nuclei. The goal of this facility is to determine the charge density distributions of short-lived exotic nuclei by elastic electron scattering. The first collision between electrons and exotic nuclei will be observed in the year 2014.
Atomic masses of fission product nuclei far from stability
International Nuclear Information System (INIS)
The techniques for measuring fission product masses far from stability are discussed and recent progress in experimental measurements is reviewed. A comparison of new mass values with predictions of 10 mass equations suggests that most theories predict far-from-stability fission product nuclei to be more bound than is found experimentally. A closer look at several isotopic chains is used to identify regions of structural change where mass equations encounter difficulty. 31 references
Synthesis and investigation of superheavy elements - perspectives with radioactive beams
International Nuclear Information System (INIS)
The perspectives for the investigation of heavy and superheavy elements with intense beams of radioactive nuclei available from the new generation of secondary beam facilities in combination with modern experimental developments are the subject of this paper. The nuclear properties of the recently discovered shell nuclei centered at Z=108 and N=164 and predictions on the location of the superheavy region with improved theoretical models will be discussed. (orig.)
International Nuclear Information System (INIS)
This eighth chapter presents the radioactive wastes and waste disposal; classification of radioactive wastes; basis requests of the radioactive waste management; conditions for a radioactive waste disposal; registers and inventories; transport of radioactive wastes from a facility to another and the radioactive waste management plan
Study of the on line radioactive multicharged ion production
International Nuclear Information System (INIS)
This work is directly related to the SPIRAL project (Systeme de Production d'Ions Radioactifs Acceleres en Ligne) which will start at GANIL at the end of 1998. The aim of the thesis was to study the on line radioactive multicharged ion beam production stages, i.e. the production and diffusion of the radioactive nuclei in a thick target, their possible transfer up to an ECR ion source and their ionisation. Production cross sections of radioactive neutron rich nuclei, formed by fragmentation of a heavy ion beam in a thick target, were measured. An external target-ECR source system, dedicated to the radioactive noble gases production, and two internal target-ECR source systems, dedicated to the radioactive condensable element production, were built and tested on the SIRa tests bench (Separateur d'Ions Radioactifs). Different detection configurations were elaborated in order to identify the radioactive nuclei and estimate their production yields. Finally, a new method for measuring the overall efficiency of the separator was developed and allowed to study the diffusion properties of radioactive noble gases in various targets. (author)
International Nuclear Information System (INIS)
Focusing on radioactive waste management and disposal policies in the United Kingdom, Sweden and the Federal Republic of Germany, this book gives a detailed historical account of the policy process in these three countries, and draws out the implications for theory and public policy. This comparative approach underlines how profoundly different the policy process has been in different countries. By comparing the evolution of policy in three countries, fundamental questions about the formation and resolution of technical decisions under uncertainty are clarified. The analysis of nuclear strategy, the politics of nuclear power, and the shifting emphasis of government regulation redefines the issue of radwaste management and sets it at the heat of the current debate about power, the environment and society. The combination of up-to-date technological assessment with an account of the social and political implications of radwaste management makes'Radioactive Waste'particularly useful to students of environmental studies, geography and public administration. (author)
Energy Technology Data Exchange (ETDEWEB)
Anon.
2014-07-15
For any entity involved in radioactive waste management, turning lead into gold means succeeding with minimising the volumes and optimizing the long-term containment of ultimate waste to be disposed of. With this purpose, they perform R and D on different sorting, treatment and disposal technology, as explained by Frederic Plas from Andra (France), Jan Deckers from Belgoprocess (Belgium) and Wilhelm Bollingerfehr from DBE Technology (Germany). (orig.)
International Nuclear Information System (INIS)
For any entity involved in radioactive waste management, turning lead into gold means succeeding with minimising the volumes and optimizing the long-term containment of ultimate waste to be disposed of. With this purpose, they perform R and D on different sorting, treatment and disposal technology, as explained by Frederic Plas from Andra (France), Jan Deckers from Belgoprocess (Belgium) and Wilhelm Bollingerfehr from DBE Technology (Germany). (orig.)
International Nuclear Information System (INIS)
The light krypton isotopes show two minima in their potential energy corresponding to elongated (prolate) and compressed (oblate) quadrupole deformation. Both configuration are almost equally bound and occur within an energy range of less than 1 MeV. Such phenomenon is called shape coexistence. An inversion of the ground state deformation from prolate in Kr78 to oblate in Kr72 with strong mixing of the configurations in Kr74 and Kr76 was proposed based on the systematic of isotopic chain. Coulomb excitation experiments are sensitive to the quadrupole moment. Coulomb excitation experiments of radioactive Kr74 and Kr76 beam were performed at GANIL using the SPIRAL facility and the EXOGAM spectrometer. The analysis of these experiments resulted in a complete description of the transition strength and quadrupole moments of the low-lying states. They establish the prolate character of the ground state and an oblate excited state. A complementary lifetime measurement using a 'plunger' device was also performed. Transition strength in neighboring nuclei were measured using the technique of intermediate energy Coulomb excitation at GANIL. The results on the Se68 nucleus show a sharp change in structure with respects to heavier neighboring nuclei. (author)
Appell, Jürgen; Merentes Díaz, Nelson José
2013-01-01
This monographis a self-contained exposition of the definition and properties of functionsof bounded variation and their various generalizations; the analytical properties of nonlinear composition operators in spaces of such functions; applications to Fourier analysis, nonlinear integral equations, and boundary value problems. The book is written for non-specialists. Every chapter closes with a list of exercises and open problems.
Deformed structure in N = 50 medium mass nuclei
International Nuclear Information System (INIS)
The study of neutron rich nuclei at the drip-line and around closed shells gained momentum with recent advancements of experimental techniques using radioactive ion beams and fission fragment. Fission from fast particles has become an important tool and it has been the richest source of neutron-rich intermediate-mass nuclei. Fission of Uranium and neighbouring nuclei produce two neutron-rich fragments of unequal A ∼ 90 and 140, (besides a few neutrons). As the two fragments proceed to the point of separation they become quite deformed. It is thus essential to study the shapes and microscopic structures of these neutron-rich fragments in ground and excited configurations. In this work, the structures and shapes of 86Kr and 88Sr nuclei have been investigated using angular momentum projected Hartree-Fock (PHF) model. To study the possible structure of the ground band and excited deformed bands for closed shell nuclei, the potential energy surface in HF calculations is analyzed for various mass-quadrupole moments
Interaction of eta mesons with nuclei
Kelkar, N. G.; Khemchandani, K. P.; Upadhyay, N. J.; Jain, B. K.
2013-06-01
Back in the mid-1980s, a new branch of investigation related to the interaction of eta mesons with nuclei came into existence. It started with the theoretical prediction of possible exotic states of eta mesons and nuclei bound by the strong interaction and later developed into an extensive experimental program to search for such unstable states as well as understand the underlying interaction via eta-meson producing reactions. The vast literature of experimental as well as theoretical works that studied various aspects of eta-producing reactions such as the π+n → ηp, pd → 3Heη, p 6Li → 7Be η and γ 3He → η X, to name a few, had but one objective in mind: to understand the eta-nucleon (ηN) and hence the η-nucleus interaction which could explain the production data and confirm the existence of some η-mesic nuclei. In spite of these efforts, there remain uncertainties in the knowledge of the ηN and hence the η-nucleus interaction. Therefore, this review is an attempt to bind together the findings in these works and draw some global and specific conclusions which can be useful for future explorations. The ηN scattering length (which represents the strength of the η-nucleon interaction) using different theoretical models and analyzing the data on η production in pion, photon and proton induced reactions was found to be spread out in a wide range, namely, 0.18 ⩽ ℜe aηN ⩽ 1.03 fm and 0.16 ⩽ ℑm aηN ⩽ 0.49 fm. Theoretical searches of heavy η-mesic nuclei based on η-nucleus optical potentials and lighter ones based on Faddeev type few-body approaches predict the existence of several quasibound and resonant states. Although some hints of η-mesic states such as ^3_{\\eta} He and ^{25}_{\\eta} Mg do exist from previous experiments, the promise of clearer signals for the existence of η-mesic nuclei lies in the experiments to be performed at the J-PARC, MAMI and COSY facilities in the near future. This review is aimed at giving an overall
International Nuclear Information System (INIS)
Experimental indications leading to the thought of a very excited nucleus fragmentation are resumed. Theoretical approaches are briefly described; they are used to explain the phenomenon in showing off they are based on a minimum information principle. This model is based on time dependent Thomas-Fermi calculation which allows the mean field effect description, and with a site-bound percolation model which allows the fluctuation description
Beta decay of polarized nuclei and the decay asymmetry of 8Li
International Nuclear Information System (INIS)
Under certain conditions, it is possible to produce vector-polarized radioactive nuclei in reactions with a polarized projectile and an unpolarized target. Using the intense polarized beams at the University of Wisconsin, the authors have begun a program to study the weak interaction through the beta decay of polarized nuclei produced in this way. Such experiments bear on tests of CVC in light nuclei, sensitive searches for second-class weak currents, and measurements of the weak vector-coupling constant. One may also deduce the values of certain matrix elements. Our effort is presently centering on a study of the energy dependence of the beta-decay asymmetry of 8Li
Isobar Separators for Radioactive Ion Beam Facilities
Energy Technology Data Exchange (ETDEWEB)
Garrett, J D; Wollnik, H
1998-10-05
A radioactive ion beam facility - in short a RIB facility - produces ions of short-lived nuclei and accelerates them to energies of 0.1...10 MeV per nucleon or even higher. In this process it is important that the resulting RIB beams are free from nuclei of neighboring isobars or of neighboring elements. This task requires the production and ionization of the nuclei of interest as well as separating them from all others with a high-mass resolving power and small-mass cross contaminations. When constructing such a facility it also is very important to find ways that allow the accelerated ions to be provided to different experiments at least quasi simultaneously.
Asynchronous Bounded Expected Delay Networks
Bakhshi, Rena; Endrullis, Jörg; Fokkink, Wan; Pang, Jun
2010-01-01
The commonly used asynchronous bounded delay (ABD) network models assume a fixed bound on message delay. We propose a probabilistic network model, called asynchronous bounded expected delay (ABE) model. Instead of a strict bound, the ABE model requires only a bound on the expected message delay. While the conditions of ABD networks restrict the set of possible executions, in ABE networks all asynchronous executions are possible, but executions with extremely long delays are less probable. In ...
On Entropy Bounds and Holography
Halyo, Edi
2009-01-01
We show that the holographic entropy bound for gravitational systems and the Bekenstein entropy bound for nongravitational systems are holographically related. Using the AdS/CFT correspondence, we find that the Bekenstein bound on the boundary is obtained from the holographic bound in the bulk by minimizing the boundary energy with respect the AdS radius or the cosmological constant. This relation may also ameliorate some problems associated with the Bekenstein bound.
Sequential binary decay of highly excited nuclei
International Nuclear Information System (INIS)
The decay of highly excited nuclei is described as a sequence of binary processes involving emission of fragments in their ground, excited-bound and unbound states. Primary together with secondary decay products lead to the final mass distributions. Asymmetric mass splittings involving nucleon emission up to symmetric binary ones are treated according to a generalized Weisskopf evaporation formalism. This procedure is implemented in the Monte-Carlo multi-step statistical model code MECO (Multisequential Evaporation COde). We examine the evolution of the calculated final mass distributions in the decay of a light compound nucleus, as the initial excitation energy increases towards the limits of complete dissociation. Comparisons are made with the predictions of the transition-stage theory, as well as a consistent Weisskopf treatment in which the decay process is described by rate equations for the generation of different fragment species. (author)
Eta-mesic nuclei: Past, present, future
International Nuclear Information System (INIS)
Eta-mesic nucleus or the quasibound nuclear state of an eta (η) meson in a nucleus is caused by strong interaction force alone. This new type of nuclear species, which extends the landscape of nuclear physics, has been extensively studied since its prediction in 1986. We review and analyze in great detail the models of the fundamental η-nucleon interaction leading to the formation of an η-mesic nucleus, the methods used in calculating the properties of a bound η, and the approaches employed in the interpretation of the pertinent experimental data. In view of the successful observation of the η-mesic nucleus 25Mgη and other promising experimental results, future direction in searching for more η-mesic nuclei is suggested
TeV gamma-UHECR anisotropy by decaying nuclei in flight: first neutrino traces?
Fargion, Daniele
2012-01-01
Ultra High Cosmic Rays) made by He-like lightest nuclei might solve the AUGER extragalactic clustering along Cen A. Moreover He like UHECR nuclei cannot arrive from Virgo because the light nuclei fragility and opacity above a few Mpc, explaining the Virgo UHECR absence. UHECR signals are spreading along Cen-A as observed because horizontal galactic arms magnetic fields, bending them on vertical angles. Cen A events by He-like nuclei are deflected as much as the observed clustered ones; proton will be more collimated while heavy (iron) nuclei are too much dispersed. Such a light nuclei UHECR component coexist with the other Auger heavy nuclei and with the Hires nucleon composition. Remaining UHECR spread group may hint for correlations with other gamma (MeV-Al^{26} radioactive) maps, mainly due to galactic SNR sources as Vela pulsar, the brightest, nearest GeV source. Other nearest galactic gamma sources show links with UHECR via TeV correlated maps. We suggest that UHECR are also heavy radioactive galactic nu...
International Nuclear Information System (INIS)
The present collection of letters from JINR, Dubna, contains ten separate records on the properties of the N=82 even-even nuclei, an investigation of the charge collection for strongly irradiated silicon strip detectors of the CMS ECAL preshower, the rate capability of the CSC cathode readout electronics, the timing resolution of cathode strip chambers of the CMS ME1/1 muon station and bunch crossing identification, strengthening and damping of synchrotron oscillations, photoradiation hardness of organic scintillators, as well as on a method of anode wire incident angle calculation of the first muon station (ME1/1) of the Compact Muon Solenoid set-up (CMS), heavy ion studies with CMS HF calorimeter, an investigation of the possibility of developing iodine-containing treatment and prophylactic pharmaceuticals based on blue-green algae Spirulina platensis using neutron activation analysis, a comparison between schemes for heavy ion injection into Nuclotron booster
International Nuclear Information System (INIS)
The present collection of letters from JINR, Dubna, contains nine separate records on the transport of the evanescent electron beam in the vacuum section with plasma disks, determination of ΔΓs from analysis of untagged decays Bs0→J/ψφ by using the method of angular moments, investigation of light nucleus clustering in relativistic multifragmentation processes, secondary fragments of relativistic 22Ne at 4.1 A · GeV/c nuclei in nuclear emulsion, extrapolation of experimental data of accelerated radiation aging to the operation condition of dipole magnet electrical insulation at low dose rates, automatic quality control system of the installed straws into TRT wheels, a new method of fast simulation for a hadron calorimeter response, empirical evidence for relation between threshold effects and neutron strength function as well as on what information can be derived when no events are registered
International Nuclear Information System (INIS)
The present collection of letters from JINR, Dubna, contains seven separate records on the integral representation for structure functions and target mass effects, multiscale properties of DNA primary structure including cross-scale correlations, dissipative evolution of the elementary act, the fine structure of the MT=1 Gamow-Teller resonance in 147gTb→147Gd β+/EC decay, the behaviour of the TVO temperature sensors in the magnetic fields, a fast method for searching for tracks in multilayer drift chambers of HADES spectrometer, a novel approach to particle track etching including surfactant enhanced control of pore morphology, azimuthal correlations of secondary particles in 32S induced interactions with Ag(Br) nuclei at 4.5 GeV/ c/ nucleon
International Nuclear Information System (INIS)
What is the real nature of pulsars? This is essentially a question of the fundamental strong interaction between quarks at low-energy scale and hence of the non-perturbative quantum chromo-dynamics, the solution of which would certainly be meaningful for us to understand one of the seven millennium prize problems (i.e., "Yang-Mills Theory") named by the Clay Mathematical Institute. After a historical note, it is argued here that a pulsar is very similar to an extremely big nucleus, but is a little bit different from the gigantic nucleus speculated 80 years ago by L. Landau. The paper demonstrates the similarity between pulsars and gigantic nuclei from both points of view: the different manifestations of compact stars and the general behavior of the strong interaction. (author)
International Nuclear Information System (INIS)
The applications of skyrmions to the derivation of the nucleon-nucleon force are now over a dozen years old, and this occasion is used to assess the degree of success of the endeavor. A very brief review is given of the use of skyrmions for determining single-baryon properties. Then their use for two-nucleon systems is described, with attention to the use of the product ansatz, the full structure of the lagrangian, baryon resonance admixtures, dilatons, and exact solutions for the B=2 system in order to find the sources of attraction in the central potential. We briefly address possible insights into the behavior of the nucleon in nuclei achieved from the skyrmion approach. (author)
International Nuclear Information System (INIS)
In this talk I discuss properties of hot stellar matter at sub-nuclear densities which is formed in supernova explosions. I emphasize that thermodynamic conditions in this case are rather similar to those created in the laboratory by intermediate-energy heavy-ion collisions. Theoretical methods developed for the interpretation of multi-fragment final states in such reactions can be used also for description of the stellar matter. I present main steps of the statistical approach to the equation of state and nuclear composition, dealing with an ensemble of nuclear species instead of one “average” nucleus. Finally some results of this approach are presented. The emphasis is put on possible formation of heavy and superheavy nuclei. (author)
Electron scattering off nuclei
International Nuclear Information System (INIS)
Two recently developed aspects related to the scattering of electrons off nuclei are presented. On the one hand, a model is introduced which emphasizes the relativistic aspects of the problem in the impulse approximation, by demanding strict maintenance of the algebra of the Poincare group. On the other hand, the second model aims at a more sophisticated description of the nuclear response in the case of collective excitations. Basically, it utilizes the RPA formalism with a new development which enables a more careful treatment of the states in the continuum as is the case for the giant resonances. Applications of both models to the description of elastic scattering, inelastic scattering to discrete levels, giant resonances and the quasi-elastic region are discussed. (Author)
Ayala, A P; Levin, E M
1996-01-01
In this talk we present our detail study ( theory and numbers) [1] on the shadowing corrections to the gluon structure functions for nuclei. Starting from rather contraversial information on the nucleon structure function which is originated by the recent HERA data, we develop the Glauber approach for the gluon density in a nucleus based on Mueller formula [2] and estimate the value of the shadowing corrections in this case. Than we calculate the first corrections to the Glauber approach and show that these corrections are big. Based on this practical observation we suggest the new evolution equation which takes into account the shadowing corrections and solve it. We hope to convince you that the new evolution equation gives a good theoretical tool to treat the shadowing corrections for the gluons density in a nucleus and, therefore, it is able to provide the theoretically reliable initial conditions for the time evolution of the nucleus - nucleus cascade.
Beck, Christian
Following the pioneering discovery of alpha clustering and of molecular resonances, the field of nuclear clustering is today one of those domains of heavy-ion nuclear physics that faces the greatest challenges, yet also contains the greatest opportunities. After many summer schools and workshops, in particular over the last decade, the community of nuclear molecular physicists has decided to collaborate in producing a comprehensive collection of lectures and tutorial reviews covering the field. This third volume follows the successful Lect. Notes Phys. 818 (Vol. 1) and 848 (Vol. 2), and comprises six extensive lectures covering the following topics: - Gamma Rays and Molecular Structure - Faddeev Equation Approach for Three Cluster Nuclear Reactions - Tomography of the Cluster Structure of Light Nuclei Via Relativistic Dissociation - Clustering Effects Within the Dinuclear Model : From Light to Hyper-heavy Molecules in Dynamical Mean-field Approach - Clusterization in Ternary Fission - Clusters in Light N...
