WorldWideScience

Sample records for bound quantum states

  1. Bound states in Galilean-invariant quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Corley, S.R.; Greenberg, O.W. [Center for Theoretical Physics, Department of Physics, University of Maryland, College Park, Maryland 20742-4111 (United States)

    1997-02-01

    We consider the nonrelativistic quantum mechanics of a model of two spinless fermions interacting via a two-body potential. We introduce quantum fields associated with the two particles as well as the expansion of these fields in asymptotic {open_quotes}in{close_quotes} and {open_quotes}out{close_quotes} fields, including such fields for bound states, in principle. We limit our explicit discussion to a two-body bound state. In this context we discuss the implications of the Galilean invariance of the model and, in particular, show how to include bound states in a strictly Galilean-invariant quantum field theory. {copyright} {ital 1997 American Institute of Physics.}

  2. Bound Electron States in Skew-symmetric Quantum Wire Intersections

    Science.gov (United States)

    2014-01-01

    for electronic transport studies was to confine resonant- tunneling heterostructures laterally with a fabrication-imposed po- tential. This approach...Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Quantum Wires, Crossed Nanowires , Trapped Electron States, Quantum Dots REPORT...realistic systems such as semiconductor nanowire films and carbon nanotube bundles. Bound electron states in skew-symmetric quantum wire intersections by

  3. A quantum bound-state description of black holes

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, Stefan [Arnold Sommerfeld Center for Theoretical Physics, LMU-München, Theresienstrasse 37, 80333 München (Germany); Rug, Tehseen, E-mail: Tehseen.Rug@physik.uni-muenchen.de [Arnold Sommerfeld Center for Theoretical Physics, LMU-München, Theresienstrasse 37, 80333 München (Germany); Max-Planck-Institut für Physik, Föhringer Ring 6, 80805 München (Germany)

    2016-01-15

    A relativistic framework for the description of bound states consisting of a large number of quantum constituents is presented, and applied to black-hole interiors. At the parton level, the constituent distribution, number and energy density inside black holes are calculated, and gauge corrections are discussed. A simple scaling relation between the black-hole mass and constituent number is established.

  4. Bound on local unambiguous discrimination between multipartite quantum states

    Science.gov (United States)

    Yang, Ying-Hui; Gao, Fei; Tian, Guo-Jing; Cao, Tian-Qing; Zuo, Hui-Juan; Wen, Qiao-Yan

    2015-02-01

    We investigate the upper bound on unambiguous discrimination by local operations and classical communication. We demonstrate that any set of linearly independent multipartite pure quantum states can be locally unambiguously discriminated if the number of states in the set is no more than , where the space spanned by the set can be expressed in the irreducible form and is the optimal local dimension of the party. That is, is an upper bound. We also show that it is tight, namely there exists a set of states, in which at least one of the states cannot be locally unambiguously discriminated. Our result gives the reason why the multiqubit system is the only exception when any three quantum states are locally unambiguously distinguished.

  5. A quantum bound-state description of black holes

    Directory of Open Access Journals (Sweden)

    Stefan Hofmann

    2016-01-01

    Full Text Available A relativistic framework for the description of bound states consisting of a large number of quantum constituents is presented, and applied to black-hole interiors. At the parton level, the constituent distribution, number and energy density inside black holes are calculated, and gauge corrections are discussed. A simple scaling relation between the black-hole mass and constituent number is established.

  6. Helical liquids and Majorana bound states in quantum wires.

    Science.gov (United States)

    Oreg, Yuval; Refael, Gil; von Oppen, Felix

    2010-10-22

    We show that the combination of spin-orbit coupling with a Zeeman field or strong interactions may lead to the formation of a helical electron liquid in single-channel quantum wires, with spin and velocity perfectly correlated. We argue that zero-energy Majorana bound states are formed in various situations when such wires are situated in proximity to a conventional s-wave superconductor. This occurs when the external magnetic field, the superconducting gap, or, most simply, the chemical potential vary along the wire. These Majorana states do not require the presence of a vortex in the system. Experimental consequences of the helical liquid and the Majorana states are also discussed.

  7. Andreev bound states probed in three-terminal quantum dots

    Science.gov (United States)

    Gramich, J.; Baumgartner, A.; Schönenberger, C.

    2017-11-01

    Andreev bound states (ABSs) are well-defined many-body quantum states that emerge from the hybridization of individual quantum dot (QD) states with a superconductor and exhibit very rich and fundamental phenomena. We demonstrate several electron transport phenomena mediated by ABSs that form on three-terminal carbon nanotube (CNT) QDs, with one superconducting (S) contact in the center and two adjacent normal-metal (N) contacts. Three-terminal spectroscopy allows us to identify the coupling to the N contacts as the origin of the Andreev resonance (AR) linewidths and to determine the critical coupling strengths to S, for which a ground state (or quantum phase) transition in such S-QD systems can occur. In addition, we ascribe replicas of the lowest-energy ABS resonance to transitions between the ABS and odd-parity excited QD states, a process we call excited state ABS resonances. In the conductance between the two N contacts we find a characteristic pattern of positive and negative differential subgap conductance, which we explain by considering two nonlocal processes, the creation of Cooper pairs in S by electrons from both N terminals, and a transport mechanism we call resonant ABS tunneling, possible only in multiterminal QD devices. In the latter process, electrons are transferred via the ABS without effectively creating Cooper pairs in S. The three-terminal geometry also allows spectroscopy experiments with different boundary conditions, for example by leaving S floating. Surprisingly, we find that, depending on the boundary conditions and the device parameters, the experiments either show single-particle Coulomb blockade resonances, ABS characteristics, or both in the same measurements, seemingly contradicting the notion of ABSs replacing the single-particle states as eigenstates of the QD. We qualitatively explain these results as originating from the finite time scale required for the coherent oscillations between the superposition states after a single

  8. Disorder-induced bound states within an adatom-quantum wire system

    Science.gov (United States)

    Magnetta, Bradley; Ordonez, Gonzalo

    2014-03-01

    Bound states induced by disorder are theoretically observed within a quantum wire and adatom system. The quantum wire is modeled as an array of quantum wells with random energies and exhibits Anderson Localization. By varying the energy of our adatom and adjusting the tunneling strength between the adatom and the quantum wire we observe disorder-induced bound states between the the adatom and its attached point. The characteristics of these disorder-induced bound states are greatly influenced by the site of interest on the quantum wire. Utilizing random quantum wires and disordered superlattices to produce bound states may offer flexibility in fabrication as well as provide grounds for energy transmission in photovoltaics.

  9. Extending Quantum Chemistry of Bound States to Electronic Resonances

    Science.gov (United States)

    Jagau, Thomas-C.; Bravaya, Ksenia B.; Krylov, Anna I.

    2017-05-01

    Electronic resonances are metastable states with finite lifetime embedded in the ionization or detachment continuum. They are ubiquitous in chemistry, physics, and biology. Resonances play a central role in processes as diverse as DNA radiolysis, plasmonic catalysis, and attosecond spectroscopy. This review describes novel equation-of-motion coupled-cluster (EOM-CC) methods designed to treat resonances and bound states on an equal footing. Built on complex-variable techniques such as complex scaling and complex absorbing potentials that allow resonances to be associated with a single eigenstate of the molecular Hamiltonian rather than several continuum eigenstates, these methods extend electronic-structure tools developed for bound states to electronic resonances. Selected examples emphasize the formal advantages as well as the numerical accuracy of EOM-CC in the treatment of electronic resonances. Connections to experimental observables such as spectra and cross sections, as well as practical aspects of implementing complex-valued approaches, are also discussed.

  10. Bound states and perfect transmission scattering states in P T -symmetric open quantum systems

    Science.gov (United States)

    Garmon, Savannah; Gianfreda, Mariagiovanna; Hatano, Naomichi

    2014-03-01

    We study the point spectrum and transmission scattering spectrum in P T -symmetric open quantum systems containing balanced regions of energy amplification and attenuation, using tight-binding chains with matching sink and source sites as prototype models. For a given system geometry, we write the boundary conditions that permit scattering state and bound state solutions with wave functions that likewise satisfy P T symmetry; we further demonstrate the P T -symmetric scattering states give rise to perfect transmission through the scattering region. We also discuss bound states in continuum and other spectral effects that may be discovered in P T -symmetric open quantum systems. Finally we discuss the potential for experimental realization of our models in systems containing whispering gallery mode resonators with balanced loss and gain. S. G. acknowledges support from the Japan Society for the Promotion of Science.

  11. Controlling the bound states in a quantum-dot hybrid nanowire

    Science.gov (United States)

    Ptok, Andrzej; Kobiałka, Aksel; Domański, Tadeusz

    2017-11-01

    Recent experiments using the quantum dot coupled to the topological superconducting nanowire [Deng et al., Science 354, 1557 (2016), 10.1126/science.aaf3961] revealed that the zero-energy bound state coalesces from the Andreev bound states. Such quasiparticle states, present in the quantum dot, can be controlled by magnetic and electrostatic means. We use a microscopic model of the quantum-dot-nanowire structure to reproduce the experimental results, applying the Bogoliubov-de Gennes technique. This is done by studying the gate voltage dependence of the various types of bound states and mutual influence between them. We show that the zero-energy bound states can emerge from the Andreev bound states in the topologically trivial phase and can be controlled using various means. In the nontrivial topological phase we show the possible resonance between these zero-energy levels with Majorana bound states. We discuss and explain this phenomenon as a result of dominant spin character of discussed bound states. Presented results can be applied in experimental studies by using the proposed nanodevice.

  12. Upper Bounds on the Degeneracy of the Ground State in Quantum Field Models

    Directory of Open Access Journals (Sweden)

    Asao Arai

    2016-01-01

    Full Text Available Axiomatic abstract formulations are presented to derive upper bounds on the degeneracy of the ground state in quantum field models including massless ones. In particular, given is a sufficient condition under which the degeneracy of the ground state of the perturbed Hamiltonian is less than or equal to the degeneracy of the ground state of the unperturbed one. Applications of the abstract theory to models in quantum field theory are outlined.

  13. Bound state properties of ABC-stacked trilayer graphene quantum dots.

    Science.gov (United States)

    Xiong, Haonan; Jiang, Wentao; Song, Yipu; Duan, Luming

    2017-06-01

    The few-layer graphene quantum dot provides a promising platform for quantum computing with both spin and valley degrees of freedom. Gate-defined quantum dots in particular can avoid noise from edge disorders. In connection with the recent experimental efforts (Song et al 2016 Nano Lett. 16 6245), we investigate the bound state properties of trilayer graphene (TLG) quantum dots (QDs) through numerical simulations. We show that the valley degeneracy can be lifted by breaking the time reversal symmetry through the application of a perpendicular magnetic field. The spectrum under such a potential exhibits a transition from one group of Landau levels to another group, which can be understood analytically through perturbation theory. Our results provide insight into the transport property of TLG QDs, with possible applications to study of spin qubits and valleytronics in TLG QDs.

  14. Bound state properties of ABC-stacked trilayer graphene quantum dots

    Science.gov (United States)

    Xiong, Haonan; Jiang, Wentao; Song, Yipu; Duan, Luming

    2017-06-01

    The few-layer graphene quantum dot provides a promising platform for quantum computing with both spin and valley degrees of freedom. Gate-defined quantum dots in particular can avoid noise from edge disorders. In connection with the recent experimental efforts (Song et al 2016 Nano Lett. 16 6245), we investigate the bound state properties of trilayer graphene (TLG) quantum dots (QDs) through numerical simulations. We show that the valley degeneracy can be lifted by breaking the time reversal symmetry through the application of a perpendicular magnetic field. The spectrum under such a potential exhibits a transition from one group of Landau levels to another group, which can be understood analytically through perturbation theory. Our results provide insight into the transport property of TLG QDs, with possible applications to study of spin qubits and valleytronics in TLG QDs.

  15. Anomalous thermoelectric properties in double quantum dots coupled with Majorana bound states

    Directory of Open Access Journals (Sweden)

    Yi-Jie Zheng

    2016-12-01

    Full Text Available We discuss the transport properties of thermal electrons in double quantum dots that are coupled with Majorana bound states (MBSs corresponding to two model systems with T-type structure and series connection structure. It has been found that the thermoelectric figure of merit ZT in these model systems is suppressed when we consider the effects of the Majorana bound states. Here, ZT=GS2Tκ, where G is the electric conductance, S is the thermopower, T is the temperature and κ is the thermal conductance. The sign of the thermopower S changes from negative to positive when the energy levels of the quantum dots are less than μ while the sign of the thermopower S changes from positive to negative when the energy levels of the quantum dots are above μ in the model system of T-type structure, where μ is the chemical potential. As a result, the figure of merit ZT first decreases and then increases as the temperature kBT increases. This behavior is different from what is seen in the general quantum dot structure without MBSs. It is interesting to show that in the series connection structure, the thermopower S and ZT are robustness and do not vary with changes in εM when |εd|<λ, even if κ changes with εM.

  16. An upper bound on the second order asymptotic expansion for the quantum communication cost of state redistribution

    Energy Technology Data Exchange (ETDEWEB)

    Datta, Nilanjana, E-mail: n.datta@statslab.cam.ac.uk [Statistical Laboratory, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Hsieh, Min-Hsiu, E-mail: Min-Hsiu.Hsieh@uts.edu.au [Centre for Quantum Computation and Intelligent Systems, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW 2007 (Australia); Oppenheim, Jonathan, E-mail: j.oppenheim@ucl.ac.uk [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Department of Computer Science and Centre for Quantum Technologies, National University of Singapore, Singapore 119615 (Singapore)

    2016-05-15

    State redistribution is the protocol in which given an arbitrary tripartite quantum state, with two of the subsystems initially being with Alice and one being with Bob, the goal is for Alice to send one of her subsystems to Bob, possibly with the help of prior shared entanglement. We derive an upper bound on the second order asymptotic expansion for the quantum communication cost of achieving state redistribution with a given finite accuracy. In proving our result, we also obtain an upper bound on the quantum communication cost of this protocol in the one-shot setting, by using the protocol of coherent state merging as a primitive.

  17. Supersymmetrically bounding of asymmetric states and quantum phase transitions by anti-crossing of symmetric states

    CERN Document Server

    Afzal, Muhammad Imran; Lee, Yong Tak

    2016-01-01

    Von Neumann and Wigner theorized bounding of asymmetric eigenstates and anti-crossing of symmetric eigenstates. Experiments have shown that owing to anti-crossing and similar radiation rates, graphene-like resonance of inhomogeneously strained photonic eigenstates can generate pseudomagnetic field, bandgaps and Landau levels, while dissimilar rates induce non-Hermicity. Here, we showed experimentally higher-order supersymmetry and quantum phase transitions by resonance between similar one dimensional lattices. The lattices consisted of inhomgeneously strain-like phases of triangular solitons. The resonance created two dimensional inhomogeneously deformed photonic graphene. All parent eigenstates are annihilated. Where eigenstates of mildly strained solitons are annihilated with similar (power law) rates through one tail only and generated Hermitianally bounded eigenstates. The strongly strained solitons, positive defects are annihilated exponentially through both tails with dissimilar rates. Which bounded eig...

  18. Quantum transport through a quantum dot structure side coupled with many quantum-dot and Majorana-bound-state pairs

    Directory of Open Access Journals (Sweden)

    Z. T. Jiang

    2016-12-01

    Full Text Available We theoretically investigate the electron transport properties of a wheel-like quantum dot (QD structure with a central QD side coupled with many pairs of QD and Majorana bound states (MBSs by using the nonequilibrium Green’s function method. For clarity, we concentrate our researches on the parameter regime where interdot couplings is much smaller than the inter-MBS and MBS-QD couplings, which ensures the conductance peaks induced by them distinguishable. In the absence of the interdot couplings among the side QDs, the increase of the MBS-QD pair number is equivalent to the increase of the interdot coupling in the QD structure including one central QD and one MBS-QD pair. It is shown that as a response the interval between two side symmetrical peaks will be enlarged, and the MBS-QD couplings will bring into being a zero-bias conductance peak which can be split into two symmetrical sub-peaks by the nonzero inter-MBS couplings. In the presence of the interdot couplings among the side QDs, they make serious influences on the conductance peaks determined by the QD energy levels, and still comes into being the zero-bias conductance peak due to the MBS-QD couplings, yet which is split into two asymmetrical sub-peaks under the influences of the nonzero inter-MBS couplings. Moreover, we conduct a detailed investigation into how the couplings among side QDs affect the transport properties, clearly exposing the underneath mechanics responsible for producing these phenomena. Finally, a generalization is made so as to discuss the geometry universality and the parameter universality of the conclusion drawn in the present work. It should be emphasized that this research will be helpful for a comprehensive understanding the quantum transport through the QD systems coupled with MBSs.

  19. Lower bounds for ballistic current and noise in non-equilibrium quantum steady states

    Energy Technology Data Exchange (ETDEWEB)

    Doyon, Benjamin, E-mail: benjamin.doyon@kcl.ac.uk

    2015-03-15

    Let an infinite, homogeneous, many-body quantum system be unitarily evolved for a long time from a state where two halves are independently thermalized. One says that a non-equilibrium steady state emerges if there are nonzero steady currents in the central region. In particular, their presence is a signature of ballistic transport. We analyze the consequences of the current observable being a conserved density; near equilibrium this is known to give rise to linear wave propagation and a nonzero Drude peak. Using the Lieb–Robinson bound, we derive, under a certain regularity condition, a lower bound for the non-equilibrium steady-state current determined by equilibrium averages. This shows and quantifies the presence of ballistic transport far from equilibrium. The inequality suggests the definition of “nonlinear sound velocities”, which specialize to the sound velocity near equilibrium in non-integrable models, and “generalized sound velocities”, which encode generalized Gibbs thermalization in integrable models. These are bounded by the Lieb–Robinson velocity. The inequality also gives rise to a bound on the energy current noise in the case of pure energy transport. We show that the inequality is satisfied in many models where exact results are available, and that it is saturated at one-dimensional criticality.

  20. Lower bounds for ballistic current and noise in non-equilibrium quantum steady states

    Directory of Open Access Journals (Sweden)

    Benjamin Doyon

    2015-03-01

    Full Text Available Let an infinite, homogeneous, many-body quantum system be unitarily evolved for a long time from a state where two halves are independently thermalized. One says that a non-equilibrium steady state emerges if there are nonzero steady currents in the central region. In particular, their presence is a signature of ballistic transport. We analyze the consequences of the current observable being a conserved density; near equilibrium this is known to give rise to linear wave propagation and a nonzero Drude peak. Using the Lieb–Robinson bound, we derive, under a certain regularity condition, a lower bound for the non-equilibrium steady-state current determined by equilibrium averages. This shows and quantifies the presence of ballistic transport far from equilibrium. The inequality suggests the definition of “nonlinear sound velocities”, which specialize to the sound velocity near equilibrium in non-integrable models, and “generalized sound velocities”, which encode generalized Gibbs thermalization in integrable models. These are bounded by the Lieb–Robinson velocity. The inequality also gives rise to a bound on the energy current noise in the case of pure energy transport. We show that the inequality is satisfied in many models where exact results are available, and that it is saturated at one-dimensional criticality.

  1. Distance bounds on quantum dynamics

    Science.gov (United States)

    Lidar, Daniel A.; Zanardi, Paolo; Khodjasteh, Kaveh

    2008-07-01

    We derive rigorous upper bounds on the distance between quantum states in an open-system setting in terms of the operator norm between Hamiltonians describing their evolution. We illustrate our results with an example taken from protection against decoherence using dynamical decoupling.

  2. Quantum chromodynamics and the dynamics of hadrons. [Review, bound state, perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, S.J.

    1979-03-01

    The application of perturbative quantum chromodynamics to the dynamics of hadrons at short distance is reviewed, with particular emphasis on the role of the hadronic bound state. A number of new applications are discussed, including the modification to QCD scaling violations in structure functions due to hadronic binding; a discussion of coherence and binding corrections to the gluon and sea-quark distributions; QCD radiative corrections to dimensional counting rules for exclusive processes and hadronic form factors at large momentum transfer; generalized counting rules for inclusive processes; the special role of photon-induced reactions in QCD, especially applications to jet production in photon-photon collisions, and photon production at large transverse momentum. Also presented is a short review of the central problems in large P/sub T/ hadronic reactions and the distinguishing characteristics of gluon and quark jets. 163 references.

  3. Majorana bound states in a coupled quantum-dot hybrid-nanowire system

    DEFF Research Database (Denmark)

    Deng, M. T.; Vaitiekenas, S.; Hansen, E. B.

    2017-01-01

    Hybrid nanowires combining semiconductor and superconductor materials appear well suited for the creation, detection, and control of Majorana bound states (MBSs). We demonstrate the emergence of MBSs from coalescing Andreev bound states (ABSs) in a hybrid InAs nanowire with epitaxial Al, using...... with the end-dot bound state, which is in agreement with a numerical model. The ABS/MBS spectra provide parameters that are useful for understanding topological superconductivity in this system....

  4. Bound states in nanoscale graphene quantum dots in a continuous graphene sheet

    Science.gov (United States)

    Qiao, Jia-Bin; Jiang, Hua; Liu, Haiwen; Yang, Hong; Yang, Ning; Qiao, Kai-Yao; He, Lin

    2017-02-01

    Considerable efforts have been made to trap massless Dirac fermions in a graphene monolayer, but only quasibound states have been realized in continuous graphene sheets up to now. Here, we demonstrate the realization of bound states in nanoscale graphene quantum dots (GQDs) in a continuous graphene sheet. The GQDs are electronically isolated from the surrounding continuous graphene sheet by circular boundaries, which are generated by strong coupling between graphene and the substrate. By using scanning tunneling microscopy (STM), we observe single-electron charging states of the GQDs, seen as Coulomb oscillations in the tunneling conductance. The evolution of single-electron tunneling of the GQDs between the Coulomb blockade regime and the Coulomb staircase regime is observed by tuning the STM tip-sample distances. Spatial maps of the local electronic densities reveal concentric rings inside the GQDs with each ring corresponding to a single Coulomb oscillation of the tunneling spectra. These results indicate explicitly that the electrons are completely trapped inside the nanoscale GQDs.

  5. A New Proof of Existence of a Bound State in the Quantum Coulomb Field

    Science.gov (United States)

    Staruszkiewicz, A.

    2004-09-01

    Let S(x) be a massless scalar quantum field which lives on the three-dimensional hyperboloid xx= (x0)2-(x1)2-(x2)2-(x3)2=-1. The classical action is assumed to be (hbar=1=c)(8π e2)-1int dx gikpartial i Spartial k S, where e2 is the coupling constant, dx is the invariant measure on the de Sitter hyperboloid xx=-1 and gik, i,k=1,2,3, is the internal metric on this hyperboloid. Let u be a fixed four-velocity i.e. a fixed unit time-like vector. The field S(u)=(1/4 π )int dxδ (ux)S(x)is smooth enough to be exponentiated, being an average of the operator valued distribution S(x) over the entire Cauchy surface ux=0. We prove that if 0 = exp (-iS(u))mid 0>, where mid 0 > is the Lorentz invariant vacuum state, contains a normalizable eigenstate of the Casimir operator C1=-(1/2)Mμ ν Mμ ν ; Mμ ν are generators of the proper orthochronous Lorentz group. The eigenvalue is (e2/π )(2-(e2/π )). This theorem was first proven by the Author in 1992 in his contribution to the Czyz Festschrift, see Erratum Acta Phys. Pol. B 23, 959 (1992). In this paper a completely different proof is given: we derive the partial, differential equation satisfied by the matrix element , σ > 0, and show that the function exp(z)\\cdot (1-z)\\cdot exp [-σ z (2-z)], z= e2/ π , is an exact solution of this differential equation, recovering thus both the eigenvalue and the probability of occurrence of the bound state. A beautiful integral is calculated as a byproduct.

  6. Dromions bound states

    Energy Technology Data Exchange (ETDEWEB)

    Maccari, Attilio

    2003-03-01

    The asymptotic perturbation (AP) method is applied to the study of the nonlinear Klein-Gordon equation in 3+1 dimensions with harmonic potential and external periodic excitation supposed to be in primary resonance with the frequency of a generic mode. The AP method uses two different procedures for the solutions: introducing an asymptotic temporal rescaling and balancing of the harmonic terms with a simple iteration. Standard quantum mechanics can be used to derive the lowest order approximate solution and amplitude and phase modulation equations are obtained. External force-response and frequency-response curves are found and the existence of dromions trapped in bound states is demonstrated.

  7. Influence of quasi-bound states on the carrier capture into quantum dots

    DEFF Research Database (Denmark)

    Magnúsdóttir, Ingibjörg; Uskov, A.; Bischoff, Svend

    2002-01-01

    An important characteristic of quantum dot (QD) materials is the timescale on which carriers are captured into the dots and relax to their ground state. The properties of devices based on QDs, such as lasers, thus rely on efficient carrier feeding to the active QD states. These processes are beli...

  8. Ionization and bound-state relativistic quantum dynamics in laser-driven multiply charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Hetzheim, Henrik

    2009-01-14

    The interaction of ultra-strong laser fields with multiply charged hydrogen-like ions can be distinguished in an ionization and a bound dynamics regime. Both are investigated by means of numerically solving the Dirac equation in two dimensions and by a classical relativistic Monte-Carlo simulation. For a better understanding of highly nonlinear physical processes the development of a well characterized ultra-intense relativistic laser field strength has been driven forward, capable of studying e.g. the magnetic field effects of the laser resulting in an additional electron motion in the laser propagation direction. A novel method to sensitively measure these ultra-strong laser intensities is developed and employed from the optical via the UV towards the XUV frequency regime. In the bound dynamics field, the determination of multiphoton transition matrixelements has been investigated between different bound states via Rabi oscillations. (orig.)

  9. Light-Front Hamiltonian Approach to the Bound-State Problem in Quantum Electrodynamics

    Science.gov (United States)

    Jones, Billy D.

    1997-10-01

    Why is the study of the Lamb shift in hydrogen, which at the level of detail found in this paper was largely completed by Bethe in 1947, of any real interest today? While completing such a calculation using new techniques may be very interesting for formal and academic reasons, our primary motivation is to lay groundwork for precision bound-state calculations in QCD. The Lamb shift provides an excellent pedagogical tool for illustrating light-front Hamiltonian techniques, which are not widely known; but more importantly it presents three of the central dynamical and computational problems that we must face to make these techniques useful for solving QCD: How does a constituent picture emerge in a gauge field theory? How do bound-state energy scales emerge non-perturbatively? How does rotational symmetry emerge in a non-perturbative light-front calculation?

  10. Gauge invariant description of heavy quark bound states in quantum chromodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Moore, S.E.

    1980-08-01

    A model for a heavy quark meson is proposed in the framework of a gauge-invariant version of quantum chromodynamics. The field operators in this formulation are taken to be Wilson loops and strings with quark-antiquark ends. The fundamental differential equations of point-like Q.C.D. are expressed as variational equations of the extended loops and strings. The 1/N expansion is described, and it is assumed that nonleading effects such as intermediate quark pairs and nonplanar gluonic terms can be neglected. The action of the Hamiltonian in the A/sub 0/ = 0 gauge on a string operator is derived. A trial meson wave functional is constructed consisting of a path-averaged string operator applied to the full vacuum. A Gaussian in the derivative of the path location is assumed for the minimal form of the measure over paths. A variational parameter is incorporated in the measure as the exponentiated coefficient of the squared path location. The expectation value of the Hamiltonian in the trial state is evaluated for the assumption that the negative logarithm of the expectation value of a Wilson loop is proportional to the loop area. The energy is then minimized by deriving the equivalent quantum mechanical Schroedinger's equation and using the quantum mechanical 1/n expansion to estimate the effective eigenvalues. It is found that the area law behavior of the Wilson loop implies a nonzero best value of the variational parameter corresponding to a quantum broadening of the flux tube.

  11. Bound states of Dirac electrons in a graphene-based magnetic quantum dot

    Science.gov (United States)

    Wang, Dali; Jin, Guojun

    2009-10-01

    We investigate the magnetically confined states of the massless Dirac fermions in a graphene quantum dot formed by the inhomogeneous distributions of the magnetic fields inside and outside the dot. The calculated energy spectrum exhibits quite different features with and without the magnetic field inside the dot. It is found that the degeneracy of the relativistic Landau level with negative angular momenta can be lifted, and this degeneracy breaking can be modulated by the magnetic field inside the dot. Moreover, such a system can form the strongly localized states within the dot and along its boundary, especially with the magnetic field inside the dot.

  12. Kondo correlations and Majorana bound states in a metal to quantum-dot to topological-superconductor junction.

    Science.gov (United States)

    Golub, A; Kuzmenko, I; Avishai, Y

    2011-10-21

    Electron transport through a normal-metal-quantum-dot-topological-superconductor junction is studied and reveals interlacing physics of Kondo correlations with two Majorana fermions bound states residing on the opposite ends of the topological superconductor. When the strength of the Majorana fermion coupling exceeds the temperature T, this combination of Kondo-Majorana fermion physics might be amenable for an experimental test: The usual peak of the temperature dependent zero bias conductance σ(V=0,T) splits and the conductance has a dip at T=0. The heights of the conductance side peaks decrease with magnetic field. © 2011 American Physical Society

  13. Nonlocal,Dynamic Dielectric Response of a Quantum Well with Bound State in a Bulk Medium having a 3D Band of Extended States

    Science.gov (United States)

    Horing, N. J. M.

    1997-03-01

    An explicit position-space inversion of the dielectric function of a planar quantum well with a bound state embedded in a bulk medium having a 3D band of extended states is carried out here in closed form.The resulting nonlocal dynamic inverse dielectric function K(z,z^';barq,w) is exact within the framework of the random phase approximation with the assumption that the 3D band of extended states is translationally invariant in the z-direction,and that intersubband transitions between the 3D band and the discrete bound state are negligible.The frequency poles of K(z,z^';barq,w) obtained here represent the coupling of nonlocal bulk plasmons with 2D intrasubband plasmons of the quantum well and the residues of these poles provide the oscillator strength of such coupled collective modes.

  14. Upper bound on quantum stabilizer codes

    Science.gov (United States)

    Li, Zhuo; Xing, Li-Juan

    2009-03-01

    By studying sets of operators having constant weight, we present an analytical upper bound on the pure quantum stabilizer codes whose underlying quantum system can be of arbitrary dimension, which outperforms the well-known quantum Hamming bound, the optimal analytical upper bound so far for small code length.

  15. Quantum correlations and distinguishability of quantum states

    Energy Technology Data Exchange (ETDEWEB)

    Spehner, Dominique [Université Grenoble Alpes and CNRS, Institut Fourier, F-38000 Grenoble, France and Laboratoire de Physique et Modélisation des Milieux Condensés, F-38000 Grenoble (France)

    2014-07-15

    A survey of various concepts in quantum information is given, with a main emphasis on the distinguishability of quantum states and quantum correlations. Covered topics include generalized and least square measurements, state discrimination, quantum relative entropies, the Bures distance on the set of quantum states, the quantum Fisher information, the quantum Chernoff bound, bipartite entanglement, the quantum discord, and geometrical measures of quantum correlations. The article is intended both for physicists interested not only by collections of results but also by the mathematical methods justifying them, and for mathematicians looking for an up-to-date introductory course on these subjects, which are mainly developed in the physics literature.

  16. Wronskian method for bound states

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Francisco M, E-mail: fernande@quimica.unlp.edu.ar [INIFTA (UNLP, CONICET), Division Quimica Teorica, Boulevard 113 S/N, Sucursal 4, Casilla de Correo 16, 1900 La Plata (Argentina)

    2011-05-15

    We propose a simple and straightforward method based on Wronskians for the calculation of bound-state energies and wavefunctions of one-dimensional quantum-mechanical problems. We explicitly discuss the asymptotic behaviour of the wavefunction and show that the allowed energies make the divergent part vanish. As illustrative examples we consider an exactly solvable model, the Gaussian potential well, and a two-well potential proposed earlier for the interpretation of the infrared spectrum of ammonia.

  17. Degenerate quantum codes and the quantum Hamming bound

    Science.gov (United States)

    Sarvepalli, Pradeep; Klappenecker, Andreas

    2010-03-01

    The parameters of a nondegenerate quantum code must obey the Hamming bound. An important open problem in quantum coding theory is whether the parameters of a degenerate quantum code can violate this bound for nondegenerate quantum codes. In this article we show that Calderbank-Shor-Steane (CSS) codes, over a prime power alphabet q⩾5, cannot beat the quantum Hamming bound. We prove a quantum version of the Griesmer bound for the CSS codes, which allows us to strengthen the Rains’ bound that an [[n,k,d

  18. Quantum few-body bound states of dipolar particles in a helical geometry

    DEFF Research Database (Denmark)

    Pedersen, Jakob Knorborg; Fedorov, Dmitri Vladimir; Jensen, Aksel Stenholm

    2016-01-01

    We study a quantum mechanical system consisting of up to three identical dipoles confined to move along a helical shaped trap. The long-range interactions between particles confined to move in this one dimension leads to an interesting effective two-particle potential with an oscillating behavior...

  19. Born Level Bound States

    Science.gov (United States)

    Hoyer, Paul

    2017-05-01

    Bound state poles in the S-matrix of perturbative QED are generated by the divergence of the expansion in α . The perturbative corrections are necessarily singular when expanding around free, {O}( α ^0 ) in and out states that have no overlap with finite-sized atomic wave functions. Nevertheless, measurables such as binding energies do have well-behaved expansions in powers of α (and log α ). It is desirable to formulate the concept of "lowest order" for gauge theory bound states such that higher order corrections vanish in the α → 0 limit. This may allow to determine a lowest order term for QCD hadrons which incorporates essential features such as confinement and chiral symmetry breaking, and thus can serve as the starting point of a useful perturbative expansion. I discuss a "Born" (no loop, lowest order in \\hbar ) approximation. Born level states are bound by gauge fields which satisfy the classical field equations. Gauss' law determines a distinct field A^0({\\varvec{x}}) for each instantaneous position of the charges. A Poincaré covariant boundary condition for the gluon field leads to a confining potential for q\\bar{q} and qqq states. In frames where the bound state is in motion the classical gauge field is obtained by a Lorentz boost of the rest frame field.

  20. Transport through Andreev bound states in a Weyl semimetal quantum dot

    Science.gov (United States)

    Mukherjee, Dibya Kanti; Rao, Sumathi; Kundu, Arijit

    2017-10-01

    We study transport through a Weyl semimetal quantum dot sandwiched between an s -wave superconductor and a normal lead. The conductance peaks at regular intervals and exhibits double periodicity with respect to two characteristic frequencies of the system, one that originates from Klein tunneling in the system and the other coming from the chiral nature of the excitations. Using a scattering matrix approach as well as a lattice simulation, we demonstrate the universal features of the conductance through the system and discuss the feasibility of observing them in experiments.

  1. Verifying bound entanglement of dephased Werner states

    Science.gov (United States)

    Thomas, P.; Bohmann, M.; Vogel, W.

    2017-10-01

    The verification of quantum entanglement under the influence of realistic noise and decoherence is crucial for the development of quantum technologies. Unfortunately, a full entanglement characterization is generally not possible with most entanglement criteria such as entanglement witnesses or the partial transposition criterion. In particular, so-called bound entanglement cannot be certified via the partial transposition criterion. Here we present the full entanglement verification of dephased qubit and qutrit Werner states via entanglement quasiprobabilities. Remarkably, we are able to reveal bound entanglement for noisy mixed states in the qutrit case. This example demonstrates the strength of the entanglement quasiprobabilities for verifying the full entanglement of quantum states suffering from noise.

  2. Bound State Solution of Dirac Equation for Generalized Pöschl-Teller plus Trigomometric Pöschl-Teller Non- Central Potential Using SUSY Quantum Mechanics

    Directory of Open Access Journals (Sweden)

    Suparmi

    2014-12-01

    Full Text Available The bound state solution of the Dirac equation for generalized PöschlTeller and trigonometric Pöschl-Teller non-central potentials was obtained using SUSY quantum mechanics and the idea of shape invariance potential. The approximate relativistic energy spectrum was expressed in the closed form. The radial and polar wave functions were obtained using raising and lowering of radial and polar operators. The orbital quantum numbers were found from the polar Dirac equation, which was solved using SUSY quantum mechanics and the idea of shape invariance.

  3. Bound states and the Bekenstein bound

    Energy Technology Data Exchange (ETDEWEB)

    Bousso, Raphael

    2003-10-16

    We explore the validity of the generalized Bekenstein bound, S<= pi M a. We define the entropy S as the logarithm of the number of states which have energy eigenvalue below M and are localized to a flat space region of width alpha. If boundary conditions that localize field modes are imposed by fiat, then the bound encounters well-known difficulties with negative Casimir energy and large species number, as well as novel problems arising only in the generalized form. In realistic systems, however, finite-size effects contribute additional energy. We study two different models for estimating such contributions. Our analysis suggests that the bound is both valid and nontrivial if interactions are properly included, so that the entropy S counts the bound states of interacting fields.

  4. The conversion of resonances to bound states in the presence of a Coulomb potential and the computation of autoionization lifetimes from quantum defects

    Science.gov (United States)

    Lucchese, Robert; McCurdy, C. W.; Rescigno, T. N.

    2017-04-01

    The conversion of resonant metastable states to bound states with changing potential strength in the presence of a Coulomb potential proceeds by a mechanism fundamentally different from the same process in the case of short-range potentials. This phenomenon, which can accompany changes in molecular geometry, is central to the physics of the process of dissociative recombination of electrons with molecular cations. We verify computationally that there is no direct connection between a resonance pole of the S-matrix and the bound state poles for several model problems. We present a detailed analysis of the analytic structure of the scattering matrix in which the resonance pole remains distinct in the complex plane while a new state appears in the bound state spectrum. Nonetheless, as might be expected from quantum-defect theory, there is a close analytic relation between the resonant behavior of scattering at positive energies and the energies of the bound states. This connection allows the width of a resonance at low energies to be calculated directly from the behavior of the quantum defects with changing potential strength or molecular geometry. US-DOE, OBES, Chemical Sciences, Geosciences, and Biosciences Division.

  5. Quantum discord bounds the amount of distributed entanglement.

    Science.gov (United States)

    Chuan, T K; Maillard, J; Modi, K; Paterek, T; Paternostro, M; Piani, M

    2012-08-17

    The ability to distribute quantum entanglement is a prerequisite for many fundamental tests of quantum theory and numerous quantum information protocols. Two distant parties can increase the amount of entanglement between them by means of quantum communication encoded in a carrier that is sent from one party to the other. Intriguingly, entanglement can be increased even when the exchanged carrier is not entangled with the parties. However, in light of the defining property of entanglement stating that it cannot increase under classical communication, the carrier must be quantum. Here we show that, in general, the increase of relative entropy of entanglement between two remote parties is bounded by the amount of nonclassical correlations of the carrier with the parties as quantified by the relative entropy of discord. We study implications of this bound, provide new examples of entanglement distribution via unentangled states, and put further limits on this phenomenon.

  6. The g-factor of the electron bound in {sup 28}Si{sup 13+}. The most stringent test of bound-state quantum electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Sturm, Sven

    2012-09-06

    This thesis describes the ultra-precise determination of the g-factor of the electron bound to hydrogenlike {sup 28}Si{sup 13+}. The experiment is based on the simultaneous determination of the cyclotron- and Larmor frequency of a single ion, which is stored in a triple Penning-trap setup. The continuous Stern-Gerlach effect is used to couple the spin of the bound electron to the motional frequencies of the ion via a magnetic bottle, which allows the non-destructive determination of the spin state. To this end, a highly sensitive, cryogenic detection system was developed, which allowed the direct, non-destructive detection of the eigenfrequencies with the required precision. The development of a novel, phase sensitive detection technique finally allowed the determination of the g-factor with a relative accuracy of 4 . 10{sup -11}, which was previously inconceivable. The comparison of the hereby determined value with the value predicted by quantumelectrodynamics (QED) allows the verification of the validity of this fundamental theory under the extreme conditions of the strong binding potential of a highly charged ion. The exact agreement of theory and experiment is an impressive demonstration of the exactness of QED. The experimental possibilities created in this work will allow in the near future not only further tests of theory, but also the determination of the mass of the electron with a precision that exceeds the current literature value by more than an order of magnitude.

  7. Topological edge states of bound photon pairs

    Science.gov (United States)

    Gorlach, Maxim A.; Poddubny, Alexander N.

    2017-05-01

    We predict the existence of interaction-driven edge states of bound two-photon quasiparticles in a dimer periodic array of nonlinear optical cavities. The energy spectrum of photon pairs is dramatically richer than in the noninteracting case or in a simple lattice, featuring collapse and revival of multiple edge and bulk modes as well as edge states in continuum. We link the edge-state existence to the two-photon quantum walk graph connectivity. Our results offer a route to control quantum entanglement and provide insights into the physics of many-body topological states.

  8. Lower bound of multipartite concurrence based on sub-partite quantum systems

    Science.gov (United States)

    Chen, Wei; Zhu, Xue-Na; Fei, Shao-Ming; Zheng, Zhu-Jun

    2017-12-01

    We study the concurrence of arbitrary dimensional multipartite quantum systems. An explicit analytical lower bound of concurrence for four-partite mixed states is obtained in terms of the concurrences of tripartite mixed states. Detailed examples are given to show that our lower bounds improve the existing lower bounds of concurrence. The approach is generalized to five-partite quantum systems.

  9. Hadron-nucleus bound states

    CERN Document Server

    Yamazaki, T

    2000-01-01

    A new type of nuclear spectroscopy to study hadron-nucleus bound states is described. The first successful experiment was to search for deeply bound pi sup - states in heavy nuclei using the sup 2 sup 0 sup 8 Pb(d, sup 3 He) reaction at GSI, in which a narrow peak arising from the 2p pi sup - orbital coupled with the neutron-hole states was observed at 135 MeV excitation energy. An improved experiment has just been carried out to separately identify the 1s and 2p pi sup - states. These experiments provide important information on the local potential strength, from which the effective mass of pi sup - is deduced to be 20 MeV. This method will be extended to search for eta and omega bound states as well as for K sup - bound states. The advantage of the bound-state spectroscopy versus invariant mass spectroscopy is emphasized.

  10. Virtual-bound, filamentary and layered states in a box-shaped quantum dot of square potential form the exact numerical solution of the effective mass Schrödinger equation

    Energy Technology Data Exchange (ETDEWEB)

    Luque, A., E-mail: a.luque@upm.es [Instituto de Energía Solar, Universidad Politécnica de Madrid (Spain); Mellor, A.; Tobías, I.; Antolín, E.; Linares, P.G.; Ramiro, I.; Martí, A. [Instituto de Energía Solar, Universidad Politécnica de Madrid (Spain)

    2013-03-15

    The effective mass Schrödinger equation of a QD of parallelepipedic shape with a square potential well is solved by diagonalizing the exact Hamiltonian matrix developed in a basis of separation-of-variables wavefunctions. The expected below bandgap bound states are found not to differ very much from the former approximate calculations. In addition, the presence of bound states within the conduction band is confirmed. Furthermore, filamentary states bounded in two dimensions and extended in one dimension and layered states with only one dimension bounded, all within the conduction band—which are similar to those originated in quantum wires and quantum wells—coexist with the ordinary continuum spectrum of plane waves. All these subtleties are absent in spherically shaped quantum dots, often used for modeling.

  11. Bound anionic states of adenine

    Energy Technology Data Exchange (ETDEWEB)

    Haranczyk, Maciej; Gutowski, Maciej S; Li, Xiang; Bowen, Kit H

    2007-03-20

    Anionic states of nucleic acid bases are involved in DNA damage by low-energy electrons and in charge transfer through DNA. Previous gas phase studies of free, unsolvated nucleic acid base parent anions probed only dipole-bound states, which are not present in condensed phase environments, but did not observe valence anionic states, which for purine bases, are thought to be adiabatically unbound. Contrary to this expectation, we have demonstrated that some thus far ignored tautomers of adenine, which result from enamine-imine transformations, support valence anionic states with electron vertical detachment energies as large as 2.2 eV, and at least one of these anionic tautomers is adiabatically bound. Moreover, we predict that the new anionic tautomers should also dominate in solutions and should be characterized by larger values of electron vertical detachment energy than the canonical valence anion. All of the new-found anionic tautomers might be formed in the course of dissociative electron attachment followed by a hydrogen atom attachment to a carbon atom, and they might affect the structure and properties of DNA and RNA exposed to low-energy electrons. The discovery of these valence anionic states of adenine was facilitated by the development of: (i) a new experimental method for preparing parent anions of nucleic acid bases for photoelectron experiments, and (ii) a new combinatorial/ quantum chemical approach for identification of the most stable tautomers of organic molecules. The computational portion of this work was supported by the: (i) Polish State Committee for Scientific Research (KBN) Grants: DS/8000-4-0140-7 (M.G.) and N204 127 31/2963 (M.H.), (ii) European Social Funds (EFS) ZPORR/2.22/II/2.6/ARP/U/2/05 (M.H.), and (iii) US DOE Office of Biological and Environmental Research, Low Dose Radiation Research Program (M.G.). M.H. holds the Foundation for Polish Science (FNP) award for young scientists. The calculations were performed at the Academic

  12. A lower bound of concurrence for multipartite quantum systems

    Science.gov (United States)

    Zhu, Xue-Na; Li, Ming; Fei, Shao-Ming

    2018-02-01

    We present a lower bound of concurrence for four-partite systems in terms of the concurrence for M (2≤ M≤ 3) part quantum systems and give an analytical lower bound for 2⊗ 2⊗ 2⊗ 2 mixed quantum sates. It is shown that these lower bounds are able to improve the existing bounds and detect entanglement better. Furthermore, our approach can be generalized to multipartite quantum systems.

  13. Classical Physics and the Bounds of Quantum Correlations.

    Science.gov (United States)

    Frustaglia, Diego; Baltanás, José P; Velázquez-Ahumada, María C; Fernández-Prieto, Armando; Lujambio, Aintzane; Losada, Vicente; Freire, Manuel J; Cabello, Adán

    2016-06-24

    A unifying principle explaining the numerical bounds of quantum correlations remains elusive, despite the efforts devoted to identifying it. Here, we show that these bounds are indeed not exclusive to quantum theory: for any abstract correlation scenario with compatible measurements, models based on classical waves produce probability distributions indistinguishable from those of quantum theory and, therefore, share the same bounds. We demonstrate this finding by implementing classical microwaves that propagate along meter-size transmission-line circuits and reproduce the probabilities of three emblematic quantum experiments. Our results show that the "quantum" bounds would also occur in a classical universe without quanta. The implications of this observation are discussed.

  14. Engineering the coupling between Majorana bound states

    Science.gov (United States)

    Shi, Z. C.; Shao, X. Q.; Xia, Y.; Yi, X. X.

    2017-09-01

    We study the coupling between Majorana bound states (CMBS), which is mediated by a topologically trivial chain in the presence of pairing coupling and long-range coupling. The results show that CMBS can be enhanced by the pairing coupling and long-range coupling of the trivial chain. When driving the trivial chain by periodic driving field, we deduce the analytical expressions of CMBS in the high-frequency limit, and demonstrate that CMBS can be modulated by the frequency and amplitude of driving field. Finally we exhibit the application of tunable CMBS in realizing quantum logic gates.

  15. Surface-bound states in nanodiamonds

    Science.gov (United States)

    Han, Peng; Antonov, Denis; Wrachtrup, Jörg; Bester, Gabriel

    2017-05-01

    We show via ab initio calculations and an electrostatic model that the notoriously low, but positive, electron affinity of bulk diamond becomes negative for hydrogen passivated nanodiamonds and argue that this peculiar situation (type-II offset with a vacuum level at nearly midgap) and the three further conditions: (i) a surface dipole with positive charge on the outside layer, (ii) a spherical symmetry, and (iii) a dielectric mismatch at the surface, results in the emergence of a peculiar type of surface state localized just outside the nanodiamond. These states are referred to as "surface-bound states" and have consequently a strong environmental sensitivity. These type of states should exist in any nanostructure with negative electron affinity. We further quantify the band offsets of different type of nanostructures as well as the exciton binding energy and contrast the results with results for "conventional" silicon quantum dots.

  16. Quantum Conditional Mutual Information, Reconstructed States, and State Redistribution.

    Science.gov (United States)

    Brandão, Fernando G S L; Harrow, Aram W; Oppenheim, Jonathan; Strelchuk, Sergii

    2015-07-31

    We give two strengthenings of an inequality for the quantum conditional mutual information of a tripartite quantum state recently proved by Fawzi and Renner, connecting it with the ability to reconstruct the state from its bipartite reductions. Namely, we show that the conditional mutual information is an upper bound on the regularized relative entropy distance between the quantum state and its reconstructed version. It is also an upper bound for the measured relative entropy distance of the state to its reconstructed version. The main ingredient of the proof is the fact that the conditional mutual information is the optimal quantum communication rate in the task of state redistribution.

  17. The generalized pseudospectral approach to the bound states of the ...

    Indian Academy of Sciences (India)

    Abstract. The generalized pseudospectral (GPS) method is employed to calculate the bound states of the Hulthén and the Yukawa potentials in quantum mechanics, with special emphasis on higher excited states and stronger couplings. Accurate energy eigenvalues, expectation values and radial probability densities are ...

  18. Viewing Majorana Bound States by Rabi Oscillations.

    Science.gov (United States)

    Wang, Zhi; Liang, Qi-Feng; Yao, Dao-Xin; Hu, Xiao

    2015-07-08

    We propose to use Rabi oscillation as a probe to view the fractional Josepshon relation (FJR) associated with Majorana bound states (MBSs) expected in one-dimensional topological superconductors. The system consists of a quantum dot (QD) and an rf-SQUID with MBSs at the Josephson junction. Rabi oscillations between energy levels formed by MBSs are induced by ac gate voltage controlling the coupling between QD and MBS when the photon energy proportional to the ac frequency matches gap between quantum levels formed by MBSs and QD. As a manifestation of the Rabi oscillation in the whole system involving MBSs, the electron occupation on QD oscillates with time, which can be measured by charge sensing techniques. With Floquet theorem and numerical analysis we reveal that from the resonant driving frequency for coherent Rabi oscillation one can directly map out the FJR cos(πΦ/Φ0) as a signature of MBSs, with Φ the magnetic flux through SQUID and Φ0 = hc/2e the flux quantum. The present scheme is expected to provide a clear evidence for MBSs under intensive searching.

  19. Lower Bounds on Quantum Query Complexity

    NARCIS (Netherlands)

    Hoyer, P.; Spalek, R.

    2005-01-01

    Shor's and Grover's famous quantum algorithms for factoring and searching show that quantum computers can solve certain computational problems significantly faster than any classical computer. We discuss here what quantum computers cannot do, and specifically how to prove limits on their

  20. Quantum engine efficiency bound beyond the second law of thermodynamics.

    Science.gov (United States)

    Niedenzu, Wolfgang; Mukherjee, Victor; Ghosh, Arnab; Kofman, Abraham G; Kurizki, Gershon

    2018-01-11

    According to the second law, the efficiency of cyclic heat engines is limited by the Carnot bound that is attained by engines that operate between two thermal baths under the reversibility condition whereby the total entropy does not increase. Quantum engines operating between a thermal and a squeezed-thermal bath have been shown to surpass this bound. Yet, their maximum efficiency cannot be determined by the reversibility condition, which may yield an unachievable efficiency bound above unity. Here we identify the fraction of the exchanged energy between a quantum system and a bath that necessarily causes an entropy change and derive an inequality for this change. This inequality reveals an efficiency bound for quantum engines energised by a non-thermal bath. This bound does not imply reversibility, unless the two baths are thermal. It cannot be solely deduced from the laws of thermodynamics.

  1. Quantum Gravity Mathematical Models and Experimental Bounds

    CERN Document Server

    Fauser, Bertfried; Zeidler, Eberhard

    2007-01-01

    The construction of a quantum theory of gravity is the most fundamental challenge confronting contemporary theoretical physics. The different physical ideas which evolved while developing a theory of quantum gravity require highly advanced mathematical methods. This book presents different mathematical approaches to formulate a theory of quantum gravity. It represents a carefully selected cross-section of lively discussions about the issue of quantum gravity which took place at the second workshop "Mathematical and Physical Aspects of Quantum Gravity" in Blaubeuren, Germany. This collection covers in a unique way aspects of various competing approaches. A unique feature of the book is the presentation of different approaches to quantum gravity making comparison feasible. This feature is supported by an extensive index. The book is mainly addressed to mathematicians and physicists who are interested in questions related to mathematical physics. It allows the reader to obtain a broad and up-to-date overview on ...

  2. Instanton bound states in ABJM theory

    Energy Technology Data Exchange (ETDEWEB)

    Hatsuda, Yasuyuki [DESY Hamburg (Germany). Theory Group; Tokyo Institute of Technology (Japan). Dept. of Physics; Moriyama, Sanefumi [Nagoya Univ. (Japan). Kobayashi Maskawa Inst. and Graduate School of Mathematics; Okuyama, Kazumi [Shinshu Univ., Matsumoto, Nagano (Japan). Dept. of Physics

    2013-06-15

    The partition function of the ABJM theory receives non-perturbative corrections due to instanton effects. We study these non-perturbative corrections, including bound states of worldsheet instantons and membrane instantons, in the Fermi-gas approach. We require that the total non-perturbative correction should be always finite for arbitrary Chern-Simons level. This finiteness is realized quite non-trivially because each bound state contribution naively diverges at some levels. The poles of each contribution should be canceled out in total. We use this pole cancellation mechanism to find unknown bound state corrections from known ones. We conjecture a general expression of the bound state contribution. Summing up all the bound state contributions, we find that the effect of bound states is simply incorporated into the worldsheet instanton correction by a redefinition of the chemical potential in the Fermi-gas system. Analytic expressions of the 3- and 4-membrane instanton corrections are also proposed.

