WorldWideScience

Sample records for bound radioactive nuclei

  1. Physics with loosely bound nuclei

    Indian Academy of Sciences (India)

    Chhanda Samanta

    2001-08-01

    The essential aspect of contemporary physics is to understand properties of nucleonic matter that constitutes the world around us. Over the years research in nuclear physics has provided strong guidance in understanding the basic principles of nuclear interactions. But, the scenario of nuclear physics changed drastically as the new generation of accelerators started providing more and more rare isotopes, which are away from the line of stability. These weakly bound nuclei are found to exhibit new forms of nuclear matter and unprecedented exotic behaviour. The low breakup thresholds of these rare nuclei are posing new challenges to both theory and experiments. Fortunately, nature has provided a few loosely bound stable nuclei that have been studied thoroughly for decades. Attempts are being made to find a consistent picture for the unstable nuclei starting from their stable counterparts. Some significant differences in the structure and reaction mechanisms are found.

  2. Antibaryons bound in nuclei

    CERN Document Server

    Mishustin, I N; Buervenich, T J; Stöcker, H; Greiner, W

    2005-01-01

    We study the possibility of producing a new kind of nuclear systems which in addition to ordinary nucleons contain a few antibaryons (antiproton, antilambda, etc.). The properties of such systems are described within the relativistic mean-field model by employing G-parity transformed interactions for antibaryons. Calculations are first done for infinite systems and then for finite nuclei from He to Pb. It is demonstrated that the presence of a real antibaryon leads to a strong rearrangement of a target nucleus resulting in a significant increase of its binding energy and local compression. Noticeable effects remain even after the antibaryon coupling constants are reduced by factor 3-4 compared to G-parity motivated values. We have performed detailed calculations of the antibaryon annihilation rates in the nuclear environment by applying a kinetic approach. It is shown that due to significant reduction of the reaction Q-values, the in-medium annihilation rates should be strongly suppressed leading to relativel...

  3. Nuclear structure of weakly bound radioactive nuclei through elastic and and inelastic scattering on proton. Impacts of the couplings induced by these exotic nuclei on direct reactions

    International Nuclear Information System (INIS)

    Information on the structure, spectroscopy and target interaction potentials of exotic nuclei can be inferred by interpreting measured data from direct reactions on proton such as elastic or inelastic scattering of proton (p,p') or one-nucleon transfer reaction (p,d). A series of experimental results has been obtained at the GANIL facilities on the setting composed of the MUST telescope array used for the detection of light charged-particles and of CATS beam detectors. This setting aims at measuring reactions on light proton or deuteron targets through reverse kinematics. Particularly, results on C10, C11 and on direct reactions with the He8 beam of Spiral are presented. The first chapter is dedicated to the description of the most important theories concerning the nucleus. The experimental tools used to probe the nucleus are reported in the second chapter. The third and fourth chapters present the framework that has allowed us to analyse results from (p,p') and (p,d) reactions on weakly bound exotic nuclei. The last chapter is dedicated to the description of future experimental programs. (A.C.)

  4. Nuclear moments of radioactive nuclei. Final report

    International Nuclear Information System (INIS)

    An unsuccessful attempt was made to study nuclear moments of radioactive nuclear using laser spectroscopy. Although preliminary tests had indicated a sensitivity sufficient to observe signals of fluxes less than one atom/s no resonance fluorescence was detected. Activity measurements showed several hundred nuclei per second were in the beam; therefore it was postulated that, due to the the reactivity of the 126Ba and sodium used, contaminants were the probable source of negative results. 3 refs., 2 figs

  5. Reactions with fast radioactive beams of neutron-rich nuclei

    International Nuclear Information System (INIS)

    The neutron dripline has presently been reached only for the lightest nuclei up to the element oxygen. In this region of light neutron-rich nuclei, scattering experiments are feasible even for dripline nuclei by utilizing high-energy secondary beams produced by fragmentation. In the present article, reactions of high-energy radioactive beams will be exemplified using recent experimental results mainly derived from measurements of breakup reactions performed at the LAND and FRS facilities at GSI and at the S800 spectrometer at the NSCL. Nuclear and electromagnetically induced reactions allow probing different aspects of nuclear structure at the limits of stability related to the neutron-proton asymmetry and the weak binding close to the dripline. Properties of the valence-neutron wave functions are studied in the one-neutron knockout reaction, revealing the changes of shell structure when going from the beta-stability line to more asymmetric loosely bound neutron-rich systems. The vanishing of the N=8 shell gap for neutron-rich systems like 11Li and 12Be, or the new closed N=14, 16 shells for the oxygen isotopes are examples. The continuum of weakly bound nuclei and halo states can be studied by inelastic scattering. The dipole response, for instance, is found to change dramatically when going away from the valley of stability. A redistribution of the dipole strength towards lower excitation energies is observed for neutron-rich nuclei, which partly might be due to a new collective excitation mode related to the neutron-proton asymmetry. Halo nuclei in particular show strong dipole transitions to the continuum at the threshold, being directly related to the ground-state properties of the projectile. Finally, an outlook on future experimental prospects is given. (orig.)

  6. Reactions with fast radioactive beams of neutron-rich nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Aumann, T. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)

    2005-11-01

    The neutron dripline has presently been reached only for the lightest nuclei up to the element oxygen. In this region of light neutron-rich nuclei, scattering experiments are feasible even for dripline nuclei by utilizing high-energy secondary beams produced by fragmentation. In the present article, reactions of high-energy radioactive beams will be exemplified using recent experimental results mainly derived from measurements of breakup reactions performed at the LAND and FRS facilities at GSI and at the S800 spectrometer at the NSCL. Nuclear and electromagnetically induced reactions allow probing different aspects of nuclear structure at the limits of stability related to the neutron-proton asymmetry and the weak binding close to the dripline. Properties of the valence-neutron wave functions are studied in the one-neutron knockout reaction, revealing the changes of shell structure when going from the beta-stability line to more asymmetric loosely bound neutron-rich systems. The vanishing of the N=8 shell gap for neutron-rich systems like {sup 11}Li and {sup 12}Be, or the new closed N=14, 16 shells for the oxygen isotopes are examples. The continuum of weakly bound nuclei and halo states can be studied by inelastic scattering. The dipole response, for instance, is found to change dramatically when going away from the valley of stability. A redistribution of the dipole strength towards lower excitation energies is observed for neutron-rich nuclei, which partly might be due to a new collective excitation mode related to the neutron-proton asymmetry. Halo nuclei in particular show strong dipole transitions to the continuum at the threshold, being directly related to the ground-state properties of the projectile. Finally, an outlook on future experimental prospects is given. (orig.)

  7. Studies of nuclei using radioactive beams

    International Nuclear Information System (INIS)

    The 12 month period from May 1988 to July 1989 represents the first full year of our 18 month pilot program in nuclear structure research. In this period, research was initiated to develop a capability for radioactive secondary beams at Argonne National Laboratory using the Atlas and the new Fragment Mass Analyzer (FMA), which is currently under construction. Two major new detector facilities are currently in the final stages of design and testing. The Large-Area, Scintillator Telescope (LAST) detector is fully operational and will be shipped to Argonne National Laboratory in August for fit-tests and in-beam calibrations. The first segments of a new sixteen-segment neutron multiplicity detector have been built and tested. The remaining segments are currently being constructed. Research was continued in the areas of (1) Coulomb excitation studies of rare earth and actinide nuclei; (2) In-beam, gamma-ray spectroscopy of nuclei in the mass 100 region, and (3) Advanced detector design. Several journal articles and abstracts were published or submitted for publication in the reporting period, and others are currently in preparation. Three graduate students participated in the program, one from the University of Florida and two from the Royal Institute of Technology, Stockholm, Sweden

  8. Deeply bound kaonic states in nuclei

    Institute of Scientific and Technical Information of China (English)

    LI Yi-He; WU Shi-Shu

    2009-01-01

    Using a new phenomenological (K)N interaction which reproduces A(1405) as an I = 0 bound state of (K)N, we have investigated K- -3 He(T = 0) and K- -4 He(T = 1/2) within the framework of the Brueckner-Hartree-Fock(BHF) theory. Our calculations show that the above kaonic nuclear systems are both deeply bound. The binding energy BK- is 124.4 MeV(94.1 MeV) and the width Γ is 11.8 MeV(25.8 MeV) for K- -3 He(T = 0)(K- -4 He(T= 1/2)).

  9. Reaction dynamics for fusion of weakly-bound nuclei

    OpenAIRE

    Hagino, K.; Vitturi, A.

    2004-01-01

    We discuss several open problems of fusion reactions induced by weakly bound nuclei. For this purpose, we solve a one dimensional three-body Hamiltonian with the coupled-channels formalism. We show that the continuum-continuum couplings substantially reduce the total fusion probability at energies above the barrier compared with the no-breakup case, although the fusion probability remains enhanced at subbarrier energies. We then discuss a role of transfer process in fusion of weakly bound nuc...

  10. Precision mass measurements of radioactive nuclei at JYFLTRAP

    CERN Document Server

    Rahaman, S; Eronen, T; Hager, U; Hakala, J; Jokinen, A; Kankainen, A; Moore, I D; Pentillä, H; Rinta-Antila, S; Rissanen, J; Saastamoinen, A; Sonoda, T; Weber, C; Äystö, J

    2007-01-01

    The Penning trap mass spectrometer JYFLTRAP was used to measure the atomic masses of radioactive nuclei with an uncertainty better than 10 keV. The atomic masses of the neutron-deficient nuclei around the N = Z line were measured to improve the understanding of the rp-process path and the SbSnTe cycle. Furthermore, the masses of the neutron-rich gallium (Z = 31) to palladium (Z = 46) nuclei have been measured. The physics impacts on the nuclear structure and the r-process paths are reviewed. A better understanding of the nuclear deformation is presented by studying the pairing energy around A = 100.

  11. Emergent Soft Monopole Modes in Weakly-Bound Deformed Nuclei

    CERN Document Server

    Pei, J C; Zhang, Y N; Xu, F R

    2014-01-01

    Based on the Hartree-Fock-Bogoliubov solutions in large deformed coordinate spaces, the finite amplitude method for quasiparticle random phase approximation (FAM-QRPA) has been implemented, providing a suitable approach to probe collective excitations of weakly-bound nuclei embedded in the continuum. The monopole excitation modes in Magnesium isotopes up to the neutron drip line have been studied with the FAM-QRPA framework on both the coordinate-space and harmonic oscillator basis methods. Enhanced soft monopole strengths and collectivity as a result of weak-binding effects have been unambiguously demonstrated.

  12. High energy beams of radioactive nuclei and their biomedical applications

    International Nuclear Information System (INIS)

    The availability of high-energy beams of radioactive species is the most recent advancement in the field of accelerator physics. One of the primary interactions experienced by relativistic heavy ions is the peripheral nuclear collision. Thus, radioactive nuclei are produced as secondary particles from peripheral nuclear fragmentation reactions. These nuclei have trajectories and energies differing little from that of the parent particle. Various radioactive beams produced as a result of these reactions, now available on a regular basis from the Bevalac, are: 11C, 13N, 15O, and 19Ne with sufficient intensity. Besides the interest in such beams for nuclear physics, important applications in therapeutic and diagnostic radiology and in nuclear medicine are discussed

  13. Studies of pear-shaped nuclei using accelerated radioactive beams

    CERN Document Server

    Gaffney, L P; Scheck, M; Hayes, A B; Wenander, F; Albers, M; Bastin, B; Bauer, C; Blazhev, A; Bonig, S; Bree, N; Cederkall, J; Chupp, T; Cline, D; Cocolios, T E; Davinson, T; DeWitte, H; Diriken, J; Grahn, T; Herzan, A; Huyse, M; Jenkins, D G; Joss, D T; Kesteloot, N; Konki, J; Kowalczyk, M; Kroll, Th; Kwan, E; Lutter, R; Moschner, K; Napiorkowski, P; Pakarinen, J; Pfeiffer, M; Radeck, D; Reiter, P; Reynders, K; Rigby, S V; Robledo, L M; Rudigier, M; Sambi, S; Seidlitz, M; Siebeck, B; Stora, T; Thoele, P; Van Duppen, P; Vermeulen, M J; von Schmid, M; Voulot, D; Warr, N; Wimmer, K; Wrzosek-Lipska, K; Wu, C Y; Zielinska, M

    2013-01-01

    There is strong circumstantial evidence that certain heavy, unstable atomic nuclei are ‘octupole deformed’, that is, distorted into a pear shape. This contrasts with the more prevalent rugby-ball shape of nuclei with reflection-symmetric, quadrupole deformations. The elusive octupole deformed nuclei are of importance for nuclear structure theory, and also in searches for physics beyond the standard model; any measurable electric-dipole moment (a signature of the latter) is expected to be amplified in such nuclei. Here we determine electric octupole transition strengths (a direct measure of octupole correlations) for short-lived isotopes of radon and radium. Coulomb excitation experiments were performed using accelerated beams of heavy, radioactive ions. Our data on and $^{224}$Ra show clear evidence for stronger octupole deformation in the latter. The results enable discrimination between differing theoretical approaches to octupole correlations, and help to constrain suitable candidates for experimental...

  14. Nuclear structure of weakly bound radioactive nuclei through elastic and and inelastic scattering on proton. Impacts of the couplings induced by these exotic nuclei on direct reactions; Structure de noyaux radioactifs faiblement lies par diffusions elastiques et inelastiques sur proton. Effets des couplages induits par ces noyaux exotiques sur les reactions directes

    Energy Technology Data Exchange (ETDEWEB)

    Lapoux, V

    2005-09-15

    Information on the structure, spectroscopy and target interaction potentials of exotic nuclei can be inferred by interpreting measured data from direct reactions on proton such as elastic or inelastic scattering of proton (p,p') or one-nucleon transfer reaction (p,d). A series of experimental results has been obtained at the GANIL facilities on the setting composed of the MUST telescope array used for the detection of light charged-particles and of CATS beam detectors. This setting aims at measuring reactions on light proton or deuteron targets through reverse kinematics. Particularly, results on C{sup 10}, C{sup 11} and on direct reactions with the He{sup 8} beam of Spiral are presented. The first chapter is dedicated to the description of the most important theories concerning the nucleus. The experimental tools used to probe the nucleus are reported in the second chapter. The third and fourth chapters present the framework that has allowed us to analyse results from (p,p') and (p,d) reactions on weakly bound exotic nuclei. The last chapter is dedicated to the description of future experimental programs. (A.C.)

  15. Bound clusters on top of doubly magic nuclei

    CERN Document Server

    Röpke, G; Zhou, Bo; Funaki, Y; Horiuchi, H; Ren, Zhongzhou; Tohsaki, A; Xu, Chang; Yamada, T

    2014-01-01

    An effective $\\alpha$ particle equation is derived for cases where an $\\alpha$ particle is formed on top of a doubly magic nucleus. As an example, we consider $^{212}$Po with the $\\alpha$ on top of the $^{208}$ Pb core. We will consider the core nucleus infinitely heavy, so that the $\\alpha$ particle moves with respect to a fixed center, i.e., recoil effects are neglected. The fully quantal solution of the problem is discussed. The approach is inspired by the THSR (Tohsaki-Horiuchi-Schuck-R\\"{o}pke) wave function concept that has been successfully applied to light nuclei. Shell model calculations are improved by including four-particle ($\\alpha$-like) correlations that are of relevance when the matter density becomes low. In the region where the $\\alpha$-like cluster penetrates the core nucleus, the intrinsic bound state wave function transforms at a critical density into an unbound four-nucleon shell model state. Exploratory calculations for $^{212}$Po are presented. Such preformed cluster states are only ha...

  16. Study of Exotic Weakly Bound Nuclei Using Magnetic Analyzer Mavr

    Science.gov (United States)

    Maslov, V. A.; Kazacha, V. I.; Kolesov, I. V.; Lukyanov, S. M.; Melnikov, V. N.; Osipov, N. F.; Penionzhkevich, Yu. E.; Skobelev, N. K.; Sobolev, Yu. G.; Voskoboinik, E. I.

    2016-06-01

    A project of the high-resolution magnetic analyzer MAVR is proposed. The analyzer will comprise new magnetic optical and detecting systems for separation and identification of reaction products in a wide range of masses (5-150) and charges (1-60). The magnetic optical system consists of the MSP-144 magnet and a doublet of quadrupole lenses. This will allow the solid angle of the spectrometer to be increased by an order of magnitude up to 30 msr. The magnetic analyzer will have a high momentum resolution (10-4) and high focal-plane dispersion (1.9 m). It will allow products of nuclear reactions at energies up to 30 MeV/nucleon to be detected with the charge resolution ∼1/60. Implementation of the project is divided into two stages: conversion of the magnetic analyzer proper and construction of the nuclear reaction products identification system. The MULTI detecting system is being developed for the MAVR magnetic analyzer to allow detection of nuclear reaction products and their identification by charge Q, atomic number Z, and mass A with a high absolute accuracy. The identification will be performed by measuring the energy loss (ΔE), time of flight (TOF), and total kinetic energy (TKE) of reaction products. The particle trajectories in the analyzer will also be determined using the drift chamber developed jointly with GANIL. The MAVR analyzer will operate in both primary beams of heavy ions and beams of radioactive nuclei produced by the U400 - U400M acceleration complex. It will also be used for measuring energy spectra of nuclear reaction products and as an energy monochromator.

  17. Mirror energy difference and the structure of loosely bound proton-rich nuclei around A = 20

    CERN Document Server

    Yuan, Cenxi; Xu, Furong; Suzuki, Toshio; Otsuka, Takaharu

    2014-01-01

    The properties of loosely bound proton-rich nuclei around A = 20 are investigated within the framework of nuclear shell model. In these nuclei, the strength of the effective interactions involving the loosely bound proton s1=2 orbit are significantly reduced in comparison with those in their mirror nuclei. We evaluate the reduction of the effective interaction by calculating the monopole-baseduniversal interaction (VMU) in the Woods-Saxon basis. The shell-model Hamiltonian in the sd shell, such as USD, can thus be modified to reproduce the binding energies and energy levels of the weakly bound proton-rich nuclei around A = 20. The effect of the reduction of the effective interaction on the structure and decay properties of these nuclei is also discussed.

  18. Spectroscopic factors for two-proton radioactive nuclei

    Indian Academy of Sciences (India)

    Chinmay Basu

    2004-11-01

    Spectroscopic factors for two-proton emitting nuclei are discussed in the framework of the BCS (Bardeen–Cooper–Schriefer) model. Calculations carried out for the two-proton unstable 45Fe, 48Ni and 54Zn nuclei are presented.

  19. Continuum discretised BCS approach for weakly bound nuclei

    Science.gov (United States)

    Lay, J. A.; Alonso, C. E.; Fortunato, L.; Vitturi, A.

    2016-08-01

    The Bardeen–Cooper–Schrieffer (BCS) formalism is extended by including the single-particle continuum in order to analyse the evolution of pairing in an isotopic chain from stability up to the drip-line. We propose a continuum discretised generalised BCS based on single-particle pseudostates (PS). These PS are generated from the diagonalisation of the single-particle Hamiltonian within a transformed harmonic oscillator basis. The consistency of the results versus the size of the basis is studied. The method is applied to neutron rich oxygen and carbon isotopes and compared with similar previous works and available experimental data. We make use of the flexibility of the proposed model in order to study the evolution of the occupation of the low-energy continuum when the system becomes weakly bound. We find an increasing influence of the non-resonant continuum as long as the Fermi level approaches the neutron separation threshold.

  20. Distributions of Long-Lived Radioactive Nuclei Provided by Star Forming Environments

    CERN Document Server

    Fatuzzo, M

    2015-01-01

    Radioactive nuclei play an important role in planetary evolution by providing an internal heat source, which affects planetary structure and helps facilitate plate tectonics. A minimum level of nuclear activity is thought to be necessary --- but not sufficient --- for planets to be habitable. Extending previous work that focused on short-lived nuclei, this paper considers the delivery of long-lived radioactive nuclei to circumstellar disks in star forming regions. Although the long-lived nuclear species are always present, their abundances can be enhanced through multiple mechanisms. Most stars form in embedded cluster environments, so that disks can be enriched directly by intercepting ejecta from supernovae within the birth clusters. In addition, molecular clouds often provide multiple episodes of star formation, so that nuclear abundances can accumulate within the cloud; subsequent generations of stars can thus receive elevated levels of radioactive nuclei through this distributed enrichment scenario. This...

  1. Nuclear dynamics of bound eta mesons: Eta-mesic nuclei and mesic compound-nucleus resonances

    International Nuclear Information System (INIS)

    The theory of eta-mesic nuclei is reviewed and the experiments designed to search for them are described. A theory of mesic compound nuclear resonances is presented which allow a study of the effects of eta-nucleus bound states on other meson-nucleus reactions in which the eta is not being observed. 7 refs., 8 figs

  2. Evolution of Surface Deformations of Weakly-Bound Nuclei in the Continuum

    CERN Document Server

    Pei, J C; Xu, F R

    2013-01-01

    We study weakly-bound deformed nuclei based on coordinate-space Skyrme Hartree-Fock-Bogoliubov approach , in which a large box is employed for treating the continuum and surface diffuseness. Approaching the limit of core-halo deformation decoupling, calculations found an exotic "egg"-like structure consisting of a spherical core plus a prolate halo in $^{38}$Ne, in which the resonant continuum plays an essential role. Generally the halo probability and the decoupling effect in heavy nuclei are reduced compared to light nuclei, due to denser level densities around Fermi surfaces. However, deformed halos in medium-mass nuclei are possible with sparse levels of negative parity, for example, in $^{110}$Ge. The surface deformations of pairing density distributions are also influenced by the decoupling effect and are sensitive to the effective pairing Hamiltonian.

  3. Cluster radioactivity of Z=125 super heavy nuclei

    International Nuclear Information System (INIS)

    For atomic numbers larger than 121 cluster decay and spontaneous fission may compete with α decay. Hence there is a need to make reliable calculations for the cluster decay half-lives of superheavy nuclei to predict the possible isotopes super heavy nuclei. So, in the present work, we have studied the decay of clusters such as 8Be, 10Be, 12C, 14C, 16C, 18O, 20O, 22Ne, 24Ne, 25Ne, 26Ne, 28Mg, 30Mg, 32Si, 34Si, 36Si, 40S, 48Ca, 50Ca and 52Ti from the super heavy nuclei Z=125

  4. Populating Low-Spin States in Radioactive Nuclei to Measure Magnetic Moments Using the Transient Field Technique

    CERN Document Server

    Torres, D A

    2016-01-01

    The experimental study of magnetic moments for nuclear states near the ground state, $I \\ge 2$, provides a powerful tool to test nuclear structure models. The study of magnetic moments in nuclei far away from the stability line is the next frontier in such studies. Two techniques have been utilized to populated low-spin states in radioactive nuclei: coulomb excitation reactions using radioactive nuclei, and the transfer of $\\alpha$ particles to stable beams to populate low spin states in radioactive nuclei. A presentations of these two techniques, along with the experimental challenges presented for future uses with nuclei far away from the stability line, will be presented.

  5. The systematic study of deeply bound kaonic nuclei with antisymmetrized molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Dote, Akinobu; Akaishi, Yoshinori [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan); Horiuchi, Hisashi [Kyoto Univ. (Japan). Dept. of Physics; Yamazaki, Toshimitsu [Institute of Physical and Chemical Research, Wako, Saitama (Japan)

    2002-09-01

    We have investigated systematically kaonic nuclei which are ppnK{sup -}, pppK{sup -}, pppnK{sup -} and {sup 6}BeK{sup -}. In the present study we have improved the framework of antisymmetrized molecular dynamics (AMD) so that we can treat K{sup -} - K-bar{sup 0} mixing and perform not only angular-momentum projection but also isospin projection. As a result of our calculation with a new framework of AMD, all kaonic nuclei we calculated are deeply bound by about 100 MeV. We found interesting structures in pppK{sup -} and {sup 6}BeK{sup -}. (author)

  6. Nuclear fusion reactions involving weakly bound nuclei at near barrier energies

    International Nuclear Information System (INIS)

    The studies on nuclear fusion reactions involving loosely bound nuclei around barrier energies have attracted significant attention since last almost three decades. One of the primary aim of these studies is to investigate the role of unique characteristics features of nuclei lying in the close vicinity of drip lines in determination of the fusion cross section. The static effects arising because of large spatial extension of some highly neutron-rich or proton-rich nuclear isotopes have been found to enhance the fusion cross section due to barrier lowering. However regarding the role of various channel coupling dynamical effects in the description of fusion reactions conflicting results have been observed

  7. DISTRIBUTIONS OF LONG-LIVED RADIOACTIVE NUCLEI PROVIDED BY STAR-FORMING ENVIRONMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Fatuzzo, Marco [Department of Physics, Xavier University, Cincinnati, OH 45207 (United States); Adams, Fred C. [Physics Department, University of Michigan, Ann Arbor, MI 48109 (United States)

    2015-11-01

    Radioactive nuclei play an important role in planetary evolution by providing an internal heat source, which affects planetary structure and helps facilitate plate tectonics. A minimum level of nuclear activity is thought to be necessary—but not sufficient—for planets to be habitable. Extending previous work that focused on short-lived nuclei, this paper considers the delivery of long-lived radioactive nuclei to circumstellar disks in star forming regions. Although the long-lived nuclear species are always present, their abundances can be enhanced through multiple mechanisms. Most stars form in embedded cluster environments, so that disks can be enriched directly by intercepting ejecta from supernovae within the birth clusters. In addition, molecular clouds often provide multiple episodes of star formation, so that nuclear abundances can accumulate within the cloud; subsequent generations of stars can thus receive elevated levels of radioactive nuclei through this distributed enrichment scenario. This paper calculates the distribution of additional enrichment for {sup 40}K, the most abundant of the long-lived radioactive nuclei. We find that distributed enrichment is more effective than direct enrichment. For the latter mechanism, ideal conditions lead to about 1 in 200 solar systems being directly enriched in {sup 40}K at the level inferred for the early solar nebula (thereby doubling the abundance). For distributed enrichment from adjacent clusters, about 1 in 80 solar systems are enriched at the same level. Distributed enrichment over the entire molecular cloud is more uncertain, but can be even more effective.

  8. Analysis of proton radioactivity of nuclei by using proximity potential with a new universal function

    Science.gov (United States)

    Guo, C. L.; Zhang, G. L.

    2014-12-01

    The nuclear potential between proton and the daughter nuclei is calculated in the frame of the proximity potential with a new universal function. We obtained and analyzed the half-lives of proton radioactivity of the mother nuclei. By comparing to the experimental data and the other calculation results of ground and isomer states of proton emitters, it is found that the present calculation results can reproduce the order of magnitude of the experimental data well. It indicates that the proximity potential with a new universal function can estimate the half-life of proton radioactivity.

  9. Unstable nuclei in dissociation of light stable and radioactive nuclei in nuclear track emulsion

    CERN Document Server

    Artemenkov, D A; Zarubin, P I

    2016-01-01

    A role of the unstable nuclei ${}^{6}$Be, ${}^{8}$Be and ${}^{9}$B in the dissociation of relativistic nuclei ${}^{7,9}$Be, ${}^{10}$B and ${}^{10,11}$C is under study on the basis of nuclear track emulsion exposed to secondary beams of the JINR Nuclotron. Contribution of the configuration ${}^{6}$Be + $\\mit{n}$ to the ${}^{7}$Be nucleus structure is 8 $\\pm$ 1% which is near the value for the configuration ${}^{6}$Li + $\\mit{p}$. Distributions over the opening angle of $\\alpha$-particle pairs indicate to a simultaneous presence of virtual ${}^{8}$Be$_{g.s.}$ and ${}^{8}$Be$_{2^+}$ states in the ground states of the ${}^{9}$Be and ${}^{10}$C nuclei. The core ${}^{9}$B is manifested in the {${}^{10}$C} nucleus with a probability of 30 $\\pm$ 4%. Selection of the ${}^{10}$C "white" stars accompanied by ${}^{8}$Be$_{g.s.}$ (${}^{9}$B) leads to appearance in the excitation energy distribution of 2$\\alpha$2$\\mit{p}$ "quartets" of the distinct peak with a maximum at 4.1 $\\pm$ 0.3 MeV. ${}^{8}$Be$_{g.s.}$ decays are p...

  10. Low-energy fusion dynamics of weakly bound nuclei: A time dependent perspective

    Science.gov (United States)

    Diaz-Torres, A.; Boselli, M.

    2016-05-01

    Recent dynamical fusion models for weakly bound nuclei at low incident energies, based on a time-dependent perspective, are briefly presented. The main features of both the PLATYPUS model and a new quantum approach are highlighted. In contrast to existing timedependent quantum models, the present quantum approach separates the complete and incomplete fusion from the total fusion. Calculations performed within a toy model for 6Li + 209Bi at near-barrier energies show that converged excitation functions for total, complete and incomplete fusion can be determined with the time-dependent wavepacket dynamics.

  11. Recent Results on Fusion and Direct Reactions with Weakly Bound Stable Nuclei

    Directory of Open Access Journals (Sweden)

    Shrivastava A.

    2011-10-01

    Full Text Available Recent measurements of fusion and direct reactions in case of weakly bound stable nuclei at extreme sub-barrier energies using a sensitive off beam technique are presented. Deviation in slope of the fusion excitation function, as observed in case of medium heavy systems, is absent in the present asymmetric systems at these low energies. These results along with the study of capture reaction of the breakup fragments using particle- gamma coincidences is presented, thereby giving the current status of the field.

  12. Distributions of Short-Lived Radioactive Nuclei Produced by Young Embedded Stellar Clusters

    CERN Document Server

    Adams, Fred C; Holden, Lisa

    2014-01-01

    Most star formation in the Galaxy takes place in clusters, where the most massive members can affect the properties of other constituent solar systems. This paper considers how clusters influence star formation and forming planetary systems through nuclear enrichment from supernova explosions, where massive stars deliver short-lived radioactive nuclei (SLRs) to their local environment. The decay of these nuclei leads to both heating and ionization, and thereby affects disk evolution, disk chemistry, and the accompanying process of planet formation. Nuclear enrichment can take place on two spatial scales: [1] Within the cluster itself ($\\ell\\sim1$pc), the SLRs are delivered to the circumstellar disks associated with other cluster members. [2] On the next larger scale ($\\ell\\sim2-10$pc), SLRs are injected into the background molecular cloud; these nuclei provide heating and ionization to nearby star-forming regions, and to the next generation of disks. For the first scenario, we construct the expected distribut...

  13. Heavy particle radioactivity from superheavy nuclei leading to $^{298}$114 daughter nuclei

    CERN Document Server

    Santhosh, K P

    2013-01-01

    The feasibility for the alpha decay and the heavy particle decay from the even-even superheavy (SH) nuclei with Z = 116-124 have been studied within the Coulomb and proximity potential model (CPPM). The Universal formula for cluster decay (UNIV) of Poenaru et al., the Universal Decay Law (UDL) and the Scaling Law of Horoi et al., has also been used for the evaluation of the decay half lives. A comparison of our predicted half lives with the values evaluated using these empirical formulas are in agreement with each other and hence CPPM could be considered as a unified model for alpha and cluster decay studies. Within our fission model, we have studied cluster formation probability for various clusters and the maximum cluster formation probability for the decay accompanying $^{298}$114 reveals its doubly magic behavior. In the plots for log_10(T_1/2) against the neutron number of the daughter in the corresponding decay, the half life is found to be the minimum for the decay leading to $^{298}$114 (Z = 114, N = ...

  14. Comparative studies for different proximity potentials applied to large cluster radioactivity of nuclei

    Science.gov (United States)

    Zhang, G. L.; Yao, Y. J.; Guo, M. F.; Pan, M.; Zhang, G. X.; Liu, X. X.

    2016-07-01

    Half-lives of large cluster radioactivity of even-even nuclei calculated by using fourteen proximity potentials are compared to experimental data. The results show that the results of BASS77 and Denisov potentials are most agreeable with the experimental data. Christensen and Winther 1976 potential gives the smallest half-lives. In comparison with the distributions of different proximity potentials and the distributions of total potentials when the values of total potentials are more than the released energy Qc, it is found that at the small distances the large differences of proximity potentials do not affect the calculation results. The different distributions of total potentials affect the penetration probability of large cluster radioactivity, and then affect the half-life of large cluster radioactivity.

  15. Nuclear chemistry research and spectroscopy with radioactive nuclei: Twenty-third annual progress report

    International Nuclear Information System (INIS)

    Research supported in part by this contract has become totally devoted to the study of far-from-stable radioactive nuclei with the UNISOR facility [University Isotope Separator at Oak Ridge] on-line with HHIRF [Holifield Heavy Ion Research Facility]. The purpose of these UNISOR studies is to investigate the low-spin (-γt, Xγt, and αγt multiparameter coincidence measurements are carried out, and soon measurements of singles γ-ray angular distributions and magnetic moments of mass-separated, low-temperature oriented nuclei will begin using the helium dilution refrigerator on-line to the isotope separator. In particular, what is reported centers on two neutron-deficient regions of interest, one around the Z = 82 closed shell (from Z = 77 to 85) and the other in the rare earths around the new region of deformation at N 56. 30 refs., 15 figs., 8 tabs

  16. Interplay of projectile breakup and target excitation in reactions induced by weakly-bound nuclei

    CERN Document Server

    Gomez-Ramos, M

    2016-01-01

    In this work, we reexamine the extension of the CDCC formalism to include target excitation and apply it to a variety of reactions to study the effect of breakup on inelastic cross sections. We use a transformed oscillator basis to discretize the continuum of the projectiles in the different reactions and use the extended CDCC method developed in this work to solve the resulting coupled differential equations. A new code has been developed to perform the calculations. Reactions 58Ni(d, d) 58Ni*, 24Mg(d, d) 24Mg* , 144Sm( 6Li, 6Li) 144Sm* and 9Be( 6Li, 6Li) 9Be* are studied. Satisfactory agreement is found between experimental data and extended CDCC calculations. The studied CDCC method is proved to be an accurate tool to describe target excitation in reactions with weakly-bound nuclei. Moderate effects of breakup on inelastic observables are found for the reactions studied. Cross section magnitudes are not modified much, but angular distributions present smoothing when opposed to calculations without breakup.

  17. Coexistence of Gravitationally Bound and Radiation Driven CIV Emission Line Regions in Active Galactic Nuclei

    CERN Document Server

    Wang, Huiyuan; Zhou, Hongyan; Liu, Bo; Wang, Jianguo; Yuan, Weimin; Dong, Xiaobo

    2011-01-01

    There are mutually contradictory views in the literature of the kinematics and structure of high-ionization line (e.g. CIV) emitting regions in active galactic nuclei (AGNs). Two kinds of broad emission line region (BELR) models have been proposed, outflow and gravitationally bound BELR, which are supported respectively by blueshift of the CIV line and reverberation mapping observations. To reconcile these two apparently different models, we present a detailed comparison study between the CIV and MgII lines using a sample of AGNs selected from the Sloan Digital Sky Survey. We find that the kinematics of the CIV region is different from that of MgII, which is thought to be controlled by gravity. A strong correlation is found between the blueshift and asymmetry of the CIV profile and the Eddington ratio. This provides strong observational support for the postulation that the outflow is driven by radiation pressure. In particular, we find robust evidence that the CIV line region is largely dominated by outflow a...

  18. Beyond designed functional margins in CANDU type NPP. Radioactive nuclei assessment in an LOCA type accident

    Directory of Open Access Journals (Sweden)

    Budu Andrei Razvan

    2015-01-01

    Full Text Available European Union's energy roadmap up to year 2050 states that in order to have an efficient and sustainable economy, with minimum or decreasing greenhouse gas emissions, along with use of renewable resources, each constituent state has the option for nuclear energy production as one desirable option. Every scenario considered for tackling climate change issues, along with security of supply positions the nuclear energy as a recommended option, an option that is highly competitive with respect to others. Nuclear energy, along with other renewable power sources are considered to be the main pillars in the energy sector for greenhouse gas emission mitigation at European level. European Union considers that nuclear energy must be treated as a highly recommended option since it can contribute to security of energy supply. Romania showed excellent track-records in operating in a safe and economically sound manner of Cernavoda NPP Units 1&2. Both Units are in top 10 worldwide in terms of capacity factor. Due to Romania's need to ensure the security of electricity supply, to meet the environmental targets and to move to low carbon generation technologies, Cernavoda Units 3&4 Project appears as a must. This Project was started in 2010 and it is expected to have the Units running by 2025. Cost effective and safety operation of a Nuclear Power Plant is made taking into consideration functional limits of its equipment. As common practice, every nuclear reactor type (technology used is tested according to the worse credible accident or equipment failure that can occur. For CANDU type reactor, this is a Loss of Cooling Accident (LOCA. In a LOCA type accident in a CANDU NPP, using RELAP/SCDAP code for fuel bundle damage assessment the radioactive nuclei are to be quantified. Recently, CANDU type NPP accidents are studied using the RELAP/SCDAP code only. The code formerly developed for PWR type reactors was adapted for the CANDU geometry and can assess the

  19. Studies of nuclei using radioactive beams. [Space Astronomy Lab. , Univ. of Florida, Gainesville, Florida

    Energy Technology Data Exchange (ETDEWEB)

    Piercey, R.B.

    1989-07-01

    The 12 month period from May 1988 to July 1989 represents the first full year of our 18 month pilot program in nuclear structure research. In this period, research was initiated to develop a capability for radioactive secondary beams at Argonne National Laboratory using the Atlas and the new Fragment Mass Analyzer (FMA), which is currently under construction. Two major new detector facilities are currently in the final stages of design and testing. The Large-Area, Scintillator Telescope (LAST) detector is fully operational and will be shipped to Argonne National Laboratory in August for fit-tests and in-beam calibrations. The first segments of a new sixteen-segment neutron multiplicity detector have been built and tested. The remaining segments are currently being constructed. Research was continued in the areas of (1) Coulomb excitation studies of rare earth and actinide nuclei; (2) In-beam, gamma-ray spectroscopy of nuclei in the mass 100 region, and (3) Advanced detector design. Several journal articles and abstracts were published or submitted for publication in the reporting period, and others are currently in preparation. Three graduate students participated in the program, one from the University of Florida and two from the Royal Institute of Technology, Stockholm, Sweden.

  20. Studies of nuclei using radioactive beams. Progress report, May 1988--July 1989

    Energy Technology Data Exchange (ETDEWEB)

    Piercey, R.B.

    1989-07-01

    The 12 month period from May 1988 to July 1989 represents the first full year of our 18 month pilot program in nuclear structure research. In this period, research was initiated to develop a capability for radioactive secondary beams at Argonne National Laboratory using the Atlas and the new Fragment Mass Analyzer (FMA), which is currently under construction. Two major new detector facilities are currently in the final stages of design and testing. The Large-Area, Scintillator Telescope (LAST) detector is fully operational and will be shipped to Argonne National Laboratory in August for fit-tests and in-beam calibrations. The first segments of a new sixteen-segment neutron multiplicity detector have been built and tested. The remaining segments are currently being constructed. Research was continued in the areas of (1) Coulomb excitation studies of rare earth and actinide nuclei; (2) In-beam, gamma-ray spectroscopy of nuclei in the mass 100 region, and (3) Advanced detector design. Several journal articles and abstracts were published or submitted for publication in the reporting period, and others are currently in preparation. Three graduate students participated in the program, one from the University of Florida and two from the Royal Institute of Technology, Stockholm, Sweden.

  1. Distributions of short-lived radioactive nuclei produced by young embedded star clusters

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Fred C. [Physics Department, University of Michigan, Ann Arbor, MI 48109 (United States); Fatuzzo, Marco [Physics Department, Xavier University, Cincinatti, OH 45255 (United States); Holden, Lisa [Department of Mathematics, Northern Kentucky University, Highland Heights, KY 41099 (United States)

    2014-07-01

    Most star formation in the Galaxy takes place in clusters, where the most massive members can affect the properties of other constituent solar systems. This paper considers how clusters influence star formation and forming planetary systems through nuclear enrichment from supernova explosions, where massive stars deliver short-lived radioactive nuclei (SLRs) to their local environment. The decay of these nuclei leads to both heating and ionization, and thereby affects disk evolution, disk chemistry, and the accompanying process of planet formation. Nuclear enrichment can take place on two spatial scales: (1) within the cluster itself (ℓ ∼ 1 pc), the SLRs are delivered to the circumstellar disks associated with other cluster members. (2) On the next larger scale (ℓ ∼ 2-10 pc), SLRs are injected into the background molecular cloud; these nuclei provide heating and ionization to nearby star-forming regions and to the next generation of disks. For the first scenario, we construct the expected distributions of radioactive enrichment levels provided by embedded clusters. Clusters can account for the SLR mass fractions inferred for the early Solar Nebula, but typical SLR abundances are lower by a factor of ∼10. For the second scenario, we find that distributed enrichment of SLRs in molecular clouds leads to comparable abundances. For both the direct and distributed enrichment processes, the masses of {sup 26}Al and {sup 60}Fe delivered to individual circumstellar disks typically fall in the range 10-100 pM {sub ☉} (where 1 pM {sub ☉} = 10{sup –12} M {sub ☉}). The corresponding ionization rate due to SLRs typically falls in the range ζ{sub SLR} ∼ 1-5 × 10{sup –19} s{sup –1}. This ionization rate is smaller than that due to cosmic rays, ζ{sub CR} ∼ 10{sup –17} s{sup –1}, but will be important in regions where cosmic rays are attenuated (e.g., disk mid-planes).

  2. Nuclear Structure Studies of Exotic Nuclei with Radioactive Ion Beams A Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Winger, Jeff Allen [Mississippi State Univ., Mississippi State, MS (United States)

    2016-04-21

    Beta-decay spectroscopy provides important information on nuclear structure and properties needed to understand topics as widely varied as fundamental nuclear astrophysics to applied nuclear reactor design. However, there are significant limitations of our knowledge due to an inability to experimentally measure everything. Therefore, it is often necessary to rely on theoretical calculations which need to be vetted with experimental results. The focus of this report will be results from experimental research performed by the Principal Investigator (PI) and his research group at Mississippi State University in which the group played the lead role in proposing, implementing, performing and analyzing the experiment. This research was carried out at both the National Superconduction Cyclotron Laboratory (NSCL) at Michigan State University and the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory. The primary emphasis of the research was the use of \\bdec spectroscopy as a tool to understand the evolution of nuclear structure in neutron-rich nuclei which could then be applied to improve theory and to increase the overall knowledge of nuclear structure.

  3. nuclei

    Directory of Open Access Journals (Sweden)

    Minkov N.

    2016-01-01

    Full Text Available We study the effects of quadrupole-octupole deformations on the energy and magnetic properties of high-K isomeric states in even-even heavy and superheavy nuclei. The neutron two-quasiparticle (2qp isomeric energies and magnetic dipole moments are calculated within a deformed shell model with the Bardeen-Cooper- Schrieffer (BCS pairing interaction over a wide range of quadrupole and octupole deformations. We found that in most cases the magnetic moments exhibit a pronounced sensitivity to the octupole deformation, while the 2qp energies indicate regions of nuclei in which the presence of high-K isomeric states may be associated with the presence of octupole softness or even with octupole deformation. In the present work we also examine the influence of the BCS pairing strength on the energy of the blocked isomer configuration. We show that the formation of 2qp energy minima in the space of quadrupole-octupole and eventually higher multipolarity deformations is a subtle effect depending on nuclear pairing correlations.

  4. An Improved Method of Lifetime Measurement of Nuclei in Radioactive Decay Chain

    CERN Document Server

    Puzović, J M; Nađđerđ, L J

    2016-01-01

    We present an improved statistical method for calculation of mean lifetime of nuclei in a decay chain with uncertain relation between mother and daughter nuclei. The method is based on formation of time distribution of intervals between mother and daughter nuclei, without trying to set the exact mother-daughter nuclei relationship. If there is a coincidence of mother and daughter nuclei decays, sum of these distributions has flat term on which an exponential term is superimposed. Parameters of this exponential function allow lifetime of daughter nucleus to be extracted. The method is tested on Monte Carlo simulation data.

  5. Recent results in the study of exotic nuclei using the 'Radioactive Ion Beams in Brazil' (RIBRAS) facility

    Energy Technology Data Exchange (ETDEWEB)

    Lepine-Szily, A.; Lichtenthaeler, R.; Guimaraes, V.; Alcantara Nunez, J.; Benjamim, E.A.; Faria, P.N. de; Leistenschneider, E.; Gasques, L.R.; Morais, M.C.; Pampa Condori, R.; Pires, K.C.C.; Scarduelli, V.; Zamora, J.C. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica; Mendes Junior, D.R.; Morcelle, V. [Universidade Federal Fluminense (IF/UFF), Niteroi, RJ (Brazil). Inst. de Fisica; Descouvemont, P. [Universite Libre de Bruxelles (Belgium). Physique Nucleaire Theorique et Physique Matematique; Assuncao, M. [Universidade Federal de Sao Paulo (UNIFESP), Diadema, SP (Brazil); Moro, A.M. [Universidad de Sevilla (Spain). Fac. de Fisica. Dept. de Fisica Atomica, Molecular y Nuclear (FAMN); Arazi, A. [Comision Nacional de Energia Atomica (CNEA), Buenos Aires (Argentina). Lab. TANDAR; Barioni, A. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil)

    2012-07-01

    Full text: The 'Radioactive Ion Beams in Brasil' (RIBRAS) facility consists of two super-conducting solenoids of maxi- mum magnetic field B 6.5T, coupled to the 8UD-Pelletron tandem Accelerator installed at the University of Sao Paulo Physics Institute. It is the first radioactive beam facility of the Southern Hemisphere. The production mechanism of the radioactive ions is by transfer reactions, using {sup 9}Be, {sup 3}He, LiF and other production targets, and the forward focused reaction products are selected and focalized by the solenoids into a scattering chamber. Low energy (3-5 MeV/u) radioactive beams of {sup 6}He, {sup 8}Li, {sup 7,10}Be and {sup 8,12}B are produced currently and used to study elastic, inelastic, and transfer reactions on a variety of light, medium mass and heavy ({sup 9}Be, {sup 12}C, {sup 27}Al, {sup 51}V and {sup 120}Sn) secondary targets. The data are analyzed, using most of the time, the Sao Paulo Potential (SPP) and compared to optical model and continuum discretized coupled-channels (CDCC) calculations. The total reaction cross section as a function of energy has been extracted from the elastic scattering data and the role of breakup of weakly bound or exotic nuclei is discussed. Some examples of reactions recently studied are {sup 1}H({sup 8}Li,{sup 4}He){sup 5}He, {sup 1}H({sup 8}Li,{sup 1}H){sup 8}Li using thick (CH{sub 2}){sub n} targets to measure their excitation functions. The transfer reaction {sup 12}C({sup 8}Li,{sup 4}He){sup 16}N, leading to well defined excited states of {sup 16}N, through the transfer of {sup 4}H or the sequential decay {sup 3}H+n, is also being studied. (author)

  6. Charmed mesic nuclei Bound D and over D states with 208Pb

    CERN Document Server

    Tsushima, K; Thomas, A W; Saitô, K; Landau, Rubin H

    1999-01-01

    We show that the $D^-$ meson will inevitably form narrow bound states with $^{208}$Pb. The experimental confirmation and comparison with the $\\bar{D}^0$ and $D^0$ will provide distinctive information on the nature of the interaction between the charmed meson and matter.

  7. Reexamining cluster radioactivity in trans-lead nuclei with consideration of specific density distributions in daughter nuclei and clusters

    Science.gov (United States)

    Qian, Yibin; Ren, Zhongzhou; Ni, Dongdong

    2016-08-01

    We further investigate the cluster emission from heavy nuclei beyond the lead region in the framework of the preformed cluster model. The refined cluster-core potential is constructed by the double-folding integral of the density distributions of the daughter nucleus and the emitted cluster, where the radius or the diffuseness parameter in the Fermi density distribution formula is determined according to the available experimental data on the charge radii and the neutron skin thickness. The Schrödinger equation of the cluster-daughter relative motion is then solved within the outgoing Coulomb wave-function boundary conditions to obtain the decay width. It is found that the present decay width of cluster emitters is clearly enhanced as compared to that in the previous case, which involved the fixed parametrization for the density distributions of daughter nuclei and clusters. Among the whole procedure, the nuclear deformation of clusters is also introduced into the calculations, and the degree of its influence on the final decay half-life is checked to some extent. Moreover, the effect from the bubble density distribution of clusters on the final decay width is carefully discussed by using the central depressed distribution.

  8. Role of nuclear couplings in the inelastic excitation of weakly-bound neutron-rich nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Dasso, C.H. [Niels Bohr Institute, Copenhagen (Denmark); Lenzi, S.M.; Vitturi, A. [Universita di Padova (Italy)

    1996-12-31

    Much effort is presently devoted to the study of nuclear systems far from the stability line. Particular emphasis has been placed in light systems such as {sup 11}Li, {sup 8}B and others, where the very small binding energy of the last particles causes their density distribution to extend considerably outside of the remaining nuclear core. Some of the properties associated with this feature are expected to characterize also heavier systems in the vicinity of the proton or neutron drip lines. It is by now well established that low-lying concentrations of multipole strength arise from pure configurations in which a peculiar matching between the wavelength of the continuum wavefunction of the particles and the range of the weakly-bound hole states occurs. To this end the authors consider the break-up of a weakly-bound system in a heavy-ion collision and focus attention in the inelastic excitation of the low-lying part of the continuum. They make use of the fact that previous investigations have shown that the multipole response in this region is not of a collective nature and describe their excited states as pure particle-hole configurations. Since the relevant parameter determining the strength distributions is the binding energy of the last bound orbital they find it most convenient to use single-particle wavefunctions generated by a sperical square-well potential with characteristic nuclear dimensions and whose depth has been adjusted to give rise to a situation in which the last occupied neutron orbital is loosely-bound. Spin-orbit couplings are, for the present purpose, ignored. The results of this investigation clearly indicate that nuclear couplings have the predominant role in causing projectile dissociation in many circumstances, even at bombarding energies remarkably below the Coulomb barrier.

  9. Gamma TeV sky versus AUGER clustering: apart Cen A are UHECR mostly radioactive, heavy and galactic nuclei ?

    CERN Document Server

    Fargion, Daniele

    2012-01-01

    UHECR (Ultra High Cosmic Rays) made by He-like lightest nuclei might be solve main of the AUGER extragalactic clustering: He UHECR cannot arrive from Virgo because the light nuclei fragility and opacity above few Mpc; UHECR signals are clustering along Cen-A spreading as observed by horizontal galactic arms magnetic, along a vertical angles as observed clustered ones. As a consequence UHECR He, being fragile should partially fragment in secondaries at tens EeV multiplet (D,He3,p) almost as it occurs in the very recent UHECR multiplet at 20 EeV along Cen A UHECR clustering. However most remaining UHECR spread group seem to show mild correlations with other gamma (MeV-Al26) galactic sources within a wide angle. Moreover a rare UHECR clustering triplet is overlapping on Vela TeV anisotropy; other nearest galactic gamma sources may show links with UHECR. Therefore UHECR might be also heavy radioactive galactic nuclei as Ni56, Ni57 and Co57,Co60 widely bent from the sources whose radioactivity and decay in flight ...

  10. Exotic nuclei far from the stability line

    CERN Document Server

    Hagino, K; Sagawa, H

    2012-01-01

    The recent availability of radioactive beams has opened up a new era in nuclear physics. The interactions and structure of exotic nuclei close to the drip lines have been studied extensively world wide, and it has been revealed that unstable nuclei, having weakly bound nucleons, exhibit characteristic features such as a halo structure and a soft dipole excitation. We here review the developments of the physics of unstable nuclei in the past few decades. The topics discussed in this Chapter include the halo and skin structures, the Coulomb breakup, the dineutron correlation, the pair transfer reactions, the two-nucleon radioactivity, the appearance of new magic numbers, and the pygmy dipole resonances.

  11. Importance of resonance widths in low-energy scattering of weakly bound light-mass nuclei

    Science.gov (United States)

    Fraser, P. R.; Massen-Hane, K.; Amos, K.; Bray, I.; Canton, L.; Fossión, R.; Kadyrov, A. S.; Karataglidis, S.; Svenne, J. P.; van der Knijff, D.

    2016-09-01

    What effect do particle-emitting resonances have on the scattering cross section? What physical considerations are necessary when modeling these resonances? These questions are important when theoretically describing scattering experiments with radioactive ion beams which investigate the frontiers of the table of nuclides, far from stability. Herein, a novel method is developed that describes resonant nuclear scattering from which centroids and widths in the compound nucleus are obtained when one of the interacting bodies has particle unstable resonances. The method gives cross sections without unphysical behavior that is found if simple Lorentzian forms are used to describe resonant target states. The resultant cross sections differ significantly from those obtained when the states in the coupled channel calculations are taken to have zero width, and compound-system resonances are better matched to observed values.

  12. Importance of lifetime effects in breakup and suppression of complete fusion in reactions of weakly bound nuclei

    CERN Document Server

    Cook, K J; Luong, D H; Kalkal, Sunil; Dasgupta, M; Hinde, D J

    2016-01-01

    Complete fusion cross sections in collisions of light, weakly bound nuclei and high Z targets show above-barrier suppression of complete fusion. This has been interpreted as resulting from breakup of the weakly bound nucleus prior to reaching the fusion barrier, reducing the probability of complete fusion. This paper investigates how these conclusions are affected by lifetimes of the resonant states that are populated prior to breakup. If the mean life of a populated resonance is much longer than the fusion timescale, then its breakup cannot suppress complete fusion. For short-lived resonances, the situation is more complex. This work includes the mean life of the short-lived 2+ resonance in 8Be in classical dynamical model calculations to determine its effect on energy and angular correlations of the breakup fragments and on predictions of fusion suppression. Coincidence measurements of breakup fragments produced in reactions of 9Be with 144Sm, 168Er, 186W, 196Pt, 208Pb and 209Bi at energies below the barrie...

