Quantum Bound States Around Black Holes
Grain, J.; Barrau, A.
2007-01-01
Quantum mechanics around black holes has shown to be one of the most fascinating fields of theoretical physics. It involves both general relativity and particle physics, opening new eras to establish the principles of unified theories. In this article, we show that quantum bound states with no classical equivalent -- as it can easily be seen at the dominant monopolar order -- should be formed around black holes for massive scalar particles. We qualitatively investigate some important physical...
Topological magnon bound-states in quantum Heisenberg chains
Qin, Xizhou; Ke, Yongguan; Zhang, Li; Lee, Chaohong
2016-01-01
It is still an outstanding challenge to characterize and understand the topological features of strongly correlated states such as bound-states in interacting multi-particle quantum systems. Recently, bound states of elementary spin waves (magnons) in quantum magnets have been experimentally observed in quantum Heisenberg chains comprising ultracold Bose atoms in optical lattices. Here, we explore an unprecedented topological state called topological magnon bound-state in the quantum Heisenberg chain under cotranslational symmetry. We find that the cotranslational symmetry allows us to formulate a direct topological invariant for the multi-particle quantum states, which can be used to characterize the topological features of multi-magnon excitations. We calculate energy spectra, density distributions, correlations and topological invariants of the two-magnon bound-states and show the existence of topological magnon bound-states. Our study not only opens a new prospect to pursue topological bound-states, but a...
Second Bound State of Biexcitons in Quantum Dots
Institute of Scientific and Technical Information of China (English)
XIE Wen-Eang
2003-01-01
The second bound state of the biexcitons in a quantum dot, with orbital angular momentum L = 1, is reported. By using the method of few-body physics, the binding energy spectra of the second bound state of a biexciton in a GaAs quantum dot with a parabolic confinement have been calculated as a function of the electron-to-hole mass ratio and the quantum dot size. The fact that the biexcitons have a second bound state may aid in the better understanding of their binding mechanism.
Asymptotic properties of bound states in coupled quantum wave guides
Energy Technology Data Exchange (ETDEWEB)
Maglione, Enrico [Dipartimento di Fisica G Galilei, Via F Marzolo 8, Padova (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Padova (Italy); Centro de Fisica das Interaccoes Fundamentais (CFIF), Avenida Rovisco Pais, Lisbon (Portugal); Departamento de Fisica, Instituto Superior Tecnico, Avenida Rovisco Pais, P1049-001 Lisbon (Portugal); Ferreira, LIdia S [Centro de Fisica das Interaccoes Fundamentais (CFIF), Avenida Rovisco Pais, Lisbon (Portugal); Departamento de Fisica, Instituto Superior Tecnico, Avenida Rovisco Pais, P1049-001 Lisbon (Portugal); Cattapan, Giorgio [Dipartimento di Fisica G Galilei, Via F Marzolo 8, Padova (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Padova (Italy)
2006-02-03
We investigate the motion of bound-state poles in two quantum wave guides laterally coupled through a window. The imaginary momentum ik at the bound-state poles is studied as a function of the size a of the window. Both bound and virtual states appear as a spans the whole range from 0 up to +{infinity}. We are able to find simple scaling laws relating the critical value of the window size at which the nth bound state appears to the number n of bound states, in the limit of large n. A similar relation is also provided for the slope and the second derivative of the pole trajectories in the (k, a) plane. These relations are characterized by an extremely high numerical accuracy. We also evaluate the exact value of the first two derivatives for a = 0.
Computational approach for calculating bound states in quantum field theory
Lv, Q. Z.; Norris, S.; Brennan, R.; Stefanovich, E.; Su, Q.; Grobe, R.
2016-09-01
We propose a nonperturbative approach to calculate bound-state energies and wave functions for quantum field theoretical models. It is based on the direct diagonalization of the corresponding quantum field theoretical Hamiltonian in an effectively discretized and truncated Hilbert space. We illustrate this approach for a Yukawa-like interaction between fermions and bosons in one spatial dimension and show where it agrees with the traditional method based on the potential picture and where it deviates due to recoil and radiative corrections. This method permits us also to obtain some insight into the spatial characteristics of the distribution of the fermions in the ground state, such as the bremsstrahlung-induced widening.
Majorana bound states in a disordered quantum dot chain
Zhang, P.; Nori, Franco
2016-04-01
We study Majorana bound states in a disordered chain of semiconductor quantum dots proximity-coupled to an s-wave superconductor. By calculating its topological quantum number, based on the scattering-matrix method and a tight-binding model, we can identify the topological property of such an inhomogeneous one-dimensional system. We study the robustness of Majorana bound states against disorder in both the spin-independent terms (including the chemical potential and the regular spin-conserving hopping) and the spin-dependent term, i.e., the spin-flip hopping due to the Rashba spin–orbit coupling. We find that the Majorana bound states are not completely immune to the spin-independent disorder, especially when the latter is strong. Meanwhile, the Majorana bound states are relatively robust against spin-dependent disorder, as long as the spin-flip hopping is of uniform sign (i.e., the varying spin-flip hopping term does not change its sign along the chain). Nevertheless, when the disorder induces sign-flip in spin-flip hopping, the topological-nontopological phase transition takes place in the low-chemical-potential region.
Magnetoelectric spectroscopy of Andreev bound states in Josephson quantum dots
Wentzell, Nils; Florens, Serge; Meng, Tobias; Meden, Volker; Andergassen, Sabine
2016-08-01
We theoretically investigate the behavior of Andreev levels in a single-orbital interacting quantum dot in contact with superconducting leads, focusing on the effect of electrostatic gating and applied magnetic field, as relevant for recent experimental spectroscopic studies. In order to account reliably for spin-polarization effects in the presence of correlations, we extend here two simple and complementary approaches that are tailored to capture effective Andreev levels: the static functional renormalization group (fRG) and the self-consistent Andreev bound states (SCABS) theory. We provide benchmarks against the exact large-gap solution as well as renormalization group (NRG) calculations and find good quantitative agreement in the range of validity. The large flexibility of the implemented approaches then allows us to analyze a sizable parameter space, allowing us to get a deeper physical understanding into the Zeeman field, electrostatic gate, and flux dependence of Andreev levels in interacting nanostructures.
Unitary Transformations in Quantum Field Theory and Bound States
Shebeko, A V
2001-01-01
Finding the eigenstates of the total Hamiltonian H or its diagonalization is the important problem of quantum physics. However, in relativistic quantum field theory (RQFT) its complete and exact solution is possible for a few simple models only. Unitary transformations (UT's) considered in this survey do not diagonalize H, but convert H into a form which enables us to find approximately some H eigenstates. During the last years there have appeared many papers devoted to physical applications of such UT's. Our aim is to present a systematic and self-sufficient exposition of the UT method. The two general kinds of UT's are pointed out, distinct variations of each kind being possible. We consider in detail the problem of finding the simplest H eigenstates for interacting mesons and nucleons using the so-called ``clothing'' UT and Okubo's UT. These UT's allow us to suggest definite approaches to the problem of two-particle (deuteron-like) bound states in RQFT. The approaches are shown to yield the same two-nucleo...
Lower bound on concurrence for arbitrary-dimensional tripartite quantum states
Chen, Wei; Fei, Shao-Ming; Zheng, Zhu-Jun
2016-06-01
In this paper, we study the concurrence of arbitrary-dimensional tripartite quantum states. An explicit operational lower bound of concurrence is obtained in terms of the concurrence of substates. A given example shows that our lower bound may improve the well-known existing lower bounds of concurrence. The significance of our result is to get a lower bound when we study the concurrence of arbitrary m⊗ n⊗ l -dimensional tripartite quantum states.
Fano effect and Andreev bound states in T-shape double quantum dots
Energy Technology Data Exchange (ETDEWEB)
Calle, A.M.; Pacheco, M. [Departamento de Física, Universidad Técnica Federico Santa María, Casilla 110-V, Valparaíso (Chile); Orellana, P.A., E-mail: orellana@ucn.cl [Departamento de Física, Universidad Católica del Norte, Casilla 1280, Antofagasta (Chile)
2013-09-02
In this Letter, we investigate the transport through a T-shaped double quantum dot coupled to two normal metal leads left and right and a superconducting lead. Analytical expressions of Andreev transmission and local density of states of the system at zero temperature have been obtained. We study the role of the superconducting lead in the quantum interferometric features of the double quantum dot. We report for first time the Fano effect produced by Andreev bound states in a side quantum dot. Our results show that as a consequence of quantum interference and proximity effect, the transmission from normal to normal lead exhibits Fano resonances due to Andreev bound states. We find that this interference effect allows us to study the Andreev bound states in the changes in the conductance between two normal leads. - Highlights: • Transport properties of a double quantum dot coupled in T-shape configuration to conducting and superconducting leads are studied. • We report Fano antiresonances in the normal transmission due to the Andreev reflections in the superconducting lead. • We report for first time the Fano effect produced by Andreev bound states in a side quantum dot. • Fano effect allows us to study the Andreev bound states in the changes in the conductance between two normal leads. • Andreev bound states survives even for strong dot-superconductor coupling.
Fano effect and Andreev bound states in T-shape double quantum dots
International Nuclear Information System (INIS)
In this Letter, we investigate the transport through a T-shaped double quantum dot coupled to two normal metal leads left and right and a superconducting lead. Analytical expressions of Andreev transmission and local density of states of the system at zero temperature have been obtained. We study the role of the superconducting lead in the quantum interferometric features of the double quantum dot. We report for first time the Fano effect produced by Andreev bound states in a side quantum dot. Our results show that as a consequence of quantum interference and proximity effect, the transmission from normal to normal lead exhibits Fano resonances due to Andreev bound states. We find that this interference effect allows us to study the Andreev bound states in the changes in the conductance between two normal leads. - Highlights: • Transport properties of a double quantum dot coupled in T-shape configuration to conducting and superconducting leads are studied. • We report Fano antiresonances in the normal transmission due to the Andreev reflections in the superconducting lead. • We report for first time the Fano effect produced by Andreev bound states in a side quantum dot. • Fano effect allows us to study the Andreev bound states in the changes in the conductance between two normal leads. • Andreev bound states survives even for strong dot-superconductor coupling
The quantum probability equation: I. Bound state perturbation theory
International Nuclear Information System (INIS)
The partial-wave Schroedinger equation with real boundary conditions is recast as an equation for the probability density. When a small additional potential is included, the changes in the bound-state energy eigenvalues are obtained, up to third order in the perturbation, purely in terms of the perturbing potential and the unperturbed probability density. Although the approach is different, our results are equivalent to those derived by Bender (Bender C M 1978 Advanced Mathematical Methods for Scientists and Engineers (New York: McGraw-Hill) p 330). Knowledge of neither the unperturbed energy spectrum nor the wavefunctions of excited states is required. Evaluations of the second-order energy shift are given for some soluble S-wave problems. (author)
Multichannel quantum defect theory of strontium bound Rydberg states
International Nuclear Information System (INIS)
Using the reactance matrix approach, we systematically develop new multichannel quantum defect theory (MQDT) models for the singlet and triplet S, P, D and F states of strontium below the first ionization limit, based on improved energy level measurements. The new models reveal additional insights into the character of doubly excited perturber states, and the improved energy level measurements for certain series allow fine structure to be resolved for those series’ perturbers. Comparison between the predictions of the new models and those of previous empirical and ab initio studies reveals good agreement with most series; however, some discrepancies are highlighted. Using the MQDT wave functions derived from our models we calculate other observables such as Landé gJ-factors and radiative lifetimes. The analysis reveals the impact of perturbers on the Rydberg state properties of divalent atoms, highlighting the importance of including two-electron effects in the calculations of these properties. The work enables future investigations of properties such as Stark maps and long-range interactions of Rydberg states of strontium. (paper)
Interacting quantum walkers: two-body bosonic and fermionic bound states
Krapivsky, P. L.; Luck, J. M.; Mallick, K.
2015-11-01
We investigate the dynamics of bound states of two interacting particles, either bosons or fermions, performing a continuous-time quantum walk on a one-dimensional lattice. We consider the situation where the distance between both particles has a hard bound, and the richer situation where the particles are bound by a smooth confining potential. The main emphasis is on the velocity characterizing the ballistic spreading of these bound states, and on the structure of the asymptotic distribution profile of their center-of-mass coordinate. The latter profile generically exhibits many internal fronts.
Andreev and Majorana bound states in single and double quantum dot structures
Silva, Joelson F.; Vernek, E.
2016-11-01
We present a numerical study of the emergence of Majorana and Andreev bound states in a system composed of two quantum dots, one of which is coupled to a conventional superconductor, SC1, and the other connects to a topological superconductor, SC2. By controlling the interdot coupling we can drive the system from two single (uncoupled) quantum dots to double (coupled) dot system configurations. We employ a recursive Green’s function technique that provides us with numerically exact results for the local density of states of the system. We first show that in the uncoupled dot configuration (single dot behavior) the Majorana and the Andreev bound states appear in an individual dot in two completely distinct regimes. Therefore, they cannot coexist in the single quantum dot system. We then study the coexistence of these states in the coupled double dot configuration. In this situation we show that in the trivial phase of SC2, the Andreev states are bound to an individual quantum dot in the atomic regime (weak interdot coupling) or extended over the entire molecule in the molecular regime (strong interdot coupling). More interesting features are actually seen in the topological phase of SC2. In this case, in the atomic limit, the Andreev states appear bound to one of the quantum dots while a Majorana zero mode appears in the other one. In the molecular regime, on the other hand, the Andreev bound states take over the entire molecule while the Majorana state remains always bound to one of the quantum dots.
Bound states in the two-dimension massive quantum electrodynamics (Qed2)
International Nuclear Information System (INIS)
This work studies the fermion-antifermion bound states in the (1+1)D two-dimension massive quantum electrodynamic in the 1/N expansion. The scattering matrices in the non-relativistic approximation have been calculated through TQC, and compared with the cross section in the Born approximation, and therefore the potential responsible by the interactions in the scattering processes have been obtained. Using Schroedinger equation, the existence of possible bound states have been investigated
Bound states in the continuum and spin filter in quantum-dot molecules
Energy Technology Data Exchange (ETDEWEB)
Ramos, J.P. [Departamento de Física, Universidad Católica del Norte, Casilla 1280, Antofagasta (Chile); Orellana, P.A., E-mail: pedro.orellana@usm.cl [Departamento de Física, Universidad Técnica Federico Santa María, Vicuña Mackenna 3939, Santiago (Chile)
2014-12-15
In this paper we study the formation of bound states in the continuum in a quantum dot molecule coupled to leads and their potential application in spintronics. Based on the combination of bound states in the continuum and Fano effect, we propose a new design of a spin-dependent polarizer. By lifting the spin degeneracy of the carriers in the quantum dots by means of a magnetic field the system can be used as a spin-polarized device. A detailed analysis of the spin-dependent conductance and spin polarization as a function of the applied magnetic field and gate voltages is carried out.
Bound States of Non-Hermitian Quantum Field Theories
Bender, Carl M; Boettcher, Stefan; Jones, H. F.; Meisinger, Peter; Simsek, Mehmet
2001-01-01
The spectrum of the Hermitian Hamiltonian ${1\\over2}p^2+{1\\over2}m^2x^2+gx^4$ ($g>0$), which describes the quantum anharmonic oscillator, is real and positive. The non-Hermitian quantum-mechanical Hamiltonian $H={1\\over2}p^2+{1 \\over2}m^2x^2-gx^4$, where the coupling constant $g$ is real and positive, is ${\\cal PT}$-symmetric. As a consequence, the spectrum of $H$ is known to be real and positive as well. Here, it is shown that there is a significant difference between these two theories: Whe...
Quantum localization and bound-state formation in Bose-Einstein condensates
International Nuclear Information System (INIS)
We discuss the possibility of exponential quantum localization in systems of ultracold bosonic atoms with repulsive interactions in open optical lattices without disorder. We show that exponential localization occurs in the maximally excited state of the lowest energy band. We establish the conditions under which the presence of the upper energy bands can be neglected, determine the successive stages and the quantum phase boundaries at which localization occurs, and discuss schemes to detect it experimentally by visibility measurements. The discussed mechanism is a particular type of quantum localization that is intuitively understood in terms of the interplay between nonlinearity and a bounded energy spectrum.
Automatic computation of quantum-mechanical bound states and wavefunctions
Ledoux, V.; Van Daele, M.
2013-04-01
We discuss the automatic solution of the multichannel Schrödinger equation. The proposed approach is based on the use of a CP method for which the step size is not restricted by the oscillations in the solution. Moreover, this CP method turns out to form a natural scheme for the integration of the Riccati differential equation which arises when introducing the (inverse) logarithmic derivative. A new Prüfer type mechanism which derives all the required information from the propagation of the inverse of the log-derivative, is introduced. It improves and refines the eigenvalue shooting process and implies that the user may specify the required eigenvalue by its index. Catalogue identifier: AEON_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEON_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/license/license.html No. of lines in distributed program, including test data, etc.: 3822 No. of bytes in distributed program, including test data, etc.: 119814 Distribution format: tar.gz Programming language: Matlab. Computer: Personal computer architectures. Operating system: Windows, Linux, Mac (all systems on which Matlab can be installed). RAM: Depends on the problem size. Classification: 4.3. Nature of problem: Computation of eigenvalues and eigenfunctions of multichannel Schrödinger equations appearing in quantum mechanics. Solution method: A CP-based propagation scheme is used to advance the R-matrix in a shooting process. The shooting algorithm is supplemented by a Prüfer type mechanism which allows the eigenvalues to be computed according to index: the user specifies an integer k≥0, and the code computes an approximation to the kth eigenvalue. Eigenfunctions are also available through an auxiliary routine, called after the eigenvalue has been determined. Restrictions: The program can only deal with non-singular problems. Additional
Energy Technology Data Exchange (ETDEWEB)
De Leo, Stefano [Department of Applied Mathematics, University of Campinas, PO Box 6065, SP 13083-970, Campinas (Brazil); Ducati, Gisele C [Department of Mathematics, University of Parana PO Box 19081, PR 81531-970, Curitiba (Brazil)
2005-04-15
We study the bound-state solutions of vanishing angular momentum in a quaternionic spherical square-well potential of finite depth. As in standard quantum mechanics, such solutions occur for discrete values of energy. At first glance, it seems that the continuity conditions impose a very restrictive constraint on the energy eigenvalues and, consequently, no bound states were expected for energy values below the pure quaternionic potential. Nevertheless, a careful analysis shows that pure quaternionic potentials do not remove bound states. It is also interesting to compare these new solutions with the bound state solutions of the trial-complex potential. The study presented in this paper represents a preliminary step towards a full understanding of the role that quaternionic potentials could play in quantum mechanics. Of particular interest for the authors is the analysis of confined wave packets and tunnelling times in this new formulation of quantum theory.
Ground-State Entanglement Bound for Quantum Energy Teleportation of General Spin-Chain Models
Hotta, Masahiro
2013-01-01
In protocols of quantum energy teleportation (QET), ground-state entanglement of many-body systems plays a crucial role. For a general class of spin-chain systems, we show analytically that the entanglement entropy is lower bounded by a positive quadratic function of the teleported energy between the regions of a QET protocol. This supports a general conjecture that ground-state entanglement is an evident physical resource for energy transportation in the context of QET
Quantum Transport through a Triple Quantum Dot System in the Presence of Majorana Bound States
Jiang, Zhao-Tan; Cao, Zhi-Yuan; Zhong, Cheng-Cheng
2016-05-01
We study the electron transport through a special quantum-dot (QD) structure composed of three QDs and two Majorana bound states (MBSs) using the nonequilibrium Green's function technique. This QD-MBS ring structure includes two channels with the two coupled MBSs being Channel 1 and one QD being Channel 2, and three types of transport processes such as the electron transmission (ET), the Andreev reflection (AR), and the crossed Andreev reflection (CAR). By comparing the ET, AR, and CAR processes through Channels 1 and 2, we make a systematic study on the transport properties of the QD-MBS ring. It is shown that there appear two kinds of characteristic transport patterns for Channels 1 and 2, as well as the interplay between the two patterns. Of particular interest is that there exists an AR-assisted ET process in Channel 2, which is different from that in Channel 1. Thus a clear “X” pattern due to the ET and AR processes appears in the ET, AR, and CAR transmission coefficients. Moreover, we study how Channel 2 affects the three transport processes when Channel 1 is tuned in the ET and CAR regimes. It is shown that the transport properties of the ET, AR and CAR processes can be adjusted by tuning the energy level of the QD embedded in Channel 2. We believe this research should be a helpful reference for understanding the transport properties in the QD-MBS coupled systems. Supported by National Natural Science Foundation of China under Grant No. 11274040, and by the Program for New Century Excellent Talents in University under Grant No. NCET-08-0044
Quasi-bound states of Schrodinger and Dirac electrons in magnetic quantum dot
Masir, M. Ramezani; Matulis, A.; Peeters, F. M.
2009-01-01
The properties of a two-dimensional electron are investigated in the presence of a circular step magnetic field profile. Both electrons with parabolic dispersion as well as Dirac electrons with linear dispersion are studied. We found that in such a magnetic quantum dot no electrons can be confined. Nevertheless close to the Landau levels quasi-bound states can exist with a rather long life time.
Bound states induced giant oscillations of the conductance in the quantum Hall regime
Kadigrobov, A. M.; Fistul, M. V.
2016-06-01
We theoretically studied the quasiparticle transport in a 2D electron gas biased in the quantum Hall regime and in the presence of a lateral potential barrier. The lateral junction hosts the specific magnetic field dependent quasiparticle states highly localized in the transverse direction. The quantum tunnelling across the barrier provides a complex bands structure of a one-dimensional energy spectrum of these bound states, {εn}≤ft( {{p}y}\\right) , where p y is the electron momentum in the longitudinal direction y. Such a spectrum manifests itself by a large number of peaks and drops in the dependence of the magnetic edge states transmission coefficient D(E ) on the electron energy E. E.g. the high value of D occurs as soon as the electron energy E reaches gaps in the spectrum. These peaks and drops of D(E) result in giant oscillations of the transverse conductance G x with the magnetic field and/or the transport voltage. Our theoretical analysis, based on the coherent macroscopic quantum superposition of the bound states and the magnetic edge states propagating along the system boundaries, is in a good accord with the experimental observations found in Kang et al (2000 Lett. Nat. 403 59)
Quantum Zeno and anti-Zeno effects in an unstable system with two bound states
Energy Technology Data Exchange (ETDEWEB)
Modi, Kavan [Department of Physics, Center for Complex Quantum Systems, University of Texas at Austin, Austin, TX 78712-1081 (United States)], E-mail: modik@physics.utexas.edu; Shaji, Anil [Department of Physics, Center for Complex Quantum Systems, University of Texas at Austin, Austin, TX 78712-1081 (United States)
2007-08-20
We analyze the experimental observations reported by Fischer et al. [M.C. Fischer, B. Gutierrez-Medina, M.G. Raizen, Phys. Rev. Lett. 87 (2001) 040402] by considering a system of coupled unstable bound quantum states |A> and |B>. The state |B> is coupled to a set of continuum states |C{theta}({omega})>. We investigate the time evolution of |A> when it decays into |C{theta}({omega})> via |B>, and find that frequent measurements on |A> leads to both the quantum Zeno effect and the anti-Zeno effects depending on the frequency of measurements. We show that it is the presence of |B> which allows for the anti-Zeno effect.
Afzal, Muhammad Imran; Lee, Yong Tak
2016-01-01
Von Neumann and Wigner theorized bounding of asymmetric eigenstates and anti-crossing of symmetric eigenstates. Experiments have shown that owing to anti-crossing and similar radiation rates, graphene-like resonance of inhomogeneously strained photonic eigenstates can generate pseudomagnetic field, bandgaps and Landau levels, while dissimilar rates induce non-Hermicity. Here, we showed experimentally higher-order supersymmetry and quantum phase transitions by resonance between similar one dimensional lattices. The lattices consisted of inhomgeneously strain-like phases of triangular solitons. The resonance created two dimensional inhomogeneously deformed photonic graphene. All parent eigenstates are annihilated. Where eigenstates of mildly strained solitons are annihilated with similar (power law) rates through one tail only and generated Hermitianally bounded eigenstates. The strongly strained solitons, positive defects are annihilated exponentially through both tails with dissimilar rates. Which bounded eig...
Lower bounds for ballistic current and noise in non-equilibrium quantum steady states
Directory of Open Access Journals (Sweden)
Benjamin Doyon
2015-03-01
Full Text Available Let an infinite, homogeneous, many-body quantum system be unitarily evolved for a long time from a state where two halves are independently thermalized. One says that a non-equilibrium steady state emerges if there are nonzero steady currents in the central region. In particular, their presence is a signature of ballistic transport. We analyze the consequences of the current observable being a conserved density; near equilibrium this is known to give rise to linear wave propagation and a nonzero Drude peak. Using the Lieb–Robinson bound, we derive, under a certain regularity condition, a lower bound for the non-equilibrium steady-state current determined by equilibrium averages. This shows and quantifies the presence of ballistic transport far from equilibrium. The inequality suggests the definition of “nonlinear sound velocities”, which specialize to the sound velocity near equilibrium in non-integrable models, and “generalized sound velocities”, which encode generalized Gibbs thermalization in integrable models. These are bounded by the Lieb–Robinson velocity. The inequality also gives rise to a bound on the energy current noise in the case of pure energy transport. We show that the inequality is satisfied in many models where exact results are available, and that it is saturated at one-dimensional criticality.
Lower bounds for ballistic current and noise in non-equilibrium quantum steady states
International Nuclear Information System (INIS)
Let an infinite, homogeneous, many-body quantum system be unitarily evolved for a long time from a state where two halves are independently thermalized. One says that a non-equilibrium steady state emerges if there are nonzero steady currents in the central region. In particular, their presence is a signature of ballistic transport. We analyze the consequences of the current observable being a conserved density; near equilibrium this is known to give rise to linear wave propagation and a nonzero Drude peak. Using the Lieb–Robinson bound, we derive, under a certain regularity condition, a lower bound for the non-equilibrium steady-state current determined by equilibrium averages. This shows and quantifies the presence of ballistic transport far from equilibrium. The inequality suggests the definition of “nonlinear sound velocities”, which specialize to the sound velocity near equilibrium in non-integrable models, and “generalized sound velocities”, which encode generalized Gibbs thermalization in integrable models. These are bounded by the Lieb–Robinson velocity. The inequality also gives rise to a bound on the energy current noise in the case of pure energy transport. We show that the inequality is satisfied in many models where exact results are available, and that it is saturated at one-dimensional criticality
Datta, Nilanjana; Hsieh, Min-Hsiu; Oppenheim, Jonathan
2016-05-01
State redistribution is the protocol in which given an arbitrary tripartite quantum state, with two of the subsystems initially being with Alice and one being with Bob, the goal is for Alice to send one of her subsystems to Bob, possibly with the help of prior shared entanglement. We derive an upper bound on the second order asymptotic expansion for the quantum communication cost of achieving state redistribution with a given finite accuracy. In proving our result, we also obtain an upper bound on the quantum communication cost of this protocol in the one-shot setting, by using the protocol of coherent state merging as a primitive.
Quantum entanglement of charges in bound states with finite-size dyons
International Nuclear Information System (INIS)
We show that the presence of finite-size monopoles can lead to a number of interesting physical processes involving quantum entanglement of charges. Taking as a model the classical solution of the N=2 SU(2) Yang-Mills theory, we study interaction between dyons and scalar particles in the adjoint and fundamental representation. We find that there are bound states of scalars and dyons, which, remarkably, are always an entangled configuration of the form vertical bar ψ> = vertical bar dyon+> vertical bar scalar-> ± vertical bar dyon-> vertical bar scalar+>. We determine the energy levels and the wave functions and also discuss their stability. (author)
Ground-state-entanglement bound for quantum energy teleportation of general spin-chain models
Hotta, Masahiro
2013-03-01
Many-body quantum systems in the ground states have zero-point energy due to the uncertainty relation. In many cases, the system in the ground state accompanies spatially entangled energy density fluctuation via the noncommutativity of the energy density operators, though the total energy takes a fixed value, i.e., the lowest eigenvalue of the Hamiltonian. Quantum energy teleportation (QET) is a protocol for the extraction of the zero-point energy out of one subsystem using information of a remote measurement of another subsystem. From an operational viewpoint of protocol users, QET can be regarded as an effective rapid energy transportation without breaking all physical laws, including causality and local energy conservation. In the protocol, the ground-state entanglement plays a crucial role. In this paper, we show analytically for a general class of spin-chain systems that the entanglement entropy is lower bounded by a positive quadratic function of the teleported energy between the regions of a QET protocol. This supports a general conjecture that ground-state entanglement is an evident physical resource for energy transportation in the context of QET. The result may also deepen our understanding of the energy density fluctuation in condensed-matter systems from a perspective of quantum information theory.
Quantum few-body bound states of dipolar particles in a helical geometry
Pedersen, J. K.; Fedorov, D. V.; Jensen, A. S.; Zinner, N. T.
2016-01-01
We study a quantum mechanical system consisting of up to three identical dipoles confined to move along a helical shaped trap. The long-range interactions between particles confined to move in this one dimension leads to an interesting effective two-particle potential with an oscillating behavior. For this system we calculate the spectrum and the wave functions of the bound states. The full quantum solutions show clear imprints of the tendency for the system to form chains of dipoles along the helix, i.e. a configuration in which the dipoles are sitting approximately one winding of the helix apart so that they can take maximal advantage of the strong head-to-tail attraction that is a generic feature of the dipole–dipole interaction.
Khan, Md Abdul
2015-01-01
Bound state properties of few single and double-$\\Lambda$ hypernuclei is critically examined in the framework of core-$\\Lambda$ and core+$\\Lambda+\\Lambda$ few-body model applying hyperspherical harmonics expansion method (HHEM). The $\\Lambda\\Lambda$ potential is chosen phenomenologically while the core-$\\Lambda$ potential is obtained by folding a phenomenological $\\Lambda N$ interaction into the density distribution of the core. The depth of the effective $\\Lambda N$ potential is adjusted to reproduce the experimental data for the core-$\\Lambda$ subsystem. The three-body Schr\\"odinger equation is solved by hyperspherical adiabatic approximation (HAA) to get the ground state energy and wave function. The ground state wavefunction is used to construct the supersymmetric partner potential following prescription of supersymmetric quantum mechanics (SSQM) algebra. The newly constructed supersymmetric partner potential is used to solve the three-body Schr\\"odinger equation to get the energy and wavefunction for the...
Multi-triplet bound states and finite-temperature dynamics in highly frustrated quantum spin ladders
Honecker, Andreas; Mila, Frédéric; Normand, B.
2016-09-01
Low-dimensional quantum magnets at finite temperatures present a complex interplay of quantum and thermal fluctuation effects in a restricted phase space. While some information about dynamical response functions is available from theoretical studies of the one-triplet dispersion in unfrustrated chains and ladders, little is known about the finite-temperature dynamics of frustrated systems. Experimentally, inelastic neutron scattering studies of the highly frustrated two-dimensional material SrCu2(BO3)2 show an almost complete destruction of the one-triplet excitation band at a temperature only 1/3 of its gap energy, accompanied by strong scattering intensities for apparent multi-triplet excitations. We investigate these questions in the frustrated spin ladder and present numerical results from exact diagonalization for the dynamical structure factor as a function of temperature. We find anomalously rapid transfer of spectral weight out of the one-triplet band and into both broad and sharp spectral features at a wide range of energies, including below the zero-temperature gap of this excitation. These features are multi-triplet bound states, which develop particularly strongly near the quantum phase transition, fall to particularly low energies there, and persist all the way to infinite temperature. Our results offer valuable insight into the physics of finite-temperature spectral functions in SrCu2(BO3)2 and many other highly frustrated spin systems.
Shot noise in a quantum dot system coupled with Majorana bound states.
Chen, Qiao; Chen, Ke-Qiu; Zhao, Hong-Kang
2014-08-01
We investigate the spectral density of shot noise and current for the system of a quantum dot coupled to Majorana bound states (MBS) employing the nonequilibrium Green's function. The Majorana bound states at the end of the wire strongly affect the shot noise. There are two types of coupling in the system: dot-MBS and MBS-MBS coupling. The curves of shot noise and current versus coupling strength have novel steps owing to the energy-level splitting caused by dot-MBS coupling. The magnitude of these steps increases with the strength of dot-MBS coupling λ but decreases with the strength of MBS-MBS coupling. The steps shift toward the large ∣eV∣ region as λ or ϵ(M) increases. In addition, dot-MBS coupling enhances the shot noise while MBS-MBS coupling suppresses the shot noise. In the absence of MBS-MBS coupling, a sharp jump emerges in the curve of the Fano factor at zero bias owing to the differential conductance being reduced by a factor of 1/2. This provides a novel technique for the detection of Majorana fermions. PMID:25016999
Shot noise in a quantum dot system coupled with Majorana bound states
Chen, Qiao; Chen, Ke-Qiu; Zhao, Hong-Kang
2014-08-01
We investigate the spectral density of shot noise and current for the system of a quantum dot coupled to Majorana bound states (MBS) employing the nonequilibrium Green’s function. The Majorana bound states at the end of the wire strongly affect the shot noise. There are two types of coupling in the system: dot-MBS and MBS-MBS coupling. The curves of shot noise and current versus coupling strength have novel steps owing to the energy-level splitting caused by dot-MBS coupling. The magnitude of these steps increases with the strength of dot-MBS coupling λ but decreases with the strength of MBS-MBS coupling. The steps shift toward the large ∣eV∣ region as λ or ɛM increases. In addition, dot-MBS coupling enhances the shot noise while MBS-MBS coupling suppresses the shot noise. In the absence of MBS-MBS coupling, a sharp jump emerges in the curve of the Fano factor at zero bias owing to the differential conductance being reduced by a factor of 1/2. This provides a novel technique for the detection of Majorana fermions.