  3. Stieltjes electrostatic model interpretation for bound state problems

    Indian Academy of Sciences (India)

    In this paper, it is shown that Stieltjes electrostatic model and quantum Hamilton Jacobi formalism are analogous to each other. This analogy allows the bound state problem to mimic as unit moving imaginary charges i ℏ , which are placed in between the two fixed imaginary charges arising due to the classical turning ...

  4. Composable security in the bounded-quantum-storage model

    NARCIS (Netherlands)

    S.D.C. Wehner (Stephanie); J. Wullschleger

    2007-01-01

    htmlabstractWe present a simplified framework for proving sequential composability in the quantum setting. In particular, we give a new, simulation-based, definition for security in the bounded-quantum-storage model, and show that this definition allows for sequential composition of protocols.

  5. Linear Plotkin bound for entanglement-assisted quantum codes

    Science.gov (United States)

    Guo, Luobin; Li, Ruihu

    2013-03-01

    The entanglement-assisted (EA) formalism is a generalization of the standard stabilizer formalism, and it can transform arbitrary quaternary classical linear codes into entanglement-assisted quantum error correcting codes (EAQECCs) by using of shared entanglement between the sender and the receiver. Using the special structure of linear EAQECCs, we derive an EA-Plotkin bound for linear EAQECCs, which strengthens the previous known EA-Plotkin bound. This linear EA-Plotkin bound is tighter then the EA-Singleton bound, and matches the EA-Hamming bound and the EA-linear programming bound in some cases. We also construct three families of EAQECCs with good parameters. Some of these EAQECCs saturate this linear EA-Plotkin bound and the others are near optimal according to this bound; almost all of these linear EAQECCs are degenerate codes.

  6. Cryptography In The Bounded Quantum-Storage Model

    DEFF Research Database (Denmark)

    Damgård, Ivan Bjerre; Salvail, Louis; Schaffner, Christian

    2005-01-01

    , whereas an adversarial player needs quantum memory of size at least n/2 in order to break the protocol, where n is the number of qubits transmitted. This is in sharp contrast to the classical bounded- memory model, where we can only tolerate adversaries with memory of size quadratic in honest players......We initiate the study of two-party cryptographic primitives with unconditional security, assuming that the adversary's quantum memory is of bounded size. We show that oblivious transfer and bit commitment can be implemented in this model using protocols where honest parties need no quantum memory...

  7. Cryptography in the Bounded Quantum-Storage Model

    DEFF Research Database (Denmark)

    Damgård, Ivan Bjerre; Serge, Fehr; Schaffner, Christian

    2008-01-01

    , whereas an adversarial player needs quantum memory of size at least $n/2$ in order to break the protocol, where $n$ is the number of qubits transmitted. This is in sharp contrast to the classical bounded-memory model, where we can only tolerate adversaries with memory of size quadratic in honest players......We initiate the study of two-party cryptographic primitives with unconditional security, assuming that the adversary's quantum memory is of bounded size. We show that oblivious transfer and bit commitment can be implemented in this model using protocols where honest parties need no quantum memory...

  8. Are Quantum States Real?

    Science.gov (United States)

    Hardy, Lucien

    2013-01-01

    In this paper we consider theories in which reality is described by some underlying variables, λ. Each value these variables can take represents an ontic state (a particular state of reality). The preparation of a quantum state corresponds to a distribution over the ontic states, λ. If we make three basic assumptions, we can show that the distributions over ontic states corresponding to distinct pure states are nonoverlapping. This means that we can deduce the quantum state from a knowledge of the ontic state. Hence, if these assumptions are correct, we can claim that the quantum state is a real thing (it is written into the underlying variables that describe reality). The key assumption we use in this proof is ontic indifference — that quantum transformations that do not affect a given pure quantum state can be implemented in such a way that they do not affect the ontic states in the support of that state. In fact this assumption is violated in the Spekkens toy model (which captures many aspects of quantum theory and in which different pure states of the model have overlapping distributions over ontic states). This paper proves that ontic indifference must be violated in any model reproducing quantum theory in which the quantum state is not a real thing. The argument presented in this paper is different from that given in a recent paper by Pusey, Barrett and Rudolph. It uses a different key assumption and it pertains to a single copy of the system in question.

  9. Fundamental bound on the reliability of quantum information transmission.

    Science.gov (United States)

    Sharma, Naresh; Warsi, Naqueeb Ahmad

    2013-02-22

    Information theory tells us that if the rate of sending information across a noisy channel were above the capacity of that channel, then the transmission would necessarily be unreliable. For classical information sent over classical or quantum channels, one could, under certain conditions, make a stronger statement that the reliability of the transmission shall decay exponentially to zero with the number of channel uses, and the proof of this statement typically relies on a certain fundamental bound on the reliability of the transmission. Such a statement or the bound has never been given for sending quantum information. We give this bound and then use it to give the first example where the reliability of sending quantum information at rates above the capacity decays exponentially to zero. We also show that our framework can be used for proving generalized bounds on the reliability.

  10. Quantum Cramer–Rao Bound for a Massless Scalar Field in de Sitter Space

    Directory of Open Access Journals (Sweden)

    Marcello Rotondo

    2017-10-01

    Full Text Available How precisely can we estimate cosmological parameters by performing a quantum measurement on a cosmological quantum state? In quantum estimation theory, the variance of an unbiased parameter estimator is bounded from below by the inverse of measurement-dependent Fisher information and ultimately by quantum Fisher information, which is the maximization of the former over all positive operator-valued measurements. Such bound is known as the quantum Cramer –Rao bound. We consider the evolution of a massless scalar field with Bunch–Davies vacuum in a spatially flat FLRW spacetime, which results in a two-mode squeezed vacuum out-state for each field wave number mode. We obtain the expressions of the quantum Fisher information as well as the Fisher informations associated to occupation number measurement and power spectrum measurement, and show the specific results of their evolution for pure de Sitter expansion and de Sitter expansion followed by a radiation-dominated phase as examples. We will discuss these results from the point of view of the quantum-to-classical transition of cosmological perturbations and show quantitatively how this transition and the residual quantum correlations affect the bound on the precision.

  11. Quantum reading capacity: General definition and bounds

    OpenAIRE

    Das, Siddhartha; Wilde, Mark M.

    2017-01-01

    Quantum reading refers to the task of reading out classical information stored in a classical memory. In any such protocol, the transmitter and receiver are in the same physical location, and the goal of such a protocol is to use these devices, coupled with a quantum strategy, to read out as much information as possible from a classical memory, such as a CD or DVD. In this context, a memory cell is a collection of quantum channels that can be used to encode a classical message in a memory. Th...

  12. Tight upper bound for the maximal quantum value of the Svetlichny operators

    Science.gov (United States)

    Li, Ming; Shen, Shuqian; Jing, Naihuan; Fei, Shao-Ming; Li-Jost, Xianqing

    2017-10-01

    It is a challenging task to detect genuine multipartite nonlocality (GMNL). In this paper, the problem is considered via computing the maximal quantum value of Svetlichny operators for three-qubit systems and a tight upper bound is obtained. The constraints on the quantum states for the tightness of the bound are also presented. The approach enables us to give the necessary and sufficient conditions of violating the Svetlichny inequality (SI) for several quantum states, including the white and color noised Greenberger-Horne-Zeilinger (GHZ) states. The relation between the genuine multipartite entanglement concurrence and the maximal quantum value of the Svetlichny operators for mixed GHZ class states is also discussed. As the SI is useful for the investigation of GMNL, our results give an effective and operational method to detect the GMNL for three-qubit mixed states.

  13. Upper bounds on quantum uncertainty products and complexity measures

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero, Angel; Sanchez-Moreno, Pablo; Dehesa, Jesus S. [Department of Atomic, Molecular and Nuclear Physics, University of Granada, Granada (Spain); Department of Applied Mathematics, University of Granada, Granada (Spain) and Institute Carlos I for Computational and Theoretical Physics, University of Granada, Granada (Spain); Department of Atomic, Molecular and Nuclear Physics, University of Granada, Granada (Spain); Institute Carlos I for Computational and Theoretical Physics, University of Granada, Granada (Spain)

    2011-10-15

    The position-momentum Shannon and Renyi uncertainty products of general quantum systems are shown to be bounded not only from below (through the known uncertainty relations), but also from above in terms of the Heisenberg-Kennard product . Moreover, the Cramer-Rao, Fisher-Shannon, and Lopez-Ruiz, Mancini, and Calbet shape measures of complexity (whose lower bounds have been recently found) are also bounded from above. The improvement of these bounds for systems subject to spherically symmetric potentials is also explicitly given. Finally, applications to hydrogenic and oscillator-like systems are done.

  14. Nonequilibrium quantum bounds to Landauer's principle: Tightness and effectiveness

    Science.gov (United States)

    Campbell, Steve; Guarnieri, Giacomo; Paternostro, Mauro; Vacchini, Bassano

    2017-10-01

    We assess two different nonequilibrium quantum Landauer bounds: the traditional approach based on the change in entropy, referred to as the "entropic bound," and one based on the details of the dynamical map, referred to as the "thermodynamic bound." By first restricting to a simple exactly solvable model of a single two-level system coupled to a finite-dimensional thermal environment and by exploiting an excitation-preserving interaction, we establish the dominant role played by the population terms in dictating the tightness of these bounds with respect to the dissipated heat and clearly establish that coherences only affect the entropic bound. Furthermore, we show that sharp boundaries between the relative performance of the two quantities emerge and find that there are clear instances where both approaches return a bound weaker than Clausius' statement of the second law, rendering them ineffective. Finally, we show that our results extend to generic interaction terms.

  15. Decentralized Routing and Diameter Bounds in Entangled Quantum Networks

    Science.gov (United States)

    Gyongyosi, Laszlo; Imre, Sandor

    2017-04-01

    Entangled quantum networks are a necessity for any future quantum internet, long-distance quantum key distribution, and quantum repeater networks. The entangled quantum nodes can communicate through several different levels of entanglement, leading to a heterogeneous, multi-level entangled network structure. The level of entanglement between the quantum nodes determines the hop distance, the number of spanned nodes, and the probability of the existence of an entangled link in the network. In this work we define a decentralized routing for entangled quantum networks. We show that the probability distribution of the entangled links can be modeled by a specific distribution in a base-graph. The results allow us to perform efficient routing to find the shortest paths in entangled quantum networks by using only local knowledge of the quantum nodes. We give bounds on the maximum value of the total number of entangled links of a path. The proposed scheme can be directly applied in practical quantum communications and quantum networking scenarios. This work was partially supported by the Hungarian Scientific Research Fund - OTKA K-112125.

  16. Quantum states of light

    CERN Document Server

    Furusawa, Akira

    2015-01-01

    This book explains what quantum states of light look like. Of special interest, a single photon state is explained by using a wave picture, showing that it corresponds to the complementarity of a quantum. Also explained is how light waves are created by photons, again corresponding to the complementarity of a quantum. The author shows how an optical wave is created by superposition of a "vacuum" and a single photon as a typical example. Moreover, squeezed states of light are explained as "longitudinal" waves of light and Schrödinger's cat states as macroscopic superposition states.

  17. Matchgate and space-bounded quantum computations are equivalent

    OpenAIRE

    Jozsa, Richard; Kraus, Barbara; Miyake, Akimasa; Watrous, John

    2009-01-01

    Matchgates are an especially multiflorous class of two-qubit nearest neighbour quantum gates, defined by a set of algebraic constraints. They occur for example in the theory of perfect matchings of graphs, non-interacting fermions, and one-dimensional spin chains. We show that the computational power of circuits of matchgates is equivalent to that of space-bounded quantum computation with unitary gates, with space restricted to being logarithmic in the width of the matchgate circuit. In parti...

  18. Quantum mechanics two volumes bound as one

    CERN Document Server

    Messiah, Albert

    2014-01-01

    ""Strongly recommended"" by the American Journal of Physics, this volume serves as a text for advanced undergraduates and graduate students of physics as well as a reference for professionals. Clear in its presentation and scrupulous in its attention to detail, the treatment originally appeared in a two-volume French edition. This convenient single-volume translation begins with formalism and its interpretation, starting with the origins of quantum theory and examinations of matter waves and the Schrödinger equation, one-dimensional quantized systems, the uncertainty relations, and the mathema

  19. Stable Bound States of Asymmetric Dark Matter

    OpenAIRE

    Wise, Mark B.; Zhang, Yue

    2014-01-01

    The simplest renormalizable effective field theories with asymmetric dark matter bound states contain two additional gauge singlet fields one being the dark matter and the other a mediator particle that the dark matter annihilates into. We examine the physics of one such model with a Dirac fermion as the dark matter and a real scalar mediator. For a range of parameters the Yukawa coupling of the dark matter to the mediator gives rise to stable asymmetric dark matter bound states. We derive pr...

  20. Cryptography in the Bounded Quantum-Storage Model

    NARCIS (Netherlands)

    I.B. Damgård (Ivan); S. Fehr (Serge); L. Salvail (Louis); C. Schaffner (Christian)

    2008-01-01

    htmlabstractWe initiate the study of two-party cryptographic primitives with unconditional security, assuming that the adversary’s quantum memory is of bounded size. We show that oblivious transfer and bit commitment can be implemented in this model using protocols where honest parties need no

  1. Cryptography in the Bounded Quantum-Storage Model

    NARCIS (Netherlands)

    I.B. Damgård (Ivan); S. Fehr (Serge); L. Salvail (Louis); C. Schaffner (Christian)

    2005-01-01

    htmlabstractWe initiate the study of two-party cryptographic primitives with unconditional security, assuming that the adversary’s quantum memory is of bounded size. We show that oblivious transfer and bit commitment can be implemented in this model using protocols where honest parties need no

  2. Composable Security in the Bounded-Quantum-Storage Model

    NARCIS (Netherlands)

    S.D.C. Wehner (Stephanie); J. Wullschleger

    2008-01-01

    htmlabstractWe give a new, simulation-based, definition for security in the bounded-quantum-storage model, and show that this definition allows for sequential composition of protocols. Damgård et al. (FOCS ’05, CRYPTO ’07) showed how to securely implement bit commitment and oblivious transfer in the

  3. Resonantly Trapped Bound State in the Continuum Laser

    CERN Document Server

    Lepetit, Thomas; Kodigala, Ashok; Bahari, Babak; Fainman, Yeshaiahu; Kanté, Boubacar

    2015-01-01

    Cavities play a fundamental role in wave phenomena from quantum mechanics to electromagnetism and dictate the spatiotemporal physics of lasers. In general, they are constructed by closing all "doors" through which waves can escape. We report, at room temperature, a bound state in the continuum laser that harnesses optical modes residing in the radiation continuum but nonetheless may possess arbitrarily high quality factors. These counterintuitive cavities are based on resonantly trapped symmetry-compatible modes that destructively interfere. Our experimental demonstration opens exciting avenues towards coherent sources with intriguing topological properties for optical trapping, biological imaging, and quantum communication.

  4. Entanglement and Coherence in Quantum State Merging.

    Science.gov (United States)

    Streltsov, A; Chitambar, E; Rana, S; Bera, M N; Winter, A; Lewenstein, M

    2016-06-17

    Understanding the resource consumption in distributed scenarios is one of the main goals of quantum information theory. A prominent example for such a scenario is the task of quantum state merging, where two parties aim to merge their tripartite quantum state parts. In standard quantum state merging, entanglement is considered to be an expensive resource, while local quantum operations can be performed at no additional cost. However, recent developments show that some local operations could be more expensive than others: it is reasonable to distinguish between local incoherent operations and local operations which can create coherence. This idea leads us to the task of incoherent quantum state merging, where one of the parties has free access to local incoherent operations only. In this case the resources of the process are quantified by pairs of entanglement and coherence. Here, we develop tools for studying this process and apply them to several relevant scenarios. While quantum state merging can lead to a gain of entanglement, our results imply that no merging procedure can gain entanglement and coherence at the same time. We also provide a general lower bound on the entanglement-coherence sum and show that the bound is tight for all pure states. Our results also lead to an incoherent version of Schumacher compression: in this case the compression rate is equal to the von Neumann entropy of the diagonal elements of the corresponding quantum state.

  5. Bounding the Set of Finite Dimensional Quantum Correlations

    Science.gov (United States)

    Navascués, Miguel; Vértesi, Tamás

    2015-07-01

    We describe a simple method to derive high performance semidefinite programing relaxations for optimizations over complex and real operator algebras in finite dimensional Hilbert spaces. The method is very flexible, easy to program, and allows the user to assess the behavior of finite dimensional quantum systems in a number of interesting setups. We use this method to bound the strength of quantum nonlocality in Bell scenarios where the dimension of the parties is bounded from above. We derive new results in quantum communication complexity and prove the soundness of the prepare-and-measure dimension witnesses introduced in Gallego et al., Phys. Rev. Lett. 105, 230501 (2010). Finally, we propose a new dimension witness that can distinguish between classical, real, and complex two-level systems.

  6. Quantum state magnification

    OpenAIRE

    Hosten, O.; Krishnakumar, R.; Engelsen, N. J.; Kasevich, M.A.

    2016-01-01

    Quantum metrology exploits entangled states of particles to improve sensing precision beyond the limit achievable with uncorrelated particles. All previous methods required detection noise levels below this standard quantum limit to realize the benefits of the intrinsic sensitivity provided by these states. Remarkably, a recent proposal has shown that, in principle, such low-noise detection is not a necessary requirement. Here, we experimentally demonstrate a widely applicable method for enta...

  7. Quantum state certification

    OpenAIRE

    Bădescu, Costin; O'Donnell, Ryan; Wright, John

    2017-01-01

    We consider the problem of quantum state certification, where one is given $n$ copies of an unknown $d$-dimensional quantum mixed state $\\rho$, and one wants to test whether $\\rho$ is equal to some known mixed state $\\sigma$ or else is $\\epsilon$-far from $\\sigma$. The goal is to use notably fewer copies than the $\\Omega(d^2)$ needed for full tomography on $\\rho$ (i.e., density estimation). We give two robust state certification algorithms: one with respect to fidelity using $n = O(d/\\epsilon...

  8. Quantum State Isomorphism

    OpenAIRE

    Lockhart, Joshua; Guillén, Carlos E. González

    2017-01-01

    We consider a problem we call StateIsomorphism: given two quantum states of n qubits, can one be obtained from the other by rearranging the qubit subsystems? Our main goal is to study the complexity of this problem, which is a natural quantum generalisation of the problem StringIsomorphism. We show that StateIsomorphism is at least as hard as GraphIsomorphism, and show that these problems have a similar structure by presenting evidence to suggest that StateIsomorphism is an intermediate probl...

  9. Upper bounds on the number of bound states nsub(l)(E) below a certain energy E in Schroedinger theory

    Energy Technology Data Exchange (ETDEWEB)

    Requardt, M.

    1985-01-01

    For a large class of potentials the author proves upper bounds on the number of bound states in the various angular momentum channels below a certain energy E. As by-product he derives estimates on the maximal angular momentum etc. The class of allowed potentials enclose as typical candidate potentials with infinitely many bound states below the essential spectrum, respectively potentials which go to infinity for r ..-->.. infinity as e.g. the model potentials used in quarkonium physics like V(r) = -a(1/r) + br. Generalizations to the case of N-body quantum mechanics seem to be possible. (Auth.).

  10. Yukawa Bound States and Their LHC Phenomenology

    Directory of Open Access Journals (Sweden)

    Enkhbat Tsedenbaljir

    2013-01-01

    Full Text Available We present the current status on the possible bound states of extra generation quarks. These include phenomenology and search strategy at the LHC. If chiral fourth-generation quarks do exist their strong Yukawa couplings, implied by current experimental lower bound on their masses, may lead to formation of bound states. Due to nearly degenerate 4G masses suggested by Precision Electroweak Test one can employ “heavy isospin” symmetry to classify possible spectrum. Among these states, the color-octet isosinglet vector ω 8 is the easiest to be produced at the LHC. The discovery potential and corresponding decay channels are covered in this paper. With possible light Higgs at ~125 GeV two-Higgs doublet version is briefly discussed.

  11. Quantum Chernoff bound metric for the XY model at finite temperature

    Science.gov (United States)

    Abasto, Damian F.; Jacobson, N. Tobias; Zanardi, Paolo

    2008-02-01

    We explore the finite-temperature phase diagram of the anisotropic XY spin chain using the quantum Chernoff bound metric on thermal states. The analysis of the metric elements allows one to easily identify, in terms of different scaling with temperature, quasiclassical and quantum-critical regions. These results extend recent ones obtained using the Bures metric and show that different information-theoretic notions of distance can carry the same sophisticated information about the phase diagram of an interacting many-body system featuring quantum-critical points.

  12. A note on BPS vortex bound states

    Directory of Open Access Journals (Sweden)

    A. Alonso-Izquierdo

    2016-02-01

    Full Text Available In this note we investigate bound states, where scalar and vector bosons are trapped by BPS vortices in the Abelian Higgs model with a critical ratio of the couplings. A class of internal modes of fluctuation around cylindrically symmetric BPS vortices is characterized mathematically, analyzing the spectrum of the second-order fluctuation operator when the Higgs and vector boson masses are equal. A few of these bound states with low values of quantized magnetic flux are described fully, and their main properties are discussed.

  13. A note on BPS vortex bound states

    Energy Technology Data Exchange (ETDEWEB)

    Alonso-Izquierdo, A., E-mail: alonsoiz@usal.es [Departamento de Matematica Aplicada, Universidad de Salamanca (Spain); Garcia Fuertes, W., E-mail: wifredo@uniovi.es [Departamento de Fisica, Universidad de Oviedo (Spain); Mateos Guilarte, J., E-mail: guilarte@usal.es [Departamento de Fisica Fundamental, Universidad de Salamanca (Spain)

    2016-02-10

    In this note we investigate bound states, where scalar and vector bosons are trapped by BPS vortices in the Abelian Higgs model with a critical ratio of the couplings. A class of internal modes of fluctuation around cylindrically symmetric BPS vortices is characterized mathematically, analyzing the spectrum of the second-order fluctuation operator when the Higgs and vector boson masses are equal. A few of these bound states with low values of quantized magnetic flux are described fully, and their main properties are discussed.

  14. Quantum marginals from pure doubly excited states

    Science.gov (United States)

    Maciążek, Tomasz; Tsanov, Valdemar

    2017-11-01

    The possible spectra of one-particle reduced density matrices that are compatible with a pure multipartite quantum system of finite dimension form a convex polytope. We introduce a new construction of inner- and outer-bounding polytopes that constrain the polytope for the entire quantum system. The outer bound is sharp. The inner polytope stems only from doubly excited states. We find all quantum systems, where the bounds coincide giving the entire polytope. We show, that those systems are: (i) any system of two particles (ii) L qubits, (iii) three fermions on N≤slant 7 levels, (iv) any number of bosons on any number of levels and (v) fermionic Fock space on N≤slant 5 levels. The methods we use come from symplectic geometry and representation theory of compact Lie groups. In particular, we study the images of proper momentum maps, where our method describes momentum images for all representations that are spherical.

  15. Quantum State Reduction

    OpenAIRE

    Brody, DC; Hughston, LP

    2016-01-01

    We propose an energy-driven stochastic master equation for the density matrix as a dynamical model for quantum state reduction. In contrast, most previous studies of state reduction have considered stochastic extensions of the Schr¨odinger equation, and have introduced the density matrix as the expectation of the random pure projection operator associated with the evolving state vector. After working out properties of the reduction process we construct a general solution to the energy- driven...

  16. Spectral singularities and zero energy bound states

    Energy Technology Data Exchange (ETDEWEB)

    Heiss, W.D. [National Institute for Theoretical Physics, Stellenbosch Institute for Advanced Study, and Institute of Theoretical Physics, University of Stellenbosch, 7602 Matieland (South Africa); Nazmitdinov, R.G. [Department de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation)

    2011-08-15

    Single particle scattering around zero energy is re-analysed in view of recent experiments with ultra-cold atoms, nano-structures and nuclei far from the stability valley. For non-zero orbital angular momentum the low energy scattering cross section exhibits dramatic changes depending on the occurrence of either a near resonance or a bound state or the situation in between, that is a bound state at zero energy. Such state is singular in that it has an infinite scattering length, behaves for the eigenvalues but not for the eigenfunctions as an exceptional point and has no pole in the scattering function. These results should be observable whenever the interaction or scattering length can be controlled. (authors)

  17. Quantum state targeting

    Science.gov (United States)

    Rudolph, Terry; Spekkens, Robert W.

    2004-11-01

    We introduce a primitive for quantum cryptography that we term “state targeting.” We show that increasing one’s probability of success in this task above a minimum amount implies an unavoidable increase in the probability of a particular kind of failure. This is analogous to the unavoidable disturbance to a quantum state that results from gaining information about its identity, and can be shown to be a purely quantum effect. We solve various optimization problems for state targeting that are useful for the security analysis of two-party cryptographic tasks implemented between remote antagonistic parties. Although we focus on weak coin flipping, the results are significant for other two-party protocols, such as strong coin flipping, partially binding and concealing bit commitment, and bit escrow. Furthermore, the results have significance not only for the traditional notion of security in cryptography, that of restricting a cheater’s ability to bias the outcome of the protocol, but also for a different notion of security that arises only in the quantum context, that of cheat sensitivity. Finally, our analysis leads to some interesting secondary results, namely, a generalization of Uhlmann’s theorem and an operational interpretation of the fidelity between two mixed states.

  18. Quantum spin liquid states

    Science.gov (United States)

    Zhou, Yi; Kanoda, Kazushi; Ng, Tai-Kai

    2017-04-01

    This is an introductory review of the physics of quantum spin liquid states. Quantum magnetism is a rapidly evolving field, and recent developments reveal that the ground states and low-energy physics of frustrated spin systems may develop many exotic behaviors once we leave the regime of semiclassical approaches. The purpose of this article is to introduce these developments. The article begins by explaining how semiclassical approaches fail once quantum mechanics become important and then describe the alternative approaches for addressing the problem. Mainly spin-1 /2 systems are discussed, and most of the time is spent in this article on one particular set of plausible spin liquid states in which spins are represented by fermions. These states are spin-singlet states and may be viewed as an extension of Fermi liquid states to Mott insulators, and they are usually classified in the category of so-called S U (2 ), U (1 ), or Z2 spin liquid states. A review is given of the basic theory regarding these states and the extensions of these states to include the effect of spin-orbit coupling and to higher spin (S >1 /2 ) systems. Two other important approaches with strong influences on the understanding of spin liquid states are also introduced: (i) matrix product states and projected entangled pair states and (ii) the Kitaev honeycomb model. Experimental progress concerning spin liquid states in realistic materials, including anisotropic triangular-lattice systems [κ -(ET )2Cu2(CN )3 and EtMe3Sb [Pd (dmit )2]2 ], kagome-lattice system [ZnCu3(OH )6Cl2 ], and hyperkagome lattice system (Na4 Ir3 O8 ), is reviewed and compared against the corresponding theories.

  19. Quantum engineering of continuous variable quantum states

    Energy Technology Data Exchange (ETDEWEB)

    Sabuncu, Metin

    2009-10-29

    Quantum information with continuous variables is a field attracting increasing attention recently. In continuous variable quantum information one makes use of the continuous information encoded into the quadrature of a quantized light field instead of binary quantities such as the polarization state of a single photon. This brand new research area is witnessing exciting theoretical and experimental achievements such as teleportation, quantum computation and quantum error correction. The rapid development of the field is mainly due higher optical data rates and the availability of simple and efficient manipulation tools in continuous-variable quantum information processing. We in this thesis extend the work in continuous variable quantum information processing and report on novel experiments on amplification, cloning, minimal disturbance and noise erasure protocols. The promising results we obtain in these pioneering experiments indicate that the future of continuous variable quantum information is bright and many advances can be foreseen. (orig.)

  20. Novel black hole bound states and entropy

    CERN Document Server

    Govindarajan, T R

    2011-01-01

    We solve for the spectrum of the Laplacian as Hamiltonian on $\\mathbb{R}^{2}-\\mathbb{D}$ and in $\\mathbb{R}^{3}-\\mathbb{B}$. A self-adjointness analysis with $\\partial\\mathbb{D}$ and $\\partial\\mathbb{B}$ as the boundary for the two cases shows that a general class of boundary conditions for which the Hamiltonian operator is essentially self-adjoint are of the mixed (Robin) type. With this class of boundary conditions we obtain 'bound state' solutions for the Schroedinger equation. Interestingly, these solutions are all localized near the boundary. We further show that the number of bound states is finite and is infact proportional to the perimeter or area of the removed \\emph{disc} or \\emph{ball}. We then argue that similar considerations should hold for static black hole backgrounds with the horizon treated as the boundary.

  1. Novel quantum phase transition from bounded to extensive entanglement.

    Science.gov (United States)

    Zhang, Zhao; Ahmadain, Amr; Klich, Israel

    2017-05-16

    The nature of entanglement in many-body systems is a focus of intense research with the observation that entanglement holds interesting information about quantum correlations in large systems and their relation to phase transitions. In particular, it is well known that although generic, many-body states have large, extensive entropy, ground states of reasonable local Hamiltonians carry much smaller entropy, often associated with the boundary length through the so-called area law. Here we introduce a continuous family of frustration-free Hamiltonians with exactly solvable ground states and uncover a remarkable quantum phase transition whereby the entanglement scaling changes from area law into extensively large entropy. This transition shows that entanglement in many-body systems may be enhanced under special circumstances with a potential for generating "useful" entanglement for the purpose of quantum computing and that the full implications of locality and its restrictions on possible ground states may hold further surprises.

  2. Novel quantum phase transition from bounded to extensive entanglement

    Science.gov (United States)

    Zhang, Zhao; Ahmadain, Amr; Klich, Israel

    2017-05-01

    The nature of entanglement in many-body systems is a focus of intense research with the observation that entanglement holds interesting information about quantum correlations in large systems and their relation to phase transitions. In particular, it is well known that although generic, many-body states have large, extensive entropy, ground states of reasonable local Hamiltonians carry much smaller entropy, often associated with the boundary length through the so-called area law. Here we introduce a continuous family of frustration-free Hamiltonians with exactly solvable ground states and uncover a remarkable quantum phase transition whereby the entanglement scaling changes from area law into extensively large entropy. This transition shows that entanglement in many-body systems may be enhanced under special circumstances with a potential for generating “useful” entanglement for the purpose of quantum computing and that the full implications of locality and its restrictions on possible ground states may hold further surprises.

  3. Closed form bound-state perturbation theory

    Directory of Open Access Journals (Sweden)

    Ollie J. Rose

    1980-01-01

    Full Text Available The perturbed Schrödinger eigenvalue problem for bound states is cast into integral form using Green's Functions. A systematic algorithm is developed and applied to the resulting equation giving rise to approximate solutions expressed as functions of the given perturbation parameter. As a by-product, convergence radii for the traditional Rayleigh-Schrödinger and Brillouin-Wigner perturbation theories emerge in a natural way.

  4. Lasing action from photonic bound states in continuum

    Science.gov (United States)

    Kodigala, Ashok; Lepetit, Thomas; Gu, Qing; Bahari, Babak; Fainman, Yeshaiahu; Kanté, Boubacar

    2017-01-01

    In 1929, only three years after the advent of quantum mechanics, von Neumann and Wigner showed that Schrödinger’s equation can have bound states above the continuum threshold. These peculiar states, called bound states in the continuum (BICs), manifest themselves as resonances that do not decay. For several decades afterwards the idea lay dormant, regarded primarily as a mathematical curiosity. In 1977, Herrick and Stillinger revived interest in BICs when they suggested that BICs could be observed in semiconductor superlattices. BICs arise naturally from Feshbach’s quantum mechanical theory of resonances, as explained by Friedrich and Wintgen, and are thus more physical than initially realized. Recently, it was realized that BICs are intrinsically a wave phenomenon and are thus not restricted to the realm of quantum mechanics. They have since been shown to occur in many different fields of wave physics including acoustics, microwaves and nanophotonics. However, experimental observations of BICs have been limited to passive systems and the realization of BIC lasers has remained elusive. Here we report, at room temperature, lasing action from an optically pumped BIC cavity. Our results show that the lasing wavelength of the fabricated BIC cavities, each made of an array of cylindrical nanoresonators suspended in air, scales with the radii of the nanoresonators according to the theoretical prediction for the BIC mode. Moreover, lasing action from the designed BIC cavity persists even after scaling down the array to as few as 8-by-8 nanoresonators. BIC lasers open up new avenues in the study of light-matter interaction because they are intrinsically connected to topological charges and represent natural vector beam sources (that is, there are several possible beam shapes), which are highly sought after in the fields of optical trapping, biological sensing and quantum information.

  5. Analytic continuation of bound states to solve resonance states

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Norimichi; Arai, Koji [Niigata Univ. (Japan); Suzuki, Yoshiyuki; Varga, K.

    1997-05-01

    As a method to determine the parameters of the resonance state, a method is proposed using analytic continuation on bound constants of correlation. The characteristics of this method consists in probability of prediction of the parameters of the resonance state only by calculation of the bound state. Owing to conducting the analytic continuation on square root of energy in the bound state as a function relating to the bound constant, energy and width in the bound state was determined. Here was reported on a result of application of this method to three systems. Some partial wave on two systems showing correlation at a simple potential and a resonance state of zero of all orbital angular motion quality in three boson system were determined using the analytic continuation method. These results agreed well with one used a method of integrating Schroedinger equation directly and one used the complex scaling method, and this method was found to be much efficient for the study of the resonance state. Under a background of becoming applicable to the method of analytic continuation, there was development of calculating method for the recent small number multi system. As the characteristics of the analytic continuation method is used for only calculation of the bound state, it is convenient at a point applicable to the method to obtain conventional bound state and then is much efficient in a point of applicability of calculus of variations. However, in order to obtain coefficient of Pade approximation correctly, the bound state must be solved correctly, which is difficult for more complex system and is not always applicable to every systems. (G.K.)

  6. Quantum cobwebs: Universal entangling of quantum states

    Indian Academy of Sciences (India)

    Center for Philosophy and Foundation of Science, New Delhi, India ... Introduction. Quantum entanglement is generally regarded as a very useful resource for quantum infor- mation processing [1]. It can be used for teleportation [2], ... To achieve this, we introduce a class of entangled states calledzero sum amplitude(ZSA).

  7. Amplification of Information by Photons and the Quantum Chernoff Bound

    Science.gov (United States)

    Zwolak, Michael; Riedel, C. Jess; Zurek, Wojciech H.

    2014-03-01

    Amplification was regarded, since the early days of quantum theory, as a mysterious ingredient that endows quantum microstates with macroscopic consequences, key to the ``collapse of the wavepacket,'' and a way to avoid embarrassing problems exemplified by Schrödinger's cat. This bridge between the quantum microworld and the classical world of our experience was postulated ad hoc in the Copenhagen Interpretation. Quantum Darwinism views amplification as replication, in many copies, of information about quantum states. We show that such amplification is a natural consequence of a broad class of models of decoherence, including the photon environment we use to obtain most of our information. The resultant amplification is huge, proportional to # ξQCB . Here, #  is the environment size and ξQCB is the ``typical'' Quantum Chernoff Information, which quantifies the efficiency of the amplification. The information communicated though the environment is imprinted in the states of individual environment subsystems, e.g., in single photons, which document the transfer of information into the environment and result in the emergence of the classical world. See, http://mike.zwolak.org

  8. Andreev bound states. Some quasiclassical reflections

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Y., E-mail: yiriolin@illinois.edu; Leggett, A. J. [University of Illinois at Urhana-Champaign, Dept. of Physics (United States)

    2014-12-15

    We discuss a very simple and essentially exactly solvable model problem which illustrates some nice features of Andreev bound states, namely, the trapping of a single Bogoliubov quasiparticle in a neutral s-wave BCS superfluid by a wide and shallow Zeeman trap. In the quasiclassical limit, the ground state is a doublet with a splitting which is proportional to the exponentially small amplitude for “normal” reflection by the edges of the trap. We comment briefly on a prima facie paradox concerning the continuity equation and conjecture a resolution to it.

  9. Multiphoton quantum optics and quantum state engineering

    Energy Technology Data Exchange (ETDEWEB)

    Dell' Anno, Fabio [Dipartimento di Fisica ' E. R. Caianiello' , Universita degli Studi di Salerno, CNISM and CNR-INFM Coherentia, and INFN Sezione di Napoli, Gruppo Collegato di Salerno, Via S. Allende, I-84081 Baronissi (Saudi Arabia) (Italy)]. E-mail: dellanno@sa.infn.it; De Siena, Silvio [Dipartimento di Fisica ' E. R. Caianiello' , Universita degli Studi di Salerno, CNISM and CNR-INFM Coherentia, and INFN Sezione di Napoli, Gruppo Collegato di Salerno, Via S. Allende, I-84081 Baronissi (SA) (Italy)]. E-mail: desiena@sa.infn.it; Illuminati, Fabrizio [Dipartimento di Fisica ' E. R. Caianiello' , Universita degli Studi di Salerno, CNISM and CNR-INFM Coherentia, and INFN Sezione di Napoli, Gruppo Collegato di Salerno, Via S. Allende, I-84081 Baronissi (SA) (Italy)]. E-mail: illuminati@sa.infn.it

    2006-05-15

    We present a review of theoretical and experimental aspects of multiphoton quantum optics. Multiphoton processes occur and are important for many aspects of matter-radiation interactions that include the efficient ionization of atoms and molecules, and, more generally, atomic transition mechanisms; system-environment couplings and dissipative quantum dynamics; laser physics, optical parametric processes, and interferometry. A single review cannot account for all aspects of such an enormously vast subject. Here we choose to concentrate our attention on parametric processes in nonlinear media, with special emphasis on the engineering of nonclassical states of photons and atoms that are relevant for the conceptual investigations as well as for the practical applications of forefront aspects of modern quantum mechanics. We present a detailed analysis of the methods and techniques for the production of genuinely quantum multiphoton processes in nonlinear media, and the corresponding models of multiphoton effective interactions. We review existing proposals for the classification, engineering, and manipulation of nonclassical states, including Fock states, macroscopic superposition states, and multiphoton generalized coherent states. We introduce and discuss the structure of canonical multiphoton quantum optics and the associated one- and two-mode canonical multiphoton squeezed states. This framework provides a consistent multiphoton generalization of two-photon quantum optics and a consistent Hamiltonian description of multiphoton processes associated to higher-order nonlinearities. Finally, we discuss very recent advances that by combining linear and nonlinear optical devices allow to realize multiphoton entangled states of the electromagnetic field, either in discrete or in continuous variables, that are relevant for applications to efficient quantum computation, quantum teleportation, and related problems in quantum communication and information.

  10. Self-bound droplets of a dilute magnetic quantum liquid

    CERN Document Server

    Schmitt, Matthias; Böttcher, Fabian; Ferrier-Barbut, Igor; Pfau, Tilman

    2016-01-01

    Self-bound many-body systems occur in different scenarios all across the fields of physics. For example in the astrophysical context the stellar classification is based on a detailed balance of attractive self-gravitating forces and repulsive terms e.g. due to Fermi pressure. Also liquid droplets are formed by mutual attractive forces due to covalent or van der Waals attraction and repulsive parts of the inter-particle potential due to the electronic Pauli exclusion principle. Self-bound ensembles of ultracold atoms at densities 100 million times lower than in a helium droplet, the only other quantum liquid known so far, have been suggested. However, they have been elusive up to now as they require more than the usual contact interaction, which is either attractive or repulsive but never both. Based on the recent finding that an unstable bosonic dipolar gas can be stabilized by a repulsive many-body term, which is due to quantum depletion and a corresponding exclusion volume at small distances, it was predict...

  11. Mixed-state certification of quantum capacities for noisy communication channels

    Science.gov (United States)

    Macchiavello, Chiara; Sacchi, Massimiliano F.

    2018-01-01

    We extend a recent method to detect lower bounds to the quantum capacity of quantum communication channels by considering realistic scenarios with general input probe states and arbitrary detection procedures at the output. Realistic certification relies on a bound for the coherent information of a quantum channel that can be applied with arbitrary bipartite mixed input states and generalized output measurements.

  12. Coherent states in quantum mechanics

    CERN Document Server

    Rodrigues, R D L; Fernandes, D

    2001-01-01

    We present a review work on the coherent states is non-relativistic quantum mechanics analysing the quantum oscillators in the coherent states. The coherent states obtained via a displacement operator that act on the wave function of ground state of the oscillator and the connection with Quantum Optics which were implemented by Glauber have also been considered. A possible generalization to the construction of new coherent states it is point out.

  13. Bound states in the strong coupling limit

    CERN Document Server

    Martin, A

    1972-01-01

    The author shows that the number of bound states of a particle in a short-range potential in n dimensions is given asymptotically by N=g /sup n/2/S/sub n//(2 pi )/sup n/ integral mod 2MV/sup -//h(cross)/sup 2/ mod /sup n/2/d/sup n/x+0(g/sup n/2-g/) for g to infinity , where gV /sup -/ is the attractive part of the potential, and S/sub /n is the volume of the n dimensional sphere with unit radius. (10 refs).

  14. Entangled states in quantum mechanics

    Science.gov (United States)

    Ruža, Jānis

    2010-01-01

    In some circles of quantum physicists, a view is maintained that the nonseparability of quantum systems-i.e., the entanglement-is a characteristic feature of quantum mechanics. According to this view, the entanglement plays a crucial role in the solution of quantum measurement problem, the origin of the “classicality” from the quantum physics, the explanation of the EPR paradox by a nonlocal character of the quantum world. Besides, the entanglement is regarded as a cornerstone of such modern disciplines as quantum computation, quantum cryptography, quantum information, etc. At the same time, entangled states are well known and widely used in various physics areas. In particular, this notion is widely used in nuclear, atomic, molecular, solid state physics, in scattering and decay theories as well as in other disciplines, where one has to deal with many-body quantum systems. One of the methods, how to construct the basis states of a composite many-body quantum system, is the so-called genealogical decomposition method. Genealogical decomposition allows one to construct recurrently by particle number the basis states of a composite quantum system from the basis states of its forming subsystems. These coupled states have a structure typical for entangled states. If a composite system is stable, the internal structure of its forming basis states does not manifest itself in measurements. However, if a composite system is unstable and decays onto its forming subsystems, then the measurables are the quantum numbers, associated with these subsystems. In such a case, the entangled state has a dynamical origin, determined by the Hamiltonian of the corresponding decay process. Possible correlations between the quantum numbers of resulting subsystems are determined by the symmetries-conservation laws of corresponding dynamical variables, and not by the quantum entanglement feature.

  15. The S-matrix for systems with bound states

    NARCIS (Netherlands)

    Ruijgrok, Th.W.

    A unitary S-matrix is defined for a system of three particles, two of which can form a bound state. It is shown how for elastic scattering the polarization of the bound state must be taken into account.

  16. A balance for dark matter bound states

    Science.gov (United States)

    Nozzoli, F.

    2017-05-01

    Massive particles with self interactions of the order of 0.2 barn/GeV are intriguing Dark Matter candidates from an astrophysical point of view. Current and past experiments for direct detection of massive Dark Matter particles are focusing to relatively low cross sections with ordinary matter, however they cannot rule out very large cross sections, σ/M > 0.01 barn/GeV, due to atmosphere and material shielding. Cosmology places a strong indirect limit for the presence of large interactions among Dark Matter and baryons in the Universe, however such a limit cannot rule out the existence of a small sub-dominant component of Dark Matter with non negligible interactions with ordinary matter in our galactic halo. Here, the possibility of the existence of bound states with ordinary matter, for a similar Dark Matter candidate with not negligible interactions, is considered. The existence of bound states, with binding energy larger than ∼ 1 meV, would offer the possibility to test in laboratory capture cross sections of the order of a barn (or larger). The signature of the detection for a mass increasing of cryogenic samples, due to the possible particle accumulation, would allow the investigation of these Dark Matter candidates with mass up to the GUT scale. A proof of concept for a possible detection set-up and the evaluation of some noise sources are described.

  17. Lieb-Robinson Bound and the Butterfly Effect in Quantum Field Theories

    Science.gov (United States)

    Roberts, Daniel A.; Swingle, Brian

    2016-08-01

    As experiments are increasingly able to probe the quantum dynamics of systems with many degrees of freedom, it is interesting to probe fundamental bounds on the dynamics of quantum information. We elaborate on the relationship between one such bound—the Lieb-Robinson bound—and the butterfly effect in strongly coupled quantum systems. The butterfly effect implies the ballistic growth of local operators in time, which can be quantified with the "butterfly" velocity vB . Similarly, the Lieb-Robinson velocity places a state-independent ballistic upper bound on the size of time evolved operators in nonrelativistic lattice models. Here, we argue that vB is a state-dependent effective Lieb-Robinson velocity. We study the butterfly velocity in a wide variety of quantum field theories using holography and compare with free-particle computations to understand the role of strong coupling. We find that vB remains constant or decreases with decreasing temperature. We also comment on experimental prospects and on the relationship between the butterfly velocity and signaling.

  18. Solid-state quantum metamaterials

    Science.gov (United States)

    Wilson, Richard; Everitt, Mark; Saveliev, Sergey; Zagoskin, Alexandre

    2013-03-01

    Quantum metamaterials provide a promising potential test bed for probing the quantum-classical transition. We propose a scalable and feasible architecture for a solid-state quantum metamaterial. This consists of an ensemble of superconducting flux qubits inductively coupled to a superconducting transmission line. We make use of fully quantum mechanical models which account for decoherence, input and readout to study the behaviour of prototypical 1D and 2D quantum metamaterials. In addition to demonstrating some of the novel phenomena that arise in these systems, such as ``quantum birefringence,'' we will also discuss potential applications.

  19. Preparation of quantum state (review)

    Science.gov (United States)

    Ali, N.; Yusof, N. R.; Soekardjo, S.; Saharudin, S.; Endut, R.

    2017-11-01

    We reviewed experimental results and publications prepared by the Quantum Laboratory, Mimos Berhad. The complexity of the setups lies mainly in preparing the quantum states. Optics is chosen as the medium of this quantum system. The two methods - fiber based and free space systems are different from each other in terms of experimental setups, components configuration, and selections.

  20. Quantum information processing in the radical-pair mechanism: Haberkorn's theory violates the Ozawa entropy bound.

    Science.gov (United States)

    Mouloudakis, K; Kominis, I K

    2017-02-01

    Radical-ion-pair reactions, central for understanding the avian magnetic compass and spin transport in photosynthetic reaction centers, were recently shown to be a fruitful paradigm of the new synthesis of quantum information science with biological processes. We show here that the master equation so far constituting the theoretical foundation of spin chemistry violates fundamental bounds for the entropy of quantum systems, in particular the Ozawa bound. In contrast, a recently developed theory based on quantum measurements, quantum coherence measures, and quantum retrodiction, thus exemplifying the paradigm of quantum biology, satisfies the Ozawa bound as well as the Lanford-Robinson bound on information extraction. By considering Groenewold's information, the quantum information extracted during the reaction, we reproduce the known and unravel other magnetic-field effects not conveyed by reaction yields.

  1. Counting Majorana bound states using complex momenta

    Directory of Open Access Journals (Sweden)

    I. Mandal

    2016-09-01

    Full Text Available Recently, the connection between Majorana fermions bound to the defects in arbitrary dimensions, and complex momentum roots of the vanishing determinant of the corresponding bulk Bogoliubov–de Gennes (BdG Hamiltonian, has been established (EPL, 2015, 110, 67005. Based on this understanding, a formula has been proposed to count the number (n of the zero energy Majorana bound states, which is related to the topological phase of the system. In this paper, we provide a proof of the counting formula and we apply this formula to a variety of 1d and 2d models belonging to the classes BDI, DIII and D. We show that we can successfully chart out the topological phase diagrams. Studying these examples also enables us to explicitly observe the correspondence between these complex momentum solutions in the Fourier space, and the localized Majorana fermion wavefunctions in the position space. Finally, we corroborate the fact that for systems with a chiral symmetry, these solutions are the so-called "exceptional points", where two or more eigenvalues of the complexified Hamiltonian coalesce.

  2. Accidental bound states in the continuum in an open Sinai billiard

    Energy Technology Data Exchange (ETDEWEB)

    Pilipchuk, A.S. [Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 660036 Krasnoyarsk (Russian Federation); Siberian Federal University, 660080 Krasnoyarsk (Russian Federation); Sadreev, A.F., E-mail: almas@tnp.krasn.ru [Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 660036 Krasnoyarsk (Russian Federation)

    2017-02-19

    The fundamental mechanism of the bound states in the continuum is the full destructive interference of two resonances when two eigenlevels of the closed system are crossing. There is, however, a wide class of quantum chaotic systems which display only avoided crossings of eigenlevels. As an example of such a system we consider the Sinai billiard coupled with two semi-infinite waveguides. We show that notwithstanding the absence of degeneracy bound states in the continuum occur due to accidental decoupling of the eigenstates of the billiard from the waveguides. - Highlights: • Bound states in the continuum in open chaotic billiards occur to accidental vanishing of coupling of eigenstate of billiard with waveguides.

  3. Transport signatures of top-gate bound states with strong Rashba-Zeeman effect

    Science.gov (United States)

    Tang, Chi-Shung; Yu, Yun-Hsuan; Abdullah, Nzar Rauf; Gudmundsson, Vidar

    2017-12-01

    We suggest a single-mode spin injection scheme in non-ferromagnetic quantum channels utilizing perpendicular strong Rashba spin-orbit and Zeeman fields. By applying a positive top-gate potential in order to inject electrons from the spin-orbit gap to the low-energy regime, we observe coherent destruction of transport signatures of a hole-like quasi-bound state, an electron-like quasi-bound state, or a hole-like bound state features that are sensitive to the selection of the top-gate length along the transport direction.

  4. Bounding Quantum Contextuality with Lack of Third-Order Interference.

    Science.gov (United States)

    Henson, Joe

    2015-06-05

    Recently, many simple principles have been proposed that can explain quantum limitations on possible sets of experimental probabilities in nonlocality and contextuality experiments. However, few implications between these principles are known. Here it is shown that the lack of irreducible third-order interference (a generalization of the idea that no probabilistic interference remains unaccounted for once we have taken into account interference between pairs of slits in a n-sit experiment) implies the principle known as the E principle or consistent exclusivity (that, if each pair of a set of experimental outcomes are exclusive alternatives in some measurement, then their probabilities are consistent with the existence of a further measurement in which they are all exclusive). This is a step towards a more unified understanding of quantum nonlocality and contextuality, which promises to allow derivations of important results from minimal, easily grasped assumptions. As one example, this result implies that lack of third-order interference bounds violation of the Clauser-Horne-Shimony-Holt-Bell inequality to 2.883.

  5. Boson bound states in the β-Fermi–Pasta–Ulam model

    Indian Academy of Sciences (India)

    The bound states of four bosons in the quantum -Fermi–Pasta–Ulam model are investigated and some interesting results are presented using the number conserving approximation combined with the number state method. We find that the relative magnitude of anharmonic coefficient has a significant effect on forming ...

  6. Finding resource states of measurement-based quantum computing is harder than quantum computing

    Science.gov (United States)

    Morimae, Tomoyuki

    2017-11-01

    Measurement-based quantum computing enables universal quantum computing with only adaptive single-qubit measurements on certain many-qubit states, such as the graph state, the Affleck-Kennedy-Lieb-Tasaki (AKLT) state, and several tensor-network states. Finding new resource states of measurement-based quantum computing is a hard task, since for a given state there are exponentially many possible measurement patterns on the state. In this paper, we consider the problem of deciding, for a given state and a set of unitary operators, whether there exists a way of measurement-based quantum computing on the state that can realize all unitaries in the set, or not. We show that the decision problem is QCMA-hard (where QCMA stands for quantum classical Merlin Arthur), which means that finding new resource states of measurement-based quantum computing is harder than quantum computing itself [unless BQP (bounded-error quantum polynomial time) is equal to QCMA]. We also derive an upper bound of the decision problem: the problem is in a quantum version of the second level of the polynomial hierarchy.

  7. Bound state in positron scattering by allene

    Science.gov (United States)

    Barbosa, Alessandra Souza; Sanchez, Sergio d'Almeida; Bettega, Márcio H. F.

    2017-12-01

    We report integral and differential cross sections for positron collisions with allene, calculated with the Schwinger multichannel method. The cross sections were computed in the static-polarization approximation for energies up to 7 eV. We have tested a series of single-particle basis sets and different polarization schemes to improve the description of low-energy positron scattering by the allene molecule. We have found that the use of extra centers with no net charge with additional single-particle s - and p -type functions centered at them are essential in order to accurately reproduce the polarization potential and, hence, obtain proper scattering cross sections. The choice of the allene molecule was due to the fact that it is a highly symmetric molecule with no permanent dipole moment and would allow several different calculations. Our cross sections are compared to the available experimental data for the total cross section with a reasonable agreement after correcting their results due to the low angular discrimination of their apparatus. Also, a virtual state was observed in the integral cross section that became a bound state when the description of the polarization potential is improved. We also observed a Ramsauer-Townsend minimum in the cross section whose location varies from 2.7 to 3.4 eV, depending on the polarization scheme used in the calculations.