  13. COEXISTENCE OF GRAVITATIONALLY-BOUND AND RADIATION-DRIVEN C IV EMISSION LINE REGIONS IN ACTIVE GALACTIC NUCLEI

    International Nuclear Information System (INIS)

    There are mutually contradictory views in the literature of the kinematics and structure of high-ionization line (e.g., C IV) emitting regions in active galactic nuclei (AGNs). Two kinds of broad emission line region (BELR) models have been proposed, outflow and gravitationally-bound BELR, which are supported, respectively, by blueshift of the C IV line and reverberation mapping observations. To reconcile these two apparently different models, we present a detailed comparison study between the C IV and Mg II lines using a sample of AGNs selected from the Sloan Digital Sky Survey. We find that the kinematics of the C IV region is different from that of Mg II, which is thought to be controlled by gravity. A strong correlation is found between the blueshift and asymmetry of the C IV profile and the Eddington ratio. This provides strong observational support for the postulation that the outflow is driven by radiation pressure. In particular, we find robust evidence that the C IV line region is largely dominated by outflow at high Eddington ratios, while it is primarily gravitationally-bounded at low Eddington ratios. Our results indicate that these two emitting regions coexist in most AGNs. The emission strength from these two gases varies smoothly with Eddington ratio in opposite ways. This explanation naturally reconciles the apparently contradictory views proposed in previous studies. Finally, candidate models are discussed which can account for both the enhancement of outflow emission and suppression of normal BEL in AGNs with high Eddington ratios.

  14. New valleys of cold fission and cluster radioactivity processes from nuclei far from the {beta}-stability line

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, O.; Guzman, F.; Duarte, S.B.; Tavares, O.A.P. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Garcia, F. [Sao Paulo Univ., SP (Brazil). Inst. de Fisica; Goncalves, M. [Instituto de Radioprotecao e Dosimetria (IRD), Rio de Janeiro, RJ (Brazil)

    1998-10-01

    The present work provides new results for the half-life of cluster radioactivity and cold fission processes from neutron-deficient nuclei of atomic number near proton shell closure. Results are also reported for the half-life of possible decays leading to the neutron-deficient, doubly magic island near {sup 100} Sn. The model reproduces the well established experimental systematics of Geiger-Nuttall's diagrams for alpha decay, as well as predicts similar diagrams for heavy cluster emission and cold fission processes. (author)

  15. Importance of lifetime effects in breakup and suppression of complete fusion in reactions of weakly bound nuclei

    Science.gov (United States)

    Cook, K. J.; Simpson, E. C.; Luong, D. H.; Kalkal, Sunil; Dasgupta, M.; Hinde, D. J.

    2016-06-01

    Background: Complete fusion cross sections in collisions of light weakly bound nuclei and high-Z targets show suppression of complete fusion at above-barrier energies. This has been interpreted as resulting from the breakup of the weakly bound nucleus prior to reaching the fusion barrier, reducing the probability of complete charge capture. Below-barrier studies of reactions of 9Be have found that the breakup of 8Be formed by neutron stripping dominates over direct breakup and that transfer-triggered breakup may account for the observed suppression of complete fusion. Purpose: This paper investigates how the above conclusions are affected by lifetimes of the resonant states that are populated prior to breakup. If the mean life of a populated resonance (above the breakup threshold) is much longer than the fusion time scale, then its breakup (decay) cannot suppress complete fusion. For short-lived resonances, the situation is more complex. This work explicitly includes the mean life of the short-lived 2+ resonance in 8Be in classical dynamical model calculations to determine its effect on energy and angular correlations of the breakup fragments and on model predictions of suppression of cross sections for complete fusion at above-barrier energies. Method: Previously performed coincidence measurements of breakup fragments produced in reactions of 9Be with 144Sm, 168Er, 186W, 196Pt, 208Pb, and 209Bi at energies below the barrier have been reanalyzed using an improved efficiency determination of the BALiN detector array. Predictions of breakup observables and of complete and incomplete fusion at energies above the fusion barrier are then made using the classical dynamical simulation code platypus, modified to include the effect of lifetimes of resonant states. Results: The agreement of the breakup observables is much improved when lifetime effects are included explicitly. Sensitivity to subzeptosecond lifetime is observed. The predicted suppression of complete fusion

  16. The role of doubly magic 208Pb and its neighbour nuclei in cluster radioactivity

    International Nuclear Information System (INIS)

    Using the Coulomb and proximity potential model (CPPM) we have investigated the cluster decays of the isotopes 212-240Pa, 219-245Np, 228-246Pu, 230-249Am and 232-252Cm leading to doubly magic 208Pb and its neighboring nuclei, which are not experimentally detected but which may be detectable in the future. It is found that most of the decays are favourable for experimental measurements (i.e., T1/230 s) and this observation will serve as a guide to future experiments. Our study reveals the role of doubly magic 208Pb daughter nuclei and near doubly magic nuclei in the cluster decay process. In order to make a comparison with CPPM we also calculated the logarithmic half-lives using the Universal formula for the cluster decay (UNIV) by Poenaru et al., the Universal Decay Law (UDL) and the Scaling Law of Horoi et al., and they are found to be in good agreement. The Geiger-Nuttall plots of log10(T1/2) versus Q-1/2 for various clusters from different isotopes of heavy parent nuclei have been studied and are found to be linear. (orig.)

  17. Extensions of Natural Radioactivity to 4th-Type and of the Periodic Table to Super-heavy Nuclei: Contribution of Raj K Gupta to Cold Nuclear Phenomena

    OpenAIRE

    BirBikram Singh; Sushil Kumar; Manoj K. Sharma; Patra, S. K.

    2014-01-01

    We have studied here the contribution of Indian Scientists associated with Prof. Raj K. Gupta to cold nuclear phenomena during the last almost four decades, which led to the discovery of fourth kind of natural radioactivity (also known as Cluster Radioactivity, CR) and to the extension of periodic table to super heavy nuclei. It is exclusively pointed out how the Quantum Mechanical Fragmentation Theory (QMFT) advanced by Prof. Raj K. Gupta and Collaborators led to the disc...

  18. Synthesis of radioactive nuclei and $\\gamma$-line radiation from novae

    CERN Document Server

    Kudryashov, A D; Tutukov, A V

    1999-01-01

    We carried out kinetic calculations of thermonuclear burning in the hydrogen-rich matter to simulate nucleosynthesis yields in nova outbursts. These results are used to calculate the light curves of annihilation gamma-ray line from N, O and F radioactive isotopes.

  19. On the possibility to search for 2β decay of initially unstable (α/β radioactive) nuclei

    International Nuclear Information System (INIS)

    An alternative method to search for 2β decay is discussed. Contrary to the 'conventional' approach (where only β stable 2β candidates are used), it is intended to study α/β unstable nuclei, whose 2β energy release, Qββ, is much higher in most of the cases than that of 'conventional' 2β candidates. As an example, the first experimental half-life limits on 2β decay of radioactive nuclides from U and Th families (contaminants of the CaWO4 and CdWO4 scintillators) were set by reanalyzing the data of low-background measurements in the Solotvina Underground Laboratory (1734 h with CaWO4 and 13316 h with CdWO4). (authors)

  20. Study of biodistribution of lipidic nanospheres charged with cis-diaminedichloroplatinum (II) and labelled with radioactive nuclei of Indium-111

    International Nuclear Information System (INIS)

    The general objective of the study was to evaluate the lipidic nanospheres biodistribution charged with cis-diaminedichloroplatinum (II) (cis-DDP) and labelled with radioactive nuclei of Indium-111 (Lip-Cis-in-111) in Wistar rats and in a tumoral model of CaCu. The conclusions were: 1. The system Lip-Cis-in-111 it presents a very fast elimination probably, to a fast recognition response of the reticuloendothelial system (RES). 2. It is planned to make modifications to the formulation to increase the quantity of the hydrophilic polymer (PEG), so that its time of residence in the blood is bigger and allow a bigger accumulation in the tumor. (Author)

  1. Contribution of the radioactive decay to the study of the structure of N=Z nuclei of mass A>70

    International Nuclear Information System (INIS)

    Radioactive decay study gives an access to the interaction which rules the β decay process as well as the structure of the nuclear states involved. This work describes the observation of the decay of N = Z nuclei with mass A > 70. For the odd-odd N = Z nuclei 78Y, 82Nb and 86Tc, the decay has been established as superallowed Fermi type transitions. The results pave the way for more precise measurements and extend the mass range nowadays used to understand the behaviour of the weak interaction in the nuclear matter. The observation of the decay of the even-even N = Z 72Kr leads us to build the Gamow-Teller strength distribution from which some clues about the ground state deformation of this isotope can be obtained. More complete experimental observation and some developments of the calculations used to interpret the distribution of the Gamow-Teller strength are needed. Finally, this work describes the developments and tests of a prototype detector the aim of which to determine the contribution of β particles to energy distribution observed in germanium detector. The tests we have performed show that this prototype can identify and reject 80% of the β particles emitted by a source with a 2,3 MeV end-point. The very satisfactory performances of this prototype need now to be confirmed under experimental conditions. (author)

  2. High-energy beams of radioactive nuclei and their biomedical applications

    International Nuclear Information System (INIS)

    Several exploratory measurements have been conducted with radioactive beams to test the feasibility of using these beams to measure effective stopping power of heterogeneous media for heavy charged particles. Such measurements will provide direct information on the average electron density and average stopping number of a target with an unknown heterogeneous beam path. This information, once obtained with a suitable radioactive beam, can be used in equations to calculate the energy of any heavy particle of therapeutic choice so that the Bragg peak of the therapeutic beam can be placed on the tumor volume. A beam of high-energy heavy ions was collimated to a diameter of 1.58 cm (PEBA has a good positional accuracy as long as the beam diameter is less than 2 cm), and made to enter target materials (mixed or homogeneous) positioned between the detector banks and centered along the beam axis. Measurements have been made with 11C and 19Ne beams, but the short half-life of 19Ne (19 sec) allows prompt repeated measurements, making that nucleus very interesting for these purposes. Only the results obtained with it are reported

  3. The nocturnal IBL over an hilly island with reference to the diffusion of radioactive nuclei

    Science.gov (United States)

    Camuffo, D.

    1982-02-01

    The dynamics of the nocturnal IBL over a small hilly island on the Mediterranean Sea are discussed, particularly for clear nights characterized by light wind, when typically a nocturnal inversion may grow. Among different cases, two typical situations are observed, depending on the steadiness of the wind. In the first case the inversion alternatively grows and is eroded from aloft until it is destroyed; in the second, it grows with half the speed usual at inland sites and its height is bounded by the top of the hill. The Stüve diagrams show that the warm sea surface can supply the energy required to lift airborne pollutants over the CCL.

  4. Coupled-channels effects in elastic scattering and near-barrier fusion induced by weakly bound nuclei and exotic halo nuclei

    OpenAIRE

    Beck, C; Keeley, N.; Diaz-Torres, A.

    2007-01-01

    The influence on fusion of coupling to the breakup process is investigated for reactions where at least one of the colliding nuclei has a sufficiently low binding energy for breakup to become an important process. Elastic scattering, excitation functions for sub-and near-barrier fusion cross sections, and breakup yields are analyzed for $^{6,7}$Li+$^{59}$Co. Continuum-Discretized Coupled-Channels (CDCC) calculations describe well the data at and above the barrier. Elastic scattering with $^{6...

  5. Radioactive beam EXperiments at ISOLDE : Coulomb excitation and neutron transfer reactions of exotic nuclei.

    CERN Multimedia

    Kugler, E; Ratzinger, U; Wenander, F J C

    2002-01-01

    % IS347 \\\\ \\\\We propose to perform a pilot experiment to study very neutron rich (A<32) Na-Mg and (A<52) K-Ca isotopes in the region around the neutron shell closures of N=20 and N=28 after Coulomb excitation and neutron transfer, and to demonstrate highly efficient and cost-effective ways to bunch, charge-state breed and accelerate already existing mass-separated singly-charged radioactive ion beams. \\\\ \\\\To do this we plan to accelerate the ISOLDE beams up to 2~MeV/u by means of a novel acceleration scheme and to install an efficient $\\gamma$-ray array for low-multiplicity events around the target position.

  6. Clearance of injected radioactively labelled antibodies to tumour products by liposome-bound second antibodies

    International Nuclear Information System (INIS)

    Liposomes containing anti-goat immunoglobulin were injected 24 h after administration of 125I-labelled goat antibody against the carcinoembryonic antigen (anti-CEA) to groups of nude mice bearing human tumour xenografts, and normal mice. Controls in each group received radioactively labelled anti-CEA only. In liposome-treated mice, blood 125I levels were lower than those of controls 30 min to 24 h after liposome administration, with corresponding accumulation of 125I activity in the liver and spleen for the first 2 h after liposome injection. [14C]Cholesterol or sup(99m)Tc labels in the bilayer were eliminated rapidly from the blood, with uptake in the liver and spleen. In xenograft-bearing mice, 125I activity detected in the tumours up to 6 h after liposome injection was identical to that detected in the tumours of controls. However, 24 h after liposome injection a reduction in the tumour concentration of 125I-labelled anti-CEA was obtained, but the tumour/blood radioactivity was still increased. In two mice given 27 μmol lipid, the blood radioactivity count after 24 h was only 5% of that in the controls. In rabbits, 2 h after administration of liposomes containing anti-goat second antibody, the circulating 125I activity had dropped by 28-40%. The results suggest that administration of liposome-entrapped second antibody approximately 2 h prior to external scintigraphy may clear circulating radioactively labelled primary antibody by up to 50%. (Auth.)

  7. Use of electrons beams for the production of radioactive nuclei by photofission

    International Nuclear Information System (INIS)

    The IPN of Orsay decided to build a linear accelerator in order to produce an electron beam of 50 MeV energy and of 10 mA average intensity. It is the ALTO project (Linear Accelerator near the Tandem of Orsay). This project will be dedicated to the production of the radioactive ions using the photo-fission process. The central topic of this thesis is the study of the beam dynamics of the ALTO facility. The first part presents studies concerning the injector. The simulations made with the simulation code PARMELA allowed the optimization of the characteristics of pre-buncher (dephasing HF, accelerating field peak...) to obtain a good bunching factor at the entrance of the buncher and at the entrance of the accelerating section according to the distance separating the two systems. The second part of this thesis is related to measurements of transverse emittance of the beam at the buncher exit. The three gradients method has been selected and the optical system used is a solenoid. The results obtained are in good agreement with former measurements. Finally a calculation of the beam line was carried out to optimize the transport of the beam to the PARRNe target without degrading its characteristics. The calculation codes that have been used are BETA and TRACE-WIN. (author)

  8. {gamma}-spectroscopy and radioactive beams: search for highly deformed exotic nuclei; Detection {gamma} et faisceaux radioactifs: recherche de noyaux exotiques tres deformes

    Energy Technology Data Exchange (ETDEWEB)

    Rosse, B

    2006-07-15

    This work is devoted to the search for highly deformed nuclei under extreme conditions of isospin, located near the proton drip-line, around A {approx} 130. The experiment was performed at GANIL (Caen) with the SPIRAL radioactive beam facility. The nuclei of interest were produced by fusion-evaporation reactions induced by the neutron deficient Kr{sup 76} radioactive beam (T1/2 = 14.8 h). {gamma}-rays were detected by the EXOGAM array, composed of 11 segmented germanium clover detectors, for which a new segment calibration method has been developed. To extract fusion-evaporation events of a overwhelming background due to the radioactivity of the beam, the EXOGAM array was coupled with the light charged particle detector DIAMANT and the high acceptance VAMOS spectrometer. The latter was used for the first time to detect fusion-evaporation residues. The detailed data analysis allowed us to demonstrate that the EXOGAM + DIAMANT + VAMOS coupling is operational and essential to investigate the structure of these nuclei. Furthermore, the first {gamma} transition was observed in the very exotic odd-odd Pm{sup 130} nucleus. The results have been interpreted with static and dynamic self-consistent microscopic calculations in collaboration with the Theoretical Physicists of the IPN Lyon. (author)

  9. Casein kinase II protein kinase is bound to lamina-matrix and phosphorylates lamin-like protein in isolated pea nuclei

    Science.gov (United States)

    Li, H.; Roux, S. J.

    1992-01-01

    A casein kinase II (CK II)-like protein kinase was identified and partially isolated from a purified envelope-matrix fraction of pea (Pisum sativum L.) nuclei. When [gamma-32P]ATP was directly added to the envelope-matrix preparation, the three most heavily labeled protein bands had molecular masses near 71, 48, and 46 kDa. Protein kinases were removed from the preparation by sequential extraction with Triton X-100, EGTA, 0.3 M NaCl, and a pH 10.5 buffer, but an active kinase still remained bound to the remaining lamina-matrix fraction after these treatments. This kinase had properties resembling CK II kinases previously characterized from animal and plant sources: it preferred casein as an artificial substrate, could use GTP as efficiently as ATP as the phosphoryl donor, was stimulated by spermine, was calcium independent, and had a catalytic subunit of 36 kDa. Some animal and plant CK II kinases have regulatory subunits near 29 kDa, and a lamina-matrix-bound protein of this molecular mass was recognized on immunoblot by anti-Drosophila CK II polyclonal antibodies. Also found associated with the envelope-matrix fraction of pea nuclei were p34cdc2-like and Ca(2+)-dependent protein kinases, but their properties could not account for the protein kinase activity bound to the lamina. The 71-kDa substrate of the CK II-like kinase was lamin A-like, both in its molecular mass and in its cross-reactivity with anti-intermediate filament antibodies. Lamin phosphorylation is considered a crucial early step in the entry of cells into mitosis, so lamina-bound CK II kinases may be important control points for cellular proliferation.

  10. In-beam gamma-ray spectroscopy of neutron-rich nuclei using fragmentation of radioactive beams and half-lives measurements of excited levels in nuclei closed to {sup 68}Ni; Spectroscopie {gamma} en ligne de noyaux legers riches en neutrons produits par fragmentation de faisceau radioactif et mesures de temps de vie des niveaux excites dans des noyaux proches de {sup 68}Ni

    Energy Technology Data Exchange (ETDEWEB)

    Stanoiu, M.A

    2003-01-01

    This thesis deals with studies of nuclei far from the valley of stability produced at GANIL by projectile fragmentation at intermediate energies. It consists of two parts. The first one is dedicated to the study of very light exotic nuclei around N=14. This is the first time that online {gamma}-ray spectroscopy combined with the projectile fragmentation was used with radioactive incident beams at GANIL. The advantages and the limitations of this method were established. 40 different nuclei have been produced and studied at the same time. A strong dependence of the population of excited states on the type of projectile was observed. New information was obtained on the structure of the isotopes B{sup 14,15}, C{sup 17,18,19,20}, N{sup 18,19,20,21,22}, O{sup 22,23,24}, F{sup 24,25,26} and Ne{sup 29}. The level schemes obtained from this study have been compared with shell-model predictions. In particular, the energy of 1588(20) keV found for the first 2{sup +} excited state in C{sup 20}, as well as the non-existence of a bound state in O{sup 24}, show that the proton-neutron interaction plays an important role in the structure of these nuclei. In the second part, an experiment is presented concerning the neutron-rich isomer nuclei around Ni{sup 68} produced by the LISE spectrometer. The fast-timing method was applied for the first time for the study of nuclei produced by projectile fragmentation. Subnanosecond half-lives of several levels in Ni{sup 67,69,90} and Cu{sup 71,72} were measured simultaneously and with high precision. These results have allowed us to test the shell model predictions for several E2 transitions and their associated B(E2) transition probabilities. (author)

  11. Decay analysis of compound nuclei with mass A$\\sim 30-200$ formed in the reactions involving loosely bound projectiles

    CERN Document Server

    Kaur, Mandeep; Sharma, Manoj K; Gupta, Raj K

    2015-01-01

    The dynamics of the reactions forming compound nuclei using loosely bound projectiles is analysed within the framework of dynamical cluster decay model (DCM) of Gupta and Collaborators. We have analysed different reactions with $^{7}Li$, $^{9}Be$ and $^{7}Be$ as neutron rich and neutron deficient projectiles, respectively, on different targets at the three $E_{lab}$ values, forming compound nuclei within the mass region A$\\sim 30-200$. The contributions of light particles LPs ($A\\le4$) cross sections $\\sigma_{LP}$, energetically favoured intermediate mass fragments IMFs ($5 \\le A_2 \\le 20$) cross sections $\\sigma_{IMF}$ as well as fusion-fission $\\it{ff}$ cross sections $\\sigma_{ff}$ constitute the $\\sigma_{fus}$ (=$\\sigma_{LP}$+$\\sigma_{IMF}$+$\\sigma_{ff}$) for these reactions. The contribution of the emitted LPs, IMFs and ff fragments is added for all the angular momentum upto the $\\ell_{max}$ value, for the resepctive reactions. Interestingly, we find that the $\\Delta R^{emp}$, the only parameter of model ...

  12. Importance of resonance widths in low-energy scattering of weakly-bound light-mass nuclei

    CERN Document Server

    Fraser, P R; Amos, K; Bray, I; Canton, L; Fossion, R; Kadyrov, A S; Karataglidis, S; Svenne, J P; van der Knijff, D

    2016-01-01

    What effect do particle-emitting resonances have on the scattering cross section? What physical considerations are necessary when modelling these resonances? These questions are important when theoretically describing scattering experiments with radioactive ion beams which investigate the frontiers of the table of nuclides, far from stability. Herein, a novel method is developed that describes resonant nuclear scattering from which centroids and widths in the compound nucleus are obtained when one of the interacting bodies has particle unstable resonances. The method gives cross sections without unphysical behavior that is found if simple Lorentzian forms are used to describe resonant target states. The resultant cross sections differ significantly from those obtained when the states in the coupled channel calculations are taken to have zero width, and compound-system resonances are better matched to observed values.

  13. Extensions of Natural Radioactivity to 4th-Type and of the Periodic Table to Super-heavy Nuclei: Contribution of Raj K Gupta to Cold Nuclear Phenomena

    Directory of Open Access Journals (Sweden)

    BirBikram Singh

    2014-02-01

    Full Text Available We have studied here the contribution of Indian Scientists associated with Prof. Raj K. Gupta to cold nuclear phenomena during the last almost four decades, which led to the discovery of fourth kind of natural radioactivity (also known as Cluster Radioactivity, CR and to the extension of periodic table to super heavy nuclei. It is exclusively pointed out how the Quantum Mechanical Fragmentation Theory (QMFT advanced by Prof. Raj K. Gupta and Collaborators led to the discovery of unique phenomenon of CR along with the predictions leading to the synthesis of super heavy elements. We have also mentioned the development of dynamical theories based on QMFT, the Preformed Cluster Model(PCM and the dynamical cluster-decay model (DCM, to study the ground and excited state decays of nuclei, respectively, by Gupta and Collaborators. It is matter of great honor and pride for us to bring out this study to enthuse the young researchers to come up with novel ideas and have inspiration from the scientific contributions of Prof. Raj K. Gupta who is coincidentally celebrating his platinum jubilee birthday anniversary this year.

  14. Asymptotics of three-body bound state radial wave functions of halo nuclei involving two charged particles

    CERN Document Server

    Yarmukhamedov, R

    2016-01-01

    Asymptotic expressions for the radial and full wave functions of a three{body bound halo nuclear system with two charged particles in relative coordinates are obtained in explicit form, when the relative distance between two particles tends to infinity. The obtained asymptotic forms are applied to the analysis of the asymptotic behavior of the three-body (pn?) wave functions for the halo ($E^*=3.562$ MeV, $J^{\\pi}=0^+$, $T=1$) state of $^6$Li derived by D. Baye within the Lagrange-mesh method for two forms of the $\\alpha N$ -potential. The agreement between the calculated wave function and the asymptotic formula is excellent for distances up to 30 fm. Information about the values of the three-body asymptotic normalization functions is extracted. It is shown that the extracted values of the three-body asymptotic normalization function are sensitive to the form of the $\\alpha N$ -potential. The mirror symmetry is revealed for the three-body asymptotic normalization functions derived for the isobaric ($^6$He, $^...

  15. -Decay and the electric dipole moment: Searches for time-reversal violation in radioactive nuclei and atoms

    Indian Academy of Sciences (India)

    H W Wilschut; U Dammalapati; D J Van Der Hoek; K Jungmann; W Kruithof; C J G Onderwater; B Santra; P D Shidling; L Willmann

    2010-07-01

    One of the greatest successes of the Standard Model of particle physics is the explanation of time-reversal violation (TRV) in heavy mesons. It also implies that TRV is immeasurably small in normal nuclear matter. However, unifying models beyond the Standard Model predict TRV to be within reach of measurement in nuclei and atoms, thus opening an important window to search for new physics. We will discuss two complementary experiments sensitive to TRV: Correlations in the -decay of 21Na and the search for an electric dipole moment (EDM) in radium.

  16. Physics of Unstable Nuclei

    Science.gov (United States)

    Khoa, Dao Tien; Egelhof, Peter; Gales, Sydney; Giai, Nguyen Van; Motobayashi, Tohru

    2008-04-01

    Studies at the RIKEN RI beam factory / T. Motobayashi -- Dilute nuclear states / M. Freer -- Studies of exotic systems using transfer reactions at GANIL / D. Beaumel et al. -- First results from the Magnex large-acceptance spectrometer / A. Cunsolo et al. -- The ICHOR project and spin-isospin physics with unstable beams / H. Sakai -- Structure and low-lying states of the [symbol]He exotic nucleus via direct reactions on proton / V. Lapoux et al. -- Shell gap below [symbol]Sn based on the excited states in [symbol]Cd and [symbol]In / M. Górska -- Heavy neutron-rich nuclei produced in the fragmentation of a [symbol]Pb beam / Zs. Podolyák et al. -- Breakup and incomplete fusion in reactions of weakly-bound nuclei / D.J. Hinde et al. -- Excited states of [symbol]B and [symbol]He and their cluster aspect / Y. Kanada-En'yo et al. -- Nuclear reactions with weakly-bound systems: the treatment of the continuum / C. H. Dasso, A. Vitturi -- Dynamic evolution of three-body decaying resonances / A. S. Jensen et al. -- Prerainbow oscillations in [symbol]He scattering from the Hoyle state of [symbol]C and alpha particle condensation / S. Ohkubo, Y. Hirabayashi -- Angular dispersion behavior in heavy ion elastic scattering / Q. Wang et al. -- Microscopic optical potential in relativistic approach / Z.Yu. Ma et al. -- Exotic nuclei studied in direct reactions at low momentum transfer - recent results and future perspectives at fair / P. Egelhof -- Isotopic temperatures and symmetry energy in spectator fragmentation / M. De Napoli et al. -- Multi-channel algebraic scattering theory and the structure of exotic compound nuclei / K. Amos et al. -- Results for the first feasibility study for the EXL project at the experimental storage ring at GSI / N. Kalantar-Nayestanaki et al. -- Coulomb excitation of ISOLDE neutron-rich beams along the Z = 28 chain / P. Van Duppen -- The gamma decay of the pygmy resonance far from stability and the GDR at finite temperature / G. Benzoni et al

  17. Release studies of a thin foil tantalum target for the production of short-lived radioactive nuclei

    CERN Document Server

    Bennett, J R J; Drumm, P V; Lettry, Jacques; Nilsson, T; Catherall, R; Jonsson, O C; Ravn, H L; Simon, H

    2002-01-01

    Measurements have been made at ISOLDE, of the release curves and yields of radioactive beams of lithium, sodium and beryllium from a target constructed from 2 $\\mu$m thick foils. The release curves have been analysed by fitting to a mathematical model to determine the coefficients of diffusion of the particles in the foils and effusion through the target and ionizer at several temperatures. Through a better understanding of the rate of transport of the particles, it is possible to design targets and ionizers with improved yields. This is most important for the rare, short-lived isotopes in which there is considerable interest for physics experiments. This target has demonstrated large increases in the yields of $^{11}$Li and $^{12}$Be, in agreement with the predictions of the model. (11 refs).

  18. Nuclear physics with radioactive beams

    International Nuclear Information System (INIS)

    Radioactive beam production through two different mechanisms: acceleration of radioactive nuclei, and production of secondary beams from projectile fragmentation is overviewed. Some topics of the applications of radioactive beams in nuclear physics, such as identification and study of exotic nuclei, neutron halos, nuclear astrophysics and medical applications are discussed. (K.A.). 24 refs., 8 figs

  19. Three-cluster variant of the algebraic version of resonating group method and its application to the bound state properties study of 6He and 8He nuclei

    International Nuclear Information System (INIS)

    Microscopic model for three-cluster configuration of light nuclei has been formulated in the frameworks of resonating group method in its algebraic version. The model has been applied for the ground states of 6He and 8He in configuration of α-particle plus two n-clusters and α-particle plus two 2n-clusters. The results have been obtained emphasize the importance of three-cluster moving mode for adequate description of nuclear properties, especially neutron halo

  20. Radioactivity, radionuclides, radiation

    CERN Document Server

    Magill, Joseph

    2005-01-01

    RADIOACTIVITY – RADIONUCLIDES – RADIATION is suitable for a general audience interested in topical environmental and human health radiological issues such as radiation exposure in aircraft, food sterilisation, nuclear medicine, radon gas, radiation dispersion devices ("dirty bombs")… It leads the interested reader through the three Rs of nuclear science, to the forefront of research and developments in the field. The book is also suitable for students and professionals in the related disciplines of nuclear and radiochemistry, health physics, environmental sciences, nuclear and astrophysics. Recent developments in the areas of exotic decay modes (bound beta decay of ‘bare’ or fully ionized nuclei), laser transmutation, nuclear forensics, radiation hormesis and the LNT hypothesis are covered. Atomic mass data for over 3000 nuclides from the most recent (2003) evaluation are included.

  1. Breakup of loosely bound nuclei at intermediate energies for nuclear astrophysics and the development of a position sensitive microstrip detector system and its readout electronics using ASICs technologies

    Energy Technology Data Exchange (ETDEWEB)

    Bertulani, Carlos A. [Texas A & M Univ., Commerce, TX (United States)

    2016-01-12

    The work performed under this grant has led to the development of a detection system that will be used to measure reaction rates for proton or neutron capture reactions at stellar energies on radioactive ions far from stability. The reaction rates are needed to better understand the physics of nucleosynthesis in explosive stellar processes such as supernovae and x-ray burst events. The radioactive ions will be produced at the Radioactive Ion Beam Facility (RIBF) at RIKEN near Tokyo, Japan. During the course of this work, the group involved in this project has expanded by several institutions in Europe and Japan and now involves collaborators from the U.S., Japan, Hungary, Romania, Germany, Spain, Italy, China, and South Korea. As part of the project, a novel design based on large-area silicon detectors has been built and tested. The work has involved mechanical construction of a special purpose vacuum chamber, with a precision mounting system for the silicon detectors, development of a new ASICs readout system that has applications with a wide variety of silicon detector systems, and the development of a data acquisition system that is integrated into the computer system being used at RIBF. The parts noted above that are needed to carry out the research program are completed and ready for installation. Several approved experiments that will use this system will be carried out in the near future. The experimental work has been delayed due to a large increase in the cost and availability of electrical power for RIBF that occurred following the massive earthquake and tsunami that hit Japan in the spring of 2011. Another component of the research carried out with this grant involved developing the theoretical tools that are required to extract the information from the experiments that is needed to determine the stellar reaction rates. The tools developed through this part of the work will be made freely available for general use.

  2. Nuclear astrophysics of light nuclei

    DEFF Research Database (Denmark)

    Fynbo, Hans Otto Uldall

    2013-01-01

    A review of nuclear astrophysics of light nuclei using radioactive beams or techniques developed for radioactive beams is given. We discuss Big Bang nucleosynthesis, with special focus on the lithium problem, aspects of neutrino-physics, helium-burning and finally selected examples of studies...

  3. Breakup of loosely bound nuclei at intermediate energies for nuclear astrophysics and the development of a position sensitive microstrip detector system and its readout electronics using ASICs technologies

    Energy Technology Data Exchange (ETDEWEB)

    Tribble, Robert E. [Texas A & M Univ., College Station, TX (United States); Sobotka, Lee G. [Washington Univ., St. Louis, MO (United States); Blackmon, Jeff C. [Louisiana State Univ., Baton Rouge, LA (United States); Bertulani, Carlos A. [Texas A & M Univ., Commerce, TX (United States)

    2015-12-29

    The work performed under this grant has led to the development of a detection system that will be used to measure reaction rates for proton or neutron capture reactions at stellar energies on radioactive ions far from stability. The reaction rates are needed to better understand the physics of nucleosynthesis in explosive stellar processes such as supernovae and x-ray burst events. The radioactive ions will be produced at the Radioactive Ion Beam Facility (RIBF) at RIKEN near Tokyo, Japan. During the course of this work, the group involved in this project has expanded by several institutions in Europe and Japan and now involves collaborators from the U.S., Japan, Hungary, Romania, Germany, Spain, Italy, China, and South Korea. As part of the project, a novel design based on large-area silicon detectors has been built and tested and the performance characterized in a series of tests using particle beams with a variety of atomic numbers at the Cyclotron Institute of Texas A&M University and the Heavy Ion Medical Accelerator in Chiba facility (HIMAC) in Chiba, Japan. The work has involved mechanical construction of a special purpose vacuum chamber, with a precision mounting system for the silicon detectors, development of a new ASICs readout system that has applications with a wide variety of silicon detector systems, and the development of a data acquisition system that is integrated into the computer system being used at RIBF. The parts noted above that are needed to carry out the research program are completed and ready for installation. Several approved experiments that will use this system will be carried out in the near future. The experimental work has been delayed due to a large increase in the cost and availability of electrical power for RIBF that occurred following the massive earthquake and tsunami that hit Japan in the spring of 2011. Another component of the research carried out with this grant involved developing the theoretical tools that are required

  4. Study of biodistribution of lipidic nanospheres charged with cis-diaminedichloroplatinum (II) and labelled with radioactive nuclei of Indium-111; Estudio de biodistribucion de nanoesferas lipidicas cargadas con cis-diaminodicloroplatino (II) y marcadas con nucleos radioactivos de Indio-111

    Energy Technology Data Exchange (ETDEWEB)

    Lopez R, V.; Juarez O, C.; Medina L, A. [Unidad de Investigacion Biomedica en Cancer INCAN-UNAM, Mexico D.F. (Mexico); Perez C, E.; Garcia L, P. [Instituto nacional de cancerologia, Mexico D.F. (Mexico)

    2007-07-01

    The general objective of the study was to evaluate the lipidic nanospheres biodistribution charged with cis-diaminedichloroplatinum (II) (cis-DDP) and labelled with radioactive nuclei of Indium-111 (Lip-Cis-in-111) in Wistar rats and in a tumoral model of CaCu. The conclusions were: 1. The system Lip-Cis-in-111 it presents a very fast elimination probably, to a fast recognition response of the reticuloendothelial system (RES). 2. It is planned to make modifications to the formulation to increase the quantity of the hydrophilic polymer (PEG), so that its time of residence in the blood is bigger and allow a bigger accumulation in the tumor. (Author)

  5. $\\gamma$- spectroscopy of n-rich $^{95,96}$Rb nuclei by the incomplete fusion reaction of $^{94}$Kr on $^{7}$Li: Introduction to HIE-ISOLDE studies of n-rich Sb and Tl isotopes with Sn and Hg radioactive beams.

    CERN Document Server

    Fornal, B; Bednarczyk, P; Cieplicka, N; Krolas, W; Maj, A; Leoni, S; Benzoni, G; Blasi, N; Bottoni, S; Bracco, A; Camera, F; Crespi, F; Million, B; Morales, A; Wieland, O; Rusek, K; Lunardi, S; Mengoni, D; Recchia, F; Ur, CA; Valiente-Dobon, J; de France, G; Clement, E; Elseviers, J; Flavigny, F; Huyse, M; Raabe, R; Sambi, S; Van Duppen, P; Sferrazza, M; Simpson, G; Georgiev, G; Sotty, C; Blazhev, A; German, R; Siebeck, B; Seidlitz, M; Reiter, P; Warr, N; Boenig, S; Ilieva, S; Kroell, T; Scheck, M; Thurauf, M; Gernhaeuser, R; Mucher, D; Janssens, R; Carpenter, MP; Zhu, S; Marginean, NM; Balabanski, D; Kowalska, M

    2012-01-01

    $\\gamma$- spectroscopy of n-rich $^{95,96}$Rb nuclei by the incomplete fusion reaction of $^{94}$Kr on $^{7}$Li: Introduction to HIE-ISOLDE studies of n-rich Sb and Tl isotopes with Sn and Hg radioactive beams.

  6. Elastic scattering, fusion, and breakup of light exotic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Kolata, J.J. [University of Notre Dame, Physics Department, Notre Dame, IN (United States); Guimaraes, V. [Universidade de Sao Paulo, Instituto de Fisica, Sao Paulo, SP (Brazil); Aguilera, E.F. [Instituto Nacional de Investigaciones Nucleares, Departamento de Aceleradores, Mexico, Distrito Federal (Mexico)

    2016-05-15

    The present status of fusion reactions involving light (A< 20) radioactive projectiles at energies around the Coulomb barrier (E<10 MeV per nucleon) is reviewed, emphasizing measurements made within the last decade. Data on elastic scattering (providing total reaction cross section information) and breakup channels for the involved systems, demonstrating the relationship between these and the fusion channel, are also reviewed. Similarities and differences in the behavior of fusion and total reaction cross section data concerning halo nuclei, weakly-bound but less exotic projectiles, and strongly-bound systems are discussed. One difference in the behavior of fusion excitation functions near the Coulomb barrier seems to emerge between neutron-halo and proton-halo systems. The role of charge has been investigated by comparing the fusion excitation functions, properly scaled, for different neutron- and proton-rich systems. Possible physical explanations for the observed differences are also reviewed. (orig.)

  7. On Quasibound N* Nuclei

    CERN Document Server

    Kelkar, N G; Moskal, P

    2015-01-01

    The possibility for the existence of unstable bound states of the S11 nucleon resonance N$^*$(1535) and nuclei is investigated. These quasibound states are speculated to be closely related to the existence of the quasibound states of the eta mesons and nuclei. Within a simple model for the N N$^*$ interaction involving a pion and eta meson exchange, N$^*$-nucleus potentials for N*-$^3$He and N*-$^{24}$Mg are evaluated and found to be of a Woods-Saxon like form which supports two to three bound states. In case of N*-$^3$He, one state bound by only a few keV and another by 4 MeV is found. The results are however quite sensitive to the N N$^*$ $\\pi$ and N N$^*$ $\\eta$ vertex parameters. A rough estimate of the width of these states, based on the mean free path of the exchanged mesons in the nuclei leads to very broad states with $\\Gamma \\sim$ 80 and 110 MeV for N*-$^3$He and N*-$^{24}$Mg respectively.

  8. Cavitation inception from bubble nuclei

    DEFF Research Database (Denmark)

    Mørch, Knud Aage

    2015-01-01

    The tensile strength of ordinary water such as tap water or seawater is typically well below 1 bar. It is governed by cavitation nuclei in the water, not by the tensile strength of the water itself, which is extremely high. Different models of the nuclei have been suggested over the years......, and experimental investigations of bubbles and cavitation inception have been presented. These results suggest that cavitation nuclei in equilibrium are gaseous voids in the water, stabilized by a skin which allows diffusion balance between gas inside the void and gas in solution in the surrounding liquid....... The cavitation nuclei may be free gas bubbles in the bulk of water, or interfacial gaseous voids located on the surface of particles in the water, or on bounding walls. The tensile strength of these nuclei depends not only on the water quality but also on the pressure-time history of the water. A recent model...

  9. Nuclei at the limits of particle stability

    International Nuclear Information System (INIS)

    The properties and synthesis of nuclei at the limits of particle stability are reviewed. Nuclear reactions were induced and studied by means of the 'exotic' nuclear beams, i.e. beams of radioactive drip-line nuclei. The beams are mostly generated in heavy-ion projectile fragmentation. The cases of both neutron-rich and proton-rich nuclei are discussed. (K.A.) 270 refs.; 13 figs.; 1 tab

  10. Exotic Behaviour of Angular Dispersion of Weakly Bound Nucleus 17F at Small Angles

    Institute of Scientific and Technical Information of China (English)

    WANG Qi; YUAN Xiao-Hua; XU Zhi-Guo; ZHAO Tie-Cheng; ZHANG Hong-Bin; XU Hua-Gen; QI Hui-Rong; WANG Yue; JIA Fei; WU Li-Jie; DING Xian-Li; HAN Jian-Long; GAO Qi; GAO Hui; LI Song-Lin; BAI Zhen; XIAO Guo-Qing; JIN Gen-Ming; REN Zhong-Zhou; ZHOU Shan-Gui; SERGEY Yu-Kun; XIAO Zhi-Gang; XU Hu-Shan; SUN Zhi-Yu; HU Zheng-Guo; ZHANG Xue-Ying; WANG Hong-Wei; MAO Rui-Shi

    2006-01-01

    @@ The differential cross sections of 17 F and 17 O elastic scattering products on 208Pb have been measured at the Radioactive Ion Beam Line at Lanzhou (RIBLL). Two angular dispersion plots ofln( dσ/ dθ ) versus θ2 are obtained from the angular distribution of the elastic scattering differential cross sections. The angular dispersion plot exhibits a clear turning point for 17F in the range of small scattering angles 6°-20° due to its exotic structure,but for 17 O, the turning point is not observed in the same angular range. The experimental results have been compared with previous data of other groups. Systematical analysis on the available data supports the above conclusion that there is an exotic behaviour of the angular dispersion plot of weakly bound nuclei with halo or skin structure as compared with that of the ordinary nuclei near stable line. Therefore the turning point of the angular dispersion plot appears at small angle for weakly bound nuclei with halo or skin structure, and can be used as a new probe to investigate the halo and skin phenomena of weakly bound nuclei.

  11. Influence of the coulomb vertex effects on peripheral partial wave amplitudes in the mechanism of successive two-proton transfer in the peripheral nuclear A(X,Y)B reaction induced by weakly bound light nuclei at low energies

    International Nuclear Information System (INIS)

    Full text: In the present work the peripheral two-proton (p1 and p2) transfer A(X,Y)B reaction induced by weakly bound light nuclei at low energies is considered. Herein X = ((Yp2 ) +p1) and B = ((Ap1)+p2). We consider the case when the proton p1(p2) is loosely bound in the nucleus X (B) with the binding energy εX (εB) and the binding energies of the protons p2 and p1, ε(Yp2) and ε(Yp1), in the bound (Yp2 ) and (Ap1) states, respectively, satisfy the conditions ε(Yp2) >>εX, ε(Yp1)>>εB, εX ≅εB. One of the main mechanisms of the investigated reaction corresponds to that, the amplitude of which is described by the square diagram. We have taken into account the fact that the main contribution to the amplitude of that reaction comes from the peripheral partial-wave amplitudes (l>>1), which are determined by the nearest to the physical region -1≤ cosθ≤ 1 singular point cosθ = ζ >1 ( θ is the scattering angle in the c.m.s.). In the case under consideration, the nearest singular point corresponds to the singularity of the Coulomb vertex form factors for the virtual decays X→(Yp2)+p1 and (Ap1)+p2→B (an anomalous mechanism).The explicit forms of the peripheral partial-wave amplitudes Ml (l>>1), which are determined by this singularity, as well as the peripheral partial-wave amplitudes MIDWBA corresponding to the same mechanism of the successive transfer within the conventional DWBA (a usual mechanism), have been found. One notes that the behavior of MIDWBA is determined by the singularity ζp, and ζp>ζ since a value of ζp is determined by the binding energies of εX and ε(Yp2). The asymptotic expressions for Ml and MIDWBA for l>>1 show the different dependence on l. Besides, the explicit forms of the exact amplitude at cosθ→ζ and the singular part of the amplitude corresponding to the usual mechanism of DWBA at cosθ→ζp have been derived. Investigation of analytic properties of the amplitudes of the peripheral transfer reactions 6Li(12N,10B

  12. Direct Reactions with Exotic Nuclei

    International Nuclear Information System (INIS)

    We discuss recent work on Coulomb dissociation and an effective-range theory of low-lying electromagnetic strength of halo nuclei. We propose to study Coulomb dissociation of a halo nucleus bound by a zero-range potential as a homework problem. We study the transition from stripping to bound and unbound states and point out in this context that the Trojan-Horse method is a suitable tool to investigate subthreshold resonances

  13. An introduction to mesic nuclei

    CERN Document Server

    Wilkin, Colin

    2016-01-01

    There is much speculation and a modest amount of evidence that certain mesons might form quasi-bound states with nuclei to produce really exotic states of matter. For this to be a practical possibility, the interaction between the meson and nucleons at low energies must be strong and attractive and the production rates "healthy". The conditions for this are surveyed for the light mesons. How this might lead to quasi-bound states is then discussed in a few typical cases.

  14. Direct Reactions with Exotic Nuclei

    CERN Document Server

    Baur, G

    2005-01-01

    We discuss recent work on Coulomb dissociation and an effective-range theory of low-lying electromagnetic strength of halo nuclei. We propose to study Coulomb dissociation of a halo nucleus bound by a zero-range potential as a homework problem. We study the transition from stripping to bound and unbound states and point out in this context that the Trojan-Horse method is a suitable tool to investigate subthreshold resonances.

  15. Generalized parton distributions of nuclei

    OpenAIRE

    Guzey, V.

    2009-01-01

    We review recent theoretical results on generalized parton distributions (GPDs) of nuclei, emphasizing the following three roles of nuclear GPDs: (i) complementarity to free proton GPDs, (ii) the enhancement of traditional nuclear effects such as nuclear binding, EMC effect, nuclear shadowing, and (iii) an access to novel nuclear effects such as medium modifications of bound nucleons.

  16. Radioactive beams and their applications

    International Nuclear Information System (INIS)

    The proceedings contain lectures and contributed papers submitted to the second INR (Kiev's) International School on Nuclear Physics (Kiev, June 25 -July 2, 1991). The following sections were included in the Proceedings: Radioactive Beam Facilities, Application of Radioactive Beams in the Investigations of Nuclear Reactions, Exotic Nuclei and Clusters, Polarization Phenomena, Astrophysics and Others

  17. North American radioactive beam initiatives

    International Nuclear Information System (INIS)

    After a brief review of existing radioactive beam facilities in North America, two new initiative (the Oak Ridge Radioactive Ion Beam Facility and the IsoSpin Laboratory) are described in some detail. An evaluation of which nuclei these facilities will be able to study, that cannot be studied with stable targets and beams, also is presented

  18. Bounded Earthquakes

    OpenAIRE

    Saric, Dragomir

    2006-01-01

    We give a short proof of the fact that bounded earthquakes of the unit disk induce quasisymmetric maps of the unit circle. By a similar method, we show that symmetric maps are induced by bounded earthquakes with asymptotically trivial measures.

  19. Bound entanglement and entanglement bounds

    Energy Technology Data Exchange (ETDEWEB)

    Sauer, Simeon [Physikalisch-Astronomische Fakultaet, Friedrich-Schiller-Univesitaet Jena (Germany)]|[Physikalisches Institut, Albert-Ludwigs-Universitaet Freiburg, Hermann-Herder-Strasse 3, D-79104 Freiburg (Germany); Melo, Fernando de; Mintert, Florian; Buchleitner, Andreas [Physikalisches Institut, Albert-Ludwigs-Universitaet Freiburg, Hermann-Herder-Strasse 3, D-79104 Freiburg (Germany)]|[Max-Planck-Institut fuer Physik komplexer Systeme, Noethnitzer Str.38, D-01187 Dresden (Germany); Bae, Joonwoo [School of Computational Sciences, Korea Institute for Advanced Study, Seoul 130-012 (Korea); Hiesmayr, Beatrix [Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna (Austria)

    2008-07-01

    We investigate the separability of Bell-diagonal states of two qutrits. By using lower bounds to algebraically estimate concurrence, we find convex regions of bound entangled states. Some of these regions exactly coincide with the obtained results when employing optimal entanglement witnesses, what shows that the lower bound can serve as a precise detector of entanglement. Some hitherto unknown regions of bound entangled states were discovered with this approach, and delimited efficiently.

  20. Magic nuclei

    International Nuclear Information System (INIS)

    4 nuclei of Nickel-48 have been produced in the GANIL accelerator. This nucleus is made up of 28 protons and 20 neutrons, it has at least 10 neutrons less than natural nickel but it is doubly magic: both protons and neutrons are distributed on full shells. It appears as if being doubly magic could compensate for the instability due to the shortage of neutrons. (A.C.)

  1. Proton scattering from unstable nuclei

    Indian Academy of Sciences (India)

    Y Blumenfeld; E Khan; F Maréchal; T Suomijärvi

    2001-08-01

    Recent improvements in the intensities and optical qualities of radioactive beams have made possible the study of elastic and inelastic proton scattering on unstable nuclei. The design and performances of an innovative silicon strip detector array devoted to such experiments are described. The quality of the data obtained are illustrated with recent results obtained at the GANIL facility for unstable oxygen, sulfur and argon isotopes. Methods to analyse the data using phenomenological and microscopic optical model potentials are discussed.

  2. New approaches to studies of exotic nuclei

    International Nuclear Information System (INIS)

    New generations of 4π gamma-ray detectors, recoil mass spectrometers (RMS), and radioactive beam accelerators will open up many new areas of research, including present inaccessible in-beam and radioactive decay studies of exotic nuclei still farther off stability. The new generation RMS and radioactive beam developments at the Holifield Heavy Ion Research Facility are presented. Current research and further prospects to probe the N -- Z line up to 100Sn are described. Superdeformation in A -- 70 to 190 nuclei is described in terms of its underlying physics of reinforcing proton and neutron shell gaps which lead to new superdeformed, doubly-magic nuclei. Recent results provide new insights into the coexistence of multiple nuclear shapes near the ground states

  3. Masses of nuclei close to the dripline

    CERN Document Server

    Herfurth, F; Beck, D; Blaum, K; Bollen, G; Kellerbauer, A G; Kluge, H J; Lunney, M D; Rodríguez, D; Schwarz, S; Sikler, G; Weber, C

    2003-01-01

    Mass measurements of radioactive nuclides are one of the cornerstones of our understanding of the nucleus. The Penning trap spectrometer ISOLTRAP performs direct mass measurements far away from the valley of stability, as well as high-precision measurements of key nuclei to anchor long decay chains. Both schemes provide valuable information on the dripline itself and on nuclei in its close vicinity. (10 refs) .

  4. Blog life: Entropy Bound

    Science.gov (United States)

    Steinberg, Peter

    2008-06-01

    Who is the blog written by? Peter Steinberg is a nuclear physicist at the Brookhaven National Laboratory in New York, US. He is acting project manager of the PHOBOS experiment, which used Brookhaven's Relativistic Heavy Ion Collider (RHIC) to search for unusual events produced during collisions between gold nuclei. He is also involved with the PHENIX experiment, which seeks to discover a new state of matter known as the quark-gluon plasma. In addition to his own blog Entropy Bound, Steinberg is currently blogging on a website that was set up last year to publicize the involvement of US scientists with the Large Hadron Collider (LHC) at CERN.

  5. Systematic calculations on cluster radioactivity half-lives of trans-lead nuclei with effective liquid drop mo del%有效液滴模型对超铅区结团放射性的研究

    Institute of Scientific and Technical Information of China (English)

    圣宗强; 舒良萍; 孟影; 胡继刚; 钱建发

    2014-01-01

    The cluster radioactivities of trans-lead nuclei are systematically investigated by using the effective liquid drop description with the varying mass asymmetry shape and effective inertial coefficient. An effective nuclear radius constant formula is used instead of the original empirical formula in calculation. The calculated half-lives are in good agreement with the available experimental data. The root-mean-square deviation between the calculated logarithmic half-lives and the experimental ones is only 0.895. From the plots of the calculated lgT1/2 values versus the neutron (or proton) number of daughter, the shell effect of neutron magic number N =126 (or proton magic number Z =82) can be clearly seen. The odd-even-stagger can be clearly seen in the odd clusters 25Ne, 29Mg. The calculated half-lives conform to the Geiger-Nuttall law. We obtain some important conclusions about the Geiger-Nuttall law from the calculated results.%利用有效液滴模型计算了超铅区结团放射半衰期.在计算Gamow势垒穿透因子时采用了碎块体积不守恒以及有效惯性系数因子,并用有效的核半径常数公式代替原来的经验公式.理论计算得到的结团放射半衰期和实验值符合得很好,其半衰期对数值的均方差只有0.895.理论结果表明,有效液滴模型能充分反映N =126和Z =82的壳效应,并且在奇数结团25Ne,29Mg中出现了明显的奇偶质量摆动现象.另外,理论计算得到的结团半衰期基本符合盖革-努塔尔定律,并基于理论结果得到了一些关于盖革-努塔尔定律的有意义的结论.

  6. True ternary fission of superheavy nuclei

    OpenAIRE

    Zagrebaev, V.I.; A. V. Karpov; Greiner, Walter

    2010-01-01

    We found that a true ternary fission with formation of a heavy third fragment (a new type of radioactivity) is quite possible for superheavy nuclei due to the strong shell effects leading to a three-body clusterization with the two doubly magic tin-like cores. The simplest way to discover this phenomenon in the decay of excited superheavy nuclei is a detection of two tin-like clusters with appropriate kinematics in low-energy collisions of medium mass nuclei with actinide targets. The three-b...

  7. Bounding the $\

    CERN Document Server

    Gutiérrez-Rodríguez, A

    2003-01-01

    A bound on the nu /sup tau / magnetic moment is calculated through the reaction e/sup +/e/sup -/ to nu nu gamma at the Z/sub 1/-pole, and in the framework of a left-right symmetric model at LEP energies. We find that the bound is almost independent of the mixing angle phi of the model in the allowed experimental range for this parameter. (31 refs).

  8. Quark Degrees of Freedom in Finite Nuclei

    CERN Document Server

    Tsushima, K; Thomas, A W; Tsushima, Kazuo; Saito, Koichi; Thomas, Anthony W.

    1996-01-01

    Properties of finite nuclei are investigated based on relativistic Hartree equations which have been derived from a relativistic quark model of the structure of bound nucleons. Nucleons are assumed to interact through the (self-consistent) exchange of scalar ($\\sigma$) and vector ($\\omega$ and and the rms charge radius in $^{40}$Ca. Calculated properties of static, closed-shell nuclei, as well as symmetric nuclear matter are compared with experimental data and with the results of Quantum Hadrodynamics (QHD).