Unified theory of bound and scattering molecular Rydberg states as quantum maps
Dietz, B; Dietz, Barbara; Lombardi, Maurice; Proxy, Thomas H Seligman
2004-01-01
Using a representation of multichannel quantum defect theory in terms of a quantum Poincar\\'e map for bound Rydberg molecules, we apply Jung's scattering map to derive a generalized quantum map, that includes the continuum. We show, that this representation not only simplifies the understanding of the method, but moreover produces considerable numerical advantages. Finally we show under what circumstances the usual semi-classical approximations yield satisfactory results. In particular we see that singularities that cause problems in semi-classics are irrelevant to the quantum map.
Unified theory of bound and scattering molecular Rydberg states as quantum maps
Dietz, Barbara; Lombardi, Maurice; Seligman, Thomas H.
2004-08-01
Using a representation of multichannel quantum defect theory in terms of a quantum Poincaré map for bound Rydberg molecules, we apply Jung's scattering map to derive a generalized quantum map, that includes the continuum. We show that this representation not only simplifies the understanding of the method, but moreover produces considerable numerical advantages. Finally we show under what circumstances the usual semi-classical approximations yield satisfactory results. In particular we see that singularities that cause problems in semi-classics are irrelevant to the quantum map.
Unified theory of bound and scattering molecular Rydberg states as quantum maps
International Nuclear Information System (INIS)
Using a representation of multichannel quantum defect theory in terms of a quantum Poincare map for bound Rydberg molecules, we apply Jung's scattering map to derive a generalized quantum map, that includes the continuum. We show that this representation not only simplifies the understanding of the method, but moreover produces considerable numerical advantages. Finally we show under what circumstances the usual semi-classical approximations yield satisfactory results. In particular we see that singularities that cause problems in semi-classics are irrelevant to the quantum map
Generating bounds for the discrete state energy values of the infinite quantum lens potential
Energy Technology Data Exchange (ETDEWEB)
Handy, Carlos R. [Department of Physics and Center for Theoretical Studies of Physical Systems, Clark Atlanta University, Atlanta, GA (United States); Trallero-Giner, C.; Rodriguez, Arezky H. [Department of Theoretical Physics, University of Havana, Havana (Cuba)
2001-12-14
Moment based methods have produced efficient multiscale quantization algorithms for solving singular perturbation/strong coupling problems. One of these, the eigenvalue moment method (EMM), developed by Handy and Bessis (Handy C R and Bessis D 1985 Phys. Rev. Lett. 55 931) and Handy et al (Handy C R, Bessis D, Sigismondi G and Morley T D 1988b Phys. Rev. Lett. 60 253), generates converging lower and upper bounds to a specific discrete state energy, once the signature property of the associated wavefunction is known. This method is particularly effective for multi-dimensional, bosonic ground state problems, since the corresponding wavefunction must be of uniform signature, and can be taken to be positive. Despite this, the vast majority of problems studied have been on unbounded domains. The important problem of an electron in an infinite quantum lens potential defines a challenging extension of EMM to systems defined on a compact domain. We investigate this in this paper, and introduce novel modifications to the conventional EMM formalism that facilitate its adaptability to the required boundary conditions. (author)
Influence of quasi-bound states on the carrier capture into quantum dots
DEFF Research Database (Denmark)
Magnúsdóttir, Ingibjörg; Uskov, A.; Bischoff, Svend;
2002-01-01
An important characteristic of quantum dot (QD) materials is the timescale on which carriers are captured into the dots and relax to their ground state. The properties of devices based on QDs, such as lasers, thus rely on efficient carrier feeding to the active QD states. These processes are beli......An important characteristic of quantum dot (QD) materials is the timescale on which carriers are captured into the dots and relax to their ground state. The properties of devices based on QDs, such as lasers, thus rely on efficient carrier feeding to the active QD states. These processes...
Schulz, M D; Vidal, J
2016-01-01
We discuss the emergence of bound states in the low-energy spectrum of the string-net Hamiltonian in the presence of a string tension. In the ladder geometry, we show that a single bound state arises either for a finite tension or in the zero-tension limit depending on the theory considered. In the latter case, we perturbatively compute the binding energy as a function of the total quantum dimension. We also address this issue in the honeycomb lattice where the number of bound states in the topological phase depends on the total quantum dimension. Finally, the internal structure of these bound states is analyzed in the zero-tension limit.
Ionization and bound-state relativistic quantum dynamics in laser-driven multiply charged ions
International Nuclear Information System (INIS)
The interaction of ultra-strong laser fields with multiply charged hydrogen-like ions can be distinguished in an ionization and a bound dynamics regime. Both are investigated by means of numerically solving the Dirac equation in two dimensions and by a classical relativistic Monte-Carlo simulation. For a better understanding of highly nonlinear physical processes the development of a well characterized ultra-intense relativistic laser field strength has been driven forward, capable of studying e.g. the magnetic field effects of the laser resulting in an additional electron motion in the laser propagation direction. A novel method to sensitively measure these ultra-strong laser intensities is developed and employed from the optical via the UV towards the XUV frequency regime. In the bound dynamics field, the determination of multiphoton transition matrixelements has been investigated between different bound states via Rabi oscillations. (orig.)
Ionization and bound-state relativistic quantum dynamics in laser-driven multiply charged ions
Energy Technology Data Exchange (ETDEWEB)
Hetzheim, Henrik
2009-01-14
The interaction of ultra-strong laser fields with multiply charged hydrogen-like ions can be distinguished in an ionization and a bound dynamics regime. Both are investigated by means of numerically solving the Dirac equation in two dimensions and by a classical relativistic Monte-Carlo simulation. For a better understanding of highly nonlinear physical processes the development of a well characterized ultra-intense relativistic laser field strength has been driven forward, capable of studying e.g. the magnetic field effects of the laser resulting in an additional electron motion in the laser propagation direction. A novel method to sensitively measure these ultra-strong laser intensities is developed and employed from the optical via the UV towards the XUV frequency regime. In the bound dynamics field, the determination of multiphoton transition matrixelements has been investigated between different bound states via Rabi oscillations. (orig.)
Quantum transport through a multi-quantum-dot-pair chain side-coupled with Majorana bound states
Zhao-Tan, Jiang; Cheng-Cheng, Zhong
2016-06-01
We investigate the quantum transport properties through a special kind of quantum dot (QD) system composed of a serially coupled multi-QD-pair (multi-QDP) chain and side-coupled Majorana bound states (MBSs) by using the Green functions method, where the conductance can be classified into two kinds: the electron tunneling (ET) conductance and the Andreev reflection (AR) one. First we find that for the nonzero MBS-QDP coupling a sharp AR-induced zero-bias conductance peak with the height of e 2/h is present (or absent) when the MBS is coupled to the far left (or the other) QDP. Moreover, the MBS-QDP coupling can suppress the ET conductance and strengthen the AR one, and further split into two sub-peaks each of the total conductance peaks of the isolated multi-QDPs, indicating that the MBS will make obvious influences on the competition between the ET and AR processes. Then we find that the tunneling rate Γ L is able to affect the conductances of leads L and R in different ways, demonstrating that there exists a Γ L-related competition between the AR and ET processes. Finally we consider the effect of the inter-MBS coupling on the conductances of the multi-QDP chains and it is shown that the inter-MBS coupling will split the zero-bias conductance peak with the height of e 2/h into two sub-peaks. As the inter-MBS coupling becomes stronger, the two sub-peaks are pushed away from each other and simultaneously become lower, which is opposite to that of the single QDP chain where the two sub-peaks with the height of about e 2/2h become higher. Also, the decay of the conductance sub-peaks with the increase of the MBS-QDP coupling becomes slower as the number of the QDPs becomes larger. This research should be an important extension in studying the transport properties in the kind of QD systems coupled with the side MBSs, which is helpful for understanding the nature of the MBSs, as well as the MBS-related QD transport properties. Project supported by the National Natural
Lower bounds for ballistic current and noise in non-equilibrium quantum steady states
Benjamin Doyon
2015-01-01
Let an infinite, homogeneous, many-body quantum system be unitarily evolved for a long time from a state where two halves are independently thermalized. One says that a non-equilibrium steady state emerges if there are nonzero steady currents in the central region. In particular, their presence is a signature of ballistic transport. We analyze the consequences of the current observable being a conserved density; near equilibrium this is known to give rise to linear wave propagation and a nonz...
VARIATIONAL CALCULATION ON GROUND-STATE ENERGY OF BOUND POLARONS IN PARABOLIC QUANTUM WIRES
Institute of Scientific and Technical Information of China (English)
WANG ZHUANG-BING; WU FU-LI; CHEN QING-HU; JIAO ZHENG-KUAN
2001-01-01
Within the framework of Feynman path-integral variational theory, we calculate the ground-state energy of a polaron in parabolic quantum wires in the presence of a Coulomb potential. It is shown that the polaronic correction to the ground-state energy is more sensitive to the electron-phonon coupling constant than the Coulomb binding parameter,and it increases monotonically with decreasing effective wire radius. Moreover, compared to the results obtained by Feynman Haken variational path-integral theory, we obtain better results within the Feynman path-integral variational approach (FV approach). Applying our calculation to several polar semiconductor quantum wires, we find that the polaronic correction can be considerably large.
International Nuclear Information System (INIS)
We study the electronic transport through a four-quantum-dot (FQD) structure with a diamond-like shape through nonequilibrium Green's function theory. It is observed that the bound state in the continuum (BIC) appears in this multiple QDs system, and the position of the BIC in the total density of states (TDOS) spectrum is tightly determined by the strength of the electronic hopping between the upper QD and the lower one. As the symmetry in the energy levels in these two QDs is broken, the BIC is suppressed to a general conductance peak with a finite width, and meanwhile a Fano-type antiresonance with a zero point appears in the conductance spectrum. These results will develop our understanding of the BICs and their spintronic device applications of spin filter and quantum computing.
Upper and lower bounds on quantum codes
Smith, Graeme Stewart Baird
This thesis provides bounds on the performance of quantum error correcting codes when used for quantum communication and quantum key distribution. The first two chapters provide a bare-bones introduction to classical and quantum error correcting codes, respectively. The next four chapters present achievable rates for quantum codes in various scenarios. The final chapter is dedicated to an upper bound on the quantum channel capacity. Chapter 3 studies coding for adversarial noise using quantum list codes, showing there exist quantum codes with high rates and short lists. These can be used, together with a very short secret key, to communicate with high fidelity at noise levels for which perfect fidelity is, impossible. Chapter 4 explores the performance of a family of degenerate codes when used to communicate over Pauli channels, showing they can be used to communicate over almost any Pauli channel at rates that are impossible for a nondegenerate code and that exceed those of previously known degenerate codes. By studying the scaling of the optimal block length as a function of the channel's parameters, we develop a heuristic for designing even better codes. Chapter 5 describes an equivalence between a family of noisy preprocessing protocols for quantum key distribution and entanglement distillation protocols whose target state belongs to a class of private states called "twisted states." In Chapter 6, the codes of Chapter 4 are combined with the protocols of Chapter 5 to provide higher key rates for one-way quantum key distribution than were previously thought possible. Finally, Chapter 7 presents a new upper bound on the quantum channel capacity that is both additive and convex, and which can be interpreted as the capacity of the channel for communication given access to side channels from a class of zero capacity "cloning" channels. This "clone assisted capacity" is equal to the unassisted capacity for channels that are degradable, which we use to find new upper
Irie, Hiroshi; Todt, Clemens; Kumada, Norio; Harada, Yuichi; Sugiyama, Hiroki; Akazaki, Tatsushi; Muraki, Koji
2016-10-01
We study coherent transport and bound state formation of Bogoliubov quasiparticles in a high-mobility I n0.75G a0.25As two-dimensional electron gas (2DEG) coupled to a superconducting Nb electrode by means of a quantum point contact (QPC) as a tunable single-mode probe. Below the superconducting critical temperature of Nb, the QPC shows a single-channel conductance greater than the conductance quantum 2 e2/h at zero bias, which indicates the presence of Andreev-reflected quasiparticles, time-reversed states of the injected electron, returning back through the QPC. The marked sensitivity of the conductance enhancement to voltage bias and perpendicular magnetic field suggests a mechanism analogous to reflectionless tunneling—a hallmark of phase-coherent transport, with the boundary of the 2DEG cavity playing the role of scatterers. When the QPC transmission is reduced to the tunneling regime, the differential conductance vs bias voltage probes the single-particle density of states in the proximity area. Measured conductance spectra show a double peak within the superconducting gap of Nb, demonstrating the formation of Andreev bound states in the 2DEG. Both of these results, obtained in the open and closed geometries, underpin the coherent nature of quasiparticles, i.e., phase-coherent Andreev reflection at the InGaAs/Nb interface and coherent propagation in the ballistic 2DEG.
Approximate bound states of the Dirac equation with some physical quantum potentials
Sameer M. Ikhdair; Sever, Ramazan
2012-01-01
The approximate analytical solutions of the Dirac equations with the reflectionless-type and Rosen-Morse potentials including the spin-orbit centrifugal (pseudo-centrifugal) term are obtained. Under the conditions of spin and pseudospin (pspin) symmetry concept, we obtain the bound state energy spectra and the corresponding two-component upper- and lower-spinors of the two Dirac particles by means of the Nikiforov-Uvarov (NU) method in closed form. The special cases of the s-wave {\\kappa}=\\pm...
Approximate bound states of the Dirac equation with some physical quantum potentials
Ikhdair, Sameer M; 10.1016/j.amc.2012.03.073
2012-01-01
The approximate analytical solutions of the Dirac equations with the reflectionless-type and Rosen-Morse potentials including the spin-orbit centrifugal (pseudo-centrifugal) term are obtained. Under the conditions of spin and pseudospin (pspin) symmetry concept, we obtain the bound state energy spectra and the corresponding two-component upper- and lower-spinors of the two Dirac particles by means of the Nikiforov-Uvarov (NU) method in closed form. The special cases of the s-wave {\\kappa}=\\pm1 (l=l=0) Dirac equation and the non-relativistic limit of Dirac equation are briefly studied.
First clear evidence of quantum chaos in the bound states of an atomic nucleus
Muñoz, L; Gómez, J M G; Heusler, A
2016-01-01
We study the spectral fluctuations of the $^{208}$Pb nucleus using the complete experimental spectrum of 151 states up to excitation energies of $6.20$ MeV recently identified at the Maier-Leibnitz-Laboratorium at Garching, Germany. For natural parity states the results are very close to the predictions of Random Matrix Theory (RMT) for the nearest-neighbor spacing distribution. A quantitative estimate of the agreement is given by the Brody parameter $\\omega$, which takes the value $\\omega=0$ for regular systems and $\\omega \\simeq 1$ for chaotic systems. We obtain $\\omega=0.85 \\pm 0.02$ which is, to our knowledge, the closest value to chaos ever observed in experimental bound states of nuclei. By contrast, the results for unnatural parity states are far from RMT behavior. We interpret these results as a consequence of the strength of the residual interaction in $^{208}$Pb, which, according to experimental data, is much stronger for natural than for unnatural parity states. In addition our results show that ch...
Quantum phase transition triggering magnetic bound states in the continuum in graphene
Guessi, L. H.; Marques, Y.; Machado, R. S.; Kristinsson, K.; Ricco, L. S.; Shelykh, I. A.; Figueira, M. S.; de Souza, M.; Seridonio, A. C.
2015-12-01
Graphene hosting a pair of collinear adatoms in the phantom atom configuration has density of states vanishing in the vicinity of the Dirac point which can be described in terms of the pseudogap scaling as cube of the energy, Δ ∝|ɛ| 3 , which leads to the appearance of spin-degenerate bound states in the continuum (BICs) [Phys. Rev. B 92, 045409 (2015), 10.1103/PhysRevB.92.045409]. In the case when adatoms are locally coupled to a single carbon atom the pseudogap scales linearly with energy, which prevents the formation of BICs. Here, we explore the effects of nonlocal coupling characterized by the Fano factor of interference q0, tunable by changing the slope of the Dirac cones in the graphene band structure. We demonstrate that three distinct regimes can be identified: (i) for q0qc 2 the cubic scaling of the pseudogap with energy Δ ∝|ɛ| 3 characteristic to the phantom atom configuration is restored and the phase with nonmagnetic BICs is recovered. The phase with magnetic BICs can be described in terms of an effective intrinsic exchange field of ferromagnetic nature between the adatoms mediated by graphene monolayer. We thus propose a new type of QPT resulting from the competition between two ground states, respectively characterized by spin-degenerate and magnetic BICs.
Donor-bound electron states in a two-dimensional quantum ring under uniform magnetic field
Institute of Scientific and Technical Information of China (English)
Jia Bo-Yong; Yu Zhong-Yuan; Liu Yu-Min; Han Li-Hong; Yao Wen-Jie; Feng Hao; Ye Han
2011-01-01
The electron states in a two-dimensional GaAs/AlGaAs quantum ring are theoretically studied in effective mass approximation. On-centre donor impurity and uniform magnetic field perpendicular to the ring plane are taken into account. The energy spectrum with different angular momentum changes dramatically with the geometry of the ring.The donor impurity reduces the energies with an almost fixed value; however, the magnetic field alters energies in a more complex way. For example, energy levels under magnetic field will cross each other when increasing the inner radius and outer radius of the ring, leading to the fact that the arrangement of energy levels is distinct in certain geometry of the ring. Moreover, energy levels with negative angular momentum exhibit the non-monotonous dependence on the increasing magnetic field.
Hoyer, Paul
2016-01-01
Even a first approximation of bound states requires contributions of all powers in the coupling. This means that the concept of "lowest order bound state" needs to be defined. In these lectures I discuss the "Born" (no loop, lowest order in $\\hbar$) approximation. Born level states are bound by gauge fields which satisfy the classical field equations. As a check of the method, Positronium states of any momentum are determined as eigenstates of the QED Hamiltonian, quantized at equal time. Analogously, states bound by a strong external field $A^\\mu(\\xv)$ are found as eigenstates of the Dirac Hamiltonian. Their Fock states have dynamically created $e^+e^-$ pairs, whose distribution is determined by the Dirac wave function. The linear potential of $D=1+1$ dimensions confines electrons but repels positrons. As a result, the mass spectrum is continuous and the wave functions have features of both bound states and plane waves. The classical solutions of Gauss' law are explored for hadrons in QCD. A non-vanishing bo...
Bound States for Magic State Distillation
Campbell, Earl T
2009-01-01
Magic state distillation is an important primitive in fault-tolerant quantum computation. The magic states are pure non-stabilizer states which can be distilled from certain mixed non-stabilizer states via Clifford group operations alone. Due to the Gottesman-Knill theorem, convex mixtures of Pauli eigenstates are not expected to be magic state distillable, but it has been an open question whether all mixed states outside this octahedral set may be distilled. In this Letter we show that, when resources are finitely limited, non-distillable states exist outside the stabilizer octahedron. In analogy with the bound entangled states, which arise in entanglement theory, we call such states bound states for magic state distillation.
Monotonicity of the quantum linear programming bound
Eric M. Rains
1998-01-01
The most powerful technique known at present for bounding the size of quantum codes of prescribed minimum distance is the quantum linear programming bound. Unlike the classical linear programming bound, it is not immediately obvious that if the quantum linear programming constraints are satisfiable for dimension K, that the constraints can be satisfied for all lower dimensions. We show that the quantum linear programming bound is indeed monotonic in this sense, and give an explicitly monotoni...
Quantum few-body bound states of dipolar particles in a helical geometry
DEFF Research Database (Denmark)
Pedersen, Jakob Knorborg; Fedorov, Dmitri Vladimir; Jensen, Aksel Stenholm;
2016-01-01
We study a quantum mechanical system consisting of up to three identical dipoles confined to move along a helical shaped trap. The long-range interactions between particles confined to move in this one dimension leads to an interesting effective two-particle potential with an oscillating behavior...
Huard; Cox; Saminadayar; Arnoult; Tatarenko
2000-01-01
The dependence of the optical absorption spectrum of a semiconductor quantum well on two-dimensional electron concentration n(e) is studied using CdTe samples. The trion peak (X-) seen at low n(e) evolves smoothly into the Fermi edge singularity at high n(e). The exciton peak (X) moves off to high energy, weakens, and disappears. The X,X- splitting is linear in n(e) and closely equal to the Fermi energy plus the trion binding energy. For Cd0.998Mn0.002Te quantum wells in a magnetic field, the X,X- splitting reflects unequal Fermi energies for M = +/-1/2 electrons. The data are explained by Hawrylak's theory of the many-body optical response including spin effects.
On Quantum Capacity and its Bound
Ohya, Masanori; Volovich, Igor V.
2004-01-01
The quantum capacity of a pure quantum channel and that of classical-quantum-classical channel are discussed in detail based on the fully quantum mechanical mutual entropy. It is proved that the quantum capacity generalizes the so-called Holevo bound.
Hsu, Chia Wei; Zhen, Bo; Stone, A. Douglas; Joannopoulos, John D.; Soljačić, Marin
2016-09-01
Bound states in the continuum (BICs) are waves that remain localized even though they coexist with a continuous spectrum of radiating waves that can carry energy away. Their very existence defies conventional wisdom. Although BICs were first proposed in quantum mechanics, they are a general wave phenomenon and have since been identified in electromagnetic waves, acoustic waves in air, water waves and elastic waves in solids. These states have been studied in a wide range of material systems, such as piezoelectric materials, dielectric photonic crystals, optical waveguides and fibres, quantum dots, graphene and topological insulators. In this Review, we describe recent developments in this field with an emphasis on the physical mechanisms that lead to BICs across seemingly very different materials and types of waves. We also discuss experimental realizations, existing applications and directions for future work.
Lower bound of local quantum uncertainty for high-dimensional bipartite quantum systems
Wang, Shuhao; LI Hui; Lu, Xian; Chen, Bin; Long, Gui Lu
2013-01-01
Quantum correlations are of fundamental importance in quantum phenomena and quantum information processing studies. The measure of quantum correlations is one central issue. The recently proposed measure of quantum correlations, the local quantum uncertainty (LQU), satisfies the full physical requirements of a measure of quantum correlations. In this work, by using operator relaxation, a closed form lower bound of the LQU for arbitrary-dimensional bipartite quantum states is derived. We have ...
Fano effect in an AB interferometer with a quantum dot side-coupled to a single Majorana bound state
Zeng, Qi-Bo; Chen, Shu; Lü, Rong
2016-02-01
We study the conductance and interference effects through an AB interferometer with an embedded quantum dot (QD) side-coupled to a single Majorana bound state (MBS) by using non-equilibrium Green's function method. The energy levels appearing in the QD are calculated by diagonalizing the Hamiltonian of the embedded QD-MBS system. When the single QD energy level ɛ0 is set to 0, there are three discrete energy levels in the QD appearing at around ω = 0, ±√{ ɛM2 + 2λ2 } due to the coupling with MBS where ɛM is the coupling strength between the two MBSs at the two ends of the nanowire and λ is the coupling strength between the MBS and the QD. Asymmetric Fano lineshapes are found around these levels in the conductance due to the interference between electrons traversing through different paths. The phase shift of electrons through the QD changes from π / 2 to - π / 2 at each of these three energy values. However, the phase does not vary smoothly between these three energy levels but shows severe changes from - π / 2 to π / 2 at ω = ±√{ ɛM2 +λ2 }. As a comparison, we also study the similar AB interferometer in which the QD-MBS system is replaced by a normal QD-QD system or a simple single QD system, which shows only two or one Fano peak and the phase shifts from π / 2 to - π / 2 only at the Fano peaks. These differences reflect the distinct influences of Majorana bound state on the transport properties of AB interferometer.
DEFF Research Database (Denmark)
Faupin, Jeremy; Møller, Jacob Schach; Skibsted, Erik
2011-01-01
We study regularity of bound states pertaining to embedded eigenvalues of a self-adjoint operator H, with respect to an auxiliary operator A that is conjugate to H in the sense of Mourre. We work within the framework of singular Mourre theory which enables us to deal with confined massless Pauli......–Fierz models, our primary example, and many-body AC-Stark Hamiltonians. In the simpler context of regular Mourre theory, our results boil down to an improvement of results obtained recently in [8, 9]....
Quantum Lower Bounds by Entropy Numbers
Heinrich, Stefan
2006-01-01
We use entropy numbers in combination with the polynomial method to derive a new general lower bound for the n-th minimal error in the quantum setting of information-based complexity. As an application, we improve some lower bounds on quantum approximation of embeddings between finite dimensional L_p spaces and of Sobolev embeddings.
Quantum computation speedup limits from quantum metrological precision bounds
Demkowicz-Dobrzanski, Rafal; Markiewicz, Marcin
2014-01-01
We propose a scheme for translating metrological precision bounds into lower bounds on query complexity of quantum search algorithms. Within the scheme the link between quadratic performance enhancement in idealized quantum metrological and quantum computing schemes becomes clear. More importantly, we utilize results from the field of quantum metrology on a generic loss of quadratic quantum precision enhancement in presence of decoherence to infer an analogous generic loss of quadratic speed-...
Finite blocklength converse bounds for quantum channels
Matthews, William; Wehner, Stephanie
2012-01-01
We derive upper bounds on the rate of transmission of classical information over quantum channels by block codes with a given blocklength and error probability, for both entanglement-assisted and unassisted codes, in terms of a unifying framework of quantum hypothesis testing with restricted measurements. Our bounds do not depend on any special property of the channel (such as memorylessness) and generalise both a classical converse of Polyanskiy, Poor, and Verd\\'{u} as well as a quantum conv...
Bounds on the quantum satisfibility threshold
Bravyi, Sergey; Russell, Alexander
2009-01-01
Quantum k-SAT is the problem of deciding whether there is a n-qubit state which is perpendicular to a set of vectors, each of which lies in the Hilbert space of k qubits. Equivalently, the problem is to decide whether a particular type of local Hamiltonian has a ground state with zero energy. We consider random quantum k-SAT formulas with n variables and m = \\alpha n clauses, and ask at what value of \\alpha these formulas cease to be satisfiable. We show that the threshold for random quantum 3-SAT is at most 3.594. For comparison, convincing arguments from statistical physics suggest that the classical 3-SAT threshold is \\alpha \\approx 4.267. For larger k, we show that the quantum threshold is a constant factor smaller than the classical one. Our bounds work by determining the generic rank of the satisfying subspace for certain gadgets, and then using the technique of differential equations to analyze various algorithms that partition the hypergraph into a collection of these gadgets. Our use of differential ...
Exact bound states in volcano potentials
Energy Technology Data Exchange (ETDEWEB)
Koley, Ratna [Department of Physics and Centre for Theoretical Studies, Indian Institute of Technology, Kharagpur 721 302 (India)]. E-mail: ratna@cts.iitkgp.ernet.in; Kar, Sayan [Department of Physics and Centre for Theoretical Studies, Indian Institute of Technology, Kharagpur 721 302 (India)]. E-mail: sayan@cts.iitkgp.ernet.in
2007-04-09
Quantum mechanics in a one-parameter family of volcano potentials is investigated. After a discussion on their construction and classical mechanics, we obtain exact, normalizable bound states for specific values of the energy. The nature of the wave functions and probability densities, as well as some curious features of the solutions are highlighted.
Exact bound states in volcano potentials
Koley, R; Kar, Sayan; Koley, Ratna
2006-01-01
Quantum mechanics in a one--parameter family of volcano potentials is investigated. After a discussion on their construction and classical mechanics, we obtain exact, normalisable bound states for specific values of the energy. The nature of the wave functions and probability densities, as well as some curious features of the solutions are highlighted.
Institute of Scientific and Technical Information of China (English)
Xin Wei; Zhao Yuwei; Han Chao; Eerdunchaolu
2013-01-01
Magnetic field and temperature dependence of the properties of the ground state of the strong-couplingbound magnetopolaron in quantum rods (QRs) with hydrogenic impurity is studied by means of the Huybrechts-Lee-Low-Pines transformation method and the quantum statistical theory.The expressions for the ground-state energy and the mean number ofphonons of the magnetopolaron are derived.Results of the numerical calculations show that the bound state of the magnetopolaron cannot be formed when the value of the aspect ratio of the QR,the dielectric constant ratio,the electron-phonon coupling strength or the temperature parameter is small.The larger the deviation of the value of aspect ratio e' from 1 is,the more it is unfavorable to the stability of the ground state of the magnetopolaron.When the magnetopolaron is in the bound state,the absolute value of its ground-state energy and its mean number ofphonons increase with an increase of the dielectric constant ratio and confinement strength of QRs,but decrease with an increase in the cyclotron frequency of the external magnetic field and the temperature.The absolute value of the ground-state energy and the mean number of phonons of the magnetopolaron decrease with decreasing e' when e' ＜ 1,but decrease with increasing e' when e' ＞ 1.They get the maximum value at e'=1.
Energy Technology Data Exchange (ETDEWEB)
Sturm, Sven
2012-09-06
This thesis describes the ultra-precise determination of the g-factor of the electron bound to hydrogenlike {sup 28}Si{sup 13+}. The experiment is based on the simultaneous determination of the cyclotron- and Larmor frequency of a single ion, which is stored in a triple Penning-trap setup. The continuous Stern-Gerlach effect is used to couple the spin of the bound electron to the motional frequencies of the ion via a magnetic bottle, which allows the non-destructive determination of the spin state. To this end, a highly sensitive, cryogenic detection system was developed, which allowed the direct, non-destructive detection of the eigenfrequencies with the required precision. The development of a novel, phase sensitive detection technique finally allowed the determination of the g-factor with a relative accuracy of 4 . 10{sup -11}, which was previously inconceivable. The comparison of the hereby determined value with the value predicted by quantumelectrodynamics (QED) allows the verification of the validity of this fundamental theory under the extreme conditions of the strong binding potential of a highly charged ion. The exact agreement of theory and experiment is an impressive demonstration of the exactness of QED. The experimental possibilities created in this work will allow in the near future not only further tests of theory, but also the determination of the mass of the electron with a precision that exceeds the current literature value by more than an order of magnitude.
International Nuclear Information System (INIS)
This thesis describes the ultra-precise determination of the g-factor of the electron bound to hydrogenlike 28Si13+. The experiment is based on the simultaneous determination of the cyclotron- and Larmor frequency of a single ion, which is stored in a triple Penning-trap setup. The continuous Stern-Gerlach effect is used to couple the spin of the bound electron to the motional frequencies of the ion via a magnetic bottle, which allows the non-destructive determination of the spin state. To this end, a highly sensitive, cryogenic detection system was developed, which allowed the direct, non-destructive detection of the eigenfrequencies with the required precision. The development of a novel, phase sensitive detection technique finally allowed the determination of the g-factor with a relative accuracy of 4 . 10-11, which was previously inconceivable. The comparison of the hereby determined value with the value predicted by quantumelectrodynamics (QED) allows the verification of the validity of this fundamental theory under the extreme conditions of the strong binding potential of a highly charged ion. The exact agreement of theory and experiment is an impressive demonstration of the exactness of QED. The experimental possibilities created in this work will allow in the near future not only further tests of theory, but also the determination of the mass of the electron with a precision that exceeds the current literature value by more than an order of magnitude.
Microscopic observation of magnon bound states and their dynamics
Fukuhara, Takeshi; Schauß, Peter; Endres, Manuel; Hild, Sebastian; Cheneau, Marc; Bloch, Immanuel; Gross, Christian
2013-01-01
More than eighty years ago, H. Bethe pointed out the existence of bound states of elementary spin waves in one-dimensional quantum magnets. To date, identifying signatures of such magnon bound states has remained a subject of intense theoretical research while their detection has proved challenging for experiments. Ultracold atoms offer an ideal setting to reveal such bound states by tracking the spin dynamics after a local quantum quench with single-spin and single-site resolution. Here we r...
Bound anionic states of adenine
Energy Technology Data Exchange (ETDEWEB)
Haranczyk, Maciej; Gutowski, Maciej S; Li, Xiang; Bowen, Kit H
2007-03-20
Anionic states of nucleic acid bases are involved in DNA damage by low-energy electrons and in charge transfer through DNA. Previous gas phase studies of free, unsolvated nucleic acid base parent anions probed only dipole-bound states, which are not present in condensed phase environments, but did not observe valence anionic states, which for purine bases, are thought to be adiabatically unbound. Contrary to this expectation, we have demonstrated that some thus far ignored tautomers of adenine, which result from enamine-imine transformations, support valence anionic states with electron vertical detachment energies as large as 2.2 eV, and at least one of these anionic tautomers is adiabatically bound. Moreover, we predict that the new anionic tautomers should also dominate in solutions and should be characterized by larger values of electron vertical detachment energy than the canonical valence anion. All of the new-found anionic tautomers might be formed in the course of dissociative electron attachment followed by a hydrogen atom attachment to a carbon atom, and they might affect the structure and properties of DNA and RNA exposed to low-energy electrons. The discovery of these valence anionic states of adenine was facilitated by the development of: (i) a new experimental method for preparing parent anions of nucleic acid bases for photoelectron experiments, and (ii) a new combinatorial/ quantum chemical approach for identification of the most stable tautomers of organic molecules. The computational portion of this work was supported by the: (i) Polish State Committee for Scientific Research (KBN) Grants: DS/8000-4-0140-7 (M.G.) and N204 127 31/2963 (M.H.), (ii) European Social Funds (EFS) ZPORR/2.22/II/2.6/ARP/U/2/05 (M.H.), and (iii) US DOE Office of Biological and Environmental Research, Low Dose Radiation Research Program (M.G.). M.H. holds the Foundation for Polish Science (FNP) award for young scientists. The calculations were performed at the Academic
Institute of Scientific and Technical Information of China (English)
ZHANG Li; XIE Hong-Jing
2003-01-01
Within the framework of the compact density matrix approach, the third-harmonic generation (THG) in an electric-field-biased semi-parabolic quantum well (QW) has been deduced and investigated. Via variant of displacement harmonic oscillation, the exact electronic states in the semi-parabolic QW with an applied electric field have also been obtained and discussed. Numerical results on typical GaAs material reveal that, electric fields and confined potential frequency of semi-parabolic Q W have obvious influences on the energy levels of electronic states and the THG in the semi-parabolic Q W systems.