Collective excitations in nuclei
Energy Technology Data Exchange (ETDEWEB)
Chomaz, Ph. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France); Collaboration: La Direction des Sciences de la Matiere du CEA (FR); Le Fonds National de la Recherche Scientifique de Belgique (BE)
1998-12-31
The properties of the nucleus cannot be reduced to the properties of its constituents: it is a complex system. The fact that many properties of the nucleus are consequences of the existence of mean-field potential is a manifestation of this complexity. In particular, the nucleons can thus self-organize in collective motions such as giant resonances. Therefore the study of this collective motions is a very good tool to understand the properties of the nucleus itself. The purpose of this article is to stress some aspects of these collective vibrations. We have studied how an ensemble of fermions as the nucleus can self-organize in collective vibrations which are behaving like a gas of bosons in weak interaction. Understanding of these phenomena remains one of the important subjects of actuality in the context of quantal systems in strong interaction. In particular, the study of the states with one or two vibration quanta provides a direct information on the structure of nuclei close to their ground states. Moreover, some collective states appear to be very robust against the onset of chaos. This is the case of the hot giant dipole built on top of a hot nucleus which seems to survive up to rather high temperatures. Their sudden disappearance is still a subject of controversy. It may be that the mean-field and the associated collective states are playing a crucial role also in catastrophic processes such as the phase-transitions. Indeed, when the system is diluted the collective vibrations may become unstable and it seems that these unstable modes provide a natural explanation to the self organization of the system in drops. Finally, considering the diversity of the different structures of exotic nuclei one may expect new vibration types. All these studies are showing the diversity of the collective motions of strongly correlated quantum systems such as the nucleus but many open questions remain to be solved. (authors) 304 refs., 53 figs., 5 tabs.
Collective excitations in nuclei
International Nuclear Information System (INIS)
The properties of the nucleus cannot be reduced to the properties of its constituents: it is a complex system. The fact that many properties of the nucleus are consequences of the existence of mean-field potential is a manifestation of this complexity. In particular, the nucleons can thus self-organize in collective motions such as giant resonances. Therefore the study of this collective motions is a very good tool to understand the properties of the nucleus itself. The purpose of this article is to stress some aspects of these collective vibrations. We have studied how an ensemble of fermions as the nucleus can self-organize in collective vibrations which are behaving like a gas of bosons in weak interaction. Understanding of these phenomena remains one of the important subjects of actuality in the context of quantal systems in strong interaction. In particular, the study of the states with one or two vibration quanta provides a direct information on the structure of nuclei close to their ground states. Moreover, some collective states appear to be very robust against the onset of chaos. This is the case of the hot giant dipole built on top of a hot nucleus which seems to survive up to rather high temperatures. Their sudden disappearance is still a subject of controversy. It may be that the mean-field and the associated collective states are playing a crucial role also in catastrophic processes such as the phase-transitions. Indeed, when the system is diluted the collective vibrations may become unstable and it seems that these unstable modes provide a natural explanation to the self organization of the system in drops. Finally, considering the diversity of the different structures of exotic nuclei one may expect new vibration types. All these studies are showing the diversity of the collective motions of strongly correlated quantum systems such as the nucleus but many open questions remain to be solved. (authors)
Study of -nucleus interaction through the formation of -nucleus bound state
Indian Academy of Sciences (India)
V Jha; B J Roy; A Chatterjee; H Machner
2006-05-01
The question of possible existence of -mesic nuclei is quite intriguing. Answer to this question will deeply enrich our understanding of -nucleus interaction which is not so well-understood. We review the experimental efforts for the search of -mesic nuclei and describe the physics motivation behind it. We present the description of an experiment for the search of -nucleus bound state using the GeV proton beam, currently being performed at COSY.
Directory of Open Access Journals (Sweden)
Holt Roy J.
2016-01-01
Full Text Available Electron scattering at very high Bjorken x from hadrons provides an excellent test of models, has an important role in high energy physics, and from nuclei, provides a window into short range correlations. Light nuclei have a key role because of the relatively well-known nuclear structure. The development of a novel tritium target for Jefferson Lab has led to renewed interest in the mass three system. For example, deep inelastic scattering experiments in the light nuclei provide a powerful means to determine the neutron structure function. The isospin dependence of electron scattering from mass-3 nuclei provide information on short range correlations in nuclei. The program using the new tritium target will be presented along with a summary of other experiments aimed at revealing the large-x structure of the nucleon.
Holt, Roy J.
2016-03-01
Electron scattering at very high Bjorken x from hadrons provides an excellent test of models, has an important role in high energy physics, and from nuclei, provides a window into short range correlations. Light nuclei have a key role because of the relatively well-known nuclear structure. The development of a novel tritium target for Jefferson Lab has led to renewed interest in the mass three system. For example, deep inelastic scattering experiments in the light nuclei provide a powerful means to determine the neutron structure function. The isospin dependence of electron scattering from mass-3 nuclei provide information on short range correlations in nuclei. The program using the new tritium target will be presented along with a summary of other experiments aimed at revealing the large-x structure of the nucleon.
Radioactive ion beam line in Lanzhou
Institute of Scientific and Technical Information of China (English)
詹文龙; 郭忠言; 刘冠华; 党建荣; 何锐荣; 周嗣信; 尹全民; 罗亦孝; 王义芳; 魏宝文; 孙志宇; 肖国青; 王金川; 江山红; 李加兴; 孟祥伟; 张万生; 秦礼军; 王全进
1999-01-01
Radioactive ion beam line in Lanzhou （RIBLL） has been constructed for the production of short-lived radioactive nuclei and studies of exotic nuclei far from the β-stability line. It has been put into operation recently at the National Laboratory of Heavy Ion Accelerator Lanzhou. RIBLL consists of two doubly achromatic parts with a solid acceptance ΔΩ≥6.5 msr, momentum acceptance Δp/p=±5% and maximum magnetic rigidity Bρmax=4.2 Tm. The second part of RIBLL serving as a spectrometer gives an element resolution Z/ΔZ>150 and mass resolution A/ΔA>300. The polarized secondary beams can be obtained by using a swinger dipole magnet to change the incident direction of primary projectile from 0°to 5°. The shortest lift time for secondary beams on RIBLL is less than 1μs. First experiments were performed with neutron rich nuclei for understanding the properties of halo nuclei and exotic nuclear reactions.
Cross-section measurements for radioactive samples
International Nuclear Information System (INIS)
The measurement of (n,p), (n,α) and (n,γ) cross sections for radioactive nuclei is of interest to both nuclear physics and astrophysics. For example, using these reactions, properties of levels in nuclei at high excitation energies, which are difficult or impossible to study using other reactions, can be investigated. Also, reaction rates for both big-bang and stellar nucleosynthesis can be obtained from these measurements. In the past, the large background associated with the sample activity limited these types of measurements to radioisotopes with very long half-lives. The advent of the low-energy, high-intensity neutron source at the Los Alamos Neutron Scattering CEnter (LANSCE) has greatly increased the number of nuclei which can be studied. Examples of (n,p) measurements on samples with half lives as short as fifty-three days will be given. The nuclear physics and astrophysics to be learned from these data will be discussed. Additional difficulties are encountered when making (n,γ) rather than (n,p) or (n,α) measurements. However, with a properly-designed detector, and the high peak neutron intensities now available, (n,γ) measurements can be made for nuclei with half lives as short as several months. Progress on the Los Alamos (n,γ) cross-section measurement program for radioactive samples will be discussed. 39 refs., 7 figs
Photoproduction of Mesons off Light Nuclei
International Nuclear Information System (INIS)
During the last few years, a series of experiments has been done at the ELSA accelerator in Bonn with the Crystal Barrel/TAPS setup and at the MAMI accelerator in Mainz with the Crystal Ball/TAPS setup. Photoproduction of light mesons off the deuteron and 3He-nuclei has been studied in detail. We will report some of the most interesting results.A completely unexpected finding, is the pronounced structure in the excitation function of the γn → nη reaction around 1 GeV, which has no counterpart for the proton. Recent measurements at GRAAL, Sendai, ELSA [1] and MAMI estimate it's width below 50 MeV, which would be extremely narrow for a nucleon resonance at this excitation energy. In the experiment with the 3He target, special attention was given to the threshold behavior of the γHe3 reactions in view of possible indications for the formation of (quasi-)bound η-nucleus states, so-called η-mesic nuclei. A very strong threshold enhancement of coherent η-photoproduction off 3He was found. In a new experiment, this reaction was measured with much better statistical accuracy compared to an earlier experiment at MAMI-B using the TAPS detector [2].
A quark structure of hadrons and nuclei
International Nuclear Information System (INIS)
In this review we look into the recent understanding of mesons, baryons and nuclei as few quark bound states within the framework of quantum chromodynamics (QCD). In particular, we have reviewed our understanding of the nature of confining interaction, the spin - dependence of colour forces and the role of non-perturbative effects in the study of quark forces in the potential model approach. We also give a comparative study of results obtained by several potential models with reference to the experimental data. We find that although the Lorentz nature of confinement and the nature of spin-dependent colour forces have been better understood now, only a partial understanding of these problems are obtained so far. Our study reveals that properties of baryons could be explained by the same potential model which successfully describe the mesons. However, the nuclei require chiral symmetry and non-perturbative methods for their description. We also discuss the relation between constituent, current and dynamical quark masses. We conclude that QCD motivated approaches have shown much success in explaining many results on hadronic and nuclear data. (author). 212 refs, 14 tabs
Hamamoto, Ikuko
2010-01-01
Abstract Examples of the change of neutron shell-structure in both weakly-bound and resonant neutron one-particle levels in nuclei towards the neutron drip line are exhibited. It is shown that the shell-structure change due to the weak binding may lead to the deformation of those nuclei with the neutron numbers N ? 8, 20, 28 and 40, which are known to be magic numbers in stable nuclei. Nuclei in the " island of inversion " are most easily and in a simple manner understood in terms of defor...
DEFF Research Database (Denmark)
Damgård, Ivan Bjerre; Faust, Sebastian; Mukherjee, Pratyay; Venturi, Daniele
Related key attacks (RKAs) are powerful cryptanalytic attacks where an adversary can change the secret key and observe the effect of such changes at the output. The state of the art in RKA security protects against an a-priori unbounded number of certain algebraic induced key relations, e...... bounded tamper and leakage resilient CCA secure public key cryptosystem based on the DDH assumption. We first define a weaker CPA-like security notion that we can instantiate based on DDH, and then we give a general compiler that yields CCA-security with tamper and leakage resilience. This requires a...... public tamper-proof common reference string. Finally, we explain how to boost bounded tampering and leakage resilience (as in 1. and 2. above) to continuous tampering and leakage resilience, in the so-called floppy model where each user has a personal hardware token (containing leak- and tamper...
Garcilazo, H
2016-01-01
We have used realistic local interactions based on the recent update of the strangeness $-2$ Nijmegen ESC08c potential to calculate the bound state problem of the $\\Xi NN$ system in the $(I)J^P=(\\frac{1}{2})\\frac{3}{2}^+$ state. We found that this system presents a deeply bound state lying $13.5$ MeV below the $\\Xi d$ threshold. Since in lowest order, pure S$-$wave configuration, this system can not decay into the open $\\Lambda\\Lambda N$ channel, its decay width is expected to be very small. We have also recalculated the $(I)J^P=(\\frac{3}{2})\\frac{1}{2}^+$ state and we have compared with results of quark-model based potentials.
Petawatt laser absorption bounded
Levy, Matthew C; Tabak, Max; Libby, Stephen B; Baring, Matthew G
2014-01-01
The interaction of petawatt ($10^{15}\\ \\mathrm{W}$) lasers with solid matter forms the basis for advanced scientific applications such as table-top particle accelerators, ultrafast imaging systems and laser fusion. Key metrics for these applications relate to absorption, yet conditions in this regime are so nonlinear that it is often impossible to know the fraction of absorbed light $f$, and even the range of $f$ is unknown. Here using a relativistic Rankine-Hugoniot-like analysis, we show for the first time that $f$ exhibits a theoretical maximum and minimum. These bounds constrain nonlinear absorption mechanisms across the petawatt regime, forbidding high absorption values at low laser power and low absorption values at high laser power. For applications needing to circumvent the absorption bounds, these results will accelerate a shift from solid targets, towards structured and multilayer targets, and lead the development of new materials.
Towards Secure Distance Bounding
Boureanu, Ioana; Mitrokotsa, Aikaterini; Vaudenay, Serge
2013-01-01
Relay attacks (and, more generally, man-in-the-middle attacks) are a serious threat against many access control and payment schemes. In this work, we present distance-bounding protocols, how these can deter relay attacks, and the security models formalizing these protocols. We show several pitfalls making existing protocols insecure (or at least, vulnerable, in some cases). Then, we introduce the SKI protocol which enjoys resistance to all popular attack-models and features provable security....
Kahneman, Daniel
2002-01-01
The work cited by the Nobel committee was done jointly with the late Amos Tversky (1937-1996) during a long and unusually close collaboration. Together, we explored the psychology of intuitive beliefs and choices and examined their bounded rationality. This essay presents a current perspective on the three major topics of our joint work: heuristics of judgment, risky choice, and framing effects. In all three domains we studied intuitions - thoughts and preferences that come to mind quickly an...
KETENCI, Uktu Gorkem; Bremond, Roland; Auberlet, Jean Michel; GRISLIN, Emmanuelle
2010-01-01
There are two kinds of perception : active and passive. This paper is an attempt to take advantage of active perception to improve the agent's perception of relevant information. Through the data filtering capacity, active perception is a useful tool for modeling human-like bounded perception. Using such filters, either the agent or the environment take an active role. We determine several unsolved issues in active perception and do several proposals to implement our concept on the active per...
Banderier, Cyril; Nicodeme, Pierre
2010-01-01
This article tackles the enumeration and asymptotics of directed lattice paths (that are isomorphic to unidimensional paths) of bounded height (walks below one wall, or between two walls, for \\emphany finite set of jumps). Thus, for any lattice paths, we give the generating functions of bridges (``discrete'' Brownian bridges) and reflected bridges (``discrete'' reflected Brownian bridges) of a given height. It is a new success of the ``kernel method'' that the generating functions of such wal...
Reflecting Magnon Bound States
Ahn, C; Rey, S J
2008-01-01
In N=4 super Yang-Mills spin chain, we compute reflection amplitudes of magnon bound-state off giant graviton. We first compute the reflection amplitude off Y=0 brane boundary and compare it with the scattering amplitude between two magnon bound-states in the bulk. We find that analytic structure of the two amplitudes are intimately related each other: the boundary reflection amplitude is a square-root of the bulk scattering amplitude. Using such relation as a guide and taking known results at weak and strong coupling limits as inputs, we find the reflection amplitude of an elementary magnon off Z=0 giant graviton boundary. The reflection phase factor is shown to solve crossing and unitarity relations. We then compute the reflection amplitude of magnon bound-state off the Z=0 brane boundary and observe that its analytic structures are again intimately related to the bulk scattering and the Y=0 boundary reflection amplitudes. We also take dyonic giant magnon limit of these reflection amplitudes and confirm tha...
International Nuclear Information System (INIS)
Here are gathered 1)the decrees (99-686 and 99-687) of the 3 rd of August 1999 relative to the researches on radioactive waste management. A local committee of information and follow-up has to be established on the site of each underground facility. The composition of this committee is determined here (99-686). 3 people will from now on be jointly ordered by the Minister of Economy, Finance and Industry and by the Secretary of State of Industry to conduct a preliminary dialogue for the choice of one or several sites on which previous works should be made before the construction of an underground facility (99-687). They take the opinion of the people's representatives, the associations and the concerned population and inform the Ministers of Environment, Energy and Research of the collected information. 2)the decree of the 3 rd of August 1999 authorizing the 'Agence nationale pour la gestion des dechets radioactifs' (ANDRA) to install and exploit an underground facility located in Bure (Meuse) and intended to study the deep geological deposits where could be stored radioactive wastes. (O.M.)
Monopole transitions in hot nuclei
International Nuclear Information System (INIS)
Monopole transitions can be a signature of shape changing in a hot, pulsating nucleus (the low energy E0 mode) and/or a measure of the compressibility of finite nuclei (GMR, the breathing mode). Experimental information pertaining to GMR is reviewed. Recipes for deducing the incompressibility modules for infinite nuclear matter from data on GMR are discussed. Astrophysical implications are outlined. The first attempts at locating the GMR strength in moderately hot nuclei are described. Prospects for improving the experimental techniques to make an observation of this strength in selected nuclei unambiguous are discussed. (author). 46 refs, 8 figs
Spectroscopy of heavy fissionable nuclei
Indian Academy of Sciences (India)
S K Tandel
2015-09-01
Structural studies of heavy nuclei are quite challenging due to increased competition from fission, particularly at high spins. Nuclei in the actinide region exhibit a variety of interesting phenomena. Recent advances in instrumentation and analysis techniques have made feasible sensitive measurements of nuclei populated with quite low cross-sections. These include isomers and rotational band structures in isotopes of Pu ( = 94) to Rf ( = 104), and octupole correlations in the Th ( = 90) region. The obtained experimental data have provided insights on various aspects like moments of inertia and nucleon alignments at high spins, quasiparticle energies and evolution of quadrupole and octupole collectivity, among others. An overview of some of these results is presented.
Heavy quarkonium production and propagation in nuclei
International Nuclear Information System (INIS)
In the search for the quark-gluon plasma, it has been suggested that the production of charmonium will be suppressed in a quark-gluon plasma because of the screening of the interaction between c and anti c. To extract information on the suppression due to the quark-gluon plasma, it is necessary to study the suppression of J/ψ production by sources different from the quark-gluon plasma. It is therefore useful to examine the mechanism of heavy quarkonium production and its propagation in nuclei. The authors describe a precursor in heavy quarkonium production in terms of a coherent admixture of states of different color, spin, and angular momentum quantum numbers, and obtain the production amplitudes for different quarkonium bound states by projecting out this precursor state onto these bound states. The precursor is absorbed in its passage through a nucleus in a pA reaction, and the total cross section between this precursor with a nucleon can be calculated with the two-gluon model of the Pomeron. Such a description of coherent precursors and their subsequent interactions with nucleons can explain many salient features of J/ψ and ψ' production in pA collisions
International Nuclear Information System (INIS)
The present collection of letters from JINR, Dubna, contains eight separate records on status of 116Cd double β decay study with 116CdWO4 scintillators, new limits on 2β processes in 40Ca and 46Ca by using low radioactive CaF2(Eu) crystal scintillators, the single state dominance in 2νββ-decay transitions to excited 0+ and 2+ final states, present status of the MONOLITH project, technique of neutrino-induced muon detection on the Earth surface, high-sensitive spectrometer of fast neutrons and the results of fast neutron background flux measurements at the gallium-germanium solar neutrino experiment (SAGE), new experimental limits on the electron stability and excitation of nuclear levels in 23Na, 127I and 129Xe induced by the electron decay on the atomic shell and element-loaded organic scintillators for neutron and neutrino physics
International Nuclear Information System (INIS)
The present collection of letters from JINR, Dubna, contains ten separate records on the role of the Coulomb distortion in form-factor calculations for 12C with alpha-clusterization and nucleon-nucleon correlations, optimization of a set-up for the investigation of the light-nuclei spin structure at the internal target of the Nuclotron, precessing deuteron polarization, connection of the parameter estimation quality of maximum likelihood and generalized moments, determination of the total energy QEC for 156Ho(T1/2∼56 min)β+/EC decay using the total absorption γ-ray spectrometer, selection of signal events in the DUBTO experiment, a search for the dineutron in the interaction of neutrons with deuterons, tracking performance of the HERA-B outer tracker PC chambers, construction and manufacture of large size straw-chambers of the COMPASS spectrometer tracking system, as well as on the charge form factor and the nucleon momentum distribution of 24He and their centre-of-mass correction
Collective excitations in nuclei
Energy Technology Data Exchange (ETDEWEB)
Chomaz, Ph
1997-12-31
The properties of the nucleus cannot be reduced to the properties of its constituents: it is a complex system. The fact that many properties of the nucleus are consequences of the existence of mean-field potential is a manifestation of this complexity. In particular the nucleons can thus self-organize in collective motions such as giant resonances. Therefore the study of these collective motions is a very good to understand the properties of the nucleus itself. The purpose of this article was to stress some aspects of these collective vibrations. In particular we have studied how an ensemble of fermions as the nucleus can self-organize in collective vibrations which are behaving like a gas of bosons in weak interaction. The understanding of these phenomena remains one of the important subjects of actually in the context of quantal systems in strong interaction. In particular the study of the states with one or two vibration quanta provides a direct information on the structure if nuclei close to their ground states. (author) 270 refs.
