Topological magnon bound-states in quantum Heisenberg chains
Qin, Xizhou; Ke, Yongguan; Zhang, Li; Lee, Chaohong
2016-01-01
It is still an outstanding challenge to characterize and understand the topological features of strongly correlated states such as bound-states in interacting multi-particle quantum systems. Recently, bound states of elementary spin waves (magnons) in quantum magnets have been experimentally observed in quantum Heisenberg chains comprising ultracold Bose atoms in optical lattices. Here, we explore an unprecedented topological state called topological magnon bound-state in the quantum Heisenberg chain under cotranslational symmetry. We find that the cotranslational symmetry allows us to formulate a direct topological invariant for the multi-particle quantum states, which can be used to characterize the topological features of multi-magnon excitations. We calculate energy spectra, density distributions, correlations and topological invariants of the two-magnon bound-states and show the existence of topological magnon bound-states. Our study not only opens a new prospect to pursue topological bound-states, but a...
Review of the N-quantum Approach to Bound States
Greenberg, O W
2010-01-01
We describe a method of solving quantum field theories using operator techniques based on the expansion of interacting fields in terms of asymptotic fields. For bound states, we introduce an asymptotic field for each (stable) bound state. We choose the nonrelativistic hydrogen atom as an example to illustrate the method. Future work will apply this N-quantum approach to relativistic theories that include bound states in motion.
Second Bound State of Biexcitons in Quantum Dots
Institute of Scientific and Technical Information of China (English)
XIE Wen-Eang
2003-01-01
The second bound state of the biexcitons in a quantum dot, with orbital angular momentum L = 1, is reported. By using the method of few-body physics, the binding energy spectra of the second bound state of a biexciton in a GaAs quantum dot with a parabolic confinement have been calculated as a function of the electron-to-hole mass ratio and the quantum dot size. The fact that the biexcitons have a second bound state may aid in the better understanding of their binding mechanism.
NOON states via a quantum walk of bound particles
Compagno, Enrico; Banchi, Leonardo; Gross, Christian; Bose, Sougato
2017-01-01
Tight-binding lattice models allow the creation of bound composite objects which, in the strong-interacting regime, are protected against dissociation. We show that a local impurity in the lattice potential can generate a coherent split of an incoming bound particle wave packet which consequently produces a NOON state between the endpoints. This is nontrivial because, when finite lattices are involved, edge-localization effects render challenging their use for nonclassical state generation and information transfer. We derive an effective model to describe the propagation of bound particles in a Bose-Hubbard chain. We introduce local impurities in the lattice potential to inhibit localization effects and to split the propagating bound particle, thus enabling the generation of distant NOON states. We analyze how minimal engineering transfer schemes improve the transfer fidelity and we quantify the robustness to typical decoherence effects in optical lattice implementations. Our scheme potentially has an impact on quantum-enhanced atomic interferometry in a lattice.
How quantum bound states bounce and the structure it reveals
Lee, Dean
2010-01-01
We investigate how quantum bound states bounce from a hard surface. Our analysis has applications to ab initio calculations of nuclear structure and elastic deformation, energy levels of excitons in semiconductor quantum dots and wells, and cold atomic few-body systems on optical lattices with sharp boundaries. We develop the general theory of elastic reflection for a composite body from a hard wall. On the numerical side we present universal results for two-body states and discuss ab initio calculations for general few-body systems. On the analytical side we derive a universal effective potential that gives the reflection scattering length for shallow two-body states.
Computational approach for calculating bound states in quantum field theory
Lv, Q. Z.; Norris, S.; Brennan, R.; Stefanovich, E.; Su, Q.; Grobe, R.
2016-09-01
We propose a nonperturbative approach to calculate bound-state energies and wave functions for quantum field theoretical models. It is based on the direct diagonalization of the corresponding quantum field theoretical Hamiltonian in an effectively discretized and truncated Hilbert space. We illustrate this approach for a Yukawa-like interaction between fermions and bosons in one spatial dimension and show where it agrees with the traditional method based on the potential picture and where it deviates due to recoil and radiative corrections. This method permits us also to obtain some insight into the spatial characteristics of the distribution of the fermions in the ground state, such as the bremsstrahlung-induced widening.
Scattering and Bound States of a Deformed Quantum Mechanics
Ching, Chee-Leong
2012-01-01
We construct the exact position representation of a deformed quantum mechanics which exhibits an intrinsic maximum momentum and use it to study problems such as a particle in a box and scattering from a step potential, among others. In particular, we show that unlike usual quantum mechanics, the present deformed case delays the formation of bound states in a finite potential well. In the process we also highlight some limitations and pit-falls of low-momentum or perturbative treatments and thus resolve two puzzles occurring in the literature.
SWKB Quantization Rules for Bound States in Quantum Wells
Sinha, A K; Sinha, Anjana; Roychoudhury, Rajkumar
2000-01-01
In a recent paper by Gomes and Adhikari (J.Phys B30 5987(1997)) a matrix formulation of the Bohr-Sommerfield quantization rule has been applied to the study of bound states in one dimension quantum wells. Here we study these potentials in the frame work of supersymmetric WKB (SWKB) quantization approximation and find that SWKB quantization rule is superior to the modified Bohr-Sommerfield or WKB rules as it exactly reproduces the eigenenergies.
Quantum state discrimination bounds for finite sample size
Audenaert, Koenraad M R; Verstraete, Frank
2012-01-01
In the problem of quantum state discrimination, one has to determine by measurements the state of a quantum system, based on the a priori side information that the true state is one of two given and completely known states, rho or sigma. In general, it is not possible to decide the identity of the true state with certainty, and the optimal measurement strategy depends on whether the two possible errors (mistaking rho for sigma, or the other way around) are treated as of equal importance or not. Recent results on the quantum Chernoff and Hoeffding bounds show that, if several copies of the system are available then the optimal error probabilities decay exponentially in the number of copies, and the decay rate is given by a certain statistical distance between rho and sigma (the Chernoff distance and the Hoeffding distances, respectively). While these results provide a complete solution for the asymptotic problem, they are not completely satisfying from a practical point of view. Indeed, in realistic scenarios ...
Binding Energy of Quantum Bound States in X-shaped Nanowire Intersection
2014-01-01
that with non-zero magnetic field new structures are associated with virtual and resonant states located at the junction that becomes 2D Landau ...results of our model system (cross-wire intersecting at an arbitrary angle) not only supplement the theory of quantum bound state in a classically unbound...geometries has been a long standing problem in quantum theory . Knowledge of quantum bound states in crossed nanowire system is very important in
Bound states in open coupled asymmetrical waveguides and quantum wires
Amore, Paolo; Terrero-Escalante, Cesar A
2011-01-01
The behavior of bound states in asymmetric cross, T and L shaped configurations is considered. Because of the symmetries of the wavefunctions, the analysis can be reduced to the case of an electron localized at the intersection of two orthogonal crossed wires of different width. Numerical calculations show that the fundamental mode of this system remains bound for the widths that we have been able to study directly; moreover, the extrapolation of the results obtained for finite widths suggests that this state remains bound even when the width of one arm becomes infinitesimal. We provide a qualitative argument which explains this behavior and that can be generalized to the lowest energy states in each symmetry class. In the case of odd-odd states of the cross we find that the lowest mode is bounded when the width of the two arms is the same and stays bound up to a critical value of the ratio between the widths; in the case of the even-odd states we find that the lowest mode is unbound up to a critical value of...
Bound Electron States in Skew-symmetric Quantum Wire Intersections
2014-01-01
dots is that they lie far beneath the surface of the surround- ing material whose associated states are potentially meddlesome. Colloidal chemistry ... textbooks have posed problems dealing with these states, but the approaches used in these problems involved variational methods or limiting cases, which are...of the Introductory Quantum Mechanics textbook by D.J.Griffith (Pearson, 2005). My trial function that has been developed in this the- sis, has an
Upper Bounds on the Degeneracy of the Ground State in Quantum Field Models
Directory of Open Access Journals (Sweden)
Asao Arai
2016-01-01
Full Text Available Axiomatic abstract formulations are presented to derive upper bounds on the degeneracy of the ground state in quantum field models including massless ones. In particular, given is a sufficient condition under which the degeneracy of the ground state of the perturbed Hamiltonian is less than or equal to the degeneracy of the ground state of the unperturbed one. Applications of the abstract theory to models in quantum field theory are outlined.
Interacting quantum walkers: two-body bosonic and fermionic bound states
Krapivsky, P. L.; Luck, J. M.; Mallick, K.
2015-11-01
We investigate the dynamics of bound states of two interacting particles, either bosons or fermions, performing a continuous-time quantum walk on a one-dimensional lattice. We consider the situation where the distance between both particles has a hard bound, and the richer situation where the particles are bound by a smooth confining potential. The main emphasis is on the velocity characterizing the ballistic spreading of these bound states, and on the structure of the asymptotic distribution profile of their center-of-mass coordinate. The latter profile generically exhibits many internal fronts.
Andreev and Majorana bound states in single and double quantum dot structures
Silva, Joelson F.; Vernek, E.
2016-11-01
We present a numerical study of the emergence of Majorana and Andreev bound states in a system composed of two quantum dots, one of which is coupled to a conventional superconductor, SC1, and the other connects to a topological superconductor, SC2. By controlling the interdot coupling we can drive the system from two single (uncoupled) quantum dots to double (coupled) dot system configurations. We employ a recursive Green’s function technique that provides us with numerically exact results for the local density of states of the system. We first show that in the uncoupled dot configuration (single dot behavior) the Majorana and the Andreev bound states appear in an individual dot in two completely distinct regimes. Therefore, they cannot coexist in the single quantum dot system. We then study the coexistence of these states in the coupled double dot configuration. In this situation we show that in the trivial phase of SC2, the Andreev states are bound to an individual quantum dot in the atomic regime (weak interdot coupling) or extended over the entire molecule in the molecular regime (strong interdot coupling). More interesting features are actually seen in the topological phase of SC2. In this case, in the atomic limit, the Andreev states appear bound to one of the quantum dots while a Majorana zero mode appears in the other one. In the molecular regime, on the other hand, the Andreev bound states take over the entire molecule while the Majorana state remains always bound to one of the quantum dots.
Automatic computation of quantum-mechanical bound states and wavefunctions
Ledoux, V.; Van Daele, M.
2013-04-01
We discuss the automatic solution of the multichannel Schrödinger equation. The proposed approach is based on the use of a CP method for which the step size is not restricted by the oscillations in the solution. Moreover, this CP method turns out to form a natural scheme for the integration of the Riccati differential equation which arises when introducing the (inverse) logarithmic derivative. A new Prüfer type mechanism which derives all the required information from the propagation of the inverse of the log-derivative, is introduced. It improves and refines the eigenvalue shooting process and implies that the user may specify the required eigenvalue by its index. Catalogue identifier: AEON_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEON_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/license/license.html No. of lines in distributed program, including test data, etc.: 3822 No. of bytes in distributed program, including test data, etc.: 119814 Distribution format: tar.gz Programming language: Matlab. Computer: Personal computer architectures. Operating system: Windows, Linux, Mac (all systems on which Matlab can be installed). RAM: Depends on the problem size. Classification: 4.3. Nature of problem: Computation of eigenvalues and eigenfunctions of multichannel Schrödinger equations appearing in quantum mechanics. Solution method: A CP-based propagation scheme is used to advance the R-matrix in a shooting process. The shooting algorithm is supplemented by a Prüfer type mechanism which allows the eigenvalues to be computed according to index: the user specifies an integer k≥0, and the code computes an approximation to the kth eigenvalue. Eigenfunctions are also available through an auxiliary routine, called after the eigenvalue has been determined. Restrictions: The program can only deal with non-singular problems. Additional
Efficient method for calculating electronic bound states in arbitrary one-dimensional quantum wells
de Aquino, V. M.; Iwamoto, H.; Dias, I. F. L.; Laureto, E.; da Silva, M. A. T.; da Silva, E. C. F.; Quivy, A. A.
2017-01-01
In the present paper it is demonstrated that the bound electronic states of multiple quantum wells structures may be calculated very efficiently by expanding their eigenstates in terms of the eigenfunctions of a particle in a box. The bound states of single and multiple symmetric or nonsymmetric wells are calculated within the single-band effective mass approximation. A comparison is then made between the results obtained for simple cases with exact calculations. We also apply our approach to a GaAs/AlGaAs multiple quantum well structure composed of forty periods each one with seven quantum wells. The method may be very useful to design narrow band quantum cascade photodetectors to work without applied bias in a photovoltaic mode. With the presented method the effects of a electric field may also be easily included which is very important if one desires study quantum well structures for application to the development of quantum cascade lasers. The advantages of the method are also presented.
Majorana bound state in a coupled quantum-dot hybrid-nanowire system
Deng, M. T.; Vaitiekėnas, S.; Hansen, E. B.; Danon, J.; Leijnse, M.; Flensberg, K.; Nygård, J.; Krogstrup, P.; Marcus, C. M.
2016-12-01
Hybrid nanowires combining semiconductor and superconductor materials appear well suited for the creation, detection, and control of Majorana bound states (MBSs). We demonstrate the emergence of MBSs from coalescing Andreev bound states (ABSs) in a hybrid InAs nanowire with epitaxial Al, using a quantum dot at the end of the nanowire as a spectrometer. Electrostatic gating tuned the nanowire density to a regime of one or a few ABSs. In an applied axial magnetic field, a topological phase emerges in which ABSs move to zero energy and remain there, forming MBSs. We observed hybridization of the MBS with the end-dot bound state, which is in agreement with a numerical model. The ABS/MBS spectra provide parameters that are useful for understanding topological superconductivity in this system.
Quantum Transport through a Triple Quantum Dot System in the Presence of Majorana Bound States
Jiang, Zhao-Tan; Cao, Zhi-Yuan; Zhong, Cheng-Cheng
2016-05-01
We study the electron transport through a special quantum-dot (QD) structure composed of three QDs and two Majorana bound states (MBSs) using the nonequilibrium Green's function technique. This QD-MBS ring structure includes two channels with the two coupled MBSs being Channel 1 and one QD being Channel 2, and three types of transport processes such as the electron transmission (ET), the Andreev reflection (AR), and the crossed Andreev reflection (CAR). By comparing the ET, AR, and CAR processes through Channels 1 and 2, we make a systematic study on the transport properties of the QD-MBS ring. It is shown that there appear two kinds of characteristic transport patterns for Channels 1 and 2, as well as the interplay between the two patterns. Of particular interest is that there exists an AR-assisted ET process in Channel 2, which is different from that in Channel 1. Thus a clear “X” pattern due to the ET and AR processes appears in the ET, AR, and CAR transmission coefficients. Moreover, we study how Channel 2 affects the three transport processes when Channel 1 is tuned in the ET and CAR regimes. It is shown that the transport properties of the ET, AR and CAR processes can be adjusted by tuning the energy level of the QD embedded in Channel 2. We believe this research should be a helpful reference for understanding the transport properties in the QD-MBS coupled systems. Supported by National Natural Science Foundation of China under Grant No. 11274040, and by the Program for New Century Excellent Talents in University under Grant No. NCET-08-0044
Quantum Zeno and anti-Zeno effects in an unstable system with two bound states
Energy Technology Data Exchange (ETDEWEB)
Modi, Kavan [Department of Physics, Center for Complex Quantum Systems, University of Texas at Austin, Austin, TX 78712-1081 (United States)], E-mail: modik@physics.utexas.edu; Shaji, Anil [Department of Physics, Center for Complex Quantum Systems, University of Texas at Austin, Austin, TX 78712-1081 (United States)
2007-08-20
We analyze the experimental observations reported by Fischer et al. [M.C. Fischer, B. Gutierrez-Medina, M.G. Raizen, Phys. Rev. Lett. 87 (2001) 040402] by considering a system of coupled unstable bound quantum states |A> and |B>. The state |B> is coupled to a set of continuum states |C{theta}({omega})>. We investigate the time evolution of |A> when it decays into |C{theta}({omega})> via |B>, and find that frequent measurements on |A> leads to both the quantum Zeno effect and the anti-Zeno effects depending on the frequency of measurements. We show that it is the presence of |B> which allows for the anti-Zeno effect.
Afzal, Muhammad Imran; Lee, Yong Tak
2016-01-01
Von Neumann and Wigner theorized bounding of asymmetric eigenstates and anti-crossing of symmetric eigenstates. Experiments have shown that owing to anti-crossing and similar radiation rates, graphene-like resonance of inhomogeneously strained photonic eigenstates can generate pseudomagnetic field, bandgaps and Landau levels, while dissimilar rates induce non-Hermicity. Here, we showed experimentally higher-order supersymmetry and quantum phase transitions by resonance between similar one dimensional lattices. The lattices consisted of inhomgeneously strain-like phases of triangular solitons. The resonance created two dimensional inhomogeneously deformed photonic graphene. All parent eigenstates are annihilated. Where eigenstates of mildly strained solitons are annihilated with similar (power law) rates through one tail only and generated Hermitianally bounded eigenstates. The strongly strained solitons, positive defects are annihilated exponentially through both tails with dissimilar rates. Which bounded eig...
Lower bounds for ballistic current and noise in non-equilibrium quantum steady states
Directory of Open Access Journals (Sweden)
Benjamin Doyon
2015-03-01
Full Text Available Let an infinite, homogeneous, many-body quantum system be unitarily evolved for a long time from a state where two halves are independently thermalized. One says that a non-equilibrium steady state emerges if there are nonzero steady currents in the central region. In particular, their presence is a signature of ballistic transport. We analyze the consequences of the current observable being a conserved density; near equilibrium this is known to give rise to linear wave propagation and a nonzero Drude peak. Using the Lieb–Robinson bound, we derive, under a certain regularity condition, a lower bound for the non-equilibrium steady-state current determined by equilibrium averages. This shows and quantifies the presence of ballistic transport far from equilibrium. The inequality suggests the definition of “nonlinear sound velocities”, which specialize to the sound velocity near equilibrium in non-integrable models, and “generalized sound velocities”, which encode generalized Gibbs thermalization in integrable models. These are bounded by the Lieb–Robinson velocity. The inequality also gives rise to a bound on the energy current noise in the case of pure energy transport. We show that the inequality is satisfied in many models where exact results are available, and that it is saturated at one-dimensional criticality.
Afzal, Muhammad Imran; Lee, Yong Tak
2016-12-01
Von Neumann and Wigner theorized the bounding and anti-crossing of eigenstates. Experiments have demonstrated that owing to anti-crossing and similar radiation rates, the graphene-like resonance of inhomogeneously strained photonic eigenstates can generate a pseudomagnetic field, bandgaps and Landau levels, whereas exponential or dissimilar rates induce non-Hermicity. Here, we experimentally demonstrate higher-order supersymmetry and quantum phase transitions by resonance between similar one-dimensional lattices. The lattices consisted of inhomogeneous strain-like phases of triangular solitons. The resonance created two-dimensional, inhomogeneously deformed photonic graphene. All parent eigenstates were annihilated. Eigenstates of mildly strained solitons were annihilated at similar rates through one tail and generated Hermitian bounded eigenstates. The strongly strained solitons with positive phase defects were annihilated at exponential rates through one tail, which bounded eigenstates through non-Hermitianally generated exceptional points. Supersymmetry was evident, with preservation of the shapes and relative phase differences of the parent solitons. Localizations of energies generated from annihilations of mildly and strongly strained soliton eigenstates were responsible for geometrical (Berry) and topological phase transitions, respectively. Both contributed to generating a quantum Zeno phase, whereas only strong twists generated topological (Anderson) localization. Anti-bunching-like condensation was also observed.
Directory of Open Access Journals (Sweden)
Z. T. Jiang
2016-12-01
Full Text Available We theoretically investigate the electron transport properties of a wheel-like quantum dot (QD structure with a central QD side coupled with many pairs of QD and Majorana bound states (MBSs by using the nonequilibrium Green’s function method. For clarity, we concentrate our researches on the parameter regime where interdot couplings is much smaller than the inter-MBS and MBS-QD couplings, which ensures the conductance peaks induced by them distinguishable. In the absence of the interdot couplings among the side QDs, the increase of the MBS-QD pair number is equivalent to the increase of the interdot coupling in the QD structure including one central QD and one MBS-QD pair. It is shown that as a response the interval between two side symmetrical peaks will be enlarged, and the MBS-QD couplings will bring into being a zero-bias conductance peak which can be split into two symmetrical sub-peaks by the nonzero inter-MBS couplings. In the presence of the interdot couplings among the side QDs, they make serious influences on the conductance peaks determined by the QD energy levels, and still comes into being the zero-bias conductance peak due to the MBS-QD couplings, yet which is split into two asymmetrical sub-peaks under the influences of the nonzero inter-MBS couplings. Moreover, we conduct a detailed investigation into how the couplings among side QDs affect the transport properties, clearly exposing the underneath mechanics responsible for producing these phenomena. Finally, a generalization is made so as to discuss the geometry universality and the parameter universality of the conclusion drawn in the present work. It should be emphasized that this research will be helpful for a comprehensive understanding the quantum transport through the QD systems coupled with MBSs.
Khan, Md Abdul
2015-01-01
Bound state properties of few single and double-$\\Lambda$ hypernuclei is critically examined in the framework of core-$\\Lambda$ and core+$\\Lambda+\\Lambda$ few-body model applying hyperspherical harmonics expansion method (HHEM). The $\\Lambda\\Lambda$ potential is chosen phenomenologically while the core-$\\Lambda$ potential is obtained by folding a phenomenological $\\Lambda N$ interaction into the density distribution of the core. The depth of the effective $\\Lambda N$ potential is adjusted to reproduce the experimental data for the core-$\\Lambda$ subsystem. The three-body Schr\\"odinger equation is solved by hyperspherical adiabatic approximation (HAA) to get the ground state energy and wave function. The ground state wavefunction is used to construct the supersymmetric partner potential following prescription of supersymmetric quantum mechanics (SSQM) algebra. The newly constructed supersymmetric partner potential is used to solve the three-body Schr\\"odinger equation to get the energy and wavefunction for the...
Bounded-Error Quantum State Identification and Exponential Separations in Communication Complexity
Gavinsky, D; Kempe, J; Regev, O; Gavinsky, Dmitry; Kempe, Julia; Regev, Oded; Wolf, Ronald de
2005-01-01
We consider the problem of bounded-error quantum state identification: given either state \\alpha_0 or state \\alpha_1, we are required to output `0', `1' or `?' ("don't know"), such that conditioned on outputting `0' or `1', our guess is correct with high probability. The goal is to maximize the probability of not outputting `?'. We prove a direct product theorem: if we're given two such problems, with optimal probabilities a and b, respectively, and the states in the first problem are pure, then the optimal probability for the joint bounded-error state identification problem is O(ab). Our proof is based on semidefinite programming duality and may be of wider interest. Using this result, we present two exponential separations in the simultaneous message passing model of communication complexity. Both are shown in the strongest possible sense. First, we describe a relation that can be computed with O(log n) classical bits of communication in the presence of shared randomness, but needs Omega(n^{1/3}) communicat...
Some bounds for quantum copying
Rastegin, A E
2001-01-01
We derive lower bounds on the absolute error and the relative error of an abstract copying of two-state set. We do not specify a copying transformation and a dimension of state space. Only the unitarity of quantum mechanical transformations is used. Our approach is based on the notion of angle between two states. We first prove several useful statements, simply expressed in terms of angles. We then examine a lower bound on the absolute error, that was first considered by Hillery and Buzek. Our reasonings supplement and reinforce the results, obtained by them. So, we derive more strong bounds on the absolute error, and we also consider a tradeoff between size of error and corresponding probability distributions. After that we examine a lower bound on the relative error.
Unified theory of bound and scattering molecular Rydberg states as quantum maps
Dietz, Barbara; Lombardi, Maurice; Seligman, Thomas H.
2004-08-01
Using a representation of multichannel quantum defect theory in terms of a quantum Poincaré map for bound Rydberg molecules, we apply Jung's scattering map to derive a generalized quantum map, that includes the continuum. We show that this representation not only simplifies the understanding of the method, but moreover produces considerable numerical advantages. Finally we show under what circumstances the usual semi-classical approximations yield satisfactory results. In particular we see that singularities that cause problems in semi-classics are irrelevant to the quantum map.
Ichikawa, G; Komamiya, S; Kamiya, Y; Minami, Y; Tani, M; Geltenbort, P; Yamamura, K; Nagano, M; Sanuki, T; Kawasaki, S; Hino, M; Kitaguchi, M
2014-02-21
Ultracold neutrons (UCNs) can be bound by the potential of terrestrial gravity and a reflecting mirror. The wave function of the bound state has characteristic modulations. We carried out an experiment to observe the vertical distribution of the UCNs above such a mirror at the Institut Laue-Langevin in 2011. The observed modulation is in good agreement with that prediction by quantum mechanics using the Wigner function. The spatial resolution of the detector system is estimated to be 0.7 μm. This is the first observation of gravitationally bound states of UCNs with submicron spatial resolution.
Experimental evidence of bounds of quantum correlations
Bovino, F A; Castelletto, S; Degiovanni, I P; Rastello, M L; Berchera, I R
2003-01-01
We implemented the experiment proposed by Cabello [arXiv:quant-ph/0309172] to test the bounds of quantum correlation. As expected from the theory we found that, for certain choices of local observables, Cirel'son's bound of the Clauser-Horne-Shimony-Holt inequality ($2\\sqrt{2}$) is not reached by any quantum states.
Influence of quasi-bound states on the carrier capture into quantum dots
DEFF Research Database (Denmark)
Magnúsdóttir, Ingibjörg; Uskov, A.; Bischoff, Svend;
2002-01-01
An important characteristic of quantum dot (QD) materials is the timescale on which carriers are captured into the dots and relax to their ground state. The properties of devices based on QDs, such as lasers, thus rely on efficient carrier feeding to the active QD states. These processes are beli......An important characteristic of quantum dot (QD) materials is the timescale on which carriers are captured into the dots and relax to their ground state. The properties of devices based on QDs, such as lasers, thus rely on efficient carrier feeding to the active QD states. These processes...
Schulz, Marc Daniel; Dusuel, Sébastien; Vidal, Julien
2016-11-01
We discuss the emergence of bound states in the low-energy spectrum of the string-net Hamiltonian in the presence of a string tension. In the ladder geometry, we show that a single bound state arises either for a finite tension or in the zero-tension limit depending on the theory considered. In the latter case, we perturbatively compute the binding energy as a function of the total quantum dimension. We also address this issue in the honeycomb lattice where the number of bound states in the topological phase depends on the total quantum dimension. Finally, the internal structure of these bound states is analyzed in the zero-tension limit.
Schulz, M D; Vidal, J
2016-01-01
We discuss the emergence of bound states in the low-energy spectrum of the string-net Hamiltonian in the presence of a string tension. In the ladder geometry, we show that a single bound state arises either for a finite tension or in the zero-tension limit depending on the theory considered. In the latter case, we perturbatively compute the binding energy as a function of the total quantum dimension. We also address this issue in the honeycomb lattice where the number of bound states in the topological phase depends on the total quantum dimension. Finally, the internal structure of these bound states is analyzed in the zero-tension limit.
Quantum transport through a multi-quantum-dot-pair chain side-coupled with Majorana bound states
Zhao-Tan, Jiang; Cheng-Cheng, Zhong
2016-06-01
We investigate the quantum transport properties through a special kind of quantum dot (QD) system composed of a serially coupled multi-QD-pair (multi-QDP) chain and side-coupled Majorana bound states (MBSs) by using the Green functions method, where the conductance can be classified into two kinds: the electron tunneling (ET) conductance and the Andreev reflection (AR) one. First we find that for the nonzero MBS-QDP coupling a sharp AR-induced zero-bias conductance peak with the height of e 2/h is present (or absent) when the MBS is coupled to the far left (or the other) QDP. Moreover, the MBS-QDP coupling can suppress the ET conductance and strengthen the AR one, and further split into two sub-peaks each of the total conductance peaks of the isolated multi-QDPs, indicating that the MBS will make obvious influences on the competition between the ET and AR processes. Then we find that the tunneling rate Γ L is able to affect the conductances of leads L and R in different ways, demonstrating that there exists a Γ L-related competition between the AR and ET processes. Finally we consider the effect of the inter-MBS coupling on the conductances of the multi-QDP chains and it is shown that the inter-MBS coupling will split the zero-bias conductance peak with the height of e 2/h into two sub-peaks. As the inter-MBS coupling becomes stronger, the two sub-peaks are pushed away from each other and simultaneously become lower, which is opposite to that of the single QDP chain where the two sub-peaks with the height of about e 2/2h become higher. Also, the decay of the conductance sub-peaks with the increase of the MBS-QDP coupling becomes slower as the number of the QDPs becomes larger. This research should be an important extension in studying the transport properties in the kind of QD systems coupled with the side MBSs, which is helpful for understanding the nature of the MBSs, as well as the MBS-related QD transport properties. Project supported by the National Natural
Ionization and bound-state relativistic quantum dynamics in laser-driven multiply charged ions
Energy Technology Data Exchange (ETDEWEB)
Hetzheim, Henrik
2009-01-14
The interaction of ultra-strong laser fields with multiply charged hydrogen-like ions can be distinguished in an ionization and a bound dynamics regime. Both are investigated by means of numerically solving the Dirac equation in two dimensions and by a classical relativistic Monte-Carlo simulation. For a better understanding of highly nonlinear physical processes the development of a well characterized ultra-intense relativistic laser field strength has been driven forward, capable of studying e.g. the magnetic field effects of the laser resulting in an additional electron motion in the laser propagation direction. A novel method to sensitively measure these ultra-strong laser intensities is developed and employed from the optical via the UV towards the XUV frequency regime. In the bound dynamics field, the determination of multiphoton transition matrixelements has been investigated between different bound states via Rabi oscillations. (orig.)
New Protocols and Lower Bound for Quantum Secret Sharing with Graph States
Javelle, Jérôme; Perdrix, Simon
2011-01-01
We introduce a new family of quantum secret sharing protocols with limited quantum resources which extends the protocols proposed by Markham and Sanders and by Broadbent, Chouha, and Tapp. Parametrized by a graph G and a subset of its vertices A, the protocol consists in: (i) encoding the quantum secret into the corresponding graph state by acting on the qubits in A; (ii) use a classical encoding to ensure the existence of a threshold. These new protocols realize ((k,n)) quantum secret sharing i.e., any set of at least k players among n can reconstruct the quantum secret, whereas any set of less than k players has no information about the secret. In the particular case where the secret is encoded on all the qubits, we explore the values of k for which there exists a graph such that the corresponding protocol realizes a ((k,n)) secret sharing. We show that for any threshold k> n-n^{0.68} there exists a graph allowing a ((k,n)) protocol. On the other hand, we prove that for any kn_0.
VARIATIONAL CALCULATION ON GROUND-STATE ENERGY OF BOUND POLARONS IN PARABOLIC QUANTUM WIRES
Institute of Scientific and Technical Information of China (English)
WANG ZHUANG-BING; WU FU-LI; CHEN QING-HU; JIAO ZHENG-KUAN
2001-01-01
Within the framework of Feynman path-integral variational theory, we calculate the ground-state energy of a polaron in parabolic quantum wires in the presence of a Coulomb potential. It is shown that the polaronic correction to the ground-state energy is more sensitive to the electron-phonon coupling constant than the Coulomb binding parameter,and it increases monotonically with decreasing effective wire radius. Moreover, compared to the results obtained by Feynman Haken variational path-integral theory, we obtain better results within the Feynman path-integral variational approach (FV approach). Applying our calculation to several polar semiconductor quantum wires, we find that the polaronic correction can be considerably large.
Upper and lower bounds on quantum codes
Smith, Graeme Stewart Baird
This thesis provides bounds on the performance of quantum error correcting codes when used for quantum communication and quantum key distribution. The first two chapters provide a bare-bones introduction to classical and quantum error correcting codes, respectively. The next four chapters present achievable rates for quantum codes in various scenarios. The final chapter is dedicated to an upper bound on the quantum channel capacity. Chapter 3 studies coding for adversarial noise using quantum list codes, showing there exist quantum codes with high rates and short lists. These can be used, together with a very short secret key, to communicate with high fidelity at noise levels for which perfect fidelity is, impossible. Chapter 4 explores the performance of a family of degenerate codes when used to communicate over Pauli channels, showing they can be used to communicate over almost any Pauli channel at rates that are impossible for a nondegenerate code and that exceed those of previously known degenerate codes. By studying the scaling of the optimal block length as a function of the channel's parameters, we develop a heuristic for designing even better codes. Chapter 5 describes an equivalence between a family of noisy preprocessing protocols for quantum key distribution and entanglement distillation protocols whose target state belongs to a class of private states called "twisted states." In Chapter 6, the codes of Chapter 4 are combined with the protocols of Chapter 5 to provide higher key rates for one-way quantum key distribution than were previously thought possible. Finally, Chapter 7 presents a new upper bound on the quantum channel capacity that is both additive and convex, and which can be interpreted as the capacity of the channel for communication given access to side channels from a class of zero capacity "cloning" channels. This "clone assisted capacity" is equal to the unassisted capacity for channels that are degradable, which we use to find new upper
Irie, Hiroshi; Todt, Clemens; Kumada, Norio; Harada, Yuichi; Sugiyama, Hiroki; Akazaki, Tatsushi; Muraki, Koji
2016-10-01
We study coherent transport and bound state formation of Bogoliubov quasiparticles in a high-mobility I n0.75G a0.25As two-dimensional electron gas (2DEG) coupled to a superconducting Nb electrode by means of a quantum point contact (QPC) as a tunable single-mode probe. Below the superconducting critical temperature of Nb, the QPC shows a single-channel conductance greater than the conductance quantum 2 e2/h at zero bias, which indicates the presence of Andreev-reflected quasiparticles, time-reversed states of the injected electron, returning back through the QPC. The marked sensitivity of the conductance enhancement to voltage bias and perpendicular magnetic field suggests a mechanism analogous to reflectionless tunneling—a hallmark of phase-coherent transport, with the boundary of the 2DEG cavity playing the role of scatterers. When the QPC transmission is reduced to the tunneling regime, the differential conductance vs bias voltage probes the single-particle density of states in the proximity area. Measured conductance spectra show a double peak within the superconducting gap of Nb, demonstrating the formation of Andreev bound states in the 2DEG. Both of these results, obtained in the open and closed geometries, underpin the coherent nature of quasiparticles, i.e., phase-coherent Andreev reflection at the InGaAs/Nb interface and coherent propagation in the ballistic 2DEG.
Quantum states of neutral atoms bound in the magnetic field of a Kepler-guide
Institute of Scientific and Technical Information of China (English)
HE Ming; WANG Jin; ZHAN Ming-sheng
2003-01-01
The spectrum and the wave function of neutral atoms in the magnetic field of a Kepler-guide are presented by reducing a two-dimensional stationary Schrdinger equation to a one-dimensional hydrogen atom in Rydberg states. In addition, we set the scale for the atomic orbits and binding energy i n the quantum regime, and compare it with the outcome of the experiment. At the same time, we find that reducing the current and radius of the wire properly wil l increase the loading efficiency of the Kepler-guide.
First clear evidence of quantum chaos in the bound states of an atomic nucleus
Muñoz, L; Gómez, J M G; Heusler, A
2016-01-01
We study the spectral fluctuations of the $^{208}$Pb nucleus using the complete experimental spectrum of 151 states up to excitation energies of $6.20$ MeV recently identified at the Maier-Leibnitz-Laboratorium at Garching, Germany. For natural parity states the results are very close to the predictions of Random Matrix Theory (RMT) for the nearest-neighbor spacing distribution. A quantitative estimate of the agreement is given by the Brody parameter $\\omega$, which takes the value $\\omega=0$ for regular systems and $\\omega \\simeq 1$ for chaotic systems. We obtain $\\omega=0.85 \\pm 0.02$ which is, to our knowledge, the closest value to chaos ever observed in experimental bound states of nuclei. By contrast, the results for unnatural parity states are far from RMT behavior. We interpret these results as a consequence of the strength of the residual interaction in $^{208}$Pb, which, according to experimental data, is much stronger for natural than for unnatural parity states. In addition our results show that ch...
Ranade, K S; Alber, Gernot; Ranade, Kedar S.
2007-01-01
The concept of asymptotic correctability of Bell-diagonal quantum states is generalised to elementary quantum systems of higher dimensions. Based on these results basic properties of quantum state purification protocols are investigated which are capable of purifying tensor products of Bell-diagonal states and which are based on $B$-steps of the Gottesman-Lo-type with the subsequent application of a Calderbank-Shor-Steane quantum code. Consequences for maximum tolerable error rates of quantum cryptographic protocols are discussed.
Donor-bound electron states in a two-dimensional quantum ring under uniform magnetic field
Institute of Scientific and Technical Information of China (English)
Jia Bo-Yong; Yu Zhong-Yuan; Liu Yu-Min; Han Li-Hong; Yao Wen-Jie; Feng Hao; Ye Han
2011-01-01
The electron states in a two-dimensional GaAs/AlGaAs quantum ring are theoretically studied in effective mass approximation. On-centre donor impurity and uniform magnetic field perpendicular to the ring plane are taken into account. The energy spectrum with different angular momentum changes dramatically with the geometry of the ring.The donor impurity reduces the energies with an almost fixed value; however, the magnetic field alters energies in a more complex way. For example, energy levels under magnetic field will cross each other when increasing the inner radius and outer radius of the ring, leading to the fact that the arrangement of energy levels is distinct in certain geometry of the ring. Moreover, energy levels with negative angular momentum exhibit the non-monotonous dependence on the increasing magnetic field.
Proposed experiment to test the bounds of quantum correlations
Cabello, A
2004-01-01
The combination of quantum correlations appearing in the Clauser-Horne-Shimony-Holt inequality can give values between the classical bound, 2, and Cirel'son's bound, 2\\sqrt 2. However, for a given set of local observables, there are values in this range which no quantum state can attained. For a given parametrization of the local observables, we provide the analytical expression for the bounds of quantum correlations and describe how to experimentally trace it using a source of singlet states.
Hoyer, Paul
2016-01-01
Even a first approximation of bound states requires contributions of all powers in the coupling. This means that the concept of "lowest order bound state" needs to be defined. In these lectures I discuss the "Born" (no loop, lowest order in $\\hbar$) approximation. Born level states are bound by gauge fields which satisfy the classical field equations. As a check of the method, Positronium states of any momentum are determined as eigenstates of the QED Hamiltonian, quantized at equal time. Analogously, states bound by a strong external field $A^\\mu(\\xv)$ are found as eigenstates of the Dirac Hamiltonian. Their Fock states have dynamically created $e^+e^-$ pairs, whose distribution is determined by the Dirac wave function. The linear potential of $D=1+1$ dimensions confines electrons but repels positrons. As a result, the mass spectrum is continuous and the wave functions have features of both bound states and plane waves. The classical solutions of Gauss' law are explored for hadrons in QCD. A non-vanishing bo...
Quantum correlations and distinguishability of quantum states
Spehner, Dominique
2014-07-01
A survey of various concepts in quantum information is given, with a main emphasis on the distinguishability of quantum states and quantum correlations. Covered topics include generalized and least square measurements, state discrimination, quantum relative entropies, the Bures distance on the set of quantum states, the quantum Fisher information, the quantum Chernoff bound, bipartite entanglement, the quantum discord, and geometrical measures of quantum correlations. The article is intended both for physicists interested not only by collections of results but also by the mathematical methods justifying them, and for mathematicians looking for an up-to-date introductory course on these subjects, which are mainly developed in the physics literature.
Quantum few-body bound states of dipolar particles in a helical geometry
DEFF Research Database (Denmark)
Pedersen, Jakob Knorborg; Fedorov, Dmitri Vladimir; Jensen, Aksel Stenholm;
2016-01-01
We study a quantum mechanical system consisting of up to three identical dipoles confined to move along a helical shaped trap. The long-range interactions between particles confined to move in this one dimension leads to an interesting effective two-particle potential with an oscillating behavior...
Huard; Cox; Saminadayar; Arnoult; Tatarenko
2000-01-01
The dependence of the optical absorption spectrum of a semiconductor quantum well on two-dimensional electron concentration n(e) is studied using CdTe samples. The trion peak (X-) seen at low n(e) evolves smoothly into the Fermi edge singularity at high n(e). The exciton peak (X) moves off to high energy, weakens, and disappears. The X,X- splitting is linear in n(e) and closely equal to the Fermi energy plus the trion binding energy. For Cd0.998Mn0.002Te quantum wells in a magnetic field, the X,X- splitting reflects unequal Fermi energies for M = +/-1/2 electrons. The data are explained by Hawrylak's theory of the many-body optical response including spin effects.
Hsu, Chia Wei; Zhen, Bo; Stone, A. Douglas; Joannopoulos, John D.; Soljačić, Marin
2016-09-01
Bound states in the continuum (BICs) are waves that remain localized even though they coexist with a continuous spectrum of radiating waves that can carry energy away. Their very existence defies conventional wisdom. Although BICs were first proposed in quantum mechanics, they are a general wave phenomenon and have since been identified in electromagnetic waves, acoustic waves in air, water waves and elastic waves in solids. These states have been studied in a wide range of material systems, such as piezoelectric materials, dielectric photonic crystals, optical waveguides and fibres, quantum dots, graphene and topological insulators. In this Review, we describe recent developments in this field with an emphasis on the physical mechanisms that lead to BICs across seemingly very different materials and types of waves. We also discuss experimental realizations, existing applications and directions for future work.
Lower Bounds of Concurrence for Multipartite States
Zhu, Xue-Na; Fei, Shao-Ming
2012-01-01
We study the entanglement of multipartite quantum states. Some lower bounds of the multipartite concurrence are reviewed. We further present more effective lower bounds for detecting and qualifying entanglement, by establishing functional relations between the concurrence and the generalized partial transpositions of the multipartite systems.
Informationally complete quantum measurements & entanglement bounds
Flammia, Steven Thomas
2007-12-01
We define a class of measurements which we call pure-state informationally complete (PSI-complete) POVMs. These are measurements which can be used to reconstruct the pure state of a d-dimensional quantum system, but not necessarily a mixed state. We show that 2d measurement outcomes is necessary and sufficient for PSI-completeness. This demonstrates that the measurement complexity (as measured by the number of measurement outcomes) can achieve quadratic improvements when the system is confidently believed to be in a pure state. Next, we consider symmetric informationally complete POVMs (SIC-POVMs). SIC-POVMs are relevant for mixed state quantum tomography, but are not well understood. We prove a theorem related to the conjectured existence of SIC-POVMs showing the uniqueness (up to certain symmetries) of SIC-POVMs of a particular group-covariant type when the dimension of the Hilbert space is a prime number. In the second part of the dissertation, we consider a computational model that has access to only one pure qubit, along with n qubits in the totally mixed state. This model is thought to be capable of performing sonic computational tasks exponentially faster than any known classical algorithm. We show that circuits of this type generally lead to entangled states, but where the entanglement (as measured by the negativity) is bounded by a constant, independent of n, for all bipartite divisions. This suggests that the global nature of entanglement is a more important resource than the magnitude of the entanglement. We then consider multiply constrained bounds on entanglement measures based on convex constraint functions. We outline the general procedure, and then explicitly implement the program for the case of 4 x N quantum systems by bounding the entanglement of formation, the concurrence, and the tangle. Finally, we develop generalized bounds for quantum single-parameter estimation problems for which the coupling to the parameter is described by intrinsic multi
Directory of Open Access Journals (Sweden)
Suparmi
2014-12-01
Full Text Available The bound state solution of the Dirac equation for generalized PöschlTeller and trigonometric Pöschl-Teller non-central potentials was obtained using SUSY quantum mechanics and the idea of shape invariance potential. The approximate relativistic energy spectrum was expressed in the closed form. The radial and polar wave functions were obtained using raising and lowering of radial and polar operators. The orbital quantum numbers were found from the polar Dirac equation, which was solved using SUSY quantum mechanics and the idea of shape invariance.
Bound States in Boson Impurity Models
Shi, Tao; Wu, Ying-Hai; González-Tudela, A.; Cirac, J. I.
2016-04-01
The formation of bound states involving multiple particles underlies many interesting quantum physical phenomena, such as Efimov physics or superconductivity. In this work, we show the existence of an infinite number of such states for some boson impurity models. They describe free bosons coupled to an impurity and include some of the most representative models in quantum optics. We also propose a family of wave functions to describe the bound states and verify that it accurately characterizes all parameter regimes by comparing its predictions with exact numerical calculations for a one-dimensional tight-binding Hamiltonian. For that model, we also analyze the nature of the bound states by studying the scaling relations of physical quantities, such as the ground-state energy and localization length, and find a nonanalytical behavior as a function of the coupling strength. Finally, we discuss how to test our theoretical predictions in experimental platforms, such as photonic crystal structures and cold atoms in optical lattices.
Bounds on the quantum satisfibility threshold
Bravyi, Sergey; Russell, Alexander
2009-01-01
Quantum k-SAT is the problem of deciding whether there is a n-qubit state which is perpendicular to a set of vectors, each of which lies in the Hilbert space of k qubits. Equivalently, the problem is to decide whether a particular type of local Hamiltonian has a ground state with zero energy. We consider random quantum k-SAT formulas with n variables and m = \\alpha n clauses, and ask at what value of \\alpha these formulas cease to be satisfiable. We show that the threshold for random quantum 3-SAT is at most 3.594. For comparison, convincing arguments from statistical physics suggest that the classical 3-SAT threshold is \\alpha \\approx 4.267. For larger k, we show that the quantum threshold is a constant factor smaller than the classical one. Our bounds work by determining the generic rank of the satisfying subspace for certain gadgets, and then using the technique of differential equations to analyze various algorithms that partition the hypergraph into a collection of these gadgets. Our use of differential ...
Unbound states in quantum heterostructures
Directory of Open Access Journals (Sweden)
Ferreira R
2006-01-01
Full Text Available AbstractWe report in this review on the electronic continuum states of semiconductor Quantum Wells and Quantum Dots and highlight the decisive part played by the virtual bound states in the optical properties of these structures. The two particles continuum states of Quantum Dots control the decoherence of the excited electron – hole states. The part played by Auger scattering in Quantum Dots is also discussed.
Directory of Open Access Journals (Sweden)
Abdelmadjid MAIRECHE
2015-09-01
Full Text Available We obtain here the modified bound-states solutions for central fraction power singular potential (C.F.P.S. in noncommutative 3-dimensional non relativistic quantum mechanics (NC-3D NRQM. It has been observed that the commutative energy spectra was changed, and replaced degenerate new states, depending on four quantum numbers: j, l and sz=±1/2 corresponding to the two spins states of electron by (up and down and the deformed Hamiltonian formed by two new operators: the first describes the spin-orbit interaction , while the second obtained Hamiltonian describes the modified Zeeman effect (containing ordinary Zeeman effect in addition to the usual commutative Hamiltonian. We showed that the isotropic commutative Hamiltonian HCFPS will be in non commutative space anisotropic Hamiltonian HNC-CFPS.
Energy Technology Data Exchange (ETDEWEB)
Sturm, Sven
2012-09-06
This thesis describes the ultra-precise determination of the g-factor of the electron bound to hydrogenlike {sup 28}Si{sup 13+}. The experiment is based on the simultaneous determination of the cyclotron- and Larmor frequency of a single ion, which is stored in a triple Penning-trap setup. The continuous Stern-Gerlach effect is used to couple the spin of the bound electron to the motional frequencies of the ion via a magnetic bottle, which allows the non-destructive determination of the spin state. To this end, a highly sensitive, cryogenic detection system was developed, which allowed the direct, non-destructive detection of the eigenfrequencies with the required precision. The development of a novel, phase sensitive detection technique finally allowed the determination of the g-factor with a relative accuracy of 4 . 10{sup -11}, which was previously inconceivable. The comparison of the hereby determined value with the value predicted by quantumelectrodynamics (QED) allows the verification of the validity of this fundamental theory under the extreme conditions of the strong binding potential of a highly charged ion. The exact agreement of theory and experiment is an impressive demonstration of the exactness of QED. The experimental possibilities created in this work will allow in the near future not only further tests of theory, but also the determination of the mass of the electron with a precision that exceeds the current literature value by more than an order of magnitude.
Ionized Acceptor Bound Exciton States in Wurtzite GaN/AlxGa1-xN Cylindrical Quantum Dot
Institute of Scientific and Technical Information of China (English)
郑冬梅; 王宗篪
2012-01-01
Based on the framework of the effective-mass approximation, the ionized acceptor bound exciton （A- X） binding energy and the emission wavelength are investigated for a cylindrical wurtzite （WZ） GaN/A1x Ga1-xN quantum dot （QD） with finite potential barriers by means of a variational method. Numerical results show that the binding energy and the emission wavelength highly depend on the QD size, the position of the ionized acceptor and the Al composition x of the barrier material AIxGal-xN. The binding energy and the emission wavelength are larger when the acceptor is located in the vicinity of the left interface of the QD. In particular, the binding energy of （ A-, X） complex is insensitive to the dot height when the acceptor is located at the left boundary of the QD. The ionized acceptor bound exciton binding energy and the emission wavelength are both increased if Al composition x is increased.
Algorithmic complexity and entanglement of quantum states.
Mora, Caterina E; Briegel, Hans J
2005-11-11
We define the algorithmic complexity of a quantum state relative to a given precision parameter, and give upper bounds for various examples of states. We also establish a connection between the entanglement of a quantum state and its algorithmic complexity.
Quantum bounds for ordered searching and sorting
Hoyer, P; Shi, Y; Hoyer, Peter; Neerbek, Jan; Shi, Yaoyun
2001-01-01
We consider the quantum complexities of searching an ordered list and sorting an un-ordered list. For searching an ordered list of N elements, we prove a lower bound of \\frac{1}{\\pi}(\\ln(N)-1) on the number of oracle queries that access the list elements. This improves the previously best lower bound of ({1/12}\\log_2(N) - O(1)) due to Ambainis. For sorting N numbers, we prove a lower bound of \\frac{N}{2\\pi}(\\ln(N)-1) on the number of binary comparisons. The previously best lower bound is \\Omega(N). Our proofs are based on a weighted all-pairs inner product argument, and our results generalize to bounded error quantum algorithms. Both results are proven in the so-called quantum black box model, a quantum analogue of classical decision trees. In addition to our lower bound results, we give an exact quantum algorithm for ordered searching using (\\log_3(N) + O(1)) queries, which is roughly 0.631 \\log_2(N). Although our algorithm is worse than that of Farhi, Goldstone, Gutmann and Sipser, which makes 0.526 \\log_2(...