Institute of Scientific and Technical Information of China (English)
ZHANGLi; XIEHong-Jing
2003-01-01
Within the framework of the compact density matrix approach, the third-harmonic generation (THG) in an electric-field-biased semi-parabolic quantum well (QW) has been deduced and investigated. Via variant of displacement harmonic oscillation, the exact electronic states in the semi-parabolic QW with an applied electric field have also been obtained and discussed. Numerical results on typical GaAs material reveal that, electric fields and confined potential frequency of semi-parabolic QW have obvious influences on the energy levels of electronic states and the THG in the semi-parabolic QW systems.
Algorithmic complexity and entanglement of quantum states.
Mora, Caterina E; Briegel, Hans J
2005-11-11
We define the algorithmic complexity of a quantum state relative to a given precision parameter, and give upper bounds for various examples of states. We also establish a connection between the entanglement of a quantum state and its algorithmic complexity.
Holographic bound in covariant loop quantum gravity
Tamaki, Takashi
2016-01-01
We investigate puncture statistics based on the covariant area spectrum in loop quantum gravity. First, we consider Maxwell-Boltzmann statistics with a Gibbs factor for punctures. We establish formulae which relate physical quantities such as horizon area to the parameter characterizing holographic degrees of freedom. We also perform numerical calculations and obtain consistency with these formulae. These results tell us that the holographic bound is satisfied in the large area limit and correction term of the entropy-area law can be proportional to the logarithm of the horizon area. Second, we also consider Bose-Einstein statistics and show that the above formulae are also useful in this case. By applying the formulae, we can understand intrinsic features of Bose-Einstein condensate which corresponds to the case when the horizon area almost consists of punctures in the ground state. When this phenomena occurs, the area is approximately constant against the parameter characterizing the temperature. When this ...
Ungan, Fatih; Yesilgul, Unal; Şakiroğlu, Serpil; Kasapoglu, Esin; Erol, Ayse; Arikan, Mehmet Cetin; Sarı, Huseyin; Sökmen, Ismail
2012-01-01
Within the envelope function approach and the effective-mass approximation, we have investigated theoretically the effect of an intense, high-frequency laser field on the bound states in a Ga x In1 − x N y As1 − y /GaAs double quantum well for different nitrogen and indium mole concentrations. The laser-dressed potential, bound states, and squared wave functions related to these bound states in Ga1 − x In x N y As1 − y /GaAs double quantum well are investigated as a function of the position a...
Probing light polarization with the quantum Chernoff bound
Ghiu, Iulia; Marian, Paulina; Marian, Tudor A
2010-01-01
We recall the framework of a consistent quantum description of polarization of light. Accordingly, the degree of polarization of a two-mode state $\\hat \\rho$ of the quantum radiation field can be defined as a distance of a related state ${\\hat \\rho}_b$ to the convex set of all SU(2) invariant two-mode states. We explore a distance-type polarization measure in terms of the quantum Chernoff bound and derive its explicit expression. A comparison between the Chernoff and Bures degrees of polarization leads to interesting conclusions for some particular states chosen as illustrative examples.
Optimal bounds for quantum bit commitment
Chailloux, André
2011-01-01
Bit commitment is a fundamental cryptographic primitive with numerous applications. Quantum information allows for bit commitment schemes in the information theoretic setting where no dishonest party can perfectly cheat. The previously best-known quantum protocol by Ambainis achieved a cheating probability of at most 3/4[Amb01]. On the other hand, Kitaev showed that no quantum protocol can have cheating probability less than 1/sqrt{2} [Kit03] (his lower bound on coin flipping can be easily extended to bit commitment). Closing this gap has since been an important and open question. In this paper, we provide the optimal bound for quantum bit commitment. We first show a lower bound of approximately 0.739, improving Kitaev's lower bound. We then present an optimal quantum bit commitment protocol which has cheating probability arbitrarily close to 0.739. More precisely, we show how to use any weak coin flipping protocol with cheating probability 1/2 + eps in order to achieve a quantum bit commitment protocol with ...
Quantum discord bounds the amount of distributed entanglement.
Chuan, T K; Maillard, J; Modi, K; Paterek, T; Paternostro, M; Piani, M
2012-08-17
The ability to distribute quantum entanglement is a prerequisite for many fundamental tests of quantum theory and numerous quantum information protocols. Two distant parties can increase the amount of entanglement between them by means of quantum communication encoded in a carrier that is sent from one party to the other. Intriguingly, entanglement can be increased even when the exchanged carrier is not entangled with the parties. However, in light of the defining property of entanglement stating that it cannot increase under classical communication, the carrier must be quantum. Here we show that, in general, the increase of relative entropy of entanglement between two remote parties is bounded by the amount of nonclassical correlations of the carrier with the parties as quantified by the relative entropy of discord. We study implications of this bound, provide new examples of entanglement distribution via unentangled states, and put further limits on this phenomenon.
Monotonically convergent algorithms for bounded quantum controls
Turinici, Gabriel
2003-01-01
International audience Most of the numerical simulations in quantum (bilinear) control have used one of the monotonically convergent algorithms of Krotov (introduced by Tannor et al. (Tannor et al., 1992)) or of Zhu & Rabitz (Zhu and Rabitz, 1998). Recently(Maday and Turinici, 2002), new schemes have been designed that enlarge the class of monotonic algorithms. Within this context, this paper presents a new algorithm that implements a search for a bounded control with given bounds. Numeric...
Classical and quantum partition bound and detector inefficiency
Laplante, S; Roland, J
2012-01-01
In communication complexity, two players each have an input and they wish to compute some function of the joint inputs. This has been the object of much study and a wide variety of lower bound methods have been introduced to address the problem of showing lower bounds on communication. Recently, Jain and Klauck introduced the partition bound, which subsumes many of the known methods, in particular factorization norm, discrepancy, and the rectangle (corruption) bound. Physicists have considered a closely related scenario where two players share a predefined entangled state. Each is given a measurement as input, which they perform on their share of the system. The outcomes of the measurements follow a distribution which is predicted by quantum mechanics. In an experimental setting, Bell inequalities are used to distinguish truly quantum from classical behavior. We present a new lower bound technique based on the notion of detector inefficiency (where some runs are discarded by either of the players) for the ext...
Holographic bound in covariant loop quantum gravity
Tamaki, Takashi
2016-07-01
We investigate puncture statistics based on the covariant area spectrum in loop quantum gravity. First, we consider Maxwell-Boltzmann statistics with a Gibbs factor for punctures. We establish formulas which relate physical quantities such as horizon area to the parameter characterizing holographic degrees of freedom. We also perform numerical calculations and obtain consistency with these formulas. These results tell us that the holographic bound is satisfied in the large area limit and the correction term of the entropy-area law can be proportional to the logarithm of the horizon area. Second, we also consider Bose-Einstein statistics and show that the above formulas are also useful in this case. By applying the formulas, we can understand intrinsic features of Bose-Einstein condensate which corresponds to the case when the horizon area almost consists of punctures in the ground state. When this phenomena occurs, the area is approximately constant against the parameter characterizing the temperature. When this phenomena is broken, the area shows rapid increase which suggests the phase transition from quantum to classical area.
Eta nuclear bound states revisited
Friedman, E; Mareš, J
2013-01-01
The strong energy dependence of the s-wave eta-N scattering amplitude at and below threshold, as evident in coupled-channels K-matrix fits and chiral models that incorporate the S11 N*(1535) resonance, is included self consistently in eta-nuclear bound state calculations. This approach, applied recently in calculations of kaonic atoms and Kbar-nuclear bound states, is found to impose stronger constraints than ever on the onset of eta-nuclear binding, with a minimum value of Re a_{eta N} approximately 0.9 fm required to accommodate an eta-4He bound state. Binding energies and widths of eta-nuclear states are calculated within several underlying eta-N models for nuclei across the periodic table, including eta-25Mg for which some evidence was proposed in a recent COSY experiment.
Topological edge states of bound photon pairs
Gorlach, Maxim A
2016-01-01
We predict the existence of interaction-driven edge states of bound two-photon quasiparticles in a dimer periodic array of nonlinear optical cavities. Energy spectrum of photon pairs is dramatically richer than in the noninteracting case or in a simple lattice, featuring collapse and revival of multiple edge and bulk modes as well as edge states in continuum. Despite the unexpected breakdown of the Zak phase technique and the edge mixing of internal and center-of-mass motion we link the edge state existence to the two-photon quantum walk graph connectivity, thus uncovering the topological nature of the many-body problem in complex lattices.
Tsirelson's bound and supersymmetric entangled states
Borsten, L; Duff, M J
2012-01-01
In order to see whether superqubits are more nonlocal than ordinary qubits, we construct a class of two-superqubit entangled states as a nonlocal resource in the CHSH game. Since super Hilbert space amplitudes are Grassmann numbers, the result depends on how we extract real probabilities and we examine three choices of map: (1) DeWitt (2) Trigonometric (3) Modified Rogers. In cases (1) and (2) the winning probability reaches the Tsirelson bound p(win) = cos^2 pi/8 \\simeq 0.8536 of standard quantum mechanics. Case (3) crosses Tsirelson's bound with p(win) = 0.9265. Although all states used in the game involve probabilities lying between 0 and 1, case (3) permits other changes of basis inducing negative transition probabilities.
Andreev-Majorana bound states in superfluids
Energy Technology Data Exchange (ETDEWEB)
Silaev, M. A., E-mail: msilaev@ipm.sci-nnov.ru; Volovik, G. E., E-mail: volovik@boojum.hut.fi [Aalto University, Low Temperature Laboratory (Finland)
2014-12-15
We consider Andreev-Majorana (AM) bound states with zero energy on surfaces, interfaces, and vortices in different phases of the p-wave superfluids. We discuss the chiral superfluid {sup 3}He-A and time reversal invariant phases: superfluid {sup 3}He-B, planar and polar phases. The AM zero modes are determined by topology in the bulk and disappear at the quantum phase transition from the topological to nontopological state of the superfluid. The topology demonstrates the interplay of dimensions. In particular, the zero-dimensional Weyl points in chiral superfluids (the Berry phase monopoles in momentum space) give rise to the one-dimensional Fermi arc of AM bound states on the surface and to the one-dimensional flat band of AM modes in the vortex core. The one-dimensional nodal line in the polar phase produces a two-dimensional flat band of AM modes on the surface. The interplay of dimensions also connects the AM states in superfluids with different dimensions. For example, the topological properties of the spectrum of bound states in three-dimensional {sup 3}He-B are connected to the properties of the spectrum in the two-dimensional planar phase (thin film)
Proof of a quantum Bousso bound
Bousso, Raphael; Casini, Horacio; Fisher, Zachary; Maldacena, Juan
2014-08-01
We prove the generalized covariant entropy bound, ΔS≤(A-A')/4Gℏ, for light-sheets with initial area A and final area A'. The entropy ΔS is defined as a difference of von Neumann entropies of an arbitrary state and the vacuum, with both states restricted to the light-sheet under consideration. The proof applies to free fields, in the limit where gravitational backreaction is small. We do not assume the null energy condition. In regions where it is violated, we find that the bound is protected by the defining property of light-sheets: that their null generators are nowhere expanding.
Proof of a Quantum Bousso Bound
Bousso, Raphael; Fisher, Zachary; Maldacena, Juan
2014-01-01
We prove the generalized Covariant Entropy Bound, $\\Delta S\\leq (A-A')/4G\\hbar$, for light-sheets with initial area $A$ and final area $A'$. The entropy $\\Delta S$ is defined as a difference of von Neumann entropies of an arbitrary state and the vacuum, with both states restricted to the light-sheet under consideration. The proof applies to free fields, in the limit where gravitational backreaction is small. We do not assume the null energy condition. In regions where it is violated, we find that the bound is protected by the defining property of light-sheets: that their null generators are nowhere expanding.
Lower Bounds for Quantum Oblivious Transfer
Chailloux, André; Sikora, Jamie
2010-01-01
Oblivious transfer is a fundamental primitive in cryptography. While perfect information theoretic security is impossible, quantum oblivious transfer protocols can limit the dishonest players' cheating. Finding the optimal security parameters in such protocols is an important open question. In this paper we show that every 1-out-of-2 oblivious transfer protocol allows a dishonest party to cheat with probability bounded below by a constant strictly larger than 1/2. Alice's cheating is defined as her probability of guessing Bob's index, and Bob's cheating is defined as his probability of guessing both input bits of Alice. In our proof, we relate these cheating probabilities to the cheating probabilities of a coin flipping protocol and conclude by using Kitaev's coin flipping lower bound. Then, we present an oblivious transfer protocol with two messages and cheating probabilities at most 3/4. Last, we extend Kitaev's semidefinite programming formulation to more general primitives, where the security is against a...
Quantum Networks for Generating Arbitrary Quantum States
Kaye, Phillip; Mosca, Michele
2004-01-01
Quantum protocols often require the generation of specific quantum states. We describe a quantum algorithm for generating any prescribed quantum state. For an important subclass of states, including pure symmetric states, this algorithm is efficient.
Bound entangled states invariant under Ux
Institute of Scientific and Technical Information of China (English)
Wang Zhen; Wang Zhi-Xi
2008-01-01
This paper obtains an entangled condition for isotropic-like states by using an atomic map. It constructs a class of bound entangled states from the entangled condition and shows that the partial transposition of the state from the constructed bound entangled class is an edge bound entangled state by using range criterion.
Lower Bounds on the Capacities of Quantum Relay Channels
Institute of Scientific and Technical Information of China (English)
石金晶; 施荣华; 彭小奇; 郭迎; 易留洋; 李门浩
2012-01-01
Three kinds of quantum relay communication models are proposed, i.e., the quantum single relay model, quantum serial multi-relay model and quantum parallel multi-relay model. The channel capacities of those three kinds of systems are analyzed with the theory of quantum Markov trace-preserving process and the generalized theory of simple multi-hop channel in quantum system. Motivated by the quantum Fano inequality, the lower bounds of that channel capacities are derived. The illustration and simulation present the trends of the lower bounds on the channel capacities of different quantum relay systems based on the depolarizing noisy channel.
Boson bound states in the -Fermi–Pasta–Ulam model
Indian Academy of Sciences (India)
Xin-Guang Hu; Ju Xiang; Zheng Jiao; Yang Liu; Guo-Qiu Xie; Ke Hu
2013-11-01
The bound states of four bosons in the quantum -Fermi–Pasta–Ulam model are investigated and some interesting results are presented using the number conserving approximation combined with the number state method. We find that the relative magnitude of anharmonic coefficient has a significant effect on forming localized energy in the model, and the wave number plays an important role in forming different bound states. The signature of the quantum breather is also set up by the square of the amplitudes of the corresponding eigenvectors in real space.
Fossez, K; Nazarewicz, W; Płoszajczak, M; Jaganathen, Y
2014-01-01
Bound and resonance states of the dipole-bound anion of hydrogen cyanide HCN$^-$ are studied using a non-adiabatic pseudopotential method and the Berggren expansion technique involving bound states, decaying resonant states, and non-resonant scattering continuum. We devise an algorithm to identify the resonant states in the complex energy plane. To characterize spatial distributions of electronic wave functions, we introduce the body-fixed density and use it to assign families of resonant states into collective rotational bands. We find that the non-adiabatic coupling of electronic motion to molecular rotation results in a transition from the strong-coupling to weak-coupling regime. In the strong coupling limit, the electron moving in a subthreshold, spatially extended halo state follows the rotational motion of the molecule. Above the ionization threshold, electron's motion in a resonance state becomes largely decoupled from molecular rotation. Widths of resonance-band members depend primarily on the electro...
Antibaryon-nucleus bound states
Hrtánková, J
2014-01-01
We calculated antibaryon ($\\bar{B}$ = $\\bar{p}$, $\\bar{\\Lambda}$, $\\bar{\\Sigma}$, $\\bar{\\Xi}$) bound states in selected nuclei within the relativistic mean-field (RMF) model. The G-parity motivated $\\bar{B}$-meson coupling constants were scaled to yield corresponding potentials consistent with available experimental data. Large polarization of the nuclear core caused by $\\bar{B}$ was confirmed. The $\\bar{p}$ annihilation in the nuclear medium was incorporated by including a phenomenological imaginary part of the optical potential. The calculations using a complex $\\bar{p}$-nucleus potential were performed fully self-consistently. The $\\bar{p}$ widths significantly decrease when the phase space reduction is considered for $\\bar{p}$ annihilation products, but they still remain sizeable for potentials consistent with $\\bar{p}$-atom data.
Nonbinary Quantum Goppa codes excequantum Gilbert -Varshamov bound
Niehage, Annika
2006-01-01
An explicit construction for nonbinary quantum Goppa codes (often also called quantum AG codes) exceeding the quantum Gilbert-Varshamov bound is given. First a weighted symplectic inner product is introduced and a method how to transform weighted codes into quantum codes with respect to the standard symplectic inner product is given. Then families of quantum Goppa codes using a tower of function fields by Stichtenoth are constructed. Finally a proof that these codes lie above the quantum Gilb...
Two-vibron bound states in the β-Fermi-Pasta-Ulam model
Institute of Scientific and Technical Information of China (English)
Hu Xin-Guang; Tang Yi
2008-01-01
This paper studies the two-vibron bound states in the β-Fermi-Pasta-Ulam model by means of the number conserving approximation combined with the number state method.The results indicate that on-site,adjacent-site and mixed two-vibron bound states may exist in the model.Specially,wave number has a significant effect on such bound states,which may be considered as the quantum effects of the localized states in quantum systems.
Instanton bound states in ABJM theory
Energy Technology Data Exchange (ETDEWEB)
Hatsuda, Yasuyuki [DESY Hamburg (Germany). Theory Group; Tokyo Institute of Technology (Japan). Dept. of Physics; Moriyama, Sanefumi [Nagoya Univ. (Japan). Kobayashi Maskawa Inst. and Graduate School of Mathematics; Okuyama, Kazumi [Shinshu Univ., Matsumoto, Nagano (Japan). Dept. of Physics
2013-06-15
The partition function of the ABJM theory receives non-perturbative corrections due to instanton effects. We study these non-perturbative corrections, including bound states of worldsheet instantons and membrane instantons, in the Fermi-gas approach. We require that the total non-perturbative correction should be always finite for arbitrary Chern-Simons level. This finiteness is realized quite non-trivially because each bound state contribution naively diverges at some levels. The poles of each contribution should be canceled out in total. We use this pole cancellation mechanism to find unknown bound state corrections from known ones. We conjecture a general expression of the bound state contribution. Summing up all the bound state contributions, we find that the effect of bound states is simply incorporated into the worldsheet instanton correction by a redefinition of the chemical potential in the Fermi-gas system. Analytic expressions of the 3- and 4-membrane instanton corrections are also proposed.
Bound States of Double Flavor Hyperons
Froemel, F; Riska, D O
2005-01-01
Several realistic phenomenological nucleon-nucleon interaction models are employed to investigate the possibility of bound deuteron-like states of such heavy flavor hyperons and nucleons, for which the interaction between the light flavor quark components is expected to be the most significant interaction. The results indicate that deuteron-like bound states are likely to form between nucleons and the $\\Xi_c^{'}$ and $\\Xi_{cc}$ charm hyperons as well as between $\\Xi$ hyperons and double-charm hyperons. Bound states between two $\\Sigma_c$ hyperons are also likely. In the case of beauty hyperons the corresponding states are likely to be deeply bound.
Bound states of heavy flavor hyperons
Frömel, F.; Juliá-Díaz, B.; Riska, D. O.
2005-04-01
Several realistic phenomenological nucleon-nucleon interaction models are employed to investigate the possibility of bound deuteron-like states of such heavy flavor hyperons and nucleons, for which the interaction between the light flavor quark components is expected to be the most significant interaction. The results indicate that deuteron-like bound states are likely to form between nucleons and the Ξc' and Ξ charm hyperons as well as between Ξ hyperons and double-charm hyperons. Bound states between two Σ hyperons are also likely. In the case of beauty hyperons the corresponding states are likely to be deeply bound.
Bengtsson, Ingemar; Zyczkowski, Karol
2007-12-01
Preface; 1. Convexity, colours and statistics; 2. Geometry of probability distributions; 3. Much ado about spheres; 4. Complex projective spaces; 5. Outline of quantum mechanics; 6. Coherent states and group actions; 7. The stellar representation; 8. The space of density matrices; 9. Purification of mixed quantum states; 10. Quantum operations; 11. Duality: maps versus states; 12. Density matrices and entropies; 13. Distinguishability measures; 14. Monotone metrics and measures; 15. Quantum entanglement; Epilogue; Appendices; References; Index.
A brief review on Majorana bound states in topological superconductors
Lin, Rui; Wang, Zhi
2016-07-01
Topological superconductivity has drawn much attention recently, and most interests are focused on the Majorana bound states existing at the edges of one-dimensional topological superconductors. These Majorana bound states are ideal platform for studying non-Abelian statistics. Meanwhile, they are proposed to be useful in quantum computation. In this review, we introduce the basic concepts and models in this area. We begin from the Kitaev model, which is the most concise model for one-dimensional topological superconductivity. Then, we discuss how to realize this model with spin-orbit coupling in realistic materials. Finally, we show some simple methods to detect the Majorana bound states and study their novel properties with the help of adjacent quantum dots.
Bound states in the continuum in quasiperiodic systems
Energy Technology Data Exchange (ETDEWEB)
Hsueh, W.J., E-mail: hsuehwj@ntu.edu.t [Department of Engineering Science, National Taiwan University, Taipei 10660, Taiwan (China); Chen, C.H.; Chang, C.H. [Department of Engineering Science, National Taiwan University, Taipei 10660, Taiwan (China)
2010-11-01
We first propose the existence of bound states in the continuums (BICs) in quasiperiodic systems. Owing to long-range correlation, destructive interference may occur in quasiperiodic systems with higher generation order. Occurrences of BICs in Fibonacci quantum wells studied by localization analysis and gap map method are proposed.
Coulomb bound states of strongly interacting photons
Maghrebi, M F; Bienias, P; Choi, S; Martin, I; Firstenberg, O; Lukin, M D; Büchler, H P; Gorshkov, A V
2015-01-01
We show that two photons coupled to Rydberg states via electromagnetically induced transparency can interact via an effective Coulomb potential. This interaction gives rise to a continuum of two-body bound states. Within the continuum, metastable bound states are distinguished in analogy with quasi-bound states tunneling through a potential barrier. We find multiple branches of metastable bound states whose energy spectrum is governed by the Coulomb potential, thus obtaining a photonic analogue of the hydrogen atom. Under certain conditions, the wavefunction resembles that of a diatomic molecule in which the two polaritons are separated by a finite "bond length." These states propagate with a negative group velocity in the medium, allowing for a simple preparation and detection scheme, before they slowly decay to pairs of bound Rydberg atoms.
Bound states of singlet quarks at LHC
Krasnikov, N. V.
1996-01-01
We discuss the discovery potential of the bound states of singlet quarks at LHC. We find that it is possible to discover bound states of singlet quarks at LHC with singlet quark masses up to 300 Gev for $e_{Q} = \\frac{2}{3}$ and up to 200 Gev for $e_{Q} = -\\frac{1}{3}$.
Viennot, David; Aubourg, Lucile
2016-02-01
We study a theoretical model of closed quasi-hermitian chain of spins which exhibits quantum analogues of chimera states, i.e. long life classical states for which a part of an oscillator chain presents an ordered dynamics whereas another part presents a disordered dynamics. For the quantum analogue, the chimera behaviour deals with the entanglement between the spins of the chain. We discuss the entanglement properties, quantum chaos, quantum disorder and semi-classical similarity of our quantum chimera system. The quantum chimera concept is novel and induces new perspectives concerning the entanglement of multipartite systems.
Probing bound states of D-branes
Lifschytz, G
1996-01-01
A zero-brane is used to probe non-threshold BPS bound states of ($p$, $p+2$,$p+4$)-branes. At long distances the stringy calculation agrees with the supergravity calculations. The supergravity description is given, using the interpretation of the $D=8$ dyonic membrane as the bound state of a two-brane inside a four-brane. We investigate the short distance structure of these bound states, compute the phase shift of the scattered zero-brane and find the bound states characteristic size. It is found that there should be a supersymmetric solution of type IIa supergravity, describing a bound state of a zero-brane and two orthogonal two-brane, all inside a four-brane , with an additional unbound zero-brane. We comment on the relationship between $p$-branes and $(p-2)$-branes.
Viennot, David; Aubourg, Lucile
2014-01-01
We study a theoretical model of closed quasi-hermitian chain of spins which exhibits quantum analogues of chimera states, i.e. long life classical states for which a part of an oscillator chain presents an ordered dynamics whereas another part presents a disordered chaotic dynamics. For the quantum analogue, the chimera behavior deals with the entanglement between the spins of the chain. We discuss the entanglement properties, quantum chaos, quantum disorder and semi-classical similarity of o...
Lower Bounds on Quantum Query Complexity
P. Hoyer; R. Spalek
2005-01-01
Shor's and Grover's famous quantum algorithms for factoring and searching show that quantum computers can solve certain computational problems significantly faster than any classical computer. We discuss here what quantum computers cannot do, and specifically how to prove limits on their computation
Tightening the entropic uncertainty bound in the presence of quantum memory
Adabi, F.; Salimi, S.; Haseli, S.
2016-06-01
The uncertainty principle is a fundamental principle in quantum physics. It implies that the measurement outcomes of two incompatible observables cannot be predicted simultaneously. In quantum information theory, this principle can be expressed in terms of entropic measures. M. Berta et al. [Nat. Phys. 6, 659 (2010), 10.1038/nphys1734] have indicated that uncertainty bound can be altered by considering a particle as a quantum memory correlating with the primary particle. In this article, we obtain a lower bound for entropic uncertainty in the presence of a quantum memory by adding an additional term depending on the Holevo quantity and mutual information. We conclude that our lower bound will be tightened with respect to that of Berta et al. when the accessible information about measurements outcomes is less than the mutual information about the joint state. Some examples have been investigated for which our lower bound is tighter than Berta et al.'s lower bound. Using our lower bound, a lower bound for the entanglement of formation of bipartite quantum states has been obtained, as well as an upper bound for the regularized distillable common randomness.
Abdelmadjid Maireche
2015-01-01
In present work, the exact analytical bound-state solutions of modified Schrödinger equation with Modified central potential consisting of a Cornellmodified plus pseudoharmonic harmonic potential (MCMpH) have been presented using both Boopp’s shift method and standard perturbation theory, we have also constructed the corresponding noncommutative Hamiltonian which containing two new terms, the first one is modified Zeeman effect and the second is new spin-orbital interaction. The theoretical r...
Xu, M Z; Bačić, Z.; Hutson, J. M.
2002-01-01
This paper presents a theoretical study of the bound states of the open-shell OH radical in its ground electronic state(X2Π) interacting with n Ar atoms, for n from 4 to 12. After freezing the geometry of the Arn cage or subunit at the equilibrium structure (preceding paper), we carry out nonadiabatic five-dimensional quantum dynamics calculations on two coupled potential energy surfaces, using an extension of the method previously applied to closed-shell ArnHFclusters [J. Chem. Phys. 103, 18...
Quantum Gravity Mathematical Models and Experimental Bounds
Fauser, Bertfried; Zeidler, Eberhard
2007-01-01
The construction of a quantum theory of gravity is the most fundamental challenge confronting contemporary theoretical physics. The different physical ideas which evolved while developing a theory of quantum gravity require highly advanced mathematical methods. This book presents different mathematical approaches to formulate a theory of quantum gravity. It represents a carefully selected cross-section of lively discussions about the issue of quantum gravity which took place at the second workshop "Mathematical and Physical Aspects of Quantum Gravity" in Blaubeuren, Germany. This collection covers in a unique way aspects of various competing approaches. A unique feature of the book is the presentation of different approaches to quantum gravity making comparison feasible. This feature is supported by an extensive index. The book is mainly addressed to mathematicians and physicists who are interested in questions related to mathematical physics. It allows the reader to obtain a broad and up-to-date overview on ...
Directory of Open Access Journals (Sweden)
Abdelmadjid Maireche
2016-01-01
Full Text Available In present work, the exact analytical bound-state solutions of modified Schrödinger equation with Modified central potential consisting of a Cornellmodified plus pseudoharmonic harmonic potential (MCMpH have been presented using both Boopp’s shift method and standard perturbation theory, we have also constructed the corresponding noncommutative Hamiltonian which containing two new terms, the first one is modified Zeeman effect and the second is new spin-orbital interaction. The theoretical results show that the automatically appearance for both spin-orbital interaction and modified Zeeman Effect leads to the degenerate to energy levels to 2(2l +1sub states.
Centrifugal quantum states of neutrons
Nesvizhevsky, V. V.; Petukhov, A. K.; Protasov, K. V.; Voronin, A. Yu.
2008-09-01
We propose a method for observation of the quasistationary states of neutrons localized near a curved mirror surface. The bounding effective well is formed by the centrifugal potential and the mirror Fermi potential. This phenomenon is an example of an exactly solvable “quantum bouncer” problem that can be studied experimentally. It could provide a promising tool for studying fundamental neutron-matter interactions, as well as quantum neutron optics and surface physics effects. We develop a formalism that describes quantitatively the neutron motion near the mirror surface. The effects of mirror roughness are taken into account.
G-factors of hole bound states in spherically symmetric potentials in cubic semiconductors
Miserev, Dmitry; Sushkov, Oleg
2016-03-01
Holes in cubic semiconductors have effective spin 3/2 and very strong spin orbit interaction. Due to these factors properties of hole bound states are highly unusual. We consider a single hole bound by a spherically symmetric potential, this can be an acceptor or a spherically symmetric quantum dot. Linear response to an external magnetic field is characterized by the bound state Lande g-factor. We calculate analytically g-factors of all bound states.
G-factors of hole bound states in spherically symmetric potentials in cubic semiconductors
Miserev, D. S.; Sushkov, O. P.
2015-01-01
Holes in cubic semiconductors have effective spin 3/2 and very strong spin orbit interaction. Due to these factors properties of hole bound states are highly unusual. We consider a single hole bound by a spherically symmetric potential, this can be an acceptor or a spherically symmetric quantum dot. Linear response to an external magnetic field is characterized by the bound state Lande g-factor. We calculate analytically g-factors of all bound states.
An Upper Bound of Fully Entangled Fraction of Mixed States
Huang, Xiao-Fen; Jing, Nai-Huan; Zhang, Ting-Gui
2016-06-01
We study the fully entangled fraction of a quantum state. An upper bound is obtained for arbitrary bipartite system. This upper bound only depends on the Frobenius norm of the state. Supported by the National Natural Science Foundation of China under Grant Nos. 11401032, 11501153, 11271138, and 11531004; the Natural Science Foundation of Hainan Province under Grant Nos. 20151010, 114006 and 20161006; and the Scientific Research Foundation for Colleges of Hainan Province under Grant No. Hnky2015-18 and Simons Foundation under Grant No. 198129
Cryptography in the Bounded Quantum-Storage Model
DEFF Research Database (Denmark)
Damgård, Ivan Bjerre; Serge, Fehr; Schaffner, Christian;
2008-01-01
We initiate the study of two-party cryptographic primitives with unconditional security, assuming that the adversary's quantum memory is of bounded size. We show that oblivious transfer and bit commitment can be implemented in this model using protocols where honest parties need no quantum memory...
Cryptography In The Bounded Quantum-Storage Model
DEFF Research Database (Denmark)
Damgård, Ivan Bjerre; Salvail, Louis; Schaffner, Christian;
2005-01-01
We initiate the study of two-party cryptographic primitives with unconditional security, assuming that the adversary's quantum memory is of bounded size. We show that oblivious transfer and bit commitment can be implemented in this model using protocols where honest parties need no quantum memory...
Quantitative bound entanglement in two-qutrit states
Sentís, Gael; Eltschka, Christopher; Siewert, Jens
2016-08-01
Among the many facets of quantum correlations, bound entanglement has remained one the most enigmatic phenomena, despite the fact that it was discovered in the early days of quantum information. Even its detection has proven to be difficult, let alone its precise quantitative characterization. In this work, we present the exact quantification of entanglement for a two-parameter family of highly symmetric two-qutrit mixed states, which contains a sizable part of bound entangled states. We achieve this by explicitly calculating the convex-roof extensions of the linear entropy as well as the concurrence for every state within the family. Our results provide a benchmark for future quantitative studies of bipartite entanglement in higher-dimensional systems.
Furusawa, Akira
2015-01-01
This book explains what quantum states of light look like. Of special interest, a single photon state is explained by using a wave picture, showing that it corresponds to the complementarity of a quantum. Also explained is how light waves are created by photons, again corresponding to the complementarity of a quantum. The author shows how an optical wave is created by superposition of a "vacuum" and a single photon as a typical example. Moreover, squeezed states of light are explained as "longitudinal" waves of light and Schrödinger's cat states as macroscopic superposition states.