  8. Donor bound excitons in ZnSe nanoresonators - Applications in quantum information science

    Energy Technology Data Exchange (ETDEWEB)

    Pawlis, A. [Department of Physics, University of Paderborn, Warburger Str. 100, 33098 Paderborn, Germany and Edward L. Ginzton Laboratory, Stanford University, Stanford, California 94305-4088 (United States); Lischka, K. [Department of Physics, University of Paderborn, Warburger Str. 100, 33098 Paderborn (Germany); Sanaka, K.; Yamamoto, Y. [Edward L. Ginzton Laboratory, Stanford University, Stanford, California 94305-4088, USA and National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430 (Japan); Sleiter, D. [Edward L. Ginzton Laboratory, Stanford University, Stanford, California 94305-4088 (United States)

    2014-05-15

    Here we summarize the advantages of excitons bound to isolated fluorine donor in ZnSe/ZnMgSe quantum well nano-structures. Devices based on these semiconductors, are particularly suited to implement concepts of the optical manipulation of quantum states in solid-state material. The fluorine donor in ZnSe provides a physical qubit with potential advantages over previously researched qubits. In this context we show several initial demonstrations of devices, such as a low-threshold microdisk laser and an indistinguishable single photon source. Additionally we demonstrate the realization of a controllable three-level-system qubit consisting of a single Fluorine donor in a ZnSe nano-pillar, which provides an optical accessible single electon spin qubit.

  9. Manipulation of Squeezed Two-Phonon Bound States using Femtosecond Laser Pulses

    Directory of Open Access Journals (Sweden)

    Nakamura Kazutaka G.

    2013-03-01

    Full Text Available Two-phonon bound states have been excited exclusively in ZnTe(110 via impulsive stimulated second-order Raman scattering, essentially being squeezed states due to phase coherent excitation of two identical components anticorrelated in the wave vector. By using coherent control technique with a pair of femtosecond laser pulses, the manipulation of squeezed states has been demonstrated in which both the amplitude and lifetime of coherent oscillations of squeezed states are modulated, indicating the feasibility to control the quantum noise and the quantum nature of phonon squeezed states, respectively.

  10. Morse potential, symmetric Morse potential and bracketed bound-state energies

    Czech Academy of Sciences Publication Activity Database

    Znojil, Miloslav

    2016-01-01

    Roč. 31, č. 14 (2016), s. 1650088 ISSN 0217-7323 R&D Projects: GA ČR GA16-22945S Institutional support: RVO:61389005 Keywords : quantum bound states * special functions * Morse potential * symmetrized Morse potential * upper and lower energy estimates * computer-assisted symbolic manipulations Subject RIV: BE - Theoretical Physics Impact factor: 1.165, year: 2016

  11. Quantum-polarization state tomography

    OpenAIRE

    Bayraktar, Ömer; Swillo, Marcin; Canalias, Carlota; Björk, Gunnar

    2016-01-01

    We propose and demonstrate a method for quantum-state tomography of qudits encoded in the quantum polarization of $N$-photon states. This is achieved by distributing $N$ photons nondeterministically into three paths and their subsequent projection, which for $N=1$ is equivalent to measuring the Stokes (or Pauli) operators. The statistics of the recorded $N$-fold coincidences determines the unknown $N$-photon polarization state uniquely. The proposed, fixed setup manifestly rules out any syste...

  12. Quantum States as Ordinary Information

    Directory of Open Access Journals (Sweden)

    Ken Wharton

    2014-03-01

    Full Text Available Despite various parallels between quantum states and ordinary information, quantum no-go-theorems have convinced many that there is no realistic framework that might underly quantum theory, no reality that quantum states can represent knowledge about. This paper develops the case that there is a plausible underlying reality: one actual spacetime-based history, although with behavior that appears strange when analyzed dynamically (one time-slice at a time. By using a simple model with no dynamical laws, it becomes evident that this behavior is actually quite natural when analyzed “all-at-once” (as in classical action principles. From this perspective, traditional quantum states would represent incomplete information about possible spacetime histories, conditional on the future measurement geometry. Without dynamical laws imposing additional restrictions, those histories can have a classical probability distribution, where exactly one history can be said to represent an underlying reality.

  13. Fluctuation Theorem for Many-Body Pure Quantum States

    Science.gov (United States)

    Iyoda, Eiki; Kaneko, Kazuya; Sagawa, Takahiro

    2017-09-01

    We prove the second law of thermodynamics and the nonequilibrium fluctuation theorem for pure quantum states. The entire system obeys reversible unitary dynamics, where the initial state of the heat bath is not the canonical distribution but is a single energy eigenstate that satisfies the eigenstate-thermalization hypothesis. Our result is mathematically rigorous and based on the Lieb-Robinson bound, which gives the upper bound of the velocity of information propagation in many-body quantum systems. The entanglement entropy of a subsystem is shown connected to thermodynamic heat, highlighting the foundation of the information-thermodynamics link. We confirmed our theory by numerical simulation of hard-core bosons, and observed dynamical crossover from thermal fluctuations to bare quantum fluctuations. Our result reveals a universal scenario that the second law emerges from quantum mechanics, and can be experimentally tested by artificial isolated quantum systems such as ultracold atoms.

  14. Fluctuation Theorem for Many-Body Pure Quantum States.

    Science.gov (United States)

    Iyoda, Eiki; Kaneko, Kazuya; Sagawa, Takahiro

    2017-09-08

    We prove the second law of thermodynamics and the nonequilibrium fluctuation theorem for pure quantum states. The entire system obeys reversible unitary dynamics, where the initial state of the heat bath is not the canonical distribution but is a single energy eigenstate that satisfies the eigenstate-thermalization hypothesis. Our result is mathematically rigorous and based on the Lieb-Robinson bound, which gives the upper bound of the velocity of information propagation in many-body quantum systems. The entanglement entropy of a subsystem is shown connected to thermodynamic heat, highlighting the foundation of the information-thermodynamics link. We confirmed our theory by numerical simulation of hard-core bosons, and observed dynamical crossover from thermal fluctuations to bare quantum fluctuations. Our result reveals a universal scenario that the second law emerges from quantum mechanics, and can be experimentally tested by artificial isolated quantum systems such as ultracold atoms.

  15. Tetraquark bound states and resonances in a unitary microscopic quark model: A case study of bound states of two light quarks and two heavy antiquarks

    Science.gov (United States)

    Bicudo, P.; Cardoso, M.

    2016-11-01

    We address q q Q ¯Q ¯ exotic tetraquark bound states and resonances with a fully unitarized and microscopic quark model. We propose a triple string flip-flop potential, inspired by lattice QCD tetraquark static potentials and flux tubes, combining meson-meson and double Y potentials. Our model includes the color excited potential, but neglects the spin-tensor potentials, as well as all the other relativistic effects. To search for bound states and resonances, we first solve the two-body mesonic problem. Then we develop fully unitary techniques to address the four-body tetraquark problem. We fold the four-body Schrödinger equation with the mesonic wave functions, transforming it into a two-body meson-meson problem with nonlocal potentials. We find bound states for some quark masses, including the one reported in lattice QCD. Moreover, we also find resonances and calculate their masses and widths, by computing the T matrix and finding its pole positions in the complex energy plane, for some quantum numbers. However, a detailed analysis of the quantum numbers where binding exists shows a discrepancy with recent lattice QCD results for the l l b ¯ b ¯ tetraquark bound states. We conclude that the string flip-flop models need further improvement.

  16. Dark states in quantum photosynthesis

    CERN Document Server

    Kozyrev, S V

    2016-01-01

    We discuss a model of quantum photosynthesis with degeneracy in the light-harvesting system. We consider interaction of excitons in chromophores with light and phonons (vibrations of environment). These interactions have dipole form but are different (are related to non-parallel vectors of "bright" states). We show that this leads to excitation of non-decaying "dark" states. We discuss relation of this model to the known from spectroscopical experiments phenomenon of existence of photonic echo in quantum photosynthesis.

  17. Higgs interchange and bound states of superheavy fermions

    Indian Academy of Sciences (India)

    Hypothetical superheavy fourth-generation fermions with a very small coupling with the rest of the Standard Model can give rise to long enough lived bound states. The production and the detection of these bound states would be experimentally feasible at the LHC. Extending, in the present study, the analysis of other ...

  18. Quasi-bound states, resonance tunnelling, and tunnelling times ...

    Indian Academy of Sciences (India)

    Abstract. In analogy with the definition of resonant or quasi-bound states used in three-dimensional quantal scattering, we define the quasi-bound states that occur in one- dimensional transmission generated by twin symmetric potential barriers and evaluate their energies and widths using two typical examples: (i) twin ...

  19. Bound states in a hyperbolic asymmetric double-well

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, R. R., E-mail: richard.hartmann@dlsu.edu.ph [Physics Department, De La Salle University, 2401 Taft Avenue, Manila (Philippines)

    2014-01-15

    We report a new class of hyperbolic asymmetric double-well whose bound state wavefunctions can be expressed in terms of confluent Heun functions. An analytic procedure is used to obtain the energy eigenvalues and the criterion for the potential to support bound states is discussed.

  20. Asymptotic-bound-state model for Feshbach resonances

    NARCIS (Netherlands)

    Tiecke, T.G.; Goosen, M.R.; Walraven, J.T.M.; Kokkelmans, S.J.J.M.F.

    2010-01-01

    We present an asymptotic-bound-state model which can be used to accurately describe all Feshbach resonance positions and widths in a two-body system. With this model we determine the coupled bound states of a particular two-body system. The model is based on analytic properties of the two-body

  1. Parity lifetime of bound states in a proximitized semiconductor nanowire

    DEFF Research Database (Denmark)

    Higginbotham, Andrew Patrick; Albrecht, Sven Marian; Kirsanskas, Gediminas

    2015-01-01

    superconductor layer, yielding an isolated, proximitized nanowire segment. We identify Andreev-like bound states in the semiconductor via bias spectroscopy, determine the characteristic temperatures and magnetic fields for quasiparticle excitations, and extract a parity lifetime (poisoning time) of the bound...... state in the semiconductor exceeding 10 ms....

  2. Detecting Majorana nonlocality using strongly coupled Majorana bound states

    NARCIS (Netherlands)

    Rubbert, S.H.P.; Akhmerov, A.R.

    2016-01-01

    Majorana bound states (MBS) differ from the regular zero energy Andreev bound states in their nonlocal properties, since two MBS form a single fermion. We design strategies for detection of this nonlocality by using the phenomenon of Coulomb-mediated Majorana coupling in a setting which still

  3. Quantum state revivals in quantum walks on cycles

    Directory of Open Access Journals (Sweden)

    Phillip R. Dukes

    2014-01-01

    Full Text Available Recurrence in the classical random walk is well known and described by the Pólya number. For quantum walks, recurrence is similarly understood in terms of the probability of a localized quantum walker to return to its origin. Under certain circumstances the quantum walker may also return to an arbitrary initial quantum state in a finite number of steps. Quantum state revivals in quantum walks on cycles using coin operators which are constant in time and uniform across the path have been described before but only incompletely. In this paper we find the general conditions for which full-quantum state revival will occur.

  4. The Capacity of Quantum Channel with General Signal States

    OpenAIRE

    Holevo, A. S.

    1996-01-01

    It is shown that the capacity of a classical-quantum channel with arbitrary (possibly mixed) states equals to the maximum of the entropy bound with respect to all apriori distributions. This completes the recent result of Hausladen, Jozsa, Schumacher, Westmoreland and Wooters, who proved the equality for the pure state channel.

  5. Explicit formula for the Holevo bound for two-parameter qubit-state estimation problem

    Science.gov (United States)

    Suzuki, Jun

    2016-04-01

    The main contribution of this paper is to derive an explicit expression for the fundamental precision bound, the Holevo bound, for estimating any two-parameter family of qubit mixed-states in terms of quantum versions of Fisher information. The obtained formula depends solely on the symmetric logarithmic derivative (SLD), the right logarithmic derivative (RLD) Fisher information, and a given weight matrix. This result immediately provides necessary and sufficient conditions for the following two important classes of quantum statistical models; the Holevo bound coincides with the SLD Cramér-Rao bound and it does with the RLD Cramér-Rao bound. One of the important results of this paper is that a general model other than these two special cases exhibits an unexpected property: the structure of the Holevo bound changes smoothly when the weight matrix varies. In particular, it always coincides with the RLD Cramér-Rao bound for a certain choice of the weight matrix. Several examples illustrate these findings.

  6. Cluster State Quantum Computation

    Science.gov (United States)

    2014-02-01

    important result is called the threshold theorem of quantum computation [Aliferis06]. Fault-tolerant schemes for OWQC using photons have recently...defined in terms of the standard Fubini -Study distance Approved for Public Release; Distribution Unlimited. 25  ( ) ( ) 1

  7. Accidental bound states in the continuum in an open Sinai billiard

    Science.gov (United States)

    Pilipchuk, A. S.; Sadreev, A. F.

    2017-02-01

    The fundamental mechanism of the bound states in the continuum is the full destructive interference of two resonances when two eigenlevels of the closed system are crossing. There is, however, a wide class of quantum chaotic systems which display only avoided crossings of eigenlevels. As an example of such a system we consider the Sinai billiard coupled with two semi-infinite waveguides. We show that notwithstanding the absence of degeneracy bound states in the continuum occur due to accidental decoupling of the eigenstates of the billiard from the waveguides.

  8. Efficient state initialization by a quantum spectral filtering algorithm

    Science.gov (United States)

    Fillion-Gourdeau, François; MacLean, Steve; Laflamme, Raymond

    2017-04-01

    An algorithm that initializes a quantum register to a state with a specified energy range is given, corresponding to a quantum implementation of the celebrated Feit-Fleck method. This is performed by introducing a nondeterministic quantum implementation of a standard spectral filtering procedure combined with an apodization technique, allowing for accurate state initialization. It is shown that the implementation requires only two ancilla qubits. A lower bound for the total probability of success of this algorithm is derived, showing that this scheme can be realized using a finite, relatively low number of trials. Assuming the time evolution can be performed efficiently and using a trial state polynomially close to the desired states, it is demonstrated that the number of operations required scales polynomially with the number of qubits. Tradeoffs between accuracy and performance are demonstrated in a simple example: the harmonic oscillator. This algorithm would be useful for the initialization phase of the simulation of quantum systems on digital quantum computers.

  9. A precise error bound for quantum phase estimation.

    Directory of Open Access Journals (Sweden)

    James M Chappell

    Full Text Available Quantum phase estimation is one of the key algorithms in the field of quantum computing, but up until now, only approximate expressions have been derived for the probability of error. We revisit these derivations, and find that by ensuring symmetry in the error definitions, an exact formula can be found. This new approach may also have value in solving other related problems in quantum computing, where an expected error is calculated. Expressions for two special cases of the formula are also developed, in the limit as the number of qubits in the quantum computer approaches infinity and in the limit as the extra added qubits to improve reliability goes to infinity. It is found that this formula is useful in validating computer simulations of the phase estimation procedure and in avoiding the overestimation of the number of qubits required in order to achieve a given reliability. This formula thus brings improved precision in the design of quantum computers.

  10. Quantum bounds on multiplayer linear games and device-independent witness of genuine tripartite entanglement

    OpenAIRE

    Murta, Gláucia; Ramanathan, Ravishankar; Móller, Natália; Cunha, Marcelo Terra

    2015-01-01

    Here we study multiplayer linear games, a natural generalization of XOR games to multiple outcomes. We generalize a recently proposed efficiently computable bound, in terms of the norm of a game matrix, on the quantum value of 2-player games to linear games with $n$ players. As an example, we bound the quantum value of a generalization of the well-known CHSH game to $n$ players and $d$ outcomes. We also apply the bound to show in a simple manner that any nontrivial functional box, that could ...

  11. Cluster State Quantum Computing

    Science.gov (United States)

    2012-12-01

    discuss the potential advantages of such a system and the difficulties of the design. When an incident photon strikes a Niobium nitride ( NbN ...counted. Present superconducting nanowire systems, such as NbN , have reasonably good counting efficiency [Dauler10], [Marsili11], by which we mean...L. O’Brein, A. Furusawa, J. Vuchovic, “Photonic quantum technologies ,” Nat. Photonics 3 Dec. (2009) doi:10.1038/nphoton.2009.229. [Pawlowski09

  12. Mass spectrum bound state systems with relativistic corrections

    Energy Technology Data Exchange (ETDEWEB)

    Dineykhan, M; Zhaugasheva, S A [Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna (Russian Federation); Toinbaeva, N Sh; Jakhanshir, A [al-Farabi Kazak National University, 480012 Almaty (Kazakhstan)

    2009-07-28

    Based on the investigation of the asymptotic behaviour of the polarization loop function for charged n scalar particles in an external gauge field, we determine the interaction Hamiltonian including relativistic corrections. The mass spectrum of the bound state is analytically derived. The mechanism for arising of the constituent mass of the relativistic bound-state forming particles is explained. The mass and the constituent mass of the two-, three- and n-body relativistic bound states are calculated taking into account relativistic corrections. The corrections arising due to the one- and two-loop electron polarization to the energy spectrum of muonic hydrogen with orbital and radial excitations are calculated.

  13. Quantum state transfer via Bloch oscillations

    Science.gov (United States)

    Tamascelli, Dario; Olivares, Stefano; Rossotti, Stefano; Osellame, Roberto; Paris, Matteo G. A.

    2016-01-01

    The realization of reliable quantum channels, able to transfer a quantum state with high fidelity, is a fundamental step in the construction of scalable quantum devices. In this paper we describe a transmission scheme based on the genuinely quantum effect known as Bloch oscillations. The proposed protocol makes it possible to carry a quantum state over different distances with a minimal engineering of the transmission medium and can be implemented and verified on current quantum technology hardware. PMID:27189630

  14. Search for Deeply Bound Kaonic Nuclear States with AMADEUS

    Directory of Open Access Journals (Sweden)

    Skurzok Magdalena

    2017-01-01

    Full Text Available We briefly report on the search for Deeply Bound Kaonic Nuclear States with AMADEUS in the Σ0p channel following K− absorption on 12C and outline future perspectives for this work.

  15. General bounds for sender-receiver capacities in multipoint quantum communications

    Science.gov (United States)

    Laurenza, Riccardo; Pirandola, Stefano

    2017-09-01

    We investigate the maximum rates for transmitting quantum information, distilling entanglement, and distributing secret keys between a sender and a receiver in a multipoint communication scenario, with the assistance of unlimited two-way classical communication involving all parties. First we consider the case where a sender communicates with an arbitrary number of receivers, a so-called quantum broadcast channel. Here we also provide a simple analysis in the bosonic setting where we consider quantum broadcasting through a sequence of beamsplitters. Then, we consider the opposite case where an arbitrary number of senders communicate with a single receiver, a so-called quantum multiple-access channel. Finally, we study the general case of all-in-all quantum communication where an arbitrary number of senders communicate with an arbitrary number of receivers. Since our bounds are formulated for quantum systems of arbitrary dimension, they can be applied to many different physical scenarios involving multipoint quantum communication.

  16. Coherent states in the quantum multiverse

    Energy Technology Data Exchange (ETDEWEB)

    Robles-Perez, S., E-mail: salvarp@imaff.cfmac.csic.e [Colina de los Chopos, Centro de Fisica ' Miguel Catalan' , Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 121, 28006 Madrid (Spain); Estacion Ecologica de Biocosmologia, Medellin (Spain); Hassouni, Y. [Laboratoire de Physique Theorique, Faculte des Sciences-Universite Sidi Med Ben Abdellah, Avenue Ibn Batouta B.P: 1014, Agdal Rabat (Morocco); Gonzalez-Diaz, P.F. [Colina de los Chopos, Centro de Fisica ' Miguel Catalan' , Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 121, 28006 Madrid (Spain); Estacion Ecologica de Biocosmologia, Medellin (Spain)

    2010-01-11

    In this Letter, we study the role of coherent states in the realm of quantum cosmology, both in a second-quantized single universe and in a third-quantized quantum multiverse. In particular, most emphasis will be paid to the quantum description of multiverses made of accelerated universes. We have shown that the quantum states involved at a quantum mechanical multiverse whose single universes are accelerated are given by squeezed states having no classical analogs.

  17. Coherent states in the quantum multiverse

    Science.gov (United States)

    Robles-Pérez, S.; Hassouni, Y.; González-Díaz, P. F.

    2010-01-01

    In this Letter, we study the role of coherent states in the realm of quantum cosmology, both in a second-quantized single universe and in a third-quantized quantum multiverse. In particular, most emphasis will be paid to the quantum description of multiverses made of accelerated universes. We have shown that the quantum states involved at a quantum mechanical multiverse whose single universes are accelerated are given by squeezed states having no classical analogs.

  18. Equation of state and self-bound droplet in Rabi-coupled Bose mixtures.

    Science.gov (United States)

    Cappellaro, Alberto; Macrì, Tommaso; Bertacco, Giovanni F; Salasnich, Luca

    2017-10-17

    Laser induced transitions between internal states of atoms have been playing a fundamental role to manipulate atomic clouds for many decades. In absence of interactions each atom behaves independently and their coherent quantum dynamics is described by the Rabi model. Since the experimental observation of Bose condensation in dilute gases, static and dynamical properties of multicomponent quantum gases have been extensively investigated. Moreover, at very low temperatures quantum fluctuations crucially affect the equation of state of many-body systems. Here we study the effects of quantum fluctuations on a Rabi-coupled two-component Bose gas of interacting alkali atoms. The divergent zero-point energy of gapless and gapped elementary excitations of the uniform system is properly regularized obtaining a meaningful analytical expression for the beyond-mean-field equation of state. In the case of attractive inter-particle interaction we show that the quantum pressure arising from Gaussian fluctuations can prevent the collapse of the mixture with the creation of a self-bound droplet. We characterize the droplet phase and discover an energetic instability above a critical Rabi frequency provoking the evaporation of the droplet. Finally, we suggest an experiment to observe such quantum droplets using Rabi-coupled internal states of K 39 atoms.

  19. Quantum correlations are tightly bound by the exclusivity principle.

    Science.gov (United States)

    Yan, Bin

    2013-06-28

    It is a fundamental problem in physics of what principle limits the correlations as predicted by our current description of nature, based on quantum mechanics. One possible explanation is the "global exclusivity" principle recently discussed in Phys. Rev. Lett. 110, 060402 (2013). In this work we show that this principle actually has a much stronger restriction on the probability distribution. We provide a tight constraint inequality imposed by this principle and prove that this principle singles out quantum correlations in scenarios represented by any graph. Our result implies that the exclusivity principle might be one of the fundamental principles of nature.

  20. Anisotropy-induced photonic bound states in the continuum

    Science.gov (United States)

    Gomis-Bresco, Jordi; Artigas, David; Torner, Lluis

    2017-03-01

    Bound states in the continuum (BICs) are radiationless localized states embedded in the part of the parameter space that otherwise corresponds to radiative modes. Many decades after their original prediction and early observations in acoustic systems, such states have been demonstrated recently in photonic structures with engineered geometries. Here, we put forward a mechanism, based on waveguiding structures that contain anisotropic birefringent materials, that affords the existence of BICs with fundamentally new properties. In particular, anisotropy-induced BICs may exist in symmetric as well as in asymmetric geometries; they may form in tunable angular propagation directions; their polarization may be pure transverse electric, pure transverse magnetic or full vector with tunable polarization hybridity; and they may be the only possible bound states of properly designed structures, and thus appear as a discrete, isolated bound state embedded in a whole sea of radiative states.

  1. Entanglement for All Quantum States

    Science.gov (United States)

    de la Torre, A. C.; Goyeneche, D.; Leitao, L.

    2010-01-01

    It is shown that a state that is factorizable in the Hilbert space corresponding to some choice of degrees of freedom becomes entangled for a different choice of degrees of freedom. Therefore, entanglement is not a special case but is ubiquitous in quantum systems. Simple examples are calculated and a general proof is provided. The physical…

  2. Bohm potential effect on the propagation of electrostatic surface wave in semi-bounded quantum plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myoung-Jae [Department of Physics, Hanyang University, Seoul 04763 (Korea, Republic of); Research Institute for Natural Sciences, Hanyang University, Seoul 04763 (Korea, Republic of); Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr [Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588 (Korea, Republic of); Department of Electrical and Computer Engineering, MC 0407, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0407 (United States)

    2017-02-12

    High frequency electrostatic wave propagation in a dense and semi-bounded electron quantum plasma is investigated with consideration of the Bohm potential. The dispersion relation for the surface mode of quantum plasma is derived and numerically analyzed. We found that the quantum effect enhances the frequency of the wave especially in the high wave number regime. However, the frequency of surface wave is found to be always lower than that of the bulk wave for the same quantum wave number. The group velocity of the surface wave for various quantum wave number is also obtained. - Highlights: • High frequency electrostatic wave propagation is investigated in a dense semi-bounded quantum plasma. • The dispersion relation for the surface mode of quantum plasma is derived and numerically analyzed. • The quantum effect enhances the frequency of the wave especially in the high wave number regime. • The frequency of surface wave is found to be always lower than that of the bulk wave. • The group velocity of the surface wave for various quantum wave number is also obtained.

  3. Correlations in local measurements on a quantum state, and complementarity as an explanation of nonclassicality

    DEFF Research Database (Denmark)

    Wu, Shengjun; Poulsen, Uffe Vestergaard; Mølmer, Klaus

    2009-01-01

    We consider the classical correlations that two observers can extract by measurements on a bipartite quantum state and we discuss how they are related to the quantum mutual information of the state. We show with several examples how complementarity gives rise to a gap between the quantum...... and the classical correlations and we relate our quantitative finding to the so-called classical correlation locked in a quantum state. We derive upper bounds for the sum of classical correlation obtained by measurements in different mutually unbiased bases and we show that the complementarity gap is also present...... in the deterministic quantum computation with one quantum bit....

  4. Diamagnetic expansions for perfect quantum gases II: uniform bounds

    DEFF Research Database (Denmark)

    Philippe, Briet; Cornean, Horia; Louis, Delphine

    Consider a charged, perfect quantum gas, in the effective mass approximation, and in the grand-canonical ensemble. We prove in this paper that the generalized magnetic susceptibilities admit the thermodynamic limit for all admissible fugacities, uniformly on compacts included in the analyticity d...

  5. Electron collisions with BF{sup +}: bound and continuum states of BF

    Energy Technology Data Exchange (ETDEWEB)

    Chakrabarti, K [Department of Mathematics, Scottish Church College, 1 and 3 Urquhart Sq., Kolkata 700006 (India); Schneider, I F [Laboratoire Ondes et Milieux Complexes (LOMC) CNRS-FRE-3102, Universite du Havre, 25, rue Philippe Lebon, BP 540, 76058 Le Havre (France); Tennyson, Jonathan, E-mail: j.tennyson@ucl.ac.uk [Department of Physics and Astronomy, University College London, Gower St., London WC1E 6BT (United Kingdom)

    2011-03-14

    Rydberg and continuum states of the BF molecule are studied as a function of geometry using an electron collision formalism in the framework of the R-matrix method. Up to 14 BF{sup +} target states are used in a close-coupling expansion and bound states are searched for as negative energy solutions of the scattering calculation. Potential energy curves and quantum defects are obtained for the excited states of BF. Resonance positions and widths are also calculated for Feshbach resonances in the system. The data obtained can be used to model dissociative recombination of the BF{sup +} molecular ion.

  6. Quantum efficiency bound for continuous heat engines coupled to noncanonical reservoirs

    Science.gov (United States)

    Agarwalla, Bijay Kumar; Jiang, Jian-Hua; Segal, Dvira

    2017-09-01

    We derive an efficiency bound for continuous quantum heat engines absorbing heat from squeezed thermal reservoirs. Our approach relies on a full-counting statistics description of nonequilibrium transport and it is not limited to the framework of irreversible thermodynamics. Our result, a generalized Carnot efficiency bound, is valid beyond the small-squeezing and high-temperature limit. Our findings are embodied in a prototype three-terminal quantum photoelectric engine where a qubit converts heat absorbed from a squeezed thermal reservoir into electrical power. We demonstrate that in the quantum regime, the efficiency can be greatly amplified by squeezing. From the fluctuation relation, we further receive other operational measures in linear response, for example, the universal maximum power efficiency bound.

  7. Quantum bounds on multiplayer linear games and device-independent witness of genuine tripartite entanglement

    Science.gov (United States)

    Murta, Gláucia; Ramanathan, Ravishankar; Móller, Natália; Terra Cunha, Marcelo

    2016-02-01

    Here we study multiplayer linear games, a natural generalization of xor games to multiple outcomes. We generalize a recently proposed efficiently computable bound, in terms of the norm of a game matrix, on the quantum value of two-player games to linear games with n players. As an example, we bound the quantum value of a generalization of the well-known CHSH game to n players and d outcomes. We also apply the bound to show in a simple manner that any nontrivial functional box, that could lead to trivialization of communication complexity in a multiparty scenario, cannot be realized in quantum mechanics. We then present a systematic method to derive device-independent witnesses of genuine tripartite entanglement.

  8. Quantum Contextuality with Stabilizer States

    Directory of Open Access Journals (Sweden)

    Jiri Vala

    2013-06-01

    Full Text Available The Pauli groups are ubiquitous in quantum information theory because of their usefulness in describing quantum states and operations and their readily understood symmetry properties. In addition, the most well-understood quantum error correcting codes—stabilizer codes—are built using Pauli operators. The eigenstates of these operators—stabilizer states—display a structure (e.g., mutual orthogonality relationships that has made them useful in examples of multi-qubit non-locality and contextuality. Here, we apply the graph-theoretical contextuality formalism of Cabello, Severini and Winter to sets of stabilizer states, with particular attention to the effect of generalizing two-level qubit systems to odd prime d-level qudit systems. While state-independent contextuality using two-qubit states does not generalize to qudits, we show explicitly how state-dependent contextuality associated with a Bell inequality does generalize. Along the way we note various structural properties of stabilizer states, with respect to their orthogonality relationships, which may be of independent interest.

  9. The Metric of Quantum States Revisited

    OpenAIRE

    Pandya, Aalok; Nagawat, Ashok K.

    2002-01-01

    A generalised definition of the metric of quantum states is proposed by using the techniques of differential geometry. The metric of quantum state space derived earlier by Anandan, is reproduced and verified here by this generalised definition. The metric of quantum states in the configuration space and its possible geometrical framework is explored. Also, invariance of the metric of quantum states under local gauge transformations, coordinate transformations, and the relativistic transformat...

  10. Resolving the Spatial Structures of Bound Hole States in Black Phosphorus.

    Science.gov (United States)

    Qiu, Zhizhan; Fang, Hanyan; Carvalho, Alexandra; Rodin, A S; Liu, Yanpeng; Tan, Sherman J R; Telychko, Mykola; Lv, Pin; Su, Jie; Wang, Yewu; Castro Neto, A H; Lu, Jiong

    2017-11-08

    Understanding the local electronic properties of individual defects and dopants in black phosphorus (BP) is of great importance for both fundamental research and technological applications. Here, we employ low-temperature scanning tunnelling microscope (LT-STM) to probe the local electronic structures of single acceptors in BP. We demonstrate that the charge state of individual acceptors can be reversibly switched by controlling the tip-induced band bending. In addition, acceptor-related resonance features in the tunnelling spectra can be attributed to the formation of Rydberg-like bound hole states. The spatial mapping of the quantum bound states shows two distinct shapes evolving from an extended ellipse shape for the 1s ground state to a dumbbell shape for the 2p x excited state. The wave functions of bound hole states can be well-described using the hydrogen-like model with anisotropic effective mass, corroborated by our theoretical calculations. Our findings not only provide new insight into the many-body interactions around single dopants in this anisotropic two-dimensional material but also pave the way to the design of novel quantum devices.

  11. Conciliation of Bayes and Pointwise Quantum State Estimation

    Science.gov (United States)

    Gill, Richard D.

    2008-08-01

    We derive an asymptotic lower bound on the Bayes risk when N identical quantum systems whose state depends on a vector of unknown parameters are jointly measured in an arbitrary way and the parameters of interest estimated on the basis of the resulting data. The bound is an integrated version of a quantum Cramér-Rao bound due to Holevo13 and it thereby links the fixed N exact Bayesian optimality usually pursued in the physics literature with the pointwise asymptotic optimality favoured in classical mathematical statistics. By heuristic arguments the bound can be expected to be sharp. This does turn out to be the case in various important examples, where it can be used to prove asymptotic optimality of interesting and useful measurement-and-estimation schemes. On the way we obtain a new family of "dual Holevo bounds" of independent interest. The paper is dedicated to Slava Belavkin in recognition of his pioneering work on quantum Cramér-Rao bounds, on the occasion of his 60th birthday. A more complete version will appear in Annals of Statistics.

  12. Computed bound and continuum electronic states of the nitrogen molecule

    Directory of Open Access Journals (Sweden)

    Tennyson Jonathan

    2015-01-01

    Full Text Available The dissociative recombination (DR of N2+ is important for processes occurring in our atmosphere. However, it is not particularly well characterised, experimentally for the vibrational ground state and, theoretically for the v ≥ 4. We use the R-matrix method to compute potential energy curves for both the bound Rydberg states of nitrogen and for quasi-bound states lying in the continuum. Use of a fine mesh of internuclear separations allows the details of avoided crossings to be determined. The prospects for using the curves as the input for DR calculations is discussed.

  13. Investigating Quantum Modulation States

    Science.gov (United States)

    2016-03-01

    process incurs ambiguity in the interpretation of measurement results. When the average photon number per transmission of a message bit grows...estimates to gain the information conveyed therein. Is the message bit sent a one or zero? That eavesdropper’s minimum probability of error converges...to ½, a coin toss, when the average photon number and the number of possible states satisfy the aforementioned conditions. The eavesdropper

  14. Quantum State Transfer on Coronas

    OpenAIRE

    Ackelsberg, Ethan; Brehm, Zachary; Chan, Ada; Mundinger, Joshua; Tamon, Christino

    2016-01-01

    We study state transfer in quantum walk on graphs relative to the adjacency matrix. Our motivation is to understand how the addition of pendant subgraphs affect state transfer. For two graphs $G$ and $H$, the Frucht-Harary corona product $G \\circ H$ is obtained by taking $|G|$ copies of the cone $K_{1} + H$ and by connecting the conical vertices according to $G$. Our work explores conditions under which the corona $G \\circ H$ exhibits state transfer. We also describe new families of graphs wi...

  15. Spectrum of Andreev bound states in Josephson junctions with a ferromagnetic insulator

    Energy Technology Data Exchange (ETDEWEB)

    Kawabata, Shiro, E-mail: s-kawabata@aist.go.jp [Nanosystem Research Institute (NRI), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); CREST, Japan Science and Technology Corporation (JST), Kawaguchi, Saitama 332-0012 (Japan); Tanaka, Yukio [Department of Applied Physics, Nagoya University, Nagoya 464-8603 (Japan); Golubov, Alexander A. [Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Vasenko, Andrey S. [Institut Laue-Langevin, 6 rue Jules Horowitz, BP 156, 38042 Grenoble (France); Asano, Yasuhiro [Department of Applied Physics, Hokkaido University, Sapporo 060-8628 (Japan)

    2012-10-15

    Ferromagnetic-insulator (FI) based Josephson junctions are promising candidates for a coherent superconducting quantum bit as well as a classical superconducting logic circuit. Recently the appearance of an intriguing atomic-scale 0-{pi} transition has been theoretically predicted. In order to uncover the mechanism of this phenomena, we numerically calculate the spectrum of Andreev bound states in a FI barrier by diagonalizing the Bogoliubov-de Gennes equation. We show that Andreev spectrum drastically depends on the parity of the FI-layer number L and accordingly the {pi}(0) state is always more stable than the 0 ({pi}) state if L is odd (even).

  16. Relativistic bound state approach to fundamental forces including gravitation

    Directory of Open Access Journals (Sweden)

    Morsch H.P.

    2012-06-01

    Full Text Available To describe the structure of particle bound states of nature, a relativistic bound state formalism is presented, which requires a Lagrangian including scalar coupling of two boson fields. The underlying mechanisms are quite complex and require an interplay of overlapping boson fields and fermion-antifermion production. This gives rise to two potentials, a boson-exchange potential and one identified with the long sought confinement potential in hadrons. With minimal requirements, two elementary massless fermions (quantons - with and without charge - and one gauge boson, hadrons and leptons but also atoms and gravitational systems are described by bound states with electric and magnetic coupling between the charges and spins of quantons. No need is found for colour, Higgs-coupling and supersymmetry.

  17. Bounding the quantum limits of precision for phase estimation with loss and thermal noise

    Science.gov (United States)

    Gagatsos, Christos N.; Bash, Boulat A.; Guha, Saikat; Datta, Animesh

    2017-12-01

    We consider the problem of estimating an unknown but constant carrier phase modulation θ using a general, possibly entangled, n -mode optical probe through n independent and identical uses of a lossy bosonic channel with additive thermal noise. We find an upper bound to the quantum Fisher information (QFI) of estimating θ as a function of n , the mean and variance of the total number of photons NS in the n -mode probe, the transmissivity η , and mean thermal photon number per mode n¯B of the bosonic channel. Since the inverse of QFI provides a lower bound to the mean-square error (MSE) of an unbiased estimator θ ˜ of θ , our upper bound to the QFI provides a lower bound to the MSE. It already has found use in proving fundamental limits of covert sensing and could find other applications requiring bounding the fundamental limits of sensing an unknown parameter embedded in a correlated field.

  18. Quantum state atomic force microscopy

    OpenAIRE

    Passian, Ali; Siopsis, George

    2017-01-01

    New classical modalities of atomic force microscopy continue to emerge to achieve higher spatial, spectral, and temporal resolution for nanometrology of materials. Here, we introduce the concept of a quantum mechanical modality that capitalizes on squeezed states of probe displacement. We show that such squeezing is enabled nanomechanically when the probe enters the van der Waals regime of interaction with a sample. The effect is studied in the non-contact mode, where we consider the paramete...

  19. Quantum State Engineering Via Coherent-State Superpositions

    Science.gov (United States)

    Janszky, Jozsef; Adam, P.; Szabo, S.; Domokos, P.

    1996-01-01

    The quantum interference between the two parts of the optical Schrodinger-cat state makes possible to construct a wide class of quantum states via discrete superpositions of coherent states. Even a small number of coherent states can approximate the given quantum states at a high accuracy when the distance between the coherent states is optimized, e. g. nearly perfect Fock state can be constructed by discrete superpositions of n + 1 coherent states lying in the vicinity of the vacuum state.

  20. Quantum Computing in Solid State Systems

    CERN Document Server

    Ruggiero, B; Granata, C

    2006-01-01

    The aim of Quantum Computation in Solid State Systems is to report on recent theoretical and experimental results on the macroscopic quantum coherence of mesoscopic systems, as well as on solid state realization of qubits and quantum gates. Particular attention has been given to coherence effects in Josephson devices. Other solid state systems, including quantum dots, optical, ion, and spin devices which exhibit macroscopic quantum coherence are also discussed. Quantum Computation in Solid State Systems discusses experimental implementation of quantum computing and information processing devices, and in particular observations of quantum behavior in several solid state systems. On the theoretical side, the complementary expertise of the contributors provides models of the various structures in connection with the problem of minimizing decoherence.

  1. Dancing Volvox: Hydrodynamic Bound States of Swimming Algae

    Science.gov (United States)

    Drescher, Knut; Leptos, Kyriacos C.; Tuval, Idan; Ishikawa, Takuji; Pedley, Timothy J.; Goldstein, Raymond E.

    2013-01-01

    The spherical alga Volvox swims by means of flagella on thousands of surface somatic cells. This geometry and its large size make it a model organism for studying the fluid dynamics of multicellularity. Remarkably, when two nearby Volvox colonies swim close to a solid surface, they attract one another and can form stable bound states in which they “waltz” or “minuet” around each other. A surface-mediated hydrodynamic attraction combined with lubrication forces between spinning, bottom-heavy Volvox explains the formation, stability, and dynamics of the bound states. These phenomena are suggested to underlie observed clustering of Volvox at surfaces. PMID:19518757

  2. Bound on the number of functions that can be distinguished with k quantum queries

    Science.gov (United States)

    Farhi, Edward; Goldstone, Jeffrey; Gutmann, Sam; Sipser, Michael

    1999-12-01

    Suppose an oracle is known to hold one of a given set of D two-valued functions. To successfully identify which function the oracle holds with k classical queries, it must be the case that D is at most 2k. In this paper we derive a bound for how many functions can be distinguished with k quantum queries.

  3. The Roles of a Quantum Channel on a Quantum State

    Science.gov (United States)

    Wang, Lin; Yu, Chang-shui

    2013-10-01

    When a quantum state undergoes a quantum channel, the state will be inevitably influenced. In general, the fidelity of the state is reduced, so is the entanglement if the subsystems go through the channel. However, the influence on the coherence of the state is quite different. Here we present some state-independent quantities to describe to what degree the fidelity, the entanglement and the coherence of the state are influenced. As applications, we consider some quantum channels on a qubit and find that the infidelity ability monotonically depends on the decay rate, but in usual the decoherence ability is not the case and strongly depends on the channel.

  4. Quantum Entanglement in Random Physical States

    Science.gov (United States)

    Hamma, Alioscia; Santra, Siddhartha; Zanardi, Paolo

    2012-07-01

    Most states in the Hilbert space are maximally entangled. This fact has proven useful to investigate—among other things—the foundations of statistical mechanics. Unfortunately, most states in the Hilbert space of a quantum many-body system are not physically accessible. We define physical ensembles of states acting on random factorized states by a circuit of length k of random and independent unitaries with local support. We study the typicality of entanglement by means of the purity of the reduced state. We find that for a time k=O(1), the typical purity obeys the area law. Thus, the upper bounds for area law are actually saturated, on average, with a variance that goes to zero for large systems. Similarly, we prove that by means of local evolution a subsystem of linear dimensions L is typically entangled with a volume law when the time scales with the size of the subsystem. Moreover, we show that for large values of k the reduced state becomes very close to the completely mixed state.

  5. DECOY STATE QUANTUM KEY DISTRIBUTION

    Directory of Open Access Journals (Sweden)

    Sellami Ali

    2010-03-01

    Full Text Available Experimental weak + vacuum protocol has been demonstrated using commercial QKD system based on a standard bi-directional ‘Plug & Play’ set-up. By making simple modifications to a commercial quantum key distribution system, decoy state QKD allows us to achieve much better performance than QKD system without decoy state in terms of key generation rate and distance. We demonstrate an unconditionally secure key rate of 6.2931 x 10-4per pulse for a 25 km fiber length.

  6. Distinguishability of quantum states and shannon complexity in quantum cryptography

    Science.gov (United States)

    Arbekov, I. M.; Molotkov, S. N.

    2017-07-01

    The proof of the security of quantum key distribution is a rather complex problem. Security is defined in terms different from the requirements imposed on keys in classical cryptography. In quantum cryptography, the security of keys is expressed in terms of the closeness of the quantum state of an eavesdropper after key distribution to an ideal quantum state that is uncorrelated to the key of legitimate users. A metric of closeness between two quantum states is given by the trace metric. In classical cryptography, the security of keys is understood in terms of, say, the complexity of key search in the presence of side information. In quantum cryptography, side information for the eavesdropper is given by the whole volume of information on keys obtained from both quantum and classical channels. The fact that the mathematical apparatuses used in the proof of key security in classical and quantum cryptography are essentially different leads to misunderstanding and emotional discussions [1]. Therefore, one should be able to answer the question of how different cryptographic robustness criteria are related to each other. In the present study, it is shown that there is a direct relationship between the security criterion in quantum cryptography, which is based on the trace distance determining the distinguishability of quantum states, and the criterion in classical cryptography, which uses guesswork on the determination of a key in the presence of side information.

  7. The hyperbolic step potential: Anti-bound states, SUSY partners and Wigner time delays

    Energy Technology Data Exchange (ETDEWEB)

    Gadella, M. [Departamento de Física Teórica, Atómica y Óptica and IMUVA, Universidad de Valladolid, E-47011 Valladolid (Spain); Kuru, Ş. [Department of Physics, Faculty of Science, Ankara University, 06100 Ankara (Turkey); Negro, J., E-mail: jnegro@fta.uva.es [Departamento de Física Teórica, Atómica y Óptica and IMUVA, Universidad de Valladolid, E-47011 Valladolid (Spain)

    2017-04-15

    We study the scattering produced by a one dimensional hyperbolic step potential, which is exactly solvable and shows an unusual interest because of its asymmetric character. The analytic continuation of the scattering matrix in the momentum representation has a branch cut and an infinite number of simple poles on the negative imaginary axis which are related with the so called anti-bound states. This model does not show resonances. Using the wave functions of the anti-bound states, we obtain supersymmetric (SUSY) partners which are the series of Rosen–Morse II potentials. We have computed the Wigner reflection and transmission time delays for the hyperbolic step and such SUSY partners. Our results show that the more bound states a partner Hamiltonian has the smaller is the time delay. We also have evaluated time delays for the hyperbolic step potential in the classical case and have obtained striking similitudes with the quantum case. - Highlights: • The scattering matrix of hyperbolic step potential is studied. • The scattering matrix has a branch cut and an infinite number of poles. • The poles are associated to anti-bound states. • Susy partners using antibound states are computed. • Wigner time delays for the hyperbolic step and partner potentials are compared.

  8. Quantum State Tomography via Reduced Density Matrices.

    Science.gov (United States)

    Xin, Tao; Lu, Dawei; Klassen, Joel; Yu, Nengkun; Ji, Zhengfeng; Chen, Jianxin; Ma, Xian; Long, Guilu; Zeng, Bei; Laflamme, Raymond

    2017-01-13

    Quantum state tomography via local measurements is an efficient tool for characterizing quantum states. However, it requires that the original global state be uniquely determined (UD) by its local reduced density matrices (RDMs). In this work, we demonstrate for the first time a class of states that are UD by their RDMs under the assumption that the global state is pure, but fail to be UD in the absence of that assumption. This discovery allows us to classify quantum states according to their UD properties, with the requirement that each class be treated distinctly in the practice of simplifying quantum state tomography. Additionally, we experimentally test the feasibility and stability of performing quantum state tomography via the measurement of local RDMs for each class. These theoretical and experimental results demonstrate the advantages and possible pitfalls of quantum state tomography with local measurements.

  9. Formation of positron-atom bound states in collisions between Rydberg Ps and neutral atoms

    CERN Document Server

    Swann, A R; Deller, A; Gribakin, G F

    2016-01-01

    Predicted twenty years ago, positron binding to neutral atoms has not yet been observed experimentally. A new scheme is proposed to detect positron-atom bound states by colliding Rydberg positronium (Ps) with neutral atoms. Estimates of the charge-transfer-reaction cross section are obtained using the first Born approximation for a selection of neutral atom targets and a wide range of incident Ps energies and principal quantum numbers. We also estimate the corresponding Ps ionization cross section. The accuracy of the calculations is tested by comparison with earlier predictions for Ps charge transfer in collisions with hydrogen and antihydrogen. We describe an existing Rydberg Ps beam suitable for producing positron-atom bound states and estimate signal rates based on the calculated cross sections and realistic experimental parameters. We conclude that the proposed methodology is capable of producing such states and of testing theoretical predictions of their binding energies.

  10. Assessments of macroscopicity for quantum optical states

    DEFF Research Database (Denmark)

    Laghaout, Amine; Neergaard-Nielsen, Jonas Schou; Andersen, Ulrik Lund

    2015-01-01

    With the slow but constant progress in the coherent control of quantum systems, it is now possible to create large quantum superpositions. There has therefore been an increased interest in quantifying any claims of macroscopicity. We attempt here to motivate three criteria which we believe should...... enter in the assessment of macroscopic quantumness: The number of quantum fluctuation photons, the purity of the states, and the ease with which the branches making up the state can be distinguished. © 2014....

  11. Scaling properties of net information measures for bound states of ...

    Indian Academy of Sciences (India)

    Using dimensional analyses, the scaling properties of the Heisenberg uncertainty relationship as well as the various information theoretical uncertainty-like relationships are derived for the bound states corresponding to the superposition of the power potential of the form () = + $^{n_{i}}, where , , ,  ...

  12. Towards flavored bound states beyond rainbows and ladders

    Energy Technology Data Exchange (ETDEWEB)

    El-Bennich, B.; Rojas, E.; Melo, J. P. B. C. de [Laboratório de Física Teórica e Computacional, Universidade Cruzeiro do Sul, São Paulo 01506-000 SP (Brazil); Paracha, M. A. [Laboratorio de Fisica Teorica e Computacional, Universidade Cruzeiro do Sul, Sao Paulo 01506-000 SP, Brazil and Centre for Advanced Mathematics and Physics, National University of Science and Technology, Islamabad (Pakistan)

    2014-11-11

    We give a snapshot of recent progress in solving the Dyson-Schwinger equation with a beyond rainbow-ladder ansatz for the dressed quark-gluon vertex which includes ghost contributions. We discuss the motivations for this approach with regard to heavy-flavored bound states and form factors and briefly describe future steps to be taken.

  13. Higgs interchange and bound states of superheavy fermions

    Indian Academy of Sciences (India)

    Their dynamical production mechanisms are also considered. In §2.3 the existing theoretical models for 4G bound states are discussed. In §2.4 the general aspects of the present model are introduced. In §3 the dynamical model of the present work is discussed in detail. In particular, in. §3.1 the relativistic kinetic energy ...

  14. Hartree–Fock variational bounds for ground state energy of ...

    Indian Academy of Sciences (India)

    The existence of a stable equilibrium high density ferromagnetic state with spheroidal occupation function is possible as long as the ratio of coupling constants Γcm ≡ (U0a3/μ2) is not very small compared to 1. Keywords. Chargeless fermions; magnetic dipole–dipole interaction; Hartree–Fock bounds; ferromagnetic ground ...

  15. Hartree–Fock variational bounds for ground state energy of ...

    Indian Academy of Sciences (India)

    We use different determinantal Hartree–Fock (HF) wave functions to calculate true variational upper bounds for the ground state energy of spin-half fermions in volume 0, with mass , electric charge zero, and magnetic moment , interacting through magnetic dipole–dipole interaction. We find that at high densities ...

  16. In-medium K̄ interactions and bound states

    Directory of Open Access Journals (Sweden)

    Gal Avraham

    2014-01-01

    Full Text Available Correct treatment of subthreshold K̄ N dynamics is mandatory in K− -atom and K̄ -nuclear bound-state calculations, as demonstrated by using in-medium chirally-based models of K̄ N interactions. Recent studies of kaonic atom data reveal appreciable multi-nucleon contributions. K̄ -nuclear widths larger than 50 MeV are anticipated.

  17. Chiral Symmetry, Heavy Quark Symmetry and Bound States

    OpenAIRE

    Yoshida, Yuhsuke

    1995-01-01

    I investigate the bound state problems of lowest-lying mesons and heavy mesons. Chiral symmetry is essential when one consider lowest-lying mesons. Heavy quark symmetry plays an central role in considering the semi-leptonic form factors of heavy mesons. Various properties based on the symmetries are revealed using Bethe-Salpeter equations.

  18. Past Quantum States of a Monitored System

    DEFF Research Database (Denmark)

    Gammelmark, Søren; Julsgaard, Brian; Mølmer, Klaus

    2013-01-01

    A density matrix ρ(t) yields probabilistic information about the outcome of measurements on a quantum system. We introduce here the past quantum state, which, at time T, accounts for the state of a quantum system at earlier times tquantum state Ξ(t) is composed of two objects, ρ(t) a...... quantum states [Y. Aharonov and L. Vaidman, J. Phys. A 24 2315 (1991)] to systems subject to any quantum measurement scenario, any coherent evolution, and any Markovian dissipation processes.......A density matrix ρ(t) yields probabilistic information about the outcome of measurements on a quantum system. We introduce here the past quantum state, which, at time T, accounts for the state of a quantum system at earlier times tstate Ξ(t) is composed of two objects, ρ......(t) and E(t), conditioned on the dynamics and the probing of the system until t and in the time interval [t, T], respectively. The past quantum state is characterized by its ability to make better predictions for the unknown outcome of any measurement at t than the conventional quantum state at that time...

  19. Order, disorder, and tunable gaps in the spectrum of Andreev bound states in a multiterminal superconducting device

    NARCIS (Netherlands)

    Yokoyama, T.; Reutlinger, Johannes; Belzig, Wolfgang; Nazarov, Y.V.

    2017-01-01

    We consider the spectrum of Andreev bound states (ABSs) in an exemplary four-terminal superconducting structure where four chaotic cavities are connected by quantum point contacts to the terminals and to each other forming a ring. We nickname the resulting device 4T-ring. Such a tunable device

  20. Weakly bound states of two- and three-boson systems in the crossover from two to three dimensions

    DEFF Research Database (Denmark)

    Yamashita, Marcelo; Bellotti, Filipe Furlan; Frederico, Tobias

    2015-01-01

    The spectrum and properties of quantum bound states is strongly dependent on the dimensionality of space. How this comes about and how one may theoretically and experimentally study the interpolation between different dimensions is a topic of great interest in different fields of physics. In this...

  1. Unitary equilibration after a quantum quench of a thermal state

    Science.gov (United States)

    Jacobson, N. Tobias; Venuti, Lorenzo Campos; Zanardi, Paolo

    2011-08-01

    In this work we investigate the equilibration dynamics after a sudden Hamiltonian quench of a quantum spin system initially prepared in a thermal state. To characterize the equilibration we evaluate the Loschmidt echo, a global measure for the degree of distinguishability between the initial and time-evolved quenched states. We present general results valid for small quenches and detailed analysis of the quantum XY chain. The result is that quantum criticality manifests, even at small but finite temperatures, in a universal double-peaked form of the echo statistics and poor equilibration for sufficiently relevant perturbations. In addition, for this model we find a tight lower bound on the Loschmidt echo in terms of the purity of the initial state and the more easily evaluated Hilbert-Schmidt inner product between initial and time-evolved quenched states. This bound allows us to relate the time-averaged Loschmidt echo with the purity of the time-averaged state, a quantity that has been shown to provide an upper bound on the variance of observables.