Collective excitations in nuclei
International Nuclear Information System (INIS)
The properties of the nucleus cannot be reduced to the properties of its constituents: it is a complex system. The fact that many properties of the nucleus are consequences of the existence of mean-field potential is a manifestation of this complexity. In particular the nucleons can thus self-organize in collective motions such as giant resonances. Therefore the study of these collective motions is a very good to understand the properties of the nucleus itself. The purpose of this article was to stress some aspects of these collective vibrations. In particular we have studied how an ensemble of fermions as the nucleus can self-organize in collective vibrations which are behaving like a gas of bosons in weak interaction. The understanding of these phenomena remains one of the important subjects of actually in the context of quantal systems in strong interaction. In particular the study of the states with one or two vibration quanta provides a direct information on the structure if nuclei close to their ground states. (author)
International Nuclear Information System (INIS)
In this talk we present our detailed study (theory and numbers) on the shadowing corrections to the gluon structure functions for nuclei. Starting from rather controversial information on the nucleon structure function which is originated by the recent HERA data, we develop the Glauber approach for the gluon density in a nucleus based on Mueller formula and estimate the value of the shadowing corrections in this case. Then we calculate the first corrections to the Glauber approach and show that these corrections are big. Based on this practical observation we suggest the new evolution equation which takes into account the shadowing corrections and solve it. We hope to convince you that the new evolution equation gives a good theoretical tool to treat the shadowing corrections for the gluons density in a nucleus and, therefore, it is able to provide the theoretically reliable initial conditions for the time evolution of the nucleus-nucleus cascade. The initial conditions should be fixed both theoretically and phenomenologically before to attack such complicated problems as the mixture of hard and soft processes in nucleus-nucleus interactions at high energy or the theoretically reliable approach to hadron or/and parton cascades for high energy nucleus-nucleus interaction. 35 refs., 24 figs., 1 tab
Energy Technology Data Exchange (ETDEWEB)
Ayala, A.L. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Inst. de Fisica][Pelotas Univ., RS (Brazil). Inst. de Fisica e Matematica; Ducati, M.B.G. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Inst. de Fisica; Levin, E.M. [Fermi National Accelerator Lab., Batavia, IL (United States)][Nuclear Physics Inst., St. Petersburg (Russian Federation)
1996-10-01
In this talk we present our detailed study (theory and numbers) on the shadowing corrections to the gluon structure functions for nuclei. Starting from rather controversial information on the nucleon structure function which is originated by the recent HERA data, we develop the Glauber approach for the gluon density in a nucleus based on Mueller formula and estimate the value of the shadowing corrections in this case. Then we calculate the first corrections to the Glauber approach and show that these corrections are big. Based on this practical observation we suggest the new evolution equation which takes into account the shadowing corrections and solve it. We hope to convince you that the new evolution equation gives a good theoretical tool to treat the shadowing corrections for the gluons density in a nucleus and, therefore, it is able to provide the theoretically reliable initial conditions for the time evolution of the nucleus-nucleus cascade. The initial conditions should be fixed both theoretically and phenomenologically before to attack such complicated problems as the mixture of hard and soft processes in nucleus-nucleus interactions at high energy or the theoretically reliable approach to hadron or/and parton cascades for high energy nucleus-nucleus interaction. 35 refs., 24 figs., 1 tab.
Cluster radioactivity - status and developments
International Nuclear Information System (INIS)
Cluster radioactivities are intermediate phenomena between fission and alpha decay. The spontaneously emitted light fragment is a small cluster heavier then α particle, by lighter than the lightest fission fragment. Our works unifying the theory of the cold fission, cluster radioactivities, and α decay, as well as other theoretical models and the experimental results have been recently reviewed. Some of the cluster decay modes, like 14 C, 20 O, 23 F, 24,25 Ne, 28-30 Mg, and 32,34 Si, in a region of trans-francium parent nuclei, leading to daughters around 208 Pb, have half-live in good agreement with our predictions within the analytical superasymmetric model. The superconducting spectrometer SOLENO at I.P.N. Orsay has been employed to detect and identify 14 C radioactivity. Its good energy resolution allowed to discover 'fine structure' in the kinetic energy spectrum of 14 C emitted by 223 Ra. It was shown that the transition towards the first excited state of the daughter nucleus is stronger than that to the ground state. The interpretation given by Sheline and Ragnarsson according to which the main spherical component of the deformed parent wave function has a i11/2 character, has been confirmed. An explanation based on the Landau-Zener effect has been recently proposed by Mirea
Maldacena, Juan; Stanford, Douglas
2015-01-01
We conjecture a sharp bound on the rate of growth of chaos in thermal quantum systems with a large number of degrees of freedom. Chaos can be diagnosed using an out-of-time-order correlation function closely related to the commutator of operators separated in time. We conjecture that the influence of chaos on this correlator can develop no faster than exponentially, with Lyapunov exponent $\\lambda_L \\le 2 \\pi k_B T/\\hbar$. We give a precise mathematical argument, based on plausible physical assumptions, establishing this conjecture.
DEFF Research Database (Denmark)
Faupin, Jeremy; Møller, Jacob Schach; Skibsted, Erik
2011-01-01
We study regularity of bound states pertaining to embedded eigenvalues of a self-adjoint operator H, with respect to an auxiliary operator A that is conjugate to H in the sense of Mourre. We work within the framework of singular Mourre theory which enables us to deal with confined massless Pauli......–Fierz models, our primary example, and many-body AC-Stark Hamiltonians. In the simpler context of regular Mourre theory, our results boil down to an improvement of results obtained recently in [8, 9]....
International Nuclear Information System (INIS)
The evaluation of more than 50 official points of measurement for the control of environmental radioactivity in the German Federal Republic showed a marked decrease of activity concentration in the surveyed fields of precipitation, air, water, milk, and humans as compared to 1972. This decrease can be attributed to the stop of above-ground nuclear weapons tests effected in 1963. In 1973, a survey of the environment of nuclear power stations again did not show any significant difference between these regions and others. The mean genetic radiation exposure in the year 1973 is given in a chart. Selected data from different places of measurement give mean values and annual balances of the radionuclides 137Cs and 90Sr for men, women, and children, as well as for cistern water, milk, and hospital food. Finally, a balance of the import and export of radionuclides in 1973 is given. (ORU/AK)
International Nuclear Information System (INIS)
Different techniques for the characterization of radioactive colloids, used in nuclear medicine, have been evaluated and compared. Several radioactive colloids have been characterized in vitro and in vivo and tested experimentally. Colloid biokinetics following interstitial or intravenous injection were evaluated with a scintillation camera technique. Lymphoscintigraphy with a Tc-99-labelled antimony sulphur colloid was performed in 32 patients with malignant melanoma in order to evaluate the technique. Based on the biokinetic results, absorbed doses in tissues and organs were calculated. The function of the reticuloendothelial system has been evaluated in rats after inoculation with tumour cells. Microfiltration and photon correlation spectroscopy were found to be suitable in determining activity-size and particle size distributions, respectively. Maximal lymph node uptake following subcutaneous injection was found to correspond to a colloid particle size between 10 and 50 nm. Lymphoscintigraphy was found to be useful in the study of lymphatic drainage from the primary tumour site in patients with malignant melanoma on the trunk. Quantitative analysis of ilio-inguinal lymph node uptake in patients with malignant melanoma on the lower extremities was, however, found to be of no value for the detection of metastatic disease in lymph nodes. High absorbed doses may be received in lymph nodes (up to 1 mGy/MBq) and at the injection site (about 10 mGy/MBq). In an experimental study it was found that the relative colloid uptake in bone marrow and spleen depended on the total number of intravenously injected particles. This may considerably affect the absorbed dose in these organs. (author)
Tight Bernoulli tail probability bounds
Dzindzalieta, Dainius
2014-01-01
The purpose of the dissertation is to prove universal tight bounds for deviation from the mean probability inequalities for functions of random variables. Universal bounds shows that they are uniform with respect to some class of distributions and quantity of variables and other parameters. The bounds are called tight, if we can construct a sequence of random variables, such that the upper bounds are achieved. Such inequalities are useful for example in insurance mathematics, for constructing...
Bounded Rationality in Transposition Processes
DEFF Research Database (Denmark)
Vollaard, Hans; Martinsen, Dorte Sindbjerg
2014-01-01
concerns the organisation and financing of national healthcare systems. This article applies the perspective of bounded rationality to explain (irregularities in) the timely and correct transposition of EU directives. The cognitive and organisational constraints long posited by the bounded rationality...... bounded rationality is apparent in the transposition processes in these relatively well-organised countries, future transposition studies should devote greater consideration to the bounded rationality perspective....
Novel Bounds on Marginal Probabilities
Mooij, Joris M.; Kappen, Hilbert J
2008-01-01
We derive two related novel bounds on single-variable marginal probability distributions in factor graphs with discrete variables. The first method propagates bounds over a subtree of the factor graph rooted in the variable, and the second method propagates bounds over the self-avoiding walk tree starting at the variable. By construction, both methods not only bound the exact marginal probability distribution of a variable, but also its approximate Belief Propagation marginal (``belief''). Th...
Separable subgroups have bounded packing
Yang, Wen-yuan
2010-01-01
In this note, we prove that separable subgroups have bounded packing in ambient groups. The notion bounded packing was introduced by Hruska-Wise \\cite{HrWi} and in particular, our result confirms a conjecture in \\cite{HrWi} which states each subgroup of a virtually polycyclic group has the bounded packing property.
On bound entanglement assisted distillation
Vedral, V.
1999-01-01
We investigate asymptotic distillation of entanglement in the presence of an unlimited amount of bound entanglement for bi-partite systems. We show that the distillability is still bounded by the relative entropy of entanglement. This offers a strong support to the fact that bound entanglement does not improve distillation of entanglement.
Search for a Possible Spontaneous Emission of Muons from Heavy Nuclei
Giorgini, M.
2010-01-01
A search for an exotic natural radioactivity of lead nuclei, using nuclear emulsion sheets as detector, is described. We discuss the experimental set-up of a test performed at the Gran Sasso National Laboratory (Italy), the event simulation, data analysis and preliminary results.
Model description of photoneutron reaction cross sections on heavy nuclei with small deformation
International Nuclear Information System (INIS)
Method for description of photoneutron reactions cross sections on the nuclei with mass numbers A > 80 is developed. The method proposed may be applied for solving the problems on radioactive isotopes transmutation, as well as in multiple applied and fundamental studies, for which the description of photoneutron cross sections by absence of experimental data is needed
Collisions between complex atomic nuclei
International Nuclear Information System (INIS)
The use of heavy ion accelerators in the study of nuclear structure and states is reviewed. The reactions discussed are the quasielastic reactions in which small amounts of energy and few particles are exchanged between the colliding nuclei. The development of heavy ion accelerators is also discussed, as well as detection equipment. Exotic phenomena, principally the possible existence of superheavy nuclei, are also treated. (JIW)
International Nuclear Information System (INIS)
PANIC is the triennal International Conference on Particles and Nuclei, and judging from the latest PANIC, held in Kyoto from 20-24 April there is no need for panic yet. Faced with two pictures – one of nuclei described in nucleon and meson terms, and another of nucleons containing quarks and gluons – physicists are intrigued to know what new insights from the quark level can tell us about nuclear physics, or vice versa
Synthesis of Superheavy Nuclei in 48CA-INDUCED Reactions
Oganessian, Yu. Ts.; Utyonkov, V. K.; Lobanov, Yu. V.; Abdullin, F. Sh.; Polyakov, A. N.; Sagaidak, R. N.; Shirokovsky, I. V.; Tsyganov, Yu. S.; Voinov, A. A.; Gulbekian, G. G.; Bogomolov, S. L.; Gikal, B. N.; Mezentsev, A. N.; Iliev, S.; Subbotin, V. G.; Sukhov, A. M.; Subotic, K.; Zagrebaev, V. I.; Vostokin, G. K.; Itkis, M. G.; Moody, K. J.; Patin, J. B.; Shaughnessy, D. A.; Stoyer, M. A.; Stoyer, N. J.; Wilk, P. A.; Kenneally, J. M.; Landrum, J. H.; Wild, J. F.; Lougheed, R. W.
2008-11-01
Thirty-four new nuclides with Z = 104-116, 118 and N = 161-177 have been synthesized in the complete-fusion reactions of 238U, 237Np, 242,244Pu, 243Am, 245,248Cm, and 249Cf targets with 48Ca beams. The masses of evaporation residues were identified through measurements of the excitation functions of the xn-evaporation channels and from cross bombardments. The decay properties of the new nuclei agree with those of previously known heavy nuclei and with predictions from different theoretical models. A discussion of self-consistent interpretations of all observed decay chains originating from the parent isotopes 282,283112, 282113, 286-289114, 287,288115, 290-293116, and 294118 is presented. Decay energies and lifetimes of the neutron-rich superheavy nuclei as well as their production cross sections indicate a considerable increase in the stability of nuclei with an increasing number of neutrons, which agrees with the predictions of theoretical models concerning the decisive dependence of the structure and radioactive properties of superheavy elements on their proximity to the nuclear shells with N = 184 and Z = 114.
Coulomb excitation studies of shape coexistence in atomic nuclei
Görgen, Andreas; Korten, Wolfram
2016-02-01
Low-energy Coulomb excitation provides a well-understood means of exciting atomic nuclei and allows measuring electromagnetic moments that can be directly related to the nuclear shape. The availability of radioactive ion beams (RIBs) at energies near the Coulomb barrier has made it possible to study shape coexistence in a variety of short-lived exotic nuclei. This review presents a short overview of the methods related to multi-step Coulomb excitation experiments, followed by a discussion of several examples. The focus is on two mass regions where recent Coulomb excitation experiments have contributed to the quantitative understanding of shape coexistence: nuclei with mass A≈ 70 near the N = Z line and nuclei with A ≈ 100 near neutron number N = 60. Experimental results are summarized and their significance for understanding shape coexistence is discussed. Experimental observables such as quadrupole moments and electromagnetic transition strengths represent furthermore important benchmarks for advancing theoretical nuclear structure models. With several new RIB facilities planned and under construction, Coulomb excitation will remain to be an important tool to extend the studies of nuclear shapes toward more exotic systems, and to obtain a more comprehensive and quantitative understanding of shape coexistence.
Investigation of copper nuclei
International Nuclear Information System (INIS)
An extensive study has been performed on copper isotopes in the mass region A=63-66. The results of a precise measurement are presented on the properties of levels of 64Cu and 66Cu. They were obtained by bombarding the 63Cu and 65Cu nuclei with neutrons. The gamma spectra collected after capture of thermal, 2-keV, 24-keV neutrons have been analysed and combined to give a rather extensive set of precise level energies and gamma transition strengths. From the angular distribution of the gamma rays it is possible to obtain information concerning the angular momentum J of several low-lying states. The level schemes derived from such measurements have been used as a test for calculations in the framework of the shell model. The spectral distributions of eigenstates in 64Cu for different configuration spaces are presented and discussed. In this study the relative importance of configurations with n holes in the 1f7/2 shell with n up to 16, are investigated. It is found that the results strongly depend on the values of the single-particle energies. The results of the spectral-distribution method were utilized for shell-model calculations. From the information obtained from the spectral analysis it was decided to adopt a configuration space which includes up to one hole in the 1f7/2 shell and up to two particles in the 1g9/2 shell. Further, restrictions on seniority and on the coupling of the two particles in the 1g9/2 orbit have been applied and their effects have been studied. It is found that the calculated excitation energies reproduce the measured values in a satisfactory way, but that some of the electromagnetic properties are less well in agreement with experimental data. (Auth.)
The structural evolution in transitional nuclei of mass 80 $\\leq$ A $\\leq$ 132
Bhuyan, M
2015-01-01
In this theoretical study, we report an investigation on the behavior of two neutron separation energy, differential variation of the separation energy and the abnormality in nuclear charge radius along the isotopic and isotonic chains of transition nuclei. We have used relativistic mean field formalism with NL3 and NL3$^*$ forces for this present analysis. The study refers to {\\it even-even} nuclei such as Zr, Mo, Ru and Pd with $N$ = 40$-$ 86, where a rich collective phenomena such as proton radioactivity, cluster or nucleus radioactivity, exotic shapes, {\\it Island of Inversion} and etc. are observed. These non-monotonic aspects over the isotopic chain are mainly correlated with the structural properties like shell/sub-shell closures, shape transition, clustering and magicity etc. In addition to these, we have shown the internal configuration of these nuclei to get a further insight into the reason for these discrepancies.
Structural evolution in transitional nuclei of mass 82 ≤A ≤132
Bhuyan, M.
2015-09-01
In this theoretical study, we report an investigation on the behavior of two-neutron separation energy, a differential variation of the nucleon separation energy, the nuclear charge radii, and the single-particle energy levels along the isotopic chains of transitional nuclei. We have used the relativistic mean-field formalism with NL3 and NL3* forces for this present analysis. The study refers to the even-even nuclei such as Zr, Mo, Ru, and Pd for N =42 -86 , where a rich collective phenomena such as proton radioactivity, cluster or nucleus radioactivity, exotic shapes, island of inversion, etc. are observed. We found that there are few nonmonotonic aspects over the isotopic chain, which are correlated with the structural properties such as shell/subshell closures, the shape transition, clustering, magicity, etc. In addition to these, we have shown the internal configuration of these nuclei to get a further insight into the reason for these discrepancies.
Radioactive beam experiments using the Fragment Mass Analyzer
Energy Technology Data Exchange (ETDEWEB)
Davids, C.N.
1994-04-01
The Fragment Mass Analyzer (FMA) is a recoil mass spectrometer that has many potential applications in experiments with radioactive beams. The FMA can be used for spectroscopic studies of nuclei produced in reactions with radioactive beams. The FMA is also an ideal tool for studying radiative capture reactions of astrophysical interest, using inverse kinematics. The FMA has both mass and energy dispersion, which can be used to efficiently separate the reaction recoils from the primary beam. When used with radioactive beams, the FMA allows the recoils from radiative capture reactions to be detected in a low-background environment.
Turi device for radioactive source transport in the MUK device
International Nuclear Information System (INIS)
The TURI radioactive source transport device for on-line studies with a mass spectrometer in a proton beam is described. This device is a part of the multidetector MUK-device the aim of which is the measurement of the angular correlations and lifetimes observed in radioactive decay of short-lived nuclei (T1/2>0.1 s). The TURY system ensures the velocity of the radioactive target movement 1 cm per 0.25 s, and microcomputer control of experiment the accuracy of the tape stop is 0.15 mm
Spectrin-like proteins in plant nuclei
Ruijter, de N.C.A.; Ketelaar, T.; Blumenthal, S.S.D.; Emons, A.M.C.; Schel, J.H.N.