Graphene in inhomogeneous magnetic fields: bound, quasi-bound and scattering states
Energy Technology Data Exchange (ETDEWEB)
Ramezani Masir, M; Peeters, F M [Departement Fysica, Universiteit Antwerpen Groenenborgerlaan 171, B-2020 Antwerpen (Belgium); Vasilopoulos, P, E-mail: mrmphys@gmail.com, E-mail: takis@alcor.concordia.ca, E-mail: francois.peeters@ua.ac.be [Department of Physics, Concordia University, Montreal, Quebec, H4B 1R6 (Canada)
2011-08-10
The electron states in graphene-based magnetic dot and magnetic ring structures and combinations of both are investigated. The corresponding spectra are studied as a function of the radii, the strengths of the inhomogeneous magnetic field and of a uniform background field, the strength of an electrostatic barrier and the angular momentum quantum number. In the absence of an external magnetic field we have only long-lived quasi-bound and scattering states and we assess their influence on the density of states. In addition, we consider elastic electron scattering by a magnetic dot, whose average B vanishes, and show that the Hall and longitudinal resistivities, as a function of the Fermi energy, exhibit a pronounced oscillatory structure due to the presence of quasi-bound states. Depending on the dot parameters this oscillatory structure differs substantially for energies below and above the first Landau level.
Bound States at Threshold resulting from Coulomb Repulsion
Gridnev, Dmitry K
2011-01-01
The eigenvalue absorption for a many-particle Hamiltonian depending on a parameter is analyzed in the framework of non-relativistic quantum mechanics. The long-range part of pair potentials is assumed to be pure Coulomb and no restriction on the particle statistics is imposed. It is proved that if the lowest dissociation threshold corresponds to the decay into two likewise non-zero charged clusters then the bound state, which approaches the threshold, does not spread and eventually becomes the bound state at threshold. The obtained results have applications in atomic and nuclear physics. In particular, we prove that atomic ion with atomic critical charge $Z_{cr}$ and $N_e$ electrons has a bound state at threshold given that $Z_{cr} \\in (N_e -2, N_e -1)$, whereby the electrons are treated as fermions and the mass of the nucleus is finite.
Winter, Andreas
2016-10-01
We present a bouquet of continuity bounds for quantum entropies, falling broadly into two classes: first, a tight analysis of the Alicki-Fannes continuity bounds for the conditional von Neumann entropy, reaching almost the best possible form that depends only on the system dimension and the trace distance of the states. Almost the same proof can be used to derive similar continuity bounds for the relative entropy distance from a convex set of states or positive operators. As applications, we give new proofs, with tighter bounds, of the asymptotic continuity of the relative entropy of entanglement, E R , and its regularization {E_R^{∞}}, as well as of the entanglement of formation, E F . Using a novel "quantum coupling" of density operators, which may be of independent interest, we extend the latter to an asymptotic continuity bound for the regularized entanglement of formation, aka entanglement cost, {E_C=E_F^{∞}}. Second, we derive analogous continuity bounds for the von Neumann entropy and conditional entropy in infinite dimensional systems under an energy constraint, most importantly systems of multiple quantum harmonic oscillators. While without an energy bound the entropy is discontinuous, it is well-known to be continuous on states of bounded energy. However, a quantitative statement to that effect seems not to have been known. Here, under some regularity assumptions on the Hamiltonian, we find that, quite intuitively, the Gibbs entropy at the given energy roughly takes the role of the Hilbert space dimension in the finite-dimensional Fannes inequality.
Improved Bounds on Quantum Learning Algorithms
Atici, A; Atici, Alp; Servedio, Rocco A.
2004-01-01
In this article we give several new results on the complexity of algorithms that learn Boolean functions from quantum queries and quantum examples. Hunziker et al. conjectured that for any class C of Boolean functions, the number of quantum black-box queries which are required to exactly identify an unknown function from C is at most $O(\\frac{\\log |C|}{\\sqrt{{\\hat{\\gamma}}^{C}}})$, where $\\hat{\\gamma}^{C}$ is a combinatorial parameter of the class C. We essentially resolve this conjecture in the affirmative by giving a quantum algorithm that, for any class C, identifies any unknown function from C using at most $O(\\frac{\\log |C| \\log \\log |C|}{\\sqrt{{\\hat{\\gamma}}^{C}}})$ quantum black-box queries. We consider a range of natural problems intermediate between the exact learning problem (in which the learner must obtain all bits of information about the black-box function) and the usual problem of computing a predicate (in which the learner must obtain only one bit of information about the black-box function). ...
Wireless Majorana Bound States: From Magnetic Tunability to Braiding.
Fatin, Geoffrey L; Matos-Abiague, Alex; Scharf, Benedikt; Žutić, Igor
2016-08-12
We propose a versatile platform to investigate the existence of Majorana bound states (MBSs) and their non-Abelian statistics through braiding. This implementation combines a two-dimensional electron gas formed in a semiconductor quantum well grown on the surface of an s-wave superconductor with a nearby array of magnetic tunnel junctions (MTJs). The underlying magnetic textures produced by MTJs provide highly controllable topological phase transitions to confine and transport MBSs in two dimensions, overcoming the requirement for a network of wires. Obtained scaling relations confirm that various semiconductor quantum well materials are suitable for this proposal.
Resonantly Trapped Bound State in the Continuum Laser
Lepetit, Thomas; Kodigala, Ashok; Bahari, Babak; Fainman, Yeshaiahu; Kanté, Boubacar
2015-01-01
Cavities play a fundamental role in wave phenomena from quantum mechanics to electromagnetism and dictate the spatiotemporal physics of lasers. In general, they are constructed by closing all "doors" through which waves can escape. We report, at room temperature, a bound state in the continuum laser that harnesses optical modes residing in the radiation continuum but nonetheless may possess arbitrarily high quality factors. These counterintuitive cavities are based on resonantly trapped symmetry-compatible modes that destructively interfere. Our experimental demonstration opens exciting avenues towards coherent sources with intriguing topological properties for optical trapping, biological imaging, and quantum communication.
Weakly bound states of neutrons in gravitational fields
Khugaev, Avas V.; Sultanov, Renat A.; Guster, Dennis
2010-01-01
In this paper a quantum-mechanical behaviour of neutrons in gravitational fields is considered. A first estimation is made using the semiclassical approximation, neglecting General Relativity, magnetic and rotation effects, for neutrons in weakly bound states in the weak gravitational field of the Earth. This result was generalized for a case, in which the Randall - Sundrum correction to Newton's gravitational law on the small scales was applied. Application of the results to Neutron Star phy...
Fermion Bound States Around Skyrmions in Doped Antiferromagnets
Institute of Scientific and Technical Information of China (English)
寇谡鹏
2003-01-01
We show the skyrmion effects in doped antiferromagnets for the uniform flux phase. The low-energy effective theory of the t′-J model can be mapped onto the massive quantum electrodynamics. There exist Fermion bound states around skyrmions. For each sublattice, there exist induced fractional fermion numbers around the skyrmions. The total induced fermion number is zero due to the "cancelling effect" between two sublattices with opposite charges.
Introduction to QCD - a bound state perspective
Hoyer, Paul
2011-01-01
These lecture notes focus on the bound state sector of QCD. Motivated by data which suggests that the strong coupling \\alpha_s(Q) freezes at low Q, and by similarities between the spectra of hadrons and atoms, I discuss if and how QCD bound states may be treated perturbatively. I recall the basic principles of perturbative gauge theory bound states at lowest order in the \\hbar expansion. Born level amplitudes are insensitive to the i\\epsilon prescription of propagators, which allows to eliminate the Z-diagrams of relativistic, time-ordered Coulomb interactions. The Dirac wave function thus describes a single electron which propagates forward in time only, even though the bound state has any number of pair constituents when Feynman propagators are used. In the absence of an external potential, states that are bound by the Coulomb attraction of their constituents can be analogously described using only their valence degrees of freedom. The instantaneous A^0 field is determined by Gauss' law for each wave functi...
Bound - states for truncated Coulomb potentials
Odeh, Maen; Mustafa, Omar
2000-01-01
The pseudoperturbative shifted - $l$ expansion technique PSLET is generalized for states with arbitrary number of nodal zeros. Bound- states energy eigenvalues for two truncated coulombic potentials are calculated using PSLET. In contrast with shifted large-N expansion technique, PSLET results compare excellently with those from direct numerical integration.
Bound entangled states with a private key and their classical counterpart.
Ozols, Maris; Smith, Graeme; Smolin, John A
2014-03-21
Entanglement is a fundamental resource for quantum information processing. In its pure form, it allows quantum teleportation and sharing classical secrets. Realistic quantum states are noisy and their usefulness is only partially understood. Bound-entangled states are central to this question--they have no distillable entanglement, yet sometimes still have a private classical key. We present a construction of bound-entangled states with a private key based on classical probability distributions. From this emerge states possessing a new classical analogue of bound entanglement, distinct from the long-sought bound information. We also find states of smaller dimensions and higher key rates than previously known. Our construction has implications for classical cryptography: we show that existing protocols are insufficient for extracting private key from our distributions due to their "bound-entangled" nature. We propose a simple extension of existing protocols that can extract a key from them. PMID:24702340
Quantum State Complexity Measure
Campbell, Yuri
2011-01-01
The complexity measures role has become much clearer in recent years as they help to better understand complex systems dynamical behavior. Even though the large number of measures proposed to tackle this issue for classical systems, for quantum systems only Kolmogorov's algorithm complexity extensions have been proposed. Hence, the present approach makes use of a new and mathematically well-established complexity measure for classical systems and extends it to assess quantum states complexity as well. Then the proposed extension is applied to a mixed state constructed with a W-state together with controlled white noise, showing a convex behavior of quantum state complexity. Thus, this reinforces the differences from previous known quantum complexities.
Torons and D-Brane Bound States
Guralnik, Z.; Ramgoolam, S.
1997-01-01
We interpret instantons on a torus with twisted boundary conditions, in terms of bound states of branes. The interplay between the SU(N) and U(1) parts of the U(N) theory of N 4-branes allows the construction of a variety of bound states. The SU(N) and U(1) parts can contribute fractional amounts to the total instanton number which is integral. The geometry of non-self intersecting two-cycles in $T^4$ sheds some light on a number of properties of these solutions.
Entanglement and Coherence in Quantum State Merging.
Streltsov, A; Chitambar, E; Rana, S; Bera, M N; Winter, A; Lewenstein, M
2016-06-17
Understanding the resource consumption in distributed scenarios is one of the main goals of quantum information theory. A prominent example for such a scenario is the task of quantum state merging, where two parties aim to merge their tripartite quantum state parts. In standard quantum state merging, entanglement is considered to be an expensive resource, while local quantum operations can be performed at no additional cost. However, recent developments show that some local operations could be more expensive than others: it is reasonable to distinguish between local incoherent operations and local operations which can create coherence. This idea leads us to the task of incoherent quantum state merging, where one of the parties has free access to local incoherent operations only. In this case the resources of the process are quantified by pairs of entanglement and coherence. Here, we develop tools for studying this process and apply them to several relevant scenarios. While quantum state merging can lead to a gain of entanglement, our results imply that no merging procedure can gain entanglement and coherence at the same time. We also provide a general lower bound on the entanglement-coherence sum and show that the bound is tight for all pure states. Our results also lead to an incoherent version of Schumacher compression: in this case the compression rate is equal to the von Neumann entropy of the diagonal elements of the corresponding quantum state.
Supersymmetry Approaches to the Bound States of the Generalized Woods-Saxon Potential
Fakhri, H.; Sadeghi, J.
Using the associated Jacobi differential equation, we obtain exactly bound states of the generalization of Woods-Saxon potential with the negative energy levels based on the analytic approach. According to the supersymmetry approaches in quantum mechanics, we show that these bound states by four pairs of the first-order differential operators, represent four types of the laddering equations. Two types of these supersymmetry structures, suggest the derivation of algebraic solutions by two different approaches for the bound states.
Quantum mechanics two volumes bound as one
Messiah, Albert
2014-01-01
""Strongly recommended"" by the American Journal of Physics, this volume serves as a text for advanced undergraduates and graduate students of physics as well as a reference for professionals. Clear in its presentation and scrupulous in its attention to detail, the treatment originally appeared in a two-volume French edition. This convenient single-volume translation begins with formalism and its interpretation, starting with the origins of quantum theory and examinations of matter waves and the Schrödinger equation, one-dimensional quantized systems, the uncertainty relations, and the mathema
Scattering and Bound State Solutions of the Yukawa Potential within the Dirac Equation
International Nuclear Information System (INIS)
In the presence of spin symmetry case, we obtain bound and scattering states solutions of the Dirac equation for the equal scalar and vector Yukawa potentials for any spin-orbit quantum number κ. The approximate analytical solutions are presented for the bound and scattering states and scattering phase shifts
Relativistic bound states at Born level
Hoyer, Paul
2012-01-01
Theoretical and phenomenological studies indicate that the QCD coupling \\alpha_s(Q^2) freezes in the infrared. Hadrons may then be described by a perturbative expansion around "Born" states bound only by a confining potential. A linear potential results from the QCD equations of motion when Gauss' law for A^0 is solved with F_{\\mu\
Do $\\Xi\\Xi$ bound states exist?
Haidenbauer, J; Petschauer, S
2014-01-01
The existence of baryon-baryon bound states in the strangeness sector is examined in the framework of SU(3) chiral effective field theory. Specifically, the role of SU(3) symmetry breaking contact terms that arise at next-to-leading order in the employed Weinberg power counting scheme is explored. We focus on the 1S0 partial wave and on baryon-baryon channels with maximal isospin since in this case there are only two independent SU(3) symmetry breaking contact terms. At the same time, those are the channels where most of the bound states have been predicted in the past. Utilizing $pp$ phase shifts and $\\Sigma^+ p$ cross section data allows us to pin down one of the SU(3) symmetry breaking contact terms and a clear indication for the decrease of attraction when going from the NN system to strangeness S=-2 is found, which rules out a bound state for $\\Sigma\\Sigma$ with isospin I=2. Assuming that the trend observed for S=0 to S=-2 is not reversed when going to $\\Xi\\Sigma$ and $\\Xi\\Xi$ makes also bound states in ...
$\\eta$-Helium Quasi-Bound States
Willis, N; Zghiche, A; Wilkin, C; Wurzinger, R; Bing, O; Boivin, M; Courtat, P; Gacougnolle, R; Hibou, F; Martin, J M; Plouin, F; Tatischeff, B; Yonnet, J
1997-01-01
The cross section and tensor analysing power t_20 of the d\\vec{d}->eta 4He reaction have been measured at six c.m. momenta, 10 eta 3He case, suggests strongly the existence of a quasi-bound state in the eta-4He system and optical model fits indicate that this probably also the case for eta-3He.
Scattering theory methods for bound state problems
International Nuclear Information System (INIS)
For the analysis of the properties of a bound state system one may use in place of the Schroedinger equation the Lippmann-Schwinger (LS) equation for the wave function or the LS equation for the reactance operator. Use of the LS equation for the reactance operator constrains the solution to have correct asymptotic behaviour, so this approach would appear to be desirable when the bound state wave function is to be used to calculate particle transfer form factors. The Schroedinger equation based N-level analysis of the s-wave bound states of a square well is compared to the ones based on the LS equation. It is found that the LS equation methods work better than the Schroedinger equation method. The method that uses the LS equation for the wave function gives the best results for the wave functions while the method that uses the LS equation for the reactance operator gives the best results for the binding energies. The accuracy of the reactance operator based method is remarkably insensitive to changes in the oscillator constant used for the harmonic oscillator function basis set. It is also remarkably insensitive to the number of nodes in the bound state wave function. (Auth.)
Construction of bound entangled states based on permutation operators
Zhao, Hui; Guo, Sha; Jing, Naihuan; Fei, Shaoming
2016-04-01
We present a construction of new bound entangled states from given bound entangled states for arbitrary dimensional bipartite systems. One way to construct bound entangled states is to show that these states are positive partial transpose (PPT) and violate the range criterion at the same time. By applying certain operators to given bound entangled states or to one of the subsystems of the given bound entangled states, we obtain a set of new states which are both PPT and violate the range criterion. We show that the derived bound entangled states are not local unitary equivalent to the original bound entangled states by detail examples.
Quantum multiparty communication complexity and circuit lower bounds
Kerenidis, I
2005-01-01
We define a quantum model for multiparty communication complexity and prove a simulation theorem between the classical and quantum models. As a result of our simulation, we show that if the quantum k-party communication complexity of a function f is $\\Omega(n/2^k)$, then its classical k-party communication is $\\Omega(n/2^{k/2})$. Finding such an f would allow us to prove strong classical lower bounds for (k>log n) players and hence resolve a main open question about symmetric circuits. Furthermore, we prove that for the Generalized Inner Product (GIP) function, the quantum model is exponentially more efficient than the classical one. This provides the first exponential separation for a total function between any quantum and public coin randomized communication model.
Deeply bound kaonic states in nuclei
Institute of Scientific and Technical Information of China (English)
LI Yi-He; WU Shi-Shu
2009-01-01
Using a new phenomenological (K)N interaction which reproduces A(1405) as an I = 0 bound state of (K)N, we have investigated K- -3 He(T = 0) and K- -4 He(T = 1/2) within the framework of the Brueckner-Hartree-Fock(BHF) theory. Our calculations show that the above kaonic nuclear systems are both deeply bound. The binding energy BK- is 124.4 MeV(94.1 MeV) and the width Γ is 11.8 MeV(25.8 MeV) for K- -3 He(T = 0)(K- -4 He(T= 1/2)).
Dynamical Horizon Entropy Bound Conjecture in Loop Quantum Cosmology
Institute of Scientific and Technical Information of China (English)
李丽仿; 朱建阳
2012-01-01
The covariant entropy bound conjecture is an important hint for the quantum gravity, with several versions available in the literature. For cosmology, Ashtekar and Wilson-Ewing ever show the consistence between the loop gravity theory and one version of this conjecture. Recently, He and Zhang [J. High Energy Phys. 10 （2007） 077] proposed a version for the dynamical horizon of the universe, which validates the entropy bound conjecture for the cosmology filled with perfect fluid in the classical scenario when the universe is far away from the big bang singularity. However, their conjecture breaks down near big bang region. We examine this conjecture in the context of the loop quantum cosmology. With the example of photon gas, this conjecture is protected by the quantum geometry effects as expected.
Bounds on expectation values of quantum subsystems and perturbation theory
International Nuclear Information System (INIS)
The numerical investigation of many-body quantum systems usually requires different kinds of physical approximations. The error which is made by these approximations is difficult to estimate and remains unknown in most cases. We examine an upper bound on expectation values of quantum subsystems, which enables the estimation of the maximum error that is made by physical approximations outside the subsystem. This is of special interest for perturbation theory, where the bath is commonly approximated with simplified interactions. A recently realized all-spin-based atomic-scale logic device, consisting of iron atoms and cobalt islands placed on a copper substrate, serves as a specific example for an application of the bound. Strength and weakness of these methods are critically discussed and we provide a quantitative answer to the old question in which cases a small quantum system can be used instead of a large one. (paper)
Quantum signatures of chimera states
Bastidas, V. M.; Omelchenko, I.; Zakharova, A.; Schöll, E.; Brandes, T.
2015-12-01
Chimera states are complex spatiotemporal patterns in networks of identical oscillators, characterized by the coexistence of synchronized and desynchronized dynamics. Here we propose to extend the phenomenon of chimera states to the quantum regime, and uncover intriguing quantum signatures of these states. We calculate the quantum fluctuations about semiclassical trajectories and demonstrate that chimera states in the quantum regime can be characterized by bosonic squeezing, weighted quantum correlations, and measures of mutual information. Our findings reveal the relation of chimera states to quantum information theory, and give promising directions for experimental realization of chimera states in quantum systems.
The effect of impurity on transition frequency of bound polaron in quantum rods
Indian Academy of Sciences (India)
Wei Xiao; Jing-Lin Xiao
2012-12-01
The Hamiltonian of a quantum rod with an ellipsoidal boundary is given after a coordinate transformation that changes the ellipsoidal boundary into a spherical one. The properties of the quantum rods constituting the bridge between two-dimensional quantum wells, zero-dimensional quantum dots and one-dimensional quantum wires are explored theoretically using linear combination operator method. The first internal excited state energy, the excitation energy and the transition frequency between the first internal excited and the ground states of the strong-coupled impurity-bound polaron in the rod with Coulomb-bound potential, the transverse effective confinement length, the ellipsoid aspect ratio and the electron–phonon coupling strength are studied. It is found that the first internal excited state energy, the excitation energy and the transition frequency are increasing functions of the Coulomb-bound potential and the electron–phonon coupling strength, whereas they are decreasing functions of the ellipsoid aspect ratio and the transverse effective confinement length. These results can be attributed to the interesting quantum size confining effects.
{bar K}-NUCLEAR Deeply Bound States?
Gal, Avraham
Following the prediction by Akaishi and Yamazaki of relatively narrow {bar K}-nuclear states, deeply bound by over 100 MeV where the main decay channel {bar K} N -> π Σ is closed, several experimental signals in stopped K- reactions on light nuclei have been interpreted recently as due to such states. In this talk I review (i) the evidence from K--atom data for a deep bar K-nucleus potential, as attractive as V{bar K}(ρ 0) ˜ -(150 - 200) MeV at nuclear matter density, that could support such states; and (ii) the theoretical arguments for a shallow potential, V{bar K}(ρ 0) ˜ -(40 - 60) MeV. I then review a recent work by Mareš, Friedman and Gal in which {bar K}-nuclear bound states are generated dynamically across the periodic table, using a RMF Lagrangian that couples the {bar K} to the scalar and vector meson fields mediating the nuclear interactions. The reduced phase space available for {bar K} absorption from these bound states is taken into account by adding a density- and energy-dependent imaginary term, underlying the corresponding {bar K}-nuclear level widths, with a strength constrained by K--atom fits. Substantial polarization of the core nucleus is found for light nuclei, with central nuclear densities enhanced by almost a factor of two. The binding energies and widths calculated in this dynamical model differ appreciably from those calculated for a static nucleus. These calculations provide a lower limit of Γ {bar K} ˜ 50 ± 10 MeV on the width of nuclear bound states for {bar K} binding energy in the range B{bar K} = 100 - 200 MeV.
Quantum states made to measure
Banaszek, Konrad; Demkowicz-Dobrzanski, Rafal; Walmsley, Ian A.
2009-01-01
Recent progress in manipulating quantum states of light and matter brings quantum-enhanced measurements closer to prospective applications. The current challenge is to make quantum metrologic strategies robust against imperfections.
Quantum signatures of Chimera states
Bastidas, V. M.; Omelchenko, I.; ZAKHAROVA, A.; Schöll, E.; Brandes, T.
2015-01-01
Chimera states are complex spatiotemporal patterns in networks of identical oscillators, characterized by the coexistence of synchronized and desynchronized dynamics. Here we propose to extend the phenomenon of chimera states to the quantum regime, and uncover intriguing quantum signatures of these states. We calculate the quantum fluctuations about semiclassical trajectories and demonstrate that chimera states in the quantum regime can be characterized by bosonic squeezing, weighted quantum ...
Parity lifetime of bound states in a proximitized semiconductor nanowire
Higginbotham, A. P.; Albrecht, S. M.; Kiršanskas, G.; Chang, W.; Kuemmeth, F.; Krogstrup, P.; Jespersen, T. S.; Nygård, J.; Flensberg, K.; Marcus, C. M.
2015-12-01
Quasiparticle excitations can compromise the performance of superconducting devices, causing high-frequency dissipation, decoherence in Josephson qubits, and braiding errors in proposed Majorana-based topological quantum computers. Quasiparticle dynamics have been studied in detail in metallic superconductors but remain relatively unexplored in semiconductor-superconductor structures, which are now being intensely pursued in the context of topological superconductivity. To this end, we use a system comprising a gate-confined semiconductor nanowire with an epitaxially grown superconductor layer, yielding an isolated, proximitized nanowire segment. We identify bound states in the semiconductor by means of bias spectroscopy, determine the characteristic temperatures and magnetic fields for quasiparticle excitations, and extract a parity lifetime (poisoning time) of the bound state in the semiconductor exceeding 10 ms.
Understanding the nucleon as a Borromean bound-state
Directory of Open Access Journals (Sweden)
Jorge Segovia
2015-11-01
Full Text Available Analyses of the three valence-quark bound-state problem in relativistic quantum field theory predict that the nucleon may be understood primarily as a Borromean bound-state, in which binding arises mainly from two separate effects. One originates in non-Abelian facets of QCD that are expressed in the strong running coupling and generate confined but strongly-correlated colour-antitriplet diquark clusters in both the scalar–isoscalar and pseudovector–isotriplet channels. That attraction is magnified by quark exchange associated with diquark breakup and reformation. Diquark clustering is driven by the same mechanism which dynamically breaks chiral symmetry in the Standard Model. It has numerous observable consequences, the complete elucidation of which requires a framework that also simultaneously expresses the running of the coupling and masses in the strong interaction. Planned experiments are capable of validating this picture.
Analytic continuation of bound states to solve resonance states
Energy Technology Data Exchange (ETDEWEB)
Tanaka, Norimichi; Arai, Koji [Niigata Univ. (Japan); Suzuki, Yoshiyuki; Varga, K.
1997-05-01
As a method to determine the parameters of the resonance state, a method is proposed using analytic continuation on bound constants of correlation. The characteristics of this method consists in probability of prediction of the parameters of the resonance state only by calculation of the bound state. Owing to conducting the analytic continuation on square root of energy in the bound state as a function relating to the bound constant, energy and width in the bound state was determined. Here was reported on a result of application of this method to three systems. Some partial wave on two systems showing correlation at a simple potential and a resonance state of zero of all orbital angular motion quality in three boson system were determined using the analytic continuation method. These results agreed well with one used a method of integrating Schroedinger equation directly and one used the complex scaling method, and this method was found to be much efficient for the study of the resonance state. Under a background of becoming applicable to the method of analytic continuation, there was development of calculating method for the recent small number multi system. As the characteristics of the analytic continuation method is used for only calculation of the bound state, it is convenient at a point applicable to the method to obtain conventional bound state and then is much efficient in a point of applicability of calculus of variations. However, in order to obtain coefficient of Pade approximation correctly, the bound state must be solved correctly, which is difficult for more complex system and is not always applicable to every systems. (G.K.)
Quantum Gravity, CPT symmetry and Entangled States
Mavromatos, Nick E
2008-01-01
There may unique ("smoking-gun") signatures of the breakdown of CPT symmetry, induced in some models of Quantum Gravity entailing decoherence for quantum matter. Such effects can be observed in entangled states of neutral mesons via modifications of the respective Einstein-Podolsky-Rosen (EPR) correlators ("omega"-effect). In the talk I discuss experimental signatures and bounds of the omega-effect in Phi- and B-factories, and argue that the effect might be falsifiable at the next generation facilities.
Closed form bound-state perturbation theory
Directory of Open Access Journals (Sweden)
Ollie J. Rose
1980-01-01
Full Text Available The perturbed Schrödinger eigenvalue problem for bound states is cast into integral form using Green's Functions. A systematic algorithm is developed and applied to the resulting equation giving rise to approximate solutions expressed as functions of the given perturbation parameter. As a by-product, convergence radii for the traditional Rayleigh-Schrödinger and Brillouin-Wigner perturbation theories emerge in a natural way.
Weakly bound states in heterogeneous waveguides
Amore, Paolo; Fernández, Francisco M.; Hofmann, Christoph P.
2016-07-01
We study the spectrum of the Helmholtz equation in a two-dimensional infinite waveguide, containing a weak heterogeneity localized at an internal point, and obeying Dirichlet boundary conditions at its border. We use the variational theorem to derive the condition for which the lowest eigenvalue of the spectrum falls below the continuum threshold and a bound state appears, localized at the heterogeneity. We devise a rigorous perturbation scheme and derive the exact expression for the energy to third order in the heterogeneity.
Locking classical correlation in quantum states
Di Vincenzo, D P; Leung, D; Smolin, J A; Terhal, B M; Vincenzo, David Di; Horodecki, Michal; Leung, Debbie; Smolin, John; Terhal, Barbara
2003-01-01
We show that there exist bipartite quantum states which contain large hidden classical correlation that can be unlocked by a disproportionately small amount of classical communication. In particular, there are $(2n+1)$-qubit states for which a one bit message doubles the optimal classical mutual information between measurement results on the subsystems, from $n/2$ bits to $n$ bits. States exhibiting this behavior need not be entangled. We study the range of states exhibiting this phenomenon and bound its magnitude.
Secure quantum carriers for quantum state sharing
Karimipour, Vahid; Marvian, Milad
2010-01-01
We develop the concept of quantum carrier and show that messages can be uploaded and downloaded from this carrier and while in transit, these messages are hidden from external agents. We explain in detail the working of the quantum carrier for different communication tasks, including quantum key distribution, classical secret and quantum state sharing among a set of $n$ players according to general threshold schemes. The security of the protocol is discussed and it is shown that only the legi...
Bounding quantum gravity inspired decoherence using atom interferometry
Minář, Jiří; Sangouard, Nicolas
2016-01-01
Hypothetical models have been proposed in which explicit collapse mechanisms prevent the superposition principle to hold at large scales. In particular, the model introduced by Ellis and co-workers [Phys. Lett. B ${\\bf 221}$, 113 (1989)] suggests that quantum gravity might be responsible for the collapse of the wavefunction of massive objects in spatial superpositions. We here consider a recent experiment reporting on interferometry with atoms delocalized over half a meter for timescale of a second [Nature ${\\bf 528}$, 530 (2015)] and show that the corresponding data strongly bound quantum gravity induced decoherence and rule it out in the parameter regime considered originally.
Andreev bound states. Some quasiclassical reflections
Energy Technology Data Exchange (ETDEWEB)
Lin, Y., E-mail: yiriolin@illinois.edu; Leggett, A. J. [University of Illinois at Urhana-Champaign, Dept. of Physics (United States)
2014-12-15
We discuss a very simple and essentially exactly solvable model problem which illustrates some nice features of Andreev bound states, namely, the trapping of a single Bogoliubov quasiparticle in a neutral s-wave BCS superfluid by a wide and shallow Zeeman trap. In the quasiclassical limit, the ground state is a doublet with a splitting which is proportional to the exponentially small amplitude for “normal” reflection by the edges of the trap. We comment briefly on a prima facie paradox concerning the continuity equation and conjecture a resolution to it.
Stieltjes electrostatic model interpretation for bound state problems
Indian Academy of Sciences (India)
K V S Shiv Chaitanya
2014-07-01
In this paper, it is shown that Stieltjes electrostatic model and quantum Hamilton Jacobi formalism are analogous to each other. This analogy allows the bound state problem to mimic as unit moving imaginary charges $i\\hbar$, which are placed in between the two fixed imaginary charges arising due to the classical turning points of the potential. The interaction potential between unit moving imaginary charges $i\\hbar$ is given by the logarithm of the wave function. For an exactly solvable potential, this system attains stable equilibrium position at the zeros of the orthogonal polynomials depending upon the interval of the classical turning points.
Composition of quantum states and dynamical subadditivity
Energy Technology Data Exchange (ETDEWEB)
Roga, Wojciech [Instytut Fizyki im. Smoluchowskiego, Uniwersytet Jagiellonski, PL-30-059 Cracow (Poland); Fannes, Mark [Instituut voor Theoretische Fysica, Universiteit Leuven, B-3001 Leuven (Belgium); Zyczkowski, Karol [Instytut Fizyki im. Smoluchowskiego, Uniwersytet Jagiellonski, PL-30-059 Cracow (Poland)
2008-01-25
We introduce a composition of quantum states of a bipartite system which is based on the reshuffling of density matrices. This non-Abelian product is associative and stems from the composition of quantum maps acting on a simple quantum system. It induces a semi-group in the subset of states with maximally mixed partial traces. Subadditivity of the von Neumann entropy with respect to this product is proved. It is equivalent to subadditivity of the entropy of bistochastic maps with respect to their composition, where the entropy of a map is the entropy of the corresponding state under the Jamiolkowski isomorphism. Strong dynamical subadditivity of a concatenation of three bistochastic maps is established. Analogous bounds for the entropy of a composition are derived for general stochastic maps. In the classical case they lead to new bounds for the entropy of a product of two stochastic matrices.
$\\bar K$-Nuclear Deeply Bound States?
Gal, A
2006-01-01
Following the prediction by Akaishi and Yamazaki of relatively narrow $\\bar K$-nuclear states, deeply bound by over 100 MeV where the main decay channel $\\bar K N \\to \\pi \\Sigma$ is closed, several experimental signals in stopped $K^-$ reactions on light nuclei have been interpreted recently as due to such states. In this talk I review (i) the evidence from $K^-$-atom data for a {\\it deep} $\\bar K$-nucleus potential, as attractive as $V_{\\bar K}(\\rho_0) \\sim -(150 - 200)$ MeV at nuclear matter density, that could support such states; and (ii) the theoretical arguments for a {\\it shallow} potential, $V_{\\bar K}(\\rho_0) \\sim -(40 - 60)$ MeV. I then review a recent work by Mare\\v{s}, Friedman and Gal in which $\\bar K$-nuclear bound states are generated dynamically across the periodic table, using a RMF Lagrangian that couples the $\\bar K$ to the scalar and vector meson fields mediating the nuclear interactions. Substantial polarization of the core nucleus is found for light nuclei, with central nuclear densities...
Bound states in the (2+1)D scalar electrodynamics with Chern-Simons term
International Nuclear Information System (INIS)
This work studies the existence of bound states for the 3-dimensions scalar electrodynamics, with the Chern-Simons. Quantum field theory is used for calculation of the Mfi scattering matrices, in the non-relativistic approximation. The field propagators responsible for the interaction in the scattering processes have been calculated, and scattering matrices have been constructed. After obtaining the scattering matrix, the cross section in the quantum field theory has been compared with the quantum mechanic cross section in the Born approximation, allowing to obtain the form of the potential responsible for the interactions in the scattering processes. The possibility of bound states are analyzed by using the Schroedinger equation
Upper Bounds for the Number of Quantum Clones under Decoherence
Maruyama, K
2003-01-01
Universal quantum cloning machines (UQCMs), sometimes called quantum cloners, generate many outputs with identical density matrices, with as close a resemblance to the input state as is allowed by the basic principles of quantum mechanics. Any experimental realization of a quantum cloner has to cope with the effects of decoherence which terminate the coherent evolution demanded by a UQCM. We examine how many clones can be generated within a decoherence time. We compare the time that a quantum cloner implemented with trapped ions requires to produce $M$ copies from $N$ identical pure state inputs and the decoherence time during which the probability of spontaneous emission becomes non-negligible. We find a method to construct an $N\\to M$ cloning circuit, and estimate the number of elementary logic gates required. It turns out that our circuit is highly vulnerable to spontaneous emission as the number of gates in the circuit is exponential with respect to the number of qubits involved.