  2. Unitary equilibration after a quantum quench of a thermal state

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, N. Tobias [Department of Physics and Astronomy and Center for Quantum Information Science and Technology, University of Southern California, Los Angeles, California 90089-0484 (United States); Venuti, Lorenzo Campos [Institute for Scientific Interchange (ISI), Viale Settimio Severo 65, I-10133 Torino (Italy); Zanardi, Paolo [Department of Physics and Astronomy and Center for Quantum Information Science and Technology, University of Southern California, Los Angeles, California 90089-0484 (United States); Institute for Scientific Interchange (ISI), Viale Settimio Severo 65, I-10133 Torino (Italy)

    2011-08-15

    In this work we investigate the equilibration dynamics after a sudden Hamiltonian quench of a quantum spin system initially prepared in a thermal state. To characterize the equilibration we evaluate the Loschmidt echo, a global measure for the degree of distinguishability between the initial and time-evolved quenched states. We present general results valid for small quenches and detailed analysis of the quantum XY chain. The result is that quantum criticality manifests, even at small but finite temperatures, in a universal double-peaked form of the echo statistics and poor equilibration for sufficiently relevant perturbations. In addition, for this model we find a tight lower bound on the Loschmidt echo in terms of the purity of the initial state and the more easily evaluated Hilbert-Schmidt inner product between initial and time-evolved quenched states. This bound allows us to relate the time-averaged Loschmidt echo with the purity of the time-averaged state, a quantity that has been shown to provide an upper bound on the variance of observables.

  3. An Approach to Quantum State Pooling from Quantum Conditional Independence

    Science.gov (United States)

    Leifer, Matthew

    2008-03-01

    In approaches to quantum theory in which the quantum state is taken to represent an agent's belief, knowledge or information about a physical system, it is legitimate for different agents to assign different states to one and the same physical system. The question then arises of what state they should assign if they get together and share their information about the system. This is the problem of quantum state pooling. The classical counterpart of this problem for probability distributions only has a unique solution under additional assumptions about how the data are collected, such as conditional independence constraints. Recently, Spekkens and Wiseman found a quantum pooling rule analogous to the classical one, which is valid if the differing state assignments arise from making indirect measurements on special classes of tripartite quantum state. We show that this pooling rule applies to a much wider class of tripartite states, and that its validity rests on quantum analogs of conditional independence recently studied by one of the authors, as well as a generalization of the notion of a sufficient statistic to the quantum case. Work done in collaboration with Robert Spekkens, University of Cambridge.

  4. Gaussian private quantum channel with squeezed coherent states

    Science.gov (United States)

    Jeong, Kabgyun; Kim, Jaewan; Lee, Su-Yong

    2015-01-01

    While the objective of conventional quantum key distribution (QKD) is to secretly generate and share the classical bits concealed in the form of maximally mixed quantum states, that of private quantum channel (PQC) is to secretly transmit individual quantum states concealed in the form of maximally mixed states using shared one-time pad and it is called Gaussian private quantum channel (GPQC) when the scheme is in the regime of continuous variables. We propose a GPQC enhanced with squeezed coherent states (GPQCwSC), which is a generalization of GPQC with coherent states only (GPQCo) [Phys. Rev. A 72, 042313 (2005)]. We show that GPQCwSC beats the GPQCo for the upper bound on accessible information. As a subsidiary example, it is shown that the squeezed states take an advantage over the coherent states against a beam splitting attack in a continuous variable QKD. It is also shown that a squeezing operation can be approximated as a superposition of two different displacement operations in the small squeezing regime. PMID:26364893

  5. Gaussian private quantum channel with squeezed coherent states

    Science.gov (United States)

    Jeong, Kabgyun; Kim, Jaewan; Lee, Su-Yong

    2015-09-01

    While the objective of conventional quantum key distribution (QKD) is to secretly generate and share the classical bits concealed in the form of maximally mixed quantum states, that of private quantum channel (PQC) is to secretly transmit individual quantum states concealed in the form of maximally mixed states using shared one-time pad and it is called Gaussian private quantum channel (GPQC) when the scheme is in the regime of continuous variables. We propose a GPQC enhanced with squeezed coherent states (GPQCwSC), which is a generalization of GPQC with coherent states only (GPQCo) [Phys. Rev. A 72, 042313 (2005)]. We show that GPQCwSC beats the GPQCo for the upper bound on accessible information. As a subsidiary example, it is shown that the squeezed states take an advantage over the coherent states against a beam splitting attack in a continuous variable QKD. It is also shown that a squeezing operation can be approximated as a superposition of two different displacement operations in the small squeezing regime.

  6. Gaussian private quantum channel with squeezed coherent states.

    Science.gov (United States)

    Jeong, Kabgyun; Kim, Jaewan; Lee, Su-Yong

    2015-09-14

    While the objective of conventional quantum key distribution (QKD) is to secretly generate and share the classical bits concealed in the form of maximally mixed quantum states, that of private quantum channel (PQC) is to secretly transmit individual quantum states concealed in the form of maximally mixed states using shared one-time pad and it is called Gaussian private quantum channel (GPQC) when the scheme is in the regime of continuous variables. We propose a GPQC enhanced with squeezed coherent states (GPQCwSC), which is a generalization of GPQC with coherent states only (GPQCo) [Phys. Rev. A 72, 042313 (2005)]. We show that GPQCwSC beats the GPQCo for the upper bound on accessible information. As a subsidiary example, it is shown that the squeezed states take an advantage over the coherent states against a beam splitting attack in a continuous variable QKD. It is also shown that a squeezing operation can be approximated as a superposition of two different displacement operations in the small squeezing regime.

  7. Tuned Transition from Quantum to Classical for Macroscopic Quantum States

    NARCIS (Netherlands)

    Fedorov, A.; Macha, P.; Feofanov, A.K.; Harmans, C.J.P.M.; Mooij, J.E.

    2011-01-01

    The boundary between the classical and quantum worlds has been intensely studied. It remains fascinating to explore how far the quantum concept can reach with use of specially fabricated elements. Here we employ a tunable flux qubit with basis states having persistent currents of 1???A carried by a

  8. PT-symmetric quantum state discrimination.

    Science.gov (United States)

    Bender, Carl M; Brody, Dorje C; Caldeira, João; Günther, Uwe; Meister, Bernhard K; Samsonov, Boris F

    2013-04-28

    The objective of this paper is to explain and elucidate the formalism of PT quantum mechanics by applying it to a well-known problem in conventional Hermitian quantum mechanics, namely the problem of state discrimination. Suppose that a system is known to be in one of two quantum states, |ψ(1)> or |ψ(2)>. If these states are not orthogonal, then the requirement of unitarity forbids the possibility of discriminating between these two states with one measurement; that is, determining with one measurement what state the system is in. In conventional quantum mechanics, there is a strategy in which successful state discrimination can be achieved with a single measurement but only with a success probability p that is less than unity. In this paper, the state-discrimination problem is examined in the context of PT quantum mechanics and the approach is based on the fact that a non-Hermitian PT-symmetric Hamiltonian determines the inner product that is appropriate for the Hilbert space of physical states. It is shown that it is always possible to choose this inner product so that the two states |ψ(1)> and |ψ(2)> are orthogonal. Using PT quantum mechanics, one cannot achieve a better state discrimination than in ordinary quantum mechanics, but one can instead perform a simulated quantum state discrimination, in which with a single measurement a perfect state discrimination is realized with probability p.

  9. Quantum cryptography with 3-state systems.

    Science.gov (United States)

    Bechmann-Pasquinucci, H; Peres, A

    2000-10-09

    We consider quantum cryptographic schemes where the carriers of information are 3-state particles. One protocol uses four mutually unbiased bases and appears to provide better security than obtainable with 2-state carriers. Another possible method allows quantum states to belong to more than one basis. Security is not better, but many curious features arise.

  10. Mapping quantum state dynamics in spontaneous emission

    Science.gov (United States)

    Naghiloo, M.; Foroozani, N.; Tan, D.; Jadbabaie, A.; Murch, K. W.

    2016-01-01

    The evolution of a quantum state undergoing radiative decay depends on how its emission is detected. If the emission is detected in the form of energy quanta, the evolution is characterized by a quantum jump to a lower energy state. In contrast, detection of the wave nature of the emitted radiation leads to different dynamics. Here, we investigate the diffusive dynamics of a superconducting artificial atom under continuous homodyne detection of its spontaneous emission. Using quantum state tomography, we characterize the correlation between the detected homodyne signal and the emitter's state, and map out the conditional back-action of homodyne measurement. By tracking the diffusive quantum trajectories of the state as it decays, we characterize selective stochastic excitation induced by the choice of measurement basis. Our results demonstrate dramatic differences from the quantum jump evolution associated with photodetection and highlight how continuous field detection can be harnessed to control quantum evolution. PMID:27167893

  11. Bounds on the number of bound states in the transfer matrix spectrum for some weakly correlated lattice models

    Energy Technology Data Exchange (ETDEWEB)

    O' Carroll, Michael [Departamento de Matematica Aplicada e Estatistica, ICMC-USP, C.P. 668,13560-970 Sao Carlos, Sao Paulo (Brazil)

    2012-07-15

    We consider the interaction of particles in weakly correlated lattice quantum field theories. In the imaginary time functional integral formulation of these theories there is a relative coordinate lattice Schroedinger operator H which approximately describes the interaction of these particles. Scalar and vector spin, QCD and Gross-Neveu models are included in these theories. In the weakly correlated regime H=H{sub o}+W where H{sub o}=-{gamma}{Delta}{sub l}, 0 < {gamma} Much-Less-Than 1 and {Delta}{sub l} is the d-dimensional lattice Laplacian: {gamma}={beta}, the inverse temperature for spin systems and {gamma}={kappa}{sup 3} where {kappa} is the hopping parameter for QCD. W is a self-adjoint potential operator which may have non-local contributions but obeys the bound Double-Vertical-Line W(x, y) Double-Vertical-Line Less-Than-Or-Slanted-Equal-To cexp ( -a( Double-Vertical-Line x Double-Vertical-Line + Double-Vertical-Line y Double-Vertical-Line )), a large: exp-a={beta}/{beta}{sub o}{sup (1/2)}({kappa}/{kappa}{sub o}) for spin (QCD) models. H{sub o}, W, and H act in l{sub 2}(Z{sup d}), d Greater-Than-Or-Slanted-Equal-To 1. The spectrum of H below zero is known to be discrete and we obtain bounds on the number of states below zero. This number depends on the short range properties of W, i.e., the long range tail does not increase the number of states.

  12. Bound state densities and the Helmholtz free energy

    Directory of Open Access Journals (Sweden)

    Souza S.R.

    2012-02-01

    Full Text Available Bohr's conception of the compound nucleus is based on the idea of ‘longlived’ nuclear states in which all single particles are bound. We briefly discuss the properties of the density of bound states and then use two prescriptions, that of Brack and Quentin and that of Bonche, Levit e Vautherin to calculate the equivalent temperaturedependent quantity – the Helmholtz free energy.We compare the temperature dependence of the latter, as well as that of the excitation energy and entropy, obtained using the two prescriptions in self-consistent calculations within the relativistic Hartree and Skyrme models. We then discuss the extended, temperature-dependent liquid-drop approximation to the excitation and free energies obtained from fits to the self-consistent calculations over a wide range of charge and mass numbers.

  13. Observation of Andreev bound states at spin-active interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Beckmann, Detlef; Wolf, Michael Johannes [KIT, Institut fuer Nanotechnologie (Germany); Huebler, Florian [KIT, Institut fuer Nanotechnologie (Germany); KIT, Institut fuer Festkoerperphysik (Germany); Loehneysen, Hilbert von [KIT, Institut fuer Festkoerperphysik (Germany); KIT, Physikalisches Institut (Germany)

    2013-07-01

    We report on high-resolution differential conductance experiments on nanoscale superconductor/ferromagnet tunnel junctions with ultra-thin oxide tunnel barriers. We observe subgap conductance features which are symmetric with respect to bias, and shift according to the Zeeman energy with an applied magnetic field. These features can be explained by resonant transport via Andreev bound states induced by spin-active scattering at the interface. From the energy and the Zeeman shift of the bound states, both the magnitude and sign of the spin-dependent interfacial phase shifts between spin-up and spin-down electrons can be determined. These results contribute to the microscopic insight into the triplet proximity effect at spin-active interfaces.

  14. Bound state equation for the Nakanishi weight function

    Directory of Open Access Journals (Sweden)

    J. Carbonell

    2017-06-01

    Full Text Available The bound state Bethe–Salpeter amplitude was expressed by Nakanishi using a two-dimensional integral representation, in terms of a smooth weight function g, which carries the detailed dynamical information. A similar, but one-dimensional, integral representation can be obtained for the Light-Front wave function in terms of the same weight function g. By using the generalized Stieltjes transform, we first obtain g in terms of the Light-Front wave function in the complex plane of its arguments. Next, a new integral equation for the Nakanishi weight function g is derived for a bound state case. It has the standard form g=Ng, where N is a two-dimensional integral operator. We give the prescription for obtaining the kernel N starting with the kernel K of the Bethe–Salpeter equation. The derivation is valid for any kernel given by an irreducible Feynman amplitude.

  15. Quantum secret sharing based on Smolin states alone

    Energy Technology Data Exchange (ETDEWEB)

    He Guangping [School of Physics and Engineering and Advanced Research Center, Sun Yat-sen University, Guangzhou 510275 (China); Wang, Z D; Bai, Yankui [Department of Physics and Center of Theoretical and Computational Physics, University of Hong Kong, Pokfulam Road, Hong Kong (China)], E-mail: hegp@mail.sysu.edu.cn, E-mail: zwang@hkucc.hku.hk, E-mail: ykbai@semi.ac.cn

    2008-10-17

    It was indicated (Yu 2007 Phys. Rev. A 75 066301) that a previously proposed quantum secret sharing (QSS) protocol based on Smolin states (Augusiak 2006 Phys. Rev. A 73 012318) is insecure against an internal cheater. Here we build a different QSS protocol with Smolin states alone, and prove it to be secure against known cheating strategies. Thus we open a promising venue for building secure QSS using merely Smolin states, which is a typical kind of bound entangled states. We also propose a feasible scheme to implement the protocol experimentally.

  16. Wedge-Local Fields in Integrable Models with Bound States II: Diagonal S-Matrix

    Science.gov (United States)

    Cadamuro, Daniela; Tanimoto, Yoh

    2017-01-01

    We construct candidates for observables in wedge-shaped regions for a class of 1+1-dimensional integrable quantum field theories with bound states whose S-matrix is diagonal, by extending our previous methods for scalar S-matrices. Examples include the Z(N)-Ising models, the A_N-affine Toda field theories and some S-matrices with CDD factors. We show that these candidate operators which are associated with elementary particles commute weakly on a dense domain. For the models with two species of particles, we can take a larger domain of weak commutativity and give an argument for the Reeh-Schlieder property.

  17. Andreev reflection properties in a parallel mesoscopic circuit with Majorana bound states

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Jin-Tao; Han, Yu [Physics Department, Liaoning University, Shenyang 110036 (China); Gong, Wei-Jiang, E-mail: gwj@mail.neu.edu.cn [College of Sciences, Northeastern University, Shenyang 110819 (China)

    2017-03-15

    We investigate the Andreev reflection in a parallel mesoscopic circuit with Majorana bound states (MBSs). It is found that in such a structure, the Andreev current can be manipulated in a highly efficient way, by the adjustment of bias voltage, dot levels, inter-MBS coupling, and the applied magnetic flux. Besides, the dot-MBS coupling manner is an important factor to modulate the Andreev current, because it influences the period of the conductance oscillation. By discussing the underlying quantum interference mechanism, the Andreev-reflection property is explained in detail. We believe that all the results can assist to understand the nontrivial role of the MBSs in driving the Andreev reflection.

  18. Bound States in the Continuum in Nuclear and Hadron Physics

    CERN Document Server

    Lenske, H; Cao, Xu

    2015-01-01

    The population of bound states in the continuum and their spectral properties are studied on the nuclear and hadronic scale. The theoretical approach is presented and realizations in nuclear and charmonium spectroscopy are dis- cussed. The universality of the underlying dynamical principles is pointed out. Applications to nuclear systems at the neutron dripline and for charmonium spectroscopy by $e^- e^+ \\to D\\bar{D}$ production are discussed.

  19. R-matrix calculations for few-quark bound states

    Energy Technology Data Exchange (ETDEWEB)

    Shalchi, M.A. [Instituto de Fisica Teorica, UNESP, Sao Paulo, SP (Brazil); Hadizadeh, M.R. [Ohio University, Institute of Nuclear and Particle Physics and Department of Physics and Astronomy, Athens, OH (United States); Central State University, College of Science and Engineering, Wilberforce, OH (United States)

    2016-10-15

    The R-matrix method is implemented to study the heavy charm and bottom diquark, triquark, tetraquark, and pentaquarks in configuration space, as the bound states of quark-antiquark, diquark-quark, diquark-antidiquark, and diquark-antitriquark systems, respectively. The mass spectrum and the size of these systems are calculated for different partial wave channels. The calculated masses are compared with recent theoretical results obtained by other methods in momentum and configuration spaces and also by available experimental data. (orig.)

  20. Coherent states in quantum physics

    CERN Document Server

    Gazeau, Jean-Pierre

    2009-01-01

    This self-contained introduction discusses the evolution of the notion of coherent states, from the early works of Schrödinger to the most recent advances, including signal analysis. An integrated and modern approach to the utility of coherent states in many different branches of physics, it strikes a balance between mathematical and physical descriptions.Split into two parts, the first introduces readers to the most familiar coherent states, their origin, their construction, and their application and relevance to various selected domains of physics. Part II, mostly based on recent original results, is devoted to the question of quantization of various sets through coherent states, and shows the link to procedures in signal analysis. Title: Coherent States in Quantum Physics Print ISBN: 9783527407095 Author(s): Gazeau, Jean-Pierre eISBN: 9783527628292 Publisher: Wiley-VCH Dewey: 530.12 Publication Date: 23 Sep, 2009 Pages: 360 Category: Science, Science: Physics LCCN: Language: English Edition: N/A LCSH:

  1. Bound states of the Dirac equation on Kerr spacetime

    CERN Document Server

    Dolan, Sam R

    2015-01-01

    We formulate the Dirac equation for a massive neutral spin-half particle on a rotating black hole spacetime, and we consider its (quasi)bound states: gravitationally-trapped modes which are regular across the future event horizon. These bound states decay with time, due to the absence of superradiance in the (single-particle) Dirac field. We introduce a practical method for computing the spectrum of energy levels and decay rates, and we compare our numerical results with known asymptotic results in the small-$M \\mu$ and large-$M \\mu$ regimes. By applying perturbation theory in a horizon-penetrating coordinate system, we compute the `fine structure' of the energy spectrum, and show good agreement with numerical results. We obtain data for a hyperfine splitting due to black hole rotation. We evolve generic initial data in the time domain, and show how Dirac bound states appear as spectral lines in the power spectra. In the rapidly-rotating regime, we find that the decay of low-frequency co-rotating modes is sup...

  2. Bound-state formation in falling liquid films

    Science.gov (United States)

    Nguyen, Phuc-Khanh; Pradas, Marc; Kalliadasis, Serafim; Bontozoglou, Vasilis

    2012-11-01

    Direct numerical simulation shows that the interaction between solitary pulses may give rise to the formation of bound states consisting of two or more pulses separated by well-defined distances and traveling at the same velocity. Stationary pulse couples are studied first. The resulting equilibrium pulse distances compare favorably to theoretical predictions at large and intermediate pulse separations. When the two pulses are closely spaced, the theory becomes increasingly less accurate. Their time-dependent simulations indicate that all initial conditions of large separations lead to a monotonic attraction or repulsion to the stable bound states. However, intermediate range leads to a self-sustained oscillatory variation of the pulse separation distance, with well-defined amplitude and period, and a mean separation coinciding with the stationary distance. Eventually a very close separation causes an explosive repulsion of two pulses toward much larger stable separation. Bound states consisting of three pulses are computed next. The equilibrium separation distances in a symmetric system are similar to predictions based on simple couples. However, in an asymmetric one, they deviate significantly from simple predictions. Partially supported by FP7-Marie Curie ITN-``MULTIFLOW''-GA-214919-2.

  3. Nonadiabatic quantum state engineering driven by fast quench dynamics

    Science.gov (United States)

    Herrera, Marcela; Sarandy, Marcelo S.; Duzzioni, Eduardo I.; Serra, Roberto M.

    2014-02-01

    There are a number of tasks in quantum information science that exploit nontransitional adiabatic dynamics. Such a dynamics is bounded by the adiabatic theorem, which naturally imposes a speed limit in the evolution of quantum systems. Here, we investigate an approach for quantum state engineering exploiting a shortcut to the adiabatic evolution, which is based on rapid quenches in a continuous-time Hamiltonian evolution. In particular, this procedure is able to provide state preparation faster than the adiabatic brachistochrone. Remarkably, the evolution time in this approach is shown to be ultimately limited by its "thermodynamical cost," provided in terms of the average work rate (average power) of the quench process. We illustrate this result in a scenario that can be experimentally implemented in a nuclear magnetic resonance setup.

  4. Average subentropy, coherence and entanglement of random mixed quantum states

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lin, E-mail: godyalin@163.com [Institute of Mathematics, Hangzhou Dianzi University, Hangzhou 310018 (China); Singh, Uttam, E-mail: uttamsingh@hri.res.in [Harish-Chandra Research Institute, Allahabad, 211019 (India); Pati, Arun K., E-mail: akpati@hri.res.in [Harish-Chandra Research Institute, Allahabad, 211019 (India)

    2017-02-15

    Compact expressions for the average subentropy and coherence are obtained for random mixed states that are generated via various probability measures. Surprisingly, our results show that the average subentropy of random mixed states approaches the maximum value of the subentropy which is attained for the maximally mixed state as we increase the dimension. In the special case of the random mixed states sampled from the induced measure via partial tracing of random bipartite pure states, we establish the typicality of the relative entropy of coherence for random mixed states invoking the concentration of measure phenomenon. Our results also indicate that mixed quantum states are less useful compared to pure quantum states in higher dimension when we extract quantum coherence as a resource. This is because of the fact that average coherence of random mixed states is bounded uniformly, however, the average coherence of random pure states increases with the increasing dimension. As an important application, we establish the typicality of relative entropy of entanglement and distillable entanglement for a specific class of random bipartite mixed states. In particular, most of the random states in this specific class have relative entropy of entanglement and distillable entanglement equal to some fixed number (to within an arbitrary small error), thereby hugely reducing the complexity of computation of these entanglement measures for this specific class of mixed states.

  5. Quantifying non-Gaussianity of quantum-state correlation

    Science.gov (United States)

    Park, Jiyong; Lee, Jaehak; Ji, Se-Wan; Nha, Hyunchul

    2017-11-01

    We consider how to quantify non-Gaussianity for the correlation of a bipartite quantum state by using various measures such as relative entropy and geometric distances. We first show that an intuitive approach, i.e., subtracting the correlation of a reference Gaussian state from that of a target non-Gaussian state, fails to yield a non-negative measure with monotonicity under local Gaussian channels. Our finding clearly manifests that quantum-state correlations generally have no Gaussian extremality. We therefore propose a different approach by introducing relevantly averaged states to address correlation. This enables us to define a non-Gaussianity measure based on, e.g., the trace-distance and the fidelity, fulfilling all requirements as a measure of non-Gaussian correlation. For the case of the fidelity-based measure, we also present readily computable lower bounds of non-Gaussian correlation.

  6. Quantum pump in quantum spin Hall edge states

    Science.gov (United States)

    Cheng, Fang

    2016-09-01

    We present a theory for quantum pump in a quantum spin Hall bar with two quantum point contacts (QPCs). The pump currents can be generated by applying harmonically modulating gate voltages at QPCs. The phase difference between the gate voltages introduces an effective gauge field, which breaks the time-reversal symmetry and generates pump currents. The pump currents display very different pump frequency dependence for weak and strong e-e interaction. These unique properties are induced by the helical feature of the edge states, and therefore can be used to detect and control edge state transport.

  7. Excitation of surface modes by electron beam in semi-bounded quantum plasma

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, B. F., E-mail: mohamedbahf@yahoo.co.uk [Plasma Physics Department, N.R.C., Atomic Energy Authority, Cairo (Egypt); Elbasha, N. M. [Physics Department, Faculty of Science, Ain-Shams University, Cairo (Egypt)

    2015-10-15

    The excitation of the TM surface modes due to the interaction of electron beam with a semi-bounded quantum magnetized plasma is investigated. The generated current and the perturbed densities of the electron beam and plasma are obtained. The wave equation that describes the excited fields has been solved to obtain the dispersion relation for these modes. It is found that the quantum effects play important role for frequencies less and bigger than plasma frequency such that the phase velocity of modes increases with increasing the quantum effects compared to the classical case. It has also been displayed that in the absence of external magnetic field, the surface modes appear in the all regions of the wavelength while they have been only excited for high wavenumber in the presence of the magnetic field. Besides, it has been shown that the dispersion curves of the modes depend essentially on the density ratio of beam and plasma.

  8. Introduction to quantum-state estimation

    CERN Document Server

    Teo, Yong Siah

    2016-01-01

    Quantum-state estimation is an important field in quantum information theory that deals with the characterization of states of affairs for quantum sources. This book begins with background formalism in estimation theory to establish the necessary prerequisites. This basic understanding allows us to explore popular likelihood- and entropy-related estimation schemes that are suitable for an introductory survey on the subject. Discussions on practical aspects of quantum-state estimation ensue, with emphasis on the evaluation of tomographic performances for estimation schemes, experimental realizations of quantum measurements and detection of single-mode multi-photon sources. Finally, the concepts of phase-space distribution functions, which compatibly describe these multi-photon sources, are introduced to bridge the gap between discrete and continuous quantum degrees of freedom. This book is intended to serve as an instructive and self-contained medium for advanced undergraduate and postgraduate students to gra...

  9. Quark-antiquark bound-state spectroscopy and QCD

    Energy Technology Data Exchange (ETDEWEB)

    Bloom, E.D.

    1982-11-01

    The discussion covers quarks as we know them, the classification of ordinary mesons in terms of constituent quarks, hidden charm states and charmed mesons, bottom quarks, positronium as a model for quarti q, quantum chromodynamics and its foundation in experiment, the charmonium model, the mass of states, fine structure and hyperfine structure, classification, widths of states, rate and multipolarity of gamma transitions, questions about bottom, leptonic widths and the determination of Q/sub b/, the mass splitting of the n/sup 3/S/sub 1/ states, the center of gravity of the masses of the n/sup 3/P; states, n/sup 3/ P; fine structure and classification, branching ratios for upsilon' ..-->.. tau chi/sub 6j/ and the tau cascade reactions, hyperfine splitting, and top. (GHT)

  10. Bound states emerging from below the continuum in a solvable PT -symmetric discrete Schrödinger equation

    Science.gov (United States)

    Znojil, Miloslav

    2017-07-01

    The phenomenon of the birth of an isolated quantum bound state at the lower edge of the continuum is studied for a particle moving along a discrete real line of coordinates x ∈Z . The motion is controlled by a weakly nonlocal 2 J -parametric external potential V which is non-Hermitian but P T symmetric. The model is found exactly solvable. The bound states are interpreted as Sturmians. Their closed-form definitions are presented and discussed up to J =7 .

  11. Quantum control theory for state transformations: Dark states and their enlightenment

    Science.gov (United States)

    Pemberton-Ross, Peter J.; Kay, Alastair; Schirmer, Sophie G.

    2010-10-01

    For many quantum information protocols such as state transfer, entanglement transfer, and entanglement generation, standard notions of controllability for quantum systems are too strong. We introduce the weaker notion of accessible pairs and prove an upper bound on the achievable fidelity of a transformation between a pair of states based on the symmetries of the system. A large class of spin networks is presented for which this bound can be saturated. In this context, we show how the inaccessible dark states for a given excitation-preserving evolution can be calculated and illustrate how some of these can be accessed using extra catalytic excitations. This emphasizes that it is not sufficient for analyses of state transfer in spin networks to restrict to the single excitation subspace. One class of symmetries in these spin networks is exactly characterized in terms of the underlying graph properties.

  12. Quantum state transfer and network engineering

    CERN Document Server

    Nikolopoulos, Georgios M

    2013-01-01

    Faithful communication is a necessary precondition for large-scale quantum information processing and networking, irrespective of the physical platform. Thus, the problems of quantum-state transfer and quantum-network engineering have attracted enormous interest over the last years, and constitute one of the most active areas of research in quantum information processing. The present volume introduces the reader to fundamental concepts and various aspects of this exciting research area, including links to other related areas and problems. The implementation of state-transfer schemes and the en

  13. A narrow quasi-bound state of the DNN system

    Energy Technology Data Exchange (ETDEWEB)

    Doté, A., E-mail: dote@post.kek.jp [KEK Theory Center, Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, 305-0801 (Japan); J-PARC Branch, KEK Theory Center, IPNS, KEK, 203-1, Shirakata, Tokai, Ibaraki, 319-1106 (Japan); Bayar, M. [Departamento de Física Teórica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigación de Paterna, Aptdo. 22085, 46071 Valencia (Spain); Department of Physics, Kocaeli University, 41380 Izmit (Turkey); Xiao, C.W. [Departamento de Física Teórica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigación de Paterna, Aptdo. 22085, 46071 Valencia (Spain); Hyodo, T. [Department of Physics, Tokyo Institute of Technology, Meguro, 152-8551 (Japan); Oka, M. [J-PARC Branch, KEK Theory Center, IPNS, KEK, 203-1, Shirakata, Tokai, Ibaraki, 319-1106 (Japan); Department of Physics, Tokyo Institute of Technology, Meguro, 152-8551 (Japan); Oset, E. [Departamento de Física Teórica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigación de Paterna, Aptdo. 22085, 46071 Valencia (Spain)

    2013-09-20

    We have investigated a charmed system of DNN (composed of two nucleons and a D meson) by a complementary study with a variational calculation and a Faddeev calculation with fixed-center approximation (Faddeev-FCA). In the present study, we employ a DN potential based on a vector–meson exchange picture in which a resonant Λ{sub c}(2595) is dynamically generated as a DN quasi-bound state, similarly to the Λ(1405) as a K{sup ¯}N one in the strange sector. As a result of the study of variational calculation with an effective DN potential and three kinds of NN potentials, the DNN(J{sup π}=0{sup −},I=1/2) is found to be a narrow quasi-bound state below Λ{sub c}(2595)N threshold: total binding energy ∼225 MeV and mesonic decay width ∼25 MeV. On the other hand, the J{sup π}=1{sup −} state is considered to be a scattering state of Λ{sub c}(2595) and a nucleon. These results are essentially supported by the Faddeev-FCA calculation. By the analysis of the variational wave function, we have found a unique structure in the DNN(J{sup π}=0{sup −},I=1/2) such that the D meson stays around the center of the total system due to the heaviness of the D meson.

  14. Quantum cobwebs: Universal entangling of quantum states

    Indian Academy of Sciences (India)

    ZSA) multipartite, pure entangled states for qubits and study their salient features. ... Institute of Physics, Bhubaneswar 751 005, India; Center for Philosophy and Foundation of Science, New Delhi, India; School of Informatics, University of Wales, ...

  15. Quantum information processing with mesoscopic photonic states

    DEFF Research Database (Denmark)

    Madsen, Lars Skovgaard

    2012-01-01

    The thesis is built up around a versatile optical experimental setup based on a laser, two optical parametric ampliers, a few sets of modulators and two sets of homodyne detectors, which together with passive linear optics generate, process and characterize various types of Gaussian quantum states....... Using this setup we have experimentally and theoretically investigated Gaussian quantum discord, continuous variable quantum key distribution and quantum polarization. The Gaussian discord broadens the definition of non-classical correlations from entanglement, to all types of correlations which cannot...... in the mixture of coherent states. Further we investigate the robustness of the discord of a broader range of states and suggest a toolbox of states which can be used to test if a protocol is discord based, before performing a rigid proof. Gaussian quantum key distribution can be implemented with current...

  16. Stationary bound states of Dirac particles in collapsar's fields

    Science.gov (United States)

    Gorbatenko, M. V.; Neznamov, V. P.

    2012-03-01

    For a Schwarzschild gravitational field by use of a self-conjugate Hamiltonian with a flat scalar product in a wide interval of gravitational constant stationary non-decaiing in time bound states for spin 1/2 elementary particles have been obtained for a first time. To obtain a discrete energies spectrum a boundary condition was introduced, corresponding to null current density of Dirac partciles near the events horizon. The results obtained could lead to reevaluation of some existing representations of the standart cosmological model, related with the Universe's evolution and with collapsars interactions with encountering media.

  17. Quarkonium-nucleus bound states from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Beane, S.  R. [Univ. of Washington, Seattle, WA (United States); Chang, E. [Univ. of Washington, Seattle, WA (United States); Cohen, S.  D. [Univ. of Washington, Seattle, WA (United States); Detmold, W. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Lin, H. -W. [Univ. of Washington, Seattle, WA (United States); Orginos, K. [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Parreño, A. [Univ., de Barcelona, Marti Franques (Spain); Savage, M.  J. [Univ. of Washington, Seattle, WA (United States)

    2015-06-11

    Quarkonium-nucleus systems are composed of two interacting hadronic states without common valence quarks, which interact primarily through multi-gluon exchanges, realizing a color van der Waals force. We present lattice QCD calculations of the interactions of strange and charm quarkonia with light nuclei. Both the strangeonium-nucleus and charmonium-nucleus systems are found to be relatively deeply bound when the masses of the three light quarks are set equal to that of the physical strange quark. Extrapolation of these results to the physical light-quark masses suggests that the binding energy of charmonium to nuclear matter is B < 40 MeV.

  18. Bridge between bound state and reaction effective nucleon–nucleon ...

    Indian Academy of Sciences (India)

    Bridge between bound state and N–N potentials. Table 2. Parameters of the potential. v0 (MeV). 590. 432. 448. 495 c (fm). 1.34. 1.12. 1.03. 0.99 r0 (fm). 1.2. 1.2. 1.2. 1.2 σ (fm). 0.8. 1.0. 1.2. 1.4. BE (MeV). 128.4. 127.6. 127.5. 126.8. R (fm). 2.73. 2.73. 2.73. 2.73. It must be mentioned here that in our earlier detailed analysis ...

  19. Relation between properties of long-range diatomic bound states

    DEFF Research Database (Denmark)

    Spirko, Vladimir; Sauer, Stephan P. A.; Szalewicz, Krzysztof

    2013-01-01

    Long-range states of diatomic molecules have average values of internuclear separations at least one order of magnitude larger than the equilibrium value of R. For example, the helium dimer 4He2 has a single bound state with of about 50 Å. We show that the properties of these states, such as ...>, the dissociation energy, or the s-wave scattering length, can be related by simple, yet very accurate formulas if a potential energy curve is known. By examining a range of ab initio and empirical helium dimer potentials, as well as scaling these potentials, we found that the formulas remain accurate even if very...

  20. Efficiency versus speed in quantum heat engines: Rigorous constraint from Lieb-Robinson bound

    Science.gov (United States)

    Shiraishi, Naoto; Tajima, Hiroyasu

    2017-08-01

    A long-standing open problem whether a heat engine with finite power achieves the Carnot efficiency is investgated. We rigorously prove a general trade-off inequality on thermodynamic efficiency and time interval of a cyclic process with quantum heat engines. In a first step, employing the Lieb-Robinson bound we establish an inequality on the change in a local observable caused by an operation far from support of the local observable. This inequality provides a rigorous characterization of the following intuitive picture that most of the energy emitted from the engine to the cold bath remains near the engine when the cyclic process is finished. Using this description, we prove an upper bound on efficiency with the aid of quantum information geometry. Our result generally excludes the possibility of a process with finite speed at the Carnot efficiency in quantum heat engines. In particular, the obtained constraint covers engines evolving with non-Markovian dynamics, which almost all previous studies on this topic fail to address.

  1. Efficiency versus speed in quantum heat engines: Rigorous constraint from Lieb-Robinson bound.

    Science.gov (United States)

    Shiraishi, Naoto; Tajima, Hiroyasu

    2017-08-01

    A long-standing open problem whether a heat engine with finite power achieves the Carnot efficiency is investgated. We rigorously prove a general trade-off inequality on thermodynamic efficiency and time interval of a cyclic process with quantum heat engines. In a first step, employing the Lieb-Robinson bound we establish an inequality on the change in a local observable caused by an operation far from support of the local observable. This inequality provides a rigorous characterization of the following intuitive picture that most of the energy emitted from the engine to the cold bath remains near the engine when the cyclic process is finished. Using this description, we prove an upper bound on efficiency with the aid of quantum information geometry. Our result generally excludes the possibility of a process with finite speed at the Carnot efficiency in quantum heat engines. In particular, the obtained constraint covers engines evolving with non-Markovian dynamics, which almost all previous studies on this topic fail to address.

  2. Quantum information. Unconditional quantum teleportation between distant solid-state quantum bits.

    Science.gov (United States)

    Pfaff, W; Hensen, B J; Bernien, H; van Dam, S B; Blok, M S; Taminiau, T H; Tiggelman, M J; Schouten, R N; Markham, M; Twitchen, D J; Hanson, R

    2014-08-01

    Realizing robust quantum information transfer between long-lived qubit registers is a key challenge for quantum information science and technology. Here we demonstrate unconditional teleportation of arbitrary quantum states between diamond spin qubits separated by 3 meters. We prepare the teleporter through photon-mediated heralded entanglement between two distant electron spins and subsequently encode the source qubit in a single nuclear spin. By realizing a fully deterministic Bell-state measurement combined with real-time feed-forward, quantum teleportation is achieved upon each attempt with an average state fidelity exceeding the classical limit. These results establish diamond spin qubits as a prime candidate for the realization of quantum networks for quantum communication and network-based quantum computing. Copyright © 2014, American Association for the Advancement of Science.

  3. Classical topology and quantum states

    Indian Academy of Sciences (India)

    Classical topology is in this manner incorporated in conventional quantum physics by formulating it using ... touches both on issues of relevance to quantum gravity such as the meaning of 'quantized topology' and the ..... thus is equivalent to a classical probability measure for an instantaneous measurement. (which any way ...

  4. Quantum key distribution using three basis states

    Indian Academy of Sciences (India)

    This note presents a method of public key distribution using quantum communication of photons that simultaneously provides a high probability that the bits have not been tampered. It is a variant of the quantum method of Bennett and Brassard (BB84) where the transmission states have been decreased from 4 to 3 and ...

  5. Sending Quantum Information with Gaussian States

    Science.gov (United States)

    Holevo, Alexander S.

    Quantum information characteristics, such as quantum mutual information, loss, noise and coherent information are explicitly calculated for Bosonic attenuation/amplification channel with input Gaussian state. The coherent information is shown to be negative for the values of the attenuation coefficient k < 1sqrt 2.

  6. Sending Quantum Information with Gaussian States

    OpenAIRE

    Holevo, Alexander S.

    1998-01-01

    Quantum information characteristics, such as quantum mutual information, loss, noise and coherent information are explicitly calculated for Bosonic attenuation/amplification channel with input Gaussian state. The coherent information is shown to be negative for the values of the attenuation coefficient $k

  7. Fano effect and Andreev bound states in a hybrid superconductor–ferromagnetic nanostructure

    Energy Technology Data Exchange (ETDEWEB)

    Siqueira, E.C., E-mail: ezcostta@gmail.com [Departamento de Física, Universidade Tecnológica Federal do Paraná – UTFPR, 84016210, Ponta Grossa, PR (Brazil); Orellana, P.A. [Departamento de Física, Universidad Técnica Federico Santa Maria, Av. Vicuña Mackenna 3939, Santiago (Chile); Cestari, R.C. [Departamento de Física e Química, Universidade Estadual Paulista – UNESP, 15385-000, Ilha Solteira, SP (Brazil); Figueira, M.S. [Instituto de Física, Universidade Federal Fluminense, 24210-340, Niterói, RJ (Brazil); Cabrera, G.G. [Instituto de Física ‘Gleb Wataghin’, Universidade Estadual de Campinas – UNICAMP, Campinas 13083-859, SP (Brazil)

    2015-10-16

    In this work, it is considered a hybrid nanostructure composed by a quantum dot coupled to two ferromagnetic leads and a superconductor lead. It is shown that the zero-bias transmittance for the co-tunneling between the ferromagnetic leads presents Fano anti-resonances due to the destructive interference between the two spin channels mixing by the relative orientation of the magnetizations in the leads. When the superconductor is coupled to the system, electron–hole correlations between different spin states lead to a resonance in the place of the dip appearing in the transmittance. Such an effect is accompanied by two Fano anti-resonances explained by a “leakage” of conduction channels from the co-tunneling to the Andreev transport. In the non-equilibrium regime, correlations within the quantum dot introduce a dependence of the resonance condition on the finite bias applied to the ferromagnetic leads. However, it is still possible to observe signatures of the same interference effect in the electrical current. - Highlights: • We have studied an hybrid nanostructure composed by quantum dot coupled to a superconductor and two ferromagnets. • The interplay between spin polarization and Andreev bound states leads to a Fano-like effect. • The Fano-like effect manifests as a resonance in the transmittance for the transport between the ferromagnets.

  8. Invariant measures on multimode quantum Gaussian states

    Energy Technology Data Exchange (ETDEWEB)

    Lupo, C. [School of Science and Technology, Universita di Camerino, I-62032 Camerino (Italy); Mancini, S. [School of Science and Technology, Universita di Camerino, I-62032 Camerino (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia (Italy); De Pasquale, A. [NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, I-56126 Pisa (Italy); Facchi, P. [Dipartimento di Matematica and MECENAS, Universita di Bari, I-70125 Bari (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari (Italy); Florio, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari (Italy); Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Piazza del Viminale 1, I-00184 Roma (Italy); Dipartimento di Fisica and MECENAS, Universita di Bari, I-70126 Bari (Italy); Pascazio, S. [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari (Italy); Dipartimento di Fisica and MECENAS, Universita di Bari, I-70126 Bari (Italy)

    2012-12-15

    We derive the invariant measure on the manifold of multimode quantum Gaussian states, induced by the Haar measure on the group of Gaussian unitary transformations. To this end, by introducing a bipartition of the system in two disjoint subsystems, we use a parameterization highlighting the role of nonlocal degrees of freedom-the symplectic eigenvalues-which characterize quantum entanglement across the given bipartition. A finite measure is then obtained by imposing a physically motivated energy constraint. By averaging over the local degrees of freedom we finally derive the invariant distribution of the symplectic eigenvalues in some cases of particular interest for applications in quantum optics and quantum information.

  9. In-medium bound states and pairing gap

    Science.gov (United States)

    Rubtsova, O. A.; Kukulin, V. I.; Pomerantsev, V. N.; Müther, H.

    2017-09-01

    The two-particle Green's function and T matrix including pphh correlations in infinite nuclear matter are evaluated by a diagonalization of the effective total Hamiltonian. This diagonalization procedure corresponds to the same eigenvalue problem as for the pphh Random Phase Approximation. The effective Hamiltonian is nonHermitian and, for specific density domains and partial waves, yields pairs of complex conjugated eigenvalues and eigenfunctions representing in-medium bound states of two nucleons. The occurrence of these complex poles of the two-particle in-medium Green's function indicates the well known pairing instability. It is shown that the corresponding bound-state wave functions contain momentum dependencies of the BCS gap function, so that the latter can be found from a single diagonalization procedure for the effective Hamiltonian matrix. The approach is illustrated by calculations for S10 and 2 3P F gap functions in neutron matter which essentially coincide with the results found by a direct solving of the BCS gap equation. However the developed approach shows a new interesting feature, i.e., the gap closure and a phase transition point at very low density in the case of coupled channels 1 3S D in symmetric nuclear matter. This finding goes beyond the conventional BCS treatment and is discussed in the context of transition from Bose-Einstein condensation of quasideuterons to the formation of BCS pairing.

  10. Percolation bounds for decoding thresholds with correlated erasures in quantum LDPC codes

    Science.gov (United States)

    Hamilton, Kathleen; Pryadko, Leonid

    Correlations between errors can dramatically affect decoding thresholds, in some cases eliminating the threshold altogether. We analyze the existence of a threshold for quantum low-density parity-check (LDPC) codes in the case of correlated erasures. When erasures are positively correlated, the corresponding multi-variate Bernoulli distribution can be modeled in terms of cluster errors, where qubits in clusters of various size can be marked all at once. In a code family with distance scaling as a power law of the code length, erasures can be always corrected below percolation on a qubit adjacency graph associated with the code. We bound this correlated percolation transition by weighted (uncorrelated) percolation on a specially constructed cluster connectivity graph, and apply our recent results to construct several bounds for the latter. This research was supported in part by the NSF Grant PHY-1416578 and by the ARO Grant W911NF-14-1-0272.

  11. Unified quantum no-go theorems and transforming of quantum pure states in a restricted set

    Science.gov (United States)

    Luo, Ming-Xing; Li, Hui-Ran; Lai, Hong; Wang, Xiaojun

    2017-12-01

    The linear superposition principle in quantum mechanics is essential for several no-go theorems such as the no-cloning theorem, the no-deleting theorem and the no-superposing theorem. In this paper, we investigate general quantum transformations forbidden or permitted by the superposition principle for various goals. First, we prove a no-encoding theorem that forbids linearly superposing of an unknown pure state and a fixed pure state in Hilbert space of a finite dimension. The new theorem is further extended for multiple copies of an unknown state as input states. These generalized results of the no-encoding theorem include the no-cloning theorem, the no-deleting theorem and the no-superposing theorem as special cases. Second, we provide a unified scheme for presenting perfect and imperfect quantum tasks (cloning and deleting) in a one-shot manner. This scheme may lead to fruitful results that are completely characterized with the linear independence of the representative vectors of input pure states. The upper bounds of the efficiency are also proved. Third, we generalize a recent superposing scheme of unknown states with a fixed overlap into new schemes when multiple copies of an unknown state are as input states.

  12. Capillary electrophoretic studies on displacement and proteolytic cleavage of surface bound oligohistidine peptide on quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jianhao, E-mail: minuswan@gmail.com [Department of Chemistry, Chinese University of Hong Kong, Shatin (Hong Kong); Xia Jiang, E-mail: jiangxia@cuhk.edu.hk [Department of Chemistry, Chinese University of Hong Kong, Shatin (Hong Kong)

    2012-01-04

    Highlights: Black-Right-Pointing-Pointer Capillary electrophoresis reveals details in QD-oligohistidine peptide binding. Black-Right-Pointing-Pointer An ordered assembly of peptides on QDs was revealed. Black-Right-Pointing-Pointer Intermediates of QD-peptide binding were found. Black-Right-Pointing-Pointer Detailed displacement kinetics was revealed. Black-Right-Pointing-Pointer Proteolysis of surface ligands causes mobility shift and peak broadening in CE. - Abstract: Subtle changes in the chemical structure or the composition of surface bound ligands on quantum dots (QDs) remain difficult to detect. Here we describe a facile setup for fluorescence detection coupled capillary electrophoresis (CE-FL) and its application in monitoring ligand displacement on QDs through metal-affinity driven assembly. We also describe the use of CE-FL to monitor amide bond cleavage by a specific protease, based on Foerster resonance energy transfer (FRET) between Cy5 and QDs spaced by a hexahistidine peptide (H6-Cy5). CE-FL allowed separation of unbound QDs and ligand bound QDs and also revealed an ordered assembly of H6-Cy5 on QDs. In a ligand displacement experiment, unlabeled hexahistidine peptide gradually displaced surface bound H6-Cy5 until finally reaching equilibrium. The displacement intermediates were clearly separated on CE-FL. Proteolytic cleavage of surface bound H6-Cy5 by thrombin was monitored by CE-FL through mobility shift, peak broadening, and FRET changes. Enzymatic parameters thus obtained were comparable with those measured by fluorescence spectroscopy.

  13. Quantum fidelity and quantum phase transitions in matrix product states

    Science.gov (United States)

    Cozzini, Marco; Ionicioiu, Radu; Zanardi, Paolo

    2007-09-01

    Matrix product states, a key ingredient of numerical algorithms widely employed in the simulation of quantum spin chains, provide an intriguing tool for quantum phase transition engineering. At critical values of the control parameters on which their constituent matrices depend, singularities in the expectation values of certain observables can appear, in spite of the analyticity of the ground state energy. For this class of generalized quantum phase transitions, we test the validity of the recently introduced fidelity approach, where the overlap modulus of ground states corresponding to slightly different parameters is considered. We discuss several examples, successfully identifying all the present transitions. We also study the finite size scaling of fidelity derivatives, pointing out its relevance in extracting critical exponents.

  14. N2(+) bound quartet and sextet state potential energy curves

    Science.gov (United States)

    Partridge, H.; Bauschlicher, C. W., Jr.; Stallcop, J. R.

    1985-01-01

    The N2(+) potential energies have been determined from a complete active space self-consistent field calculation with active 2s and 2p electrons. A (6s 4p 3d 1f) Gaussian basis set was used together with additional higher angular momentum and diffuse functions. The calculated potential energy curves for the states 4Sigma(mu)(+), 4Pi(g), and 6Sigma(g)(+), for which there are no spectroscopic observations, are presented. The corresponding spectroscopic constants have been determined from a polynomial curve fit to the computed energies near the well minima and are shown. The 6Sigma(g)(+) state is found to be significantly bound, with a minimum at 1.72 A.

  15. Robust zero-energy bound states in a helical lattice

    Science.gov (United States)

    Li, Pengke; Sau, Jay D.; Appelbaum, Ian

    2017-09-01

    Atomic-scale helices exist as motifs for several material lattices. We examine a tight-binding model for a single one-dimensional monatomic chain with a p -orbital basis coiled into a helix. A topologically nontrivial phase emerging from this model supports a chiral symmetry-protected zero-energy mode localized to a boundary, always embedded within a continuum band, regardless of termination site. We identify a topological invariant for this phase that is related to the number of zero energy end modes by means of the bulk-boundary correspondence, and give strict conditions for the existence of the bound state. An additional class of gapped edge modes in the model spectrum has practical consequences for surface states in, e.g., trigonal tellurium and selenium and other van der Waals-bonded one-dimensional semiconductors.

  16. Nonvalence Correlation-Bound Anion States of Polycyclic Aromatic Hydrocarbons.

    Science.gov (United States)

    Voora, Vamsee K; Jordan, Kenneth D

    2015-10-15

    In this work, we characterize the nonvalence correlation-bound anion states of several polycyclic aromatic hydrocarbon (PAH) molecules. Unlike the analogous image potential states of graphene that localize the charge density of the excess electron above and below the plane of the sheet, we find that for PAHs, much of the charge distribution of the excess electron is localized around the periphery of the molecule. This is a consequence of the electrostatic interaction of the electron with the polar CH groups. By replacing the H atoms by F atoms or the CH groups by N atoms, the charge density of the excess electron shifts from the periphery to above and below the plane of the ring systems.

  17. Solid-State Quantum Refrigeration

    Science.gov (United States)

    2013-03-01

    are generated.  It has been shown that in strained quantum wells grown on (111B) substrates, the direction of the piezoelectric field is toward...compressively strained quantum well . So that the heavy hole band are pushed upwards in the band diagram and consequently the interband transition with...fifth layer 6 InP 2.5 undoped Quantum well sixth layer  In this structure (VE1889) we put the InAlAs layer inside the InGaAs layer to see if

  18. Quantum state transfer and network engineering

    Energy Technology Data Exchange (ETDEWEB)

    Nikolopoulos, Georgios M. [Institute of Electronic Structure and Laser Foundation for Research and Technology, Hellas (Greece); Jex, Igor (ed.) [Czech Technical Univ., Prague (Czech Republic). Faculty of Nuclear Sciences and Physical Engineering

    2014-03-01

    Presents the basics of large-scale quantum information processing and networking. Covers most aspects of the problems of state transfer and quantum network engineering. Reflects the interdisciplinary nature of the field. Presents various theoretical approaches as well as possible implementations and related experiments. Faithful communication is a necessary precondition for large-scale quantum information processing and networking, irrespective of the physical platform. Thus, the problems of quantum-state transfer and quantum-network engineering have attracted enormous interest over the last years, and constitute one of the most active areas of research in quantum information processing. The present volume introduces the reader to fundamental concepts and various aspects of this exciting research area, including links to other related areas and problems. The implementation of state-transfer schemes and the engineering of quantum networks are discussed in the framework of various quantum optical and condensed matter systems, emphasizing the interdisciplinary character of the research area. Each chapter is a review of theoretical or experimental achievements on a particular topic, written by leading scientists in the field. The volume aims at both newcomers as well as experienced researchers.

  19. A tabulation of the bound-state energies of atomic hydrogen

    CERN Document Server

    Horbatsch, M

    2016-01-01

    We present tables for the bound-state energies for atomic hydrogen. The tabulated energies include the hyperfine structure, and thus this work extends the work of Rev. Mod. Phys. {\\bf 84}, 1527 (2012), which excludes hyperfine structure. The tabulation includes corrections of the hyperfine structure due to the anomalous moment of the electron, due to the finite mass of the proton, and due to off-diagonal matrix elements of the hyperfine Hamiltonian. These corrections are treated incorrectly in most other works. Simple formulas valid for all quantum numbers are presented for the hyperfine corrections. The tabulated energies have uncertainties of less than 1 kHz for all states. This accuracy is possible because of the recent precision measurement [Nature, {\\bf 466}, 213 (2010); Science, {\\bf 339}, 417] of the proton radius. The effect of this new radius on the energy levels is also tabulated, and the energies are compared to precision measurements of atomic hydrogen energy intervals.

  20. Effect of substrate on optical bound states in the continuum in 1D photonic structures

    DEFF Research Database (Denmark)

    Sadrieva, Z. F.; Sinev, I. S.; Samusev, A. K.

    2017-01-01

    Optical bound states in the continuum (BIC) are localized states with energy lying above the light line and having infinite lifetime. Any losses taking place in real systems result in transformation of the bound states into resonant states with finite lifetime. In this work, we analyze properties...... into resonant states due to leakage into the diffraction channels opening in the substrate.......Optical bound states in the continuum (BIC) are localized states with energy lying above the light line and having infinite lifetime. Any losses taking place in real systems result in transformation of the bound states into resonant states with finite lifetime. In this work, we analyze properties...