Institute of Scientific and Technical Information of China (English)
ZHANG Li; XIE Hong-Jing
2003-01-01
Within the framework of the compact density matrix approach, the third-harmonic generation (THG) in an electric-field-biased semi-parabolic quantum well (QW) has been deduced and investigated. Via variant of displacement harmonic oscillation, the exact electronic states in the semi-parabolic QW with an applied electric field have also been obtained and discussed. Numerical results on typical GaAs material reveal that, electric fields and confined potential frequency of semi-parabolic Q W have obvious influences on the energy levels of electronic states and the THG in the semi-parabolic Q W systems.
Institute of Scientific and Technical Information of China (English)
ZHANGLi; XIEHong-Jing
2003-01-01
Within the framework of the compact density matrix approach, the third-harmonic generation (THG) in an electric-field-biased semi-parabolic quantum well (QW) has been deduced and investigated. Via variant of displacement harmonic oscillation, the exact electronic states in the semi-parabolic QW with an applied electric field have also been obtained and discussed. Numerical results on typical GaAs material reveal that, electric fields and confined potential frequency of semi-parabolic QW have obvious influences on the energy levels of electronic states and the THG in the semi-parabolic QW systems.
Bound anionic states of adenine
Energy Technology Data Exchange (ETDEWEB)
Haranczyk, Maciej; Gutowski, Maciej S; Li, Xiang; Bowen, Kit H
2007-03-20
Anionic states of nucleic acid bases are involved in DNA damage by low-energy electrons and in charge transfer through DNA. Previous gas phase studies of free, unsolvated nucleic acid base parent anions probed only dipole-bound states, which are not present in condensed phase environments, but did not observe valence anionic states, which for purine bases, are thought to be adiabatically unbound. Contrary to this expectation, we have demonstrated that some thus far ignored tautomers of adenine, which result from enamine-imine transformations, support valence anionic states with electron vertical detachment energies as large as 2.2 eV, and at least one of these anionic tautomers is adiabatically bound. Moreover, we predict that the new anionic tautomers should also dominate in solutions and should be characterized by larger values of electron vertical detachment energy than the canonical valence anion. All of the new-found anionic tautomers might be formed in the course of dissociative electron attachment followed by a hydrogen atom attachment to a carbon atom, and they might affect the structure and properties of DNA and RNA exposed to low-energy electrons. The discovery of these valence anionic states of adenine was facilitated by the development of: (i) a new experimental method for preparing parent anions of nucleic acid bases for photoelectron experiments, and (ii) a new combinatorial/ quantum chemical approach for identification of the most stable tautomers of organic molecules. The computational portion of this work was supported by the: (i) Polish State Committee for Scientific Research (KBN) Grants: DS/8000-4-0140-7 (M.G.) and N204 127 31/2963 (M.H.), (ii) European Social Funds (EFS) ZPORR/2.22/II/2.6/ARP/U/2/05 (M.H.), and (iii) US DOE Office of Biological and Environmental Research, Low Dose Radiation Research Program (M.G.). M.H. holds the Foundation for Polish Science (FNP) award for young scientists. The calculations were performed at the Academic
Probing light polarization with the quantum Chernoff bound
Ghiu, Iulia; Marian, Paulina; Marian, Tudor A
2010-01-01
We recall the framework of a consistent quantum description of polarization of light. Accordingly, the degree of polarization of a two-mode state $\\hat \\rho$ of the quantum radiation field can be defined as a distance of a related state ${\\hat \\rho}_b$ to the convex set of all SU(2) invariant two-mode states. We explore a distance-type polarization measure in terms of the quantum Chernoff bound and derive its explicit expression. A comparison between the Chernoff and Bures degrees of polarization leads to interesting conclusions for some particular states chosen as illustrative examples.
Family of nonlocal bound entangled states
Yu, Sixia; Oh, C. H.
2017-03-01
Bound entanglement, being entangled yet not distillable, is essential to our understanding of the relations between nonlocality and entanglement besides its applications in certain quantum information tasks. Recently, bound entangled states that violate a Bell inequality have been constructed for a two-qutrit system, disproving a conjecture by Peres that bound entanglement is local. Here we construct this kind of nonlocal bound entangled state for all finite dimensions larger than two, making possible their experimental demonstration in most general systems. We propose a Bell inequality, based on a Hardy-type argument for nonlocality, and a steering inequality to identify their nonlocality. We also provide a family of entanglement witnesses to detect their entanglement beyond the Bell inequality and the steering inequality.
Holographic bound in covariant loop quantum gravity
Tamaki, Takashi
2016-01-01
We investigate puncture statistics based on the covariant area spectrum in loop quantum gravity. First, we consider Maxwell-Boltzmann statistics with a Gibbs factor for punctures. We establish formulae which relate physical quantities such as horizon area to the parameter characterizing holographic degrees of freedom. We also perform numerical calculations and obtain consistency with these formulae. These results tell us that the holographic bound is satisfied in the large area limit and correction term of the entropy-area law can be proportional to the logarithm of the horizon area. Second, we also consider Bose-Einstein statistics and show that the above formulae are also useful in this case. By applying the formulae, we can understand intrinsic features of Bose-Einstein condensate which corresponds to the case when the horizon area almost consists of punctures in the ground state. When this phenomena occurs, the area is approximately constant against the parameter characterizing the temperature. When this ...
Quantum discord bounds the amount of distributed entanglement.
Chuan, T K; Maillard, J; Modi, K; Paterek, T; Paternostro, M; Piani, M
2012-08-17
The ability to distribute quantum entanglement is a prerequisite for many fundamental tests of quantum theory and numerous quantum information protocols. Two distant parties can increase the amount of entanglement between them by means of quantum communication encoded in a carrier that is sent from one party to the other. Intriguingly, entanglement can be increased even when the exchanged carrier is not entangled with the parties. However, in light of the defining property of entanglement stating that it cannot increase under classical communication, the carrier must be quantum. Here we show that, in general, the increase of relative entropy of entanglement between two remote parties is bounded by the amount of nonclassical correlations of the carrier with the parties as quantified by the relative entropy of discord. We study implications of this bound, provide new examples of entanglement distribution via unentangled states, and put further limits on this phenomenon.
Ikhdair, Sameer M
2011-01-01
We obtain the exact energy spectra and corresponding wave functions of the radial Schr\\"odinger equation (RSE) for any (n,l) state in the presence of a combination of psudoharmonic, Coulomb and linear confining potential terms using an exact analytical iteration method. The interaction potential model under consideration is Cornell-modified plus harmonic (CMpH) type which is a correction form to the harmonic, Coulomb and linear confining potential terms. It is used to investigates the energy of electron in spherical quantum dot and the heavy quarkonia (QQ-onia).
Classical and quantum partition bound and detector inefficiency
Laplante, S; Roland, J
2012-01-01
In communication complexity, two players each have an input and they wish to compute some function of the joint inputs. This has been the object of much study and a wide variety of lower bound methods have been introduced to address the problem of showing lower bounds on communication. Recently, Jain and Klauck introduced the partition bound, which subsumes many of the known methods, in particular factorization norm, discrepancy, and the rectangle (corruption) bound. Physicists have considered a closely related scenario where two players share a predefined entangled state. Each is given a measurement as input, which they perform on their share of the system. The outcomes of the measurements follow a distribution which is predicted by quantum mechanics. In an experimental setting, Bell inequalities are used to distinguish truly quantum from classical behavior. We present a new lower bound technique based on the notion of detector inefficiency (where some runs are discarded by either of the players) for the ext...
Eta nuclear bound states revisited
Friedman, E; Mareš, J
2013-01-01
The strong energy dependence of the s-wave eta-N scattering amplitude at and below threshold, as evident in coupled-channels K-matrix fits and chiral models that incorporate the S11 N*(1535) resonance, is included self consistently in eta-nuclear bound state calculations. This approach, applied recently in calculations of kaonic atoms and Kbar-nuclear bound states, is found to impose stronger constraints than ever on the onset of eta-nuclear binding, with a minimum value of Re a_{eta N} approximately 0.9 fm required to accommodate an eta-4He bound state. Binding energies and widths of eta-nuclear states are calculated within several underlying eta-N models for nuclei across the periodic table, including eta-25Mg for which some evidence was proposed in a recent COSY experiment.
Quantum Operations as Quantum States
Arrighi, P; Arrighi, Pablo; Patricot, Christophe
2004-01-01
In this article we formalize the correspondence between quantum states and quantum operations, and harness its consequences. This correspondence was already implicit in Choi's proof of the operator sum representation of Completely Positive-preserving linear maps; we go further and show that all of the important theorems concerning quantum operations can be derived as simple corollaries of those concerning quantum states. As we do so the discussion first provides an elegant and original review of the main features of quantum operations. Next (in the second half of the paper) we search for more results to arise from the correspondence. Thus we propose a factorizability condition and an extremal trace-preservedness condition for quantum operations, give two novel Schmidt-type decompositions of bipartite pure states and two interesting composition laws for which the set of quantum operations and quantum states remain stable. The latter enables us to define a group structure upon the set of totally entangled state...
Performance bound for quantum absorption refrigerators
Correa, Luis A.; Palao, José P.; Adesso, Gerardo; Alonso, Daniel
2013-04-01
An implementation of quantum absorption chillers with three qubits has been recently proposed that is ideally able to reach the Carnot performance regime. Here we study the working efficiency of such self-contained refrigerators, adopting a consistent treatment of dissipation effects. We demonstrate that the coefficient of performance at maximum cooling power is upper bounded by 3/4 of the Carnot performance. The result is independent of the details of the system and the equilibrium temperatures of the external baths. We provide design prescriptions that saturate the bound in the limit of a large difference between the operating temperatures. Our study suggests that delocalized dissipation, which must be taken into account for a proper modeling of the machine-baths interaction, is a fundamental source of irreversibility which prevents the refrigerator from approaching the Carnot performance arbitrarily closely in practice. The potential role of quantum correlations in the operation of these machines is also investigated.
Ultrarelativistic bound states in the shallow spherical well
Zaba, Mariusz
2016-01-01
We determine approximate eigenvalues and eigenfunctions shapes for bound states in the $3D$ shallow spherical ultrarelativistic well. Existence thresholds for the ground state and first excited states are identified, both in the purely radial and orbitally nontrivial cases. This contributes to an understanding of how energy may be stored or accumulated in the form of bound states of Schr\\"odinger - type quantum systems that are devoid of any mass.
Quantum Networks for Generating Arbitrary Quantum States
Kaye, Phillip; Mosca, Michele
2004-01-01
Quantum protocols often require the generation of specific quantum states. We describe a quantum algorithm for generating any prescribed quantum state. For an important subclass of states, including pure symmetric states, this algorithm is efficient.
Entanglement bounds for squeezed non-symmetric thermal state
Jiang, L
2003-01-01
I study the three parameters bipartite quantum Gaussian state called squeezed asymmetric thermal state, calculate Gaussian entanglement of formation analytically and the up bound of relative entropy of entanglement, compare them with coherent information of the state. Based on the result obtained, it is anticipated that hashing inequality is not violated for squeezed non-symmetric thermal state.
Work extraction from quantum systems with bounded fluctuations in work
Richens, Jonathan G.; Masanes, Lluis
2016-11-01
In the standard framework of thermodynamics, work is a random variable whose average is bounded by the change in free energy of the system. This average work is calculated without regard for the size of its fluctuations. Here we show that for some processes, such as reversible cooling, the fluctuations in work diverge. Realistic thermal machines may be unable to cope with arbitrarily large fluctuations. Hence, it is important to understand how thermodynamic efficiency rates are modified by bounding fluctuations. We quantify the work content and work of formation of arbitrary finite dimensional quantum states when the fluctuations in work are bounded by a given amount c. By varying c we interpolate between the standard and minimum free energies. We derive fundamental trade-offs between the magnitude of work and its fluctuations. As one application of these results, we derive the corrected Carnot efficiency of a qubit heat engine with bounded fluctuations.
Proof of a Quantum Bousso Bound
Bousso, Raphael; Fisher, Zachary; Maldacena, Juan
2014-01-01
We prove the generalized Covariant Entropy Bound, $\\Delta S\\leq (A-A')/4G\\hbar$, for light-sheets with initial area $A$ and final area $A'$. The entropy $\\Delta S$ is defined as a difference of von Neumann entropies of an arbitrary state and the vacuum, with both states restricted to the light-sheet under consideration. The proof applies to free fields, in the limit where gravitational backreaction is small. We do not assume the null energy condition. In regions where it is violated, we find that the bound is protected by the defining property of light-sheets: that their null generators are nowhere expanding.
Shiga, Motoyuki; Takayanagi, Toshiyuki
2003-09-01
The equilibrium structure of the negatively charged water dimer (H 2O) 2- has been studied using the path-integral molecular dynamics simulation. All the atomic motions as well as the excess electron were treated quantum mechanically, employing a semi-empirical model combining a water-water interatomic potential with an electron-water pseudopotential. It is demonstrated that the molecular structure of (H 2O) 2- is more flexible than that of (H 2O) 2; both the donor switching and donor-acceptor interchange can more effectively occur in (H 2O) 2- than in (H 2O) 2. We conclude that this floppy character is a result of the breakdown of the adiabatic Born-Oppenheimer picture.
Bound entangled states invariant under Ux
Institute of Scientific and Technical Information of China (English)
Wang Zhen; Wang Zhi-Xi
2008-01-01
This paper obtains an entangled condition for isotropic-like states by using an atomic map. It constructs a class of bound entangled states from the entangled condition and shows that the partial transposition of the state from the constructed bound entangled class is an edge bound entangled state by using range criterion.
Boosting equal time bound states
Dietrich, Dennis D; Jarvinen, Matti
2012-01-01
We present an explicit and exact boost of a relativistic bound state defined at equal time of the constituents in the Born approximation (lowest order in hbar). To this end, we construct the Poincar\\'e generators of QED and QCD in D=1+1 dimensions, using Gauss' law to express A^0 in terms of the fermion fields in A^1=0 gauge. We determine the fermion-antifermion bound states in the Born approximation as eigenstates of the time and space translation generators P^0 and P^1. The boost operator is combined with a gauge transformation so as to maintain the gauge condition A^1=0 in the new frame. We verify that the boosted state remains an eigenstate of P^0 and P^1 with appropriately transformed eigenvalues and determine the transformation law of the equal-time, relativistic wave function. The shape of the wave function is independent of the CM momentum when expressed in terms of a variable, which is quadratically related to the distance x between the fermions. As a consequence, the Lorentz contraction of the wave ...
Classical Physics and the Bounds of Quantum Correlations.
Frustaglia, Diego; Baltanás, José P; Velázquez-Ahumada, María C; Fernández-Prieto, Armando; Lujambio, Aintzane; Losada, Vicente; Freire, Manuel J; Cabello, Adán
2016-06-24
A unifying principle explaining the numerical bounds of quantum correlations remains elusive, despite the efforts devoted to identifying it. Here, we show that these bounds are indeed not exclusive to quantum theory: for any abstract correlation scenario with compatible measurements, models based on classical waves produce probability distributions indistinguishable from those of quantum theory and, therefore, share the same bounds. We demonstrate this finding by implementing classical microwaves that propagate along meter-size transmission-line circuits and reproduce the probabilities of three emblematic quantum experiments. Our results show that the "quantum" bounds would also occur in a classical universe without quanta. The implications of this observation are discussed.
Bound polarons in quantum dot quantum well structures
Institute of Scientific and Technical Information of China (English)
Xing Yan; Wang Zhi-Ping; Wang Xu
2009-01-01
The problem of bound polarons in quantum dot quantum well (QDQW) structures is studied theoretically. The eigenfrequencies of bulk longitudinal optical (LO) and surface optical (SO) modes are derived in the framework of the diclectric continuum approximation. The electron-phonon interaction Hamiltonian for QDQW structures is obtained and the exchange interaction between impurity and LO-phonons is discussed. The binding energy and the trapping energy of the bound polaron in CdS/HgS QDQW structures are calculated. The numcrical results reveal that there exist three branches of eigenfrequcncies of surface optical vibration in the CdS/HgS QDQW structure. It is also shown that the binding energy and the trapping energy increase as the inner radius of the QDQW structure decreases, with the outer radius fixed, and the trapping energy takes a major part of the binding energy when the inner radius is very small.
Asymmetric dark matter bound state
Bi, Xiao-Jun; Kang, Zhaofeng; Ko, P.; Li, Jinmian; Li, Tianjun
2017-02-01
We propose an interesting framework for asymmetric scalar dark matter (ADM), which has novel collider phenomenology in terms of an unstable ADM bound state (ADMonium) produced via Higgs portals. ADMonium is a natural consequence of the basic features of ADM: the (complex scalar) ADM is charged under a dark local U (1 )d symmetry which is broken at a low scale and provides a light gauge boson X . The dark gauge coupling is strong and then ADM can annihilate away into X -pair effectively. Therefore, the ADM can form a bound state due to its large self-interaction via X mediation. To explore the collider signature of ADMonium, we propose that ADM has a two-Higgs doublet portal. The ADMonium can have a sizable mixing with the heavier Higgs boson, which admits a large cross section of ADMonium production associated with b b ¯. The resulting signature at the LHC depends on the decays of X . In this paper we consider a case of particular interest: p p →b b ¯ +ADMonium followed by ADMonium→2 X →2 e+e- where the electrons are identified as (un)converted photons. It may provide a competitive explanation to heavy di-photon resonance searches at the LHC.
Boson bound states in the -Fermi–Pasta–Ulam model
Indian Academy of Sciences (India)
Xin-Guang Hu; Ju Xiang; Zheng Jiao; Yang Liu; Guo-Qiu Xie; Ke Hu
2013-11-01
The bound states of four bosons in the quantum -Fermi–Pasta–Ulam model are investigated and some interesting results are presented using the number conserving approximation combined with the number state method. We find that the relative magnitude of anharmonic coefficient has a significant effect on forming localized energy in the model, and the wave number plays an important role in forming different bound states. The signature of the quantum breather is also set up by the square of the amplitudes of the corresponding eigenvectors in real space.
Ultimate Precision Bound of Quantum and Subwavelength Imaging
Lupo, Cosmo; Pirandola, Stefano
2016-11-01
We determine the ultimate potential of quantum imaging for boosting the resolution of a far-field, diffraction-limited, linear imaging device within the paraxial approximation. First, we show that the problem of estimating the separation between two pointlike sources is equivalent to the estimation of the loss parameters of two lossy bosonic channels, i.e., the transmissivities of two beam splitters. Using this representation, we establish the ultimate precision bound for resolving two pointlike sources in an arbitrary quantum state, with a simple formula for the specific case of two thermal sources. We find that the precision bound scales with the number of collected photons according to the standard quantum limit. Then, we determine the sources whose separation can be estimated optimally, finding that quantum-correlated sources (entangled or discordant) can be superresolved at the sub-Rayleigh scale. Our results apply to a variety of imaging setups, from astronomical observation to microscopy, exploiting quantum detection as well as source engineering.
Backward Evolving Quantum States
Vaidman, L
2006-01-01
The basic concept of the two-state vector formalism, which is the time symmetric approach to quantum mechanics, is the backward evolving quantum state. However, due to the time asymmetry of the memory's arrow of time, the possible ways to manipulate a backward evolving quantum state differ from those for a standard, forward evolving quantum state. The similarities and the differences between forward and backward evolving quantum states regarding the no-cloning theorem, nonlocal measurements, and teleportation are discussed. The results are relevant not only in the framework of the two-state vector formalism, but also in the framework of retrodictive quantum theory.
Two-vibron bound states in the β-Fermi-Pasta-Ulam model
Institute of Scientific and Technical Information of China (English)
Hu Xin-Guang; Tang Yi
2008-01-01
This paper studies the two-vibron bound states in the β-Fermi-Pasta-Ulam model by means of the number conserving approximation combined with the number state method.The results indicate that on-site,adjacent-site and mixed two-vibron bound states may exist in the model.Specially,wave number has a significant effect on such bound states,which may be considered as the quantum effects of the localized states in quantum systems.
Bounds on quantum entanglement from Random Matrix Theory
Bandyopadhyay, J N; Bandyopadhyay, Jayendra N.; Lakshminarayan, Arul
2002-01-01
Recent results [A. Lakshminarayan, Phys. Rev. E, vol.64, Page no. 036207 (2001)] indicate that it is not easy to dynamically create maximally entangled states. Chaos can lead to substantial entropy production thereby maximizing dynamical entanglement, which still falls short of maximality. We show that this dynamical bound is universal and depends only on the dimensions of the Hilbert spaces involved. This entails pointing out the universal distribution of the eigenvalues of the reduced density matrices that one can expect from a Random Matrix Theory (RMT) modeling of composite quantum chaotic systems. This distribution provides a statistical upper bound for the entanglement of formation of arbitrary time evolving and stationary states. We substantiate these conclusions with the help of a quantized chaotic coupled kicked top model.
Bengtsson, Ingemar; Zyczkowski, Karol
2007-12-01
Preface; 1. Convexity, colours and statistics; 2. Geometry of probability distributions; 3. Much ado about spheres; 4. Complex projective spaces; 5. Outline of quantum mechanics; 6. Coherent states and group actions; 7. The stellar representation; 8. The space of density matrices; 9. Purification of mixed quantum states; 10. Quantum operations; 11. Duality: maps versus states; 12. Density matrices and entropies; 13. Distinguishability measures; 14. Monotone metrics and measures; 15. Quantum entanglement; Epilogue; Appendices; References; Index.
Instanton bound states in ABJM theory
Energy Technology Data Exchange (ETDEWEB)
Hatsuda, Yasuyuki [DESY Hamburg (Germany). Theory Group; Tokyo Institute of Technology (Japan). Dept. of Physics; Moriyama, Sanefumi [Nagoya Univ. (Japan). Kobayashi Maskawa Inst. and Graduate School of Mathematics; Okuyama, Kazumi [Shinshu Univ., Matsumoto, Nagano (Japan). Dept. of Physics
2013-06-15
The partition function of the ABJM theory receives non-perturbative corrections due to instanton effects. We study these non-perturbative corrections, including bound states of worldsheet instantons and membrane instantons, in the Fermi-gas approach. We require that the total non-perturbative correction should be always finite for arbitrary Chern-Simons level. This finiteness is realized quite non-trivially because each bound state contribution naively diverges at some levels. The poles of each contribution should be canceled out in total. We use this pole cancellation mechanism to find unknown bound state corrections from known ones. We conjecture a general expression of the bound state contribution. Summing up all the bound state contributions, we find that the effect of bound states is simply incorporated into the worldsheet instanton correction by a redefinition of the chemical potential in the Fermi-gas system. Analytic expressions of the 3- and 4-membrane instanton corrections are also proposed.
Weiss-Weinstein Family of Error Bounds for Quantum Parameter Estimation
Lu, Xiao-Ming
2015-01-01
To approach the fundamental limits on the estimation precision for random parameters in quantum systems, we propose a quantum version of the Weiss-Weinstein family of lower bounds on estimation errors. The quantum Weiss-Weinstein bounds (QWWB) include the popular quantum Cram\\'er-Rao bound (QCRB) as a special case, and do not require the differentiability of prior distributions and conditional quantum states as the QCRB does; thus, the QWWB is a superior alternative for the QCRB. We show that the QWWB well captures the insurmountable error caused by the ambiguity of the phase in quantum states, which cannot be revealed by the QCRB. Furthermore, we use the QWWB to expose the possible shortcomings of the QCRB when the number of independent and identically distributed systems is not sufficiently large.
Energy Technology Data Exchange (ETDEWEB)
Fendel, P.
2005-06-01
An optical measurement of the hyperfine splitting of the 2s state in deuterium performed for the first time and the description of the arrangement for the measurement of the 1s-3s frequency in hydrogen by excitation with a frequency combexpect the reader of this thesis. Both experiments have the goal to test the bound-state quantum electrodynamics (QED) with high precision. The measurement of the hyperfine splitting serves thereby for the improvement of the accuracy of the so called D{sub 21}=8E{sub HFS}(2s)-E{sub HFS}(1s) difference. Because D{sub 21} is far-reachingly independent on the nuclear structure in spite of not accurately known proton charge radii QED can be tested on a level of 10{sup -7}. In the framework of the thesis present here the error of this quantity was reduced by a factor of three. The result for the 2s hyperfine splitting is: f{sup D}{sub HFS}=40924454(7) Hz. By a new kind of the data acquisition furthermore many systematic errors, especially the nonlinear drift of the reference resonator, could be reduced in comparison to a similar measurement on hydrogen. The second part of the thesis describes the efforts which were and will be taken in order to test QED by means of their perdiction of the 1s Lamb shift. For this the frequency of the 1s-3s transition in hydrogen shall be measured absolutely for the first time. A further novum is that for this a frequency-quadrupled mode-coupled laser shall be come into operation. Especially the construction and the stabilization of a ps laser, the construction of two frequency-doubling stages, the arrangement for the measurement of the absolute frequency of the spectroscopy laser, the alteration of the existing 1s-2s vacuum system, and the development of the measurement software is described. Additionally in this thesis the theory of the two-photon frequency-comb spectroscopy is further developed. Concrete expressions for the expected line shape and the influence of the chirp on the excitation rate are
Structures of the Energy Levels of the Bound States in a Quantum Dot Quantum Well%量子点量子阱中束缚态的能级结构
Institute of Scientific and Technical Information of China (English)
张立; 谢洪鲸; 陈传誉; 龚映清
2003-01-01
Under the effective mass approximation, the energy levels for the bound states of electron andhole in a quantum dot quantum well (QDQW) system are investigated. Numeral calculations on CdS/HgSand ZnS/CdSe QDQW are performed. Results reveal that the curves of the dependence of the eigen-energyon the size of the QDQW have some yielding points, which is obviously different from that in homogenousquantum dot, and the intervals of energy levels for electronic states in CdS/HgS QDQW have maximum atsome certain quantum numbers n, while those for hole states in ZnS/CdSe QDQW increase monotonously,it is due to the difference of the ratios of the effective mass of the materials synthesized the QDQW.%在有效质量近似下,考察了一个特殊量子点量子阱体系中的电子与空穴束缚态能级结构,以CdS/HgS和ZnS/CdSe构成的量子点量子阱为例进行了数值计算.结果显示,束缚态的本征能量对量子点量子阱的尺寸依赖曲线存在一些拐点,这一结果与均匀量子点体系明显不同;对某个固定的量子点量子阱结构,随量子数n的增加,CdS/HgS量子点量子阱体系中的束缚电子态的能级间隔不是单调增加的,在某些量子数n处存在峰值,而ZnS/CdSe量子点量子阱体系中的空穴束缚态的能级间隔则是单调增加的,这是由构成量子点量子阱的材料的有效质量比率不同造成的.
Minimum-Time Quantum Transport with Bounded Trap Velocity
Stefanatos, Dionisis
2011-01-01
We formulate the problem of efficient transport of a quantum particle trapped in a harmonic potential which can move with a bounded velocity, as a minimum-time problem on a linear system with bounded input. We completely solve the corresponding optimal control problem and obtain an interesting bang-bang solution. These results are expected to find applications in quantum information processing, where quantum transport between the storage and processing units of a quantum computer is an essential step. They can also be extended to the efficient transport of Bose-Einstein condensates, where the ability to control them is crucial for their potential use as interferometric sensors.
Tightening the entropic uncertainty bound in the presence of quantum memory
Adabi, F.; Salimi, S.; Haseli, S.
2016-06-01
The uncertainty principle is a fundamental principle in quantum physics. It implies that the measurement outcomes of two incompatible observables cannot be predicted simultaneously. In quantum information theory, this principle can be expressed in terms of entropic measures. M. Berta et al. [Nat. Phys. 6, 659 (2010), 10.1038/nphys1734] have indicated that uncertainty bound can be altered by considering a particle as a quantum memory correlating with the primary particle. In this article, we obtain a lower bound for entropic uncertainty in the presence of a quantum memory by adding an additional term depending on the Holevo quantity and mutual information. We conclude that our lower bound will be tightened with respect to that of Berta et al. when the accessible information about measurements outcomes is less than the mutual information about the joint state. Some examples have been investigated for which our lower bound is tighter than Berta et al.'s lower bound. Using our lower bound, a lower bound for the entanglement of formation of bipartite quantum states has been obtained, as well as an upper bound for the regularized distillable common randomness.
Reconstructing quantum states efficiently
Cramer, M; Plenio, M. B.
2010-01-01
Quantum state tomography, the ability to deduce the density matrix of a quantum system from measured data, is of fundamental importance for the verification of present and future quantum devices. It has been realized in systems with few components but for larger systems it becomes rapidly infeasible because the number of quantum measurements and computational resources required to process them grow exponentially in the system size. Here we show that we can gain an exponential advantage over d...
Centrifugal quantum states of neutrons
Nesvizhevsky, V. V.; Petukhov, A. K.; Protasov, K. V.; Voronin, A. Yu.
2008-09-01
We propose a method for observation of the quasistationary states of neutrons localized near a curved mirror surface. The bounding effective well is formed by the centrifugal potential and the mirror Fermi potential. This phenomenon is an example of an exactly solvable “quantum bouncer” problem that can be studied experimentally. It could provide a promising tool for studying fundamental neutron-matter interactions, as well as quantum neutron optics and surface physics effects. We develop a formalism that describes quantitatively the neutron motion near the mirror surface. The effects of mirror roughness are taken into account.
On the reflection of magnon bound states
MacKay, Niall
2010-01-01
We investigate the reflection of two-particle bound states of a free open string in the light-cone AdS_5 x S^5 string sigma model, for large angular momentum J=J_56 and ending on a D7 brane which wraps the entire AdS_5 and a maximal S^3 of S^5. We use the superspace formalism to analyse fundamental and two-particle bound states in the cases of supersymmetry-preserving and broken-supersymmetry boundaries. We find the boundary S-matrices corresponding to bound states both in the bulk and on the boundary.
Quantum Gravity Mathematical Models and Experimental Bounds
Fauser, Bertfried; Zeidler, Eberhard
2007-01-01
The construction of a quantum theory of gravity is the most fundamental challenge confronting contemporary theoretical physics. The different physical ideas which evolved while developing a theory of quantum gravity require highly advanced mathematical methods. This book presents different mathematical approaches to formulate a theory of quantum gravity. It represents a carefully selected cross-section of lively discussions about the issue of quantum gravity which took place at the second workshop "Mathematical and Physical Aspects of Quantum Gravity" in Blaubeuren, Germany. This collection covers in a unique way aspects of various competing approaches. A unique feature of the book is the presentation of different approaches to quantum gravity making comparison feasible. This feature is supported by an extensive index. The book is mainly addressed to mathematicians and physicists who are interested in questions related to mathematical physics. It allows the reader to obtain a broad and up-to-date overview on ...
Divisible quantum dynamics satisfies temporal Tsirelson’s bound
Le, Thao; Pollock, Felix A.; Paterek, Tomasz; Paternostro, Mauro; Modi, Kavan
2017-02-01
We give strong evidence that divisibility of qubit quantum processes implies temporal Tsirelson’s bound. We also give strong evidence that the classical bound of the temporal Bell’s inequality holds for dynamics that can be described by entanglement-breaking channels—a more general class of dynamics than that allowed by classical physics.
Furusawa, Akira
2015-01-01
This book explains what quantum states of light look like. Of special interest, a single photon state is explained by using a wave picture, showing that it corresponds to the complementarity of a quantum. Also explained is how light waves are created by photons, again corresponding to the complementarity of a quantum. The author shows how an optical wave is created by superposition of a "vacuum" and a single photon as a typical example. Moreover, squeezed states of light are explained as "longitudinal" waves of light and Schrödinger's cat states as macroscopic superposition states.
Cryptography in the Bounded Quantum-Storage Model
DEFF Research Database (Denmark)
Damgård, Ivan Bjerre; Serge, Fehr; Schaffner, Christian;
2008-01-01
We initiate the study of two-party cryptographic primitives with unconditional security, assuming that the adversary's quantum memory is of bounded size. We show that oblivious transfer and bit commitment can be implemented in this model using protocols where honest parties need no quantum memory...
Cryptography In The Bounded Quantum-Storage Model
DEFF Research Database (Denmark)
Damgård, Ivan Bjerre; Salvail, Louis; Schaffner, Christian;
2005-01-01
We initiate the study of two-party cryptographic primitives with unconditional security, assuming that the adversary's quantum memory is of bounded size. We show that oblivious transfer and bit commitment can be implemented in this model using protocols where honest parties need no quantum memory...
Investigating Quantum Modulation States
2016-03-01
3. DATES COVERED (From - To) OCT 2012 – SEP 2015 4. TITLE AND SUBTITLE INVESTIGATING QUANTUM MODULATION STATES 5a. CONTRACT NUMBER IN-HOUSE 5b...Coherent states are the most classical of quantum states. Generation and detection of their polarization and phase modulations are well...stream cipher maps message bits onto random blocks of bits producing modulated states that are intrinsically noisy. The ciphertext so generated is
Irreversibility for all bound entangled states
Yang, D; Horodecki, R; Synak-Radtke, B; Yang, Dong; Horodecki, Michal; Horodecki, Ryszard; Synak-Radtke, Barbara
2005-01-01
We derive a new inequality for entanglement for a mixed four-partite state. Employing this inequality, we present a one-shot lower bound for entanglement cost and prove that entanglement cost is strictly larger than zero for any entangled state. We demonstrate that irreversibility occurs in the process of formation for all non-distillable entangled states. In this way we solve a long standing problem, of how "real" is entanglement of bound entangled states. Using the new inequality we also prove impossibility of local-cloning and local-deleting of a known entangled state.
Winter, Andreas
2016-10-01
We present a bouquet of continuity bounds for quantum entropies, falling broadly into two classes: first, a tight analysis of the Alicki-Fannes continuity bounds for the conditional von Neumann entropy, reaching almost the best possible form that depends only on the system dimension and the trace distance of the states. Almost the same proof can be used to derive similar continuity bounds for the relative entropy distance from a convex set of states or positive operators. As applications, we give new proofs, with tighter bounds, of the asymptotic continuity of the relative entropy of entanglement, E R , and its regularization {E_R^{∞}}, as well as of the entanglement of formation, E F . Using a novel "quantum coupling" of density operators, which may be of independent interest, we extend the latter to an asymptotic continuity bound for the regularized entanglement of formation, aka entanglement cost, {E_C=E_F^{∞}}. Second, we derive analogous continuity bounds for the von Neumann entropy and conditional entropy in infinite dimensional systems under an energy constraint, most importantly systems of multiple quantum harmonic oscillators. While without an energy bound the entropy is discontinuous, it is well-known to be continuous on states of bounded energy. However, a quantitative statement to that effect seems not to have been known. Here, under some regularity assumptions on the Hamiltonian, we find that, quite intuitively, the Gibbs entropy at the given energy roughly takes the role of the Hilbert space dimension in the finite-dimensional Fannes inequality.
Improved Bounds on Quantum Learning Algorithms
Atici, A; Atici, Alp; Servedio, Rocco A.
2004-01-01
In this article we give several new results on the complexity of algorithms that learn Boolean functions from quantum queries and quantum examples. Hunziker et al. conjectured that for any class C of Boolean functions, the number of quantum black-box queries which are required to exactly identify an unknown function from C is at most $O(\\frac{\\log |C|}{\\sqrt{{\\hat{\\gamma}}^{C}}})$, where $\\hat{\\gamma}^{C}$ is a combinatorial parameter of the class C. We essentially resolve this conjecture in the affirmative by giving a quantum algorithm that, for any class C, identifies any unknown function from C using at most $O(\\frac{\\log |C| \\log \\log |C|}{\\sqrt{{\\hat{\\gamma}}^{C}}})$ quantum black-box queries. We consider a range of natural problems intermediate between the exact learning problem (in which the learner must obtain all bits of information about the black-box function) and the usual problem of computing a predicate (in which the learner must obtain only one bit of information about the black-box function). ...
Resonantly Trapped Bound State in the Continuum Laser
Lepetit, Thomas; Kodigala, Ashok; Bahari, Babak; Fainman, Yeshaiahu; Kanté, Boubacar
2015-01-01
Cavities play a fundamental role in wave phenomena from quantum mechanics to electromagnetism and dictate the spatiotemporal physics of lasers. In general, they are constructed by closing all "doors" through which waves can escape. We report, at room temperature, a bound state in the continuum laser that harnesses optical modes residing in the radiation continuum but nonetheless may possess arbitrarily high quality factors. These counterintuitive cavities are based on resonantly trapped symmetry-compatible modes that destructively interfere. Our experimental demonstration opens exciting avenues towards coherent sources with intriguing topological properties for optical trapping, biological imaging, and quantum communication.
Fermion Bound States Around Skyrmions in Doped Antiferromagnets
Institute of Scientific and Technical Information of China (English)
寇谡鹏
2003-01-01
We show the skyrmion effects in doped antiferromagnets for the uniform flux phase. The low-energy effective theory of the t′-J model can be mapped onto the massive quantum electrodynamics. There exist Fermion bound states around skyrmions. For each sublattice, there exist induced fractional fermion numbers around the skyrmions. The total induced fermion number is zero due to the "cancelling effect" between two sublattices with opposite charges.
η-nuclear bound states revisited
Friedman, E.; Gal, A.; Mareš, J.
2013-10-01
The strong energy dependence of the s-wave ηN scattering amplitude at and below threshold, as evident in coupled-channels K-matrix fits and chiral models that incorporate the S11N* (1535) resonance, is included self-consistently in η-nuclear bound-state calculations. This approach, applied recently in calculations of kaonic atoms and Kbar-nuclear bound states, is found to impose stronger constraints than ever on the onset of η-nuclear binding, with a minimum value of ReaηN ≈ 0.9 fm required to accommodate an η-4He bound state. Binding energies and widths of η-nuclear states are calculated within several underlying ηN models for nuclei across the periodic table, including Mg25η for which some evidence was proposed in a recent COSY experiment.
Narrow deeply bound K- atomic states
Friedman, E.; Gal, A.
1999-07-01
Using optical potentials fitted to a comprehensive set of strong interaction level shifts and widths in K- atoms, we predict that the K- atomic levels which are inaccessible in the atomic cascade process are generally narrow, spanning a range of widths about 50-1500 keV over the entire periodic table. The mechanism for this narrowing is different from the mechanism for narrowing of pionic atom levels. Examples of such `deeply bound' K- atomic states are given, showing that in many cases these states should be reasonably well resolved. Several reactions which could be used to form these `deeply bound' states are mentioned. Narrow deeply bound states are expected also in overlinep atoms.
Entanglement and Coherence in Quantum State Merging.
Streltsov, A; Chitambar, E; Rana, S; Bera, M N; Winter, A; Lewenstein, M
2016-06-17
Understanding the resource consumption in distributed scenarios is one of the main goals of quantum information theory. A prominent example for such a scenario is the task of quantum state merging, where two parties aim to merge their tripartite quantum state parts. In standard quantum state merging, entanglement is considered to be an expensive resource, while local quantum operations can be performed at no additional cost. However, recent developments show that some local operations could be more expensive than others: it is reasonable to distinguish between local incoherent operations and local operations which can create coherence. This idea leads us to the task of incoherent quantum state merging, where one of the parties has free access to local incoherent operations only. In this case the resources of the process are quantified by pairs of entanglement and coherence. Here, we develop tools for studying this process and apply them to several relevant scenarios. While quantum state merging can lead to a gain of entanglement, our results imply that no merging procedure can gain entanglement and coherence at the same time. We also provide a general lower bound on the entanglement-coherence sum and show that the bound is tight for all pure states. Our results also lead to an incoherent version of Schumacher compression: in this case the compression rate is equal to the von Neumann entropy of the diagonal elements of the corresponding quantum state.
Introduction to QCD - a bound state perspective
Hoyer, Paul
2011-01-01
These lecture notes focus on the bound state sector of QCD. Motivated by data which suggests that the strong coupling \\alpha_s(Q) freezes at low Q, and by similarities between the spectra of hadrons and atoms, I discuss if and how QCD bound states may be treated perturbatively. I recall the basic principles of perturbative gauge theory bound states at lowest order in the \\hbar expansion. Born level amplitudes are insensitive to the i\\epsilon prescription of propagators, which allows to eliminate the Z-diagrams of relativistic, time-ordered Coulomb interactions. The Dirac wave function thus describes a single electron which propagates forward in time only, even though the bound state has any number of pair constituents when Feynman propagators are used. In the absence of an external potential, states that are bound by the Coulomb attraction of their constituents can be analogously described using only their valence degrees of freedom. The instantaneous A^0 field is determined by Gauss' law for each wave functi...
Quantum State Tomography and Quantum Games
Institute of Scientific and Technical Information of China (English)
Ahmad Nawaz
2012-01-01
A technique is developed for single qubit quantum state tomography using the mathematical setup of generalized quantization scheme for games. In this technique,Alice sends an unknown pure quantum state to Bob who appends it with |0><0| and then applies the unitary operators on the appended quantum state and finds the payoffs for Alice and himself.It is shown that for a particular set of unitary operators,these payoffs are equal to Stokes parameters for an unknown quantum state.In this way an unknown quantum state can be measured and reconstructed.Strictly speaking,this technique is not a game as no strategic competitions are involved.
Public-key cryptography based on bounded quantum reference frames
Ioannou, Lawrence M.; Mosca, Michele
2009-01-01
We demonstrate that the framework of bounded quantum reference frames has application to building quantum-public-key cryptographic protocols and proving their security. Thus, the framework we introduce can be seen as a public-key analogue of the framework of Bartlett et al. (Phys. Rev. A 70, 032307), where a private shared reference frame is shown to have cryptographic application. The protocol we present in this paper is an identification scheme, which, like a digital signature scheme, is a ...
Quantum mechanics two volumes bound as one
Messiah, Albert
2014-01-01
""Strongly recommended"" by the American Journal of Physics, this volume serves as a text for advanced undergraduates and graduate students of physics as well as a reference for professionals. Clear in its presentation and scrupulous in its attention to detail, the treatment originally appeared in a two-volume French edition. This convenient single-volume translation begins with formalism and its interpretation, starting with the origins of quantum theory and examinations of matter waves and the Schrödinger equation, one-dimensional quantized systems, the uncertainty relations, and the mathema
Unitarity bounds on low scale quantum gravity
Atkins, Michael
2010-01-01
We study the unitarity of models with low scale quantum gravity both in four dimensions and in models with a large extra-dimensional volume. We find that models with low scale quantum gravity have problems with unitarity below the scale at which gravity becomes strong. An important consequence of our work is that their first signal at the Large Hadron Collider would not be of a gravitational nature such as graviton emission or small black holes, but rather linked to the mechanism which fixes the unitarity problem. We also study models with scalar fields with non minimal couplings to the Ricci scalar. We consider the strength of gravity in these models and study the consequences for inflation models with non-minimally coupled scalar fields. We show that a single scalar field with a large non-minimal coupling can lower the Planck mass in the TeV region. In that model, it is possible to lower the scale at which gravity becomes strong down to 14 TeV without violating unitarity below that scale.
Probing Andreev bound states in one-atom superconducting contacts
Energy Technology Data Exchange (ETDEWEB)
Pothier, Hugues; Janvier, Camille; Tosi, Leandro; Girit, Caglar; Goffman, Marcelo; Esteve, Daniel; Urbina, Cristian [Quantronics Group, SPEC, CEA-Saclay (France)
2015-07-01
Superconductors are characterized by a dissipationless current. Since the work of Josephson 50 years ago, it is known that a supercurrent can even flow through tunnel junctions between superconductors. This Josephson effect also occurs through any type of ''weak links'' between superconductors: non-superconducting materials, constrictions,.. A unified understanding of the Josephson effect has emerged from a mesoscopic description of weak links. It relies on the existence of doublets of localized states that have energies below the superconducting gap: the Andreev bound states. I will present experiments performed on the simplest conductor possible, a single-atom contact between superconductors, that illustrate these concepts. The most recent work demonstrates time-domain manipulation of quantum superpositions of Andreev bound states.
Dynamical Horizon Entropy Bound Conjecture in Loop Quantum Cosmology
Institute of Scientific and Technical Information of China (English)
李丽仿; 朱建阳
2012-01-01
The covariant entropy bound conjecture is an important hint for the quantum gravity, with several versions available in the literature. For cosmology, Ashtekar and Wilson-Ewing ever show the consistence between the loop gravity theory and one version of this conjecture. Recently, He and Zhang [J. High Energy Phys. 10 （2007） 077] proposed a version for the dynamical horizon of the universe, which validates the entropy bound conjecture for the cosmology filled with perfect fluid in the classical scenario when the universe is far away from the big bang singularity. However, their conjecture breaks down near big bang region. We examine this conjecture in the context of the loop quantum cosmology. With the example of photon gas, this conjecture is protected by the quantum geometry effects as expected.
Calculation of size for bound-state constituents
Glazek, Stanislaw D
2014-01-01
Elements are given of a calculation that identifies the size of a proton in the Schroedinger equation for lepton-proton bound states, using the renormalization group procedure for effective particles (RGPEP) in quantum field theory, executed only up to the second order of expansion in powers of the coupling constant. Already in this crude approximation, the extraction of size of a proton from bound-state observables is found to depend on the lepton mass, so that the smaller the lepton mass the larger the proton size extracted from the same observable bound-state energy splitting. In comparison of Hydrogen and muon-proton bound-state dynamics, the crude calculation suggests that the difference between extracted proton sizes in these two cases can be a few percent. Such values would match the order of magnitude of currently discussed proton-size differences in leptonic atoms. Calculations using the RGPEP of higher order than second are required for a precise interpretation of the energy splittings in terms of t...
The effect of impurity on transition frequency of bound polaron in quantum rods
Indian Academy of Sciences (India)
Wei Xiao; Jing-Lin Xiao
2012-12-01
The Hamiltonian of a quantum rod with an ellipsoidal boundary is given after a coordinate transformation that changes the ellipsoidal boundary into a spherical one. The properties of the quantum rods constituting the bridge between two-dimensional quantum wells, zero-dimensional quantum dots and one-dimensional quantum wires are explored theoretically using linear combination operator method. The first internal excited state energy, the excitation energy and the transition frequency between the first internal excited and the ground states of the strong-coupled impurity-bound polaron in the rod with Coulomb-bound potential, the transverse effective confinement length, the ellipsoid aspect ratio and the electron–phonon coupling strength are studied. It is found that the first internal excited state energy, the excitation energy and the transition frequency are increasing functions of the Coulomb-bound potential and the electron–phonon coupling strength, whereas they are decreasing functions of the ellipsoid aspect ratio and the transverse effective confinement length. These results can be attributed to the interesting quantum size confining effects.
Locking classical correlation in quantum states
Di Vincenzo, D P; Leung, D; Smolin, J A; Terhal, B M; Vincenzo, David Di; Horodecki, Michal; Leung, Debbie; Smolin, John; Terhal, Barbara
2003-01-01
We show that there exist bipartite quantum states which contain large hidden classical correlation that can be unlocked by a disproportionately small amount of classical communication. In particular, there are $(2n+1)$-qubit states for which a one bit message doubles the optimal classical mutual information between measurement results on the subsystems, from $n/2$ bits to $n$ bits. States exhibiting this behavior need not be entangled. We study the range of states exhibiting this phenomenon and bound its magnitude.
Quantum Gravity, CPT symmetry and Entangled States
Mavromatos, Nick E
2008-01-01
There may unique ("smoking-gun") signatures of the breakdown of CPT symmetry, induced in some models of Quantum Gravity entailing decoherence for quantum matter. Such effects can be observed in entangled states of neutral mesons via modifications of the respective Einstein-Podolsky-Rosen (EPR) correlators ("omega"-effect). In the talk I discuss experimental signatures and bounds of the omega-effect in Phi- and B-factories, and argue that the effect might be falsifiable at the next generation facilities.
Nuclear internal conversion between bound atomic states
Chemin, J. F.; Harston, M. R.; Karpeshin, F. F.; Carreyre, J.; Attallah, F.; Aleonard, M. M.; Scheurer, J. N.; Boggaert, G.; Grandin, J. R.; Trzhaskovskaya, M. B.
2003-01-01
We present experimental and theoretical results for rate of decay of the (3/2)+ isomeric state in 125Te versus the ionic charge state. For charge state larger than 44 the nuclear transition lies below the threshold for emission of a K-shell electron into the continuum with the result that normal internal conversion is energetically forbiden. Rather surprisingly, for the charge 45 and 46 the lifetime of the level was found to have a value close to that in neutral atoms. We present direct evidence that the nuclear transition could still be converted but without the emission of the electron into the continuum, the electron being promoted from the K-shell to an other empty bound state lying close to the continuum. We called this process BIC. The experimental results agree whith theoretical calculations if BIC resonances are taken into account. This leads to a nuclear decay constant that is extremely sensitive to the precise initial state and simple specification of the charge state is no longer appropriate. The contribution to decay of the nucleus of BIC has recently been extended to the situation in which the electron is promoted to an intermediate filled bound state (PFBIC) with an apparent violation of the Pauli principle. Numerical results of the expected dependence of PFBIC on the charge state will be presented for the decay of the 77.351 keV level in 197Au.
Parity lifetime of bound states in a proximitized semiconductor nanowire
Higginbotham, A. P.; Albrecht, S. M.; Kiršanskas, G.; Chang, W.; Kuemmeth, F.; Krogstrup, P.; Jespersen, T. S.; Nygård, J.; Flensberg, K.; Marcus, C. M.
2015-12-01
Quasiparticle excitations can compromise the performance of superconducting devices, causing high-frequency dissipation, decoherence in Josephson qubits, and braiding errors in proposed Majorana-based topological quantum computers. Quasiparticle dynamics have been studied in detail in metallic superconductors but remain relatively unexplored in semiconductor-superconductor structures, which are now being intensely pursued in the context of topological superconductivity. To this end, we use a system comprising a gate-confined semiconductor nanowire with an epitaxially grown superconductor layer, yielding an isolated, proximitized nanowire segment. We identify bound states in the semiconductor by means of bias spectroscopy, determine the characteristic temperatures and magnetic fields for quasiparticle excitations, and extract a parity lifetime (poisoning time) of the bound state in the semiconductor exceeding 10 ms.