Properties of Parabolic Linear Bound Potential and Coulomb Bound Potential Quantum Dot Qubit
Institute of Scientific and Technical Information of China (English)
REN Ji-Rong; WANG Zi-Wu; ZHU Tao; LI Wei-Ping; DUAN Yi-Shi; YIN Ji-Wen; XIAO Jing-Lin
2008-01-01
On the condition of electric-LO phonon strong-coupling in a parabolic quantum dot, we obtain the eigenen-ergy of the ground-state and the first-excited state, the eigenfunctions of the ground-state and the first- excited state by using variational method of Pekar type. This system in quantum dot may be employed as a two-level quantum system-qubit. When the electron is in the superposition state of the ground- and the first-excited state, we obtain the time evolution of the electron density. The relation of the probability density of electron on the Coulomb binding parameter and the relations of the period of oscillation on the Coulomb binding parameter, the electron-LO-phonon coupling constant and the confinement length are derived.
Mould, R A
2003-01-01
If conscious observers are to be included in the quantum mechanical universe, we need to find the rules that engage observers with quantum mechanical systems. The author has proposed five rules that are discovered by insisting on empirical completeness; that is, by requiring the rules to draw empirical information from Schrodinger's solutions that is more complete than is currently possible with the (Born) probability interpretation. I discard Born's interpretation, introducing probability solely through probability current. These rules tell us something about brains. They require the existence of observer brain states that are neither conscious nor unconscious. I call them 'ready' brain states because they are on stand-by, ready to become conscious the moment they are stochastically chosen. Two of the rules are selection rules involving ready brain states. The place of these rules in a wider theoretical context is discussed. Key Words: boundary conditions, consciousness, decoherence, macroscopic superpositio...
Model anisotropic quantum Hall states
Qiu, R. -Z.; Haldane, F.D.M.; Wan, Xin; Yang, Kun; Yi, Su
2012-01-01
Model quantum Hall states including Laughlin, Moore-Read and Read-Rezayi states are generalized into appropriate anisotropic form. The generalized states are exact zero-energy eigenstates of corresponding anisotropic two- or multi-body Hamiltonians, and explicitly illustrate the existence of geometric degrees of in the fractional quantum Hall effect. These generalized model quantum Hall states can provide a good description of the quantum Hall system with anisotropic interactions. Some numeri...
Bound states -- from QED to QCD
Hoyer, Paul
2014-01-01
These lectures are divided into two parts. In Part 1 I discuss bound state topics at the level of a basic course in field theory: The derivation of the Schr\\"odinger and Dirac equations from the QED Lagrangian, by summing Feynman diagrams and in a Hamiltonian framework. Less well known topics include the equal-time wave function of Positronium in motion and the properties of the Dirac wave function for a linear potential. The presentation emphasizes physical aspects and provides the framework...
A balance for Dark Matter bound states
Nozzoli, F.
2016-01-01
Massive particles with self interactions of the order of 0.2 barn/GeV are intriguing Dark Matter candidates from an astrophysical point of view. Direct detection searches for very massive particles, with relatively high cross sections with ordinary matter, cannot rule out $\\sigma/M > 0.01$ barn/GeV, due to atmosphere and material shielding. Here, the possibility of the existence of bound states with ordinary matter, for Dark Matter candidates with not negligible interactions, is considered. T...
Novel Bound States in Graphene with Impurities
Gupta, Kumar S
2008-01-01
We obtain a novel bound state spectrum of the low energy excitations near the Fermi points of graphene in the presence of a charge impurity. The effects of possible short range interactions induced by the impurity are modelled by suitable boundary conditions. The spectrum in the subcritical region of the effective Coulomb coupling is labelled by a parameter which characterizes the boundary conditions and determines the inequivalent quantizations of the system. In the supercritical region we obtain a renormalization group flow for the effective Coulomb coupling.
Aspects of Majorana Bound States in One-Dimensional Systems with and without Time-Reversal Symmetry
DEFF Research Database (Denmark)
Wölms, Konrad Udo Hannes
bound states in the measurement still has to be understood better. And example would be the frequently performed tunnel probe measurement on Majorana bound states [26, 40, 41]. A second reason why Majorana bound states are interesting is their potential application to a certain quantum computation...... scheme. This scheme, called topological quantum computation, relies on the braiding of so-called non-abelian anyons in order to perform computations [18]. Majorana bound states are the simplest example of such non-abelian anyons. No other non-abelian anyons have been realized experimentally yet, which...... puts further focus on the study of Majorana bound states. Additionally to probing Majorana bound states, their use in topological quantum computation also requires them to be manipulated. This also poses an interesting problem for both experimentalists and theorists [25, 27]. We can summarize...
Bounds for State Degeneracies in 2D Conformal Field Theory
Hellerman, Simeon
2010-01-01
In this note we explore the application of modular invariance in 2-dimensional CFT to derive universal bounds for quantities describing certain state degeneracies, such as the thermodynamic entropy, or the number of marginal operators. We show that the entropy at inverse temperature 2 pi satisfies a universal lower bound, and we enumerate the principal obstacles to deriving upper bounds on entropies or quantum mechanical degeneracies for fully general CFTs. We then restrict our attention to infrared stable CFT with moderately low central charge, in addition to the usual assumptions of modular invariance, unitarity and discrete operator spectrum. For CFT in the range c_left + c_right < 48 with no relevant operators, we are able to prove an upper bound on the thermodynamic entropy at inverse temperature 2 pi. Under the same conditions we also prove that a CFT can have a number of marginal deformations no greater than ((c_left + c_right) / (48 - c_left - c_right)) e^(4 Pi) - 2.
Quantum engineering of continuous variable quantum states
International Nuclear Information System (INIS)
Quantum information with continuous variables is a field attracting increasing attention recently. In continuous variable quantum information one makes use of the continuous information encoded into the quadrature of a quantized light field instead of binary quantities such as the polarization state of a single photon. This brand new research area is witnessing exciting theoretical and experimental achievements such as teleportation, quantum computation and quantum error correction. The rapid development of the field is mainly due higher optical data rates and the availability of simple and efficient manipulation tools in continuous-variable quantum information processing. We in this thesis extend the work in continuous variable quantum information processing and report on novel experiments on amplification, cloning, minimal disturbance and noise erasure protocols. The promising results we obtain in these pioneering experiments indicate that the future of continuous variable quantum information is bright and many advances can be foreseen. (orig.)
Quantum engineering of continuous variable quantum states
Energy Technology Data Exchange (ETDEWEB)
Sabuncu, Metin
2009-10-29
Quantum information with continuous variables is a field attracting increasing attention recently. In continuous variable quantum information one makes use of the continuous information encoded into the quadrature of a quantized light field instead of binary quantities such as the polarization state of a single photon. This brand new research area is witnessing exciting theoretical and experimental achievements such as teleportation, quantum computation and quantum error correction. The rapid development of the field is mainly due higher optical data rates and the availability of simple and efficient manipulation tools in continuous-variable quantum information processing. We in this thesis extend the work in continuous variable quantum information processing and report on novel experiments on amplification, cloning, minimal disturbance and noise erasure protocols. The promising results we obtain in these pioneering experiments indicate that the future of continuous variable quantum information is bright and many advances can be foreseen. (orig.)
A balance for Dark Matter bound states
Nozzoli, F
2016-01-01
Massive particles with self interactions of the order of 0.2 barn/GeV are intriguing Dark Matter candidates from an astrophysical point of view. Direct detection searches for very massive particles, with relatively high cross sections with ordinary matter, cannot rule out $\\sigma/M > 0.01$ barn/GeV, due to atmosphere and material shielding. Here, the possibility of the existence of bound states with ordinary matter, for Dark Matter candidates with not negligible interactions, is considered. The existence of bound states, with binding energy larger than $\\sim$1 meV, would offer the possibility to test in laboratory capture cross sections of the order of a barn (or larger). The signature of the detection of a mass increasing of cryogenic samples, due to the possible Dark Matter accumulation, would allow the investigation of Dark Matter particles with mass up to the GUT scale. A proof of concept for a possible detection set-up and the evaluation of some noise sources are described.
Bound states -- from QED to QCD
Hoyer, Paul
2014-01-01
These lectures are divided into two parts. In Part 1 I discuss bound state topics at the level of a basic course in field theory: The derivation of the Schr\\"odinger and Dirac equations from the QED Lagrangian, by summing Feynman diagrams and in a Hamiltonian framework. Less well known topics include the equal-time wave function of Positronium in motion and the properties of the Dirac wave function for a linear potential. The presentation emphasizes physical aspects and provides the framework for Part 2, which discusses the derivation of relativistic bound states at Born level in QED and QCD. A central aspect is the maintenance of Poincar\\'e invariance. The transformation of the wave function under boosts is studied in detail in D=1+1 dimensions, and its generalization to D=3+1 is indicated. Solving Gauss' law for $A^0$ with a non-vanishing boundary condition leads to a linear potential for QCD mesons, and an analogous confining potential for baryons.
ADMonium: Asymmetric Dark Matter Bound State
Bi, Xiao-Jun; Ko, P; Li, Jinmian; Li, Tianjun
2016-01-01
We propose a novel framework for asymmetric scalar dark matter (ADM), which has interesting collider phenomenology in terms of an unstable ADM bound state (ADMonium) produced via Higgs portals. ADMonium is a natural consequence of the basic features of ADM: the (complex scalar) ADM is charged under a dark local $U(1)_d$ symmetry which is broken at a low scale and provides a light gauge boson $X$. The dark gauge coupling is strong and then ADM can annihilate away into $X$-pair effectively. Therefore, the ADM can form bound state due to its large self-interaction via $X$ mediation. To explore the collider signature of ADMonium, we propose that ADM has a two-Higgs doublet portal. The ADMonium can have a sizable mixing with the heavier Higgs boson, which admits a large cross section of ADMonium production associated with $b\\bar b$. Of particular interest, our setup nicely explains the recent di-photon anomaly at 750 GeV via the events from ${\\rm ADMonium}\\ra 2X(\\ra e^+e^-)$, where the electrons are identified as ...
Hadron QCD (Bound states in gauge theories)
International Nuclear Information System (INIS)
The general principles of the description of bound states in QED and QCD are proposed for the aim of construction of the consistent scheme of calculating hadron spectrum and interaction amplitudes. Such principles are the explicit solution of the Gauss equation for time component, the quantization of the minimal set physical variables and the choice of the time-axis of quantization in accordance with the Markov-Yukawa relativistic theory of bilocal fields. QCD constructed by these principles contains new infrared divergences, changing the behaviour of the Coulomb field on large distances. This divergences (like ones in QED) are removed out with the help of phenomenology, in this case, by taking into account the rising potential as the 'nonperturbative background' for a new perturbation theory. It is shown how in such hadron theory the parton model, nonrelativistic potential spectroscopy, chiral Lagrangian and confinement appear. The Dirac quantization method, renormalization group equations and lattice calculations in their conventional formulation are proved to be untenable for the description of bound states. 23 refs
Static and dynamic properties of QCD bound states
International Nuclear Information System (INIS)
The QCD phenomenology can be faced with the framework of the coupled quark DSE, meson BSE and baryon Faddeev equation, providing non-perturbative, continuum and Poincare invariant scientific approach. The research performed throughout this thesis is twofold. From one perspective we focus on the investigation of mass spectra for mesons with total spin quantum number J=3 and arising Regge-trajectory for natural parity states JPC=1--,2++,3-- within rainbow-ladder single gluon exchange model. The other findings are concerning the impact of the pion cloud effect on J>2 meson states, baryon masses, namely on Nucleon and Delta three-body bound states and meson dynamical properties like the pion form factor.
Static and dynamic properties of QCD bound states
Energy Technology Data Exchange (ETDEWEB)
Kubrak, Stanislav
2015-07-01
The QCD phenomenology can be faced with the framework of the coupled quark DSE, meson BSE and baryon Faddeev equation, providing non-perturbative, continuum and Poincare invariant scientific approach. The research performed throughout this thesis is twofold. From one perspective we focus on the investigation of mass spectra for mesons with total spin quantum number J=3 and arising Regge-trajectory for natural parity states J{sup PC}=1{sup --},2{sup ++},3{sup --} within rainbow-ladder single gluon exchange model. The other findings are concerning the impact of the pion cloud effect on J>2 meson states, baryon masses, namely on Nucleon and Delta three-body bound states and meson dynamical properties like the pion form factor.
Quantum position verification in bounded-attack-frequency model
Gao, Fei; Liu, Bin; Wen, QiaoYan
2016-11-01
In 2011, Buhrman et al. proved that it is impossible to design an unconditionally secure quantum position verification (QPV) protocol if the adversaries are allowed to previously share unlimited entanglements. Afterwards, people started to design secure QPV protocols in practical settings, e.g. the bounded-storage model, where the adversaries' pre-shared entangled resources are supposed to be limited. Here we focus on another practical factor that it is very difficult for the adversaries to perform attack operations with unlimitedly high frequency. Concretely, we present a new kind of QPV protocols, called non-simultaneous QPV. And we prove the security of a specific non-simultaneous QPV protocol with the assumption that the frequency of the adversaries' attack operations is bounded, but no assumptions on their pre-shared entanglements or quantum storage. Actually, in our nonsimultaneous protocol, the information whether there comes a signal at present time is also a piece of command. It renders the adversaries "blind", that is, they have to execute attack operations with unlimitedly high frequency no matter whether a signal arrives, which implies the non-simultaneous QPV is also secure in the bounded-storage model.
Quantum Fidelity for Arbitrary Gaussian States
Banchi, Leonardo; Braunstein, Samuel L.; Pirandola, Stefano
2015-12-01
We derive a computable analytical formula for the quantum fidelity between two arbitrary multimode Gaussian states which is simply expressed in terms of their first- and second-order statistical moments. We also show how such a formula can be written in terms of symplectic invariants and used to derive closed forms for a variety of basic quantities and tools, such as the Bures metric, the quantum Fisher information, and various fidelity-based bounds. Our result can be used to extend the study of continuous-variable protocols, such as quantum teleportation and cloning, beyond the current one-mode or two-mode analyses, and paves the way to solve general problems in quantum metrology and quantum hypothesis testing with arbitrary multimode Gaussian resources.
Quantum fidelity for arbitrary Gaussian states
Banchi, Leonardo; Pirandola, Stefano
2015-01-01
We derive a computable analytical formula for the quantum fidelity between two arbitrary multimode Gaussian states which is simply expressed in terms of their first- and second-order statistical moments. We also show how such a formula can be written in terms of symplectic invariants and used to derive closed forms for a variety of basic quantities and tools, such as the Bures metric, the quantum Fisher information and various fidelity-based bounds. Our result can be used to extend the study of continuous-variable protocols, such as quantum teleportation and cloning, beyond the current one-mode or two-mode analyses, and paves the way to solve general problems in quantum metrology and quantum hypothesis testing with arbitrary multimode Gaussian resources.
Coherent states in quantum mechanics
Rodrigues, R D L; Fernandes, D
2001-01-01
We present a review work on the coherent states is non-relativistic quantum mechanics analysing the quantum oscillators in the coherent states. The coherent states obtained via a displacement operator that act on the wave function of ground state of the oscillator and the connection with Quantum Optics which were implemented by Glauber have also been considered. A possible generalization to the construction of new coherent states it is point out.
Coherent states in quantum mechanics
International Nuclear Information System (INIS)
We present a review work on the coherent states is non-relativistic quantum mechanics analysing the quantum oscillators in the coherent states. The coherent states obtained via a displacement operator that act on the wave function of ground state of the oscillator and the connection with Quantum Optics which were implemented by Glauber have also been considered. A possible generalization to the construction of new coherent states it is point out. (author)
Multiphoton quantum optics and quantum state engineering
International Nuclear Information System (INIS)
We present a review of theoretical and experimental aspects of multiphoton quantum optics. Multiphoton processes occur and are important for many aspects of matter-radiation interactions that include the efficient ionization of atoms and molecules, and, more generally, atomic transition mechanisms; system-environment couplings and dissipative quantum dynamics; laser physics, optical parametric processes, and interferometry. A single review cannot account for all aspects of such an enormously vast subject. Here we choose to concentrate our attention on parametric processes in nonlinear media, with special emphasis on the engineering of nonclassical states of photons and atoms that are relevant for the conceptual investigations as well as for the practical applications of forefront aspects of modern quantum mechanics. We present a detailed analysis of the methods and techniques for the production of genuinely quantum multiphoton processes in nonlinear media, and the corresponding models of multiphoton effective interactions. We review existing proposals for the classification, engineering, and manipulation of nonclassical states, including Fock states, macroscopic superposition states, and multiphoton generalized coherent states. We introduce and discuss the structure of canonical multiphoton quantum optics and the associated one- and two-mode canonical multiphoton squeezed states. This framework provides a consistent multiphoton generalization of two-photon quantum optics and a consistent Hamiltonian description of multiphoton processes associated to higher-order nonlinearities. Finally, we discuss very recent advances that by combining linear and nonlinear optical devices allow to realize multiphoton entangled states of the electromagnetic field, either in discrete or in continuous variables, that are relevant for applications to efficient quantum computation, quantum teleportation, and related problems in quantum communication and information
Multiphoton quantum optics and quantum state engineering
Energy Technology Data Exchange (ETDEWEB)
Dell' Anno, Fabio [Dipartimento di Fisica ' E. R. Caianiello' , Universita degli Studi di Salerno, CNISM and CNR-INFM Coherentia, and INFN Sezione di Napoli, Gruppo Collegato di Salerno, Via S. Allende, I-84081 Baronissi (Saudi Arabia) (Italy)]. E-mail: dellanno@sa.infn.it; De Siena, Silvio [Dipartimento di Fisica ' E. R. Caianiello' , Universita degli Studi di Salerno, CNISM and CNR-INFM Coherentia, and INFN Sezione di Napoli, Gruppo Collegato di Salerno, Via S. Allende, I-84081 Baronissi (SA) (Italy)]. E-mail: desiena@sa.infn.it; Illuminati, Fabrizio [Dipartimento di Fisica ' E. R. Caianiello' , Universita degli Studi di Salerno, CNISM and CNR-INFM Coherentia, and INFN Sezione di Napoli, Gruppo Collegato di Salerno, Via S. Allende, I-84081 Baronissi (SA) (Italy)]. E-mail: illuminati@sa.infn.it
2006-05-15
We present a review of theoretical and experimental aspects of multiphoton quantum optics. Multiphoton processes occur and are important for many aspects of matter-radiation interactions that include the efficient ionization of atoms and molecules, and, more generally, atomic transition mechanisms; system-environment couplings and dissipative quantum dynamics; laser physics, optical parametric processes, and interferometry. A single review cannot account for all aspects of such an enormously vast subject. Here we choose to concentrate our attention on parametric processes in nonlinear media, with special emphasis on the engineering of nonclassical states of photons and atoms that are relevant for the conceptual investigations as well as for the practical applications of forefront aspects of modern quantum mechanics. We present a detailed analysis of the methods and techniques for the production of genuinely quantum multiphoton processes in nonlinear media, and the corresponding models of multiphoton effective interactions. We review existing proposals for the classification, engineering, and manipulation of nonclassical states, including Fock states, macroscopic superposition states, and multiphoton generalized coherent states. We introduce and discuss the structure of canonical multiphoton quantum optics and the associated one- and two-mode canonical multiphoton squeezed states. This framework provides a consistent multiphoton generalization of two-photon quantum optics and a consistent Hamiltonian description of multiphoton processes associated to higher-order nonlinearities. Finally, we discuss very recent advances that by combining linear and nonlinear optical devices allow to realize multiphoton entangled states of the electromagnetic field, either in discrete or in continuous variables, that are relevant for applications to efficient quantum computation, quantum teleportation, and related problems in quantum communication and information.
A geometric approach to quantum circuit lower bounds
Nielsen, Michael A.
2005-01-01
What is the minimal size quantum circuit required to exactly implement a specified n-qubit unitary operation, U, without the use of ancilla qubits? We show that a lower bound on the minimal size is provided by the length of the minimal geodesic between U and the identity, I, where length is defined by a suitable Finsler metric on SU(2^n). The geodesic curves of such a metric have the striking property that once an initial position and velocity are set, the remainder of the geodesic is complet...
Hyperquarks and bosonic preon bound states
Schmid, Michael L.; Buchmann, Alfons J.
2009-11-01
In a model in which leptons, quarks, and the recently introduced hyperquarks are built up from two fundamental spin-(1)/(2) preons, the standard model weak gauge bosons emerge as preon bound states. In addition, the model predicts a host of new composite gauge bosons, in particular, those responsible for hyperquark and proton decay. Their presence entails a left-right symmetric extension of the standard model weak interactions and a scheme for a partial and grand unification of nongravitational interactions based on, respectively, the effective gauge groups SU(6)P and SU(9)G. This leads to a prediction of the Weinberg angle at low energies in good agreement with experiment. Furthermore, using evolution equations for the effective coupling strengths, we calculate the partial and grand unification scales, the hyperquark mass scale, as well as the mass and decay rate of the lightest hyperhadron.
Hyperquarks and bosonic preon bound states
Schmid, Michael L
2013-01-01
In a model in which leptons, quarks, and the recently introduced hyperquarks are built up from two fundamental spin 1/2 preons, the standard model weak gauge bosons emerge as preon bound states. In addition, the model predicts a host of new composite gauge bosons, in particular those responsible for hyperquark and proton decay. Their presence entails a left-right symmetric extension of the standard model weak interactions and a scheme for a partial and grand unification of nongravitational interactions based on respectively the effective gauge groups SU(6)_P and SU(9)_G. This leads to a prediction of the Weinberg angle at low energies in good agreement with experiment. Furthermore, using evolution equations for the effective coupling strengths, we calculate the partial and grand unification scales, the hyperquark mass scale, as well as the mass and decay rate of the lightest hyperhadron.
Quantum teleportation of composite systems via mixed entangled states
International Nuclear Information System (INIS)
We analyze quantum teleportation for composite systems, specifically for concatenated teleporation (decomposing a large composite state into smaller states of dimension commensurate with the channel) and partial teleportation (teleporting one component of a larger quantum state). We obtain an exact expression for teleportation fidelity that depends solely on the dimension and singlet fraction for the entanglement channel and entanglement (measures by I concurrence) for the state; in fact quantum teleportation for composite systems provides an operational interpretation for I concurrence. In addition we obtain tight bounds on teleportation fidelity and prove that the average fidelity approaches the lower bound of teleportation fidelity in the high-dimension limit
Bound states in the dynamics of a dipole in the presence of a conical defect
De Ribeiro, C A L; Moraes, F; Furtado, Claudio; Moraes, Fernando
2005-01-01
In this work we investigate the quantum dynamics of an electric dipole in a $(2+1)$-dimensional conical spacetime. For specific conditions, the Schr\\"odinger equation is solved and bound states are found with the energy spectrum and eigenfunctions determined. We find that the bound states spectrum extends from minus infinity to zero with a point of accumulation at zero. This unphysical result is fixed when a finite radius for the defect is introduced.
Amplification of Information by Photons and the Quantum Chernoff Bound
Zwolak, Michael; Riedel, C. Jess; Zurek, Wojciech H.
2014-03-01
Amplification was regarded, since the early days of quantum theory, as a mysterious ingredient that endows quantum microstates with macroscopic consequences, key to the ``collapse of the wavepacket,'' and a way to avoid embarrassing problems exemplified by Schrödinger's cat. This bridge between the quantum microworld and the classical world of our experience was postulated ad hoc in the Copenhagen Interpretation. Quantum Darwinism views amplification as replication, in many copies, of information about quantum states. We show that such amplification is a natural consequence of a broad class of models of decoherence, including the photon environment we use to obtain most of our information. The resultant amplification is huge, proportional to # ξQCB . Here, # is the environment size and ξQCB is the ``typical'' Quantum Chernoff Information, which quantifies the efficiency of the amplification. The information communicated though the environment is imprinted in the states of individual environment subsystems, e.g., in single photons, which document the transfer of information into the environment and result in the emergence of the classical world. See, http://mike.zwolak.org
Quantum cobwebs: Universal entangling of quantum states
Indian Academy of Sciences (India)
Arun Kumar Pati
2002-08-01
Entangling an unknown qubit with one type of reference state is generally impossible. However, entangling an unknown qubit with two types of reference states is possible. To achieve this, we introduce a new class of states called zero sum amplitude (ZSA) multipartite, pure entangled states for qubits and study their salient features. Using shared-ZSA states, local operations and classical communication, we give a protocol for creating multipartite entangled states of an unknown quantum state with two types of reference states at remote places. This provides a way of encoding an unknown pure qubit state into a multiqubit entangled state.
Bound values for Hall conductivity of heterogeneous medium under quantum Hall effect conditions
Indian Academy of Sciences (India)
V E Arkhincheev
2008-02-01
Bound values for Hall conductivity under quantum Hall effect (QHE) conditions in inhomogeneous medium has been studied. It is shown that bound values for Hall conductivity differ from bound values for metallic conductivity. This is due to the unusual character of current percolation under quantum Hall effect conditions.
Ikot, A. N.; Obong, H. P.; Abbey, T. M.; Zare, S.; Ghafourian, M.; Hassanabadi, H.
2016-09-01
In this article we use supersymmetry quantum mechanics and factorization methods to study the bound and scattering state of Klein-Gordon equation with deformed Hulthen plus deformed hyperbolical potential for arbitrary state in D-dimensions. The analytic relativistic bound state eigenvalues and the scattering phase factor are found in closed form. We report on the numerical results for the bound state energy in D-dimensions.
Variational Path-Integral Study on Bound Polarons in Parabolic Quantum Dots and Wires
Institute of Scientific and Technical Information of China (English)
CHEN Qing-Hu; WANG Zhuang-Bing; WU Fu-Li; LUO Meng-Bo; RUAN Yong-Hong; JIAO Zheng-Kuan
2001-01-01
The expression of the ground-state energy of an electron coupled simultaneously with a Coulomb potential and a longitudinal-optical phonon field in parabolic quantum dots and wires is derived within the framework of Feynman variational path-integral theory. We obtain a general result with arbitrary electron-phonon coupling constant,Coulomb binding parameters, and confining potential strength, which could be used for further numerical calculation of polaron properties. Moreover, it is shown that all the previous path-integral formulae for free polarons,bound polarons, and polarons confined in parabolic quantum dots and wires can be recovered in the present formalism.
Self-bound droplets of a dilute magnetic quantum liquid
Schmitt, Matthias; Böttcher, Fabian; Ferrier-Barbut, Igor; Pfau, Tilman
2016-01-01
Self-bound many-body systems occur in different scenarios all across the fields of physics. For example in the astrophysical context the stellar classification is based on a detailed balance of attractive self-gravitating forces and repulsive terms e.g. due to Fermi pressure. Also liquid droplets are formed by mutual attractive forces due to covalent or van der Waals attraction and repulsive parts of the inter-particle potential due to the electronic Pauli exclusion principle. Self-bound ensembles of ultracold atoms at densities 100 million times lower than in a helium droplet, the only other quantum liquid known so far, have been suggested. However, they have been elusive up to now as they require more than the usual contact interaction, which is either attractive or repulsive but never both. Based on the recent finding that an unstable bosonic dipolar gas can be stabilized by a repulsive many-body term, which is due to quantum depletion and a corresponding exclusion volume at small distances, it was predict...
The factorization method and ground state energy bounds
Schmutz, M.
1985-04-01
We discuss the relationship between the factorization method and the Barnsley bound to the ground state energy. The latter method is extended in such a way that both lower and upper analytic bounds can be obtained.
Coexistence of bound and virtual-bound states in shallow-core to valence x-ray spectroscopies
Sen Gupta, Subhra; Bradley, J. A.; Haverkort, M. W.; Seidler, G. T.; Tanaka, A.; Sawatzky, G. A.
2011-08-01
With the example of the non-resonant inelastic x-ray scattering (NIXS) at the O45 edges (5d→5f) of the actinides, we develop the theory for shallow-core to valence excitations, where the multiplet spread is larger than the core-hole attraction, such as if the core and valence orbitals have the same principal quantum number. This involves very strong final state configuration interaction (CI), which manifests itself as huge reductions in the Slater-Condon integrals, needed to explain the spectral shapes within a simple renormalized atomic multiplet theory. But more importantly, this results in a cross-over from bound (excitonic) to virtual-bound excited states with increasing energy, within the same core-valance multiplet structure, and in large differences between the dipole and high-order multipole transitions, as observed in NIXS. While the bound states (often higher multipole allowed) can still be modeled using local cluster-like models, the virtual-bound resonances (often dipole-allowed) cannot be interpreted within such local approaches. This is in stark contrast to the more familiar core-valence transitions between different principal quantum number shells, where all the final excited states almost invariably form bound core-hole excitons and can be modeled using local approaches. The possibility of observing giant multipole resonances for systems with high angular momentum ground states is also predicted. The theory is important to obtain ground state information from core-level x-ray spectroscopies of strongly correlated transition metal, rare-earth, and actinide systems.
Squashed giants: bound states of giant gravitons
International Nuclear Information System (INIS)
We consider giant gravitons in the maximally supersymmetric type IIB plane-wave, in the presence of a constant NSNS B-field background. We show that in response to the background B-field the giant graviton would take the shape of a deformed three-sphere, the size and shape of which depend on the B-field, and that the giant becomes classically unstable once the B-field is larger than a critical value Bcr. In particular, for the B-field which is (anti-)self-dual under the SO(4) isometry of the original giant S3, the closed string metric is that of a round S3, while the open string metric is a squashed three-sphere. The squashed giant can be interpreted as a bound state of a spherical three-brane and circular D-strings. We work out the spectrum of geometric fluctuations of the squashed giant and study its stability. We also comment on the gauge theory which lives on the brane (which is generically a noncommutative theory) and a possible dual gauge theory description of the deformed giant. (author)
Real weights, bound states and duality orbits
Marrani, Alessio; Romano, Luca
2015-01-01
We show that the duality orbits of extremal black holes in supergravity theories with symmetric scalar manifolds can be derived by studying the stabilizing subalgebras of suitable representatives, realized as bound states of specific weight vectors of the corresponding representation of the duality symmetry group. The weight vectors always correspond to weights that are real, where the reality properties are derived from the Tits-Satake diagram that identifies the real form of the Lie algebra of the duality symmetry group. Both N=2 magic Maxwell-Einstein supergravities and the semisimple infinite sequences of N=2 and N=4 theories in D=4 and 5 are considered, and various results, obtained over the years in the literature using different methods, are retrieved. In particular, we show that the stratification of the orbits of these theories occurs because of very specific properties of the representations: in the case of the theory based on the real numbers, whose symmetry group is maximally non-compact and there...
Lai, Ching-Yi; Ashikhmin, Alexei
2016-01-01
Linear programming approaches have been applied to derive upper bounds on the size of classical codes and quantum codes. In this paper, we derive similar results for general quantum codes with entanglement assistance, including nonadditive codes, by considering a type of split weight enumerators. After deriving the MacWilliams identities for these split weight enumerators, we are able to prove algebraic linear programming bounds, such as the Singleton bound, the Hamming bound, and the first l...
Pair creation induced by transitions between electronic and positronic bound states
Liu, Y.; Lv, Q. Z.; Li, Y. T.; Grobe, R.; Su, Q.
2015-05-01
We study the creation process of electron-positron pairs from the quantum electrodynamical vacuum under very strong electric fields by solving the quantum field theoretical Dirac equation on a space-time grid. We investigate the role of bound-bound state mixing in such a process, which can be studied if the external force can be modeled by a combination of a potential barrier and a potential well. By increasing the magnitude of the two potentials, discrete states that originate from the positive and negative energy continua can become quasidegenerate in the mass gap region (between -mc 2 and mc 2). We show that this bound-bound state mixing is quite different from the usual bound-continuum state mixing where the particles are created until the Pauli exclusion principle inhibits this process. In the case of bound-bound mixing the particle number exhibits a characteristic oscillatory behavior that in principle can last forever. These findings can be modeled by an effective two-state model.
Hierarchy of efficiently computable and faithful lower bounds to quantum discord
Piani, Marco
2015-01-01
Quantum discord expresses a fundamental non-classicality of correlations more general than quantum entanglement. We combine the no-local-broadcasting theorem, semidefinite-programming characterizations of quantum fidelity and quantum separability, and a recent breakthrough result of Fawzi and Renner about quantum Markov chains to provide a hierarchy of computationally efficient lower bounds to quantum discord. Such a hierarchy converges to the surprisal of measurement recoverability introduce...
Multiphoton Quantum Optics and Quantum State Engineering
Dell'Anno, F; Illuminati, F; 10.1016/j.physrep.2006.01.004
2009-01-01
We present a review of theoretical and experimental aspects of multiphoton quantum optics. Multiphoton processes occur and are important for many aspects of matter-radiation interactions that include the efficient ionization of atoms and molecules, and, more generally, atomic transition mechanisms; system-environment couplings and dissipative quantum dynamics; laser physics, optical parametric processes, and interferometry. A single review cannot account for all aspects of such an enormously vast subject. Here we choose to concentrate our attention on parametric processes in nonlinear media, with special emphasis on the engineering of nonclassical states of photons and atoms. We present a detailed analysis of the methods and techniques for the production of genuinely quantum multiphoton processes in nonlinear media, and the corresponding models of multiphoton effective interactions. We review existing proposals for the classification, engineering, and manipulation of nonclassical states, including Fock states...