  9. Relativistic symmetry breaking in light kaonic nuclei

    OpenAIRE

    Yang, Rong-Yao; Jiang, Wei-Zhou; Xiang, Qian-Fei; Zhang, Dong-Rui; Wei, Si-Na

    2014-01-01

    As the experimental data from kaonic atoms and $K^{-}N$ scatterings imply that the $K^{-}$-nucleon interaction is strongly attractive at saturation density, there is a possibility to form $K^{-}$-nuclear bound states or kaonic nuclei. In this work, we investigate the ground-state properties of the light kaonic nuclei with the relativistic mean field theory. It is found that the strong attraction between $K^{-}$ and nucleons reshapes the scalar and vector meson fields, leading to the remarkabl...

  10. Cavitation inception from bubble nuclei.

    Science.gov (United States)

    Mørch, K A

    2015-10-01

    The tensile strength of ordinary water such as tap water or seawater is typically well below 1 bar. It is governed by cavitation nuclei in the water, not by the tensile strength of the water itself, which is extremely high. Different models of the nuclei have been suggested over the years, and experimental investigations of bubbles and cavitation inception have been presented. These results suggest that cavitation nuclei in equilibrium are gaseous voids in the water, stabilized by a skin which allows diffusion balance between gas inside the void and gas in solution in the surrounding liquid. The cavitation nuclei may be free gas bubbles in the bulk of water, or interfacial gaseous voids located on the surface of particles in the water, or on bounding walls. The tensile strength of these nuclei depends not only on the water quality but also on the pressure-time history of the water. A recent model and associated experiments throw new light on the effects of transient pressures on the tensile strength of water, which may be notably reduced or increased by such pressure changes. PMID:26442138

  11. Coupled-cluster computations of atomic nuclei

    CERN Document Server

    Hagen, G; Hjorth-Jensen, M; Dean, D J

    2013-01-01

    In the past decade, coupled-cluster theory has seen a renaissance in nuclear physics, with computations of neutron-rich and medium-mass nuclei. The method is efficient for nuclei with product-state references, and it describes many aspects of weakly bound and unbound nuclei. This report reviews the technical and conceptual developments of this method in nuclear physics, and the results of coupled-cluster calculations for nucleonic matter, and for exotic isotopes of helium, oxygen, calcium, and some of their neighbors.

  12. Effects of fluvial processes in different order river valleys on redistribution and storage of particle-bound radioactive caesium-137 in area of significant Chernobyl fallout and impact on linked rivers with lower contamination levels

    Science.gov (United States)

    Belyaev, Vladimir; Golosov, Valentin; Shamshurina, Evgeniya; Ivanov, Maxim; Ivanova, Nadezhda; Bezukhov, Dmitry; Onda, Yuichi; Wakiyama, Yoshifumi; Evrard, Olivier

    2015-04-01

    Detailed investigations of the post-fallout fate of radionuclide contamination represent an important task in terms of environmental quality assessment. In addition, particle-bound radionuclides such as the most widespread anthropogenic isotope caesium-137 can be used as tracers for quantitative assessment of different sediment redistribution processes. In landscapes of humid plains with agriculture-dominated land use the post-fallout redistribution of caesium-137 is primarily associated with fluvial activity of various scales in cascade systems starting from soil erosion on cultivated hillslopes through gully and small dry valley network into different order perennial streams and rivers. Our investigations in the so-called Plavsk hotspot (area of very high Chernobyl caesium-137 contamination within the Plava River basin, Tula Region, Central European Russia) has been continuing for more than 15 years by now, while the time passed since the Chernobyl disaster and associated radioactive fallout (1986) is almost 29 years. Detailed information on the fluvial sediment and associated caesium-137 redistribution has been obtained for case study sites of different size from individual cultivated slopes and small catchments of different size (2-180 km2) to the entire Plava River basin scale (1856 km2). It has been shown that most of the contaminated sediment over the time passed since the fallout has remained stored within the small dry valleys of the 1-4 Hortonian order and local reservoirs (>70%), while only about 5% reached the 5-6 order valleys (main tributaries of the Plava River) and storage of the Plava floodplain itself represents as low as 0.3% of the basin-scale total sediment production from eroded cultivated hillslopes. Nevertheless, it has been shown that contaminated sediment yield from the Plava River basin exerts significant influence on less polluted downstream-linked river system. Recent progress of the investigations involved sampling of 7 detailed depth

  13. Study of proton radioactivities

    Energy Technology Data Exchange (ETDEWEB)

    Davids, C.N.; Back, B.B.; Henderson, D.J. [and others

    1995-08-01

    About a dozen nuclei are currently known to accomplish their radioactive decay by emitting a proton. These nuclei are situated far from the valley of stability, and mark the very limits of existence for proton-rich nuclei: the proton drip line. A new 39-ms proton radioactivity was observed following the bombardment of a {sup 96}Ru target by a beam of 420-MeV {sup 78}Kr. Using the double-sided Si strip detector implantation system at the FMA, a proton group having an energy of 1.05 MeV was observed, correlated with the implantation of ions having mass 167. The subsequent daughter decay was identified as {sup 166}Os by its characteristic alpha decay, and therefore the proton emitter is assigned to the {sup 167}Ir nucleus. Further analysis showed that a second weak proton group from the same nucleus is present, indicating an isomeric state. Two other proton emitters were discovered recently at the FMA: {sup 171}Au and {sup 185}Bi, which is the heaviest known proton radioactivity. The measured decay energies and half-lives will enable the angular momentum of the emitted protons to be determined, thus providing spectroscopic information on nuclei that are beyond the proton drip line. In addition, the decay energy yields the mass of the nucleus, providing a sensitive test of mass models in this extremely proton-rich region of the chart of the nuclides. Additional searches for proton emitters will be conducted in the future, in order to extend our knowledge of the location of the proton drip line.

  14. Using radioactivity

    International Nuclear Information System (INIS)

    The leaflet discusses the following: radioactivity; radioisotopes; uses of ionising radiations; radioactivity from (a) naturally occurring radioactive elements, and (b) artificially produced radioisotopes; uses of radioactivity in medicine, (a) clinical diagnostic, (b) therapeutic (c) sterilization of medical equipment and materials; environmental uses as tracers; industrial applications, e.g. tracers and radiography; ensuring safety. (U.K.)

  15. Exotic modes of excitation in atomic nuclei far from stability

    OpenAIRE

    Paar, N.; Vretenar, D.; Khan, E.; Colo, G.

    2007-01-01

    We review recent studies of the evolution of collective excitations in atomic nuclei far from the valley of $\\beta$-stability. Collective degrees of freedom govern essential aspects of nuclear structure, and for several decades the study of collective modes such as rotations and vibrations has played a vital role in our understanding of complex properties of nuclei. The multipole response of unstable nuclei and the possible occurrence of new exotic modes of excitation in weakly-bound nuclear ...

  16. Production of light nuclei in the thermal and coalescence models

    CERN Document Server

    Mrowczynski, Stanislaw

    2016-01-01

    The thermal model properly describes the yield of light nuclei in relativistic heavy-ion collisions even so the loosely bound sizable nuclei cannot exist in the dense and hot hadron gas. Within the coalescence model, light nuclei are formed at the latest stage of nuclear collisions due to final state interactions. After discussing the models, we derive simple analytic formulas showing that the thermal and coalescence model predictions are quantitatively close to each other.

  17. A study of strange-, charmed, and beauty nuclei

    International Nuclear Information System (INIS)

    An analyses is made of the bound states of nuclei in the strange-, charm-, and beauty sector using a spin-dependent Gaussian two-body interaction in the microscopic formalism. Coulomb corrections are also included for the charmed nuclei. Our simple model is in reasonable agreement with other existing theoretical and experimental results and it predicts many new bound states. (author). 21 refs, 2 figs, 10 tabs

  18. Radioactive Beams and Exploding Stars at ORNL

    International Nuclear Information System (INIS)

    Beams of radioactive nuclei from the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory (ORNL) are being used to make direct and indirect measurements of reactions important in novae, X-ray bursts, supernovae, and our Sun. Experimental results are used in nuclear data evaluations and element synthesis calculations to determine their astrophysical impact. Recent accomplishments include: the first neutron transfer reaction [(d, p)] measurements on nuclei in the r-process path in supernovae; precision measurements with radioactive 18F beams for novae; and a direct 7Be(p,γ)8B measurement relevant for the solar neutrino flux determination

  19. Synthesis of transactinide nuclei in cold fusion reactions using radioative beams

    OpenAIRE

    Smolanczuk, Robert

    2009-01-01

    Chances of synthesis of transactinide nuclei in cold fusion reactions (one-neutron-out) reactions using radioactive beams are evaluated. Because intensities of radioactive beams are in most of the cases significantly lower than the ones of the stable beams, reactions with the highest radioactive beam intensities for the particular elements are considered. The results are compared with the recent ones obtained by Loveland who investigated the same nuclei.

  20. Eta nuclear bound states revisited

    CERN Document Server

    Friedman, E; Mareš, J

    2013-01-01

    The strong energy dependence of the s-wave eta-N scattering amplitude at and below threshold, as evident in coupled-channels K-matrix fits and chiral models that incorporate the S11 N*(1535) resonance, is included self consistently in eta-nuclear bound state calculations. This approach, applied recently in calculations of kaonic atoms and Kbar-nuclear bound states, is found to impose stronger constraints than ever on the onset of eta-nuclear binding, with a minimum value of Re a_{eta N} approximately 0.9 fm required to accommodate an eta-4He bound state. Binding energies and widths of eta-nuclear states are calculated within several underlying eta-N models for nuclei across the periodic table, including eta-25Mg for which some evidence was proposed in a recent COSY experiment.

  1. Relativistic symmetry breaking in light kaonic nuclei

    CERN Document Server

    Yang, Rong-Yao; Xiang, Qian-Fei; Zhang, Dong-Rui; Wei, Si-Na

    2014-01-01

    As the experimental data from kaonic atoms and $K^{-}N$ scatterings imply that the $K^{-}$-nucleon interaction is strongly attractive at saturation density, there is a possibility to form $K^{-}$-nuclear bound states or kaonic nuclei. In this work, we investigate the ground-state properties of the light kaonic nuclei with the relativistic mean field theory. It is found that the strong attraction between $K^{-}$ and nucleons reshapes the scalar and vector meson fields, leading to the remarkable enhancement of the nuclear density in the interior of light kaonic nuclei and the manifest shift of the single-nucleon energy spectra and magic numbers therein. As a consequence, the pseudospin symmetry is shown to be violated together with enlarged spin-orbit splittings in these kaonic nuclei.

  2. PREFACE: Correlation Dynamics in Nuclei

    Science.gov (United States)

    Suzuki, Toshio; Otsuka, Takaharu; Ichimura, Munetake

    2005-01-01

    The International Symposium on `Correlation Dynamics in Nuclei' was held at the Sanjo Kaikan, the University of Tokyo, from the 31 January to 4 February 2005. This symposium was organized on the occasion of the 50th anniversary of the Configuration Mixing theory of Arima and Horie. The symposium was hosted by the University of Tokyo, and supported by the Inoue Foundation for Science, the Japan Atomic Energy Research Institute and the Ministry of Education, Culture, Sports, Science and Technology. The purpose of the symposium was to discuss theoretical and experimental developments and future prospects in physics of correlation dynamics in nuclei, including topics such as effective interactions, shell model studies of configuration mixing and spin-isospin modes in nuclei. It was shown in many ways and angles that the Arima-Horie theory has been a starting point of a variety of developments of the studies in these fields over many decades. The developments have been enhanced by the expansion of computational capabilities and the progress in accelerators, detectors and radioactive beam facilities. We enjoyed 28 excellent and lively invited talks and 30 oral presentations in the symposium with about 90 participants. A special session was dedicated to celebrate the 80th birthday of Professor Igal Talmi, who made invaluable and pioneering works in the shell model theory. Finally, we would like to thank all the speakers and the participants as well as the other organizers for their contributions which made the symposium very successful.

  3. History of radioactivity

    International Nuclear Information System (INIS)

    The author describes the historical development of the physics of atoms and nuclei. After a consideration of the ancient Greek philosophy concerning atoms the behaviour of gases is discussed with regards to statistical mechanics. Then the developement of chemistry from alchemy is described. Thereafter the early studies of gas discharges are described with regards to the electronic structure of atoms. In this connection the periodic system of elements is considered. Then the detection of the α-radiation of Uranium by Becquerel and the detections of M. and P. Curie are described. Thereafter the radiactive decay of nuclei is discussed. Then a popular introduction into nuclear structure is given with special regards to artificial radioactivity and nuclear fission. Finally nuclear reactors, the atomic bombs, applications of radionuclides, and problems of radiation protection are described. (HSI)

  4. Superheavy nuclei – cold synthesis and structure

    Indian Academy of Sciences (India)

    Raj K Gupta

    2001-08-01

    The quantum mechanical fragmentation theory (QMFT), given for the cold synthesis of new and superheavy elements, is reviewed and the use of radioactive nuclear beams (RNB) and targets (RNT) is discussed. The QMFT is a complete theory of cold nuclear phenomena, namely, the cold fission, cold fusion and cluster radioactivity. Also, the structure calculations based on the axially deformed relativistic mean field (DRMF) approach are presented which predict new regions of spherical magicity, namely = 120 and = 172 or 184, for superheavy nuclei. This result is discussed in the light of recent experiments reporting the cold synthesis of = 118 element.

  5. Bounded Rationality

    Directory of Open Access Journals (Sweden)

    Ballester Pla, Coralio

    2012-03-01

    Full Text Available The observation of the actual behavior by economic decision makers in the lab and in the field justifies that bounded rationality has been a generally accepted assumption in many socio-economic models. The goal of this paper is to illustrate the difficulties involved in providing a correct definition of what a rational (or irrational agent is. In this paper we describe two frameworks that employ different approaches for analyzing bounded rationality. The first is a spatial segregation set-up that encompasses two optimization methodologies: backward induction and forward induction. The main result is that, even under the same state of knowledge, rational and non-rational agents may match their actions. The second framework elaborates on the relationship between irrationality and informational restrictions. We use the beauty contest (Nagel, 1995 as a device to explain this relationship.

    La observación del comportamiento de los agentes económicos tanto en el laboratorio como en la vida real justifica que la racionalidad acotada sea un supuesto aceptado en numerosos modelos socio-económicos. El objetivo de este artículo es ilustrar las dificultades que conlleva una correcta definición de qué es un agente racional (irracional. En este artículo se describen dos marcos que emplean diferentes metodologías para analizar la racionalidad acotada. El primero es un modelo de segregación espacial donde se contrastan dos metodologías de optimización: inducción hacia atrás y hacia adelante. El resultado principal es que, incluso con el mismo nivel de conocimiento, tanto agentes racionales como irracionales podrían coincidir en sus acciones. El segundo marco trabaja sobre la relación entre irracionalidad y restricción de información. Se utiliza el juego llamado “beauty contest” (Nagel 1995 como mecanismo para explicar dicha relación.

  6. Formation of "bound

    Science.gov (United States)

    Nowak, K.; Kästner, M.; Miltner, A.

    2009-04-01

    dark, at constant temp 20˚ C (+/-2˚ C) and with intermittent aeration. During incubation, the mineralization was quantified and soil samples were analyzed for the presence of both "biogenic residues" and remaining 2,4-D. Mineralization of 2,4-D in both experiments was very high. However, the 14CO2 evolution was higher from carboxyl-14C 2,4-D than from 14C-ring 2,4-D. After 7 days of incubation, 30% of initial amount of 14C in soil contaminated with 14C-ring 2,4-D was mineralized, whereas 40% of total radioactivity was evolved as CO2after 4 days from soil incubated with 14C-carboxyl 2,4-D. The amount of extractable 2,4-D residues was very low in both experiments (14C-ring 2,4-D: 2% and 14C-carboxyl 2,4-D: 1%). The soil incubated with 14C-ring 2,4-D contained 60% of "non-extractable" residues of 2,4-D after 7 days, while the amount of these residues in soil contaminated with 14C-carboxyl 2,4-D reached 50% of the initial radioactivity in the tested system 4 days after application. More "biogenic residues" were formed in soil spiked with 14C-U-ring 2,4-D (10%) than in soil with carboxyl 14C 2,4-D (7%). Both 2,4-D and CO2-derived C were incorporated mainly into microbial amino acids (9.5% at day 7 and 7.0% at day 4, respectively). After 7 days of incubation, 0.5% of initial applied radioactivity in system was found in microbial lipids in the soil contaminated with 14C-ring 2,4-D. Only 0.1% of the total radioactivity was incorporated into lipids in soil treated with 14C-carboxyl 2,4-D on day 4 after application. Thin Layer Chromatography identified the microbial lipids containing the radioactivity as phosphatidylethanolamine, a phospholipid typical for microorganisms. The amount of microbial lipids (which corresponds to phospholipids) in both cases decreased with time; this can be explained by the death of the microbial biomass. To the best of our knowledge, this is the first report on the formation of "bound" residues from biomass during the biotic degradation of

  7. Separation and spectroscopic study of exotic nuclei at GANIL

    International Nuclear Information System (INIS)

    A new isotopic separation method is presented. It allows the studies of radioactive atomic nuclei produced in high energy heavy ions collisions. Two experiments were performed at the GANIL facilities (Grand Accelerateur National d'Ions Lourds, Caen). They are analysed on the fields of the experimental resolution and of the spectroscopic results. Measurements of beta decay half lives and gamma spectra are brought for sixteen neutron rich nuclei at the frontier of the experimental knowledge

  8. Accreting Neutron Stars and Radioactive Beam Experiments

    International Nuclear Information System (INIS)

    The nuclear processes on accreting neutron stars in X-ray binaries are related to a number of open astrophysical questions. I review these open questions, their relation to the α p, rp and crust processes, and the nuclear data needed to solve the problems. Data on very unstable proton and neutron rich nuclei are most critical, and therefore radioactive beam experiments together with progress in the theoretical understanding of nuclei far from stability are needed. (author)

  9. A new spin-oriented nuclei facility: POLAREX

    Directory of Open Access Journals (Sweden)

    Etilé A.

    2014-03-01

    Full Text Available Using the On-Line Nuclear Orientation method, POLAREX (POLARization of EXotic nuclei is a new facility allowing to study the anisotropic decay of spin-oriented nuclei. Based on the combination of on-line implantation of radioactive nuclei with Low Temperature Nuclear Orientation technique and Nuclear Magnetic Resonance, POLAREX allows to measure nuclear electromagnetic moments and ground-state spins, in the aim to get information about the wave function composition of the nuclear state. Polarized nuclei can also be used to study fundamental interactions involving nuclear β-decay asymmetries. The POLAREX infrastructure will be installed at Accélérateur Linéaire auprés du Tandem d’Orsay in order to study neutron-rich nuclei, some of which have not been studied yet. Will be presented here, all the possibilities of this new facility and a non exhaustive scientific program.

  10. A new spin-oriented nuclei facility: POLAREX

    International Nuclear Information System (INIS)

    Using the On-Line Nuclear Orientation method, POLAREX (Polarization of Exotic nuclei) is a new facility allowing to study the anisotropic decay of spin-oriented nuclei. Based on the combination of on-line implantation of radioactive nuclei with Low Temperature Nuclear Orientation technique and Nuclear Magnetic Resonance, POLAREX allows the measurement of nuclear electromagnetic moments and ground-state spins, in the aim to get information about the wave function composition of the nuclear state. Polarized nuclei can also be used to study fundamental interactions involving nuclear β-decay asymmetries. The POLAREX infrastructure will be installed at the linear accelerator in Orsay in order to study neutron-rich nuclei, some of which have not been studied yet. Will be presented here, all the possibilities of this new facility and a non exhaustive scientific program. The first experiment will be the nuclear magnetic moment measurement of 125Sb as final commissioning

  11. Radioactive determination of serum thyroxine. [/sup 125/I tracer technique

    Energy Technology Data Exchange (ETDEWEB)

    Shannon, C.F.; Dahlstrom, R.V.

    1976-03-30

    A method for determining serum thyroxine (T-4) in which the T-4 is first separated from the serum by adsorption onto a montmorillonite clay and then competitively bound by exogenous thyroxine binding globulin in the presence of a known amount of radioactive T-4. The competitively bound serum T-4 and radioactive T-4 is separated from the unbound serum T-4 and radioactive T-4 by passage through an ion exchange resin column. The serum T-4 concentration is determined by measuring the amount of bound radioactive T-4 and referring to a standard curve.

  12. Few-Body Models of Light Nuclei

    Science.gov (United States)

    Ershov, S. N.; Vaagen, J. S.; Zhukov, M. V.

    2015-06-01

    Experiments confirm a variety of cluster structures in many light nuclei. The observation of nuclear halos at drip-lines has accentuated the question of the degrees of freedom for bound and low-lying continuum states. In these cases the many-body dynamics of nuclear structure may be well approximated by few-body cluster models that often suggest conceptually simple approaches explaining successfully many features of light nuclei. Thus few-body cluster models have been successfully used for description of the nuclear structure of weakly bound halo nuclei and their emergent cluster degrees of freedom. They have attractive features supplying in a most transparent way the asymptotic behavior and continuum properties of weakly bound systems. Such models assume a separation in internal cluster (core) degrees of freedom and the relative motion of few-body constituents. Such separation is only an approximation, and low-lying states appear where the core cannot be considered as inert system and additional degrees of freedom connected to excited core states have to be taken into account. For fixed total angular momentum a coupling to excited core states having different spins involves additional partial waves into the consideration. This allows to account for some emergent (collective) core degrees of freedom and gives a more realistic description of nuclear properties. It is an analogue to increasing the number of shells within the framework of shell-model approaches. Some examples from recent nuclear structure exploration within few-body halo cluster models are presented.

  13. Self-consistent description of deformed nuclei at the proton drip line

    Directory of Open Access Journals (Sweden)

    Ferreira Lidia S.

    2016-01-01

    Full Text Available Proton radioactivity from deformed nuclei is described for the first time by a fully self–consistent calculation based on covariant relativistic density functionals derived from meson exchange and point coupling models.

  14. Nuclei in high forms

    International Nuclear Information System (INIS)

    The purpose of 1991 Joliot-Curie Summer School is to review the most advances in the understanding of the nuclei physics after the considerable progress in gamma spectroscopy. It covers the following topics: Highly and super-deformed nuclei, nuclear structures, mean-field approach and beyond, fission isomers, nuclear excitations with long lifetime and metal clusters

  15. Recent topics of mesic atoms and mesic nuclei -- $\\phi$ mesic nuclei exist ?--

    CERN Document Server

    Yamagata-Sekihara, J; Cabrera, D; Vacas, M J Vicente

    2008-01-01

    We study $\\phi$-meson production in nuclei to investigate the in-medium modification of the $\\phi$-meson spectral function at finite density. We consider (${\\bar p},\\phi$), ($\\gamma,p$) and ($\\pi^-,n$) reactions to produce a $\\phi$-meson inside the nucleus and evaluate the effects of the medium modifications to reaction cross sections. The structures of the bound states, $\\phi$-mesic nuclei, are also studied. For strong absorptive interaction cases, we need to know the spectrum shape in a wide energy region to deduce the properties of $\\phi$.

  16. Pairing correlations in exotic nuclei

    CERN Document Server

    Sagawa, H

    2012-01-01

    The BCS and HFB theories which can accommodate the pairing correlations in the ground states of atomic nuclei are presented. As an application of the pairing theories, we investigate the spatial extension of weakly bound Ne and C isotopes by taking into account the pairing correlation with the Hartree-Fock-Bogoliubov (HFB) method and a 3-body model, respectively. We show that the odd-even staggering in the reaction cross sections of $^{30,31,32}$Ne and $^{14,15,16}$C are successfully reproduced, and thus the staggering can be attributed to the unique role of pairing correlations in nuclei far from the stability line. A correlation between a one-neutron separation energy and the anti-halo effect is demonstrated for $s$- and p-waves using the HFB wave functions. We also propose effective density-dependent pairing interactions which reproduce both the neutron-neutron ($nn$) scattering length at zero density and the neutron pairing gap in uniform matter. Then, we apply these interactions to study pairing gaps in ...

  17. Search for bound-state electron+positron pair decay

    Science.gov (United States)

    Bosch, F.; Hagmann, S.; Hillenbrand, P.-M.; Lane, G. J.; Litvinov, Yu. A.; Reed, M. W.; Sanjari, M. S.; Stöhlker, Th.; Torilov, S. Yu.; Tu, X. L.; Walke, P. M.

    2016-09-01

    The heavy ion storage rings coupled to in-flight radioactive-ion beam facilities, namely the ability to produce and store for extended periods of time radioactive nuclides in high atomic charge states, for the searchof yet unobserved decay mode - bound-state electron-positron pair decay.

  18. A Markov Chain Monte Carlo technique to sample transport and source parameters of Galactic cosmic rays: II. Results for the diffusion model combining B/C and radioactive nuclei

    CERN Document Server

    Putze, A; Maurin, D

    2010-01-01

    On-going measurements of the cosmic radiation (nuclear, electronic, and gamma-ray) are shedding new light on cosmic-ray physics. A comprehensive picture of these data relies on an accurate determination of the transport and source parameters of propagation models. A Markov Chain Monte Carlo is used to obtain these parameters in a diffusion model. From the measurement of the B/C ratio and radioactive cosmic-ray clocks, we calculate their probability density functions, with a special emphasis on the halo size L of the Galaxy and the local underdense bubble of size r_h. The analysis relies on the USINE code for propagation and on a Markov Chain Monte Carlo technique (Putze et al. 2009, paper I of this series) for the parameter determination. As found in previous studies, the B/C best-fit model favours diffusion/convection/reacceleration (Model III) over diffusion/reacceleration (Model II). A combined fit on B/C and the isotopic ratios (10Be/9Be, 26Al/27Al, 36Cl/Cl) leads to L ~ 8 kpc and r_h ~ 120 pc for the bes...

  19. Use of electron beams for the production of radioactive nuclei through photo-fission; Utilisation de faisceaux d'electrons pour la production des noyaux radioactifs par photo-fission

    Energy Technology Data Exchange (ETDEWEB)

    M' garrech, Slah

    2004-09-01

    The IPN (institute of nuclear physics) of Orsay decided to build a linear accelerator in order to produce an electron beam of 50 MeV energy and of 10 {mu}A average intensity. It is the ALTO project (Linear Accelerator near the Tandem of Orsay). This project will be dedicated to the production of the radioactive ions using the photo-fission process. The central topic of this thesis is the study of the beam dynamics of the ALTO facility. The first part presents studies concerning the injector. The simulations made with the simulation code PARMELA allowed the optimization of the characteristics of pre-buncher (dephasing HF, accelerating field peak...) to obtain a good bunching factor at the entrance of the buncher and at the entrance of the accelerating section according to the distance separating the two systems. The second part of this thesis is related to measurements of transverse emittance of the beam at the buncher exit. The three gradients method has been selected and the optical system used is a solenoid. The results obtained are in good agreement with former measurements. Finally a calculation of the beam line was carried out to optimize the transport of the beam to the PARRNe target without degrading its characteristics. The calculation codes that have been used are BETA and TRACE-WIN. (author)

  20. Radioactive Wastes.

    Science.gov (United States)

    Choudri, B S; Baawain, Mahad

    2016-10-01

    Papers reviewed herein present a general overview of radioactive waste activities around the world in 2015. These include safety assessments, decommission and decontamination of nuclear facilities, fusion facilities, transportation and management solutions for the final disposal of low and high level radioactive wastes (LLW and HLW), interim storage and final disposal options for spent fuel (SF), and tritiated wastes, with a focus on environmental impacts due to the mobility of radionuclides in water, soil and ecosystem alongwith other progress made in the management of radioactive wastes. PMID:27620100

  1. Radioactive Wastes.

    Science.gov (United States)

    Choudri, B S; Baawain, Mahad

    2015-10-01

    Papers reviewed herein present a general overview of radioactive waste activities around the world in 2014. These include safety assessments, decommission and decontamination of nuclear facilities, fusion facilities, transportation and management solutions for the final disposal of low and high level radioactive wastes (LLW and HLW), interim storage and final disposal options for spent fuel (SF), and tritiated wastes, with a focus on environmental impacts due to the mobility of radionuclides in water, soil and ecosystem alongwith other progress made in the management of radioactive wastes. PMID:26420096

  2. Radioactive Wastes.

    Science.gov (United States)

    Choudri, B S; Baawain, Mahad

    2016-10-01

    Papers reviewed herein present a general overview of radioactive waste activities around the world in 2015. These include safety assessments, decommission and decontamination of nuclear facilities, fusion facilities, transportation and management solutions for the final disposal of low and high level radioactive wastes (LLW and HLW), interim storage and final disposal options for spent fuel (SF), and tritiated wastes, with a focus on environmental impacts due to the mobility of radionuclides in water, soil and ecosystem alongwith other progress made in the management of radioactive wastes.

  3. Numerical calculations for the angular distribution of gamma radiation emitted by oriented 58Co NUCLEI

    NARCIS (Netherlands)

    Cox, J.A.M.; Groot, S.R. de; Hartogh, Chr.D.

    1953-01-01

    In this note the theoretical results for the angular distribution of γ-radiation emitted by oriented radioactive nuclei are applied to the case of 58Co nuclei. The angular distribution function of the γ-radiation has been calculated for an arbitrary degree of nuclear orientation and in dependence of

  4. Dynamical Relativistic Effects in Breakup Processes of Halo Nuclei

    CERN Document Server

    Ogata, Kazuyuki

    2009-01-01

    The continuum-discretized coupled-channels (CDCC) method is used to study the breakup of weakly-bound nuclei at intermediate energies collisions. For large impact parameters, the Eikonal CDCC (E-CDCC) method was applied. The effects of Lorentz contraction on the nuclear and Coulomb potentials have been investigated in details. Such effects tend to increase cross sections appreciably. We also show that, for loosely-bound nuclei, the contribution of the so-called close field is small and can be neglected.

  5. Low-energy nuclear reactions with double-solenoid- based radioactive nuclear beam

    Indian Academy of Sciences (India)

    Valdir Guimarães

    2010-07-01

    The University of Notre Dame, USA (Becchetti et al, Nucl. Instrum. Methods Res. A505, 377 (2003)) and later the University of São Paulo, Brazil (Lichtenthaler et al, Eur. Phys. J. A25, S-01, 733 (2005)) adopted a system based on superconducting solenoids to produce low-energy radioactive nuclear beams. In these systems the solenoids act as thick lenses to collect, select, and focus the secondary beam into a scattering chamber. Many experiments with radioactive light particle beams (RNB) such as 6He, 7Be, 8Li, 8B have been performed at these two facilities. These low-energy RNB have been used to investigate low-energy reactions such as elastic scattering, transfer and breakup, providing useful information on the structure of light nuclei near the drip line and on astrophysics. Total reaction cross-sections, derived from elastic scattering analysis, have also been investigated for light system as a function of energy and the role of breakup of weakly bound or exotic nuclei is discussed.

  6. Investigation of exotic nuclei with absolute transition probabilities

    International Nuclear Information System (INIS)

    Transition probabilities are crucial for the understanding of nuclear structure. Deep inelastic reactions, knockout reactions and projectile Coulomb excitation with fast radioactive beams are suited to populate excited states in exotic nuclei. Examples are presented which demonstrate that recoil Doppler shift lifetime measurements can be applied successfully in combination with such reactions to measure level lifetimes.

  7. Simulated Radioactivity

    Science.gov (United States)

    Boettler, James L.

    1972-01-01

    Describes the errors in the sugar-cube experiment related to radioactivity as described in Project Physics course. The discussion considers some of the steps overlooked in the experiment and generalizes the theory beyond the sugar-cube stage. (PS)

  8. Radioactivity Calculations

    Science.gov (United States)

    Onega, Ronald J.

    1969-01-01

    Three problems in radioactive buildup and decay are presented and solved. Matrix algebra is used to solve the second problem. The third problem deals with flux depression and is solved by the use of differential equations. (LC)

  9. Concentrating Radioactivity

    Science.gov (United States)

    Herrmann, Richard A.

    1974-01-01

    By concentrating radioactivity contained on luminous dials, a teacher can make a high reading source for classroom experiments on radiation. The preparation of the source and its uses are described. (DT)

  10. Nucleons in nuclei, however

    International Nuclear Information System (INIS)

    The topics presented at the 1989 Joliot-Curie Lectures are reported. Two main subjects were retained: a simplified description of the N-body motion of particles in the quasi-particle configuration; study of the dynamics of nuclear components which are not described by nucleons in their ground state. The following themes were presented: quasiparticles and the Green functions, relativistic aspects of the quasiparticle concept, the dimensions of nucleons in the nuclei and the EMC effect, quarks and gluons in the nuclei, the delta in the nuclei, the strangeness, quasiparticles far from the Fermi sea, diffusion of electrons, stellar evolution and nucleosynthesis

  11. Radioactive ion beams in nuclear astrophysics

    Science.gov (United States)

    Gialanella, L.

    2016-09-01

    Unstable nuclei play a crucial role in the Universe. In this lecture, after a short introduction to the field of Nuclear Astrophysics, few selected cases in stellar evolution and nucleosynthesis are discussed to illustrate the importance and peculiarities of processes involving unstable species. Finally, some experimental techniques useful for measurements using radioactive ion beams and the perspectives in this field are presented.

  12. Hot nuclei and fragmentation

    International Nuclear Information System (INIS)

    A review is made of the present status concerning the production of nuclei above 5 MeV temperature. Considerable progress has been made recently on the understanding of the formation and the fate of such hot nuclei. It appears that the nucleus seems more stable against temperature than predicted by static calculations. However, the occurrence of multifragment production at high excitation energies is now well established. The various experimental features of the fragmentation process are discussed. (author) 59 refs., 12 figs

  13. Antibaryon-nucleus bound states

    CERN Document Server

    Hrtánková, J

    2014-01-01

    We calculated antibaryon ($\\bar{B}$ = $\\bar{p}$, $\\bar{\\Lambda}$, $\\bar{\\Sigma}$, $\\bar{\\Xi}$) bound states in selected nuclei within the relativistic mean-field (RMF) model. The G-parity motivated $\\bar{B}$-meson coupling constants were scaled to yield corresponding potentials consistent with available experimental data. Large polarization of the nuclear core caused by $\\bar{B}$ was confirmed. The $\\bar{p}$ annihilation in the nuclear medium was incorporated by including a phenomenological imaginary part of the optical potential. The calculations using a complex $\\bar{p}$-nucleus potential were performed fully self-consistently. The $\\bar{p}$ widths significantly decrease when the phase space reduction is considered for $\\bar{p}$ annihilation products, but they still remain sizeable for potentials consistent with $\\bar{p}$-atom data.

  14. Radioactive waste management in Tanzania

    International Nuclear Information System (INIS)

    Radioactive waste, like many other hazardous wastes, is of great concern in Tanzania because of its undesirable health effects. The stochastic effects due to prolonged exposure to ionizing radiation produce cancer and hereditary effects. The deterministic effects due to higher doses cause vomiting, skin reddening, leukemia, and death to exposed victims. The aim of this paper is to give an overview of the status of radioactive wastes in Tanzania, how they are generated and managed to protect humans and the environment. As Tanzania develops, it is bound to increase the use of ionizing radiation in research and teaching, industry, health and agriculture. Already there are more than 42 Centers which use one form of radioisotopes or another for these purposes: Teletherapy (Co-60), Brach-therapy (Cs-137, Sr-89), Nuclear Medicine (P-32, Tc-99m, 1-131, 1-125, Ga-67, In-111, Tl-206), Nuclear gauge (Am-241, Cs- 137, Sr-90, Kr-85), Industrial radiography (Am-241, C-137, Co-60, lr-92), Research and Teaching (1-125, Am241/Be, Co-60, Cs-137, H-3 etc). According to IAEA definition, these radioactive sources become radioactive waste if they meet the following criteria: if they have outlived their usefulness, if they have been abandoned, if they have been displaced without authorization, and if they contaminate other substances. Besides the origin of radioactive wastes, special emphasis will also be placed on the existing radiation regulations that guide disposal of radioactive waste, and the radioactive infrastructure Tanzania needs for ultimate radioactive waste management. Specific examples of incidences (theft, loss, abandonment and illegal possession) of radioactive waste that could have led to serious deterministic radiation effects to humans will also be presented. (author)

  15. Are $\\eta$- and $\\omega$-nuclear states bound ?

    CERN Document Server

    Tsushima, K; Thomas, A W; Saitô, K

    1998-01-01

    We investigate theoretically whether it is feasible to detect $\\eta$- and $^{40}$Ca, $^{90}$Zr and $^{208}$Pb, we also investigate $^6$He, $^{11}$B and $^{26}$Mg, which are the final nuclei in the proposed experiment involving the (d,$^3$He) reaction at GSI. Potentials for the $\\eta$ and $\\omega$ mesons in these nuclei are calculated in local density approximation, embedding the mesons in the nucleus described by solving the mean-field equations of motion in the QMC model. Our results suggest that one should expect to find $\\eta$- and $\\omega$-nucleus bound states in all these nuclei.

  16. Use of Radioactive Ion Beams for Biomedical Research 1. in vivo labelling of monoclonal antibodies with radio-lanthanides and $^{225}$Ac

    CERN Document Server

    2002-01-01

    % IS330 \\\\ \\\\\\begin{enumerate} \\item The aim of this study was to contribute to developments of new radiopharmaceuticals for tumour diagnosis and therapy. CERN-ISOLDE is the leading facility in the world to provide radioactive ion beams with high selectivity, purity and intensity. Radioisotope production by spallation makes available a complete range of rare earth isotopes having as complete a diversity of types and energy of radiation, of half-life, and of ionic properties as one would wish. The availability of exotic nuclei, e.g. radionuclides of rare earth elements and $^{225}$Ac, opens new possibilities for the development of radiopharmaceuticals for diagnosis and therapy.\\\\ \\\\ \\item Two approaches were followed within the experimental program. The radioactive metal ions are bound either to bio-specific ligands (monoclonal antibodies or peptides) or to unspecific low molecular weight form. The aim of the experimental program is to evaluate relationships between physico-chemical parameters of the tracer m...

  17. Status and Perspectives of the Search for Eta-Mesic Nuclei

    CERN Document Server

    Moskal, Pawel; Krzemien, Wojciech

    2016-01-01

    In this report the search for eta-mesic nuclei is reviewed. The brief description of the experimental studies is presented with a focus on the possible production of the eta-nucleus bound states for light nuclei like 4He and 3He.

  18. Alpha decay as a probe for the structure of neutron-deficient nuclei

    CERN Document Server

    Qi, Chong

    2016-01-01

    The advent of radioactive ion beam facilities and new detector technologies have opened up new possibilities to investigate the radioactive decays of highly unstable nuclei, in particular the proton emission, $\\alpha$ decay and heavy cluster decays from neutron-deficient (or proton-rich) nuclei around the proton drip line. It turns out that these decay measurements can serve as a unique probe for studying the structure of the nuclei involved. On the theoretical side, the development in nuclear many-body theories and supercomputing facilities have also made it possible to simulate the nuclear clusterization and decays from a microscopic and consistent perspective. In this article we would like to review the current status of these structure and decay studies in heavy nuclei, regarding both experimental and theoretical opportunities. We then discuss in detail the recent progress in our understanding of the nuclear $\\alpha$ formation probabilities in heavy nuclei and their indication on the underlying nuclear st...

  19. Response of hot nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Broglia, R.A.

    1986-01-01

    The dipole giant resonance is reviewed, as it is the only vibration which has been experimentally identified in the decay of hot nuclei. The mechanism of exciting the resonance and the mode of the resonance are described. The methods used to calculate the vibrations from the shell model are discussed, including the Hartree-Fock approximation and random phase approximation. Nuclei formed by compound nuclear reactions, which possess high excitation energy and angular momentum, are considered. It is argued that the stability of the dipole may be used to advantage in the study of other properties of nuclei at high excitation. It is also considered possible that the discussion of the dipole giant resonance may be extended to the gamma decay of the isovector quadrupole vibration. 26 refs., 18 figs. (LEW)

  20. Particles and nuclei, letters

    International Nuclear Information System (INIS)

    The present collection of letters from JINR, Dubna, contains seven separate records on kinematic separation and mass analysis of heavy recoiling nuclei, dynamical effects prior to heavy ion fusion, VACTIV-DELPHI graphical dialog based program for the analysis of gamma-ray spectra, irradiation of nuclear emulsions in relativistic beams of 6He and3H nuclei, optical and structural investigations of PLZT x/65/35 (x = 4, 8 %) ferroelectric ceramics irradiated by a high-current pulsed electron beam, the oscillating charge and first evidence for neutrinoless double beta decay

  1. Rotational motion in nuclei

    International Nuclear Information System (INIS)

    Nuclear structure theories are reviewed concerned with nuclei rotational motion. The development of the deformed nucleus model facilitated a discovery of rotational spectra of nuclei. Comprehensive verification of the rotational scheme and a successful classification of corresponding spectra stimulated investigations of the rotational movement dynamics. Values of nuclear moments of inertia proved to fall between two marginal values corresponding to rotation of a solid and hydrodynamic pattern of an unrotating flow, respectively. The discovery of governing role of the deformation and a degree of a symmetry violence for determining rotational degrees of freedon is pointed out to pave the way for generalization of the rotational spectra

  2. Particles and nuclei, letters

    International Nuclear Information System (INIS)

    The present collection of letters from JINR, Dubna, contains seven separate records on physics from extra dimensions, new physics in the new millennium with GENIUS: double beta decay, dark matter, solar neutrinos, the (μ-, e+) conversion in nuclei mediated by light Majorana neutrinos, exotic muon-to-positron conversion in nuclei: partial transition sum evaluation by using shell model, solar neutrino problem accounting for self consistent magnetohydrodynamics solution for solar magnetic fields, first neutrino observations from the Sudbury neutrino observatory and status report on BOREXINO and results of the muon-background measurements at CERN

  3. Anharmonic vibrations in nuclei

    CERN Document Server

    Fallot, M; Andrés, M V; Catara, F; Lanza, E G; Scarpaci, J A; Chomaz, Ph.

    2003-01-01

    In this letter, we show that the non-linearitites of large amplitude motions in atomic nuclei induce giant quadrupole and monopole vibrations. As a consequence, the main source of anharmonicity is the coupling with configurations including one of these two giant resonances on top of any state. Two-phonon energies are often lowered by one or two MeV because of the large matrix elements with such three phonon configurations. These effects are studied in two nuclei, 40Ca and 208Pb.

  4. Scattering by bound nucleons

    International Nuclear Information System (INIS)

    Scattering of a particle by bound nucleons is discussed. Effects of nucleons that are bound in a nucleus are taken as a structure function. The way how to calculate the structure function is given. (author)

  5. Variance bounding Markov chains

    OpenAIRE

    Roberts, Gareth O.; Jeffrey S. Rosenthal

    2008-01-01

    We introduce a new property of Markov chains, called variance bounding. We prove that, for reversible chains at least, variance bounding is weaker than, but closely related to, geometric ergodicity. Furthermore, variance bounding is equivalent to the existence of usual central limit theorems for all L2 functionals. Also, variance bounding (unlike geometric ergodicity) is preserved under the Peskun order. We close with some applications to Metropolis–Hastings algorithms.

  6. The quest for novel modes of excitation in exotic nuclei

    CERN Document Server

    Paar, N

    2010-01-01

    This article provides an insight into several open problems in the quest for novel modes of excitation in nuclei with isospin asymmetry, deformation and finite temperature characteristic in stellar environment. Major unsolved problems include the nature of pygmy dipole resonances, the quest for various multipole and spin-isospin excitations both in neutron-rich and proton drip-line nuclei mainly driven by loosely bound nucleons, excitations in unstable deformed nuclei and evolution of their properties with the shape phase transition. Exotic modes of excitation in nuclei at finite temperatures characteristic for supernova evolution present open problems with possible impact in modeling astrophysically relevant weak interaction rates. All these issues challenge self-consistent many body theory frameworks at the frontiers of on-going research, including nuclear energy density functionals, both phenomenological and constrained by the strong interaction physics of QCD, models based on low-momentum two-nucleon inte...

  7. Enhanced subbarrier fusion for proton halo nuclei

    Science.gov (United States)

    Kumar, Raj; Lay, J. A.; Vitturi, A.

    2014-02-01

    In this Brief Report we use a simple model to describe the dynamical effects of break-up processes in the subbarrier fusion involving weakly bound nuclei. We model two similar cases involving either a neutron or a proton halo nucleus, both schematically coupled to the break-up channels. We find that the decrease of the Coulomb barrier in the proton break-up channel leads, ceteris paribus, to a larger enhancement of the subbarrier fusion probabilities with respect to the neutron halo case.

  8. Enhanced subbarrier fusion for proton halo nuclei

    CERN Document Server

    Kumar, Raj; Vitturi, A

    2014-01-01

    In this short note we use a simple model to describe the dynamical effects of break-up processes in the subbarrier fusion involving weakly bound nuclei. We model two similar cases involving either a neutron or a proton halo nucleus, both schematically coupled to the break-up channels. We find that the decrease of the coulomb barrier in the proton break-up channel leads, ceteris paribus, to a larger enhancement of the subbarier fusion probabilities with respect to the neutron-halo case.

  9. Fissibility of compound nuclei

    CERN Document Server

    Iwata, Yoritaka

    2012-01-01

    Collisions between $^{248}$Cm and $^{48}$Ca are systematically investigated by time-dependent density functional calculations with evaporation prescription. Depending on the incident energy and impact parameter, fusion, deep-inelastic and fission events are expected to appear. In this paper, a microscopic method of calculating the fissibility of compound nuclei is presented.

  10. Elusive active galactic nuclei

    NARCIS (Netherlands)

    Maiolino, R; Comastri, A; Gilli, R; Nagar, NM; Bianchi, S; Boker, T; Colbert, E; Krabbe, A; Marconi, A; Matt, G; Salvati, M

    2003-01-01

    A fraction of active galactic nuclei do not show the classical Seyfert-type signatures in their optical spectra, i.e. they are optically 'elusive'. X-ray observations are an optimal tool to identify this class of objects. We combine new Chandra observations with archival X-ray data in order to obtai

  11. Octupole collectivity in nuclei

    Science.gov (United States)

    Butler, P. A.

    2016-07-01

    The experimental and theoretical evidence for octupole collectivity in nuclei is reviewed. Recent theoretical advances, covering a wide spectrum from mean-field theory to algebraic and cluster approaches, are discussed. The status of experimental data on the behaviour of energy levels and electric dipole and electric octupole transition moments is reviewed. Finally, an outlook is given on future prospects for this field.

  12. Triaxiality in superheavy nuclei

    International Nuclear Information System (INIS)

    In this work, triaxial degree of freedom is explicitly utilized in calculating alpha decay lifetimes. The synthesis of superheavy nuclei with Z = 114-116 and 118 were detected by their decaying alpha chains with terminating spontaneous fission events. The lifetime of alpha decay chains measured are to be compared with the values evaluated theoretically

  13. Electroweak interactions in nuclei

    International Nuclear Information System (INIS)

    Topics include: introduction to electroweak theory; the Weinberg-Salam theory for leptons; the Weinberg-Salam theory for hadrons-the GIM mechanism; electron scattering as a probe of the electroweak interaction (observation of PV, the weak interaction for nucleons, and parity violation in atoms); and time reversed invariance and electric dipole moments of nucleons, nuclei, and atoms. 52 references

  14. Interactions on Nuclei

    OpenAIRE

    Hoyer, Paul

    1995-01-01

    I review hard photon initiated processes on nuclei. The space-time development of the DIS reaction as viewed in the target rest frame qualitatively describes the nuclear shadowing of quark and gluon distributions, although it may be difficult to understand the very weak $Q^2$ dependence of the low $x$ data. The current jet hadron energy distribution at large $\

  15. $\\gamma$ -spectroscopy of n-rich $^{95,96}$Rb nuclei by the incomplete fusion reaction of $^{94}$Kr on $^{7}$Li

    CERN Multimedia

    We propose an experiment with MINIBALL coupled to T-REX to investigate n-rich $^{95,96}$Rb nuclei by the incomplete fusion reaction of $^{94}$Kr on $^{7}$Li. The nuclei of interest will be populated by transfer of a triton into $^{94}$Kr, forming the excited $^{97}$Rb nucleus, followed by the emission of an alpha particle, which will be detected in the Si telescopes of T-REX. The $^{97}$Rb product will evaporate 1 or 2 (with the highest probability) neutrons leading to $^{96}$Rb or $^{95}$Rb, respectively. The aim of the experiment is twofold: \\\\ i) to perform a $\\gamma$- spectroscopy study of $^{95,96}$Rb nuclei with N=58,59, the structure of which is of particular interest in investigating the transition towards stable deformation at N=60, \\\\ ii) to acquire experience in using incomplete fusion reactions with the weakly bound $^{7}$Li target, in order to perform, at a later stage with HIE-ISOLDE, similar measurements induced by n-rich radioactive beams of Sn and Hg, for which at least 5 MeV/nucleon are need...

  16. The natural radioactivity of the biosphere

    International Nuclear Information System (INIS)

    Of the approximately 1200 isotopes presently known more than 900 are radioactive. The nuclei of these isotopes are unstable and decay spontaneously emitting ionizing gamma-, alpha- or beta-radiation. The overwhelming majority of known radioactive isotopes have been obtained artificially; only a few are natural. Numerous investigations have shown that many of the natural radioactive isotopes can be grouped into three radioactive families. Each such family is characterized by the existence of one long-lived isotope - the family parent, one gaseous isotope of radon, intermediate radioactive decay products and final stable isotopes of atomic weights 206, 207 and 208. No such generic relationship has been established among the remaining natural radioactive isotopes. The purpose of the book, in contrast to some recent review works, is to present, in addition to a summary of reference data characterizing the radioactivity levels of various components of the biosphere, a description of those phenomena and regularities which will apparently make it possible to understand more completely the basic dynamics of the natural radioactivity of the biosphere and, consequently, contribute to a more correct interpretation of radiation-hygiene in each specific case

  17. Tools for model-independent bounds in direct dark matter searches

    DEFF Research Database (Denmark)

    Cirelli, M.; Del Nobile, E.; Panci, P.

    2013-01-01

    We discuss a framework (based on non-relativistic operators) and a self-contained set of numerical tools to derive the bounds from some current direct detection experiments on virtually any arbitrary model of Dark Matter elastically scattering on nuclei.......We discuss a framework (based on non-relativistic operators) and a self-contained set of numerical tools to derive the bounds from some current direct detection experiments on virtually any arbitrary model of Dark Matter elastically scattering on nuclei....

  18. Radioactive Ion Beam Development at the Holifield Radioactive Ion Beam Facility

    CERN Document Server

    Stracener, Dan; Beene, James R; Bilheux, Hassina Z; Bilheux, Jean-Christophe; Blackmon, Jeff C; Carter, Ken; Dowling, Darryl; Juras, Raymond; Kawai, Yoko; Kronenberg, Andreas; Liu, Yuan; Meigs, Martha; Müller, Paul; Spejewski, Eugene H; Tatum, A

    2005-01-01

    Radioactive beams are produced at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory using the Isotope Separator On-Line (ISOL) technique. Radioactive nuclei are produced in a thick target via irradiation with energetic light ions (protons, deuterons, helium isotopes) and then post-accelerated to a few MeV/nucleon for use in nuclear physics experiments. An overview of radioactive beam development at the HRIBF will be presented, including ion source development, improvements in the ISOL production targets, and a description of techniques to improve the quality (intensity and purity) of the beams. Facilities for radioactive ion beam development include two ion source test facilities, a target/ion source preparation and quality assurance facility, and an in-beam test facility where low intensity production beams are used. A new test facility, the High Power Target Laboratory, will be available later this year. At this facility, high intensity production beams will be available t...

  19. Radioactive alchemy

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2014-07-15

    For any entity involved in radioactive waste management, turning lead into gold means succeeding with minimising the volumes and optimizing the long-term containment of ultimate waste to be disposed of. With this purpose, they perform R and D on different sorting, treatment and disposal technology, as explained by Frederic Plas from Andra (France), Jan Deckers from Belgoprocess (Belgium) and Wilhelm Bollingerfehr from DBE Technology (Germany). (orig.)

  20. Radioactive alchemy

    International Nuclear Information System (INIS)

    For any entity involved in radioactive waste management, turning lead into gold means succeeding with minimising the volumes and optimizing the long-term containment of ultimate waste to be disposed of. With this purpose, they perform R and D on different sorting, treatment and disposal technology, as explained by Frederic Plas from Andra (France), Jan Deckers from Belgoprocess (Belgium) and Wilhelm Bollingerfehr from DBE Technology (Germany). (orig.)

  1. Energetic Nuclei, Superdensity and Biomedicine

    Science.gov (United States)

    Baldin, A. M.

    1977-01-01

    High-energy, relativistic nuclei were first observed in cosmic rays. Studing these nuclei has provided an opportunity for analyzing the composition of cosmic rays and for experimentally verifying principles governing the behavior of nuclear matter at high and super-high temperatures. Medical research using accelerated nuclei is suggested.…

  2. The method for investigation of unbound states of radioactive nuclei

    International Nuclear Information System (INIS)

    The coincidences between two α-particles from reactions 64 Ni(14 N, αα)X, 124 Sn(14 N,αα)X at E(14 N)=128 MeV were measured. Light particles with small relative momenta were detected by the special two-segment detectors. The experimental two-dimensional α-α coincident spectra were transformed into relative energy spectra of two α-particles. The possibility to extract information about resonance parameters, branching ratios of decay, influence of particle-spectator on observed characteristic of resonance is discussed

  3. Medium-Heavy Nuclei from Nucleon-Nucleon Interactions in Lattice QCD

    CERN Document Server

    Inoue, Takashi; Charron, Bruno; Doi, Takumi; Hatsuda, Tetsuo; Ikeda, Yoichi; Ishii, Noriyoshi; Murano, Keiko; Nemura, Hidekatsu; Sasaki, Kenji

    2014-01-01

    On the basis of the Brueckner-Hartree-Fock method with the nucleon-nucleon forces obtained from lattice QCD simulations, the properties of the medium-heavy doubly-magic nuclei such as 16^O and 40^Ca are investigated. We found that those nuclei are bound for the pseudo-scalar meson mass M_PS ~ 470 MeV. The mass number dependence of the binding energies, single-particle spectra and density distributions are qualitatively consistent with those expected from empirical data at the physical point, although these hypothetical nuclei at heavy quark mass have smaller binding energies than the real nuclei.