Understanding the nucleon as a Borromean bound-state
Directory of Open Access Journals (Sweden)
Jorge Segovia
2015-11-01
Full Text Available Analyses of the three valence-quark bound-state problem in relativistic quantum field theory predict that the nucleon may be understood primarily as a Borromean bound-state, in which binding arises mainly from two separate effects. One originates in non-Abelian facets of QCD that are expressed in the strong running coupling and generate confined but strongly-correlated colour-antitriplet diquark clusters in both the scalar–isoscalar and pseudovector–isotriplet channels. That attraction is magnified by quark exchange associated with diquark breakup and reformation. Diquark clustering is driven by the same mechanism which dynamically breaks chiral symmetry in the Standard Model. It has numerous observable consequences, the complete elucidation of which requires a framework that also simultaneously expresses the running of the coupling and masses in the strong interaction. Planned experiments are capable of validating this picture.
Analytic continuation of bound states to solve resonance states
Energy Technology Data Exchange (ETDEWEB)
Tanaka, Norimichi; Arai, Koji [Niigata Univ. (Japan); Suzuki, Yoshiyuki; Varga, K.
1997-05-01
As a method to determine the parameters of the resonance state, a method is proposed using analytic continuation on bound constants of correlation. The characteristics of this method consists in probability of prediction of the parameters of the resonance state only by calculation of the bound state. Owing to conducting the analytic continuation on square root of energy in the bound state as a function relating to the bound constant, energy and width in the bound state was determined. Here was reported on a result of application of this method to three systems. Some partial wave on two systems showing correlation at a simple potential and a resonance state of zero of all orbital angular motion quality in three boson system were determined using the analytic continuation method. These results agreed well with one used a method of integrating Schroedinger equation directly and one used the complex scaling method, and this method was found to be much efficient for the study of the resonance state. Under a background of becoming applicable to the method of analytic continuation, there was development of calculating method for the recent small number multi system. As the characteristics of the analytic continuation method is used for only calculation of the bound state, it is convenient at a point applicable to the method to obtain conventional bound state and then is much efficient in a point of applicability of calculus of variations. However, in order to obtain coefficient of Pade approximation correctly, the bound state must be solved correctly, which is difficult for more complex system and is not always applicable to every systems. (G.K.)
Realizing Controllable Quantum States
Takayanagi, Hideaki; Nitta, Junsaku
1. Entanglement in solid states. Orbital entanglement and violation of bell inequalities in mesoscopic conductors / M. Büttiker, P. Samuelsson and E. V. Sukhoruk. Teleportation of electron spins with normal and superconducting dots / O. Sauret, D. Feinberg and T. Martin. Entangled state analysis for one-dimensional quantum spin system: singularity at critical point / A. Kawaguchi and K. Shimizu. Detecting crossed Andreev reflection by cross-current correlations / G. Bignon et al. Current correlations and transmission probabilities for a Y-shaped diffusive conductor / S. K. Yip -- 2. Mesoscopic electronics. Quantum bistability, structural transformation, and spontaneous persistent currents in mesoscopic Aharonov-Bohm loops / I. O. Kulik. Many-body effects on tunneling of electrons in magnetic-field-induced quasi one-dimensional systems in quantum wells / T. Kubo and Y. Tokura. Electron transport in 2DEG narrow channel under gradient magnetic field / M. Hara et al. Transport properties of a quantum wire with a side-coupled quantum dot / M. Yamaguchi et al. Photoconductivity- and magneto-transport studies of single InAs quantum wires / A. Wirthmann et al. Thermoelectric transports in charge-density-wave systems / H. Yoshimoto and S. Kurihara -- 3. Mesoscopic superconductivity. Parity-restricted persistent currents in SNS nanorings / A. D. Zaikin and S. V. Sharov. Large energy dependence of current noise in superconductingh/normal metal junctions / F. Pistolesi and M. Houzet. Generation of photon number states and their superpositions using a superconducting qubit in a microcavity / Yu-Xi Liu, L. F. Wei and F. Nori. Andreev interferometry for pumped currents / F. Taddei, M. Governale and R. Fazio. Suppression of Cooper-pair breaking against high magnetic fields in carbon nanotubes / J. Haruyama et al. Impact of the transport supercurrent on the Josephson effect / S. N. Shevchenko. Josephson current through spin-polarized Luttinger liquid / N. Yokoshi and S. Kurihara
Composition of quantum states and dynamical subadditivity
Energy Technology Data Exchange (ETDEWEB)
Roga, Wojciech [Instytut Fizyki im. Smoluchowskiego, Uniwersytet Jagiellonski, PL-30-059 Cracow (Poland); Fannes, Mark [Instituut voor Theoretische Fysica, Universiteit Leuven, B-3001 Leuven (Belgium); Zyczkowski, Karol [Instytut Fizyki im. Smoluchowskiego, Uniwersytet Jagiellonski, PL-30-059 Cracow (Poland)
2008-01-25
We introduce a composition of quantum states of a bipartite system which is based on the reshuffling of density matrices. This non-Abelian product is associative and stems from the composition of quantum maps acting on a simple quantum system. It induces a semi-group in the subset of states with maximally mixed partial traces. Subadditivity of the von Neumann entropy with respect to this product is proved. It is equivalent to subadditivity of the entropy of bistochastic maps with respect to their composition, where the entropy of a map is the entropy of the corresponding state under the Jamiolkowski isomorphism. Strong dynamical subadditivity of a concatenation of three bistochastic maps is established. Analogous bounds for the entropy of a composition are derived for general stochastic maps. In the classical case they lead to new bounds for the entropy of a product of two stochastic matrices.
Andreev bound states. Some quasiclassical reflections
Energy Technology Data Exchange (ETDEWEB)
Lin, Y., E-mail: yiriolin@illinois.edu; Leggett, A. J. [University of Illinois at Urhana-Champaign, Dept. of Physics (United States)
2014-12-15
We discuss a very simple and essentially exactly solvable model problem which illustrates some nice features of Andreev bound states, namely, the trapping of a single Bogoliubov quasiparticle in a neutral s-wave BCS superfluid by a wide and shallow Zeeman trap. In the quasiclassical limit, the ground state is a doublet with a splitting which is proportional to the exponentially small amplitude for “normal” reflection by the edges of the trap. We comment briefly on a prima facie paradox concerning the continuity equation and conjecture a resolution to it.
Nuclear dynamics of K¯ bound states
Mareš, J.; Friedman, E.; Gal, A.
2006-07-01
K¯ nuclear bound states were generated dynamically within a relativistic mean field (RMF) model. Substantial polarization of the core nucleus was found for light nuclei. The behavior of the dynamically calculated width ΓK¯ as function of the K¯ binding energy was studied. A lower limit of ΓK¯ ˜ 35 - 45 MeV for 1s K¯ nuclear states in light nuclei such as 12C was placed on the width expected for deep binding in the range B K¯ ˜ 100 - 200 MeV.
Stieltjes electrostatic model interpretation for bound state problems
Indian Academy of Sciences (India)
K V S Shiv Chaitanya
2014-07-01
In this paper, it is shown that Stieltjes electrostatic model and quantum Hamilton Jacobi formalism are analogous to each other. This analogy allows the bound state problem to mimic as unit moving imaginary charges $i\\hbar$, which are placed in between the two fixed imaginary charges arising due to the classical turning points of the potential. The interaction potential between unit moving imaginary charges $i\\hbar$ is given by the logarithm of the wave function. For an exactly solvable potential, this system attains stable equilibrium position at the zeros of the orthogonal polynomials depending upon the interval of the classical turning points.
Meyer-Scott, Evan; Tiedau, Johannes; Harder, Georg; Shalm, Lynden K.; Bartley, Tim J.
2017-01-01
The statistical properties of photons are fundamental to investigating quantum mechanical phenomena using light. In multiphoton, two-mode systems, correlations may exist between outcomes of measurements made on each mode which exhibit useful properties. Correlation in this sense can be thought of as increasing the probability of a particular outcome of a measurement on one subsystem given a measurement on a correlated subsystem. Here, we show a statistical property we call “discorrelation”, in which the probability of a particular outcome of one subsystem is reduced to zero, given a measurement on a discorrelated subsystem. We show how such a state can be constructed using readily available building blocks of quantum optics, namely coherent states, single photons, beam splitters and projective measurement. We present a variety of discorrelated states, show that they are entangled, and study their sensitivity to loss. PMID:28134333
Lasing action from photonic bound states in continuum
Kodigala, Ashok; Lepetit, Thomas; Gu, Qing; Bahari, Babak; Fainman, Yeshaiahu; Kanté, Boubacar
2017-01-01
In 1929, only three years after the advent of quantum mechanics, von Neumann and Wigner showed that Schrödinger’s equation can have bound states above the continuum threshold. These peculiar states, called bound states in the continuum (BICs), manifest themselves as resonances that do not decay. For several decades afterwards the idea lay dormant, regarded primarily as a mathematical curiosity. In 1977, Herrick and Stillinger revived interest in BICs when they suggested that BICs could be observed in semiconductor superlattices. BICs arise naturally from Feshbach’s quantum mechanical theory of resonances, as explained by Friedrich and Wintgen, and are thus more physical than initially realized. Recently, it was realized that BICs are intrinsically a wave phenomenon and are thus not restricted to the realm of quantum mechanics. They have since been shown to occur in many different fields of wave physics including acoustics, microwaves and nanophotonics. However, experimental observations of BICs have been limited to passive systems and the realization of BIC lasers has remained elusive. Here we report, at room temperature, lasing action from an optically pumped BIC cavity. Our results show that the lasing wavelength of the fabricated BIC cavities, each made of an array of cylindrical nanoresonators suspended in air, scales with the radii of the nanoresonators according to the theoretical prediction for the BIC mode. Moreover, lasing action from the designed BIC cavity persists even after scaling down the array to as few as 8-by-8 nanoresonators. BIC lasers open up new avenues in the study of light-matter interaction because they are intrinsically connected to topological charges and represent natural vector beam sources (that is, there are several possible beam shapes), which are highly sought after in the fields of optical trapping, biological sensing and quantum information.
The Analogue of the Aharonov-Bohm Effect for Bound States for Neutral Particles
Bakke, Knut; Furtado, C.
We study the analogue of the Aharonov-Bohm effect for bound states for a neutral particle with a permanent magnetic dipole moment interacting with an external field. We consider a neutral particle confined to moving between two coaxial cylinders and show the dependence of the energy levels on the Aharonov-Casher quantum flux. Moreover, we show that the same flux dependence of the bound states can be found when the neutral particle is confined to a one-dimensional quantum ring and a quantum dot, and we also calculate the persistent currents in each case.
Quantum engineering of continuous variable quantum states
Energy Technology Data Exchange (ETDEWEB)
Sabuncu, Metin
2009-10-29
Quantum information with continuous variables is a field attracting increasing attention recently. In continuous variable quantum information one makes use of the continuous information encoded into the quadrature of a quantized light field instead of binary quantities such as the polarization state of a single photon. This brand new research area is witnessing exciting theoretical and experimental achievements such as teleportation, quantum computation and quantum error correction. The rapid development of the field is mainly due higher optical data rates and the availability of simple and efficient manipulation tools in continuous-variable quantum information processing. We in this thesis extend the work in continuous variable quantum information processing and report on novel experiments on amplification, cloning, minimal disturbance and noise erasure protocols. The promising results we obtain in these pioneering experiments indicate that the future of continuous variable quantum information is bright and many advances can be foreseen. (orig.)
Aspects of Majorana Bound States in One-Dimensional Systems with and without Time-Reversal Symmetry
DEFF Research Database (Denmark)
Wölms, Konrad Udo Hannes
bound states in the measurement still has to be understood better. And example would be the frequently performed tunnel probe measurement on Majorana bound states [26, 40, 41]. A second reason why Majorana bound states are interesting is their potential application to a certain quantum computation...... scheme. This scheme, called topological quantum computation, relies on the braiding of so-called non-abelian anyons in order to perform computations [18]. Majorana bound states are the simplest example of such non-abelian anyons. No other non-abelian anyons have been realized experimentally yet, which...... puts further focus on the study of Majorana bound states. Additionally to probing Majorana bound states, their use in topological quantum computation also requires them to be manipulated. This also poses an interesting problem for both experimentalists and theorists [25, 27]. We can summarize...
Matrix algorithms for solving (in)homogeneous bound state equations.
Blank, M; Krassnigg, A
2011-07-01
In the functional approach to quantum chromodynamics, the properties of hadronic bound states are accessible via covariant integral equations, e.g. the Bethe-Salpeter equation for mesons. In particular, one has to deal with linear, homogeneous integral equations which, in sophisticated model setups, use numerical representations of the solutions of other integral equations as part of their input. Analogously, inhomogeneous equations can be constructed to obtain off-shell information in addition to bound-state masses and other properties obtained from the covariant analogue to a wave function of the bound state. These can be solved very efficiently using well-known matrix algorithms for eigenvalues (in the homogeneous case) and the solution of linear systems (in the inhomogeneous case). We demonstrate this by solving the homogeneous and inhomogeneous Bethe-Salpeter equations and find, e.g. that for the calculation of the mass spectrum it is as efficient or even advantageous to use the inhomogeneous equation as compared to the homogeneous. This is valuable insight, in particular for the study of baryons in a three-quark setup and more involved systems.
Novel Bound States in Graphene with Impurities
Gupta, Kumar S
2008-01-01
We obtain a novel bound state spectrum of the low energy excitations near the Fermi points of graphene in the presence of a charge impurity. The effects of possible short range interactions induced by the impurity are modelled by suitable boundary conditions. The spectrum in the subcritical region of the effective Coulomb coupling is labelled by a parameter which characterizes the boundary conditions and determines the inequivalent quantizations of the system. In the supercritical region we obtain a renormalization group flow for the effective Coulomb coupling.
Is there an quasi-bound state?
Wilkin, C; Chiladze, D; Dymov, S; Hanhart, C; Hartmann, M; Hejny, V; Kacharava, A K; Keshelashvili, I; Khoukaz, A; Maeda, Y; Mersmann, T; Mielke, M; Mikirtychiants, S; Papenbrock, M; Rathmann, F; Rausmann, T; Schleichert, R; Ströher, H; Täschner, A; Valdau, Yu; Wronska, A
2007-01-01
The observed variation of the total cross section for the dp -> 3He eta reaction near threshold means that the magnitude of the s--wave amplitude falls very rapidly with the eta centre--of--mass momentum. It is shown here that recent measurements of the momentum dependence of the angular distribution imply a strong variation also in the phase of this amplitude. Such a behaviour is that expected from a quasi--bound or virtual eta-3He state. The interpretation can be investigated further through measurements of the deuteron or proton analysing powers and/or spin--correlations.
Bounds for State Degeneracies in 2D Conformal Field Theory
Hellerman, Simeon
2010-01-01
In this note we explore the application of modular invariance in 2-dimensional CFT to derive universal bounds for quantities describing certain state degeneracies, such as the thermodynamic entropy, or the number of marginal operators. We show that the entropy at inverse temperature 2 pi satisfies a universal lower bound, and we enumerate the principal obstacles to deriving upper bounds on entropies or quantum mechanical degeneracies for fully general CFTs. We then restrict our attention to infrared stable CFT with moderately low central charge, in addition to the usual assumptions of modular invariance, unitarity and discrete operator spectrum. For CFT in the range c_left + c_right < 48 with no relevant operators, we are able to prove an upper bound on the thermodynamic entropy at inverse temperature 2 pi. Under the same conditions we also prove that a CFT can have a number of marginal deformations no greater than ((c_left + c_right) / (48 - c_left - c_right)) e^(4 Pi) - 2.
Coherent states in quantum mechanics
Rodrigues, R D L; Fernandes, D
2001-01-01
We present a review work on the coherent states is non-relativistic quantum mechanics analysing the quantum oscillators in the coherent states. The coherent states obtained via a displacement operator that act on the wave function of ground state of the oscillator and the connection with Quantum Optics which were implemented by Glauber have also been considered. A possible generalization to the construction of new coherent states it is point out.
Quantum fidelity for arbitrary Gaussian states
Banchi, Leonardo; Pirandola, Stefano
2015-01-01
We derive a computable analytical formula for the quantum fidelity between two arbitrary multimode Gaussian states which is simply expressed in terms of their first- and second-order statistical moments. We also show how such a formula can be written in terms of symplectic invariants and used to derive closed forms for a variety of basic quantities and tools, such as the Bures metric, the quantum Fisher information and various fidelity-based bounds. Our result can be used to extend the study of continuous-variable protocols, such as quantum teleportation and cloning, beyond the current one-mode or two-mode analyses, and paves the way to solve general problems in quantum metrology and quantum hypothesis testing with arbitrary multimode Gaussian resources.
Static and dynamic properties of QCD bound states
Energy Technology Data Exchange (ETDEWEB)
Kubrak, Stanislav
2015-07-01
The QCD phenomenology can be faced with the framework of the coupled quark DSE, meson BSE and baryon Faddeev equation, providing non-perturbative, continuum and Poincare invariant scientific approach. The research performed throughout this thesis is twofold. From one perspective we focus on the investigation of mass spectra for mesons with total spin quantum number J=3 and arising Regge-trajectory for natural parity states J{sup PC}=1{sup --},2{sup ++},3{sup --} within rainbow-ladder single gluon exchange model. The other findings are concerning the impact of the pion cloud effect on J>2 meson states, baryon masses, namely on Nucleon and Delta three-body bound states and meson dynamical properties like the pion form factor.
Multiphoton quantum optics and quantum state engineering
Energy Technology Data Exchange (ETDEWEB)
Dell' Anno, Fabio [Dipartimento di Fisica ' E. R. Caianiello' , Universita degli Studi di Salerno, CNISM and CNR-INFM Coherentia, and INFN Sezione di Napoli, Gruppo Collegato di Salerno, Via S. Allende, I-84081 Baronissi (Saudi Arabia) (Italy)]. E-mail: dellanno@sa.infn.it; De Siena, Silvio [Dipartimento di Fisica ' E. R. Caianiello' , Universita degli Studi di Salerno, CNISM and CNR-INFM Coherentia, and INFN Sezione di Napoli, Gruppo Collegato di Salerno, Via S. Allende, I-84081 Baronissi (SA) (Italy)]. E-mail: desiena@sa.infn.it; Illuminati, Fabrizio [Dipartimento di Fisica ' E. R. Caianiello' , Universita degli Studi di Salerno, CNISM and CNR-INFM Coherentia, and INFN Sezione di Napoli, Gruppo Collegato di Salerno, Via S. Allende, I-84081 Baronissi (SA) (Italy)]. E-mail: illuminati@sa.infn.it
2006-05-15
We present a review of theoretical and experimental aspects of multiphoton quantum optics. Multiphoton processes occur and are important for many aspects of matter-radiation interactions that include the efficient ionization of atoms and molecules, and, more generally, atomic transition mechanisms; system-environment couplings and dissipative quantum dynamics; laser physics, optical parametric processes, and interferometry. A single review cannot account for all aspects of such an enormously vast subject. Here we choose to concentrate our attention on parametric processes in nonlinear media, with special emphasis on the engineering of nonclassical states of photons and atoms that are relevant for the conceptual investigations as well as for the practical applications of forefront aspects of modern quantum mechanics. We present a detailed analysis of the methods and techniques for the production of genuinely quantum multiphoton processes in nonlinear media, and the corresponding models of multiphoton effective interactions. We review existing proposals for the classification, engineering, and manipulation of nonclassical states, including Fock states, macroscopic superposition states, and multiphoton generalized coherent states. We introduce and discuss the structure of canonical multiphoton quantum optics and the associated one- and two-mode canonical multiphoton squeezed states. This framework provides a consistent multiphoton generalization of two-photon quantum optics and a consistent Hamiltonian description of multiphoton processes associated to higher-order nonlinearities. Finally, we discuss very recent advances that by combining linear and nonlinear optical devices allow to realize multiphoton entangled states of the electromagnetic field, either in discrete or in continuous variables, that are relevant for applications to efficient quantum computation, quantum teleportation, and related problems in quantum communication and information.
A balance for Dark Matter bound states
Nozzoli, F
2016-01-01
Massive particles with self interactions of the order of 0.2 barn/GeV are intriguing Dark Matter candidates from an astrophysical point of view. Direct detection searches for very massive particles, with relatively high cross sections with ordinary matter, cannot rule out $\\sigma/M > 0.01$ barn/GeV, due to atmosphere and material shielding. Here, the possibility of the existence of bound states with ordinary matter, for Dark Matter candidates with not negligible interactions, is considered. The existence of bound states, with binding energy larger than $\\sim$1 meV, would offer the possibility to test in laboratory capture cross sections of the order of a barn (or larger). The signature of the detection of a mass increasing of cryogenic samples, due to the possible Dark Matter accumulation, would allow the investigation of Dark Matter particles with mass up to the GUT scale. A proof of concept for a possible detection set-up and the evaluation of some noise sources are described.
ADMonium: Asymmetric Dark Matter Bound State
Bi, Xiao-Jun; Ko, P; Li, Jinmian; Li, Tianjun
2016-01-01
We propose a novel framework for asymmetric scalar dark matter (ADM), which has interesting collider phenomenology in terms of an unstable ADM bound state (ADMonium) produced via Higgs portals. ADMonium is a natural consequence of the basic features of ADM: the (complex scalar) ADM is charged under a dark local $U(1)_d$ symmetry which is broken at a low scale and provides a light gauge boson $X$. The dark gauge coupling is strong and then ADM can annihilate away into $X$-pair effectively. Therefore, the ADM can form bound state due to its large self-interaction via $X$ mediation. To explore the collider signature of ADMonium, we propose that ADM has a two-Higgs doublet portal. The ADMonium can have a sizable mixing with the heavier Higgs boson, which admits a large cross section of ADMonium production associated with $b\\bar b$. Of particular interest, our setup nicely explains the recent di-photon anomaly at 750 GeV via the events from ${\\rm ADMonium}\\ra 2X(\\ra e^+e^-)$, where the electrons are identified as ...
On Aharonov-Casher bound states
Silva, E. O.; Andrade, F. M.; Filgueiras, C.; Belich, H.
2013-04-01
In this work bound states for the Aharonov-Casher problem are considered. According to Hagen's work on the exact equivalence between spin-1/2 Aharonov-Bohm and Aharonov-Casher effects, is known that the ∇ṡ E term cannot be neglected in the Hamiltonian if the spin of particle is considered. This term leads to the existence of a singular potential at the origin. By modeling the problem by boundary conditions at the origin which arises by the self-adjoint extension of the Hamiltonian, we derive for the first time an expression for the bound state energy of the Aharonov-Casher problem. As an application, we consider the Aharonov-Casher plus a two-dimensional harmonic oscillator. We derive the expression for the harmonic oscillator energies and compare it with the expression obtained in the case without singularity. At the end, an approach for determination of the self-adjoint extension parameter is given. In our approach, the parameter is obtained essentially in terms of physics of the problem.
On Aharonov-Casher bound states
Energy Technology Data Exchange (ETDEWEB)
Silva, E.O. [Universidade Federal do Maranhao, Departamento de Fisica, Sao Luis, MA (Brazil); Andrade, F.M. [Universidade Estadual de Ponta Grossa, Departamento de Matematica e Estatistica, Ponta Grossa, PR (Brazil); Filgueiras, C. [Universidade Federal de Campina Grande, Departamento de Fisica, Caixa Postal 10071, Campina Grande, PB (Brazil); Belich, H. [Universidade Federal do Espirito Santo, Departamento de Fisica e Quimica, Vitoria, ES (Brazil)
2013-04-15
In this work bound states for the Aharonov-Casher problem are considered. According to Hagen's work on the exact equivalence between spin-1/2 Aharonov-Bohm and Aharonov-Casher effects, is known that the {nabla}.E term cannot be neglected in the Hamiltonian if the spin of particle is considered. This term leads to the existence of a singular potential at the origin. By modeling the problem by boundary conditions at the origin which arises by the self-adjoint extension of the Hamiltonian, we derive for the first time an expression for the bound state energy of the Aharonov-Casher problem. As an application, we consider the Aharonov-Casher plus a two-dimensional harmonic oscillator. We derive the expression for the harmonic oscillator energies and compare it with the expression obtained in the case without singularity. At the end, an approach for determination of the self-adjoint extension parameter is given. In our approach, the parameter is obtained essentially in terms of physics of the problem. (orig.)
Bound states -- from QED to QCD
Hoyer, Paul
2014-01-01
These lectures are divided into two parts. In Part 1 I discuss bound state topics at the level of a basic course in field theory: The derivation of the Schr\\"odinger and Dirac equations from the QED Lagrangian, by summing Feynman diagrams and in a Hamiltonian framework. Less well known topics include the equal-time wave function of Positronium in motion and the properties of the Dirac wave function for a linear potential. The presentation emphasizes physical aspects and provides the framework for Part 2, which discusses the derivation of relativistic bound states at Born level in QED and QCD. A central aspect is the maintenance of Poincar\\'e invariance. The transformation of the wave function under boosts is studied in detail in D=1+1 dimensions, and its generalization to D=3+1 is indicated. Solving Gauss' law for $A^0$ with a non-vanishing boundary condition leads to a linear potential for QCD mesons, and an analogous confining potential for baryons.
Quantum position verification in bounded-attack-frequency model
Gao, Fei; Liu, Bin; Wen, QiaoYan
2016-11-01
In 2011, Buhrman et al. proved that it is impossible to design an unconditionally secure quantum position verification (QPV) protocol if the adversaries are allowed to previously share unlimited entanglements. Afterwards, people started to design secure QPV protocols in practical settings, e.g. the bounded-storage model, where the adversaries' pre-shared entangled resources are supposed to be limited. Here we focus on another practical factor that it is very difficult for the adversaries to perform attack operations with unlimitedly high frequency. Concretely, we present a new kind of QPV protocols, called non-simultaneous QPV. And we prove the security of a specific non-simultaneous QPV protocol with the assumption that the frequency of the adversaries' attack operations is bounded, but no assumptions on their pre-shared entanglements or quantum storage. Actually, in our nonsimultaneous protocol, the information whether there comes a signal at present time is also a piece of command. It renders the adversaries "blind", that is, they have to execute attack operations with unlimitedly high frequency no matter whether a signal arrives, which implies the non-simultaneous QPV is also secure in the bounded-storage model.
Quantum cobwebs: Universal entangling of quantum states
Indian Academy of Sciences (India)
Arun Kumar Pati
2002-08-01
Entangling an unknown qubit with one type of reference state is generally impossible. However, entangling an unknown qubit with two types of reference states is possible. To achieve this, we introduce a new class of states called zero sum amplitude (ZSA) multipartite, pure entangled states for qubits and study their salient features. Using shared-ZSA states, local operations and classical communication, we give a protocol for creating multipartite entangled states of an unknown quantum state with two types of reference states at remote places. This provides a way of encoding an unknown pure qubit state into a multiqubit entangled state.
Bounding quantum-gravity-inspired decoherence using atom interferometry
Minář, Jiří; Sekatski, Pavel; Sangouard, Nicolas
2016-12-01
Hypothetical models have been proposed in which explicit collapse mechanisms prevent the superposition principle from holding at large scales. In particular, the model introduced by Ellis et al. [J. Ellis et al., Phys. Lett. B 221, 113 (1989), 10.1016/0370-2693(89)91482-2] suggests that quantum gravity might be responsible for the collapse of the wave function of massive objects in spatial superpositions. We consider here a recent experiment reporting on interferometry with atoms delocalized over half a meter for a time scale of 1 s [T. Kovachy et al., Nature (London) 528, 530 (2015), 10.1038/nature16155] and show that the corresponding data strongly bound quantum-gravity-induced decoherence and rule it out in the parameter regime considered originally.
Ikot, A. N.; Obong, H. P.; Abbey, T. M.; Zare, S.; Ghafourian, M.; Hassanabadi, H.
2016-09-01
In this article we use supersymmetry quantum mechanics and factorization methods to study the bound and scattering state of Klein-Gordon equation with deformed Hulthen plus deformed hyperbolical potential for arbitrary state in D-dimensions. The analytic relativistic bound state eigenvalues and the scattering phase factor are found in closed form. We report on the numerical results for the bound state energy in D-dimensions.
Hyperquarks and bosonic preon bound states
Schmid, Michael L.; Buchmann, Alfons J.
2009-11-01
In a model in which leptons, quarks, and the recently introduced hyperquarks are built up from two fundamental spin-(1)/(2) preons, the standard model weak gauge bosons emerge as preon bound states. In addition, the model predicts a host of new composite gauge bosons, in particular, those responsible for hyperquark and proton decay. Their presence entails a left-right symmetric extension of the standard model weak interactions and a scheme for a partial and grand unification of nongravitational interactions based on, respectively, the effective gauge groups SU(6)P and SU(9)G. This leads to a prediction of the Weinberg angle at low energies in good agreement with experiment. Furthermore, using evolution equations for the effective coupling strengths, we calculate the partial and grand unification scales, the hyperquark mass scale, as well as the mass and decay rate of the lightest hyperhadron.
Hyperquarks and bosonic preon bound states
Schmid, Michael L
2013-01-01
In a model in which leptons, quarks, and the recently introduced hyperquarks are built up from two fundamental spin 1/2 preons, the standard model weak gauge bosons emerge as preon bound states. In addition, the model predicts a host of new composite gauge bosons, in particular those responsible for hyperquark and proton decay. Their presence entails a left-right symmetric extension of the standard model weak interactions and a scheme for a partial and grand unification of nongravitational interactions based on respectively the effective gauge groups SU(6)_P and SU(9)_G. This leads to a prediction of the Weinberg angle at low energies in good agreement with experiment. Furthermore, using evolution equations for the effective coupling strengths, we calculate the partial and grand unification scales, the hyperquark mass scale, as well as the mass and decay rate of the lightest hyperhadron.
Amplification of Information by Photons and the Quantum Chernoff Bound
Zwolak, Michael; Riedel, C. Jess; Zurek, Wojciech H.
2014-03-01
Amplification was regarded, since the early days of quantum theory, as a mysterious ingredient that endows quantum microstates with macroscopic consequences, key to the ``collapse of the wavepacket,'' and a way to avoid embarrassing problems exemplified by Schrödinger's cat. This bridge between the quantum microworld and the classical world of our experience was postulated ad hoc in the Copenhagen Interpretation. Quantum Darwinism views amplification as replication, in many copies, of information about quantum states. We show that such amplification is a natural consequence of a broad class of models of decoherence, including the photon environment we use to obtain most of our information. The resultant amplification is huge, proportional to # ξQCB . Here, # is the environment size and ξQCB is the ``typical'' Quantum Chernoff Information, which quantifies the efficiency of the amplification. The information communicated though the environment is imprinted in the states of individual environment subsystems, e.g., in single photons, which document the transfer of information into the environment and result in the emergence of the classical world. See, http://mike.zwolak.org
Ndangali, Friends R
2010-01-01
Electromagnetic bound states in the radiation continuum are studied for periodic double arrays of subwavelength dielectric cylinders in TM polarization. They are similar to localized waveguide mode solutions of Maxwell's equations for metal cavities or defects of photonic crystals, but, in contrast to the latter, their spectrum lies in the radiation continuum. The phenomenon is identical to the existence of bound sates in the radiation continuum in quantum mechanics, discovered by von Neumann and Wigner. In the formal scattering theory, these states appear as resonances with the vanishing width. For the system studied, the bound states are shown to exist at specific distances between the arrays in the spectral region where one or two diffraction channels are open. Analytic solutions are obtained for all bound states (below the radiation continuum and in it) in the limit of thin cylinders (the cylinder radius is much smaller than the wavelength). The existence of bound states is also established in the spectra...
Variational Path-Integral Study on Bound Polarons in Parabolic Quantum Dots and Wires
Institute of Scientific and Technical Information of China (English)
CHEN Qing-Hu; WANG Zhuang-Bing; WU Fu-Li; LUO Meng-Bo; RUAN Yong-Hong; JIAO Zheng-Kuan
2001-01-01
The expression of the ground-state energy of an electron coupled simultaneously with a Coulomb potential and a longitudinal-optical phonon field in parabolic quantum dots and wires is derived within the framework of Feynman variational path-integral theory. We obtain a general result with arbitrary electron-phonon coupling constant,Coulomb binding parameters, and confining potential strength, which could be used for further numerical calculation of polaron properties. Moreover, it is shown that all the previous path-integral formulae for free polarons,bound polarons, and polarons confined in parabolic quantum dots and wires can be recovered in the present formalism.
Bound values for Hall conductivity of heterogeneous medium under quantum Hall effect conditions
Indian Academy of Sciences (India)
V E Arkhincheev
2008-02-01
Bound values for Hall conductivity under quantum Hall effect (QHE) conditions in inhomogeneous medium has been studied. It is shown that bound values for Hall conductivity differ from bound values for metallic conductivity. This is due to the unusual character of current percolation under quantum Hall effect conditions.
Permanently Secure Quantum Bit Commitment from a Temporary Computation Bound
Kent, A
1997-01-01
Alice is a private citizen whose computational resources are modest. Bob represents a large organisation at the forefront of computational and cryptological research. Bob's computational and cryptanalytic power is unknown to Alice, but Bob can confidently estimate a bound on Alice's ability to carry out a computation that would break a classical bit commitment. Alice wishes to commit a bit to Bob. She requires that he will never be able to decode it unless she chooses to reveal it, but also that if she does he will be confident that her commitment was genuine. We describe here a simple quantum bit commitment scheme which satisfies these criteria. By iterating the scheme, we obtain quantum bit commitment schemes which allow either Alice or Bob to commit bits to the other. These schemes do not contradict Mayers' and Lo and Chau's no-go results: they rely on a temporary computability bound. However, they are permanently secure against cheating by either party, provided only that Alice was not able to break Bob's...
Self-bound droplets of a dilute magnetic quantum liquid
Schmitt, Matthias; Böttcher, Fabian; Ferrier-Barbut, Igor; Pfau, Tilman
2016-01-01
Self-bound many-body systems occur in different scenarios all across the fields of physics. For example in the astrophysical context the stellar classification is based on a detailed balance of attractive self-gravitating forces and repulsive terms e.g. due to Fermi pressure. Also liquid droplets are formed by mutual attractive forces due to covalent or van der Waals attraction and repulsive parts of the inter-particle potential due to the electronic Pauli exclusion principle. Self-bound ensembles of ultracold atoms at densities 100 million times lower than in a helium droplet, the only other quantum liquid known so far, have been suggested. However, they have been elusive up to now as they require more than the usual contact interaction, which is either attractive or repulsive but never both. Based on the recent finding that an unstable bosonic dipolar gas can be stabilized by a repulsive many-body term, which is due to quantum depletion and a corresponding exclusion volume at small distances, it was predict...
Coexistence of bound and virtual-bound states in shallow-core to valence x-ray spectroscopies
Sen Gupta, Subhra; Bradley, J. A.; Haverkort, M. W.; Seidler, G. T.; Tanaka, A.; Sawatzky, G. A.
2011-08-01
With the example of the non-resonant inelastic x-ray scattering (NIXS) at the O45 edges (5d→5f) of the actinides, we develop the theory for shallow-core to valence excitations, where the multiplet spread is larger than the core-hole attraction, such as if the core and valence orbitals have the same principal quantum number. This involves very strong final state configuration interaction (CI), which manifests itself as huge reductions in the Slater-Condon integrals, needed to explain the spectral shapes within a simple renormalized atomic multiplet theory. But more importantly, this results in a cross-over from bound (excitonic) to virtual-bound excited states with increasing energy, within the same core-valance multiplet structure, and in large differences between the dipole and high-order multipole transitions, as observed in NIXS. While the bound states (often higher multipole allowed) can still be modeled using local cluster-like models, the virtual-bound resonances (often dipole-allowed) cannot be interpreted within such local approaches. This is in stark contrast to the more familiar core-valence transitions between different principal quantum number shells, where all the final excited states almost invariably form bound core-hole excitons and can be modeled using local approaches. The possibility of observing giant multipole resonances for systems with high angular momentum ground states is also predicted. The theory is important to obtain ground state information from core-level x-ray spectroscopies of strongly correlated transition metal, rare-earth, and actinide systems.
Multiparty Quantum Secret Sharing of Quantum States with Quantum Registers
Institute of Scientific and Technical Information of China (English)
GUO Ying; ZENG Gui-Hua; CHEN Zhi-Gang
2007-01-01
A quantum secret sharing scheme is proposed by making use of quantum registers.In the proposed scheme,secret message state is encoded into multipartite entangled states.Several identical multi-particle entanglement states are generated and each particle of the entanglement state is filled in different quantum registers which act as shares of the secret message.Two modes,j.e.the detecting mode and the message mode,are employed so that the eavesdropping can be detected easily and the secret message may be recovered.The seeurity analysis shows that the proposed scheme is secure against eavesdropping of eavesdropper and cheating of participants.
Multiphoton Quantum Optics and Quantum State Engineering
Dell'Anno, F; Illuminati, F; 10.1016/j.physrep.2006.01.004
2009-01-01
We present a review of theoretical and experimental aspects of multiphoton quantum optics. Multiphoton processes occur and are important for many aspects of matter-radiation interactions that include the efficient ionization of atoms and molecules, and, more generally, atomic transition mechanisms; system-environment couplings and dissipative quantum dynamics; laser physics, optical parametric processes, and interferometry. A single review cannot account for all aspects of such an enormously vast subject. Here we choose to concentrate our attention on parametric processes in nonlinear media, with special emphasis on the engineering of nonclassical states of photons and atoms. We present a detailed analysis of the methods and techniques for the production of genuinely quantum multiphoton processes in nonlinear media, and the corresponding models of multiphoton effective interactions. We review existing proposals for the classification, engineering, and manipulation of nonclassical states, including Fock states...
Real weights, bound states and duality orbits
Marrani, Alessio; Romano, Luca
2015-01-01
We show that the duality orbits of extremal black holes in supergravity theories with symmetric scalar manifolds can be derived by studying the stabilizing subalgebras of suitable representatives, realized as bound states of specific weight vectors of the corresponding representation of the duality symmetry group. The weight vectors always correspond to weights that are real, where the reality properties are derived from the Tits-Satake diagram that identifies the real form of the Lie algebra of the duality symmetry group. Both N=2 magic Maxwell-Einstein supergravities and the semisimple infinite sequences of N=2 and N=4 theories in D=4 and 5 are considered, and various results, obtained over the years in the literature using different methods, are retrieved. In particular, we show that the stratification of the orbits of these theories occurs because of very specific properties of the representations: in the case of the theory based on the real numbers, whose symmetry group is maximally non-compact and there...
Manipulation of Squeezed Two-Phonon Bound States using Femtosecond Laser Pulses
Directory of Open Access Journals (Sweden)
Nakamura Kazutaka G.
2013-03-01
Full Text Available Two-phonon bound states have been excited exclusively in ZnTe(110 via impulsive stimulated second-order Raman scattering, essentially being squeezed states due to phase coherent excitation of two identical components anticorrelated in the wave vector. By using coherent control technique with a pair of femtosecond laser pulses, the manipulation of squeezed states has been demonstrated in which both the amplitude and lifetime of coherent oscillations of squeezed states are modulated, indicating the feasibility to control the quantum noise and the quantum nature of phonon squeezed states, respectively.
Lieb-Robinson Bound and the Butterfly Effect in Quantum Field Theories
Roberts, Daniel A.; Swingle, Brian
2016-08-01
As experiments are increasingly able to probe the quantum dynamics of systems with many degrees of freedom, it is interesting to probe fundamental bounds on the dynamics of quantum information. We elaborate on the relationship between one such bound—the Lieb-Robinson bound—and the butterfly effect in strongly coupled quantum systems. The butterfly effect implies the ballistic growth of local operators in time, which can be quantified with the "butterfly" velocity vB . Similarly, the Lieb-Robinson velocity places a state-independent ballistic upper bound on the size of time evolved operators in nonrelativistic lattice models. Here, we argue that vB is a state-dependent effective Lieb-Robinson velocity. We study the butterfly velocity in a wide variety of quantum field theories using holography and compare with free-particle computations to understand the role of strong coupling. We find that vB remains constant or decreases with decreasing temperature. We also comment on experimental prospects and on the relationship between the butterfly velocity and signaling.
Quantum Transition-State Theory
Hele, Timothy J H
2014-01-01
This dissertation unifies one of the central methods of classical rate calculation, `Transition-State Theory' (TST), with quantum mechanics, thereby deriving a rigorous `Quantum Transition-State Theory' (QTST). The resulting QTST is identical to ring polymer molecular dynamics transition-state theory (RPMD-TST), which was previously considered a heuristic method, and whose results we thereby validate. The key step in deriving a QTST is alignment of the flux and side dividing surfaces in path-integral space to obtain a quantum flux-side time-correlation function with a non-zero $t\\to 0_+$ limit. We then prove that this produces the exact quantum rate in the absence of recrossing by the exact quantum dynamics, fulfilling the requirements of a QTST. Furthermore, strong evidence is presented that this is the only QTST with positive-definite Boltzmann statistics and therefore the pre-eminent method for computation of thermal quantum rates in direct reactions.
Multiparty Quantum Secret Sharing of Quantum States Using Entanglement States
Institute of Scientific and Technical Information of China (English)
GUO Ying; HUANG Da-Zu; ZENG Gui-Hua; LEE Moon Ho
2008-01-01
A multi-partite-controlled quantum secret sharing scheme using several non-orthogonal entanglement states is presented with unconditional security.In this scheme,the participants share the secret quantum state by exchanging the secret polarization angles of the disordered travel particles.The security of the secret quantum state is also guaranteed by the non-orthogonal multi-partite-controlled entanglement states,the participants'secret polarizations,and the disorder of the travelling particles.Moreover,the present scheme is secure against the particle-number splitting attack and the intercept-and-resend attack.It may be still secure even if the distributed quantum state is embedded in a not-so-weak coherent-state pulse.
Monge Distance between Quantum States
Zyczkowski, K; Zyczkowski, Karol; Slomczynski, Wojciech
1998-01-01
We define a metric in the space of quantum states taking the Monge distance between corresponding Husimi distributions (Q--functions). This quantity fulfills the axioms of a metric and satisfies the following semiclassical property: the distance between two coherent states is equal to the Euclidean distance between corresponding points in the classical phase space. We compute analytically distances between certain states (coherent, squeezed, Fock and thermal) and discuss a scheme for numerical computation of Monge distance for two arbitrary quantum states.
Precision Study of Positronium: Testing Bound State QED Theory
Karshenboim, Savely G.
2003-01-01
As an unstable light pure leptonic system, positronium is a very specific probe atom to test bound state QED. In contrast to ordinary QED for free leptons, the bound state QED theory is not so well understood and bound state approaches deserve highly accurate tests. We present a brief overview of precision studies of positronium paying special attention to uncertainties of theory as well as comparison of theory and experiment. We also consider in detail advantages and disadvantages of positro...
Cramér-Rao bound for time-continuous measurements in linear Gaussian quantum systems
Genoni, Marco G.
2017-01-01
We describe a compact and reliable method to calculate the Fisher information for the estimation of a dynamical parameter in a continuously measured linear Gaussian quantum system. Unlike previous methods in the literature, which involve the numerical integration of a stochastic master equation for the corresponding density operator in a Hilbert space of infinite dimension, the formulas here derived depend only on the evolution of first and second moments of the quantum states and thus can be easily evaluated without the need of any approximation. We also present some basic but physically meaningful examples where this result is exploited, calculating analytical and numerical bounds on the estimation of the squeezing parameter for a quantum parametric amplifier and of a constant force acting on a mechanical oscillator in a standard optomechanical scenario.
Mouloudakis, K; Kominis, I K
2017-02-01
Radical-ion-pair reactions, central for understanding the avian magnetic compass and spin transport in photosynthetic reaction centers, were recently shown to be a fruitful paradigm of the new synthesis of quantum information science with biological processes. We show here that the master equation so far constituting the theoretical foundation of spin chemistry violates fundamental bounds for the entropy of quantum systems, in particular the Ozawa bound. In contrast, a recently developed theory based on quantum measurements, quantum coherence measures, and quantum retrodiction, thus exemplifying the paradigm of quantum biology, satisfies the Ozawa bound as well as the Lanford-Robinson bound on information extraction. By considering Groenewold's information, the quantum information extracted during the reaction, we reproduce the known and unravel other magnetic-field effects not conveyed by reaction yields.
Quantum bound on the specific entropy in strong-coupled scalar field theory
Energy Technology Data Exchange (ETDEWEB)
Alcalde, M. Aparicio; Menezes, G.; Svaiter, N.F. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]. E-mails: aparicio@cbpf.br; gsm@cbpf.br; nfuxsvai@cbpf.br
2007-07-01
Using the Euclidean path integral approach with functional methods, we discuss the (g{sub 0} {psi}{sup p})d self-interacting scalar field theory, in the strong-coupling regime. We assume the presence of macroscopic boundaries confining the field in a hypercube of side L. We also consider that the system is in thermal equilibrium at temperature {beta}{sup -1}. For spatially bounded free fields, the Bekenstein bound states that the specific entropy satisfies the inequality S/E < 2{pi}R, where R stands for the radius of the smallest sphere that circumscribes the system. Employing the strong coupling perturbative expansion, we obtain the renormalized mean energy E and entropy S for the system up to the order (g{sub 0}){sup -2/p}, presenting an analytical proof that the specific entropy also satisfies in some situations a quantum bound. Defining {epsilon}{sup (r)}{sub d} as the renormalized zero-point energy for the free theory per unit length, the dimensionless quantity {xi} = {beta}/L and h{sub 1}(d) and h{sub 2}(d) as positive analytic functions of d, for the case of high temperature, we get that the specific entropy satisfies S/E < 2{pi}R h{sub 1}(d)/ h{sub 2}(d) {xi}. When considering the low temperature behavior of the specific entropy, we have S/E < 2{pi}R h{sub 1}(d)/ {epsilon}{sup (3)} {xi}{sup 1-d}. Therefore the sign of the renormalized zero-point energy can invalidate this quantum bound. If the renormalized zero point-energy is a positive quantity, at intermediate temperatures and in the low temperature limit, there is a quantum bound. (author)
Bakke, K.
2010-10-01
We obtain the solutions of the Dirac equation when the noninertial effects of the Fermi-Walker reference frame break the relativistic Landau-Aharonov-Casher quantization, but they provide bound states in an analogous way to a Dirac neutral particle subject to Tan-Inkson quantum dot potential [W.-C. Tan, J.C. Inkson, Semicond. Sci. Technol. 11 (1996) 1635].
Applying the relativistic quantization condition to a three-particle bound state in a periodic box
Hansen, Maxwell T
2016-01-01
Using our recently developed relativistic three-particle quantization condition, we study the finite-volume energy shift of a three-particle bound state. We reproduce the result obtained using non-relativistic quantum mechanics by Mei{\\ss}ner, R{\\'i}os and Rusetsky, and generalize the result to a moving frame.
Bound state transfer matrix for AdS5 × S5 superstring
Arutyunov, G.E.; de Leeuw, M.; Suzuki, R.; Torrielli, A.
2009-01-01
We apply the algebraic Bethe ansatz technique to compute the eigenvalues of the transfer matrix constructed from the general bound state S-matrix of the light-cone AdS5 × S5 superstring. This allows us to verify certain conjectures on the quantum characteristic function, and to extend them to the ge
Quantum States as Ordinary Information
Directory of Open Access Journals (Sweden)
Ken Wharton
2014-03-01
Full Text Available Despite various parallels between quantum states and ordinary information, quantum no-go-theorems have convinced many that there is no realistic framework that might underly quantum theory, no reality that quantum states can represent knowledge about. This paper develops the case that there is a plausible underlying reality: one actual spacetime-based history, although with behavior that appears strange when analyzed dynamically (one time-slice at a time. By using a simple model with no dynamical laws, it becomes evident that this behavior is actually quite natural when analyzed “all-at-once” (as in classical action principles. From this perspective, traditional quantum states would represent incomplete information about possible spacetime histories, conditional on the future measurement geometry. Without dynamical laws imposing additional restrictions, those histories can have a classical probability distribution, where exactly one history can be said to represent an underlying reality.
Qi, Xianfei; Gao, Ting; Yan, Fengli
2017-01-01
Concurrence, as one of the entanglement measures, is a useful tool to characterize quantum entanglement in various quantum systems. However, the computation of the concurrence involves difficult optimizations and only for the case of two qubits, an exact formula was found. We investigate the concurrence of four-qubit quantum states and derive analytical lower bound of concurrence using the multiqubit monogamy inequality. It is shown that this lower bound is able to improve the existing bounds. This approach can be generalized to arbitrary qubit systems. We present an exact formula of concurrence for some mixed quantum states. For even-qubit states, we derive an improved lower bound of concurrence using a monogamy equality for qubit systems. At the same time, we show that a multipartite state is k-nonseparable if the multipartite concurrence is larger than a constant related to the value of k, the qudit number and the dimension of the subsystems. Our results can be applied to detect the multipartite k-nonseparable states.
Bicudo, P.; Cardoso, M.
2016-11-01
We address q q Q ¯Q ¯ exotic tetraquark bound states and resonances with a fully unitarized and microscopic quark model. We propose a triple string flip-flop potential, inspired by lattice QCD tetraquark static potentials and flux tubes, combining meson-meson and double Y potentials. Our model includes the color excited potential, but neglects the spin-tensor potentials, as well as all the other relativistic effects. To search for bound states and resonances, we first solve the two-body mesonic problem. Then we develop fully unitary techniques to address the four-body tetraquark problem. We fold the four-body Schrödinger equation with the mesonic wave functions, transforming it into a two-body meson-meson problem with nonlocal potentials. We find bound states for some quark masses, including the one reported in lattice QCD. Moreover, we also find resonances and calculate their masses and widths, by computing the T matrix and finding its pole positions in the complex energy plane, for some quantum numbers. However, a detailed analysis of the quantum numbers where binding exists shows a discrepancy with recent lattice QCD results for the l l b ¯ b ¯ tetraquark bound states. We conclude that the string flip-flop models need further improvement.