Lieb-Robinson Bound and the Butterfly Effect in Quantum Field Theories
Roberts, Daniel A.; Swingle, Brian
2016-08-01
As experiments are increasingly able to probe the quantum dynamics of systems with many degrees of freedom, it is interesting to probe fundamental bounds on the dynamics of quantum information. We elaborate on the relationship between one such bound—the Lieb-Robinson bound—and the butterfly effect in strongly coupled quantum systems. The butterfly effect implies the ballistic growth of local operators in time, which can be quantified with the "butterfly" velocity vB . Similarly, the Lieb-Robinson velocity places a state-independent ballistic upper bound on the size of time evolved operators in nonrelativistic lattice models. Here, we argue that vB is a state-dependent effective Lieb-Robinson velocity. We study the butterfly velocity in a wide variety of quantum field theories using holography and compare with free-particle computations to understand the role of strong coupling. We find that vB remains constant or decreases with decreasing temperature. We also comment on experimental prospects and on the relationship between the butterfly velocity and signaling.
Clusters of bound particles in a quantum integrable many-body system and number theory
International Nuclear Information System (INIS)
We construct clusters of bound particles for a quantum integrable derivative δ- function Bose gas in one dimension. It is found that clusters of bound particles can be constructed for this Bose gas for some special values of the coupling constant, by taking the quasi-momenta associated with the corresponding Bethe state to be equidistant points on a single circle in the complex momentum plane. Interestingly, there exists a connection between the above mentioned special values of the coupling constant and some fractions belonging to the Farey sequences in number theory. This connection leads to a classification of the clusters of bound particles for the derivative S-function Bose gas and the determination of various properties of these clusters like their size and their stability under a variation of the coupling constant
Study of resonance states of 11Be with isospectral bound state microscopic potential
Dutta, S. K.; Gupta, D.; Das, D.; Saha, Swapan K.
2014-09-01
The theoretical procedure of supersymmetric quantum mechanics (SQM) is adopted for the first time to study quasi-bound states of a weakly bound nuclear system using microscopic potential. The density dependent M3Y (DDM3Y) effective interaction was found earlier to give a satisfactory description of radioactivity, nuclear matter and scattering. In the present work, we have microscopically generated a two-body potential in a single folding model using the DDM3Y effective interaction. From this potential, SQM generated a family of isospectral potentials for 11Be (10Be + n). We investigated the 5/2+, 3/2- and 3/2+ resonance states of 11Be. The experimental data and the present calculations of excitation energies of the above resonance states are found to be in good agreement.
Effects of Bound States on Dark Matter Annihilation
An, Haipeng; Wise, Mark B.; Zhang, Yue
2016-01-01
We study the impact of bound state formation on dark matter annihilation rates in models where dark matter interacts via a light mediator, the dark photon. We derive the general cross section for radiative capture into all possible bound states, and point out its non-trivial dependence on the dark matter velocity and the dark photon mass. For indirect detection, our result shows that dark matter annihilation inside bound states can play an important role in enhancing signal rates over the rat...
Precision Study of Positronium: Testing Bound State QED Theory
Karshenboim, Savely G.
2003-01-01
As an unstable light pure leptonic system, positronium is a very specific probe atom to test bound state QED. In contrast to ordinary QED for free leptons, the bound state QED theory is not so well understood and bound state approaches deserve highly accurate tests. We present a brief overview of precision studies of positronium paying special attention to uncertainties of theory as well as comparison of theory and experiment. We also consider in detail advantages and disadvantages of positro...
Quantum Transition-State Theory
Hele, Timothy J H
2014-01-01
This dissertation unifies one of the central methods of classical rate calculation, `Transition-State Theory' (TST), with quantum mechanics, thereby deriving a rigorous `Quantum Transition-State Theory' (QTST). The resulting QTST is identical to ring polymer molecular dynamics transition-state theory (RPMD-TST), which was previously considered a heuristic method, and whose results we thereby validate. The key step in deriving a QTST is alignment of the flux and side dividing surfaces in path-integral space to obtain a quantum flux-side time-correlation function with a non-zero $t\\to 0_+$ limit. We then prove that this produces the exact quantum rate in the absence of recrossing by the exact quantum dynamics, fulfilling the requirements of a QTST. Furthermore, strong evidence is presented that this is the only QTST with positive-definite Boltzmann statistics and therefore the pre-eminent method for computation of thermal quantum rates in direct reactions.
Multiparty Quantum Secret Sharing of Quantum States Using Entanglement States
Institute of Scientific and Technical Information of China (English)
GUO Ying; HUANG Da-Zu; ZENG Gui-Hua; LEE Moon Ho
2008-01-01
A multi-partite-controlled quantum secret sharing scheme using several non-orthogonal entanglement states is presented with unconditional security.In this scheme,the participants share the secret quantum state by exchanging the secret polarization angles of the disordered travel particles.The security of the secret quantum state is also guaranteed by the non-orthogonal multi-partite-controlled entanglement states,the participants'secret polarizations,and the disorder of the travelling particles.Moreover,the present scheme is secure against the particle-number splitting attack and the intercept-and-resend attack.It may be still secure even if the distributed quantum state is embedded in a not-so-weak coherent-state pulse.
Monge Distance between Quantum States
Zyczkowski, K; Zyczkowski, Karol; Slomczynski, Wojciech
1998-01-01
We define a metric in the space of quantum states taking the Monge distance between corresponding Husimi distributions (Q--functions). This quantity fulfills the axioms of a metric and satisfies the following semiclassical property: the distance between two coherent states is equal to the Euclidean distance between corresponding points in the classical phase space. We compute analytically distances between certain states (coherent, squeezed, Fock and thermal) and discuss a scheme for numerical computation of Monge distance for two arbitrary quantum states.
Martingale Models for Quantum State Reduction
Adler, Stephen Louis; Brun, T A; Hughston, L P
2001-01-01
Stochastic models for quantum state reduction give rise to statistical laws that are in most respects in agreement with those of quantum measurement theory. Here we examine the correspondence of the two theories in detail, making a systematic use of the methods of martingale theory. An analysis is carried out to determine the magnitude of the fluctuations experienced by the expectation of the observable during the course of the reduction process and an upper bound is established for the ensemble average of the greatest fluctuations incurred. We consider the general projection postulate of L\\"uders applicable in the case of a possibly degenerate eigenvalue spectrum, and derive this result rigorously from the underlying stochastic dynamics for state reduction in the case of both a pure and a mixed initial state. We also analyse the associated Lindblad equation for the evolution of the density matrix, and obtain an exact time-dependent solution for the state reduction that explicitly exhibits the transition from...
Applying the relativistic quantization condition to a three-particle bound state in a periodic box
Hansen, Maxwell T
2016-01-01
Using our recently developed relativistic three-particle quantization condition, we study the finite-volume energy shift of a three-particle bound state. We reproduce the result obtained using non-relativistic quantum mechanics by Mei{\\ss}ner, R{\\'i}os and Rusetsky, and generalize the result to a moving frame.
Allam, J.; Beltram, F.; Capasso, F; Cho, A.
1987-01-01
We report the observation of resonant tunneling effects at high applied fields in a multiple quantum-well P-I-N diode. The Al0.48In0.52As/Ga0.47In0.53As structure shows features in the dark current due to Zener tunneling of electrons from the lowest sub-band in a valence-band quantum well to the first and second sub-bands of an adjacent conduction-band well.
Bound states and critical behavior of the Yukawa potential
Institute of Scientific and Technical Information of China (English)
LI; Yongyao
2006-01-01
[1]Yukawa,H.,On the interaction of elementary particles,Proc.Phys.Math Soc.Jap.,1935,17:48-57.[2]Sachs,R.,Goeppert-Mayer,M.,Calculations on a new neutron-proton interaction potential,Phys.Rev.,1938,53:991-993.[3]Harris,G.,Attractive two-body interactions in partially ionized plasmas,Phys.Rev.,1962,125:1131-1140.[4]Schey,H.,Schwartz,J.,Counting the bound states in short-range central potentials,Phys.Rev.B,1965,139:1428-1432.[5]Rogers,J.,Graboske,H.,Harwood,E.,Bound eigenstates of the static screened Coulomb poten-tial,Phys.Rev.A,1970,1:1577-1586.[6]McEnnan,J.,Kissel,L.,Pratt,R.,Analytic perturbation theory for screened Coulomb potentials:non-relativistic case,Phys.Rev.A,1976,13:532-559.[7]Gerry,C.,Estimates of the ground states of the Yukawa potential from the Bogoliubov inequality,J.Phys.A,1984,17:L313-L315.[8]Kr(o)ger,H.,Girard,R.,Dufour,G.,Direct calculation of the S matrix in coordinate space,Phys.Rev.C,1988,37:486-496.[9]Girard,R.,Kr(o)ger,H.,Labelle,P.et al.,Computation of a long time evolution in a Schr(o)dinger system,Phys.Rev.A,1988,37:3195-3200.[10]Garavelli,S.,Oliveira,F.,Analytical solution for a Yukawa-type potential,Phys.Rev.Lett.,1991,66:1310-1313.[11]Gomes,O.,Chacham,H.,Mohallem,J.,Variational calculations for the bound-unbound transition of the Yukawa potential,Phys.Rev.A,1994,50:228-231.[12]Yukalov,V.,Yukalova,E.,Oliveira,F.,Renormalization-group solutions for Yukawa potential,J.Phys.A,1998,31:4337-4348.[13]Brau,F.,Necessary and sufficient conditions for existence of bound states in a central potential,J.Phys.A,2003,36:9907-9913.[14]Bertini,L.,Mella,M.,Bressanini,D.et al.,Borromean binding in H-2 with Yukawa potential:a nonadiabatic quantum Monte Carlo study,Phys.Rev.A,2004,69:042504.[15]Dean,D.,Drummond,I.,Horgan,R.,Effective diffusion constant in a two-dimensional medium of charged point scatterers,J.Phys.A,2004,37:2039-2046.[16]De-Leo,S.,Rotelli,P.,Amplification of coupling for Yukawa potentials,Phys.Rev.D,2004,69:034006.[17]Khrapak
Quantum Circuits with Mixed States
Aharonov, Dorit; Kitaev, Alexei; Nisan, Noam
1998-01-01
We define the model of quantum circuits with density matrices, where non-unitary gates are allowed. Measurements in the middle of the computation, noise and decoherence are implemented in a natural way in this model, which is shown to be equivalent in computational power to standard quantum circuits. The main result in this paper is a solution for the subroutine problem: The general function that a quantum circuit outputs is a probabilistic function, but using pure state language, such a func...
Dark-matter bound states from Feynman diagrams
K. Petraki; M. Postma; M. Wiechers
2015-01-01
If dark matter couples directly to a light force mediator, then it may form bound states in the early universe and in the non-relativistic environment of haloes today. In this work, we establish a field-theoretic framework for the computation of bound-state formation cross-sections, de-excitation an
The representation of bound state wavefunctions by spherical Hankel functions
International Nuclear Information System (INIS)
The representation of a nucleon bound state by a single Hankel function is generalised such that the bound state is expanded as a linear combination of Hankel functions of the same l-value. The singularity at the origin due to the use of Hankel functions is removed. The arguments and coefficients of the expansion are determined by a variational method. (orig.)
Donor bound excitons in ZnSe nanoresonators - Applications in quantum information science
Energy Technology Data Exchange (ETDEWEB)
Pawlis, A. [Department of Physics, University of Paderborn, Warburger Str. 100, 33098 Paderborn, Germany and Edward L. Ginzton Laboratory, Stanford University, Stanford, California 94305-4088 (United States); Lischka, K. [Department of Physics, University of Paderborn, Warburger Str. 100, 33098 Paderborn (Germany); Sanaka, K.; Yamamoto, Y. [Edward L. Ginzton Laboratory, Stanford University, Stanford, California 94305-4088, USA and National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430 (Japan); Sleiter, D. [Edward L. Ginzton Laboratory, Stanford University, Stanford, California 94305-4088 (United States)
2014-05-15
Here we summarize the advantages of excitons bound to isolated fluorine donor in ZnSe/ZnMgSe quantum well nano-structures. Devices based on these semiconductors, are particularly suited to implement concepts of the optical manipulation of quantum states in solid-state material. The fluorine donor in ZnSe provides a physical qubit with potential advantages over previously researched qubits. In this context we show several initial demonstrations of devices, such as a low-threshold microdisk laser and an indistinguishable single photon source. Additionally we demonstrate the realization of a controllable three-level-system qubit consisting of a single Fluorine donor in a ZnSe nano-pillar, which provides an optical accessible single electon spin qubit.
Donor bound excitons in ZnSe nanoresonators - Applications in quantum information science
Pawlis, A.; Lischka, K.; Sanaka, K.; Sleiter, D.; Yamamoto, Y.
2014-05-01
Here we summarize the advantages of excitons bound to isolated fluorine donor in ZnSe/ZnMgSe quantum well nano-structures. Devices based on these semiconductors, are particularly suited to implement concepts of the optical manipulation of quantum states in solid-state material. The fluorine donor in ZnSe provides a physical qubit with potential advantages over previously researched qubits. In this context we show several initial demonstrations of devices, such as a low-threshold microdisk laser and an indistinguishable single photon source. Additionally we demonstrate the realization of a controllable three-level-system qubit consisting of a single Fluorine donor in a ZnSe nano-pillar, which provides an optical accessible single electon spin qubit.
Quantum States as Ordinary Information
Directory of Open Access Journals (Sweden)
Ken Wharton
2014-03-01
Full Text Available Despite various parallels between quantum states and ordinary information, quantum no-go-theorems have convinced many that there is no realistic framework that might underly quantum theory, no reality that quantum states can represent knowledge about. This paper develops the case that there is a plausible underlying reality: one actual spacetime-based history, although with behavior that appears strange when analyzed dynamically (one time-slice at a time. By using a simple model with no dynamical laws, it becomes evident that this behavior is actually quite natural when analyzed “all-at-once” (as in classical action principles. From this perspective, traditional quantum states would represent incomplete information about possible spacetime histories, conditional on the future measurement geometry. Without dynamical laws imposing additional restrictions, those histories can have a classical probability distribution, where exactly one history can be said to represent an underlying reality.
Effect of quasi-bound states on coherent electron transport in twisted nanowires
Cuoghi, Giampaolo; Bertoni, Andrea; Sacchetti, Andrea
2010-01-01
Quantum transmission spectra of a twisted electron waveguide expose the coupling between traveling and quasi-bound states. Through a direct numerical solution of the open-boundary Schr\\"odinger equation we single out the effects of the twist and show how the presence of a localized state leads to a Breit-Wigner or a Fano resonance in the transmission. We also find that the energy of quasi-bound states is increased by the twist, in spite of the constant section area along the waveguide. While ...
QQqq Four-Quark Bound States in Chiral SU(3) Quark Model
Institute of Scientific and Technical Information of China (English)
ZHANG Ming; ZHANG Hai-Xia; ZHANG Zong-Ye
2008-01-01
The possibility of QQqq heavy-light four-quark bound states has been analyzed by means of the chiral SU(3) quark model, where Q is the heavy quark (c or b) and q is the light quark (u, d, or s). We obtain a bound state for the bbnn configuration with quantum number JP=1+, I=0 and for the ccnn (JP=1+, I=0) configuration, which is not bound but slightly above the D*D* threshold (n is u or d quark). Meanwhile, we also conclude that a weakly bound state in bbnn system can also be found without considering the chiral quark interactions between the two light quarks, yet its binding energy is weaker than that with the chiral quark interactions.
Mould, Richard A
2003-01-01
If conscious observers are to be included in the quantum mechanical universe, we need to find the rules that engage observers with quantum mechanical systems. The author has proposed five rules that are discovered by insisting on empirical completeness; that is, by requiring the rules to draw empirical information from Schrodinger's solutions that is more complete than is currently possible with the (Born) probability interpretation. I discard Born's interpretation, introducing probability so...
Cruising through molecular bound-state manifolds with radiofrequency
Lang, F.; van der Straten, P.; Brandstätter, B.; Thalhammer, G.; Winkler, K.; Julienne, P.S.; Grimm, R.; Hecker Denschlag, J.
2008-01-01
The production of ultracold molecules with their rich internal structure is currently attracting considerable interest1, 2, 3, 4. For future experiments, it will be important to efficiently transfer these molecules from their initial internal quantum state at production to other quantum states of in
Quantum benchmarks for Gaussian states
Chiribella, Giulio
2014-01-01
Teleportation and storage of continuous variable states of light and atoms are essential building blocks for the realization of large scale quantum networks. Rigorous validation of these implementations require identifying, and surpassing, benchmarks set by the most effective strategies attainable without the use of quantum resources. Such benchmarks have been established for special families of input states, like coherent states and particular subclasses of squeezed states. Here we solve the longstanding problem of defining quantum benchmarks for general pure Gaussian states with arbitrary phase, displacement, and squeezing, randomly sampled according to a realistic prior distribution. As a special case, we show that the fidelity benchmark for teleporting squeezed states with totally random phase and squeezing degree is 1/2, equal to the corresponding one for coherent states. We discuss the use of entangled resources to beat the benchmarks in experiments.
Quantum resource studied from the perspective of quantum state superposition
Wu, Chengjun; Li, Junhui; Luo, Bin; Guo, Hong
2014-01-01
Quantum resources,such as discord and entanglement, are crucial in quantum information processing. In this paper, quantum resources are studied from the aspect of quantum state superposition. We define the local superposition (LS) as the superposition between basis of single part, and nonlocal superposition (NLS) as the superposition between product basis of multiple parts. For quantum resource with nonzero LS, quantum operation must be introduced to prepare it, and for quantum resource with ...
Dark states in quantum photosynthesis
Kozyrev, S V
2016-01-01
We discuss a model of quantum photosynthesis with degeneracy in the light-harvesting system. We consider interaction of excitons in chromophores with light and phonons (vibrations of environment). These interactions have dipole form but are different (are related to non-parallel vectors of "bright" states). We show that this leads to excitation of non-decaying "dark" states. We discuss relation of this model to the known from spectroscopical experiments phenomenon of existence of photonic echo in quantum photosynthesis.
Pseudogap state from quantum criticality
Efetov, K. B.; Meier, H.; Pépin, C.
2012-01-01
Upon application of an external tuning parameter, a magnetic state can be driven to a normal metal state at zero temperature. This phenomenon is known as quantum criticality and leads to fascinating responses in thermodynamics and transport of the compound. In the standard picture, a single quantum critical point occurs at zero temperature, which results in a nontrivial critical behaviour in its vicinity. Here we show that in two dimensions the scenario is considerably more complex due to the...
Quantum coherence of steered states
Hu, Xueyuan; Milne, Antony; Zhang, Boyang; Fan, Heng
2016-01-01
Lying at the heart of quantum mechanics, coherence has recently been studied as a key resource in quantum information theory. Quantum steering, a fundamental notion originally considered by Schödinger, has also recently received much attention. When Alice and Bob share a correlated quantum system, Alice can perform a local measurement to ‘steer’ Bob’s reduced state. We introduce the maximal steered coherence as a measure describing the extent to which steering can remotely create coherence; more precisely, we find the maximal coherence of Bob’s steered state in the eigenbasis of his original reduced state, where maximization is performed over all positive-operator valued measurements for Alice. We prove that maximal steered coherence vanishes for quantum-classical states whilst reaching a maximum for pure entangled states with full Schmidt rank. Although invariant under local unitary operations, maximal steered coherence may be increased when Bob performs a channel. For a two-qubit state we find that Bob’s channel can increase maximal steered coherence if and only if it is neither unital nor semi-classical, which coincides with the condition for increasing discord. Our results show that the power of steering for coherence generation, though related to discord, is distinct from existing measures of quantum correlation.
Optimal, reliable estimation of quantum states
International Nuclear Information System (INIS)
Accurately inferring the state of a quantum device from the results of measurements is a crucial task in building quantum information processing hardware. The predominant state estimation procedure, maximum likelihood estimation (MLE), generally reports an estimate with zero eigenvalues. These cannot be justified. Furthermore, the MLE estimate is incompatible with error bars, so conclusions drawn from it are suspect. I propose an alternative procedure, Bayesian mean estimation (BME). BME never yields zero eigenvalues, its eigenvalues provide a bound on their own uncertainties, and under certain circumstances it is provably the most accurate procedure possible. I show how to implement BME numerically, and how to obtain natural error bars that are compatible with the estimate. Finally, I briefly discuss the differences between Bayesian and frequentist estimation techniques.
Li, Jun; Lu, Dawei; Luo, Zhihuang; Laflamme, Raymond; Peng, Xinhua; Du, Jiangfeng
2016-07-01
Precisely characterizing and controlling realistic quantum systems under noises is a challenging frontier in quantum sciences and technologies. In developing reliable controls for open quantum systems, one is often confronted with the problem of the lack of knowledge on the system controllability. The purpose of this paper is to give a numerical approach to this problem, that is, to approximately compute the reachable set of states for coherently controlled quantum Markovian systems. The approximation consists of setting both upper and lower bounds for system's reachable region of states. Furthermore, we apply our reachability analysis to the control of the relaxation dynamics of a two-qubit nuclear magnetic resonance spin system. We implement some experimental tasks of quantum state engineering in this open system at a near optimal performance in view of purity: e.g., increasing polarization and preparing pseudopure states. These results demonstrate the usefulness of our theory and show interesting and promising applications of environment-assisted quantum dynamics.
Classical and quantum computation with small space bounds (PhD thesis)
Yakaryilmaz, Abuzer
2011-01-01
In this thesis, we introduce a new quantum Turing machine (QTM) model that supports general quantum operators, together with its pushdown, counter, and finite automaton variants, and examine the computational power of classical and quantum machines using small space bounds in many different cases. The main contributions are summarized below. Firstly, we consider QTMs in the unbounded error setting: (i) in some cases of sublogarithmic space bounds, the class of languages recognized by QTMs is shown to be strictly larger than that of classical ones; (ii) in constant space bounds, the same result can still be obtained for restricted QTMs; (iii) the complete characterization of the class of languages recognized by realtime constant space nondeterministic QTMs is given. Secondly, we consider constant space-bounded QTMs in the bounded error setting: (i) we introduce a new type of quantum and probabilistic finite automata (QFAs and PFAs, respectively,) with a special two-way input head which is not allowed to be sta...
Relativistic bound states: a mass formula for vector mesons
International Nuclear Information System (INIS)
In the framework of a relativistic description of two particles bound states, a mass formula for vector mesons considered as quark-antiquark systems bound by harmonic oscillator like forces is proposed. Results in good agreement with experimental values are obtained
Quantum-polarization state tomography
Bayraktar, Ömer; Swillo, Marcin; Canalias, Carlota; Björk, Gunnar
2016-08-01
We propose and demonstrate a method for quantum-state tomography of qudits encoded in the quantum polarization of N -photon states. This is achieved by distributing N photons nondeterministically into three paths and their subsequent projection, which for N =1 is equivalent to measuring the Stokes (or Pauli) operators. The statistics of the recorded N -fold coincidences determines the unknown N -photon polarization state uniquely. The proposed, fixed setup manifestly rules out any systematic measurement errors due to moving components and allows for simple switching between tomography of different states, which makes it ideal for adaptive tomography schemes.
Quasi-bound states in strained graphene
Bahamon, Dario; Qi, Zenan; Park, Harold; Pareira, Vitor; Campbell, David
In this work, we explore the possibility of manipulating electronic states in graphene nanostructures by mechanical means. Specifically, we use molecular dynamics and tight-binding models to access the electronic and transport properties of strained graphene nanobubbles and graphene kirigami. We establish that low energy electrons can be confined in the arms of the kirigami and within the nanobubbles; under different load conditions the coupling between confined states and continuous states is modified creating different conductance line-shapes.
Decoy State Quantum Key Distribution
Lo, Hoi-Kwong
2005-10-01
Quantum key distribution (QKD) allows two parties to communicate in absolute security based on the fundamental laws of physics. Up till now, it is widely believed that unconditionally secure QKD based on standard Bennett-Brassard (BB84) protocol is limited in both key generation rate and distance because of imperfect devices. Here, we solve these two problems directly by presenting new protocols that are feasible with only current technology. Surprisingly, our new protocols can make fiber-based QKD unconditionally secure at distances over 100km (for some experiments, such as GYS) and increase the key generation rate from O(η2) in prior art to O(η) where η is the overall transmittance. Our method is to develop the decoy state idea (first proposed by W.-Y. Hwang in "Quantum Key Distribution with High Loss: Toward Global Secure Communication", Phys. Rev. Lett. 91, 057901 (2003)) and consider simple extensions of the BB84 protocol. This part of work is published in "Decoy State Quantum Key Distribution", . We present a general theory of the decoy state protocol and propose a decoy method based on only one signal state and two decoy states. We perform optimization on the choice of intensities of the signal state and the two decoy states. Our result shows that a decoy state protocol with only two types of decoy states--a vacuum and a weak decoy state--asymptotically approaches the theoretical limit of the most general type of decoy state protocols (with an infinite number of decoy states). We also present a one-decoy-state protocol as a special case of Vacuum+Weak decoy method. Moreover, we provide estimations on the effects of statistical fluctuations and suggest that, even for long distance (larger than 100km) QKD, our two-decoy-state protocol can be implemented with only a few hours of experimental data. In conclusion, decoy state quantum key distribution is highly practical. This part of work is published in "Practical Decoy State for Quantum Key Distribution
Higgs interchange and bound states of superheavy fermions
Indian Academy of Sciences (India)
M De Sanctis
2013-09-01
Hypothetical superheavy fourth-generation fermions with a very small coupling with the rest of the Standard Model can give rise to long enough lived bound states. The production and the detection of these bound states would be experimentally feasible at the LHC. Extending, in the present study, the analysis of other authors, a semirelativistic wave equation is solved using an accurate numerical method to determine the binding energies of these possible superheavy fermion-bound states. The interaction given by the Yukawa potential of the Higgs boson exchange is considered; the corresponding relativistic corrections are calculated by means of a model based on the covariance properties of the Hamiltonian. We study the effects given by the Coulomb force. Moreover, we calculate the contributions given by the Coulombic and confining terms of the strong interaction in the case of superheavy quark bound states. The results of the model are critically analysed.
Bound states of two-dimensional relativistic harmonic oscillators
Institute of Scientific and Technical Information of China (English)
Qiang Wen-Chao
2004-01-01
We give the exact normalized bound state wavefunctions and energy expressions of the Klein-Gordon and Dirac equations with equal scalar and vector harmonic oscillator potentials in the two-dimensional space.
A quantum bound on the thermodynamic description of gravity
Hod, Shahar
2016-01-01
The seminal works of Bekenstein and Hawking have revealed that black holes have a well-defined thermodynamic description. In particular, it is often stated in the physical literature that black holes, like mundane physical systems, obey the first law of thermodynamics: $\\Delta S=\\Delta E/T_{\\text{BH}}$, where $T_{\\text{BH}}$ is the Bekenstein-Hawking temperature of the black hole. In the present work we test the regime of validity of the thermodynamic description of gravity. In particular, we provide compelling evidence that, due to quantum effects, the first law of thermodynamics breaks down in the low-temperature regime $T_{\\text{BH}}\\times r_{\\text{H}}\\lesssim ({{\\hbar}/{r_{\\text{H}}}})^2$ of near-extremal black holes (here $r_{\\text{H}}$ is the radius of the black-hole horizon).
From the Deuteron to Deusons, an Analysis of Deuteronlike Meson-Meson Bound States
Törnqvist, N A
1994-01-01
A systematic study of possible deuteronlike two-meson bound states, {\\it deusons}, is presented. Previous arguments that many such bound states may exist are elaborated with detailed arguments and numerical calculations including, in particular, the tensor potential. In the heavy meson sector one-pion exchange alone is strong enough to form at least deuteron-like $B\\bar B^*$ and $B^*\\bar B^*$ composites bound by approximately 50 MeV. Composites of $D\\bar D^*$ and $D^*\\bar D^*$ states bound by pion exchange alone are expected near the thresholds, while in the light meson sector one generally needs some additional short range attraction to form bound states. The quantum numbers of these states are I=0, In $B\\bar B^*$ one predictss the states: $\\eta_b(\\approx 10545),\\ \\chi_{b1}(\\approx 10562)$, and in $B^*\\bar B^*$ one finds the states: $\\eta_b(\\approx 10590),\\ \\chi_{b0}(\\approx 10582),\\ h_b(\\approx 10608),\\ \\chi_{b2}(\\approx 10602)$. Near the $D\\bar D^*$ threshold the states: $\\eta_c(\\approx 3870),\\ \\chi_{c0}(\\...
Information complementarity in multipartite quantum states and security in cryptography
Bera, Anindita; Kumar, Asutosh; Rakshit, Debraj; Prabhu, R.; SenDe, Aditi; Sen, Ujjwal
2016-03-01
We derive complementarity relations for arbitrary quantum states of multiparty systems of any number of parties and dimensions between the purity of a part of the system and several correlation quantities, including entanglement and other quantum correlations as well as classical and total correlations, of that part with the remainder of the system. We subsequently use such a complementarity relation between purity and quantum mutual information in the tripartite scenario to provide a bound on the secret key rate for individual attacks on a quantum key distribution protocol.
Quasibound states in semiconductor quantum well structures
Rihani, Samir; Page, Hideaki; Beere, Harvey E.
2010-02-01
We present a study on quasibound states in multiple quantum well structures using a finite element model (FEM). The FEM is implemented for solving the effective mass Schrödinger equation in arbitrary layered semiconductor nanostructures with an arbitrary applied potential. The model also includes nonparabolicity effects by using an energy dependent effective mass, where the resulting nonlinear eigenvalue problem was solved using an iterative approach. We focus on quasibound/continuum states above the barrier potential and show that such states can be determined using cyclic boundary conditions. This new method enables the determination of both bound and quasibound states simultaneously, making it more efficient than other methods where different boundary conditions have to be used in extracting the relevant states. Furthermore, the new method lifted the problem of quasibound state divergence commonly seen with many other methods of calculation. Hence enabling accurate determination of dipole matrix elements involving both bound and quasibound states. Such calculations are vital in the design of intersubband optoelectronic devices and reveal the interesting properties of quasibound states above the potential barriers.
Quantum Memory as Light Pulses Quantum States Transformer
Directory of Open Access Journals (Sweden)
Vetlugin A.N.
2015-01-01
Full Text Available Quantum memory can operate not only as a write-in/readout device [1] for quantum light pulses and non-classical states generation [2] device but also as a quantum states of light transformer. Here the addressable parallel quantum memory [3] possibilities for this type of transformation are researched. Quantum memory operates as a conventional N-port interferometer with N equals to the number of the involved spin waves. As example we consider the ability to transform quantum states of two light pulses – in this case the quantum memory works as a mirror with a controlled transmission factor.
Discrete Quantum Control - State Preparation
Grice, Jon R.; Meyer, David A.
2012-01-01
A discrete-time method for solving problems in optimal quantum control is presented. Controlling the time discretized markovian dynamics of a quantum system can be reduced to a Markov-decision process. We demonstrate this method in this with a class of simple one qubit systems, which are also discretized in space. For the task of state preparation we solve the examples both numerically and analytically with dynamic programming techniques.
Multicasting Homogeneous and Heterogeneous Quantum States in Quantum Networks
Shih, Yi-Chang; Wei, Hung-Yu; 10.1016/j.nancom.2010.10.003
2010-01-01
In this paper, we target the practical implementation issues of quantum multicast networks. First, we design a recursive lossless compression that allows us to control the trade-off between the circuit complexity and the dimension of the compressed quantum state. We give a formula that describes the trade-off, and further analyze how the formula is affected by the controlling parameter of the recursive procedure. Our recursive lossless compression can be applied in a quantum multicast network where the source outputs homogeneous quantum states (many copies of a quantum state) to a set of destinations through a bottleneck. Such a recursive lossless compression is extremely useful in the current situation where the technology of producing large-scale quantum circuits is limited. Second, we develop two lossless compression schemes that work for heterogeneous quantum states (many copies of a set of quantum states) when the set of quantum states satisfies a certain structure. The heterogeneous compression schemes ...
On Bounded Posets Arising from Quantum Mechanical Measurements
Dorninger, Dietmar; Länger, Helmut
2016-10-01
Let S be a set of states of a physical system. The probabilities p( s) of the occurrence of an event when the system is in different states s ∈ S define a function from S to [0, 1] called a numerical event or, more precisely, an S- probability. If one orders a set P of S-probabilities in respect to the order of functions, further includes the constant functions 0 and 1 and defines p' = 1 - p for every p ∈ P, then one obtains a bounded poset of S-probabilities with an antitone involution. We study these posets in respect to various conditions about the existence of the sum of certain functions within the posets and derive properties from these conditions. In particular, questions of relations between different classes of S-probabilities arising this way are settled, algebraic representations are provided and the property that two S-probabilities commute is characterized which is essential for recognizing a classical physical system.
Quantum speed limits for Bell-diagonal states
Han, Wei; Jiang, Ke-Xia; Zhang, Ying-Jie; Xia, Yun-Jie
2015-12-01
The lower bounds of the evolution time between two distinguishable states of a system, defined as quantum speed limit time, can characterize the maximal speed of quantum computers and communication channels. We study the quantum speed limit time between the composite quantum states and their target states in the presence of nondissipative decoherence. For the initial states with maximally mixed marginals, we obtain the exact expressions of the quantum speed limit time which mainly depend on the parameters of the initial states and the decoherence channels. Furthermore, by calculating the quantum speed limit time for the time-dependent states started from a class of initial states, we discover that the quantum speed limit time gradually decreases in time, and the decay rate of the quantum speed limit time would show a sudden change at a certain critical time. Interestingly, at the same critical time, the composite system dynamics would exhibit a sudden transition from classical decoherence to quantum decoherence. Project supported by the National Natural Science Foundation of China (Grant Nos. 61178012 and 11304179), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant Nos. 20123705120002 and 20133705110001), the Natural Science Foundation of Shandong Province of China (Grant No. ZR2014AP009), and the Scientific Research Foundation of Qufu Normal University.