  4. Microscopic description of light unstable nuclei with the stochastic variational method

    CERN Document Server

    Varga, K; Arai, K; Ogawa, Y

    1996-01-01

    The structure of the light proton and neutron rich nuclei is studied in a microscopic multicluster model using the stochastic variational method. This approach enables us to describe the weakly bound nature of these nuclei in a consistent way. Applications for various nuclei ^{6-9}Li, ^7Be, ^8B, ^9C, ^{9-10}Be, ^{9-10}B presented. The paper discusses the relation of this model to other models as well as the possible extension for p and sd shell nuclei.

  5. (d,p)-transfer induced fission of heavy radioactive beams

    CERN Document Server

    Veselsky, Martin

    2012-01-01

    (d,p)-transfer induced fission is proposed as a tool to study low energy fission of exotic heavy nuclei. Primary goal is to directly determine the fission barrier height of proton-rich fissile nuclei, preferably using the radio-active beams of isotopes of odd elements, and thus confirm or exclude the low values of fission barrier heights, typically extracted using statistical calculations in the compound nucleus reactions at higher excitation energies. Calculated fission cross sections in transfer reactions of the radioactive beams show sufficient sensitivity to fission barrier height. In the probable case that fission rates will be high enough, mass asymmetry of fission fragments can be determined. Results will be relevant for nuclear astrophysics and for production of super-heavy nuclei. Transfer induced fission offers a possibility for systematic study the low energy fission of heavy exotic nuclei at the ISOLDE.

  6. Study of the on line radioactive multicharged ion production

    International Nuclear Information System (INIS)

    This work is directly related to the SPIRAL project (Systeme de Production d'Ions Radioactifs Acceleres en Ligne) which will start at GANIL at the end of 1998. The aim of the thesis was to study the on line radioactive multicharged ion beam production stages, i.e. the production and diffusion of the radioactive nuclei in a thick target, their possible transfer up to an ECR ion source and their ionisation. Production cross sections of radioactive neutron rich nuclei, formed by fragmentation of a heavy ion beam in a thick target, were measured. An external target-ECR source system, dedicated to the radioactive noble gases production, and two internal target-ECR source systems, dedicated to the radioactive condensable element production, were built and tested on the SIRa tests bench (Separateur d'Ions Radioactifs). Different detection configurations were elaborated in order to identify the radioactive nuclei and estimate their production yields. Finally, a new method for measuring the overall efficiency of the separator was developed and allowed to study the diffusion properties of radioactive noble gases in various targets. (author)

  7. Bubble nuclei; Noyaux Bulles

    Energy Technology Data Exchange (ETDEWEB)

    Legoll, F. [Service de Physique Theorique, CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France)

    1998-07-22

    For nuclei with very high electrical charge, the Coulomb field is expected to drive the protons away from the centre to the surface of the nucleus. Such a nucleus would be no more compact but look like a bubble. The goal of this work is to confirm this idea. We are interested in only the ground state of spherical nuclei. We use the Skyrme potential with the Sly4 parametrization to calculate the mean-field Hamiltonian. Paring correlations are described by a surface-active delta paring interaction. In its ground state the nucleus {sup A=900} X{sub Z=274} is shown to be a bubble. Another stable state is found with a little higher energy: it is also a bubble. (author) 11 refs., 18 figs., 33 tabs.

  8. Interaction of eta mesons with nuclei

    CERN Document Server

    Kelkar, N G; Upadhyay, N J; Jain, B K

    2013-01-01

    Back in the mid eighties, a new branch of investigation which was related to the interaction of eta mesons with nuclei came into existence. It started with the theoretical prediction of possible exotic states of eta mesons and nuclei bound by the strong interaction and later developed into an extensive experimental program to search for such unstable states as well as understand the underlying interaction via eta meson producing reactions. The vast literature of experimental as well as theoretical works which studied various aspects of eta producing reactions such as the $\\pi ^+$ $n$ $\\to \\eta p$, $p d \\to ^3$He $\\eta$, $p \\,^6$Li $\\to ^7$Be $\\eta$ and $\\gamma ^3$He $\\to \\eta$ X, to name a few, had but one objective in mind: to understand the eta - nucleon ($\\eta N$) and hence the $\\eta$-nucleus interaction which could explain the production data and confirm the existence of some $\\eta$-mesic nuclei. In spite of these efforts, there remain uncertainties in the knowledge of the $\\eta N$ and hence the $\\eta$-nu...

  9. Electron and pion scattering off nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Buss, O.; Mosel, U. [Inst. fuer Theoretische Physik, Univ. Giessen (Germany); Alvarez-Ruso, L. [Dept. de Fisica Teorica and IFIC, Centro Mixto Univ. de Valencia-CSIC (Spain)

    2007-07-01

    We present a treatment of pion and electron scattering off nuclei within the framework of a Boltzmann-Uehling-Uhlenbeck (BUU) transport model. In this approach we realize a full coupled channel treatment and include medium modifications such as mean-field potentials, Fermi motion and width modifications. We have applied the GiBUU model to the description of the double charge exchange (DCX) reaction of pions with different nuclear targets at incident kinetic energies of 120-180 MeV. The DCX process is highly sensitive to details of the interactions of pions with the nuclear medium and, therefore, represents a major benchmark for any model of pion scattering off nuclei at low and intermediate energies. We discuss the impact of surface effects and the dependence on the nuclear mass number. We have achieved a good quantitative agreement with the extensive data set obtained at LAMPF. Furthermore, we present a description of electron induced reactions, i.e. pion production, off nuclei. We consider the scattering of electrons off the bound nucleons in an impulse approximation and investigate medium modifications to exclusive particle production cross sections and compare our results to available data. (orig.)

  10. Physical Uncertainty Bounds (PUB)

    Energy Technology Data Exchange (ETDEWEB)

    Vaughan, Diane Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Preston, Dean L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-19

    This paper introduces and motivates the need for a new methodology for determining upper bounds on the uncertainties in simulations of engineered systems due to limited fidelity in the composite continuum-level physics models needed to simulate the systems. We show that traditional uncertainty quantification methods provide, at best, a lower bound on this uncertainty. We propose to obtain bounds on the simulation uncertainties by first determining bounds on the physical quantities or processes relevant to system performance. By bounding these physics processes, as opposed to carrying out statistical analyses of the parameter sets of specific physics models or simply switching out the available physics models, one can obtain upper bounds on the uncertainties in simulated quantities of interest.

  11. Symmetries in Nuclei

    CERN Document Server

    Van Isacker, P

    2010-01-01

    The use of dynamical symmetries or spectrum generating algebras for the solution of the nuclear many-body problem is reviewed. General notions of symmetry and dynamical symmetry in quantum mechanics are introduced and illustrated with simple examples such as the SO(4) symmetry of the hydrogen atom and the isospin symmetry in nuclei. Two nuclear models, the shell model and the interacting boson model, are reviewed with particular emphasis on their use of group-theoretical techniques.

  12. Photoabsorption in nuclei

    OpenAIRE

    Effenberger, M.; Mosel, U.

    1997-01-01

    We calculate the total photoabsorption cross section and cross sections for inclusive pion and eta photoproduction in nuclei in the energy range from 300 MeV to 1 GeV within the framework of a semi-classical BUU transport model. Besides medium modifications like Fermi motion and Pauli blocking we focus on the collision broadening of the involved resonances. The resonance contributions to the elementary cross section are fixed by fits to partial wave amplitudes of pion photoproduction. The cro...

  13. Precision measurement of the mass difference between light nuclei and anti-nuclei

    CERN Document Server

    Adam, Jaroslav; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agrawal, Neelima; Ahammed, Zubayer; Ahmed, Ijaz; Ahn, Sang Un; Aimo, Ilaria; Aiola, Salvatore; Ajaz, Muhammad; Akindinov, Alexander; Alam, Sk Noor; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Alme, Johan; Alt, Torsten; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arcelli, Silvia; Armesto Perez, Nestor; Arnaldi, Roberta; Aronsson, Tomas; Arsene, Ionut Cristian; Arslandok, Mesut; Augustinus, Andre; Averbeck, Ralf Peter; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Baldisseri, Alberto; Ball, Markus; Baltasar Dos Santos Pedrosa, Fernando; Baral, Rama Chandra; Barbano, Anastasia Maria; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartalini, Paolo; Bartke, Jerzy Gustaw; Bartsch, Esther; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batista Camejo, Arianna; Batyunya, Boris; Batzing, Paul Christoph; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bello Martinez, Hector; Bellwied, Rene; Belmont Iii, Ronald John; Belmont Moreno, Ernesto; Belyaev, Vladimir; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhat, Inayat Rasool; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Biswas, Saikat; Bjelogrlic, Sandro; Blanco, Fernando; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Boldizsar, Laszlo; Bombara, Marek; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Borri, Marcello; Bossu, Francesco; Botje, Michiel; Botta, Elena; Boettger, Stefan; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Brucken, Erik Jens; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Buxton, Jesse Thomas; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calero Diaz, Liliet; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Carena, Francesco; Carena, Wisla; Castillo Castellanos, Javier Ernesto; Castro, Andrew John; Casula, Ester Anna Rita; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Chang, Beomsu; Chapeland, Sylvain; Chartier, Marielle; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chelnokov, Volodymyr; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Chochula, Peter; Choi, Kyungeon; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dahms, Torsten; Dainese, Andrea; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; De Caro, Annalisa; De Cataldo, Giacinto; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; Deisting, Alexander; Deloff, Andrzej; Denes, Ervin Sandor; D'Erasmo, Ginevra; Di Bari, Domenico; Di Mauro, Antonio; Di Nezza, Pasquale; Diaz Corchero, Miguel Angel; Dietel, Thomas; Dillenseger, Pascal; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Ehlers Iii, Raymond James; Elia, Domenico; Engel, Heiko; Erazmus, Barbara Ewa; Erhardt, Filip; Eschweiler, Dominic; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Evans, David; Evdokimov, Sergey; Eyyubova, Gyulnara; Fabbietti, Laura; Fabris, Daniela; Faivre, Julien; Fantoni, Alessandra; Fasel, Markus; Feldkamp, Linus; Felea, Daniel; Feliciello, Alessandro; Feofilov, Grigorii; Ferencei, Jozef; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Fleck, Martin Gabriel; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Furs, Artur; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Gao, Chaosong; Garabatos Cuadrado, Jose; Garcia-Solis, Edmundo Javier; Gargiulo, Corrado; Gasik, Piotr Jan; Germain, Marie; Gheata, Andrei George; Gheata, Mihaela; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Giubilato, Piero; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez Ramirez, Andres; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Grabski, Varlen; Graczykowski, Lukasz Kamil; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grynyov, Borys; Grion, Nevio; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Gulbrandsen, Kristjan Herlache; Gulkanyan, Hrant; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Haake, Rudiger; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hanratty, Luke David; Hansen, Alexander; Harris, John William; Hartmann, Helvi; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hilden, Timo Eero; Hillemanns, Hartmut; Hippolyte, Boris; Hristov, Peter Zahariev; Huang, Meidana; Humanic, Thomas; Hussain, Nur; Hussain, Tahir; Hutter, Dirk; Hwang, Dae Sung; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Ionita, Costin; Ippolitov, Mikhail; Irfan, Muhammad; Ivanov, Marian; Ivanov, Vladimir; Izucheev, Vladimir; Jacobs, Peter Martin; Jahnke, Cristiane; Jang, Haeng Jin; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Chitrasen; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jung, Hyungtaik; Jusko, Anton; Kalinak, Peter; Kalweit, Alexander Philipp; Kamin, Jason Adrian; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Keijdener, Darius Laurens; Keil, Markus; Khan, Kamal; Khan, Mohammed Mohisin; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Beomkyu; Kim, Do Won; Kim, Dong Jo; Kim, Hyeonjoong; Kim, Jinsook; Kim, Mimae; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Carsten; Klein, Jochen; Klein-Boesing, Christian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobayashi, Taiyo; Kobdaj, Chinorat; Kofarago, Monika; Kohler, Markus Konrad; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratev, Valerii; Kondratyeva, Natalia; Kondratyuk, Evgeny; Konevskikh, Artem; Kouzinopoulos, Charalampos; Kovalenko, Vladimir; Kowalski, Marek; Kox, Serge; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kravcakova, Adela; Krelina, Michal; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Kryshen, Evgeny; Krzewicki, Mikolaj; Kubera, Andrew Michael; Kucera, Vit; Kucheryaev, Yury; Kugathasan, Thanushan; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kulakov, Igor; Kumar, Jitendra; Lokesh, Kumar; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kushpil, Svetlana; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; Laudi, Elisa; Lea, Ramona; Leardini, Lucia; Lee, Graham Richard; Lee, Seongjoo; Legrand, Iosif; Lehnert, Joerg Walter; Lemmon, Roy Crawford; Lenti, Vito; Leogrande, Emilia; Leon Monzon, Ildefonso; Leoncino, Marco; Levai, Peter; Li, Shuang; Li, Xiaomei; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Lonne, Per-Ivar; Loggins, Vera Renee; Loginov, Vitaly; Loizides, Constantinos; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lowe, Andrew John; Lu, Xianguo; Luettig, Philipp Johannes; Lunardon, Marcello; Luparello, Grazia; Maevskaya, Alla; Mager, Magnus; Mahajan, Sanjay; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manceau, Loic Henri Antoine; Manko, Vladislav; Manso, Franck; Manzari, Vito; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Margutti, Jacopo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martashvili, Irakli; Martin, Nicole Alice; Martin Blanco, Javier; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-Garcia, Gines; Martinez Pedreira, Miguel; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Mastroserio, Annalisa; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzoni, Alessandra Maria; Mcdonald, Daniel; Meddi, Franco; Menchaca-Rocha, Arturo Alejandro; Meninno, Elisa; Mercado-Perez, Jorge; Meres, Michal; Miake, Yasuo; Mieskolainen, Matti Mikael; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Minervini, Lazzaro Manlio; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mohammadi, Naghmeh; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Montes Prado, Esther; Morando, Maurizio; Moreira De Godoy, Denise Aparecida; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Muller, Hans; Mulligan, James Declan; Gameiro Munhoz, Marcelo; Murray, Sean; Musa, Luciano; Musinsky, Jan; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Naru, Muhammad Umair; Nattrass, Christine; Nayak, Kishora; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Nellen, Lukas; Ng, Fabian; Nicassio, Maria; Niculescu, Mihai; Niedziela, Jeremi; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Norman, Jaime; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Ohlson, Alice Elisabeth; Okatan, Ali; Okubo, Tsubasa; Olah, Laszlo; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Oliver, Michael Henry; Onderwaater, Jacobus; Oppedisano, Chiara; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozdemir, Mahmut; Pachmayer, Yvonne Chiara; Pagano, Paola; Paic, Guy; Pajares Vales, Carlos; Pal, Susanta Kumar; Pan, Jinjin; Pandey, Ashutosh Kumar; Pant, Divyash; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Woojin; Parmar, Sonia; Passfeld, Annika; Paticchio, Vincenzo; Paul, Biswarup; Pawlak, Tomasz Jan; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitry Yurevich; Perez Lara, Carlos Eugenio; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petrov, Viacheslav; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polishchuk, Boris; Poljak, Nikola; Poonsawat, Wanchaloem; Pop, Amalia; Porteboeuf, Sarah Julie; Porter, R Jefferson; Pospisil, Jan; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Raha, Sibaji; Rajput, Sonia; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Razazi, Vahedeh; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reicher, Martijn; Reidt, Felix; Ren, Xiaowen; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Ristea, Catalin-Lucian; Rivetti, Angelo; Rocco, Elena; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roeed, Ketil; Rogochaya, Elena; Rohr, David Michael; Roehrich, Dieter; Romita, Rosa; Ronchetti, Federico; Ronflette, Lucile; Rosnet, Philippe; Rossi, Andrea; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Sadovskiy, Sergey; Safarik, Karel; Sahlmuller, Baldo; Sahoo, Pragati; Sahoo, Raghunath; Sahoo, Sarita; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Saleh, Mohammad Ahmad; Salgado Lopez, Carlos Alberto; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sanchez Castro, Xitzel; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Santagati, Gianluca; Sarkar, Debojit; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schuchmann, Simone; Schukraft, Jurgen; Schulc, Martin; Schuster, Tim Robin; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca Michelle; Seeder, Karin Soraya; Seger, Janet Elizabeth; Sekiguchi, Yuko; Selyuzhenkov, Ilya; Senosi, Kgotlaesele; Seo, Jeewon; Serradilla Rodriguez, Eulogio; Sevcenco, Adrian; Shabanov, Arseniy; Shabetai, Alexandre; Shadura, Oksana; Shahoyan, Ruben; Shangaraev, Artem; Sharma, Ankita; Sharma, Natasha; Shigaki, Kenta; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Sielewicz, Krzysztof Marek; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Slupecki, Maciej; Smirnov, Nikolai; Snellings, Raimond; Snellman, Tomas Wilhelm; Soegaard, Carsten; Soltz, Ron Ariel; Song, Jihye; Song, Myunggeun; Song, Zixuan; Soramel, Francesca; Sorensen, Soren Pontoppidan; Spacek, Michal; Spiriti, Eleuterio; Sputowska, Iwona Anna; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Steinpreis, Matthew Donald; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Sultanov, Rishat; Sumbera, Michal; Symons, Timothy; Szabo, Alexander; Szanto De Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Takahashi, Jun; Tanaka, Naoto; Tangaro, Marco-Antonio; Tapia Takaki, Daniel Jesus; Tarantola Peloni, Attilio; Tariq, Mohammad; Tarzila, Madalina-Gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terasaki, Kohei; Terrevoli, Cristina; Teyssier, Boris; Thaeder, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony Robert; Toia, Alberica; Trogolo, Stefano; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Uras, Antonio; Usai, Gianluca; Utrobicic, Antonija; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vanat, Tomas; Vande Vyvre, Pierre; Varga, Dezso; Vargas Trevino, Aurora Diozcora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vauthier, Astrid; Vechernin, Vladimir; Veen, Annelies Marianne; Veldhoen, Misha; Velure, Arild; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Vislavicius, Vytautas; Viyogi, Yogendra; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Jan; Wang, Hongkai; Wang, Mengliang; Wang, Yifei; Watanabe, Daisuke; Weber, Michael; Weber, Steffen Georg; Wessels, Johannes Peter; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Yaldo, Chris G; Yamaguchi, Yorito; Yang, Hongyan; Yang, Ping; Yano, Satoshi; Yasnopolskiy, Stanislav; Yin, Zhongbao; Yokoyama, Hiroki; Yoo, In-Kwon; Yurchenko, Volodymyr; Yushmanov, Igor; Zaborowska, Anna; Zaccolo, Valentina; Zaman, Ali; Zampolli, Chiara; Correia Zanoli, Henrique Jose; Zaporozhets, Sergey; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zhu, Xiangrong; Zichichi, Antonino; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zyzak, Maksym

    2015-01-01

    The measurement of the mass differences for systems bound by the strong force has reached a very high precision with protons and anti-protons. The extension of such measurement from (anti-)baryons to (anti-)nuclei allows one to probe any difference in the interactions between nucleons and anti-nucleons encoded in the (anti-)nuclei masses. This force is a remnant of the underlying strong interaction among quarks and gluons and can be described by effective theories, but cannot yet be directly derived from quantum chromodynamics. Here we report a measurement of the difference between the ratios of the mass and charge of deuterons (d) and anti-deuterons ($\\bar{d}$), and $^{3}{\\rm He}$ and $^3\\overline{\\rm He}$ nuclei carried out with the ALICE (A Large Ion Collider Experiment) detector in Pb-Pb collisions at a centre-of-mass energy per nucleon pair of 2.76 TeV. Our direct measurement of the mass-over-charge differences confirm CPT invariance to an unprecedented precision in the sector of light nuclei. This funda...

  14. Structures of exotic nuclei

    International Nuclear Information System (INIS)

    Discoveries of many different types of nuclear shape coexistence are being found at both low and high excitation energies throughout the periodic table, as documented in recent reviews. Many new types of shape coexistence have been observed at low excitation energies, for examples bands on more than four different overlapping and coexisting shapes are observed in 185Au, and competing triaxial and prolate shapes in 71Se and 176Pt. Discrete states in super-deformed bands with deformations β 2 ∼ 0.4-0.6, coexisting with other shapes, have been seen to high spin up to 60ℎ in 152Dy, 132Ce and 135Nd. Super-deformed nuclei with N and Z both around 38 and around Z = 38, N ≥ 60. These data led to the discovery of new shell gaps and magic numbers of 38 for N and Z and 60 for N but now for deformed shapes. Marked differences in structure are observed at spins of 6 to 20 in nuclei in this region, which differ by only two protons; for example, 68Ge and 70Se. The differences are thought to be related to the competing shell gaps in these nuclei

  15. The DMM Bound

    DEFF Research Database (Denmark)

    Emiris, Ioannis Z.; Mourrain, Bernard; Tsigaridas, Elias

    2010-01-01

    ) resultant by means of mixed volume, as well as recent advances on aggregate root bounds for univariate polynomials, and are applicable to arbitrary positive dimensional systems. We improve upon Canny's gap theorem [7] by a factor of O(dn-1), where d bounds the degree of the polynomials, and n is the number...... bound on the number of steps that subdivision-based algorithms perform in order to isolate all real roots of a polynomial system. This leads to the first complexity bound of Milne's algorithm [22] in 2D....

  16. Experimental determination of re-suspension data of particle-bound radioactive materials of relevant contaminated surfaces in case of radiological emergencies for the radioactive exposure assessment of the emergency staff and affected persons due to re-suspension; Experimentelle Bestimmung von Resuspensionsdaten partikelgebundener radioaktiver Stoffe von relevanten kontaminierten Oberflaechen bei radiologischen Notfaellen zur Beurteilung einer Exposition von Einsatzpersonal und betroffenen Personen durch Resuspension

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Wolfgang; Loedding, Hubert; Lange, Florentin

    2012-01-15

    Accidental and intentional release of radioactive materials, for example in the wake of a nuclear accident, causes contamination of surfaces in the outdoor environment, in buildings and the clothing of humans. Resuspension of radioactive material from contaminated surfaces is the dominant source of radioactive inhalation exposure of first responders and emergency personnel at the accident site as well as in emergency care centres during the time period following the event. The assessment of the aerosol borne activity concentration is based on reasonable assumptions or measurements of the surface contamination and a quantitative understanding of the resuspension process. In this project the resuspension rate of respirable particles (< 10 {mu}m) and its dependence on time and influencing parameters was measured. Special emphasis was directed to the early phase after the release event. Using a versatile, small scale flow channel set-up, wind resuspension and resuspension caused by transient or continuous mechanical forces impacting on the surfaces was investigated. The flux of particles resuspended from small test surfaces was detected by an optical particle size spectrometer. Influencing parameters such properties of contaminated surfaces, wind speed, type of particle etc. could be easily varied. Well defined contaminations of the test surfaces were prepared in a settling chamber by dry and wet deposition using aerosolized dry powders of spherical (silver) and agglomerated (cerium oxide) particles, and sprays of aqueous solutions of cesium chloride, respectively. In the latter case the surface was dried after deposition of the liquid droplets leading to a surface contamination of CsCl crystals adhering stronger to the surface than particulates. The resuspension rate for surfaces contaminated by wet deposition is 2-3 orders of magnitude lower compared to the situation for dry deposition, irrespective of the resuspension mechanism. The air flow induced resuspension

  17. Comparing and contrasting nuclei and cold atomic gases

    DEFF Research Database (Denmark)

    Zinner, Nikolaj Thomas; Jensen, Aksel Stenholm

    2013-01-01

    The experimental revolution in ultracold atomic gas physics over the past decades has brought tremendous amounts of new insight to the world of degenerate quantum systems. Here we compare and contrast the developments of cold atomic gases with the physics of nuclei since many concepts, techniques...... physics transferred to cold atoms, and consider which systems are more likely to show interesting bound state spectra. Finally, we address some recent studies of the BCS–BEC crossover in light nuclei and compare them to the concepts used in ultracold atomic gases. While many-body concepts such as BEC...

  18. Shell closure effects studied via cluster decay in heavy nuclei

    OpenAIRE

    Kumar, Sushil; Ramna; Kumar, Rajesh

    2011-01-01

    The effects of shell closure in nuclei via the cluster decay is studied. In this context, we have made use of the Preformed Cluster Model ($PCM$) of Gupta and collaborators based on the Quantum Mechanical Fragmentation Theory. The key point in the cluster radioactivity is that it involves the interplay of close shell effects of parent and daughter. Small half life for a parent indicates shell stabilized daughter and long half life indicates the stability of the parent against the decay. In th...

  19. Radioactive wastes

    International Nuclear Information System (INIS)

    Here are gathered 1)the decrees (99-686 and 99-687) of the 3 rd of August 1999 relative to the researches on radioactive waste management. A local committee of information and follow-up has to be established on the site of each underground facility. The composition of this committee is determined here (99-686). 3 people will from now on be jointly ordered by the Minister of Economy, Finance and Industry and by the Secretary of State of Industry to conduct a preliminary dialogue for the choice of one or several sites on which previous works should be made before the construction of an underground facility (99-687). They take the opinion of the people's representatives, the associations and the concerned population and inform the Ministers of Environment, Energy and Research of the collected information. 2)the decree of the 3 rd of August 1999 authorizing the 'Agence nationale pour la gestion des dechets radioactifs' (ANDRA) to install and exploit an underground facility located in Bure (Meuse) and intended to study the deep geological deposits where could be stored radioactive wastes. (O.M.)

  20. Determination of Matter Surface Distribution of Neutron-rich Nuclei

    CERN Document Server

    Kohama, A; Arima, A; Yamaji, S; Kohama, Akihisa; Seki, Ryoichi; Arima, Akito; Yamaji, Shuhei

    2003-01-01

    We demonstrate that the matter density distribution in the surface region is determined well by the use of the relatively low-intensity beams that become available at the upcoming radioactive beam facilities. Following the method used in the analyses of electron scattering, we examine how well the density distribution is determined in a model-independent way by generating pseudo data and by carefully applying statistical and systematic error analyses. We also study how the determination becomes deteriorated in the central region of the density, as the quality of data decreases. Determination of the density distributions of neutron-rich nuclei is performed by fixing parameters in the basis functions to the neighboring stable nuclei. The procedure allows that the knowledge of the density distributions of stable nuclei assists to strengthen the determination of their unstable isotopes.

  1. Radioactivities in Low- and Intermediate-Mass Stars

    CERN Document Server

    Lugaro, Maria

    2010-01-01

    Energy in stars is provided by nuclear reactions, which, in many cases, produce radioactive nuclei. When stable nuclei are irradiated by a flux of protons or neutrons, capture reactions push stable matter out of stability into the regime of unstable species. The ongoing production of radioactive nuclei in the deep interior of the Sun via proton-capture reactions is recorded by neutrinos emitted during radioactive decay and detected on Earth. Radioactive nuclei that have relatively long half lives may also be detected in stars via spectroscopic observations and in stardust recovered from primitive meteorites via laboratory analysis. The vast majority of these stardust grains originated from Asymptotic Giant Branch (AGB) stars. This is the final phase in the evolution of stars initially less massive than ~10 solar masses, during which nuclear energy is produced by alternate hydrogen and helium burning in shells above the core. The long-lived radioactive nucleus 26Al is produced in massive AGB stars (>4:5 solar ...

  2. ENAM'04 Fourth International Conference on Exotic Nuclei and Atomic Masses

    Energy Technology Data Exchange (ETDEWEB)

    Gross, C. J.; Nazarewicz, W.; Rykaczewski, K. P.

    2005-01-01

    The conference can trace its origins to the 1950s and 1960s with the Atomic Mass and Fundamental Constants (AMCO) and the Nuclei Far From Stability (NFFS) series of conferences. Held jointly in 1992, the conferences officially merged in 1995 and the fourth conference was held at Callaway Gardens in Pine Mountain, GA and was organized by the Physics Division at Oak Ridge National Laboratory. The conference covered a broad list of topics consisting of a series of invited and contributed presentation highlighting recent research in the following fields: Atomic masses, nuclear moments, and nuclear radii; Forms of radioactivity; Nuclear structure, nuclei at the drip lines, cluster phenomena; Reactions with radioactive ion beams; Nuclear astrophysics; Fundamental symmetries and interactions; Heaviest elements and fission; Radioactive ion beam production and experimental developments; Applications of exotic nuclei

  3. Studies of the neutron single-particle structure of exotic nuclei at the HRIBF

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, J.S. [Department of Physics and Astronomy, Rutgers University, New Brunswick, NJ 08903 (United States); Bardayan, D.W. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Blackmon, J.C. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Cizewski, J.A. [Department of Physics and Astronomy, Rutgers University, New Brunswick, NJ 08903 (United States); Greife, U. [Department of Physics, Colorado School of Mines, Golden, CO 80401 (United States); Gross, C.J. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Johnson, M.S. [Department of Physics and Astronomy, Rutgers University, New Brunswick, NJ 08903 (United States); Jones, K.L. [Department of Physics and Astronomy, Rutgers University, New Brunswick, NJ 08903 (United States); Kozub, R.L. [Physics Department, Tennessee Technological University, Cookeville, TN 38505 (United States); Liang, J.F. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Livesay, R.J. [Department of Physics, Colorado School of Mines, Golden, CO 80401 (United States); Ma, Z. [Physics Department, University of Tennessee, Knoxville, TN 37996 (United States); Moazen, B.H. [Physics Department, Tennessee Technological University, Cookeville, TN 38505 (United States); Nesaraja, C.D. [Physics Department, Tennessee Technological University, Cookeville, TN 38505 (United States); Shapira, D. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Smith, M.S. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2004-12-27

    The study of neutron single-particle strengths in neutron-rich nuclei is of interest for nuclear structure and nuclear astrophysics. The distribution of single-particle strengths constrains the effective Hamiltonian and pairing interactions and determines neutron interaction rates that are crucial for understanding the synthesis of heavy nuclei in supernovae via the rapid neutron capture process. Particularly important are the neutron single-particle levels in nuclei near closed neutron shells. Radioactive ion beams from the Holifield Radioactive Ion Beam Facility have been used to study (d,p) reactions in inverse kinematics in order to probe neutron single-particle states in exotic nuclei. The results of a measurement with a {sup 82}Ge beam will be presented.

  4. Studies of Heavy-Ion Reactions and Transuranic Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Wolf

    2016-07-28

    Studies of heavy-ion reactions and transuranic nuclei performed by the University of Rochester Nuclear Science Research Group have been successful in furthering experimental systematics and theoretical understanding of the behavior of nuclear systems excited to their limits of stability. The theoretical results explain specifically the “boiling” and “vaporization” of atomic nuclei but are more generally applicable to isolated, quantal many-particle systems which, under thermal or mechanical stresses, all disintegrate by evaporation, via surface cluster emission, or via fission-like processes Accompanying experimental investigations by the group have demonstrated several new types of dynamical instability of nuclei: In central, “head-on” collisions, target nuclei exhibit limited ability to stop energetic projectile nuclei and to dissipate the imparted linear momentum. Substantial matter overlap (“neck”) between projectile and target nuclei, which is observed at elevated collision energies, can be stretched considerably and break at several places simultaneously. These results provide new testing grounds for microscopic theory of the cohesion of nuclear matter. This property has remained elusive, even though the elementary nucleon-nucleon forces are well known since some time Technical R&D has resulted in a detailed characterization of a novel plastic material, which can now be used in the design of sensitive diagnostic systems for various types of radio-activity. Innovative application o powerful laser systems has produced intense, controllable sources of exotic particle radioactivity for nuclear investigations Several students have received their Ph.D. degree in experimental nuclear science for their work on basic nuclear research or R&D projects.

  5. Studies of Heavy-Ion Reactions and Transuranic Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, W. Udo [Univ. of Rochester, NY (United States). Dept. of Chemistry. Dept. of Physics

    2016-07-28

    Studies of heavy-ion reactions and transuranic nuclei performed by the University of Rochester Nuclear Science Research Group have been successful in furthering experimental systematics and theoretical understanding of the behavior of nuclear systems excited to their limits of stability. The theoretical results explain specifically the “boiling” and “vaporization” of atomic nuclei but are more generally applicable to isolated, quantal many-particle systems which, under thermal or mechanical stresses, all disintegrate by evaporation, via surface cluster emission, or via fission-like processes. Accompanying experimental investigations by the group have demonstrated several new types of dynamical instability of nuclei: In central, “head-on” collisions, target nuclei exhibit limited ability to stop energetic projectile nuclei and to dissipate the imparted linear momentum. Substantial matter overlap (“neck”) between projectile and target nuclei, which is observed at elevated collision energies, can be stretched considerably and break at several places simultaneously. These results provide new testing grounds for microscopic theory of the cohesion of nuclear matter. This property has remained elusive, even though the elementary nucleon-nucleon forces are well known since some time. Technical R&D has resulted in a detailed characterization of a novel plastic material, which can now be used in the design of sensitive diagnostic systems for various types of radio-activity. Innovative application of powerful laser systems has produced intense, controllable sources of exotic particle radioactivity for nuclear investigations. Several students have received their Ph.D. degree in experimental nuclear science for their work on basic nuclear research or R&D projects.

  6. Graviton Mass Bounds

    CERN Document Server

    de Rham, Claudia; Tolley, Andrew J; Zhou, Shuang-Yong

    2016-01-01

    Recently, aLIGO has announced the first direct detections of gravitational waves, a direct manifestation of the propagating degrees of freedom of gravity. The detected signals GW150914 and GW151226 have been used to examine the basic properties of these gravitational degrees of freedom, particularly setting an upper bound on their mass. It is timely to review what the mass of these gravitational degrees of freedom means from the theoretical point of view, particularly taking into account the recent developments in constructing consistent massive gravity theories. Apart from the GW150914 mass bound, a few other observational bounds have been established from the effects of the Yukawa potential, modified dispersion relation and fifth force that are all induced when the fundamental gravitational degrees of freedom are massive. We review these different mass bounds and examine how they stand in the wake of recent theoretical developments and how they compare to the bound from GW150914.

  7. Cross-section measurements for radioactive samples

    International Nuclear Information System (INIS)

    The measurement of (n,p), (n,α) and (n,γ) cross sections for radioactive nuclei is of interest to both nuclear physics and astrophysics. For example, using these reactions, properties of levels in nuclei at high excitation energies, which are difficult or impossible to study using other reactions, can be investigated. Also, reaction rates for both big-bang and stellar nucleosynthesis can be obtained from these measurements. In the past, the large background associated with the sample activity limited these types of measurements to radioisotopes with very long half-lives. The advent of the low-energy, high-intensity neutron source at the Los Alamos Neutron Scattering CEnter (LANSCE) has greatly increased the number of nuclei which can be studied. Examples of (n,p) measurements on samples with half lives as short as fifty-three days will be given. The nuclear physics and astrophysics to be learned from these data will be discussed. Additional difficulties are encountered when making (n,γ) rather than (n,p) or (n,α) measurements. However, with a properly-designed detector, and the high peak neutron intensities now available, (n,γ) measurements can be made for nuclei with half lives as short as several months. Progress on the Los Alamos (n,γ) cross-section measurement program for radioactive samples will be discussed. 39 refs., 7 figs

  8. Radioactive ion beam line in Lanzhou

    Institute of Scientific and Technical Information of China (English)

    詹文龙; 郭忠言; 刘冠华; 党建荣; 何锐荣; 周嗣信; 尹全民; 罗亦孝; 王义芳; 魏宝文; 孙志宇; 肖国青; 王金川; 江山红; 李加兴; 孟祥伟; 张万生; 秦礼军; 王全进

    1999-01-01

    Radioactive ion beam line in Lanzhou (RIBLL) has been constructed for the production of short-lived radioactive nuclei and studies of exotic nuclei far from the β-stability line. It has been put into operation recently at the National Laboratory of Heavy Ion Accelerator Lanzhou. RIBLL consists of two doubly achromatic parts with a solid acceptance ΔΩ≥6.5 msr, momentum acceptance Δp/p=±5% and maximum magnetic rigidity Bρmax=4.2 Tm. The second part of RIBLL serving as a spectrometer gives an element resolution Z/ΔZ>150 and mass resolution A/ΔA>300. The polarized secondary beams can be obtained by using a swinger dipole magnet to change the incident direction of primary projectile from 0°to 5°. The shortest lift time for secondary beams on RIBLL is less than 1μs. First experiments were performed with neutron rich nuclei for understanding the properties of halo nuclei and exotic nuclear reactions.

  9. Dynamic Chirality in Nuclei

    International Nuclear Information System (INIS)

    Chirality has recently been proposed as a novel feature of rotating nuclei [1]. Because the chiral symmetry is dichotomic, its spontaneous breaking by the axial angular momentum vector leads to doublets of closely lying rotational bands of the same parity. To investigate nuclear chirality, next to establish the existence of almost degenerate rotational bands, it is necessary to measure also other observables and compare them to the model predictions. The crucial test for the suggested nuclei as candidates to express chirality is based on precise lifetime measurements. Two lifetime experiments and theoretical approaches for the description of the experimental results will be presented. Lifetimes of exited states in 134Pr were measured [2,3] by means of the recoil distance Doppler-shift and Doppler-shift attenuation techniques. The branching ratios and the electric or magnetic character of the transitions were also investigated [3]. The experiments were performed at IReS, Strasbourg, using the EUROBALL IV spectrometer, in conjunction with the inner bismuth germanate ball and the Cologne coincidence plunger apparatus. Exited states in 134Pr were populated in the fusion-evaporation reaction 119Sn(19F, 4n)134Pr. The possible chiral interpretation of twin bands was investigated in the two-quasiparticle triaxial rotor [1] and interacting boson-fermion-fermion models [4]. Both theoretical approaches can describe the level-scheme of 134Pr. The analysis of the wave functions has shown that the possibility for the angular momenta of the proton, neutron, and core to find themselves in the favorable, almost orthogonal geometry, is present but is far from being dominant [3,5]. The structure is characterized by large β and γ fluctuations. The existence of doublets of bands in 134Pr can be attributed to weak chirality dominated by shape fluctuations. In a second experiment branching ratios and lifetimes in 136Pm were measured by means of the recoil distance Doppler-shift and

  10. Radioactive colloids

    International Nuclear Information System (INIS)

    Different techniques for the characterization of radioactive colloids, used in nuclear medicine, have been evaluated and compared. Several radioactive colloids have been characterized in vitro and in vivo and tested experimentally. Colloid biokinetics following interstitial or intravenous injection were evaluated with a scintillation camera technique. Lymphoscintigraphy with a Tc-99-labelled antimony sulphur colloid was performed in 32 patients with malignant melanoma in order to evaluate the technique. Based on the biokinetic results, absorbed doses in tissues and organs were calculated. The function of the reticuloendothelial system has been evaluated in rats after inoculation with tumour cells. Microfiltration and photon correlation spectroscopy were found to be suitable in determining activity-size and particle size distributions, respectively. Maximal lymph node uptake following subcutaneous injection was found to correspond to a colloid particle size between 10 and 50 nm. Lymphoscintigraphy was found to be useful in the study of lymphatic drainage from the primary tumour site in patients with malignant melanoma on the trunk. Quantitative analysis of ilio-inguinal lymph node uptake in patients with malignant melanoma on the lower extremities was, however, found to be of no value for the detection of metastatic disease in lymph nodes. High absorbed doses may be received in lymph nodes (up to 1 mGy/MBq) and at the injection site (about 10 mGy/MBq). In an experimental study it was found that the relative colloid uptake in bone marrow and spleen depended on the total number of intravenously injected particles. This may considerably affect the absorbed dose in these organs. (author)

  11. Active galactic nuclei

    CERN Document Server

    Blandford, RD; Woltjer, L

    1990-01-01

    Starting with this volume, the Lecture Notes of the renowned Advanced Courses of the Swiss Society for Astrophysics and Astronomy will be published annually. In each course, three extensive lectures given by leading experts in their respective fields cover different and essential aspects of the subject. The 20th course, held at Les Diablerets in April 1990, dealt with current research on active galactic nuclei; it represents the most up-to-date views on the subject, presented with particular regard for clarity. The previous courses considered a wide variety of subjects, beginning with ""Theory

  12. Active galactic nuclei

    CERN Document Server

    Beckmann, Volker

    2012-01-01

    This AGN textbook includes phenomena based on new results in the X-Ray domain from new telescopes such as Chandra and XMM Newton not mentioned in any other book. Furthermore, it considers also the Fermi Gamma Ray Space Telescope with its revolutionary advances of unprecedented sensitivity, field of view and all-sky monitoring. Those and other new developments as well as simulations of AGN merging events and formations, enabled through latest super-computing capabilities. The book gives an overview on the current knowledge of the Active Galacitc Nuclei phenomenon. The spectral energy d

  13. Photoabsorption on nuclei

    OpenAIRE

    Effenberger, M.; Hombach, A; Teis, S.; Mosel, U.

    1996-01-01

    We calculate the total photoabsorption cross section on nuclei in the energy range from 300 MeV to 1 GeV within the framework of a semi-classical phase space model. Besides medium modifications like Fermi motion and Pauli blocking we focus on the collision broadening of the involved resonances. The resonance contributions to the elementary cross section are fixed by fits to partial wave amplitudes of pion photoproduction. The cross sections for $N \\, R \\to N \\, N$, needed for the calculation ...

  14. {bar K}-NUCLEAR Deeply Bound States?

    Science.gov (United States)

    Gal, Avraham

    Following the prediction by Akaishi and Yamazaki of relatively narrow {bar K}-nuclear states, deeply bound by over 100 MeV where the main decay channel {bar K} N -> π Σ is closed, several experimental signals in stopped K- reactions on light nuclei have been interpreted recently as due to such states. In this talk I review (i) the evidence from K--atom data for a deep bar K-nucleus potential, as attractive as V{bar K}(ρ 0) ˜ -(150 - 200) MeV at nuclear matter density, that could support such states; and (ii) the theoretical arguments for a shallow potential, V{bar K}(ρ 0) ˜ -(40 - 60) MeV. I then review a recent work by Mareš, Friedman and Gal in which {bar K}-nuclear bound states are generated dynamically across the periodic table, using a RMF Lagrangian that couples the {bar K} to the scalar and vector meson fields mediating the nuclear interactions. The reduced phase space available for {bar K} absorption from these bound states is taken into account by adding a density- and energy-dependent imaginary term, underlying the corresponding {bar K}-nuclear level widths, with a strength constrained by K--atom fits. Substantial polarization of the core nucleus is found for light nuclei, with central nuclear densities enhanced by almost a factor of two. The binding energies and widths calculated in this dynamical model differ appreciably from those calculated for a static nucleus. These calculations provide a lower limit of Γ {bar K} ˜ 50 ± 10 MeV on the width of nuclear bound states for {bar K} binding energy in the range B{bar K} = 100 - 200 MeV.

  15. Electromagnetic decay of nuclei by electron-positron pair conversion

    Energy Technology Data Exchange (ETDEWEB)

    Belov, Nikolay; Harman, Zoltan [Max-Plank-Institute for Nuclear Physics, Heidelberg (Germany)

    2012-07-01

    The pair production process by {gamma}-emission of nuclei has been investigated for a long time both theoretically and experimentally. But, in all theoretical works only the production of a free electron and positron was described. The case when an electron is ''born'' in the bound state of atom has been neglected as a relatively small effect. We investigate this bound-free pair productions for different multipolarities of nuclear {gamma} decay. We use a relativistic description of the electron and positron wave functions as it is necessary for heavy elements. It appeared that the contribution of this bound-free process for bare heavy ions at low {gamma}-energies gives a contribution comparable to the free-free process. These results for the bound-free pair production in bare or highly-stripped ions could be relevant in astrophysics, in the physics of heavy ion acceleration and in atomic spectroscopy.

  16. Cluster radioactivity - status and developments

    International Nuclear Information System (INIS)

    Cluster radioactivities are intermediate phenomena between fission and alpha decay. The spontaneously emitted light fragment is a small cluster heavier then α particle, by lighter than the lightest fission fragment. Our works unifying the theory of the cold fission, cluster radioactivities, and α decay, as well as other theoretical models and the experimental results have been recently reviewed. Some of the cluster decay modes, like 14 C, 20 O, 23 F, 24,25 Ne, 28-30 Mg, and 32,34 Si, in a region of trans-francium parent nuclei, leading to daughters around 208 Pb, have half-live in good agreement with our predictions within the analytical superasymmetric model. The superconducting spectrometer SOLENO at I.P.N. Orsay has been employed to detect and identify 14 C radioactivity. Its good energy resolution allowed to discover 'fine structure' in the kinetic energy spectrum of 14 C emitted by 223 Ra. It was shown that the transition towards the first excited state of the daughter nucleus is stronger than that to the ground state. The interpretation given by Sheline and Ragnarsson according to which the main spherical component of the deformed parent wave function has a i11/2 character, has been confirmed. An explanation based on the Landau-Zener effect has been recently proposed by Mirea

  17. Low-Luminosity Seyfert Nuclei

    CERN Document Server

    Ho, L C; Sargent, W L W; Ho, Luis C.; Filippenko, Alexei V.; Sargent, Wallace L. W.

    1996-01-01

    We describe a new sample of Seyfert nuclei discovered during the course of an optical spectroscopic survey of nearby galaxies. The majority of the objects, many recognized for the first time, have luminosities much lower than those of classical Seyferts and populate the faint end of the AGN luminosity function. A significant fraction of the nuclei emit broad H-alpha emission qualitatively similar to the broad lines seen in classical Seyfert 1 nuclei and QSOs.

  18. Electron scattering for exotic nuclei

    Indian Academy of Sciences (India)

    Toshimi Suda

    2014-11-01

    A brand-new electron scattering facility, the SCRIT Electron Scattering Facility, will soon start its operation at RIKEN RI Beam Factory, Japan. This is the world’s first electron scattering facility dedicated to the structure studies of short-lived nuclei. The goal of this facility is to determine the charge density distributions of short-lived exotic nuclei by elastic electron scattering. The first collision between electrons and exotic nuclei will be observed in the year 2014.

  19. Elusive Active Galactic Nuclei

    CERN Document Server

    Maiolino, R; Gilli, R; Nagar, N M; Bianchi, S; Böker, T; Colbert, E; Krabbe, A; Marconi, A; Matt, G; Salvati, M

    2003-01-01

    A fraction of active galactic nuclei do not show the classical Seyfert-type signatures in their optical spectra, i.e. they are optically "elusive". X-ray observations are an optimal tool to identify this class of objects. We combine new Chandra observations with archival X-ray data in order to obtain a first estimate of the fraction of elusive AGN in local galaxies and to constrain their nature. Our results suggest that elusive AGN have a local density comparable to or even higher than optically classified Seyfert nuclei. Most elusive AGN are heavily absorbed in the X-rays, with gas column densities exceeding 10^24 cm^-2, suggesting that their peculiar nature is associated with obscuration. It is likely that in elusive AGN, the nuclear UV source is completely embedded and the ionizing photons cannot escape, which prevents the formation of a classical Narrow Line Region. Elusive AGN may contribute significantly to the 30 keV bump of the X-ray background.

  20. Multicolor Bound Soliton Molecule

    CERN Document Server

    Luo, Rui; Lin, Qiang

    2015-01-01

    We show a new class of bound soliton molecule that exists in a parametrically driven nonlinear optical cavity with appropriate dispersion characteristics. The composed solitons exhibit distinctive colors but coincide in time and share a common phase, bound together via strong inter-soliton four-wave mixing and Cherenkov radiation. The multicolor bound soliton molecule shows intriguing spectral locking characteristics and remarkable capability of spectrum management to tailor soliton frequencies, which may open up a great avenue towards versatile generation and manipulation of multi-octave spanning phase-locked Kerr frequency combs, with great potential for applications in frequency metrology, optical frequency synthesis, and spectroscopy.

  1. A doorway to Borromean halo nuclei: the Samba configuration

    CERN Document Server

    Yamashita, M T; Hussein, M S

    2005-01-01

    We exploit the possibility of new configurations in three-body halo nuclei - Samba type - (the neutron-core form a bound system) as a doorway to Borromean systems. The nuclei $^{12}$Be, $^{15}$B, $^{23}$N and $^{27}$F are of such nature, in particular $^{23}$N with a half-life of 37.7 s and a halo radius of 6.36 fm is an excellent example of Samba-halo configuration. The fusion below the barrier of the Samba halo nuclei with heavy targets could reveal the so far elusive enhancement and a dominance of one-neutron over two-neutron transfers, in contrast to what was found recently for the Borromean halo nucleus $^6$He + $^{238}$U.

  2. Multipole strength function of deformed superfluid nuclei made easy

    CERN Document Server

    Stoitsov, M; Nakatsukasa, T; Losa, C; Nazarewicz, W

    2011-01-01

    We present an efficient method for calculating strength functions using the finite amplitude method (FAM) for deformed superfluid heavy nuclei within the framework of the nuclear density functional theory. We demonstrate that FAM reproduces strength functions obtained with the fully self-consistent quasi-particle random-phase approximation (QRPA) at a fraction of computational cost. As a demonstration, we compute the isoscalar and isovector monopole strength for strongly deformed configurations in $^{240}$Pu by considering huge quasi-particle QRPA spaces. Our approach to FAM, based on Broyden's iterative procedure, opens the possibility for large-scale calculations of strength distributions in well-bound and weakly bound nuclei across the nuclear landscape.

  3. Deformed structure in N = 50 medium mass nuclei

    International Nuclear Information System (INIS)

    The study of neutron rich nuclei at the drip-line and around closed shells gained momentum with recent advancements of experimental techniques using radioactive ion beams and fission fragment. Fission from fast particles has become an important tool and it has been the richest source of neutron-rich intermediate-mass nuclei. Fission of Uranium and neighbouring nuclei produce two neutron-rich fragments of unequal A ∼ 90 and 140, (besides a few neutrons). As the two fragments proceed to the point of separation they become quite deformed. It is thus essential to study the shapes and microscopic structures of these neutron-rich fragments in ground and excited configurations. In this work, the structures and shapes of 86Kr and 88Sr nuclei have been investigated using angular momentum projected Hartree-Fock (PHF) model. To study the possible structure of the ground band and excited deformed bands for closed shell nuclei, the potential energy surface in HF calculations is analyzed for various mass-quadrupole moments

  4. The landscape of two-proton radioactivity

    CERN Document Server

    Olsen, E; Birge, N; Brown, M; Nazarewicz, W; Perhac, A

    2013-01-01

    Ground-state two-proton (2p) radioactivity is a decay mode found in isotopes of elements with even atomic numbers located beyond the two-proton drip line. So far, this exotic process has been experimentally observed in a few light and medium-mass nuclides with Z less than or equal to 30. In this study, using state-of-the-art nuclear density functional theory, we globally analyze 2p radioactivity and for the first time identify 2p decay candidates in elements heavier than strontium. We predict a few cases where the competition between 2p emission and alpha decay may be observed. In nuclei above lead, the alpha decay mode is found to be dominating and no measurable candidates for the 2p radioactivity are expected.

  5. Quaternionic bound states

    Energy Technology Data Exchange (ETDEWEB)

    De Leo, Stefano [Department of Applied Mathematics, University of Campinas, PO Box 6065, SP 13083-970, Campinas (Brazil); Ducati, Gisele C [Department of Mathematics, University of Parana PO Box 19081, PR 81531-970, Curitiba (Brazil)

    2005-04-15

    We study the bound-state solutions of vanishing angular momentum in a quaternionic spherical square-well potential of finite depth. As in standard quantum mechanics, such solutions occur for discrete values of energy. At first glance, it seems that the continuity conditions impose a very restrictive constraint on the energy eigenvalues and, consequently, no bound states were expected for energy values below the pure quaternionic potential. Nevertheless, a careful analysis shows that pure quaternionic potentials do not remove bound states. It is also interesting to compare these new solutions with the bound state solutions of the trial-complex potential. The study presented in this paper represents a preliminary step towards a full understanding of the role that quaternionic potentials could play in quantum mechanics. Of particular interest for the authors is the analysis of confined wave packets and tunnelling times in this new formulation of quantum theory.

  6. $\\bar K$-Nuclear Deeply Bound States?

    CERN Document Server

    Gal, A

    2006-01-01

    Following the prediction by Akaishi and Yamazaki of relatively narrow $\\bar K$-nuclear states, deeply bound by over 100 MeV where the main decay channel $\\bar K N \\to \\pi \\Sigma$ is closed, several experimental signals in stopped $K^-$ reactions on light nuclei have been interpreted recently as due to such states. In this talk I review (i) the evidence from $K^-$-atom data for a {\\it deep} $\\bar K$-nucleus potential, as attractive as $V_{\\bar K}(\\rho_0) \\sim -(150 - 200)$ MeV at nuclear matter density, that could support such states; and (ii) the theoretical arguments for a {\\it shallow} potential, $V_{\\bar K}(\\rho_0) \\sim -(40 - 60)$ MeV. I then review a recent work by Mare\\v{s}, Friedman and Gal in which $\\bar K$-nuclear bound states are generated dynamically across the periodic table, using a RMF Lagrangian that couples the $\\bar K$ to the scalar and vector meson fields mediating the nuclear interactions. Substantial polarization of the core nucleus is found for light nuclei, with central nuclear densities...

  7. Excited nuclei fragmentation

    International Nuclear Information System (INIS)

    Experimental indications leading to the thought of a very excited nucleus fragmentation are resumed. Theoretical approaches are briefly described; they are used to explain the phenomenon in showing off they are based on a minimum information principle. This model is based on time dependent Thomas-Fermi calculation which allows the mean field effect description, and with a site-bound percolation model which allows the fluctuation description

  8. Environmental radioactivity. Measurement and monitoring

    International Nuclear Information System (INIS)

    The contribution on environmental radioactivity covers the following issues: natural and artificial radioactivity; continuous monitoring of radioactivity; monitoring authorities and measurement; radioactivity in the living environment; radioactivity in food and feeding stuff; radioactivity of game meat and wild-growing mushrooms; radioactivity in mines; radioactivity in the research center Rossendorf.