Quantum states characterization for the zero-error capacity
Medeiros, R A C; Cohen, G; De Assis, F M; Alleaume, Romain; Assis, Francisco M. de; Cohen, Gerard; Medeiros, Rex A C
2006-01-01
The zero-error capacity of quantum channels was defined as the least upper bound of rates at which classical information is transmitted through a quantum channel with probability of error equal to zero. This paper investigates some properties of input states used to attain the zero-error capacity of quantum channels. Initially, we reformulate the problem of finding the zero-error capacity in the language of graph theory. We use this alternative definition to prove that the zero-error capacity of any quantum channel is reached by using only pure states.
Relativistic bound-state equations for fermions with instantaneous interactions
Suttorp, L.G.
1979-01-01
Three types of relativistic bound-state equations for a fermion pair with instantaneous interaction are studied, viz., the instantaneous Bethe-Salpeter equation, the quasi-potential equation, and the two-particle Dirac equation. General forms for the equations describing bound states with arbitrary
Bound states in a hyperbolic asymmetric double-well
Energy Technology Data Exchange (ETDEWEB)
Hartmann, R. R., E-mail: richard.hartmann@dlsu.edu.ph [Physics Department, De La Salle University, 2401 Taft Avenue, Manila (Philippines)
2014-01-15
We report a new class of hyperbolic asymmetric double-well whose bound state wavefunctions can be expressed in terms of confluent Heun functions. An analytic procedure is used to obtain the energy eigenvalues and the criterion for the potential to support bound states is discussed.
Donor bound excitons in ZnSe nanoresonators - Applications in quantum information science
Energy Technology Data Exchange (ETDEWEB)
Pawlis, A. [Department of Physics, University of Paderborn, Warburger Str. 100, 33098 Paderborn, Germany and Edward L. Ginzton Laboratory, Stanford University, Stanford, California 94305-4088 (United States); Lischka, K. [Department of Physics, University of Paderborn, Warburger Str. 100, 33098 Paderborn (Germany); Sanaka, K.; Yamamoto, Y. [Edward L. Ginzton Laboratory, Stanford University, Stanford, California 94305-4088, USA and National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430 (Japan); Sleiter, D. [Edward L. Ginzton Laboratory, Stanford University, Stanford, California 94305-4088 (United States)
2014-05-15
Here we summarize the advantages of excitons bound to isolated fluorine donor in ZnSe/ZnMgSe quantum well nano-structures. Devices based on these semiconductors, are particularly suited to implement concepts of the optical manipulation of quantum states in solid-state material. The fluorine donor in ZnSe provides a physical qubit with potential advantages over previously researched qubits. In this context we show several initial demonstrations of devices, such as a low-threshold microdisk laser and an indistinguishable single photon source. Additionally we demonstrate the realization of a controllable three-level-system qubit consisting of a single Fluorine donor in a ZnSe nano-pillar, which provides an optical accessible single electon spin qubit.
Donor bound excitons in ZnSe nanoresonators - Applications in quantum information science
Pawlis, A.; Lischka, K.; Sanaka, K.; Sleiter, D.; Yamamoto, Y.
2014-05-01
Here we summarize the advantages of excitons bound to isolated fluorine donor in ZnSe/ZnMgSe quantum well nano-structures. Devices based on these semiconductors, are particularly suited to implement concepts of the optical manipulation of quantum states in solid-state material. The fluorine donor in ZnSe provides a physical qubit with potential advantages over previously researched qubits. In this context we show several initial demonstrations of devices, such as a low-threshold microdisk laser and an indistinguishable single photon source. Additionally we demonstrate the realization of a controllable three-level-system qubit consisting of a single Fluorine donor in a ZnSe nano-pillar, which provides an optical accessible single electon spin qubit.
Continuous Variable Quantum State Sharing via Quantum Disentanglement
Lance, A M; Bowen, W P; Sanders, B C; Tyc, T; Ralph, T C; Lam, P K; Lance, Andrew M.; Symul, Thomas; Bowen, Warwick P.; Sanders, Barry C.; Tyc, Tomas; Ralph, Timothy C.; Lam, Ping Koy
2004-01-01
Quantum state sharing is a protocol where perfect reconstruction of quantum states is achieved with incomplete or partial information in a multi-partite quantum networks. Quantum state sharing allows for secure communication in a quantum network where partial information is lost or acquired by malicious parties. This protocol utilizes entanglement for the secret state distribution, and a class of "quantum disentangling" protocols for the state reconstruction. We demonstrate a quantum state sharing protocol in which a tripartite entangled state is used to encode and distribute a secret state to three players. Any two of these players can collaborate to reconstruct the secret state, whilst individual players obtain no information. We investigate a number of quantum disentangling processes and experimentally demonstrate quantum state reconstruction using two of these protocols. We experimentally measure a fidelity, averaged over all reconstruction permutations, of F = 0.73. A result achievable only by using quan...
Dark states in quantum photosynthesis
Kozyrev, S V
2016-01-01
We discuss a model of quantum photosynthesis with degeneracy in the light-harvesting system. We consider interaction of excitons in chromophores with light and phonons (vibrations of environment). These interactions have dipole form but are different (are related to non-parallel vectors of "bright" states). We show that this leads to excitation of non-decaying "dark" states. We discuss relation of this model to the known from spectroscopical experiments phenomenon of existence of photonic echo in quantum photosynthesis.
QQqq Four-Quark Bound States in Chiral SU(3) Quark Model
Institute of Scientific and Technical Information of China (English)
ZHANG Ming; ZHANG Hai-Xia; ZHANG Zong-Ye
2008-01-01
The possibility of QQqq heavy-light four-quark bound states has been analyzed by means of the chiral SU(3) quark model, where Q is the heavy quark (c or b) and q is the light quark (u, d, or s). We obtain a bound state for the bbnn configuration with quantum number JP=1+, I=0 and for the ccnn (JP=1+, I=0) configuration, which is not bound but slightly above the D*D* threshold (n is u or d quark). Meanwhile, we also conclude that a weakly bound state in bbnn system can also be found without considering the chiral quark interactions between the two light quarks, yet its binding energy is weaker than that with the chiral quark interactions.
Memory effect in the upper bound of the heat flux induced by quantum fluctuations
Koide, T.
2016-10-01
Thermodynamic behaviors in a quantum Brownian motion coupled to a classical heat bath is studied. We then define a heat operator by generalizing the stochastic energetics and show the energy balance (first law) and the upper bound of the expectation value of the heat operator (second law). We further find that this upper bound depends on the memory effect induced by quantum fluctuations and hence the maximum extractable work can be qualitatively modified in quantum thermodynamics.
Quantum coherence of steered states
Hu, Xueyuan; Milne, Antony; Zhang, Boyang; Fan, Heng
2016-01-01
Lying at the heart of quantum mechanics, coherence has recently been studied as a key resource in quantum information theory. Quantum steering, a fundamental notion originally considered by Schödinger, has also recently received much attention. When Alice and Bob share a correlated quantum system, Alice can perform a local measurement to ‘steer’ Bob’s reduced state. We introduce the maximal steered coherence as a measure describing the extent to which steering can remotely create coherence; more precisely, we find the maximal coherence of Bob’s steered state in the eigenbasis of his original reduced state, where maximization is performed over all positive-operator valued measurements for Alice. We prove that maximal steered coherence vanishes for quantum-classical states whilst reaching a maximum for pure entangled states with full Schmidt rank. Although invariant under local unitary operations, maximal steered coherence may be increased when Bob performs a channel. For a two-qubit state we find that Bob’s channel can increase maximal steered coherence if and only if it is neither unital nor semi-classical, which coincides with the condition for increasing discord. Our results show that the power of steering for coherence generation, though related to discord, is distinct from existing measures of quantum correlation.
Li, Jun; Lu, Dawei; Luo, Zhihuang; Laflamme, Raymond; Peng, Xinhua; Du, Jiangfeng
2016-07-01
Precisely characterizing and controlling realistic quantum systems under noises is a challenging frontier in quantum sciences and technologies. In developing reliable controls for open quantum systems, one is often confronted with the problem of the lack of knowledge on the system controllability. The purpose of this paper is to give a numerical approach to this problem, that is, to approximately compute the reachable set of states for coherently controlled quantum Markovian systems. The approximation consists of setting both upper and lower bounds for system's reachable region of states. Furthermore, we apply our reachability analysis to the control of the relaxation dynamics of a two-qubit nuclear magnetic resonance spin system. We implement some experimental tasks of quantum state engineering in this open system at a near optimal performance in view of purity: e.g., increasing polarization and preparing pseudopure states. These results demonstrate the usefulness of our theory and show interesting and promising applications of environment-assisted quantum dynamics.
Cruising through molecular bound-state manifolds with radiofrequency
Lang, F.; van der Straten, P.; Brandstätter, B.; Thalhammer, G.; Winkler, K.; Julienne, P.S.; Grimm, R.; Hecker Denschlag, J.
2008-01-01
The production of ultracold molecules with their rich internal structure is currently attracting considerable interest1, 2, 3, 4. For future experiments, it will be important to efficiently transfer these molecules from their initial internal quantum state at production to other quantum states of in
Bound states and critical behavior of the Yukawa potential
Institute of Scientific and Technical Information of China (English)
LI; Yongyao
2006-01-01
[1]Yukawa,H.,On the interaction of elementary particles,Proc.Phys.Math Soc.Jap.,1935,17:48-57.[2]Sachs,R.,Goeppert-Mayer,M.,Calculations on a new neutron-proton interaction potential,Phys.Rev.,1938,53:991-993.[3]Harris,G.,Attractive two-body interactions in partially ionized plasmas,Phys.Rev.,1962,125:1131-1140.[4]Schey,H.,Schwartz,J.,Counting the bound states in short-range central potentials,Phys.Rev.B,1965,139:1428-1432.[5]Rogers,J.,Graboske,H.,Harwood,E.,Bound eigenstates of the static screened Coulomb poten-tial,Phys.Rev.A,1970,1:1577-1586.[6]McEnnan,J.,Kissel,L.,Pratt,R.,Analytic perturbation theory for screened Coulomb potentials:non-relativistic case,Phys.Rev.A,1976,13:532-559.[7]Gerry,C.,Estimates of the ground states of the Yukawa potential from the Bogoliubov inequality,J.Phys.A,1984,17:L313-L315.[8]Kr(o)ger,H.,Girard,R.,Dufour,G.,Direct calculation of the S matrix in coordinate space,Phys.Rev.C,1988,37:486-496.[9]Girard,R.,Kr(o)ger,H.,Labelle,P.et al.,Computation of a long time evolution in a Schr(o)dinger system,Phys.Rev.A,1988,37:3195-3200.[10]Garavelli,S.,Oliveira,F.,Analytical solution for a Yukawa-type potential,Phys.Rev.Lett.,1991,66:1310-1313.[11]Gomes,O.,Chacham,H.,Mohallem,J.,Variational calculations for the bound-unbound transition of the Yukawa potential,Phys.Rev.A,1994,50:228-231.[12]Yukalov,V.,Yukalova,E.,Oliveira,F.,Renormalization-group solutions for Yukawa potential,J.Phys.A,1998,31:4337-4348.[13]Brau,F.,Necessary and sufficient conditions for existence of bound states in a central potential,J.Phys.A,2003,36:9907-9913.[14]Bertini,L.,Mella,M.,Bressanini,D.et al.,Borromean binding in H-2 with Yukawa potential:a nonadiabatic quantum Monte Carlo study,Phys.Rev.A,2004,69:042504.[15]Dean,D.,Drummond,I.,Horgan,R.,Effective diffusion constant in a two-dimensional medium of charged point scatterers,J.Phys.A,2004,37:2039-2046.[16]De-Leo,S.,Rotelli,P.,Amplification of coupling for Yukawa potentials,Phys.Rev.D,2004,69:034006.[17]Khrapak
Decoy State Quantum Key Distribution
Lo, Hoi-Kwong
2005-10-01
Quantum key distribution (QKD) allows two parties to communicate in absolute security based on the fundamental laws of physics. Up till now, it is widely believed that unconditionally secure QKD based on standard Bennett-Brassard (BB84) protocol is limited in both key generation rate and distance because of imperfect devices. Here, we solve these two problems directly by presenting new protocols that are feasible with only current technology. Surprisingly, our new protocols can make fiber-based QKD unconditionally secure at distances over 100km (for some experiments, such as GYS) and increase the key generation rate from O(η2) in prior art to O(η) where η is the overall transmittance. Our method is to develop the decoy state idea (first proposed by W.-Y. Hwang in "Quantum Key Distribution with High Loss: Toward Global Secure Communication", Phys. Rev. Lett. 91, 057901 (2003)) and consider simple extensions of the BB84 protocol. This part of work is published in "Decoy State Quantum Key Distribution", . We present a general theory of the decoy state protocol and propose a decoy method based on only one signal state and two decoy states. We perform optimization on the choice of intensities of the signal state and the two decoy states. Our result shows that a decoy state protocol with only two types of decoy states--a vacuum and a weak decoy state--asymptotically approaches the theoretical limit of the most general type of decoy state protocols (with an infinite number of decoy states). We also present a one-decoy-state protocol as a special case of Vacuum+Weak decoy method. Moreover, we provide estimations on the effects of statistical fluctuations and suggest that, even for long distance (larger than 100km) QKD, our two-decoy-state protocol can be implemented with only a few hours of experimental data. In conclusion, decoy state quantum key distribution is highly practical. This part of work is published in "Practical Decoy State for Quantum Key Distribution
Classical and quantum computation with small space bounds (PhD thesis)
Yakaryilmaz, Abuzer
2011-01-01
In this thesis, we introduce a new quantum Turing machine (QTM) model that supports general quantum operators, together with its pushdown, counter, and finite automaton variants, and examine the computational power of classical and quantum machines using small space bounds in many different cases. The main contributions are summarized below. Firstly, we consider QTMs in the unbounded error setting: (i) in some cases of sublogarithmic space bounds, the class of languages recognized by QTMs is shown to be strictly larger than that of classical ones; (ii) in constant space bounds, the same result can still be obtained for restricted QTMs; (iii) the complete characterization of the class of languages recognized by realtime constant space nondeterministic QTMs is given. Secondly, we consider constant space-bounded QTMs in the bounded error setting: (i) we introduce a new type of quantum and probabilistic finite automata (QFAs and PFAs, respectively,) with a special two-way input head which is not allowed to be sta...
Explicit formula for the Holevo bound for two-parameter qubit-state estimation problem
Suzuki, Jun
2016-04-01
The main contribution of this paper is to derive an explicit expression for the fundamental precision bound, the Holevo bound, for estimating any two-parameter family of qubit mixed-states in terms of quantum versions of Fisher information. The obtained formula depends solely on the symmetric logarithmic derivative (SLD), the right logarithmic derivative (RLD) Fisher information, and a given weight matrix. This result immediately provides necessary and sufficient conditions for the following two important classes of quantum statistical models; the Holevo bound coincides with the SLD Cramér-Rao bound and it does with the RLD Cramér-Rao bound. One of the important results of this paper is that a general model other than these two special cases exhibits an unexpected property: the structure of the Holevo bound changes smoothly when the weight matrix varies. In particular, it always coincides with the RLD Cramér-Rao bound for a certain choice of the weight matrix. Several examples illustrate these findings.
Mass spectrum bound state systems with relativistic corrections
Energy Technology Data Exchange (ETDEWEB)
Dineykhan, M; Zhaugasheva, S A [Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna (Russian Federation); Toinbaeva, N Sh; Jakhanshir, A [al-Farabi Kazak National University, 480012 Almaty (Kazakhstan)
2009-07-28
Based on the investigation of the asymptotic behaviour of the polarization loop function for charged n scalar particles in an external gauge field, we determine the interaction Hamiltonian including relativistic corrections. The mass spectrum of the bound state is analytically derived. The mechanism for arising of the constituent mass of the relativistic bound-state forming particles is explained. The mass and the constituent mass of the two-, three- and n-body relativistic bound states are calculated taking into account relativistic corrections. The corrections arising due to the one- and two-loop electron polarization to the energy spectrum of muonic hydrogen with orbital and radial excitations are calculated.
The Relativistic Three-Body Bound State in Three-Dimensions
Directory of Open Access Journals (Sweden)
Hadizadeh M. R.
2016-01-01
Full Text Available Studying of the relativistic three-body bound state in a three-dimensional (3D approach is a necessary first step in a process to eventually perform scattering calculations at GeV energies, where partial-wave expansions are not useful. To this aim we recently studied relativistic effects in the binding energy and for the first time, obtained the relativistic 3B wave function [1]. The relativistic Faddeev integral equations for the bound state are formulated in terms of momentum vectors, and relativistic invariance is incorporated within the framework of Poincaré invariant quantum mechanics.
Quantum Memory as Light Pulses Quantum States Transformer
Directory of Open Access Journals (Sweden)
Vetlugin A.N.
2015-01-01
Full Text Available Quantum memory can operate not only as a write-in/readout device [1] for quantum light pulses and non-classical states generation [2] device but also as a quantum states of light transformer. Here the addressable parallel quantum memory [3] possibilities for this type of transformation are researched. Quantum memory operates as a conventional N-port interferometer with N equals to the number of the involved spin waves. As example we consider the ability to transform quantum states of two light pulses – in this case the quantum memory works as a mirror with a controlled transmission factor.
Quantum state revivals in quantum walks on cycles
Directory of Open Access Journals (Sweden)
Phillip R. Dukes
2014-01-01
Full Text Available Recurrence in the classical random walk is well known and described by the Pólya number. For quantum walks, recurrence is similarly understood in terms of the probability of a localized quantum walker to return to its origin. Under certain circumstances the quantum walker may also return to an arbitrary initial quantum state in a finite number of steps. Quantum state revivals in quantum walks on cycles using coin operators which are constant in time and uniform across the path have been described before but only incompletely. In this paper we find the general conditions for which full-quantum state revival will occur.
Information complementarity in multipartite quantum states and security in cryptography
Bera, Anindita; Kumar, Asutosh; Rakshit, Debraj; Prabhu, R.; SenDe, Aditi; Sen, Ujjwal
2016-03-01
We derive complementarity relations for arbitrary quantum states of multiparty systems of any number of parties and dimensions between the purity of a part of the system and several correlation quantities, including entanglement and other quantum correlations as well as classical and total correlations, of that part with the remainder of the system. We subsequently use such a complementarity relation between purity and quantum mutual information in the tripartite scenario to provide a bound on the secret key rate for individual attacks on a quantum key distribution protocol.
Security bound of two-bases quantum key-distribution protocols using qudits
Nikolopoulos, G M; Nikolopoulos, Georgios M.; Alber, Gernot
2005-01-01
We investigate the security bounds of quantum cryptographic protocols using $d$-level systems. In particular, we focus on schemes that use two mutually unbiased bases, thus extending the BB84 quantum key distribution scheme to higher dimensions. Under the assumption of general coherent attacks, we derive an analytic expression for the ultimate upper security bound of such quantum cryptography schemes. This bound is well below the predictions of optimal cloning machines. The possibility of extraction of a secret key beyond entanglement distillation is discussed. In the case of qutrits we argue that any eavesdropping strategy is equivalent to a symmetric one. For higher dimensions such an equivalence is generally no longer valid.
Fingerprint of topological Andreev bound states in phase-dependent heat transport
Sothmann, Björn; Hankiewicz, Ewelina M.
2016-08-01
We demonstrate that phase-dependent heat currents through superconductor-topological insulator Josephson junctions provide a useful tool to probe the existence of topological Andreev bound states, even for multichannel surface states. We predict that in the tunneling regime topological Andreev bound states lead to a minimum of the thermal conductance for a phase difference ϕ =π , in clear contrast to a maximum of the thermal conductance at ϕ =π that occurs for trivial Andreev bound states in superconductor-normal-metal tunnel junctions. This opens up the possibility that phase-dependent heat transport can distinguish between topologically trivial and nontrivial 4 π modes. Furthermore, we propose a superconducting quantum interference device geometry where phase-dependent heat currents can be measured using available experimental technology.
Quasi-bound states in strained graphene
Bahamon, Dario; Qi, Zenan; Park, Harold; Pareira, Vitor; Campbell, David
In this work, we explore the possibility of manipulating electronic states in graphene nanostructures by mechanical means. Specifically, we use molecular dynamics and tight-binding models to access the electronic and transport properties of strained graphene nanobubbles and graphene kirigami. We establish that low energy electrons can be confined in the arms of the kirigami and within the nanobubbles; under different load conditions the coupling between confined states and continuous states is modified creating different conductance line-shapes.
Upper bounds on fault tolerance thresholds of noisy Clifford-based quantum computers
Energy Technology Data Exchange (ETDEWEB)
Plenio, M B [Institut fuer Theoretische Physik, Albert-Einstein-Allee 11, Universitaet Ulm, D-89069 Ulm (Germany); Virmani, S [Department of Physics SUPA, University of Strathclyde, John Anderson Building, 107 Rottenrow, Glasgow G4 0NG (United Kingdom)], E-mail: shashank.virmani@strath.ac.uk
2010-03-15
We consider the possibility of adding noise to a quantum circuit to make it efficiently simulatable classically. In previous works, this approach has been used to derive upper bounds to fault tolerance thresholds-usually by identifying a privileged resource, such as an entangling gate or a non-Clifford operation, and then deriving the noise levels required to make it 'unprivileged'. In this work, we consider extensions of this approach where noise is added to Clifford gates too and then 'commuted' around until it concentrates on attacking the non-Clifford resource. While commuting noise around is not always straightforward, we find that easy instances can be identified in popular fault tolerance proposals, thereby enabling sharper upper bounds to be derived in these cases. For instance we find that if we take Knill's (2005 Nature 434 39) fault tolerance proposal together with the ability to prepare any possible state in the XY plane of the Bloch sphere, then not more than 3.69% error-per-gate noise is sufficient to make it classical, and 13.71% of Knill's {gamma} noise model is sufficient. These bounds have been derived without noise being added to the decoding parts of the circuits. Introducing such noise in a toy example suggests that the present approach can be optimized further to yield tighter bounds.
Extending Noether's theorem by quantifying the asymmetry of quantum states.
Marvian, Iman; Spekkens, Robert W
2014-05-13
Noether's theorem is a fundamental result in physics stating that every symmetry of the dynamics implies a conservation law. It is, however, deficient in several respects: for one, it is not applicable to dynamics wherein the system interacts with an environment; furthermore, even in the case where the system is isolated, if the quantum state is mixed then the Noether conservation laws do not capture all of the consequences of the symmetries. Here we address these deficiencies by introducing measures of the extent to which a quantum state breaks a symmetry. Such measures yield novel constraints on state transitions: for nonisolated systems they cannot increase, whereas for isolated systems they are conserved. We demonstrate that the problem of finding non-trivial asymmetry measures can be solved using the tools of quantum information theory. Applications include deriving model-independent bounds on the quantum noise in amplifiers and assessing quantum schemes for achieving high-precision metrology.
Extending Noether's theorem by quantifying the asymmetry of quantum states
Marvian, Iman
2014-01-01
Noether's theorem is a fundamental result in physics stating that every symmetry of the dynamics implies a conservation law. It is, however, deficient in several respects: (i) it is not applicable to dynamics wherein the system interacts with an environment, and (ii) even in the case where the system is isolated, if the quantum state is mixed then the Noether conservation laws do not capture all of the consequences of the symmetries. To address these deficiencies, we introduce measures of the extent to which a quantum state breaks a symmetry. Such measures yield novel constraints on state transitions: for nonisolated systems, they cannot increase, while for isolated systems they are conserved. We demonstrate that the problem of finding nontrivial asymmetry measures can be solved using the tools of quantum information theory. Applications include deriving model-independent bounds on the quantum noise in amplifiers and assessing quantum schemes for achieving high-precision metrology.
Impact of electron–vibron interaction on the bound states in the continuum
Energy Technology Data Exchange (ETDEWEB)
Álvarez, C. [GISC, Departamento de Física de Materiales, Universidad Complutense, E-28040 Madrid (Spain); Domínguez-Adame, F., E-mail: adame@fis.ucm.es [GISC, Departamento de Física de Materiales, Universidad Complutense, E-28040 Madrid (Spain); Department of Physics, University of Warwick, Coventry, CV4 7AL (United Kingdom); Orellana, P.A. [Departamento de Física, Universidad Técnica Federico Santa María, Casilla 110 V, Valparaíso (Chile); Díaz, E. [GISC, Departamento de Física de Materiales, Universidad Complutense, E-28040 Madrid (Spain)
2015-06-12
We investigate the nonequilibrium transport properties of a coupled quantum dot system connected in parallel to two leads, including electron–vibron interaction. It is known that in the absence of interaction the system supports a bound state in the continuum. This state is revealed as a Fano antiresonance in the transmission when the energy levels of the dots are detuned. Using the Keldysh nonequilibrium Green's function formalism, we find that the occurrence of the Fano antiresonance arises even if the electron–vibration interaction is taken into account. We also examine the impact of the coupling to the leads in the linear response of the system. We conclude that the existence of bound states in the continuum in coupled quantum dot systems is a robust phenomenon, opening the possibility of its observation in experiments.
Bound states of two-dimensional relativistic harmonic oscillators
Institute of Scientific and Technical Information of China (English)
Qiang Wen-Chao
2004-01-01
We give the exact normalized bound state wavefunctions and energy expressions of the Klein-Gordon and Dirac equations with equal scalar and vector harmonic oscillator potentials in the two-dimensional space.
On the bound states for the Aharonov-Casher systems
Silva, E O; Belich, H; Filgueiras, C
2012-01-01
The bound states for the Aharonov-Casher problem is considered. According to the Hagen's work on the exact equivalence between spin-1/2 Aharonov-Bohm and Aharonov-Casher effects, is known that the $\\boldsymbol{\
Higgs interchange and bound states of superheavy fermions
Indian Academy of Sciences (India)
M De Sanctis
2013-09-01
Hypothetical superheavy fourth-generation fermions with a very small coupling with the rest of the Standard Model can give rise to long enough lived bound states. The production and the detection of these bound states would be experimentally feasible at the LHC. Extending, in the present study, the analysis of other authors, a semirelativistic wave equation is solved using an accurate numerical method to determine the binding energies of these possible superheavy fermion-bound states. The interaction given by the Yukawa potential of the Higgs boson exchange is considered; the corresponding relativistic corrections are calculated by means of a model based on the covariance properties of the Hamiltonian. We study the effects given by the Coulomb force. Moreover, we calculate the contributions given by the Coulombic and confining terms of the strong interaction in the case of superheavy quark bound states. The results of the model are critically analysed.
A quantum bound on the thermodynamic description of gravity
Hod, Shahar
2016-01-01
The seminal works of Bekenstein and Hawking have revealed that black holes have a well-defined thermodynamic description. In particular, it is often stated in the physical literature that black holes, like mundane physical systems, obey the first law of thermodynamics: $\\Delta S=\\Delta E/T_{\\text{BH}}$, where $T_{\\text{BH}}$ is the Bekenstein-Hawking temperature of the black hole. In the present work we test the regime of validity of the thermodynamic description of gravity. In particular, we provide compelling evidence that, due to quantum effects, the first law of thermodynamics breaks down in the low-temperature regime $T_{\\text{BH}}\\times r_{\\text{H}}\\lesssim ({{\\hbar}/{r_{\\text{H}}}})^2$ of near-extremal black holes (here $r_{\\text{H}}$ is the radius of the black-hole horizon).
Remote preparation of quantum states
Bennett, C H; Leung, D W; Shor, P W; Winter, A; Bennett, Charles H; Hayden, Patrick; Leung, Debbie W.; Shor, Peter W.; Winter, Andreas
2003-01-01
Remote state preparation is the variant of quantum state teleportation in which the sender knows the quantum state to be communicated. The original paper introducing teleportation established minimal requirements for classical communication and entanglement but the corresponding limits for remote state preparation have remained unknown until now: previous work has shown, however, that it not only requires less classical communication but also gives rise to a trade-off between these two resources in the appropriate setting. We discuss this problem from first principles, including the various choices one may follow in the definitions of the actual resources. Our main result is a general method of remote state preparation for arbitrary states of many qubits, at a cost of 1 bit of classical communication and 1 bit of entanglement per qubit sent. In this "universal" formulation, these ebit and cbit requirements are shown to be simultaneously optimal by exhibiting a dichotomy. This then yields the exact trade-off c...
Pairwise Quantum Correlations for Superpositions of Dicke States
Xi, Zhengjun; Li, Yongming; Wang, Xiaoguang
2011-01-01
Using the concept of quantum discord (QD), we study the quantum correlation for a class of two-qubit X states with exchange and parity symmetries, whose density matrices have complex off-diagonal elements. We derive an upper bound of the QD, which is independent of the arguments of the complex off-diagonal elements of the reduced two-qubit density matricies. Moreover, for the two-qubit X states obtained from Dicke states and their superposition states, we obtain a compact expression of the QD by numerical check. Finally, we apply the expression to discuss the quantum correlation of the reduced two-qubit states of Dicke states and their superpositions, and the results are compared with those obtained by entanglement of formation (EoF), which is a quantum entanglement measure.
Quantum state transfer via Bloch oscillations.
Tamascelli, Dario; Olivares, Stefano; Rossotti, Stefano; Osellame, Roberto; Paris, Matteo G A
2016-05-18
The realization of reliable quantum channels, able to transfer a quantum state with high fidelity, is a fundamental step in the construction of scalable quantum devices. In this paper we describe a transmission scheme based on the genuinely quantum effect known as Bloch oscillations. The proposed protocol makes it possible to carry a quantum state over different distances with a minimal engineering of the transmission medium and can be implemented and verified on current quantum technology hardware.
Unknowability of Quantum State forbids perfectly quantum operations
Institute of Scientific and Technical Information of China (English)
CAIQing-yu; LIBai-wen
2004-01-01
We analyze the oonnection between quantum operations and accessible information. And we find that the accessible information decreases under quantum operations. We show that it is impossible to perfectly manipulate an unknown state in an open quantum system. That the accessible information decreases under quantum operations gives a fundamental limitation in the microscopic world.
Unknowability of Quantum State forbids perfectly quantum operations
Institute of Scientific and Technical Information of China (English)
CAI Qing-yu; LI Bai-wen
2004-01-01
We analyze the connection between quantum operations and accessible information. And we find that the accessible information decreases under quantum operations. We show that it is impossible to perfectly manipulate an unknown state in an open quantum system. That the accessible information decreases under quantum operations gives a fundamental limitation in the microscopic world.
Methods of observation of the centrifugal quantum states of neutrons
Cubitt, R.; Nesvizhevsky, V. V.; Petukhov, A. K.; Voronin, A. Yu.; Pignol, G.; Protasov, K. V.; Gurshijants, P.
2009-12-01
We propose methods for observation of the quasi-stationary states of neutrons, localized near a curved mirror surface. The bounding effective well is formed by the centrifugal potential and the mirror's optical potential. This phenomenon is an example of an exactly solvable "quantum bouncer" problem that can be studied experimentally. It could provide a new tool for studying fundamental neutron-matter interactions, neutron quantum optics and surface physics effects. The feasibility of observation of such quantum states has been proven in first experiments.
Methods of observation of the centrifugal quantum states of neutrons
Energy Technology Data Exchange (ETDEWEB)
Cubitt, R. [Institut Laue-Langevin (ILL), 6 rue Jules Horowitz, F-38042 Grenoble (France); Nesvizhevsky, V.V., E-mail: nesvizhevsky@ill.e [Institut Laue-Langevin (ILL), 6 rue Jules Horowitz, F-38042 Grenoble (France); Petukhov, A.K. [Institut Laue-Langevin (ILL), 6 rue Jules Horowitz, F-38042 Grenoble (France); Voronin, A.Yu., E-mail: dr.a.voronin@gmail.co [P.N. Lebedev Physical Institute, 53 Leninsky Prospekt, 119991 Moscow (Russian Federation); Pignol, G.; Protasov, K.V. [Laboratoire de Physique Subatomique et de Cosmologie (LPSC), IN2P3-CNRS, UJF, 53, Avenue des Martyrs, F-38026 Grenoble (France); Gurshijants, P. [Institute of Solid State Physics (ISSP), Institutskaya Street 2, 142432 Chernogolovka, Moscow Region (Russian Federation)
2009-12-11
We propose methods for observation of the quasi-stationary states of neutrons, localized near a curved mirror surface. The bounding effective well is formed by the centrifugal potential and the mirror's optical potential. This phenomenon is an example of an exactly solvable 'quantum bouncer' problem that can be studied experimentally. It could provide a new tool for studying fundamental neutron-matter interactions, neutron quantum optics and surface physics effects. The feasibility of observation of such quantum states has been proven in first experiments.
Narrow deeply bound K- and p atomic states
Friedman, E.; Gal, A.
2000-01-01
Examples of recently predicted narrow `deeply bound' K- and p atomic states are shown. The saturation of widths for strong absorptive potentials due to the induced repulsion, and the resulting suppression of atomic wave functions within the nucleus, are demonstrated. Production reactions for K- atomic states using φ(1020) decay, and the (p,p) reaction for p atomic states, are discussed.
On Bounded Posets Arising from Quantum Mechanical Measurements
Dorninger, Dietmar; Länger, Helmut
2016-10-01
Let S be a set of states of a physical system. The probabilities p( s) of the occurrence of an event when the system is in different states s ∈ S define a function from S to [0, 1] called a numerical event or, more precisely, an S- probability. If one orders a set P of S-probabilities in respect to the order of functions, further includes the constant functions 0 and 1 and defines p' = 1 - p for every p ∈ P, then one obtains a bounded poset of S-probabilities with an antitone involution. We study these posets in respect to various conditions about the existence of the sum of certain functions within the posets and derive properties from these conditions. In particular, questions of relations between different classes of S-probabilities arising this way are settled, algebraic representations are provided and the property that two S-probabilities commute is characterized which is essential for recognizing a classical physical system.
Effects of QCD bound states on dark matter relic abundance
Liew, Seng Pei; Luo, Feng
2017-02-01
We study scenarios where there exists an exotic massive particle charged under QCD in the early Universe. We calculate the formation and dissociation rates of bound states formed by pairs of these particles, and apply the results in dark matter (DM) coannihilation scenarios, including also the Sommerfeld effect. We find that on top of the Sommerfeld enhancement, bound-state effects can further significantly increase the largest possible DM masses which can give the observed DM relic abundance, by ˜ 30-100% with respect to values obtained by considering the Sommerfeld effect only, for the color triplet or octet exotic particles we consider. In particular, it indicates that the Bino DM mass in the right-handed stop-Bino coannihilation scenario in the Minimal Supersymmetric extension of the Standard Model (MSSM) can reach ˜ 2.5 TeV, even though the potential between the stop and antistop prior to forming a bound state is repulsive. We also apply the bound-state effects in the calculations of relic abundance of long-lived or metastable massive colored particles, and discuss the implications on the BBN constraints and the abundance of a super-weakly interacting DM. The corrections for the bound-state effect when the exotic massive colored particles also carry electric charges, and the collider bounds are also discussed.
Bound and continuum vibrational states of the bifluoride anion
Špirko, V.; Šindelka, M.; Shirsat, R. N.; Leszczynski, J.
2003-07-01
The energies of the bound vibrational states and energy density spectra of the continuum vibrational states of FHF - are calculated, 'exactly' and 'adiabatically', using a new ab initio (CCSD(T)) potential energy surface. Statistical properties of the bound states are probed in terms of the density of states and nearest neighbor level spacing distributions (NNSD). Importantly, the approximate 'adiabatic' densities coincide nearly quantitatively with their 'exact' counterparts. A quantitative fitting of the NNSDs is achieved with a new empirical modification of the Wigner distribution.
Floquet bound states around defects and adatoms in graphene
Lovey, D. A.; Usaj, Gonzalo; Foa Torres, L. E. F.; Balseiro, C. A.
2016-06-01
Recent studies have focused on laser-induced gaps in graphene which have been shown to have a topological origin, thereby hosting robust states at the sample edges. While the focus has remained mainly on these topological chiral edge states, the Floquet bound states around defects lack a detailed study. In this paper we present such a study covering large defects of different shape and also vacancy-like defects and adatoms at the dynamical gap at ℏ Ω /2 (ℏ Ω being the photon energy). Our results, based on analytical calculations as well as numerics for full tight-binding models, show that the bound states are chiral and appear in a number which grows with the defect size. Furthermore, while the bound states exist regardless of the type of the defect's edge termination (zigzag, armchair, mixed), the spectrum is strongly dependent on it. In the case of top adatoms, the bound state quasienergies depend on the adatoms energy. The appearance of such bound states might open the door to the presence of topological effects on the bulk transport properties of dirty graphene.
Bound States of a Ferromagnetic Wire in a Superconductor.
Sau, Jay D; Brydon, P M R
2015-09-18
We consider the problem of bound states in strongly anisotropic ferromagnetic impurities in a superconductor, motivated by recent experiments that claim to observe Majorana modes at the ends of ferromagnetic wires on a superconducting substrate [S. Nadj-Perge et al., Science 346, 602 (2014)]. Generalizing the successful theory of bound states of spherically symmetric impurities, we consider a wirelike potential using both analytical and numerical approaches. We find that away from the ends of the wire the bound states form bands with pronounced van Hove singularities, giving rise to subgap peaks in the local density of states. For sufficiently strong magnetization of the wire, we show that this process generically produces a sharp peak at zero energy in the local density of states near the ends of the wire. This zero-energy peak has qualitative similarities to the claimed signature of a Majorana mode observed in the aforementioned experiment.
Coherent states in the quantum multiverse
Energy Technology Data Exchange (ETDEWEB)
Robles-Perez, S., E-mail: salvarp@imaff.cfmac.csic.e [Colina de los Chopos, Centro de Fisica ' Miguel Catalan' , Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 121, 28006 Madrid (Spain); Estacion Ecologica de Biocosmologia, Medellin (Spain); Hassouni, Y. [Laboratoire de Physique Theorique, Faculte des Sciences-Universite Sidi Med Ben Abdellah, Avenue Ibn Batouta B.P: 1014, Agdal Rabat (Morocco); Gonzalez-Diaz, P.F. [Colina de los Chopos, Centro de Fisica ' Miguel Catalan' , Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 121, 28006 Madrid (Spain); Estacion Ecologica de Biocosmologia, Medellin (Spain)
2010-01-11
In this Letter, we study the role of coherent states in the realm of quantum cosmology, both in a second-quantized single universe and in a third-quantized quantum multiverse. In particular, most emphasis will be paid to the quantum description of multiverses made of accelerated universes. We have shown that the quantum states involved at a quantum mechanical multiverse whose single universes are accelerated are given by squeezed states having no classical analogs.
Tight bound on coherent-state-based entanglement generation over lossy channels
Azuma, Koji; Koashi, Masato; Imoto, Nobuyuki
2009-01-01
The first stage of the hybrid quantum repeaters is entanglement generation based on transmission of pulses in coherent states over a lossy channel. Protocols to make entanglement with only one type of error are favorable for rendering subsequent entanglement distillation efficient. Here we provide the tight upper bound on performances of these protocols that is determined only by the channel loss. In addition, we show that this bound is achievable by utilizing a proposed protocol [arXiv:0811.3100] composed of a simple combination of linear optical elements and photon-number-resolving detectors.
Entanglement for All Quantum States
de la Torre, A. C.; Goyeneche, D.; Leitao, L.
2010-01-01
It is shown that a state that is factorizable in the Hilbert space corresponding to some choice of degrees of freedom becomes entangled for a different choice of degrees of freedom. Therefore, entanglement is not a special case but is ubiquitous in quantum systems. Simple examples are calculated and a general proof is provided. The physical…
Entropy of Quantum States: Ambiguities
Balachandran, A P; Vaidya, S
2012-01-01
The von Neumann entropy of a generic quantum state is not unique unless the state can be uniquely decomposed as a sum of extremal or pure states. As pointed out to us by Sorkin, this happens if the GNS representation (of the algebra of observables in some quantum state) is reducible, and some representations in the decomposition occur with non-trivial degeneracy. This non-unique entropy can occur at zero temperature. We will argue elsewhere in detail that the degeneracies in the GNS representation can be interpreted as an emergent broken gauge symmetry, and play an important role in the analysis of emergent entropy due to non-Abelian anomalies. Finally, we establish the analogue of an H-theorem for this entropy by showing that its evolution is Markovian, determined by a stochastic matrix.
Quantum state of the multiverse
Robles Pérez, Salvador; González-Díaz, Pedro F.
2010-01-01
A third quantization formalism is applied to a simplified multiverse scenario. A well-defined quantum state of the multiverse is obtained which agrees with standard boundary condition proposals. These states are found to be squeezed, and related to accelerating universes: they share similar properties to those obtained previously by Grishchuk and Siderov. We also comment on related works that have criticized the third quantization approach. © 2010 The American Physical Society.
Quantum State Detection Via Elimination
Ettinger, J M; Hoyer, Peter
1999-01-01
We present the view of quantum algorithms as a search-theoretic problem. We show that the Fourier transform, used to solve the Abelian hidden subgroup problem, is an example of an efficient elimination observable which eliminates a constant fraction of the candidate secret states with high probability. Finally, we show that elimination observables do not always exist by considering the geometry of the hidden subgroup states of the dihedral group D_N.
Lee, Myoung-Jae; Jung, Young-Dae
2017-02-01
High frequency electrostatic wave propagation in a dense and semi-bounded electron quantum plasma is investigated with consideration of the Bohm potential. The dispersion relation for the surface mode of quantum plasma is derived and numerically analyzed. We found that the quantum effect enhances the frequency of the wave especially in the high wave number regime. However, the frequency of surface wave is found to be always lower than that of the bulk wave for the same quantum wave number. The group velocity of the surface wave for various quantum wave number is also obtained.
Quantum Contextuality with Stabilizer States
Directory of Open Access Journals (Sweden)
Jiri Vala
2013-06-01
Full Text Available The Pauli groups are ubiquitous in quantum information theory because of their usefulness in describing quantum states and operations and their readily understood symmetry properties. In addition, the most well-understood quantum error correcting codes—stabilizer codes—are built using Pauli operators. The eigenstates of these operators—stabilizer states—display a structure (e.g., mutual orthogonality relationships that has made them useful in examples of multi-qubit non-locality and contextuality. Here, we apply the graph-theoretical contextuality formalism of Cabello, Severini and Winter to sets of stabilizer states, with particular attention to the effect of generalizing two-level qubit systems to odd prime d-level qudit systems. While state-independent contextuality using two-qubit states does not generalize to qudits, we show explicitly how state-dependent contextuality associated with a Bell inequality does generalize. Along the way we note various structural properties of stabilizer states, with respect to their orthogonality relationships, which may be of independent interest.
Internal conversion to bound final states in 125Te
Harston, M. R.; Carreyre, T.; Chemin, J. F.; Karpeshin, F.; Trzhaskovskaya, M. B.
2000-08-01
Theoretical results are presented for rate of decay of the 3/2+ isomeric nuclear state of 125Te by excitation of atomic electrons to bound states in the ions Te 45+ and Te 46+. In these ions the nuclear transition energy lies just below the threshold for emission of a K-shell electron to the continuum with the result that normal K-shell internal conversion is energetically forbidden. However recent experimental results indicate that excitation of K-shell electrons is still significant in these ions. The theoretical results presented here for internal conversion to bound final states are in quantitative agreement with experiment and thereby confirm the contribution of near-resonant electron-nucleus transitions involving a bound final state.
A precise error bound for quantum phase estimation.
Directory of Open Access Journals (Sweden)
James M Chappell
Full Text Available Quantum phase estimation is one of the key algorithms in the field of quantum computing, but up until now, only approximate expressions have been derived for the probability of error. We revisit these derivations, and find that by ensuring symmetry in the error definitions, an exact formula can be found. This new approach may also have value in solving other related problems in quantum computing, where an expected error is calculated. Expressions for two special cases of the formula are also developed, in the limit as the number of qubits in the quantum computer approaches infinity and in the limit as the extra added qubits to improve reliability goes to infinity. It is found that this formula is useful in validating computer simulations of the phase estimation procedure and in avoiding the overestimation of the number of qubits required in order to achieve a given reliability. This formula thus brings improved precision in the design of quantum computers.
Two-body bound state problem and nonsingular scattering equations
Energy Technology Data Exchange (ETDEWEB)
Bartnik, E.A.; Haberzettl, H.; Sandhas, W.
1986-11-01
We present a new momentum space approach to the two-body problem in partial waves. In contrast to the usual momentum space approaches, we treat the bound state case with the help of an inhomogeneous integral equation which possesses solutions for all (negative) energies. The bound state energies and corresponding wave functions are identified by an additional condition. This procedure straightforwardly leads to a nonsingular formulation of the scattering problem in terms of essentially the same equation and thus unifies the descriptions of both energy regimes. We show that the properties of our momentum-space approach can be understood in terms of the so-called regular solution of the Schroedinger equation in position space. The unified description of the bound state and scattering energy regimes in terms of one single, real, and manifestly nonsingular equation allows us to construct an exact representation of the two-body off-shell T matrix in which all the bound state pole and scattering cut information is contained in one single separable term, the remainder being real, nonsingular, and vanishing half on-shell. Such a representation may be of considerable advantage as input in three-body Faddeev-type integral equations. We demonstrate the applicability of our method by calculating bound state and scattering data for the two-nucleon system with the s-wave Malfliet--Tjon III potential.
Search for bound-state electron+positron pair decay
Bosch, F.; Hagmann, S.; Hillenbrand, P.-M.; Lane, G. J.; Litvinov, Yu. A.; Reed, M. W.; Sanjari, M. S.; Stöhlker, Th.; Torilov, S. Yu.; Tu, X. L.; Walke, P. M.
2016-09-01
The heavy ion storage rings coupled to in-flight radioactive-ion beam facilities, namely the ability to produce and store for extended periods of time radioactive nuclides in high atomic charge states, for the searchof yet unobserved decay mode - bound-state electron-positron pair decay.
Photodisintegration of a Bound State on the Torus
Meyer, Harvey B
2012-01-01
In this article the cross-section for the photodisintegration of a bound state is expressed, order by order in the multipole expansion, in terms of matrix elements between states living on the three-dimensional torus. The motivation is to make the process amenable to Monte-Carlo simulations. The case of the deuteron is discussed.
Energy Technology Data Exchange (ETDEWEB)
Adame, J.; Warzel, S., E-mail: warzel@ma.tum.de [Zentrum Mathematik, TU München, Boltzmannstr. 3, 85747 Garching (Germany)
2015-11-15
In this note, we use ideas of Farhi et al. [Int. J. Quantum. Inf. 6, 503 (2008) and Quantum Inf. Comput. 11, 840 (2011)] who link a lower bound on the run time of their quantum adiabatic search algorithm to an upper bound on the energy gap above the ground-state of the generators of this algorithm. We apply these ideas to the quantum random energy model (QREM). Our main result is a simple proof of the conjectured exponential vanishing of the energy gap of the QREM.
Unknown Quantum States The Quantum de Finetti Representation
Caves, C M; Schack, R; Caves, Carlton M.; Fuchs, Christopher A.; Schack, Ruediger
2002-01-01
We present an elementary proof of the quantum de Finetti representation theorem, a quantum analogue of de Finetti's classical theorem on exchangeable probability assignments. This contrasts with the original proof of Hudson and Moody [Z. Wahrschein. verw. Geb. 33, 343 (1976)], which relies on advanced mathematics and does not share the same potential for generalization. The classical de Finetti theorem provides an operational definition of the concept of an unknown probability in Bayesian probability theory, where probabilities are taken to be degrees of belief instead of objective states of nature. The quantum de Finetti theorem, in a closely analogous fashion, deals with exchangeable density-operator assignments and provides an operational definition of the concept of an ``unknown quantum state'' in quantum-state tomography. This result is especially important for information-based interpretations of quantum mechanics, where quantum states, like probabilities, are taken to be states of knowledge rather than...
An Exciton Bound to a Neutral Donor in Quantum Dots
Institute of Scientific and Technical Information of China (English)
解文方
2002-01-01
The binding energies for an exciton (X) trapped in a two-dimensional quantum dot by a neutral donor have been calculated using the method of few-body physics for the heavy hole (σ= 0.196) and the light hole (σr = 0.707).We find that the (D0, X) complex confined in a quantum dot has in general a larger binding energy than those in a two-dimensional quantum well and a three-dimensional bulk semiconductor, and the binding energy increases with the decrease of the dot radius. At dot radius R →∞, we compare our calculated result with the previous results.
Binding Energy of an Exciton Bound to Ionized Acceptor in Quantum Dots
Institute of Scientific and Technical Information of China (English)
XIE Wen-Fang
2001-01-01
Binding energiesfor an exciton (X ) trapped in the two-dimensional quantum dot by a negative ion located on the z axis at a distance from the dot plane are calculated by using the method of few-body physics.This configuration is called a barrier (A-,X) center.The dependence of the binding energy of the ground state of the barrier (A-,X)center on the electron-to-hole mass ratio for a few values of the distance d between the fixed negative ion on the z axis and the dot plane is obtained.We find that when d → 0,the barrier (A-,X) center has not any bound state.We also studied the stability and binding energy of the ground state of the barrier (A-,X) center in a parabolic quantum dot as a function of the distance d between the fixed negative ion on the z axis and the dot plane.``
Bound state techniques to solve the multiparticle scattering problem
Carbonell, J; Fonseca, A C; Lazauskas, R
2013-01-01
Solution of the scattering problem turns to be very difficult task both from the formal as well as from the computational point of view. If the last two decades have witnessed decisive progress in ab initio bound state calculations, rigorous solution of the scattering problem remains limited to A$\\leq$4 case. Therefore there is a rising interest to apply bound-state-like methods to handle non-relativistic scattering problems. In this article the latest theoretical developments in this field are reviewed. Five fully rigorous methods will be discussed, which address the problem of nuclear collisions in full extent (including the break-up problem) at the same time avoiding treatment of the complicate boundary conditions or integral kernel singularities. These new developments allows to use modern bound-state techniques to advance significantly rigorous solution of the scattering problem.
Relativistic bound state approach to fundamental forces including gravitation
Directory of Open Access Journals (Sweden)
Morsch H.P.
2012-06-01
Full Text Available To describe the structure of particle bound states of nature, a relativistic bound state formalism is presented, which requires a Lagrangian including scalar coupling of two boson fields. The underlying mechanisms are quite complex and require an interplay of overlapping boson fields and fermion-antifermion production. This gives rise to two potentials, a boson-exchange potential and one identified with the long sought confinement potential in hadrons. With minimal requirements, two elementary massless fermions (quantons - with and without charge - and one gauge boson, hadrons and leptons but also atoms and gravitational systems are described by bound states with electric and magnetic coupling between the charges and spins of quantons. No need is found for colour, Higgs-coupling and supersymmetry.