Extended supersymmetry for the bound states of the generalized Hulthen potential hierarchy
International Nuclear Information System (INIS)
Using the associated hypergeometric differential equation, we analytically solve the bound states corresponding to a hierarchy of the radial potential -v0 e-δr/(1 - e-δr) + c e-δr/(1 - e-δr)2 as a generalization of the Hulthen potential. Then, an analytic solution corresponding to a special case for which the parameter c is expected to be in terms of l(l + 1) is also derived. Meanwhile without introducing a superpotential and in the framework of supersymmetric quantum mechanics, it is shown that these bound states can be calculated by two different algebraic methods. Based on these two approaches, it is noted that the bound states realize an extended supersymmetry structure
Extended supersymmetry for the bound states of the generalized Hulthén potential hierarchy
Fakhri, H.; Chenaghlou, A.
2004-09-01
Using the associated hypergeometric differential equation, we analytically solve the bound states corresponding to a hierarchy of the radial potential -v0 e-dgrr/(1 - e-dgrr) + c e-dgrr/(1 - e-dgrr)2 as a generalization of the Hulthén potential. Then, an analytic solution corresponding to a special case for which the parameter c is expected to be in terms of l(l + 1) is also derived. Meanwhile without introducing a superpotential and in the framework of supersymmetric quantum mechanics, it is shown that these bound states can be calculated by two different algebraic methods. Based on these two approaches, it is noted that the bound states realize an extended supersymmetry structure.
Extended supersymmetry for the bound states of the generalized Hulthen potential hierarchy
Energy Technology Data Exchange (ETDEWEB)
Fakhri, H [Institute for Studies in Theoretical Physics and Mathematics (IPM), PO Box 19395-5531, Tehran (Iran, Islamic Republic of); Chenaghlou, A [Institute for Studies in Theoretical Physics and Mathematics (IPM), PO Box 19395-5531, Tehran (Iran, Islamic Republic of)
2004-09-03
Using the associated hypergeometric differential equation, we analytically solve the bound states corresponding to a hierarchy of the radial potential -v{sub 0} e{sup -{delta}}{sup r}/(1 - e{sup -{delta}}{sup r}) + c e{sup -{delta}}{sup r}/(1 - e{sup -{delta}}{sup r}){sup 2} as a generalization of the Hulthen potential. Then, an analytic solution corresponding to a special case for which the parameter c is expected to be in terms of l(l + 1) is also derived. Meanwhile without introducing a superpotential and in the framework of supersymmetric quantum mechanics, it is shown that these bound states can be calculated by two different algebraic methods. Based on these two approaches, it is noted that the bound states realize an extended supersymmetry structure.
Computing Stabilized Norms for Quantum Operations via the Theory of Completely Bounded Maps
Johnston, Nathaniel; Kribs, David W.; Paulsen, Vern I.
2007-01-01
The diamond and completely bounded norms for linear maps play an increasingly important role in quantum information science, providing fundamental stabilized distance measures for differences of quantum operations. Based on the theory of completely bounded maps, we formulate an algorithm to compute the norm of an arbitrary linear map. We present an implementation of the algorithm via Maple, discuss its efficiency, and consider the case of differences of unitary maps.
Bound and continuum vibrational states of the bifluoride anion
Špirko, V.; Šindelka, M.; Shirsat, R. N.; Leszczynski, J.
2003-07-01
The energies of the bound vibrational states and energy density spectra of the continuum vibrational states of FHF - are calculated, 'exactly' and 'adiabatically', using a new ab initio (CCSD(T)) potential energy surface. Statistical properties of the bound states are probed in terms of the density of states and nearest neighbor level spacing distributions (NNSD). Importantly, the approximate 'adiabatic' densities coincide nearly quantitatively with their 'exact' counterparts. A quantitative fitting of the NNSDs is achieved with a new empirical modification of the Wigner distribution.
Floquet bound states around defects and adatoms in graphene
Lovey, D. A.; Usaj, Gonzalo; Foa Torres, L. E. F.; Balseiro, C. A.
2016-06-01
Recent studies have focused on laser-induced gaps in graphene which have been shown to have a topological origin, thereby hosting robust states at the sample edges. While the focus has remained mainly on these topological chiral edge states, the Floquet bound states around defects lack a detailed study. In this paper we present such a study covering large defects of different shape and also vacancy-like defects and adatoms at the dynamical gap at ℏ Ω /2 (ℏ Ω being the photon energy). Our results, based on analytical calculations as well as numerics for full tight-binding models, show that the bound states are chiral and appear in a number which grows with the defect size. Furthermore, while the bound states exist regardless of the type of the defect's edge termination (zigzag, armchair, mixed), the spectrum is strongly dependent on it. In the case of top adatoms, the bound state quasienergies depend on the adatoms energy. The appearance of such bound states might open the door to the presence of topological effects on the bulk transport properties of dirty graphene.
Remote preparation of quantum states
Bennett, C H; Leung, D W; Shor, P W; Winter, A; Bennett, Charles H; Hayden, Patrick; Leung, Debbie W.; Shor, Peter W.; Winter, Andreas
2003-01-01
Remote state preparation is the variant of quantum state teleportation in which the sender knows the quantum state to be communicated. The original paper introducing teleportation established minimal requirements for classical communication and entanglement but the corresponding limits for remote state preparation have remained unknown until now: previous work has shown, however, that it not only requires less classical communication but also gives rise to a trade-off between these two resources in the appropriate setting. We discuss this problem from first principles, including the various choices one may follow in the definitions of the actual resources. Our main result is a general method of remote state preparation for arbitrary states of many qubits, at a cost of 1 bit of classical communication and 1 bit of entanglement per qubit sent. In this "universal" formulation, these ebit and cbit requirements are shown to be simultaneously optimal by exhibiting a dichotomy. This then yields the exact trade-off c...
Bound States of a Ferromagnetic Wire in a Superconductor.
Sau, Jay D; Brydon, P M R
2015-09-18
We consider the problem of bound states in strongly anisotropic ferromagnetic impurities in a superconductor, motivated by recent experiments that claim to observe Majorana modes at the ends of ferromagnetic wires on a superconducting substrate [S. Nadj-Perge et al., Science 346, 602 (2014)]. Generalizing the successful theory of bound states of spherically symmetric impurities, we consider a wirelike potential using both analytical and numerical approaches. We find that away from the ends of the wire the bound states form bands with pronounced van Hove singularities, giving rise to subgap peaks in the local density of states. For sufficiently strong magnetization of the wire, we show that this process generically produces a sharp peak at zero energy in the local density of states near the ends of the wire. This zero-energy peak has qualitative similarities to the claimed signature of a Majorana mode observed in the aforementioned experiment.
Bound States of a Ferromagnetic Wire in a Superconductor
Sau, Jay D.; Brydon, P. M. R.
2015-09-01
We consider the problem of bound states in strongly anisotropic ferromagnetic impurities in a superconductor, motivated by recent experiments that claim to observe Majorana modes at the ends of ferromagnetic wires on a superconducting substrate [S. Nadj-Perge et al., Science 346, 602 (2014)]. Generalizing the successful theory of bound states of spherically symmetric impurities, we consider a wirelike potential using both analytical and numerical approaches. We find that away from the ends of the wire the bound states form bands with pronounced van Hove singularities, giving rise to subgap peaks in the local density of states. For sufficiently strong magnetization of the wire, we show that this process generically produces a sharp peak at zero energy in the local density of states near the ends of the wire. This zero-energy peak has qualitative similarities to the claimed signature of a Majorana mode observed in the aforementioned experiment.
Brokered Graph State Quantum Computing
Benjamin, Simon C.; Browne, Dan E.; Fitzsimons, Joe; Morton, John J. L.
2005-01-01
We describe a procedure for graph state quantum computing that is tailored to fully exploit the physics of optically active multi-level systems. Leveraging ideas from the literature on distributed computation together with the recent work on probabilistic cluster state synthesis, our model assigns to each physical system two logical qubits: the broker and the client. Groups of brokers negotiate new graph state fragments via a probabilistic optical protocol. Completed fragments are mapped from...
Quantum state transfer via Bloch oscillations.
Tamascelli, Dario; Olivares, Stefano; Rossotti, Stefano; Osellame, Roberto; Paris, Matteo G A
2016-05-18
The realization of reliable quantum channels, able to transfer a quantum state with high fidelity, is a fundamental step in the construction of scalable quantum devices. In this paper we describe a transmission scheme based on the genuinely quantum effect known as Bloch oscillations. The proposed protocol makes it possible to carry a quantum state over different distances with a minimal engineering of the transmission medium and can be implemented and verified on current quantum technology hardware.
Methods of observation of the centrifugal quantum states of neutrons
Cubitt, R.; Nesvizhevsky, V. V.; Petukhov, A. K.; Voronin, A. Yu.; Pignol, G.; Protasov, K. V.; Gurshijants, P.
2009-12-01
We propose methods for observation of the quasi-stationary states of neutrons, localized near a curved mirror surface. The bounding effective well is formed by the centrifugal potential and the mirror's optical potential. This phenomenon is an example of an exactly solvable "quantum bouncer" problem that can be studied experimentally. It could provide a new tool for studying fundamental neutron-matter interactions, neutron quantum optics and surface physics effects. The feasibility of observation of such quantum states has been proven in first experiments.
Methods of observation of the centrifugal quantum states of neutrons
Energy Technology Data Exchange (ETDEWEB)
Cubitt, R. [Institut Laue-Langevin (ILL), 6 rue Jules Horowitz, F-38042 Grenoble (France); Nesvizhevsky, V.V., E-mail: nesvizhevsky@ill.e [Institut Laue-Langevin (ILL), 6 rue Jules Horowitz, F-38042 Grenoble (France); Petukhov, A.K. [Institut Laue-Langevin (ILL), 6 rue Jules Horowitz, F-38042 Grenoble (France); Voronin, A.Yu., E-mail: dr.a.voronin@gmail.co [P.N. Lebedev Physical Institute, 53 Leninsky Prospekt, 119991 Moscow (Russian Federation); Pignol, G.; Protasov, K.V. [Laboratoire de Physique Subatomique et de Cosmologie (LPSC), IN2P3-CNRS, UJF, 53, Avenue des Martyrs, F-38026 Grenoble (France); Gurshijants, P. [Institute of Solid State Physics (ISSP), Institutskaya Street 2, 142432 Chernogolovka, Moscow Region (Russian Federation)
2009-12-11
We propose methods for observation of the quasi-stationary states of neutrons, localized near a curved mirror surface. The bounding effective well is formed by the centrifugal potential and the mirror's optical potential. This phenomenon is an example of an exactly solvable 'quantum bouncer' problem that can be studied experimentally. It could provide a new tool for studying fundamental neutron-matter interactions, neutron quantum optics and surface physics effects. The feasibility of observation of such quantum states has been proven in first experiments.
Fractal states in quantum information processing
Jaeger, Gregg
2007-01-01
The fractal character of some quantum properties has been shown for systems described by continuous variables. Here, a definition of quantum fractal states is given that suits the discrete systems used in quantum information processing, including quantum coding and quantum computing. Several important examples are provided.
A precise error bound for quantum phase estimation.
Directory of Open Access Journals (Sweden)
James M Chappell
Full Text Available Quantum phase estimation is one of the key algorithms in the field of quantum computing, but up until now, only approximate expressions have been derived for the probability of error. We revisit these derivations, and find that by ensuring symmetry in the error definitions, an exact formula can be found. This new approach may also have value in solving other related problems in quantum computing, where an expected error is calculated. Expressions for two special cases of the formula are also developed, in the limit as the number of qubits in the quantum computer approaches infinity and in the limit as the extra added qubits to improve reliability goes to infinity. It is found that this formula is useful in validating computer simulations of the phase estimation procedure and in avoiding the overestimation of the number of qubits required in order to achieve a given reliability. This formula thus brings improved precision in the design of quantum computers.
Search for bound-state electron+positron pair decay
Bosch, F.; Hagmann, S.; Hillenbrand, P.-M.; Lane, G. J.; Litvinov, Yu. A.; Reed, M. W.; Sanjari, M. S.; Stöhlker, Th.; Torilov, S. Yu.; Tu, X. L.; Walke, P. M.
2016-09-01
The heavy ion storage rings coupled to in-flight radioactive-ion beam facilities, namely the ability to produce and store for extended periods of time radioactive nuclides in high atomic charge states, for the searchof yet unobserved decay mode - bound-state electron-positron pair decay.
Entanglement for All Quantum States
de la Torre, A. C.; Goyeneche, D.; Leitao, L.
2010-01-01
It is shown that a state that is factorizable in the Hilbert space corresponding to some choice of degrees of freedom becomes entangled for a different choice of degrees of freedom. Therefore, entanglement is not a special case but is ubiquitous in quantum systems. Simple examples are calculated and a general proof is provided. The physical…
Martingale models for quantum state reduction
International Nuclear Information System (INIS)
Stochastic models for quantum state reduction give rise to statistical laws that are in most respects in agreement with those of quantum measurement theory. Here we examine the correspondence of the two theories in detail, making a systematic use of the methods of martingale theory. An analysis is carried out to determine the magnitude of the fluctuations experienced by the expectation of the observable during the course of the reduction process and an upper bound is established for the ensemble average of the greatest fluctuations incurred. We consider the general projection postulate of Lueders applicable in the case of a possibly degenerate eigenvalue spectrum, and derive this result rigorously from the underlying stochastic dynamics for state reduction in the case of both a pure and a mixed initial state. We also analyse the associated Lindblad equation for the evolution of the density matrix, and obtain an exact time-dependent solution for the state reduction that explicitly exhibits the transition from a general initial density matrix to the Lueders density matrix. Finally, we apply Girsanov's theorem to derive a set of simple formulae for the dynamics of the state in terms of a family of geometric Brownian motions, thereby constructing an explicit unravelling of the Lindblad equation. (author)
Scattering Induced Quantum Interference of Multiple Quantum Optical States
DEFF Research Database (Denmark)
Ott, Johan Raunkjær; Wubs, Martijn; Mortensen, N. Asger;
2011-01-01
Using a discrete mode theory for propagation of quantum optical states, we investigate the consequences of multiple scattering on the degree of quadrature entanglement and quantum interference. We report that entangled states can be created by multiple-scattering. We furthermore show that quantum...
An Exciton Bound to a Neutral Donor in Quantum Dots
Institute of Scientific and Technical Information of China (English)
解文方
2002-01-01
The binding energies for an exciton (X) trapped in a two-dimensional quantum dot by a neutral donor have been calculated using the method of few-body physics for the heavy hole (σ= 0.196) and the light hole (σr = 0.707).We find that the (D0, X) complex confined in a quantum dot has in general a larger binding energy than those in a two-dimensional quantum well and a three-dimensional bulk semiconductor, and the binding energy increases with the decrease of the dot radius. At dot radius R →∞, we compare our calculated result with the previous results.
Quantum State Detection Via Elimination
Ettinger, J M; Hoyer, Peter
1999-01-01
We present the view of quantum algorithms as a search-theoretic problem. We show that the Fourier transform, used to solve the Abelian hidden subgroup problem, is an example of an efficient elimination observable which eliminates a constant fraction of the candidate secret states with high probability. Finally, we show that elimination observables do not always exist by considering the geometry of the hidden subgroup states of the dihedral group D_N.
Relativistic bound state approach to fundamental forces including gravitation
Directory of Open Access Journals (Sweden)
Morsch H.P.
2012-06-01
Full Text Available To describe the structure of particle bound states of nature, a relativistic bound state formalism is presented, which requires a Lagrangian including scalar coupling of two boson fields. The underlying mechanisms are quite complex and require an interplay of overlapping boson fields and fermion-antifermion production. This gives rise to two potentials, a boson-exchange potential and one identified with the long sought confinement potential in hadrons. With minimal requirements, two elementary massless fermions (quantons - with and without charge - and one gauge boson, hadrons and leptons but also atoms and gravitational systems are described by bound states with electric and magnetic coupling between the charges and spins of quantons. No need is found for colour, Higgs-coupling and supersymmetry.
Probing Majorana Bound States in T-Shaped Junctions
Wu, Bin-He; Cheng, Xiao; Wang, Chun-Rui; Gong, Wei-Jiang
2014-03-01
We investigate the transport properties of a pair of Majorana bound states in a T-shaped junction, where two normal leads are coupled with an identical Majorana bound state. Both the scattering matrix and the recursive Green function method show that the peak value of the differential conductance (Gpeak) in units of e2/h and the shot noise Fano factor in the zero bias limit (F0), which are measured at the same lead and zero temperature, satisfy a linear relation as F0 = 1 + Gpeak/2, independent of the magnitude or symmetry of the coupling strengths to the leads. Therefore, combined measurements of the differential conductance and shot noise in the T-shaped geometry can serve as a characteristic signature in probing Majorana bound states.
Quantum Contextuality with Stabilizer States
Directory of Open Access Journals (Sweden)
Jiri Vala
2013-06-01
Full Text Available The Pauli groups are ubiquitous in quantum information theory because of their usefulness in describing quantum states and operations and their readily understood symmetry properties. In addition, the most well-understood quantum error correcting codes—stabilizer codes—are built using Pauli operators. The eigenstates of these operators—stabilizer states—display a structure (e.g., mutual orthogonality relationships that has made them useful in examples of multi-qubit non-locality and contextuality. Here, we apply the graph-theoretical contextuality formalism of Cabello, Severini and Winter to sets of stabilizer states, with particular attention to the effect of generalizing two-level qubit systems to odd prime d-level qudit systems. While state-independent contextuality using two-qubit states does not generalize to qudits, we show explicitly how state-dependent contextuality associated with a Bell inequality does generalize. Along the way we note various structural properties of stabilizer states, with respect to their orthogonality relationships, which may be of independent interest.
Binding Energy of an Exciton Bound to Ionized Acceptor in Quantum Dots
Institute of Scientific and Technical Information of China (English)
XIE Wen-Fang
2001-01-01
Binding energiesfor an exciton (X ) trapped in the two-dimensional quantum dot by a negative ion located on the z axis at a distance from the dot plane are calculated by using the method of few-body physics.This configuration is called a barrier (A-,X) center.The dependence of the binding energy of the ground state of the barrier (A-,X)center on the electron-to-hole mass ratio for a few values of the distance d between the fixed negative ion on the z axis and the dot plane is obtained.We find that when d → 0,the barrier (A-,X) center has not any bound state.We also studied the stability and binding energy of the ground state of the barrier (A-,X) center in a parabolic quantum dot as a function of the distance d between the fixed negative ion on the z axis and the dot plane.``
A Precise Error Bound for Quantum Phase Estimation
Chappell, James M; von Smekal, Lorenz; Iqbal, Azhar; Abbott, Derek
2011-01-01
Quantum phase estimation is one of the key algorithms in the field of quantum computing, but up until now, only approximate expressions have been derived for the probability of error. We revisit these derivations, and find that by ensuring symmetry in the error definitions, that an exact formula can be found. This new approach may also have value in solving other related problems. Expressions for two special cases of the formula are also developed, in the limit as the number of qubits in the quantum computer approaches infinity and in the limit as the extra added qubits to improve reliability goes to infinity. It is found that this formula is useful in validating computer simulations of the phase estimation procedure and in avoiding the overestimation of the number of qubits required in order to achieve a given reliability. This formula thus brings improved precision in the design of quantum computers.
Energy Technology Data Exchange (ETDEWEB)
Adame, J.; Warzel, S., E-mail: warzel@ma.tum.de [Zentrum Mathematik, TU München, Boltzmannstr. 3, 85747 Garching (Germany)
2015-11-15
In this note, we use ideas of Farhi et al. [Int. J. Quantum. Inf. 6, 503 (2008) and Quantum Inf. Comput. 11, 840 (2011)] who link a lower bound on the run time of their quantum adiabatic search algorithm to an upper bound on the energy gap above the ground-state of the generators of this algorithm. We apply these ideas to the quantum random energy model (QREM). Our main result is a simple proof of the conjectured exponential vanishing of the energy gap of the QREM.
Flow Equations for N Point Functions and Bound States
Ellwanger, Ulrich
1994-01-01
We discuss the exact renormalization group or flow equation for the effective action and its decomposition into one particle irreducible N point functions. With the help of a truncated flow equation for the four point function we study the bound state problem for scalar fields. A combination of analytic and numerical methods is proposed, which is applied to the Wick-Cutkosky model and a QCD-motivated interaction. We present results for the bound state masses and the Bethe-Salpeter wave function. (Figs. 1-4 attached as separate uuencoded post-script files.)
Decoherence and Quantum-state Measurement in Quantum Optics
Davidovich, Luiz
2003-01-01
This paper discusses work developed in recent years, in the domain of quantum optics, which has led to a better understanding of the classical limit of quantum mechanics. New techniques have been proposed, and experimentally demonstrated, for characterizing and monitoring in real time the quantum state of an electromagnetic field in a cavity. They allow the investigation of the dynamics of the decoherence process by which a quantum-mechanical superposition of coherent states of the field beco...
Separability criteria for multipartite quantum mixed states
Institute of Scientific and Technical Information of China (English)
Zhao Hui
2005-01-01
The separability of mixed states in multipartite quantum systems is investigated. If a quantum state in a multipartite system with an arbitrary dimension is separable, some quantity in relation to Hermitian matrix is positive.
Self-bound droplets of a dilute magnetic quantum liquid
Schmitt, Matthias; Wenzel, Matthias; Böttcher, Fabian; Ferrier-Barbut, Igor; Pfau, Tilman
2016-01-01
Self-bound many-body systems occur in different scenarios all across the fields of physics. For example in the astrophysical context the stellar classification is based on a detailed balance of attractive self-gravitating forces and repulsive terms e.g. due to Fermi pressure. Also liquid droplets are formed by mutual attractive forces due to covalent or van der Waals attraction and repulsive parts of the inter-particle potential due to the electronic Pauli exclusion principle. Self-bound ense...
Quantum Defect Theory description of weakly bound levels and Feshbach resonances in LiRb
Pérez-Ríos, Jesús; Chen, Yong P; Greene, Chris H
2014-01-01
The multichannel quantum defect theory (MQDT) in combination with the frame transformation (FT) approach is applied to model the Fano-Feshbach resonances measured for $^{7}$Li$^{87}$Rb and $^{6}$Li$^{87}$Rb [Marzok {\\it et al.} Phys. Rev. A {\\bf 79} 012717 (2009)]. The MQDT results show a level of accuracy comparable to that of previous models based on direct, fully numerical solutions of the the coupled channel Schr\\"odinger equations (CC). Here, energy levels deduced from 2-photon photoassociation spectra for $^{7}$Li$^{85}$Rb are assigned by applying the MQDT approach, obtaining the bound state energies for the coupled channel problem. Our results confirm that MQDT yields a compact description of photoassociation observables as well as the Fano-Feshbach resonance positions and widths.
Directional detection of dark matter in universal bound states
Laha, Ranjan
2015-01-01
It has been suggested that several small-scale structure anomalies in $\\Lambda$CDM cosmology can be solved by strong self-interaction between dark matter particles. It was shown by Braaten and Hammer that the presence of a near threshold S-wave resonance can make the scattering cross section at nonrelativistic speeds come close to saturating the unitarity bound. This can result in the formation of a stable bound state of two asymmetric dark matter particles (which we call darkonium). Laha and Braaten studied the nuclear recoil energy spectrum in dark matter direct detection experiments due to this incident bound state. Here we study the angular recoil spectrum, and show that it is uniquely determined up to normalization by the S-wave scattering length. Observing this angular recoil spectrum in a dark matter directional detection experiment will uniquely determine many of the low-energy properties of dark matter independent of the underlying dark matter microphysics.
Directional detection of dark matter in universal bound states
Energy Technology Data Exchange (ETDEWEB)
Laha, Ranjan
2015-10-01
It has been suggested that several small-scale structure anomalies in CDM cosmology can be solved by strong self-interaction between dark matter particles. It was shown in Ref. [1] that the presence of a near threshold S-wave resonance can make the scattering cross section at nonrelativistic speeds come close to saturating the unitarity bound. This can result in the formation of a stable bound state of two asymmetric dark matter particles (which we call darkonium). Ref. [2] studied the nuclear recoil energy spectrum in dark matter direct detection experiments due to this incident bound state. Here we study the angular recoil spectrum, and show that it is uniquely determined up to normalization by the S-wave scattering length. Observing this angular recoil spectrum in a dark matter directional detection experiment will uniquely determine many of the low-energy properties of dark matter independent of the underlying dark matter microphysics.
On Deusons or Deuteronlike Meson-Meson Bound States
Törnqvist, N A
1994-01-01
The systematics of deuteronlike two-meson bound states, {\\it deusons}, is discussed. Previous arguments that many of the present non-$q\\bar q$ states are such states are elaborated including, in particular, the tensor potential. For pseudoscalar states the important observation is made that the centrifugal barrier from the P-wave can be overcome by the $1/r^2$ and $1/r^3$ terms of the tensor potential. In the heavy meson sector one-pion exchange alone is strong enough to form at least deuteron-like $B\\bar B^*$ and $B^*\\bar B^*$ composites bound by approximately 50 MeV, while $D\\bar D^*$ and $D^*\\bar D^*$ states are expected near the threshold.
Quantum Circuits with Mixed States
Aharonov, D; Nisan, N; Aharonov, Dorit; Kitaev, Alexei; Nisan, Noam
1998-01-01
We define the model of quantum circuits with density matrices, where non-unitary gates are allowed. Measurements in the middle of the computation, noise and decoherence are implemented in a natural way in this model, which is shown to be equivalent in computational power to standard quantum circuits. The main result in this paper is a solution for the subroutine problem: The general function that a quantum circuit outputs is a probabilistic function, but using pure state language, such a function can not be used as a black box in other computations. We give a natural definition of using general subroutines, and analyze their computational power. We suggest convenient metrics for quantum computing with mixed states. For density matrices we analyze the so called ``trace metric'', and using this metric, we define and discuss the ``diamond metric'' on superoperators. These metrics enable a formal discussion of errors in the computation. Using a ``causality'' lemma for density matrices, we also prove a simple lowe...
ɛ-bounded state estimation for time-delay systems with bounded disturbances
Nam, P. T.; Pathirana, P. N.; Trinh, H.
2014-09-01
A new problem on ε-bounded functional state estimation for time-delay systems with unknown bounded disturbances is studied in this paper. In the presence of unknown bounded disturbances, the common assumption regarding the observer's matching condition is no longer required. In this regard, instead of achieving asymptotic convergence for the observer error, the error is now required to converge exponentially within a ball with a small radius ε > 0. This means that the estimate converges exponentially within an ε-bound of the true value. A general observer that utilises multiple-delayed output and input information is proposed. Sufficient conditions for the existence of the proposed observer are first given. We then employ an extended Lyapunov-Krasovskii functional which combines the delay-decomposition technique with a triple-integral term to study the ε-convergence problem of the observer error system. Moreover, the obtained results are shown to be more effective than the existing results for the cases with no disturbances and/or no time delay. Three numerical examples are given to illustrate the obtained results.
Superdense coding of quantum states
Harrow, Aram; Hayden, Patrick; Leung, Debbie
2003-01-01
We describe a method to non-obliviously communicate a 2l-qubit quantum state by physically transmitting l+o(l) qubits of communication, and by consuming l ebits of entanglement and some shared random bits. In the non-oblivious scenario, the sender has a classical description of the state to be communicated. Our method can be used to communicate states that are pure or entangled with the sender's system; l+o(l) and 3l+o(l) shared random bits are sufficient respectively.
Quantum State Engineering Via Coherent-State Superpositions
Janszky, Jozsef; Adam, P.; Szabo, S.; Domokos, P.
1996-01-01
The quantum interference between the two parts of the optical Schrodinger-cat state makes possible to construct a wide class of quantum states via discrete superpositions of coherent states. Even a small number of coherent states can approximate the given quantum states at a high accuracy when the distance between the coherent states is optimized, e. g. nearly perfect Fock state can be constructed by discrete superpositions of n + 1 coherent states lying in the vicinity of the vacuum state.
Quantum learning of coherent states
International Nuclear Information System (INIS)
We develop a quantum learning scheme for binary discrimination of coherent states of light. This is a problem of technological relevance for the reading of information stored in a digital memory. In our setting, a coherent light source is used to illuminate a memory cell and retrieve its encoded bit by determining the quantum state of the reflected signal. We consider a situation where the amplitude of the states produced by the source is not fully known, but instead this information is encoded in a large training set comprising many copies of the same coherent state. We show that an optimal global measurement, performed jointly over the signal and the training set, provides higher successful identification rates than any learning strategy based on first estimating the unknown amplitude by means of Gaussian measurements on the training set, followed by an adaptive discrimination procedure on the signal. By considering a simplified variant of the problem, we argue that this is the case even for non-Gaussian estimation measurements. Our results show that, even in absence of entanglement, collective quantum measurements yield an enhancement in the readout of classical information, which is particularly relevant in the operating regime of low-energy signals. (orig.)
Quantum learning of coherent states
Energy Technology Data Exchange (ETDEWEB)
Sentis, Gael [Universitat Autonoma de Barcelona, Fisica Teorica: Informacio i Fenomens Quantics, Barcelona (Spain); Guta, Madalin; Adesso, Gerardo [University of Nottingham, School of Mathematical Sciences, Nottingham (United Kingdom)
2015-12-15
We develop a quantum learning scheme for binary discrimination of coherent states of light. This is a problem of technological relevance for the reading of information stored in a digital memory. In our setting, a coherent light source is used to illuminate a memory cell and retrieve its encoded bit by determining the quantum state of the reflected signal. We consider a situation where the amplitude of the states produced by the source is not fully known, but instead this information is encoded in a large training set comprising many copies of the same coherent state. We show that an optimal global measurement, performed jointly over the signal and the training set, provides higher successful identification rates than any learning strategy based on first estimating the unknown amplitude by means of Gaussian measurements on the training set, followed by an adaptive discrimination procedure on the signal. By considering a simplified variant of the problem, we argue that this is the case even for non-Gaussian estimation measurements. Our results show that, even in absence of entanglement, collective quantum measurements yield an enhancement in the readout of classical information, which is particularly relevant in the operating regime of low-energy signals. (orig.)
Memory Effect in Upper Bound of Heat Flux Induced by Quantum Fluctuations
Koide, T
2016-01-01
We develop a model of quantum open systems as a quantum Brownian motion coupled to a classical heat bath by introducing a mathematical definition of operator differentials. We then define a heat operator by extending the stochastic energetics and show that this operator satisfies properties corresponding to the first and second laws in thermodynamics. We further find that the upper bound of the heat flux depends on the memory effect induced by quantum fluctuations and hence the maximum extractable work can be qualitatively modified in quantum thermodynamics.
A search for unexpected bound states in 15B
Hoffman, Calem R.
2014-09-01
Bound states in 15B are to be populated through the one proton removal reaction from a 16C beam produced at the RCNP EN Course through 18O fragmentation. γ-decays from these states will be identified by an array of Compton-suppressed HPGe Clover detectors (CAGRA). The goals consist of i) identifying any previously unobserved and unexpected bound states in 15B and ii) to assign total angular momenta to known excited states for the first time. At present only two bound states have been observed in 15B, neither with firm spin or parity assignments. The present work to be discussed is aimed at determining whether an excited 3 /2- state, a state with identical spin-parity as the ground state, resides below the neutron separation energy in 15B. Such an excited 3 /2- state is not predicted to appear below the 15B Sn by shell-model calculations using various p- sd interactions. However, a robust systematic, probably related to the s-wave trends found in the single-neutron states in this region, has been observed for neutron-rich N=10 nuclei and it suggests that the state may appear lower in excitation energy than expected. Providing some measure of validation for the N=10 prediction is a similar trend noticed in the energy differences between ground (p)2 neutron states and excited (sd)2 neutron states in the N=8 neutron-rich isotones. In addition to a search for this unexpected state, additional spectroscopic information on 15B will better aid in the understanding of the N=10 isotones when transitioning from 16C into sparsely probed 14Be. Details of the experimental procedures and motivation will be presented and discussed. Bound states in 15B are to be populated through the one proton removal reaction from a 16C beam produced at the RCNP EN Course through 18O fragmentation. γ-decays from these states will be identified by an array of Compton-suppressed HPGe Clover detectors (CAGRA). The goals consist of i) identifying any previously unobserved and unexpected bound
Isospectral Bound State Potential from DDM3Y Effective Interaction
Dutta, S K; Das, D; Saha, Swapan K
2013-01-01
Theoretical investigation of ${5/2}^+$ resonance state of $^{11}Be$ was carried out using Supersymmetric Quantum Mechanics (SQM). The original two-body potential ($^{10}Be + n$) was constructed microscopically using a DDM3Y effective NN interaction. SQM converted this potential to an isospectral potential which is effective for detecting resonance states in the continuum. The resonance energy of the ${5/2}^+$ state is in good agreement with the experimental value.
Towards flavored bound states beyond rainbows and ladders
El-Bennich, B; Paracha, M A; de Melo, J P B C
2013-01-01
We give a snapshot of recent progress in solving the Dyson-Schwinger equation with a beyond rainbow-ladder ansatz for the dressed quark-gluon vertex which includes ghost contributions. We discuss the motivations for this approach with regard to heavy-flavored bound states and form factors and briefly describe future steps to be taken.