  9. Single stage ECR source for the radioactive ion beam project in Louvain- la-Neuve

    Energy Technology Data Exchange (ETDEWEB)

    Arnould, M.; Vanhorenbeeck, J.; Baeten, F.; Dom, C.; Darquennes, D.; Delbar, T.; Jongen, Y.; Huyse, M.; Reusen, G.; Van Duppen, P. and others

    1989-01-01

    In 1987 the project RIB (Radioactive Ion Beam) was started at Louvain-La - Neuve, to produce and accelerate radioactive nuclei of C, N, O, F and Ne. Within the framework of this project, a single stage E.C.R. source will be built. The general scheme of the project and the design of the source are discussed.

  10. Radioactive beam experiments using the Fragment Mass Analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Davids, C.N.

    1994-04-01

    The Fragment Mass Analyzer (FMA) is a recoil mass spectrometer that has many potential applications in experiments with radioactive beams. The FMA can be used for spectroscopic studies of nuclei produced in reactions with radioactive beams. The FMA is also an ideal tool for studying radiative capture reactions of astrophysical interest, using inverse kinematics. The FMA has both mass and energy dispersion, which can be used to efficiently separate the reaction recoils from the primary beam. When used with radioactive beams, the FMA allows the recoils from radiative capture reactions to be detected in a low-background environment.

  11. Turi device for radioactive source transport in the MUK device

    International Nuclear Information System (INIS)

    The TURI radioactive source transport device for on-line studies with a mass spectrometer in a proton beam is described. This device is a part of the multidetector MUK-device the aim of which is the measurement of the angular correlations and lifetimes observed in radioactive decay of short-lived nuclei (T1/2>0.1 s). The TURY system ensures the velocity of the radioactive target movement 1 cm per 0.25 s, and microcomputer control of experiment the accuracy of the tape stop is 0.15 mm

  12. Gluon density in nuclei

    CERN Document Server

    Ayala, A P; Levin, E M

    1996-01-01

    In this talk we present our detail study ( theory and numbers) [1] on the shadowing corrections to the gluon structure functions for nuclei. Starting from rather contraversial information on the nucleon structure function which is originated by the recent HERA data, we develop the Glauber approach for the gluon density in a nucleus based on Mueller formula [2] and estimate the value of the shadowing corrections in this case. Than we calculate the first corrections to the Glauber approach and show that these corrections are big. Based on this practical observation we suggest the new evolution equation which takes into account the shadowing corrections and solve it. We hope to convince you that the new evolution equation gives a good theoretical tool to treat the shadowing corrections for the gluons density in a nucleus and, therefore, it is able to provide the theoretically reliable initial conditions for the time evolution of the nucleus - nucleus cascade.

  13. Particles and nuclei, letters

    International Nuclear Information System (INIS)

    The present collection of letters from JINR, Dubna, contains nine separate records on the transport of the evanescent electron beam in the vacuum section with plasma disks, determination of ΔΓs from analysis of untagged decays Bs0→J/ψφ by using the method of angular moments, investigation of light nucleus clustering in relativistic multifragmentation processes, secondary fragments of relativistic 22Ne at 4.1 A · GeV/c nuclei in nuclear emulsion, extrapolation of experimental data of accelerated radiation aging to the operation condition of dipole magnet electrical insulation at low dose rates, automatic quality control system of the installed straws into TRT wheels, a new method of fast simulation for a hadron calorimeter response, empirical evidence for relation between threshold effects and neutron strength function as well as on what information can be derived when no events are registered

  14. Pulsars: Gigantic Nuclei

    CERN Document Server

    Xu, Renxin

    2011-01-01

    What is the real nature of pulsars? This is essentially a question of the fundamental strong interaction between quarks at low-energy scale and hence of the non-perturbative quantum chromo-dynamics, the solution of which would certainly be meaningful for us to understand one of the seven millennium prize problems (i.e., "Yang-Mills Theory") named by the Clay Mathematical Institute. After a historical note, it is argued here that a pulsar is very similar to an extremely big nucleus, but is a little bit different from the {\\em gigantic nucleus} speculated 80 years ago by L. Landau. The paper demonstrates the similarity between pulsars and gigantic nuclei from both points of view: the different manifestations of compact stars and the general behavior of the strong interaction.

  15. Clusters in nuclei

    CERN Document Server

    Beck, Christian

    Following the pioneering discovery of alpha clustering and of molecular resonances, the field of nuclear clustering is today one of those domains of heavy-ion nuclear physics that faces the greatest challenges, yet also contains the greatest opportunities. After many summer schools and workshops, in particular over the last decade, the community of nuclear molecular physicists has decided to collaborate in producing a comprehensive collection of lectures and tutorial reviews covering the field. This third volume follows the successful Lect. Notes Phys. 818 (Vol. 1) and 848 (Vol. 2), and comprises six extensive lectures covering the following topics:  - Gamma Rays and Molecular Structure - Faddeev Equation Approach for Three Cluster Nuclear Reactions - Tomography of the Cluster Structure of Light Nuclei Via Relativistic Dissociation - Clustering Effects Within the Dinuclear Model : From Light to Hyper-heavy Molecules in Dynamical Mean-field Approach - Clusterization in Ternary Fission - Clusters in Light N...

  16. Electron scattering off nuclei

    International Nuclear Information System (INIS)

    Two recently developed aspects related to the scattering of electrons off nuclei are presented. On the one hand, a model is introduced which emphasizes the relativistic aspects of the problem in the impulse approximation, by demanding strict maintenance of the algebra of the Poincare group. On the other hand, the second model aims at a more sophisticated description of the nuclear response in the case of collective excitations. Basically, it utilizes the RPA formalism with a new development which enables a more careful treatment of the states in the continuum as is the case for the giant resonances. Applications of both models to the description of elastic scattering, inelastic scattering to discrete levels, giant resonances and the quasi-elastic region are discussed. (Author)

  17. Exotic nuclei in supernovae

    International Nuclear Information System (INIS)

    In this talk I discuss properties of hot stellar matter at sub-nuclear densities which is formed in supernova explosions. I emphasize that thermodynamic conditions in this case are rather similar to those created in the laboratory by intermediate-energy heavy-ion collisions. Theoretical methods developed for the interpretation of multi-fragment final states in such reactions can be used also for description of the stellar matter. I present main steps of the statistical approach to the equation of state and nuclear composition, dealing with an ensemble of nuclear species instead of one “average” nucleus. Finally some results of this approach are presented. The emphasis is put on possible formation of heavy and superheavy nuclei. (author)

  18. Clusters in Light Nuclei

    CERN Document Server

    Beck, C; Zafra, A Sanchez i; Thummerer, S; Azaiez, F; Bednarczyk, P; Courtin, S; Curien, D; Dorvaux, O; Goasduff, A; ~Lebhertz, D; Nourreddine, A; ~Rousseau, M; Salsac, M -D; von Oertzen, W; Gebauer, B; Wheldon, C; Kokalova, Tz; Efimov, G; Zherebchevsky, V; Schulz, Ch; Bohlen, H G; Kamanin, D; de Angelis, G; Gadea, A; Lenzi, S; Napoli, D R; Szilner, S; Milin, M; Catford, W N; Jenkins, D G; Royer, G

    2010-01-01

    A great deal of research work has been undertaken in the alpha-clustering study since the pioneering discovery, half a century ago, of 12C+12C molecular resonances. Our knowledge of the field of the physics of nuclear molecules has increased considerably and nuclear clustering remains one of the most fruitful domains of nuclear physics, facing some of the greatest challenges and opportunities in the years ahead. In this work, the occurence of "exotic" shapes in light N=Z alpha-like nuclei is investigated. Various approaches of superdeformed and hyperdeformed bands associated with quasimolecular resonant structures are presented. Results on clustering aspects are also discussed for light neutron-rich Oxygen isotopes.

  19. Collective excitations in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Chomaz, Ph. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France); Collaboration: La Direction des Sciences de la Matiere du CEA (FR); Le Fonds National de la Recherche Scientifique de Belgique (BE)

    1998-12-31

    The properties of the nucleus cannot be reduced to the properties of its constituents: it is a complex system. The fact that many properties of the nucleus are consequences of the existence of mean-field potential is a manifestation of this complexity. In particular, the nucleons can thus self-organize in collective motions such as giant resonances. Therefore the study of this collective motions is a very good tool to understand the properties of the nucleus itself. The purpose of this article is to stress some aspects of these collective vibrations. We have studied how an ensemble of fermions as the nucleus can self-organize in collective vibrations which are behaving like a gas of bosons in weak interaction. Understanding of these phenomena remains one of the important subjects of actuality in the context of quantal systems in strong interaction. In particular, the study of the states with one or two vibration quanta provides a direct information on the structure of nuclei close to their ground states. Moreover, some collective states appear to be very robust against the onset of chaos. This is the case of the hot giant dipole built on top of a hot nucleus which seems to survive up to rather high temperatures. Their sudden disappearance is still a subject of controversy. It may be that the mean-field and the associated collective states are playing a crucial role also in catastrophic processes such as the phase-transitions. Indeed, when the system is diluted the collective vibrations may become unstable and it seems that these unstable modes provide a natural explanation to the self organization of the system in drops. Finally, considering the diversity of the different structures of exotic nuclei one may expect new vibration types. All these studies are showing the diversity of the collective motions of strongly correlated quantum systems such as the nucleus but many open questions remain to be solved. (authors) 304 refs., 53 figs., 5 tabs.

  20. Quarks in Few Body Nuclei

    Directory of Open Access Journals (Sweden)

    Holt Roy J.

    2016-01-01

    Full Text Available Electron scattering at very high Bjorken x from hadrons provides an excellent test of models, has an important role in high energy physics, and from nuclei, provides a window into short range correlations. Light nuclei have a key role because of the relatively well-known nuclear structure. The development of a novel tritium target for Jefferson Lab has led to renewed interest in the mass three system. For example, deep inelastic scattering experiments in the light nuclei provide a powerful means to determine the neutron structure function. The isospin dependence of electron scattering from mass-3 nuclei provide information on short range correlations in nuclei. The program using the new tritium target will be presented along with a summary of other experiments aimed at revealing the large-x structure of the nucleon.

  1. Sequential binary decay of highly excited nuclei

    International Nuclear Information System (INIS)

    The decay of highly excited nuclei is described as a sequence of binary processes involving emission of fragments in their ground, excited-bound and unbound states. Primary together with secondary decay products lead to the final mass distributions. Asymmetric mass splittings involving nucleon emission up to symmetric binary ones are treated according to a generalized Weisskopf evaporation formalism. This procedure is implemented in the Monte-Carlo multi-step statistical model code MECO (Multisequential Evaporation COde). We examine the evolution of the calculated final mass distributions in the decay of a light compound nucleus, as the initial excitation energy increases towards the limits of complete dissociation. Comparisons are made with the predictions of the transition-stage theory, as well as a consistent Weisskopf treatment in which the decay process is described by rate equations for the generation of different fragment species. (author)

  2. Eta-mesic nuclei: past, present, future

    CERN Document Server

    Haider, Q

    2015-01-01

    Eta-mesic nucleus or the quasibound nuclear state of an eta ($\\eta$) meson in a nucleus is caused by strong-interaction force alone. This new type of nuclear species, which extends the landscape of nuclear physics, has been extensively studied since its prediction in 1986. In this paper, we review and analyze in great detail the models of the fundamental $\\eta$--nucleon interaction leading to the formation of an $\\eta$--mesic nucleus, the methods used in calculating the properties of a bound $\\eta$, and the approaches employed in the interpretation of the pertinent experimental data. In view of the successful observation of the $\\eta$--mesic nucleus $^{25}$Mg$_{\\eta}$ and other promising experimental results, future direction in searching for more $\\eta$--mesic nuclei is suggested.

  3. Are cometary nuclei primordial rubble piles?

    Science.gov (United States)

    Weissman, P. R.

    1986-01-01

    Whipple's icy conglomerate model for the cometary nucleus has had considerable sucess in explaining a variety of cometary phenomena such as gas production rates and nongravitational forces. However, as discussed here, both observational evidence and theoretical considerations suggest that the cometary nucleus may not be a well-consolidated single body, but may instead be a loosely bound agglomeration of smaller fragments, weakly bonded and subject to occasional or even frequent disruptive events. The proposed model is analogous to the 'rubble pile' model suggested for the larger main-belt asteroids, although the larger cometary fragments are expected to be primordial condensations rather than collisionally derived debris as in the asteroid case. The concept of cometary nuclei as primordial rubble piles is proposed as a modification of the basic Whipple model, not as a replacement for it.

  4. Lectures on Bound states

    CERN Document Server

    Hoyer, Paul

    2016-01-01

    Even a first approximation of bound states requires contributions of all powers in the coupling. This means that the concept of "lowest order bound state" needs to be defined. In these lectures I discuss the "Born" (no loop, lowest order in $\\hbar$) approximation. Born level states are bound by gauge fields which satisfy the classical field equations. As a check of the method, Positronium states of any momentum are determined as eigenstates of the QED Hamiltonian, quantized at equal time. Analogously, states bound by a strong external field $A^\\mu(\\xv)$ are found as eigenstates of the Dirac Hamiltonian. Their Fock states have dynamically created $e^+e^-$ pairs, whose distribution is determined by the Dirac wave function. The linear potential of $D=1+1$ dimensions confines electrons but repels positrons. As a result, the mass spectrum is continuous and the wave functions have features of both bound states and plane waves. The classical solutions of Gauss' law are explored for hadrons in QCD. A non-vanishing bo...

  5. Bounding species distribution models

    Institute of Scientific and Technical Information of China (English)

    Thomas J. STOHLGREN; Catherine S. JARNEVICH; Wayne E. ESAIAS; Jeffrey T. MORISETTE

    2011-01-01

    Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern.Many investigators now recognize that extrapolations of these models with geographic information systems (GIS) might be sensitive to the environmental bounds of the data used in their development,yet there is no recommended best practice for “clamping” model extrapolations.We relied on two commonly used modeling approaches:classification and regression tree (CART) and maximum entropy (Maxent) models,and we tested a simple alteration of the model extrapolations,bounding extrapolations to the maximum and minimum values of primary environmental predictors,to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States.Findings suggest that multiple models of bounding,and the most conservative bounding of species distribution models,like those presented here,should probably replace the unbounded or loosely bounded techniques currently used [Current Zoology 57 (5):642-647,2011].

  6. A quark structure of hadrons and nuclei

    International Nuclear Information System (INIS)

    In this review we look into the recent understanding of mesons, baryons and nuclei as few quark bound states within the framework of quantum chromodynamics (QCD). In particular, we have reviewed our understanding of the nature of confining interaction, the spin - dependence of colour forces and the role of non-perturbative effects in the study of quark forces in the potential model approach. We also give a comparative study of results obtained by several potential models with reference to the experimental data. We find that although the Lorentz nature of confinement and the nature of spin-dependent colour forces have been better understood now, only a partial understanding of these problems are obtained so far. Our study reveals that properties of baryons could be explained by the same potential model which successfully describe the mesons. However, the nuclei require chiral symmetry and non-perturbative methods for their description. We also discuss the relation between constituent, current and dynamical quark masses. We conclude that QCD motivated approaches have shown much success in explaining many results on hadronic and nuclear data. (author). 212 refs, 14 tabs

  7. Validation of EMP bounds

    Energy Technology Data Exchange (ETDEWEB)

    Warne, L.K.; Merewether, K.O.; Chen, K.C.; Jorgenson, R.E.; Morris, M.E.; Solberg, J.E.; Lewis, J.G. [Sandia National Labs., Albuquerque, NM (United States); Derr, W. [Derr Enterprises, Albuquerque, NM (United States)

    1996-07-01

    Test data on canonical weapon-like fixtures are used to validate previously developed analytical bounding results. The test fixtures were constructed to simulate (but be slightly worse than) weapon ports of entry but have known geometries (and electrical points of contact). The exterior of the test fixtures exhibited exterior resonant enhancement of the incident fields at the ports of entry with magnitudes equal to those of weapon geometries. The interior consisted of loaded transmission lines adjusted to maximize received energy or voltage but incorporating practical weapon geometrical constraints. New analytical results are also presented for bounding the energies associated with multiple bolt joints and for bounding the exterior resonant enhancement of the exciting fields.

  8. Information, Utility & Bounded Rationality

    CERN Document Server

    Ortega, Pedro A

    2011-01-01

    Perfectly rational decision-makers maximize expected utility, but crucially ignore the resource costs incurred when determining optimal actions. Here we employ an axiomatic framework for bounded rational decision-making based on a thermodynamic interpretation of resource costs as information costs. This leads to a variational "free utility" principle akin to thermodynamical free energy that trades off utility and information costs. We show that bounded optimal control solutions can be derived from this variational principle, which leads in general to stochastic policies. Furthermore, we show that risk-sensitive and robust (minimax) control schemes fall out naturally from this framework if the environment is considered as a bounded rational and perfectly rational opponent, respectively. When resource costs are ignored, the maximum expected utility principle is recovered.

  9. Change of shell structure and magnetic moments of odd-N deformed nuclei towards the neutron drip line

    OpenAIRE

    Hamamoto, Ikuko

    2010-01-01

    Abstract Examples of the change of neutron shell-structure in both weakly-bound and resonant neutron one-particle levels in nuclei towards the neutron drip line are exhibited. It is shown that the shell-structure change due to the weak binding may lead to the deformation of those nuclei with the neutron numbers N ? 8, 20, 28 and 40, which are known to be magic numbers in stable nuclei. Nuclei in the " island of inversion " are most easily and in a simple manner understood in terms of defor...

  10. Radioactive Ions for Surface Characterization

    CERN Multimedia

    2002-01-01

    The collaboration has completed a set of pilot experiments with the aim to develop techniques for using radioactive nuclei in surface physics. The first result was a method for thermal deposition of isolated atoms (Cd, In, Rb) on clean metallic surfaces. \\\\ \\\\ Then the diffusion history of deposited Cd and In atoms on two model surfaces, Mo(110) and Pd(111), was followed through the electric field gradients (efg) acting at the probe nuclei as measured with the Perturbed Angular Correlation technique. For Mo(110) a rather simple history of the adatoms was inferred from the experiments: Atoms initially landing at terrace sites diffuse from there to ledges and then to kinks, defects always present at real surfaces. The next stage is desorption from the surface. For Pd a scenario that goes still further was found. Following the kink stage the adatoms get incorporated into ledges and finally into the top surface layer. For all these five sites the efg's could be measured.\\\\ \\\\ In preparation for a further series o...

  11. Collective excitations in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Chomaz, Ph

    1997-12-31

    The properties of the nucleus cannot be reduced to the properties of its constituents: it is a complex system. The fact that many properties of the nucleus are consequences of the existence of mean-field potential is a manifestation of this complexity. In particular the nucleons can thus self-organize in collective motions such as giant resonances. Therefore the study of these collective motions is a very good to understand the properties of the nucleus itself. The purpose of this article was to stress some aspects of these collective vibrations. In particular we have studied how an ensemble of fermions as the nucleus can self-organize in collective vibrations which are behaving like a gas of bosons in weak interaction. The understanding of these phenomena remains one of the important subjects of actually in the context of quantal systems in strong interaction. In particular the study of the states with one or two vibration quanta provides a direct information on the structure if nuclei close to their ground states. (author) 270 refs.

  12. Search for a Possible Spontaneous Emission of Muons from Heavy Nuclei

    OpenAIRE

    Giorgini, M.

    2010-01-01

    A search for an exotic natural radioactivity of lead nuclei, using nuclear emulsion sheets as detector, is described. We discuss the experimental set-up of a test performed at the Gran Sasso National Laboratory (Italy), the event simulation, data analysis and preliminary results.

  13. Spectroscopy of heavy fissionable nuclei

    Indian Academy of Sciences (India)

    S K Tandel

    2015-09-01

    Structural studies of heavy nuclei are quite challenging due to increased competition from fission, particularly at high spins. Nuclei in the actinide region exhibit a variety of interesting phenomena. Recent advances in instrumentation and analysis techniques have made feasible sensitive measurements of nuclei populated with quite low cross-sections. These include isomers and rotational band structures in isotopes of Pu ( = 94) to Rf ( = 104), and octupole correlations in the Th ( = 90) region. The obtained experimental data have provided insights on various aspects like moments of inertia and nucleon alignments at high spins, quasiparticle energies and evolution of quadrupole and octupole collectivity, among others. An overview of some of these results is presented.

  14. Bounded Tamper Resilience

    DEFF Research Database (Denmark)

    Damgård, Ivan Bjerre; Faust, Sebastian; Mukherjee, Pratyay;

    2013-01-01

    a public tamper-proof common reference string. Finally, we explain how to boost bounded tampering and leakage resilience (as in 1. and 2. above) to continuous tampering and leakage resilience, in the so-called floppy model where each user has a personal hardware token (containing leak- and tamper...

  15. Neutrino interactions with nuclei

    CERN Document Server

    Leitner, T; Mosel, U; Alvarez-Ruso, L

    2008-01-01

    Current long baseline experiments aim at measuring neutrino oscillation parameters with a high precision. A critical quantity is the neutrino energy which can not be measured directly but has to be reconstructed from the observed hadrons. A good knowledge of neutrino-nucleus interactions is thus necessary to minimize the systematic uncertainties in neutrino fluxes, backgrounds and detector responses. In particular final-state interactions inside the target nucleus modify considerably the particle yields through rescattering, charge-exchange and absorption. Nuclear effects can be described with our coupled channel GiBUU transport model where the neutrino first interacts with a bound nucleon producing secondary particles which are then transported out of the nucleus. In this contribution, we give some examples for the application of our model focusing in particular on the MiniBooNE and K2K experiments.

  16. The structural evolution in transitional nuclei of mass 80 $\\leq$ A $\\leq$ 132

    CERN Document Server

    Bhuyan, M

    2015-01-01

    In this theoretical study, we report an investigation on the behavior of two neutron separation energy, differential variation of the separation energy and the abnormality in nuclear charge radius along the isotopic and isotonic chains of transition nuclei. We have used relativistic mean field formalism with NL3 and NL3$^*$ forces for this present analysis. The study refers to {\\it even-even} nuclei such as Zr, Mo, Ru and Pd with $N$ = 40$-$ 86, where a rich collective phenomena such as proton radioactivity, cluster or nucleus radioactivity, exotic shapes, {\\it Island of Inversion} and etc. are observed. These non-monotonic aspects over the isotopic chain are mainly correlated with the structural properties like shell/sub-shell closures, shape transition, clustering and magicity etc. In addition to these, we have shown the internal configuration of these nuclei to get a further insight into the reason for these discrepancies.

  17. Pseudospin Dynamical Symetry in Nuclei

    CERN Document Server

    Ginocchio, Joseph N

    2014-01-01

    Pseudospin symmetry has been useful in understanding atomic nuclei. We review the arguments that this symmetry is a relativistic symmetry. The condition for this symmetry is that the sum of the vector and scalar potentials in the Dirac Hamiltonian is a constant. We give the generators of pseudospin symmetry. We review some of the predictions that follow from this insight into the relativistic origins of pseudospin symmetry. Since in nuclei the sum of the scalar and vector potentials is not zero but is small, we discuss preliminary investigations into the conditions on the potentials to produce partial dynamic pseudospin symmetry. Finally we show that approximate pseudospin symmetry in nuclei predicts approximate spin symmetry in anti-nucleon scattering from nuclei.

  18. Synthesis of Superheavy Nuclei in 48CA-INDUCED Reactions

    Science.gov (United States)

    Oganessian, Yu. Ts.; Utyonkov, V. K.; Lobanov, Yu. V.; Abdullin, F. Sh.; Polyakov, A. N.; Sagaidak, R. N.; Shirokovsky, I. V.; Tsyganov, Yu. S.; Voinov, A. A.; Gulbekian, G. G.; Bogomolov, S. L.; Gikal, B. N.; Mezentsev, A. N.; Iliev, S.; Subbotin, V. G.; Sukhov, A. M.; Subotic, K.; Zagrebaev, V. I.; Vostokin, G. K.; Itkis, M. G.; Moody, K. J.; Patin, J. B.; Shaughnessy, D. A.; Stoyer, M. A.; Stoyer, N. J.; Wilk, P. A.; Kenneally, J. M.; Landrum, J. H.; Wild, J. F.; Lougheed, R. W.

    2008-11-01

    Thirty-four new nuclides with Z = 104-116, 118 and N = 161-177 have been synthesized in the complete-fusion reactions of 238U, 237Np, 242,244Pu, 243Am, 245,248Cm, and 249Cf targets with 48Ca beams. The masses of evaporation residues were identified through measurements of the excitation functions of the xn-evaporation channels and from cross bombardments. The decay properties of the new nuclei agree with those of previously known heavy nuclei and with predictions from different theoretical models. A discussion of self-consistent interpretations of all observed decay chains originating from the parent isotopes 282,283112, 282113, 286-289114, 287,288115, 290-293116, and 294118 is presented. Decay energies and lifetimes of the neutron-rich superheavy nuclei as well as their production cross sections indicate a considerable increase in the stability of nuclei with an increasing number of neutrons, which agrees with the predictions of theoretical models concerning the decisive dependence of the structure and radioactive properties of superheavy elements on their proximity to the nuclear shells with N = 184 and Z = 114.

  19. Study of -nucleus interaction through the formation of -nucleus bound state

    Indian Academy of Sciences (India)

    V Jha; B J Roy; A Chatterjee; H Machner

    2006-05-01

    The question of possible existence of -mesic nuclei is quite intriguing. Answer to this question will deeply enrich our understanding of -nucleus interaction which is not so well-understood. We review the experimental efforts for the search of -mesic nuclei and describe the physics motivation behind it. We present the description of an experiment for the search of -nucleus bound state using the GeV proton beam, currently being performed at COSY.

  20. Particles and nuclei in PANIC

    International Nuclear Information System (INIS)

    PANIC is the triennal International Conference on Particles and Nuclei, and judging from the latest PANIC, held in Kyoto from 20-24 April there is no need for panic yet. Faced with two pictures – one of nuclei described in nucleon and meson terms, and another of nucleons containing quarks and gluons – physicists are intrigued to know what new insights from the quark level can tell us about nuclear physics, or vice versa

  1. Radioactive Iodine (Radioiodine) Therapy

    Science.gov (United States)

    ... lymph nodes and other parts of the body. Radioactive iodine therapy improves the survival rate of patients with papillary ... and benefits of RAI therapy with your doctor. Radioactive iodine therapy cannot be used to treat anaplastic (undifferentiated) and ...

  2. Radioactivity in consumer products

    Energy Technology Data Exchange (ETDEWEB)

    Moghissi, A.A.; Paras, P.; Carter, M.W.; Barker, R.F. (eds.)

    1978-08-01

    Papers presented at the conference dealt with regulations and standards; general and biological risks; radioluminous materials; mining, agricultural, and construction materials containing radioactivity; and various products containing radioactive sources.

  3. Radioactive waste management

    International Nuclear Information System (INIS)

    This booklet is a publication by International Atomic Energy Agency for general awareness of citizens and policy-makers to clarify their concept of nuclear wastes. In a very simple way it tells what is radioactivity, radiations and radioactive wastes. It further hints on various medial and industrial uses of radiations. It discusses about different types of radioactive wastes and radioactive waste management. Status of nuclear power plants in Central and Eastern European countries are also discussed

  4. Spectrin-like proteins in plant nuclei

    NARCIS (Netherlands)

    Ruijter, de N.C.A.; Ketelaar, T.; Blumenthal, S.S.D.; Emons, A.M.C.; Schel, J.H.N.

    2000-01-01

    We analysed the presence and localization of spectrin-like proteins in nuclei of various plant tissues, using several anti-erythrocyte spectrin antibodies on isolated pea nuclei and nuclei in cells. Western blots of extracted purified pea nuclei show a cross-reactive pair of bands at 220–240 kDa, ty

  5. Towards Secure Distance Bounding

    OpenAIRE

    Boureanu, Ioana; Mitrokotsa, Aikaterini; Vaudenay, Serge

    2013-01-01

    Relay attacks (and, more generally, man-in-the-middle attacks) are a serious threat against many access control and payment schemes. In this work, we present distance-bounding protocols, how these can deter relay attacks, and the security models formalizing these protocols. We show several pitfalls making existing protocols insecure (or at least, vulnerable, in some cases). Then, we introduce the SKI protocol which enjoys resistance to all popular attack-models and features provable security....

  6. Maps of Bounded Rationality

    OpenAIRE

    Kahneman, Daniel

    2002-01-01

    The work cited by the Nobel committee was done jointly with the late Amos Tversky (1937-1996) during a long and unusually close collaboration. Together, we explored the psychology of intuitive beliefs and choices and examined their bounded rationality. This essay presents a current perspective on the three major topics of our joint work: heuristics of judgment, risky choice, and framing effects. In all three domains we studied intuitions - thoughts and preferences that come to mind quickly an...

  7. Studies of Unstable Nuclei with Spin-Polarized Proton Target

    Science.gov (United States)

    Sakaguchi, Satoshi; Uesaka, Tomohiro; Wakui, Takashi; Chebotaryov, Sergey; Kawahara, Tomomi; Kawase, Shoichiro; Milman, Evgeniy; Tang, Tsz Leung; Tateishi, Kenichiro; Teranishi, Takashi

    2016-02-01

    Roles of spin-dependent interactions in unstable nuclei have been investigated via the direct reaction of radioactive ions with a solid spin-polarized proton target. The target has a unique advantage of a high polarization of 20-30% under low magnetic field of 0.1 T and at a high temperature of 100 K, which allow us to detect recoil protons with good angular resolution. Present status of on-going experimental studies at intermediate energies, such as proton elastic scattering and (p, 2p) knockout reaction, and new physics opportunities expected with low-energy RI beams are overviewed.

  8. Evaluation of Nuclear Fission Barrier Parameters for 17 Nuclei

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    As well know that modern nuclear installations and applications have reached a high degree of sophistication. The effective safe and economical design of these technologies require detailed and reliable design calculations. The accuracy of these calculations is largely determined by the accuracy of the basic nuclear and atomic input parameters. In order to meet the needs on high energy fission cross section, fission spectra in waste disposal, transmutation, radioactive beams physics and so on, 17 nuclei fission barrier parameters were collected from the literature based on different experiments and

  9. Unstable nuclei reveal the need for a complete theory of the nucleus

    International Nuclear Information System (INIS)

    Human knowledge is often biased by limited information, and science is not free from this problem. Nuclear-physics studies have essentially been restricted to stable nuclei that contain almost equal numbers of protons and neutrons. However, we have only recently begun to probe the structure of unstable nuclei, which are very rich in either protons or neutrons, using beams of radioactive nuclei. These studies have revealed a bias in our knowledge of nuclear physics. Now scientists are working hard to formulate a new model that can explain the structure of both stable and unstable nuclei, based on a rigorous many-body theory. In this article the author explains our current knowledge of nuclear physics. (UK)

  10. Fulleren-Structure in Superheavies, Nuclei Containing Antimatter and Cold Compression

    Science.gov (United States)

    Greiner, Walter; Bürvenich, Thomas J.

    2005-09-01

    The extension of the periodic system into various new areas is investigated. Experiments for the synthesis of superheavy elements and the predictions of magic numbers with modern meson field theories are reviewed. Different channels of nuclear decay are discussed including cluster radioactivity, cold fission and cold multifragmentation Furtheron, we first present the vacuum for the e+-e- field of QED and show how it is modified for baryons in nuclear environment. Then we discuss the possibility of producing new types of nuclear systems by implanting an antibaryon into ordinary nuclei. The structure of nuclei containing one antiproton or antilambda is investigated within the framework of a relativistic mean-field model. Self-consistent calculations predict an enhanced binding and considerable compression in such systems as compared with normal nuclei. We present arguments that the life time of such nuclei with respect to the antibaryon annihilation might be long enough for their observation. A perspective for future research is given.

  11. Experiments with radioactive beams at ATLAS

    CERN Document Server

    Rehm, K E; Blackmon, J; Borasi, F; Caggiano, J; Chen, A; Davids, C N; Greene, J; Harss, B; Heinz, A; Henderson, D; Janssens, R V F; Jiang, C L; Nolen, Jerry A; Pardo, R C; Parker, P; Paul, M; Schiffer, J P; Segel, R E; Seweryniak, D; Siemssen, R H; Smith, M S; Uusitalo, J; Wang, T F; Wiedenhöver, I

    2001-01-01

    Various beams of short- and long-lived radioactive nuclei have recently been produced at the ATLAS accelerator at Argonne National Laboratory, using either the so-called In-Flight or the Two- Accelerator method. The production techniques, as well as recent results with /sup 44/Ti (T/sub 1/2/=60y) and /sup 17/F (T/sub 1/2 /=64s) beams, which are of interest to nucleosynthesis in supernovae and X-ray bursts, are discussed. (12 refs).

  12. From heavy nuclei to super-heavy nuclei

    International Nuclear Information System (INIS)

    The existence of super-heavy nuclei has been predicted nearly fifty years ago. Due to the strong coulomb repulsion, the stabilisation of these nuclei is possible only through shell effects. The reasons for this fragile stability, as well as the theoretical predictions concerning the position of the island of stability are presented in the first part of this lecture. In the second part, experiments and experimental techniques which have been used to synthesize or search for super-heavy elements are described. Spectroscopic studies performed in very heavy elements are presented in the following section. We close this lecture with techniques that are currently being developed in order to reach the superheavy island and to study the structure of very-heavy nuclei. (author)

  13. Nuclear astrophysics with radioactive ions at FAIR

    CERN Document Server

    Reifarth, R; Göbel, K; Heftrich, T; Heil, M; Koloczek, A; Langer, C; Plag, R; Pohl, M; Sonnabend, K; Weigand, M; Adachi, T; Aksouh, F; Al-Khalili, J; AlGarawi, M; AlGhamdi, S; Alkhazov, G; Alkhomashi, N; Alvarez-Pol, H; Alvarez-Rodriguez, R; Andreev, V; Andrei, B; Atar, L; Aumann, T; Avdeichikov, V; Bacri, C; Bagchi, S; Barbieri, C; Beceiro, S; Beck, C; Beinrucker, C; Belier, G; Bemmerer, D; Bendel, M; Benlliure, J; Benzoni, G; Berjillos, R; Bertini, D; Bertulani, C; Bishop, S; Blasi, N; Bloch, T; Blumenfeld, Y; Bonaccorso, A; Boretzky, K; Botvina, A; Boudard, A; Boutachkov, P; Boztosun, I; Bracco, A; Brambilla, S; Monago, J Briz; Caamano, M; Caesar, C; Camera, F; Casarejos, E; Catford, W; Cederkall, J; Cederwall, B; Chartier, M; Chatillon, A; Cherciu, M; Chulkov, L; Coleman-Smith, P; Cortina-Gil, D; Crespi, F; Crespo, R; Cresswell, J; Csatlós, M; Déchery, F; Davids, B; Davinson, T; Derya, V; Detistov, P; Fernandez, P Diaz; DiJulio, D; Dmitry, S; Doré, D; nas, J Due\\; Dupont, E; Egelhof, P; Egorova, I; Elekes, Z; Enders, J; Endres, J; Ershov, S; Ershova, O; Fernandez-Dominguez, B; Fetisov, A; Fiori, E; Fomichev, A; Fonseca, M; Fraile, L; Freer, M; Friese, J; Borge, M G; Redondo, D Galaviz; Gannon, S; Garg, U; Gasparic, I; Gasques, L; Gastineau, B; Geissel, H; Gernhäuser, R; Ghosh, T; Gilbert, M; Glorius, J; Golubev, P; Gorshkov, A; Gourishetty, A; Grigorenko, L; Gulyas, J; Haiduc, M; Hammache, F; Harakeh, M; Hass, M; Heine, M; Hennig, A; Henriques, A; Herzberg, R; Holl, M; Ignatov, A; Ignatyuk, A; Ilieva, S; Ivanov, M; Iwasa, N; Jakobsson, B; Johansson, H; Jonson, B; Joshi, P; Junghans, A; Jurado, B; Körner, G; Kalantar, N; Kanungo, R; Kelic-Heil, A; Kezzar, K; Khan, E; Khanzadeev, A; Kiselev, O; Kogimtzis, M; Körper, D; Kräckmann, S; Kröll, T; Krücken, R; Krasznahorkay, A; Kratz, J; Kresan, D; Krings, T; Krumbholz, A; Krupko, S; Kulessa, R; Kumar, S; Kurz, N; Kuzmin, E; Labiche, M; Langanke, K; Lazarus, I; Bleis, T Le; Lederer, C; Lemasson, A; Lemmon, R; Liberati, V; Litvinov, Y; Löher, B; Herraiz, J Lopez; Münzenberg, G; Machado, J; Maev, E; Mahata, K; Mancusi, D; Marganiec, J; Perez, M Martinez; Marusov, V; Mengoni, D; Million, B; Morcelle, V; Moreno, O; Movsesyan, A; Nacher, E; Najafi, M; Nakamura, T; Naqvi, F; Nikolski, E; Nilsson, T; Nociforo, C; Nolan, P; Novatsky, B; Nyman, G; Ornelas, A; Palit, R; Pandit, S; Panin, V; Paradela, C; Parkar, V; Paschalis, S; Paw\\lowski, P; Perea, A; Pereira, J; Petrache, C; Petri, M; Pickstone, S; Pietralla, N; Pietri, S; Pivovarov, Y; Potlog, P; Prokofiev, A; Rastrepina, G; Rauscher, T; Ribeiro, G; Ricciardi, M; Richter, A; Rigollet, C; Riisager, K; Rios, A; Ritter, C; Frutos, T Rodríguez; Vignote, J Rodriguez; Röder, M; Romig, C; Rossi, D; Roussel-Chomaz, P; Rout, P; Roy, S; Söderström, P; Sarkar, M Saha; Sakuta, S; Salsac, M; Sampson, J; Saez, J Sanchez del Rio; Rosado, J Sanchez; Sanjari, S; Sarriguren, P; Sauerwein, A; Savran, D; Scheidenberger, C; Scheit, H; Schmidt, S; Schmitt, C; Schnorrenberger, L; Schrock, P; Schwengner, R; Seddon, D; Sherrill, B; Shrivastava, A; Sidorchuk, S; Silva, J; Simon, H; Simpson, E; Singh, P; Slobodan, D; Sohler, D; Spieker, M; Stach, D; Stan, E; Stanoiu, M; Stepantsov, S; Stevenson, P; Strieder, F; Stuhl, L; Suda, T; Sümmerer, K; Streicher, B; Taieb, J; Takechi, M; Tanihata, I; Taylor, J; Tengblad, O; Ter-Akopian, G; Terashima, S; Teubig, P; Thies, R; Thoennessen, M; Thomas, T; Thornhill, J; Thungstrom, G; Timar, J; Togano, Y; Tomohiro, U; Tornyi, T; Tostevin, J; Townsley, C; Trautmann, W; Trivedi, T; Typel, S; Uberseder, E; Udias, J; Uesaka, T; Uvarov, L; Vajta, Z; Velho, P; Vikhrov, V; Volknandt, M; Volkov, V; von Neumann-Cosel, P; von Schmid, M; Wagner, A; Wamers, F; Weick, H; Wells, D; Westerberg, L; Wieland, O; Wiescher, M; Wimmer, C; Wimmer, K; Winfield, J S; Winkel, M; Woods, P; Wyss, R; Yakorev, D; Yavor, M; Cardona, J Zamora; Zartova, I; Zerguerras, T; Zgura, I; Zhdanov, A; Zhukov, M; Zieblinski, M; Zilges, A; Zuber, K

    2016-01-01

    The nucleosynthesis of elements beyond iron is dominated by neutron captures in the s and r processes. However, 32 stable, proton-rich isotopes cannot be formed during those processes, because they are shielded from the s-process flow and r-process beta-decay chains. These nuclei are attributed to the p and rp process. For all those processes, current research in nuclear astrophysics addresses the need for more precise reaction data involving radioactive isotopes. Depending on the particular reaction, direct or inverse kinematics, forward or time-reversed direction are investigated to determine or at least to constrain the desired reaction cross sections. The Facility for Antiproton and Ion Research (FAIR) will offer unique, unprecedented opportunities to investigate many of the important reactions. The high yield of radioactive isotopes, even far away from the valley of stability, allows the investigation of isotopes involved in processes as exotic as the r or rp processes.

  14. BOUNDING PYRAMIDS AND BOUNDING CONES FOR TRIANGULAR BEZIER SURFACES

    Institute of Scientific and Technical Information of China (English)

    Jian-song Deng; Fa-lai Chen; Li-li Wang

    2000-01-01

    This paper describes practical approaches on how to construct bounding pyramids and bounding cones for triangular Bézier surfaces. Examples are provided to illustrate the process of construction and comparison is made between various surface bounding volumes. Furthermore, as a starting point for the construction,we provide a way to compute hodographs of triangular Bézier surfaces and improve the algorithm for computing the bounding cone of a set of vectors.

  15. Universal bounds on current fluctuations

    Science.gov (United States)

    Pietzonka, Patrick; Barato, Andre C.; Seifert, Udo

    2016-05-01

    For current fluctuations in nonequilibrium steady states of Markovian processes, we derive four different universal bounds valid beyond the Gaussian regime. Different variants of these bounds apply to either the entropy change or any individual current, e.g., the rate of substrate consumption in a chemical reaction or the electron current in an electronic device. The bounds vary with respect to their degree of universality and tightness. A universal parabolic bound on the generating function of an arbitrary current depends solely on the average entropy production. A second, stronger bound requires knowledge both of the thermodynamic forces that drive the system and of the topology of the network of states. These two bounds are conjectures based on extensive numerics. An exponential bound that depends only on the average entropy production and the average number of transitions per time is rigorously proved. This bound has no obvious relation to the parabolic bound but it is typically tighter further away from equilibrium. An asymptotic bound that depends on the specific transition rates and becomes tight for large fluctuations is also derived. This bound allows for the prediction of the asymptotic growth of the generating function. Even though our results are restricted to networks with a finite number of states, we show that the parabolic bound is also valid for three paradigmatic examples of driven diffusive systems for which the generating function can be calculated using the additivity principle. Our bounds provide a general class of constraints for nonequilibrium systems.

  16. HAMLET interacts with histones and chromatin in tumor cell nuclei.

    Science.gov (United States)

    Düringer, Caroline; Hamiche, Ali; Gustafsson, Lotta; Kimura, Hiroshi; Svanborg, Catharina

    2003-10-24

    HAMLET is a folding variant of human alpha-lactalbumin in an active complex with oleic acid. HAMLET selectively enters tumor cells, accumulates in their nuclei and induces apoptosis-like cell death. This study examined the interactions of HAMLET with nuclear constituents and identified histones as targets. HAMLET was found to bind histone H3 strongly and to lesser extent histones H4 and H2B. The specificity of these interactions was confirmed using BIAcore technology and chromatin assembly assays. In vivo in tumor cells, HAMLET co-localized with histones and perturbed the chromatin structure; HAMLET was found associated with chromatin in an insoluble nuclear fraction resistant to salt extraction. In vitro, HAMLET bound strongly to histones and impaired their deposition on DNA. We conclude that HAMLET interacts with histones and chromatin in tumor cell nuclei and propose that this interaction locks the cells into the death pathway by irreversibly disrupting chromatin organization.

  17. Two-body and three-body halo nuclei

    Institute of Scientific and Technical Information of China (English)

    刘祖华; 张焕乔

    2003-01-01

    We have extracted the nuclear asymptotic normalization coefficients (ANC) for the virtual transitions B→A+N via some transfer reactions and the radioactive nuclear beam experiments. With these coefficients, root-mean-square (rms) radii for the valence particle in some possible halo nuclei have been calculated. The values of rms radii extracted with ANC approach are nearly model-independent, hence are a good quantity for the investigation of nuclear halo. In addition, we have also calculated the rms radii for the two valence neutrons in some three-body systems in terms of the relationship between the radii of valence particle, core nucleus and nuclear matter. With two conditions for nuclear halo formation, we have examined these extracted rms radii. The results show that 11Be(1/2+, g.s), 12B(1-, 2.621 MeV), 13C(1/2+, 3.089 MeV), 14C(0-, 6.903 MeV), 14C(1-, 6.094 MeV), 15C(1/2+, g.s) and 19C(1/2+, g.s) with the valence particle in the 2s ground or excited state are the neutron halo nuclei, whereas 17F(1/2+, 0.495 MeV) and 21Na(1/2+, 2.423 MeV) are the proton halo nuclei in the excited state. For three-body systems, except the well-established two-neutron halo nuclei 6He and 11Li, 14Be and 17B might be the two-neutron halo nuclei as well.

  18. A bound on chaos

    CERN Document Server

    Maldacena, Juan; Stanford, Douglas

    2015-01-01

    We conjecture a sharp bound on the rate of growth of chaos in thermal quantum systems with a large number of degrees of freedom. Chaos can be diagnosed using an out-of-time-order correlation function closely related to the commutator of operators separated in time. We conjecture that the influence of chaos on this correlator can develop no faster than exponentially, with Lyapunov exponent $\\lambda_L \\le 2 \\pi k_B T/\\hbar$. We give a precise mathematical argument, based on plausible physical assumptions, establishing this conjecture.

  19. Regularity of Bound States

    DEFF Research Database (Denmark)

    Faupin, Jeremy; Møller, Jacob Schach; Skibsted, Erik

    2011-01-01

    We study regularity of bound states pertaining to embedded eigenvalues of a self-adjoint operator H, with respect to an auxiliary operator A that is conjugate to H in the sense of Mourre. We work within the framework of singular Mourre theory which enables us to deal with confined massless Pauli......–Fierz models, our primary example, and many-body AC-Stark Hamiltonians. In the simpler context of regular Mourre theory, our results boil down to an improvement of results obtained recently in [8, 9]....

  20. Theoretical models for exotic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Sagawa, Hiroyuki [RIKEN Nishina Center, Saitama (Japan); University of Aizu, Center for Mathematics and Physics, Fukushima (Japan); Hagino, Kouichi [Tohoku University, Department of Physics, Sendai (Japan); Tohoku University, Research Center for Electron Photon Science, Sendai (Japan); National Astronomical Observatory of Japan, Tokyo (Japan)

    2015-08-15

    We review various theoretical models which have been used to study the properties of the ground state and excited states of nuclei close to and beyond the neutron and proton drip lines. The validity and limitations of these models are discussed with applications to recent experimental findings such as di-neutron correlations in Borromian nuclei, the soft dipole excitations, direct two-neutron and two-proton decays, and odd-even staggerings of reaction cross sections. The role of isoscalar spin-triplet pairing interaction is also pointed out in the low-lying energy spectra as well as the spin- and isospin-dependent decay rates for N = Z and N = Z + 2 nuclei with mass A < 60. A characteristic feature of the Coulomb energy displacement of the Borromian nucleus {sup 11}Li is discussed in connection to the energies of isobaric analogue states (IAS) of T = 5/2 multiples in the A = 11 systems. (orig.)

  1. Novel Bounds on Marginal Probabilities

    OpenAIRE

    Mooij, Joris M.; Kappen, Hilbert J

    2008-01-01

    We derive two related novel bounds on single-variable marginal probability distributions in factor graphs with discrete variables. The first method propagates bounds over a subtree of the factor graph rooted in the variable, and the second method propagates bounds over the self-avoiding walk tree starting at the variable. By construction, both methods not only bound the exact marginal probability distribution of a variable, but also its approximate Belief Propagation marginal (``belief''). Th...

  2. Tight Bernoulli tail probability bounds

    OpenAIRE

    Dzindzalieta, Dainius

    2014-01-01

    The purpose of the dissertation is to prove universal tight bounds for deviation from the mean probability inequalities for functions of random variables. Universal bounds shows that they are uniform with respect to some class of distributions and quantity of variables and other parameters. The bounds are called tight, if we can construct a sequence of random variables, such that the upper bounds are achieved. Such inequalities are useful for example in insurance mathematics, for constructing...

  3. Precise Coulomb excitation B(E2) measurements for first 2+states of projectile nuclei near the doubly magic nuclei 78Ni and 132Sn

    International Nuclear Information System (INIS)

    Coulomb excitation is a very precise tool to measure excitation probabilities and provide insight on the collectivity of nuclear excitations and in particular on nuclear shapes. In the last few years radioactive ion beam facilities such as HRIBF opened unique opportunities to explore the structure of nuclei in the regions near the doubly magic nuclei 78Ni (Z=28 and N=50) and 132Sn (Z=50 and N=82). For this purpose we have developed specialized methods and instrumentation to measure various observables. There is also the opportunity to perform precision experiments with stable beams using exactly the same state-of-the-art instrumentation and techniques as with their radioactive ion beam counterpart. I describe some of the recent efforts at HRIBF to do more precise measurements using particle-gamma techniques.

  4. Error bounds for set inclusions

    Institute of Scientific and Technical Information of China (English)

    ZHENG; Xiyin(郑喜印)

    2003-01-01

    A variant of Robinson-Ursescu Theorem is given in normed spaces. Several error bound theorems for convex inclusions are proved and in particular a positive answer to Li and Singer's conjecture is given under weaker assumption than the assumption required in their conjecture. Perturbation error bounds are also studied. As applications, we study error bounds for convex inequality systems.

  5. Bounded Fixed-Point Iteration

    DEFF Research Database (Denmark)

    Nielson, Hanne Riis; Nielson, Flemming

    1992-01-01

    they obtain a quadratic bound. These bounds are shown to be tight. Specializing the case of strict and additive functions to functionals of a form that would correspond to iterative programs they show that a linear bound is tight. This is related to several analyses studied in the literature (including...

  6. Separable subgroups have bounded packing

    CERN Document Server

    Yang, Wen-yuan

    2010-01-01

    In this note, we prove that separable subgroups have bounded packing in ambient groups. The notion bounded packing was introduced by Hruska-Wise \\cite{HrWi} and in particular, our result confirms a conjecture in \\cite{HrWi} which states each subgroup of a virtually polycyclic group has the bounded packing property.

  7. International Symposium on Exotic Nuclei

    CERN Document Server

    Sobolev, Yu G; EXON-2014

    2015-01-01

    The production and the properties of nuclei in extreme conditions, such as high isospin, temperature, angular momenta, large deformations etc., have become the subject of detailed investigations in all scientific centers. The main topics discussed at the Symposium were: Synthesis and Properties of Exotic Nuclei; Superheavy Elements; Rare Processes, Nuclear Reactions, Fission and Decays; Experimental Facilities and Scientific Projects. This book provides a comprehensive overview of the newest results of the investigations in the main scientific centers such as GSI (Darmstadt, Germany), GANIL (Caen, France), RIKEN (Wako-shi, Japan), MSU (Michigan, USA), and JINR (Dubna, Russia).

  8. PDFs from nucleons to nuclei

    CERN Document Server

    Accardi, Alberto

    2016-01-01

    I review recent progress in the extraction of unpolarized parton distributions in the proton and in nuclei from a unified point of view that highlights how the interplay between high energy particle physics and lower energy nuclear physics can be of mutual benefit to either field. Areas of overlap range from the search for physics beyond the standard model at the LHC, to the study of the non perturbative structure of nucleons and the emergence of nuclei from quark and gluon degrees of freedom, to the interaction of colored probes in a cold nuclear medium.

  9. Octupole shapes in heavy nuclei

    International Nuclear Information System (INIS)

    Theoretical calculations and measurements show the presence of strong octupole correlations in thecyround states and low-lying states of odd-mass and odd-odd nuclei in the RaPa region. Evidence for octupole correlations is provided by the observation of parity doublets and reductions in M1 matrix elements, decoupling parameters, and Coriolis matrix elements Involving high-j states. Enhancement of E1 transition rates has also been observed for some of the octupole deformed nuclei. The most convincing argument for octupole deformation is provided by the similarities of the reduced alpha decay rates to the two members of parity doublets

  10. Neutron scattering on deformed nuclei

    International Nuclear Information System (INIS)

    Measurements of neutron elastic and inelastic differential cross sections around 14 MeV for 9Be, C, 181Ta, 232Th, 238U and 239Pu have been analyzed using a coupled channel (CC) formalism for deformed nuclei and phenomenological global optical model potentials (OMP). For the actinide targets these results are compared with the predictions of a semi-microscopic calculation using Jeukenne, Lejeune and Mahaux (JLM) microscopic OMP and a deformed ground state nuclear density. The overall agreement between calculations and the measurements is reasonable good even for the very light nuclei, where the quality of the fits is better than those obtained with spherical OMP

  11. Spontaneous fission of superheavy nuclei

    Indian Academy of Sciences (India)

    R A Gherghescu; D N Poenaru

    2015-09-01

    The macroscopic–microscopic method is extended to calculate the deformation energy and penetrability for binary nuclear configurations typical for fission processes. The deformed two-centre shell model is used to obtain single-particle energy levels for the transition region of two partially overlapped daughter and emitted fragment nuclei. The macroscopic part is obtained using the Yukawa-plus-exponential potential. The microscopic shell and pairing corrections are obtained using the Strutinsky and BCS approaches and the cranking formulae yield the inertia tensor. Finally, the WKB method is used to calculate penetrabilities and spontaneous fission half-lives. Calculations are performed for the decay of 282,292120 nuclei.