Quantum State Engineering Via Coherent-State Superpositions
Janszky, Jozsef; Adam, P.; Szabo, S.; Domokos, P.
1996-01-01
The quantum interference between the two parts of the optical Schrodinger-cat state makes possible to construct a wide class of quantum states via discrete superpositions of coherent states. Even a small number of coherent states can approximate the given quantum states at a high accuracy when the distance between the coherent states is optimized, e. g. nearly perfect Fock state can be constructed by discrete superpositions of n + 1 coherent states lying in the vicinity of the vacuum state.
Bounding the persistency of the nonlocality of W states
Diviánszky, Péter; Trencsényi, Réka; Bene, Erika; Vértesi, Tamás
2016-04-01
The nonlocal properties of the W states are investigated under particle loss. By removing all but two particles from an N -qubit W state, the resulting two-qubit state is still entangled. Hence, the W state has high persistency of entanglement. We ask an analogous question regarding the persistency of nonlocality [see N. Brunner and T. Vértesi, Phys. Rev. A 86, 042113 (2012), 10.1103/PhysRevA.86.042113]. Namely, we inquire what is the minimal number of particles that must be removed from the W state so that the resulting state becomes local. We bound this value in function of N qubits by considering Bell nonlocality tests with two alternative settings per site. In particular, we find that this value is between 2 N /5 and N /2 for large N . We also develop a framework to establish bounds for more than two settings per site.
Quantum learning of coherent states
Energy Technology Data Exchange (ETDEWEB)
Sentis, Gael [Universitat Autonoma de Barcelona, Fisica Teorica: Informacio i Fenomens Quantics, Barcelona (Spain); Guta, Madalin; Adesso, Gerardo [University of Nottingham, School of Mathematical Sciences, Nottingham (United Kingdom)
2015-12-15
We develop a quantum learning scheme for binary discrimination of coherent states of light. This is a problem of technological relevance for the reading of information stored in a digital memory. In our setting, a coherent light source is used to illuminate a memory cell and retrieve its encoded bit by determining the quantum state of the reflected signal. We consider a situation where the amplitude of the states produced by the source is not fully known, but instead this information is encoded in a large training set comprising many copies of the same coherent state. We show that an optimal global measurement, performed jointly over the signal and the training set, provides higher successful identification rates than any learning strategy based on first estimating the unknown amplitude by means of Gaussian measurements on the training set, followed by an adaptive discrimination procedure on the signal. By considering a simplified variant of the problem, we argue that this is the case even for non-Gaussian estimation measurements. Our results show that, even in absence of entanglement, collective quantum measurements yield an enhancement in the readout of classical information, which is particularly relevant in the operating regime of low-energy signals. (orig.)
Two qubits of a W state violate Bell's inequality beyond Cirel'son's bound
Cabello, A
2002-01-01
It is shown that the correlations between two qubits selected from a trio prepared in a W state violate the Clauser-Horne-Shimony-Holt inequality more than the correlations between two qubits in any quantum state. Such a violation beyond Cirel'son's bound is smaller than the one achieved by two qubits selected from a trio in a Greenberger-Horne-Zeilinger state [A. Cabello, Phys. Rev. Lett. 88, 060403 (2002)]. However, it has the advantage that all local observers can know from their own measurements whether their qubits belongs or not to the selected pair.
A Density Matrix Renormalization Group Approach to an Asymptotically Free Model with Bound States
Martín-Delgado, M A
1999-01-01
We apply the DMRG method to the 2 dimensional delta function potential which is a simple quantum mechanical model with asymptotic freedom and formation of bound states. The system block and the environment block of the DMRG contain the low energy and high energy degrees of freedom, respectively. The ground state energy and the lowest excited states are obtained with an unprecedent accuracy. We compare the DMRG method with the Similarity RG method and propose its generalization to field theoretical models in high energy physics.
Spectrum of Andreev bound states in Josephson junctions with a ferromagnetic insulator
Energy Technology Data Exchange (ETDEWEB)
Kawabata, Shiro, E-mail: s-kawabata@aist.go.jp [Nanosystem Research Institute (NRI), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); CREST, Japan Science and Technology Corporation (JST), Kawaguchi, Saitama 332-0012 (Japan); Tanaka, Yukio [Department of Applied Physics, Nagoya University, Nagoya 464-8603 (Japan); Golubov, Alexander A. [Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Vasenko, Andrey S. [Institut Laue-Langevin, 6 rue Jules Horowitz, BP 156, 38042 Grenoble (France); Asano, Yasuhiro [Department of Applied Physics, Hokkaido University, Sapporo 060-8628 (Japan)
2012-10-15
Ferromagnetic-insulator (FI) based Josephson junctions are promising candidates for a coherent superconducting quantum bit as well as a classical superconducting logic circuit. Recently the appearance of an intriguing atomic-scale 0-{pi} transition has been theoretically predicted. In order to uncover the mechanism of this phenomena, we numerically calculate the spectrum of Andreev bound states in a FI barrier by diagonalizing the Bogoliubov-de Gennes equation. We show that Andreev spectrum drastically depends on the parity of the FI-layer number L and accordingly the {pi}(0) state is always more stable than the 0 ({pi}) state if L is odd (even).
Force-producing ADP state of myosin bound to actin.
Wulf, Sarah F; Ropars, Virginie; Fujita-Becker, Setsuko; Oster, Marco; Hofhaus, Goetz; Trabuco, Leonardo G; Pylypenko, Olena; Sweeney, H Lee; Houdusse, Anne M; Schröder, Rasmus R
2016-03-29
Molecular motors produce force when they interact with their cellular tracks. For myosin motors, the primary force-generating state has MgADP tightly bound, whereas myosin is strongly bound to actin. We have generated an 8-Å cryoEM reconstruction of this state for myosin V and used molecular dynamics flexed fitting for model building. We compare this state to the subsequent state on actin (Rigor). The ADP-bound structure reveals that the actin-binding cleft is closed, even though MgADP is tightly bound. This state is accomplished by a previously unseen conformation of the β-sheet underlying the nucleotide pocket. The transition from the force-generating ADP state to Rigor requires a 9.5° rotation of the myosin lever arm, coupled to a β-sheet rearrangement. Thus, the structure reveals the detailed rearrangements underlying myosin force generation as well as the basis of strain-dependent ADP release that is essential for processive myosins, such as myosin V.
Flow Equations for N Point Functions and Bound States
Ellwanger, Ulrich
1994-01-01
We discuss the exact renormalization group or flow equation for the effective action and its decomposition into one particle irreducible N point functions. With the help of a truncated flow equation for the four point function we study the bound state problem for scalar fields. A combination of analytic and numerical methods is proposed, which is applied to the Wick-Cutkosky model and a QCD-motivated interaction. We present results for the bound state masses and the Bethe-Salpeter wave function. (Figs. 1-4 attached as separate uuencoded post-script files.)
Parity lifetime of bound states in a proximitized semiconductor nanowire
DEFF Research Database (Denmark)
Higginbotham, Andrew Patrick; Albrecht, Sven Marian; Kirsanskas, Gediminas
2015-01-01
superconductors but remain relatively unexplored in semiconductor-superconductor structures, which are now being intensely pursued in the context of topological superconductivity. To this end, we introduce a new physical system comprised of a gate-confined semiconductor nanowire with an epitaxially grown...... superconductor layer, yielding an isolated, proximitized nanowire segment. We identify Andreev-like bound states in the semiconductor via bias spectroscopy, determine the characteristic temperatures and magnetic fields for quasiparticle excitations, and extract a parity lifetime (poisoning time) of the bound...... state in the semiconductor exceeding 10 ms....
Helical bound states in the continuum of the edge states in two dimensional topological insulators
Energy Technology Data Exchange (ETDEWEB)
Sablikov, Vladimir A., E-mail: sablikov@gmail.com; Sukhanov, Aleksei A.
2015-09-04
We study bound states embedded into the continuum of edge states in two-dimensional topological insulators. These states emerge in the presence of a short-range potential of a structural defect coupled to the boundary. In this case the edge states flow around the defect and have two resonances in the local density of states. The bound state in continuum (BIC) arises due to an interference of the resonances when they are close to the degeneracy. We find the condition under which the BIC appears, study the spacial distribution of the electron density, and show that the BIC has a helical structure with an electron current circulating around the defect. - Highlights: • We find bound states in the continuum of edge states in 2D topological insulators. • The bound states are induced by an impurity potential and topological order. • The bound state in the continuum has a helical structure of spin and current density.
Creating a Superposition of Unknown Quantum States.
Oszmaniec, Michał; Grudka, Andrzej; Horodecki, Michał; Wójcik, Antoni
2016-03-18
The superposition principle is one of the landmarks of quantum mechanics. The importance of quantum superpositions provokes questions about the limitations that quantum mechanics itself imposes on the possibility of their generation. In this work, we systematically study the problem of the creation of superpositions of unknown quantum states. First, we prove a no-go theorem that forbids the existence of a universal probabilistic quantum protocol producing a superposition of two unknown quantum states. Second, we provide an explicit probabilistic protocol generating a superposition of two unknown states, each having a fixed overlap with the known referential pure state. The protocol can be applied to generate coherent superposition of results of independent runs of subroutines in a quantum computer. Moreover, in the context of quantum optics it can be used to efficiently generate highly nonclassical states or non-Gaussian states.
First direct proof of internal conversion between bound states
Carreyre, T.; Harston, M. R.; Aiche, M.; Bourgine, F.; Chemin, J. F.; Claverie, G.; Goudour, J. P.; Scheurer, J. N.; Attallah, F.; Bogaert, G.; Kiener, J.; Lefebvre, A.; Durell, J.; Grandin, J. P.; Meyerhof, W. E.; Phillips, W.
2000-08-01
We present direct evidence for the process of internal conversion between bound atomic states (BIC) when the binding energy of the converted electron becomes larger than the nuclear transition energy. This process has been proposed as an explanation of the measured, unexpectedly short lifetime of the first excited state of 125Te with charge state larger than 44+. We have detected the Kα x rays emitted in flight which follow the filling of the K-shell vacancy created by the bound internal conversion process, together with γ rays from Te ions in charge states ranging between 44+ and 48+. For Te45+ and Te46+, the comparison of the x-ray to γ-ray ratios with the theoretical calculations of the internal conversion coefficients including decay to bound atomic states, assuming Te ions in their ground electronic state, show poor agreement. The agreement becomes good if account is taken of BIC decay of excited initial states with different occupancies of the 2p1/2 and 2p3/2 subshells. In this situation, the half-life becomes sensitive to the precise initial state and simple specification of the charge state alone is no longer appropriate.
Quantum metrology in open systems: dissipative Cramér-Rao bound.
Alipour, S; Mehboudi, M; Rezakhani, A T
2014-03-28
Estimation of parameters is a pivotal task throughout science and technology. The quantum Cramér-Rao bound provides a fundamental limit of precision allowed to be achieved under quantum theory. For closed quantum systems, it has been shown how the estimation precision depends on the underlying dynamics. Here, we propose a general formulation for metrology scenarios in open quantum systems, aiming to relate the precision more directly to properties of the underlying dynamics. This feature may be employed to enhance an estimation precision, e.g., by quantum control techniques. Specifically, we derive a Cramér-Rao bound for a fairly large class of open system dynamics, which is governed by a (time-dependent) dynamical semigroup map. We illustrate the utility of this scenario through three examples.
Entanglement for all quantum states
Energy Technology Data Exchange (ETDEWEB)
De la Torre, A C; Goyeneche, D; Leitao, L [IFIMAR, (CONICET-UNMDP) Departamento de Fisica, Universidad Nacional de Mar del Plata, Funes 3350, 7600 Mar del Plata (Argentina)], E-mail: delatorre@mdp.edu.ar, E-mail: dgoyene@mdp.edu.ar, E-mail: lleitao@mdp.edu.ar
2010-03-15
It is shown that a state that is factorizable in the Hilbert space corresponding to some choice of degrees of freedom becomes entangled for a different choice of degrees of freedom. Therefore, entanglement is not a special case but is ubiquitous in quantum systems. Simple examples are calculated and a general proof is provided. The physical relevance of the change of tensor product structure is mentioned.
Entanglement for all quantum states
de la Torre, A C; Leitao, L; 10.1088/0143-0807/31/2/010
2010-01-01
It is shown that a state that is factorizable in the Hilbert space corresponding to some choice of degrees of freedom, becomes entangled for a different choice of degrees of freedom. Therefore, entanglement is not a special case but is ubiquitous in quantum systems. Simple examples are calculated and a general proof is provided. The physical relevance of the change of tensor product structure is mentioned.
Quantum Defect Theory description of weakly bound levels and Feshbach resonances in LiRb
Pérez-Ríos, Jesús; Chen, Yong P; Greene, Chris H
2014-01-01
The multichannel quantum defect theory (MQDT) in combination with the frame transformation (FT) approach is applied to model the Fano-Feshbach resonances measured for $^{7}$Li$^{87}$Rb and $^{6}$Li$^{87}$Rb [Marzok {\\it et al.} Phys. Rev. A {\\bf 79} 012717 (2009)]. The MQDT results show a level of accuracy comparable to that of previous models based on direct, fully numerical solutions of the the coupled channel Schr\\"odinger equations (CC). Here, energy levels deduced from 2-photon photoassociation spectra for $^{7}$Li$^{85}$Rb are assigned by applying the MQDT approach, obtaining the bound state energies for the coupled channel problem. Our results confirm that MQDT yields a compact description of photoassociation observables as well as the Fano-Feshbach resonance positions and widths.
Self-bound droplets of a dilute magnetic quantum liquid
Schmitt, Matthias; Wenzel, Matthias; Böttcher, Fabian; Ferrier-Barbut, Igor; Pfau, Tilman
2016-01-01
Self-bound many-body systems occur in different scenarios all across the fields of physics. For example in the astrophysical context the stellar classification is based on a detailed balance of attractive self-gravitating forces and repulsive terms e.g. due to Fermi pressure. Also liquid droplets are formed by mutual attractive forces due to covalent or van der Waals attraction and repulsive parts of the inter-particle potential due to the electronic Pauli exclusion principle. Self-bound ense...
Directional detection of dark matter in universal bound states
Laha, Ranjan
2015-01-01
It has been suggested that several small-scale structure anomalies in $\\Lambda$CDM cosmology can be solved by strong self-interaction between dark matter particles. It was shown by Braaten and Hammer that the presence of a near threshold S-wave resonance can make the scattering cross section at nonrelativistic speeds come close to saturating the unitarity bound. This can result in the formation of a stable bound state of two asymmetric dark matter particles (which we call darkonium). Laha and Braaten studied the nuclear recoil energy spectrum in dark matter direct detection experiments due to this incident bound state. Here we study the angular recoil spectrum, and show that it is uniquely determined up to normalization by the S-wave scattering length. Observing this angular recoil spectrum in a dark matter directional detection experiment will uniquely determine many of the low-energy properties of dark matter independent of the underlying dark matter microphysics.
Memory Effect in Upper Bound of Heat Flux Induced by Quantum Fluctuations
Koide, T
2016-01-01
We develop a model of quantum open systems as a quantum Brownian motion coupled to a classical heat bath by introducing a mathematical definition of operator differentials. We then define a heat operator by extending the stochastic energetics and show that this operator satisfies properties corresponding to the first and second laws in thermodynamics. We further find that the upper bound of the heat flux depends on the memory effect induced by quantum fluctuations and hence the maximum extractable work can be qualitatively modified in quantum thermodynamics.
ɛ-bounded state estimation for time-delay systems with bounded disturbances
Nam, P. T.; Pathirana, P. N.; Trinh, H.
2014-09-01
A new problem on ε-bounded functional state estimation for time-delay systems with unknown bounded disturbances is studied in this paper. In the presence of unknown bounded disturbances, the common assumption regarding the observer's matching condition is no longer required. In this regard, instead of achieving asymptotic convergence for the observer error, the error is now required to converge exponentially within a ball with a small radius ε > 0. This means that the estimate converges exponentially within an ε-bound of the true value. A general observer that utilises multiple-delayed output and input information is proposed. Sufficient conditions for the existence of the proposed observer are first given. We then employ an extended Lyapunov-Krasovskii functional which combines the delay-decomposition technique with a triple-integral term to study the ε-convergence problem of the observer error system. Moreover, the obtained results are shown to be more effective than the existing results for the cases with no disturbances and/or no time delay. Three numerical examples are given to illustrate the obtained results.
Quantum Computing in Solid State Systems
Ruggiero, B; Granata, C
2006-01-01
The aim of Quantum Computation in Solid State Systems is to report on recent theoretical and experimental results on the macroscopic quantum coherence of mesoscopic systems, as well as on solid state realization of qubits and quantum gates. Particular attention has been given to coherence effects in Josephson devices. Other solid state systems, including quantum dots, optical, ion, and spin devices which exhibit macroscopic quantum coherence are also discussed. Quantum Computation in Solid State Systems discusses experimental implementation of quantum computing and information processing devices, and in particular observations of quantum behavior in several solid state systems. On the theoretical side, the complementary expertise of the contributors provides models of the various structures in connection with the problem of minimizing decoherence.
Quantum cryptography with squeezed states
Hillery, M
1999-01-01
A quantum key distribution scheme based on the use of displaced squeezed vacuum states is presented. The states are squeezed in one of two field quadrature components, and the value of the squeezed component is used to encode a character from an alphabet. The uncertainty relation between quadrature components prevents an eavesdropper from determining both with enough precision to determine the character being sent. Losses degrade the performance of this scheme, but it is possible to use phase-sensitive amplifiers to boost the signal and partially compensate for their effect.
Nonclassicality of noisy quantum states
Semenov, A A; Vasylyev, D Y
2005-01-01
Nonclassicality conditions for an oscillator-like system interacting with a hot thermal bath are considered. Nonclassical properties of quantum states can be conserved up to a certain temperature threshold only. In this case affection of the thermal noise can be compensated via transformation of an observable, which tests the nonclassicality (witness function). Possibilities for experimental implementations based on unbalanced homodyning are discussed. At the same time we demonstrate that the scheme based on balanced homodyning cannot be improved for noisy states with proposed technique and should be applied directly.
A Lorentz covariant approach to the bound state problem
Micu, L
2000-01-01
The relativistic equivalent of the Schr\\"odinger equation for a two particle bound state having the total angular momentum $S$ is written in the form of a Lorentz covariant set of equations (p_1^mu+p_2^mu+Omega^mu)Psi(p_1,p_2;P) chi_S(\\vec{p}_1,\\vec{p}_2)=P^mu Psi(p_1,p_2;P) chi_S(\\vec{p}_1,\\vec{p}_2) where the operators Omega^mu are the components of a 4-vector quasipotential. The solution of this set is a stationary function representing the distribution of spins and internal momenta in a reference frame where the momentum of the bound system is P^\\mu. The contribution of the operators Omega^mu to the bound state momentum is assumed to be the 4-momentum of a vacuum-like effective field entering the bound system as an independent component. It is shown that a state made of free quarks and of the effective field has definite mass and can be normalized like a single particle state. The generalization to the case of three or more particles is immediate.
The S-matrix of String Bound States
Arutyunov, Gleb
2008-01-01
We find the S-matrix which describes the scattering of two-particle bound states of the light-cone string sigma model on AdS5xS5. We realize the M-particle bound state representation of the centrally extended su(2|2) algebra on the space of homogeneous (super)symmetric polynomials of degree M depending on two bosonic and two fermionic variables. The scattering matrix S^{MN} of M- and N-particle bound states is a differential operator of degree M+N acting on the product of the corresponding polynomials. We require this operator to obey the invariance condition and the Yang-Baxter equation, and we determine it for the two cases M=1,N=2 and M=N=2. We show that the S-matrices found satisfy generalized physical unitarity, CPT invariance, parity transformation rule and crossing symmetry. Although the dressing factor as a function of four parameters x_1^+,x_1^-,x_2^+,x_2^- is universal for scattering of any bound states, it obeys a crossing symmetry equation which depends on M and N.
Towards flavored bound states beyond rainbows and ladders
El-Bennich, B; Paracha, M A; de Melo, J P B C
2013-01-01
We give a snapshot of recent progress in solving the Dyson-Schwinger equation with a beyond rainbow-ladder ansatz for the dressed quark-gluon vertex which includes ghost contributions. We discuss the motivations for this approach with regard to heavy-flavored bound states and form factors and briefly describe future steps to be taken.
The S-matrix of string bound states
Energy Technology Data Exchange (ETDEWEB)
Arutyunov, Gleb [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, 3508 TD Utrecht (Netherlands)], E-mail: g.arutyunov@phys.uu.nl; Frolov, Sergey [School of Mathematics, Trinity College, Dublin 2 (Ireland)], E-mail: frolovs@maths.tcd.ie
2008-11-21
We find the S-matrix which describes the scattering of two-particle bound states of the light-cone string sigma model on AdS{sub 5}xS{sup 5}. We realize the M-particle bound state representation of the centrally extended su(2|2) algebra on the space of homogeneous (super)symmetric polynomials of degree M depending on two bosonic and two fermionic variables. The scattering matrix S{sup MN} of M- and N-particle bound states is a differential operator of degree M+N acting on the product of the corresponding polynomials. We require this operator to obey the invariance condition and the Yang-Baxter equation, and we determine it for the two cases M=1,N=2 and M=N=2. We show that the S-matrices found satisfy generalized physical unitarity, CPT invariance, parity transformation rule and crossing symmetry. Although the dressing factor as a function of four parameters x{sub 1}{sup +},x{sub 1}{sup -},x{sub 2}{sup +},x{sub 2}{sup -} is universal for scattering of any bound states, it obeys a crossing symmetry equation which depends on M and N.
In-medium K̄ interactions and bound states
Directory of Open Access Journals (Sweden)
Gal Avraham
2014-01-01
Full Text Available Correct treatment of subthreshold K̄ N dynamics is mandatory in K− -atom and K̄ -nuclear bound-state calculations, as demonstrated by using in-medium chirally-based models of K̄ N interactions. Recent studies of kaonic atom data reveal appreciable multi-nucleon contributions. K̄ -nuclear widths larger than 50 MeV are anticipated.
The local characteristics of the bound states of muonic molecules
Energy Technology Data Exchange (ETDEWEB)
Abramov, D.I. [Sankt Peterburgskij Univ., St. Petersburg (Russian Federation); Bogdanova, L.N. [Institute of Theoretical and Experimental Physics, Moscow (Russian Federation); Gusev, V.V. [Institut Fiziki Vysokikh Ehnergij, Protvino (Russian Federation); Ponomarev, L.I. [Rossijskij Nauchnyj Tsentr ``Kurchatovskij Inst.``, Moscow (Russian Federation)
1996-10-01
The sticking probabilities {omega}{sup Jv}, G- and {gamma}-factors for all bound states of mesic molecules HH{mu}, HD{mu}, HT{mu}, DD{mu}, DT{mu}, and TT{mu} with J = 0 and v = 0, 1 have been calculated in the adiabatic hyperspherical approach (AHSA). (orig.). 6 refs.
Perspectives on a Solid State NMR Quantum Computer
Fel'dman, Edward B.; Lacelle, Serge
2001-01-01
A quantum information processing device, based on bulk solid state NMR of the quasi-one dimensional material hydroxyapatite, is proposed following the magnetic resonance force microscopy work of Yamamoto et al (quant-ph/0009122). In a macroscopic sample of hydroxyapatite, our solid state NMR model yields a limit of 10^8 qubits imposed by physics, while development of current technological considerations should allow an upper bound in the range of hundreds to thousands of qubits.
Nonradiative formation of the positron-helium triplet bound state
di Rienzi, Joseph; Drachman, Richard J.
2007-02-01
We have previously calculated the cross section for radiative formation of the interesting bound state consisting of a positron bound to helium, where the atomic electrons are in the triplet spin state. That process uses the metastable triplet helium system as target, and, as expected, it has a very small cross section. In this paper we examine a more probable process in which the state of interest is produced in an exchange rearrangement collision between a positronium atom and the singlet helium ground state: Ps+He(Se1)→PsHe+(Se3)+e- . The present calculation is done in the plane-wave Born approximation, using simple initial and final wave functions and compares post and prior forms.
Evidence for a Possible Proton-Antiproton Bound State from Lattice QCD
Loan, M
2006-01-01
We have used standard techniques of lattice quantum chromodynamics to look for evidence of the spin-zero six quark flavour singlet state ($J^{PC}=0^{-+}$) observed by BES Collaboration, and to determine the splitting between the mass of the possible proton-antiproton and the mass of two protons, its threshold. Ignoring quark loops and quark annihilation, we find indications that for sufficiently light quarks proton- antiproton is below the $2m_{p}$ threshold, making it a possible six-quark bound state.
Teleportations of Mixed States and Multipartite Quantum States
Institute of Scientific and Technical Information of China (English)
YU Chang-Shui; WANG Ya-Hong; SONG He-Shan
2007-01-01
In this paper, we propose a protocol to deterministically teleport an unknown mixed state of qubit by utilizing a maximally bipartite entangled state of qubits as quantum channel. Ifa non-maximally entangled bipartite pure state is employed as quantum channel, the unknown mixed quantum state of qubit can be teleported with 1 - √1 - C2 probability, where C is the concurrence of the quantum channel. The protocol can also be generalized to teleport a mixed state of qudit or a multipartite mixed state. More important purpose is that, on the basis of the protocol, the teleportation of an arbitrary multipartite (pure or mixed) quantum state can be decomposed into the teleportation of each subsystem by employing separate entangled states as quantum channels. In the case of deterministic teleportation,Bob only needs to perform unitary transformations on his single particles in order to recover the initial teleported multipartite quantum state.
Quantum Brachistochrone for Mixed States
Carlini, A; Koike, T; Okudaira, Y
2007-01-01
We present a general formalism based on the variational principle for finding the time-optimal quantum evolution of mixed states governed by a master equation, when the Hamiltonian and the Lindblad operators are subject to certain constraints. The problem reduces to solving first a fundamental equation (the {\\it quantum brachistochrone}) for the Hamiltonian, which can be written down once the constraints are specified, and then solving the constraints and the master equation for the Lindblad and the density operators. As an application of our formalism, we study a simple one-qubit model where the optimal Lindblad operators control decoherence and can be simulated by a tunable coupling with an ancillary qubit. It is found that the evolution through mixed states can be more efficient than the unitary evolution between given pure states. We also discuss the mixed state evolution as a finite time unitary evolution of the system plus an environment followed by a single measurement. For the simplest choice of the c...
Quantum learning of coherent states
Sentís, Gael; Adesso, Gerardo
2014-01-01
We develop a quantum learning scheme for binary discrimination of coherent states of light. This is a problem of technological relevance for the reading of information stored in a digital memory. In our setting, a coherent light source is used to illuminate a memory cell and retrieve its encoded bit by determining the quantum state of the reflected signal. We consider a situation where the amplitude of the states produced by the source is not fully known, but instead this information is encoded in a large training set comprising many copies of the same coherent state. We show that an optimal global measurement, performed jointly over the signal and the training set, provides higher successful identification rates than any learning strategy based on first estimating the unknown amplitude by means of Gaussian measurements on the training set, followed by an adaptive discrimination procedure on the signal. By considering a simplified variant of the problem, we argue that this is the case even for non-Gaussian es...
Effect of the Velocity-Dependent Potentials on the Bound State Energy Eigenvalues
Institute of Scientific and Technical Information of China (English)
O.Bayrak; A.Soylu; I.Boztosun
2011-01-01
We investigate the effect of isotropic velocity-dependent potentials on the bound state energy eigenvalues for the first time for any quantum states of the Coulomb and harmonic oscillator potentials within the framework of the asymptotic iteration method. When the velocity-dependent term is selected as a constant parameter po, we present that the energy eigenvalues can be obtained analytically for both Coulomb and harmonic oscillator potentials. However, when the velocity-dependent term is considered as a harmonic oscillator type poΥ2, taking the velocity-dependent term as a perturbation, we present how to obtain the energy eigenvalues of the Coulomb and harmonic oscillator potentials for any n and (e) quantum states by using perturbation expansion and numerical calculations in the asymptotic iteration method procedure.%@@ We investigate the effect of isotropic velocity-dependent potentials on the bound state energy eigenvalues for the first time for any quantum states of the Coulomb and harmonic oscillator potentials within the framework of the asymptotic iteration method.When the velocity-dependent term is selected as a constant parameter po,we present that the energy eigenvalues can be obtained analytically for both Coulomb and harmonic oscillator potentials.However, when the velocity-dependent term is considered as a harmonic oscillator type por2, taking the velocity-dependent term as a perturbation, we present how to obtain the energy eigenvalues of the Coulomb and harmonic oscillator potentials for any n and e quantum states by using perturbation expansion and numerical calculations in the asymptotic iteration method procedure.
Scattering Induced Quantum Interference of Multiple Quantum Optical States
DEFF Research Database (Denmark)
Ott, Johan Raunkjær; Wubs, Martijn; Mortensen, N. Asger;
2011-01-01
Using a discrete mode theory for propagation of quantum optical states, we investigate the consequences of multiple scattering on the degree of quadrature entanglement and quantum interference. We report that entangled states can be created by multiple-scattering. We furthermore show that quantum...... interference induced by the transmission of quantized light through a multiple-scattering medium will persist even after averaging over an ensemble of scattering samples....
Preparation of many-body states for quantum simulation
Ward, Nicholas J.; Kassal, Ivan; Aspuru-Guzik, Alán
2009-05-01
While quantum computers are capable of simulating many quantum systems efficiently, the simulation algorithms must begin with the preparation of an appropriate initial state. We present a method for generating physically relevant quantum states on a lattice in real space. In particular, the present algorithm is able to prepare general pure and mixed many-particle states of any number of particles. It relies on a procedure for converting from a second-quantized state to its first-quantized counterpart. The algorithm is efficient in that it operates in time that is polynomial in all the essential descriptors of the system, the number of particles, the resolution of the lattice, and the inverse of the maximum final error. This scaling holds under the assumption that the wave function to be prepared is bounded or its indefinite integral is known and that the Fock operator of the system is efficiently simulatable.
Teleportation of Two Quantum States via the Quantum Computation
Institute of Scientific and Technical Information of China (English)
FENG Mang; ZHU Xi-Wen; FANG Xi-Ming; YAN Min; SHI Lei
2000-01-01
A scheme of teleportation of two unknown quantum states via quantum computation is proposed. The comparison with the former proposals shows that our scheme is more in tune with the original teleportation proposal and the effciency is higher. The teleportation of an unknown entangled state is also discussed.
Institute of Scientific and Technical Information of China (English)
Chen Gang; Chen Zi-Dong; Lou Zhi-Mei
2004-01-01
The exact bound state solutions of the Klein-Gordon equation and Dirac equation with scalar and vector pseudoharmonic oscillator potentials are obtained in this paper. Furthermore, we have used the supersymmetric quantum mechanics, shape invariance and alternative method to obtain the required results.
Entanglement and coherence in quantum state merging
Streltsov, A; Rana, S; Bera, M N; Winter, A; Lewenstein, M
2016-01-01
Understanding the resource consumption in distributed scenarios is one of the main goals of quantum information theory. A prominent example for such a scenario is the task of quantum state merging where two parties aim to merge their parts of a tripartite quantum state. In standard quantum state merging, entanglement is considered as an expensive resource, while local quantum operations can be performed at no additional cost. However, recent developments show that some local operations could be more expensive than others: it is reasonable to distinguish between local incoherent operations and local operations which can create coherence. This idea leads us to the task of incoherent quantum state merging, where one of the parties has free access to local incoherent operations only. In this case the resources of the process are quantified by pairs of entanglement and coherence. Here, we develop tools for studying this process, and apply them to several relevant scenarios. While quantum state merging can lead to ...
A better lower bound for quantum algorithms searching an ordered list
Ambainis, A
1999-01-01
We show that any quantum algorithm searching an ordered list of n elements needs to examine at least 1/12 log n-O(1) of them. Classically, log n queries are both necessary and sufficient. This shows that quantum algorithms can achieve only a constant speedup for this problem. Our result improves lower bounds of Buhrman and de Wolf(quant-ph/9811046) and Farhi, Goldstone, Gutmann and Sipser (quant-ph/9812057).
Quantum state transfer through noisy quantum cellular automata
Avalle, Michele; Genoni, Marco G.; Serafini, Alessio
2015-05-01
We model the transport of an unknown quantum state on one dimensional qubit lattices by means of a quantum cellular automata (QCA) evolution. We do this by first introducing a class of discrete noisy dynamics, in the first excitation sector, in which a wide group of classical stochastic dynamics is embedded within the more general formalism of quantum operations. We then extend the Hilbert space of the system to accommodate a global vacuum state, thus allowing for the transport of initial on-site coherences besides excitations, and determine the dynamical constraints that define the class of noisy QCA in this subspace. We then study the transport performance through numerical simulations, showing that for some instances of the dynamics perfect quantum state transfer is attainable. Our approach provides one with a natural description of both unitary and open quantum evolutions, where the homogeneity and locality of interactions allow one to take into account several forms of quantum noise in a plausible scenario.
Observation of Andreev bound states at spin-active interfaces
Energy Technology Data Exchange (ETDEWEB)
Beckmann, Detlef; Wolf, Michael Johannes [KIT, Institut fuer Nanotechnologie (Germany); Huebler, Florian [KIT, Institut fuer Nanotechnologie (Germany); KIT, Institut fuer Festkoerperphysik (Germany); Loehneysen, Hilbert von [KIT, Institut fuer Festkoerperphysik (Germany); KIT, Physikalisches Institut (Germany)
2013-07-01
We report on high-resolution differential conductance experiments on nanoscale superconductor/ferromagnet tunnel junctions with ultra-thin oxide tunnel barriers. We observe subgap conductance features which are symmetric with respect to bias, and shift according to the Zeeman energy with an applied magnetic field. These features can be explained by resonant transport via Andreev bound states induced by spin-active scattering at the interface. From the energy and the Zeeman shift of the bound states, both the magnitude and sign of the spin-dependent interfacial phase shifts between spin-up and spin-down electrons can be determined. These results contribute to the microscopic insight into the triplet proximity effect at spin-active interfaces.
Radial sensitivity of kaonic atoms and strongly bound K¯ states
Barnea, N.; Friedman, E.
2007-02-01
The strength of the low-energy K--nucleus real potential has recently received renewed attention in view of experimental evidence for the possible existence of strongly bound K- states. Previous fits to kaonic atom data led to either “shallow” or “deep” potentials, where only the former are in agreement with chiral approaches but only the latter can produce strongly bound states. Here we explore the uncertainties of the K--nucleus optical potentials, obtained from fits to kaonic atom data, using the functional derivatives of the best-fit χ2 values with respect to the potential. We find that only the deep type of potential provides information that is applicable to the K- interaction in the nuclear interior.
R-matrix calculations for few-quark bound states
Energy Technology Data Exchange (ETDEWEB)
Shalchi, M.A. [Instituto de Fisica Teorica, UNESP, Sao Paulo, SP (Brazil); Hadizadeh, M.R. [Ohio University, Institute of Nuclear and Particle Physics and Department of Physics and Astronomy, Athens, OH (United States); Central State University, College of Science and Engineering, Wilberforce, OH (United States)
2016-10-15
The R-matrix method is implemented to study the heavy charm and bottom diquark, triquark, tetraquark, and pentaquarks in configuration space, as the bound states of quark-antiquark, diquark-quark, diquark-antidiquark, and diquark-antitriquark systems, respectively. The mass spectrum and the size of these systems are calculated for different partial wave channels. The calculated masses are compared with recent theoretical results obtained by other methods in momentum and configuration spaces and also by available experimental data. (orig.)
R-matrix calculations for few-quark bound states
Shalchi, M. A.; Hadizadeh, M. R.
2016-10-01
The R-matrix method is implemented to study the heavy charm and bottom diquark, triquark, tetraquark, and pentaquarks in configuration space, as the bound states of quark-antiquark, diquark-quark, diquark-antidiquark, and diquark-antitriquark systems, respectively. The mass spectrum and the size of these systems are calculated for different partial wave channels. The calculated masses are compared with recent theoretical results obtained by other methods in momentum and configuration spaces and also by available experimental data.
Hyperons in the bound state approach with vector mesons
Schat, C L
1994-01-01
We investigate a model for hyperons based on the bound state approach in which vector mesons are explicitly incorporated. We show that for empirical values of the mesonic parameters the strange hyperon spectrum is well reproduced. We also discuss the extension of the model to heavier flavors. We show that the explicit presence of the heavy vectors leads to good predictions for the heavy baryon masses.
Lambda(1405) in the bound state soliton model
Schat, C L; Gobbi, C; Schat, C L; Scoccola, N N; Gobbi, C
1994-01-01
The strong and electromagnetic properties of the Lambda(1405) hyperon are studied in the framework of the bound state soliton model. We explicitly evaluate the strong coupling constant g(Lambda^*-N-K), the Lambda^* magnetic moment, mean square radii and radiative decay amplitudes. The results are shown to be in general agreement with available empirical data. A comparison with results of other models is also presented.
K¯ nuclear bound states in a dynamical model
Mareš, J.; Friedman, E.; Gal, A.
2006-05-01
A comprehensive data base of K-atom level shifts and widths is re-analyzed in order to study the density dependence of the K¯-nuclear optical potential. Significant departure from a tρ form is found only for ρ(r)/ρ ≲ 0.2 and extrapolation to nuclear-matter density ρ yields an attractive potential, about 170 MeV deep. Partial restoration of chiral symmetry compatible with pionic atoms and low-energy pion-nuclear data plays no role at the relevant low-density regime, but this effect is not ruled out at densities of order ρ and beyond. K¯-nuclear bound states are generated across the periodic table self consistently, using a relativistic mean-field model Lagrangian which couples the K¯ to the scalar and vector meson fields mediating the nuclear interactions. The reduced phase space available for K¯ absorption from these bound states is taken into account by adding an energy-dependent imaginary term which underlies the corresponding K¯-nuclear level widths, with a strength required by fits to the atomic data. Substantial polarization of the core nucleus is found for light nuclei, and the binding energies and widths calculated in this dynamical model differ appreciably from those calculated for a static nucleus. A wide range of binding energies is spanned by varying the K¯ couplings to the meson fields. Our calculations provide a lower limit of Γ=50±10 MeV on the width of nuclear bound states for K¯-binding energy in the range B˜100-200 MeV. Comments are made on the interpretation of the FINUDA experiment at DAΦNE which claimed evidence for deeply bound Kpp states in light nuclei.
Quantum state engineering in hybrid open quantum systems
Joshi, Chaitanya; Larson, Jonas; Spiller, Timothy P.
2016-04-01
We investigate a possibility to generate nonclassical states in light-matter coupled noisy quantum systems, namely, the anisotropic Rabi and Dicke models. In these hybrid quantum systems, a competing influence of coherent internal dynamics and environment-induced dissipation drives the system into nonequilibrium steady states (NESSs). Explicitly, for the anisotropic Rabi model, the steady state is given by an incoherent mixture of two states of opposite parities, but as each parity state displays light-matter entanglement, we also find that the full state is entangled. Furthermore, as a natural extension of the anisotropic Rabi model to an infinite spin subsystem, we next explored the NESS of the anisotropic Dicke model. The NESS of this linearized Dicke model is also an inseparable state of light and matter. With an aim to enrich the dynamics beyond the sustainable entanglement found for the NESS of these hybrid quantum systems, we also propose to combine an all-optical feedback strategy for quantum state protection and for establishing quantum control in these systems. Our present work further elucidates the relevance of such hybrid open quantum systems for potential applications in quantum architectures.
Controlled quantum state transfer via parity measurement
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
In this work,a scheme for controlled quantum state transfer is proposed using parity measurement in a cavity-waveguide system.As two special cases,two schemes of controlled quantum state transfer for one qubit and two qubits are investigated in detail.An important advantage is that controlled quantum state transfer can be completed by single-qubit rotations and the measurement of parity.Therefore,the present scheme might be realized in the scope of current experimental technology.
Controlled quantum state transfer via parity measurement
Institute of Scientific and Technical Information of China (English)
YUAN Quan; LI JiuHui
2009-01-01
In this work, a scheme for controlled quantum state transfer is proposed using parity measurement in a cavity-waveguide system. As two special cases, two schemes of controlled quantum state transfer for one qubit and two qubits are investigated in detail. An important advantage is that controlled quantum state transfer can be completed by single-qubit rotations and the measurement of parity. Therefore, the present scheme might be realized in the scope of current experimental technology.
AdS/CFT correspondence, conformal anomaly and quantum corrected entropy bounds
Nojiri, S; Nojiri, Shin'ichi; Odintsov, Sergei D.
2001-01-01
The role of conformal anomaly in AdS/CFT and related issues is clarified. The comparison of holographic and QFT conformal anomalies (with account of brane quantum gravity contribution) indicates on the possibility for brane quantum gravity to occur within AdS/CFT set-up. 3d quantum induced inflationary (or hyperbolic) brane-world is shown to be realized in frames of AdS3/CFT2 correspondence where the role of 2d brane cosmological constant is played by effective tension due to two-dimensional conformal anomaly. The dynamical equations to describe 4d FRW-Universe with account of quantum effects produced by conformal anomaly are obtained. The quantum corrected energy, pressure and entropy are found. Dynamical evolution of entropy bounds in inflationary Universe is estimated and its comparison with quantum corrected entropy is done. It is demonstrated that entropy bounds for quantum corrected entropy are getting the approximate ones and occur for some limited periods of evolution of inflationary Universe.
Quantum Inequality Bounds for Free Rarita-Schwinger Field in Flat Spacetime
Institute of Scientific and Technical Information of China (English)
SHU Wei-Xing; YU Hong-Wei; LI Fei; WU Pu-Xun; REN Zhong-Zhou
2006-01-01
Although quantum field theory allows the local energy density negative, it also places severe restrictions on the negative energy. One of the restrictions is the quantum energy inequality (QEI), in which the energy density is averaged over time, or space, or over space and time. By now temporal QEIs have been established for various quantum fields, but less work has been done for the spacetime quantum energy inequality. In this paper we deal with the free Rarita-Schwinger field and present a quantum inequality bound on the energy density averaged over space and time.Comparison with the QEI for the Rarita-Schwinger field shows that the lower bound is the same with the QEI. At the same time, we find the quantum inequality for the Rarita-Schwinger field is weaker than those for the scalar and Dirac fields. This fact gives further support to the conjecture that the more freedom the field has, the more easily the field displays negative energy density and the weaker the quantum inequality becomes.
Robustness of asymmetry and coherence of quantum states
Piani, Marco; Bromley, Thomas R; Napoli, Carmine; Johnston, Nathaniel; Adesso, Gerardo
2016-01-01
Quantum states may exhibit asymmetry with respect to the action of a given group. Such an asymmetry of states can be considered as a resource in applications such as quantum metrology, and it is a concept that encompasses quantum coherence as a special case. We introduce explicitly and study the robustness of asymmetry, a quantifier of asymmetry of states that we prove to have many attractive properties, including efficient numerical computability via semidefinite programming, and an operational interpretation in a channel discrimination context. We also introduce the notion of asymmetry witnesses, whose measurement in a laboratory detects the presence of asymmetry. We prove that properly constrained asymmetry witnesses provide lower bounds to the robustness of asymmetry, which is shown to be a directly measurable quantity itself. We then focus our attention on coherence witnesses and the robustness of coherence, for which we prove a number of additional results; these include an analysis of its specific rele...
Rapid thermal co-annihilation through bound states in QCD
Kim, Seyong; Laine, M.
2016-07-01
The co-annihilation rate of heavy particles close to thermal equilibrium, which plays a role in many classic dark matter scenarios, can be "simulated" in QCD by considering the pair annihilation rate of a heavy quark and antiquark at a temperature of a few hundred MeV. We show that the so-called Sommerfeld factors, parameterizing the rate, can be defined and measured non-perturbatively within the NRQCD framework. Lattice measurements indicate a modest suppression in the octet channel, in reasonable agreement with perturbation theory, and a large enhancement in the singlet channel, much above the perturbative prediction. The additional enhancement is suggested to originate from bound state formation and subsequent decay. Making use of a Green's function based method to incorporate thermal corrections in perturbative co-annihilation rate computations, we show that qualitative agreement with lattice data can be found once thermally broadened bound states are accounted for. We suggest that our formalism may also be applicable to specific dark matter models which have complicated bound state structures.
Search for a bound state of kaon and pion
Kishimoto, T; Hayakawa, T; Ajimura, S; Itabashi, T; Matsuoka, K; Minami, S; Mitoma, Y; Sakaguchi, A; Shimizu, Y; Terai, K; Sato, T; Noumi, H; Sekimoto, M; Takahashi, H; Fukuda, T; Imoto, W; Mizoi, Y
2012-01-01
We have searched for a bound state of kaon and pion denoted by $X$. The $X$ was conjectured to explain the so-called $\\Theta^+$ resonance as a bound state of kaon, pion and nucleon. This model explains almost all properties of the $\\Theta^+$, however, the model works only if the $K \\pi$ interaction is strongly attractive. It is so strong that it could make a bound state $X$. Here we report a result of the search for the $X$ by using the $K^+ + N \\rightarrow X^+ + N$ reaction at P$_K\\sim$ 1.2 GeV/c. The $X^+ \\rightarrow K^+ \\gamma \\gamma$ decay produces $K^+$ in momentum region where other processes cannot fill. We observed signature of the $X^+$ with statistical significance of 2 $\\sigma$. Production cross section of $X$ with respect to that of $\\pi^0$ is 1$\\pm$0.5% if we take it as an evidence and 1.5% if we set an upper limit.
Effects of QCD bound states on dark matter relic abundance
Liew, Seng Pei
2016-01-01
We study scenarios where there exists an exotic massive particle charged under QCD in the early Universe. We calculate the formation and dissociation rates of bound states formed by pairs of these particles, and apply the results in dark matter (DM) coannihilation scenarios, including also the Sommerfeld effect. We find that on top of the Sommerfeld enhancement, bound-state effects can further significantly increase the largest possible DM masses which can give the observed DM relic abundance, by $\\sim 30 - 100\\%$ with respect to values obtained by considering the Sommerfeld effect only, for the color triplet or octet exotic particles we consider. In particular, it indicates that the Bino DM mass in the right-handed stop-Bino coannihilation scenario in the Minimal Supersymmetric extension of the Standard Model (MSSM) can reach $\\sim 2.5$ TeV. We also apply the bound-state effects in the calculations of relic abundance of long-lived or metastable massive colored particles, and discuss the implications on the B...
Quantum communication based on orthogonal states enables quantum bit commitment
He, Guang Ping
2011-01-01
For more than a decade, it was believed that unconditionally secure quantum bit commitment (QBC) is impossible. But basing on a formerly proposed quantum communication scheme using orthogonal states, here we build a QBC protocol in which the density matrices of the quantum states encoding the commitment do not satisfy a crucial condition on which the impossibility proofs of QBC are based. Thus unconditional security can be achieved. Our protocol is very feasible with currently available technology. It re-opens the venue for other "post-cold-war" multi-party cryptographic protocols, e.g., unconditionally secure quantum bit string commitment and quantum strong coin tossing with an arbitrarily small bias. This result also has a strong influence on the Clifton-Bub-Halvorson theorem which suggests that quantum theory could be characterized in terms of information-theoretic constraints.
Simulating Hamiltonians in Quantum Networks Efficient Schemes and Complexity Bounds
Wocjan, P; Janzing, D; Beth, T; Wocjan, Pawel; Roetteler, Martin; Janzing, Dominik; Beth, Thomas
2001-01-01
We address the problem of simulating pair-interaction Hamiltonians in n node quantum networks where the subsystems have arbitrary, possibly different, dimensions. We show that any pair-interaction can be used to simulate any other by applying sequences of appropriate local control sequences. Efficient schemes for decoupling and time reversal can be constructed from orthogonal arrays. Conditions on time optimal simulation are formulated in terms of spectral majorization of matrices characterizing the coupling parameters. Moreover, we consider a specific system of n harmonic oscillators with bilinear interaction. In this case, decoupling can efficiently be achieved using the combinatorial concept of difference schemes. For this type of interactions we present optimal schemes for inversion.
Energy Technology Data Exchange (ETDEWEB)
Khorashadizadeh, S. M., E-mail: smkhorashadi@birjand.ac.ir; Taheri Boroujeni, S. [Physics Department, University of Birjand, Birjand (Iran, Islamic Republic of); Niknam, A. R. [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran (Iran, Islamic Republic of)
2015-11-15
In this paper, we have investigated the nonlinear interaction between high-frequency surface plasmons and low-frequency ion oscillations in a semi-bounded collisional quantum plasma. By coupling the nonlinear Schrodinger equation and quantum hydrodynamic model, and taking into account the ponderomotive force, the dispersion equation is obtained. By solving this equation, it is shown that there is a modulational instability in the system, and collisions and quantum forces play significant roles on this instability. The quantum tunneling increases the phase and group velocities of the modulated waves and collisions increase the growth rate of the modulational instability. It is also shown that the effect of quantum forces and collisions is more significant in high modulated wavenumber regions.
Properties of Excitons Bound to Neutral Donors in GaAs Quantum-Well Wires
Institute of Scientific and Technical Information of China (English)
LIU Jian-Jun; WANG Xue-Feng
2005-01-01
@@ In the effective mass approximation, the binding energy of an exciton bound to a neutral donor (D0, X) is calcu-lated variationally for rectangular GaAs quantum-well wires (QWWs) by using a three-parameter wavefunction.