  1. Majorant recursions to determine eigenstate bounds of a symmetric exponential quantum anharmonic oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Özdemir, Semra Bayat; Demiralp, Metin [Computational Science and Engineering Department, Informatics Institute, Istanbul Technical University, Istanbul (Turkey)

    2015-12-31

    The determination of the energy states is highly studied issue in the quantum mechanics. Based on expectation values dynamics, energy states can be observed. But conditions and calculations vary depending on the created system. In this work, a symmetric exponential anharmonic oscillator is considered and development of a recursive approximation method is studied to find its ground energy state. The use of majorant values facilitates the approximate calculation of expectation values.

  2. Universal bounds on charged states in 2d CFT and 3d gravity

    Energy Technology Data Exchange (ETDEWEB)

    Benjamin, Nathan; Dyer, Ethan [Stanford Institute for Theoretical Physics, Via Pueblo, Stanford, CA, 94305 (United States); Fitzpatrick, A. Liam [Boston University Physics Department, Commonwealth Avenue, Boston, MA, 02215 (United States); Kachru, Shamit [Stanford Institute for Theoretical Physics, Via Pueblo, Stanford, CA, 94305 (United States)

    2016-08-04

    We derive an explicit bound on the dimension of the lightest charged state in two dimensional conformal field theories with a global abelian symmetry. We find that the bound scales with c and provide examples that parametrically saturate this bound. We also prove that any such theory must contain a state with charge-to-mass ratio above a minimal lower bound. We comment on the implications for charged states in three dimensional theories of gravity.

  3. Quarkonium as a relativistic bound state on the light front

    Science.gov (United States)

    Li, Yang; Maris, Pieter; Vary, James P.

    2017-07-01

    We study charmonium and bottomonium as relativistic bound states in a light-front quantized Hamiltonian formalism. The effective Hamiltonian is based on light-front holography. We use a recently proposed longitudinal confinement to complete the soft-wall holographic potential for the heavy flavors. The spin structure is generated from the one-gluon exchange interaction with a running coupling. The adoption of asymptotic freedom improves the spectroscopy compared with previous light-front results. Within this model, we compute the mass spectroscopy, decay constants and the r.m.s. radii. We also present a detailed study of the obtained light-front wave functions and use the wave functions to compute the light-cone distributions, specifically the distribution amplitudes and parton distribution functions. Overall, our model provides a reasonable description of the heavy quarkonia.

  4. Quantum filtering of optical coherent states

    DEFF Research Database (Denmark)

    Wittmann, C.; Elser, D.; Andersen, Ulrik Lund

    2008-01-01

    We propose and experimentally demonstrate nondestructive and noiseless removal (filtering) of vacuum states from an arbitrary set of coherent states of continuous variable systems. Errors, i.e., vacuum states in the quantum information are diagnosed through a weak measurement, and on that basis...

  5. Classical and Quantum-Mechanical State Reconstruction

    Science.gov (United States)

    Khanna, F. C.; Mello, P. A.; Revzen, M.

    2012-01-01

    The aim of this paper is to present the subject of state reconstruction in classical and in quantum physics, a subject that deals with the experimentally acquired information that allows the determination of the physical state of a system. Our first purpose is to explain a method for retrieving a classical state in phase space, similar to that…

  6. Quantum cryptography with finite resources: unconditional security bound for discrete-variable protocols with one-way postprocessing.

    Science.gov (United States)

    Scarani, Valerio; Renner, Renato

    2008-05-23

    We derive a bound for the security of quantum key distribution with finite resources under one-way postprocessing, based on a definition of security that is composable and has an operational meaning. While our proof relies on the assumption of collective attacks, unconditional security follows immediately for standard protocols such as Bennett-Brassard 1984 and six-states protocol. For single-qubit implementations of such protocols, we find that the secret key rate becomes positive when at least N approximately 10(5) signals are exchanged and processed. For any other discrete-variable protocol, unconditional security can be obtained using the exponential de Finetti theorem, but the additional overhead leads to very pessimistic estimates.

  7. Multilevel distillation of magic states for quantum computing

    Science.gov (United States)

    Jones, Cody

    2013-04-01

    We develop a procedure for distilling magic states used in universal quantum computing that requires substantially fewer initial resources than prior schemes. Our distillation circuit is based on a family of concatenated quantum codes that possess a transversal Hadamard operation, enabling each of these codes to distill the eigenstate of the Hadamard operator. A crucial result of this design is that low-fidelity magic states can be consumed to purify other high-fidelity magic states to even higher fidelity, which we call multilevel distillation. When distilling in the asymptotic regime of infidelity ɛ→0 for each input magic state, the number of input magic states consumed on average to yield an output state with infidelity O(ɛ2r) approaches 2r+1, which comes close to saturating the conjectured bound in another investigation [Bravyi and Haah, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.86.052329 86, 052329 (2012)]. We show numerically that there exist multilevel protocols such that the average number of magic states consumed to distill from error rate ɛin=0.01 to ɛout in the range 10-5-10-40 is about 14log10(1/ɛout)-40; the efficiency of multilevel distillation dominates all other reported protocols when distilling Hadamard magic states from initial infidelity 0.01 to any final infidelity below 10-7. These methods are an important advance for magic-state distillation circuits in high-performance quantum computing and provide insight into the limitations of nearly resource-optimal quantum error correction.

  8. Probing the Dark Sector with Dark Matter Bound States.

    Science.gov (United States)

    An, Haipeng; Echenard, Bertrand; Pospelov, Maxim; Zhang, Yue

    2016-04-15

    A model of the dark sector where O(few  GeV) mass dark matter particles χ couple to a lighter dark force mediator V, m_{V}≪m_{χ}, is motivated by the recently discovered mismatch between simulated and observed shapes of galactic halos. Such models, in general, provide a challenge for direct detection efforts and collider searches. We show that for a large range of coupling constants and masses, the production and decay of the bound states of χ, such as 0^{-+} and 1^{--} states, η_{D} and ϒ_{D}, is an important search channel. We show that e^{+}e^{-}→η_{D}+V or ϒ_{D}+γ production at B factories for α_{D}>0.1 is sufficiently strong to result in multiple pairs of charged leptons and pions via η_{D}→2V→2(l^{+}l^{-}) and ϒ_{D}→3V→3(l^{+}l^{-}) (l=e,μ,π). The absence of such final states in the existing searches performed at BABAR and Belle sets new constraints on the parameter space of the model. We also show that a search for multiple bremsstrahlung of dark force mediators, e^{+}e^{-}→χχ[over ¯]+nV, resulting in missing energy and multiple leptons, will further improve the sensitivity to self-interacting dark matter.

  9. Bounds for entanglement of formation of two mode squeezed thermal states

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiao-Yu; Qiu, Pei-Liang

    2003-07-28

    The upper and lower bounds of entanglement of formation are given for two mode squeezed thermal state. The bounds are compared with other entanglement measure or bounds. The entanglement distillation and the relative entropy of entanglement of infinitive squeezed state are obtained at the postulation of hashing inequality.

  10. Broken degeneracy of low frequency surface waves in semi-bounded quantum plasmas including the quantum recoil effect

    Science.gov (United States)

    Lee, Myoung-Jae; Jung, Young-Dae

    2018-02-01

    We present a derivation of the dispersion relation for electrostatic waves propagating at the interface of semi-bounded quantum plasma in which degenerate electrons are governed by the Wigner–Poisson system, while non-degenerate ions follow the classical fluid equations. We consider parameters for metallic plasmas in terms of the ratio of plasmon energy to Fermi energy. The dispersion relation is solved numerically and analyzed for various plasmon energies. The result shows that two-mode of waves can be possible: high- and low-mode. We have found that the degeneracy for high-mode wave would be broken when the plasmon energy is larger than the Fermi energy. We also discuss the characteristics of group velocities for high- and low-mode waves.

  11. Bounds on the dynamics of periodic quantum walks and emergence of the gapless and gapped Dirac equation

    Science.gov (United States)

    Kumar, N. Pradeep; Balu, Radhakrishna; Laflamme, Raymond; Chandrashekar, C. M.

    2018-01-01

    We study the dynamics of discrete-time quantum walk using quantum coin operations, C ̂(θ1) and C ̂(θ2) , in time-dependent periodic sequence. For the two-period quantum walk with the parameters θ1 and θ2 in the coin operations we show that the standard deviation [σθ1,θ2(t ) ] is the same as the minimum of standard deviation obtained from one of the one-period quantum walks with coin operations θ1 or θ2, σθ1,θ2(t ) =min {σθ1(t) ,σθ 2(t ) } . Our numerical result is analytically corroborated using the dispersion relation obtained from the continuum limit of the dynamics. Using the dispersion relation for one- and two-period quantum walks, we present the bounds on the dynamics of three- and higher-period quantum walks. We also show that the bounds for the two-period quantum walk will hold good for the split-step quantum walk which is also defined using two coin operators using θ1 and θ2. Unlike the previous known connection of discrete-time quantum walks with the massless Dirac equation where coin parameter θ =0 , here we show the recovery of the massless Dirac equation with nonzero θ parameters contributing to the intriguing interference in the dynamics in a totally nonrelativistic situation. We also present the effect of periodic sequence on the entanglement between coin and position space.

  12. Quantum Tomography via Compressed Sensing: Error Bounds, Sample Complexity and Efficient Estimators

    Science.gov (United States)

    2012-09-27

    existing literature , we adopt the perspective that it is not enough for an estimator to be asymptotically efficient in the number of copies for fixed d. We... Puentes G, Walmsley I A and Lundeen J S 2010 Optimal experiment design for quantum state tomography: fair, precise and minimal tomography Phys. Rev. A

  13. State preparation for quantum information science and metrology

    Energy Technology Data Exchange (ETDEWEB)

    Samblowski, Aiko

    2012-06-08

    The precise preparation of non-classical states of light is a basic requirement for performing quantum information tasks and quantum metrology. Depending on the assignment, the range of required states varies from preparing and modifying squeezed states to generating bipartite entanglement and establishing multimode entanglement networks. Every state needs special preparation techniques and hence it is important to develop the experimental expertise to generate all states with the desired degree of accuracy. In this thesis, the experimental preparation of different kinds of non-classical states of light is demonstrated. Starting with a multimode entangled state, the preparation of an unconditionally generated bound entangled state of light of unprecedented accuracy is shown. Its existence is of fundamental interest, since it certifies an intrinsic irreversibility of entanglement and suggests a connection with thermodynamics. The state is created in a network of linear optics, utilizing optical parametric amplifiers, operated below threshold, beam splitters and phase gates. The experimental platform developed here afforded the precise and stable control of all experimental parameters. Focusing on the aspect of quantum information networks, the generation of suitable bipartite entangled states of light is desirable. The optical connection between atomic transitions and light that can be transmitted via telecommunications fibers opens the possibility to employ quantum memories within fiber networks. For this purpose, a non-degenerate optical parametric oscillator is operated above threshold and the generation of bright bipartite entanglement between its twin beams at the wavelengths of 810 nm and 1550 nm is demonstrated. In the field of metrology, quantum states are used to enhance the measurement precision of interferometric gravitational wave (GW) detectors. Recently, the sensitivity of a GW detector operated at a wavelength of 1064 nm was increased using squeezed

  14. Relativistic coupling of internal and centre of mass dynamics in classical and simple bound quantum mechanical systems

    Science.gov (United States)

    E Krause, Dennis; Lee, Inbum

    2017-07-01

    Although special relativity and quantum mechanics revolutionised physics in the early 20th century, the consequences of combining these two theories are still being explored a hundred years later, usually using the formidable theoretical machinery of quantum field theory. However, a formalism accessible to undergraduates has been recently developed which shows how the centre of mass and internal dynamics of classical and quantum systems is relativistically coupled with interesting consequences. Here we explore some of the implications of this coupling, first classically, where we find that the dynamics of the system is time dilated when moving relative to another inertial frame. We then apply the dynamics to a quantum 2-level atom bound in a one-dimensional infinite potential well, and show that the coupling produces collapses and revivals in quantum interference. This example provides an illustration of how the combination of special relativity and quantum mechanics can be studied in situations familiar to most undergraduates.

  15. Graph state-based quantum authentication scheme

    Science.gov (United States)

    Liao, Longxia; Peng, Xiaoqi; Shi, Jinjing; Guo, Ying

    2017-04-01

    Inspired by the special properties of the graph state, a quantum authentication scheme is proposed in this paper, which is implemented with the utilization of the graph state. Two entities, a reliable party, Trent, as a verifier and Alice as prover are included. Trent is responsible for registering Alice in the beginning and confirming Alice in the end. The proposed scheme is simple in structure and convenient to realize in the realistic physical system due to the use of the graph state in a one-way quantum channel. In addition, the security of the scheme is extensively analyzed and accordingly can resist the general individual attack strategies.

  16. Classical codes in quantum state space

    Science.gov (United States)

    Howard, Mark

    2015-12-01

    We present a construction of Hermitian operators and quantum states labelled by strings from a finite field. The distance between these operators or states is then simply related (typically, proportional) to the Hamming distance between their corresponding strings. This allows a straightforward application of classical coding theory to find arrangements of operators or states with a given distance distribution. Using the simplex or extended Reed-Solomon code in our construction recovers the discrete Wigner function, which has important applications in quantum information theory.

  17. Deterministic Bidirectional Remote State Preparation of a- and Symmetric Quantum States with a Proper Quantum Channel

    Science.gov (United States)

    Song, Yi; Ni, Jiang-Li; Wang, Zhang-Yin; Lu, Yan; Han, Lian-Fang

    2017-10-01

    We present a new scheme for deterministically realizing the mutual interchange of quantum information between two distant parties via selected quantum states as the shared entangled resource. We first show the symmetric bidirectional remote state preparation (BRSP), where two single-qubit quantum states will be simultaneously exchanged in a deterministic manner provided that each of the users performs single-qubit von Neumann measurements with proper measurement bases as well as appropriate unitary operations, depending essentially on the outcomes of the prior measurements. Then we consider to extend the symmetric protocol to an asymmetric case, in which BRSP of a general single-qubit state and an arbitrary two-qubit state is investigated successfully. The necessary quantum operations and the employed quantum resources are feasible according to the present technology, resulting in that this protocol may be realizable in the realm of current physical experiment.

  18. Quantum communication with coherent states of light

    Science.gov (United States)

    Khan, Imran; Elser, Dominique; Dirmeier, Thomas; Marquardt, Christoph; Leuchs, Gerd

    2017-06-01

    Quantum communication offers long-term security especially, but not only, relevant to government and industrial users. It is worth noting that, for the first time in the history of cryptographic encoding, we are currently in the situation that secure communication can be based on the fundamental laws of physics (information theoretical security) rather than on algorithmic security relying on the complexity of algorithms, which is periodically endangered as standard computer technology advances. On a fundamental level, the security of quantum key distribution (QKD) relies on the non-orthogonality of the quantum states used. So even coherent states are well suited for this task, the quantum states that largely describe the light generated by laser systems. Depending on whether one uses detectors resolving single or multiple photon states or detectors measuring the field quadratures, one speaks of, respectively, a discrete- or a continuous-variable description. Continuous-variable QKD with coherent states uses a technology that is very similar to the one employed in classical coherent communication systems, the backbone of today's Internet connections. Here, we review recent developments in this field in two connected regimes: (i) improving QKD equipment by implementing front-end telecom devices and (ii) research into satellite QKD for bridging long distances by building upon existing optical satellite links. This article is part of the themed issue 'Quantum technology for the 21st century'.

  19. Quantum communication with coherent states of light.

    Science.gov (United States)

    Khan, Imran; Elser, Dominique; Dirmeier, Thomas; Marquardt, Christoph; Leuchs, Gerd

    2017-08-06

    Quantum communication offers long-term security especially, but not only, relevant to government and industrial users. It is worth noting that, for the first time in the history of cryptographic encoding, we are currently in the situation that secure communication can be based on the fundamental laws of physics (information theoretical security) rather than on algorithmic security relying on the complexity of algorithms, which is periodically endangered as standard computer technology advances. On a fundamental level, the security of quantum key distribution (QKD) relies on the non-orthogonality of the quantum states used. So even coherent states are well suited for this task, the quantum states that largely describe the light generated by laser systems. Depending on whether one uses detectors resolving single or multiple photon states or detectors measuring the field quadratures, one speaks of, respectively, a discrete- or a continuous-variable description. Continuous-variable QKD with coherent states uses a technology that is very similar to the one employed in classical coherent communication systems, the backbone of today's Internet connections. Here, we review recent developments in this field in two connected regimes: (i) improving QKD equipment by implementing front-end telecom devices and (ii) research into satellite QKD for bridging long distances by building upon existing optical satellite links.This article is part of the themed issue 'Quantum technology for the 21st century'. © 2017 The Author(s).

  20. Quantum state engineering with single atom laser

    Science.gov (United States)

    Stefanov, V. P.

    2017-11-01

    On the basis of quantum stochastic trajectories approach it is shown that a single atom laser with coherent pumping can generate not only coherent states, but squeezed and Fock states, when different schemes of detection are followed by coherent feedback pulses or feedforward actions.

  1. Quantum state sharing against the controller's cheating

    Science.gov (United States)

    Shi, Run-hua; Zhong, Hong; Huang, Liu-sheng

    2013-08-01

    Most existing QSTS schemes are equivalent to the controlled teleportation, in which a designated agent (i.e., the recoverer) can recover the teleported state with the help of the controllers. However, the controller may attempt to cheat the recoverer during the phase of recovering the secret state. How can we detect this cheating? In this paper, we considered the problem of detecting the controller's cheating in Quantum State Sharing, and further proposed an effective Quantum State Sharing scheme against the controller's cheating. We cleverly use Quantum Secret Sharing, Multiple Quantum States Sharing and decoy-particle techniques. In our scheme, via a previously shared entanglement state Alice can teleport multiple arbitrary multi-qubit states to Bob with the help of Charlie. Furthermore, by the classical information shared previously, Alice and Bob can check whether there is any cheating of Charlie. In addition, our scheme only needs to perform Bell-state and single-particle measurements, and to apply C-NOT gate and other single-particle unitary operations. With the present techniques, it is feasible to implement these necessary measurements and operations.

  2. Local Unitary Invariants of Quantum States

    Science.gov (United States)

    Cui, Meiyu; Chang, Jingmei; Zhao, Ming-Jing; Huang, Xiaofen; Zhang, Tinggui

    2017-11-01

    We study the equivalence of mixed states under local unitary transformations. First we express quantum states in Bloch representation. Then based on the coefficient matrices, some invariants are constructed. This method and results can be extended to multipartite high dimensional system.

  3. Vortex pinning by the point potential in topological superconductors: A scheme for braiding Majorana bound states

    Science.gov (United States)

    Wu, Hai-Dan; Zhou, Tao

    2017-11-01

    We propose theoretically an effective scheme for braiding Majorana bound states by manipulating the point potential. The vortex pinning effect is carefully elucidated. This effect can be used to control the vortices and Majorana bound states in topological superconductors. The exchange of two vortices induced by moving the potentials is simulated numerically. The zero-energy state in the vortex core is robust with respect to the strength of the potential. The Majorana bound states in a pinned vortex are identified numerically.

  4. Engineering quantum hyperentangled states in atomic systems

    Science.gov (United States)

    Nawaz, Mehwish; -Islam, Rameez-ul; Abbas, Tasawar; Ikram, Manzoor

    2017-11-01

    Hyperentangled states have boosted many quantum informatics tasks tremendously due to their high information content per quantum entity. Until now, however, the engineering and manipulation of such states were limited to photonic systems only. In present article, we propose generating atomic hyperentanglement involving atomic internal states as well as atomic external momenta states. Hypersuperposition, hyperentangled cluster, Bell and Greenberger–Horne–Zeilinger states are engineered deterministically through resonant and off-resonant Bragg diffraction of neutral two-level atoms. Based on the characteristic parameters of the atomic Bragg diffraction, such as comparatively large interaction times and spatially well-separated outputs, such decoherence resistant states are expected to exhibit good overall fidelities and offer the evident benefits of full controllability, along with extremely high detection efficiency, over the counterpart photonic states comprised entirely of flying qubits.

  5. Deterministic quantum state transfer between remote qubits in cavities

    Science.gov (United States)

    Vogell, B.; Vermersch, B.; Northup, T. E.; Lanyon, B. P.; Muschik, C. A.

    2017-12-01

    Performing a faithful transfer of an unknown quantum state is a key challenge for enabling quantum networks. The realization of networks with a small number of quantum links is now actively pursued, which calls for an assessment of different state transfer methods to guide future design decisions. Here, we theoretically investigate quantum state transfer between two distant qubits, each in a cavity, connected by a waveguide, e.g., an optical fiber. We evaluate the achievable success probabilities of state transfer for two different protocols: standard wave packet shaping and adiabatic passage. The main loss sources are transmission losses in the waveguide and absorption losses in the cavities. While special cases studied in the literature indicate that adiabatic passages may be beneficial in this context, it remained an open question under which conditions this is the case and whether their use will be advantageous in practice. We answer these questions by providing a full analysis, showing that state transfer by adiabatic passage—in contrast to wave packet shaping—can mitigate the effects of undesired cavity losses, far beyond the regime of coupling to a single waveguide mode and the regime of lossless waveguides, as was proposed so far. Furthermore, we show that the photon arrival probability is in fact bounded in a trade-off between losses due to non-adiabaticity and due to coupling to off-resonant waveguide modes. We clarify that neither protocol can avoid transmission losses and discuss how the cavity parameters should be chosen to achieve an optimal state transfer.

  6. Extracting Entanglement Geometry from Quantum States

    Science.gov (United States)

    Hyatt, Katharine; Garrison, James R.; Bauer, Bela

    2017-10-01

    Tensor networks impose a notion of geometry on the entanglement of a quantum system. In some cases, this geometry is found to reproduce key properties of holographic dualities, and subsequently much work has focused on using tensor networks as tractable models for holographic dualities. Conventionally, the structure of the network—and hence the geometry—is largely fixed a priori by the choice of the tensor network ansatz. Here, we evade this restriction and describe an unbiased approach that allows us to extract the appropriate geometry from a given quantum state. We develop an algorithm that iteratively finds a unitary circuit that transforms a given quantum state into an unentangled product state. We then analyze the structure of the resulting unitary circuits. In the case of noninteracting, critical systems in one dimension, we recover signatures of scale invariance in the unitary network, and we show that appropriately defined geodesic paths between physical degrees of freedom exhibit known properties of a hyperbolic geometry.

  7. Quantum Correlations in Mixed-State Metrology

    Directory of Open Access Journals (Sweden)

    Kavan Modi

    2011-12-01

    Full Text Available We analyze the effects of quantum correlations, such as entanglement and discord, on the efficiency of phase estimation by studying four quantum circuits that can be readily implemented using NMR techniques. These circuits define a standard strategy of repeated single-qubit measurements, a classical strategy where only classical correlations are allowed, and two quantum strategies where nonclassical correlations are allowed. In addition to counting space (number of qubits and time (number of gates requirements, we introduce mixedness as a key constraint of the experiment. We compare the efficiency of the four strategies as a function of the mixedness parameter. We find that the quantum strategy gives sqrt[N] enhancement over the standard strategy for the same amount of mixedness. This result applies even for highly mixed states that have nonclassical correlations but no entanglement.

  8. Storing quantum states in bosonic dissipative networks

    Energy Technology Data Exchange (ETDEWEB)

    De Ponte, M A; Mizrahi, S S [Departamento de Fisica, Universidade Federal de Sao Carlos, Caixa Postal 676, Sao Carlos, 13565-905, Sao Paulo (Brazil); Moussa, M H Y [Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, Caixa Postal 369, 13560-590 Sao Carlos, SP (Brazil)

    2008-11-14

    By considering a network of dissipative quantum harmonic oscillators, we deduce and analyse the optimum topologies which are able to store quantum superposition states, protecting them from decoherence, for the longest period of time. The storage is made dynamically, in that the states to be protected evolve through the network before being retrieved back in the oscillator where they were prepared. The decoherence time during the dynamic storage process is computed and we demonstrate that it is proportional to the number of oscillators in the network for a particular regime of parameters.

  9. Exotic states in quantum nanostructures

    CERN Document Server

    2002-01-01

    Mesoscopic physics has made great strides in the last few years It is an area of research that is attractive to many graduate students of theoretical condensed matter physics The techniques that are needed to understand it go beyond the conventional perturbative approaches that still form the bulk of the graduate lectures that are given to students Even when the non-perturbative techniques are presented, they often are presented within an abstract context It is important to have lectures given by experts in the field, which present both theory and experiment in an illuminating and inspiring way, so that the impact of new methodology on novel physics is clear It is an apt time to have such a volume since the field has reached a level of maturity The pedagogical nature of the articles and the variety of topics makes it an important resource for newcomers to the field The topics range from the newly emerging area of quantum computers and quantum information using Josephson junctions to the formal mathematical me...

  10. Optimal convex approximations of quantum states

    Science.gov (United States)

    Sacchi, Massimiliano F.

    2017-10-01

    We consider the problem of optimally approximating an unavailable quantum state ρ by the convex mixing of states drawn from a set of available states {νi} . The problem is recast to look for the least distinguishable state from ρ among the convex set ∑ipiνi , and the corresponding optimal weights {pi} provide the optimal convex mixing. We present the complete solution for the optimal convex approximation of a qubit mixed state when the set of available states comprises the three bases of the Pauli matrices.

  11. Statistical tests for quantum state reconstruction II: Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, Philipp; Monz, Thomas [Innsbruck Univ. (Austria). Inst. fuer Experimentalphysik; Kleinmann, Matthias; Guehne, Otfried [Naturwissenschaftlich-Technische Fakultaet, Universitaet Siegen (Germany); Moroder, Tobias [Institut fuer Quantenoptik und Quanteninformation, Innsbruck (Austria); Blatt, Rainer [Innsbruck Univ. (Austria). Inst. fuer Experimentalphysik; Institut fuer Quantenoptik und Quanteninformation, Innsbruck (Austria)

    2012-07-01

    Quantum state tomography is nowadays routinely used in many experiments, for instance to characterize entangled quantum states or to determine input and output states of a quantum processor. Tomography reconstruction algorithms are designed to restrict the results onto physical states. These methods will always return a valid quantum state for any data and therefore it seems necessary to test the recorded data prior to reconstructing the quantum state. We directly apply statistical tests on our experimental data taken in an ion trap quantum computer. In particular, we analyze the sensitivity of these tests to various experimental imperfections like crosstalk and rotated bases.

  12. Effects of crossed states on photoluminescence excitation spectroscopy of InAs quantum dots

    Directory of Open Access Journals (Sweden)

    Lin Chien-Hung

    2011-01-01

    Full Text Available Abstract In this report, the influence of the intrinsic transitions between bound-to-delocalized states (crossed states or quasicontinuous density of electron-hole states on photoluminescence excitation (PLE spectra of InAs quantum dots (QDs was investigated. The InAs QDs were different in size, shape, and number of bound states. Results from the PLE spectroscopy at low temperature and under a high magnetic field (up to 14 T were compared. Our findings show that the profile of the PLE resonances associated with the bound transitions disintegrated and broadened. This was attributed to the coupling of the localized QD excited states to the crossed states and scattering of longitudinal acoustical (LA phonons. The degree of spectral linewidth broadening was larger for the excited state in smaller QDs because of the higher crossed joint density of states and scattering rate.

  13. Quantum Entanglement in Neural Network States

    Science.gov (United States)

    Deng, Dong-Ling; Li, Xiaopeng; Das Sarma, S.

    2017-04-01

    Machine learning, one of today's most rapidly growing interdisciplinary fields, promises an unprecedented perspective for solving intricate quantum many-body problems. Understanding the physical aspects of the representative artificial neural-network states has recently become highly desirable in the applications of machine-learning techniques to quantum many-body physics. In this paper, we explore the data structures that encode the physical features in the network states by studying the quantum entanglement properties, with a focus on the restricted-Boltzmann-machine (RBM) architecture. We prove that the entanglement entropy of all short-range RBM states satisfies an area law for arbitrary dimensions and bipartition geometry. For long-range RBM states, we show by using an exact construction that such states could exhibit volume-law entanglement, implying a notable capability of RBM in representing quantum states with massive entanglement. Strikingly, the neural-network representation for these states is remarkably efficient, in the sense that the number of nonzero parameters scales only linearly with the system size. We further examine the entanglement properties of generic RBM states by randomly sampling the weight parameters of the RBM. We find that their averaged entanglement entropy obeys volume-law scaling, and the meantime strongly deviates from the Page entropy of the completely random pure states. We show that their entanglement spectrum has no universal part associated with random matrix theory and bears a Poisson-type level statistics. Using reinforcement learning, we demonstrate that RBM is capable of finding the ground state (with power-law entanglement) of a model Hamiltonian with a long-range interaction. In addition, we show, through a concrete example of the one-dimensional symmetry-protected topological cluster states, that the RBM representation may also be used as a tool to analytically compute the entanglement spectrum. Our results uncover the

  14. Quantum Entanglement in Neural Network States

    Directory of Open Access Journals (Sweden)

    Dong-Ling Deng

    2017-05-01

    Full Text Available Machine learning, one of today’s most rapidly growing interdisciplinary fields, promises an unprecedented perspective for solving intricate quantum many-body problems. Understanding the physical aspects of the representative artificial neural-network states has recently become highly desirable in the applications of machine-learning techniques to quantum many-body physics. In this paper, we explore the data structures that encode the physical features in the network states by studying the quantum entanglement properties, with a focus on the restricted-Boltzmann-machine (RBM architecture. We prove that the entanglement entropy of all short-range RBM states satisfies an area law for arbitrary dimensions and bipartition geometry. For long-range RBM states, we show by using an exact construction that such states could exhibit volume-law entanglement, implying a notable capability of RBM in representing quantum states with massive entanglement. Strikingly, the neural-network representation for these states is remarkably efficient, in the sense that the number of nonzero parameters scales only linearly with the system size. We further examine the entanglement properties of generic RBM states by randomly sampling the weight parameters of the RBM. We find that their averaged entanglement entropy obeys volume-law scaling, and the meantime strongly deviates from the Page entropy of the completely random pure states. We show that their entanglement spectrum has no universal part associated with random matrix theory and bears a Poisson-type level statistics. Using reinforcement learning, we demonstrate that RBM is capable of finding the ground state (with power-law entanglement of a model Hamiltonian with a long-range interaction. In addition, we show, through a concrete example of the one-dimensional symmetry-protected topological cluster states, that the RBM representation may also be used as a tool to analytically compute the entanglement spectrum. Our

  15. Controlled teleportation of a 3-dimensional bipartite quantum state

    Energy Technology Data Exchange (ETDEWEB)

    Cao Haijing; Chen Zhonghua [Physics Department, Shanghai University of Electric Power, Shanghai 201300 (China); Song Heshan [Physics Department, Dalian University of Technology, Dalian 116024 (China)], E-mail: 2007000084@shiep.edu.cn

    2008-07-15

    A controlled teleportation scheme of an unknown 3-dimensional (3D) two-particle quantum state is proposed, where a 3D Bell state and 3D GHZ state function as the quantum channel. This teleportation scheme can be directly generalized to teleport an unknown d-dimensional bipartite quantum state.

  16. Criteria for reachability of quantum states

    Energy Technology Data Exchange (ETDEWEB)

    Schirmer, S.G.; Solomon, A.I. [Quantum Processes Group and Department of Applied Maths, Open University, Milton Keynes (United Kingdom)]. E-mails: S.G.Schirmer@open.ac.uk; A.I.Solomon@open.ac.uk; Leahy, J.V. [Department of Mathematics and Institute of Theoretical Science, University of Oregon, Eugene, OR (United States)]. E-mail: leahy@math.uoregon.edu

    2002-10-11

    We address the question of which quantum states can be inter-converted under the action of a time-dependent Hamiltonian. In particular, we consider the problem as applied to mixed states, and investigate the difference between pure- and mixed-state controllabilities introduced in previous work. We provide a complete characterization of the eigenvalue spectrum for which the state is controllable under the action of the symplectic group. We also address the problem of which states can be prepared if the dynamical Lie group is not sufficiently large to allow the system to be controllable. (author)

  17. Linear Quantum Systems: Non-Classical States and Robust Stability

    Science.gov (United States)

    2016-06-29

    quantum mechanics . Non-classical quantum states. Gaussian distributions play a fundamental role in classical (non-quantum) linear systems theory, and...quantum systems, we will consider perturbed quantum linear systems described by coupling and Hamiltonian operators with components that depend on a... Hamiltonian . The case of a nominal linear quantum system is considered with quadratic perturbations to the system Hamiltonian . A robust stability

  18. Fermionic topological quantum states as tensor networks

    Science.gov (United States)

    Wille, C.; Buerschaper, O.; Eisert, J.

    2017-06-01

    Tensor network states, and in particular projected entangled pair states, play an important role in the description of strongly correlated quantum lattice systems. They do not only serve as variational states in numerical simulation methods, but also provide a framework for classifying phases of quantum matter and capture notions of topological order in a stringent and rigorous language. The rapid development in this field for spin models and bosonic systems has not yet been mirrored by an analogous development for fermionic models. In this work, we introduce a tensor network formalism capable of capturing notions of topological order for quantum systems with fermionic components. At the heart of the formalism are axioms of fermionic matrix-product operator injectivity, stable under concatenation. Building upon that, we formulate a Grassmann number tensor network ansatz for the ground state of fermionic twisted quantum double models. A specific focus is put on the paradigmatic example of the fermionic toric code. This work shows that the program of describing topologically ordered systems using tensor networks carries over to fermionic models.

  19. Discrimination of mixed quantum states. Reversible maps and unambiguous strategies

    Energy Technology Data Exchange (ETDEWEB)

    Kleinmann, Matthias

    2008-06-30

    The discrimination of two mixed quantum states is a fundamental task in quantum state estimation and quantum information theory. In quantum state discrimination a quantum system is assumed to be in one of two possible - in general mixed - non-orthogonal quantum states. The discrimination then consists of a measurement strategy that allows to decide in which state the system was before the measurement. In unambiguous state discrimination the aim is to make this decision without errors, but it is allowed to give an inconclusive answer. Especially interesting are measurement strategies that minimize the probability of an inconclusive answer. A starting point for the analysis of this optimization problem was a result by Eldar et al. [Phys. Rev. A 69, 062318 (2004)], which provides non-operational necessary and sufficient conditions for a given measurement strategy to be optimal. These conditions are reconsidered and simplified in such a way that they become operational. The simplified conditions are the basis for further central results: It is shown that the optimal measurement strategy is unique, a statement that is e.g. of importance for the complexity analysis of optimal measurement devices. The optimal measurement strategy is derived for the case, where one of the possible input states has at most rank two, which was an open problem for many years. Furthermore, using the optimality criterion it is shown that there always exists a threshold probability for each state, such that below this probability it is optimal to exclude this state from the discrimination strategy. If the two states subject to discrimination can be brought to a diagonal structure with (2 x 2)-dimensional blocks, then the unambiguous discrimination of these states can be reduced to the unambiguous discrimination of pure states. A criterion is presented that allows to identify the presence of such a structure for two self-adjoint operators. This criterion consists of the evaluation of three

  20. Mixed quantum states with variable Planck constant

    Science.gov (United States)

    de Gosson, Maurice A.

    2017-09-01

    Recent cosmological measurements tend to confirm that the fine structure constant α is not immutable and has undergone a tiny variation since the Big Bang. Choosing adequate units, this could also reflect a variation of Planck's constant h. The aim of this Letter is to explore some consequences of such a possible change of h for the pure and mixed states of quantum mechanics. Surprisingly enough it is found that not only is the purity of a state extremely sensitive to such changes, but that quantum states can evolve into classical states, and vice versa. A complete classification of such transitions is however not possible for the moment being because of yet unsolved mathematical difficulties related to the study of positivity properties of trace class operators.

  1. Efficient quantum optical state engineering and applications

    Science.gov (United States)

    McCusker, Kevin T.

    Over a century after the modern prediction of the existence of individual particles of light by Albert Einstein, a reliable source of this simple quantum state of one photon does not exist. While common light sources such as a light bulb, LED, or laser can produce a pulse of light with an average of one photon, there is (currently) no way of knowing the number of photons in that pulse without first absorbing (and thereby destroying) them. Spontaneous parametric down-conversion, a process in which one high-energy photon splits into two lower-energy photons, allows us to prepare a single-photon state by detecting one of the photons, which then heralds the existence of its twin. This process has been the workhorse of quantum optics, allowing demonstrations of a myriad of quantum processes and protocols, such as entanglement, cryptography, superdense coding, teleportation, and simple quantum computing demonstrations. All of these processes would benefit from better engineering of the underlying down-conversion process, but despite significant effort (both theoretical and experimental), optimization of this process is ongoing. The focus of this work is to optimize certain aspects of a down-conversion source, and then use this tool in novel experiments not otherwise feasible. Specifically, the goal is to optimize the heralding efficiency of the down-conversion photons, i.e., the probability that if one photon is detected, the other photon is also detected. This source is then applied to two experiments (a single-photon source, and a quantum cryptography implementation), and the detailed theory of an additional application (a source of Fock states and path-entangled states, called N00N states) is discussed, along with some other possible applications.

  2. On the bound state of the antiproton-deuterium-tritium ion

    CERN Document Server

    Frolov, Alexei M

    2012-01-01

    It is shown that the ground state in the Coulomb three-body $\\bar{p}dt$ ion is bound. This ion consists of the positevely charged deuterium $d$ and tritum $t$ nuclei and one negatively charged antirpoton $\\bar{p}$. The $\\bar{p}dt$ ion has only one bound $S(L = 0)-$state which is weakly-bound. The properties of this weakly-bound state are investigated with the use of the results of recent highly accurate computations. Very likely, the actual proparties of the $\\bar{p}dt$ ion will be different from the results of our predictions due to additional contributions from strong interactions between particles.

  3. Continuous variable quantum cryptography using coherent states.

    Science.gov (United States)

    Grosshans, Frédéric; Grangier, Philippe

    2002-02-04

    We propose several methods for quantum key distribution (QKD) based on the generation and transmission of random distributions of coherent or squeezed states, and we show that they are secure against individual eavesdropping attacks. These protocols require that the transmission of the optical line between Alice and Bob is larger than 50%, but they do not rely on "sub-shot-noise" features such as squeezing. Their security is a direct consequence of the no-cloning theorem, which limits the signal-to-noise ratio of possible quantum measurements on the transmission line. Our approach can also be used for evaluating various QKD protocols using light with Gaussian statistics.

  4. Adaptive Quantum State Tomography Improves Accuracy Quadratically

    Science.gov (United States)

    Mahler, D. H.; Rozema, Lee A.; Darabi, Ardavan; Ferrie, Christopher; Blume-Kohout, Robin; Steinberg, A. M.

    2013-11-01

    We introduce a simple protocol for adaptive quantum state tomography, which reduces the worst-case infidelity [1-F(ρ^,ρ)] between the estimate and the true state from O(1/N) to O(1/N). It uses a single adaptation step and just one extra measurement setting. In a linear optical qubit experiment, we demonstrate a full order of magnitude reduction in infidelity (from 0.1% to 0.01%) for a modest number of samples (N≈3×104).

  5. Relaxation versus adiabatic quantum steady-state preparation

    Science.gov (United States)

    Venuti, Lorenzo Campos; Albash, Tameem; Marvian, Milad; Lidar, Daniel; Zanardi, Paolo

    2017-04-01

    Adiabatic preparation of the ground states of many-body Hamiltonians in the closed-system limit is at the heart of adiabatic quantum computation, but in reality systems are always open. This motivates a natural comparison between, on the one hand, adiabatic preparation of steady states of Lindbladian generators and, on the other hand, relaxation towards the same steady states subject to the final Lindbladian of the adiabatic process. In this work we thus adopt the perspective that the goal is the most efficient possible preparation of such steady states, rather than ground states. Using known rigorous bounds for the open-system adiabatic theorem and for mixing times, we are then led to a disturbing conclusion that at first appears to doom efforts to build physical quantum annealers: relaxation seems to always converge faster than adiabatic preparation. However, by carefully estimating the adiabatic preparation time for Lindbladians describing thermalization in the low-temperature limit, we show that there is, after all, room for an adiabatic speedup over relaxation. To test the analytically derived bounds for the adiabatic preparation time and the relaxation time, we numerically study three models: a dissipative quasifree fermionic chain, a single qubit coupled to a thermal bath, and the "spike" problem of n qubits coupled to a thermal bath. Via these models we find that the answer to the "which wins" question depends for each model on the temperature and the system-bath coupling strength. In the case of the "spike" problem we find that relaxation during the adiabatic evolution plays an important role in ensuring a speedup over the final-time relaxation procedure. Thus, relaxation-assisted adiabatic preparation can be more efficient than both pure adiabatic evolution and pure relaxation.

  6. Fermion parity flips and Majorana bound states at twist defects in superconducting fractional topological phases

    Science.gov (United States)

    Khan, Mayukh Nilay; Teo, Jeffrey C. Y.; Hughes, Taylor L.; Vishveshwara, Smitha

    2017-05-01

    In this paper, we consider a layered heterostructure of an Abelian topologically ordered state (TO), such as a fractional Chern insulator (FCI)/quantum Hall state (FQH) with an s -wave superconductor in order to explore the existence of non-Abelian defects. To uncover such defects, we note that the ground state corresponds to a charge 2 e Cooper pair, the electron can no longer be treated as a local particle, and hence we must consider a larger TO due to the presence of h /2 e flux vortices, which strictly speaking are not deconfined. Quantum dimension and species of the defects follow directly from the fusion algebra. For FCI/Laughlin states, we show the presence of three kinds of defects, two of which had been previously ignored. They owe their origin to a general anyon permutation symmetry (AS) that exists in any fermionic Abelian TO state in contact with an s -wave superconductor. Physically, this permutation corresponds to adding a fermion to odd flux vortices (in units of h /2 e ) as they travel around the associated topological (twist) defect. As such, we call it a fermion parity flip AS. We show that calculations can be handled more simply, by considering an equivalent fermion parity gauged theory, where the original TO is suitably augmented by a Z2 gauge sector coming from the s -wave SC, but with identical fusion structure. This trick makes our approach useful for analyzing a wide variety of FQH/FCI heterostructures. We give examples of the fermion parity gauging procedure for a large number of hierarchy and spin singlet states. We consider twist defects which mutate anyons according to the fermion parity flip symmetry and show that they can be realized at domain walls between distinct gapped edges or interfaces of the TO superconducting state. We analyze the properties of such defects and show that fermion parity flip twist defects are always associated with Majorana zero modes. When defects corresponding to AS which is a combination of fermion parity

  7. Quantum state resolved gas–surface reaction dynamics experiments: a tutorial review.

    OpenAIRE

    Chadwick Helen Jane; Beck Rainer D.

    2016-01-01

    We present a tutorial review of our quantum state resolved experiments designed to study gas–surface reaction dynamics. The combination of a molecular beam state specific reactant preparation by infrared laser pumping and ultrahigh vacuum surface analysis techniques make it possible to study chemical reac tivity at the gas–surface interface in unprecedented detail. We describe the experimental techniques used for state specific reactant preparation and for detection of surface bound reaction...

  8. Siegert State Approach to Quantum Defect Theory

    OpenAIRE

    Hategan, C.; Ionescu, R. A.; Wolter, H. H.

    2016-01-01

    The Siegert states are approached in framework of Bloch-Lane-Robson formalism for quantum collisions. The Siegert state is not described by a pole of Wigner R- matrix but rather by the equation $1- R_{nn}L_n = 0$, relating R- matrix element $R_{nn}$ to decay channel logarithmic derivative $L_n$. Extension of Siegert state equation to multichannel system results into replacement of channel R- matrix element $R_{nn}$ by its reduced counterpart ${\\cal R}_{nn}$. One proves the Siegert state is a ...

  9. Control aspects of quantum computing using pure and mixed states.

    Science.gov (United States)

    Schulte-Herbrüggen, Thomas; Marx, Raimund; Fahmy, Amr; Kauffman, Louis; Lomonaco, Samuel; Khaneja, Navin; Glaser, Steffen J

    2012-10-13

    Steering quantum dynamics such that the target states solve classically hard problems is paramount to quantum simulation and computation. And beyond, quantum control is also essential to pave the way to quantum technologies. Here, important control techniques are reviewed and presented in a unified frame covering quantum computational gate synthesis and spectroscopic state transfer alike. We emphasize that it does not matter whether the quantum states of interest are pure or not. While pure states underly the design of quantum circuits, ensemble mixtures of quantum states can be exploited in a more recent class of algorithms: it is illustrated by characterizing the Jones polynomial in order to distinguish between different (classes of) knots. Further applications include Josephson elements, cavity grids, ion traps and nitrogen vacancy centres in scenarios of closed as well as open quantum systems.

  10. A study of the bound states for square potential wells with position-dependent mass

    Energy Technology Data Exchange (ETDEWEB)

    Ganguly, A. [Departamento de Fisica Teorica, Atomica y Optica, Universidad de Valladolid, 47071 Valladolid (Spain)]. E-mail: gangulyasish@rediffmail.com; Kuru, S. [Departamento de Fisica Teorica, Atomica y Optica, Universidad de Valladolid, 47071 Valladolid (Spain)]. E-mail: kuru@science.ankara.edu.tr; Negro, J. [Departamento de Fisica Teorica, Atomica y Optica, Universidad de Valladolid, 47071 Valladolid (Spain)]. E-mail: jnegro@fta.uva.es; Nieto, L.M. [Departamento de Fisica Teorica, Atomica y Optica, Universidad de Valladolid, 47071 Valladolid (Spain)]. E-mail: luismi@metodos.fam.cie.uva.es

    2006-12-25

    A potential well with position-dependent mass is studied for bound states. Applying appropriate matching conditions, a transcendental equation is derived for the energy eigenvalues. Numerical results are presented graphically and the variation of the energy of the bound states are calculated as a function of the well-width and mass.

  11. The bound state S-matrix for AdS5×S5 superstring

    NARCIS (Netherlands)

    Arutyunov, G.E.; de Leeuw, M.; Torrielli, A.

    2009-01-01

    We determine the S-matrix that describes scattering of arbitrary bound states in the light-cone string theory in AdS5×S5. The corresponding construction relies on the Yangian symmetry and the superspace formalism for the bound state representations. The basic analytic structure supporting the

  12. Generalized Bell states map physical systems’ quantum evolution into a grammar for quantum information processing

    Science.gov (United States)

    Delgado, Francisco

    2017-12-01

    Quantum information processing should be generated through control of quantum evolution for physical systems being used as resources, such as superconducting circuits, spinspin couplings in ions and artificial anyons in electronic gases. They have a quantum dynamics which should be translated into more natural languages for quantum information processing. On this terrain, this language should let to establish manipulation operations on the associated quantum information states as classical information processing does. This work shows how a kind of processing operations can be settled and implemented for quantum states design and quantum processing for systems fulfilling a SU(2) reduction in their dynamics.

  13. D-particle bound states and generalized instantons

    CERN Document Server

    Moore, Gregory W.; Shatashvili, Samson

    2000-01-01

    We compute the principal contribution to the index in the supersymmetric quantum mechanical systems which are obtained by reduction to 0+1 dimensions of results are: ${1\\over{N^{2}}}$ for $D=4,6$, $\\sum_{d | N} {1\\over{d^{2}}}$ for D=10. We also discuss the D=3 case.

  14. Hybrid quantum processors: molecular ensembles as quantum memory for solid state circuits.

    Science.gov (United States)

    Rabl, P; DeMille, D; Doyle, J M; Lukin, M D; Schoelkopf, R J; Zoller, P

    2006-07-21

    We investigate a hybrid quantum circuit where ensembles of cold polar molecules serve as long-lived quantum memories and optical interfaces for solid state quantum processors. The quantum memory realized by collective spin states (ensemble qubit) is coupled to a high-Q stripline cavity via microwave Raman processes. We show that, for convenient trap-surface distances of a few microm, strong coupling between the cavity and ensemble qubit can be achieved. We discuss basic quantum information protocols, including a swap from the cavity photon bus to the molecular quantum memory, and a deterministic two qubit gate. Finally, we investigate coherence properties of molecular ensemble quantum bits.

  15. Quantum Nonadiabatic Cloning of Entangled Coherent States.

    Science.gov (United States)

    Izmaylov, Artur F; Joubert-Doriol, Loïc

    2017-04-20

    We propose a systematic approach to the basis set extension for nonadiabatic dynamics of entangled combination of nuclear coherent states (CSs) evolving according to the time-dependent variational principle (TDVP). The TDVP provides a rigorous framework for fully quantum nonadiabatic dynamics of closed systems; however, the quality of results strongly depends on available basis functions. Starting with a single nuclear CS replicated vertically on all electronic states, our approach clones this function when replicas of the CS on different electronic states experience increasingly different forces. Created clones move away from each other (decohere), extending the basis set. To determine a moment for cloning, we introduce generalized forces based on derivatives that maximally contribute to a variation of the total quantum action and thus account for entanglement of all basis functions.

  16. Scattering and bound-state problems with non-local potentials application of the variable-phase approach

    CERN Document Server

    Kidun, O; Berakdar, J

    2002-01-01

    Following the framework of the variable-phase approach, we derive an equation for determining the scattering amplitude of a non-relativistic quantum particle in a non-local potential. Its solution implies the integration of the Volterra integro-differential equation of the first kind and allows determination of bound-state energies and wavefunctions. A fast numerical scheme for the solution of these equations is suggested and it is demonstrated that the proposed method requires the numerical efforts of the same order as in the local potential case.

  17. Some Remarks on Classical and Classical-Quantum Sphere Packing Bounds: Rényi vs. Kullback–Leibler

    Directory of Open Access Journals (Sweden)

    Marco Dalai

    2017-07-01

    Full Text Available We review the use of binary hypothesis testing for the derivation of the sphere packing bound in channel coding, pointing out a key difference between the classical and the classical-quantum setting. In the first case, two ways of using the binary hypothesis testing are known, which lead to the same bound written in different analytical expressions. The first method historically compares output distributions induced by the codewords with an auxiliary fixed output distribution, and naturally leads to an expression using the Renyi divergence. The second method compares the given channel with an auxiliary one and leads to an expression using the Kullback–Leibler divergence. In the classical-quantum case, due to a fundamental difference in the quantum binary hypothesis testing, these two approaches lead to two different bounds, the first being the “right” one. We discuss the details of this phenomenon, which suggests the question of whether auxiliary channels are used in the optimal way in the second approach and whether recent results on the exact strong-converse exponent in classical-quantum channel coding might play a role in the considered problem.

  18. Quantum coherence generated by interference-induced state selectiveness

    OpenAIRE

    Garreau, Jean Claude

    2001-01-01

    The relations between quantum coherence and quantum interference are discussed. A general method for generation of quantum coherence through interference-induced state selection is introduced and then applied to `simple' atomic systems under two-photon transitions, with applications in quantum optics and laser cooling.

  19. Maximal Adaptive-Decision Speedups in Quantum-State Readout

    Directory of Open Access Journals (Sweden)

    B. D’Anjou

    2016-02-01

    Full Text Available The average time T required for high-fidelity readout of quantum states can be significantly reduced via a real-time adaptive decision rule. An adaptive decision rule stops the readout as soon as a desired level of confidence has been achieved, as opposed to setting a fixed readout time t_{f}. The performance of the adaptive decision is characterized by the “adaptive-decision speedup,” t_{f}/T. In this work, we reformulate this readout problem in terms of the first-passage time of a particle undergoing stochastic motion. This formalism allows us to theoretically establish the maximum achievable adaptive-decision speedups for several physical two-state readout implementations. We show that for two common readout schemes (the Gaussian latching readout and a readout relying on state-dependent decay, the speedup is bounded by 4 and 2, respectively, in the limit of high single-shot readout fidelity. We experimentally study the achievable speedup in a real-world scenario by applying the adaptive decision rule to a readout of the nitrogen-vacancy-center (NV-center charge state. We find a speedup of ≈2 with our experimental parameters. In addition, we propose a simple readout scheme for which the speedup can, in principle, be increased without bound as the fidelity is increased. Our results should lead to immediate improvements in nanoscale magnetometry based on spin-to-charge conversion of the NV-center spin, and provide a theoretical framework for further optimization of the bandwidth of quantum measurements.

  20. Side Channel Passive Quantum Key Distribution with One Uninformative State

    Science.gov (United States)

    Kang, Guo-Dong; Zhou, Qing-Ping; Fang, Mao-Fa

    2017-03-01

    In most of quantum key distribution schemes, real random number generators are required on both sides for preparation and measurement bases choice. In this paper, via entangled photon pairs, we present a side channel passive quantum key distribution scheme, in which random number generator is unneeded on the receiver side. On the sender Alice side, along with massive of signal photons, small amount of uninformative photons are randomly sent to her partner Bob for eavesdropper-presence testing and error estimation. While on the other side channel, without using random number generator Bob do not actively measure the income signals randomly in two non-orthogonal bases. Instead, he just passively register photon click events, in two settled symmetric (i.e. X) bases, and the raw key(click events) is the probable outcomes of a special quantum measurement module constructed by Alice and Bob. Further, security analysis and formulas of security bounds for this scheme is also investigated under reasonable assumptions. Our work shows that the uninformative state employed in this paper is powerful to fight against eavesdropper Eve.