2000-01-01
We analysed the presence and localization of spectrin-like proteins in nuclei of various plant tissues, using several anti-erythrocyte spectrin antibodies on isolated pea nuclei and nuclei in cells. Western blots of extracted purified pea nuclei show a cross-reactive pair of bands at 220–240 kDa, ty
Expectations and limits to synthesize nuclei with Z ≥ 120
International Nuclear Information System (INIS)
In order to explore the possibilities to synthesize the new superheavy elements with Z=120, 122, 124, 126 some hot-fusion (mass asymmetric) reactions and cold-fusion (less mass asymmetric) reactions are studied. The dynamics of reaction with massive nuclei and the formation probability of heavy and superheavy elements with Z=90-126 in the asymmetric and symmetric reactions are discussed. The systematics of fusion probability PCN and evaporation residue cross section σER in these reactions are presented. Moreover, we explore the possibility of synthesis of superheavy nuclei by the use of reaction with the neutron rich radioactive beam 132Sn, and by symmetric reactions like 136Xe+136Xe and 139,149La+ 139,149La. (author)
$^8$He nuclei stopped in nuclear track emulsion
Artemenkov, D A; Bradnova, V; Golovkov, M S; Gorshkov, A V; Kaminsky, G; Kornegrutsa, N K; Krupko, S A; Mamatkulov, K Z; Kattabekov, R R; Rusakova, V V; Slepnev, R S; Stanoeva, R; Stepantsov, S V; Fomichev, A S; Chudoba, V; Zarubin, P I; Zarubina, I G
2014-01-01
The fragment separator ACCULINNA in the G. N. Flerov Laboratory of Nuclear Reactions of JINR was used to expose a nuclear track emulsion to a beam of radioactive $^{8}$He nuclei of energy of 60 MeV and enrichment of about 80%. Measurements of decays of $^{8}$He nuclei stopped in the emulsion allow one to evaluate possibilities of $\\alpha$-spectrometry and to observe a thermal drift of $^{8}$He atoms in matter. Knowledge of the energy and emission angles of $\\alpha$-particles allows one to derive the energy distribution of $\\alpha$-decays Q$_{2\\alpha}$. The presence of a "tail" of large values Q$_{2\\alpha}$ is established. The physical reason for the appearance of this "tail" in the distribution Q$_{2\\alpha}$ is not clear. Its shape could allow one to verify calculations of spatial structure of nucleon ensembles emerging as $\\alpha$-pairs of decays via the state $^8$Be$_{2+}$.
Directory of Open Access Journals (Sweden)
Charles Swartz
2014-06-01
Full Text Available If λ is a scalar sequence space, a series P Zj in a topological vector space Z is λ multiplier convergent in Z if the series P ∞J =1 tj Zj converges in Z for every t = {tj} ∈ λ-If λ satisfies appropriate conditions, a series in a locally convex space X which is λ multiplier convergent in the weak topology is λ multiplier convergent in the original topology ofthe space (the Orlicz-Pettis Theorem but may fail to be λ multiplier convergent in the strong topology of the space. However, we show under apprpriate conditions on the multiplier space λ that the series will have strongly bounded partial sums.
International Nuclear Information System (INIS)
It discusses radioactive decontamination from the practical point of view with aim of contributions to safety control of radioisotopes. As general knowledges, contamination forms are explained from physical states of solid materials' surfaces and classification of contaminative mechanism are conducted in each contamination form. Furthermore, the decontaminants selcted for each classified contaminative mechanism are indicated from pH-effect and concentration effect. Decontamination on laboratory, using wet method generally as a decontamination technic includes irrigation method by decontaminant solution and scrubbing method. Decontamination of machinery and tools includes scrubbing method and the methods using ultrasonic decontamination equipment and semiautomatic decontamination equipment of which flow-diagram is illustrated. The methods of decontamination of clothing include its disposal or the use of tightly-closed full automatic washing machine. The general irrigation method are indicated as decontamination of skin. Furthermore, neutral cleaning material method for elimination of short-term elapsed contamination and Titanium oxide paste method for elimination of long-term elapsed contamination are explained. (Kanao, N.)
Environmental radioactivity. Measurement and monitoring
International Nuclear Information System (INIS)
The contribution on environmental radioactivity covers the following issues: natural and artificial radioactivity; continuous monitoring of radioactivity; monitoring authorities and measurement; radioactivity in the living environment; radioactivity in food and feeding stuff; radioactivity of game meat and wild-growing mushrooms; radioactivity in mines; radioactivity in the research center Rossendorf.
{gamma}-ray spectroscopy of N = Z nuclei.
Energy Technology Data Exchange (ETDEWEB)
Lister, C. J.
1999-09-10
The use of {gamma}-ray spectroscopy to probe the properties of marginally bound nuclear states has evolved from being a curiosity a decade ago to being the mainstream use for these devices. The key to this success has been the development of ultra-sensitive channel selection techniques which allow the parentage of each emitted y-ray to be established. With these techniques, and the enhanced efficiency of the arrays themselves, the level of sensitivity for nuclear spectroscopy has increased by several orders of magnitude, in some special cases reaching the 10's nanobarns level, 1000 times more sensitive than was possible a decade ago. In this paper the author discusses some recent developments in light nuclear spectroscopy, on nuclei with N = Z, below mass 100. These examples have been chosen to compliment other presentations at this conference which have covered similar experiments in heavier nuclei.
γ-ray spectroscopy of N = Z nuclei
International Nuclear Information System (INIS)
The use of γ-ray spectroscopy to probe the properties of marginally bound nuclear states has evolved from being a curiosity a decade ago to being the mainstream use for these devices. The key to this success has been the development of ultra-sensitive channel selection techniques which allow the parentage of each emitted y-ray to be established. With these techniques, and the enhanced efficiency of the arrays themselves, the level of sensitivity for nuclear spectroscopy has increased by several orders of magnitude, in some special cases reaching the 10's nanobarns level, 1000 times more sensitive than was possible a decade ago. In this paper the author discusses some recent developments in light nuclear spectroscopy, on nuclei with N = Z, below mass 100. These examples have been chosen to compliment other presentations at this conference which have covered similar experiments in heavier nuclei
Unstable nuclei reveal the need for a complete theory of the nucleus
International Nuclear Information System (INIS)
Human knowledge is often biased by limited information, and science is not free from this problem. Nuclear-physics studies have essentially been restricted to stable nuclei that contain almost equal numbers of protons and neutrons. However, we have only recently begun to probe the structure of unstable nuclei, which are very rich in either protons or neutrons, using beams of radioactive nuclei. These studies have revealed a bias in our knowledge of nuclear physics. Now scientists are working hard to formulate a new model that can explain the structure of both stable and unstable nuclei, based on a rigorous many-body theory. In this article the author explains our current knowledge of nuclear physics. (UK)
From heavy nuclei to super-heavy nuclei
International Nuclear Information System (INIS)
The existence of super-heavy nuclei has been predicted nearly fifty years ago. Due to the strong coulomb repulsion, the stabilisation of these nuclei is possible only through shell effects. The reasons for this fragile stability, as well as the theoretical predictions concerning the position of the island of stability are presented in the first part of this lecture. In the second part, experiments and experimental techniques which have been used to synthesize or search for super-heavy elements are described. Spectroscopic studies performed in very heavy elements are presented in the following section. We close this lecture with techniques that are currently being developed in order to reach the superheavy island and to study the structure of very-heavy nuclei. (author)
Studies of Unstable Nuclei with Spin-Polarized Proton Target
Sakaguchi, Satoshi; Uesaka, Tomohiro; Wakui, Takashi; Chebotaryov, Sergey; Kawahara, Tomomi; Kawase, Shoichiro; Milman, Evgeniy; Tang, Tsz Leung; Tateishi, Kenichiro; Teranishi, Takashi
2016-02-01
Roles of spin-dependent interactions in unstable nuclei have been investigated via the direct reaction of radioactive ions with a solid spin-polarized proton target. The target has a unique advantage of a high polarization of 20-30% under low magnetic field of 0.1 T and at a high temperature of 100 K, which allow us to detect recoil protons with good angular resolution. Present status of on-going experimental studies at intermediate energies, such as proton elastic scattering and (p, 2p) knockout reaction, and new physics opportunities expected with low-energy RI beams are overviewed.
Evaluation of Nuclear Fission Barrier Parameters for 17 Nuclei
Institute of Scientific and Technical Information of China (English)
2001-01-01
As well know that modern nuclear installations and applications have reached a high degree of sophistication. The effective safe and economical design of these technologies require detailed and reliable design calculations. The accuracy of these calculations is largely determined by the accuracy of the basic nuclear and atomic input parameters. In order to meet the needs on high energy fission cross section, fission spectra in waste disposal, transmutation, radioactive beams physics and so on, 17 nuclei fission barrier parameters were collected from the literature based on different experiments and
Transport of radioactive substances
International Nuclear Information System (INIS)
The report on the transport of radioactive substances covers the following topics: facts on radioactive materials transport, safety of the transport of radioactive substances, legal regulations and guidelines: a multiform but consistent system, transport of nuclear fuels, safety during the transport of nuclear fuel, future transport of spent fuel elements and high-level radioactive wastes in Germany.
Radioactive Ions for Surface Characterization
2002-01-01
The collaboration has completed a set of pilot experiments with the aim to develop techniques for using radioactive nuclei in surface physics. The first result was a method for thermal deposition of isolated atoms (Cd, In, Rb) on clean metallic surfaces. \\\\ \\\\ Then the diffusion history of deposited Cd and In atoms on two model surfaces, Mo(110) and Pd(111), was followed through the electric field gradients (efg) acting at the probe nuclei as measured with the Perturbed Angular Correlation technique. For Mo(110) a rather simple history of the adatoms was inferred from the experiments: Atoms initially landing at terrace sites diffuse from there to ledges and then to kinks, defects always present at real surfaces. The next stage is desorption from the surface. For Pd a scenario that goes still further was found. Following the kink stage the adatoms get incorporated into ledges and finally into the top surface layer. For all these five sites the efg's could be measured.\\\\ \\\\ In preparation for a further series o...
Bounding approaches to system identification
Norton, John; Piet-Lahanier, Hélène; Walter, Éric
1996-01-01
In response to the growing interest in bounding error approaches, the editors of this volume offer the first collection of papers to describe advances in techniques and applications of bounding of the parameters, or state variables, of uncertain dynamical systems. Contributors explore the application of the bounding approach as an alternative to the probabilistic analysis of such systems, relating its importance to robust control-system design.
Two-body and three-body halo nuclei
Institute of Scientific and Technical Information of China (English)
刘祖华; 张焕乔
2003-01-01
We have extracted the nuclear asymptotic normalization coefficients (ANC) for the virtual transitions B→A+N via some transfer reactions and the radioactive nuclear beam experiments. With these coefficients, root-mean-square (rms) radii for the valence particle in some possible halo nuclei have been calculated. The values of rms radii extracted with ANC approach are nearly model-independent, hence are a good quantity for the investigation of nuclear halo. In addition, we have also calculated the rms radii for the two valence neutrons in some three-body systems in terms of the relationship between the radii of valence particle, core nucleus and nuclear matter. With two conditions for nuclear halo formation, we have examined these extracted rms radii. The results show that 11Be(1/2+, g.s), 12B(1-, 2.621 MeV), 13C(1/2+, 3.089 MeV), 14C(0-, 6.903 MeV), 14C(1-, 6.094 MeV), 15C(1/2+, g.s) and 19C(1/2+, g.s) with the valence particle in the 2s ground or excited state are the neutron halo nuclei, whereas 17F(1/2+, 0.495 MeV) and 21Na(1/2+, 2.423 MeV) are the proton halo nuclei in the excited state. For three-body systems, except the well-established two-neutron halo nuclei 6He and 11Li, 14Be and 17B might be the two-neutron halo nuclei as well.
Photodissociation of neutron deficient nuclei
Energy Technology Data Exchange (ETDEWEB)
Sonnabend, K.; Babilon, M.; Hasper, J.; Mueller, S.; Zarza, M.; Zilges, A. [TU Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany)
2006-03-15
The knowledge of the cross sections for photodissociation reactions like e.g. ({gamma}, n) of neutron deficient nuclei is of crucial interest for network calculations predicting the abundances of the so-called p nuclei. However, only single cross sections have been measured up to now, i.e., one has to rely nearly fully on theoretical predictions. While the cross sections of stable isotopes are accessible by experiments using real photons, the bulk of the involved reactions starts from unstable nuclei. Coulomb dissociation (CD) experiments in inverse kinematics might be a key to expand the experimental database for p-process network calculations. The approach to test the accuracy of the CD method is explained. (orig.)
Photodissociation of neutron deficient nuclei
Sonnabend, K.; Babilon, M.; Hasper, J.; Müller, S.; Zarza, M.; Zilges, A.
2006-03-01
The knowledge of the cross sections for photodissociation reactions like e.g. (γ, n) of neutron deficient nuclei is of crucial interest for network calculations predicting the abundances of the so-called p nuclei. However, only single cross sections have been measured up to now, i.e., one has to rely nearly fully on theoretical predictions. While the cross sections of stable isotopes are accessible by experiments using real photons, the bulk of the involved reactions starts from unstable nuclei. Coulomb dissociation (CD) experiments in inverse kinematics might be a key to expand the experimental database for p-process network calculations. The approach to test the accuracy of the CD method is explained.
Theoretical models for exotic nuclei
Energy Technology Data Exchange (ETDEWEB)
Sagawa, Hiroyuki [RIKEN Nishina Center, Saitama (Japan); University of Aizu, Center for Mathematics and Physics, Fukushima (Japan); Hagino, Kouichi [Tohoku University, Department of Physics, Sendai (Japan); Tohoku University, Research Center for Electron Photon Science, Sendai (Japan); National Astronomical Observatory of Japan, Tokyo (Japan)
2015-08-15
We review various theoretical models which have been used to study the properties of the ground state and excited states of nuclei close to and beyond the neutron and proton drip lines. The validity and limitations of these models are discussed with applications to recent experimental findings such as di-neutron correlations in Borromian nuclei, the soft dipole excitations, direct two-neutron and two-proton decays, and odd-even staggerings of reaction cross sections. The role of isoscalar spin-triplet pairing interaction is also pointed out in the low-lying energy spectra as well as the spin- and isospin-dependent decay rates for N = Z and N = Z + 2 nuclei with mass A < 60. A characteristic feature of the Coulomb energy displacement of the Borromian nucleus {sup 11}Li is discussed in connection to the energies of isobaric analogue states (IAS) of T = 5/2 multiples in the A = 11 systems. (orig.)
Direct Neutron Capture for Magic-Shell Nuclei
Krausmann, E.; Balogh, W.; Oberhummer, H.; Rauscher, T.; Kratz, K.-L.; Ziegert, W.
1995-01-01
In neutron capture for magic--shell nuclei the direct reaction mechanism can be important and may even dominate. As an example we investigated the reaction $^{48}$Ca(n,$\\gamma)^{49}$Ca for projectile energies below 250\\,keV in a direct capture model using the folding procedure for optical and bound state potentials. The obtained theoretical cross sections are in agreement with the experimental data showing the dominance of the direct reaction mechanism in this case. The above method was also ...
Spontaneous fission of superheavy nuclei
Indian Academy of Sciences (India)
R A Gherghescu; D N Poenaru
2015-09-01
The macroscopic–microscopic method is extended to calculate the deformation energy and penetrability for binary nuclear configurations typical for fission processes. The deformed two-centre shell model is used to obtain single-particle energy levels for the transition region of two partially overlapped daughter and emitted fragment nuclei. The macroscopic part is obtained using the Yukawa-plus-exponential potential. The microscopic shell and pairing corrections are obtained using the Strutinsky and BCS approaches and the cranking formulae yield the inertia tensor. Finally, the WKB method is used to calculate penetrabilities and spontaneous fission half-lives. Calculations are performed for the decay of 282,292120 nuclei.
International Symposium on Exotic Nuclei
Sobolev, Yu G; EXON-2014
2015-01-01
The production and the properties of nuclei in extreme conditions, such as high isospin, temperature, angular momenta, large deformations etc., have become the subject of detailed investigations in all scientific centers. The main topics discussed at the Symposium were: Synthesis and Properties of Exotic Nuclei; Superheavy Elements; Rare Processes, Nuclear Reactions, Fission and Decays; Experimental Facilities and Scientific Projects. This book provides a comprehensive overview of the newest results of the investigations in the main scientific centers such as GSI (Darmstadt, Germany), GANIL (Caen, France), RIKEN (Wako-shi, Japan), MSU (Michigan, USA), and JINR (Dubna, Russia).
Coulomb displacement energies in nuclei
International Nuclear Information System (INIS)
In the present work the positions of the isobaric analog resonances (IAR) are calculated using the HF-TDA theory with a complete proton particle-neutron hole basis. The important feature of this approach is the fact that the HF potential and the particle-hole interaction used in the TDA are derived from the same two-body interactions. In this theroy all the higher order effects are taken into account in one consistent framework. The calculations are performed for several N > Z, closed shell nuclei. For these nuclei good agreement between the experimental and theoretical excitation energies of the IAR is obtained. (orig.)
Accardi, Alberto
2016-01-01
I review recent progress in the extraction of unpolarized parton distributions in the proton and in nuclei from a unified point of view that highlights how the interplay between high energy particle physics and lower energy nuclear physics can be of mutual benefit to either field. Areas of overlap range from the search for physics beyond the standard model at the LHC, to the study of the non perturbative structure of nucleons and the emergence of nuclei from quark and gluon degrees of freedom, to the interaction of colored probes in a cold nuclear medium.
Nuclei, hadrons, and elementary particles
International Nuclear Information System (INIS)
This book is a short introduction to the physics of the nuclei, hadrons, and elementary particles for students of physics. Important facts and model imaginations on the structure, the decay, and the scattering of nuclei, the 'zoology' of the hadrons and basic facts of hadronic scattering processes, a short introduction to quantum electrodynamics and quantum chromodynamics and the most important processes of lepton and parton physics, as well as the current-current approach of weak interactions and the Glashow-Weinberg-Salam theory are presented. (orig.) With 153 figs., 10 tabs
Neutron scattering on deformed nuclei
International Nuclear Information System (INIS)
Measurements of neutron elastic and inelastic differential cross sections around 14 MeV for 9Be, C, 181Ta, 232Th, 238U and 239Pu have been analyzed using a coupled channel (CC) formalism for deformed nuclei and phenomenological global optical model potentials (OMP). For the actinide targets these results are compared with the predictions of a semi-microscopic calculation using Jeukenne, Lejeune and Mahaux (JLM) microscopic OMP and a deformed ground state nuclear density. The overall agreement between calculations and the measurements is reasonable good even for the very light nuclei, where the quality of the fits is better than those obtained with spherical OMP
Octupole shapes in heavy nuclei
International Nuclear Information System (INIS)
Theoretical calculations and measurements show the presence of strong octupole correlations in thecyround states and low-lying states of odd-mass and odd-odd nuclei in the RaPa region. Evidence for octupole correlations is provided by the observation of parity doublets and reductions in M1 matrix elements, decoupling parameters, and Coriolis matrix elements Involving high-j states. Enhancement of E1 transition rates has also been observed for some of the octupole deformed nuclei. The most convincing argument for octupole deformation is provided by the similarities of the reduced alpha decay rates to the two members of parity doublets
Nuclear magnetic and quadrupole moments for nuclear structure research on exotic nuclei
Neyens, G
2003-01-01
One of the key issues in current nuclear physics research is to investigate the properties of so-called 'exotic nuclei' and of 'exotic nuclear structures'. Exotic nuclei are nuclei with a proton-to-neutron ratio that is very different from the proton-to-neutron ratio in stable nuclei (a technical term related to this ratio is the 'isospin'). We define exotic nuclear structures as excitation modes of nuclei that have a very different structure than the structure (or shape) of the nuclear ground state. By putting the nucleons in a nucleus to extreme conditions of isospin and excitation energy one can investigate details of one of the four basic forces in nature: the strong force which binds the nucleons together to form a bound nucleus. While the basic properties of the strong nucleon-nucleon interaction are known from investigating the properties of nuclei near the 'valley of stability', recent developments in the study of exotic nuclei have demonstrated that specific properties of the strong interaction, such...