Coherent states in quantum physics
Gazeau, Jean-Pierre
2009-01-01
This self-contained introduction discusses the evolution of the notion of coherent states, from the early works of Schrödinger to the most recent advances, including signal analysis. An integrated and modern approach to the utility of coherent states in many different branches of physics, it strikes a balance between mathematical and physical descriptions.Split into two parts, the first introduces readers to the most familiar coherent states, their origin, their construction, and their application and relevance to various selected domains of physics. Part II, mostly based on recent original results, is devoted to the question of quantization of various sets through coherent states, and shows the link to procedures in signal analysis. Title: Coherent States in Quantum Physics Print ISBN: 9783527407095 Author(s): Gazeau, Jean-Pierre eISBN: 9783527628292 Publisher: Wiley-VCH Dewey: 530.12 Publication Date: 23 Sep, 2009 Pages: 360 Category: Science, Science: Physics LCCN: Language: English Edition: N/A LCSH:
Why bound-state calculations of tetraquarks should be met with scepticism
Rupp, George
2016-01-01
Recent experimental signals have led to a revival of tetraquarks, the hypothetical $q^2\\bar{q}^2$ hadronic states proposed by Jaffe in 1976 to explain the light scalar mesons. Mesonic structures with exotic quantum numbers have indeed been observed recently, though a controversy persists whether these are true resonances and not merely kinematical threshold enhancements, or otherwise states not of a true $q^2\\bar{q}^2$ nature. Moreover, puzzling non-exotic mesons are also often claimed to have a tetraquark configuration. However, the corresponding model calculations are practically always carried out in pure bound-state approaches, ignoring completely the coupling to asymptotic two-meson states and unitarity, especially the dynamical effects thereof. In this short paper we argue that such static predictions of real tetraquark masses are highly unreliable and provide little evidence of the very existence of such states.
Two-body bound states & the Bethe-Salpeter equation
Energy Technology Data Exchange (ETDEWEB)
Pichowsky, M. [Argonne National Lab., IL (United States); Kennedy, M. [Univ. of New Hampshire, Durham, NH (United States). Physics Dept.; Strickland, M. [Duke Univ., Durham, NC (United States)
1995-01-18
The Bethe-Salpeter formalism is used to study two-body bound states within a scalar theory: two scalar fields interacting via the exchange of a third massless scalar field. The Schwinger-Dyson equation is derived using functional and diagrammatic techniques, and the Bethe-Salpeter equation is obtained in an analogous way, showing it to be a two-particle generalization of the Schwinger-Dyson equation. The authors also present a numerical method for solving the Bethe-Salpeter equation without three-dimensional reduction. The ground and first excited state masses and wavefunctions are computed within the ladder approximation and space-like form factors are calculated.
Applying the relativistic quantization condition to a three-particle bound state in a periodic box
Hansen, Maxwell T.; Sharpe, Stephen R.
2017-02-01
Using our recently developed relativistic three-particle quantization condition [Phys. Rev. D 90, 116003 (2014), 10.1103/PhysRevD.90.116003; Phys. Rev. D 92, 114509 (2015), 10.1103/PhysRevD.92.114509], we study the finite-volume energy shift of a spin-zero three-particle bound state. We reproduce the result obtained using nonrelativistic quantum mechanics by Meißner et al. in [Phys. Rev. Lett. 114, 091602 (2015), 10.1103/PhysRevLett.114.091602] and generalize the result to a moving frame.
Electron-electron bound states in parity-preserving QED{sub 3}
Energy Technology Data Exchange (ETDEWEB)
Belich, H.; Helayel-Neto, J.A. [Universidade Catolica do Petropolis, RJ (Brazil). Grupo de Fisica Teorica]|[Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Teoria de Campos e Particulas; Cima, O.M. del [Universidade Catolica do Petropolis, RJ (Brazil). Grupo de Fisica Teorica; Ferreira Junior, M.M. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Teoria de Campos e Particulas]|[Maranhao Univ., Sao Luis, MA (Brazil). Dept. de Fisica
2002-04-01
By considering the Higgs mechanism in the framework of a parity-preserving Planar Quantum Electrodynamics, one shows that an attractive electron-electron interaction may dominate. The e{sup -}e{sup -} interaction potential emerges as the non-relativistic limit of the Moeller scattering amplitude and it results attractive with a suitable choice of parameters. Numerically values of the e{sup -}e{sup -} binding energy are obtained by solving the two-dimensional Schroedinger equation. The existence of bound states is a strong indicative that this model may be adopted to address the pairing mechanism of high-T{sub c} superconductivity. (author)
The beauty of impurities: Two revivals of Friedel's virtual bound-state concept
Georges, Antoine
2016-03-01
Jacques Friedel pioneered the theoretical study of impurities and magnetic impurities in metals. He discovered Friedel oscillations, introduced the concept of virtual bound-state, and demonstrated that the charge on the impurity is related to the scattering phase-shift at the Fermi level (Friedel sum-rule). After a brief review of some of these concepts, I describe how they proved useful in two new contexts. The first one concerns the Coulomb blockade in quantum dots, and its suppression by the Kondo effect. The second one is the dynamical mean-field theory of strong electronic correlations. xml:lang="fr"
Quantization ambiguities and bounds on geometric scalars in anisotropic loop quantum cosmology
Singh, Parampreet
2013-01-01
We study quantization ambiguities in loop quantum cosmology that arise for space-times with non-zero spatial curvature and anisotropies. Motivated by lessons from different possible loop quantizations of the closed Friedmann-Lemaitre-Robertson-Walker cosmology, we find that using open holonomies of the extrinsic curvature, which due to gauge-fixing can be treated as a connection, leads to the same quantum geometry effects that are found in spatially flat cosmologies. More specifically, in contrast to the quantization based on open holonomies of the Ashtekar-Barbero connection, the expansion and shear scalars in the effective theories of the Bianchi type II and Bianchi type IX models have upper bounds, and these are in exact agreement with the bounds found in the effective theories of the Friedmann-Lemaitre-Robertson-Walker and Bianchi type I models in loop quantum cosmology. We also comment on some ambiguities present in the definition of inverse triad operators and their role.
Propagation of surface waves on a semi-bounded quantum magnetized collisional plasma
Energy Technology Data Exchange (ETDEWEB)
Niknam, A. R. [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran (Iran, Islamic Republic of); Taheri Boroujeni, S.; Khorashadizadeh, S. M. [Physics Department, University of Birjand, Birjand (Iran, Islamic Republic of)
2013-12-15
The propagation of surface waves on a semi-bounded quantum plasma in the presence of the external magnetic field and collisional effects is investigated by using quantum magnetohydrodynamics model. A general analytical expression for the dispersion relation of surface waves is obtained by considering the boundary conditions. It is shown that, in some special cases, the obtained dispersion relation reduces to the results reported in previous works. It is also indicated that the quantum, external magnetic field and collisional effects can facilitate the propagation of surface waves on a semi-bounded plasma. In addition, it is found that the growth rate of the surface wave instability is enhanced by increasing the collision frequency and plasmonic parameter.
Photo-production of Bound States with Hidden Charms
Wu, Jia-Jun
2012-01-01
The photo-production of $J/\\Psi$-$^3He$ bound state ($[^3He]_{J/\\Psi}$) on a $^4He$ target has been investigated using the impulse approximation. The calculations have been performed using several $\\gamma+N \\rightarrow J/\\Psi +N$ models based on the Pomeron-exchange and accounting for the pion-exchange mechanism at low energies. The $J/\\Psi$ wavefunctions in $[^3He]_{J/\\Psi}$ are generated from various $J/\\Psi$-nucleus potentials which are constructed by either using a procedure based on the Pomeron-quark coupling mechanism or folding a $J/\\Psi$-N potential ($v_{J/\\Psi,N}$) into the nuclear densities. We consider $v_{J/\\Psi,N}$ derived from the effective field theory approach, Lattice QCD, and Pomeron-quark coupling mechanism. The upper bound of the predicted total cross sections is about $0.1 - 0.3$ pico-barn. We also consider the possibility of photo-production of a six quark-$J/\\Psi$ bound state ($[q^6]_{J/\\Psi})$ on the $^3He$ target. The Compound Bag Model of $NN$ scattering and the quark cluster model o...
Tuned Transition from Quantum to Classical for Macroscopic Quantum States
Fedorov, A.; Macha, P.; Feofanov, A.K.; Harmans, C.J.P.M.; Mooij, J.E.
2011-01-01
The boundary between the classical and quantum worlds has been intensely studied. It remains fascinating to explore how far the quantum concept can reach with use of specially fabricated elements. Here we employ a tunable flux qubit with basis states having persistent currents of 1 μA carried by a
Quark-antiquark bound-state spectroscopy and QCD
Energy Technology Data Exchange (ETDEWEB)
Bloom, E.D.
1982-11-01
The discussion covers quarks as we know them, the classification of ordinary mesons in terms of constituent quarks, hidden charm states and charmed mesons, bottom quarks, positronium as a model for quarti q, quantum chromodynamics and its foundation in experiment, the charmonium model, the mass of states, fine structure and hyperfine structure, classification, widths of states, rate and multipolarity of gamma transitions, questions about bottom, leptonic widths and the determination of Q/sub b/, the mass splitting of the n/sup 3/S/sub 1/ states, the center of gravity of the masses of the n/sup 3/P; states, n/sup 3/ P; fine structure and classification, branching ratios for upsilon' ..-->.. tau chi/sub 6j/ and the tau cascade reactions, hyperfine splitting, and top. (GHT)
Average subentropy, coherence and entanglement of random mixed quantum states
Zhang, Lin; Singh, Uttam; Pati, Arun K.
2017-02-01
Compact expressions for the average subentropy and coherence are obtained for random mixed states that are generated via various probability measures. Surprisingly, our results show that the average subentropy of random mixed states approaches the maximum value of the subentropy which is attained for the maximally mixed state as we increase the dimension. In the special case of the random mixed states sampled from the induced measure via partial tracing of random bipartite pure states, we establish the typicality of the relative entropy of coherence for random mixed states invoking the concentration of measure phenomenon. Our results also indicate that mixed quantum states are less useful compared to pure quantum states in higher dimension when we extract quantum coherence as a resource. This is because of the fact that average coherence of random mixed states is bounded uniformly, however, the average coherence of random pure states increases with the increasing dimension. As an important application, we establish the typicality of relative entropy of entanglement and distillable entanglement for a specific class of random bipartite mixed states. In particular, most of the random states in this specific class have relative entropy of entanglement and distillable entanglement equal to some fixed number (to within an arbitrary small error), thereby hugely reducing the complexity of computation of these entanglement measures for this specific class of mixed states.
Gauge invariant formulation of 3$\\gamma$ decay of particle-antiparticle bound states
Blankleider, B; Silagadze, Z K
2014-01-01
We construct the gauge invariant three-photon decay amplitude of particle-antiparticle bound states modeled by the Dyson-Schwinger and Bethe-Salpeter equations. Application to the quark-antiquark ($q\\bar{q}$) bound states is emphasized. An essential aspect of our approach is that photons are allowed to couple to the $q\\bar{q}$ system in any way allowed by the given model, i.e., not just via the dressed quark propagator as in exact QCD. In this way, applications to effective field theories and other QCD motivated models are envisioned. The three-photon decay amplitude is constructed by attaching currents to all possible places in the Feynman diagrams contributing to the dressed quark propagator. The gauge invariance of our construction is thus a direct consequence of respecting the underlying structure of the quantum field theory determining the dynamics. In the resultant expression for the three-photon decay amplitude, all the basic ingredients consisting of the bound state wave function, the final-state inte...
Quantum Sensors: Improved Optical Measurement via Specialized Quantum States
Directory of Open Access Journals (Sweden)
David S. Simon
2016-01-01
Full Text Available Classical measurement strategies in many areas are approaching their maximum resolution and sensitivity levels, but these levels often still fall far short of the ultimate limits allowed by the laws of physics. To go further, strategies must be adopted that take into account the quantum nature of the probe particles and that optimize their quantum states for the desired application. Here, we review some of these approaches, in which quantum entanglement, the orbital angular momentum of single photons, and quantum interferometry are used to produce optical measurements beyond the classical limit.
Quantum state tomography and fidelity estimation via Phaselift
Energy Technology Data Exchange (ETDEWEB)
Lu, Yiping; Liu, Huan; Zhao, Qing, E-mail: qzhaoyuping@bit.edu.cn
2015-09-15
Experiments of multi-photon entanglement have been performed by several groups. Obviously, an increase on the photon number for fidelity estimation and quantum state tomography causes a dramatic increase in the elements of the positive operator valued measures (POVMs), which results in a great consumption of time in measurements. In practice, we wish to obtain a good estimation of fidelity and quantum states through as few measurements as possible for multi-photon entanglement. Phaselift provides such a chance to estimate fidelity for entangling states based on less data. In this paper, we would like to show how the Phaselift works for six qubits in comparison to the data given by Pan’s group, i.e., we use a fraction of the data as input to estimate the rest of the data through the obtained density matrix, and thus goes beyond the simple fidelity analysis. The fidelity bound is also provided for general Schrödinger Cat state. Based on the fidelity bound, we propose an optimal measurement approach which could both reduce the copies and keep the fidelity bound gap small. The results demonstrate that the Phaselift can help decrease the measured elements of POVMs for six qubits. Our conclusion is based on the prior knowledge that a pure state is the target state prepared by experiments.
Purifying Quantum States: Quantum and Classical Algorithms
Dennis, E
2005-01-01
I give analytical estimates and numerical simulation results for the performance of Kitaev's 2d topological error-correcting codes. By providing methods for the execution of an encoded three-qubit Toffoli gate, I complete a universal gate set for these codes. I also examine the utility of Bohm's and Bohm-inspired interpretations of quantum mechanics for numerical solution of many-body dynamics and ``mechanism identification'' heuristics in discrete systems. Further, I show an unexpected quantitative correspondence between the previously known continuum of stochastic-Bohm trajectory theories on the one hand and extant path integral Monte Carlo methods on the other hand.
A search algorithm for quantum state engineering and metrology
Knott, P. A.
2016-07-01
In this paper we present a search algorithm that finds useful optical quantum states which can be created with current technology. We apply the algorithm to the field of quantum metrology with the goal of finding states that can measure a phase shift to a high precision. Our algorithm efficiently produces a number of novel solutions: we find experimentally ready schemes to produce states that show significant improvements over the state-of-the-art, and can measure with a precision that beats the shot noise limit by over a factor of 4. Furthermore, these states demonstrate a robustness to moderate/high photon losses, and we present a conceptually simple measurement scheme that saturates the Cramér-Rao bound.
Reichardt, Ben W.
2009-01-01
The general adversary bound is a semi-definite program (SDP) that lower-bounds the quantum query complexity of a function. We turn this lower bound into an upper bound, by giving a quantum walk algorithm based on the dual SDP that has query complexity at most the general adversary bound, up to a logarithmic factor. In more detail, the proof has two steps, each based on "span programs," a certain linear-algebraic model of computation. First, we give an SDP that outputs for any boolean function...
Entangled States, Holography and Quantum Surfaces
Energy Technology Data Exchange (ETDEWEB)
Chapline, G F
2003-08-13
Starting with an elementary discussion of quantum holography, we show that entangled quantum states of qubits provide a ''local'' representation of the global geometry and topology of quantum Riemann surfaces. This representation may play an important role in both mathematics and physics. Indeed, the simplest way to represent the fundamental objects in a ''theory of everything'' may be as muti-qubit entangled states.
K- and p¯ deeply bound atomic states
Friedman, E.; Gal, A.
1999-12-01
The strongly absorptive optical potentials Vopt which have been deduced from the strong-interaction level shifts and widths in X-ray spectra of K- and p¯ atoms produce effective repulsion leading to substantial suppression of the atomic wave functions within the nucleus. The width of atomic levels then saturates as function of the strength of Im Vopt. We find that `deeply bound' atomic states, which are inaccessible in the atomic cascade process, are generally narrow, due to this mechanism, over the entire periodic table and should be reasonably well resolved. These predictions are insensitive to Vopt, provided it was fitted to the observed X-ray spectra. In contrast, the nuclear states bound by Vopt are very broad and their spectrum depends sensitively on details of Vopt. We discuss production reactions for K- atomic states using slow K- mesons from the decay of the φ(1020) vector meson, and the ( p¯,p ) reaction for p¯ atomic states. Rough cross section estimates are given.
Secret Sharing of a Quantum State.
Lu, He; Zhang, Zhen; Chen, Luo-Kan; Li, Zheng-Da; Liu, Chang; Li, Li; Liu, Nai-Le; Ma, Xiongfeng; Chen, Yu-Ao; Pan, Jian-Wei
2016-07-15
Secret sharing of a quantum state, or quantum secret sharing, in which a dealer wants to share a certain amount of quantum information with a few players, has wide applications in quantum information. The critical criterion in a threshold secret sharing scheme is confidentiality: with less than the designated number of players, no information can be recovered. Furthermore, in a quantum scenario, one additional critical criterion exists: the capability of sharing entangled and unknown quantum information. Here, by employing a six-photon entangled state, we demonstrate a quantum threshold scheme, where the shared quantum secrecy can be efficiently reconstructed with a state fidelity as high as 93%. By observing that any one or two parties cannot recover the secrecy, we show that our scheme meets the confidentiality criterion. Meanwhile, we also demonstrate that entangled quantum information can be shared and recovered via our setting, which shows that our implemented scheme is fully quantum. Moreover, our experimental setup can be treated as a decoding circuit of the five-qubit quantum error-correcting code with two erasure errors.
Photonic Bound State in the Continuum for Strong Light-matter Interaction
Zou, Chang-Ling; Sun, Fang-Wen; Xiong, Xiao; Zou, Xu-Bo; Han, Zheng-Fu; Guo, Guang-Can
2013-01-01
The photonic bound state in the continuum (BIC) is discovered in a hybrid photonic circuit with low refractive index waveguide on a high refractive index thin membrane, where the optical dissipation is forbidden because of the destructive interference of different leakage channels. Based on the photonic BIC, the low mode area in a hybrid waveguide and high quality factor in a microresonator can be applied to enhance the light-matter interaction. Taking the fabrication-friendly polymer structure on diamond membrane as an example, those excellent optical performances can exist in a wide range of structure parameters with large fabrication tolerance and induce the strong coupling between photon and nitrogen-vacancy center in the diamond for scalable quantum information processors and networks. Such a fabrication-friendly structure with photonic BIC is also very promising in laser, nonlinear optical and quantum optical applications.
Quantum states of the bouncing universe
Gazeau, Jean Pierre; Piechocki, Wlodzimierz
2013-01-01
In this paper we study quantum dynamics of the bouncing cosmological model. We focus on the model of the flat Friedman-Robertson-Walker universe with a free scalar field. The bouncing behavior, which replaces classical singularity, appears due to the modification of general relativity along the methods of loop quantum cosmology. We show that there exist a unitary transformation that enables to describe the system as a free particle with Hamiltonian equal to canonical momentum. We examine properties of the various quantum states of the Universe: boxcar state, standard coherent state, and soliton-like state, as well as Schr{\\"o}dinger's cat states constructed from these states. Characteristics of the states such as quantum moments and Wigner functions are investigated. We show that each of these states have, for some range of parameters, a proper semiclassical limit fulfilling the correspondence principle. Decoherence of the superposition of two universes is described and possible interpretations in terms of tr...
Introduction to quantum-state estimation
Teo, Yong Siah
2016-01-01
Quantum-state estimation is an important field in quantum information theory that deals with the characterization of states of affairs for quantum sources. This book begins with background formalism in estimation theory to establish the necessary prerequisites. This basic understanding allows us to explore popular likelihood- and entropy-related estimation schemes that are suitable for an introductory survey on the subject. Discussions on practical aspects of quantum-state estimation ensue, with emphasis on the evaluation of tomographic performances for estimation schemes, experimental realizations of quantum measurements and detection of single-mode multi-photon sources. Finally, the concepts of phase-space distribution functions, which compatibly describe these multi-photon sources, are introduced to bridge the gap between discrete and continuous quantum degrees of freedom. This book is intended to serve as an instructive and self-contained medium for advanced undergraduate and postgraduate students to gra...
Quantum information theory of the Bell-state quantum eraser
Glick, Jennifer R.; Adami, Christoph
2017-01-01
Quantum systems can display particle- or wavelike properties, depending on the type of measurement that is performed on them. The Bell-state quantum eraser is an experiment that brings the duality to the forefront, as a single measurement can retroactively be made to measure particlelike or wavelike properties (or anything in between). Here we develop a unitary information-theoretic description of this and several related quantum measurement situations that sheds light on the trade-off between the quantum and classical features of the measurement. In particular, we show that both the coherence of the quantum state and the classical information obtained from it can be described using only quantum-information-theoretic tools and that those two measures satisfy an equality on account of the chain rule for entropies. The coherence information and the which-path information have simple interpretations in terms of state preparation and state determination and suggest ways to account for the relationship between the classical and the quantum world.
Quantization of the Closed Mini-Superspace Models as Bound States
Kung, J H
1995-01-01
Wheeler-DeWitt equation is applied to $k > 0$ Friedmann Robertson Walker metric with various types of matter. It is shown that if the Universe ends in the matter dominated era (e.g., radiation or pressureless gas) with zero cosmological constant, then the resulting Wheeler-DeWitt equation describes a bound state problem. As solutions of a non-degenerate bound state system, the eigen-wave functions are real (Hartle-Hawking) and the usual issue associated with the ambiguity in the boundary conditions for the wave functions is resolved. Furthermore, as a bound state problem, there exists a quantization condition that relates the curvature of the three space with the energy density of the Universe. Incorporating a cosmological constant in the early Universe (inflation) is given as a natural explanation for the large quantum number associated with our Universe, which resulted from the quantization condition. It is also shown that if there is a cosmological constant $\\Lambda > 0$ in our Universe that persists for a...
Meson-meson bound states in a (2+1)-dimensional strongly coupled lattice QCD model
Faria da Veiga, Paulo A.; O'Carroll, Michael; Neto, Antônio Francisco
2004-05-01
We consider bound states of two mesons (antimesons) in lattice quantum chromodynamics in an Euclidean formulation. For simplicity, we analyze an SU(3) theory with a single flavor in 2+1 dimensions and two-dimensional Dirac matrices. For a small hopping parameter κ and small plaquette coupling g-20, such that 0
Exotic Hadron Bound State Production at Hadronic Colliders
Jin, Yi; Liu, Yan-Rui; Meng, Lu; Si, Zon-Guo; Zhang, Xiao-Feng
2016-01-01
The non-relativistic wave function framework is applied to study the production and decay of the exotic hadrons which can be effectively described as bound states of other hadrons. The ingredient hadron production can be calculated by event generators. We investigate the production of exotic hadrons in the multiproduction processes at high energy hadronic colliders with the help of the event generators. We illustrate the crucial information such as their momentum distributions and production rate for the measurements at the large hadron collider. This study provides crucial information for the measurements of the relevant exotic hadrons.
Diquark bound states at far beyond ladder truncation
Jinno, Ryusuke; Mishima, Go
2015-01-01
The Bethe-Salpeter equation in the diquark channel is investigated by employing the Dyson-Schwinger method together with the Munczek-Nemirovsky model. The novelty of our study is a resummation of completely-crossed ladder diagrams in the Bethe-Salpeter kernel. These diagrams are enhanced due to their color factors in the diquark channel, but not in the meson channel. As a result of our analysis, it is suggested that diquark bound-state solutions exist in the Bethe-Salpeter equation, which have been thought to be absent.
Are $\\eta$- and $\\omega$-nuclear states bound ?
Tsushima, K; Thomas, A W; Saitô, K
1998-01-01
We investigate theoretically whether it is feasible to detect $\\eta$- and $^{40}$Ca, $^{90}$Zr and $^{208}$Pb, we also investigate $^6$He, $^{11}$B and $^{26}$Mg, which are the final nuclei in the proposed experiment involving the (d,$^3$He) reaction at GSI. Potentials for the $\\eta$ and $\\omega$ mesons in these nuclei are calculated in local density approximation, embedding the mesons in the nucleus described by solving the mean-field equations of motion in the QMC model. Our results suggest that one should expect to find $\\eta$- and $\\omega$-nucleus bound states in all these nuclei.
R-Matrix Calculations for Few-Quark Bound States
Shalchi, M A
2016-01-01
The R-matrix method is implemented to study the heavy charm and bottom diquark, triquark, tetraquark and pentaquarks in configuration space, as the bound states of quark-antiquark, diquark-quark, diquark-antidiquark and diquark-antitriquark systems, respectively. The mass spectrum and the size of these systems are calculated for different partial wave channels. The calculated masses are compared with recent theoretical results obtained by %the solution of Lippmann-Schwinger equation other methods in momentum and configuration spaces and also by available experimental data.
Quarkonium-nucleus bound states from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Beane, S. R. [Univ. of Washington, Seattle, WA (United States); Chang, E. [Univ. of Washington, Seattle, WA (United States); Cohen, S. D. [Univ. of Washington, Seattle, WA (United States); Detmold, W. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Lin, H. -W. [Univ. of Washington, Seattle, WA (United States); Orginos, K. [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Parreño, A. [Univ., de Barcelona, Marti Franques (Spain); Savage, M. J. [Univ. of Washington, Seattle, WA (United States)
2015-06-11
Quarkonium-nucleus systems are composed of two interacting hadronic states without common valence quarks, which interact primarily through multi-gluon exchanges, realizing a color van der Waals force. We present lattice QCD calculations of the interactions of strange and charm quarkonia with light nuclei. Both the strangeonium-nucleus and charmonium-nucleus systems are found to be relatively deeply bound when the masses of the three light quarks are set equal to that of the physical strange quark. Extrapolation of these results to the physical light-quark masses suggests that the binding energy of charmonium to nuclear matter is B < 40 MeV.
The Monge distance between quantum states
Energy Technology Data Exchange (ETDEWEB)
Zyczkowski, Karol [Institute for Plasma Research, University of Maryland, College Park, MD (United States); Slomczynski, Wojciech [Instytut Matematyki, Uniwersytet Jagiellonski, Cracow (Poland)
1998-11-13
We define a metric in the space of quantum states taking the Monge distance between corresponding Husimi distributions (Q-functions). This quantity fulfils the axioms of a metric and satisfies the following semiclassical property: the distance between two coherent states is equal to the Euclidean distance between corresponding points in the classical phase space. We compute analytically distances between certain states (coherent, squeezed, Fock and thermal) and discuss a scheme for numerical computation of Monge distance for two arbitrary quantum states. (author)
Upper bound for SL-invariant entanglement measures of mixed states
Osterloh, Andreas
2016-05-01
An algorithm is proposed that serves to handle full-rank density matrices when coming from a lower-rank method to compute the convex roof. This is in order to calculate an upper bound for any polynomial SL-invariant multipartite entanglement measure E . This study exemplifies how this algorithm works based on a method for calculating convex roofs of rank-2 density matrices. It iteratively considers the decompositions of the density matrix into two states each, exploiting the knowledge for the rank-2 case. The algorithm is therefore quasiexact as far as the rank-2 case is concerned, and it also hints where it should include more states in the decomposition of the density matrix. Focusing on the measure of three-way entanglement of qubits (called three-tangle), I show the results the algorithm gives for two states, one of which is the Greenberger-Horne-Zeilinger-Werner (GHZ-W ) state, for which the exact convex roof is known. It overestimates the three-tangle in the state, thereby giving insight into the optimal decomposition the GHZ-W state has. As a proof of principle, I have run the algorithm for the three-tangle on the transverse quantum Ising model. I give qualitative and quantitative arguments why the convex roof should be close to the upper bound found here.
Quantum state transfer and network engineering
Nikolopoulos, Georgios M
2013-01-01
Faithful communication is a necessary precondition for large-scale quantum information processing and networking, irrespective of the physical platform. Thus, the problems of quantum-state transfer and quantum-network engineering have attracted enormous interest over the last years, and constitute one of the most active areas of research in quantum information processing. The present volume introduces the reader to fundamental concepts and various aspects of this exciting research area, including links to other related areas and problems. The implementation of state-transfer schemes and the en
Achieving the Han-Kobayashi inner bound for the quantum interference channel by sequential decoding
Sen, Pranab
2011-01-01
In this paper, we study the power of sequential decoding strategies for several channels with classical input and quantum output. In our sequential decoding strategies, the receiver loops through all candidate messages trying to project the received state onto a `typical' subspace for the candidate message under consideration, stopping if the projection succeeds for a message, which is then declared as the guess of the receiver for the sent message. We show that even such a conceptually simple strategy can be used to achieve rates up to the mutual information for a single sender single receiver channel called cq-channel henceforth, as well as the standard inner bound for a two sender single receiver multiple access channel, called ccq-MAC in this paper. Our decoding scheme for the ccq-MAC uses a new kind of conditionally typical projector which is constructed using a geometric result about how two subspaces interact structurally. As the main application of our methods, we construct an encoding and decoding sc...
Decoherence bounds on the capabilities of cold trapped ion quantum computers
Energy Technology Data Exchange (ETDEWEB)
James, D.F.V.; Hughes, R.J.; Knill, E.H. [and others
1997-05-01
Using simple physical arguments we investigate the capabilities of a quantum computer based on cold trapped ions of the type recently proposed by Cirac and Zoller. From the limitations imposed on such a device by decoherence due to spontaneous decay, laser phase coherence times, ion heating and other possible sources of error, we derive bounds on the number of laser interactions and on the number of ions that may be used. As a quantitative measure of the possible performance of these devices, the largest number which may be factored using Shor`s quantum factoring algorithm is determined for a variety of species of ion.
Quantum information processing with mesoscopic photonic states
DEFF Research Database (Denmark)
Madsen, Lars Skovgaard
2012-01-01
The thesis is built up around a versatile optical experimental setup based on a laser, two optical parametric ampliers, a few sets of modulators and two sets of homodyne detectors, which together with passive linear optics generate, process and characterize various types of Gaussian quantum states....... Using this setup we have experimentally and theoretically investigated Gaussian quantum discord, continuous variable quantum key distribution and quantum polarization. The Gaussian discord broadens the definition of non-classical correlations from entanglement, to all types of correlations which cannot...... in the mixture of coherent states. Further we investigate the robustness of the discord of a broader range of states and suggest a toolbox of states which can be used to test if a protocol is discord based, before performing a rigid proof. Gaussian quantum key distribution can be implemented with current...
Relativistic quantum correlations in bipartite fermionic states
Indian Academy of Sciences (India)
S KHAN; N A KHAN
2016-10-01
The influences of relative motion, the size of the wave packet and the average momentum of the particles on different types of correlations present in bipartite quantum states are investigated. In particular, the dynamics of the quantum mutual information, the classical correlation and the quantum discord on the spincorrelations of entangled fermions are studied. In the limit of small average momentum, regardless of the size of the wave packet and the rapidity, the classical and the quantum correlations are equally weighted. On the otherhand, in the limit of large average momentum, the only correlations that exist in the system are the quantum correlations. For every value of the average momentum, the quantum correlations maximize at an optimal size of the wave packet. It is shown that after reaching a minimum value, the revival of quantum discord occurs with increasing rapidity.
Three-body bound states in dipole-dipole interacting Rydberg atoms
Kiffner, Martin; Jaksch, Dieter
2013-01-01
We show that the dipole-dipole interaction between three identical Rydberg atoms can give rise to bound trimer states. The microscopic origin of these states is fundamentally different from Efimov physics. Two stable trimer configurations exist where the atoms form the vertices of an equilateral triangle in a plane perpendicular to a static electric field. The triangle edge length typically exceeds $R\\approx 2\\,\\mu\\text{m}$, and each configuration is two-fold degenerate due to Kramers' degeneracy. The depth of the potential wells and the triangle edge length can be controlled by external parameters. We establish the Borromean nature of the trimer states, analyze the quantum dynamics in the potential wells and describe methods for their production and detection.
Fingerprints of Majorana Bound States in Aharonov-Bohm Geometry
Tripathi, Krashna Mohan; Das, Sourin; Rao, Sumathi
2016-04-01
We study a ring geometry, coupled to two normal metallic leads, which has a Majorana bound state (MBS) embedded in one of its arms and is threaded by Aharonov-Bohm (A B ) flux ϕ . We show that by varying the A B flux, the two leads go through resonance in an anticorrelated fashion while the resonance conductance is quantized to 2 e2/h . We further show that such anticorrelation is completely absent when the MBS is replaced by an Andreev bound state (ABS). Hence this anti-correlation in conductance when studied as a function of ϕ provides a unique signature of the MBS which cannot be faked by an ABS. We contrast the phase sensitivity of the MBS and ABS in terms of tunneling conductances. We argue that the relative phase between the tunneling amplitude of the electrons and holes from either lead to the level (MBS or ABS), which is constrained to 0 ,π for the MBS and unconstrained for the ABS, is responsible for this interesting contrast in the A B effect between the MBS and ABS.
Multi-state Quantum Teleportation via One Entanglement State
Institute of Scientific and Technical Information of China (English)
GUO Ying; ZENG Gui-Hua; Moon Ho Lee
2008-01-01
A multi-sender-controlled quantum teleportation scheme is proposed to teleport several secret quan-tum states from different senders to a distance receiver based on only one Einstein-Podolsky-Rosen (EPR) pair with controlled-NOT (CNOT) gates. In the present scheme, several secret single-qubit quantum states are encoded into a multi-qubit entangled quantum state. Two communication modes, i.e., the detecting mode and the message mode, are employed so that the eavesdropping can be detected easily and the teleported message may be recovered efficiently. It has an advantage over teleporting several different quantum states for one scheme run with more efficiency than the previous quantum teleportation schemes.
Three-nucleon bound states using realistic potential models
Nogga, A.; Kievsky, A.; Kamada, H.; Glöckle, W.; Marcucci, L. E.; Rosati, S.; Viviani, M.
2003-03-01
The bound states of 3H and 3He have been calculated by using the Argonne v18 plus the Urbana IX three-nucleon potential. The isospin T=3/2 state have been included in the calculations as well as the n-p mass difference. The 3H-3He mass difference has been evaluated through the charge-dependent terms explicitly included in the two-body potential. The calculations have been performed using two different methods: the solution of the Faddeev equations in momentum space and the expansion on the correlated hyperspherical harmonic basis. The results are in agreement within 0.1% and can be used as benchmark tests. Results for the charge-dependent Bonn interaction in conjunction with the Tucson-Melbourne three-nucleon force are also presented. It is shown that the 3H and 3He binding energy difference can be predicted model independently.
The three-nucleon bound state using realistic potential models
Nogga, A; Kamada, H; Glöckle, W; Marcucci, L E; Rosati, S; Viviani, M
2003-01-01
The bound states of $^3$H and $^3$He have been calculated using the Argonne $v_{18}$ plus the Urbana three-nucleon potential. The isospin $T=3/2$ state have been included in the calculations as well as the $n$-$p$ mass difference. The $^3$H-$^3$He mass difference has been evaluated through the charge dependent terms explicitly included in the two-body potential. The calculations have been performed using two different methods: the solution of the Faddeev equations in momentum space and the expansion on the correlated hyperspherical harmonic basis. The results are in agreement within 0.1% and can be used as benchmark tests. Results for the CD-Bonn interaction are also presented. It is shown that the $^3$H and $^3$He binding energy difference can be predicted model independently.
Lower Bound for entanglement cost of antisymmetric states
Shimono, T
2002-01-01
This report gives a lower bound of entanglement cost for antisymmetric states of bipartite d-level systems to be log_2 (d/(d-1)) ebit (for d=3, E_c >= 0.585...). The paper quant-ph/0112131 claims that the value is equal to one ebit for d=3, since all of the eigenvalues of reduced matrix of any pure states living in N times tensor product of antisymmetric space is not greater than 2^(-N) thus the von Neumann entropy is not less than N, but the proof is not true. Hence whether the value is equal to or less than one ebit is not clear at this moment.
Bound states for non-symmetric evolution Schroedinger potentials
Energy Technology Data Exchange (ETDEWEB)
Corona, Gulmaro Corona [Area de Analisis Matematico y sus Aplicaciones, Universidad Autonoma Metropolitana-Azcapotalco, Atzcapotzalco, DF (Mexico)). E-mail: ccg@correo.azc.uam.mx
2001-09-14
We consider the spectral problem associated with the evolution Schroedinger equation, (D{sup 2}+ k{sup 2}){phi}=u{phi}, where u is a matrix-square-valued function, with entries in the Schwartz class defined on the real line. The solution {phi}, called the wavefunction, consists of a function of one real variable, matrix-square-valued with entries in the Schwartz class. This problem has been dealt for symmetric potentials u. We found for the present case that the bound states are localized similarly to the scalar and symmetric cases, but by the zeroes of an analytic matrix-valued function. If we add an extra condition to the potential u, we can determine these states by an analytic scalar function. We do this by generalizing the scalar and symmetric cases but without using the fact that the Wronskian of a pair of wavefunction is constant. (author)
Are there quantum bounds on the recyclability of clock signals in low power computers?
Janzing, D; Janzing, Dominik; Beth, Thomas
2002-01-01
Even if a logical network consists of thermodynamically reversible gate operations, the computation process may have high dissipation rate if the gate implementation is controlled by external clock signals. It is an open question whether the global clocking mechanism necessarily envolves irreversible processes. However, one can show that it is not possible to extract any timing information from a micro-physical clock without disturbing it. Applying recent results of quantum information theory we can show a hardware-independent lower bound on the timing information that is necessarily destroyed if one tries to copy the signal. The bound becomes tighter for low energy signals, i.e., the timing information gets more and more quantum.
Remote Operation on Quantum State Among Multiparty
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
In this paper, a scheme is proposed for performing remote operation on quantum state among multiparty.We use three-particle GHZ state as quantum channels to prepare a state operator, which describes quantum correlation between states and operations. Based on the special characteristic of the state operator, observers can perform unitary operation on a system that is away from observers. Our studies show this process is deterministic. We further consider remote operation among N spatially distributed observers, and the results show the successful realization of remote operation needs collective participation of N parties, that is, there exists strong correlation among multiparty. In addition, we investigate the case in which observers share a three-particle W state as quantum channels to perform remote operation and studies find this process is probabilistic.
Le, Thinh Phuc; Scarani, Valerio
2011-01-01
We define a family of reference-frame-independent quantum cryptography protocols for arbitrary dimensional signals. The generalized entropic uncertainty relations [M. Tomamichel and R. Renner, Phys. Rev. Lett. 106, 110506 (2011)] are used for the first time to derive security bounds for protocols which use more than two measurements and combine the statistics in a non-linear parameter. This shows the power and versatility of this technique compared to the heavier, though usually tighter, conventional techniques.
Edge states of periodically kicked quantum rotors
Floß, Johannes
2015-01-01
We present a quantum localization phenomenon that exists in periodically kicked 3D rotors, but is absent in the commonly studied 2D ones: edge localization. We show that under the condition of a fractional quantum resonance there are states of the kicked rotor that are strongly localized near the edge of the angular momentum space at $J=0$. These states are analogs of surface states in crystalline solids, and they significantly affect resonant excitation of molecular rotation by laser pulse trains.
Entanglement of Formation for Quantum States
Institute of Scientific and Technical Information of China (English)
ZHAO Hui; WANG Zhi-Xi
2007-01-01
We investigate the entanglement of formation for a class of high-dimensional quantum mixed states. We present a kind of generalized concurrence for a class of high-dimensional quantum pure states such that the entanglement of formation is a monotonically increasing convex function of the generalized concurrence. From the monotonicity and convexity the entanglement of formation for a class of high-dimensional mixed states has been calculated analytically.
On Possible S-Wave Bound States for an N-(N) System Within a Constituent Quark Model
Institute of Scientific and Technical Information of China (English)
CHANG Chao-Hsi; PANG Hou-Rong
2005-01-01
We try to apply a constituent quark model (a variety chiral constituent quark model) and the resonating group approach for the multi-quark problems to compute the effective potential between the NN- in S-wave (the quarks in the nucleons N and N-, and the two nucleons relatively as well, are in S wave) so as to see the possibility if there may be a tight bound state of six quarks as indicated by a strong enhancement at threshold of pp- in J/ψ and B decays. The effective potential which we obtain in terms of the model and approach shows if the experimental enhancement is really caused by a tight S-wave bound state of six quarks, then the quantum number of the bound state is very likely to be I = 1, JPC= 0-+.
Is the exotic X(5568) a bound state?
Energy Technology Data Exchange (ETDEWEB)
Chen, Xiaoyun; Ping, Jialun [Nanjing Normal University, Department of Physics and Jiangsu Key Laboratory for Numerical Simulation of Large Scale Complex Systems, Nanjing (China)
2016-06-15
Stimulated by the recent observation of the exotic X(5568) state by the D0 Collaboration, we study the four-quark system us anti b anti d with quantum numbers J{sup P} = 0{sup +} in the framework of the chiral quark model. Two structures, diquark-antidiquark and meson-meson, with all possible color configurations are investigated by using the Gaussian expansion method. The results show that the energies of the tetraquark states with diquark-antiquark structure are too high to be candidates of X(5568), and no molecular structure can be formed in our calculations. The calculation is also extended to the four-quark system us anti c anti d and the same results as that of us anti b anti d are obtained. (orig.)
Adaptive Quantum State Detection through Repetitive Mapping
Hume, David; Rosenband, Till; Wineland, David; Bergquist, Jim
2007-06-01
State detection plays an important role in quantum information processing and quantum-limited metrology. In some quantum systems direct detection is impossible or inefficient. This can be overcome by coupling the primary quantum system to an ancillary system used for measurement [1]. The measurement process consists of mapping the primary state to the ancilla followed by ancilla detection. If the measurement does not affect the projected populations of the primary system, it may be repeated yielding higher fidelity. Using two trapped ion species (^27Al^+ and ^9Be^+) as the primary and ancillary systems, we demonstrate high-fidelity measurement despite imperfect information transfer and ancilla detection. An adaptive measurement strategy allows for multiple qubit state discrimination with one ancilla. This opens the way for several applications in quantum information processing and advances our optical clock effort. [1] P.O. Schmidt, et. al. Science 309 749 (2005)
Quantum State Detection through Repetitive Mapping
Hume, D. B.; Rosenband, T.; Bergquist, J. C.; Wineland, D. J.
2007-03-01
State detection plays an important role in quantum information processing and quantum-limited metrology. In some cases the quantum system of interest can only be detected with poor efficiency. One approach to overcoming this limitation is to couple the primary quantum system to an ancillary quantum system used for measurement [1]. The measurement process consists of mapping the primary state to the ancilla followed by ancilla detection. If this can be done without affecting the projected populations of the primary system, the measurement may be repeated. In this case, detection fidelity can be significantly higher than both the fidelity of state transfer and the intrinsic measurement fidelity of the ancillary system. Using two ions as the primary and ancillary systems (^27Al^+ and ^9Be^+ respectively) held in a harmonic trap, we demonstrate near unit fidelity measurement despite imperfect information transfer and ancilla detection. [1] P.O. Schmidt, et. al. Science 309 749 (2005)
Fano effect and Andreev bound states in a hybrid superconductor–ferromagnetic nanostructure
Energy Technology Data Exchange (ETDEWEB)
Siqueira, E.C., E-mail: ezcostta@gmail.com [Departamento de Física, Universidade Tecnológica Federal do Paraná – UTFPR, 84016210, Ponta Grossa, PR (Brazil); Orellana, P.A. [Departamento de Física, Universidad Técnica Federico Santa Maria, Av. Vicuña Mackenna 3939, Santiago (Chile); Cestari, R.C. [Departamento de Física e Química, Universidade Estadual Paulista – UNESP, 15385-000, Ilha Solteira, SP (Brazil); Figueira, M.S. [Instituto de Física, Universidade Federal Fluminense, 24210-340, Niterói, RJ (Brazil); Cabrera, G.G. [Instituto de Física ‘Gleb Wataghin’, Universidade Estadual de Campinas – UNICAMP, Campinas 13083-859, SP (Brazil)
2015-10-16
In this work, it is considered a hybrid nanostructure composed by a quantum dot coupled to two ferromagnetic leads and a superconductor lead. It is shown that the zero-bias transmittance for the co-tunneling between the ferromagnetic leads presents Fano anti-resonances due to the destructive interference between the two spin channels mixing by the relative orientation of the magnetizations in the leads. When the superconductor is coupled to the system, electron–hole correlations between different spin states lead to a resonance in the place of the dip appearing in the transmittance. Such an effect is accompanied by two Fano anti-resonances explained by a “leakage” of conduction channels from the co-tunneling to the Andreev transport. In the non-equilibrium regime, correlations within the quantum dot introduce a dependence of the resonance condition on the finite bias applied to the ferromagnetic leads. However, it is still possible to observe signatures of the same interference effect in the electrical current. - Highlights: • We have studied an hybrid nanostructure composed by quantum dot coupled to a superconductor and two ferromagnets. • The interplay between spin polarization and Andreev bound states leads to a Fano-like effect. • The Fano-like effect manifests as a resonance in the transmittance for the transport between the ferromagnets.
Duality constructions from quantum state manifolds
Kriel, J N; Scholtz, F G
2015-01-01
The formalism of quantum state space geometry on manifolds of generalised coherent states is proposed as a natural setting for the construction of geometric dual descriptions of non-relativistic quantum systems. These state manifolds are equipped with natural Riemannian and symplectic structures derived from the Hilbert space inner product. This approach allows for the systematic construction of geometries which reflect the dynamical symmetries of the quantum system under consideration. We analyse here in detail the two dimensional case and demonstrate how existing results in the AdS_2/CFT_1 context can be understood within this framework. We show how the radial/bulk coordinate emerges as an energy scale associated with a regularisation procedure and find that, under quite general conditions, these state manifolds are asymptotically anti-de Sitter solutions of a class of classical dilaton gravity models. For the model of conformal quantum mechanics proposed by de Alfaro et. al. the corresponding state manifol...
Experimental entanglement distillation of mesoscopic quantum states
DEFF Research Database (Denmark)
Dong, Ruifang; Lassen, Mikael Østergaard; Heersink, Joel
2008-01-01
The distribution of entangled states between distant parties in an optical network is crucial for the successful implementation of various quantum communication protocols such as quantum cryptography, teleportation and dense coding(1-3). However, owing to the unavoidable loss in any real optical...
Invariant measures on multimode quantum Gaussian states
Lupo, C.; Mancini, S.; De Pasquale, A.; Facchi, P.; Florio, G.; Pascazio, S.
2012-12-01
We derive the invariant measure on the manifold of multimode quantum Gaussian states, induced by the Haar measure on the group of Gaussian unitary transformations. To this end, by introducing a bipartition of the system in two disjoint subsystems, we use a parameterization highlighting the role of nonlocal degrees of freedom—the symplectic eigenvalues—which characterize quantum entanglement across the given bipartition. A finite measure is then obtained by imposing a physically motivated energy constraint. By averaging over the local degrees of freedom we finally derive the invariant distribution of the symplectic eigenvalues in some cases of particular interest for applications in quantum optics and quantum information.
Invariant measures on multimode quantum Gaussian states
Lupo, C; De Pasquale, A; Facchi, P; Florio, G; Pascazio, S
2012-01-01
We derive the invariant measure on the manifold of multimode quantum Gaussian states, induced by the Haar measure on the group of Gaussian unitary transformations. To this end, by introducing a bipartition of the system in two disjoint subsystems, we use a parameterization highlighting the role of nonlocal degrees of freedom -- the symplectic eigenvalues -- which characterize quantum entanglement across the given bipartition. A finite measure is then obtained by imposing a physically motivated energy constraint. By averaging over the local degrees of freedom we finally derive the invariant distribution of the symplectic eigenvalues in some cases of particular interest or applications in quantum optics and quantum information.
Invariant measures on multimode quantum Gaussian states
Energy Technology Data Exchange (ETDEWEB)
Lupo, C. [School of Science and Technology, Universita di Camerino, I-62032 Camerino (Italy); Mancini, S. [School of Science and Technology, Universita di Camerino, I-62032 Camerino (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia (Italy); De Pasquale, A. [NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, I-56126 Pisa (Italy); Facchi, P. [Dipartimento di Matematica and MECENAS, Universita di Bari, I-70125 Bari (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari (Italy); Florio, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari (Italy); Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Piazza del Viminale 1, I-00184 Roma (Italy); Dipartimento di Fisica and MECENAS, Universita di Bari, I-70126 Bari (Italy); Pascazio, S. [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari (Italy); Dipartimento di Fisica and MECENAS, Universita di Bari, I-70126 Bari (Italy)
2012-12-15
We derive the invariant measure on the manifold of multimode quantum Gaussian states, induced by the Haar measure on the group of Gaussian unitary transformations. To this end, by introducing a bipartition of the system in two disjoint subsystems, we use a parameterization highlighting the role of nonlocal degrees of freedom-the symplectic eigenvalues-which characterize quantum entanglement across the given bipartition. A finite measure is then obtained by imposing a physically motivated energy constraint. By averaging over the local degrees of freedom we finally derive the invariant distribution of the symplectic eigenvalues in some cases of particular interest for applications in quantum optics and quantum information.
Universal Bounds on Charged States in 2d CFT and 3d Gravity
Benjamin, Nathan; Fitzpatrick, A Liam; Kachru, Shamit
2016-01-01
We derive an explicit bound on the dimension of the lightest charged state in two dimensional conformal field theories with a global abelian symmetry. We find that the bound scales with $c$ and provide examples that parametrically saturate this bound. We also prove than any such theory must contain a state with charge-to-mass ratio above a minimal lower bound. We comment on the implications for charged states in three dimensional theories of gravity.
Bound states in the continuum in open acoustic resonators
Lyapina, A A; Pilipchuk, A S; Sadreev, A F
2015-01-01
We consider bound states in the continuum (BSC) or embedded trapped modes in two- and three-dimensional acoustic axisymmetric duct-cavity structures. We demonstrate numerically that under variation of the length of the cavity multiple BSCs occur due to the Friedrich-Wintgen two-mode full destructive interference mechanism. The BSCs are detected by tracing the resonant widths to the points of the collapse of Fano resonances where one of the two resonant modes acquires infinite life-time. It is shown that the approach of the acoustic coupled mode theory cast in the truncated form of a two-mode approximation allows us to analytically predict the BSC frequencies and shape functions to a good accuracy in both two and three dimensions.
Three-boson bound states in finite volume with EFT
Kreuzer, S.; Hammer, H.-W.
2010-04-01
The universal properties of a three-boson system with large scattering length are well understood within the framework of Effective Field Theory. They include a geometric spectrum of shallow three-body bound states called “Efimov states” and log-periodic dependence of scattering observables on the scattering length. We investigate the modification of this spectrum in a finite cubic box using a partial wave expansion. The dependence of the binding energies on the box size is calculated for systems with positive and negative two-body scattering length. We compare the full results to results obtained using an expansion around the infinite volume binding energy. The renormalization of the Effective Field Theory in the finite volume is verified explicitly.