  12. Neutron Capture Experiments on Unstable Nuclei

    International Nuclear Information System (INIS)

    The overall objective of this project is the measurement of neutron capture cross sections of importance to stewardship science and astrophysical modeling of nucleosynthesis, while at the same time helping to train the next generation of scientists with expertise relevant to U.S. national nuclear security missions and to stewardship science. A primary objective of this project is to study neutron capture cross sections for various stable and unstable isotopes that will contribute to the Science Based Stockpile Stewardship (SBSS) program by providing improved data for modeling and interpretation of nuclear device performance. Much of the information obtained will also be important in astrophysical modeling of nucleosynthesis. Measurements of these neutron capture cross sections are being conducted in collaboration with researchers at the Los Alamos Neutron Science Center (LANSCE) facility using the unique Detector for Advanced Neutron Capture Experiments (DANCE). In our early discussions with the DANCE group, decisions were made on the first cross sections to be measured and how our expertise in target preparation, radiochemical separations chemistry, and data analysis could best be applied. The initial emphasis of the project was on preparing suitable targets of both natural and separated stable europium isotopes in preparation for the ultimate goal of preparing a sufficiently large target of radioactive 155Eu (t1/2 = 4.7 years) and other radioactive and stable species for neutron cross-section measurements at DANCE. Our Annual Report, ''Neutron Capture Experiments on Unstable Nuclei'' by J. M. Schwantes, R. Sudowe, C. M. Folden III, H. Nitsche, and D. C. Hoffman, submitted to NNSA in December 2003, gives details about the initial considerations and scope of the project. During the current reporting period, electroplated targets of natural Eu together with valuable, stable, and isotopically pure 151Eu and 153Eu, and isotopically separated 154Sm were measured for

  13. Direct Neutron Capture for Magic-Shell Nuclei

    OpenAIRE

    Krausmann, E.; Balogh, W.; Oberhummer, H.; Rauscher, T.; Kratz, K.-L.; Ziegert, W.

    1995-01-01

    In neutron capture for magic--shell nuclei the direct reaction mechanism can be important and may even dominate. As an example we investigated the reaction $^{48}$Ca(n,$\\gamma)^{49}$Ca for projectile energies below 250\\,keV in a direct capture model using the folding procedure for optical and bound state potentials. The obtained theoretical cross sections are in agreement with the experimental data showing the dominance of the direct reaction mechanism in this case. The above method was also ...

  14. Spontaneous Muon Emission during Fission, a New Nuclear Radioactivity

    OpenAIRE

    Ion, D. B.; Ion, M. L. D.; Ion-Mihai, Reveica

    2011-01-01

    In this paper the essential theoretical predictions for the nuclear muonic radioactivity are presented by using a special fission-like model similar with that used in description of the pionic emission during fission. Hence, a fission-like model for the muonic radioactivity takes into account the essential degree of freedom of the system: muon-fissility, muon-fission barrier height, etc. Using this model it was shown that most of the SHE-nuclei lie in the region where the muonic fissility par...

  15. Radioactive air sampling methods

    CERN Document Server

    Maiello, Mark L

    2010-01-01

    Although the field of radioactive air sampling has matured and evolved over decades, it has lacked a single resource that assimilates technical and background information on its many facets. Edited by experts and with contributions from top practitioners and researchers, Radioactive Air Sampling Methods provides authoritative guidance on measuring airborne radioactivity from industrial, research, and nuclear power operations, as well as naturally occuring radioactivity in the environment. Designed for industrial hygienists, air quality experts, and heath physicists, the book delves into the applied research advancing and transforming practice with improvements to measurement equipment, human dose modeling of inhaled radioactivity, and radiation safety regulations. To present a wide picture of the field, it covers the international and national standards that guide the quality of air sampling measurements and equipment. It discusses emergency response issues, including radioactive fallout and the assets used ...

  16. Comparisons between radioactive and non-radioactive gas lantern mantles.

    Science.gov (United States)

    Furuta, E; Yoshizawa, Y; Aburai, T

    2000-12-01

    Gas lantern mantles containing radioactive thorium have been used for more than 100 years. Although thorium was once believed to be indispensable for giving a bright light, non-radioactive mantles are now available. From the radioactivities of the daughter nuclides, we estimated the levels of radioactivity of 232Th and 228Th in 11 mantles. The mantles contained various levels of radioactivity from background levels to 1410 +/- 140 Bq. Our finding that radioactive and non-radioactive mantles are equally bright suggests that there is no advantage in using radioactive mantles. A remaining problem is that gas lantern mantles are sold without any information about radioactivity.

  17. Radioactive wastes and discharges

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The guide sets out the radiation safety requirements and limits for the treatment of radioactive waste. They shall be observed when discharging radioactive substances into the atmosphere or sewer system, or when delivering solid, low-activity waste to a landfill site without a separate waste treatment plan. The guide does not apply to the radioactive waste resulting from the utilisation of nuclear energy or natural resources.

  18. Radioactivity and its measurement

    CERN Document Server

    Mann, W B; Garfinkel, S B

    1980-01-01

    Begins with a description of the discovery of radioactivity and the historic research of such pioneers as the Curies and Rutherford. After a discussion of the interactions of &agr;, &bgr; and &ggr; rays with matter, the energetics of the different modes of nuclear disintegration are considered in relation to the Einstein mass-energy relationship as applied to radioactive transformations. Radiation detectors and radioactivity measurements are also discussed

  19. Drainage of radioactive areas

    International Nuclear Information System (INIS)

    This Code of Practice covers all the drainage systems which may occur in the radioactive classified area of an establishment, namely surface water, foul, process and radioactive drainage. It also deals with final discharge lines. The Code of Practice concentrates on those aspects of drainage which require particular attention because the systems are in or from radioactive areas and typical illustrations are given in appendices. The Code makes references to sources of information on conventional aspects of drainage design. (author)

  20. Radioactive wastes and discharges

    International Nuclear Information System (INIS)

    The guide sets out the radiation safety requirements and limits for the treatment of radioactive waste. They shall be observed when discharging radioactive substances into the atmosphere or sewer system, or when delivering solid, low-activity waste to a landfill site without a separate waste treatment plan. The guide does not apply to the radioactive waste resulting from the utilisation of nuclear energy or natural resources

  1. Biokinetics of radioactive compounds

    International Nuclear Information System (INIS)

    Biokinetics of radioactive compounds in the human organism represent the central notion in this work, consisting of a theoretical and an experimental part. The first chapter contains definitions and explanations on the importance of the biokinetics of radioactive compounds in clinical therapy and pharmaceuticals research as well as for assessing radiation exposure and radiation hazards. Chapter 2 describes the bases of the biokinetics of radioactive compounds in the medical and non-medical sector, and biokinetics. Chapter 3 deals with obtaining biokinetics data for radioactive compounds from investigations in animals and man, evaluation of measurements, transferring data obtained by animal experiments to man, and with the variability of biokinetics data. In Chapter 4 the results of comprehensive studies in literature on the biokinetics of radioactive compounds are summarized. They relate to three areas: professional and environmental incorporation of radioactive compounds, use of radioactive pharmaceuticals in therapy and research, and incorporation of radioactive compounds by embryo and fetus in consequence of the uptake of radioactive compounds by the mother. Chapter 5 gives an assessment of radiation hazards from radioactive compounds in connection with occupational radiation exposure and nuclear diagnostics in vivo, and a comparison with other risks. For that purpose the concept of effective dose equivalent is applied in connection with suitable risk coefficients to professional and nuclear-medical radiation exposure. Chapter 6 is dedicated to measurement of the biokinetics of radioactive compounds in man using conventional devices. The object of Chapter 7 is measurement of the biokinetics of radioactive pharmaceuticals in man by means of single photon emission computed tomography. (orig./MG)

  2. Gluons in nuclei and pions

    International Nuclear Information System (INIS)

    The possibility of connecting apparently different descriptions of quarks in nuclei has already been shown. The authors pursue the consequences of this 'duality' for flavour-singlet distributions. An interesting possibility is that nuclear pions may have unusual quark-gluon substructure. Indeed, pions in general could be relatively 'rich' in glue. (author)

  3. Fission dynamics of hot nuclei

    Indian Academy of Sciences (India)

    Santanu Pal; Jhilam Sadhukhan

    2014-04-01

    Experimental evidence accumulated during the last two decades indicates that the fission of excited heavy nuclei involves a dissipative dynamical process. We shall briefly review the relevant dynamical model, namely the Langevin equations for fission. Statistical model predictions using the Kramers’ fission width will also be discussed.

  4. Percolation and multifragmentation of nuclei

    International Nuclear Information System (INIS)

    A method to build the 'cold' nuclei as percolation clusters is suggested. Within the framework of definite assumptions of the character of nucleon-nucleon couplings breaking resulting from the nuclear reactions as description of the multifragmentation process in the hadron-nucleus and nucleus-nucleus reactions at high energies is obtained. 19 refs.; 6 figs

  5. Chiral Electroweak Currents in Nuclei

    CERN Document Server

    Riska, D O

    2016-01-01

    The development of the chiral dynamics based description of nuclear electroweak currents is reviewed. Gerald E. (Gerry) Brown's role in basing theoretical nuclear physics on chiral Lagrangians is emphasized. Illustrative examples of the successful description of electroweak observables of light nuclei obtained from chiral effective field theory are presented.

  6. Static multipole deformations in nuclei

    International Nuclear Information System (INIS)

    The physics of static multipole deformations in nuclei is reviewed. Nuclear static moments result from the delicate balance between the vibronic Jahn-Teller interaction (particle-vibration coupling) and the residual interaction (pairing force). Examples of various permanent nuclear deformations are discussed

  7. Partial Dynamical Symmetries in Nuclei

    CERN Document Server

    Leviatan, A

    2000-01-01

    Partial dynamical symmetries (PDS) are shown to be relevant to the interpretation of the $K=0_2$ band and to the occurrence of F-spin multiplets of ground and scissors bands in deformed nuclei. Hamiltonians with bosonic and fermionic PDS are presented.

  8. Octupole correlation effects in nuclei

    International Nuclear Information System (INIS)

    Octupole correlation effects in nuclei are discussed from the point of view of many-body wavefunctions as well as mean-field methods. The light actinides, where octupole effects are largest, are considered in detail. Comparisons of theory and experiment are made for energy splittings of parity doublets; E1 transition matrix elements and one-nucleon transfer reactions

  9. Magnetic shift of magic nuclei

    International Nuclear Information System (INIS)

    The shell effect of nuclei in strong magnetic fields associated with magnetars' is considered within the shell model. It is demonstrated that the magnetic field gives rise to a change of the phase in shell-oscillations of nuclear masses. The nuclear magic numbers of the iron region are shifted significantly towards smaller mass numbers. (author)

  10. Low energy + scattering on = nuclei

    Indian Academy of Sciences (India)

    Swapan Das; Arun K Jain

    2003-11-01

    The data for the total cross-section of + scattering on various nuclei have been analysed in the Glauber multiple scattering theory. Energy-dependent +-nucleus optical potential is generated using the forward +-nucleon scattering amplitude and the nuclear density distribution. Along with this, the calculated total +-nucleus cross-sections using the effective +-nucleon cross-section inside the nucleus are also presented.

  11. Coulomb excitation of exotic nuclei at REX-ISOLDE with MINIBALL

    International Nuclear Information System (INIS)

    In this contribution nuclear structure studies with post-accelerated radioactive ion beams from the REX-ISOLDE facility at CERN are presented. The method employed is γ-ray spectroscopy with the MINIBALL array following 'safe' Coulomb excitation. The highly efficient MINIBALL array consists of 8 triple clusters of six-fold segmented HPGe detectors. Recent results concerning the investigation of nuclear shapes are presented and discussed. These results include studies on deformation in 94,96Kr nuclei, on quadrupole collectivity around 132Sn, on shape coexistence in neutron-deficient Hg, Po and Rn isotopes, and on octupole states in 122Rn and 224Ra nuclei

  12. Nuclear magnetic and quadrupole moments for nuclear structure research on exotic nuclei

    CERN Document Server

    Neyens, G

    2003-01-01

    One of the key issues in current nuclear physics research is to investigate the properties of so-called 'exotic nuclei' and of 'exotic nuclear structures'. Exotic nuclei are nuclei with a proton-to-neutron ratio that is very different from the proton-to-neutron ratio in stable nuclei (a technical term related to this ratio is the 'isospin'). We define exotic nuclear structures as excitation modes of nuclei that have a very different structure than the structure (or shape) of the nuclear ground state. By putting the nucleons in a nucleus to extreme conditions of isospin and excitation energy one can investigate details of one of the four basic forces in nature: the strong force which binds the nucleons together to form a bound nucleus. While the basic properties of the strong nucleon-nucleon interaction are known from investigating the properties of nuclei near the 'valley of stability', recent developments in the study of exotic nuclei have demonstrated that specific properties of the strong interaction, such...

  13. Secondary beams and the synthesis of exotic nuclei

    International Nuclear Information System (INIS)

    With the advent of modern fast cycling synchrotrons capable of delivering high intensity heavy ion beams up to uranium, the production of secondary radioactive ion beams (RIBs) with sufficient intensity has become feasible. The basic production mechanism is the fragmentation of near relativistic heavy ion beams on light targets. The physical facts underlying the efficient conversion of stable beams into RIBs are: (1) at beam energies of several 100 MeV/A thick conversion targets (1-10 g/cm2) can be used, which, for nuclei near stability, convert on the order of .1 to 1% of the primary beam into secondary beams, (2) the secondary beams are emitted into a narrow phase space (small transverse and longitudinal emittances), and (3) these emittances are of the correct magnitude to match the acceptances of suitably designed storage accumulator rings. From a primarily experimental point of view experiments with RIBs can be divided into three categories: (1) Experiments that measure properties of the secondary beams as such, like masses, Q-values, and magnetic moments, β-decay studies of implanted exotic nuclei, and Moessbauer spectroscopy. (2) Experiments that use external targets. This includes the synthesis of exotic nuclei with neutron- or proton-rich beams, implantation of RIBs for tracer studies in solid state physics, and biomedical applications. Many well established experimental techniques can be used in these two categories, while (3), the use of internal targets, represents in many ways new challenges to experimenters in nuclear and atomic physics

  14. Exotic nuclei with charm and bottom flavor

    Directory of Open Access Journals (Sweden)

    Yasui S.

    2010-04-01

    Full Text Available We discuss the possibility of existence of exotic nuclei containing charm and bottom mesons. We study the interaction between $ar{D}$ (B mesons and nucleons from view of heavy quark symmetry, and derive the one pion exchange potentials. We apply these potentials to the two body system of $ar{D}$ (B meson and nucleon N , and find there are possible stable bound states with spin JP = 1/2− and isospin I = 0. We find that the tensor interaction mixing $ar{D}$N and $ar{D}$*N (BN and B*N plays an important role. We also qualitatively discuss the possible bound states of $ar{D}$ (B meson and two nucleons.

  15. Comprehensive decay law for emission of charged particles and exotic cluster radioactivity

    Indian Academy of Sciences (India)

    Basudeb Sahu

    2014-04-01

    A general decay formula for the emission of charged particles from metastable nuclei is developed based on the basic phenomenon of resonances occurring in quantum scattering process under Coulomb-nuclear potential. It relates the half-lives of radioactive decays with the values of the outgoing elements with masses and charges of the nuclei involved in the decay. The relation is found to be a generalization of the Geiger–Nuttall law in radioactivity and explains well all the known emissions of charged particles including clusters, alpha and proton.

  16. Four-body correlations in heavy nuclei

    International Nuclear Information System (INIS)

    The origin of four-body correlations in heavy nuclei is studied. It is found that the physical picture for this phenomenon can be different in heavy and light nuclei. An application to the /sup 208/Pb region is made

  17. Proton Radioactivity Studies

    OpenAIRE

    Mahmud, Hassan A A

    2002-01-01

    A search for new examples of proton emission from ground and low lying states was conducted at Argonne National Laboratory. Of particular interest were examples of proton emission from nuclei which were deformed or had an odd number of neutrons, the majority of known proton emitters being odd-even and near-spherical. Candidate nuclei were created via fusion evaporation, these recoils then being separated according to their mass to charge ratio by the Fragment Mass Analyser, before being impla...

  18. Transmutations of atomic nuclei in hadron-nuclei nuclear collisions at GeV energies

    International Nuclear Information System (INIS)

    In hadron-nuclei nuclear collisions nuclei change their mass numbers A and the charge numbers Z. The mechanism of transmutation of a target nucleus was prompted experimentally and is described in this work. The information about the nuclei transmutation may be a basis for elaboration of the method of nuclei changes in beams of hadrons from accelerators

  19. Transport of Radioactive Materials

    International Nuclear Information System (INIS)

    This address overviews the following aspects: concepts on transport of radioactive materials, quantities used to limit the transport, packages, types of packages, labeling, index transport calculation, tags, labeling, vehicle's requirements and documents required to authorize transportation. These requirements are considered in the regulation of transport of radioactive material that is in drafting step

  20. A Remote Radioactivity Experiment

    Science.gov (United States)

    Jona, Kemi; Vondracek, Mark

    2013-01-01

    Imagine a high school with very few experimental resources and limited budgets that prevent the purchase of even basic laboratory equipment. For example, many high schools do not have the means of experimentally studying radioactivity because they lack Geiger counters and/or good radioactive sources. This was the case at the first high school one…

  1. Induced radioactivity at CERN

    CERN Multimedia

    1970-01-01

    A description of some of the problems and some of the advantages associated with the phenomenon of induced radioactivity at accelerator centres such as CERN. The author has worked in this field for several years and has recently written a book 'Induced Radioactivity' published by North-Holland.

  2. Bound Nucleon Form Factors, Quark-Hadron Duality, and Nuclear EMC Effect

    CERN Document Server

    Tsushima, K; Melnitchouk, W; Saitô, K; Thomas, A W

    2003-01-01

    We discuss the electromagnetic form factors, axial form factors, and structure functions of a bound nucleon in the quark-meson coupling (QMC) model. Free space nucleon form factors are calculated using the improved cloudy bag model (ICBM). After describing finite nuclei and nuclear matter in the quark-based QMC model, we compute the in-medium modification of the bound nucleon form factors in the same framework. Finally, limits on the medium modification of the bound nucleon $F_2$ structure function are obtained using the calculated in-medium electromagnetic form factors and local quark-hadron duality.

  3. Single-neutron excitations in neutron-rich N=51 nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, J.S.; Cizewski, J.A.; Jones, K.L. [Rutgers University, Department of Physics and Astronomy, New Brunswick, NJ (United States); Bardayan, D.W.; Blackmon, J.C.; Gross, C.J.; Liang, J.F.; Shapira, D.; Smith, M.S. [Oak Ridge National Laboratory, Physics Division, Oak Ridge, TN (United States); Fitzgerald, R.P.; Visser, D.W. [University of North Carolina, Department of Physics and Astronomy, Chapel Hill, NC (United States); Greife, U.; Livesay, R.J. [Colorado School of Mines, Physics Department, Golden, CO (United States); Johnson, M.S. [Oak Ridge Associated Universities, Oak Ridge, TN (United States); Kozub, R.L. [Tennessee Technological University, Department of Physics, Cookeville, TN (United States); Ma, Z.; Moazen, B.H. [University of Tennessee, Department of Physics and Astronomy, Knoxville, TN (United States); Nesaraja, C.D. [Oak Ridge National Laboratory, Physics Division, Oak Ridge, TN (United States); University of Tennessee, Department of Physics and Astronomy, Knoxville, TN (United States)

    2005-09-01

    Single-neutron transfer reactions have been measured on two N=50 isotones at the Holifield Radioactive Ion Beam Facility (HRIBF). The single-particle-like states of {sup 83}Ge and {sup 85}Se have been populated using radioactive ion beams of {sup 82}Ge and {sup 84}Se and the (d,p) reaction in inverse kinematics. The properties of the lowest-lying states -including excitation energies, orbital angular momenta, and spectroscopic factors- have been determined for these N=51 nuclei. (orig.)

  4. Bounding approaches to system identification

    CERN Document Server

    Norton, John; Piet-Lahanier, Hélène; Walter, Éric

    1996-01-01

    In response to the growing interest in bounding error approaches, the editors of this volume offer the first collection of papers to describe advances in techniques and applications of bounding of the parameters, or state variables, of uncertain dynamical systems. Contributors explore the application of the bounding approach as an alternative to the probabilistic analysis of such systems, relating its importance to robust control-system design.

  5. Shell Structure Evolution in Nuclei far from the Valley of Stability: Recent Results from GANIL

    International Nuclear Information System (INIS)

    Shell structure evolution in nuclei situated at the extremes of neutron and proton excess are investigated using in-beam gamma spectroscopy techniques with radioactive beams at GANIL. A selection of results obtained very recently is presented: i) The reduced transition probabilities B(E2;01+ → 2+) of the neutron-rich 74Zn and 70Ni nuclei have been measured using Coulomb excitation at intermediate energy. An unexpected large proton core polarization has been found in 70Ni and interpreted as being due to the monopole interaction between the neutron g9/2 and protons f7/2 and f5/2 spin-orbit partner orbitals. ii) Two proton knock-out reactions has been performed in order to study the most neutron-rich nuclei at the N=28 shell closure. Gamma rays spectra and momentum distribution have been obtained for 42Si and neighboring nuclei. Evidence has been found for a persistence of the deformation at N=28 down to Silicon despite a relatively large Z=14 gap. iii) The in-beam gamma spectroscopy of 36Ca performed using neutron knock-out reactions revealed that 36Ca is as doubly magic as 36S. The Coulomb energy difference of the first 2+ state in this T=2, A=36 mirror nuclei reveals one of largest isospin symmetry breaking in nuclei

  6. Bounded Rationality in Transposition Processes

    DEFF Research Database (Denmark)

    Vollaard, Hans; Martinsen, Dorte Sindbjerg

    2014-01-01

    that concerns the organisation and financing of national healthcare systems. This article applies the perspective of bounded rationality to explain (irregularities in) the timely and correct transposition of EU directives. The cognitive and organisational constraints long posited by the bounded rationality...... perspective may affect the commonly employed explanatory factors of administrative capacities, misfit and the heterogeneity of preferences among veto players. To prevent retrospective rationalisation of the transposition process, this paper traces this process as it unfolded in Denmark and the Netherlands....... As bounded rationality is apparent in the transposition processes in these relatively well-organised countries, future transposition studies should devote greater consideration to the bounded rationality perspective....

  7. Phonon operators in deformed nuclei

    International Nuclear Information System (INIS)

    For the description of the excited states in deformed nuclei new phonon operators are introduced, which depend on the sign of the angular momentum projection onto the symmetry axis of a deformed nucleus. In the calculations with new phonons the Pauli principle is correctly taken into account in the two-phonon components of the wave functions. There is a difference in comparison with the calculation with phonons independent of the sign of the angular momentum projection. The new phonons should be used in deformed nuclei if the Pauli principle is consistently taken into account and in the calculations with the excited state wave functions having the components with more than one phonon operator

  8. Scissors Mode in Gd Nuclei

    Directory of Open Access Journals (Sweden)

    Wu C.Y.

    2012-02-01

    Full Text Available Spectra of γ rays following neutron capture at isolated resonances of 6 stable Gd isotopes were measured with highly segmented BaF2 detector DANCE at the Los Alamos LANSCE spallation neutron source. The main emphasis was put on studying the γ-cascade decay of neutron resonances to get unique information on photon strength. An analysis of the accumulated γ-ray spectra within the extreme statistical model leads to an inescapable conclusion that scissors mode resonances are built not only on the ground-state, but also on excited levels in all product nuclei studied. The results on summed B(M1↑ strength and energy of the scissors mode are compared with systematics of scissors mode parameters for the ground-state transitions deduced from nuclear resonance fluorescence measurements. A specific feature of our experiments is the investigation of scissors mode of odd nuclei, for which the nuclear resonance fluorescence provides only limited information.

  9. Scissors Mode in Gd Nuclei

    Science.gov (United States)

    Kroll, J.; Baramsai, B.; Becker, J. A.; Bečvář, F.; Bredeweg, T. A.; Couture, A.; Chyzh, A.; Dashdorj, D.; Haight, R. C.; Jandel, M.; Krtička, M.; Mitchell, G. E.; O'Donnell, J. M.; Parker, W.; Rundberg, R. S.; Ullmann, J. L.; Vieira, G. J.; Walker, C. L.; Wilhelmy, J. B.; Wouters, J. M.; Wu, C. Y.

    2012-02-01

    Spectra of γ rays following neutron capture at isolated resonances of 6 stable Gd isotopes were measured with highly segmented BaF2 detector DANCE at the Los Alamos LANSCE spallation neutron source. The main emphasis was put on studying the γ-cascade decay of neutron resonances to get unique information on photon strength. An analysis of the accumulated γ-ray spectra within the extreme statistical model leads to an inescapable conclusion that scissors mode resonances are built not only on the ground-state, but also on excited levels in all product nuclei studied. The results on summed B(M1)↑ strength and energy of the scissors mode are compared with systematics of scissors mode parameters for the ground-state transitions deduced from nuclear resonance fluorescence measurements. A specific feature of our experiments is the investigation of scissors mode of odd nuclei, for which the nuclear resonance fluorescence provides only limited information.

  10. Evolution of active galactic nuclei

    CERN Document Server

    Merloni, Andrea

    2012-01-01

    [Abriged] Supermassive black holes (SMBH) lurk in the nuclei of most massive galaxies, perhaps in all of them. The tight observed scaling relations between SMBH masses and structural properties of their host spheroids likely indicate that the processes fostering the growth of both components are physically linked, despite the many orders of magnitude difference in their physical size. This chapter discusses how we constrain the evolution of SMBH, probed by their actively growing phases, when they shine as active galactic nuclei (AGN) with luminosities often in excess of that of the entire stellar population of their host galaxies. Following loosely the chronological developments of the field, we begin by discussing early evolutionary studies, when AGN represented beacons of light probing the most distant reaches of the universe and were used as tracers of the large scale structure. This early study turned into AGN "Demography", once it was realized that the strong evolution (in luminosity, number density) of ...

  11. Cooper pairs in atomic nuclei

    International Nuclear Information System (INIS)

    We describe recent efforts to study Cooper pairs in atomic nuclei. We consider a self-consistent Hartree Fock mean field for the even Sm isotopes and compare results based on three treatments of pairing correlations: a BCS treatment, a number-projected BCS treatment and an exact treatment using the Richardson Ansatz. Significant differences are seen in the pairing correlation energies. Furthermore, because it does not average over the properties of the fermion pairs, the Richardson solution permits a more meaningful definition of the Cooper wave function and of the fraction of pairs that are collective. Our results confirm that only a few pairs near the Fermi surface in realistic atomic nuclei are collective. (Author)

  12. Cooper pairs in atomic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Pittel, S. [Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, 19716 Delaware (United States); Dussel, G. G. [Departamento de Fisica J.J. Giambiagi, Universidad de Buenos Aires, 1428 Buenos Aires (Argentina); Dukelsky, J.; Sarriguren, P. [Instituto de Estructura de la Materia, CSIC, Serrano 123, 28006 Madrid (Spain)

    2008-12-15

    We describe recent efforts to study Cooper pairs in atomic nuclei. We consider a self-consistent Hartree Fock mean field for the even Sm isotopes and compare results based on three treatments of pairing correlations: a BCS treatment, a number-projected BCS treatment and an exact treatment using the Richardson Ansatz. Significant differences are seen in the pairing correlation energies. Furthermore, because it does not average over the properties of the fermion pairs, the Richardson solution permits a more meaningful definition of the Cooper wave function and of the fraction of pairs that are collective. Our results confirm that only a few pairs near the Fermi surface in realistic atomic nuclei are collective. (Author)

  13. Multiple phonon excitation in nuclei

    International Nuclear Information System (INIS)

    The studies of multiphonon excitations in nuclei are reviewed both from the theoretical and experimental points of view. The presence of giant resonances in nuclei is described in the framework of macroscopic and microscopic models and the relative merits of different probes to excite such states are illustrated. The existence of giant resonances built on excited states is stressed. An exhaustive description of the theoretical estimates of the properties of the multiphonon states is presented. The theory predicts that such multiple collective excitations should closely follow a harmonic pattern. Recent experimental results on the double giant dipole resonance using the (π+π-) double charge exchange reaction are shown. The status of the search for isoscalar multiphonon excitations by means of the strong nuclear potential produced by heavy ions is presented. Conclusions are drawn and new prospects are discussed. (authors) 293 refs., 67 figs., 8 tabs

  14. Relativistic description of deformed nuclei

    International Nuclear Information System (INIS)

    The author has shown that relativistic Hartree calculations using parameters that have been fit to the properties of nuclear matter can provide a good description of both spherical and axially deformed nuclei. The quantitative agreement with experiment is equivalent to that which was obtained in non-relativistic calculations using Skyrme interactions. The equilibrium deformation is strongly correlated with the size of the spin-orbit splitting, and that parameter sets which give roughly the correct value for this splitting provide the best agreement with the quadrupole moments in the s-d shell. Finally, for closed shell +/- 1 nuclei, it was shown that the self-consistent calculations are able to reproduce the experimental magnetic moments. This was not possible in relativistic calculations which include only the effects of the valence orbital

  15. Moessbauer effects on oriented nuclei

    International Nuclear Information System (INIS)

    Standard nuclear orientation methods (not sensitive to the polarization) do not give information on the sign of the magnetic moment. Mossbauer effect separates right-hand and left-hand circularly polarized components, thus its detection on oriented nuclei (T approximately 10 mK) gives the sign of the magnetic moment of oriented state. In this thesis we applied this method to study the 3/2- ground states of 191Pt and 193Os, which are in the prolate-oblate transition region, where assignement of experimental levels to theoretical states is often umbiguous. We show that for those nuclei the sign of the magnetic moment is the signature of the configuration, and its determination establishes the correspondance between experimental and theoretical levels

  16. Phonon operators for deformed nuclei

    International Nuclear Information System (INIS)

    The mathematical formalism with the phonon operators independent of the signature of the angular momentum projection turns out to be inadequate for describing excited states of deformed nuclei. New phonon operators are introduced which depend on the signature of the angular momentum projection on the symmetry axis of a deformed nucleus. It is shown that the calculations with the new phonons take correctly into account the Pauli principle in two-phonon components of wave functions. The results obtained differ from those given by the phonons independent of the signature of the angular momentum projection. The new phonons must be used in deformed nuclei at taking systematically the Pauli principle into account and in calculations involving wave functions of excited states having components with more than one-phonon operator

  17. Triaxial rotation in atomic nuclei

    Institute of Scientific and Technical Information of China (English)

    CHEN Yong-Shou; GAO Zao-Chun

    2009-01-01

    The Projected Shell Model has been developed to include the spontaneously broken axial symmetry so that the rapidly rotating triaxial nuclei can be described microscopically. The theory provides an useful tool to gain an insight into how a triaxial nucleus rotates, a fundamental question in nuclear structure. We shall address some current interests that are strongly associated with the triaxial rotation. A feasible method to explore the problem has been suggested.

  18. Neurotransmitters of the suprachiasmatic nuclei

    OpenAIRE

    Reghunandanan, Vallath; Reghunandanan, Rajalaxmy

    2006-01-01

    There has been extensive research in the recent past looking into the molecular basis and mechanisms of the biological clock, situated in the suprachiasmatic nuclei (SCN) of the anterior hypothalamus. Neurotransmitters are a very important component of SCN function. Thorough knowledge of neurotransmitters is not only essential for the understanding of the clock but also for the successful manipulation of the clock with experimental chemicals and therapeutical drugs. This article reviews the c...

  19. Weak pion production from nuclei

    Indian Academy of Sciences (India)

    S K Singh; M Sajjad Athar; Shakeb Ahmad

    2006-04-01

    The charged current pion production induced by neutrinos in 12C, 16O and 56Fe nuclei has been studied. The calculations have been done for the coherent as well as the incoherent processes assuming dominance and takes into account the effect of Pauli blocking, Fermi motion and the renormalization of in the nuclear medium. The pion absorption effects have also been taken into account.

  20. Geometric symmetries in light nuclei

    CERN Document Server

    Bijker, Roelof

    2016-01-01

    The algebraic cluster model is is applied to study cluster states in the nuclei 12C and 16O. The observed level sequences can be understood in terms of the underlying discrete symmetry that characterizes the geometrical configuration of the alpha-particles, i.e. an equilateral triangle for 12C, and a regular tetrahedron for 16O. The structure of rotational bands provides a fingerprint of the underlying geometrical configuration of alpha-particles.

  1. Low-energy Antikaon Interaction with Nuclei: The AMADEUS Challenge

    CERN Document Server

    Marton, Johann; Bellotti, Giovanni; Berucci, Carolina; Bosnar, Dimitri; Bragadireanu, Mario; Curceanu, Catalina; Clozza, Alberto; Cargnelli, Michael; Butt, Aslan; Del Grande, Raffaele; Fabbietti, Laura; Fiorini, Carlo; Ghio, Francesco; Guaraldo, Carlo; Iliescu, Mihai; Sandri, Paolo Levi; Pietreanu, Dorel; Piscicchia, Kristian; Vidal, Antonio Romero; Scordo, Alessandro; Shi, Hexi; Sirghi, Diana; Sirghi, Florin; Tucakovic, Ivana; Doce, Oton Vazquez; Widmann, Eberhard; Zmeskal, Johann

    2016-01-01

    The low-energy strong interaction of antikaons (K-) with nuclei has many facets and rep- resents a lively and challenging research ?eld. It is interconnected to the peculiar role of strangeness, since the strange quark is rather light, but still much heavier than the up and down quarks. Thus, when strangeness is involved one has to deal with spontaneous and explicit symmetry breaking in QCD. It is well known that the antikaon interaction with nucleons is attractive, but how strong ? Is the interaction strong enough to bind nucleons to form kaonic nuclei and, if so, what are the properties (binding energy, decay width)? There are controversial indications for such bound states and new results are expected to come soon. The existence of antikaon mediated bound states might have important consequences since it would open the possibility for the formation of cold baryonic matter of high density which might have a severe impact in astrophysics for the understanding of the composi- tion of compact (neutron) stars. ...

  2. Possibilities for synthesis of new isotopes of superheavy nuclei in cold fusion reactions

    Science.gov (United States)

    Bao, X. J.; Gao, Y.; Li, J. Q.; Zhang, H. F.

    2016-04-01

    In order to find a way to produce superheavy nuclei (SHN), which appear in the gap between the SHN synthesized by cold fusion and those by hot fusion, or those so far not yet been produced in the laboratory, we tried to make use of a set of projectile isotopic chains, to use a radioactive beam projectile, and to test symmetric fusion reactions for gaining more neutrons to synthesize neutron-richer SHN based on the dinuclear system (DNS) model via cold fusion reactions. It is found that the nuclei 265Mt,Ds,272268,273Rg, and 274,275,276Cn may be produced with the detectable evaporation residual cross sections. The intensities of radioactive beams are significantly less than those of the stable beams, therefore using a stable beam is predicted to be the most favorable method for producing SHN. From the symmetric reaction system 136Xe+136Xe , no fusion event was found.

  3. Oxygen dependence of cellular uptake of EF5 [2-(2-nitro-1H-imidazol-1-yl)-N-(2,2,3,3,3-pentafluoropropyl)a cet amide] : analysis of drug adducts by fluorescent antibodies vs bound radioactivity.

    OpenAIRE

    Koch, C.J. (Christian); Evans, S.M.; Lord, E M

    1995-01-01

    The present studies were initiated to quantitate the oxygen dependence of bioreductive metabolism-induced binding of EF5, a pentafluorinated derivative of the 2-nitroimidazole, etanidazole. Two different assays were compared: first, radioactive drug incorporation into cell lysates, which provides a direct measure of drug metabolism or uptake; second, monoclonal antibody detection of cellular macromolecular adducts of EF5 after whole cell permeabilisation and fixing. The antibodies (a single c...

  4. Processing of receptor-bound somatostatin: internalization and degradation by pancreatic acini

    International Nuclear Information System (INIS)

    The authors have previously demonstrated the presence of specific binding sites for somatostatin on plasma membranes from pancreatic acinar cells. In the present study they attempted to characterize the fate of receptor-bound 125I-[Tyr11]somatostatin. Internalization of somatostatin was rapid (reaching a plateau at 20% of the cell-associated specific radioactivity) and temperature dependent. To follow the processing of bound somatostatin, acini were incubated with 125I-[Tyr11]somatostatin at 50C during 16 h then, after washing, incubated at 370C for 90 min in fresh medium. Surface-bound somatostatin decreased rapidly, whereas radioactivity increased in the cell interior and the incubation medium. Intracellular and membrane-bound radioactivity was mainly intact 125I-[Tyr11]somatostatin. Degradation occurred at the plasma membrane level and led to iodotyrosine production. After 15 min of incubation, 15% of the initially surface-bound 125I-[Tyr11]somatostatin was compartmentalized within the cell, mainly in the microsomal fraction. After 30 min, a significant increase in radioactivity appeared in the nuclear fraction. These results indicate that the major part of somatostatin cellular degradation takes place at the plasma membrane level. Within the cell, somatostatin is routed to the nucleus via particular fractions sedimenting with microsomal vesicles

  5. Lower bound on the value of the fine-structure constant

    CERN Document Server

    Hod, Shahar

    2010-01-01

    Recently, we have proposed the existence of a universal relation between the maximal electric charge and total mass of any weakly self-gravitating object: $Z\\leq Z^*={\\alpha}^{-1/3}A^{2/3}$, where $Z$ is the number of protons, $A$ is the total baryon (mass) number, and $\\alpha=e^2/\\hbar c$ is the fine-structure constant. Motivated by this novel bound, we explore the $(Z,A)$-relation of atomic nuclei as deduced from the Weizs\\"acker semi-empirical mass formula. It is shown that {\\it all} nuclei, including the meta-stable maximally charged ones, conform to the upper bound. Moreover, we suggest that the new charge-mass bound places an interesting constraint on the value of the fine-structure constant: $\\alpha\\gtrsim 1/323$.

  6. Quarkonium-nucleus bound states from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Beane, S.  R. [Univ. of Washington, Seattle, WA (United States); Chang, E. [Univ. of Washington, Seattle, WA (United States); Cohen, S.  D. [Univ. of Washington, Seattle, WA (United States); Detmold, W. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Lin, H. -W. [Univ. of Washington, Seattle, WA (United States); Orginos, K. [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Parreño, A. [Univ., de Barcelona, Marti Franques (Spain); Savage, M.  J. [Univ. of Washington, Seattle, WA (United States)

    2015-06-11

    Quarkonium-nucleus systems are composed of two interacting hadronic states without common valence quarks, which interact primarily through multi-gluon exchanges, realizing a color van der Waals force. We present lattice QCD calculations of the interactions of strange and charm quarkonia with light nuclei. Both the strangeonium-nucleus and charmonium-nucleus systems are found to be relatively deeply bound when the masses of the three light quarks are set equal to that of the physical strange quark. Extrapolation of these results to the physical light-quark masses suggests that the binding energy of charmonium to nuclear matter is B < 40 MeV.

  7. Kaonic nuclei studied based on a new framework of Antisymmetric Molecular Dynamics

    CERN Document Server

    Doté, A; Akaishi, Y; Yamazaki, T; Dote, Akinobu; Horiuchi, Hisashi; Akaishi, Yoshinori; Yamazaki, Toshimitsu

    2003-01-01

    We have developed a new framework of Antisymmetrized Molecular Dynamics (AMD), to adequately treat the I=0 \\={K}N interaction, which is essential to study kaonic nuclei. The improved points are 1) pK$^-$/n\\={K}$^0$ mixing and 2) total spin and isospin projections. These improvements enable us to investigate various kaonic nuclei (ppnK$^-$, pppK$^-$, pppnK$^-$, $^6$BeK$^-$ and $^9$BK$^-$) systematically. We have found that they are deeply bound and extremely dense with a variety of shapes.

  8. Medium-heavy nuclei from nucleon-nucleon interactions in lattice QCD

    OpenAIRE

    Inoue, Takashi; Aoki, Sinya; Charron, Bruno; Doi, Takumi; Hatsuda, Tetsuo; Ikeda, Yoichi; Ishii, Noriyoshi; Murano, Keiko; Nemura, Hidekatsu; Sasaki, Kenji

    2014-01-01

    On the basis of the Brueckner-Hartree-Fock method with the nucleon-nucleon forces obtained from lattice QCD simulations, the properties of the medium-heavy doubly-magic nuclei such as 16^O and 40^Ca are investigated. We found that those nuclei are bound for the pseudo-scalar meson mass M_PS ~ 470 MeV. The mass number dependence of the binding energies, single-particle spectra and density distributions are qualitatively consistent with those expected from empirical data at the physical point, ...

  9. Towards Superheavies: Spectroscopy of 94 < Z < 98, 150 < N < 154 Nuclei

    Science.gov (United States)

    Chowdhury, P.; Hota, S. S.; Qiu, Y.; Ahmad, I.; Carpenter, M. P.; Greene, J. P.; Janssens, R. V. F.; Khoo, T. L.; Kondev, F. G.; Lauritsen, T.; Lister, C. J.; Seweryniak, D.; Zhu, S.

    2016-09-01

    The heaviest nuclei where excitations above the ground state can be studied lie near Z ~ 100. These nuclear structure studies are important testing grounds for theoretical models that aim to describe superheavy nuclei. To study the highest neutron orbitals (150 ≤ N ≤ 154), we have populated high angular momentum states in a series of Pu (Z = 94), Cm (Z = 96) and Cf (Z = 98) nuclei, via inelastic and transfer reactions, with heavy beams on long-lived radioactive actinide targets. Multiple collective excitation modes and structures were identified, and their configurations deduced. Quasiparticle alignments are mapped, with odd-A band structures helping identify specific orbital contributions via blocking arguments. Higher-order multipole shapes are observed to play a significant role in disentangling competing neutron and proton alignments. The N > 152 data provide new perspectives on physics beyond the N = 152 sub-shell gap.

  10. Study of the structure of unstable nuclei through the reaction experiments

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Along with the development of the radioactive nuclear beam facility, the study of the structure of unstable nuclei has progressed rapidly over the last few decades. Due to the weakly binding property, the structure information of the unstable nuclei comes primarily from the scattering or reaction experiments. Therefore it would be very important to understand clearly the reaction mechanism involved in the experiment. We outlined here the major reaction mechanisms which are adequate to the study of unstable nuclei, with the focus on the new phenomena and methods in comparison with those with traditional stable nucleus beam. Especially emphasized are the breakup and knockout reactions, developed as accurate tools for spectroscopy investigation into the nuclear structure with low intensity secondary beam. Couplings of the breakup channel to the elastic scattering and the fusion and transfer reactions are also reviewed.

  11. Bounds for Asian basket options

    Science.gov (United States)

    Deelstra, Griselda; Diallo, Ibrahima; Vanmaele, Michèle

    2008-09-01

    In this paper we propose pricing bounds for European-style discrete arithmetic Asian basket options in a Black and Scholes framework. We start from methods used for basket options and Asian options. First, we use the general approach for deriving upper and lower bounds for stop-loss premia of sums of non-independent random variables as in Kaas et al. [Upper and lower bounds for sums of random variables, Insurance Math. Econom. 27 (2000) 151-168] or Dhaene et al. [The concept of comonotonicity in actuarial science and finance: theory, Insurance Math. Econom. 31(1) (2002) 3-33]. We generalize the methods in Deelstra et al. [Pricing of arithmetic basket options by conditioning, Insurance Math. Econom. 34 (2004) 55-57] and Vanmaele et al. [Bounds for the price of discrete sampled arithmetic Asian options, J. Comput. Appl. Math. 185(1) (2006) 51-90]. Afterwards we show how to derive an analytical closed-form expression for a lower bound in the non-comonotonic case. Finally, we derive upper bounds for Asian basket options by applying techniques as in Thompson [Fast narrow bounds on the value of Asian options, Working Paper, University of Cambridge, 1999] and Lord [Partially exact and bounded approximations for arithmetic Asian options, J. Comput. Finance 10 (2) (2006) 1-52]. Numerical results are included and on the basis of our numerical tests, we explain which method we recommend depending on moneyness and time-to-maturity.

  12. A Lower Bound on Concurrence

    Institute of Scientific and Technical Information of China (English)

    LIU Li-Guo; TIAN Cheng-Lin; CHEN Ping-Xing; YUAN Nai-Chang

    2009-01-01

    We derive an analytical lower bound on the concurrence for bipartite quantum systems with an improved computable cross norm or realignment criterion and an improved positive partial transpose criterion respectively.Furthermore we demonstrate that our bound is better than that obtained from the local uncertainty relations criterion with optimal local orthogonal observables which is known as one of the best estimations of concurrence.

  13. Predisposal Radioactive Waste Management

    International Nuclear Information System (INIS)

    Recognition of the importance of the safe management of radioactive waste means that, over the years, many well-established and effective techniques have been developed, and the nuclear industry and governments have gained considerable experience in this field. Minimization of waste is a fundamental principle underpinning the design and operation of all nuclear operations, together with waste reuse and recycling. For the remaining radioactive waste that will be produced, it is essential that there is a well defined plan (called a waste treatment path) to ensure the safe management and ultimately the safe disposal of radioactive waste so as to guarantee the sustainable long term deployment of nuclear technologies

  14. Radioactivity; La radioactivite

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This pedagogical document presents the origin, effects and uses of radioactivity: where does radioactivity comes from, effects on the body, measurement, protection against radiations, uses in the medical field, in the electric power industry, in the food (ionization, radio-mutagenesis, irradiations) and other industries (radiography, gauges, detectors, irradiations, tracers), and in research activities (dating, preservation of cultural objects). The document ends with some examples of irradiation levels (examples of natural radioactivity, distribution of the various sources of exposure in France). (J.S.)

  15. Radioactive waste disposal

    International Nuclear Information System (INIS)

    The current disposal concept for radioactive waste in the FRG was discussed in the framework of this seminar. In addition to this concept for the treatment of radioactive waste also the volume of this waste is indicated. The present state of the two repositories 'Konrad' and 'Gorleben' is explained, as well as the requirements on waste packages for transportation, intermediate and ultimate storage. The final part discusses the conditioning of this radioactive waste and the control of the barrels as regards the observance of the requirements. (orig.)

  16. Moessbauer Effect applications using intense radioactive ion beams

    International Nuclear Information System (INIS)

    The Moessbauer Effect is reviewed as a promising tool for a number of new solid state studies when used in combination with radioactive beam/implantation facilities. The usual Moessbauer Effect involves long-lived radioactive parents (days to years) that populate low-lying nuclear excited states that subsequently decay to the ground state. Resonant emission/absorption of recoil-free gamma rays from these states provide information on a number of properties of the host materials. Radioactive ion beams (RIB) produced on-line allow new Moessbauer nuclei to be studied where there is no suitable parent. The technique allows useful sources to be made having extremely low local concentrations. The ability to separate the beams in both Z and A should provide high specific activity ''conventional'' sources, a feature important in some applications such as Moessbauer studies in diamond anvil high pressure cells. Exotic chemistry is proposed using RIB and certain Krypton and Xenon Moessbauer isotopes

  17. Direct Detection of Dark Matter Bound to the Earth

    CERN Document Server

    Catena, Riccardo

    2016-01-01

    We study the properties and direct detection prospects of an as of yet neglected population of dark matter (DM) particles moving in orbits gravitationally bound to the Earth. This DM population is expected to form via scattering by nuclei in the Earth's interior. We compute fluxes and nuclear recoil energy spectra expected at direct detection experiments for the new DM population considering detectors with and without directional sensitivity, and different types of target materials and DM-nucleon interactions. DM particles bound to the Earth manifest as a prominent rise in the low-energy part of the observed nuclear recoil energy spectrum. Ultra-low threshold energies of about 1 eV are needed to resolve this effect. Its shape is independent of the DM-nucleus scattering cross-section normalisation.

  18. Radioactive wastes and discharges

    International Nuclear Information System (INIS)

    According to the Section 24 of the Finnish Radiation Decree (1512/91), the Finnish Centre for Radiation and Nuclear Safety shall specify the concentration and activity limits and principles for the determination whether a waste can be defined as a radioactive waste or not. The radiation safety requirements and limits for the disposal of radioactive waste are given in the guide. They must be observed when discharging radioactive waste into the atmosphere or sewer system, or when delivering solid low-activity waste to a landfill site without a separate waste disposal plan. The guide does not apply to the radioactive waste resulting from the utilization of nuclear energy of natural resources. (4 refs., 1 tab.)

  19. Understanding radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Murray, R.L.

    1981-12-01

    This document contains information on all aspects of radioactive wastes. Facts are presented about radioactive wastes simply, clearly and in an unbiased manner which makes the information readily accessible to the interested public. The contents are as follows: questions and concerns about wastes; atoms and chemistry; radioactivity; kinds of radiation; biological effects of radiation; radiation standards and protection; fission and fission products; the Manhattan Project; defense and development; uses of isotopes and radiation; classification of wastes; spent fuels from nuclear reactors; storage of spent fuel; reprocessing, recycling, and resources; uranium mill tailings; low-level wastes; transportation; methods of handling high-level nuclear wastes; project salt vault; multiple barrier approach; research on waste isolation; legal requiremnts; the national waste management program; societal aspects of radioactive wastes; perspectives; glossary; appendix A (scientific American articles); appendix B (reference material on wastes). (ATT)

  20. Understanding radioactive waste

    International Nuclear Information System (INIS)

    This document contains information on all aspects of radioactive wastes. Facts are presented about radioactive wastes simply, clearly and in an unbiased manner which makes the information readily accessible to the interested public. The contents are as follows: questions and concerns about wastes; atoms and chemistry; radioactivity; kinds of radiation; biological effects of radiation; radiation standards and protection; fission and fission products; the Manhattan Project; defense and development; uses of isotopes and radiation; classification of wastes; spent fuels from nuclear reactors; storage of spent fuel; reprocessing, recycling, and resources; uranium mill tailings; low-level wastes; transportation; methods of handling high-level nuclear wastes; project salt vault; multiple barrier approach; research on waste isolation; legal requiremnts; the national waste management program; societal aspects of radioactive wastes; perspectives; glossary; appendix A (scientific American articles); appendix B (reference material on wastes)

  1. Law of radioactive minerals

    International Nuclear Information System (INIS)

    Legal device done in order to standardize and promote the exploration and explotation of radioactive minerals by peruvian and foreign investors. This device include the whole process, since the prospection until the development, after previous auction given by IPEN

  2. The metabolism of aged seeds. The free and membrane-bound polyribosomes of germinating rye grains of different ages

    Directory of Open Access Journals (Sweden)

    Kazimierz Zalewski

    2014-02-01

    Full Text Available Grains of winter rye harvested in 1976, 1978, 1982 and 1984 were studied. Free and membrane-bound polyribosomes were isolated from embryos of imbibing and germinating grains. There was no correlation between grain viability and the amout of ribosomes. The highest incorporation of radioactive precursors (both total and specific radioactivity was found in the RNA and ribosomal proteins from the grains with the highest viability - harvested in 1984. Lower radioactivity levels were observed in the 2 to 6 year old grains. There was no incorporation of radioactive precursors into ribosomal proteins in dead seeds.

  3. Exotic light nuclei and nuclei in the lead region

    International Nuclear Information System (INIS)

    Three methods are discussed for modifying, or renormalizing, a truncated nuclear hamiltonian such that the wave functions obtained by diagonalizing this modified or effective hamiltoniandescribe the nucleus as well as possible: deriving the hamiltonian directly from a realistic nucleon-nucleon interaction between free nucleons; parametrizing the hamiltonian in terms of a number of parameters and determining these parameters from a least-squares fit of calculated properties to experimental data; approximating the nucleon-nucleon (NN) interaction between two nucleons in a nucleus by a simple analytic expression. An effective hamiltonian derived following the second method is applied in a theoretical study of exotic nuclei in the region of Z=2-9 and A=4-30 and the problem of the neutron halo in 11Li is discussed. Results of shell-model calculations of 20iPb and nuclei in its neighbourhood are presented in which an effective hamiltonian was employed derived with the last method. The quenching of M1 strength in 208Pb, and the spectroscopic factors measured in proton knock-out reactions could be described quite satisfactory. Finally, a method is presented for deriving the effective hamiltonian directly from the realistic NN interaction with algebraic techniques. (H.W.). 114 refs.; 34 figs.; 12 tabs.; schemes

  4. Two-proton radioactivity

    OpenAIRE

    Blank, Bertram; Ploszajczak, Marek

    2007-01-01

    In the first part of the present review paper, experimental results which lead to the discovery of two-proton radioactivity are reviewed. Beyond two-proton emission from nuclear ground states, we also discuss experimental studies of two-proton emission from excited states populated either by nuclear beta decay or by inelastic reactions. In the second part, we review the modern theory of two-proton radioactivity. An outlook to future experimental studies and theoretical developments will concl...

  5. Transport of radioactive materials

    International Nuclear Information System (INIS)

    The purpose of this Norm is to establish, relating to the TRANSPORT OF RADIOACTIVE MATERIALS, safety and radiological protection requirements to ensure an adequate control level of the eventual exposure of persons, properties and environment to the ionizing radiation comprising: specifications on radioactive materials for transport; package type selection; specification of the package design and acceptance test requirements; arrangements relating to the transport itself; administrative requirements and responsibilities. (author)

  6. Temporary Personal Radioactivity

    Science.gov (United States)

    Myers, Fred

    2012-01-01

    As part of a bone scan procedure to look for the spread of prostate cancer, I was injected with radioactive technetium. In an effort to occupy/distract my mind, I used a Geiger counter to determine if the radioactive count obeyed the inverse-square law as a sensor was moved away from my bladder by incremental distances. (Contains 1 table and 2…

  7. Dynamic radioactive particle source

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Murray E.; Gauss, Adam Benjamin; Justus, Alan Lawrence

    2012-06-26

    A method and apparatus for providing a timed, synchronized dynamic alpha or beta particle source for testing the response of continuous air monitors (CAMs) for airborne alpha or beta emitters is provided. The method includes providing a radioactive source; placing the radioactive source inside the detection volume of a CAM; and introducing an alpha or beta-emitting isotope while the CAM is in a normal functioning mode.

  8. Radioactive waste disposal policy

    International Nuclear Information System (INIS)

    The responsibilities of the Minister of Agriculture, Fisheries and Food and Ministry policy on radioactive waste disposal are described. The disposal of solid radioactive waste at sea is subject to detailed safeguards developed within two international agreements to which the United Kingdom is a contracting party. The agreements are discussed together with a research and monitoring programme to provide scientific data for informed decisions on waste disposal authorisations and dumping licences. (U.K.)

  9. Radioactive sources service

    CERN Multimedia

    2006-01-01

    Dear Users, A new web interface is now available for requesting radioactive sources: http://cern.ch/rp-sources/request This link is also available from the radioactive sources service main page: http://cern.ch/rp-sources From now on, please submit your request via the above interface, which has been developed in order to improve the service. Thank you in advance for your collaboration!