History of radioactivity. Geschichte der Radioaktivitaet
Energy Technology Data Exchange (ETDEWEB)
Minder, W.
1981-01-01
The author describes the historical development of the physics of atoms and nuclei. After a consideration of the ancient Greek philosophy concerning atoms the behaviour of gases is discussed with regards to statistical mechanics. Then the developement of chemistry from alchemy is described. Thereafter the early studies of gas discharges are described with regards to the electronic structure of atoms. In this connection the periodic system of elements is considered. Then the detection of the ..cap alpha..-radiation of Uranium by Becquerel and the detections of M. and P. Curie are described. Thereafter the radiactive decay of nuclei is discussed. Then a popular introduction into nuclear structure is given with special regards to artificial radioactivity and nuclear fission. Finally nuclear reactors, the atomic bombs, applications of radionuclides, and problems of radiation protection are described.
Folding model analysis of alpha radioactivity
Basu, D N
2003-01-01
Radioactive decay of nuclei via emission of $\\alpha$ particles has been studied theoretically in the framework of a superasymmetric fission model using the double folding (DF) procedure for obtaining the $\\alpha$-nucleus interaction potential. The DF nuclear potential has been obtained by folding in the density distribution functions of the $\\alpha$ nucleus and the daughter nucleus with a realistic effective interaction. The M3Y effective interaction has been used for calculating the nuclear interaction potential which has been supplemented by a zero-range pseudo-potential for exchange along with the density dependence. The nuclear microscopic $\\alpha$-nucleus potential thus obtained has been used along with the Coulomb interaction potential to calculate the action integral within the WKB approximation. This subsequently yields microscopic calculations for the half lives of $\\alpha$ decays of nuclei. The density dependence and the exchange effects have not been found to be very significant. These calculations...
Exotic nuclei with charm and bottom ﬂavor
Directory of Open Access Journals (Sweden)
Yasui S.
2010-04-01
Full Text Available We discuss the possibility of existence of exotic nuclei containing charm and bottom mesons. We study the interaction between $ar{D}$ (B mesons and nucleons from view of heavy quark symmetry, and derive the one pion exchange potentials. We apply these potentials to the two body system of $ar{D}$ (B meson and nucleon N , and ﬁnd there are possible stable bound states with spin JP = 1/2− and isospin I = 0. We ﬁnd that the tensor interaction mixing $ar{D}$N and $ar{D}$*N (BN and B*N plays an important role. We also qualitatively discuss the possible bound states of $ar{D}$ (B meson and two nucleons.
Microscopic theory of light exotic nuclei. Shell Models Embedded in the Continuum
International Nuclear Information System (INIS)
The recent advances in experimental nuclear physics make it possible to study nuclear systems far from the beta stability line. The discovery of new phenomena, like halos or neutron skins, requires the development of new theoretical models which enable to study these systems. The first part of this work is devoted to the development and the applications of the Shell Model Embedded in the Continuum (SMEC). This new formalism allows to take into account the correlations between the bound and scattering states of loosely bound nuclei. SMEC is applied here to the study of the spectroscopy of the Mirror nuclei 8B-8Li and 17F-17O. It can also be used to calculate the cross sections of the elastic scattering, the Coulomb breakup processes and the radiative n,p capture processes. The results concerning the reactions of astrophysical interest: 18O(p, γ)17F and 7Be(p, γ)8B, are discussed in details. This last reaction is very important because the disintegration of 8B is the main source of High energy neutrinos in the sun. The second part of this work is related to the analysis of pairing interaction for weakly bound nuclei. We have developed a new approach, based on the Hartree-Fock-Bogolyubov (HFB) theory, that allows to study the pairing correlations between bound and scattering states, both resonant and not resonant ones. The 'particle-hole' potential is replaced by a model potential for which the solutions are analytically known. This method allows to analyse the effect of pairing on bound and resonant states, independently of their energy position. We have clearly demonstrated that the non-resonant continuum plays a crucial role in the loosely bound nuclei and that solving the HFB equations in the coordinate space is the only method that permits to treat this problem correctly. (author)
Quarkonium-nucleus bound states from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Beane, S. R. [Univ. of Washington, Seattle, WA (United States); Chang, E. [Univ. of Washington, Seattle, WA (United States); Cohen, S. D. [Univ. of Washington, Seattle, WA (United States); Detmold, W. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Lin, H. -W. [Univ. of Washington, Seattle, WA (United States); Orginos, K. [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Parreño, A. [Univ., de Barcelona, Marti Franques (Spain); Savage, M. J. [Univ. of Washington, Seattle, WA (United States)
2015-06-11
Quarkonium-nucleus systems are composed of two interacting hadronic states without common valence quarks, which interact primarily through multi-gluon exchanges, realizing a color van der Waals force. We present lattice QCD calculations of the interactions of strange and charm quarkonia with light nuclei. Both the strangeonium-nucleus and charmonium-nucleus systems are found to be relatively deeply bound when the masses of the three light quarks are set equal to that of the physical strange quark. Extrapolation of these results to the physical light-quark masses suggests that the binding energy of charmonium to nuclear matter is B < 40 MeV.
Shell-model description of weakly bound and unbound nuclear states
International Nuclear Information System (INIS)
A consistent description of weakly bound and unbound nuclei requires an accurate description of the particle continuum properties when carrying out multiconfiguration mixing. This is the domain of the Gamow Shell Model (GSM) which is the multiconfigurational shell model in the complex k-plane formulated using a complete Berggren ensemble representing bound single-particle (s.p.) states, s.p. resonances, and non-resonant complex energy continuum states. We discuss the salient features of effective interactions in weakly bound systems and show selected applications of the GSM formalism to p-shell nuclei. Finally, a development of the new non-perturbative scheme based on Density Matrix Renormalization Group methods to select the most significant continuum configurations in GSM calculations is discussed shortly. (orig.)
International Nuclear Information System (INIS)
Coulomb excitation is a very precise tool to measure excitation probabilities and provide insight on the collectivity of nuclear excitations and in particular on nuclear shapes. In the last few years radioactive ion beam facilities such as HRIBF opened unique opportunities to explore the structure of nuclei in the regions near the doubly magic nuclei 78Ni (Z=28 and N=50) and 132Sn (Z=50 and N=82). For this purpose we have developed specialized methods and instrumentation to measure various observables. There is also the opportunity to perform precision experiments with stable beams using exactly the same state-of-the-art instrumentation and techniques as with their radioactive ion beam counterpart. I describe some of the recent efforts at HRIBF to do more precise measurements using particle-gamma techniques.
Bounds for Asian basket options
Deelstra, Griselda; Diallo, Ibrahima; Vanmaele, Michèle
2008-09-01
In this paper we propose pricing bounds for European-style discrete arithmetic Asian basket options in a Black and Scholes framework. We start from methods used for basket options and Asian options. First, we use the general approach for deriving upper and lower bounds for stop-loss premia of sums of non-independent random variables as in Kaas et al. [Upper and lower bounds for sums of random variables, Insurance Math. Econom. 27 (2000) 151-168] or Dhaene et al. [The concept of comonotonicity in actuarial science and finance: theory, Insurance Math. Econom. 31(1) (2002) 3-33]. We generalize the methods in Deelstra et al. [Pricing of arithmetic basket options by conditioning, Insurance Math. Econom. 34 (2004) 55-57] and Vanmaele et al. [Bounds for the price of discrete sampled arithmetic Asian options, J. Comput. Appl. Math. 185(1) (2006) 51-90]. Afterwards we show how to derive an analytical closed-form expression for a lower bound in the non-comonotonic case. Finally, we derive upper bounds for Asian basket options by applying techniques as in Thompson [Fast narrow bounds on the value of Asian options, Working Paper, University of Cambridge, 1999] and Lord [Partially exact and bounded approximations for arithmetic Asian options, J. Comput. Finance 10 (2) (2006) 1-52]. Numerical results are included and on the basis of our numerical tests, we explain which method we recommend depending on moneyness and time-to-maturity.
Institute of Scientific and Technical Information of China (English)
LIU Li-Guo; TIAN Cheng-Lin; CHEN Ping-Xing; YUAN Nai-Chang
2009-01-01
We derive an analytical lower bound on the concurrence for bipartite quantum systems with an improved computable cross norm or realignment criterion and an improved positive partial transpose criterion respectively.Furthermore we demonstrate that our bound is better than that obtained from the local uncertainty relations criterion with optimal local orthogonal observables which is known as one of the best estimations of concurrence.
International Nuclear Information System (INIS)
The possibility of connecting apparently different descriptions of quarks in nuclei has already been shown. The authors pursue the consequences of this 'duality' for flavour-singlet distributions. An interesting possibility is that nuclear pions may have unusual quark-gluon substructure. Indeed, pions in general could be relatively 'rich' in glue. (author)
Magnetic shift of magic nuclei
International Nuclear Information System (INIS)
The shell effect of nuclei in strong magnetic fields associated with magnetars' is considered within the shell model. It is demonstrated that the magnetic field gives rise to a change of the phase in shell-oscillations of nuclear masses. The nuclear magic numbers of the iron region are shifted significantly towards smaller mass numbers. (author)
Fission dynamics of hot nuclei
Indian Academy of Sciences (India)
Santanu Pal; Jhilam Sadhukhan
2014-04-01
Experimental evidence accumulated during the last two decades indicates that the fission of excited heavy nuclei involves a dissipative dynamical process. We shall briefly review the relevant dynamical model, namely the Langevin equations for fission. Statistical model predictions using the Kramers’ fission width will also be discussed.
Low energy + scattering on = nuclei
Indian Academy of Sciences (India)
Swapan Das; Arun K Jain
2003-11-01
The data for the total cross-section of + scattering on various nuclei have been analysed in the Glauber multiple scattering theory. Energy-dependent +-nucleus optical potential is generated using the forward +-nucleon scattering amplitude and the nuclear density distribution. Along with this, the calculated total +-nucleus cross-sections using the effective +-nucleon cross-section inside the nucleus are also presented.
International Nuclear Information System (INIS)
The application of the Skyrme model to nuclear physics is discussed. A new approach is presented in which nuclei are identified with static soliton solutions in the appropriate topological sector. When this approach is applied to the deuteron, it yields automatically the correct spin, isospin, and parity quantum numbers. 4 refs
Octupole correlation effects in nuclei
International Nuclear Information System (INIS)
Octupole correlation effects in nuclei are discussed from the point of view of many-body wavefunctions as well as mean-field methods. The light actinides, where octupole effects are largest, are considered in detail. Comparisons of theory and experiment are made for energy splittings of parity doublets; E1 transition matrix elements and one-nucleon transfer reactions
Fission Dynamics of Compound Nuclei
Iwata, Yoritaka; Heinz, Sophia
2012-01-01
Collisions between $^{248}$Cm and $^{48}$Ca are systematically investigated by time-dependent density functional calculations with evaporation prescription. Depending on the incident energy and impact parameter, fusion, deep-inelastic and quasi-fission events are expected to appear. In this paper, possible fission dynamics of compound nuclei is presented.
Percolation and multifragmentation of nuclei
International Nuclear Information System (INIS)
A method to build the 'cold' nuclei as percolation clusters is suggested. Within the framework of definite assumptions of the character of nucleon-nucleon couplings breaking resulting from the nuclear reactions as description of the multifragmentation process in the hadron-nucleus and nucleus-nucleus reactions at high energies is obtained. 19 refs.; 6 figs
Chiral Electroweak Currents in Nuclei
Riska, D O
2016-01-01
The development of the chiral dynamics based description of nuclear electroweak currents is reviewed. Gerald E. (Gerry) Brown's role in basing theoretical nuclear physics on chiral Lagrangians is emphasized. Illustrative examples of the successful description of electroweak observables of light nuclei obtained from chiral effective field theory are presented.
Static multipole deformations in nuclei
International Nuclear Information System (INIS)
The physics of static multipole deformations in nuclei is reviewed. Nuclear static moments result from the delicate balance between the vibronic Jahn-Teller interaction (particle-vibration coupling) and the residual interaction (pairing force). Examples of various permanent nuclear deformations are discussed
Neutron Capture Experiments on Unstable Nuclei
International Nuclear Information System (INIS)
The overall objective of this project is the measurement of neutron capture cross sections of importance to stewardship science and astrophysical modeling of nucleosynthesis, while at the same time helping to train the next generation of scientists with expertise relevant to U.S. national nuclear security missions and to stewardship science. A primary objective of this project is to study neutron capture cross sections for various stable and unstable isotopes that will contribute to the Science Based Stockpile Stewardship (SBSS) program by providing improved data for modeling and interpretation of nuclear device performance. Much of the information obtained will also be important in astrophysical modeling of nucleosynthesis. Measurements of these neutron capture cross sections are being conducted in collaboration with researchers at the Los Alamos Neutron Science Center (LANSCE) facility using the unique Detector for Advanced Neutron Capture Experiments (DANCE). In our early discussions with the DANCE group, decisions were made on the first cross sections to be measured and how our expertise in target preparation, radiochemical separations chemistry, and data analysis could best be applied. The initial emphasis of the project was on preparing suitable targets of both natural and separated stable europium isotopes in preparation for the ultimate goal of preparing a sufficiently large target of radioactive 155Eu (t1/2 = 4.7 years) and other radioactive and stable species for neutron cross-section measurements at DANCE. Our Annual Report, ''Neutron Capture Experiments on Unstable Nuclei'' by J. M. Schwantes, R. Sudowe, C. M. Folden III, H. Nitsche, and D. C. Hoffman, submitted to NNSA in December 2003, gives details about the initial considerations and scope of the project. During the current reporting period, electroplated targets of natural Eu together with valuable, stable, and isotopically pure 151Eu and 153Eu, and isotopically separated 154Sm were measured for
Four-body correlations in heavy nuclei
International Nuclear Information System (INIS)
The origin of four-body correlations in heavy nuclei is studied. It is found that the physical picture for this phenomenon can be different in heavy and light nuclei. An application to the /sup 208/Pb region is made
Direct Detection of Dark Matter Bound to the Earth
Catena, Riccardo
2016-01-01
We study the properties and direct detection prospects of an as of yet neglected population of dark matter (DM) particles moving in orbits gravitationally bound to the Earth. This DM population is expected to form via scattering by nuclei in the Earth's interior. We compute fluxes and nuclear recoil energy spectra expected at direct detection experiments for the new DM population considering detectors with and without directional sensitivity, and different types of target materials and DM-nucleon interactions. DM particles bound to the Earth manifest as a prominent rise in the low-energy part of the observed nuclear recoil energy spectrum. Ultra-low threshold energies of about 1 eV are needed to resolve this effect. Its shape is independent of the DM-nucleus scattering cross-section normalisation.
Coulomb excitation of exotic nuclei at REX-ISOLDE with MINIBALL
International Nuclear Information System (INIS)
In this contribution nuclear structure studies with post-accelerated radioactive ion beams from the REX-ISOLDE facility at CERN are presented. The method employed is γ-ray spectroscopy with the MINIBALL array following 'safe' Coulomb excitation. The highly efficient MINIBALL array consists of 8 triple clusters of six-fold segmented HPGe detectors. Recent results concerning the investigation of nuclear shapes are presented and discussed. These results include studies on deformation in 94,96Kr nuclei, on quadrupole collectivity around 132Sn, on shape coexistence in neutron-deficient Hg, Po and Rn isotopes, and on octupole states in 122Rn and 224Ra nuclei
Next-Generation Facilities for the Research with Exotic Nuclei and Super-Heavy Elements
Scheidenberger, Christoph
The present decade is governed by the construction and advent of new, dedicated radioactive beam facilities in several continents. These forthcoming facilities will allow to explore hitherto unknown territory in the chart of nuclei and to study new phenomena, effects and structural features in exotic nuclei. Increasing intensity of primary and secondary beams, selective and efficient separation techniques adapted to the reaction mechanisms and production methods, and sensitive instruments and detectors are the key prerequisites for new findings and exploratory measurements. The new facilities and instruments will enhance the science potential tremendously.
Mass Measurement of Short-lived Nuclei at HIRFL-CSR
Wang, M.; Xu, H. S.; Zhang, Y. H.; Tu, X. L.; Litvinov, Yu. A.
2014-03-01
Four campaigns of mass measurements for short-lived nuclei have been conducted using an isochronous mass spectrometry (IMS) technique at HIRFL-CSR(Cooler Storage Ring) in Lanzhou. The radioactive nuclei were produced by projectile fragmentation and injected into the experimental storage ring CSRe. Revolution times of the ions stored in the CSRe were measured from which masses of 78Kr, 58Ni, 86Kr and 112Sn fragments have been determined with a relative uncertainty of about 10-6-10-7. The experimental results are presented and their impacts on nucleosynthesis in the rp process and nuclear structure are discussed.
Secondary beams and the synthesis of exotic nuclei
International Nuclear Information System (INIS)
With the advent of modern fast cycling synchrotrons capable of delivering high intensity heavy ion beams up to uranium, the production of secondary radioactive ion beams (RIBs) with sufficient intensity has become feasible. The basic production mechanism is the fragmentation of near relativistic heavy ion beams on light targets. The physical facts underlying the efficient conversion of stable beams into RIBs are: (1) at beam energies of several 100 MeV/A thick conversion targets (1-10 g/cm2) can be used, which, for nuclei near stability, convert on the order of .1 to 1% of the primary beam into secondary beams, (2) the secondary beams are emitted into a narrow phase space (small transverse and longitudinal emittances), and (3) these emittances are of the correct magnitude to match the acceptances of suitably designed storage accumulator rings. From a primarily experimental point of view experiments with RIBs can be divided into three categories: (1) Experiments that measure properties of the secondary beams as such, like masses, Q-values, and magnetic moments, β-decay studies of implanted exotic nuclei, and Moessbauer spectroscopy. (2) Experiments that use external targets. This includes the synthesis of exotic nuclei with neutron- or proton-rich beams, implantation of RIBs for tracer studies in solid state physics, and biomedical applications. Many well established experimental techniques can be used in these two categories, while (3), the use of internal targets, represents in many ways new challenges to experimenters in nuclear and atomic physics
Cluster Structure of Atomic Nuclei and Nucleosynthesis
International Nuclear Information System (INIS)
It is shown that the static and dynamic α-cluster models of nuclei, which describe an elastic electron scattering, photodisintegration reactions and pion double charge exchange reactions on α-cluster nuclei are in favor of the α-capture and α process of the formation of these nuclei
Radioactive Iodine (Radioiodine) Therapy
... lymph nodes and other parts of the body. Radioactive iodine therapy improves the survival rate of patients with papillary ... and benefits of RAI therapy with your doctor. Radioactive iodine therapy cannot be used to treat anaplastic (undifferentiated) and ...
Radioactivity in consumer products
Energy Technology Data Exchange (ETDEWEB)
Moghissi, A.A.; Paras, P.; Carter, M.W.; Barker, R.F. (eds.)
1978-08-01
Papers presented at the conference dealt with regulations and standards; general and biological risks; radioluminous materials; mining, agricultural, and construction materials containing radioactivity; and various products containing radioactive sources.