  1. Extreme Violation of Local Realism in Quantum Hypergraph States.

    Science.gov (United States)

    Gachechiladze, Mariami; Budroni, Costantino; Gühne, Otfried

    2016-02-19

    Hypergraph states form a family of multiparticle quantum states that generalizes the well-known concept of Greenberger-Horne-Zeilinger states, cluster states, and more broadly graph states. We study the nonlocal properties of quantum hypergraph states. We demonstrate that the correlations in hypergraph states can be used to derive various types of nonlocality proofs, including Hardy-type arguments and Bell inequalities for genuine multiparticle nonlocality. Moreover, we show that hypergraph states allow for an exponentially increasing violation of local realism which is robust against loss of particles. Our results suggest that certain classes of hypergraph states are novel resources for quantum metrology and measurement-based quantum computation.

  2. In-situ measurement of bound states in the continuum in photonic crystal slabs (Conference Presentation)

    Science.gov (United States)

    Kalchmair, Stefan; Gansch, Roman; Genevet, Patrice; Zederbauer, Tobias; MacFarland, Donald; Detz, Hermann; Andrews, Aaron Maxwell; Schrenk, Werner; Strasser, Gottfried; Capasso, Federico; Loncar, Marko

    2016-04-01

    Photonic crystal slabs have been subject to research for more than a decade, yet the existence of bound states in the radiation continuum (BICs) in photonic crystals has been reported only recently [1]. A BIC is formed when the radiation from all possible channels interferes destructively, causing the overall radiation to vanish. In photonic crystals, BICs are the result of accidental phase matching between incident, reflected and in-plane waves at seemingly random wave vectors [2]. While BICs in photonic crystals have been discussed previously using reflection measurements, we reports for the first time in-situ measurements of the bound states in the continuum in photonic crystal slabs. By embedding a photodetector into a photonic crystal slab we were able to directly observe optical BICs. The photonic crystal slabs are processed from a GaAs/AlGaAs quantum wells heterostructure, providing intersubband absorption in the mid-infrared wavelength range. The generated photocurrent is collected via doped contact layers on top and bottom of the suspended photonic crystal slab. We were mapping out the photonic band structure by rotating the device and by acquiring photocurrent spectra every 5°. Our measured photonic bandstructure revealed several BICs, which was confirmed with a rigorously coupled-wave analysis simulation. Since coupling to external fields is suppressed, the photocurrent measured by the photodetector vanishes at the BIC wave vector. To confirm the relation between the measured photocurrent and the Q-factor we used temporal coupled mode theory, which yielded an inverse proportional relation between the photocurrent and the out-coupling loss from the photonic crystal. Implementing a plane wave expansion simulation allowed us to identify the corresponding photonic crystal modes. The ability to directly measure the field intensity inside the photonic crystal presents an important milestone towards integrated opto-electronic BIC devices. Potential

  3. Stieltjes electrostatic model interpretation for bound state problems

    Indian Academy of Sciences (India)

    + iQ(xk) = 0, 1 ≤ k ≤ n. (17) the solution for the differential eq. (17), for an exactly solvable potential that is for cer- tain Q(xk), are the zeros of appropriate orthogonal polynomials. The interval is fixed by the fixed poles of the potential. It is well known that the classical orthogonal poly- nomials arise as solutions to the bound ...

  4. Quantum correlations support probabilistic pure state cloning

    Energy Technology Data Exchange (ETDEWEB)

    Roa, Luis, E-mail: lroa@udec.cl [Departamento de Física, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Alid-Vaccarezza, M.; Jara-Figueroa, C. [Departamento de Física, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Klimov, A.B. [Departamento de Física, Universidad de Guadalajara, Avenida Revolución 1500, 44420 Guadalajara, Jalisco (Mexico)

    2014-02-01

    The probabilistic scheme for making two copies of two nonorthogonal pure states requires two auxiliary systems, one for copying and one for attempting to project onto the suitable subspace. The process is performed by means of a unitary-reduction scheme which allows having a success probability of cloning different from zero. The scheme becomes optimal when the probability of success is maximized. In this case, a bipartite state remains as a free degree which does not affect the probability. We find bipartite states for which the unitarity does not introduce entanglement, but does introduce quantum discord between some involved subsystems.

  5. Extremal quantum correlations: Experimental study with two-qubit states

    Energy Technology Data Exchange (ETDEWEB)

    Chiuri, A.; Mataloni, P. [Dipartimento di Fisica, Sapienza Universita di Roma, Piazzale Aldo Moro 5, I-00185 Roma (Italy); Istituto Nazionale di Ottica (INO-CNR), L.go E. Fermi 6, I-50125 Firenze (Italy); Vallone, G. [Dipartimento di Fisica, Sapienza Universita di Roma, Piazzale Aldo Moro 5, I-00185 Roma (Italy); Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Via Panisperna 89/A, Compendio del Viminale, I-00184 Roma (Italy); Paternostro, M. [Centre for Theoretical Atomic, Molecular, and Optical Physics, School of Mathematics and Physics, Queen' s University, Belfast BT7 1NN (United Kingdom)

    2011-08-15

    We explore experimentally the space of two-qubit quantum-correlated mixed states, including frontier states as defined by the use of quantum discord and von Neumann entropy. Our experimental setup is flexible enough to allow for high-quality generation of a vast variety of states. We address quantitatively the relation between quantum discord and a recently suggested alternative measure of quantum correlations.

  6. Aspects of Majorana Bound States in One-Dimensional Systems with and without Time-Reversal Symmetry

    DEFF Research Database (Denmark)

    Wölms, Konrad Udo Hannes

    . In particular they are very important for the closely related phase of one-dimensional topological superconductors with time-reversal symmetry. This phase also exhibits Majorana bound states, and we will study some of its aspects in this thesis. We will discuss some issues related to obtaining this topological......In recent years there has been a lot of interest in topological phases of matter. Unlike conventional phases of matter, topological phases are not distinguished by symmetries, but by so-called topological invariants which have more subtle physical implications. It comes therefore as no surprise...... that for a long time only a few topological phases were studied and those that were, were not studied in the full topological context, which is only known now. One of the topological phases that has been know for a very long time is the quantum Hall eect. The quantum Hall eect is a topological phase in two...

  7. Heralded amplification of path entangled quantum states

    Science.gov (United States)

    Monteiro, F.; Verbanis, E.; Caprara Vivoli, V.; Martin, A.; Gisin, N.; Zbinden, H.; Thew, R. T.

    2017-06-01

    Device-independent quantum key distribution (DI-QKD) represents one of the most fascinating challenges in quantum communication, exploiting concepts of fundamental physics, namely Bell tests of nonlocality, to ensure the security of a communication link. This requires the loophole-free violation of a Bell inequality, which is intrinsically difficult due to losses in fibre optic transmission channels. Heralded photon amplification (HPA) is a teleportation-based protocol that has been proposed as a means to overcome transmission loss for DI-QKD. Here we demonstrate HPA for path entangled states and characterise the entanglement before and after loss by exploiting a recently developed displacement-based detection scheme. We demonstrate that by exploiting HPA we are able to reliably maintain high fidelity entangled states over loss-equivalent distances of more than 50 km.

  8. Controlling multipolar radiation with symmetries for electromagnetic bound states in the continuum

    Science.gov (United States)

    Lepetit, Thomas; Kanté, Boubacar

    2014-12-01

    Interferences in open systems embedded in a continuum can lead to states that are bound within the continuum itself. An electromagnetic state that naturally decays becomes bound at a unique point in phase space. We demonstrate the striking occurrence of multiple such peculiar states in coupled deep subwavelength resonators. The bound states in the continuum originate from the control of multipolar radiation and their symmetries. The architectures investigated here, using all-dielectric resonators, constitute a flexible and readily achievable platform for applications requiring strong light-matter interaction and light localization.

  9. Quantum Darwinism for mixed-state environment

    Science.gov (United States)

    Quan, Haitao; Zwolak, Michael; Zurek, Wojciech

    2009-03-01

    We exam quantum darwinism when a system is in the presence of a mixed environment, and we find a general relation between the mutual information for the mixed-state environment and the change of the entropy of the fraction of the environment. We then look at a particular solvable model, and we numerically exam the time evolution of the ``mutual information" for large environment. Finally we discuss about the exact expressions for all entropies and the mutual information at special time.

  10. Solid State Quantum Computer in Silicon

    Science.gov (United States)

    2008-09-30

    focused microprobe of 2 MeV alpha particles, produced by the 5U Pelletron accelerator at the University of Melbourne and the MP2 nuclear microprobe...Kotthaus and S. Ludwig, “ Electrostatically defined serial triple quantum dot charged with few electrons”, Physical Review B 76, 075306 (2007). M.Y...ESR line to induce Rabi oscillation of the spin state. In addition, the electrostatic potential on the ESR line is used to shift the Zeeman-split

  11. Spectral coherent-state quantum cryptography.

    Science.gov (United States)

    Cincotti, Gabriella; Spiekman, Leo; Wada, Naoya; Kitayama, Ken-ichi

    2008-11-01

    A novel implementation of quantum-noise optical cryptography is proposed, which is based on a simplified architecture that allows long-haul, high-speed transmission in a fiber optical network. By using a single multiport encoder/decoder and 16 phase shifters, this new approach can provide the same confidentiality as other implementations of Yuen's encryption protocol, which use a larger number of phase or polarization coherent states. Data confidentiality and error probability for authorized and unauthorized receivers are carefully analyzed.

  12. Extracting Entanglement Geometry from Quantum States.

    Science.gov (United States)

    Hyatt, Katharine; Garrison, James R; Bauer, Bela

    2017-10-06

    Tensor networks impose a notion of geometry on the entanglement of a quantum system. In some cases, this geometry is found to reproduce key properties of holographic dualities, and subsequently much work has focused on using tensor networks as tractable models for holographic dualities. Conventionally, the structure of the network-and hence the geometry-is largely fixed a priori by the choice of the tensor network ansatz. Here, we evade this restriction and describe an unbiased approach that allows us to extract the appropriate geometry from a given quantum state. We develop an algorithm that iteratively finds a unitary circuit that transforms a given quantum state into an unentangled product state. We then analyze the structure of the resulting unitary circuits. In the case of noninteracting, critical systems in one dimension, we recover signatures of scale invariance in the unitary network, and we show that appropriately defined geodesic paths between physical degrees of freedom exhibit known properties of a hyperbolic geometry.

  13. Versatile mode-locked fiber laser with switchable operation states of bound solitons.

    Science.gov (United States)

    Zou, Xin; Qiu, Jifang; Wang, Xiaodong; Ye, Zi; Shi, Jindan; Wu, Jian

    2016-06-01

    Bound states of two solitons are among the typical forms of bound states and can be observed in various operation states of mode-locked fiber lasers. We experimentally investigated bound solitons (BSs) in a passively mode-locked erbium-doped fiber laser based on a semiconductor saturable absorber mirror, whose operation states can be switched among multiple pulses, passively harmonic mode-locking, and "giant pulses" by simply adjusting the in-line polarization controller with the pump power fixed. Up to four pulses, fourth-order harmonic mode-locking (HML), and a "giant pulse" with four BSs were obtained with increasing pump power. Experimental results showed a correlative relationship among those operation states (N pulses/Nth-order HML/"giant pulses" of N bound solitons) at different pump power levels. The birefringence induced by the erbium-doped fiber inside the laser cavity played a vital role in the transitions of those operation states.

  14. Dzyaloshinskii-Moriya interaction as an agent to free the bound entangled states

    Science.gov (United States)

    Sharma, Kapil K.; Pandey, S. N.

    2016-04-01

    In the present paper, we investigate the efficacy of Dzyaloshinskii-Moriya (DM) interaction to convert the bound entangled states into free entangled states. We consider the tripartite hybrid system as a pair of non interacting two qutrits initially prepared in bound entangled states and one auxiliary qubit. Here, we consider two types of bound entangled states investigated by Horodecki. The auxiliary qubit interacts with any one of the qutrit of the pair through DM interaction. We show that by tuning the probability amplitude of auxiliary qubit and DM interaction strength, one can free the bound entangled states, which can be further distilled. We use the reduction criterion to find the range of the parameters of probability amplitude of auxiliary qubit and DM interaction strength, for which the states are distillable. The realignment criterion and negativity have been used for detection and quantification of entanglement.

  15. Statistical constraints on state preparation for a quantum computer

    Indian Academy of Sciences (India)

    Quantum computing algorithms require that the quantum register be initially present in a superposition state. To achieve this, we consider the practical problem of creating a coherent superposition state of several qubits. We show that the constraints of quantum statistics require that the entropy of the system be brought ...

  16. A Quantum Version of Wigner’s Transition State Theory

    NARCIS (Netherlands)

    Schubert, R.; Waalkens, H.; Wiggins, S.

    2009-01-01

    A quantum version of a recent realization of Wigner’s transition state theory in phase space is presented. The theory developed builds on a quantum normal form which locally decouples the quantum dynamics near the transition state to any desired order in ħ. This leads to an explicit algorithm to

  17. A Quantum Version of Wigner's Transition State Theory

    NARCIS (Netherlands)

    Schubert, R.; Waalkens, H.; Wiggins, S.

    A quantum version of a recent realization of Wigner's transition state theory in phase space is presented. The theory developed builds on a quantum normal form which locally decouples the quantum dynamics near the transition state to any desired order in (h) over bar. This leads to an explicit

  18. Neural-Network Quantum States, String-Bond States, and Chiral Topological States

    Science.gov (United States)

    Glasser, Ivan; Pancotti, Nicola; August, Moritz; Rodriguez, Ivan D.; Cirac, J. Ignacio

    2018-01-01

    Neural-network quantum states have recently been introduced as an Ansatz for describing the wave function of quantum many-body systems. We show that there are strong connections between neural-network quantum states in the form of restricted Boltzmann machines and some classes of tensor-network states in arbitrary dimensions. In particular, we demonstrate that short-range restricted Boltzmann machines are entangled plaquette states, while fully connected restricted Boltzmann machines are string-bond states with a nonlocal geometry and low bond dimension. These results shed light on the underlying architecture of restricted Boltzmann machines and their efficiency at representing many-body quantum states. String-bond states also provide a generic way of enhancing the power of neural-network quantum states and a natural generalization to systems with larger local Hilbert space. We compare the advantages and drawbacks of these different classes of states and present a method to combine them together. This allows us to benefit from both the entanglement structure of tensor networks and the efficiency of neural-network quantum states into a single Ansatz capable of targeting the wave function of strongly correlated systems. While it remains a challenge to describe states with chiral topological order using traditional tensor networks, we show that, because of their nonlocal geometry, neural-network quantum states and their string-bond-state extension can describe a lattice fractional quantum Hall state exactly. In addition, we provide numerical evidence that neural-network quantum states can approximate a chiral spin liquid with better accuracy than entangled plaquette states and local string-bond states. Our results demonstrate the efficiency of neural networks to describe complex quantum wave functions and pave the way towards the use of string-bond states as a tool in more traditional machine-learning applications.

  19. Neural-Network Quantum States, String-Bond States, and Chiral Topological States

    Directory of Open Access Journals (Sweden)

    Ivan Glasser

    2018-01-01

    Full Text Available Neural-network quantum states have recently been introduced as an Ansatz for describing the wave function of quantum many-body systems. We show that there are strong connections between neural-network quantum states in the form of restricted Boltzmann machines and some classes of tensor-network states in arbitrary dimensions. In particular, we demonstrate that short-range restricted Boltzmann machines are entangled plaquette states, while fully connected restricted Boltzmann machines are string-bond states with a nonlocal geometry and low bond dimension. These results shed light on the underlying architecture of restricted Boltzmann machines and their efficiency at representing many-body quantum states. String-bond states also provide a generic way of enhancing the power of neural-network quantum states and a natural generalization to systems with larger local Hilbert space. We compare the advantages and drawbacks of these different classes of states and present a method to combine them together. This allows us to benefit from both the entanglement structure of tensor networks and the efficiency of neural-network quantum states into a single Ansatz capable of targeting the wave function of strongly correlated systems. While it remains a challenge to describe states with chiral topological order using traditional tensor networks, we show that, because of their nonlocal geometry, neural-network quantum states and their string-bond-state extension can describe a lattice fractional quantum Hall state exactly. In addition, we provide numerical evidence that neural-network quantum states can approximate a chiral spin liquid with better accuracy than entangled plaquette states and local string-bond states. Our results demonstrate the efficiency of neural networks to describe complex quantum wave functions and pave the way towards the use of string-bond states as a tool in more traditional machine-learning applications.

  20. Coherent states in quantum mechanics; Estados coerentes em mecanica quantica

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, R. de Lima [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]. E-mail: rafaelr@cbpf.br; Fernandes Junior, Damasio; Batista, Sheyla Marques [Paraiba Univ., Campina Grande, PB (Brazil). Dept. de Engenharia Eletrica

    2001-12-01

    We present a review work on the coherent states is non-relativistic quantum mechanics analysing the quantum oscillators in the coherent states. The coherent states obtained via a displacement operator that act on the wave function of ground state of the oscillator and the connection with Quantum Optics which were implemented by Glauber have also been considered. A possible generalization to the construction of new coherent states it is point out. (author)

  1. Generating quantum states through spin chain dynamics

    Science.gov (United States)

    Kay, Alastair

    2017-04-01

    The spin chain is a theoretical work-horse of the physicist, providing a convenient, tractable model that yields insight into a host of physical phenomena including conduction, frustration, superconductivity, topological phases, localisation, phase transitions, quantum chaos and even string theory. Our ultimate aim, however, is not just to understand the properties of a physical system, but to harness it for our own ends. We therefore study the possibilities for engineering a special class of spin chain, envisaging the potential for this to feedback into the original physical systems. We pay particular attention to the generation of multipartite entangled states such as the W (Dicke) state, superposed over multiple sites of the chain.

  2. Quantum state transfer between light and matter via teleportation

    DEFF Research Database (Denmark)

    Krauter, Hanna; Sherson, Jacob; Polzik, Eugene Simon

    2010-01-01

    Quantum teleportation is an interesting feature of quantum mechanics. Entanglement is used as a link between two remote locations to transfer a quantum state without physically sending it - a process that cannot be realized utilizing merely classical tools. Furthermore it has become evident...... that teleportation is also an important element of future quantum networks and it can be an ingredient for quantum computation. This article reports for the first time the teleportation from light to atoms. In the experiment discussed, the quantum state of a light beam is transferred to an atomic ensemble. The key...

  3. Mixed state dynamical quantum phase transitions

    Science.gov (United States)

    Bhattacharya, Utso; Bandyopadhyay, Souvik; Dutta, Amit

    2017-11-01

    Preparing an integrable system in a mixed state described by a thermal density matrix, we subject it to a sudden quench and explore the subsequent unitary dynamics. To address the question of whether the nonanalyticities, namely, the dynamical quantum phase transitions (DQPTs), persist when the initial state is mixed, we consider two versions of the generalized Loschmidt overlap amplitude (GLOA). Our study shows that the GLOA constructed using the Uhlmann approach does not show any signature of DQPTs at any nonzero initial temperature. On the other hand, a GLOA defined in the interferometric phase approach through the purifications of the time-evolved density matrix, indeed shows that nonanalyiticies in the corresponding "dynamical free-energy density" persist, thereby establishing the existence of mixed state dynamical quantum phase transitions (MSDQPTs). Our work provides a framework that perfectly reproduces both the nonanalyticities and also the emergent topological structure in the pure state limit. These claims are corroborated by analyzing the nonequilibrium dynamics of a transverse Ising chain initially prepared in a thermal state and subjected to a sudden quench of the transverse field.

  4. Controlling the quantum state of trapped ions

    CERN Document Server

    Roos, C

    2000-01-01

    brace quadrupole transition enables the transfer of the ion's motional state into the ground state with up to 99.9 % probability. Different aspects of the cooling process are investigated. In particular, a measurement of the length of time that the ion spends on average in the final state after switching off the cooling lasers (heating time) is made. In contrast to prior experiments, this time is found to be orders of magnitude longer than the time required to manipulate the ion's quantum state. By coherently exciting the ion after preparing it in Fock states of motion, the coherence time is probed and found to be on the order of a millisecond, thus allowing the realization of a few quantum gates. Coherence-limiting processes have been investigated, as well as first steps towards extending the experiments to the case of two trapped ions. In addition to the experiments mentioned above, the possibility of performing cavity-QED experiments with trapped ions is explored. How to efficiently couple the quadrupole t...

  5. Bipartite quantum states and random complex networks

    Science.gov (United States)

    Garnerone, Silvano; Giorda, Paolo; Zanardi, Paolo

    2012-01-01

    We introduce a mapping between graphs and pure quantum bipartite states and show that the associated entanglement entropy conveys non-trivial information about the structure of the graph. Our primary goal is to investigate the family of random graphs known as complex networks. In the case of classical random graphs, we derive an analytic expression for the averaged entanglement entropy \\bar S while for general complex networks we rely on numerics. For a large number of nodes n we find a scaling \\bar {S} \\sim c log n +g_{ {e}} where both the prefactor c and the sub-leading O(1) term ge are characteristic of the different classes of complex networks. In particular, ge encodes topological features of the graphs and is named network topological entropy. Our results suggest that quantum entanglement may provide a powerful tool for the analysis of large complex networks with non-trivial topological properties.

  6. State-Dependent Implication and Equivalence in Quantum Logic

    Directory of Open Access Journals (Sweden)

    Fedor Herbut

    2012-01-01

    Full Text Available Ideal occurrence of an event (projector leads to the known change of a state (density operator into (the Lüders state. It is shown that two events and give the same Lüders state if and only if the equivalence relation is valid. This relation determines equivalence classes. The set of them and each class, are studied in detail. It is proved that the range projector of the Lüders state can be evaluated as , where denotes the greatest lower bound, and is the null projector of . State-dependent implication extends absolute implication (which, in turn, determines the entire structure of quantum logic. and are investigated in a closely related way to mutual benefit. Inherent in the preorder is the state-dependent equivalence , defining equivalence classes in a given Boolean subalgebra. The quotient set, in which the classes are the elements, has itself a partially ordered structure, and so has each class. In a complete Boolean subalgebra, both structures are complete lattices. Physical meanings are discussed.

  7. Quantifying Quantumness

    Science.gov (United States)

    Braun, Daniel; Giraud, Olivier; Braun, Peter A.

    2010-03-01

    We introduce and study a measure of ``quantumness'' of a quantum state based on its Hilbert-Schmidt distance from the set of classical states. ``Classical states'' were defined earlier as states for which a positive P-function exists, i.e. they are mixtures of coherent states [1]. We study invariance properties of the measure, upper bounds, and its relation to entanglement measures. We evaluate the quantumness of a number of physically interesting states and show that for any physical system in thermal equilibrium there is a finite critical temperature above which quantumness vanishes. We then use the measure for identifying the ``most quantum'' states. Such states are expected to be potentially most useful for quantum information theoretical applications. We find these states explicitly for low-dimensional spin-systems, and show that they possess beautiful, highly symmetric Majorana representations. [4pt] [1] Classicality of spin states, Olivier Giraud, Petr Braun, and Daniel Braun, Phys. Rev. A 78, 042112 (2008)

  8. Quantum Information Protocols with Gaussian States of Light

    DEFF Research Database (Denmark)

    Jacobsen, Christian Scheffmann

    Quantum cryptography is widely regarded as the most mature field within the context of quantum information in the sense that its application and development has produced companies that base their products on genuine quantum mechanical principles. Examples include quantum random number generators...... and hardware for secure quantum key distribution. These technologies directly exploit quantum effects, and indeed this is where they offer advantages to classical products. This thesis deals with the development and implementation of quantum information protocols that utilize the rather inexpensive resource...... of Gaussian states. A quantum information protocol is essentially a sequence of state exchanges between some number of parties and a certain ordering of quantum mechanical unitary operators performed by these parties. An example of this is the famous BB84 protocol for secret key generation, where photons...

  9. Dirac bound states of anharmonic oscillator in external fields

    Energy Technology Data Exchange (ETDEWEB)

    Hamzavi, Majid, E-mail: majid.hamzavi@gmail.com [Department of Physics, University of Zanjan, Zanjan (Iran, Islamic Republic of); Ikhdair, Sameer M., E-mail: sikhdair@gmail.com [Department of Physics, Faculty of Science, an-Najah National University, Nablus, West Bank, Palestine (Country Unknown); Department of Electrical and Electronic Engineering, Near East University, 922022 Nicosia, Northern Cyprus, Mersin 10 (Turkey); Falaye, Babatunde J., E-mail: fbjames11@physicist.net [Theoretical Physics Section, Department of Physics, University of Ilorin, P. M. B. 1515, Ilorin (Nigeria)

    2014-02-15

    We explore the effect of the external magnetic and Aharonov–Bohm (AB) flux fields on the energy levels of Dirac particle subjects to mixed scalar and vector anharmonic oscillator field in the two-dimensional (2D) space. We calculate the exact energy eigenvalues and the corresponding un-normalized two-spinor-components wave functions in terms of the chemical potential parameter, magnetic field strength, AB flux field and magnetic quantum number by using the Nikiforov–Uvarov (NU) method. -- Highlights: • Effect of the external fields on the energy levels of Dirac particle with the anharmonic oscillator is investigated. • The solutions are discussed in view of spin and pseudospin symmetries limits. • The energy levels and wave function are presented by the Nikiforov–Uvarov method.

  10. Optimal estimation of parameters of an entangled quantum state

    Science.gov (United States)

    Virzì, S.; Avella, A.; Piacentini, F.; Gramegna, M.; Brida, G.; Degiovanni, I. P.; Genovese, M.

    2017-05-01

    Two-photon entangled quantum states are a fundamental tool for quantum information and quantum cryptography. A complete description of a generic quantum state is provided by its density matrix: the technique allowing experimental reconstruction of the density matrix is called quantum state tomography. Entangled states density matrix reconstruction requires a large number of measurements on many identical copies of the quantum state. An alternative way of certifying the amount of entanglement in two-photon states is represented by the estimation of specific parameters, e.g., negativity and concurrence. If we have a priori partial knowledge of our state, it’s possible to develop several estimators for these parameters that require lower amount of measurements with respect to full density matrix reconstruction. The aim of this work is to introduce and test different estimators for negativity and concurrence for a specific class of two-photon states.

  11. Self-calibrating quantum state tomography

    Science.gov (United States)

    Brańczyk, A. M.; Mahler, D. H.; Rozema, L. A.; Darabi, A.; Steinberg, A. M.; James, D. F. V.

    2012-08-01

    We introduce and experimentally demonstrate a technique for performing quantum state tomography (QST) on multiple-qubit states despite incomplete knowledge about the unitary operations used to change the measurement basis. Given unitary operations with unknown rotation angles, our method can be used to reconstruct the density matrix of the state up to local \\hat \\sigma _z rotations as well as recover the magnitude of the unknown rotation angle. We demonstrate high-fidelity self-calibrating tomography on polarization-encoded one- and two-photon states. The unknown unitary operations are realized in two ways: using a birefringent polymer sheet—an inexpensive smartphone screen protector—or alternatively a liquid crystal wave plate with a tuneable retardance. We explore how our technique may be adapted for QST of systems such as biological molecules where the magnitude and orientation of the transition dipole moment is not known with high accuracy.

  12. Electron-{{He}}_{2}^{+} scattering calculation using the R-matrix method: resonant and bound states of He2

    Science.gov (United States)

    Epée Epée, M. D.; Motapon, O.; Darby-Lewis, D.; Tennyson, J.

    2017-06-01

    The UK molecular R-matrix codes are used to study electron collisions with the {{He}}2+ molecular ion. Full configuration interaction calculations are performed to obtain the potential energy curves of the ground X {}2{{{Σ }}}u+ and the first excited A {}2{{{Σ }}}g+ electronic states of {{He}}2+. Resonances, effective quantum numbers, and resonance widths as a function of the internuclear separation are determined for the lowest singlet {}1{{{Σ }}}g+,{}1{{{Σ }}}u+,{}1{{{\\Pi }}}g and {}1{{{\\Pi }}}u and triplet {}3{{{Σ }}}g+,{}3{{{Σ }}}u+,{}3{{{\\Pi }}}g,{}3{{{\\Pi }}}u and {}3{{{Δ }}}u states, which are relevant for the study of the reactive collision of {{He}}2+ with low-energy electrons. In addition, bound states are also calculated for each symmetry of {{He}}2 at several geometries.

  13. Advantages of Unfair Quantum Ground-State Sampling.

    Science.gov (United States)

    Zhang, Brian Hu; Wagenbreth, Gene; Martin-Mayor, Victor; Hen, Itay

    2017-04-21

    The debate around the potential superiority of quantum annealers over their classical counterparts has been ongoing since the inception of the field. Recent technological breakthroughs, which have led to the manufacture of experimental prototypes of quantum annealing optimizers with sizes approaching the practical regime, have reignited this discussion. However, the demonstration of quantum annealing speedups remains to this day an elusive albeit coveted goal. We examine the power of quantum annealers to provide a different type of quantum enhancement of practical relevance, namely, their ability to serve as useful samplers from the ground-state manifolds of combinatorial optimization problems. We study, both numerically by simulating stoquastic and non-stoquastic quantum annealing processes, and experimentally, using a prototypical quantum annealing processor, the ability of quantum annealers to sample the ground-states of spin glasses differently than thermal samplers. We demonstrate that (i) quantum annealers sample the ground-state manifolds of spin glasses very differently than thermal optimizers (ii) the nature of the quantum fluctuations driving the annealing process has a decisive effect on the final distribution, and (iii) the experimental quantum annealer samples ground-state manifolds significantly differently than thermal and ideal quantum annealers. We illustrate how quantum annealers may serve as powerful tools when complementing standard sampling algorithms.

  14. Ultrasensitive optical absorption in graphene based on bound states in the continuum

    National Research Council Canada - National Science Library

    Zhang, Mingda; Zhang, Xiangdong

    2015-01-01

    We have designed a sphere-graphene-slab structure so that the electromagnetic wave can be well confined in the graphene due to the formation of a bound state in a continuum (BIC) of radiation modes...

  15. Effective quantum state reconstruction using compressed sensing in NMR quantum computing

    Science.gov (United States)

    Yang, J.; Cong, S.; Liu, X.; Li, Z.; Li, K.

    2017-11-01

    Compressed sensing (CS) has been verified as an effective technique in the reconstruction of quantum state; however, it is still unknown if CS can reconstruct quantum states given the incomplete data measured by nuclear magnetic resonance (NMR). In this paper, we propose an effective NMR quantum state reconstruction method based on CS. Different from the conventional CS-based quantum state reconstruction, our method uses the actual observation data from NMR experiments rather than the data measured by the Pauli operators. We implement measurements on quantum states in practical NMR computing experiments and reconstruct states of two, three, and four qubits using fewer number of measurement settings, respectively. The proposed method is easy to implement and performs more efficiently with the increase of the system dimension size. The performance reveals both efficiency and accuracy, which provides an alternative for the quantum state reconstruction in practical NMR.

  16. How to spell out the epistemic conception of quantum states

    Science.gov (United States)

    Friederich, Simon

    The paper investigates the epistemic conception of quantum states-the view that quantum states are not descriptions of quantum systems but rather reflect the assigning agents' epistemic relations to the systems. This idea, which can be found already in the works of Copenhagen adherents Heisenberg and Peierls, has received increasing attention in recent years because it promises an understanding of quantum theory in which neither the measurement problem nor a conflict between quantum non-locality and relativity theory arises. Here it is argued that the main challenge for proponents of this idea is to make sense of the notion of a state assignment being performed correctly without thereby acknowledging the notion of a true state of a quantum system-a state it is in. An account based on the epistemic conception of states is proposed that fulfills this requirement by interpreting the rules governing state assignment as constitutive rules in the sense of John Searle.

  17. An Improved Lower Bound Limit State Optimisation Algorithm

    DEFF Research Database (Denmark)

    Frier, Christian; Damkilde, Lars

    2010-01-01

    Limit State analysis has been used in manual design methods for decades e.g. the yield line theory for concrete slabs.......Limit State analysis has been used in manual design methods for decades e.g. the yield line theory for concrete slabs....

  18. Spectroscopy of η′-nucleus bound states at GSI-SIS

    Directory of Open Access Journals (Sweden)

    Outa Haruhiko

    2012-12-01

    Full Text Available The η′ meson mass may be reduced due to partial restoration of chiral symmetry. If this is the case, an η′-nucleus system may form a nuclear bound state.We plan to carry out a missing-mass spectroscopy experiment with the 12C(p,d reaction at GSI-SIS. Peak structures corresponding to such a bound state may be observed even in an inclusive measurement, if the decay width is narrow enough.

  19. Transfer Function Bounds for Partial-unit-memory Convolutional Codes Based on Reduced State Diagram

    Science.gov (United States)

    Lee, P. J.

    1984-01-01

    The performance of a coding system consisting of a convolutional encoder and a Viterbi decoder is analytically found by the well-known transfer function bounding technique. For the partial-unit-memory byte-oriented convolutional encoder with m sub 0 binary memory cells and (k sub 0 m sub 0) inputs, a state diagram of 2(K) (sub 0) was for the transfer function bound. A reduced state diagram of (2 (m sub 0) +1) is used for easy evaluation of transfer function bounds for partial-unit-memory codes.

  20. Nuclear structure of bound states of asymmetric dark matter

    Science.gov (United States)

    Gresham, Moira I.; Lou, Hou Keong; Zurek, Kathryn M.

    2017-11-01

    Models of asymmetric dark matter (ADM) with a sufficiently attractive and long-range force give rise to stable bound objects, analogous to nuclei in the Standard Model, called nuggets. We study the properties of these nuggets and compute their profiles and binding energies. Our approach, applicable to both elementary and composite fermionic ADM, utilizes relativistic mean field theory, and allows a more systematic computation of nugget properties, over a wider range of sizes and force mediator masses, compared to previous literature. We identify three separate regimes of nugget property behavior corresponding to (1) nonrelativistic and (2) relativistic constituents in a Coulomb-like limit, and (3) saturation in an anti-Coulomb limit when the nuggets are large compared to the force range. We provide analytical descriptions for nuggets in each regime. Through numerical calculations, we are able to confirm our analytic descriptions and also obtain smooth transitions for the nugget profiles between all three regimes. We also find that over a wide range of parameter space, the binding energy in the saturation limit is an O (1 ) fraction of the constituent's mass, significantly larger than expectations in the nonrelativistic case. In a companion paper, we apply our results to the synthesis of ADM nuggets in the early Universe.

  1. Quantum Ground States as Equilibrium Particle-Vacuum Interaction States

    CERN Document Server

    Puthoff, Harold E

    2012-01-01

    A remarkable feature of atomic ground states is that they are observed to be radiationless in nature, despite (from a classical viewpoint) typically involving charged particles in accelerated motions. The simple hydrogen atom is a case in point. This universal groundstate characteristic is shown to derive from particle-vacuum interactions in which a dynamic equilibrium is established between radiation emission due to particle acceleration, and compensatory absorption from the zero-point fluctuations of the vacuum electromagnetic field. The result is a net radiationless ground state. This principle constitutes an overarching constraint that delineates an important feature of quantum ground states.

  2. Scaling and universality in two dimensions: three-body bound states with short-ranged interactions

    Energy Technology Data Exchange (ETDEWEB)

    Bellotti, F F; Frederico, T [Instituto Tecnologico de Aeronautica, DCTA, 12.228-900 Sao Jose dos Campos, SP (Brazil); Yamashita, M T [Instituto de Fisica Teorica, UNESP-Univ Estadual Paulista, CP 70532-2, CEP 01156-970, Sao Paulo, SP (Brazil); Fedorov, D V; Jensen, A S; Zinner, N T, E-mail: zinner@phys.au.dk [Department of Physics and Astronomy-Aarhus University, Ny Munkegade, bygn. 1520, DK-8000 Arhus C (Denmark)

    2011-10-28

    The momentum space zero-range model is used to investigate universal properties of three interacting particles confined to two dimensions. The pertinent equations are first formulated for a system of two identical and one distinct particle and the two different two-body subsystems are characterized by two-body energies and masses. The three-body energy in units of one of the two-body energies is a universal function of the other two-body energy and the mass ratio. We derive convenient analytical formulae for calculations of the three-body energy as a function of these two independent parameters and exhibit the results as universal curves. In particular, we show that the three-body system can have any number of stable bound states. When the mass ratio of the distinct to identical particles is greater than 0.22, we find that at most two stable bound states exist, while for two heavy and one light mass an increasing number of bound states is possible. The specific number of stable bound states depends on the ratio of two-body bound state energies and on the mass ratio, and we map out an energy-mass phase diagram of the number of stable bound states. Realizable systems of both fermions and bosons are discussed in this framework.

  3. Generating nonclassical quantum input field states with modulating filters

    Energy Technology Data Exchange (ETDEWEB)

    Gough, John E. [Aberystwyth University, Department of Physics, Aberystwyth, Wales (United Kingdom); Zhang, Guofeng [The Hong Kong Polytechnic University, Department of Applied Mathematics, Hong Kong (China)

    2015-12-15

    We give explicit constructions of quantum dynamical filters which generate nonclassical states (coherent states, cat states, shaped single and multi-photon states) of quantum optical fields as inputs to general quantum Markov systems. The filters will be quantum harmonic oscillators damped by the input fields, and we exploit the fact that the cascaded filter and system will have a Lindbladian that is naturally Wick-ordered in the filter modes. In particular the initialization of the modulating filter will determine the signal state generated. (orig.)

  4. Spatial evolution of quantum mechanical states

    Science.gov (United States)

    Christensen, N. D.; Unger, J. E.; Pinto, S.; Su, Q.; Grobe, R.

    2018-02-01

    The time-dependent Schrödinger equation is solved traditionally as an initial-time value problem, where its solution is obtained by the action of the unitary time-evolution propagator on the quantum state that is known at all spatial locations but only at t = 0. We generalize this approach by examining the spatial evolution from a state that is, by contrast, known at all times t, but only at one specific location. The corresponding spatial-evolution propagator turns out to be pseudo-unitary. In contrast to the real energies that govern the usual (unitary) time evolution, the spatial evolution can therefore require complex phases associated with dynamically relevant solutions that grow exponentially. By introducing a generalized scalar product, for which the spatial generator is Hermitian, one can show that the temporal integral over the probability current density is spatially conserved, in full analogy to the usual norm of the state, which is temporally conserved. As an application of the spatial propagation formalism, we introduce a spatial backtracking technique that permits us to reconstruct any quantum information about an atom from the ionization data measured at a detector outside the interaction region.

  5. Quantum hydrodynamic description of collective nuclear states

    Energy Technology Data Exchange (ETDEWEB)

    Sapershtein, E.E.; Fayans, S.A.; Khodel' , V.A.

    1978-03-01

    The nature of low-lying collective nuclear states is analyzed in the framework of the Fermi-liquid approach. It is shown that in a drop of Fermi liquid one has not only the ordinary zero-sound branch but also a new collective mode resulting from the spontaneous breaking of the translational invariance. These are quantum capillary waves that have much in common with ordinary surface excitations of a classical drop. Numerical calculations show that the first collective levels of nuclei belong to this branch.

  6. Semiconductor Nanostructures Quantum States and Electronic Transport

    CERN Document Server

    Ihn, Thomas

    2009-01-01

    This textbook describes the physics of semiconductor nanostructures with emphasis on their electronic transport properties. At its heart are five fundamental transport phenomena: quantized conductance, tunnelling transport, the Aharonov-Bohm effect, the quantum Hall effect, and the Coulomb blockade effect. The book starts out with the basics of solid state and semiconductor physics, such as crystal structure, band structure, and effective mass approximation, including spin-orbit interaction effects important for research in semiconductor spintronics. It contains material aspects such as band e

  7. Relating quantum discord with the quantum dense coding capacity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xin; Qiu, Liang, E-mail: lqiu@cumt.edu.cn; Li, Song; Zhang, Chi [China University of Mining and Technology, School of Sciences (China); Ye, Bin [China University of Mining and Technology, School of Information and Electrical Engineering (China)

    2015-01-15

    We establish the relations between quantum discord and the quantum dense coding capacity in (n + 1)-particle quantum states. A necessary condition for the vanishing discord monogamy score is given. We also find that the loss of quantum dense coding capacity due to decoherence is bounded below by the sum of quantum discord. When these results are restricted to three-particle quantum states, some complementarity relations are obtained.

  8. Experimental magic state distillation for fault-tolerant quantum computing.

    Science.gov (United States)

    Souza, Alexandre M; Zhang, Jingfu; Ryan, Colm A; Laflamme, Raymond

    2011-01-25

    Any physical quantum device for quantum information processing (QIP) is subject to errors in implementation. In order to be reliable and efficient, quantum computers will need error-correcting or error-avoiding methods. Fault-tolerance achieved through quantum error correction will be an integral part of quantum computers. Of the many methods that have been discovered to implement it, a highly successful approach has been to use transversal gates and specific initial states. A critical element for its implementation is the availability of high-fidelity initial states, such as |0〉 and the 'magic state'. Here, we report an experiment, performed in a nuclear magnetic resonance (NMR) quantum processor, showing sufficient quantum control to improve the fidelity of imperfect initial magic states by distilling five of them into one with higher fidelity.

  9. Can a quantum state over time resemble a quantum state at a single time?

    Science.gov (United States)

    Horsman, Dominic; Heunen, Chris; Pusey, Matthew F; Barrett, Jonathan; Spekkens, Robert W

    2017-09-01

    The standard formalism of quantum theory treats space and time in fundamentally different ways. In particular, a composite system at a given time is represented by a joint state, but the formalism does not prescribe a joint state for a composite of systems at different times. If there were a way of defining such a joint state, this would potentially permit a more even-handed treatment of space and time, and would strengthen the existing analogy between quantum states and classical probability distributions. Under the assumption that the joint state over time is an operator on the tensor product of single-time Hilbert spaces, we analyse various proposals for such a joint state, including one due to Leifer and Spekkens, one due to Fitzsimons, Jones and Vedral, and another based on discrete Wigner functions. Finding various problems with each, we identify five criteria for a quantum joint state over time to satisfy if it is to play a role similar to the standard joint state for a composite system: that it is a Hermitian operator on the tensor product of the single-time Hilbert spaces; that it represents probabilistic mixing appropriately; that it has the appropriate classical limit; that it has the appropriate single-time marginals; that composing over multiple time steps is associative. We show that no construction satisfies all these requirements. If Hermiticity is dropped, then there is an essentially unique construction that satisfies the remaining four criteria.

  10. Quantum logic gates using coherent population trapping states

    Indian Academy of Sciences (India)

    Coherent population trap; quantum computation; controlled phase gate. PACS Nos 42.50.Ex; 32.80.Qk; 32.90+a; 03.67.Lx. Conventional computers handle information in the form of bits – which take up values 0 or. 1. Quantum computers on the other hand, use quantum bits (qubits), which can be prepared in states 0, 1 or ...

  11. Protected State Transfer via an Approximate Quantum Adder.

    Science.gov (United States)

    Gatti, G; Barberena, D; Sanz, M; Solano, E

    2017-07-31

    We propose a decoherence protected protocol for sending single photon quantum states through depolarizing channels. This protocol is implemented via an approximate quantum adder engineered through spontaneous parametric down converters, and shows higher success probability than distilled quantum teleportation protocols for distances below a threshold depending on the properties of the channel.

  12. Erratum to "Quantum Limits of Eisenstein Series and Scattering States''

    DEFF Research Database (Denmark)

    Petridis, Y.N.; Raulf, N.; Risager, Morten S.

    2013-01-01

    We identify the quantum limits of scattering states for the modular surface. This is obtained through the study of quantum measures of non-holomorphic Eisenstein series away from the critical line. We provide a range of stability for the quantum unique ergodicity theorem of Luo and Sarnak. © Cana....... © Canadian Mathematical Society 2012....

  13. Quantum limits of Eisenstein series and scattering states

    DEFF Research Database (Denmark)

    Petridis, Y.N.; Raulf, N.; Risager, Morten S.

    2013-01-01

    We identify the quantum limits of scattering states for the modular surface. This is obtained through the study of quantum measures of non-holomorphic Eisenstein series away from the critical line. We provide a range of stability for the quantum unique ergodicity theorem of Luo and Sarnak....

  14. Transition from Optical Bound States in the Continuum to Leaky Resonances: Role of Substrate and Roughness

    DEFF Research Database (Denmark)

    Sadrieva, Zarina F.; Sinev, Ivan S.; Koshelev, Kirill L.

    2017-01-01

    into resonant states due to leakage into the diffraction channels opening in the substrate. We show how two concurrent loss mechanisms, scattering due to surface roughness and leakage into substrate, contribute to the suppression of the resonance lifetime and specify the condition when one of the mechanisms......Optical bound states in the continuum (BIC) are localized states with energy lying above the light line and having infinite lifetime. Any losses taking place in real systems result in transformation of the bound states into resonant states with finite lifetime. In this Letter, we analyze properties...... becomes dominant. The obtained results provide useful guidelines for practical implementations of structures supporting optical bound states in the continuum....

  15. Equivalence of Quantum Resource Measures for X States

    Science.gov (United States)

    Huang, Zhiming; Zhang, Cai; Zhang, Wei; Zhao, Lianghui

    2017-11-01

    In this paper, we investigate some X states, quantum resource measures of which are equivalent. We find that for a class of X states, trace norm geometric quantum discord (TGQD), trace norm measurement-induced nonlocality (TMIN) and l 1 norm quantum coherence (L1QC) are all equal, and for some special states, therein two measures are equal. We also exemplify relative application of the equivalent relations.

  16. Multiple-state quantum Otto engine, 1D box system

    Science.gov (United States)

    Latifah, E.; Purwanto, A.

    2014-03-01

    Quantum heat engines produce work using quantum matter as their working substance. We studied adiabatic and isochoric processes and defined the general force according to quantum system. The processes and general force are used to evaluate a quantum Otto engine based on multiple-state of one dimensional box system and calculate the efficiency. As a result, the efficiency depends on the ratio of initial and final width of system under adiabatic processes.

  17. Multiple-state quantum Otto engine, 1D box system

    Energy Technology Data Exchange (ETDEWEB)

    Latifah, E., E-mail: enylatifah@um.ac.id [Laboratory of Theoretical Physics and Natural Philosophy, Physics Department, Institut Teknologi Sepuluh Nopember, ITS, Surabaya, Indonesia and Physics Department, Malang State University (Indonesia); Purwanto, A. [Laboratory of Theoretical Physics and Natural Philosophy, Physics Department, Institut Teknologi Sepuluh Nopember, ITS, Surabaya (Indonesia)

    2014-03-24

    Quantum heat engines produce work using quantum matter as their working substance. We studied adiabatic and isochoric processes and defined the general force according to quantum system. The processes and general force are used to evaluate a quantum Otto engine based on multiple-state of one dimensional box system and calculate the efficiency. As a result, the efficiency depends on the ratio of initial and final width of system under adiabatic processes.

  18. Information Divergence and Distance Measures for Quantum States

    Science.gov (United States)

    Jiang, Nan; Zhang, Zhaozhi

    2015-02-01

    Both information divergence and distance are measures of closeness of two quantum states which are widely used in the theory of information processing and quantum cryptography. For example, the quantum relative entropy and trace distance are well known. Here we introduce a number of new quantum information divergence and distance measures into the literature and discuss their relations and properties. We also propose a method to analyze the properties and relations of various distance and pseudo-distance measures.

  19. Non-classical state engineering for quantum networks

    Energy Technology Data Exchange (ETDEWEB)

    Vollmer, Christina E.

    2014-01-24

    The wide field of quantum information processing and quantum networks has developed very fast in the last two decades. Besides the regime of discrete variables, which was developed first, the regime of continuous variables represents an alternative approach to realize many quantum applications. Non-classical states of light, like squeezed or entangled states, are a fundamental resource for quantum applications like quantum repeaters, quantum memories, quantum key distribution, quantum spectroscopy, and quantum metrology. These states can be generated successfully in the infrared wavelength regime. However, for some tasks other wavelengths, especially in the visible wavelength regime, are desirable. To generate non-classical states of light in this wavelength regime frequency up-conversion can be used, since all quantum properties are maintained in this process. The first part of this thesis deals with the experimental frequency up-conversion of quantum states. Squeezed vacuum states of light at 1550 nm were up-converted to 532 nm and a noise reduction of -1.5 dB at 532 nm was achieved. These states can be used for increasing the sensitivity of gravitational wave detectors or spectroscopic measurements. Furthermore, one part of an entangled state at 1550 nm was up-converted to 532 nm and, thus, entanglement between these two wavelengths was generated and characterized to -1.4 dB following Duan et al. With such a quantum link it is possible to establish a quantum network, which takes advantage of the low optical loss at 1550 nm for information transmission and of atomic transitions around 532 nm for a quantum memory in a quantum repeater. For quantum networks the distribution of entanglement and especially of a quantum key is essential. In the second part of this thesis the experimental distribution of entanglement by separable states is demonstrated. The underlying protocol requires a special three-mode state, which is separable in two of the three splittings. With

  20. Random Bosonic States for Robust Quantum Metrology

    Directory of Open Access Journals (Sweden)

    M. Oszmaniec

    2016-12-01

    Full Text Available We study how useful random states are for quantum metrology, i.e., whether they surpass the classical limits imposed on precision in the canonical phase sensing scenario. First, we prove that random pure states drawn from the Hilbert space of distinguishable particles typically do not lead to superclassical scaling of precision even when allowing for local unitary optimization. Conversely, we show that random pure states from the symmetric subspace typically achieve the optimal Heisenberg scaling without the need for local unitary optimization. Surprisingly, the Heisenberg scaling is observed for random isospectral states of arbitrarily low purity and preserved under loss of a fixed number of particles. Moreover, we prove that for pure states, a standard photon-counting interferometric measurement suffices to typically achieve resolution following the Heisenberg scaling for all values of the phase at the same time. Finally, we demonstrate that metrologically useful states can be prepared with short random optical circuits generated from three types of beam splitters and a single nonlinear (Kerr-like transformation.

  1. Bethe–Salpeter bound-state structure in Minkowski space

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, C. [Instituto de Física Teórica, Universidade Estadual Paulista, 01156-970 São Paulo, SP (Brazil); Gigante, V.; Frederico, T. [Instituto Tecnológico de Aeronáutica, DCTA, 12.228-900 São José dos Campos, SP (Brazil); Salmè, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Roma, P.le A. Moro 2, 00185 Roma (Italy); Viviani, M. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Largo Pontecorvo 3, 56100 Pisa (Italy); Tomio, Lauro, E-mail: tomio@ift.unesp.br [Instituto de Física Teórica, Universidade Estadual Paulista, 01156-970 São Paulo, SP (Brazil); Instituto Tecnológico de Aeronáutica, DCTA, 12.228-900 São José dos Campos, SP (Brazil)

    2016-08-10

    The quantitative investigation of the scalar Bethe–Salpeter equation in Minkowski space, within the ladder-approximation framework, is extended to include the excited states. This study has been carried out for an interacting system composed by two massive bosons exchanging a massive scalar, by adopting (i) the Nakanishi integral representation of the Bethe–Salpeter amplitude, and (ii) the formally exact projection onto the null plane. Our analysis, on one hand, confirms the reliability of the method already applied to the ground state and, on the other one, extends the investigation from the valence distribution in momentum space to the corresponding quantity in the impact-parameter space, pointing out some relevant features, like (i) the equivalence between Minkowski and Euclidean transverse-momentum amplitudes, and (ii) the leading exponential fall-off of the valence wave function in the impact-parameter space.

  2. The relativistic bound states of a non-central potential

    Indian Academy of Sciences (India)

    2017-03-29

    Mar 29, 2017 ... K(E + M),. ˜E0 = (1 − 2δ). (47). Obviously, we have chosen the negative solution as the appropriate solution of the quadratic equation in δ so that we can get a positive physical energy state ˜E0. We can now construct the two supersymmetric part- ner potentials as. V+(r) = W2(r)+W (r) = δ(δ − 1) r2. + 2r2+2δ+.

  3. A search for deeply bound kaonic nuclear states

    Science.gov (United States)

    Suzuki, T.; Bhang, H.; Franklin, G.; Gomikawa, K.; Hayano, R. S.; Hayashi, T.; Ishikawa, K.; Ishimoto, S.; Itahashi, K.; Iwasaki, M.; Katayama, T.; Kondo, Y.; Matsuda, Y.; Nakamura, T.; Okada, S.; Outa, H.; Quinn, B.; Sato, M.; Shindo, M.; So, H.; Strasser, P.; Sugimoto, T.; Suzuki, K.; Suzuki, S.; Tomono, D.; Vinodkumar, A. M.; Widmann, E.; Yamazaki, T.; Yoneyama, T.

    2005-05-01

    We have measured proton and neutron energy spectra by means of time-of-flight (TOF) from 4He( Kstopped-,p/n) reactions (KEK PS E471 experiment). In the proton spectrum, a clear mono-energetic peak was observed under semi-inclusive condition, which was assigned to the formation of a strange tribaryon S 0(3115) with isospin T=1. The mass and width of the state were deduced to be 3117.7-2.0+3.8(syst.)±0.9(stat.) MeV/c and <21.6 MeV/c, respectively, and its main decay mode was ΣNN. In the neutron spectrum, a mono-energetic peak was found as the result of a detailed analysis, which was assigned to the formation of another kind of strange tribaryon S +(3140). The mass and width of the state were deduced to be 3140.5-0.8+3.0(syst.)±2.3(stat.) MeV/c and <21.6 MeV/c, respectively, and its main decay mode was ΣNN. The isospin of the state is assigned to be 0. The results are compared with recent theoretical calculations.