  10. Radioactive dust sampling

    International Nuclear Information System (INIS)

    This technical report is the second of a five part series on the technical evaluation of a number of dust monitoring instruments and the characterization of Long-Lived Radioactive Dust (LLRD). The data reported here pertain to an experimental study conducted under laboratory controlled conditions in a Long-Lived Radioactive Dust Test Facility (LLRDTF) designed for this purpose. This study was carried out with a twofold purpose in mind, namely, for the characterization of dust and LLRD, and for the evaluation of a variety of monitoring instruments, including cascade impactors, optical particle counters, nylon cyclones, open face filter samplers, and α-particle personal dosimeters, the latter normally used for α-particle radiation exposure purposes. Several non-radioactive and radioactive dusts were characterized. The non-radioactive dusts were SiC, Al2O3, talcum powder, corn starch and flour, while uranium tailings were used as a radioactive dust. Clear differences in instrument performance were observed for the various measurements made

  11. RIKEN radioactive isotope beam factory project – Present status and perspectives

    Indian Academy of Sciences (India)

    H Sakurai

    2010-08-01

    Programs for studying nuclear reactions and structure of exotic nuclei available at the RIKEN radioactive isotope beam factory project are introduced and discussed by demonstrating recent highlights. Special emphasis is given to the present status and future plans of new devices.

  12. Microscopic properties of superdeformed nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Lennart B

    1999-04-01

    Many high spin rotational bands in superdeformed nuclei have been found in the A 140 - 150 region, but so far no linking transitions to known normal-deformed states have been found in these nuclei. Therefore, configuration and spin assignments have to be based on indirect spectroscopic information. Identical bands were first discovered in this region of superdeformed states. At present, some identical bands have also been found at normal deformation, but such bands are more common at superdeformation. Recently lifetime measurements have given relative quadrupole moments with high accuracy. Spectroscopic quantities are calculated using the configuration constrained cranked Nilsson-Strutinsky model with the modified oscillator potential. In a statistical study the occurrence of identical bands is tested. Comparing superdeformed and normal deformed nuclei, the higher possibility for identical bands at superdeformation is understood from calculated reduced widths of the E{sub {gamma}} and J{sup (2)} distributions. The importance of high-N orbitals for identical bands is also discussed. Additivity of electric quadrupole moment contributions in the superdeformed A - 150 region is discussed with the nucleus {sup 152}Dy as a `core`. In analytic harmonic oscillator calculations, the effective electric quadrupole moment q{sub eff}, i.e. the change in the total quadrupole moment caused by the added particle, is expressed as a simple function of the single-particle mass, quadrupole moment q{sub {nu}}. Also in realistic calculations, simple relations between q{sub eff} and q{sub {nu}} can be used to estimate the total electric quadrupole moment, e.g. for the nucleus {sup 142}Sm, by adding the effect of 10 holes, to the total electric quadrupole moment of {sup 152}Dy. Furthermore, tools are given for estimating the quadrupole moment for possible configurations in the superdeformed A - 150 region. For the superdeformed region around {sup 143}Eu, configuration and spin assignments

  13. New Magicity of Light Nuclei

    OpenAIRE

    Samanta, C.; Adhikari, S

    2001-01-01

    A new mass formula capable of explaining the binding energies of almost all the known isotopes from Li to Bi is prescribed. In addition to identifying the new magic number at neutron number N=16 (Z=7-9), pseudo-magic numbers at N=14 (Z=7-10), Z=14 (N=13-19), and at N=6 (Z=3-8), the formula accounts for the loss of magicity for nuclei with N=8 (Z=4) and N=20 (Z=12-17). The redefinition of the neutron drip line resulting from this formula further allows us to predict the existence of 26O,31F, 3...

  14. Exotic nuclei and Yukawa's forces

    OpenAIRE

    Otsuka, Taka; Suzuki, Toshio; Utsuno, Yutaka

    2008-01-01

    In this plenary talk, we will overview the evolution of the shell structure in stable and exotic nuclei as a new paradigm of nuclear structure physics. This shell evolution is primarily due to the tensor force. The robust mechanism and some examples will be presented. Such examples include the disappearance of existing magic numbers and the appearance of new ones. The nuclear magic numbers have been believed, since Mayer and Jensen, to be constants as 2, 8, 20, 28, 50, …This turned out to be ...

  15. Combining Alphas via Bounded Regression

    Directory of Open Access Journals (Sweden)

    Zura Kakushadze

    2015-11-01

    Full Text Available We give an explicit algorithm and source code for combining alpha streams via bounded regression. In practical applications, typically, there is insufficient history to compute a sample covariance matrix (SCM for a large number of alphas. To compute alpha allocation weights, one then resorts to (weighted regression over SCM principal components. Regression often produces alpha weights with insufficient diversification and/or skewed distribution against, e.g., turnover. This can be rectified by imposing bounds on alpha weights within the regression procedure. Bounded regression can also be applied to stock and other asset portfolio construction. We discuss illustrative examples.

  16. Bounded Model Checking of CTL

    Institute of Scientific and Technical Information of China (English)

    Zhi-Hong Tao; Cong-Hua Zhou; Zhong Chen; Li-Fu Wang

    2007-01-01

    Bounded Model Checking has been recently introduced as an efficient verification method for reactive systems.This technique reduces model checking of linear temporal logic to propositional satisfiability.In this paper we first present how quantified Boolean decision procedures can replace BDDs.We introduce a bounded model checking procedure for temporal logic CTL* which reduces model checking to the satisfiability of quantified Boolean formulas.Our new technique avoids the space blow up of BDDs, and extends the concept of bounded model checking.

  17. RMF+BCS description of two-proton radioactivity in 2442Cr

    International Nuclear Information System (INIS)

    Inspired by recent experimental studies of two-proton radioactivity in the light-medium mass region, relativistic mean-field plus state dependent BCS approach has been employed including deformation degree of freedom to study the ground state properties of selected even-Z nuclei in the region 20 ≤ Z ≤ 40. The results of our extensive calculations show that the nuclei 38Ti, 42Cr, 60Ge, 63,64Se, 68Kr, 72Sr and 76Zr satisfy the criteria Sp > 0 and S2p < 0. These nuclei are, therefore, expected to be the potential candidates for exhibiting the two-proton radioactivity in the region 20 ≤ Z ≤ 40

  18. 298114, The predicted doubly magic nuclei in the SHE

    International Nuclear Information System (INIS)

    The exploration of cluster radioactivity in Super Heavy Island did not receive much attention, because of the instability of nuclei in this region. From theoretical point of view, the extension of the periodic table towards the super heavy island of stability is very important for testing and developing nuclear structure models. The present work explores the possibility of cluster emission from the other region preferably in the super heavy region. We have computed the alpha and cluster decay half lives of various even-even isotopes (with Z ranging from 116 to 126) in the super heavy region in which the decay leads to Z = 114 daughter, using Coulomb and Proximity potential as interacting barrier

  19. Thermal instability of cell nuclei

    Science.gov (United States)

    Warmt, Enrico; Kießling, Tobias R.; Stange, Roland; Fritsch, Anatol W.; Zink, Mareike; Käs, Josef A.

    2014-07-01

    DNA is known to be a mechanically and thermally stable structure. In its double stranded form it is densely packed within the cell nucleus and is thermo-resistant up to 70\\:^\\circ {\\rm{C}}. In contrast, we found a sudden loss of cell nuclei integrity at relatively moderate temperatures ranging from 45 to 55\\:^\\circ {\\rm{C}}. In our study, suspended cells held in an optical double beam trap were heated under controlled conditions while monitoring the nuclear shape. At specific critical temperatures, an irreversible sudden shape transition of the nuclei was observed. These temperature induced transitions differ in abundance and intensity for various normal and cancerous epithelial breast cells, which clearly characterizes different cell types. Our results show that temperatures slightly higher than physiological conditions are able to induce instabilities of nuclear structures, eventually leading to cell death. This is a surprising finding since recent thermorheological cell studies have shown that cells have a lower viscosity and are thus more deformable upon temperature increase. Since the nucleus is tightly coupled to the outer cell shape via the cytoskeleton, the force propagation of nuclear reshaping to the cell membrane was investigated in combination with the application of cytoskeletal drugs.

  20. Selfconsistent calculations for hyperdeformed nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Molique, H.; Dobaczewski, J.; Dudek, J.; Luo, W.D. [Universite Louis Pasteur, Strasbourg (France)

    1996-12-31

    Properties of the hyperdeformed nuclei in the A {approximately} 170 mass range are re-examined using the self-consistent Hartree-Fock method with the SOP parametrization. A comparison with the previous predictions that were based on a non-selfconsistent approach is made. The existence of the {open_quotes}hyper-deformed shell closures{close_quotes} at the proton and neutron numbers Z=70 and N=100 and their very weak dependence on the rotational frequency is suggested; the corresponding single-particle energy gaps are predicted to play a role similar to that of the Z=66 and N=86 gaps in the super-deformed nuclei of the A {approximately} 150 mass range. Selfconsistent calculations suggest also that the A {approximately} 170 hyperdeformed structures have neglegible mass asymmetry in their shapes. Very importantly for the experimental studies, both the fission barriers and the {open_quotes}inner{close_quotes} barriers (that separate the hyperdeformed structures from those with smaller deformations) are predicted to be relatively high, up to the factor of {approximately}2 higher than the corresponding ones in the {sup 152}Dy superdeformed nucleus used as a reference.

  1. Spectroscopic factors for bound s-wave states derived from neutron scattering lengths

    International Nuclear Information System (INIS)

    A simple and model-independent method is described to derive neutron single-particle spectroscopic factors of bound s-wave states in A+1Z = AZ circle-times n nuclei from neutron scattering lengths. Spectroscopic factors for the nuclei 13C, 14C, 16N, 17O, 19O, 23Ne, 37Ar, and 41Ar are compared to results derived from transfer experiments using the well-known disorted wave Born analysis and to shell model calculations. The scattering length of 14C is calculated from the 15Cg.s. spectroscopic factor. copyright 1997 The American Physical Society

  2. Medium effects to N(1535) resonance and eta mesic nuclei

    CERN Document Server

    Jido, D; Hirenzaki, S

    2002-01-01

    The structure of the eta-nucleus bound systems (eta mesic nuclei) is investigated as a tool to study in-medium properties of the N(1535) (N*) resonance by using the chiral doublet model to incorporate the medium effects to N* resonance in a chiral symmetric way. We find that the shape and the depth of the eta-nucleus optical potential are strongly affected by the in-medium properties of N* and nucleon. Especially, as a general feature of the potential, the existence of the repulsive core of the eta-nucleus potential at nuclear center with attractive part at the nuclear surface is concluded. We calculate the level structure of bound states in this 'central-repulsive and surface-attractive' optical potential and find that the level structure is sensitive to the in-medium properties of N*. The (d,3He) spectra are also evaluated for the formation of these bound states to investigate the experimental feasibility. We also make comments on the possible existence of the halo-like eta states in beta-unstable halo nucl...

  3. Bound states in string nets

    CERN Document Server

    Schulz, M D; Vidal, J

    2016-01-01

    We discuss the emergence of bound states in the low-energy spectrum of the string-net Hamiltonian in the presence of a string tension. In the ladder geometry, we show that a single bound state arises either for a finite tension or in the zero-tension limit depending on the theory considered. In the latter case, we perturbatively compute the binding energy as a function of the total quantum dimension. We also address this issue in the honeycomb lattice where the number of bound states in the topological phase depends on the total quantum dimension. Finally, the internal structure of these bound states is analyzed in the zero-tension limit.

  4. Review of metastable states in heavy nuclei

    Science.gov (United States)

    Dracoulis, G. D.; Walker, P. M.; Kondev, F. G.

    2016-07-01

    The structure of nuclear isomeric states is reviewed in the context of their role in contemporary nuclear physics research. Emphasis is given to high-spin isomers in heavy nuclei, with A≳ 150 . The possibility to exploit isomers to study some of the most exotic nuclei is a recurring theme. In spherical nuclei, the role of octupole collectivity is discussed in detail, while in deformed nuclei the limitations of the K quantum number are addressed. Isomer targets and isomer beams are considered, along with applications related to energy storage, astrophysics, medicine, and experimental advances.

  5. Structure and reactions of drip-line nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, P.G. [Michigan State Univ., East Lansing, MI (United States)

    1996-12-31

    Secondary radioactive beams produced at intermediate-energy heavy-ion accelerators have in a short time span added a new dimension to the research on nuclear species at the limits of particle stability, and new detection techniques have made it possible to study reactions caused by incident beams of as little as one particle per second. Imminent developments such as the M.S.U. Coupled-Cyclotron Facility are expected to extend the range and to permit the observation of many previously inaccessible species. For a perspective on the progress in this area one only needs to go about fifteen years back to a time when it had just become possible to study the radioactivity of rare nuclear species such as {sup 11}Li. In presenting early experiments with secondary beams produced in fragmentation James Symons said {open_quotes}... In the introduction to this paper we questioned the applicability of high-energy heavy-ion accelerators to this field. Our experience at the Bevalac leads us to believe that this question does indeed have a positive answer. If the physics interest justifies it, then high-energy heavy-ion beams can certainly be expected to play a role in the study of nuclei at the limits of stability.{close_quotes} At the time, very few, if any, realized how prophetic this remark was. In the present paper the interpretation of the longitudinal-momentum distributions from the nuclear fragmentation of single-nucleon halos is discussed. It is pointed out that these measurements, at least for the cases studied so far, directly reflect the halo wave function, and that there is no direct contribution from the reaction mechanism. This is an important difference from the radial momentum distributions, for which diffractive processes play an important role. The author discusses stripping reactions of {sup 11}Be and {sup 8}B on light nuclei yielding {sup 10}Be and {sup 7}Be.

  6. Curvature bounds for configuration spaces

    OpenAIRE

    Erbar, Matthias; Huesmann, Martin

    2014-01-01

    We show that the configuration space over a manifold M inherits many curvature properties of the manifold. For instance, we show that a lower Ricci curvature bound on M implies for the configuration space a lower Ricci curvature bound in the sense of Lott-Sturm-Villani, the Bochner inequality, gradient estimates and Wasserstein contraction. Moreover, we show that the heat flow on the configuration space, or the infinite independent particle process, can be identified as the gradient flow of t...

  7. Finite Domain Bounds Consistency Revisited

    OpenAIRE

    Choi, Chiu Wo; Harvey, Warwick; Lee, Jimmy Ho-Man; Stuckey, Peter J.

    2004-01-01

    A widely adopted approach to solving constraint satisfaction problems combines systematic tree search with constraint propagation for pruning the search space. Constraint propagation is performed by propagators implementing a certain notion of consistency. Bounds consistency is the method of choice for building propagators for arithmetic constraints and several global constraints in the finite integer domain. However, there has been some confusion in the definition of bounds consistency. In t...

  8. Entropy bounds for uncollapsed matter

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, Gabriel; Visser, Matt, E-mail: Gabriel.Abreu@msor.vuw.ac.nz, E-mail: Matt.Visser@msor.vuw.ac.nz [School of Mathematics, Statistics and Operation Research Victoria University of Wellington Wellington (New Zealand)

    2011-09-22

    In any static spacetime the quasilocal Tolman mass contained within a volume can be reduced to a Gauss-like surface integral involving the flux of a suitably defined generalized surface gravity. By introducing some basic thermodynamics, and invoking the Unruh effect, one can then develop elementary bounds on the quasilocal entropy that are very similar in spirit to the holographic bound, and closely related to entanglement entropy.

  9. Future of superheavy element research: Which nuclei could be synthesized within the next few years?

    CERN Document Server

    Zagrebaev, Valeriy; Greiner, Walter

    2012-01-01

    Low values of the fusion cross sections and very short half-lives of nuclei with Z$>$120 put obstacles in synthesis of new elements. Different nuclear reactions (fusion of stable and radioactive nuclei, multi-nucleon transfers and neutron capture), which could be used for the production of new isotopes of superheavy (SH) elements, are discussed in the paper. The gap of unknown SH nuclei, located between the isotopes which were produced earlier in the cold and hot fusion reactions, can be filled in fusion reactions of $^{48}$Ca with available lighter isotopes of Pu, Am, and Cm. Cross sections for the production of these nuclei are predicted to be rather large, and the corresponding experiments can be easily performed at existing facilities. For the first time, a narrow pathway is found to the middle of the island of stability owing to possible $\\beta^+$-decay of SH isotopes which can be formed in ordinary fusion reactions of stable nuclei. Multi-nucleon transfer processes at near barrier collisions of heavy (a...

  10. Cluster Model for Near-barrier Fusion Induced by Weakly Bound and Halo Nuclei

    OpenAIRE

    Beck, C; Keeley, N.; Diaz-Torres, A.

    2007-01-01

    The influence on the fusion process of coupling transfer/breakup channels is investigated for the medium weight $^{6,7}$Li+$^{59}$Co systems in the vicinity of the Coulomb barrier. Coupling effects are discussed within a comparison of predictions of the Continuum Discretized Coupled-Channels model. Applications to $^{6}$He+$^{59}$Co induced by the borromean halo nucleus $^{6}$He are also proposed.

  11. Theoretical study of the elastic breakup of weakly bound nuclei at near barrier energies

    CERN Document Server

    Otomar, D R; Lubian, J; Canto, L F; Hussein, M S

    2015-01-01

    We have performed CDCC calculations for collisions of $^{7}$Li projectiles on $^{59}$Co, $^{144}$Sm and $^{208}$Pb targets at near-barrier energies, to assess the importance of the Coulomb and the nuclear couplings in the breakup of $^{7}$Li, as well as the Coulomb-nuclear interference. We have also investigated scaling laws, expressing the dependence of the cross sections on the charge and the mass of the target. This work is complementary to the one previously reported by us on the breakup of $^{6}$Li. Here we explore the similarities and differences between the results for the two Lithium isotopes. The relevance of the Coulomb dipole strength at low energy for the two-cluster projectile is investigated in details.

  12. Beam asymmetry Σ in π0 photoproduction off protons bound in carbon nuclei

    International Nuclear Information System (INIS)

    In order to study the dynamics of the inner components of the nucleon, its excitation spectrum is investigated through meson-photoproduction. Due to the strong overlap of the nucleon's excited states, it is insufficient to determine the cross section only. To identify all resonance contributions unambiguously, single and double polarization observables have to be measured. At the Crystal Barrel experiment at ELSA in Bonn, this is achieved utilizing linearly or circularly polarized photons and longitudinally or transversely polarized nucleons. Polarized protons are realized in a butanol target, which consists of hydrogen, oxygen and carbon. A pure carbon target was used to perform a background measurement. The results for the beam asymmetry Σ in π0 photoproduction, obtained with a carbon target and a linearly polarized photon beam, are presented. Furthermore, the influence of carbon background on the measured polarization observables is discussed.

  13. Synthesis and decay properties of the heaviest nuclei

    Science.gov (United States)

    Oganessian, Yuri

    2006-07-01

    The formation and decay properties of the heaviest nuclei with Z=112-116 and 118 were studied in the reactions 238U, 242,244Pu, 243Am, 245,248Cm and 249Cf + 48Ca. The new nuclides mainly undergo sequential α-decay, which ends with spontaneous fission. The total time of decay ranges from 0.5 ms to ~1 day, depending on the proton and neutron numbers in the synthesized nuclei. The atomic number of the new elements 115 and 113 was confirmed also by an independent radiochemical experiment based on the identification of the neutron-rich isotope 268Db (TSF~30 h), the final product in the chain of α-decays of the odd-odd parent nucleus 288115. The comparison of the decay properties of 29 new nuclides with Z=104-118 and N=162-177 gives evidence of the decisive influence of the structure of superheavy elements on their stability with respect to different modes of radioactive decay. The investigations connected with the search for superheavy elements in Nature and prospects of superheavy element research are also presented. The experiments were carried out at the Flerov Laboratory of Nuclear Reactions (JINR, Dubna) in collaboration with the Analytical and Nuclear Chemistry Division of the Lawrence Livermore National Laboratory (USA).

  14. Radioactivity in food crops

    International Nuclear Information System (INIS)

    Published levels of radioactivity in food crops from 21 countries and 4 island chains of Oceania are listed. The tabulation includes more than 3000 examples of 100 different crops. Data are arranged alphabetically by food crop and geographical origin. The sampling date, nuclide measured, mean radioactivity, range of radioactivities, sample basis, number of samples analyzed, and bibliographic citation are given for each entry, when available. Analyses were reported most frequently for 137Cs, 40K, 90Sr, 226Ra, 228Ra, plutonium, uranium, total alpha, and total beta, but a few authors also reported data for 241Am, 7Be, 60Co, 55Fe, 3H, 131I, 54Mn, 95Nb, 210Pb, 210Po, 106Ru, 125Sb, 228Th, 232Th, and 95Zr. Based on the reported data it appears that radioactivity from alpha emitters in food crops is usually low, on the order of 0.1 Bq.g-1 (wet weight) or less. Reported values of beta radiation in a given crop generally appear to be several orders of magnitude greater than those of alpha emitters. The most striking aspect of the data is the great range of radioactivity reported for a given nuclide in similar food crops with different geographical origins

  15. The ''invisible'' radioactive scale

    International Nuclear Information System (INIS)

    Production and up-concentration of naturally occurring radioactive material (NORM) in the petroleum industry has attracted steadily increasing attention during the last 15 years. Most production engineers today associate this radioactivity with precipitates (scales) and sludges in production tubing, pumps, valves, separators, settling tanks etc., wherever water is being transported or treated. 226Ra and 228Ra are the most well known radioactive constituents in scale. Surprisingly little known is the radioactive contamination by 210Pb and progeny 210Bi and 210Po. These are found in combination with 226Ra in ordinary scale, often in layer of non-radioactive metallic lead in water transportation systems, but also in pure gas and condensate handling systems ''unsupported'' by 226Ra, but due to transportation and decay of the noble gas 222Rn in NG/LNG. This latter contamination may be rather thin, in some cases virtually invisible. When, in addition, the radiation energies are low enough for not being detectable on the equipment outer surface, its existence has for most people in the industry been a secret. The report discusses transportation and deposition mechanisms, detection methods and provides some examples of measured results from the North Sea on equipment sent for maintenance. It is concluded that a regular measurement program for this type of contamination should be mandatory under all dismantling processes of transportation and fluid handling equipment for fluids and gases offshore and onshore

  16. Radioactivity in food crops

    Energy Technology Data Exchange (ETDEWEB)

    Drury, J.S.; Baldauf, M.F.; Daniel, E.W.; Fore, C.S.; Uziel, M.S.

    1983-05-01

    Published levels of radioactivity in food crops from 21 countries and 4 island chains of Oceania are listed. The tabulation includes more than 3000 examples of 100 different crops. Data are arranged alphabetically by food crop and geographical origin. The sampling date, nuclide measured, mean radioactivity, range of radioactivities, sample basis, number of samples analyzed, and bibliographic citation are given for each entry, when available. Analyses were reported most frequently for /sup 137/Cs, /sup 40/K, /sup 90/Sr, /sup 226/Ra, /sup 228/Ra, plutonium, uranium, total alpha, and total beta, but a few authors also reported data for /sup 241/Am, /sup 7/Be, /sup 60/Co, /sup 55/Fe, /sup 3/H, /sup 131/I, /sup 54/Mn, /sup 95/Nb, /sup 210/Pb, /sup 210/Po, /sup 106/Ru, /sup 125/Sb, /sup 228/Th, /sup 232/Th, and /sup 95/Zr. Based on the reported data it appears that radioactivity from alpha emitters in food crops is usually low, on the order of 0.1 Bq.g/sup -1/ (wet weight) or less. Reported values of beta radiation in a given crop generally appear to be several orders of magnitude greater than those of alpha emitters. The most striking aspect of the data is the great range of radioactivity reported for a given nuclide in similar food crops with different geographical origins.

  17. The ratio method: a new way to look at halo nuclei

    Directory of Open Access Journals (Sweden)

    Capel P.

    2014-03-01

    Full Text Available A new reaction observable is presented to study exotic loosely-bound structures, such as halo nuclei. It consists of the ratio of two angular distributions, e. g. one for breakup and one for elastic scattering. This ratio is nearly independent of the reaction mechanism and is very sensitive to the projectile structure. This new ratio method is illustrated on the particular case of 11Be, the archetypal one-neutron halo nucleus.

  18. Fission and Properties of Neutron-Rich Nuclei

    Science.gov (United States)

    Hamilton, Joseph H.; Ramayya, A. V.; Carter, H. K.

    2008-08-01

    Opening session. Nuclear processes in stellar explosions / M. Wiescher. In-beam [symbol]-ray spectroscopy of neutron-rich nuclei at NSCL / A. Gade -- Nuclear structure I. Shell-model structure of neutron-rich nuclei beyond [symbol]Sn / A. Covello ... [et al.]. Shell structure and evolution of collectivity in nuclei above the [symbol]Sn core / S. Sarkar and M. S. Sarkar. Heavy-ion fusion using density-constrained TDHF / A. S. Umar and V. E. Oberacker. Towards an extended microscopic theory for upper-fp shell nuclei / K. P. Drumev. Properties of the Zr and Pb isotopes near the drip-line / V. N. Tarasov ... [et al.]. Identification of high spin states in [symbol] Cs nuclei and shell model calculations / K. Li ... [et al.]. Recent measurements of spherical and deformed isomers using the Lohengrin fission-fragment spectrometer / G. S. Simpson ... [et al.] -- Nuclear structure II. Nuclear structure investigation with rare isotope spectroscopic investigations at GSI / P. Boutachkov. Exploring the evolution of the shell structures by means of deep inelastic reactions / G. de Anaelis. Probing shell closures in neutron-rich nuclei / R. Krücken for the S277 and REX-ISOLDEMINIBALL collaborations. Structure of Fe isotopes at the limits of the pf-shell / N. Hoteling ... [et al.]. Spectroscopy of K isomers in shell-stabilized trans-fermium nuclei / S. K. Tandel ... [et al.] -- Radioactive ion beam facilities. SPIRAL2 at GANIL: a world leading ISOL facility for the next decade / S. Gales. New physics at the International Facility for Antiproton and Ion Research (FAIR) next to GSI / I. Augustin ... [et al.]. Radioactive beams from a high powered ISOL system / A. C. Shotter. RlKEN RT beam factory / T. Motobayashi. NSCL - ongoing activities and future perspectives / C. K. Gelbke. Rare isotope beams at Argonne / W. F. Henning. HRIBF: scientific highlights and future prospects / J. R. Beene. Radioactive ion beam research done in Dubna / G. M. Ter-Akopian ... [et al.] -- Fission I

  19. Gamow-Teller decay of T = 1 nuclei to odd-odd N = Z nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Lisetskiy, A F [National Superconducting Cyclotron Laboratory, MSU, East Lansing, MI 48824 (United States); Gelberg, A [Institute for Nuclear Physics, University of Cologne, 50937 Cologne (Germany); Institute of Physical and Chemical Reasearch (RIKEN), Wako, 351-0198 (Japan); Brentano, P von [Institute for Nuclear Physics, University of Cologne, 50937 Cologne (Germany)

    2005-01-01

    Transition strengths of Gamow-Teller decay of T{sub z} = {+-}1 nuclei to N = Z odd-odd nuclei have been calculated in a two-nucleon approximation for spherical and deformed nuclei. The results obtained for the latter are quite close to the values obtained by full-space shell-model calculations and to the experiment.

  20. Statistical properties of warm nuclei: Investigating the low-energy enhancement in the $\\gamma$- strength function of neutron-rich nuclei

    CERN Multimedia

    We propose to start a program to study the $\\gamma$-ray strength function of neutron rich nuclei in inverse kinematics with radioactive beams at HIE-ISOLDE. An unexpected increase in the $\\gamma$-strength function at low energy has been observed in several stable nuclei using the Oslo method. This year these results were confirmed with a different experimental technique and model independent analysis developed by iThemba/Livermore. If this enhancement of the $\\gamma$-strength function is also present in neutron-rich nuclei, it will strongly affect the neutron capture cross sections, which are important input in stellar models of synthesis of heavier elements in stars. We propose to start with an experiment using a $^{66}$Ni beam of 5.5 MeV /u, where the data will be analyzed using both methods independently, and we are sure to get enough statistics, before moving to more neutron-rich nuclei. When/if neutron-rich Ti, Fe or Mo beams will be available at ISOLDE, we will submit additional proposals.

  1. Radioactive nuclear beams of COMBAS facility

    Science.gov (United States)

    Artukh, A. G.; Klygin, S. A.; Kononenko, G. A.; Kyslukha, D. A.; Lukyanov, S. M.; Mikhailova, T. I.; Penionzhkevich, Yu. E.; Oganessian, Yu. Ts.; Sereda, Yu. M.; Vorontsov, A. N.; Erdemchimeg, B.

    2016-01-01

    The basic ion-optical characteristics of the luminosity and the high-resolution of kinematic separator COMBAS realized for the first time on the strong focusing principle are presented. The developed facility allows to separate the high-intensity secondary radioactive beams in a wide range of mass numbers A and atomic numbers Z which are produced in heavy ion reactions in the energy range of 20 ≤ E ≤ 100 MeV/A (Fermi energy domain). Two distinct detector systems such as realized Si strip detector telescope and the promising development of the three dimension time-projection chamber are discussed. Program of the investigations of nuclear reaction mechanisms at intermediate energies of 20-100 MeV/A, measurement of the radii of unstable nuclei, study of the cluster structure of light nuclei near the nuclear drip-line and search of 26,28O resonances in exchange reactions is proposed. The upgrading of experimental facility by the integration of COMBAS separator with the Ion Catcher is discussed.

  2. Microscopic description of α-decay from superdeformed nuclei

    International Nuclear Information System (INIS)

    Superdeformed nuclei have been intensively investigated, both experimentally and theoretically, during the last decade. We have studied in this paper alpha decay from superdeformed nuclei. For this we have solved exactly the problem of penetration of the alpha particle through a deformed barrier. We have found that approximate treatments of the penetrability in terms of the deformation, as e. g. the WKB approximation or the classical treatment, are not valid for deformations larger than β2∼ 0.3. We have also presented a formalism to calculate the formation amplitude of alpha particles in superdeformed nuclei, a number which is necessary in evaluating the absolute decay widths. Since this calculation requires the use of single-particle states that can describe processes occurring outside the nuclear surface, we introduced a representation consisting of the eigenvalues of two different harmonic oscillator potentials. The low lying members of the representation correspond to the standard single-particle states used to describe bound properties, while the high lying members correspond to the eigenvalues of a shallow harmonic oscillator potential. Within this representation we used the HFB approximation to describe the structure of the superdeformed nuclei. This single-particle basis allows for a much faster convergency of the computed formation amplitude in the region beyond the nuclear surface, where the interaction becomes practically a Coulomb repulsion between the emitted alpha particle and the daughter nucleus. We can therefore perform calculations which would otherwise be prohibitive. We have thus found that the formation amplitude (and the corresponding alpha decay probability) decreases with the difference between the quadrupole deformations in the mother and daughter nuclei, although this is not a big effect. We assumed that the mother nucleus decays by electromagnetic transitions to the head of a superdeformed band. From here we considered that alpha decay

  3. Radioactivity - superstition and science

    International Nuclear Information System (INIS)

    Fairy-tales, myths, superstition - how was it fair, when we could still be afraid for witches and goblins. Where demons floated and nicks danced, the dry science has spreaded and disenchanted the life. If there would not be things like radioactivity, against which can be struggled in the collective well being. Then it is bad, clear, or good, it heals sicks, also clear. But what is now correct? In his usual humorous way the author, Dr. Hermann Hinsch, explains by means of numerous examples the phenomenon ''radioactivity'' and its effects on life. Provocantly but illustratively he illuminates, which position radioactive radiation has in our life and how and where we have already met it wantedly or unwantedly. Perhaps we must then something less shudder, but something more realism at such theme is surely not harmful.

  4. Formation of $\\phi$ mesic nuclei

    CERN Document Server

    Yamagata-Sekihara, J; Vacas, M J Vicente; Hirenzaki, S

    2010-01-01

    We study the structure and formation of the $\\phi$ mesic nuclei to investigate the in-medium modification of the $\\phi$-meson spectral function at finite density. We consider (${\\bar p},\\phi$), ($\\gamma,p$) and ($\\pi^-,n$) reactions to produce a $\\phi$-meson inside the nucleus and evaluate the effects of its medium modifications to the reaction cross sections. We also estimate the consequences of the uncertainties of the ${\\bar K}$ selfenergy in medium to the $\\phi$-nucleus interaction. We find that it may be possible to see a peak structure in the reaction spectra for the strong attractive potential cases. On the other hand, for strong absorptive interaction cases with relatively weak attractions, it is very difficult to observe clear peaks and we may need to know the spectrum shape in a wide energy region to deduce the properties of $\\phi$.

  5. Inclusive breakup of Borromean nuclei

    CERN Document Server

    Hussein, Mahir S; Frederico, Tobias

    2016-01-01

    We derive the inclusive breakup cross section of a three-fragment projectile nuclei, $a = b +x_1 + x_2$, in the spectator model. The resulting four-body cross section for observing $b$, is composed of the elastic breakup cross section which contains information about the correlation between the two participant fragments, and the inclusive non-elastic breakup cross section. This latter cross section is found to be a non-trivial four-body generalization of the Austern formula \\cite{Austern1987}, which is proportional to a matrix element of the form, $\\langle\\hat{\\rho}_{{x_1},{x_2}}\\left|\\left[W_{{x_1}} + W_{{x_2}} + W_{3B}\\right]\\right|\\hat{\\rho}_{{x_1}, {x_2}}\\rangle$. The new feature here is the three-body absorption, represented by the imaginary potential, $W_{3B}$. We analyze this type of absorption and supply ideas of how to calculate its contribution.

  6. CAVITATION NUCLEI: EXPERIMENTS AND THEORY

    Institute of Scientific and Technical Information of China (English)

    MфRCH K. A.

    2009-01-01

    The Swedish astrophysicist and Nobel Prize winner Hannes Alfvén said: Theories come and go ─ the experiment is here forever. Often a theory, which we set up to describe an observed physical phenomenon, suffers from the lack of knowledge of decisive parameters, and therefore at best the theory becomes insufficient. Contrary, the experiment always reveals nature itself, though at prevailing experimental conditions. With essential parameters being out of control and even maybe unidentified, apparently similar experiments may deviate way beyond our expectations. However, these discrepancies offer us a chance to reflect on the character of the unknown parameters. In this way non-concordant experimental results may hold the key to the development of better theories – and to new experiments for the testing of their validity. Cavitation and cavitation nuclei are phenomena of that character.

  7. Probing nuclei by stripping them

    International Nuclear Information System (INIS)

    The towing mode appears in nucleus collisions in which forward moving particles with specific angular correlations are emitted. In fact some particles are extracted from the target and towed along for a short while by the projectile during the collision. This process was discovered at the GANIL accelerator in the nineties. These collisions are peripheral. A simulation has shown that the energy and angle features of the particles emitted depends on their initial quantum state inside the target nucleus just before their emission which means that towing mode can be used as a tool to study quantum states in nuclei and their correlations. Experimental results concerning the following reactions: 11Be + 48Ti and 6He + Pb are presented. (A.C.)

  8. Quasifree kaon photoproduction on nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Frank Lee; T. MART; Cornelius Bennhold; Lester Wright

    2001-12-01

    Investigations of the quasifree reaction A({gamma}, K Y)B are presented in the distorted wave impulse approximation (DWIA). For this purpose, we present a revised tree-level model of elementary kaon photoproduction that incorporates hadronic form factors consistent with gauge invariance, uses SU(3) values for the Born couplings and uses resonances consistent with multi-channel analyses. The potential of exclusive quasifree kaon photoproduction on nuclei to reveal details of the hyperon-nucleus interaction is examined. Detailed predictions for the coincidence cross section, the photon asymmetry, and the hyperon polarization and their sensitivities to the ingredients of the model are obtained for all six production channels. Under selected kinematics these observables are found to be sensitive to the hyperon-nucleus final state interaction. Some polarization observables are found to be insensitive to distortion effects, making them ideal tools to search for possible medium modifications of the elementary amplitude.

  9. On a Generalization of Kingman's Bounds

    OpenAIRE

    Liu, Zhen; Nain, Philippe; Towsley, Don

    1994-01-01

    In this paper we develop a framework for computing upper and lower bounds of an exponential form for a class of single server queueing systems with non-renewal inputs. These bounds generalize Kingman's bounds for queues with renewal inputs.

  10. Method of packaging radioactive wastes

    International Nuclear Information System (INIS)

    Purpose: To decrease the leaching of radioactive waste in marine environment. Method: Fillers are placed between a drum can and an inner cage for charging radioactive wastes in order to prevent the leakage of the radioactive wastes from the drum can. Leaching inhibitors for radioactive materials are mixed with the fillers made of organic substance such as asphalts and plastics. The leaching inhibitors are made of materials in the similar chemical form to that of the radioactive materials in the wastes and mixed into the fillers to the saturation limit of dissolution. For the radioactive wastes containing spent adsorbents for iodine, the inhibitors are made of silver nitrates. (Ikeda, J.)

  11. The radioactive wastes management

    International Nuclear Information System (INIS)

    The different types of radioactive waste are presented in this paper in the frame of the official categories which take into account their dangerousness and the lifetimes of their radioactivity. It is indicated how the less dangerous of them are handled in France. The ways of protecting the environment from the more dangerous ones (high activity and long lifetimes) are object of studies. Scientific questions, in the field of chemistry and physical chemistry, related to the implementation of deep underground repository facilities with full respect of nuclear safety are presented. (authors)

  12. Radioactive waste processing method

    International Nuclear Information System (INIS)

    When granular materials comprising radioactive wastes containing phosphorus are processed at first in a fluidized bed type furnace, if the granular materials are phosphorus-containing activated carbon, granular materials comprising alkali compound such as calcium hydroxide and barium hydroxide are used as fluidizing media. Even granular materials of slow burning speed can be burnt stably in a fluidizing state by high temperature heat of the fluidizing media, thereby enabling to take a long burning processing time. Accordingly, radioactive activated carbon wastes can be processed by burning treatment. (T.M.)

  13. Your radioactive garden

    International Nuclear Information System (INIS)

    The booklet on radiation risks from nuclear waste is based on lectures given by the author at Westminster School (United Kingdom) and elsewhere during 1986. A description is given of naturally-occurring radioactivity, and the health risks due to this radiation. The types of radioactive wastes produced by the nuclear industry are described, including low-level wastes, short-lived and long-lived intermediate-level wastes, and high level wastes. These wastes are discussed with respect to their potential health risks and their disposal underground. (U.K.)

  14. Radioactive wastes in Oklo

    International Nuclear Information System (INIS)

    The acceptance of the Nuclear Energy as electric power supply implies to give answer to the population on the two main challenges to conquer in the public opinion: the nuclear accidents and the radioactive wastes. Several of the questions that are made on the radioactive wastes, its are the mobility migration of them, the geologic stability of the place where its are deposited and the possible migration toward the aquifer mantels. Since the half lives of the radioactive waste of a Nuclear Reactor are of several hundred of thousands of years, the technical explanations to the previous questions little convince to the public in general. In this work summary the results of the radioactive waste generated in a natural reactor, denominated Oklo effect that took place in Gabon, Africa, it makes several thousands of millions of years, a lot before the man appeared in the Earth. The identification of at least 17 reactors in Oklo it was carried out thanks to the difference in the concentrations of Uranium 235 and 238 prospective, and to the analysis of the non-mobility of the radioactive waste in the site. It was able by this way to determine that the reactors with sizes of hardly some decimeter and powers of around 100 kilowatts were operating in intermittent and spontaneous form for space of 150,000 years, with operation cycles of around 30 minutes. Recent studies have contributed information valuable on the natural confinement of the radioactive waste of the Oklo reactors in matrixes of minerals of aluminum phosphate that caught and immobilized them for thousands of millions of years. This extracted information from the nature contributes guides and it allows 'to verify' the validity of the current proposals on the immobilization of radioactive wastes of a nuclear reactor. This work presents in clear and accessible form to the public in general on the secure 'design', operation, 'decommissioning' and 'storage' of the radioactive waste of the reactors that the nature put

  15. Radioactive waste management

    International Nuclear Information System (INIS)

    The purpose of this document is to set out the Government's current strategy for the long term in the management of radioactive wastes. It takes account of the latest developments, and will be subject to review in the light of future developments and studies. The subject is discussed under the headings: what are radioactive wastes; who is responsible; what monitoring takes place; disposal as the objective; low-level wastes; intermediate-level wastes; discharges from Sellafield; heat generating wastes; how will waste management systems and procedures be assessed; how much more waste is there going to be in future; conclusion. (U.K.)

  16. Radioactivity yesterday and today

    International Nuclear Information System (INIS)

    As an exhibition on the history of radioactivity from Homer to Oppenheimer has been organised in the Palais de la Decouverte in Paris, this article first recalls some atom characteristics and interactions between electrostatic forces within the atom. The author recalls how radioactivity has been unexpectedly discovered at the end of the 19. century, recalls the first works of characterization performed by Marie Curie and those performed by other scientists who perceived the opportunities for various applications. More recent works are also addressed like other forms of nucleus disintegrations, the generation of heavy ion beams, and double beta decay

  17. Positron production in collision of heavy nuclei

    CERN Document Server

    Khriplovich, I B

    2016-01-01

    We consider the electromagnetic production of positron in collision of slow heavy nuclei, with the simultaneously produced electron captured by one of the nuclei. The cross-section of the discussed process exceeds essentially the cross-section of $e^+e^-$ production.

  18. Mean-field models and exotic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Bender, M.; Buervenich, T.; Maruhn, J.A.; Greiner, W. [Inst. fuer Theoretische Physik, Univ. Frankfurt (Germany); Rutz, K. [Inst. fuer Theoretische Physik, Univ. Frankfurt (Germany)]|[Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Reinhard, P.G. [Inst. fuer Theoretische Physik, Univ. Erlangen (Germany)

    1998-06-01

    We discuss two widely used nuclear mean-field models, the relativistic mean-field model and the (nonrelativistic) Skyrme-Hartree-Fock model, and their capability to describe exotic nuclei. Test cases are superheavy nuclei and neutron-rich Sn isotopes. New information in this regime helps to fix hitherto loosely determined aspects of the models. (orig.)

  19. Etaprime interactions with nucleons and nuclei

    CERN Document Server

    Bass, Steven D

    2015-01-01

    We summarise recent progress in theory and experiment towards understanding etaprime meson interactions with nucleons and nuclei. Highlights include the production mechanism of etaprime mesons in proton-proton collisions close to threshold, the etaprime effective mass shift in nuclei and the determination of the etaprime-nucleon scattering length in free space.

  20. RFP for the Comet Nuclei Tour (CONTOUR)

    DEFF Research Database (Denmark)

    Jørgensen, John Leif; Madsen, Peter Buch; Betto, Maurizio;

    1999-01-01

    This document describes the ASC Star Tracker (performance, functionality, requirements etc.) to The Johns Hopkins University - Applied Physics Laboratory for their Comet Nuclei TOUR (CONTOUR) Program.......This document describes the ASC Star Tracker (performance, functionality, requirements etc.) to The Johns Hopkins University - Applied Physics Laboratory for their Comet Nuclei TOUR (CONTOUR) Program....

  1. Variation of hadron masses in finite nuclei

    CERN Document Server

    Saitô, K; Tsushima, K; Saito, Koichi; Thomas, Anthony W.; Tsushima, Kazuo

    1997-01-01

    Using a self-consistent, Hartree description for both infinite nuclear matter and finite nuclei based on a relativistic quark model (the quark-meson coupling model), we investigate the variation of the masses of the non-strange vector mesons, the hyperons and the nucleon in infinite nuclear matter and in finite nuclei.

  2. Decay of heavy and superheavy nuclei

    Indian Academy of Sciences (India)

    K P Santhosh

    2014-04-01

    We present here, an overview and progress of the theoretical works on the isomeric state decay, decay fine structure of even–even, even–odd, odd–even and odd–odd nuclei, a study on the feasibility of observing decay chains from the isotopes of the superheavy nuclei = 115 in the range 271 ≤ ≤ 294 and the isotopes of = 117 in the range 270 ≤ ≤ 301, within the Coulomb and proximity potential model for deformed nuclei (CPPMDN). The computed half-lives of the favoured and unfavoured decay of nuclei in the range 67 ≤ ≤ 91 from both the ground state and isomeric state, are in good agreement with the experimental data and the standard deviation of half-life is found to be 0.44. From the fine structure studies done on various ranges of nuclei, it is evident that, for nearly all the transitions, the theoretical values show good match with the experimental values. This reveals that CPPMDN is successful in explaining the fine structure of even–even, even–odd, odd–even and odd–odd nuclei. Our studies on the decay of the superheavy nuclei 271−294115 and 270−301117 predict 4 chains consistently from 284,285,286115 nuclei and 5 chains and 3 chains consistently from 288−291117 and 292117, respectively. We thus hope that these studies on 284−286115 and 288−292117 will be a guide to future experiments.

  3. Partial dynamical symmetry in deformed nuclei

    CERN Document Server

    Leviatan, A

    1996-01-01

    We discuss the notion of partial dynamical symmetry in relation to nuclear spectroscopy. Explicit forms of Hamiltonians with partial SU(3) symmetry are presented in the framework of the interacting boson model of nuclei. An analysis of the resulting spectrum and electromagnetic transitions demonstrates the relevance of such partial symmetry to the spectroscopy of axially deformed nuclei.

  4. Energy Radiation of the Active Galactic Nuclei

    Institute of Scientific and Technical Information of China (English)

    TANG Zhi-Ming; WANG Yong-Jiu

    2004-01-01

    In the Hellings-Nordtvedt theory, we obtain some expressions of energy radiation and mass defect effect for a kind of the active galactic nuclei, which is meaningful to calculating the energy radiation in the procession of forming this kind of celestial bodies. This calculation can give some interpretation for energy source of the jet from the active galactic nuclei.

  5. Core excited Fano-resonances in exotic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Orrigo, S.E.A. [INFN Laboratori Nazionali del Sud, Catania (Italy) and Dipartimento di Fisica e Astronomia, Universita di Catania, Catania (Italy)]. E-mail: orrigo@lns.infn.it; Lenske, H. [Institut fuer Theoretische Physik, Universitaet Giessen, Giessen (Germany); Cappuzzello, F. [INFN Laboratori Nazionali del Sud, Catania (Italy); Cunsolo, A. [INFN Laboratori Nazionali del Sud, Catania (Italy); Dipartimento di Fisica e Astronomia, Universita di Catania, Catania (Italy); Foti, A. [Dipartimento di Fisica e Astronomia, Universita di Catania, Catania (Italy); INFN Sezione di Catania, Catania (Italy); Lazzaro, A. [INFN Laboratori Nazionali del Sud, Catania (Italy); Nociforo, C. [INFN Laboratori Nazionali del Sud, Catania (Italy); Winfield, J.S. [INFN Laboratori Nazionali del Sud, Catania (Italy)

    2006-02-16

    Fano-resonances are investigated as a new continuum excitation mode in exotic nuclei. By theoretical model calculations we show that the coupling of a single particle elastic channel to closed core-excited channels leads to sharp resonances in the low-energy continuum. A signature for such bound states embedded in the continuum (BSEC) are characteristic interference effects leading to asymmetric line shapes. Following the quasiparticle-core coupling model we consider the coupling of 1-QP (one-quasiparticle) and 3-QP components and find a number of long-living resonance structures close to the particle threshold. Results for {sup 15}C are compared with experimental data, showing that the experimentally observed spectral distribution and the interference pattern are in qualitative agreement with a BSEC interpretation.

  6. Core Excited Fano-Resonances in Exotic Nuclei

    CERN Document Server

    Orrigo, S E A; Cappuzzello, F; Cunsolo, A; Foti, A; Lazzaro, A; Nociforo, C; Winfield, J S

    2006-01-01

    Fano-resonances are investigated as a new continuum excitation mode in exotic nuclei. By theoretical model calculations we show that the coupling of a single particle elastic channel to closed core-excited channels leads to sharp resonances in the low-energy continuum. A signature for such bound states embedded in the continuum (BSEC) are characteristic interference effects leading to asymmetric line shapes. Following the quasiparticle-core coupling model we consider the coupling of 1-QP (one-quasiparticle) and 3-QP components and find a number of long-living resonance structures close to the particle threshold. Results for 15C are compared with experimental data, showing that the experimentally observed spectral distribution and the interference pattern are in qualitative agreement with a BSEC interpretation.

  7. A Good Statistics Study of Antiproton Interactions with Nuclei

    CERN Multimedia

    2002-01-01

    This experiment extends the study of inclusive pion production and the correlation between pions which result from hadron-nucleus collisions at intermediate and high energies to the antiproton-nucleus system. It is part of a long term systematic search for exotic nuclear phenomena. The correlation data will be used to extract, via pion interferometry, the size and coherence of the annihilation source in nuclei. In addition, the reaction @* + A @A p + A* will be studied to look for structure in the proton spectra which antiproton-nucleus bound states.\\\\ \\\\ The experimental system is based on a flexible, broad range, large acceptance (1~steradian) spectrometer which consists of an 80~cm diameter dipole magnet surrounded with detector arrays. These detectors provide momentum, energy loss, Cerenkov and time of flight information for up to ten ejectiles per event. Momentum resolution varies from 1\\% to 3\\%, depending on energy.

  8. Core excited Fano-resonances in exotic nuclei

    International Nuclear Information System (INIS)

    Fano-resonances are investigated as a new continuum excitation mode in exotic nuclei. By theoretical model calculations we show that the coupling of a single particle elastic channel to closed core-excited channels leads to sharp resonances in the low-energy continuum. A signature for such bound states embedded in the continuum (BSEC) are characteristic interference effects leading to asymmetric line shapes. Following the quasiparticle-core coupling model we consider the coupling of 1-QP (one-quasiparticle) and 3-QP components and find a number of long-living resonance structures close to the particle threshold. Results for 15C are compared with experimental data, showing that the experimentally observed spectral distribution and the interference pattern are in qualitative agreement with a BSEC interpretation

  9. Coulomb excitation of radioactive {sup 79}Pb

    Energy Technology Data Exchange (ETDEWEB)

    Lister, C.J.; Blumenthal, D.; Davids, C.N. [and others

    1995-08-01

    The technical challenges expected in experiments with radioactive beams can already be explored by using ions produced in primary reactions. In addition, the re-excitation of these ions by Coulomb excitation allows a sensitive search for collective states that are well above the yrast line. We are building an experiment to study Coulomb excitation of radioactive ions which are separated from beam particles by the Fragment Mass Analyzer. An array of gamma detectors will be mounted at the focal plane to measure the gamma radiation following re-excitation. Five Compton-suppressed Ge detectors and five planar LEPS detectors will be used. The optimum experiment of this type appears to be the study of {sup 79}Rb following the {sup 24}Mg ({sup 58}Ni,3p) reaction. We calculate that about 5 x 10{sup 5} {sup 79}Rb nuclei/second will reach the excitation foil. This rubidium isotope was selected for study as it is strongly produced and is highly deformed, so easily re-excited. The use of a {sup 58}Ni re-excitation foil offers the best yields. After re-excitation the ions will be subsequently transported into a shielded beamdump to prevent the accumulation of activity.

  10. Total Nuclear Reaction Cross Section Induced by Halo Nuclei and Stable Nuclei

    Institute of Scientific and Technical Information of China (English)

    GUO Wen-Jun; JIANG Huan-Qing; LIU Jian-Ye; ZUO Wei; REN Zhong-Zhou; LEE Xi-Guo

    2003-01-01

    We develop a method for calculation of the total reaction cross sections induced by the halo nuclei and stable. nuclei. This approach is based on the Glauber theory, which is valid for nuclear reactions at high energies. It is extended for nuclear reactions at low energies and intermediate energies by including both the quantum correction and Coulomb correction under the assumption of the effective nuclear density distribution. The calculated results of the total reaction cross section induced by stable nuclei agree well with 30 experimental data within 10 percent accuracy. The comparison between the numerical results and 20 experimental data for the total nuclear reaction cross section induced by the neutron halo nuclei and the proton halo nuclei indicates a satisfactory agreement after considering the halo structure of these nuclei, which implies quite different mean fields for the nuclear reactions induced by halo nuclei and stable nuclei. The halo nucleon distributions and the root-mean-square radii of these nuclei can be extracted from the above comparison based on the improved Glauber model, which indicates clearly the halo structures of these nuclei. Especially,it is clear to see that the medium correction of the nucleon-nucleon collision has little effect on the total reaction cross sections induced by the halo nuclei due to the very weak binding and the very extended density distribution.

  11. Shape coexistence in krypton and selenium light isotopes studied through Coulomb excitation of radioactive ions beams; Etude de la coexistence de formes dans les isotopes legers du krypton et du selenium par excitation Coulombienne de faisceaux radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Clement, E

    2006-06-15

    The light krypton isotopes show two minima in their potential energy corresponding to elongated (prolate) and compressed (oblate) quadrupole deformation. Both configuration are almost equally bound and occur within an energy range of less than 1 MeV. Such phenomenon is called shape coexistence. An inversion of the ground state deformation from prolate in Kr{sup 78} to oblate in Kr{sup 72} with strong mixing of the configurations in Kr{sup 74} and Kr{sup 76} was proposed based on the systematic of isotopic chain. Coulomb excitation experiments are sensitive to the quadrupole moment. Coulomb excitation experiments of radioactive Kr{sup 74} and Kr{sup 76} beam were performed at GANIL using the SPIRAL facility and the EXOGAM spectrometer. The analysis of these experiments resulted in a complete description of the transition strength and quadrupole moments of the low-lying states. They establish the prolate character of the ground state and an oblate excited state. A complementary lifetime measurement using a 'plunger' device was also performed. Transition strength in neighboring nuclei were measured using the technique of intermediate energy Coulomb excitation at GANIL. The results on the Se{sup 68} nucleus show a sharp change in structure with respects to heavier neighboring nuclei. (author)

  12. New Proton radioactivity measurements

    OpenAIRE

    Irvine, Richard J

    1998-01-01

    A series of experiments were carried out at Argonne National Laboratory to search for examples of proton emission from ground and low­lying states in odd­Z nuclei at the proton drip­line. Recoils from fusion evaporation reactions were separated from other reaction products and dispersed according to their mass to charge ratio by the Fragment Mass Analyser, before being implanted into a double­sided silicon strip detector system, where their subsequent particle decays (prot...