Transmutations of atomic nuclei in hadron-nuclei nuclear collisions at GeV energies
International Nuclear Information System (INIS)
In hadron-nuclei nuclear collisions nuclei change their mass numbers A and the charge numbers Z. The mechanism of transmutation of a target nucleus was prompted experimentally and is described in this work. The information about the nuclei transmutation may be a basis for elaboration of the method of nuclei changes in beams of hadrons from accelerators
Nuclear astrophysics with radioactive ions at FAIR
Reifarth, R; Göbel, K; Heftrich, T; Heil, M; Koloczek, A; Langer, C; Plag, R; Pohl, M; Sonnabend, K; Weigand, M; Adachi, T; Aksouh, F; Al-Khalili, J; AlGarawi, M; AlGhamdi, S; Alkhazov, G; Alkhomashi, N; Alvarez-Pol, H; Alvarez-Rodriguez, R; Andreev, V; Andrei, B; Atar, L; Aumann, T; Avdeichikov, V; Bacri, C; Bagchi, S; Barbieri, C; Beceiro, S; Beck, C; Beinrucker, C; Belier, G; Bemmerer, D; Bendel, M; Benlliure, J; Benzoni, G; Berjillos, R; Bertini, D; Bertulani, C; Bishop, S; Blasi, N; Bloch, T; Blumenfeld, Y; Bonaccorso, A; Boretzky, K; Botvina, A; Boudard, A; Boutachkov, P; Boztosun, I; Bracco, A; Brambilla, S; Monago, J Briz; Caamano, M; Caesar, C; Camera, F; Casarejos, E; Catford, W; Cederkall, J; Cederwall, B; Chartier, M; Chatillon, A; Cherciu, M; Chulkov, L; Coleman-Smith, P; Cortina-Gil, D; Crespi, F; Crespo, R; Cresswell, J; Csatlós, M; Déchery, F; Davids, B; Davinson, T; Derya, V; Detistov, P; Fernandez, P Diaz; DiJulio, D; Dmitry, S; Doré, D; nas, J Due\\; Dupont, E; Egelhof, P; Egorova, I; Elekes, Z; Enders, J; Endres, J; Ershov, S; Ershova, O; Fernandez-Dominguez, B; Fetisov, A; Fiori, E; Fomichev, A; Fonseca, M; Fraile, L; Freer, M; Friese, J; Borge, M G; Redondo, D Galaviz; Gannon, S; Garg, U; Gasparic, I; Gasques, L; Gastineau, B; Geissel, H; Gernhäuser, R; Ghosh, T; Gilbert, M; Glorius, J; Golubev, P; Gorshkov, A; Gourishetty, A; Grigorenko, L; Gulyas, J; Haiduc, M; Hammache, F; Harakeh, M; Hass, M; Heine, M; Hennig, A; Henriques, A; Herzberg, R; Holl, M; Ignatov, A; Ignatyuk, A; Ilieva, S; Ivanov, M; Iwasa, N; Jakobsson, B; Johansson, H; Jonson, B; Joshi, P; Junghans, A; Jurado, B; Körner, G; Kalantar, N; Kanungo, R; Kelic-Heil, A; Kezzar, K; Khan, E; Khanzadeev, A; Kiselev, O; Kogimtzis, M; Körper, D; Kräckmann, S; Kröll, T; Krücken, R; Krasznahorkay, A; Kratz, J; Kresan, D; Krings, T; Krumbholz, A; Krupko, S; Kulessa, R; Kumar, S; Kurz, N; Kuzmin, E; Labiche, M; Langanke, K; Lazarus, I; Bleis, T Le; Lederer, C; Lemasson, A; Lemmon, R; Liberati, V; Litvinov, Y; Löher, B; Herraiz, J Lopez; Münzenberg, G; Machado, J; Maev, E; Mahata, K; Mancusi, D; Marganiec, J; Perez, M Martinez; Marusov, V; Mengoni, D; Million, B; Morcelle, V; Moreno, O; Movsesyan, A; Nacher, E; Najafi, M; Nakamura, T; Naqvi, F; Nikolski, E; Nilsson, T; Nociforo, C; Nolan, P; Novatsky, B; Nyman, G; Ornelas, A; Palit, R; Pandit, S; Panin, V; Paradela, C; Parkar, V; Paschalis, S; Paw\\lowski, P; Perea, A; Pereira, J; Petrache, C; Petri, M; Pickstone, S; Pietralla, N; Pietri, S; Pivovarov, Y; Potlog, P; Prokofiev, A; Rastrepina, G; Rauscher, T; Ribeiro, G; Ricciardi, M; Richter, A; Rigollet, C; Riisager, K; Rios, A; Ritter, C; Frutos, T Rodríguez; Vignote, J Rodriguez; Röder, M; Romig, C; Rossi, D; Roussel-Chomaz, P; Rout, P; Roy, S; Söderström, P; Sarkar, M Saha; Sakuta, S; Salsac, M; Sampson, J; Saez, J Sanchez del Rio; Rosado, J Sanchez; Sanjari, S; Sarriguren, P; Sauerwein, A; Savran, D; Scheidenberger, C; Scheit, H; Schmidt, S; Schmitt, C; Schnorrenberger, L; Schrock, P; Schwengner, R; Seddon, D; Sherrill, B; Shrivastava, A; Sidorchuk, S; Silva, J; Simon, H; Simpson, E; Singh, P; Slobodan, D; Sohler, D; Spieker, M; Stach, D; Stan, E; Stanoiu, M; Stepantsov, S; Stevenson, P; Strieder, F; Stuhl, L; Suda, T; Sümmerer, K; Streicher, B; Taieb, J; Takechi, M; Tanihata, I; Taylor, J; Tengblad, O; Ter-Akopian, G; Terashima, S; Teubig, P; Thies, R; Thoennessen, M; Thomas, T; Thornhill, J; Thungstrom, G; Timar, J; Togano, Y; Tomohiro, U; Tornyi, T; Tostevin, J; Townsley, C; Trautmann, W; Trivedi, T; Typel, S; Uberseder, E; Udias, J; Uesaka, T; Uvarov, L; Vajta, Z; Velho, P; Vikhrov, V; Volknandt, M; Volkov, V; von Neumann-Cosel, P; von Schmid, M; Wagner, A; Wamers, F; Weick, H; Wells, D; Westerberg, L; Wieland, O; Wiescher, M; Wimmer, C; Wimmer, K; Winfield, J S; Winkel, M; Woods, P; Wyss, R; Yakorev, D; Yavor, M; Cardona, J Zamora; Zartova, I; Zerguerras, T; Zgura, I; Zhdanov, A; Zhukov, M; Zieblinski, M; Zilges, A; Zuber, K
2016-01-01
The nucleosynthesis of elements beyond iron is dominated by neutron captures in the s and r processes. However, 32 stable, proton-rich isotopes cannot be formed during those processes, because they are shielded from the s-process flow and r-process beta-decay chains. These nuclei are attributed to the p and rp process. For all those processes, current research in nuclear astrophysics addresses the need for more precise reaction data involving radioactive isotopes. Depending on the particular reaction, direct or inverse kinematics, forward or time-reversed direction are investigated to determine or at least to constrain the desired reaction cross sections. The Facility for Antiproton and Ion Research (FAIR) will offer unique, unprecedented opportunities to investigate many of the important reactions. The high yield of radioactive isotopes, even far away from the valley of stability, allows the investigation of isotopes involved in processes as exotic as the r or rp processes.
International Nuclear Information System (INIS)
This booklet is a publication by International Atomic Energy Agency for general awareness of citizens and policy-makers to clarify their concept of nuclear wastes. In a very simple way it tells what is radioactivity, radiations and radioactive wastes. It further hints on various medial and industrial uses of radiations. It discusses about different types of radioactive wastes and radioactive waste management. Status of nuclear power plants in Central and Eastern European countries are also discussed
Combining Alphas via Bounded Regression
Directory of Open Access Journals (Sweden)
Zura Kakushadze
2015-11-01
Full Text Available We give an explicit algorithm and source code for combining alpha streams via bounded regression. In practical applications, typically, there is insufficient history to compute a sample covariance matrix (SCM for a large number of alphas. To compute alpha allocation weights, one then resorts to (weighted regression over SCM principal components. Regression often produces alpha weights with insufficient diversification and/or skewed distribution against, e.g., turnover. This can be rectified by imposing bounds on alpha weights within the regression procedure. Bounded regression can also be applied to stock and other asset portfolio construction. We discuss illustrative examples.
Institute of Scientific and Technical Information of China (English)
Zhi-Hong Tao; Cong-Hua Zhou; Zhong Chen; Li-Fu Wang
2007-01-01
Bounded Model Checking has been recently introduced as an efficient verification method for reactive systems.This technique reduces model checking of linear temporal logic to propositional satisfiability.In this paper we first present how quantified Boolean decision procedures can replace BDDs.We introduce a bounded model checking procedure for temporal logic CTL* which reduces model checking to the satisfiability of quantified Boolean formulas.Our new technique avoids the space blow up of BDDs, and extends the concept of bounded model checking.
Low-energy Antikaon Interaction with Nuclei: The AMADEUS Challenge
Marton, Johann; Bellotti, Giovanni; Berucci, Carolina; Bosnar, Dimitri; Bragadireanu, Mario; Curceanu, Catalina; Clozza, Alberto; Cargnelli, Michael; Butt, Aslan; Del Grande, Raffaele; Fabbietti, Laura; Fiorini, Carlo; Ghio, Francesco; Guaraldo, Carlo; Iliescu, Mihai; Sandri, Paolo Levi; Pietreanu, Dorel; Piscicchia, Kristian; Vidal, Antonio Romero; Scordo, Alessandro; Shi, Hexi; Sirghi, Diana; Sirghi, Florin; Tucakovic, Ivana; Doce, Oton Vazquez; Widmann, Eberhard; Zmeskal, Johann
2016-01-01
The low-energy strong interaction of antikaons (K-) with nuclei has many facets and rep- resents a lively and challenging research ?eld. It is interconnected to the peculiar role of strangeness, since the strange quark is rather light, but still much heavier than the up and down quarks. Thus, when strangeness is involved one has to deal with spontaneous and explicit symmetry breaking in QCD. It is well known that the antikaon interaction with nucleons is attractive, but how strong ? Is the interaction strong enough to bind nucleons to form kaonic nuclei and, if so, what are the properties (binding energy, decay width)? There are controversial indications for such bound states and new results are expected to come soon. The existence of antikaon mediated bound states might have important consequences since it would open the possibility for the formation of cold baryonic matter of high density which might have a severe impact in astrophysics for the understanding of the composi- tion of compact (neutron) stars. ...
Processing of receptor-bound somatostatin: internalization and degradation by pancreatic acini
International Nuclear Information System (INIS)
The authors have previously demonstrated the presence of specific binding sites for somatostatin on plasma membranes from pancreatic acinar cells. In the present study they attempted to characterize the fate of receptor-bound 125I-[Tyr11]somatostatin. Internalization of somatostatin was rapid (reaching a plateau at 20% of the cell-associated specific radioactivity) and temperature dependent. To follow the processing of bound somatostatin, acini were incubated with 125I-[Tyr11]somatostatin at 50C during 16 h then, after washing, incubated at 370C for 90 min in fresh medium. Surface-bound somatostatin decreased rapidly, whereas radioactivity increased in the cell interior and the incubation medium. Intracellular and membrane-bound radioactivity was mainly intact 125I-[Tyr11]somatostatin. Degradation occurred at the plasma membrane level and led to iodotyrosine production. After 15 min of incubation, 15% of the initially surface-bound 125I-[Tyr11]somatostatin was compartmentalized within the cell, mainly in the microsomal fraction. After 30 min, a significant increase in radioactivity appeared in the nuclear fraction. These results indicate that the major part of somatostatin cellular degradation takes place at the plasma membrane level. Within the cell, somatostatin is routed to the nucleus via particular fractions sedimenting with microsomal vesicles
On test of T invariance in the interaction of slow neutrons with aligned nuclei
International Nuclear Information System (INIS)
Study of five-fold (P even, T odd) correlation in the interaction of slow polarized neutrons with aligned nuclei is a perspective way to test time reversal invariance due to expected enhancement of T violating effects in compound resonances. Possible nuclear targets are discussed which can be aligned both dynamically as well as by 'brute force' method at low temperature. Statistical estimation is performed of five-fold correlation for low lying p wave compound resonances of the 121Sb, 123Sb and 127I nuclei. It is shown that significant improvement can be achieved for bound on intensity of fundamental parity conserving time violating (PCTV) interaction
Medium-heavy nuclei from nucleon-nucleon interactions in lattice QCD
Inoue, Takashi; Aoki, Sinya; Charron, Bruno; Doi, Takumi; Hatsuda, Tetsuo; Ikeda, Yoichi; Ishii, Noriyoshi; Murano, Keiko; Nemura, Hidekatsu; Sasaki, Kenji
2014-01-01
On the basis of the Brueckner-Hartree-Fock method with the nucleon-nucleon forces obtained from lattice QCD simulations, the properties of the medium-heavy doubly-magic nuclei such as 16^O and 40^Ca are investigated. We found that those nuclei are bound for the pseudo-scalar meson mass M_PS ~ 470 MeV. The mass number dependence of the binding energies, single-particle spectra and density distributions are qualitatively consistent with those expected from empirical data at the physical point, ...
Kaon-nuclei interaction studies at low energies (the AMADEUS project)
Piscicchia, K; Berucci, C; Bosnar, D; Bragadireanu, A M; Cargnelli, M; Clozza, A; Curceanu, C; D'Uffizi, A; Ghio, F; Guaraldo, C; Kienle, P; Iliescu, M; Ishiwatari, T; Sandri, P Levi; Marton, J; Pietreanu, D; Lener, M Poli; Rizzo, A; Vidal, A Romero; Sbardella, E; Scordo, A; Sirghi, D L; Sirghi, F; Tatsuno, H; Tucakovic, I; Doce, O Vazquez; Widmann, E; Zmeskal, J; 10.1393/ncc/i2013-11436-3
2013-01-01
The AMADEUS experiment aims to perform dedicated precision studies in the sector of low-energy kaon-nuclei interaction at the DA\\Phi NE collider at LNF-INFN. In particular the experiment plans to perform measurements of the debated deeply bound kaonic nuclear states (by stopping kaons in cryogenic gaseous targets 3He and 4He) to explore the nature of the \\Lambda(1405) in nuclear environment and to measure the cross section of K- on light nuclei, for K- momentum lower than 100 MeV/c. The AMADEUS dedicated setup will be installed in the central region of the KLOE detector.
Shell Structure Evolution in Nuclei far from the Valley of Stability: Recent Results from GANIL
International Nuclear Information System (INIS)
Shell structure evolution in nuclei situated at the extremes of neutron and proton excess are investigated using in-beam gamma spectroscopy techniques with radioactive beams at GANIL. A selection of results obtained very recently is presented: i) The reduced transition probabilities B(E2;01+ → 2+) of the neutron-rich 74Zn and 70Ni nuclei have been measured using Coulomb excitation at intermediate energy. An unexpected large proton core polarization has been found in 70Ni and interpreted as being due to the monopole interaction between the neutron g9/2 and protons f7/2 and f5/2 spin-orbit partner orbitals. ii) Two proton knock-out reactions has been performed in order to study the most neutron-rich nuclei at the N=28 shell closure. Gamma rays spectra and momentum distribution have been obtained for 42Si and neighboring nuclei. Evidence has been found for a persistence of the deformation at N=28 down to Silicon despite a relatively large Z=14 gap. iii) The in-beam gamma spectroscopy of 36Ca performed using neutron knock-out reactions revealed that 36Ca is as doubly magic as 36S. The Coulomb energy difference of the first 2+ state in this T=2, A=36 mirror nuclei reveals one of largest isospin symmetry breaking in nuclei
Schulz, M D; Vidal, J
2016-01-01
We discuss the emergence of bound states in the low-energy spectrum of the string-net Hamiltonian in the presence of a string tension. In the ladder geometry, we show that a single bound state arises either for a finite tension or in the zero-tension limit depending on the theory considered. In the latter case, we perturbatively compute the binding energy as a function of the total quantum dimension. We also address this issue in the honeycomb lattice where the number of bound states in the topological phase depends on the total quantum dimension. Finally, the internal structure of these bound states is analyzed in the zero-tension limit.
Evolution of active galactic nuclei
Merloni, Andrea
2012-01-01
[Abriged] Supermassive black holes (SMBH) lurk in the nuclei of most massive galaxies, perhaps in all of them. The tight observed scaling relations between SMBH masses and structural properties of their host spheroids likely indicate that the processes fostering the growth of both components are physically linked, despite the many orders of magnitude difference in their physical size. This chapter discusses how we constrain the evolution of SMBH, probed by their actively growing phases, when they shine as active galactic nuclei (AGN) with luminosities often in excess of that of the entire stellar population of their host galaxies. Following loosely the chronological developments of the field, we begin by discussing early evolutionary studies, when AGN represented beacons of light probing the most distant reaches of the universe and were used as tracers of the large scale structure. This early study turned into AGN "Demography", once it was realized that the strong evolution (in luminosity, number density) of ...
Multiple phonon excitation in nuclei
International Nuclear Information System (INIS)
The studies of multiphonon excitations in nuclei are reviewed both from the theoretical and experimental points of view. The presence of giant resonances in nuclei is described in the framework of macroscopic and microscopic models and the relative merits of different probes to excite such states are illustrated. The existence of giant resonances built on excited states is stressed. An exhaustive description of the theoretical estimates of the properties of the multiphonon states is presented. The theory predicts that such multiple collective excitations should closely follow a harmonic pattern. Recent experimental results on the double giant dipole resonance using the (π+π-) double charge exchange reaction are shown. The status of the search for isoscalar multiphonon excitations by means of the strong nuclear potential produced by heavy ions is presented. Conclusions are drawn and new prospects are discussed. (authors) 293 refs., 67 figs., 8 tabs
Relativistic description of deformed nuclei
International Nuclear Information System (INIS)
The author has shown that relativistic Hartree calculations using parameters that have been fit to the properties of nuclear matter can provide a good description of both spherical and axially deformed nuclei. The quantitative agreement with experiment is equivalent to that which was obtained in non-relativistic calculations using Skyrme interactions. The equilibrium deformation is strongly correlated with the size of the spin-orbit splitting, and that parameter sets which give roughly the correct value for this splitting provide the best agreement with the quadrupole moments in the s-d shell. Finally, for closed shell +/- 1 nuclei, it was shown that the self-consistent calculations are able to reproduce the experimental magnetic moments. This was not possible in relativistic calculations which include only the effects of the valence orbital
Moessbauer effects on oriented nuclei
International Nuclear Information System (INIS)
Standard nuclear orientation methods (not sensitive to the polarization) do not give information on the sign of the magnetic moment. Mossbauer effect separates right-hand and left-hand circularly polarized components, thus its detection on oriented nuclei (T approximately 10 mK) gives the sign of the magnetic moment of oriented state. In this thesis we applied this method to study the 3/2- ground states of 191Pt and 193Os, which are in the prolate-oblate transition region, where assignement of experimental levels to theoretical states is often umbiguous. We show that for those nuclei the sign of the magnetic moment is the signature of the configuration, and its determination establishes the correspondance between experimental and theoretical levels
Phonon operators for deformed nuclei
International Nuclear Information System (INIS)
The mathematical formalism with the phonon operators independent of the signature of the angular momentum projection turns out to be inadequate for describing excited states of deformed nuclei. New phonon operators are introduced which depend on the signature of the angular momentum projection on the symmetry axis of a deformed nucleus. It is shown that the calculations with the new phonons take correctly into account the Pauli principle in two-phonon components of wave functions. The results obtained differ from those given by the phonons independent of the signature of the angular momentum projection. The new phonons must be used in deformed nuclei at taking systematically the Pauli principle into account and in calculations involving wave functions of excited states having components with more than one-phonon operator
Compton Scattering on Light Nuclei
Directory of Open Access Journals (Sweden)
Shukla D.