  4. A search for deeply bound kaonic nuclear states

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, T. [Department of Physics, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)]. E-mail: takatosi@nucl.phys.s.u-tokyo.ac.jp; Bhang, H. [Department of Physics, Seoul National University, Shikkim-dong, Kwanak-gu, Seoul 151-742 (Korea, Republic of); Franklin, G. [Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Gomikawa, K. [Department of Physics, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Hayano, R.S. [Department of Physics, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Hayashi, T. [Department of Physics, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8551 (Japan); Ishikawa, K. [Department of Physics, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8551 (Japan); Ishimoto, S. [IPNS, KEK - High Energy Accelerator Research Organization, Oho, Tsukuba-shi, Ibaraki 305-0801 (Japan); Itahashi, K. [DRI, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Iwasaki, M. [DRI, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Department of Physics, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8551 (Japan); Katayama, T. [Department of Physics, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8551 (Japan); Kondo, Y. [Department of Physics, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8551 (Japan); Matsuda, Y. [DRI, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Nakamura, T. [Department of Physics, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8551 (Japan); Okada, S. [Department of Physics, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8551 (Japan); Outa, H. [IPNS, KEK - High Energy Accelerator Research Organization, Oho, Tsukuba-shi, Ibaraki 305-0801 (Japan); Quinn, B. [Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Sato, M. [Department of Physics, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8551 (Japan)] [and others

    2005-05-30

    We have measured proton and neutron energy spectra by means of time-of-flight (TOF) from {sup 4}He(Kstopped-,p/n) reactions (KEK PS E471 experiment). In the proton spectrum, a clear mono-energetic peak was observed under semi-inclusive condition, which was assigned to the formation of a strange tribaryon S{sup 0}(3115) with isospin T=1. The mass and width of the state were deduced to be 3117.7-2.0+3.8(syst.)+/-0.9(stat.) MeV/c2 and 21.6 MeV/c2, respectively, and its main decay mode was {sigma}NN. In the neutron spectrum, a mono-energetic peak was found as the result of a detailed analysis, which was assigned to the formation of another kind of strange tribaryon S{sup +}(3140). The mass and width of the state were deduced to be 3140.5-0.8+3.0(syst.)+/-2.3(stat.) MeV/c2 and 21.6 MeV/c2, respectively, and its main decay mode was {sigma}+/-NN. The isospin of the state is assigned to be 0. The results are compared with recent theoretical calculations.

  5. Subgap in the Surface Bound States Spectrum of Superfluid ^3 He-B with Rough Surface

    Science.gov (United States)

    Nagato, Y.; Higashitani, S.; Nagai, K.

    2017-12-01

    The subgap structure in the surface bound states spectrum of superfluid ^3 He-B with rough surface is discussed. The subgap is formed by the level repulsion between the surface bound state and the continuum states in the course of multiple scattering by the surface roughness. We show that the level repulsion is originated from the nature of the wave function of the surface bound state that is now recognized as Majorana fermion. We study the superfluid ^3 He-B with a rough surface and in a magnetic field perpendicular to the surface using the quasi-classical Green function together with a random S-matrix model. We calculate the self-consistent order parameters, the spin polarization density and the surface density of states. It is shown that the subgap is found also in a magnetic field perpendicular to the surface. The magnetic field dependence of the transverse acoustic impedance is also discussed.

  6. Diamagnetic expansions for perfect quantum gases II:  Uniform bounds

    DEFF Research Database (Denmark)

    Briet, Philippe; Cornean, Horia; Louis, Delphine

    2008-01-01

    Abstract. Consider a charged, perfect quantum gas, in the effective mass approximation, and in the grand-canonical ensemble. Consider a charged, perfect quantum gas, in the effective mass approximation, and in the grand-canonical ensemble. We prove in this paper that the generalized magnetic susc...

  7. Security enhanced memory for quantum state.

    Science.gov (United States)

    Mukai, Tetsuya

    2017-07-27

    Security enhancement is important in terms of both classical and quantum information. The recent development of a quantum storage device is noteworthy, and a coherence time of one second or longer has been demonstrated. On the other hand, although the encryption of a quantum bit or quantum memory has been proposed theoretically, no experiment has yet been carried out. Here we report the demonstration of a quantum memory with an encryption function that is realized by scrambling and retrieving the recorded quantum phase. We developed two independent Ramsey interferometers on an atomic ensemble trapped below a persistent supercurrent atom chip. By operating the two interferometers with random phases, the quantum phase recorded by a pulse of the first interferometer was modulated by the second interferometer pulse. The scrambled quantum phase was restored by employing another pulse of the second interferometer with a specific time delay. This technique paves way for improving the security of quantum information technology.

  8. Quantum Entanglement Swapping between Two Multipartite Entangled States.

    Science.gov (United States)

    Su, Xiaolong; Tian, Caixing; Deng, Xiaowei; Li, Qiang; Xie, Changde; Peng, Kunchi

    2016-12-09

    Quantum entanglement swapping is one of the most promising ways to realize the quantum connection among local quantum nodes. In this Letter, we present an experimental demonstration of the entanglement swapping between two independent multipartite entangled states, each of which involves a tripartite Greenberger-Horne-Zeilinger (GHZ) entangled state of an optical field. The entanglement swapping is implemented deterministically by means of a joint measurement on two optical modes coming from the two multipartite entangled states respectively and the classical feedforward of the measurement results. After entanglement swapping the two independent multipartite entangled states are merged into a large entangled state in which all unmeasured quantum modes are entangled. The entanglement swapping between a tripartite GHZ state and an Einstein-Podolsky-Rosen entangled state is also demonstrated and the dependence of the resultant entanglement on transmission loss is investigated. The presented experiment provides a feasible technical reference for constructing more complicated quantum networks.

  9. Reversible Exchange of L-Type and Bound-Ion-Pair X-Type Ligation on Cadmium Selenide Quantum Belts.

    Science.gov (United States)

    Zhou, Yang; Buhro, William E

    2017-09-20

    CdSe quantum belts of composition {CdSe[n-octylamine]0.53} and protic acids HX (X = Cl, Br, NO3, acetate (OAc), and benzoate (OBz)) react to exchange the L-type amine ligation to bound-ion-pair X-type ligation. The latter ligation has X- anions bound to the nanocrystal surfaces and closely associated LH+ counter-cations (protonated n-octylamine or tri-n-octylphosphine (TOP) to balance the surface charges. The compositions of the exchanged QBs are {CdSe[Br]0.44[n-octylammonium]0.41}, {CdSe[NO3]0.10[TOPH]0.12}, {CdSe[OBz]0.08[n-octylammonium]0.02[TOPH]0.06}, and {CdSe[OAc]0.16[n-octylammonium]0.02[TOPH]0.14}. (The HCl-exchanged QBs are insufficiently stable for elemental analysis.) The bound-ion-pair X-type ligation is fully reversed to L-type n-octylamine ligation in the cases of X = NO3, acetate, and benzoate. The ligand exchanges are monitored by absorption spectroscopy, and the exchanged, bound-ion-pair X-type ligated nanocrystals are characterized by a range of methods.

  10. Operating Quantum States in Single Magnetic Molecules: Implementation of Grover's Quantum Algorithm.

    Science.gov (United States)

    Godfrin, C; Ferhat, A; Ballou, R; Klyatskaya, S; Ruben, M; Wernsdorfer, W; Balestro, F

    2017-11-03

    Quantum algorithms use the principles of quantum mechanics, such as, for example, quantum superposition, in order to solve particular problems outperforming standard computation. They are developed for cryptography, searching, optimization, simulation, and solving large systems of linear equations. Here, we implement Grover's quantum algorithm, proposed to find an element in an unsorted list, using a single nuclear 3/2 spin carried by a Tb ion sitting in a single molecular magnet transistor. The coherent manipulation of this multilevel quantum system (qudit) is achieved by means of electric fields only. Grover's search algorithm is implemented by constructing a quantum database via a multilevel Hadamard gate. The Grover sequence then allows us to select each state. The presented method is of universal character and can be implemented in any multilevel quantum system with nonequal spaced energy levels, opening the way to novel quantum search algorithms.

  11. Operating Quantum States in Single Magnetic Molecules: Implementation of Grover's Quantum Algorithm

    Science.gov (United States)

    Godfrin, C.; Ferhat, A.; Ballou, R.; Klyatskaya, S.; Ruben, M.; Wernsdorfer, W.; Balestro, F.

    2017-11-01

    Quantum algorithms use the principles of quantum mechanics, such as, for example, quantum superposition, in order to solve particular problems outperforming standard computation. They are developed for cryptography, searching, optimization, simulation, and solving large systems of linear equations. Here, we implement Grover's quantum algorithm, proposed to find an element in an unsorted list, using a single nuclear 3 /2 spin carried by a Tb ion sitting in a single molecular magnet transistor. The coherent manipulation of this multilevel quantum system (qudit) is achieved by means of electric fields only. Grover's search algorithm is implemented by constructing a quantum database via a multilevel Hadamard gate. The Grover sequence then allows us to select each state. The presented method is of universal character and can be implemented in any multilevel quantum system with nonequal spaced energy levels, opening the way to novel quantum search algorithms.

  12. Quantum speedup of the traveling-salesman problem for bounded-degree graphs

    Science.gov (United States)

    Moylett, Dominic J.; Linden, Noah; Montanaro, Ashley

    2017-03-01

    The traveling-salesman problem is one of the most famous problems in graph theory. However, little is currently known about the extent to which quantum computers could speed up algorithms for the problem. In this paper, we prove a quadratic quantum speedup when the degree of each vertex is at most 3 by applying a quantum backtracking algorithm to a classical algorithm by Xiao and Nagamochi. We then use similar techniques to accelerate a classical algorithm for when the degree of each vertex is at most 4, before speeding up higher-degree graphs via reductions to these instances.

  13. On the energy of bound states for magnetic Schrödinger operators

    DEFF Research Database (Denmark)

    Fournais, Søren; Kachmar, Ayman

    2009-01-01

    is varied near the value where bound states become allowed in the interior of the domain, we show that the energy has a boundary and a bulk component. The estimates rely on coherent states, in particular on the construction of ‘boundary coherent states’, and magnetic Lieb–Thirring estimates.......We provide a leading order semiclassical asymptotics of the energy of bound states for magnetic Neumann Schrödinger operators in two-dimensional (exterior) domains with smooth boundaries. The asymptotics is valid all the way up to the bottom of the essential spectrum. When the spectral parameter...

  14. Study of BB ¯*/DD ¯* bound states in a Bethe-Salpeter approach

    Science.gov (United States)

    He, Jun

    2014-10-01

    In this work the BB ¯*/DD ¯* system is studied in the Bethe-Salpeter approach with quasipotential approximation. In our calculation both direct and cross diagrams are included in the one-boson-exchange potential. The numerical results indicate the existence of an isoscalar bound state DD ¯* with JPC=1++, which may be related to the X(3872). In the isovector sector, no bound state is produced from the interactions of DD ¯* and BB ¯*, which suggests the molecular state explanations for Zb(10610) and Zc(3900) are excluded.

  15. Study of vison-spinon bound states on the kagome lattice

    Science.gov (United States)

    Shao, Junping; Ghosh, Shivam; Cho, Gil-Young; Lawler, Michael

    2014-03-01

    We search for low-energy vison-spinon bound states on the kagome lattice. We do this by applying an optimization algorithm to a bosonic spin liquid state with a well separated pair of visons inserted. The resulting wavefunction reveals that the low energy eigen-modes correspond to bound spinon states localized around the visons. We study these modes and their symmetry properties. Our results provide evidence supporting the low energy effective theories of Z2 spin liquids whose bosonic spinons, fermonic spinons and visions are characterized by projective symmetry groups consistent with the expected fusion rules and duality relations.

  16. Nuclear quantum state engineering in ion channeling regime

    Directory of Open Access Journals (Sweden)

    Berec Vesna

    2015-01-01

    Full Text Available A key challenge in quantum state engineering is to identify coherent quantum mechanical systems that can be precisely manipulated and scaled, but at the same time to allow decoupling from unwanted interactions. Such systems, once realized, would represent an efficient tool for characterization of quantum behavior reflected in the properties of matter with prerequisites for meeting dissipation constraints imposed in the nuclear physics as well in the quantum information theory. Using the pure29Si nanocrystal system we present a novel high resolution method for initialization of single electron polarized spin interaction and control of nuclear spin qubits. The presented study fuses field of particle channeling in MeV energy regime with quantum state engineering utilized via entanglement as an essential quantum property. Its aim is to bring focus on new theoretical proposals testing the quantum mechanical models for systems producible at particle accelerator facilities.

  17. Error Free Quantum Reading by Quasi Bell State of Entangled Coherent States

    Science.gov (United States)

    Hirota, Osamu

    2017-12-01

    Nonclassical states of light field have been exploited to provide marvellous results in quantum information science. Usefulness of nonclassical states in quantum information science depends on whether a physical parameter as a signal is continuous or discrete. Here we present an investigation of the potential of quasi Bell states of entangled coherent states in quantum reading of the classical digital memory which was pioneered by Pirandola (Phys.Rev.Lett.,106,090504,2011). This is a typical example of discrimination for discrete quantum parameters. We show that the quasi Bell state gives the error free performance in the quantum reading that cannot be obtained by any classical state.

  18. SEARCH FOR eta' (958)-NUCLEUS BOUND STATES BY (p, d) REACTION AT GSI AND FAIR

    NARCIS (Netherlands)

    Fujioka, H.; Ayyad, Y.; Benlliure, J.; Brinkmann, K. -T.; Friedrich, S.; Geissel, H.; Gellanki, J.; Guo, C.; Gutz, E.; Haettner, E.; Harakeh, M. N.; Hayano, R. S.; Higashi, Y.; Hirenzaki, S.; Hornung, C.; Igarashi, Y.; Ikeno, N.; Itahashi, K.; Iwasaki, M.; Jido, D.; Kalantar-Nayestanaki, N.; Kanungo, R.; Knoebel, R.; Kurz, N.; Metag, V.; Mukha, I.; Nagae, T.; Nagahiro, H.; Nanova, M.; Nishi, T.; Ong, H. J.; Pietri, S.; Prochazka, A.; Rappold, C.; Reiter, M. P.; Rodriguez-Sanchez, J. L.; Scheidenberger, C.; Simon, H.; Sitar, B.; Strmen, P.; Sun, B.; Suzuki, K.; Szarka, I.; Takechi, M.; Tanaka, Y. K.; Tanihata, I.; Terashima, S.; Watanabe, Y. N.; Weick, H.; Widmann, E.; Winfield, J. S.; Xu, X.; Yamakami, H.; Zhao, J.

    The mass of the eta' meson is theoretically expected to be reduced at finite density, which indicates the existence of eta'-nucleus bound states. To investigate these states, we perform missing-mass spectroscopy for the (p, d) reaction near the eta' production threshold. The overview of the

  19. Search for eta '(958)-nucleus Bound States by (p,d) Reaction at GSI and FAIR

    Science.gov (United States)

    Fujioka, H.; Ayyad, Y.; Benlliure, J.; Brinkmann, K.-T.; Friedrich, S.; Geissel, H.; Gellanki, J.; Guo, C.; Gutz, E.; Haettner, E.; Harakeh, M. N.; Hayano, R. S.; Higashi, Y.; Hirenzaki, S.; Hornung, C.; Igarashi, Y.; Ikeno, N.; Itahashi, K.; Iwasaki, M.; Jido, D.; Kalantar-Nayestanaki, N.; Kanungo, R.; Knoebel, R.; Kurz, N.; Metag, V.; Mukha, I.; Nagae, T.; Nagahiro, H.; Nanova, M.; Nishi, T.; Ong, H. J.; Pietri, S.; Prochazka, A.; Rappold, C.; Reiter, M. P.; Rodríguez-Sánchez, J. L.; Scheidenberger, C.; Simon, H.; Sitar, B.; Strmen, P.; Sun, B.; Suzuki, K.; Szarka, I.; Takechi, M.; Tanaka, Y. K.; Tanihata, I.; Terashima, S.; Watanabe, Y. N.; Weick, H.; Widmann, E.; Winfield, J. S.; Xu, X.; Yamakami, H.; Zhao, J.

    The mass of the {\\eta}' meson is theoretically expected to be reduced at finite density, which indicates the existence of {\\eta}'-nucleus bound states. To investigate these states, we perform missing-mass spectroscopy for the (p, d) reaction near the {\\eta}' production threshold. The overview of the experimental situation is given and the current status is discussed.

  20. Relativistic quantum correlations in bipartite fermionic states

    Indian Academy of Sciences (India)

    2016-09-21

    Sep 21, 2016 ... quantum information brought to fore the relative beha- viour of entanglement. It is an observer-dependent quantity which degrades with acceleration from the perspective of accelerated observer. On the other hand, correlations other than entanglement exist in quantum system whose benefits in quantum ...

  1. Low-frequency surface waves on semi-bounded magnetized quantum plasma

    Energy Technology Data Exchange (ETDEWEB)

    Moradi, Afshin, E-mail: a.moradi@kut.ac.ir [Department of Engineering Physics, Kermanshah University of Technology, Kermanshah (Iran, Islamic Republic of)

    2016-08-15

    The propagation of low-frequency electrostatic surface waves on the interface between a vacuum and an electron-ion quantum plasma is studied in the direction perpendicular to an external static magnetic field which is parallel to the interface. A new dispersion equation is derived by employing both the quantum magnetohydrodynamic and Poisson equations. It is shown that the dispersion equations for forward and backward-going surface waves are different from each other.

  2. Quantum nonlinear lattices and coherent state vectors

    DEFF Research Database (Denmark)

    Ellinas, Demosthenes; Johansson, M.; Christiansen, Peter Leth

    1999-01-01

    for the CSV parameters. The so obtained evolution equations are intimately related to the respective evolution equations for the classical lattices, provided we account for the ordering rules (normal, symmetric) adopted for their quantization. Analysing the geometrical content of the factorization ansatz made......Quantized nonlinear lattice models are considered for two different classes, boson and fermionic ones. The quantum discrete nonlinear Schrodinger model (DNLS) is our main objective, but its so called modified discrete nonlinear (MDNLS) version is also included, together with the fermionic polaron...... (FP) model. Based on the respective dynamical symmetries of the models, a method is put forward which by use of the associated boson and spin coherent state vectors (CSV) and a factorization ansatz for the solution of the Schrodinger equation, leads to quasiclassical Hamiltonian equations of motion...

  3. The structure of states and maps in quantum theory

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 73; Issue 3. The structure of states and maps in quantum theory ... Quantum state spaces and maps on them have rich convex structures arising from the superposition principle and consequent entanglement. Communication channels (physical processes) in the ...

  4. Quantum State Generation and Entanglement Manipulation Using Linear Optics

    OpenAIRE

    ÖZDEMİR, Şahin Kaya; Yamamoto, Takashi; Koashi, Masato

    2014-01-01

    Quantum information processing (QIP) requires unitary operations, measurements and synthesis, manipulation and characterization of arbitrary quantum states. Linear optics provides efficient tools for these purposes. In this review paper, we introduce the elements of linear optics toolbox, and briefly discuss some experimental and theoretical investigations using this toolbox. Our main focus will be the qubit state generation and entanglement extraction using linear optics toolbox.

  5. From Shannon to Quantum Information Science-Mixed States

    Indian Academy of Sciences (India)

    ... Journals; Resonance – Journal of Science Education; Volume 7; Issue 5. From Shannon to Quantum Information Science - Mixed States. Rajiah Simon. General Article Volume 7 Issue 5 May 2002 pp 16-33 ... Keywords. Mixed states; entanglement witnesses; partial transpose; quantum computers; von Neumann entropy ...

  6. Quantum State Transfer via Noisy Photonic and Phononic Waveguides.

    Science.gov (United States)

    Vermersch, B; Guimond, P-O; Pichler, H; Zoller, P

    2017-03-31

    We describe a quantum state transfer protocol, where a quantum state of photons stored in a first cavity can be faithfully transferred to a second distant cavity via an infinite 1D waveguide, while being immune to arbitrary noise (e.g., thermal noise) injected into the waveguide. We extend the model and protocol to a cavity QED setup, where atomic ensembles, or single atoms representing quantum memory, are coupled to a cavity mode. We present a detailed study of sensitivity to imperfections, and apply a quantum error correction protocol to account for random losses (or additions) of photons in the waveguide. Our numerical analysis is enabled by matrix product state techniques to simulate the complete quantum circuit, which we generalize to include thermal input fields. Our discussion applies both to photonic and phononic quantum networks.

  7. Quantum State Transfer via Noisy Photonic and Phononic Waveguides

    Science.gov (United States)

    Vermersch, B.; Guimond, P.-O.; Pichler, H.; Zoller, P.

    2017-03-01

    We describe a quantum state transfer protocol, where a quantum state of photons stored in a first cavity can be faithfully transferred to a second distant cavity via an infinite 1D waveguide, while being immune to arbitrary noise (e.g., thermal noise) injected into the waveguide. We extend the model and protocol to a cavity QED setup, where atomic ensembles, or single atoms representing quantum memory, are coupled to a cavity mode. We present a detailed study of sensitivity to imperfections, and apply a quantum error correction protocol to account for random losses (or additions) of photons in the waveguide. Our numerical analysis is enabled by matrix product state techniques to simulate the complete quantum circuit, which we generalize to include thermal input fields. Our discussion applies both to photonic and phononic quantum networks.

  8. Multi-bit dark state memory: Double quantum dot as an electronic quantum memory

    Science.gov (United States)

    Aharon, Eran; Pozner, Roni; Lifshitz, Efrat; Peskin, Uri

    2016-12-01

    Quantum dot clusters enable the creation of dark states which preserve electrons or holes in a coherent superposition of dot states for a long time. Various quantum logic devices can be envisioned to arise from the possibility of storing such trapped particles for future release on demand. In this work, we consider a double quantum dot memory device, which enables the preservation of a coherent state to be released as multiple classical bits. Our unique device architecture uses an external gating for storing (writing) the coherent state and for retrieving (reading) the classical bits, in addition to exploiting an internal gating effect for the preservation of the coherent state.

  9. Quantum efficiency of self-assembled quantum dots determined by a modified optical local density of states

    DEFF Research Database (Denmark)

    Johansen, Jeppe; Stobbe, Søren; Nikolaev, I.S.

    2007-01-01

    We have measured time-resolved spontaneous emission from quantum dots near a dielectric interface with known photonic local density of states. We thus experimentally determine the quantum efficiency and the dipole moment, important for quantum optics.......We have measured time-resolved spontaneous emission from quantum dots near a dielectric interface with known photonic local density of states. We thus experimentally determine the quantum efficiency and the dipole moment, important for quantum optics....

  10. Quantum broadcast scheme and multi-output quantum teleportation via four-qubit cluster state

    Science.gov (United States)

    Yu, Yan; Zha, Xin Wei; Li, Wei

    2017-02-01

    In this paper, two theoretical schemes of the arbitrary single-qubit states via four-qubit cluster state are proposed. One is three-party quantum broadcast scheme, which realizes the broadcast among three participants. The other is multi-output quantum teleportation. Both allow two distant receivers to simultaneously and deterministically obtain the arbitrary single-qubit states, respectively. Compared with former schemes of an arbitrary single-qubit state, the proposed schemes realize quantum multi-cast communication efficiently, which enables Bob and Charlie to obtain the states simultaneously in the case of just knowing Alice's measurement results. The proposed schemes play an important role in quantum information, specially in secret sharing and quantum teleportation.

  11. Generation of Exotic Quantum States of a Cold Atomic Ensemble

    DEFF Research Database (Denmark)

    Christensen, Stefan Lund

    Over the last decades quantum effects have become more and more controllable, leading to the implementations of various quantum information protocols. These protocols are all based on utilizing quantum correlation. In this thesis we consider how states of an atomic ensemble with such correlations...... can be created and characterized. First we consider a spin-squeezed state. This state is generated by performing quantum non-demolition measurements of the atomic population difference. We show a spectroscopically relevant noise reduction of -1.7dB, the ensemble is in a many-body entangled state...... — a nanofiber based light-atom interface. Using a dual-frequency probing method we measure and prepare an ensemble with a sub-Poissonian atom number distribution. This is a first step towards the implementation of more exotic quantum states....

  12. Fractional quantum Hall states of bosons on cones

    Science.gov (United States)

    Wu, Ying-Hai; Tu, Hong-Hao; Sreejith, G. J.

    2017-09-01

    Motivated by a recent experiment, which synthesizes Landau levels for photons on cones [Schine et al., Nature (London) 534, 671 (2016), 10.1038/nature17943], and more generally the interest in understanding gravitational responses of quantum Hall states, we study fractional quantum Hall states of bosons on cones. A variety of trial wave functions for conical systems are constructed and compared with exact diagonalization results. The tip of a cone is a localized geometrical defect with singular curvature, which can modify the density profiles of quantum Hall states. The density profiles on cones can be used to extract some universal information about quantum Hall states. The values of certain quantities are computed numerically using the density profiles of some quantum Hall states and they agree with analytical predictions.

  13. Bimetric Theory of Fractional Quantum Hall States

    Science.gov (United States)

    Gromov, Andrey; Son, Dam Thanh

    2017-10-01

    We present a bimetric low-energy effective theory of fractional quantum Hall (FQH) states that describes the topological properties and a gapped collective excitation, known as the Girvin-Macdonald-Platzman (GMP) mode. The theory consists of a topological Chern-Simons action, coupled to a symmetric rank-2 tensor, and an action à la bimetric gravity, describing the gapped dynamics of a spin-2 mode. The theory is formulated in curved ambient space and is spatially covariant, which allows us to restrict the form of the effective action and the values of phenomenological coefficients. Using bimetric theory, we calculate the projected static structure factor up to the k6 order in the momentum expansion. To provide further support for the theory, we derive the long-wave limit of the GMP algebra, the dispersion relation of the GMP mode, and the Hall viscosity of FQH states. The particle-hole (PH) transformation of the theory takes a very simple form, making the duality between FQH states and their PH conjugates manifest. We also comment on the possible applications to fractional Chern insulators, where closely related structures arise. It is shown that the familiar FQH observables acquire a curious geometric interpretation within the bimetric formalism.

  14. Bimetric Theory of Fractional Quantum Hall States

    Directory of Open Access Journals (Sweden)

    Andrey Gromov

    2017-11-01

    Full Text Available We present a bimetric low-energy effective theory of fractional quantum Hall (FQH states that describes the topological properties and a gapped collective excitation, known as the Girvin-Macdonald-Platzman (GMP mode. The theory consists of a topological Chern-Simons action, coupled to a symmetric rank-2 tensor, and an action à la bimetric gravity, describing the gapped dynamics of a spin-2 mode. The theory is formulated in curved ambient space and is spatially covariant, which allows us to restrict the form of the effective action and the values of phenomenological coefficients. Using bimetric theory, we calculate the projected static structure factor up to the k^{6} order in the momentum expansion. To provide further support for the theory, we derive the long-wave limit of the GMP algebra, the dispersion relation of the GMP mode, and the Hall viscosity of FQH states. The particle-hole (PH transformation of the theory takes a very simple form, making the duality between FQH states and their PH conjugates manifest. We also comment on the possible applications to fractional Chern insulators, where closely related structures arise. It is shown that the familiar FQH observables acquire a curious geometric interpretation within the bimetric formalism.

  15. Stochastic quantum confinement in nanocrystalline silicon layers: The role of quantum dots, quantum wires and localized states

    Energy Technology Data Exchange (ETDEWEB)

    Ramírez-Porras, A., E-mail: aramirez@fisica.ucr.ac.cr [Centro de Investigación en Ciencia e Ingeniería de Materiales (CICIMA), Universidad de Costa Rica, San Pedro de Montes de Oca 11501 (Costa Rica); Escuela de Física, Universidad de Costa Rica, San Pedro de Montes de Oca 11501 (Costa Rica); García, O. [Escuela de Física, Universidad de Costa Rica, San Pedro de Montes de Oca 11501 (Costa Rica); Escuela de Química, Universidad de Costa Rica, San Pedro de Montes de Oca 11501 (Costa Rica); Vargas, C. [Escuela de Física, Universidad de Costa Rica, San Pedro de Montes de Oca 11501 (Costa Rica); Corrales, A. [Escuela de Física, Universidad de Costa Rica, San Pedro de Montes de Oca 11501 (Costa Rica); Escuela de Química, Universidad de Costa Rica, San Pedro de Montes de Oca 11501 (Costa Rica); Solís, J.D. [Escuela de Física, Universidad de Costa Rica, San Pedro de Montes de Oca 11501 (Costa Rica)

    2015-08-30

    Highlights: • PL spectra of porous silicon samples have been studied using a stochastic model. • This model can deconvolute PL spectra into three components. • Quantum dots, quantum wires and localized states have been identified. • Nanostructure diameters are in the range from 2.2 nm to 4.0 nm. • Contributions from quantum wires are small compared to the others. - Abstract: Nanocrystallites of Silicon have been produced by electrochemical etching of crystal wafers. The obtained samples show photoluminescence in the red band of the visible spectrum when illuminated by ultraviolet light. The photoluminescence spectra can be deconvolved into three components according to a stochastic quantum confinement model: one band coming from Nanocrystalline dots, or quantum dots, one from Nanocrystalline wires, or quantum wires, and one from the presence of localized surface states related to silicon oxide. The results fit well within other published models.

  16. Interaction of solitons and the formation of bound states in the generalized Lugiato-Lefever equation

    Science.gov (United States)

    Parra-Rivas, Pedro; Gomila, Damia; Colet, Pere; Gelens, Lendert

    2017-07-01

    Bound states, also called soliton molecules, can form as a result of the interaction between individual solitons. This interaction is mediated through the tails of each soliton that overlap with one another. When such soliton tails have spatial oscillations, locking or pinning between two solitons can occur at fixed distances related with the wavelength of these oscillations, thus forming a bound state. In this work, we study the formation and stability of various types of bound states in the Lugiato-Lefever equation by computing their interaction potential and by analyzing the properties of the oscillatory tails. Moreover, we study the effect of higher order dispersion and noise in the pump intensity on the dynamics of bound states. In doing so, we reveal that perturbations to the Lugiato-Lefever equation that maintain reversibility, such as fourth order dispersion, lead to bound states that tend to separate from one another in time when noise is added. This separation force is determined by the shape of the envelope of the interaction potential, as well as an additional Brownian ratchet effect. In systems with broken reversibility, such as third order dispersion, this ratchet effect continues to push solitons within a bound state apart. However, the force generated by the envelope of the potential is now such that it pushes the solitons towards each other, leading to a null net drift of the solitons. Contribution to the Topical Issue "Theory and Applications of the Lugiato-Lefever Equation", edited by Yanne K. Chembo, Damia Gomila, Mustapha Tlidi, Curtis R. Menyuk.

  17. Large N Chern-Simons with massive fundamental fermions — A model with no bound states

    Energy Technology Data Exchange (ETDEWEB)

    Frishman, Yitzhak [Department of Particle Physics and Astrophysics, The Weizmann Institute of Science,Rehovot 76100 (Israel); Sonnenschein, Jacob [The Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University,Ramat Aviv 69978 (Israel)

    2014-12-29

    In a previous paper http://dx.doi.org/10.1007/JHEP12(2013)091, we analyzed the theory of massive fermions in the fundamental representation coupled to a U(N) Chern-Simons gauge theory in three dimensions at level K. It was done in the large N, large K limits where λ=(N/K) was kept fixed. Among other results, we showed there that there are no high mass “quark anti-quark' bound states. Here we show that there are no bound states at all.

  18. S-matrix method for the numerical determination of bound states.

    Science.gov (United States)

    Bhatia, A. K.; Madan, R. N.

    1973-01-01

    A rapid numerical technique for the determination of bound states of a partial-wave-projected Schroedinger equation is presented. First, one needs to integrate the equation only outwards as in the scattering case, and second, the number of trials necessary to determine the eigenenergy and the corresponding eigenfunction is considerably less than in the usual method. As a nontrivial example of the technique, bound states are calculated in the exchange approximation for the e-/He+ system and l equals 1 partial wave.

  19. Full counting statistics approach to the quantum non-equilibrium Landauer bound

    Science.gov (United States)

    Guarnieri, Giacomo; Campbell, Steve; Goold, John; Pigeon, Simon; Vacchini, Bassano; Paternostro, Mauro

    2017-10-01

    We develop the full counting statistics of dissipated heat to explore the relation with Landauer’s principle. Combining the two-time measurement protocol for the reconstruction of the statistics of heat with the minimal set of assumptions for Landauer’s principle to hold, we derive a general one-parameter family of upper and lower bounds on the mean dissipated heat from a system to its environment. Furthermore, we establish a connection with the degree of non-unitality of the system’s dynamics and show that, if a large deviation function exists as stationary limit of the above cumulant generating function, then our family of lower and upper bounds can be used to witness and understand first-order dynamical phase transitions. For the purpose of demonstration, we apply these bounds to an externally pumped three level system coupled to a finite sized thermal environment.

  20. Generation and storage of quantum states using cold atoms

    DEFF Research Database (Denmark)

    Dantan, Aurelien Romain; Josse, Vincent; Cviklinski, Jean

    2006-01-01

    Cold cesium or rubidium atomic samples have a good potential both for generation and storage of nonclassical states of light. Generation of nonclassical states of light is possible through the high non-linearity of cold atomic samples excited close to a resonance line. Quadrature squeezing......, polarization squeezing and entanglement have been demonstrated. Quantum state storage is made possible by the presence of long-lived angular momentum in the ground state. Cold atoms are thus a promising resource in quantum information....

  1. Concrete Quantum Logics and Δ -Logics, States and Δ -States

    Science.gov (United States)

    Hroch, Michal; Pták, Pavel

    2017-12-01

    By a concrete quantum logic (in short, by a logic) we mean the orthomodular poset that is set-representable. If L=({Ω },L) is a logic and L is closed under the formation of symmetric difference, Δ , we call L a Δ -logic. In the first part we situate the known results on logics and states to the context of Δ -logics and Δ -states (the Δ -states are the states that are subadditive with respect to the symmetric difference). Moreover, we observe that the rather prominent logic E^{ {even}}_{Ω } of all even-coeven subsets of the countable set Ω possesses only Δ -states. Then we show when a state on the logics given by the divisibility relation allows for an extension as a state. In the next paragraph we consider the so called density logic and its Δ -closure. We find that the Δ -closure coincides with the power set. Then we investigate other properties of the density logic and its factor.

  2. Unitarity Bounds and RG Flows in Time Dependent Quantum Field Theory

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Xi; Horn, Bart; Silverstein, Eva; Torroba, Gonzalo; /Stanford U., ITP /Stanford U., Phys. Dept. /SLAC

    2012-04-05

    We generalize unitarity bounds on operator dimensions in conformal field theory to field theories with spacetime dependent couplings. Below the energy scale of spacetime variation of the couplings, their evolution can strongly affect the physics, effectively shifting the infrared operator scaling and unitarity bounds determined from correlation functions in the theory. We analyze this explicitly for large-N double-trace flows, and connect these to UV complete field theories. One motivating class of examples comes from our previous work on FRW holography, where this effect explains the range of flavors allowed in the dual, time dependent, field theory.

  3. Quantum state engineering using one-dimensional discrete-time quantum walks

    Science.gov (United States)

    Innocenti, Luca; Majury, Helena; Giordani, Taira; Spagnolo, Nicolò; Sciarrino, Fabio; Paternostro, Mauro; Ferraro, Alessandro

    2017-12-01

    Quantum state preparation in high-dimensional systems is an essential requirement for many quantum-technology applications. The engineering of an arbitrary quantum state is, however, typically strongly dependent on the experimental platform chosen for implementation, and a general framework is still missing. Here we show that coined quantum walks on a line, which represent a framework general enough to encompass a variety of different platforms, can be used for quantum state engineering of arbitrary superpositions of the walker's sites. We achieve this goal by identifying a set of conditions that fully characterize the reachable states in the space comprising walker and coin and providing a method to efficiently compute the corresponding set of coin parameters. We assess the feasibility of our proposal by identifying a linear optics experiment based on photonic orbital angular momentum technology.

  4. Quantum state majorization at the output of bosonic Gaussian channels

    Science.gov (United States)

    Mari, A.; Giovannetti, V.; Holevo, A. S.

    2014-05-01

    Quantum communication theory explores the implications of quantum mechanics to the tasks of information transmission. Many physical channels can be formally described as quantum Gaussian operations acting on bosonic quantum states. Depending on the input state and on the quality of the channel, the output suffers certain amount of noise. For a long time it has been conjectured, but never proved, that output states of Gaussian channels corresponding to coherent input signals are the less noisy ones (in the sense of a majorization criterion). Here we prove this conjecture. Specifically we show that every output state of a phase-insensitive Gaussian channel is majorized by the output state corresponding to a coherent input. The proof is based on the optimality of coherent states for the minimization of strictly concave output functionals. Moreover we show that coherent states are the unique optimizers.

  5. An application of information theory: Longitudinal measurability bounds in classical and quantum physics

    Science.gov (United States)

    D'Antonl, C.; Scanzano, P.

    1980-12-01

    We examine the problem of the existence (in classical and/or quantum physics) of longitudinal limitations of measurability, defined as limitations preventing the measurement of a given quantity with arbitrarily high accuracy. We consider a measuring device as a generalized communication system, which enables us to use methods of information theory. As a direct consequence of the Shannon theorem on channel capacity, we obtain an inequality which limits the accuracy of a measurement in terms of the average power necessary to transmit the information content of the measurement itself. This inequality holds in a classical as well as in a quantum framework.

  6. Quantum synchronization and quantum state sharing in an irregular complex network.

    Science.gov (United States)

    Li, Wenlin; Li, Chong; Song, Heshan

    2017-02-01

    We investigate the quantum synchronization phenomenon of the complex network constituted by coupled optomechanical systems and prove that the unknown identical quantum states can be shared or distributed in the quantum network even though the topology is varying. Considering a channel constructed by quantum correlation, we show that quantum synchronization can sustain and maintain high levels in Markovian dissipation for a long time. We also analyze the state-sharing process between two typical complex networks, and the results predict that linked nodes can be directly synchronized, but the whole network will be synchronized only if some specific synchronization conditions are satisfied. Furthermore, we give the synchronization conditions analytically through analyzing network dynamics. This proposal paves the way for studying multi-interaction synchronization and achieving effective quantum information processing in a complex network.

  7. Quantum key distribution based on orthogonal states allows secure quantum bit commitment

    Science.gov (United States)

    He, Guang Ping

    2011-11-01

    For more than a decade, it was believed that unconditionally secure quantum bit commitment (QBC) is impossible. But based on a previously proposed quantum key distribution scheme using orthogonal states, here we build a QBC protocol in which the density matrices of the quantum states encoding the commitment do not satisfy a crucial condition on which the no-go proofs of QBC are based. Thus, the no-go proofs could be evaded. Our protocol is fault-tolerant and very feasible with currently available technology. It reopens the venue for other ‘post-cold-war’ multi-party cryptographic protocols, e.g. quantum bit string commitment and quantum strong coin tossing with an arbitrarily small bias. This result also has a strong influence on the Clifton-Bub-Halvorson theorem which suggests that quantum theory could be characterized in terms of information-theoretic constraints.

  8. Open quantum dots in graphene: Scaling relativistic pointer states

    Energy Technology Data Exchange (ETDEWEB)

    Ferry, D K; Huang, L; Yang, R; Lai, Y-C; Akis, R, E-mail: ferry@asu.ed [School of Electrical, Computer, and Energy Engineering and Center for Solid State Electronics Research, Arizona State University, Tempe, AZ 85287-5706 (United States)

    2010-04-01

    Open quantum dots provide a window into the connection between quantum and classical physics, particularly through the decoherence theory, in which an important set of quantum states are not 'ashed out' through interaction with the environment-the pointer states provide connection to trapped classical orbits which remain stable in the dots. Graphene is a recently discovered material with highly unusual properties. This single layer, one atom thick, sheet of carbon has a unique bandstructure, governed by the Dirac equation, in which charge carriers imitate relativistic particles with zero rest mass. Here, an atomic orbital-based recursive Green's function method is used for studying the quantum transport. We study quantum fluctuations in graphene and bilayer graphene quantum dots with this recursive Green's function method. Finally, we examine the scaling of the domiant fluctuation frequency with dot size.

  9. Heavy quark bound states in a quark–gluon plasma: Dissociation and recombination

    Energy Technology Data Exchange (ETDEWEB)

    Blaizot, Jean-Paul, E-mail: jean-paul.blaizot@cea.fr [Institut de Physique Théorique (IPhT), CNRS/UMR 3681, CEA Saclay, F-91191 Gif-sur-Yvette (France); De Boni, Davide [Department of Physics, Swansea University, Swansea SA2 8PP, Wales (United Kingdom); Dipartimento di Fisica, Università degli Studi di Trento, Via Sommarive 14, Povo (Trento) 38123 (Italy); Faccioli, Pietro [Dipartimento di Fisica, Università degli Studi di Trento, Via Sommarive 14, Povo (Trento) 38123 (Italy); INFN-TIFPA, Via Sommarive 14, Povo (Trento) 38123 (Italy); Garberoglio, Giovanni [ECT*-FBK, Via Sommarive 18, Povo (Trento) 38123 (Italy); INFN-TIFPA, Via Sommarive 14, Povo (Trento) 38123 (Italy)

    2016-02-15

    We present a comprehensive approach to the dynamics of heavy quarks in a quark–gluon plasma, including the possibility of bound state formation and dissociation. In this exploratory paper, we restrict ourselves to the case of an Abelian plasma, but the extension of the techniques used to the non-Abelian case is doable. A chain of well defined approximations leads eventually to a generalized Langevin equation, where the force and the noise terms are determined from a correlation function of the equilibrium plasma, and depend explicitly on the configuration of the heavy quarks. We solve the Langevin equation for various initial conditions, numbers of heavy quark–antiquark pairs and temperatures of the plasma. Results of simulations illustrate several expected phenomena: dissociation of bound states as a result of combined effects of screening of the potential and collisions with the plasma constituent, formation of bound pairs (recombination) that occurs when enough heavy quarks are present in the system.

  10. Shell-model description of weakly bound and unbound nuclear states

    Energy Technology Data Exchange (ETDEWEB)

    Michel, N. [University of Tennessee, Department of Physics and Astronomy, Knoxville, TN (United States); Oak Ridge National Laboratory, Physics Division, Oak Ridge, TN (United States); Joint Institute for Heavy Ion Research, Oak Ridge, TN (United States); Nazarewicz, W. [University of Tennessee, Department of Physics and Astronomy, Knoxville, TN (United States); Oak Ridge National Laboratory, Physics Division, Oak Ridge, TN (United States); Warsaw University, Institute of Theoretical Physics, Warsaw (Poland); Ploszajczak, M.; Rotureau, J. [CEA/DSM-CNRS/IN2P3, Grand Accelerateur National d' Ions Lourds (GANIL), Caen (France)

    2005-09-01

    A consistent description of weakly bound and unbound nuclei requires an accurate description of the particle continuum properties when carrying out multiconfiguration mixing. This is the domain of the Gamow Shell Model (GSM) which is the multiconfigurational shell model in the complex k-plane formulated using a complete Berggren ensemble representing bound single-particle (s.p.) states, s.p. resonances, and non-resonant complex energy continuum states. We discuss the salient features of effective interactions in weakly bound systems and show selected applications of the GSM formalism to p-shell nuclei. Finally, a development of the new non-perturbative scheme based on Density Matrix Renormalization Group methods to select the most significant continuum configurations in GSM calculations is discussed shortly. (orig.)

  11. Quantum light and topological surface states

    Science.gov (United States)

    Dai, C. M.; Wang, W.; Yi, X. X.

    2017-12-01

    We demonstrate theoretically that, when quantum light interacts with massless Dirac fermions on the surface of a three-dimensional topological insulator, the elementary excitation spectrum depends on the polarizations of quantum light. Linear-polarized light cannot open a gap and leads to an anisotropic Dirac cone, but circular-polarized light can induce a mass term and the sign of mass is determined by the helicity of light. The effects due to quantum fluctuations are also discussed.

  12. Statistical constraints on state preparation for a quantum computer ∑

    Indian Academy of Sciences (India)

    tation on a quantum computer. How do we load information on the quantum register if the information-carrying particles in the cells of the register are indistinguishable? Quantum computing algorithms as visualized now [1,2] proceed with the register of n cells in a pure state. Each cell is seen to store a qubit αeiθ1 0 +βeiθ2 1 ...

  13. Effect of substrate on optical bound states in the continuum in 1D photonic structures

    Science.gov (United States)

    Sadrieva, Z. F.; Sinev, I. S.; Samusev, A. K.; Iorsh, I. V.; Koshelev, K. L.; Takayama, O.; Malureanu, R.; Lavrinenko, A. V.; Bogdanov, A. A.

    2017-09-01

    Optical bound states in the continuum (BIC) are localized states with energy lying above the light line and having infinite lifetime. Any losses taking place in real systems result in transformation of the bound states into resonant states with finite lifetime. In this work, we analyze properties of BIC in CMOS-compatible one-dimensional photonic structure based on silicon-on-insulator wafer at telecommunication wavelengths, where the absorption of silicon is negligible. We reveal that a high-index substrate could destroy both off-Γ BIC and in-plane symmetry protected at-Γ BIC turning them into resonant states due to leakage into the diffraction channels opening in the substrate.

  14. Concepts and bounded rationality: An application of Niestegge's approach to conditional quantum probabilities

    NARCIS (Netherlands)

    Blutner, R.

    2009-01-01

    Recently, Gerd Niestegge developed a new approach to quantum mechanics via conditional probabilities developing the well-known proposal to consider the Lüders-von Neumann measurement as a non-classical extension of probability conditionalization. I will apply his powerful and rigorous approach to

  15. Steady state quantum discord for circularly accelerated atoms

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jiawei, E-mail: hujiawei@nbu.edu.cn [Center for Nonlinear Science and Department of Physics, Ningbo University, Ningbo, Zhejiang 315211 (China); Yu, Hongwei, E-mail: hwyu@hunnu.edu.cn [Center for Nonlinear Science and Department of Physics, Ningbo University, Ningbo, Zhejiang 315211 (China); Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan 410081 (China)

    2015-12-15

    We study, in the framework of open quantum systems, the dynamics of quantum entanglement and quantum discord of two mutually independent circularly accelerated two-level atoms in interaction with a bath of fluctuating massless scalar fields in the Minkowski vacuum. We assume that the two atoms rotate synchronically with their separation perpendicular to the rotating plane. The time evolution of the quantum entanglement and quantum discord of the two-atom system is investigated. For a maximally entangled initial state, the entanglement measured by concurrence diminishes to zero within a finite time, while the quantum discord can either decrease monotonically to an asymptotic value or diminish to zero at first and then followed by a revival depending on whether the initial state is antisymmetric or symmetric. When both of the two atoms are initially excited, the generation of quantum entanglement shows a delayed feature, while quantum discord is created immediately. Remarkably, the quantum discord for such a circularly accelerated two-atom system takes a nonvanishing value in the steady state, and this is distinct from what happens in both the linear acceleration case and the case of static atoms immersed in a thermal bath.

  16. Quantum metrology with spin cat states under dissipation

    Science.gov (United States)

    Huang, Jiahao; Qin, Xizhou; Zhong, Honghua; Ke, Yongguan; Lee, Chaohong

    2015-12-01

    Quantum metrology aims to yield higher measurement precisions via quantum techniques such as entanglement. It is of great importance for both fundamental sciences and practical technologies, from testing equivalence principle to designing high-precision atomic clocks. However, due to environment effects, highly entangled states become fragile and the achieved precisions may even be worse than the standard quantum limit (SQL). Here we present a high-precision measurement scheme via spin cat states (a kind of non-Gaussian entangled states in superposition of two quasi-orthogonal spin coherent states) under dissipation. In comparison to maximally entangled states, spin cat states with modest entanglement are more robust against losses and their achievable precisions may still beat the SQL. Even if the detector is imperfect, the achieved precisions of the parity measurement are higher than the ones of the population measurement. Our scheme provides a realizable way to achieve high-precision measurements via dissipative quantum systems of Bose atoms.

  17. Quasi bound states in the continuum with few unit cells of photonic crystal slab

    DEFF Research Database (Denmark)

    Taghizadeh, Alireza; Chung, Il-Sug

    2017-01-01

    Bound states in the continuum (BICs) in photonic crystal slabs represent the resonances with an infinite quality (Q)-factor, occurring above the light line for an infinitely periodic structure. We show that a set of BICs can turn into quasi-BICs with a very high Q-factor even for two or three unit...

  18. Bound states emerging from below the continuum in a solvable PT-symmetric discrete Schrodinger equation

    Czech Academy of Sciences Publication Activity Database

    Znojil, Miloslav

    2017-01-01

    Roč. 96, č. 1 (2017), č. článku 012127. ISSN 2469-9926 R&D Projects: GA ČR GA16-22945S Institutional support: RVO:61389005 Keywords : non-Hermitian * PT symmetric * bound states Subject RIV: BE - Theoretical Physics Impact factor: 2.925, year: 2016

  19. Boson bound states in the β-Fermi–Pasta–Ulam model

    Indian Academy of Sciences (India)

    paper, we report our results on boson bound states (BBS) in the β-FPU model. The paper is organized as follows. In §2, we first describe the model and introduce the quantization scheme, then, at 4-quanta level, we introduce the basis we used to diagonalize the effective. Hamiltonian. The energy spectrum of the model at ...

  20. Comment on "Observer dependence of quantum states in relativistic quantum field theories"

    Science.gov (United States)

    Bloch, I.

    1984-04-01

    In response to Malin's recent paper it is suggested that the important aspect of timing in relativistic descriptions of position determinations is the timing with which a pure state is converted to a mixture, rather than the timing of the mixture's reduction to a new pure state; this suggestion removes some of the subjectivism that Malin finds in quantum states. It is suggested also that viewing quantum mechanics as a branch of psychology raises more questions than it answers.

  1. Subcarrier multiplexing multiple-input multiple-output quantum key distribution scheme with orthogonal quantum states

    Science.gov (United States)

    Xiao, Hailin; Zhang, Zhongshan

    2017-01-01

    Quantum key distribution (QKD) system is presently being developed for providing high-security transmission in future free-space optical communication links. However, current QKD technique restricts quantum secure communication to a low bit rate. To improve the QKD bit rate, we propose a subcarrier multiplexing multiple-input multiple-output quantum key distribution (SCM-MQKD) scheme with orthogonal quantum states. Specifically, we firstly present SCM-MQKD system model and drive symmetrical SCM-MQKD system into decoherence-free subspaces. We then utilize bipartite Werner and isotropic states to construct multiple parallel single photon with orthogonal quantum states that are invariant for unitary operations. Finally, we derive the density matrix and the capacity of SCM-MQKD system, respectively. Theoretical analysis and numerical results show that the capacity of SCM-MQKD system will increase {log _2}(N^2+1) times than that of single-photon QKD system.

  2. Quantum state transfer between hybrid qubits in a circuit QED

    Science.gov (United States)

    Feng, Zhi-Bo

    2012-01-01

    In this Brief Report, we propose a theoretical scheme to transfer quantum states between superconducting charge qubits and semiconductor spin qubits in a circuit QED device. Under dispersive conditions, resonator-assisted state transfer between qubits can be performed controllably only by addressing the flux bias applied to the charge qubits. The low infidelity and existing advantages show that the proposal may provide an effective route toward scalable quantum-information transfer with solid-state hybrid qubits.

  3. Dynamics of quantum observables in entangled states

    Science.gov (United States)

    Sudheesh, C.; Lakshmibala, S.; Balakrishnan, V.

    2009-08-01

    We examine the dynamics of a radiation field propagating through a nonlinear medium. A time series analysis of the mean photon number illustrates how an open quantum system interacting with a quantum environment can exhibit remarkably diverse ergodicity properties, both nonlinearity and departure from coherence playing a crucial role.

  4. Imperfect state preparation in continuous-variable quantum key distribution

    Science.gov (United States)

    Liu, Wenyuan; Wang, Xuyang; Wang, Ning; Du, Shanna; Li, Yongmin

    2017-10-01

    In continuous-variable quantum key distribution, the loss and excess noise of the quantum channel are key parameters that determine the secure key rate and the maximal distribution distance. We investigate the imperfect quantum state preparation in Gaussian modulation coherent-state protocol both theoretically and experimentally. We show that the Gaussian distribution characteristic of the prepared states in phase space is broken due to the incorrect calibration of the working parameters for the amplitude modulator and phase modulator. This further causes a significant increase of the excess noise and misestimate of the channel loss. To ensure an accurate estimate of the quantum channel parameters and achieve a reliable quantum key distribution, we propose and demonstrate two effective schemes to calibrate the working parameters of the modulators.

  5. Entanglement distillation between solid-state quantum network nodes.

    Science.gov (United States)

    Kalb, N; Reiserer, A A; Humphreys, P C; Bakermans, J J W; Kamerling, S J; Nickerson, N H; Benjamin, S C; Twitchen, D J; Markham, M; Hanson, R

    2017-06-02

    The impact of future quantum networks hinges on high-quality quantum entanglement shared between network nodes. Unavoidable imperfections necessitate a means to improve remote entanglement by local quantum operations. We realize entanglement distillation on a quantum network primitive of distant electron-nuclear two-qubit nodes. The heralded generation of two copies of a remote entangled state is demonstrated through single-photon-mediated entangling of the electrons and robust storage in the nuclear spins. After applying local two-qubit gates, single-shot measurements herald the distillation of an entangled state with increased fidelity that is available for further use. The key combination of generating, storing, and processing entangled states should enable the exploration of multiparticle entanglement on an extended quantum network. Copyright © 2017, American Association for the Advancement of Science.

  6. Entanglement distillation between solid-state quantum network nodes

    Science.gov (United States)

    Kalb, N.; Reiserer, A. A.; Humphreys, P. C.; Bakermans, J. J. W.; Kamerling, S. J.; Nickerson, N. H.; Benjamin, S. C.; Twitchen, D. J.; Markham, M.; Hanson, R.