  13. Improved Range Searching Lower Bounds

    DEFF Research Database (Denmark)

    Larsen, Kasper Green; Nguyen, Huy L.

    2012-01-01

    range reporting problem. In approximate simplex range reporting, points that lie within a distance of ε ⋅ Diam(s) from the border of a query simplex s, are free to be included or excluded from the output, where ε ≥ 0 is an input parameter to the range searching problem. We prove our lower bounds......Table of Contents -------------------------------------------------------------------------------- In this paper we present a number of improved lower bounds for range searching in the pointer machine and the group model. In the pointer machine, we prove lower bounds for the approximate simplex...... by constructing a hard input set and query set, and then invoking Chazelle and Rosenberg's [CGTA'96] general theorem on the complexity of navigation in the pointer machine. For the group model, we show that input sets and query sets that are hard for range reporting in the pointer machine (i.e. by Chazelle...

  14. Simulation bounds for system availability

    International Nuclear Information System (INIS)

    System availability is a dominant factor in the practicality of nuclear power electrical generating plants. A proposed model for obtaining either lower bounds or interval estimates on availability uses observed data on ''n'' failure-to-repair cycles of the system to estimate the parameters in the time-to-failure and time-to-repair models. These estimates are then used in simulating failure/repair cycles of the system. The availability estimate is obtained for each of 5000 samples of ''n'' failure/repair cycles to form a distribution of estimates. Specific percentile points of those simulated distributions are selected as lower simulation bounds or simulation interval bounds for the system availability. The method is illustrated with operational data from two nuclear plants for which an exponential time-to-failure and a lognormal time-to-repair are assumed

  15. Energy bounds in designer gravity

    Science.gov (United States)

    Amsel, Aaron J.; Marolf, Donald

    2006-09-01

    We consider asymptotically anti-de Sitter gravity coupled to tachyonic scalar fields with mass at or slightly above the Breitenlohner-Freedman bound in d≥4 spacetime dimensions. The boundary conditions in these “designer gravity” theories are defined in terms of an arbitrary function W. We give a general argument that the Hamiltonian generators of asymptotic symmetries for such systems will be finite, and proceed to construct these generators using the covariant phase space method. The direct calculation confirms that the generators are finite and shows that they take the form of the pure gravity result plus additional contributions from the scalar fields. By comparing the generators to the spinor charge, we derive a lower bound on the gravitational energy when W has a global minimum and the Breitenlohner-Freedman bound is not saturated.

  16. Experimental activation of bound entanglement.

    Science.gov (United States)

    Kaneda, Fumihiro; Shimizu, Ryosuke; Ishizaka, Satoshi; Mitsumori, Yasuyoshi; Kosaka, Hideo; Edamatsu, Keiichi

    2012-07-27

    Entanglement is one of the essential resources in quantum information and communication technology (QICT). The entanglement thus far explored and applied to QICT has been pure and distillable entanglement. Yet, there is another type of entanglement, called "bound entanglement," which is not distillable by local operations and classical communication. We demonstrate the experimental "activation" of the bound entanglement held in the four-qubit Smolin state, unleashing its immanent entanglement in distillable form, with the help of auxiliary two-qubit entanglement and local operations and classical communication. We anticipate that it opens the way to a new class of QICT applications that utilize more general classes of entanglement than ever, including bound entanglement.

  17. Monitoring of airborne radioactivity (radon, thoron and daughters; radioactive dust)

    International Nuclear Information System (INIS)

    The processes resulting in airborne radioactivity from uranium and thorium ores are discussed. Measurement methods for radioactive dust, radon and thoron gas and radon and thoron daughters are described and assessed. The monitoring equipment required for measurement of airborne radioactivity is described

  18. $\\beta$ - decay asymmetry in mirror nuclei: A = 9

    CERN Multimedia

    Axelsson, L E; Smedberg, M

    2002-01-01

    Investigations of light nuclei close to the drip lines have revealed new and intriguing features of the nuclear structure. The occurrence of halo structures in loosely bound systems has had a great impact on the nuclear physics research in the last years. As intriguing but not yet solved is the nature of transitions with very large $\\beta$ - strength. \\\\ \\\\We report here on the investigation of this latter feature by an accurate measurement of the $\\beta$ - decay asymmetry between the mirror nuclei in the A=9 mass chain.\\\\ \\\\The possible asymmetry for the decay to the states around 12 MeV is interesting not only due to the fact that the individual B$_{GT}$ values are large (with large overlap in wave-functions, an unambiguous interpretation is much easier made), but also due to the special role played by this transition for the $^{9}$Li decay. It seems to belong to a class of high-B$_{GT}$ transitions observed at the neutron drip line and has been suggested to be due either to a lowering of the giant Gamow-Te...

  19. SHIPPING OF RADIOACTIVE ITEMS

    CERN Multimedia

    TIS/RP Group

    2001-01-01

    The TIS-RP group informs users that shipping of small radioactive items is normally guaranteed within 24 hours from the time the material is handed in at the TIS-RP service. This time is imposed by the necessary procedures (identification of the radionuclides, determination of dose rate and massive objects require a longer procedure and will therefore take longer.

  20. Encapsulation of radioactive waste

    International Nuclear Information System (INIS)

    A method is described for encapsulating a particular radioactive waste which consists of suspending the waste in a viscous liquid encapsulating material, of synthetic resin monomers or prepolymers, and setting the encapsulating material by addition or condensation polymerization to form a solid material in which the waste is dispersed. (author)

  1. AIR RADIOACTIVITY MONITOR

    Science.gov (United States)

    Bradshaw, R.L.; Thomas, J.W.

    1961-04-11

    The monitor is designed to minimize undesirable background buildup. It consists of an elongated column containing peripheral electrodes in a central portion of the column, and conduits directing an axial flow of radioactively contaminated air through the center of the column and pure air through the annular portion of the column about the electrodes. (AEC)

  2. Radioactivity: A Natural Phenomenon.

    Science.gov (United States)

    Ronneau, C.

    1990-01-01

    Discussed is misinformation people have on the subject of radiation. The importance of comparing artificial source levels of radiation to natural levels is emphasized. Measurements of radioactivity, its consequences, and comparisons between the risks induced by radiation in the environment and from artificial sources are included. (KR)

  3. Viewer Makes Radioactivity "Visible"

    Science.gov (United States)

    Yin, L. I.

    1983-01-01

    Battery operated viewer demonstrates feasibility of generating threedimensional visible light simulations of objects that emit X-ray or gamma rays. Ray paths are traced for two pinhold positions to show location of reconstructed image. Images formed by pinholes are converted to intensified visible-light images. Applications range from radioactivity contamination surveys to monitoring radioisotope absorption in tumors.

  4. Environmental radioactivity in Hungary

    International Nuclear Information System (INIS)

    A comprehensive examination of radioactive contamination in air, soil, surface waters and food products, and of natural radioactiviy in air, soil, and building materials has been carried out. The investigated factors were as follows: a) air samples: yearly and monthly beta- and gamma activities of fallout, precipitation and aerosols in the period 1955-1976 in Budapest and some other towns; b) soil samples: 90Sr concentration of soils of different quality and cultivation originating from sixteen regions of Hungary measured in the period 1974-1976; c) surface waters: annual mean beta activity of five rivers and of the Lake Balaton in the period 1965-1976, 3H, 137Cs and 90Sr activity of the Danube in the year 1976; d) food products: radioactive contamination of spinach, lettuce and oxalis, originating from three different regions in the period 1959-1976 and mean radioactivity of fodder, corn, tobacco, milk, fish and animal bones in a period of 5-10 years; e) natural radioactivity: radon- and toron concentration of air, activity of 226Ra fallout of the soil in the vicinity of power plants, 226Ra, 228Th and 40K activity of different building materials, radiation doses inside buildings constructed by different technics. (L.E.)

  5. Radioactivity and food preservation

    International Nuclear Information System (INIS)

    In food irradiation, electrons or electromagnetic radiation are used to destroy microorganisms and insects or to prevent seed germination. The economic advantages and health benefits of sterilizing food in this manner are clear, and numerous studies have confirmed that under strictly controlled conditions no undesirable changes or induced radioactivity are produced in the irradiated food

  6. Radioactive Sources Service

    CERN Multimedia

    2007-01-01

    Please note that the radioactive sources service will be open by appointment only every Monday, Wednesday and Friday during CERN working hours (instead of alternate weeks). In addition, please note that our 2007 schedule is available on our web site: http://cern.ch/service-rp-sources

  7. Radioactive Sources Service

    CERN Multimedia

    2007-01-01

    Please note that the radioactive sources service will be open by appointment only every Monday, Wednesday and Friday during CERN working hours (instead of alternate weeks). In addition, please note that our 2007 schedule is available on our web site. http://cern.ch/service-rp-sources

  8. Refining Castelnuovo-Halphen bounds

    CERN Document Server

    Di Gennaro, Vincenzo

    2011-01-01

    Fix integers $r,d,s,\\pi$ with $r\\geq 4$, $d\\gg s$, $r-1\\leq s \\leq 2r-4$, and $\\pi\\geq 0$. Refining classical results for the genus of a projective curve, we exhibit a sharp upper bound for the arithmetic genus $p_a(C)$ of an integral projective curve $C\\subset {\\mathbb{P}^r}$ of degree $d$, assuming that $C$ is not contained in any surface of degree $ \\pi$. Next we discuss other types of bound for $p_a(C)$, involving conditions on the entire Hilbert polynomial of the integral surfaces on which $C$ may lie.

  9. Variables Bounding Based Retiming Algorithm

    Institute of Scientific and Technical Information of China (English)

    宫宗伟; 林争辉; 陈后鹏

    2002-01-01

    Retiming is a technique for optimizing sequential circuits. In this paper, wediscuss this problem and propose an improved retiming algorithm based on variables bounding.Through the computation of the lower and upper bounds on variables, the algorithm can signi-ficantly reduce the number of constraints and speed up the execution of retiming. Furthermore,the elements of matrixes D and W are computed in a demand-driven way, which can reducethe capacity of memory. It is shown through the experimental results on ISCAS89 benchmarksthat our algorithm is very effective for large-scale sequential circuits.

  10. Environmental Radioactivity, Temperature, and Precipitation.

    Science.gov (United States)

    Riland, Carson A.

    1996-01-01

    Reports that environmental radioactivity levels vary with temperature and precipitation and these effects are due to radon. Discusses the measurement of this environmental radioactivity and the theory behind it. (JRH)

  11. Correlative experiments with radioactive beams

    International Nuclear Information System (INIS)

    The possibility to study neutron nuclei created in direct break-up processes of light neutron rich nuclei by heavy nuclei is discussed herein. From experimental investigations of break-up of lighter isotopes 3 He, 4 He one may see that such processes have large cross section. Break-up product spectra as well as their angular dependence can be rather good described in framework theory

  12. Oxygen dependence of cellular uptake of EF5 [2-(2-nitro-1H-imidazol-1-yl)-N-(2,2,3,3,3-pentafluoropropyl)a cet amide] : analysis of drug adducts by fluorescent antibodies vs bound radioactivity.

    Science.gov (United States)

    Koch, C J; Evans, S M; Lord, E M

    1995-10-01

    The present studies were initiated to quantitate the oxygen dependence of bioreductive metabolism-induced binding of EF5, a pentafluorinated derivative of the 2-nitroimidazole, etanidazole. Two different assays were compared: first, radioactive drug incorporation into cell lysates, which provides a direct measure of drug metabolism or uptake; second, monoclonal antibody detection of cellular macromolecular adducts of EF5 after whole cell permeabilisation and fixing. The antibodies (a single clone designated ELK3-51) were conjugated with the fluorescent dye Cy3, with fluorescence determined by fluorescence microscopy and flow cytometry. For the two cell lines tested (V79 Chinese hamster fibroblasts and 9L rat glioma), the oxygen dependence of binding was found to be the same for the two techniques. Using the antibody binding technique, the fluorescence signal was highly reproducible between experiments, resistant to light or chemical bleaching and stable over time following cell or tissue staining. Flow cytometric analysis of cells from rat 9L tumours treated with EF5 in vivo or in vitro showed a distribution of fluorescent signal which was very compatible, on both a relative and absolute basis, with the in vitro results. Our results indicate that immunofluorescent techniques provide a quantitative assay for bioreductive drug adducts, and therefore may be able to measure the absolute oxygen concentration distribution in cell populations and tissues of interest. PMID:7547233

  13. Fusion probability in heavy nuclei

    Science.gov (United States)

    Banerjee, Tathagata; Nath, S.; Pal, Santanu

    2015-03-01

    Background: Fusion between two massive nuclei is a very complex process and is characterized by three stages: (a) capture inside the potential barrier, (b) formation of an equilibrated compound nucleus (CN), and (c) statistical decay of the CN leading to a cold evaporation residue (ER) or fission. The second stage is the least understood of the three and is the most crucial in predicting yield of superheavy elements (SHE) formed in complete fusion reactions. Purpose: A systematic study of average fusion probability, PCN> , is undertaken to obtain a better understanding of its dependence on various reaction parameters. The study may also help to clearly demarcate onset of non-CN fission (NCNF), which causes fusion probability, PCN, to deviate from unity. Method: ER excitation functions for 52 reactions leading to CN in the mass region 170-220, which are available in the literature, have been compared with statistical model (SM) calculations. Capture cross sections have been obtained from a coupled-channels code. In the SM, shell corrections in both the level density and the fission barrier have been included. PCN> for these reactions has been extracted by comparing experimental and theoretical ER excitation functions in the energy range ˜5 %-35% above the potential barrier, where known effects of nuclear structure are insignificant. Results: PCN> has been shown to vary with entrance channel mass asymmetry, η (or charge product, ZpZt ), as well as with fissility of the CN, χCN. No parameter has been found to be adequate as a single scaling variable to determine PCN> . Approximate boundaries have been obtained from where PCN> starts deviating from unity. Conclusions: This study quite clearly reveals the limits of applicability of the SM in interpreting experimental observables from fusion reactions involving two massive nuclei. Deviation of PCN> from unity marks the beginning of the domain of dynamical models of fusion. Availability of precise ER cross sections

  14. A new spin on nuclei

    International Nuclear Information System (INIS)

    Magnetic rotation is a new phenomenon that is forcing physicists to rethink their understanding of what goes on inside the nucleus The rotation of quantum objects has a long and distinguished history in physics. In 1912 the Danish scientist Niels Bjerrum was the first to recognize that the rotation of molecules is quantized. In 1938 Edward Teller and John Wheeler observed similar features in the spectra of excited nuclei, and suggested that this was caused by the nucleus rotating. But a more complete explanation had to wait until 1951, when Aage Bohr (the son of Niels) pointed out that rotation was a consequence of the nucleus deforming from its spherical shape. We owe much of our current understanding of nuclear rotation to the work of Bohr and Ben Mottelson, who shared the 1975 Nobel Prize for Physics with James Rainwater for developing a model of the nucleus that combined the individual and collective motions of the neutrons and protons inside the nucleus. What makes it possible for a nucleus to rotate? Quantum mechanically, a perfect sphere cannot rotate because it appears the same when viewed from any direction and there is no point of reference against which its change in position can be detected. To see the rotation the spherical symmetry must be broken to allow an orientation in space to be defined. For example, a diatomic molecule, which has a dumbbell shape, can rotate about the two axes perpendicular to its axis of symmetry. A quantum mechanical treatment of a diatomic molecule leads to a very simple relationship between rotational energy, E, and angular momentum. This energy is found to be proportional to J(J + 1), where J is the angular momentum quantum number. The molecule also has a magnetic moment that is proportional to J. These concepts can be applied to the atomic nucleus. If the distribution of mass and/or charge inside the nucleus becomes non-spherical then the nucleus will be able to rotate. The rotation is termed ''collective'' because many

  15. Biological Ice Nuclei: They are Everywhere, What are Their Roles? (Invited)

    Science.gov (United States)

    Schnell, R. C.

    2009-12-01

    Biological ice nuclei active at temperatures warmer than -2C were first observed in the late 1960s associated with decaying grass and tree leaves; discovered more by accident than in a planned experiment. The active component of the decaying leaves was subsequently found to be produced by a few living bacteria, the two most ubiquitous being strains of P. syringae and E. herbicola. The active bacterial ice nuclei are easily deactivated by anaerobic, chemical and heat stresses. The same grass and tree leaves, when well decayed, generally contain less active ice nuclei (threshold temperatures of -5C to - 6C) in the 0.1 micron diameter range compared to the larger (1 micron) bacteria associated ice nuclei. The well decayed leaf litter ice nuclei are stable over a wide range of stresses and time; some samples of leaf derived nuclei stored at room temperature have exhibited the same ice nucleus concentration for over 30 years. Fungi also have active ice nuclei that are stable over many decades. Active ice nuclei are found in marine waters associated with plankton, and are produced by at least one marine dinoflagellate (Heterocapsa niei) that expresses ice nucleus activity almost as warm as terrestrial bacteria ice nuclei. Living ice nucleus bacteria have been found in marine fogs far at sea, in precipitation in Antarctica as well as over many continental areas, in air in the high Arctic, on vegetation around the world, on remote ice bound islands, and growing on and inside water storing vegetation on isolated tropical mountain peaks. But why? What is the evolutionary advantage for the ice nucleus gene to be expressed in such a wide range of environments, by greatly different species? There is an energy cost for bacteria and fungi to support the ice gene, so it probably is not a genetic anomaly. Possibly the ice nuclei play many roles? These could include damaging plants to acquire a food source, an aid in survival and dispersal in clouds, initiation of precipitation to

  16. Description of alpha decay and cluster radioactivity in the dinuclear system model

    Science.gov (United States)

    Kuklin, S. N.; Adamian, G. G.; Antonenko, N. V.

    2016-03-01

    A unified description of cluster radioactivity and α-decay of cold nuclei in the dinuclear system model is proposed. Quantum dynamical fluctuations along the charge (mass) asymmetry coordinate determine the spectroscopic factor, and tunneling along the relative distance coordinate determines the penetrability of the barrier of the nucleus-nucleus interaction potential. A new method for calculating the spectroscopic factor is proposed. The hindrance factors for the orbital angular momentum transfer are studied. A potential reason for the half-life to deviate from the Geiger-Nuttall law in α-decays of neutron-deficient nuclei 194, 196Rn is found. The fine structure of α-decays of U and Th isotopes is predicted and characterized. The model is used to describe α-decays from the rotational band of even-even nuclei. The known half-lives in the regions of "lead" and "tin" radioactivities are reproduced well, and the most probable cluster yields are predicted. The cluster decay of excited nuclei is discussed. The relation of cluster radioactivity to spontaneous fission and highly deformed nuclear states is analyzed.

  17. Classical simulations of heavy-ion fusion reactions and weakly-bound projectile breakup reactions

    Indian Academy of Sciences (India)

    S S Godre

    2014-05-01

    Heavy-ion collision simulations in various classical models are discussed. Heavy-ion reactions with spherical and deformed nuclei are simulated in a classical rigid-body dynamics (CRBD) model which takes into account the reorientation of the deformed projectile. It is found that the barrier parameters depend not only on the initial orientations of the deformed nucleus, but also on the collision energy and the moment of inertia of the deformed nucleus. Maximum reorientation effect occurs at near- and below-barrier energies for light deformed nuclei. Calculated fusion crosssections for 24Mg + 208Pb reaction are compared with a static-barrier-penetration model (SBPM) calculation to see the effect of reorientation. Heavy-ion reactions are also simulated in a 3-stage classical molecular dynamics (3S-CMD) model in which the rigid-body constraints are relaxed when the two nuclei are close to the barrier thus, taking into account all the rotational and vibrational degrees of freedom in the same calculation. This model is extended to simulate heavy-ion reactions such as 6Li + 209Bi involving the weakly-bound projectile considered as a weakly-bound cluster of deuteron and 4He nuclei, thus, simulating a 3-body system in 3S-CMD model. All the essential features of breakup reactions, such as complete fusion, incomplete fusion, no-capture breakup and scattering are demonstrated.

  18. Bounded Densities and Their Derivatives

    DEFF Research Database (Denmark)

    Kozine, Igor; Krymsky, V.

    2009-01-01

    This paper describes how one can compute interval-valued statistical measures given limited information about the underlying distribution. The particular focus is on a bounded derivative of a probability density function and its combination with other available statistical evidence for computing...

  19. Market Access through Bound Tariffs

    DEFF Research Database (Denmark)

    Sala, Davide; Schröder, Philipp J.H.; Yalcin, Erdal

    WTO negotiations deal predominantly with bound - besides applied - tariff rates. But, how can reductions in tariffs ceilings, i.e. tariff rates that no exporter may ever actually be confronted with, generate market access? The answer to this question relates to the effects of tariff bindings on t...

  20. Market access through bound tariffs

    DEFF Research Database (Denmark)

    Sala, Davide; Schröder, Philipp J.H.; Yalcin, Erdal

    2010-01-01

    WTO negotiations deal predominantly with bound - besides applied - tariff rates. But, how can reductions in tariffs ceilings, i.e. tariff rates that no exporter may ever actually be confronted with, generate market access? The answer to this question relates to the effects of tariff bindings on t...

  1. Unconditional lower bounds against advice

    NARCIS (Netherlands)

    H. Buhrman; L. Fortnow; R. Santhanam

    2009-01-01

    We show several unconditional lower bounds for exponential time classes against polynomial time classes with advice, including: (1) For any constant c, NEXP not in P^{NP[n^c]} (2) For any constant c, MAEXP not in MA/n^c (3) BPEXP not in BPP/n^{o(1)}. It was previously unknown even whether NEXP in NP

  2. Molecular outflows in starburst nuclei

    Science.gov (United States)

    Roy, Arpita; Nath, Biman B.; Sharma, Prateek; Shchekinov, Yuri

    2016-08-01

    Recent observations have detected molecular outflows in a few nearby starburst nuclei. We discuss the physical processes at work in such an environment in order to outline a scenario that can explain the observed parameters of the phenomenon, such as the molecular mass, speed and size of the outflows. We show that outflows triggered by OB associations, with NOB ≥ 105 (corresponding to a star formation rate (SFR)≥1 M⊙ yr-1 in the nuclear region), in a stratified disk with mid-plane density n0 ˜ 200-1000 cm-3 and scale height z0 ≥ 200(n0/102 cm-3)-3/5 pc, can form molecules in a cool dense and expanding shell. The associated molecular mass is ≥107 M⊙ at a distance of a few hundred pc, with a speed of several tens of km s-1. We show that a SFR surface density of 10 ≤ ΣSFR ≤ 50 M⊙ yr-1 kpc-2 favours the production of molecular outflows, consistent with observed values.

  3. Molecular outflows in starburst nuclei

    CERN Document Server

    Roy, Arpita; Sharma, Prateek; Shchekinov, Yuri

    2016-01-01

    Recent observations have detected molecular outflows in a few nearby starburst nuclei. We discuss the physical processes at work in such an environment in order to outline a scenario that can explain the observed parameters of the phenomenon, such as the molecular mass, speed and size of the outflows. We show that outflows triggered by OB associations, with $N_{OB}\\ge 10^5$ (corresponding to a star formation rate (SFR)$\\ge 1$ M$_{\\odot}$ yr$^{-1}$ in the nuclear region), in a stratified disk with mid-plane density $n_0\\sim 200\\hbox{--}1000$ cm$^{-3}$ and scale height $z_0\\ge 200 (n_0/10^2 \\, {\\rm cm}^{-3})^{-3/5}$ pc, can form molecules in a cool dense and expanding shell. The associated molecular mass is $\\ge 10^7$ M$_\\odot$ at a distance of a few hundred pc, with a speed of several tens of km s$^{-1}$. We show that a SFR surface density of $10 \\le \\Sigma_{SFR} \\le 50$ M$_\\odot$ yr$^{-1}$ kpc$^{-2}$ favours the production of molecular outflows, consistent with observed values.

  4. A Functional Calculus for Quotient Bounded Operators

    Directory of Open Access Journals (Sweden)

    Sorin Mirel Stoian

    2006-12-01

    Full Text Available If (X, P is a sequentially locally convex space, then a quotient bounded operator T beloging to QP is regular (in the sense of Waelbroeck if and only if it is a bounded element (in the sense of Allan of algebra QP. The classic functional calculus for bounded operators on Banach space is generalized for bounded elements of algebra QP.

  5. Properties of superheavy nuclei with Z = 124

    CERN Document Server

    Mehta, M S; Kumar, Bharat; Patra, S K

    2015-01-01

    We employ Relativistic Mean Field (RMF) model with NL3 parametrization to investigate the ground state properties of superheavy nucleus, Z = 124. The nuclei selected (from among complete isotopic series) for detailed investigation show that the nucleon density at the center is very low and therefore, these nuclei can be treated as semi-bubble nuclei. The considerable shell gap appears at neutron numbers N = 172, 184 and 198 showing the magicity corresponding to these numbers. The results are compared with the macro-microscopic Finite Range Droplet Model (FRDM) wherever possible.

  6. Probing single-particle and collective states in atomic nuclei with Coulomb excitation

    CERN Document Server

    DiJulio, Douglas

    A series of experiments and developments, related to stable and radioactive isotopes, have been carried out. These studies have focused on measuring the low-lying excitations of spherical and deformed nuclei using electromagnetic (Coulomb) excitation and also on developments in detector technology for upcoming radioactive ion beams facilities. The low-lying excitations in the nuclei 107,109Sn and 107In have been investigated using low-energy Coulomb excitation at the REX-ISOLDE facility at CERN. The measured reduced transition probabilities were compared to predictions of nuclear structure models. In addition, a relativistic Coulomb excitation experiment was carried out using the FRS at GSI with the nucleus 104Sn. These radioactive ion beam experiments provide important constraints for large-scale-shell-model calculations in the region of the doubly magic nucleus 100Sn. A stable Coulomb excitation experiment was also carried out in order to explore the properties of low-lying structures in the nucleus 170Er...

  7. Proton radioactivity half-lives with Skyrme interactions

    Energy Technology Data Exchange (ETDEWEB)

    Routray, T.R.; Behera, B. [Sambalpur University, School of Physics, Orissa (India); Mishra, A.; Basu, D.N. [Variable Energy Cyclotron Centre, Kolkata (India); Tripathy, S.K. [Sambalpur University, School of Physics, Orissa (India); Govt. Engg. College, Orissa (India)

    2012-06-15

    The potential barrier impeding the spontaneous emission of protons in the proton radioactive nuclei is calculated as the sum of nuclear, Coulomb and centrifugal contributions. The nuclear part of the proton-nucleus interaction potential is obtained in the energy density formalism using the Skyrme effective interaction that results into a simple algebraic expression. The half-lives of the proton emitters are calculated for the different Skyrme sets within the improved WKB framework. The results are found to be in reasonable agreement with the earlier results obtained for more complicated calculations involving finite-range interactions. (orig.)

  8. Induced radioactivity in a 4 MW target and its surroundings

    CERN Document Server

    Agosteo, Stefano; Otto, Thomas; Silari, Marco

    2003-01-01

    An important aspect of a future CERN Neutrino Factory is the material activation arising from a 2.2 GeV, 4 MW proton beam striking a mercury target. An estimation of the hadronic inelastic interactions and the production of residual nuclei in the target, the magnetic horn, the decay tunnel, the surrounding rock and a downstream dump was performed by the Monte Carlo hadronic cascade code FLUKA. The aim was both to assess the dose equivalent rate to be expected during maintenance work and to evaluate the amount of residual radioactivity, which will have to be disposed of after the facility has ceased operation.

  9. Interaction of antiproton with nuclei

    CERN Document Server

    Hrtánková, J

    2015-01-01

    We performed fully self-consistent calculations of $\\bar{p}$-nuclear bound states within the relativistic mean-field (RMF) model. The G-parity motivated $\\bar{p}$-meson coupling constants were adjusted to yield potentials consistent with $\\bar{p}$-atom data. We confirmed large polarization effects of the nuclear core caused by the presence of the antiproton. The $\\bar{p}$ absorption in the nucleus was incorporated by means of the imaginary part of a phenomenological optical potential. The phase space reduction for the $\\bar{p}$ annihilation products was taken into account. The corresponding $\\bar{p}$ width in the medium significantly decreases, however, it still remains considerable for the $\\bar{p}$ potential consistent with experimental data.

  10. Radioactive waste management; Gerencia de rejeitos radioativos

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-11-15

    This eighth chapter presents the radioactive wastes and waste disposal; classification of radioactive wastes; basis requests of the radioactive waste management; conditions for a radioactive waste disposal; registers and inventories; transport of radioactive wastes from a facility to another and the radioactive waste management plan.

  11. Wien filter for cooled low-energy radioactive ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Nummela, S. E-mail: saara.nummela@phys.jyu.fi; Dendooven, P.; Heikkinen, P.; Huikari, J.; Nieminen, A.; Jokinen, A.; Rinta-Antila, S.; Rubchenya, V.; Aeystoe, J

    2002-04-01

    A Wien filter for cooled radioactive ion beams has been designed at Ion Guide Isotope Separator On Line technique (IGISOL). The purpose of such device is to eliminate doubly charged ions from the mass separated singly charged ions, based on q=+2{yields}q=+1 charge exchange process in an ion cooler. The performance of the Wien filter has been tested off-line with a discharge ion source as well as on-line with a radioactive beam. The electron capture process of cooled q=+2 ions has been investigated in a radiofrequency quadrupole ion cooler with varying partial pressures of nitrogen. Also, the superasymmetric fission production yields of 68nuclei have been deduced.

  12. Simulation software of radioactive decay, β and γ disintegration of cesium 137

    International Nuclear Information System (INIS)

    We present a software dedicated to radioactivity studies, in particular to radioactive decays. The software has been developed to model the C.R.A.B. (Alpha Beta radioactivity counter), a device constructed in the seventies for use as an educational support for radioactive studies in french schools. The evolution of safety rules prevents nowadays the use of such educational devices in schools. At the origin, the software was developed to train students before a tutorial session using a real radioactive source of Cesium 237 and now the software substitutes entirely the experiments. Indeed, the simulation reassures parents and students who are always afraid of radioactivity. Various studies are proposed: study of the exponential nuclear radioactive decay on a network of radioactive nuclei and roll of dices, Poisson and Gauss distributions, influence of the source-detector distance, radiation absorption by aluminum or by lead. This software is currently used either in the last year of high school or at the University for students in their first year. (author)

  13. Microfiltration of radioactive contaminants

    International Nuclear Information System (INIS)

    Cross-flow microfiltration processing of radioactive liquids has been in use at Chalk River Laboratories for about four years. The separation process removes suspended particles from radioactive waste solutions. The clean liquid can then be treated with conventional reverse osmosis membranes to achieve volume reduction factors approaching 100. Microfiltration removes particles below the rating of 0.2 microns, in part from particle agglomeration. Operating experience relating to a 15 USGPM unit is presented. Coupling microfiltration technology with chemical treatment enhances the removal of soluble species. Research and development experience with the removal of soluble contaminants found in ground water and waste water will be discussed. The technology has advantages over other membrane technologies, namely lower energy costs, a lesser degree of fouling, and a higher recovery of processed solution. Future applications of the technology are addressed. (author). 10 refs., 3 tabs., 4 figs

  14. Handbook of radioactivity analysis

    CERN Document Server

    2012-01-01

    The updated and much expanded Third Edition of the "Handbook of Radioactivity Analysis" is an authoritative reference providing the principles, practical techniques, and procedures for the accurate measurement of radioactivity from the very low levels encountered in the environment to higher levels measured in radioisotope research, clinical laboratories, biological sciences, radionuclide standardization, nuclear medicine, nuclear power, fuel cycle facilities and in the implementation of nuclear forensic analysis and nuclear safeguards. The Third Edition contains seven new chapters providing a reference text much broader in scope than the previous Second Edition, and all of the other chapters have been updated and expanded many with new authors. The book describes the basic principles of radiation detection and measurement, the preparation of samples from a wide variety of matrices, assists the investigator or technician in the selection and use of appropriate radiation detectors, and presents state-of-the-ar...

  15. Radioactive material storage

    International Nuclear Information System (INIS)

    Purpose: To make a spent fuel accommodating box movable and accommodate spent fuels at a position farther than the side wall of the storage installation and to draw the spent fuel near to the side wall with the lapse of the storage time, thereby attenuating the radiation effectively and increasing the storage capacity. Constitution: A space (box) accommodating radioactive materials is made movable, and the radiation is effectively shielded by the attenuation of the radioactive materials in storage due to the lapse of the storage time and the shielding of the radiation due to the liquefied shielding material up to the shielding wall of the storage installation, whereby the shielding wall of the storage installation is made thin and the capacity in the installation is enlarged, thus the accommodation capacity, that is, the storage capacity being increased. (Yoshihara, H.)

  16. Radioactive substances decontamination exercise

    International Nuclear Information System (INIS)

    In common with all hospitals prepared to accept casualties contaminated with radioactive substances, Aberdeen Royal Infirmary has a contingency plan for dealing with them. Such plans are prepared by each hospital after discussion between the hospital's radiation protection adviser and its accident and emergency staff. As in virtually all hospitals with such plans those in this hospital have never had to be used. As part of an ongoing evaluation of all contingency arrangements an exercise was held to see how well the arrangements for dealing with radioactive contamination worked in practice. We report the results of the exercise since the practical problems we experienced must be common to all similar plans and might be of use to other hospitals. (author)

  17. Radioactive thickness gauge (1962)

    International Nuclear Information System (INIS)

    The author describes a thickness gauge in which the scintillating crystal detector alternately 'sees' a radioactive source through the material which is to be measured and then a control source of the same material; the radiations are separated in time by an absorbing valve whose sections are alternately full and hollow. The currents corresponding to the two sources are separated beyond the photomultiplier tube by a detector synchronized with the rotation of the valve. The quotient of these two currents is then obtained with a standard recording potentiometer. It is found that the average value of the response which is in the form G = f(I1/I2) is not affected by decay of the radioactive sources, and that it is little influenced by variations of high tension, temperature, or properties of the air in the source detector interval. The performance of the gauge is given. (author)

  18. Ventilation of radioactive enclosures

    International Nuclear Information System (INIS)

    Mechanical, physical and chemical manipulations on radioactive products must be carried out in properly ventilated enclosed places. The air extracted can only be discharged into the atmosphere after a correct filtration. The power of the ventilation systems is a function of the dimensions and purpose of the enclosure? The choice of types of filter is determined by the physical state and chemical nature of the radioactive materials to be manipulated. This study deals with the individual equipment of small installations: glove boxes, manipulation boxes with outside control and, if necessary, production chambers (maximum useful volume: 5 m3). The performances of three types of 'ventilators', and the modifications provided by the addition of filters, are measured and compared. (author)

  19. Radioactivity and deep geothermal energy

    International Nuclear Information System (INIS)

    Due to recent developments in energy politics renewable energies get more and more importance in Germany. This is especially true for geothermal energy representing a promising option for the environmentally sound and secure generation of heat and electricity. But there are a lot of very emotional discussions due to radioactive residues and wastes produced by a geothermal plant. Thus this paper compares radioactivity resulting from geothermal energy with radioactivity coming from other natural sources. In doing so it becomes obvious that naturally radioactive sources exist in all parts of the ecosphere (i.e. air, water, soil). The paper shows also that the specific activities of radioactive elements from geothermal energy in form of residues and waste emerge from radioactive decay of nuclides and that their radiation is not higher than the radiation of other naturally occurring radioactive elements. (orig.)

  20. SHIPPING OF RADIOACTIVE ITEMS

    CERN Multimedia

    TIS/RP Group

    2001-01-01

    The TIS-RP group informs users that shipping of small radioactive items is normally guaranteed within 24 hours from the time the material is handed in at the TIS-RP service. This time is imposed by the necessary procedures (identification of the radionuclides, determination of dose rate, preparation of the package and related paperwork). Large and massive objects require a longer procedure and will therefore take longer.

  1. Radioactive tracers in Sedimentology

    International Nuclear Information System (INIS)

    First is given a broad description of the uses of radioactive tracers in Sedimentology. The general method is established, including determinations of probability and standard deviation. Following are determined: the response law of the detector, the minimum mass for statistical detection, and the minimum mass for dynamic detection. The granularity is an important variable in these calculations. Final conclusions are given, and results are compared with existing theories

  2. Perspectives of production of superheavy nuclei

    Science.gov (United States)

    Adamian, G. G.; Antonenko, N. V.; Bezbakh, A. N.; Sargsyan, V. V.; Scheid, W.

    2016-07-01

    Possible ways of production of superheavies are discussed. Impact of nuclear structure on the production of superheavy nuclei in complete fusion reactions is discussed. The proton shell closure at Z = 120 is discussed.

  3. GDR in Hot Nuclei: New Measurements

    Science.gov (United States)

    Camera, F.; Kmiecik, M.; Wieland, O.; Benzoni, G.; Bracco, A.; Brambilla, S.; Crespi, F.; Mason, P.; Moroni, A.; Million, B.; Leoni, S.; Maj, A.; Styczen, J.; Brekiesz, M.; Meczynski, W.; Zieblinski, M.; Gramegna, F.; Barlini, S.; Kravchuk, V. L.; Lanchais, A. L.; Mastinu, P. F.; Bruno, M.; D'Agostino, M.; Geraci, E.; Ordine, A.; Casini, G.; Chiari, M.

    2005-04-01

    The measured properties of the Giant Dipole Resonance in hot rotating nuclei are successfully described with the model of thermal fluctuations, even though there are still some open problems especially at very low (T 2.5MeV) temperatures and missing data in some mass regions. Recent experimental works have addressed more specific problems regarding the nuclear shape and its behaviour in very particular and delimited phase space regions. In this paper will be discussed new exclusive measurements of the GDR γ decay in heavy 216Rn nuclei (where the shape of nuclei surviving fission have been probed) and some preliminary data on the 132Ce nuclei at very high excitation energy.

  4. Understanding Nuclei in the upper sd - shell

    CERN Document Server

    Sarkar, M Saha; Ray, Sudatta; Kshetri, Ritesh; Sarkar, S

    2013-01-01

    Nuclei in the upper-$sd$ shell usually exhibit characteristics of spherical single particle excitations. In the recent years, employment of sophisticated techniques of gamma spectroscopy has led to observation of high spin states of several nuclei near A$\\simeq$ 40. In a few of them multiparticle, multihole rotational states coexist with states of single particle nature. We have studied a few nuclei in this mass region experimentally, using various campaigns of the Indian National Gamma Array setup. We have compared and combined our empirical observations with the large-scale shell model results to interpret the structure of these nuclei. Indication of population of states of large deformation has been found in our data. This gives us an opportunity to investigate the interplay of single particle and collective degrees of freedom in this mass region.

  5. Critical-Point Structure in Finite Nuclei

    CERN Document Server

    Leviatan, A

    2006-01-01

    Properties of quantum shape-phase transitions in finite nuclei are considered in the framework of the interacting boson model. Special emphasis is paid to the dynamics at the critical-point of a general first-order phase transition.

  6. Systematic study of shell gaps in nuclei

    CERN Document Server

    Mo, Qiuhong; Wang, Ning

    2014-01-01

    The nucleon separation energies and shell gaps in nuclei over the whole nuclear chart are systematically studied with eight global nuclear mass models. For unmeasured neutron-rich and super-heavy regions, the uncertainty of the predictions from these different mass models is still large. The latest version (WS4) of the Weizs\\"acker-Skyrme mass formula, in which the isospin dependence of model parameters is introduced into the macroscopic-microscopic approach inspired by the Skyrme energy-density functional, is found to be the most accurate one in the descriptions of nuclear masses, separation energies and shell gaps. Based on the predicted shell gaps in nuclei, the possible magic numbers in super-heavy nuclei region are investigated. In addition to the shell closures at $N=184, Z=114$, the sub-shell closures at around $N=178, Z=120$ could also play a role for the stability of super-heavy nuclei.

  7. Hidden pseudospin and spin symmetries and their origins in atomic nuclei

    CERN Document Server

    Liang, Haozhao; Zhou, Shan-Gui

    2014-01-01

    Symmetry plays a fundamental role in physics. The quasi-degeneracy between single-particle orbitals $(n, l, j = l + 1/2)$ and $(n-1, l + 2, j = l + 3/2)$ indicates a hidden symmetry in atomic nuclei, the so-called pseudospin symmetry (PSS). Since the introduction of the concept of PSS in atomic nuclei, there have been comprehensive efforts to understand its origin. Both splittings of spin doublets and pseudospin doublets play critical roles in the evolution of magic numbers in exotic nuclei discovered by modern spectroscopic studies with radioactive ion beam facilities. Since the PSS was recognized as a relativistic symmetry in 1990s, many special features, including the spin symmetry (SS) for anti-nucleon, and many new concepts have been introduced. In the present Review, we focus on the recent progress on the PSS and SS in various systems and potentials, including extensions of the PSS study from stable to exotic nuclei, from non-confining to confining potentials, from local to non-local potentials, from ce...

  8. Sizes and shapes of short-lived nuclei via laser spectroscopy. Final report

    International Nuclear Information System (INIS)

    This project, a collaboration involving Iowa State University, Argonne National Lab., and the University of Minnesota, was aimed at the determination of properties of short-lived nuclei through their atomic hyperfine structure and optical isotope shifts. The basic approach was to use a cryogenic He-jet system to thermalize, neutralize, and transport radioactive nuclei produced online into a region suitable for laser spectroscopy. The photon burst method was then used for high sensitivity with the resulting continuous atomic beam. The experiment was located on beamline of the ANL superconducting heavy-ion accelerator. The He-jet system developed would reliably transport approx.102 nuclei into phase space useful for high resolution laser spectroscopy. The laser system developed could accurately and reproducibly sweep small frequency ranges for periods greater than or equal to1 day and sensitivity limits less than or equal to1 atom/s were achieved. However the nuclei were not transported as free atoms precluding nuclear determinations. Attempts to obtain free atoms by eliminating turbulence and contamination were not successful. Some of the high sensitivity spectroscopy techniques developed in this work are now being applied in a search for nuclear relics of the Big Bang and in studies of the photon statistics of light scattered by a single atom. 3 refs., 4 figs

  9. Radioactive waste storage issues

    Energy Technology Data Exchange (ETDEWEB)

    Kunz, D.E.

    1994-08-15

    In the United States we generate greater than 500 million tons of toxic waste per year which pose a threat to human health and the environment. Some of the most toxic of these wastes are those that are radioactively contaminated. This thesis explores the need for permanent disposal facilities to isolate radioactive waste materials that are being stored temporarily, and therefore potentially unsafely, at generating facilities. Because of current controversies involving the interstate transfer of toxic waste, more states are restricting the flow of wastes into - their borders with the resultant outcome of requiring the management (storage and disposal) of wastes generated solely within a state`s boundary to remain there. The purpose of this project is to study nuclear waste storage issues and public perceptions of this important matter. Temporary storage at generating facilities is a cause for safety concerns and underscores, the need for the opening of permanent disposal sites. Political controversies and public concern are forcing states to look within their own borders to find solutions to this difficult problem. Permanent disposal or retrievable storage for radioactive waste may become a necessity in the near future in Colorado. Suitable areas that could support - a nuclear storage/disposal site need to be explored to make certain the health, safety and environment of our citizens now, and that of future generations, will be protected.

  10. Radioactive waste storage issues

    International Nuclear Information System (INIS)

    In the United States we generate greater than 500 million tons of toxic waste per year which pose a threat to human health and the environment. Some of the most toxic of these wastes are those that are radioactively contaminated. This thesis explores the need for permanent disposal facilities to isolate radioactive waste materials that are being stored temporarily, and therefore potentially unsafely, at generating facilities. Because of current controversies involving the interstate transfer of toxic waste, more states are restricting the flow of wastes into - their borders with the resultant outcome of requiring the management (storage and disposal) of wastes generated solely within a state's boundary to remain there. The purpose of this project is to study nuclear waste storage issues and public perceptions of this important matter. Temporary storage at generating facilities is a cause for safety concerns and underscores, the need for the opening of permanent disposal sites. Political controversies and public concern are forcing states to look within their own borders to find solutions to this difficult problem. Permanent disposal or retrievable storage for radioactive waste may become a necessity in the near future in Colorado. Suitable areas that could support - a nuclear storage/disposal site need to be explored to make certain the health, safety and environment of our citizens now, and that of future generations, will be protected

  11. Radioactivity in the environment

    International Nuclear Information System (INIS)

    In this report different aspects of the radioactivity in the environment of the Slovak Republic for the period of 2004 - 2006 years are reported. This report is published only on the Enviroportal.sk. The following aspects of the radioactivity in the environment are reviewed there: Electricity production in nuclear power plants and their consumption; Natural sources of ionisation radiation; Man-made sources of ionisation radiation; Safety of exploitation of the nuclear power plants on the territory of the Slovak Republic; International Nuclear Event Scale; Basic information about influence of radiation on health of population and about evaluation methods; Influence of physical risk factors (including of ionisation radiation) in the working environment on formation of occupation diseases; Collective doses of occupation in NPPs; Health state of population in the locality of the NPP Mochovce; Food contamination by ionisation radiation; Radiation monitoring network; Legislative directives about population health protection against ionisation radiation action; Decommissioning of the NPP Jaslovske Bohunice (EBO V-1); Conception of the back fuel cycle and treatment of spent fuels and high-level radioactive wastes; Project of territorial-economic development of the Trnava region after decommissioning of the Jaslovske Bohunice NPP

  12. Radioactive waste management

    International Nuclear Information System (INIS)

    The OECD Nuclear Energy Agency (NEA) attaches considerable importance to its cooperation with Japan. It was said in the annual conference in 1977 that the presentation of the acceptable policy regarding radioactive waste management is the largest single factor for gaining public confidence when nuclear power is adopted with assurance. The risk connected with radioactive wastes was often presented as the major obstacle to the development of nuclear energy, however, an overall impression of optimism and confidence prevailed by the technical appraisal of the situation in this field by the committee of the NEA. This evolution can be easily explained by the significant progress achieved in radioactive waste management both at the technical level and with respect to the implementation of special legislation and the establishment of specialized institutions and financing schemes. More research will focus on the optimization of the technical, safety and economic aspects of specific engineering designs at specific sites on the long term isolation of wastes, and the NEA contributes to this general effort. The implementation of disposal programs is also in progress. (Kako, I.)

  13. Physics with nuclei at high energies

    International Nuclear Information System (INIS)

    Physics with nuclei at high energy is not reducible to a superposition of interactions involving individual nucleons; rather, qualitatively new phenomena show up. This is what one concludes from recent data on dilepton production off nuclei and on elastic proton-nucleus scattering. Furthermore, recent analyses of ion collisions at BNL and CERN reveal a number of non-conventional features. The relevant contributions to this Rencontre are summarized here. 37 refs., 16 figs

  14. Synthesis of superheavy nuclei: Obstacles and opportunities

    Science.gov (United States)

    Zagrebaev, V. I.; Karpov, A. V.; Greiner, Walter

    2015-01-01

    There are only 3 methods for the production of heavy and superheavy (SH) nuclei, namely, fusion reactions, a sequence of neutron capture and beta(-) decay and multinucleon transfer reactions. Low values of the fusion cross sections and very short half-lives of nuclei with Zcold and hot fusion reactions remains unstudied yet. This gap could be filled in fusion reactions of 48Ca with available lighter isotopes of Pu, Am, and Cm. New neutron-enriched isotopes of SH elements may be produced with the use of a 48Ca beam if a 250Cm target would be prepared. In this case we get a real chance to reach the island of stability owing to a possible beta(+) decay of 291114 and 287112 nuclei formed in this reaction with a cross section of about 0.8 pb. A macroscopic amount of the long-living SH nuclei located at the island of stability may be produced by using the pulsed nuclear reactors of the next generation only if the neutron fluence per pulse will be increased by about three orders of magnitude. Multinucleon transfer processes look quite promising for the production and study of neutron-rich heavy nuclei located in upper part of the nuclear map not reachable by other reaction mechanisms. Reactions with actinide beams and targets are of special interest for synthesis of new neutron-enriched transfermium nuclei and not-yet-known nuclei with closed neutron shell N=126 having the largest impact on the astrophysical r-process. The estimated cross sections for the production of these nuclei allows one to plan such experiments at currently available accelerators.

  15. Realistic level density calculation for heavy nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Cerf, N. [Institut de Physique Nucleaire, Orsay (France); Pichon, B. [Observatoire de Paris, Meudon (France); Rayet, M.; Arnould, M. [Institut d`Astronomie et d`Astrophysique, Bruxelles (Belgium)

    1994-12-31

    A microscopic calculation of the level density is performed, based on a combinatorial evaluation using a realistic single-particle level scheme. This calculation relies on a fast Monte Carlo algorithm, allowing to consider heavy nuclei (i.e., large shell model spaces) which could not be treated previously in combinatorial approaches. An exhaustive comparison of the predicted neutron s-wave resonance spacings with experimental data for a wide range of nuclei is presented.

  16. Effective Field Theory for Lattice Nuclei

    OpenAIRE

    Barnea, N.; Contessi, L.; Gazit, D.; Pederiva, F.; van Kolck, U.

    2013-01-01

    We show how nuclear effective field theory (EFT) and ab initio nuclear-structure methods can turn input from lattice quantum chromodynamics (LQCD) into predictions for the properties of nuclei. We argue that pionless EFT is the appropriate theory to describe the light nuclei obtained in recent LQCD simulations carried out at pion masses much heavier than the physical pion mass. We solve the EFT using the effective-interaction hyperspherical harmonics and auxiliary-field diffusion Monte Carlo ...

  17. Synthesis of superheavy nuclei: Obstacles and opportunities

    Directory of Open Access Journals (Sweden)

    Zagrebaev V.I.

    2015-01-01

    Full Text Available There are only 3 methods for the production of heavy and superheavy (SH nuclei, namely, fusion reactions, a sequence of neutron capture and beta(- decay and multinucleon transfer reactions. Low values of the fusion cross sections and very short half-lives of nuclei with Z<120 put obstacles in synthesis of new elements. At the same time, an important area of SH isotopes located between those produced in the cold and hot fusion reactions remains unstudied yet. This gap could be filled in fusion reactions of 48Ca with available lighter isotopes of Pu, Am, and Cm. New neutron-enriched isotopes of SH elements may be produced with the use of a 48Ca beam if a 250Cm target would be prepared. In this case we get a real chance to reach the island of stability owing to a possible beta(+ decay of 291114 and 287112 nuclei formed in this reaction with a cross section of about 0.8 pb. A macroscopic amount of the long-living SH nuclei located at the island of stability may be produced by using the pulsed nuclear reactors of the next generation only if the neutron fluence per pulse will be increased by about three orders of magnitude. Multinucleon transfer processes look quite promising for the production and study of neutron-rich heavy nuclei located in upper part of the nuclear map not reachable by other reaction mechanisms. Reactions with actinide beams and targets are of special interest for synthesis of new neutron-enriched transfermium nuclei and not-yet-known nuclei with closed neutron shell N=126 having the largest impact on the astrophysical r-process. The estimated cross sections for the production of these nuclei allows one to plan such experiments at currently available accelerators.

  18. Study of the Beta-Decay Properties of Extremely Proton-Rich Nuclei

    CERN Multimedia

    2002-01-01

    The most proton-rich nuclei known to date have isospin projections $ T _{Z} $ ~=~-3/2, -2 and -5/2. \\\\ \\\\ We propose to carry out a study of their superallowed beta decays, a phenomenon that can only be studied in this region of the nuclear chart. The main aim is to determine the ``effective charge'' in nuclei of the axial vector coupling, the quantity $ ( g'_{A} / g _{A} ) ^{2} $ , which in a recent first experiment on a ~~ $ T _{Z} $~~=~-2 nucleus was determined to be 0.49~$\\pm$~0.05. \\\\ \\\\ Because of the problems connected with the production and acceleration of radioactive ions, our proposal aims at selected elements: neon, argon and rubidium (production runs), magnesium (test and production runs) and calcium (test). Data have so far been taken for $^1

  19. Formation of Heavy Compound Nuclei, Their Survival and Correlation with Longtime-Scale Fission

    CERN Document Server

    Karamian, S A

    2007-01-01

    Fusion of two massive nuclei with formation of super-heavy compound nucleus (CN) is driven by the potential energy gradient, as follows from the analysis of nuclear reaction cross-sections. The conservative energy of the system is deduced in simple approximation using regularized nuclear mass and interaction barrier values. Different reactions for the synthesis of $Z_c =110 {-} 118$ nuclei are compared and the favourable conditions are found for fusion of the stable (W-Pt) isotopes with radioactive fission fragment projectiles, like $^{94}$Kr or $^{100}$Sr. Thus, the cold fusion method can be extended for a synthesis of elements with $Z > 113$. Survival of the evaporation residue is defined by the neutron-to-fission probability ratio and by the successful emission of gammas at the final step of the reaction. Numerical estimates are presented. Fixation of evaporation residue products must correlate with longtime-scale fission and available experimental results are discussed.

  20. Fifth International Conference on Fission and Properties of Neutron-Rich Nuclei

    CERN Document Server

    Ramayya, A V; ICFN5

    2014-01-01

    These proceedings are the fifth in the series of International Conferences covering fission and properties of neutron-rich nuclei, which are at the forefront of nuclear research. The time interval of 5 years between each conference allows for significant new results to be achieved. Recently, world leaders in theory and experiments in research and the development of new facilities for research presented their latest results in areas such as synthesis of superheavy elements, new facilities for and recent results with radioactive ion beams, structure of neutron-rich nuclei, nuclear fission process, fission yields and nuclear astrophysics. This book is a major source of the latest research in these areas and plans for the future. The conference brought together a unique group of over 100 speakers including leaders from the major nuclear laboratories in Canada, China, France, Finland, Germany, Italy, Japan, Russia, Switerzland and the US along with leading research scientists from around the world.