2010-04-01
Full Text Available Compton scattering on light nuclei (A = 2, 3 has emerged as an eﬀective avenue to search for signatures of neutron polarizabilities, both spin–independent and spin–dependent ones. In this discussion I will focus on the theoretical aspect of Compton scattering on light nuclei; giving ﬁrst a brief overview and therafter concentrating on our Compton scattering calculations based on Chiral eﬀective theory at energies of the order of pion mass. These elastic γd and γHe-3 calculations include nucleons, pions as the basic degrees of freedom. I will also discuss γd results where the ∆-isobar has been included explicitly. Our results on unpolarized and polarization observables suggest that a combination of experiments and further theoretical eﬀorts will provide an extraction of the neutron polarizabilities.
Phonon operators in deformed nuclei
International Nuclear Information System (INIS)
For the description of the excited states in deformed nuclei new phonon operators are introduced, which depend on the sign of the angular momentum projection onto the symmetry axis of a deformed nucleus. In the calculations with new phonons the Pauli principle is correctly taken into account in the two-phonon components of the wave functions. There is a difference in comparison with the calculation with phonons independent of the sign of the angular momentum projection. The new phonons should be used in deformed nuclei if the Pauli principle is consistently taken into account and in the calculations with the excited state wave functions having the components with more than one phonon operator
International Nuclear Information System (INIS)
We describe recent efforts to study Cooper pairs in atomic nuclei. We consider a self-consistent Hartree Fock mean field for the even Sm isotopes and compare results based on three treatments of pairing correlations: a BCS treatment, a number-projected BCS treatment and an exact treatment using the Richardson Ansatz. Significant differences are seen in the pairing correlation energies. Furthermore, because it does not average over the properties of the fermion pairs, the Richardson solution permits a more meaningful definition of the Cooper wave function and of the fraction of pairs that are collective. Our results confirm that only a few pairs near the Fermi surface in realistic atomic nuclei are collective. (Author)
Energy Technology Data Exchange (ETDEWEB)
Pittel, S. [Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, 19716 Delaware (United States); Dussel, G. G. [Departamento de Fisica J.J. Giambiagi, Universidad de Buenos Aires, 1428 Buenos Aires (Argentina); Dukelsky, J.; Sarriguren, P. [Instituto de Estructura de la Materia, CSIC, Serrano 123, 28006 Madrid (Spain)
2008-12-15
We describe recent efforts to study Cooper pairs in atomic nuclei. We consider a self-consistent Hartree Fock mean field for the even Sm isotopes and compare results based on three treatments of pairing correlations: a BCS treatment, a number-projected BCS treatment and an exact treatment using the Richardson Ansatz. Significant differences are seen in the pairing correlation energies. Furthermore, because it does not average over the properties of the fermion pairs, the Richardson solution permits a more meaningful definition of the Cooper wave function and of the fraction of pairs that are collective. Our results confirm that only a few pairs near the Fermi surface in realistic atomic nuclei are collective. (Author)
Variability of Active Galactic Nuclei
Peterson, Bradley M.
2001-01-01
Continuum and emission-line variability of active galactic nuclei provides a powerful probe of microarcsecond scale structures in the central regions of these sources. In this contribution, we review basic concepts and methodologies used in analyzing AGN variability. We develop from first principles the basics of reverberation mapping, and pay special attention to emission-line transfer functions. We discuss application of cross-correlation analysis to AGN light curves. Finally, we provide a ...
Triaxial rotation in atomic nuclei
Institute of Scientific and Technical Information of China (English)
CHEN Yong-Shou; GAO Zao-Chun
2009-01-01
The Projected Shell Model has been developed to include the spontaneously broken axial symmetry so that the rapidly rotating triaxial nuclei can be described microscopically. The theory provides an useful tool to gain an insight into how a triaxial nucleus rotates, a fundamental question in nuclear structure. We shall address some current interests that are strongly associated with the triaxial rotation. A feasible method to explore the problem has been suggested.
Neurotransmitters of the suprachiasmatic nuclei
Reghunandanan, Vallath; Reghunandanan, Rajalaxmy
2006-01-01
There has been extensive research in the recent past looking into the molecular basis and mechanisms of the biological clock, situated in the suprachiasmatic nuclei (SCN) of the anterior hypothalamus. Neurotransmitters are a very important component of SCN function. Thorough knowledge of neurotransmitters is not only essential for the understanding of the clock but also for the successful manipulation of the clock with experimental chemicals and therapeutical drugs. This article reviews the c...
Weak pion production from nuclei
Indian Academy of Sciences (India)
S K Singh; M Sajjad Athar; Shakeb Ahmad
2006-04-01
The charged current pion production induced by neutrinos in 12C, 16O and 56Fe nuclei has been studied. The calculations have been done for the coherent as well as the incoherent processes assuming dominance and takes into account the effect of Pauli blocking, Fermi motion and the renormalization of in the nuclear medium. The pion absorption effects have also been taken into account.
Weak pion production from nuclei
International Nuclear Information System (INIS)
The charged current pion production induced by neutrinos in 12C, 16O and 56Fe nuclei has been studied. The calculations have been done for the coherent as well as the incoherent processes assuming Δ dominance and takes into account the effect of Pauli blocking, Fermi motion and the renormalization of Δ in the nuclear medium. The pion absorption effects have also been taken into account. (author)
Superheavy nuclei and fission barriers
Lu, Bing-Nan; Zhao, Jie; Zhao, En-Guang; Zhou, Shan-Gui
In this chapter, we will present relativistic mean field (RMF) description of heavy and superheavy nuclei (SHN). We will discuss the shell structure and magic numbers in the mass region of SHN, binding energies and α decay Q values, shapes of ground states and potential energy surfaces and fission barriers. We particularly focus on the multidimensionally-constrained covariant density functional theories (CDFT) and the applications of CDFT to the study of exotic nuclear shapes and fission barriers.
Geometric symmetries in light nuclei
Bijker, Roelof
2016-01-01
The algebraic cluster model is is applied to study cluster states in the nuclei 12C and 16O. The observed level sequences can be understood in terms of the underlying discrete symmetry that characterizes the geometrical configuration of the alpha-particles, i.e. an equilateral triangle for 12C, and a regular tetrahedron for 16O. The structure of rotational bands provides a fingerprint of the underlying geometrical configuration of alpha-particles.
Curvature bounds for configuration spaces
Erbar, Matthias; Huesmann, Martin
2014-01-01
We show that the configuration space over a manifold M inherits many curvature properties of the manifold. For instance, we show that a lower Ricci curvature bound on M implies for the configuration space a lower Ricci curvature bound in the sense of Lott-Sturm-Villani, the Bochner inequality, gradient estimates and Wasserstein contraction. Moreover, we show that the heat flow on the configuration space, or the infinite independent particle process, can be identified as the gradient flow of t...
Entropy bounds for uncollapsed matter
Energy Technology Data Exchange (ETDEWEB)
Abreu, Gabriel; Visser, Matt, E-mail: Gabriel.Abreu@msor.vuw.ac.nz, E-mail: Matt.Visser@msor.vuw.ac.nz [School of Mathematics, Statistics and Operation Research Victoria University of Wellington Wellington (New Zealand)
2011-09-22
In any static spacetime the quasilocal Tolman mass contained within a volume can be reduced to a Gauss-like surface integral involving the flux of a suitably defined generalized surface gravity. By introducing some basic thermodynamics, and invoking the Unruh effect, one can then develop elementary bounds on the quasilocal entropy that are very similar in spirit to the holographic bound, and closely related to entanglement entropy.
Finite Domain Bounds Consistency Revisited
Choi, Chiu Wo; Harvey, Warwick; Lee, Jimmy Ho-Man; Stuckey, Peter J.
2004-01-01
A widely adopted approach to solving constraint satisfaction problems combines systematic tree search with constraint propagation for pruning the search space. Constraint propagation is performed by propagators implementing a certain notion of consistency. Bounds consistency is the method of choice for building propagators for arithmetic constraints and several global constraints in the finite integer domain. However, there has been some confusion in the definition of bounds consistency. In t...
Spectroscopic factors for bound s-wave states derived from neutron scattering lengths
International Nuclear Information System (INIS)
A simple and model-independent method is described to derive neutron single-particle spectroscopic factors of bound s-wave states in A+1Z = AZ circle-times n nuclei from neutron scattering lengths. Spectroscopic factors for the nuclei 13C, 14C, 16N, 17O, 19O, 23Ne, 37Ar, and 41Ar are compared to results derived from transfer experiments using the well-known disorted wave Born analysis and to shell model calculations. The scattering length of 14C is calculated from the 15Cg.s. spectroscopic factor. copyright 1997 The American Physical Society
Fragmentation and multifragmentation of 10.6A GeV gold nuclei
International Nuclear Information System (INIS)
Interactions of 10.6A GeV gold nuclei have been studied in nuclear emulsions. In a minimum bias sample of 1100 interactions, 4730 helium nuclei and 2102 heavy nuclei were emitted as fragments of the incident gold projectiles. The emission angles of these fragments have been measured and pseudorapidity distributions constructed. The multiplicity distributions have been considered separately for the light and heavy target nuclei in the emulsions and found to be relatively independent of the nature of the target, when studied in terms of the total charge remaining bound in the multiply charged fragments. These distributions have been compared with those reported by experiments that studied the multifragmentation of 0.6 and 1.0A GeV gold nuclei, and show relatively small but statistically significant differences that may be attributed to the differing energies or, possibly, to detection biases in the low energy data. We have also looked for evidence of phase changes in the description of multifragmentation and compared our conclusions with those of a study of 1.0A GeV gold nuclei interacting in a carbon target. We see evidence of behavior that is similar, but not entirely consistent, with that reported at the lower energy. Whether this is evidence for a true phase change in the state of the nuclear matter remains an open question
Ultra-fast timing detectors to probe exotic properties of nuclei using RIB facility
Datta, Ushasi; Rahaman, A
2016-01-01
Recently, the facilities of radioactive ion beam (RIB) combined with advanced detector systems provide us unique opportunity to probe the exotic properties of the nuclei with unusual neutron-to-proton ratio. In this article, a study of characterization of different types of ultra-fast timing detectors: a special type of gas detector (multi-strip multi-gap resistive plate chamber, MMRPC) ($\\sigma$ $<$100 ps), scintillators array ( viz., $LaBr_3:Ce$) (timing resolution ($\\sigma<$250 ps) are being presented. A brief discussion on usage of these different types of ultra-fast timing detector systems at radioactive ion beam facilities is also included.
Spontaneous Muon Emission during Fission, a New Nuclear Radioactivity
Ion, D. B.; Ion, M. L. D.; Ion-Mihai, Reveica
2011-01-01
In this paper the essential theoretical predictions for the nuclear muonic radioactivity are presented by using a special fission-like model similar with that used in description of the pionic emission during fission. Hence, a fission-like model for the muonic radioactivity takes into account the essential degree of freedom of the system: muon-fissility, muon-fission barrier height, etc. Using this model it was shown that most of the SHE-nuclei lie in the region where the muonic fissility par...
Comprehensive decay law for emission of charged particles and exotic cluster radioactivity
Indian Academy of Sciences (India)
Basudeb Sahu
2014-04-01
A general decay formula for the emission of charged particles from metastable nuclei is developed based on the basic phenomenon of resonances occurring in quantum scattering process under Coulomb-nuclear potential. It relates the half-lives of radioactive decays with the values of the outgoing elements with masses and charges of the nuclei involved in the decay. The relation is found to be a generalization of the Geiger–Nuttall law in radioactivity and explains well all the known emissions of charged particles including clusters, alpha and proton.
Possibilities for synthesis of new isotopes of superheavy nuclei in cold fusion reactions
Bao, X. J.; Gao, Y.; Li, J. Q.; Zhang, H. F.
2016-04-01
In order to find a way to produce superheavy nuclei (SHN), which appear in the gap between the SHN synthesized by cold fusion and those by hot fusion, or those so far not yet been produced in the laboratory, we tried to make use of a set of projectile isotopic chains, to use a radioactive beam projectile, and to test symmetric fusion reactions for gaining more neutrons to synthesize neutron-richer SHN based on the dinuclear system (DNS) model via cold fusion reactions. It is found that the nuclei 265Mt,Ds,272268,273Rg, and 274,275,276Cn may be produced with the detectable evaporation residual cross sections. The intensities of radioactive beams are significantly less than those of the stable beams, therefore using a stable beam is predicted to be the most favorable method for producing SHN. From the symmetric reaction system 136Xe+136Xe , no fusion event was found.
Koch, C.J. (Christian); Evans, S.M.; Lord, E M
1995-01-01
The present studies were initiated to quantitate the oxygen dependence of bioreductive metabolism-induced binding of EF5, a pentafluorinated derivative of the 2-nitroimidazole, etanidazole. Two different assays were compared: first, radioactive drug incorporation into cell lysates, which provides a direct measure of drug metabolism or uptake; second, monoclonal antibody detection of cellular macromolecular adducts of EF5 after whole cell permeabilisation and fixing. The antibodies (a single c...
On a Generalization of Kingman's Bounds
Liu, Zhen; Nain, Philippe; Towsley, Don
1994-01-01
In this paper we develop a framework for computing upper and lower bounds of an exponential form for a class of single server queueing systems with non-renewal inputs. These bounds generalize Kingman's bounds for queues with renewal inputs.
Study of the structure of unstable nuclei through the reaction experiments
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
Along with the development of the radioactive nuclear beam facility, the study of the structure of unstable nuclei has progressed rapidly over the last few decades. Due to the weakly binding property, the structure information of the unstable nuclei comes primarily from the scattering or reaction experiments. Therefore it would be very important to understand clearly the reaction mechanism involved in the experiment. We outlined here the major reaction mechanisms which are adequate to the study of unstable nuclei, with the focus on the new phenomena and methods in comparison with those with traditional stable nucleus beam. Especially emphasized are the breakup and knockout reactions, developed as accurate tools for spectroscopy investigation into the nuclear structure with low intensity secondary beam. Couplings of the breakup channel to the elastic scattering and the fusion and transfer reactions are also reviewed.
Radioactive target needs for nuclear reactor physics and nuclear astrophysics
International Nuclear Information System (INIS)
Nuclear reaction cross sections of short-lived nuclei are key inputs for new generation nuclear reactor simulations and for models describing the nucleosynthesis of elements. After discussing various topics of nuclear astrophysics and reactor physics where the demand of nuclear data on unstable nuclei is strong, we describe the general characteristics of the targets needed to measure the requested data. In some cases the half-life of the nucleus of interest is so short that it is not possible to produce a target and perform the measurement. However, some alternative methods have been developed that allow one to obtain neutron-induced cross sections of highly radioactive nuclei. One of these methods is the surrogate reaction technique. We explain the principle of the surrogate method and describe the characteristics of the targets used in surrogate experiments.
A test of the theory of resonant scattering between analog nuclei
International Nuclear Information System (INIS)
It has been suggested that strong resonances might be found in scattering between analog nuclei at energies near the Coulomb barrier. The authors have begun a study of such scattering for 7Be on 7Li using a 7Be beam produced with the OSU-LLNL radioactive ion beam facility. The resulting excitation function can be used to limit a combination of the strength and the width of any possible resonances
Review on theoretical researches of superheavy nuclei
International Nuclear Information System (INIS)
We review the recent progress of theoretical researches on heavy nuclei and superheavy nuclei. At first we analyze the experimental data of long lifetime heavy nuclei and discuss their stability. Then the calculated binding energies and alpha-decay energies of heavy and superheavy nuclei from different models are compared and discussed. This includes the results from the local binding energy formula of heavy nuclei with Z ≥ 90 and N ≥ 130, those from the relativistic mean-field model, and from other models. For the local binding energy formula, it can reproduce experimental binding energies of known heavy and superheavy nuclei well. The relativistic mean-field model and non-relativistic mean-field model show that there is shape coexistence in superheavy nuclei. For some superheavy nuclei, superdeformed prolate shape can be their ground states and there are isomers in lowly excited states due to shape coexistence. The properties of some unknown superheavy nuclei are predicted. Some new views on the stability and on half-lives of heavy and superheavy nuclei are presented. Possible new phenomenon in superheavy region is analyzed and discussed. (author)
Interaction of antiprotons with nuclei
Czech Academy of Sciences Publication Activity Database
Hrtánková, Jaroslava; Mareš, Jiří
2016-01-01
Roč. 945, JAN (2016), s. 197-215. ISSN 0375-9474 R&D Projects: GA ČR(CZ) GA15-04301S Institutional support: RVO:61389005 Keywords : antiproton-nucleus interaction * antiproton annihilation * antiproton nuclear bound states Subject RIV: BE - Theoretical Physics Impact factor: 2.202, year: 2014
Exotic light nuclei and nuclei in the lead region
International Nuclear Information System (INIS)
Three methods are discussed for modifying, or renormalizing, a truncated nuclear hamiltonian such that the wave functions obtained by diagonalizing this modified or effective hamiltoniandescribe the nucleus as well as possible: deriving the hamiltonian directly from a realistic nucleon-nucleon interaction between free nucleons; parametrizing the hamiltonian in terms of a number of parameters and determining these parameters from a least-squares fit of calculated properties to experimental data; approximating the nucleon-nucleon (NN) interaction between two nucleons in a nucleus by a simple analytic expression. An effective hamiltonian derived following the second method is applied in a theoretical study of exotic nuclei in the region of Z=2-9 and A=4-30 and the problem of the neutron halo in 11Li is discussed. Results of shell-model calculations of 20iPb and nuclei in its neighbourhood are presented in which an effective hamiltonian was employed derived with the last method. The quenching of M1 strength in 208Pb, and the spectroscopic factors measured in proton knock-out reactions could be described quite satisfactory. Finally, a method is presented for deriving the effective hamiltonian directly from the realistic NN interaction with algebraic techniques. (H.W.). 114 refs.; 34 figs.; 12 tabs.; schemes
Effect of nucleon momentum inside cluster nuclei 6Li and 6He
International Nuclear Information System (INIS)
6Li and 6He are cluster nuclei including a tightly bound alpha (4He) core surrounded by two loosely bound nucleons. The One-Nucleon Exchange (ONE) process in p(6He, 4He+n)d and p(6Li, 4He+p)d reactions has been measured for the first time in inverse kinematics to study nucleon-nucleon correlations at rather short range of two nucleon system in 6He and 6Li. In frame of this work we are concentrated in analyzing the effect of Fermi nucleon momentum inside two these nuclei on kinematics of the ONE reaction mentioned above via calculation and measurement for angular distribution of the emitted alpha particles with respect to the beam direction. (author)
Improved Range Searching Lower Bounds
DEFF Research Database (Denmark)
Larsen, Kasper Green; Nguyen, Huy L.
2012-01-01
range reporting problem. In approximate simplex range reporting, points that lie within a distance of ε ⋅ Diam(s) from the border of a query simplex s, are free to be included or excluded from the output, where ε ≥ 0 is an input parameter to the range searching problem. We prove our lower bounds......Table of Contents -------------------------------------------------------------------------------- In this paper we present a number of improved lower bounds for range searching in the pointer machine and the group model. In the pointer machine, we prove lower bounds for the approximate simplex...... by constructing a hard input set and query set, and then invoking Chazelle and Rosenberg's [CGTA'96] general theorem on the complexity of navigation in the pointer machine. For the group model, we show that input sets and query sets that are hard for range reporting in the pointer machine (i.e. by Chazelle...