Rapid thermal co-annihilation through bound states
Kim, Seyong
2016-01-01
The co-annihilation rate of heavy particles close to thermal equilibrium, which plays a role in many classic dark matter scenarios, can be "simulated" in QCD by considering the pair annihilation rate of a heavy quark and antiquark at a temperature of a few hundred MeV. We show that the so-called Sommerfeld factors, parameterizing the rate, can be defined and measured non-perturbatively within the NRQCD framework. Lattice measurements indicate a modest suppression in the octet channel, in reasonable agreement with perturbation theory, and a large enhancement in the singlet channel, much above the perturbative prediction. We suggest that the additional enhancement originates from bound state formation and subsequent decay, omitted in previous estimates of thermal Sommerfeld factors, which were based on Boltzmann equations governing single-particle phase space distributions.
Weakly bound states with spin-isospin symmetry
Kievsky, A.; Gattobigio, M.
2016-03-01
We discuss weakly bound states of a few-fermion system having spin-isospin symmetry. This corresponds to the nuclear physics case in which the singlet, a0, and triplet, a1, n - p scattering lengths are large with respect to the range of the nuclear interaction. The ratio of the two is about a0/a1 ≈ -4.31. This value defines a plane in which a0 and a1 can be varied up to the unitary limit, 1/a0 = 0 and 1/a1 = 0, maintaining its ratio fixed. Using a spin dependant potential model we estimate the three-nucleon binding energy along that plane. This analysis can be considered an extension of the Efimov plot for three bosons to the case of three 1/2-spin-isospin fermions.
Weakly bound states with spin-isospin symmetry
Kievsky, A
2015-01-01
We discuss weakly bound states of a few-fermion system having spin-isospin symmetry. This corresponds to the nuclear physics case in which the singlet, $a_0$, and triplet, $a_1$, $n-p$ scattering lengths are large with respect to the range of the nuclear interaction. The ratio of the two is about $a_0/a_1\\approx-4.31$. This value defines a plane in which $a_0$ and $a_1$ can be varied up to the unitary limit, $1/a_0=0$ and $1/a_1=0$, maintaining its ratio fixed. Using a spin dependant potential model we estimate the three-nucleon binding energy along that plane. This analysis can be considered an extension of the Efimov plot for three bosons to the case of three $1/2$-spin-isospin fermions.
Weakly bound states with spin-isospin symmetry
Directory of Open Access Journals (Sweden)
Kievsky A.
2016-01-01
Full Text Available We discuss weakly bound states of a few-fermion system having spin-isospin symmetry. This corresponds to the nuclear physics case in which the singlet, a0, and triplet, a1, n − p scattering lengths are large with respect to the range of the nuclear interaction. The ratio of the two is about a0/a1 ≈ −4.31. This value defines a plane in which a0 and a1 can be varied up to the unitary limit, 1/a0 = 0 and 1/a1 = 0, maintaining its ratio fixed. Using a spin dependant potential model we estimate the three-nucleon binding energy along that plane. This analysis can be considered an extension of the Efimov plot for three bosons to the case of three 1/2-spin-isospin fermions.
Baryons as relativistic three-quark bound states
Eichmann, Gernot; Williams, Richard; Alkofer, Reinhard; Fischer, Christian S
2016-01-01
We review the spectrum and electromagnetic properties of baryons described as relativistic three-quark bound states within QCD. The composite nature of baryons results in a rich excitation spectrum, whilst leading to highly non-trivial structural properties explored by the coupling to external (electromagnetic and other) currents. Both present many unsolved problems despite decades of experimental and theoretical research. We discuss the progress in these fields from a theoretical perspective, focusing on nonperturbative QCD as encoded in the functional approach via Dyson-Schwinger and Bethe-Salpeter equations. We give a systematic overview as to how results are obtained in this framework and explain technical connections to lattice QCD. We also discuss the mutual relations to the quark model, which still serves as a reference to distinguish 'expected' from 'unexpected' physics. We confront recent results on the spectrum of non-strange and strange baryons, their form factors and the issues of two-photon proce...
Energy Technology Data Exchange (ETDEWEB)
Suparmi, A., E-mail: suparmiuns@gmail.com; Cari, C., E-mail: suparmiuns@gmail.com [Physics Department, Post Graduate Study, Sebelas Maret University (Indonesia); Angraini, L. M. [Physics Department, Mataram University (Indonesia)
2014-09-30
The bound state solutions of Dirac equation for Hulthen and trigonometric Rosen Morse non-central potential are obtained using finite Romanovski polynomials. The approximate relativistic energy spectrum and the radial wave functions which are given in terms of Romanovski polynomials are obtained from solution of radial Dirac equation. The angular wave functions and the orbital quantum number are found from angular Dirac equation solution. In non-relativistic limit, the relativistic energy spectrum reduces into non-relativistic energy.
Quantum Teleportation of Tripartite Arbitrary State via W State
Institute of Scientific and Technical Information of China (English)
XUE Zheng-Yuan; YI You-Min; CAO Zhuo-Liang
2005-01-01
A scheme of teleportation of a tripartite state via W state is suggested. The W state serves as quantum channels. Standard Bell-state measurements and Von Neumann measurements are performed. After the sender operates the measurements and informs the receiver her results, he can reconstruct the original state by the corresponding unitary transformation. The probability of the successful teleportation is also obtained.
Quantum state transfer and network engineering
Energy Technology Data Exchange (ETDEWEB)
Nikolopoulos, Georgios M. [Institute of Electronic Structure and Laser Foundation for Research and Technology, Hellas (Greece); Jex, Igor (ed.) [Czech Technical Univ., Prague (Czech Republic). Faculty of Nuclear Sciences and Physical Engineering
2014-03-01
Presents the basics of large-scale quantum information processing and networking. Covers most aspects of the problems of state transfer and quantum network engineering. Reflects the interdisciplinary nature of the field. Presents various theoretical approaches as well as possible implementations and related experiments. Faithful communication is a necessary precondition for large-scale quantum information processing and networking, irrespective of the physical platform. Thus, the problems of quantum-state transfer and quantum-network engineering have attracted enormous interest over the last years, and constitute one of the most active areas of research in quantum information processing. The present volume introduces the reader to fundamental concepts and various aspects of this exciting research area, including links to other related areas and problems. The implementation of state-transfer schemes and the engineering of quantum networks are discussed in the framework of various quantum optical and condensed matter systems, emphasizing the interdisciplinary character of the research area. Each chapter is a review of theoretical or experimental achievements on a particular topic, written by leading scientists in the field. The volume aims at both newcomers as well as experienced researchers.
Nonorthogonal Decoy-State Quantum Key Distribution
Institute of Scientific and Technical Information of China (English)
LI Jing-Bo; FANG Xi-Ming
2006-01-01
@@ In practical quantum key distribution (QKD), weak coherent states as the photon source have a limit in the secure key rate and transmission distance because of the existence of multi-photon pulses and heavy loss in transmission line.
Classical topology and quantum states
Indian Academy of Sciences (India)
A P Balachandran
2001-02-01
Any two inﬁnite-dimensional (separable) Hilbert spaces are unitarily isomorphic. The sets of all their self-adjoint operators are also therefore unitarily equivalent. Thus if all self-adjoint operators can be observed, and if there is no further major axiom in quantum physics than those formulated for example in Dirac’s ‘quantum mechanics’, then a quantum physicist would not be able to tell a torus from a hole in the ground. We argue that there are indeed such axioms involving observables with smooth time evolution: they contain commutative subalgebras from which the spatial slice of spacetime with its topology (and with further reﬁnements of the axiom, its - and ∞ - structures) can be reconstructed using Gel’fand–Naimark theory and its extensions. Classical topology is an attribute of only certain quantum observables for these axioms, the spatial slice emergent from quantum physics getting progressively less differentiable with increasingly higher excitations of energy and eventually altogether ceasing to exist. After formulating these axioms, we apply them to show the possibility of topology change and to discuss quantized fuzzy topologies. Fundamental issues concerning the role of time in quantum physics are also addressed.
Damanik, David
2008-01-01
We develop further the approach to upper and lower bounds in quantum dynamics via complex analysis methods which was introduced by us in a sequence of earlier papers. Here we derive upper bounds for non-time averaged outside probabilities and moments of the position operator from lower bounds for transfer matrices at complex energies. Moreover, for the time-averaged transport exponents, we present improved lower bounds in the special case of the Fibonacci Hamiltonian. These bounds lead to an optimal description of the time-averaged spreading rate of the fast part of the wavepacket in the large coupling limit. This provides the first example which demonstrates that the time-averaged spreading rates may exceed the upper box-counting dimension of the spectrum.
Probing the Dark Sector with Dark Matter Bound States.
An, Haipeng; Echenard, Bertrand; Pospelov, Maxim; Zhang, Yue
2016-04-15
A model of the dark sector where O(few GeV) mass dark matter particles χ couple to a lighter dark force mediator V, m_{V}≪m_{χ}, is motivated by the recently discovered mismatch between simulated and observed shapes of galactic halos. Such models, in general, provide a challenge for direct detection efforts and collider searches. We show that for a large range of coupling constants and masses, the production and decay of the bound states of χ, such as 0^{-+} and 1^{--} states, η_{D} and ϒ_{D}, is an important search channel. We show that e^{+}e^{-}→η_{D}+V or ϒ_{D}+γ production at B factories for α_{D}>0.1 is sufficiently strong to result in multiple pairs of charged leptons and pions via η_{D}→2V→2(l^{+}l^{-}) and ϒ_{D}→3V→3(l^{+}l^{-}) (l=e,μ,π). The absence of such final states in the existing searches performed at BABAR and Belle sets new constraints on the parameter space of the model. We also show that a search for multiple bremsstrahlung of dark force mediators, e^{+}e^{-}→χχ[over ¯]+nV, resulting in missing energy and multiple leptons, will further improve the sensitivity to self-interacting dark matter.
Affine Coherent States in Quantum Cosmology
Malkiewicz, Przemyslaw
2015-01-01
A brief summary of the application of coherent states in the examination of quantum dynamics of cosmological models is given. We discuss quantization maps, phase space probability distributions and semiclassical phase spaces. The implementation of coherent states based on the affine group resolves the hardest singularities, renders self-adjoint Hamiltonians without boundary conditions and provides a completely consistent semi-classical description of the involved quantum dynamics. We consider three examples: the closed Friedmann model, the anisotropic Bianchi Type I model and the deep quantum domain of the Bianchi Type IX model.
Quantum Discord of Non-X State
Institute of Scientific and Technical Information of China (English)
YAO Jing-Ying; DONG Yu-Li; ZHU Shi-Qun
2013-01-01
The level surfaces of quantum discord for a class of two-qubit states are investigated when the Bloch vectors (r) and (s) are perpendicularly oriented.The geometric objects of tetrahedron T and octahedron O are deformed.The level surfaces of constant discord are formed by three interaction “tubes” along three orthogonal directions.They shrink to the center when the Bloch vectors are increased and are expanded and cut off by the state tetrahedron T when the quantum discord is increased.In the phase damping channel,the quantum discord keeps approximately a constant when the time increases.
Quantum state transfer in optomechanical arrays
de Moraes Neto, G. D.; Andrade, F. M.; Montenegro, V.; Bose, S.
2016-06-01
Quantum state transfer between distant nodes is at the heart of quantum processing and quantum networking. Stimulated by this, we propose a scheme where one can achieve quantum state transfer with a high fidelity between sites in a cavity quantum optomechanical network. In our lattice, each individual site is composed of a localized mechanical mode which interacts with a laser-driven cavity mode via radiation pressure, while photons hop between neighboring sites. After diagonalization of the Hamiltonian of each cell, we show that the system can be reduced to an effective Hamiltonian of two decoupled bosonic chains, and therefore we can apply the well-known results in quantum state transfer together with an additional condition on the transfer times. In fact, we show that our transfer protocol works for any arbitrary joint quantum state of a mechanical and an optical mode. Finally, in order to analyze a more realistic scenario we take into account the effects of independent thermal reservoirs for each site. By solving the standard master equation within the Born-Markov approximation, we reassure both the effective model and the feasibility of our protocol.
Entanglement and the shareability of quantum states
Doherty, Andrew C.
2014-10-01
This brief review discusses the problem of determining whether a given quantum state is separable or entangled. I describe an established approach to this problem that is based on the monogamy of entanglement, which is the observation that a pair of quantum systems that are strongly entangled must be uncorrelated with the rest of the world. Unentangled states on the other hand involve correlations that can be shared with many other parties. Checking whether a given quantum state is shareable involves constructing certain symmetric quantum state extensions and I discuss how to do this using a class of optimizations known as semidefinite programs. An attractive feature of this approach is that it generates explicit entanglement witnesses that can be measured to demonstrate the entanglement experimentally. In recent years analysis of this approach has greatly increased our understanding of the complexity of determining whether a given quantum state is entangled and this review aims to give a unified discussion of these developments. Specifically, I describe how to use finite quantum de Finetti theorems to prove that highly shareable states are nearly separable and use these results to understand the computational complexity of the problem. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘50 years of Bell’s theorem’.
The symmetric extendibility of quantum states
Nowakowski, Marcin L.
2016-09-01
Studies on the symmetric extendibility of quantum states have become particularly important in the context of the analysis of one-way quantum measures of entanglement, and the distillability and security of quantum protocols. In this paper we analyze composite systems containing a symmetric extendible part, with particular attention devoted to the one-way security of such systems. Further, we introduce a new one-way entanglement monotone based on the best symmetric approximation of a quantum state and the extendible number of a quantum state. We underpin these results with geometric observations about the structures of multi-party settings which posses substantial symmetric extendible components in their subspaces. The impossibility of reducing the maximal symmetric extendibility by means of the one-way local operations and classical communication method is pointed out on multiple copies. Finally, we state a conjecture linking symmetric extendibility with the one-way distillability and security of all quantum states, analyzing the behavior of a private key in the neighborhood of symmetric extendible states.
Fidelity between Gaussian mixed states with quantum state quadrature variances
Hai-Long, Zhang; Chun, Zhou; Jian-Hong, Shi; Wan-Su, Bao
2016-04-01
In this paper, from the original definition of fidelity in a pure state, we first give a well-defined expansion fidelity between two Gaussian mixed states. It is related to the variances of output and input states in quantum information processing. It is convenient to quantify the quantum teleportation (quantum clone) experiment since the variances of the input (output) state are measurable. Furthermore, we also give a conclusion that the fidelity of a pure input state is smaller than the fidelity of a mixed input state in the same quantum information processing. Project supported by the National Basic Research Program of China (Grant No. 2013CB338002) and the Foundation of Science and Technology on Information Assurance Laboratory (Grant No. KJ-14-001).
Bounds for entanglement of formation of two mode squeezed thermal states
Chen, X Y; Chen, Xiao-Yu; Qiu, Pei-liang
2003-01-01
The upper and lower bounds of entanglement of formation are given for two mode squeezed thermal state. The bounds are compared with other entanglement measure or bounds. The entanglement distillation and the relative entropy of entanglement of infinitive squeezed state are obtained at the postulation of hashing inequality.
Classical and Quantum-Mechanical State Reconstruction
Khanna, F. C.; Mello, P. A.; Revzen, M.
2012-01-01
The aim of this paper is to present the subject of state reconstruction in classical and in quantum physics, a subject that deals with the experimentally acquired information that allows the determination of the physical state of a system. Our first purpose is to explain a method for retrieving a classical state in phase space, similar to that…
Quantum Correlation Coefficients for Angular Coherent States
Institute of Scientific and Technical Information of China (English)
CHEN Wei; HE Yan; GUO Hao
2009-01-01
Quantum covariance and correlation coefficients of angular or SU(2) coherent states are directly calculated for all irreducible unitary representations.These results explicitly verify that the angular coherent states minimize the Robertson-Schrodinger uncertainty relation for all spins, which means that they are the so-called intelligent states.The same results can be obtained by the Schwinger representation approach.
Generalized BF state in quantum gravity
Yamashita, Shinji; Fukuda, Makoto
2014-01-01
The BF state is known as a simple wave function which satisfies three constraints in canonical quantum gravity without a cosmological constant. It is constructed from a product of the group delta functions. Applying the chiral asymmetric extension, the BF state is generalized to the state for the real values of the Barbero-Immirzi parameter.
Quantum superreplication of states and gates
Chiribella, Giulio; Yang, Yuxiang
2016-06-01
Although the no-cloning theorem forbids perfect replication of quantum information, it is sometimes possible to produce large numbers of replicas with vanishingly small error. This phenomenon, known as quantum superreplication, can occur for both quantum states and quantum gates. The aim of this paper is to review the central features of quantum superreplication and provide a unified view of existing results. The paper also includes new results. In particular, we show that when quantum superreplication can be achieved, it can be achieved through estimation up to an error of size O( M/ N 2), where N and M are the number of input and output copies, respectively. Quantum strategies still offer an advantage for superreplication in that they allow for exponentially faster reduction of the error. Using the relation with estimation, we provide i) an alternative proof of the optimality of Heisenberg scaling in quantum metrology, ii) a strategy for estimating arbitrary unitary gates with a mean square error scaling as log N/ N 2, and iii) a protocol that generates O( N 2) nearly perfect copies of a generic pure state U |0> while using the corresponding gate U only N times. Finally, we point out that superreplication can be achieved using interactions among k systems, provided that k is large compared to M 2/ N 2.
Unknown Quantum States and Operations, a Bayesian View
Fuchs, C; Fuchs, Christopher A.; Schack, Ruediger
2004-01-01
The classical de Finetti theorem provides an operational definition of the concept of an unknown probability in Bayesian probability theory, where probabilities are taken to be degrees of belief instead of objective states of nature. In this paper, we motivate and review two results that generalize de Finetti's theorem to the quantum mechanical setting: Namely a de Finetti theorem for quantum states and a de Finetti theorem for quantum operations. The quantum-state theorem, in a closely analogous fashion to the original de Finetti theorem, deals with exchangeable density-operator assignments and provides an operational definition of the concept of an "unknown quantum state" in quantum-state tomography. Similarly, the quantum-operation theorem gives an operational definition of an "unknown quantum operation" in quantum-process tomography. These results are especially important for a Bayesian interpretation of quantum mechanics, where quantum states and (at least some) quantum operations are taken to be states ...
Quantum states with strong positive partial transpose
Chruściński, Dariusz; Jurkowski, Jacek; Kossakowski, Andrzej
2008-02-01
We construct a large class of bipartite M⊗N quantum states which defines a proper subset of states with positive partial transposes (PPTs). Any state from this class has PPT but the positivity of its partial transposition is recognized with respect to canonical factorization of the original density operator. We propose to call elements from this class states with strong positive partial transposes (SPPTs). We conjecture that all SPPT states are separable.
Bound state spectra of the 3D rational potential
Roy, Amlan K; Proynov, Emil I
2010-01-01
We present bound state spectra of the 3D rational potential, $V(r)=r^2 + \\lambda r^2/(1+gr^2)$, $g>0$, by means of the generalized pseudospectral method. All the thirty states corresponding to $n$=0--9 are considered for the first time for a broad range of coupling parameters. These results surpass the accuracy of \\emph{all} other existing calculations published so far except the finite-difference method, which yields similar accuracy as ours. Variation of energies and radial distribution functions is followed with respect to the interaction parameters. Special emphasis has been laid on \\emph{higher} excitations and \\emph{negative} values of the interaction, where relatively less work has been reported. The energy sequence is found to be different for positive and negative interaction; numerically following a mirror-image relationship \\emph{usually}, if not always. Additionally, twenty energy splittings arising from certain levels belonging to $n$=0--9 are systematically studied as functions of the potential ...
Energy Spectra of Excitons Bound to a Neutral Acceptor in Quantum Dots
Institute of Scientific and Technical Information of China (English)
XIE Wen-Fang
2004-01-01
The energy spectra of the ground state for an exciton (X) trapped by a neutral acceptor (A0) in a quantum dot with a parabolic confinement have been calculated as a function of the electron-to-hole mass ratio σ by using the hyperspherical coordinates. We find that the (A0, X) complex confined in a quantum dot has in general a larger binding energy than those in a two-dimensional quantum well and a three-dimensional bulk semiconductor, and the binding energy decreases with the increase of the electron-to-hole mass ratio.
Jamell, Christopher Ray
In this thesis, we focus on two broad categories of problems, exciton condensation and bound states, and two complimentary approaches, real and momentum space, to solve these problems. In chapter 2 we begin by developing the self-consistent mean field equations, in momentum space, used to calculate exciton condensation in semiconductor heterostructures/double quantum wells and graphene. In the double quantum well case, where we have one layer containing electrons and the other layer with holes separated by a distance d, we extend the analytical solution to the two dimensional hydrogen atom in order to provide a semi-quantitative measure of when a system of excitons can be considered dilute. Next we focus on the problem of electron-electron screening, using the random phase approximation, in double layer graphene. The literature contains calculations showing that when screening is not taken into account the temperature at which excitons in double layer graphene condense is approximately room temperature. Also in the literature is a calculation showing that under certain assumptions the transition temperature is approximately mK. The essential result is that the condensate is exponentially suppressed by the number of electron species in the system. Our mean field calculations show that the condensate, is in fact, not exponentially suppressed. Next, in chapter 3, we show the use of momentum space to solve the Schrodinger equation for a class of potentials that are not usually a part of a quantum mechanics courses. Our approach avoids the typical pitfalls that exist when one tries to discretize the real space Schrodinger equation. This technique widens the number of problems that can presented in an introductory quantum mechanics course while at the same time, because of the ease of its implementation, provides a simple introduction to numerical techniques and programming in general to students. We have furthered this idea by creating a modular program that allows
Optimal conclusive teleportation of quantum states
Roa, L; Fuentes-Guridi, I
2003-01-01
Quantum teleportation of qudits is revisited. In particular, we analyze the case where the quantum channel corresponds to a non-maximally entangled state and show that the success of the protocol is directly related to the problem of distinguishing non-orthogonal quantum states. The teleportation channel can be seen as a coherent superposition of two channels, one of them being a maximally entangled state thus, leading to perfect teleportation and the other, corresponding to a non-maximally entangled state living in a subspace of the d-dimensional Hilbert space. The second channel leads to a teleported state with reduced fidelity. We calculate the average fidelity of the process and show its optimality.
Quantum information processing with noisy cluster states
Tame, M S; Kim, M S; Vedral, V
2005-01-01
We provide an analysis of basic quantum information processing protocols under the effect of intrinsic non-idealities in cluster states. These non-idealities are based on the introduction of randomness in the entangling steps that create the cluster state and are motivated by the unavoidable imperfections faced in creating entanglement using condensed-matter systems. Aided by the use of an alternative and very efficient method to construct cluster state configurations, which relies on the concatenation of fundamental cluster structures, we address quantum state transfer and various fundamental gate simulations through noisy cluster states. We find that a winning strategy to limit the effects of noise, is the management of small clusters processed via just a few measurements. Our study also reinforces recent ideas related to the optical implementation of a one-way quantum computer.
Coherent-state analysis of the quantum bouncing ball
Mather, William H.; Fox, Ronald F.
2006-03-01
Gaussian-Klauder coherent states are applied to the bound “quantum bouncer,” a gravitating particle above an infinite potential boundary. These Gaussian-Klauder states, originally created for Rydberg atoms, provide an overcomplete set of wave functions that mimic classical trajectories for extended times through the utilization of energy localization. For the quantum bouncer, analytic methods are applied presently to compute first and second moments of position and momentum operators, and from these results, at least two scalings of Gaussian-Klauder parameters are highlighted, one of which tends to remains localized for markedly more bounces than comparable states that are Gaussian in position (by an order of magnitude in some cases). We close with a connection that compares Gaussian-Klauder states and positional Gaussian states directly for the quantum bouncer, relating the two through a known energy-position duality of Airy functions. Our results, taken together, ultimately reemphasize the primacy of energy localization as a key ingredient for long-lived classical correspondence in systems with smooth spectra.
State preparation for quantum information science and metrology
Energy Technology Data Exchange (ETDEWEB)
Samblowski, Aiko
2012-06-08
The precise preparation of non-classical states of light is a basic requirement for performing quantum information tasks and quantum metrology. Depending on the assignment, the range of required states varies from preparing and modifying squeezed states to generating bipartite entanglement and establishing multimode entanglement networks. Every state needs special preparation techniques and hence it is important to develop the experimental expertise to generate all states with the desired degree of accuracy. In this thesis, the experimental preparation of different kinds of non-classical states of light is demonstrated. Starting with a multimode entangled state, the preparation of an unconditionally generated bound entangled state of light of unprecedented accuracy is shown. Its existence is of fundamental interest, since it certifies an intrinsic irreversibility of entanglement and suggests a connection with thermodynamics. The state is created in a network of linear optics, utilizing optical parametric amplifiers, operated below threshold, beam splitters and phase gates. The experimental platform developed here afforded the precise and stable control of all experimental parameters. Focusing on the aspect of quantum information networks, the generation of suitable bipartite entangled states of light is desirable. The optical connection between atomic transitions and light that can be transmitted via telecommunications fibers opens the possibility to employ quantum memories within fiber networks. For this purpose, a non-degenerate optical parametric oscillator is operated above threshold and the generation of bright bipartite entanglement between its twin beams at the wavelengths of 810 nm and 1550 nm is demonstrated. In the field of metrology, quantum states are used to enhance the measurement precision of interferometric gravitational wave (GW) detectors. Recently, the sensitivity of a GW detector operated at a wavelength of 1064 nm was increased using squeezed
Cooper, Merlin; Slade, Eirion; Karpinski, Michal; Smith, Brian J.
2014-01-01
Conditional quantum optical processes enable a wide range of technologies from generation of highly non-classical states to implementation of quantum logic operations. The process fidelity that can be achieved in a realistic implementation depends on a number of system parameters. Here we experimentally examine Fock-state filtration, a canonical example of a broad class of conditional quantum operations acting on a single optical field mode. This operation is based upon interference of the mo...
Ionization Potentials and Quantum Defects of 1s2np2P Rydberg States of Lithium Atom
Institute of Scientific and Technical Information of China (English)
CHEN Chao
2008-01-01
In this work,ionization potentials and quantum effects of 1s2np2p Rydberg states of lithium are calculated based on the calibrated quantum defect function.Energy levels and quantum defects for 1s2np2P bound states and their adjacent continuum states are calculated with the R-matrix theory,and then the quantum defect function of the 1s2np (n ≥ 7) channel is obtained,which varies smoothly with the energy based on the quantum defect theory.The accurate quantum defect of the 1s27p2P state derived from the experimental data is used to calibrate the original quantum defect function.The new function is used to calculate ionization potentials and quantum effects of 1s2np2P (n ≥ 7) Rydberg states.Present calculations are in agreement with recent experimental data in whole.
Xie, Hang; Sha, Wei E I
2015-01-01
Numerical methods are developed in the quantum transport calculations for electron in the waveguides with spin-orbital (Rashba) interaction. The methods are based on a hybrid mode-matching scheme in which the wavefunctions are expressed as the superposition of eigenmodes in the lead regions and in the device region the wavefunction is expressed on the discrete basis. Two versions are presented for the lead without and with the Rashba interaction. In the latter case the eigenmodes are obtained from a quadratic eigenproblem calculation. These methods are suitable for the systems with variable geometries or arbitrary potential profiles. The computation can be effectively accelerated by the sparse matrix technique. We also investigate the Fano-Rashba bound states in the Rashba waveguides by some nonlinear eigenstate calculation. This calculation is based on a mode-matching method and self-consistent results are obtained in our calculations.
Relativistic Three-Quark Bound States in Separable Two-Quark Approximation
Öttel, M; Alkofer, R
2002-01-01
Baryons as relativistic bound states in 3-quark correlations are described by an effective Bethe-Salpeter equation when irreducible 3-quark interactions are neglected and separable 2-quark correlations are assumed. We present an efficient numerical method to calculate the nucleon mass and its covariant wave function in this quantum field theoretic quark-diquark model with quark-exchange interaction. Expanding the components of the spinorial wave function in terms of Chebyshev polynomials, the four-dimensional integral equations are in a first step reduced to a coupled set of one-dimensional ones. This set of linear and homogeneous equations defines a generalised eigenvalue problem. Representing the eigenvector corresponding to the largest eigenvalue, the Chebyshev moments are then obtained by iteration. The nucleon mass is implicitly determined by the eigenvalue, and its covariant wave function is reconstructed from the moments within the Chebyshev approximation.
Nonlocal entanglement and noise between spin qubits induced by Majorana bound states
Energy Technology Data Exchange (ETDEWEB)
Ke, Sha-Sha [State Key Laboratory of Electronic Thin Films and Integrated Devices and School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Lü, Hai-Feng, E-mail: lvhf81@gmail.com [State Key Laboratory of Electronic Thin Films and Integrated Devices and School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Yang, Hua-Jun [State Key Laboratory of Electronic Thin Films and Integrated Devices and School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Guo, Yong [Department of Physics and State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084 (China); Collaborative Innovation Center of Quantum Matter, Beijing (China); Zhang, Huai-Wu [State Key Laboratory of Electronic Thin Films and Integrated Devices and School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China)
2015-01-23
We propose a scheme to create nonlocal entanglement between two spatially separated electron spin qubits by coupling them with a pair of Majorana bound states (MBSs). The spin qubits are based on the spins of electrons confined in quantum dots. It is shown that spin entanglement between two dots could be generated by the nonlocality of MBSs. We also demonstrate that in the transport regime, the current noise cross correlation can serve as a good indicator of spin entanglement. The Majorana-dot coupling not only induces an indirect interaction between qubits, but also produces spin localization in the strong coupling limit. These two competing effects lead to a nonmonotonic dependence of current cross-correlation and entanglement on the Majorana-qubit coupling strength. - Highlights: • We propose a scheme to create nonlocal entanglement between two spatially separated electron spin qubits by coupling them with a pair of Majorana bound states. • Spin entanglement between two dots could be generated by the nonlocality of MBSs. • The current noise cross correlation can serve as a good indicator of spin entanglement.
Variational Calculations of Neutral Bound Excitons in GaAs Quantum-Well Wires
Institute of Scientific and Technical Information of China (English)
LIU Jian-Jun; DI Bing; YANG Guo-Chen; LI Shu-Shen
2004-01-01
@@ The binding energy of an exciton bound to a neutral donor (D0, X) in GaAs quantum-well wires is calculated variationally as a function of the wire width for different positions of the impurity inside the wire by using a two-parameter wavefunction. There is no artificial parameter added in our calculation. The results we have obtained show that the binding energies are closely correlated to the sizes of the wire, the impurity position, and also that their magnitudes are greater than those in the two-dimensional quantum wells compared. In addition,we also calculate the average interparticle distance as a function of the wire width. The results are discussed in detail.
Quantum typicality in spin network states of quantum geometry
Anzà, Fabio
2016-01-01
In this letter we extend the so-called typicality approach, originally formulated in statistical mechanics contexts, to SU(2) invariant spin network states. Our results do not depend on the physical interpretation of the spin-network, however they are mainly motivated by the fact that spin-network states can describe states of quantum geometry, providing a gauge-invariant basis for the kinematical Hilbert space of several background independent approaches to quantum gravity. The first result is, by itself, the existence of a regime in which we show the emergence of a typical state. We interpret this as the prove that, in that regime there are certain (local) properties of quantum geometry which are "universal". Such set of properties is heralded by the typical state, of which we give the explicit form. This is our second result. In the end, we study some interesting properties of the typical state, proving that the area-law for the entropy of a surface must be satisfied at the local level, up to logarithmic c...
A Scheme of Controlled Quantum State Swapping
Institute of Scientific and Technical Information of China (English)
查新未; 邹志纯; 祁建霞; 朱海洋
2012-01-01
A scheme for controlled quantum state swapping is presented using maximally entangled five-qubit state, i.e., Alice wants to transmit an entangled state of particle a to Bob and at the same time Bob wants to transmit an entangled state of particle b to Alice via the control of the supervisor Charlie. The operations used in this swapping process including C-not operation and a series of single-qubit measurements performed by Alice. Bob. and Charlie.
Baryons as relativistic three-quark bound states
Eichmann, Gernot; Sanchis-Alepuz, Hèlios; Williams, Richard; Alkofer, Reinhard; Fischer, Christian S.
2016-11-01
We review the spectrum and electromagnetic properties of baryons described as relativistic three-quark bound states within QCD. The composite nature of baryons results in a rich excitation spectrum, whilst leading to highly non-trivial structural properties explored by the coupling to external (electromagnetic and other) currents. Both present many unsolved problems despite decades of experimental and theoretical research. We discuss the progress in these fields from a theoretical perspective, focusing on nonperturbative QCD as encoded in the functional approach via Dyson-Schwinger and Bethe-Salpeter equations. We give a systematic overview as to how results are obtained in this framework and explain technical connections to lattice QCD. We also discuss the mutual relations to the quark model, which still serves as a reference to distinguish 'expected' from 'unexpected' physics. We confront recent results on the spectrum of non-strange and strange baryons, their form factors and the issues of two-photon processes and Compton scattering determined in the Dyson-Schwinger framework with those of lattice QCD and the available experimental data. The general aim is to identify the underlying physical mechanisms behind the plethora of observable phenomena in terms of the underlying quark and gluon degrees of freedom.
Solid-State Quantum Refrigeration
2013-03-01
determine the tilt angle of the ridge waveguide with respect to the cleavage plane. MQW Design: The designs which demonstrate the blueshift of...Photoluminescence (PL) by the photogenerated carriers are introduced. In this section the mechanisms which lead to the blueshift are explained. The...subject of this report. We propose the use of quantum confined stark shift as a method to blueshift the spectra of Matrix element of transition by
A Note on Coriolis Quantum States
Dattoli, G.; Quattromini, M.
2010-01-01
We introduce the Coriolis quantum states in analogy to the Landau states. We discuss their physical meaning and their role within the context of gravito-magnetic theory. We also analyse the experimental conditions under which they can be observed and their link with the Aharanov-Carmi effect.
Average fidelity between random quantum states
Zyczkowski, K; Zyczkowski, Karol; Sommers, Hans-Jurgen
2003-01-01
We analyze mean fidelity between random density matrices of size N, generated with respect to various probability measures in the space of mixed quantum states: Hilbert-Schmidt measure, Bures (statistical) measure, the measures induced by partial trace and the natural measure on the space of pure states. In certain cases explicit probability distributions for fidelity are derived.
Quantum teleportation of entangled squeezed vacuum states
Institute of Scientific and Technical Information of China (English)
蔡新华
2003-01-01
An optical scheme for probabilistic teleporting entangled squeezed vacuum states (SVS) is proposed. In this scheme,the teleported state is a bipartite entangled SVS,and the quantum channel is a tripartite entangled SVS.The process of the teleportation is achieved by using a 50/50 symmetric beamsplitter and photon detectors with the help of classical information.
Duality constructions from quantum state manifolds
Kriel, J. N.; van Zyl, H. J. R.; Scholtz, F. G.
2015-11-01
The formalism of quantum state space geometry on manifolds of generalised coherent states is proposed as a natural setting for the construction of geometric dual descriptions of non-relativistic quantum systems. These state manifolds are equipped with natural Riemannian and symplectic structures derived from the Hilbert space inner product. This approach allows for the systematic construction of geometries which reflect the dynamical symmetries of the quantum system under consideration. We analyse here in detail the two dimensional case and demonstrate how existing results in the AdS 2 /CF T 1 context can be understood within this framework. We show how the radial/bulk coordinate emerges as an energy scale associated with a regularisation procedure and find that, under quite general conditions, these state manifolds are asymptotically anti-de Sitter solutions of a class of classical dilaton gravity models. For the model of conformal quantum mechanics proposed by de Alfaro et al. [1] the corresponding state manifold is seen to be exactly AdS 2 with a scalar curvature determined by the representation of the symmetry algebra. It is also shown that the dilaton field itself is given by the quantum mechanical expectation values of the dynamical symmetry generators and as a result exhibits dynamics equivalent to that of a conformal mechanical system.
Energy Technology Data Exchange (ETDEWEB)
Özdemir, Semra Bayat; Demiralp, Metin [Computational Science and Engineering Department, Informatics Institute, Istanbul Technical University, Istanbul (Turkey)
2015-12-31
The determination of the energy states is highly studied issue in the quantum mechanics. Based on expectation values dynamics, energy states can be observed. But conditions and calculations vary depending on the created system. In this work, a symmetric exponential anharmonic oscillator is considered and development of a recursive approximation method is studied to find its ground energy state. The use of majorant values facilitates the approximate calculation of expectation values.
Institute of Scientific and Technical Information of China (English)
CHI Yue-Meng; SHI Jun-Jie
2006-01-01
@@ Considering the three-dimensional confinement of the electrons and holes and the strong built-in electric field (BEF) in the wurtzite InGaN strained coupled quantum dots (QDs), the positively charged donor bound exciton states and interband optical transitions are investigated theoretically by means of a variational method. Our calculations indicate that the emission wavelengths sensitively depend on the donor position, the strong BEF,and the structure parameters of the QD system.
Quantum locking of classical correlations and quantum discord of classical-quantum states
Boixo, S; Cavalcanti, D; Modi, K; Winter, A
2011-01-01
A locking protocol between two parties is as follows: Alice gives an encrypted classical message to Bob which she does not want Bob to be able to read until she gives him the key. If Alice is using classical resources, and she wants to approach unconditional security, then the key and the message must have comparable sizes. But if Alice prepares a quantum state, the size of the key can be comparatively negligible. This effect is called quantum locking. Entanglement does not play a role in this quantum advantage. We show that, in this scenario, the quantum discord quantifies the advantage of the quantum protocol over the corresponding classical one for any classical-quantum state.
Asymptotics of Ground State Degeneracies in Quiver Quantum Mechanics
Cordova, Clay
2015-01-01
We study the growth of the ground state degeneracy in the Kronecker model of quiver quantum mechanics. This is the simplest quiver with two gauge groups and bifundamental matter fields, and appears universally in the context of BPS state counting in four-dimensional N=2 systems. For large ranks, the ground state degeneracy is exponential with slope a modular function that we are able to compute at integral values of its argument. We also observe that the exponential of the slope is an algebraic number and determine its associated algebraic equation explicitly in several examples. The speed of growth of the degeneracies, together with various physical features of the bound states, suggests a dual string interpretation.
Construction of quantum states by special superpositions of coherent states
Adam, P.; Molnar, E.; Mogyorosi, G.; Varga, A.; Mechler, M.; Janszky, J.
2015-06-01
We consider the optimal approximation of certain quantum states of a harmonic oscillator with the superposition of a finite number of coherent states in phase space placed either on an ellipse or on a certain lattice. These scenarios are currently experimentally feasible. The parameters of the ellipse and the lattice and the coefficients of the constituent coherent states are optimized numerically, via a genetic algorithm, in order to obtain the best approximation. It is found that for certain quantum states the obtained approximation is better than the ones known from the literature thus far.
Necessary detection efficiencies for secure quantum key distribution and bound randomness
Acín, Antonio; Cavalcanti, Daniel; Passaro, Elsa; Pironio, Stefano; Skrzypczyk, Paul
2016-01-01
In recent years, several hacking attacks have broken the security of quantum cryptography implementations by exploiting the presence of losses and the ability of the eavesdropper to tune detection efficiencies. We present a simple attack of this form that applies to any protocol in which the key is constructed from the results of untrusted measurements performed on particles coming from an insecure source or channel. Because of its generality, the attack applies to a large class of protocols, from standard prepare-and-measure to device-independent schemes. Our attack gives bounds on the critical detection efficiencies necessary for secure quantum key distribution, which show that the implementation of most partly device-independent solutions is, from the point of view of detection efficiency, almost as demanding as fully device-independent ones. We also show how our attack implies the existence of a form of bound randomness, namely nonlocal correlations in which a nonsignalling eavesdropper can find out a posteriori the result of any implemented measurement.
An Arbitrated Quantum Signature with Bell States
Liu, Feng; Qin, Su-Juan; Huang, Wei
2014-05-01
Entanglement is the main resource in quantum communication. The main aims of the arbitrated quantum signature (AQS) scheme are to present an application of the entanglement in cryptology and to prove the possibility of the quantum signature. More specifically, the main function of quantum entangled states in the existing AQS schemes is to assist the signatory to transfer quantum states to the receiver. However, teleportation and the Leung quantum one-time pad (L-QOTP) algorithm are not enough to design a secure AQS scheme. For example, Pauli operations commute or anticommute with each other, which makes the implementation of attacks easily from the aspects of forgery and disavowal. To conquer this shortcoming, we construct an improved AQS scheme using a new QOTP algorithm. This scheme has three advantages: it randomly uses the Hadamard operation in the new QOTP to resist attacks by using the anticommutativity of nontrivial Pauli operators and it preserves almost all merits in the existing AQS schemes; even in the process of handling disputes, no party has chance to change the message and its signature without being discovered; the receiver can verify the integrity of the signature and discover the disavow of the signatory even in the last step of verification.
Projective loop quantum gravity. I. State space
Lanéry, Suzanne; Thiemann, Thomas
2016-12-01
Instead of formulating the state space of a quantum field theory over one big Hilbert space, it has been proposed by Kijowski to describe quantum states as projective families of density matrices over a collection of smaller, simpler Hilbert spaces. Beside the physical motivations for this approach, it could help designing a quantum state space holding the states we need. In a latter work by Okolów, the description of a theory of Abelian connections within this framework was developed, an important insight being to use building blocks labeled by combinations of edges and surfaces. The present work generalizes this construction to an arbitrary gauge group G (in particular, G is neither assumed to be Abelian nor compact). This involves refining the definition of the label set, as well as deriving explicit formulas to relate the Hilbert spaces attached to different labels. If the gauge group happens to be compact, we also have at our disposal the well-established Ashtekar-Lewandowski Hilbert space, which is defined as an inductive limit using building blocks labeled by edges only. We then show that the quantum state space presented here can be thought as a natural extension of the space of density matrices over this Hilbert space. In addition, it is manifest from the classical counterparts of both formalisms that the projective approach allows for a more balanced treatment of the holonomy and flux variables, so it might pave the way for the development of more satisfactory coherent states.
String Models for the Heavy Quark-Antiquark Bound States.
Tse, Sze-Man
1988-12-01
The heavy quark-antiquark bound state is examined in the phenomenological string models. Specifically, the Nambu-Goto model and the Polyakov's smooth string model are studied in the large-D limit, D being the number of transverse space-time dimensions. The static potential V(R) is extracted in both models in the large-D limit. In the former case, this amounts to the usual saddle point calculation. In the latter case, the renormalized, physical string tension is expressed in terms of the bare string tension and the extrinsic curvature coupling. A systematic loop expansion of V(R) is developed and carried out explicitly to one loop order, with the two loops result presented without detail. For large separations R, the potential is linear in R with corrections of order 1/R. The coefficient of the 1/R Luscher term has the universal value -piD/24 to any finite order in the loop expansion. For very small separations R, the potential V(R) is also proportional to 1/R with a coefficient twice that of Luscher's term. The corrections are logarithmically small. Polyakov's smooth string model is extended to the finite temperature situation. The temperature dependence of the string tension is investigated in the large-D limit. The effective string tension is calculated to the second order in the loop expansion. At low temperature, it differs from that of the Nambu-Goto model only by terms that fall exponentially with inverse temperature. Comparison of the potential V(R) in the smooth string model with lattice gauge calculation and hadron spectroscopy data yields a consistent result.
Exotic states in quantum nanostructures
2002-01-01
Mesoscopic physics has made great strides in the last few years It is an area of research that is attractive to many graduate students of theoretical condensed matter physics The techniques that are needed to understand it go beyond the conventional perturbative approaches that still form the bulk of the graduate lectures that are given to students Even when the non-perturbative techniques are presented, they often are presented within an abstract context It is important to have lectures given by experts in the field, which present both theory and experiment in an illuminating and inspiring way, so that the impact of new methodology on novel physics is clear It is an apt time to have such a volume since the field has reached a level of maturity The pedagogical nature of the articles and the variety of topics makes it an important resource for newcomers to the field The topics range from the newly emerging area of quantum computers and quantum information using Josephson junctions to the formal mathematical me...
Superadiabatic quantum state transfer in spin chains
Agundez, R. R.; Hill, C. D.; Hollenberg, L. C. L.; Rogge, S.; Blaauboer, M.
2017-01-01
In this paper we propose a superadiabatic protocol where quantum state transfer can be achieved with arbitrarily high accuracy and minimal control across long spin chains with an odd number of spins. The quantum state transfer protocol only requires the control of the couplings between the qubits on the edge and the spin chain. We predict fidelities above 0.99 for an evolution of nanoseconds using typical spin-exchange coupling values of μ eV . Furthermore, by building a superadiabatic formalism on top of this protocol, we propose an effective superadiabatic protocol that retains the minimal control over the spin chain and further improves the fidelity.
Quantum key distribution using three basis states
Indian Academy of Sciences (India)
Subhash Kak
2000-05-01
This note presents a method of public key distribution using quantum communication of photons that simultaneously provides a high probability that the bits have not been tampered. It is a variant of the quantum method of Bennett and Brassard (BB84) where the transmission states have been decreased from 4 to 3 and the detector states have been increased from 2 to 3. Under certain assumptions regarding method of attack, it provides superior performance (in terms of the number of usable key bits) for < 18, where is the number of key bits used to verify the integrity of the process in the BB84-protocol.
Parity lifetime of bound states in a proximitized semiconductor nanowire
DEFF Research Database (Denmark)
Higginbotham, Andrew Patrick; Albrecht, Sven Marian; Kirsanskas, Gediminas;
2015-01-01
Quasiparticle excitations can compromise the performance of superconducting devices, causing high frequency dissipation, decoherence in Josephson qubits, and braiding errors in proposed Majorana-based topological quantum computers. Quasiparticle dynamics have been studied in detail in metallic...
Entropy on a null surface for interacting quantum field theories and the Bousso bound
Bousso, Raphael; Fisher, Zachary; Maldacena, Juan
2014-01-01
We study the vacuum-subtracted von Neumann entropy of a segment on a null plane. We argue that for interacting quantum field theories in more than two dimensions, this entropy has a simple expression in terms of the expectation value of the null components of the stress tensor on the null interval. More explicitly $\\Delta S = 2\\pi \\int d^{d-2}y \\int_0^1 dx^+\\, g(x^+)\\, \\langle T_{++}\\rangle$, where $g(x^+)$ is a theory-dependent function. This function is constrained by general properties of quantum relative entropy. These constraints are enough to extend our recent free field proof of the quantum Bousso bound to the interacting case. This unusual expression for the entropy as the expectation value of an operator implies that the entropy is equal to the modular Hamiltonian, $\\Delta S = \\langle \\Delta K \\rangle $, where $K$ is the operator in the right hand side. We explain how this equality is compatible with a non-zero value for $\\Delta S$. Finally, we also compute explicitly the function $g(x^+)$ for theori...
Entanglement purification of unknown quantum states
Brun, Todd A.; Caves, Carlton M.; Schack, Rüdiger
2001-04-01
A concern has been expressed that ``the Jaynes principle can produce fake entanglement'' [R. Horodecki et al., Phys. Rev. A 59, 1799 (1999)]. In this paper we discuss the general problem of distilling maximally entangled states from N copies of a bipartite quantum system about which only partial information is known, for instance, in the form of a given expectation value. We point out that there is indeed a problem with applying the Jaynes principle of maximum entropy to more than one copy of a system, but the nature of this problem is classical and was discussed extensively by Jaynes. Under the additional assumption that the state ρ(N) of the N copies of the quantum system is exchangeable, one can write down a simple general expression for ρ(N). By measuring one or more of the subsystems, one can gain information and update the state estimate for the remaining subsystems with the quantum version of the Bayes rule. Using this rule, we show how to modify two standard entanglement purification protocols, one-way hashing and recurrence, so that they can be applied to exchangeable states. We thus give an explicit algorithm for distilling entanglement from an unknown or partially known quantum state.
Quantum States for Black Holes
Vargas Moniz, Paulo
2002-12-01
Interest in quantum black holes have been increasing1-2 in order to better understand the latest stages of gravitational collapse. Our starting point is the 4-dimensional action S4-D = ∫ {d4 x√ {-g} [{R4}/{16}} - {(∇ 4 ψ 4)2 }/{2}}, associated with a 4-dimensional spherically symmetric metric ds2 = hab (τ ,r)dxa dxb + φ 2 (dθ 2 + sin 2 θ dω 2), with det(hab) = -α2β In addition hat{psi}_4 (tau ,r,theta ,omega) is a scalar field depending on all space-time coordinates, with ψ 4 = ψ 0 (τ ,r) + ∑ limits n {Cn ψ n (τ,r) Qn (θ ,ω )}, where Qn are usual harmonics on S2 forming a complete orthonormal set ...
Quantum Key Distribution Using Decoy State Protocol
Directory of Open Access Journals (Sweden)
Sellami Ali
2009-01-01
Full Text Available Problem statement: Quantum key distribution provides unconditional security guaranteed by the fundamental laws of quantum physics. Unfortunately, for real-life experimental set-ups, which mainly based on faint laser pulses, the occasional production of multi-photons and channel loss make it possible for sophisticated eavesdroppers to launch various subtle eavesdropping attacks including the Photon Number Splitting (PNS attack. The decoy state protocols recently proposed to beat PNS attack and to improve dramatically distance and secure key generation rate of Quantum Key Distribution (QKD. Approach: Objective of this study was experimental implementation of weak decoy + vacuum states QKD for increasing the performance of QKD system. To show conceptually how simple it was to apply the weak decoy + vacuum state idea to a commercial QKD system, we chosen ID-3000 commercial quantum key distribution system manufactured by id quantique. To implement the weak decoy + vacuum state protocol, we had to add some new optical and electronics components to id quantique and to attenuate each signal to the intensity of either signal state or weak decoy or vacuum state randomly. Results: In our implementation, the attenuation will be done by placing a VOA (variable optical attenuator in Alices side. Specifically, our QKD system required the polarizations of 2 pulses from the same signal to be orthogonal. Therefore the VOA must be polarization independent so as to attenuate the two pulses equally. The VOA utilized in experiment to attenuate signals dynamically was Intensity Modulator (IM. We had implemented weak + vacuum protocol on a modified commercial QKD system over a 25 km of telecom fibers with an unconditionally secure key rate of 6.2931x10-4 per pulse. Conclusion: By making simple modifications to a commercial quantum key distribution system, we could achieve much better performance with substantially higher key generation rate and longer distance than
Quantum state of the black hole interior
Brustein, Ram
2015-01-01
If a black hole (BH) is initially in an approximately pure state and it evaporates by a unitary process, then the emitted radiation will be in a highly quantum state. As the purifier of this radiation, the state of the BH interior must also be in some highly quantum state. So that, within the interior region, the mean-field approximation cannot be valid and the state of the BH cannot be described by some semiclassical metric. On this basis, we model the state of the BH interior as a collection of a large number of excitations that are packed into closely spaced but single-occupancy energy levels; a sort-of "Fermi sea" of all light-enough particles. This highly quantum state is surrounded by a semiclassical region that lies close to the horizon and has a non-vanishing energy density. It is shown that such a state looks like a BH from the outside and decays via gravitational pair production in the near-horizon region at a rate that agrees with the Hawking rate. We also consider the fate of a classical object th...