    2017-06-01

    The impact of future quantum networks hinges on high-quality quantum entanglement shared between network nodes. Unavoidable imperfections necessitate a means to improve remote entanglement by local quantum operations. We realize entanglement distillation on a quantum network primitive of distant electron-nuclear two-qubit nodes. The heralded generation of two copies of a remote entangled state is demonstrated through single-photon-mediated entangling of the electrons and robust storage in the nuclear spins. After applying local two-qubit gates, single-shot measurements herald the distillation of an entangled state with increased fidelity that is available for further use. The key combination of generating, storing, and processing entangled states should enable the exploration of multiparticle entanglement on an extended quantum network.

  7. Blind Quantum Signature with Controlled Four-Particle Cluster States

    Science.gov (United States)

    Li, Wei; Shi, Jinjing; Shi, Ronghua; Guo, Ying

    2017-08-01

    A novel blind quantum signature scheme based on cluster states is introduced. Cluster states are a type of multi-qubit entangled states and it is more immune to decoherence than other entangled states. The controlled four-particle cluster states are created by acting controlled-Z gate on particles of four-particle cluster states. The presented scheme utilizes the above entangled states and simplifies the measurement basis to generate and verify the signature. Security analysis demonstrates that the scheme is unconditional secure. It can be employed to E-commerce systems in quantum scenario.

  8. Experimental Test of the State Estimation-Reversal Tradeoff Relation in General Quantum Measurements

    Directory of Open Access Journals (Sweden)

    Geng Chen

    2014-06-01

    Full Text Available When a measurement has limited strength, only partial information, regarding the initial state, is extracted, and, correspondingly, there is a probability to reverse its effect on the system and retrieve the original state. Recently, a clear and direct quantitative description of this complementary relationship, in terms of a tradeoff relation, was developed by Y. K. Cheong and S. W. Lee. [Phys. Rev. Lett. 109, 150402 (2012]. Here, this tradeoff relation is experimentally verified using polarization-encoded single photons from a quantum dot. Measurement operators representing a complete range, from not affecting the system to a projection to a single polarization state, are realized. In addition, for each measurement operator, an optimal reversal operator is also implemented. The upper bound of the tradeoff relation is mapped to experimental parameters representing the measurement strength. Our results complement the theoretical work and provide a hands-on characterization of general quantum measurements.

  9. Correlation Distance and Bounds for Mutual Information

    Directory of Open Access Journals (Sweden)

    Michael J. W. Hall

    2013-09-01

    Full Text Available The correlation distance quantifies the statistical independence of two classical or quantum systems, via the distance from their joint state to the product of the marginal states. Tight lower bounds are given for the mutual information between pairs of two-valued classical variables and quantum qubits, in terms of the corresponding classical and quantum correlation distances. These bounds are stronger than the Pinsker inequality (and refinements thereof for relative entropy. The classical lower bound may be used to quantify properties of statistical models that violate Bell inequalities. Partially entangled qubits can have lower mutual information than can any two-valued classical variables having the same correlation distance. The qubit correlation distance also provides a direct entanglement criterion, related to the spin covariance matrix. Connections of results with classically-correlated quantum states are briefly discussed.

  10. Photodissociation of ultracold diatomic strontium molecules with quantum state control.

    Science.gov (United States)

    McDonald, M; McGuyer, B H; Apfelbeck, F; Lee, C-H; Majewska, I; Moszynski, R; Zelevinsky, T

    2016-07-07

    Chemical reactions at ultracold temperatures are expected to be dominated by quantum mechanical effects. Although progress towards ultracold chemistry has been made through atomic photoassociation, Feshbach resonances and bimolecular collisions, these approaches have been limited by imperfect quantum state selectivity. In particular, attaining complete control of the ground or excited continuum quantum states has remained a challenge. Here we achieve this control using photodissociation, an approach that encodes a wealth of information in the angular distribution of outgoing fragments. By photodissociating ultracold (88)Sr2 molecules with full control of the low-energy continuum, we access the quantum regime of ultracold chemistry, observing resonant and nonresonant barrier tunnelling, matter-wave interference of reaction products and forbidden reaction pathways. Our results illustrate the failure of the traditional quasiclassical model of photodissociation and instead are accurately described by a quantum mechanical model. The experimental ability to produce well-defined quantum continuum states at low energies will enable high-precision studies of long-range molecular potentials for which accurate quantum chemistry models are unavailable, and may serve as a source of entangled states and coherent matter waves for a wide range of experiments in quantum optics.

  11. Optimal eavesdropping in cryptography with three-dimensional quantum states.

    Science.gov (United States)

    Bruss, D; Macchiavello, C

    2002-03-25

    We study optimal eavesdropping in quantum cryptography with three-dimensional systems, and show that this scheme is more secure against symmetric attacks than protocols using two-dimensional states. We generalize the according eavesdropping transformation to arbitrary dimensions, and discuss the connection with optimal quantum cloning.

  12. Effects of local periodic driving on transport and generation of bound states

    Science.gov (United States)

    Agarwala, Adhip; Sen, Diptiman

    2017-09-01

    We periodically kick a local region in a one-dimensional lattice and demonstrate, by studying wave packet dynamics, that the strength and the time period of the kicking can be used as tuning parameters to control the transmission probability across the region. Interestingly, we can tune the transmission to zero which is otherwise impossible to do in a time-independent system. We adapt the nonequilibrium Green's function method to take into account the effects of periodic driving; the results obtained by this method agree with those found by wave packet dynamics if the time period is small. We discover that Floquet bound states can exist in certain ranges of parameters; when the driving frequency is decreased, these states get delocalized and turn into resonances by mixing with the Floquet bulk states. We extend these results to incorporate the effects of local interactions at the driven site, and we find some interesting features in the transmission and the bound states.

  13. Experimental Study of Optimal Measurements for Quantum State Tomography

    Science.gov (United States)

    Sosa-Martinez, H.; Lysne, N. K.; Baldwin, C. H.; Kalev, A.; Deutsch, I. H.; Jessen, P. S.

    2017-10-01

    Quantum tomography is a critically important tool to evaluate quantum hardware, making it essential to develop optimized measurement strategies that are both accurate and efficient. We compare a variety of strategies using nearly pure test states. Those that are informationally complete for all states are found to be accurate and reliable even in the presence of errors in the measurements themselves, while those designed to be complete only for pure states are far more efficient but highly sensitive to such errors. Our results highlight the unavoidable trade-offs inherent in quantum tomography.

  14. Extending SDL and LMC complexity measures to quantum states

    Science.gov (United States)

    Piqueira, José Roberto C.; Campbell-Borges, Yuri Cássio

    2013-10-01

    An extension of SDL (Shiner, Davison, Landsberg) and LMC (López-Ruiz, Mancini, Calbet) complexity measures is proposed for the quantum information context, considering that Von Neumann entropy is a natural disorder quantifier for quantum states. As a first example of application, the simple qubit was studied, presenting results similar to that obtained by applying SDL and LMC measures to a classical probability distribution. Then, for the Werner state, a mixture of Bell states, SDL and LMC measures were calculated, depending on the mixing factor γ, providing some conjectures concerning quantum systems.

  15. Topological quantum computing with Read-Rezayi states.

    Science.gov (United States)

    Hormozi, L; Bonesteel, N E; Simon, S H

    2009-10-16

    Read-Rezayi fractional quantum Hall states are among the prime candidates for realizing non-Abelian anyons which, in principle, can be used for topological quantum computation. We present a prescription for efficiently finding braids which can be used to carry out a universal set of quantum gates on encoded qubits based on anyons of the Read-Rezayi states with k>2, k not equal 4. This work extends previous results which only applied to the case k=3 (Fibonacci) and clarifies why, in that case, gate constructions are simpler than for a generic Read-Rezayi state.

  16. Quantum reciprocity conjecture for the non-equilibrium steady state

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, P; Mao, W [Center for Materials Theory, Rutgers University, Piscataway, NJ 08854 (United States)

    2004-05-26

    A consideration of the lack of history dependence in the non-equilibrium steady state of a quantum system leads us to conjecture that in such a system there is a set of quantum mechanical observables whose retarded response functions are insensitive to the arrow of time, and which consequently satisfy a quantum analogue of the Onsager reciprocity relations. Systems which satisfy this conjecture can be described by an effective free energy functional. We demonstrate that the conjecture holds in a resonant level model of a multi-lead quantum dot. (letter to the editor)

  17. A secure quantum group signature scheme based on Bell states

    Science.gov (United States)

    Zhang, Kejia; Song, Tingting; Zuo, Huijuan; Zhang, Weiwei

    2013-04-01

    In this paper, we propose a new secure quantum group signature with Bell states, which may have applications in e-payment system, e-government, e-business, etc. Compared with the recent quantum group signature protocols, our scheme is focused on the most general situation in practice, i.e. only the arbitrator is trusted and no intermediate information needs to be stored in the signing phase to ensure the security. Furthermore, our scheme has achieved all the characteristics of group signature—anonymity, verifiability, traceability, unforgetability and undeniability, by using some current developed quantum and classical technologies. Finally, a feasible security analysis model for quantum group signature is presented.

  18. Quantum-classical correspondence in steady states of nonadiabatic systems

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Mikiya; Yamashita, Koichi [Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo 113-8656 (Japan); CREST, JST, Tokyo 113-8656 (Japan)

    2015-12-31

    We first present nonadiabatic path integral which is exact formulation of quantum dynamics in nonadiabatic systems. Then, by applying the stationary phase approximations to the nonadiabatic path integral, a semiclassical quantization condition, i.e., quantum-classical correspondence, for steady states of nonadiabatic systems is presented as a nonadiabatic trace formula. The present quantum-classical correspondence indicates that a set of primitive hopping periodic orbits, which are invariant under time evolution in the phase space of the slow degree of freedom, should be quantized. The semiclassical quantization is then applied to a simple nonadiabatic model and accurately reproduces exact quantum energy levels.

  19. Bounding the costs of quantum simulation of many-body physics in real space

    Science.gov (United States)

    Kivlichan, Ian D.; Wiebe, Nathan; Babbush, Ryan; Aspuru-Guzik, Alán

    2017-07-01

    We present a quantum algorithm for simulating the dynamics of a first-quantized Hamiltonian in real space based on the truncated Taylor series algorithm. We avoid the possibility of singularities by applying various cutoffs to the system and using a high-order finite difference approximation to the kinetic energy operator. We find that our algorithm can simulate η interacting particles using a number of calculations of the pairwise interactions that scales, for a fixed spatial grid spacing, as \\tilde{O}(η^2) , versus the \\tilde{O}(η^5) time required by previous methods (assuming the number of orbitals is proportional to η), and scales super-polynomially better with the error tolerance than algorithms based on the Lie-Trotter-Suzuki product formula. Finally, we analyze discretization errors that arise from the spatial grid and show that under some circumstances these errors can remove the exponential speedups typically afforded by quantum simulation.

  20. Serial composition of quantum coin flipping and bounds on cheat detection for bit commitment

    Science.gov (United States)

    Mochon, Carlos

    2004-09-01

    Quantum protocols for coin flipping can be composed in series in such a way that a cheating party gains no extra advantage from using entanglement between different rounds. This composition principle applies to coin-flipping protocols with cheat sensitivity as well, and is used to derive two results: There are no quantum strong coin-flipping protocols with cheat sensitivity that is linear in the bias (or bit-commitment protocols with linear cheat detection) because these can be composed to produce strong coin flipping with arbitrarily small bias. On the other hand, it appears that quadratic cheat detection cannot be composed in series to obtain even weak coin flipping with arbitrarily small bias.

  1. Quantum teleportation via noisy bipartite and tripartite accelerating quantum states: beyond the single mode approximation

    Science.gov (United States)

    Zounia, M.; Shamirzaie, M.; Ashouri, A.

    2017-09-01

    In this paper quantum teleportation of an unknown quantum state via noisy maximally bipartite (Bell) and maximally tripartite (Greenberger-Horne-Zeilinger (GHZ)) entangled states are investigated. We suppose that one of the observers who would receive the sent state accelerates uniformly with respect to the sender. The interactions of the quantum system with its environment during the teleportation process impose noises. These (unital and nonunital) noises are: phase damping, phase flip, amplitude damping and bit flip. In expressing the modes of the Dirac field used as qubits, in the accelerating frame, the so-called single mode approximation is not imposed. We calculate the fidelities of teleportation, and discuss their behaviors using suitable plots. The effects of noise, acceleration and going beyond the single mode approximation are discussed. Although the Bell states bring higher fidelities than GHZ states, the global behaviors of the two quantum systems with respect to some noise types, and therefore their fidelities, are different.

  2. Employing online quantum random number generators for generating truly random quantum states in Mathematica

    Science.gov (United States)

    Miszczak, Jarosław Adam

    2013-01-01

    The presented package for the Mathematica computing system allows the harnessing of quantum random number generators (QRNG) for investigating the statistical properties of quantum states. The described package implements a number of functions for generating random states. The new version of the package adds the ability to use the on-line quantum random number generator service and implements new functions for retrieving lists of random numbers. Thanks to the introduced improvements, the new version provides faster access to high-quality sources of random numbers and can be used in simulations requiring large amount of random data. New version program summaryProgram title: TRQS Catalogue identifier: AEKA_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKA_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 18 134 No. of bytes in distributed program, including test data, etc.: 2 520 49 Distribution format: tar.gz Programming language: Mathematica, C. Computer: Any supporting Mathematica in version 7 or higher. Operating system: Any platform supporting Mathematica; tested with GNU/Linux (32 and 64 bit). RAM: Case-dependent Supplementary material: Fig. 1 mentioned below can be downloaded. Classification: 4.15. External routines: Quantis software library (http://www.idquantique.com/support/quantis-trng.html) Catalogue identifier of previous version: AEKA_v1_0 Journal reference of previous version: Comput. Phys. Comm. 183(2012)118 Does the new version supersede the previous version?: Yes Nature of problem: Generation of random density matrices and utilization of high-quality random numbers for the purpose of computer simulation. Solution method: Use of a physical quantum random number generator and an on-line service providing access to the source of true random

  3. Emergence of Quantum Critical Behavior in Metallic Quantum-Well States of Strongly Correlated Oxides.

    Science.gov (United States)

    Kobayashi, Masaki; Yoshimatsu, Kohei; Mitsuhashi, Taichi; Kitamura, Miho; Sakai, Enju; Yukawa, Ryu; Minohara, Makoto; Fujimori, Atsushi; Horiba, Koji; Kumigashira, Hiroshi

    2017-11-30

    Controlling quantum critical phenomena in strongly correlated electron systems, which emerge in the neighborhood of a quantum phase transition, is a major challenge in modern condensed matter physics. Quantum critical phenomena are generated from the delicate balance between long-range order and its quantum fluctuation. So far, the nature of quantum phase transitions has been investigated by changing a limited number of external parameters such as pressure and magnetic field. We propose a new approach for investigating quantum criticality by changing the strength of quantum fluctuation that is controlled by the dimensional crossover in metallic quantum well (QW) structures of strongly correlated oxides. With reducing layer thickness to the critical thickness of metal-insulator transition, crossover from a Fermi liquid to a non-Fermi liquid has clearly been observed in the metallic QW of SrVO3 by in situ angle-resolved photoemission spectroscopy. Non-Fermi liquid behavior with the critical exponent α = 1 is found to emerge in the two-dimensional limit of the metallic QW states, indicating that a quantum critical point exists in the neighborhood of the thickness-dependent Mott transition. These results suggest that artificial QW structures provide a unique platform for investigating novel quantum phenomena in strongly correlated oxides in a controllable fashion.

  4. Experimental demonstration of efficient quantum state tomography of matrix product states.

    Science.gov (United States)

    Zhao, Yuan-Yuan; Hou, Zhibo; Xiang, Guo-Yong; Han, Yong-Jian; Li, Chuan-Feng; Guo, Guang-Can

    2017-04-17

    Quantum state tomography is a key technology for fully determining a quantum state. Unfortunately, standard quantum state tomography is intractable for general many-body quantum states, because the number of measurements and the post-processing time increase exponentially with the size of the system. However, for the matrix product states (MPSs), there exists an efficient method using linearly scaled local measurements and polynomially scaled post-processing times. In this study, we demonstrate the validity of the method in practice by reconstructing a four-photon MPS from its local two- or three-photon reduced-density matrices with the presence of statistical errors and systematical errors in experiment.

  5. Probing the superconducting state via Andreev bound states in (La,Ce){sub 2}CuO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Wagenknecht, Michael; Scharinger, Sebastian; Koelle, Dieter; Kleiner, Reinhold [Physikalisches Institut - Experimentalphysik II and Center for Collective Quantum Phenomena, Universitaet Tuebingen (Germany); Graser, Siegfried; Schopohl, Nils [Institut fuer Theoretische Physik, Universitaet Tuebingen (Germany); Chesca, Boris [Department of Physics, Loughborough University (United Kingdom); Tsukada, Aiko [NTT Basic Research Laboratories, Atsugi-shi (Japan); Goennenwein, Sebastian T.B.; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany)

    2008-07-01

    We present quasiparticle tunneling data of (La,Ce){sub 2}CuO{sub 4} thin film bicrystal junctions. The differential conductance in the superconducting state shows a pronounced zero bias conductance peak (ZBCP). This peak is attributed to zero energy surface Andreev bound states due to the d-wave symmetry of the order parameter in this electron doped cuprate. Such bound states are closely related to the macroscopic phase coherence of the superconducting state. Hence the ZBCP due to these bound states must disappear at or below the upper critical field B{sub c2}(T). By following the disappearance of the ZBCP in the B-T-phase diagram we find a lower bound for B{sub c2}(0){approx}25 T which is higher than values reported previously for any electron doped cuprate. Following this observation we suggest a modified B-T-phase diagram with a larger region of superconductivity, leaving less room for a possible pseudogap phase.

  6. Observing Quantum State Diffusion by Heterodyne Detection of Fluorescence

    Directory of Open Access Journals (Sweden)

    P. Campagne-Ibarcq

    2016-01-01

    Full Text Available A qubit can relax by fluorescence, which prompts the release of a photon into its electromagnetic environment. By counting the emitted photons, discrete quantum jumps of the qubit state can be observed. The succession of states occupied by the qubit in a single experiment, its quantum trajectory, depends in fact on the kind of detector. How are the quantum trajectories modified if one measures continuously the amplitude of the fluorescence field instead? Using a superconducting parametric amplifier, we perform heterodyne detection of the fluorescence of a superconducting qubit. For each realization of the measurement record, we can reconstruct a different quantum trajectory for the qubit. The observed evolution obeys quantum state diffusion, which is characteristic of quantum measurements subject to zero-point fluctuations. Independent projective measurements of the qubit at various times provide a quantitative verification of the reconstructed trajectories. By exploring the statistics of quantum trajectories, we demonstrate that the qubit states span a deterministic surface in the Bloch sphere at each time in the evolution. Additionally, we show that when monitoring fluorescence field quadratures, coherent superpositions are generated during the decay from excited to ground state. Counterintuitively, measuring light emitted during relaxation can give rise to trajectories with increased excitation probability.

  7. Tensor Renormalization of Quantum Many-Body Systems Using Projected Entangled Simplex States

    Directory of Open Access Journals (Sweden)

    Z. Y. Xie

    2014-02-01

    Full Text Available We propose a new class of tensor-network states, which we name projected entangled simplex states (PESS, for studying the ground-state properties of quantum lattice models. These states extend the pair-correlation basis of projected entangled pair states to a simplex. PESS are exact representations of the simplex solid states, and they provide an efficient trial wave function that satisfies the area law of entanglement entropy. We introduce a simple update method for evaluating the PESS wave function based on imaginary-time evolution and the higher-order singular-value decomposition of tensors. By applying this method to the spin-1/2 antiferromagnetic Heisenberg model on the kagome lattice, we obtain accurate and systematic results for the ground-state energy, which approach the lowest upper bounds yet estimated for this quantity.

  8. Modelling duality between bound and resonant meson spectra by means of free quantum motions on the de Sitter space-time dS{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Kirchbach, M. [UASLP, Instituto de Fisica, San Luis Potosi (Mexico); Compean, C.B. [Instituto Tecnologico de San Luis Potosi, San Luis Potosi (Mexico)

    2016-07-15

    The real parts of the complex squared energies defined by the resonance poles of the transfer matrix of the Poeschl-Teller barrier, are shown to equal the squared energies of the levels bound within the trigonometric Scarf well potential. By transforming these potentials into parts of the Laplacians describing free quantum motions on the mutually orthogonal open-time-like hyperbolic-, and closed-space-like spherical geodesics on the conformally invariant de Sitter space-time, dS{sub 4}, the conformal symmetries of these interactions are revealed. On dS{sub 4} the potentials under consideration naturally relate to interactions within colorless two-body systems and to cusped Wilson loops. In effect, with the aid of the dS{sub 4} space-time as unifying geometry, a conformal symmetry based bijective correspondence (duality) between bound and resonant meson spectra is established at the quantum mechanics level and related to confinement understood as color charge neutrality. The correspondence allows to link the interpretation of mesons as resonance poles of a scattering matrix with their complementary description as states bound by an instantaneous quark interaction and to introduce a conformal symmetry based classification scheme of mesons. As examples representative of such a duality we organize in good agreement with data 71 of the reported light flavor mesons with masses below ∝ 2350 MeV into four conformal families of particles placed on linear f{sub 0}, π, η, and a{sub 0} resonance trajectories, plotted on the l/M plane. Upon extending the sec{sup 2} χ by a properly constructed conformal color dipole potential, shaped after a tangent function, we predict the masses of 12 ''missing'' mesons. We furthermore notice that the f{sub 0} and π trajectories can be viewed as chiral partners, same as the η and a{sub 0} trajectories, an indication that chiral symmetry for mesons is likely to be realized in terms of parity doubled conformal

  9. Hadamard States for the Klein-Gordon Equation on Lorentzian Manifolds of Bounded Geometry

    Science.gov (United States)

    Gérard, Christian; Oulghazi, Omar; Wrochna, Michał

    2017-06-01

    We consider the Klein-Gordon equation on a class of Lorentzian manifolds with Cauchy surface of bounded geometry, which is shown to include examples such as exterior Kerr, Kerr-de Sitter spacetime and the maximal globally hyperbolic extension of the Kerr outer region. In this setup, we give an approximate diagonalization and a microlocal decomposition of the Cauchy evolution using a time-dependent version of the pseudodifferential calculus on Riemannian manifolds of bounded geometry. We apply this result to construct all pure regular Hadamard states (and associated Feynman inverses), where regular refers to the state's two-point function having Cauchy data given by pseudodifferential operators. This allows us to conclude that there is a one-parameter family of elliptic pseudodifferential operators that encodes both the choice of (pure, regular) Hadamard state and the underlying spacetime metric.

  10. Skyrmion-induced bound states on the surface of three-dimensional topological insulators

    Energy Technology Data Exchange (ETDEWEB)

    Andrikopoulos, Dimitrios, E-mail: dimitrios.andrikopoulos@imec.be; De Boeck, Jo [KU Leuven, ESAT, Kasteelpark Arenberg 10, Leuven B-3001 (Belgium); imec, Kapeeldreef 75, Leuven 3001 (Belgium); Sorée, Bart, E-mail: bart.soree@imec.be [KU Leuven, ESAT, Kasteelpark Arenberg 10, Leuven B-3001 (Belgium); Physics Department, Condensed Matter Theory, Universiteit Antwerpen, Groenenborgerlaan 171, Antwerpen B-2020 (Belgium); imec, Kapeeldreef 75, Leuven 3001 (Belgium)

    2016-05-21

    The interaction between the surface of a 3D topological insulator and a skyrmion/anti-skyrmion structure is studied in order to investigate the possibility of electron confinement due to the skyrmion presence. Both hedgehog (Néel) and vortex (Bloch) skyrmions are considered. For the hedgehog skyrmion, the in-plane components cannot be disregarded and their interaction with the surface state of the topological insulator (TI) has to be taken into account. A semi-classical description of the skyrmion chiral angle is obtained using the variational principle. It is shown that both the hedgehog and the vortex skyrmion can induce bound states on the surface of the TI. However, the number and the properties of these states depend strongly on the skyrmion type and the skyrmion topological number N{sub Sk}. The probability densities of the bound electrons are also derived where it is shown that they are localized within the skyrmion region.

  11. Two-body bound and edge states in the extended SSH Bose-Hubbard model

    Science.gov (United States)

    Di Liberto, M.; Recati, A.; Carusotto, I.; Menotti, C.

    2017-07-01

    We study the bosonic two-body problem in a Su-Schrieffer-Heeger dimerized chain with on-site and nearest-neighbor interactions. We find two classes of bound states. The first, similar to the one induced by on-site interactions, has its center of mass on the strong link, whereas the second, existing only thanks to nearest-neighbor interactions, is centered on the weak link. We identify energy crossings between these states and analyse them using exact diagonalization and perturbation theory. In the presence of open boundary conditions, novel strongly-localized edge-bound states appear in the spectrum as a consequence of the interplay between lattice geometry, on-site and nearest-neighbor interactions. Contrary to the case of purely on-site interactions, such EBS persist even in the strongly interacting regime.

  12. Three-body bound states with zero-range interaction in the Bethe-Salpeter approach

    Science.gov (United States)

    Ydrefors, E.; Alvarenga Nogueira, J. H.; Gigante, V.; Frederico, T.; Karmanov, V. A.

    2017-07-01

    The Bethe-Salpeter equation for three bosons with zero-range interaction is solved for the first time. For comparison the light-front equation is also solved. The input is the two-body scattering length and the outputs are the three-body binding energies, Bethe-Salpeter amplitudes and light-front wave functions. Three different regimes are analyzed: (i) For weak enough two-body interaction the three-body system is unbound. (ii) For stronger two-body interaction a three-body bound state appears. It provides an interesting example of a deeply bound Borromean system. (iii) For even stronger two-body interaction this state becomes unphysical with a negative mass squared. However, another physical (excited) state appears, found previously in light-front calculations. The Bethe-Salpeter approach implicitly incorporates three-body forces of relativistic origin, which are attractive and increase the binding energy.

  13. Nonequilibrium Andreev bound states population in short superconducting junctions coupled to a resonator

    Science.gov (United States)

    Klees, Raffael L.; Rastelli, Gianluca; Belzig, Wolfgang

    2017-10-01

    Inspired by recent experiments, we study a short superconducting junction of length L ≪ξ (coherence length) inserted in a dc-SQUID containing an ancillary Josephson tunnel junction. We evaluate the nonequilibrium occupation of the Andreev bound states (ABS) for the case of a conventional junction and a topological junction, with the latter case of ABS corresponding to a Majorana mode. We take into account small phase fluctuations of the Josephson tunnel junction, acting as a damped LC resonator, and analyze the role of the distribution of the quasiparticles of the continuum assuming that these quasiparticles are in thermal distribution with an effective temperature different from the environmental temperature. We also discuss the effect of strong photon irradiation in the junction leading to a nonequilibrium occupation of the ABS. We systematically compare the occupations of the bound states and the supercurrents carried by these states for conventional and topological junctions.

  14. Quantum State-Resolved Studies of Chemisorption Reactions.

    Science.gov (United States)

    Chadwick, Helen; Beck, Rainer D

    2017-05-05

    Chemical reactions at the gas-surface interface are ubiquitous in the chemical industry as well as in nature. Investigating these processes at a microscopic, quantum state-resolved level helps develop a predictive understanding of this important class of reactions. In this review, we present an overview of the field of quantum state-resolved gas-surface reactivity measurements that explore the role of the initial quantum state on the dissociative chemisorption of a gas-phase reactant incident on a solid surface. Using molecular beams and either quantum state-specific reactant preparation or product detection by laser excitation, these studies have observed mode specificity and bond selectivity as well as steric effects in chemisorption reactions, highlighting the nonstatistical and complex nature of gas-surface reaction dynamics.

  15. Data processing inequality and open quantum systems: Beyond Markov states

    Science.gov (United States)

    Türkmen, A.; Verçin, A.; Yılmaz, S.

    2017-10-01

    Using a tripartite framework consisting of an open quantum system, its environment, and a passive reference system, in this study we discuss quantum mutual information (QMI) and data processing inequality (DPI). Without any restriction on the initial correlations, the necessary and sufficient conditions for the decrease or increase as well as for the conservation of QMI are obtained for any joint unitary evolution of the open quantum system and its environment. In the special case of the input Markov states, it has been shown that as long as the tripartite input state is a Markov state then DPI holds for every joint unitary evolution even in the presence of initial correlations encoded in the input. We also point out that the converse of the last statement, that is, sufficiency of the existence of a local quantum channel or of the fulfillment of DPI for the input Markov state does not hold in general and this fact is exhibited by counterexamples.

  16. Theoretically extensible quantum digital signature with starlike cluster states

    Science.gov (United States)

    Yang, Yu-Guang; Liu, Zhi-Chao; Li, Jian; Chen, Xiu-Bo; Zuo, Hui-Juan; Zhou, Yi-Hua; Shi, Wei-Min

    2017-01-01

    Chen et al. (Phys Rev A 73:012303, 2006) constructed this "starlike cluster" state, which involves one qubit located at the center and n neighboring two-qubit arms. This genuine entangled state has been used for the construction of 2D and 3D cluster states, topological one-way computation, and dynamical quantum secret sharing. In this paper, we investigate the usefulness of this starlike cluster state and propose a theoretically extensible quantum digital signature scheme. The proposed scheme can be theoretically generalized to more than three participants. Moreover, it retains the merits of no requirements such as authenticated quantum channels and long-term quantum memory. We also give a security proof for the proposed scheme against repudiation and forgery.

  17. Photon-echo-based quantum memory for optical squeezed states

    Science.gov (United States)

    Wu, Miao-Xin; Wang, Ming-Feng; Zheng, Yi-Zhuang

    2015-08-01

    The ability to efficiently realize storage and readout of optical squeezed states plays a key roll in continuous-variables quantum information processing. Here we study the quantum memory for squeezed state of propagating light in atoms based on the hybrid photon echo re-phasing. The optical quantum state is recorded in two sublevels of the ground state of an atomic ensemble to realize long-lived quantum memory. Taking into account the noise effect due to atomic decay, our estimation indicates that high fidelities larger than the classical fidelity threshold 81.5% are obtainable even with currently available techniques. Moreover, our result shows that the decay rate of atoms restricts the maximal fidelity. Our work provides some practical guidance for the realization of efficient and faithful photon-echo-based memory for squeezed light.

  18. Structure and orientation of dynorphin bound to lipid bilayers by 13C solid-state NMR

    Science.gov (United States)

    Uezono, Takiko; Toraya, Shuichi; Obata, Maki; Nishimura, Katsuyuki; Tuzi, Satoru; Saitô, Hazime; Naito, Akira

    2005-07-01

    Secondary structure and orientation of dynorphin bound to dimyristoylphosphatidylcholine (DMPC) bilayer were investigated by solid-state 13C NMR spectroscopy. For this purpose, 13C NMR spectra of the site-specifically 13C-labeled dynorphin were measured in the membrane-bound state under static, magic angle spinning (MAS), and slow MAS conditions. In the static experiment, magnetically oriented vesicle system (MOVS) induced by dynorphin was successfully used to investigate the orientation of dynorphin bound to the lipid bilayers. It was found that dynorphin adopts an α-helical structure in the N-terminus from Gly 2 to Leu 5 by analyses of the isotropic chemical shifts obtained from the MAS experiments. In contrast, it adopts disordered conformations from the center to the C-terminus and is located on the membrane surface. The static 13C NMR spectra indicated that MOVS-bound dynorphin was oriented to the magnetic field and rotated rapidly about the bilayer normal. Subsequently, we analyzed the 13C chemical shift tensors of carbonyl carbons in the peptide backbone by considering the rotational motion of the N-terminal α-helix. It was revealed that the N-terminal α-helix is inserted into the membrane with the tilt angle of 21° to the bilayer normal. This structure suggests a possibility that dynorphin interacts with the extracellular loop II of the κ-receptor through a helix-helix interaction.

  19. Inversion symmetry breaking of atomic bound states in strong and short laser fields

    CERN Document Server

    Stooß, Veit; Ott, Christian; Blättermann, Alexander; Ding, Thomas; Pfeifer, Thomas

    2015-01-01

    In any atomic species, the spherically symmetric potential originating from the charged nucleus results in fundamental symmetry properties governing the structure of atomic states and transition rules between them. If atoms are exposed to external electric fields, these properties are modified giving rise to energy shifts such as the AC Stark-effect in varying fields and, contrary to this in a constant (DC) electric field for high enough field strengths, the breaking of the atomic symmetry which causes fundamental changes in the atom's properties. This has already been observed for atomic Rydberg states with high principal quantum numbers. Here, we report on the observation of symmetry breaking effects in Helium atoms for states with principal quantum number n=2 utilizing strong visible laser fields. These findings were enabled by temporally resolving the dynamics better than the sub-optical cycle of the applied laser field, utilizing the method of attosecond transient absorption spectroscopy (ATAS). We ident...

  20. Absence of quantum states corresponding to unstable classical channels

    DEFF Research Database (Denmark)

    Herbst, Ira; Skibsted, Erik

    2008-01-01

    We develop a general theory of absence of quantum states corresponding to unstable classical scattering channels. We treat in detail Hamiltonians arising from symbols of degree zero in x and outline a generalization in an Appendix.......We develop a general theory of absence of quantum states corresponding to unstable classical scattering channels. We treat in detail Hamiltonians arising from symbols of degree zero in x and outline a generalization in an Appendix....

  1. Measuring the effective phonon density of states of a quantum dot in cavity quantum electrodynamics

    DEFF Research Database (Denmark)

    Madsen, Kristian Høeg; Nielsen, Per Kær; Kreiner-Møller, Asger

    2013-01-01

    We employ detuning-dependent decay-rate measurements of a quantum dot in a photonic-crystal cavity to study the influence of phonon dephasing in a solid-state quantum-electrodynamics experiment. The experimental data agree with a microscopic non-Markovian model accounting for dephasing from...... longitudinal acoustic phonons, and the analysis explains the difference between nonresonant cavity feeding in different nanocavities. From the comparison between experiment and theory we extract the effective phonon density of states experienced by the quantum dot in the nanocavity. This quantity determines...

  2. Heralded atomic-ensemble quantum memory for photon polarization states

    Energy Technology Data Exchange (ETDEWEB)

    Tanji, Haruka; Simon, Jonathan [Department of Physics, Harvard University, Cambridge, MA 02138 (United States); Ghosh, Saikat; Bloom, Benjamin; Vuletic, Vladan [Department of Physics, MIT-Harvard Center for Ultracold Atoms, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)], E-mail: vuletic@mit.edu

    2009-07-15

    We describe the mapping of quantum states between single photons and an atomic ensemble. In particular, we demonstrate a heralded quantum memory based on the mapping of a photon polarization state onto a single collective-spin excitation (magnon) shared between two atomic ensembles. The polarization fidelity above 90(2)% for any input polarization far exceeds the classical limit of 2/3. The process also constitutes a quantum non-destructive probe that detects and regenerates a photon without measuring its polarization.

  3. Experimental demonstration of macroscopic quantum coherence in Gaussian states

    DEFF Research Database (Denmark)

    Marquardt, C.; Andersen, Ulrik Lund; Leuchs, G.

    2007-01-01

    We witness experimentally the presence of macroscopic coherence in Gaussian quantum states using a recently proposed criterion [E. G. Cavalcanti and M. D. Reid, Phys. Rev. Lett. 97 170405 (2006)]. The macroscopic coherence stems from interference between macroscopically distinct states in phase...... space, and we prove experimentally that a coherent state contains these features with a distance in phase space of 0.51 +/- 0.02 shot noise units. This is surprising because coherent states are generally considered being at the border between classical and quantum states, not yet displaying any...

  4. High-dimensional quantum key distribution with the entangled single-photon-added coherent state

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yang [Zhengzhou Information Science and Technology Institute, Zhengzhou, 450001 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Bao, Wan-Su, E-mail: 2010thzz@sina.com [Zhengzhou Information Science and Technology Institute, Zhengzhou, 450001 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Bao, Hai-Ze; Zhou, Chun; Jiang, Mu-Sheng; Li, Hong-Wei [Zhengzhou Information Science and Technology Institute, Zhengzhou, 450001 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2017-04-25

    High-dimensional quantum key distribution (HD-QKD) can generate more secure bits for one detection event so that it can achieve long distance key distribution with a high secret key capacity. In this Letter, we present a decoy state HD-QKD scheme with the entangled single-photon-added coherent state (ESPACS) source. We present two tight formulas to estimate the single-photon fraction of postselected events and Eve's Holevo information and derive lower bounds on the secret key capacity and the secret key rate of our protocol. We also present finite-key analysis for our protocol by using the Chernoff bound. Our numerical results show that our protocol using one decoy state can perform better than that of previous HD-QKD protocol with the spontaneous parametric down conversion (SPDC) using two decoy states. Moreover, when considering finite resources, the advantage is more obvious. - Highlights: • Implement the single-photon-added coherent state source into the high-dimensional quantum key distribution. • Enhance both the secret key capacity and the secret key rate compared with previous schemes. • Show an excellent performance in view of statistical fluctuations.

  5. High precision hyperfine measurements in Bismuth challenge bound-state strong-field QED.

    Science.gov (United States)

    Ullmann, Johannes; Andelkovic, Zoran; Brandau, Carsten; Dax, Andreas; Geithner, Wolfgang; Geppert, Christopher; Gorges, Christian; Hammen, Michael; Hannen, Volker; Kaufmann, Simon; König, Kristian; Litvinov, Yuri A; Lochmann, Matthias; Maaß, Bernhard; Meisner, Johann; Murböck, Tobias; Sánchez, Rodolfo; Schmidt, Matthias; Schmidt, Stefan; Steck, Markus; Stöhlker, Thomas; Thompson, Richard C; Trageser, Christian; Vollbrecht, Jonas; Weinheimer, Christian; Nörtershäuser, Wilfried

    2017-05-16

    Electrons bound in highly charged heavy ions such as hydrogen-like bismuth 209 Bi 82+ experience electromagnetic fields that are a million times stronger than in light atoms. Measuring the wavelength of light emitted and absorbed by these ions is therefore a sensitive testing ground for quantum electrodynamical (QED) effects and especially the electron-nucleus interaction under such extreme conditions. However, insufficient knowledge of the nuclear structure has prevented a rigorous test of strong-field QED. Here we present a measurement of the so-called specific difference between the hyperfine splittings in hydrogen-like and lithium-like bismuth 209 Bi 82+,80+ with a precision that is improved by more than an order of magnitude. Even though this quantity is believed to be largely insensitive to nuclear structure and therefore the most decisive test of QED in the strong magnetic field regime, we find a 7-σ discrepancy compared with the theoretical prediction.

  6. High precision hyperfine measurements in Bismuth challenge bound-state strong-field QED

    Science.gov (United States)

    Ullmann, Johannes; Andelkovic, Zoran; Brandau, Carsten; Dax, Andreas; Geithner, Wolfgang; Geppert, Christopher; Gorges, Christian; Hammen, Michael; Hannen, Volker; Kaufmann, Simon; König, Kristian; Litvinov, Yuri A.; Lochmann, Matthias; Maaß, Bernhard; Meisner, Johann; Murböck, Tobias; Sánchez, Rodolfo; Schmidt, Matthias; Schmidt, Stefan; Steck, Markus; Stöhlker, Thomas; Thompson, Richard C.; Trageser, Christian; Vollbrecht, Jonas; Weinheimer, Christian; Nörtershäuser, Wilfried

    2017-05-01

    Electrons bound in highly charged heavy ions such as hydrogen-like bismuth 209Bi82+ experience electromagnetic fields that are a million times stronger than in light atoms. Measuring the wavelength of light emitted and absorbed by these ions is therefore a sensitive testing ground for quantum electrodynamical (QED) effects and especially the electron-nucleus interaction under such extreme conditions. However, insufficient knowledge of the nuclear structure has prevented a rigorous test of strong-field QED. Here we present a measurement of the so-called specific difference between the hyperfine splittings in hydrogen-like and lithium-like bismuth 209Bi82+,80+ with a precision that is improved by more than an order of magnitude. Even though this quantity is believed to be largely insensitive to nuclear structure and therefore the most decisive test of QED in the strong magnetic field regime, we find a 7-σ discrepancy compared with the theoretical prediction.

  7. Andreev reflection and bound states in topological insulator based planar and step Josephson junctions

    Science.gov (United States)

    Choudhari, Tarun; Deo, Nivedita

    2017-01-01

    A superconductor-topological insulator-superconductor (S/TI/S) junction having normal region at angle θ is studied theoretically to investigate the junction angle dependency of the Andreev reflection and the formation of the Andreev bound states in the step and planar S/TI/S structures. It is found that the Andreev reflection becomes θ dependent only in the presence of the potential barrier at the TI/S interface. In particular, the step and planar TI/S junction have totally different conductive behavior with bias voltage and potential barrier in the regime of retro and specular Andreev reflection. Interestingly, we find that the elliptical cross section of Dirac cone, an important feature of topological insulator with step surface defect, affects the Fabry-Perot resonance of the Andreev reflection induced Andreev bound states (which become Majorana zero energy states at low chemical potential) in the step S/TI/S structure. Unlike the usual planar S/TI/S structures, we find these ellipticity affected Andreev bound states lead to non-monotonic Josephson super-current in the step S/TI/S structure whose non-monotonicity can be controlled with the use of the potential barrier, which may find applications in nanoelectronics.

  8. Singly and Doubly Occupied Higher Quantum States in Nanocrystals.

    Science.gov (United States)

    Jeong, Juyeon; Yoon, Bitna; Kwon, Young-Wan; Choi, Dongsun; Jeong, Kwang Seob

    2017-02-08

    Filling the lowest quantum state of the conduction band of colloidal nanocrystals with a single electron, which is analogous to the filling the lowest unoccupied molecular orbital in a molecule with a single electron, has attracted much attention due to the possibility of harnessing the electron spin for potential spin-based applications. The quantized energy levels of the artificial atom, in principle, make it possible for a nanocrystal to be filled with an electron if the Fermi-energy level is optimally tuned during the nanocrystal growth. Here, we report the singly occupied quantum state (SOQS) and doubly occupied quantum state (DOQS) of a colloidal nanocrystal in steady state under ambient conditions. The number of electrons occupying the lowest quantum state can be controlled to be zero, one (unpaired), and two (paired) depending on the nanocrystal growth time via changing the stoichiometry of the nanocrystal. Electron paramagnetic resonance spectroscopy proved the nanocrystals with single electron to show superparamagnetic behavior, which is a direct evidence of the SOQS, whereas the DOQS of the two- or zero-electron occupied nanocrystals in the 1Se exhibit diamagnetic behavior. In combination with the superconducting quantum interference device measurement, it turns out that the SOQS of the HgSe colloidal quantum dots has superparamagnetic property. The appearance and change of the steady-state mid-IR intraband absorption spectrum reflect the sequential occupation of the 1Se state with electrons. The magnetic property of the colloidal quantum dot, initially determined by the chemical synthesis, can be tuned from diamagnetic to superparamagnetic and vice versa by varying the number of electrons through postchemical treatment. The switchable magnetic property will be very useful for further applications such as colloidal nanocrystal based spintronics, nonvolatile memory, infrared optoelectronics, catalyst, imaging, and quantum computing.

  9. A bound quantum particle in a Riemann-Cartan space with topological defects and planar potential

    Energy Technology Data Exchange (ETDEWEB)

    Alix, S.A. [Department of Physics, University at Albany-SUNY, 1400 Washington Avenue, Albany, NY 12222 (United States); Cafaro, C. [Department of Physics, University at Albany-SUNY, 1400 Washington Avenue, Albany, NY 12222 (United States); Capozziello, S. [Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' and INFN Sez. di Napoli, Complesso Universitario Monte S. Angelo, Ed.N, Via Cinthia, I-80126 Napoli (Italy)]. E-mail: capozziello@na.infn.it; Corda, Ch. [INFN Sez. di Pisa and Universita di Pisa, Via F. Buonarroti 2, I-56127 Pisa (Italy)

    2007-07-02

    Starting from a continuum theory of defects, that is the analogous to three-dimensional Einstein-Cartan-Sciama-Kibble gravity, we consider a charged particle with spin 12 propagating in a uniform magnetic field coincident with a wedge dispiration of finite extent. We assume the particle is bound in the vicinity of the dispiration by long range attractive (harmonic) and short range (inverse square) repulsive potentials. Moreover, we consider the effects of spin-torsion and spin-magnetic field interactions. Exact expressions for the energy eigenfunctions and eigenvalues are determined. The limit, in which the defect region becomes singular, is considered and comparison with the electromagnetic Aharonov-Bohm effect is made.

  10. Extreme quantum nonequilibrium, nodes, vorticity, drift and relaxation retarding states

    Science.gov (United States)

    Underwood, Nicolas G.

    2018-02-01

    Consideration is given to the behaviour of de Broglie trajectories that are separated from the bulk of the Born distribution with a view to describing the quantum relaxation properties of more ‘extreme’ forms of quantum nonequilibrium. For the 2D isotropic harmonic oscillator, through the construction of what is termed the ‘drift field’, a description is given of a general mechanism that causes the relaxation of ‘extreme’ quantum nonequilibrium. Quantum states are found which do not feature this mechanism, so that relaxation may be severely delayed or possibly may not take place at all. A method by which these states may be identified, classified and calculated is given in terms of the properties of the nodes of the state. Properties of the nodes that enable this classification are described for the first time.

  11. Quantum Public Key Cryptosystem Based on Bell States

    Science.gov (United States)

    Wu, WanQing; Cai, QingYu; Zhang, HuanGuo; Liang, XiaoYan

    2017-11-01

    Classical public key cryptosystems ( P K C), such as R S A, E I G a m a l, E C C, are no longer secure in quantum algorithms, and quantum cryptography has become a novel research topic. In this paper we present a quantum asymmetrical cryptosystem i.e. quantum public key cryptosystem ( Q P K C) based on the Bell states. In particular, in the proposed QPKC the public key are given by the first n particles of Bell states and generalized Pauli operations. The corresponding secret key are the last n particles of Bell states and the inverse of generalized Pauli operations. The proposed QPKC encrypts the message using a public key and decrypts the ciphertext using a private key. By H o l e v o ' s theorem, we proved the security of the secret key and messages during the QPKC.

  12. Controlling the Quantum State with a time varying potential.

    Science.gov (United States)

    Carrasco, Sebastián; Rogan, José; Valdivia, Juan Alejandro

    2017-10-16

    The problem of controlling the quantum state of a system is investigated using a time varying potential. As a concrete example we study the problem of a particle in a box with a periodically oscillating infinite square-well potential, from which we obtain results that can be applied to systems with periodically oscillating boundary conditions. We derive an analytic expression for the frequencies of resonance between states, and against standard intuition, we show how to use this behavior to control the quantum state of the system at will. In particular, we offer as an example the transition from the ground state to the first excited state of the square well potential. At first sight, it may be counter intuitive that we can control the state of such a quantum Hamiltonian, as the Schrödinger equation conserves the norm of the wave function. In this manuscript, we show how that can be achieved.

  13. Quantum coding theorems

    Science.gov (United States)

    Holevo, A. S.

    1998-12-01

    ContentsI. IntroductionII. General considerations § 1. Quantum communication channel § 2. Entropy bound and channel capacity § 3. Formulation of the quantum coding theorem. Weak conversionIII. Proof of the direct statement of the coding theorem § 1. Channels with pure signal states § 2. Reliability function § 3. Quantum binary channel § 4. Case of arbitrary states with bounded entropyIV. c-q channels with input constraints § 1. Coding theorem § 2. Gauss channel with one degree of freedom § 3. Classical signal on quantum background noise Bibliography

  14. Robustness of Majorana bound states in the short-junction limit

    Science.gov (United States)

    Sticlet, Doru; Nijholt, Bas; Akhmerov, Anton

    2017-03-01

    We study the effects of strong coupling between a superconductor and a semiconductor nanowire on the creation of the Majorana bound states, when the quasiparticle dwell time in the normal part of the nanowire is much shorter than the inverse superconducting gap. This "short-junction" limit is relevant for the recent experiments using the epitaxially grown aluminum characterized by a transparent interface with the semiconductor and a small superconducting gap. We find that the small superconducting gap does not have a strong detrimental effect on the Majorana properties. Specifically, both the critical magnetic field required for creating a topological phase and the size of the Majorana bound states are independent of the superconducting gap. The critical magnetic field scales with the wire cross section, while the relative importance of the orbital and Zeeman effects of the magnetic field is controlled by the material parameters only: g factor, effective electron mass, and the semiconductor-superconductor interface transparency.

  15. Bound-state field-theory approach to proton-structure effects in muonic hydrogen

    Science.gov (United States)

    Mohr, Peter J.; Griffith, J.; Sapirstein, J.

    2013-05-01

    A bound-state field-theory approach to muonic hydrogen is set up using a variant of the Furry representation in which the lowest-order Hamiltonian describes a muon in the presence of a point Coulomb field, but the origin of the binding field is taken to be three charged quarks in the proton, which are modeled as Dirac particles that move freely within a spherical well. Bound-state field-theory techniques are used to evaluate one- and two-photon effects. Particular attention is paid to two-photon-exchange diagrams, which include the effect of proton polarizability. In addition, the modification of the electromagnetic self energy of the proton by the electric field of the muon is examined. Finally, the model is used to carry out a calculation of the static electric polarizability of the proton.

  16. Lower Bounds on the Capacity of the Relay Channel with States at the Source

    Directory of Open Access Journals (Sweden)

    Abdellatif Zaidi

    2009-01-01

    Full Text Available We consider a state-dependent three-terminal full-duplex relay channel with the channel states noncausally available at only the source, that is, neither at the relay nor at the destination. This model has application to cooperation over certain wireless channels with asymmetric cognition capabilities and cognitive interference relay channels. We establish lower bounds on the channel capacity for both discrete memoryless (DM and Gaussian cases. For the DM case, the coding scheme for the lower bound uses techniques of rate-splitting at the source, decode-and-forward (DF relaying, and a Gel'fand-Pinsker-like binning scheme. In this coding scheme, the relay decodes only partially the information sent by the source. Due to the rate-splitting, this lower bound is better than the one obtained by assuming that the relay decodes all the information from the source, that is, full-DF. For the Gaussian case, we consider channel models in which each of the relay node and the destination node experiences on its link an additive Gaussian outside interference. We first focus on the case in which the links to the relay and to the destination are corrupted by the same interference; and then we focus on the case of independent interferences. We also discuss a model with correlated interferences. For each of the first two models, we establish a lower bound on the channel capacity. The coding schemes for the lower bounds use techniques of dirty paper coding or carbon copying onto dirty paper, interference reduction at the source and decode-and-forward relaying. The results reveal that, by opposition to carbon copying onto dirty paper and its root Costa's initial dirty paper coding (DPC, it may be beneficial in our setup that the informed source uses a part of its power to partially cancel the effect of the interference so that the uninformed relay benefits from this cancellation, and so the source benefits in turn.

  17. Decomposition of fractional quantum Hall states: New symmetries and approximations

    NARCIS (Netherlands)

    Thomale, R.; Estienne, B.; Regnault, N.; Bernevig, B.A.

    2010-01-01

    Abstract: We provide a detailed description of a new symmetry structure of the monomial (Slater) expansion coefficients of bosonic (fermionic) fractional quantum Hall states first obtained in Ref. 1, which we now extend to spin-singlet states. We show that the Haldane-Rezayi spin-singlet state can

  18. Coherent states of non-Hermitian quantum systems

    OpenAIRE

    Roy, B.; Roy, P.

    2006-01-01

    We use the Gazeau-Klauder formalism to construct coherent states of non-Hermitian quantum systems. In particular we use this formalism to construct coherent state of a PT symmetric system. We also discuss construction of coherent states following Klauder's minimal prescription.

  19. Quantum State Transfer from a Single Photon to a Distant Quantum-Dot Electron Spin.

    Science.gov (United States)

    He, Yu; He, Yu-Ming; Wei, Yu-Jia; Jiang, Xiao; Chen, Kai; Lu, Chao-Yang; Pan, Jian-Wei; Schneider, Christian; Kamp, Martin; Höfling, Sven

    2017-08-11

    Quantum state transfer from flying photons to stationary matter qubits is an important element in the realization of quantum networks. Self-assembled semiconductor quantum dots provide a promising solid-state platform hosting both single photon and spin, with an inherent light-matter interface. Here, we develop a method to coherently and actively control the single-photon frequency bins in superposition using electro-optic modulators, and measure the spin-photon entanglement with a fidelity of 0.796±0.020. Further, by Greenberger-Horne-Zeilinger-type state projection on the frequency, path, and polarization degrees of freedom of a single photon, we demonstrate quantum state transfer from a single photon to a single electron spin confined in an InGaAs quantum dot, separated by 5 m. The quantum state mapping from the photon's polarization to the electron's spin is demonstrated along three different axes on the Bloch sphere, with an average fidelity of 78.5%.

  20. Quantum State Transfer from a Single Photon to a Distant Quantum-Dot Electron Spin

    Science.gov (United States)

    He, Yu; He, Yu-Ming; Wei, Yu-Jia; Jiang, Xiao; Chen, Kai; Lu, Chao-Yang; Pan, Jian-Wei; Schneider, Christian; Kamp, Martin; Höfling, Sven

    2017-08-01

    Quantum state transfer from flying photons to stationary matter qubits is an important element in the realization of quantum networks. Self-assembled semiconductor quantum dots provide a promising solid-state platform hosting both single photon and spin, with an inherent light-matter interface. Here, we develop a method to coherently and actively control the single-photon frequency bins in superposition using electro-optic modulators, and measure the spin-photon entanglement with a fidelity of 0.796 ±0.020 . Further, by Greenberger-Horne-Zeilinger-type state projection on the frequency, path, and polarization degrees of freedom of a single photon, we demonstrate quantum state transfer from a single photon to a single electron spin confined in an InGaAs quantum dot, separated by 5 m. The quantum state mapping from the photon's polarization to the electron's spin is demonstrated along three different axes on the Bloch sphere, with an average fidelity of 78.5%.