Simulation bounds for system availability
International Nuclear Information System (INIS)
System availability is a dominant factor in the practicality of nuclear power electrical generating plants. A proposed model for obtaining either lower bounds or interval estimates on availability uses observed data on ''n'' failure-to-repair cycles of the system to estimate the parameters in the time-to-failure and time-to-repair models. These estimates are then used in simulating failure/repair cycles of the system. The availability estimate is obtained for each of 5000 samples of ''n'' failure/repair cycles to form a distribution of estimates. Specific percentile points of those simulated distributions are selected as lower simulation bounds or simulation interval bounds for the system availability. The method is illustrated with operational data from two nuclear plants for which an exponential time-to-failure and a lognormal time-to-repair are assumed
Mahmud, Hassan A A
2002-01-01
A search for new examples of proton emission from ground and low lying states was conducted at Argonne National Laboratory. Of particular interest were examples of proton emission from nuclei which were deformed or had an odd number of neutrons, the majority of known proton emitters being odd-even and near-spherical. Candidate nuclei were created via fusion evaporation, these recoils then being separated according to their mass to charge ratio by the Fragment Mass Analyser, before being impla...
Permutation group in light nuclei
International Nuclear Information System (INIS)
From general features of the multiplet scheme, a framework is provided for the application of permutation groups to the structure of light nuclei. It is shown that the description of nuclear states in terms of cluster configurations offers possibilities of finding the best orbital states for a given partition f. The significance of the orbital partition for orbital states is explained in terms of selection rules. Specific methods and results obtained in shell configurations, cluster configurations, and nuclear reactions are discussed. (2 figures, 4 tables, 42 references) (U.S.)
Nucleon transfer between heavy nuclei
International Nuclear Information System (INIS)
Nucleon transfer reactions between heavy nuclei are characterized by the classical behaviour of the scattering orbits. Thus semiclassical concepts are well suited for the description of these reactions. In the present contribution the characteristics of single and multinucleon transfer reactions at energies below and above the Coulomb barrier are shown for systems like Sn+Sn, Xe+U and Ni+Pb. The role of the pairing interaction in the transfer of nucleon pairs is illustrated. For strong transitions the coupling of channels and the absorption into more complicated channels is taken into account in a coupled channels calculation
Superdeformation in the bismuth nuclei
International Nuclear Information System (INIS)
High angular-momentum states in 196,197Bi were populated in the reaction 183W (19F,xn) at a beam energy of 108 MeV, and γ rays were detected with the Gammasphere array. Two weakly populated rotational bands, with energy spacings characteristic of superdeformation have been found. Both cascades can be assigned unambiguously to the Bi nuclei; however, their isotopic assignment to 197Bi is tentative. The properties of the bands and their possible structures are discussed. Our results represent the first identification of superdeformed bands in a nucleus of the A∼190 mass region with Z>82
Samanta, C.; Adhikari, S
2001-01-01
A new mass formula capable of explaining the binding energies of almost all the known isotopes from Li to Bi is prescribed. In addition to identifying the new magic number at neutron number N=16 (Z=7-9), pseudo-magic numbers at N=14 (Z=7-10), Z=14 (N=13-19), and at N=6 (Z=3-8), the formula accounts for the loss of magicity for nuclei with N=8 (Z=4) and N=20 (Z=12-17). The redefinition of the neutron drip line resulting from this formula further allows us to predict the existence of 26O,31F, 3...
Exotic nuclei and Yukawa's forces
Otsuka, Taka; Suzuki, Toshio; Utsuno, Yutaka
2008-01-01
In this plenary talk, we will overview the evolution of the shell structure in stable and exotic nuclei as a new paradigm of nuclear structure physics. This shell evolution is primarily due to the tensor force. The robust mechanism and some examples will be presented. Such examples include the disappearance of existing magic numbers and the appearance of new ones. The nuclear magic numbers have been believed, since Mayer and Jensen, to be constants as 2, 8, 20, 28, 50, …This turned out to be ...
Collective bands in superdeformed nuclei
International Nuclear Information System (INIS)
The collective properties of excited superdeformed bands have been investigated in the framework of self-consistent cranked Nilsson plus quasiparticle random-phase approximation. The expected octupole nature of some bands observed recently in some nuclei has been confirmed by a comparative analysis of their E1 decays to the yrast band and of the anomalous behavior of their dynamical moment of inertia. It is also shown that the onset of supederformation affects considerably the structure of the giant resonances and greatly enhances the collectivity of the low-lying scissors mode. (author)
Single Pion production from Nuclei
International Nuclear Information System (INIS)
We have studied charged current one pion production induced by νμ(ν-barμ) from some nuclei. The calculations have been done for the incoherent pion production processes from these nuclear targets in the Δ dominance model and take into account the effect of Pauli blocking, Fermi motion and renormalization of Δ properties in the nuclear medium. The effect of final state interactions of pions has also been taken into account. The numerical results have been compared with the recent results from the MiniBooNE experiment for the charged current 1π production, and also with some of the older experiments in Freon and Freon-Propane from CERN
Microscopic properties of superdeformed nuclei
Energy Technology Data Exchange (ETDEWEB)
Karlsson, Lennart B
1999-04-01
Many high spin rotational bands in superdeformed nuclei have been found in the A 140 - 150 region, but so far no linking transitions to known normal-deformed states have been found in these nuclei. Therefore, configuration and spin assignments have to be based on indirect spectroscopic information. Identical bands were first discovered in this region of superdeformed states. At present, some identical bands have also been found at normal deformation, but such bands are more common at superdeformation. Recently lifetime measurements have given relative quadrupole moments with high accuracy. Spectroscopic quantities are calculated using the configuration constrained cranked Nilsson-Strutinsky model with the modified oscillator potential. In a statistical study the occurrence of identical bands is tested. Comparing superdeformed and normal deformed nuclei, the higher possibility for identical bands at superdeformation is understood from calculated reduced widths of the E{sub {gamma}} and J{sup (2)} distributions. The importance of high-N orbitals for identical bands is also discussed. Additivity of electric quadrupole moment contributions in the superdeformed A - 150 region is discussed with the nucleus {sup 152}Dy as a `core`. In analytic harmonic oscillator calculations, the effective electric quadrupole moment q{sub eff}, i.e. the change in the total quadrupole moment caused by the added particle, is expressed as a simple function of the single-particle mass, quadrupole moment q{sub {nu}}. Also in realistic calculations, simple relations between q{sub eff} and q{sub {nu}} can be used to estimate the total electric quadrupole moment, e.g. for the nucleus {sup 142}Sm, by adding the effect of 10 holes, to the total electric quadrupole moment of {sup 152}Dy. Furthermore, tools are given for estimating the quadrupole moment for possible configurations in the superdeformed A - 150 region. For the superdeformed region around {sup 143}Eu, configuration and spin assignments
ORNL radioactive waste operations
International Nuclear Information System (INIS)
Since its beginning in 1943, ORNL has generated large amounts of solid, liquid, and gaseous radioactive waste material as a by-product of the basic research and development work carried out at the laboratory. The waste system at ORNL has been continually modified and updated to keep pace with the changing release requirements for radioactive wastes. Major upgrading projects are currently in progress. The operating record of ORNL waste operation has been excellent over many years. Recent surveillance of radioactivity in the Oak Ridge environs indicates that atmospheric concentrations of radioactivity were not significantly different from other areas in East Tennesseee. Concentrations of radioactivity in the Clinch River and in fish collected from the river were less than 4% of the permissible concentration and intake guides for individuals in the offsite environment. While some radioactivity was released to the environment from plant operations, the concentrations in all of the media sampled were well below established standards
Radioactive air sampling methods
Maiello, Mark L
2010-01-01
Although the field of radioactive air sampling has matured and evolved over decades, it has lacked a single resource that assimilates technical and background information on its many facets. Edited by experts and with contributions from top practitioners and researchers, Radioactive Air Sampling Methods provides authoritative guidance on measuring airborne radioactivity from industrial, research, and nuclear power operations, as well as naturally occuring radioactivity in the environment. Designed for industrial hygienists, air quality experts, and heath physicists, the book delves into the applied research advancing and transforming practice with improvements to measurement equipment, human dose modeling of inhaled radioactivity, and radiation safety regulations. To present a wide picture of the field, it covers the international and national standards that guide the quality of air sampling measurements and equipment. It discusses emergency response issues, including radioactive fallout and the assets used ...
Cluster Model for Near-barrier Fusion Induced by Weakly Bound and Halo Nuclei
Beck, C; Keeley, N.; Diaz-Torres, A.
2007-01-01
The influence on the fusion process of coupling transfer/breakup channels is investigated for the medium weight $^{6,7}$Li+$^{59}$Co systems in the vicinity of the Coulomb barrier. Coupling effects are discussed within a comparison of predictions of the Continuum Discretized Coupled-Channels model. Applications to $^{6}$He+$^{59}$Co induced by the borromean halo nucleus $^{6}$He are also proposed.
Theoretical study of the elastic breakup of weakly bound nuclei at near barrier energies
Otomar, D R; Lubian, J; Canto, L F; Hussein, M S
2015-01-01
We have performed CDCC calculations for collisions of $^{7}$Li projectiles on $^{59}$Co, $^{144}$Sm and $^{208}$Pb targets at near-barrier energies, to assess the importance of the Coulomb and the nuclear couplings in the breakup of $^{7}$Li, as well as the Coulomb-nuclear interference. We have also investigated scaling laws, expressing the dependence of the cross sections on the charge and the mass of the target. This work is complementary to the one previously reported by us on the breakup of $^{6}$Li. Here we explore the similarities and differences between the results for the two Lithium isotopes. The relevance of the Coulomb dipole strength at low energy for the two-cluster projectile is investigated in details.
Beam asymmetry Σ in π0 photoproduction off protons bound in carbon nuclei
International Nuclear Information System (INIS)
In order to study the dynamics of the inner components of the nucleon, its excitation spectrum is investigated through meson-photoproduction. Due to the strong overlap of the nucleon's excited states, it is insufficient to determine the cross section only. To identify all resonance contributions unambiguously, single and double polarization observables have to be measured. At the Crystal Barrel experiment at ELSA in Bonn, this is achieved utilizing linearly or circularly polarized photons and longitudinally or transversely polarized nucleons. Polarized protons are realized in a butanol target, which consists of hydrogen, oxygen and carbon. A pure carbon target was used to perform a background measurement. The results for the beam asymmetry Σ in π0 photoproduction, obtained with a carbon target and a linearly polarized photon beam, are presented. Furthermore, the influence of carbon background on the measured polarization observables is discussed.
Moro, Antonio M.; Lei, Jin
2016-05-01
The problem of the calculation of inclusive breakup cross sections in nuclear reactions is reexamined. For that purpose, the theory proposed by Ichimura et al. (Phys Rev C 32:431, 1985) is revisited, both in its prior and post representations. We briefly outline the connection of this theory with that proposed by Udagawa and Tamura (Phys Rev C 24:1348, 1981) and apply both theories to the inclusive breakup of ^6Li on ^{209}Bi at near-barrier energies, comparing also with available data. The relative importance of elastic versus non-elastic breakup, as a function of the incident energy and of the projectile separation energy, is also investigated.
Comparisons between radioactive and non-radioactive gas lantern mantles
International Nuclear Information System (INIS)
Gas lantern mantles containing radioactive thorium have been used for more than 100 years. Although thorium was once believed to be indispensable for giving a bright light, non-radioactive mantles are now available. From the radioactivities of the daughter nuclides, we estimated the levels of radioactivity of 232Th and 228Th in 11 mantles. The mantles contained various levels of radioactivity from background levels to 1410±140 Bq. Our finding that radioactive and non-radioactive mantles are equally bright suggests that there is no advantage in using radioactive mantles. A remaining problem is that gas lantern mantles are sold without any information about radioactivity. (author)
Exotic nuclei: another aspect of nuclear structure
International Nuclear Information System (INIS)
This document gathers the lectures made at the Joliot Curie international summer school in 2002 whose theme that year was exotic nuclei. There were 11 contributions whose titles are: 1) interactions, symmetry breaking and effective fields from quarks to nuclei; 2) status and perspectives for the study of exotic nuclei: experimental aspects; 3) the pairing interaction and the N = Z nuclei; 4) borders of stability region and exotic decays; 5) shell structure of nuclei: from stability to decay; 6) variational approach of system with a few nucleons; 7) from heavy to super-heavy nuclei; 8) halos, molecules and multi-neutrons; 9) macroscopic approaches for fusion reactions; 10) beta decay: a tool for spectroscopy; 11) the gas phase chemistry of super-heavy elements
Refining Castelnuovo-Halphen bounds
Di Gennaro, Vincenzo
2011-01-01
Fix integers $r,d,s,\\pi$ with $r\\geq 4$, $d\\gg s$, $r-1\\leq s \\leq 2r-4$, and $\\pi\\geq 0$. Refining classical results for the genus of a projective curve, we exhibit a sharp upper bound for the arithmetic genus $p_a(C)$ of an integral projective curve $C\\subset {\\mathbb{P}^r}$ of degree $d$, assuming that $C$ is not contained in any surface of degree $ \\pi$. Next we discuss other types of bound for $p_a(C)$, involving conditions on the entire Hilbert polynomial of the integral surfaces on which $C$ may lie.
Space-bounded communication complexity
DEFF Research Database (Denmark)
Brody, Joshua Eric; Chen, Shiteng; Papakonstantinou, Periklis A.;
2013-01-01
In the past thirty years, Communication Complexity has emerged as a foundational tool to proving lower bounds in many areas of computer science. Its power comes from its generality, but this generality comes at a price---no superlinear communication lower bound is possible, since a player may...... communicate his entire input. However, what if the players are limited in their ability to recall parts of their interaction? We introduce memory models for 2-party communication complexity. Our general model is as follows: two computationally unrestricted players, Alice and Bob, each have s(n) bits of memory...
Bounding solutions of Pfaff equations
Esteves, E.; Kleiman, S
2003-01-01
Let \\omega be a Pfaff system of differential forms on a projective space. Let S be its singular locus, and Y a solution of \\omega=0. We prove Y\\cap S is of codimension at most 1 in Y, just as Jouanolou suspected; he proved this result assuming \\omega is completely integrable, and asked if the integrability is, in fact, needed. Furthermore, we prove a lower bound on the Castelnuovo--Mumford regularity of Y\\cap S. As in two related articles, we derive upper bounds on numerical invariants of Y, ...
Bound orbits and gravitational theory
Dadhich, Naresh; Ghosh, Sushant G.(School of Mathematical Sciences, University of KwaZulu-Natal, Westville, 4000, Durban, South Africa); Jhingan, Sanjay
2013-01-01
It can be easily shown that bound orbits around a static source can exist only in 4 dimension and in none else for any long range force. This is so not only for Maxwell's electromagnetic and Newton's gravity but also for Einstein's gravitation theory. In contrast to Maxwell's electrodynamics and Newton's gravity, GR has a natural higher dimensional generalization in Lovelock gravity which remarkably admits bound orbits around a static black hole in all even d=2N+2 dimensions where $N$ is degr...
Radioactive wastes and discharges
International Nuclear Information System (INIS)
The guide sets out the radiation safety requirements and limits for the treatment of radioactive waste. They shall be observed when discharging radioactive substances into the atmosphere or sewer system, or when delivering solid, low-activity waste to a landfill site without a separate waste treatment plan. The guide does not apply to the radioactive waste resulting from the utilisation of nuclear energy or natural resources
Radioactivity and its measurement
Mann, W B; Garfinkel, S B
1980-01-01
Begins with a description of the discovery of radioactivity and the historic research of such pioneers as the Curies and Rutherford. After a discussion of the interactions of &agr;, &bgr; and &ggr; rays with matter, the energetics of the different modes of nuclear disintegration are considered in relation to the Einstein mass-energy relationship as applied to radioactive transformations. Radiation detectors and radioactivity measurements are also discussed
Learning more about radioactivity
International Nuclear Information System (INIS)
This digest brochure explains what radioactivity is, where it comes from, how it is measured, what are its effects on the body and the way to protect it against these effects, the uses of radioactivity (In the medical field, In industry, In the food industry, and In the cultural world). It ends with some examples of irradiation levels, of natural radioactivity and with the distribution in France of various sources of exposure. (J.S.)
Biokinetics of radioactive compounds
International Nuclear Information System (INIS)
Biokinetics of radioactive compounds in the human organism represent the central notion in this work, consisting of a theoretical and an experimental part. The first chapter contains definitions and explanations on the importance of the biokinetics of radioactive compounds in clinical therapy and pharmaceuticals research as well as for assessing radiation exposure and radiation hazards. Chapter 2 describes the bases of the biokinetics of radioactive compounds in the medical and non-medical sector, and biokinetics. Chapter 3 deals with obtaining biokinetics data for radioactive compounds from investigations in animals and man, evaluation of measurements, transferring data obtained by animal experiments to man, and with the variability of biokinetics data. In Chapter 4 the results of comprehensive studies in literature on the biokinetics of radioactive compounds are summarized. They relate to three areas: professional and environmental incorporation of radioactive compounds, use of radioactive pharmaceuticals in therapy and research, and incorporation of radioactive compounds by embryo and fetus in consequence of the uptake of radioactive compounds by the mother. Chapter 5 gives an assessment of radiation hazards from radioactive compounds in connection with occupational radiation exposure and nuclear diagnostics in vivo, and a comparison with other risks. For that purpose the concept of effective dose equivalent is applied in connection with suitable risk coefficients to professional and nuclear-medical radiation exposure. Chapter 6 is dedicated to measurement of the biokinetics of radioactive compounds in man using conventional devices. The object of Chapter 7 is measurement of the biokinetics of radioactive pharmaceuticals in man by means of single photon emission computed tomography. (orig./MG)
International Nuclear Information System (INIS)
This Code of Practice covers all the drainage systems which may occur in the radioactive classified area of an establishment, namely surface water, foul, process and radioactive drainage. It also deals with final discharge lines. The Code of Practice concentrates on those aspects of drainage which require particular attention because the systems are in or from radioactive areas and typical illustrations are given in appendices. The Code makes references to sources of information on conventional aspects of drainage design. (author)
Radioactive wastes and discharges
Energy Technology Data Exchange (ETDEWEB)
NONE
2000-07-01
The guide sets out the radiation safety requirements and limits for the treatment of radioactive waste. They shall be observed when discharging radioactive substances into the atmosphere or sewer system, or when delivering solid, low-activity waste to a landfill site without a separate waste treatment plan. The guide does not apply to the radioactive waste resulting from the utilisation of nuclear energy or natural resources.
Radioactive Plumes Monitoring Simulator
International Nuclear Information System (INIS)
The Airborne Radiation Monitoring System (ARMS) monitors air or ground radioactive contamination. The contamination source can be a radioactive plume or an area contaminated with radionuclides. The system is based on two major parts, an airborne unit carried by a helicopter and a ground station carried by a truck. The system enables real time measurement and analysis of radioactive plumes as well as post flight processing. The Radioactive Plumes Monitoring Simulator purpose is to create a virtual space where the trained operators experience full radiation field conditions, without real radiation hazard. The ARMS is based on a flying platform and hence the simulator allows a significant reduction of flight time costs
International Nuclear Information System (INIS)
The guideline of the Ministry for Environmental Protection for controlling radioactive waste with a negligible development of heat defines in detail what data are relevant to the control of radioactive waste and should be followed up on and included in a system of documentation. By introducing the AVK (product control system for tracing the course of waste disposal) the operators of German nuclear power plants have taken the requirements of this guideline into account. In particular, possibilities for determining the degree of radioactivity of radioactive waste, which the BMU-guidelines call for, were put into practice by means of the programming technology of the product control system's module MOPRO. (orig.)