Prati, Enrico
2015-07-01
Long living coherent quantum states have been observed in biological systems up to room temperature. Light harvesting in chromophoresis realized by excitonic systems living at the edge of quantum chaos, where energy level distribution becomes semi-Poissonian. On the other hand, artificial materials suffer the loss of coherence of quantum states in quantum information processing, but semiconductor materials are known to exhibit quantum chaotic conditions, so the exploitation of similar conditions are to be considered. The advancements of nanofabrication, together with the control of implantation of individual atoms at nanometric precision, may open the experimental study of such special regime at the edge of the phase transitions for the electronic systems obtained by implanting impurity atoms in a silicon transistor. Here I review the recent advancements made in the field of theoretical description of the light harvesting in biological system in its connection with phase transitions at the few atoms scale and how it would be possible to achieve transition point to quantum chaotic regime. Such mechanism may thus preserve quantum coherent states at room temperature in solid state devices, to be exploited for quantum information processing as well as dissipation-free quantum electronics.
Non-Markovian Quantum State Diffusion
Diósi, L; Strunz, W T
1998-01-01
We present a nonlinear stochastic Schroedinger equation for pure states describing non-Markovian diffusion of quantum trajectories. It provides an unravelling of the evolution of a quantum system coupled to a finite or infinite number of harmonic oscillators, without any approximation. Its power is illustrated by several examples, including measurement-like situations, dissipation, and quantum Brownian motion. In some examples, we treat the environment phenomenologically as an infinite reservoir with fluctuations of arbitrary correlation. In other examples the environment consists of a finite number of oscillators. In these quasi-periodic cases we see the reversible decay of a `Schroedinger cat' state. Finally, our description of open systems is compatible with different positions of the `Heisenberg cut' between system and environment.
Quantum oscillators in the canonical coherent states
Energy Technology Data Exchange (ETDEWEB)
Rodrigues, R. de Lima [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Lima, A.F. de; Ferreira, K. de Araujo [Paraiba Univ., Campina Grande, PB (Brazil). Dept. de Fisica; Vaidya, A.N. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Fisica
2001-11-01
The main characteristics of the quantum oscillator coherent states including the two-particle Calogero interaction are investigated. We show that these Calogero coherent states are the eigenstates of the second-order differential annihilation operator which is deduced via Wigner-Heisenberg algebraic technique and correspond exactly to the pure uncharged-bosonic states. They posses the important properties of non-orthogonality and completeness. The minimum uncertainty relation for the Wigner oscillator coherent states are investigated. New sets of even and odd coherent states are point out. (author)
Generation of Quantum Cluster States using Surface Acoustic Waves
Majumdar, Mrittunjoy Guha
2016-01-01
One-way quantum computation, also known as Cluster State Quantum Computation, provides a robust and efficient tool to perform universal quantum computation using only single-qubit projective measurements, given a highly entangled cluster state. The cluster-state approach to quantum computation also leads to certain practical advantages such as robustness against errors. In this paper, we propose a SAW-driven One-Way Quantum Computation approach that is realizable using a mentioned architecture and elements.
Discrimination of mixed quantum states. Reversible maps and unambiguous strategies
Energy Technology Data Exchange (ETDEWEB)
Kleinmann, Matthias
2008-06-30
The discrimination of two mixed quantum states is a fundamental task in quantum state estimation and quantum information theory. In quantum state discrimination a quantum system is assumed to be in one of two possible - in general mixed - non-orthogonal quantum states. The discrimination then consists of a measurement strategy that allows to decide in which state the system was before the measurement. In unambiguous state discrimination the aim is to make this decision without errors, but it is allowed to give an inconclusive answer. Especially interesting are measurement strategies that minimize the probability of an inconclusive answer. A starting point for the analysis of this optimization problem was a result by Eldar et al. [Phys. Rev. A 69, 062318 (2004)], which provides non-operational necessary and sufficient conditions for a given measurement strategy to be optimal. These conditions are reconsidered and simplified in such a way that they become operational. The simplified conditions are the basis for further central results: It is shown that the optimal measurement strategy is unique, a statement that is e.g. of importance for the complexity analysis of optimal measurement devices. The optimal measurement strategy is derived for the case, where one of the possible input states has at most rank two, which was an open problem for many years. Furthermore, using the optimality criterion it is shown that there always exists a threshold probability for each state, such that below this probability it is optimal to exclude this state from the discrimination strategy. If the two states subject to discrimination can be brought to a diagonal structure with (2 x 2)-dimensional blocks, then the unambiguous discrimination of these states can be reduced to the unambiguous discrimination of pure states. A criterion is presented that allows to identify the presence of such a structure for two self-adjoint operators. This criterion consists of the evaluation of three
High Efficient Quantum Key Distribution by Random Using Classified Signal Coherent States
Institute of Scientific and Technical Information of China (English)
XI Jing-Bo; FANG Xi-Ming
2006-01-01
The decoy-state method is a useful method in resisting the attacks on quantum key distribution. However, how to choose the intensities of decoy states and the ratio of the decoy states and the signal state is still an open question. We present a simple formula to analyse the problem. We also give a simple method to derive the bounds of the necessary counting rates and quantum bit error rates for BB84 and SARG04; the latter was previously proposed by Scarani et al. [Phys. Rev. Lett. 92 (2004) 057901] We then propose a multi-signal-state method which employs different coherent states either as the decoy state or as the signal state to carry out quantum key distribution. We find our protocol more efficient and feasible.
Speed of quantum evolution of entangled two qubits states: Local vs. global evolution
Energy Technology Data Exchange (ETDEWEB)
Curilef, S [Departamento de Fisica, Universidad Catolica del Norte, Antofagasta (Chile); Zander, C; Plastino, A R [Physics Department, University of Pretoria, Pretoria 0002 (South Africa)], E-mail: arplastino@maple.up.ac.za
2008-11-01
There is a lower bound for the 'speed' of quantum evolution as measured by the time needed to reach an orthogonal state. We show that, for two-qubits systems, states saturating the quantum speed limit tend to exhibit a small amount of local evolution, as measured by the fidelity between the initial and final single qubit states after the time {tau} required by the composite system to reach an orthogonal state. Consequently, a trade-off between the speed of global evolution and the amount of local evolution seems to be at work.
Quantum state smoothing for classical mixtures
Tan, D; Mølmer, K; Murch, K W
2016-01-01
In quantum mechanics, wave functions and density matrices represent our knowledge about a quantum system and give probabilities for the outcomes of measurements. If the combined dynamics and measurements on a system lead to a density matrix $\\rho(t)$ with only diagonal elements in a given basis $\\{|n\\rangle\\}$, it may be treated as a classical mixture, i.e., a system which randomly occupies the basis states $|n\\rangle$ with probabilities $\\rho_{nn}(t)$. Fully equivalent to so-called smoothing in classical probability theory, subsequent probing of the occupation of the states $|n\\rangle$ improves our ability to retrodict what was the outcome of a projective state measurement at time $t$. Here, we show with experiments on a superconducting qubit that the smoothed probabilities do not, in the same way as the diagonal elements of $\\rho$, permit a classical mixture interpretation of the state of the system at the past time $t$.
Matrices of fidelities for ensembles of quantum states and the Holevo quantity
Fannes, Mark; Roga, Wojciech; Zyczkowski, Karol
2011-01-01
The entropy of the Gram matrix of a joint purification of an ensemble of K mixed states yields an upper bound for the Holevo information Chi of the ensemble. In this work we combine geometrical and probabilistic aspects of the ensemble in order to obtain useful bounds for Chi. This is done by constructing various correlation matrices involving fidelities between every pair of states from the ensemble. For K=3 quantum states we design a matrix of root fidelities that is positive and the entropy of which is conjectured to upper bound Chi. Slightly weaker bounds are established for arbitrary ensembles. Finally, we investigate correlation matrices involving multi-state fidelities in relation to the Holevo quantity.
Trilinear couplings and scalar bound states in supersymmetric extensions of the standard model
Hernández, Pilar; Sanz, V
2001-01-01
The trilinear terms in minimal supersymmetric extensions of the standard model can be responsible of forming a bound state of scalars. In this talk we outline our results on the study of this bound state using a non-perturbative method, the exact renormalization group. We focus on the trilinear term between the Higgs and stop fields. (4 refs).
The Bethe ansatz for AdS5 × S5 bound states
de Leeuw, M.
2009-01-01
We reformulate the nested coordinate Bethe ansatz in terms of coproducts of Yangian symmetry generators. This allows us to derive the nested Bethe equations for arbitrary bound state string S-matrices. The bound state number dependence in the Bethe equations appears through the parameters x± and the
Bound states for fermions in the gauge Aharonov-Bohm field
Energy Technology Data Exchange (ETDEWEB)
Voropaev, S.A.; Galtsov, D.V.; Spasov, D.A. (Dept. of Theoretical Physics, Moscow State Univ. (USSR))
1991-09-05
In this paper we discuss some interesting properties of the Aharonov-Bohm interaction for relativistic spin-one-half particles. We will show that the AB potential is powerful enough to create bound states. We will then discuss the wave function, spin-coefficients and the energy level for the bound states of the fermions in the gauge AB field. (orig.).
The bound state S-matrix for AdS5×S5 superstring
Arutyunov, G.E.; de Leeuw, M.; Torrielli, A.
2009-01-01
We determine the S-matrix that describes scattering of arbitrary bound states in the light-cone string theory in AdS5×S5. The corresponding construction relies on the Yangian symmetry and the superspace formalism for the bound state representations. The basic analytic structure supporting the S-matr
Entangled States and the Gravitational Quantum Well
Alves, Rui; Bertolami, Orfeu
2016-01-01
We study the continuous variable entanglement of a system of two particles under the influence of Earth's gravitational field. We determine a phase-space description of this bipartite system by calculating its Wigner function and verify its entanglement by applying a generalization of the PPT criterion for non-Gaussian states. We also examine the influence of gravity on an idealized entanglement protocol to be shared between stations at different potentials based on the correlation of states of the gravitational quantum well.
Ensemble-based characterization of unbound and bound states on protein energy landscape
Ruvinsky, Anatoly M; Tuzikov, Alexander V; Vakser, Ilya A
2012-01-01
Characterization of protein energy landscape and conformational ensembles is important for understanding mechanisms of protein folding and function. We studied ensembles of bound and unbound conformations of six proteins to explore their binding mechanisms and characterize the energy landscapes in implicit solvent. First, results show that bound and unbound spectra often significantly overlap. Moreover, the larger the overlap the smaller the RMSD between bound and unbound conformational ensembles. Second, the analysis of the unbound-to-bound changes points to conformational selection as the binding mechanism for four of the proteins. Third, the center of the unbound spectrum has a higher energy than the center of the corresponding bound spectrum of the dimeric and multimeric states for most of the proteins. This suggests that the unbound states often have larger entropy than the bound states considered outside of the complex. Fourth, the exhaustively long minimization, making small intra-rotamer adjustments, ...
Quantum entanglement of bound particles under free center of mass dispersion
Pinheiro, Fernanda
2011-01-01
On the basis of the full analytical solution of the overall unitary dynamics, the time evolution of entanglement is studied in a simple bipartite model system evolving unitarily from a pure initial state. The system consists of two particles in one spacial dimension bound by harmonic forces and having its free center of mass initially localized in space in a minimum uncertainty wave packet. The existence of such initial states in which the bound particles are not entangled is pointed out. The entanglement of the two particles is shown to be independent of the wavepacket mean momentum, and to increase monotonically in a time scale distinct from that of the spreading of the center of mass wavepacket.
Self-calibrating Quantum State Tomography
Branczyk, Agata M; Rozema, Lee A; Darabi, Ardavan; Steinberg, Aephraim M; James, Daniel F V
2011-01-01
We introduce and experimentally demonstrate a technique for performing quantum state tomography on multiple-qubit states using unknown unitary operations to perform measurements in different bases. Using our method, it is possible to reconstruct the density matrix of the state up to local sigma-z rotations as well as recover the magnitude of the unknown rotation angle. We demonstrate high-fidelity self-calibrating tomography on polarization-encoded one- and two-photon states. The unknown unitary operations are realized in two ways: using a birefringent polymer sheet--an inexpensive smartphone screen protector--or alternatively a liquid crystal wave plate with a tuneable retardance.
SUSY in Silico: numerical D-brane bound state spectroscopy
Anous, Tarek
2015-01-01
We numerically construct BPS and non-BPS wavefunctions of an $\\mathcal{N}=4$ quiver quantum mechanics with two abelian nodes and a single arrow. This model captures the dynamics of a pair of wrapped D-branes interacting via a single light string mode. A dimensionless parameter $\
New schemes for manipulating quantum states using a Kerr cell
Genovèse, M
2000-01-01
In this proceeding we describe various proposals of application of an high coefficient Kerr cell to quantum states manipulation, ranging from fast modulation of quantum interference, GHZ states generation, Schroedinger cats creation, translucent eavesdropping, etc.
Formation of bound states in expanded metal studied via path integral molecular dynamics
Deymier, P. A.; Oh, Ki-Dong
2004-03-01
The usefulness of the restricted path integral molecular dynamics method for the study of strongly correlated electrons is demonstrated by studying the formation of bound electronic states in a half-filled expanded three-dimensional hydrogenoid body-centred cubic lattice at finite temperature. Starting from a metallic state with one-component plasma character, we find that bound electrons form upon expansion of the lattice. The bound electrons are spatially localized with their centre for the motion of gyration located at ionic positions. The number of bound electrons increases monotonically with decreasing density.
Quasi-bound states, resonance tunnelling, and tunnelling times generated by twin symmetric barriers
Indian Academy of Sciences (India)
A Uma Maheswari; P Prema; S Mahadevan; C S Shastry
2009-12-01
In analogy with the definition of resonant or quasi-bound states used in three-dimensional quantal scattering, we define the quasi-bound states that occur in one-dimensional transmission generated by twin symmetric potential barriers and evaluate their energies and widths using two typical examples: (i) twin rectangular barrier and (ii) twin Gaussian-type barrier. The energies at which reflectionless transmission occurs correspond to these states and the widths of the transmission peaks are also the same as those of quasi-bound states. We compare the behaviour of the magnitude of wave functions of quasi-bound states with those for bound states and with the above-barrier state wave function. We deduce a Breit–Wigner-type resonance formula which neatly describes the variation of transmission coefficient as a function of energy at below-barrier energies. Similar formula with additional empirical term explains approximately the peaks of transmission coefficients at above-barrier energies as well. Further, we study the variation of tunnelling time as a function of energy and compare the same with transmission, reflection time and Breit–Wigner delay time around a quasi-bound state energy. We also find that tunnelling time is of the same order of magnitude as lifetime of the quasi-bound state, but somewhat larger.
Controlling Atomic, Solid-State and Hybrid Systems for Quantum Information Processing
Gullans, Michael John
Quantum information science involves the use of precise control over quantum systems to explore new technologies. However, as quantum systems are scaled up they require an ever deeper understanding of many-body physics to achieve the required degree of control. Current experiments are entering a regime which requires active control of a mesoscopic number of coupled quantum systems or quantum bits (qubits). This thesis describes several approaches to this goal and shows how mesoscopic quantum systems can be controlled and utilized for quantum information tasks. The first system we consider is the nuclear spin environment of GaAs double quantum dots containing two electrons. We show that the through appropriate control of dynamic nuclear polarization one can prepare the nuclear spin environment in three distinct collective quantum states which are useful for quantum information processing with electron spin qubits. We then investigate a hybrid system in which an optical lattice is formed in the near field scattering off an array of metallic nanoparticles by utilizing the plasmonic resonance of the nanoparticles. We show that such a system would realize new regimes of dense, ultra-cold quantum matter and can be used to create a quantum network of atoms and plasmons. Finally we investigate quantum nonlinear optical systems. We show that the intrinsic nonlinearity for plasmons in graphene can be large enough to make a quantum gate for single photons. We also consider two nonlinear optical systems based on ultracold gases of atoms. In one case, we demonstrate an all-optical single photon switch using cavity quantum electrodynamics (QED) and slow light. In the second case, we study few photon physics in strongly interacting Rydberg polariton systems, where we demonstrate the existence of two and three photon bound states and study their properties.
Relativistic two-body bound states in scalar QFT: variational basis-state approach
Energy Technology Data Exchange (ETDEWEB)
Emami-Razavi, Mohsen [Centre for Research in Earth and Space Science, York University, Toronto, Ontario, M3J 1P3 (Canada); Darewych, Jurij W [Department of Physics and Astronomy, York University, Toronto, Ontario, M3J 1P3 (Canada)
2006-08-15
We use the Hamiltonian formalism of quantum field theory and the variational basis-state method to derive relativistic coupled-state wave equations for scalar particles interacting via a massive or massless mediating scalar field (the scalar Yukawa model). A variational trial state comprised of two and four Fock-space states is used to derive coupled wave equations for a relativistic two (and four) body system. Approximate, variational two-body ground-state solutions of the relativistic equations are obtained for various strengths of coupling, for both massive and massless mediating fields. The results show that the inclusion of virtual pairs has a large effect on the two-body binding energy at strong coupling. A comparison of the two-body binding energies with other calculations is presented.
Kalchmair, Stefan; Gansch, Roman; Genevet, Patrice; Zederbauer, Tobias; MacFarland, Donald; Detz, Hermann; Andrews, Aaron Maxwell; Schrenk, Werner; Strasser, Gottfried; Capasso, Federico; Loncar, Marko
2016-04-01
Photonic crystal slabs have been subject to research for more than a decade, yet the existence of bound states in the radiation continuum (BICs) in photonic crystals has been reported only recently [1]. A BIC is formed when the radiation from all possible channels interferes destructively, causing the overall radiation to vanish. In photonic crystals, BICs are the result of accidental phase matching between incident, reflected and in-plane waves at seemingly random wave vectors [2]. While BICs in photonic crystals have been discussed previously using reflection measurements, we reports for the first time in-situ measurements of the bound states in the continuum in photonic crystal slabs. By embedding a photodetector into a photonic crystal slab we were able to directly observe optical BICs. The photonic crystal slabs are processed from a GaAs/AlGaAs quantum wells heterostructure, providing intersubband absorption in the mid-infrared wavelength range. The generated photocurrent is collected via doped contact layers on top and bottom of the suspended photonic crystal slab. We were mapping out the photonic band structure by rotating the device and by acquiring photocurrent spectra every 5°. Our measured photonic bandstructure revealed several BICs, which was confirmed with a rigorously coupled-wave analysis simulation. Since coupling to external fields is suppressed, the photocurrent measured by the photodetector vanishes at the BIC wave vector. To confirm the relation between the measured photocurrent and the Q-factor we used temporal coupled mode theory, which yielded an inverse proportional relation between the photocurrent and the out-coupling loss from the photonic crystal. Implementing a plane wave expansion simulation allowed us to identify the corresponding photonic crystal modes. The ability to directly measure the field intensity inside the photonic crystal presents an important milestone towards integrated opto-electronic BIC devices. Potential
Control aspects of quantum computing using pure and mixed states.
Schulte-Herbrüggen, Thomas; Marx, Raimund; Fahmy, Amr; Kauffman, Louis; Lomonaco, Samuel; Khaneja, Navin; Glaser, Steffen J
2012-10-13
Steering quantum dynamics such that the target states solve classically hard problems is paramount to quantum simulation and computation. And beyond, quantum control is also essential to pave the way to quantum technologies. Here, important control techniques are reviewed and presented in a unified frame covering quantum computational gate synthesis and spectroscopic state transfer alike. We emphasize that it does not matter whether the quantum states of interest are pure or not. While pure states underly the design of quantum circuits, ensemble mixtures of quantum states can be exploited in a more recent class of algorithms: it is illustrated by characterizing the Jones polynomial in order to distinguish between different (classes of) knots. Further applications include Josephson elements, cavity grids, ion traps and nitrogen vacancy centres in scenarios of closed as well as open quantum systems.
Optimal state estimation for d-dimensional quantum systems
Bruss, D
1999-01-01
We establish a connection between optimal quantum cloning and optimal state estimation for d-dimensional quantum systems. In this way we derive an upper limit on the fidelity of state estimation for d-dimensional pure quantum states and, furthermore, for generalized inputs supported on the symmetric subspace.
Stationary states in quantum walk search
PrÅ«sis, Krišjānis; Vihrovs, Jevgěnijs; Wong, Thomas G.
2016-09-01
When classically searching a database, having additional correct answers makes the search easier. For a discrete-time quantum walk searching a graph for a marked vertex, however, additional marked vertices can make the search harder by causing the system to approximately begin in a stationary state, so the system fails to evolve. In this paper, we completely characterize the stationary states, or 1-eigenvectors, of the quantum walk search operator for general graphs and configurations of marked vertices by decomposing their amplitudes into uniform and flip states. This infinitely expands the number of known stationary states and gives an optimization procedure to find the stationary state closest to the initial uniform state of the walk. We further prove theorems on the existence of stationary states, with them conditionally existing if the marked vertices form a bipartite connected component and always existing if nonbipartite. These results utilize the standard oracle in Grover's algorithm, but we show that a different type of oracle prevents stationary states from interfering with the search algorithm.
Decoy State Quantum Key Distribution with Odd Coherent State
Institute of Scientific and Technical Information of China (English)
SUN Shi-Hai; GAO Ming; DAI Hong-Yi; CHEN Ping-Xing; LI Cheng-Zu
2008-01-01
We propose a decoy state quantum key distribution scheme with odd coherent state which follows sub-Poissonian distributed photon count and has low probability of the multi-photon event and vacuum event in each pulse. The numerical calculations show that our scheme can improve efficiently the key generation rate and secure communication distance. Furthermore, only one decoy state is necessary to approach to the perfect asymptotic limit with infinite decoy states in our scheme, but at least two decoy states are needed in other scheme.
Quantum correlations support probabilistic pure state cloning
Energy Technology Data Exchange (ETDEWEB)
Roa, Luis, E-mail: lroa@udec.cl [Departamento de Física, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Alid-Vaccarezza, M.; Jara-Figueroa, C. [Departamento de Física, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Klimov, A.B. [Departamento de Física, Universidad de Guadalajara, Avenida Revolución 1500, 44420 Guadalajara, Jalisco (Mexico)
2014-02-01
The probabilistic scheme for making two copies of two nonorthogonal pure states requires two auxiliary systems, one for copying and one for attempting to project onto the suitable subspace. The process is performed by means of a unitary-reduction scheme which allows having a success probability of cloning different from zero. The scheme becomes optimal when the probability of success is maximized. In this case, a bipartite state remains as a free degree which does not affect the probability. We find bipartite states for which the unitarity does not introduce entanglement, but does introduce quantum discord between some involved subsystems.
Extreme Violation of Local Realism in Quantum Hypergraph States.
Gachechiladze, Mariami; Budroni, Costantino; Gühne, Otfried
2016-02-19
Hypergraph states form a family of multiparticle quantum states that generalizes the well-known concept of Greenberger-Horne-Zeilinger states, cluster states, and more broadly graph states. We study the nonlocal properties of quantum hypergraph states. We demonstrate that the correlations in hypergraph states can be used to derive various types of nonlocality proofs, including Hardy-type arguments and Bell inequalities for genuine multiparticle nonlocality. Moreover, we show that hypergraph states allow for an exponentially increasing violation of local realism which is robust against loss of particles. Our results suggest that certain classes of hypergraph states are novel resources for quantum metrology and measurement-based quantum computation.
Projective Loop Quantum Gravity I. State Space
Lanéry, Suzanne
2014-01-01
Instead of formulating the state space of a quantum field theory over one big Hilbert space, it has been proposed by Kijowski to describe quantum states as projective families of density matrices over a collection of smaller, simpler Hilbert spaces. Beside the physical motivations for this approach, it could help designing a quantum state space holding the states we need. In [Oko{\\l}\\'ow 2013, arXiv:1304.6330] the description of a theory of Abelian connections within this framework was developed, an important insight being to use building blocks labeled by combinations of edges and surfaces. The present work generalizes this construction to an arbitrary gauge group G (in particular, G is neither assumed to be Abelian nor compact). This involves refining the definition of the label set, as well as deriving explicit formulas to relate the Hilbert spaces attached to different labels. If the gauge group happens to be compact, we also have at our disposal the well-established Ashtekar-Lewandowski Hilbert space, wh...
Quantum state of the black hole interior
Energy Technology Data Exchange (ETDEWEB)
Brustein, Ram [Department of Physics, Ben-Gurion University,Beer-Sheva 84105 (Israel); Medved, A.J.M. [Department of Physics & Electronics, Rhodes University,Grahamstown 6140 (South Africa); National Institute for Theoretical Physics (NITheP),Western Cape 7602 (South Africa)
2015-08-17
If a black hole (BH) is initially in an approximately pure state and it evaporates by a unitary process, then the emitted radiation will be in a highly quantum state. As the purifier of this radiation, the state of the BH interior must also be in some highly quantum state. So that, within the interior region, the mean-field approximation cannot be valid and the state of the BH cannot be described by some semiclassical metric. On this basis, we model the state of the BH interior as a collection of a large number of excitations that are packed into closely spaced but single-occupancy energy levels; a sort-of “Fermi sea” of all light-enough particles. This highly quantum state is surrounded by a semiclassical region that lies close to the horizon and has a non-vanishing energy density. It is shown that such a state looks like a BH from the outside and decays via gravitational pair production in the near-horizon region at a rate that agrees with the Hawking rate. We also consider the fate of a classical object that has passed through to the BH interior and show that, once it has crossed over the near-horizon threshold, the object meets its demise extremely fast. This result cannot be attributed to a “firewall”, as the trauma to the in-falling object only begins after it has passed through the near-horizon region and enters a region where semiclassical spacetime ends but the energy density is still parametrically smaller than Planckian.
Quantum state of the black hole interior
Brustein, Ram; Medved, A. J. M.
2015-08-01
If a black hole (BH) is initially in an approximately pure state and it evaporates by a unitary process, then the emitted radiation will be in a highly quantum state. As the purifier of this radiation, the state of the BH interior must also be in some highly quantum state. So that, within the interior region, the mean-field approximation cannot be valid and the state of the BH cannot be described by some semiclassical metric. On this basis, we model the state of the BH interior as a collection of a large number of excitations that are packed into closely spaced but single-occupancy energy levels; a sort-of "Fermi sea" of all light-enough particles. This highly quantum state is surrounded by a semiclassical region that lies close to the horizon and has a non-vanishing energy density. It is shown that such a state looks like a BH from the outside and decays via gravitational pair production in the near-horizon region at a rate that agrees with the Hawking rate. We also consider the fate of a classical object that has passed through to the BH interior and show that, once it has crossed over the near-horizon threshold, the object meets its demise extremely fast. This result cannot be attributed to a "firewall", as the trauma to the in-falling object only begins after it has passed through the near-horizon region and enters a region where semiclassical spacetime ends but the energy density is still parametrically smaller than Planckian.
Foley, M S; Beeby, A; Parker, A W; Bishop, S M; Phillips, D
1997-03-01
The binding of the sulphonated aluminum phthalocyanines to human serum albumin (HSA) in aqueous phosphate buffer solution at 25 degrees C has been studied by measuring the properties of the triplet excited states of these dyes. The triplet lifetimes were measured by triplet-triplet absorption flash photolysis. The triplet lifetime of the disulphonated AlS2Pc (2.5 microM) varies from 500 +/- 30 microseconds in the absence of protein to 1.100 microseconds and longer with HSA concentrations above 100 microM. Under identical conditions, the maximum triplet lifetimes of the mono-, tri- and tetrasulphonated compounds bound to HSA are shorter than those for the disulphonated species. The increase in the triplet state lifetimes is attributed to the ability of the bulk aqueous phase to interact with the sensitizer at the site of binding; the site of binding being dependent on the degree of sulphonation. For AlS2Pc and AlS3Pc at all HSA concentrations, and regardless of the degree of sulphonation, all the triplet state decay profiles follow simple pseudo-first-order kinetics. The exponential decay of the triplet phthalocyanine at all HSA concentrations is ascribed to the rapid association and dissociation of the phthalocyanine-HSA complex on the time-scales of the triplet state lifetimes. A simplified one-step binding model is utilized to describe the results. The association of AlS1Pc with HSA results in substantial quenching of the triplet state quantum yield, and a more complex model is required to analyze the results. The tetrasulphonated compound (AlS4Pc) binds to the protein at a site where it experiences some protection from the aqueous phase.
Bound states of Dipolar Bosons in One-dimensional Systems
DEFF Research Database (Denmark)
G. Volosniev, A.; R. Armstrong, J.; V. Fedorov, D.;
2013-01-01
-body structures in this geometry are determined as function of polarization angles and dipole strength by using both essentially exact stochastic variational methods and the harmonic approximation. The main focus is on the three, four, and five-body problems in two or more tubes. Our results indicate...... that in the weakly-coupled limit the inter-tube interaction is similar to a zero-range term with a suitable rescaled strength. This allows us to address the corresponding many-body physics of the system by constructing a model where bound chains with one molecule in each tube are the effective degrees of freedom...
Photon-assisted tunneling through a topological superconductor with Majorana bound states
Energy Technology Data Exchange (ETDEWEB)
Tang, Han-Zhao; Zhang, Ying-Tao, E-mail: zhangyt@mail.hebtu.edu.cn [College of Physics, Hebei Normal University, Shijiazhuang 050024 (China); Liu, Jian-Jun, E-mail: liujj@mail.hebtu.edu.cn [College of Physics, Hebei Normal University, Shijiazhuang 050024 (China); Department of Physics, Shijiazhuang University, Shijiazhuang 050035 (China)
2015-12-15
Employing the Keldysh Nonequilibrium Green’s function method, we investigate time-dependent transport through a topological superconductor with Majorana bound states in the presence of a high frequency microwave field. It is found that Majorana bound states driven by photon-assisted tunneling can absorb(emit) photons and the resulting photon-assisted tunneling side band peaks can split the Majorana bound state that then appears at non-zero bias. This splitting breaks from the current opinion that Majorana bound states appear only at zero bias and thus provides a new experimental method for detecting Majorana bound states in the Non-zero-energy mode. We not only demonstrate that the photon-assisted tunneling side band peaks are due to Non-zero-energy Majorana bound states, but also that the height of the photon-assisted tunneling side band peaks is related to the intensity of the microwave field. It is further shown that the time-varying conductance induced by the Majorana bound states shows negative values for a certain period of time, which corresponds to a manifestation of the phase coherent time-varying behavior in mesoscopic systems.
Side Channel Passive Quantum Key Distribution with One Uninformative State
Kang, Guo-Dong; Zhou, Qing-Ping; Fang, Mao-Fa
2017-03-01
In most of quantum key distribution schemes, real random number generators are required on both sides for preparation and measurement bases choice. In this paper, via entangled photon pairs, we present a side channel passive quantum key distribution scheme, in which random number generator is unneeded on the receiver side. On the sender Alice side, along with massive of signal photons, small amount of uninformative photons are randomly sent to her partner Bob for eavesdropper-presence testing and error estimation. While on the other side channel, without using random number generator Bob do not actively measure the income signals randomly in two non-orthogonal bases. Instead, he just passively register photon click events, in two settled symmetric (i.e. X) bases, and the raw key(click events) is the probable outcomes of a special quantum measurement module constructed by Alice and Bob. Further, security analysis and formulas of security bounds for this scheme is also investigated under reasonable assumptions. Our work shows that the uninformative state employed in this paper is powerful to fight against eavesdropper Eve.
Quantum nonlinear lattices and coherent state vectors
DEFF Research Database (Denmark)
Ellinas, Demosthenes; Johansson, M.; Christiansen, Peter Leth
1999-01-01
(FP) model. Based on the respective dynamical symmetries of the models, a method is put forward which by use of the associated boson and spin coherent state vectors (CSV) and a factorization ansatz for the solution of the Schrodinger equation, leads to quasiclassical Hamiltonian equations of motion...... for the state vectors invokes the study of the Riemannian and symplectic geometry of the CSV manifolds as generalized phase spaces. Next, we investigate analytically and numerically the behavior of mean values and uncertainties of some physically interesting observables as well as the modifications...... in the quantum regime of processes such as the discrete self trapping (DST), in terms of the Q-function and the distribution of excitation quanta of the lattice sites. Quantum DST in the symmetric ordering of lattice operators is found to be relatively enhanced with respect to the classical DST. Finally...
Becis-Aubry, Yasmina; Boutayeb, Mohamed; Darouach, Mohamed
2006-01-01
International audience; This contribution proposes a recursive and easily implementable online algorithm for state estimation of multi-output discrete-time systems with nonlinear dynamics and linear measurements in presence of unknown but bounded disturbances corrupting both the state and measurement equations. The proposed algorithm is based on state bounding techniques and is decomposed into two steps : time update and observation update that uses a switching estimation Kalman-like gain mat...
On accurate computations of bound state properties in three- and four-electron atomic systems
Frolov, Alexei M
2016-01-01
Results of accurate computations of bound states in three- and four-electron atomic systems are discussed. Bound state properties of the four-electron lithium ion Li$^{-}$ in its ground $2^{2}S-$state are determined from the results of accurate, variational computations. We also consider a closely related problem of accurate numerical evaluation of the half-life of the beryllium-7 isotope. This problem is of paramount importance for modern radiochemistry.
Experimental demonstration of graph-state quantum secret sharing
Bell, B A; Herrera-Martí, D A; Marin, A; Wadsworth, W J; Rarity, J G; Tame, M S
2014-01-01
Distributed quantum communication and quantum computing offer many new opportunities for quantum information processing. Here networks based on highly nonlocal quantum resources with complex entanglement structures have been proposed for distributing, sharing and processing quantum information. Graph states in particular have emerged as powerful resources for such tasks using measurement-based techniques. We report an experimental demonstration of graph-state quantum secret sharing, an important primitive for a quantum network. We use an all-optical setup to encode quantum information into photons representing a five-qubit graph state. We are able to reliably encode, distribute and share quantum information between four parties. In our experiment we demonstrate the integration of three distinct secret sharing protocols, which allow for security and protocol parameters not possible with any single protocol alone. Our results show that graph states are a promising approach for sophisticated multi-layered protoc...
Telecloning Quantum States with Trapped Ions
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
We propose a scheme for telecloning quantum states with trapped ions. The scheme is based on a single ion interacting with a single laser pulse. In the protocol, an ion is firstly measured to determine whether the telecloning succeeds or not, and then another ion is detected to complete the whole procedure. The required experimental techniques are within the scope of what can be obtained in the ion-trap setup.
Aligning Reference Frames Using Quantum States
Bagán, E; Muñoz-Tàpia, R
2001-01-01
We analyze the problem of sending, in a single transmission, the information required to specify an orthogonal trihedron or reference frame through a quantum channel made out of N elementary spins. We analytically obtain the optimal strategy, i.e., the best encoding state and the best measurement. For large N, we show that the average error goes to zero linearly in 1/N. Finally, we discus the construction of finite optimal measurements.
Quantum Darwinism for mixed-state environment
Quan, Haitao; Zwolak, Michael; Zurek, Wojciech
2009-03-01
We exam quantum darwinism when a system is in the presence of a mixed environment, and we find a general relation between the mutual information for the mixed-state environment and the change of the entropy of the fraction of the environment. We then look at a particular solvable model, and we numerically exam the time evolution of the ``mutual information" for large environment. Finally we discuss about the exact expressions for all entropies and the mutual information at special time.
Quantum Enhanced Imaging by Entangled States
2009-07-01
REMOTE SENSING; LIDAR ; RADAR; SYNTHETIC APERTURE RADAR (SAR); SENSORS USING PHOTONS IN A NON- CLASSICAL STATE; EG SQUEEZED, ENTANGLED 16. SECURITY...idler photodetectors are ηs and ηi, respectively, we have, for the number of coincidence counts, islocalwaypairccoinc fN ηηηημ −= 2 . (13...in the square root comes from the beam splitter relation for photons incident on an inefficient photodetector in the quantum model of direct
Spectral coherent-state quantum cryptography.
Cincotti, Gabriella; Spiekman, Leo; Wada, Naoya; Kitayama, Ken-ichi
2008-11-01
A novel implementation of quantum-noise optical cryptography is proposed, which is based on a simplified architecture that allows long-haul, high-speed transmission in a fiber optical network. By using a single multiport encoder/decoder and 16 phase shifters, this new approach can provide the same confidentiality as other implementations of Yuen's encryption protocol, which use a larger number of phase or polarization coherent states. Data confidentiality and error probability for authorized and unauthorized receivers are carefully analyzed.
Quantum state engineering with flux-biased Josephson phase qubits by rapid adiabatic passages
Nie, W.; Huang, J. S.; Shi, X.; Wei, L. F.
2010-09-01
In this article, the scheme of quantum computing based on the Stark-chirped rapid adiabatic passage (SCRAP) technique [L. F. Wei, J. R. Johansson, L. X. Cen, S. Ashhab, and F. Nori, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.100.113601 100, 113601 (2008)] is extensively applied to implement quantum state manipulations in flux-biased Josephson phase qubits. The broken-parity symmetries of bound states in flux-biased Josephson junctions are utilized to conveniently generate the desirable Stark shifts. Then, assisted by various transition pulses, universal quantum logic gates as well as arbitrary quantum state preparations can be implemented. Compared with the usual π-pulse operations widely used in experiments, the adiabatic population passages proposed here are insensitive to the details of the applied pulses and thus the desirable population transfers can be satisfyingly implemented. The experimental feasibility of the proposal is also discussed.
Hybrid Quantum Processors: molecular ensembles as quantum memory for solid state circuits
Rabl, P; Doyle, J M; Lukin, M D; Schölkopf, R J; Zoller, P
2006-01-01
We investigate a hybrid quantum circuit where ensembles of cold polar molecules serve as long-lived quantum memories and optical interfaces for solid state quantum processors. The quantum memory realized by collective spin states (ensemble qubit) is coupled to a high-Q stripline cavity via microwave Raman processes. We show that for convenient trap-surface distances of a few $\\mu$m, strong coupling between the cavity and ensemble qubit can be achieved. We discuss basic quantum information protocols, including a swap from the cavity photon bus to the molecular quantum memory, and a deterministic two qubit gate. Finally, we investigate coherence properties of molecular ensemble quantum bits.
Arbitrated quantum signature scheme based on cluster states
Yang, Yu-Guang; Lei, He; Liu, Zhi-Chao; Zhou, Yi-Hua; Shi, Wei-Min
2016-06-01
Cluster states can be exploited for some tasks such as topological one-way computation, quantum error correction, teleportation and dense coding. In this paper, we investigate and propose an arbitrated quantum signature scheme with cluster states. The cluster states are used for quantum key distribution and quantum signature. The proposed scheme can achieve an efficiency of 100 %. Finally, we also discuss its security against various attacks.
Conditional quantum phase gate between two 3-state atoms.
Yi, X X; Su, X H; You, L
2003-03-07
We propose a scheme for conditional quantum logic between two 3-state atoms that share a quantum data bus such as a single mode optical field in cavity QED systems, or a collective vibrational state of trapped ions. Making use of quantum interference, our scheme achieves successful conditional phase evolution without any real transitions of atomic internal states or populating the quantum data bus. In addition, it requires only common addressing of the two atoms by external laser fields.
Extremal quantum correlations: Experimental study with two-qubit states
Energy Technology Data Exchange (ETDEWEB)
Chiuri, A.; Mataloni, P. [Dipartimento di Fisica, Sapienza Universita di Roma, Piazzale Aldo Moro 5, I-00185 Roma (Italy); Istituto Nazionale di Ottica (INO-CNR), L.go E. Fermi 6, I-50125 Firenze (Italy); Vallone, G. [Dipartimento di Fisica, Sapienza Universita di Roma, Piazzale Aldo Moro 5, I-00185 Roma (Italy); Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Via Panisperna 89/A, Compendio del Viminale, I-00184 Roma (Italy); Paternostro, M. [Centre for Theoretical Atomic, Molecular, and Optical Physics, School of Mathematics and Physics, Queen' s University, Belfast BT7 1NN (United Kingdom)
2011-08-15
We explore experimentally the space of two-qubit quantum-correlated mixed states, including frontier states as defined by the use of quantum discord and von Neumann entropy. Our experimental setup is flexible enough to allow for high-quality generation of a vast variety of states. We address quantitatively the relation between quantum discord and a recently suggested alternative measure of quantum correlations.
Institute of Scientific and Technical Information of China (English)
A. Zerarka; O. Haif-Khaif; K. Libarir; A. Attaf
2011-01-01
This research concerns with the development of a linear three-dimensional numerical model in a quantum environment. We use the semi inverse variational method together with B-spline bases to extract the structures of bound states of the Schr(o)dinger equation. The model performances are demonstrated for the Coulomb type problem. From realistic examples, some state configurations are presented to illustrate the effectiveness and the exactitude of the proposed method.
Taming the Yukawa potential singularity: improved evaluation of bound states and resonance energies
Alhaidari, A D; Abdelmonem, M S
2007-01-01
Using the tools of the J-matrix method, we absorb the 1/r singularity of the Yukawa potential in the reference Hamiltonian, which is handled analytically. The remaining part, which is bound and regular everywhere, is treated by an efficient numerical scheme in a suitable basis using Gauss quadrature approximation. Analysis of resonance energies and bound states spectrum is performed using the complex scaling method, where we show their trajectories in the complex energy plane and demonstrate the remarkable fact that bound states cross over into resonance states by varying the potential parameters.
Block-free optical quantum Banyan network based on quantum state fusion and fission
Zhu, Chang-Hua; Meng, Yan-Hong; Quan, Dong-Xiao; Zhao, Nan; Pei, Chang-Xing
2014-12-01
Optical switch fabric plays an important role in building multiple-user optical quantum communication networks. Owing to its self-routing property and low complexity, a banyan network is widely used for building switch fabric. While, there is no efficient way to remove internal blocking in a banyan network in a classical way, quantum state fusion, by which the two-dimensional internal quantum states of two photons could be combined into a four-dimensional internal state of a single photon, makes it possible to solve this problem. In this paper, we convert the output mode of quantum state fusion from spatial-polarization mode into time-polarization mode. By combining modified quantum state fusion and quantum state fission with quantum Fredkin gate, we propose a practical scheme to build an optical quantum switch unit which is block free. The scheme can be extended to building more complex units, four of which are shown in this paper.
Dissipative Quantum Metrology with Spin Cat States
Huang, Jiahao; Zhong, Honghua; Ke, Yongguan; Lee, Chaohong
2014-01-01
We present a robust high-precision phase estimation scheme via spin cat states in the presence of particle losses. The input Greenberger-Horne-Zeilinger (GHZ) state, which may achieve the Heisenberg-limited measurement in the absence of particle losses, becomes fragile against particle losses and its achieved precision becomes even worse than the standard quantum limit (SQL). However, the input spin cat states, a kind of non-Gaussian entangled states in superposition of two spin coherent states, are of excellent robustness against particle losses and the achieved precision may still beat the SQL. For realistic measurements based upon our scheme, comparing with the population measurement, the parity measurement is more suitable for yielding higher precisions. In phase measurement with realistic dissipative systems of bosonic particles, our scheme provides a robust and realizable way to achieve high-precision measurements beyond the SQL.
Tokunaga, Yuuki; Kuwashiro, Shin; Yamamoto, Takashi; Koashi, Masato; Imoto, Nobuyuki
2008-05-30
We experimentally demonstrate a simple scheme for generating a four-photon entangled cluster state with fidelity over 0.860+/-0.015. We show that the fidelity is high enough to guarantee that the produced state is distinguished from Greenberger-Horne-Zeilinger, W, and Dicke types of genuine four-qubit entanglement. We also demonstrate basic operations of one-way quantum computing using the produced state and show that the output state fidelities surpass classical bounds, which indicates that the entanglement in the produced state essentially contributes to the quantum operation.
Quantum Entanglement and Teleportation of Quantum-Dot States in Microcavities
Miranowicz, A; Liu, Yu-xi; Chimczak, G; Koashi, M; Imoto, N; 10.1380/ejssnt.2007.51
2009-01-01
Generation and control of quantum entanglement are studied in an equivalent-neighbor system of spatially-separated semiconductor quantum dots coupled by a single-mode cavity field. Generation of genuinely multipartite entanglement of qubit states realized by conduction-band electron-spin states in quantum dots is discussed. A protocol for quantum teleportation of electron-spin states via cavity decay is briefly described.
Vibrational memory in quantum localized states
Ajili, Y.; Trabelsi, T.; Denis-Alpizar, O.; Stoecklin, T.; Császár, A. G.; Mogren Al-Mogren, M.; Francisco, J. S.; Hochlaf, M.
2016-05-01
The rovibrational eigenenergy set of molecular systems is a key feature needed to understand and model elementary chemical reactions. A unique class of molecular systems, represented by an 4A'' excited electronic state of the [H,S ,N ] - system comprising several distinct dipole-bound isomers, is found to contain both bent and linear minima separated by relatively small barriers. Full-dimensional nuclear-motion computations performed in Jacobi coordinates using three-dimensional potential energy surfaces describing the stable isomers and the related transition states yield rovibrational eigenstates located both below and above the barriers. The rovibrational wave functions are well localized, regardless of whether the state's energy is below or above the barriers. We also show that the states preserve the memory of the isomeric forms they "originate from," which is signature of a strong vibrational memory effect above isomerization barriers.
Witnessing Quantum Coherence: from solid-state to biological systems
Li, Che-Ming; Chen, Yueh-Nan; Chen, Guang-Yin; Nori, Franco; 10.1038/srep00885
2012-01-01
Quantum coherence is one of the primary non-classical features of quantum systems. While protocols such as the Leggett-Garg inequality (LGI) and quantum tomography can be used to test for the existence of quantum coherence and dynamics in a given system, unambiguously detecting inherent "quantumness" still faces serious obstacles in terms of experimental feasibility and efficiency, particularly in complex systems. Here we introduce two "quantum witnesses" to efficiently verify quantum coherence and dynamics in the time domain, without the expense and burden of non-invasive measurements or full tomographic processes. Using several physical examples, including quantum transport in solid-state nanostructures and in biological organisms, we show that these quantum witnesses are robust and have a much finer resolution in their detection window than the LGI has. These robust quantum indicators may assist in reducing the experimental overhead in unambiguously verifying quantum coherence in complex systems.
Coherent states in quantum mechanics; Estados coerentes em mecanica quantica
Energy Technology Data Exchange (ETDEWEB)
Rodrigues, R. de Lima [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]. E-mail: rafaelr@cbpf.br; Fernandes Junior, Damasio; Batista, Sheyla Marques [Paraiba Univ., Campina Grande, PB (Brazil). Dept. de Engenharia Eletrica
2001-12-01
We present a review work on the coherent states is non-relativistic quantum mechanics analysing the quantum oscillators in the coherent states. The coherent states obtained via a displacement operator that act on the wave function of ground state of the oscillator and the connection with Quantum Optics which were implemented by Glauber have also been considered. A possible generalization to the construction of new coherent states it is point out. (author)
Controlling the quantum state of trapped ions
Roos, C
2000-01-01
brace quadrupole transition enables the transfer of the ion's motional state into the ground state with up to 99.9 % probability. Different aspects of the cooling process are investigated. In particular, a measurement of the length of time that the ion spends on average in the final state after switching off the cooling lasers (heating time) is made. In contrast to prior experiments, this time is found to be orders of magnitude longer than the time required to manipulate the ion's quantum state. By coherently exciting the ion after preparing it in Fock states of motion, the coherence time is probed and found to be on the order of a millisecond, thus allowing the realization of a few quantum gates. Coherence-limiting processes have been investigated, as well as first steps towards extending the experiments to the case of two trapped ions. In addition to the experiments mentioned above, the possibility of performing cavity-QED experiments with trapped ions is explored. How to efficiently couple the quadrupole t...
New ground state for quantum gravity
Magueijo, Joao
2012-01-01
In this paper we conjecture the existence of a new "ground" state in quantum gravity, supplying a wave function for the inflationary Universe. We present its explicit perturbative expression in the connection representation, exhibiting the associated inner product. The state is chiral, dependent on the Immirzi parameter, and is the vacuum of a second quantized theory of graviton particles. We identify the physical and unphysical Hilbert sub-spaces. We then contrast this state with the perturbed Kodama state and explain why the latter can never describe gravitons in a de Sitter background. Instead, it describes self-dual excitations, which are composites of the positive frequencies of the right-handed graviton and the negative frequencies of the left-handed graviton. These excitations are shown to be unphysical under the inner product we have identified. Our rejection of the Kodama state has a moral tale to it: the semi-classical limit of quantum gravity can be the wrong path for making contact with reality (w...
Preparing projected entangled pair states on a quantum computer.
Schwarz, Martin; Temme, Kristan; Verstraete, Frank
2012-03-16
We present a quantum algorithm to prepare injective projected entangled pair states (PEPS) on a quantum computer, a class of open tensor networks representing quantum states. The run time of our algorithm scales polynomially with the inverse of the minimum condition number of the PEPS projectors and, essentially, with the inverse of the spectral gap of the PEPS's parent Hamiltonian.
A Quantum Version of Wigner's Transition State Theory
Schubert, R.; Waalkens, H.; Wiggins, S.
2009-01-01
A quantum version of a recent realization of Wigner's transition state theory in phase space is presented. The theory developed builds on a quantum normal form which locally decouples the quantum dynamics near the transition state to any desired order in (h) over bar. This leads to an explicit algor