The S-matrix of string bound states
Energy Technology Data Exchange (ETDEWEB)
Arutyunov, Gleb [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, 3508 TD Utrecht (Netherlands)], E-mail: g.arutyunov@phys.uu.nl; Frolov, Sergey [School of Mathematics, Trinity College, Dublin 2 (Ireland)], E-mail: frolovs@maths.tcd.ie
2008-11-21
We find the S-matrix which describes the scattering of two-particle bound states of the light-cone string sigma model on AdS{sub 5}xS{sup 5}. We realize the M-particle bound state representation of the centrally extended su(2|2) algebra on the space of homogeneous (super)symmetric polynomials of degree M depending on two bosonic and two fermionic variables. The scattering matrix S{sup MN} of M- and N-particle bound states is a differential operator of degree M+N acting on the product of the corresponding polynomials. We require this operator to obey the invariance condition and the Yang-Baxter equation, and we determine it for the two cases M=1,N=2 and M=N=2. We show that the S-matrices found satisfy generalized physical unitarity, CPT invariance, parity transformation rule and crossing symmetry. Although the dressing factor as a function of four parameters x{sub 1}{sup +},x{sub 1}{sup -},x{sub 2}{sup +},x{sub 2}{sup -} is universal for scattering of any bound states, it obeys a crossing symmetry equation which depends on M and N.
Effective field theories for non-relativistic bound states
International Nuclear Information System (INIS)
I review some of the progress made in the last ten years in providing a solid foundation to the description of non-relativistic bound states in QED and QCD by means of effective field theories. I will discuss some applications. (author)
Bound States in the AdS/CFT Correspondence
Minces, P
2004-01-01
We consider a massive scalar field theory in anti-de Sitter space, in both minimally and non-minimally coupled cases. We introduce a relevant double-trace perturbation at the boundary, by carefully identifying the correct source and generating functional for the corresponding conformal operator. We show that such relevant double-trace perturbation introduces changes in the coefficients in the boundary terms of the action, which in turn govern the existence of a bound state in the bulk. For instance, in the minimally coupled case, we show that the usual action, containing no additional boundary terms, gives rise to a bound state, which can be avoided only through the addition of a proper boundary term. Another notorious example is that of a conformally coupled scalar field, for which there is no associated bound state. In general, in both minimally and non-minimally coupled cases, we explicitly compute the boundary terms which give rise to a bound state, and which ones do not. In the non-minimally coupled case...
The S-matrix of String Bound States
Arutyunov, Gleb
2008-01-01
We find the S-matrix which describes the scattering of two-particle bound states of the light-cone string sigma model on AdS5xS5. We realize the M-particle bound state representation of the centrally extended su(2|2) algebra on the space of homogeneous (super)symmetric polynomials of degree M depending on two bosonic and two fermionic variables. The scattering matrix S^{MN} of M- and N-particle bound states is a differential operator of degree M+N acting on the product of the corresponding polynomials. We require this operator to obey the invariance condition and the Yang-Baxter equation, and we determine it for the two cases M=1,N=2 and M=N=2. We show that the S-matrices found satisfy generalized physical unitarity, CPT invariance, parity transformation rule and crossing symmetry. Although the dressing factor as a function of four parameters x_1^+,x_1^-,x_2^+,x_2^- is universal for scattering of any bound states, it obeys a crossing symmetry equation which depends on M and N.
Towards flavored bound states beyond rainbows and ladders
Energy Technology Data Exchange (ETDEWEB)
El-Bennich, B.; Rojas, E.; Melo, J. P. B. C. de [Laboratório de Física Teórica e Computacional, Universidade Cruzeiro do Sul, São Paulo 01506-000 SP (Brazil); Paracha, M. A. [Laboratorio de Fisica Teorica e Computacional, Universidade Cruzeiro do Sul, Sao Paulo 01506-000 SP, Brazil and Centre for Advanced Mathematics and Physics, National University of Science and Technology, Islamabad (Pakistan)
2014-11-11
We give a snapshot of recent progress in solving the Dyson-Schwinger equation with a beyond rainbow-ladder ansatz for the dressed quark-gluon vertex which includes ghost contributions. We discuss the motivations for this approach with regard to heavy-flavored bound states and form factors and briefly describe future steps to be taken.
Detection of positron-atom bound states through resonant annihilation
Dzuba, V A; Gribakin, G F
2010-01-01
A method is proposed for detecting positron-atom bound states by observing Feshbach resonances in positron annihilation at electron volt energies. The method is applicable to a range of open-shell transition metal atoms which are likely to bind the positron: Si, Fe, Co, Ni, Ge, Tc, Ru, Rh, Sn, Sb, Ta, W, Os, Ir, and Pt.
Bound States and Supercriticality in Graphene-Based Topological Insulators
Directory of Open Access Journals (Sweden)
Reinhold Egger
2013-01-01
Full Text Available We study the bound state spectrum and the conditions for entering a supercritical regime in graphene with strong intrinsic and Rashba spin-orbit interactions within the topological insulator phase. Explicit results are provided for a disk-shaped potential well and for the Coulomb center problem.
Creating a Superposition of Unknown Quantum States.
Oszmaniec, Michał; Grudka, Andrzej; Horodecki, Michał; Wójcik, Antoni
2016-03-18
The superposition principle is one of the landmarks of quantum mechanics. The importance of quantum superpositions provokes questions about the limitations that quantum mechanics itself imposes on the possibility of their generation. In this work, we systematically study the problem of the creation of superpositions of unknown quantum states. First, we prove a no-go theorem that forbids the existence of a universal probabilistic quantum protocol producing a superposition of two unknown quantum states. Second, we provide an explicit probabilistic protocol generating a superposition of two unknown states, each having a fixed overlap with the known referential pure state. The protocol can be applied to generate coherent superposition of results of independent runs of subroutines in a quantum computer. Moreover, in the context of quantum optics it can be used to efficiently generate highly nonclassical states or non-Gaussian states. PMID:27035290
Creating a Superposition of Unknown Quantum States
Oszmaniec, Michał; Grudka, Andrzej; Horodecki, Michał; Wójcik, Antoni
2016-03-01
The superposition principle is one of the landmarks of quantum mechanics. The importance of quantum superpositions provokes questions about the limitations that quantum mechanics itself imposes on the possibility of their generation. In this work, we systematically study the problem of the creation of superpositions of unknown quantum states. First, we prove a no-go theorem that forbids the existence of a universal probabilistic quantum protocol producing a superposition of two unknown quantum states. Second, we provide an explicit probabilistic protocol generating a superposition of two unknown states, each having a fixed overlap with the known referential pure state. The protocol can be applied to generate coherent superposition of results of independent runs of subroutines in a quantum computer. Moreover, in the context of quantum optics it can be used to efficiently generate highly nonclassical states or non-Gaussian states.
Disjoint states and quantum games
International Nuclear Information System (INIS)
We cast in game theory terms the physics associated with the interaction between (i) matter and (ii) a single mode of an electromagnetic field within a cavity. Thereby, we introduce a game admitting both classical and quantal players. Strategies are determined by the initial conditions of the associated dynamical system, whose time evolution is characterized by the existence of attractors that represent possible results of the game. Two types of quantum states are considered: perfectly distinguishable or partially overlapping ones. (paper)
Entanglement for all quantum states
Energy Technology Data Exchange (ETDEWEB)
De la Torre, A C; Goyeneche, D; Leitao, L [IFIMAR, (CONICET-UNMDP) Departamento de Fisica, Universidad Nacional de Mar del Plata, Funes 3350, 7600 Mar del Plata (Argentina)], E-mail: delatorre@mdp.edu.ar, E-mail: dgoyene@mdp.edu.ar, E-mail: lleitao@mdp.edu.ar
2010-03-15
It is shown that a state that is factorizable in the Hilbert space corresponding to some choice of degrees of freedom becomes entangled for a different choice of degrees of freedom. Therefore, entanglement is not a special case but is ubiquitous in quantum systems. Simple examples are calculated and a general proof is provided. The physical relevance of the change of tensor product structure is mentioned.
Entanglement for all quantum states
de la Torre, A C; Leitao, L; 10.1088/0143-0807/31/2/010
2010-01-01
It is shown that a state that is factorizable in the Hilbert space corresponding to some choice of degrees of freedom, becomes entangled for a different choice of degrees of freedom. Therefore, entanglement is not a special case but is ubiquitous in quantum systems. Simple examples are calculated and a general proof is provided. The physical relevance of the change of tensor product structure is mentioned.
Bound States of (Anti-)Scalar-Quarks in $SU(3)_{c}$ Lattice QCD
Iida, H; Takahashi, T T
2007-01-01
Light scalar-quarks \\phi (colored scalar particles or idealized diquarks) and their color-singlet hadronic states are studied with quenched SU(3)_c lattice QCD in terms of mass generation. We investigate ``scalar-quark mesons'' \\phi^\\dagger \\phi and ``scalar-quark baryons'' \\phi\\phi\\phi as the bound states of scalar-quarks \\phi. We also investigate the bound states of scalar-quarks \\phi and quarks \\psi, i.e., \\phi^\\dagger \\psi, \\psi\\psi\\phi and \\phi\\phi\\psi, which we name ``chimera hadrons''. All the new-type hadrons including \\phi are found to have a large mass due to large quantum corrections by gluons, even for zero bare scalar-quark mass m_\\phi=0 at a^{-1}\\sim 1{\\rm GeV}. We conjecture that all colored particles generally acquire a large effective mass due to dressed gluon effects.
Formation of positron-atom bound states in collisions between Rydberg Ps and neutral atoms
Swann, A R; Deller, A; Gribakin, G F
2016-01-01
Predicted twenty years ago, positron binding to neutral atoms has not yet been observed experimentally. A new scheme is proposed to detect positron-atom bound states by colliding Rydberg positronium (Ps) with neutral atoms. Estimates of the charge-transfer-reaction cross section are obtained using the first Born approximation for a selection of neutral atom targets and a wide range of incident Ps energies and principal quantum numbers. We also estimate the corresponding Ps ionization cross section. The accuracy of the calculations is tested by comparison with earlier predictions for Ps charge transfer in collisions with hydrogen and antihydrogen. We describe an existing Rydberg Ps beam suitable for producing positron-atom bound states and estimate signal rates based on the calculated cross sections and realistic experimental parameters. We conclude that the proposed methodology is capable of producing such states and of testing theoretical predictions of their binding energies.
Observation of bound states in Lieb photonic lattices
Vicencio, Rodrigo A; Morales-Inostroza, Luis; Real, Bastian; Weimann, Steffen; Szameit, Alexander; Molina, Mario I
2014-01-01
We present the first experimental demonstration of a new type of bound states in the continuum, namely, compacton-like linear states in flat bands lattices. To this end, photonic Lieb lattices are employed, which exhibit three tight-binding bands, with one being perfectly flat. Our results could be of great importance for fundamental physics as well as for various applications concerning imaging and data transmission.
Brokered Graph State Quantum Computing
Benjamin, S C; Fitzsimons, J; Morton, J J L; Benjamin, Simon C.; Browne, Dan E.; Fitzsimons, Joe; Morton, John J. L.
2005-01-01
We describe a procedure for graph state quantum computing that is tailored to fully exploit the physics of optically active multi-level systems. Leveraging ideas from the literature on distributed computation together with the recent work on probabilistic cluster state synthesis, our model assigns to each physical system two logical qubits: the broker and the client. Groups of brokers negotiate new graph state fragments via a probabilistic optical protocol. Completed fragments are mapped from broker to clients via a simple state transition and measurement. The clients, whose role is to store the nascent graph state long term, remain entirely insulated from failures during the brokerage. We describe an implementation in terms of NV-centres in diamond, where brokers and clients are very naturally embodied as electron and nuclear spins.
Quantum Computing in Solid State Systems
Ruggiero, B; Granata, C
2006-01-01
The aim of Quantum Computation in Solid State Systems is to report on recent theoretical and experimental results on the macroscopic quantum coherence of mesoscopic systems, as well as on solid state realization of qubits and quantum gates. Particular attention has been given to coherence effects in Josephson devices. Other solid state systems, including quantum dots, optical, ion, and spin devices which exhibit macroscopic quantum coherence are also discussed. Quantum Computation in Solid State Systems discusses experimental implementation of quantum computing and information processing devices, and in particular observations of quantum behavior in several solid state systems. On the theoretical side, the complementary expertise of the contributors provides models of the various structures in connection with the problem of minimizing decoherence.
Quantum State Reconstruction From Incomplete Data
Buzek, V; Derka, R; Adam, G; Wiedemann, H
1998-01-01
Knowing and guessing, these are two essential epistemological pillars in the theory of quantum-mechanical measurement. As formulated quantum mechanics is a statistical theory. In general, a priori unknown states can be completely determined only when measurements on infinite ensembles of identically prepared quantum systems are performed. But how one can estimate (guess) quantum state when just incomplete data are available (known)? What is the most reliable estimation based on a given measured data? What is the optimal measurement providing only a finite number of identically prepared quantum objects are available? These are some of the questions we address. We present several schemes for a reconstruction of states of quantum systems from measured data: (1) We show how the maximum entropy (MaxEnt) principle can be efficiently used for an estimation of quantum states on incomplete observation levels. (2) We show how Bayesian inference can be used for reconstruction of quantum states when only a finite number ...
Bounding quantum gravity inspired decoherence using atom interferometry
Minář, Jiří; Sekatski, Pavel; Sangouard, Nicolas
2016-01-01
Hypothetical models have been proposed in which explicit collapse mechanisms prevent the superposition principle to hold at large scales. In particular, the model introduced by Ellis and co-workers [Phys. Lett. B ${\\bf 221}$, 113 (1989)] suggests that quantum gravity might be responsible for the collapse of the wavefunction of massive objects in spatial superpositions. We here consider a recent experiment reporting on interferometry with atoms delocalized over half a meter for timescale of a ...
Effect of the Velocity-Dependent Potentials on the Bound State Energy Eigenvalues
Institute of Scientific and Technical Information of China (English)
O.Bayrak; A.Soylu; I.Boztosun
2011-01-01
We investigate the effect of isotropic velocity-dependent potentials on the bound state energy eigenvalues for the first time for any quantum states of the Coulomb and harmonic oscillator potentials within the framework of the asymptotic iteration method. When the velocity-dependent term is selected as a constant parameter po, we present that the energy eigenvalues can be obtained analytically for both Coulomb and harmonic oscillator potentials. However, when the velocity-dependent term is considered as a harmonic oscillator type poΥ2, taking the velocity-dependent term as a perturbation, we present how to obtain the energy eigenvalues of the Coulomb and harmonic oscillator potentials for any n and (e) quantum states by using perturbation expansion and numerical calculations in the asymptotic iteration method procedure.%@@ We investigate the effect of isotropic velocity-dependent potentials on the bound state energy eigenvalues for the first time for any quantum states of the Coulomb and harmonic oscillator potentials within the framework of the asymptotic iteration method.When the velocity-dependent term is selected as a constant parameter po,we present that the energy eigenvalues can be obtained analytically for both Coulomb and harmonic oscillator potentials.However, when the velocity-dependent term is considered as a harmonic oscillator type por2, taking the velocity-dependent term as a perturbation, we present how to obtain the energy eigenvalues of the Coulomb and harmonic oscillator potentials for any n and e quantum states by using perturbation expansion and numerical calculations in the asymptotic iteration method procedure.
Bound States in the Continuum in double layer structures
Li, Liangsheng; Yin, Hongcheng
2016-06-01
We have theoretically investigated the reflectivity spectrums of single- and double-layer photonic crystal slabs and the dielectric multilayer stack. It is shown that light can be perfectly confined in a single-layer photonic crystal slab at a given incident angle by changing the thickness, permittivity or hole radius of the structure. With a tunable double-layer photonic crystal slab, we demonstrate that the occurrence of tunable bound states in the continuum is dependent on the spacing between two slabs. Moreover, by analytically investigating the Drude lossless multilayer stack model, the spacing dependence of bound states in the continuum is characterized as the phase matching condition that illuminates these states can occur at any nonzero incident angles by adjusting the spacing.
Separability Criteria for Quantum Mixed States
Institute of Scientific and Technical Information of China (English)
ZHAOHui; WANGZhi-Xi
2004-01-01
We investigate separability of mixed states in bipartite and multipartite quantum systems. If a quantum state in a bipartite system of arbitrary dimension (or in 2 × 2 × N quantum systems) is separable, we show that some quantity in relation to Hermitian matrix is positive.
Separability Criteria for Quantum Mixed States
Institute of Scientific and Technical Information of China (English)
ZHAO Hui; WANG Zhi-Xi
2004-01-01
We investigate separability of mixed states in bipartite and multipartite quantum systems. If a quantum state in a bipartite system of arbitrary dimension (or in 2 × 2 × N quantum systems) is separable, we show that some quantity in relationto Hermitian matrix is positive.
Upper Bounds on the Rate of Low Density Stabilizer Codes for the Quantum Erasure Channel
Delfosse, Nicolas
2012-01-01
Using combinatorial arguments, we determine an upper bound on achievable rates of stabilizer codes used over the quantum erasure channel. This allows us to recover the no-cloning bound on the capacity of the quantum erasure channel, R is below 1-2p, for stabilizer codes: we also derive an improved upper bound of the form : R is below 1-2p-D(p) with a function D(p) that stays positive for 0 < p < 1/2 and for any family of stabilizer codes whose generators have weights bounded from above by a constant - low density stabilizer codes. We obtain an application to percolation theory for a family of self-dual tilings of the hyperbolic plane. We associate a family of low density stabilizer codes with appropriate finite quotients of these tilings. We then relate the probability of percolation to the probability of a decoding error for these codes on the quantum erasure channel. The application of our upper bound on achievable rates of low density stabilizer codes gives rise to an upper bound on the critical prob...
Multiphoton Quantum Optics and Quantum State Engineering
Dell'Anno, F.; Siena, S; Illuminati, F.
2007-01-01
We present a review of theoretical and experimental aspects of multiphoton quantum optics. Multiphoton processes occur and are important for many aspects of matter-radiation interactions that include the efficient ionization of atoms and molecules, and, more generally, atomic transition mechanisms; system-environment couplings and dissipative quantum dynamics; laser physics, optical parametric processes, and interferometry. A single review cannot account for all aspects of such an enormously ...
Institute of Scientific and Technical Information of China (English)
Chen Gang; Chen Zi-Dong; Lou Zhi-Mei
2004-01-01
The exact bound state solutions of the Klein-Gordon equation and Dirac equation with scalar and vector pseudoharmonic oscillator potentials are obtained in this paper. Furthermore, we have used the supersymmetric quantum mechanics, shape invariance and alternative method to obtain the required results.
Quantum Brachistochrone for Mixed States
Carlini, A; Koike, T; Okudaira, Y
2007-01-01
We present a general formalism based on the variational principle for finding the time-optimal quantum evolution of mixed states governed by a master equation, when the Hamiltonian and the Lindblad operators are subject to certain constraints. The problem reduces to solving first a fundamental equation (the {\\it quantum brachistochrone}) for the Hamiltonian, which can be written down once the constraints are specified, and then solving the constraints and the master equation for the Lindblad and the density operators. As an application of our formalism, we study a simple one-qubit model where the optimal Lindblad operators control decoherence and can be simulated by a tunable coupling with an ancillary qubit. It is found that the evolution through mixed states can be more efficient than the unitary evolution between given pure states. We also discuss the mixed state evolution as a finite time unitary evolution of the system plus an environment followed by a single measurement. For the simplest choice of the c...
Are there compact heavy four-quark bound states?
Vijande, Javier; Weissman, E.; Valcarce, A.; Barnea, N.
2007-01-01
We present an exact method to study four-quark systems based on the hyperspherical harmonics formalism. We apply it to several physical systems of interest containing two heavy and two light quarks using different quark-quark potentials. Our conclusions mark the boundaries for the possible existence of compact, nonmolecular, four-quark bound states. While QQ (n) over bar(n) over bar states may be stable in nature, the stability of Q (Q) over barn (n) over bar states would imply the existence ...
Unconditional quantum teleportation between distant solid-state quantum bits
Pfaff, W.; Hensen, B.J.; Bernien, H.; van Dam, S. B.; Blok, M. S.; Taminiau, T. H.; Tiggelman, M. J.; Schouten, R. N.; Markham, M.; Twitchen, D. J.; Hanson, R.
2014-01-01
Realizing robust quantum information transfer between long-lived qubit registers is a key challenge for quantum information science and technology. Here we demonstrate unconditional teleportation of arbitrary quantum states between diamond spin qubits separated by 3 meters. We prepare the teleporter through photon-mediated heralded entanglement between two distant electron spins and subsequently encode the source qubit in a single nuclear spin. By realizing a fully deterministic Bell-state me...
Teleportations of Mixed States and Multipartite Quantum States
Institute of Scientific and Technical Information of China (English)
YU Chang-Shui; WANG Ya-Hong; SONG He-Shan
2007-01-01
In this paper, we propose a protocol to deterministically teleport an unknown mixed state of qubit by utilizing a maximally bipartite entangled state of qubits as quantum channel. Ifa non-maximally entangled bipartite pure state is employed as quantum channel, the unknown mixed quantum state of qubit can be teleported with 1 - √1 - C2 probability, where C is the concurrence of the quantum channel. The protocol can also be generalized to teleport a mixed state of qudit or a multipartite mixed state. More important purpose is that, on the basis of the protocol, the teleportation of an arbitrary multipartite (pure or mixed) quantum state can be decomposed into the teleportation of each subsystem by employing separate entangled states as quantum channels. In the case of deterministic teleportation,Bob only needs to perform unitary transformations on his single particles in order to recover the initial teleported multipartite quantum state.
Preparation of many-body states for quantum simulation
Ward, Nicholas J.; Kassal, Ivan; Aspuru-Guzik, Alán
2009-05-01
While quantum computers are capable of simulating many quantum systems efficiently, the simulation algorithms must begin with the preparation of an appropriate initial state. We present a method for generating physically relevant quantum states on a lattice in real space. In particular, the present algorithm is able to prepare general pure and mixed many-particle states of any number of particles. It relies on a procedure for converting from a second-quantized state to its first-quantized counterpart. The algorithm is efficient in that it operates in time that is polynomial in all the essential descriptors of the system, the number of particles, the resolution of the lattice, and the inverse of the maximum final error. This scaling holds under the assumption that the wave function to be prepared is bounded or its indefinite integral is known and that the Fock operator of the system is efficiently simulatable.
A variational study of bound states in the Higgs model
Siringo, F
2000-01-01
The possible existence of Higgs-Higgs bound states in the Higgs sector of the Standard Model is explored using the |hh>+|hhh> variational ansatz of Di Leo and Darewych. The resulting integral equations can be decoupled exactly, yielding a one-dimensional integral equation, solved numerically. We thereby avoid the extra approximations employed by Di Leo and Darewych, and we find a qualitatively different mass renormalization. Within the conventional scenario, where a not-too-large cutoff is invoked to avoid "triviality", we find, as usual, an upperbound on the Higgs mass. Bound-state solutions are only found in the very strong coupling regime, but at the same time a relatively small physical mass is required as a consequence of renormalization.
Observation of Andreev bound states at spin-active interfaces
Energy Technology Data Exchange (ETDEWEB)
Beckmann, Detlef; Wolf, Michael Johannes [KIT, Institut fuer Nanotechnologie (Germany); Huebler, Florian [KIT, Institut fuer Nanotechnologie (Germany); KIT, Institut fuer Festkoerperphysik (Germany); Loehneysen, Hilbert von [KIT, Institut fuer Festkoerperphysik (Germany); KIT, Physikalisches Institut (Germany)
2013-07-01
We report on high-resolution differential conductance experiments on nanoscale superconductor/ferromagnet tunnel junctions with ultra-thin oxide tunnel barriers. We observe subgap conductance features which are symmetric with respect to bias, and shift according to the Zeeman energy with an applied magnetic field. These features can be explained by resonant transport via Andreev bound states induced by spin-active scattering at the interface. From the energy and the Zeeman shift of the bound states, both the magnitude and sign of the spin-dependent interfacial phase shifts between spin-up and spin-down electrons can be determined. These results contribute to the microscopic insight into the triplet proximity effect at spin-active interfaces.
Bound states in coupled guides. II. Three dimensions
Linton, C. M.; Ratcliffe, K.
2004-04-01
We compute bound-state energies in two three-dimensional coupled waveguides, each obtained from the two-dimensional configuration considered in paper I [J. Math. Phys. 45, 1359-1379 (2004)] by rotating the geometry about a different axis. The first geometry consists of two concentric circular cylindrical waveguides coupled by a finite length gap along the axis of the inner cylinder, and the second is a pair of planar layers coupled laterally by a circular hole. We have also extended the theory for this latter case to include the possibility of multiple circular windows. Both problems are formulated using a mode-matching technique, and in the cylindrical guide case the same residue calculus theory as used in paper I is employed to find the bound-state energies. For the coupled planar layers we proceed differently, computing the zeros of a matrix derived from the matching analysis directly.
Teleportation of Two Quantum States via the Quantum Computation
Institute of Scientific and Technical Information of China (English)
FENG Mang; ZHU Xi-Wen; FANG Xi-Ming; YAN Min; SHI Lei
2000-01-01
A scheme of teleportation of two unknown quantum states via quantum computation is proposed. The comparison with the former proposals shows that our scheme is more in tune with the original teleportation proposal and the effciency is higher. The teleportation of an unknown entangled state is also discussed.
Hierarchy of Efficiently Computable and Faithful Lower Bounds to Quantum Discord
Piani, Marco
2016-08-01
Quantum discord expresses a fundamental nonclassicality of correlations that is more general than entanglement, but that, in its standard definition, is not easily evaluated. We derive a hierarchy of computationally efficient lower bounds to the standard quantum discord. Every nontrivial element of the hierarchy constitutes by itself a valid discordlike measure, based on a fundamental feature of quantum correlations: their lack of shareability. Our approach emphasizes how the difference between entanglement and discord depends on whether shareability is intended as a static property or as a dynamical process.
Stum, Bernard Le; Quirós, Adolfo
2013-01-01
We introduce the notions of quantum characteristic and quantum flatness for arbitrary rings. More generally, we develop the theory of quantum integers in a ring and show that the hypothesis of quantum flatness together with positive quantum characteristic generalizes the usual notion of prime positive characteristic. We also explain how one can define quantum rational numbers in a ring and introduce the notion of twisted powers. These results play an important role in many different areas of ...
Entanglement and coherence in quantum state merging
Streltsov, A; Rana, S; Bera, M N; Winter, A; Lewenstein, M
2016-01-01
Understanding the resource consumption in distributed scenarios is one of the main goals of quantum information theory. A prominent example for such a scenario is the task of quantum state merging where two parties aim to merge their parts of a tripartite quantum state. In standard quantum state merging, entanglement is considered as an expensive resource, while local quantum operations can be performed at no additional cost. However, recent developments show that some local operations could be more expensive than others: it is reasonable to distinguish between local incoherent operations and local operations which can create coherence. This idea leads us to the task of incoherent quantum state merging, where one of the parties has free access to local incoherent operations only. In this case the resources of the process are quantified by pairs of entanglement and coherence. Here, we develop tools for studying this process, and apply them to several relevant scenarios. While quantum state merging can lead to ...
R-matrix calculations for few-quark bound states
Shalchi, M. A.; Hadizadeh, M. R.
2016-10-01
The R-matrix method is implemented to study the heavy charm and bottom diquark, triquark, tetraquark, and pentaquarks in configuration space, as the bound states of quark-antiquark, diquark-quark, diquark-antidiquark, and diquark-antitriquark systems, respectively. The mass spectrum and the size of these systems are calculated for different partial wave channels. The calculated masses are compared with recent theoretical results obtained by other methods in momentum and configuration spaces and also by available experimental data.
Bound states in weakly deformed waveguides: numerical vs analytical results
Amore, Paolo; Fernández, Francisco M; Jacobo, Martin; Zhevandrov, Petr
2016-01-01
We have studied the emergence of bound states in weakly deformed and/or heterogeneous waveguides, comparing the analytical predictions obtained using a recently developed perturbative method, with precise numerical results, for different configurations (a homogeneous asymmetric waveguide, a heterogenous asymmetric waveguide and a homogeneous broken-strip). In all the examples considered in this paper we have found excellent agreement between analytical and numerical results, thus providing a numerical verification of the analytical approach.
Jentschura, Ulrich
2003-01-01
The accurate calculation of atomic spectra, including radiative corrections, is one of the rather challenging tasks in theoretical physics. The entire formalism of quantum (gauge) field theory, augmented by the difficulties of the bound-state formalism, is needed for an accurate understanding of the relevant physics at the level of current high-precision spectroscopy. In this thesis, several calculations in this area are described in detail. Investigations on large-order perturbation-theory e...
Quantum Inequality Bounds for Free Rarita-Schwinger Field in Flat Spacetime
Institute of Scientific and Technical Information of China (English)
SHU Wei-Xing; YU Hong-Wei; LI Fei; WU Pu-Xun; REN Zhong-Zhou
2006-01-01
Although quantum field theory allows the local energy density negative, it also places severe restrictions on the negative energy. One of the restrictions is the quantum energy inequality (QEI), in which the energy density is averaged over time, or space, or over space and time. By now temporal QEIs have been established for various quantum fields, but less work has been done for the spacetime quantum energy inequality. In this paper we deal with the free Rarita-Schwinger field and present a quantum inequality bound on the energy density averaged over space and time.Comparison with the QEI for the Rarita-Schwinger field shows that the lower bound is the same with the QEI. At the same time, we find the quantum inequality for the Rarita-Schwinger field is weaker than those for the scalar and Dirac fields. This fact gives further support to the conjecture that the more freedom the field has, the more easily the field displays negative energy density and the weaker the quantum inequality becomes.
Upsilon particles as bound states of new heavy quarks
International Nuclear Information System (INIS)
Charmonium spectroscopy (cc) was analysed, recently using a power confining potential and was determined that the energy eigenvalues are in good agreement with experimental values when it was used a power equal to 1/2 (square root potential). Assuming universality of the potential for quark-antiquark (qq) and assuming that the particle γ (9.4 GeV) is the fundamental state of the pair bb (beauty quark). The remaning bound states of this pair and their leptonic and hadronic decay widths are calculated
Two-body bound states & the Bethe-Salpeter equation
Energy Technology Data Exchange (ETDEWEB)
Pichowsky, M. [Argonne National Lab., IL (United States); Kennedy, M. [Univ. of New Hampshire, Durham, NH (United States). Physics Dept.; Strickland, M. [Duke Univ., Durham, NC (United States)
1995-01-18
The Bethe-Salpeter formalism is used to study two-body bound states within a scalar theory: two scalar fields interacting via the exchange of a third massless scalar field. The Schwinger-Dyson equation is derived using functional and diagrammatic techniques, and the Bethe-Salpeter equation is obtained in an analogous way, showing it to be a two-particle generalization of the Schwinger-Dyson equation. The authors also present a numerical method for solving the Bethe-Salpeter equation without three-dimensional reduction. The ground and first excited state masses and wavefunctions are computed within the ladder approximation and space-like form factors are calculated.
Three-boson bound states in finite volume with EFT
International Nuclear Information System (INIS)
The universal properties of a three-boson system with large scattering length are well understood within the framework of Effective Field Theory. They include a geometric spectrum of shallow three-body bound states called Efimov states and log-periodic dependence of scattering observables on the scattering length. We investigate the modification of this spectrum in a finite cubic box using a partial wave expansion. The dependence of the binding energies on the box size is calculated and the renormalization of the Effective Field Theory in finite volume is verified explicitly.
Quantization ambiguities and bounds on geometric scalars in anisotropic loop quantum cosmology
Singh, Parampreet
2013-01-01
We study quantization ambiguities in loop quantum cosmology that arise for space-times with non-zero spatial curvature and anisotropies. Motivated by lessons from different possible loop quantizations of the closed Friedmann-Lemaitre-Robertson-Walker cosmology, we find that using open holonomies of the extrinsic curvature, which due to gauge-fixing can be treated as a connection, leads to the same quantum geometry effects that are found in spatially flat cosmologies. More specifically, in contrast to the quantization based on open holonomies of the Ashtekar-Barbero connection, the expansion and shear scalars in the effective theories of the Bianchi type II and Bianchi type IX models have upper bounds, and these are in exact agreement with the bounds found in the effective theories of the Friedmann-Lemaitre-Robertson-Walker and Bianchi type I models in loop quantum cosmology. We also comment on some ambiguities present in the definition of inverse triad operators and their role.
Electron-electron bound states in parity-preserving QED{sub 3}
Energy Technology Data Exchange (ETDEWEB)
Belich, H.; Helayel-Neto, J.A. [Universidade Catolica do Petropolis, RJ (Brazil). Grupo de Fisica Teorica]|[Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Teoria de Campos e Particulas; Cima, O.M. del [Universidade Catolica do Petropolis, RJ (Brazil). Grupo de Fisica Teorica; Ferreira Junior, M.M. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Teoria de Campos e Particulas]|[Maranhao Univ., Sao Luis, MA (Brazil). Dept. de Fisica
2002-04-01
By considering the Higgs mechanism in the framework of a parity-preserving Planar Quantum Electrodynamics, one shows that an attractive electron-electron interaction may dominate. The e{sup -}e{sup -} interaction potential emerges as the non-relativistic limit of the Moeller scattering amplitude and it results attractive with a suitable choice of parameters. Numerically values of the e{sup -}e{sup -} binding energy are obtained by solving the two-dimensional Schroedinger equation. The existence of bound states is a strong indicative that this model may be adopted to address the pairing mechanism of high-T{sub c} superconductivity. (author)
The beauty of impurities: Two revivals of Friedel's virtual bound-state concept
Georges, Antoine
2016-03-01
Jacques Friedel pioneered the theoretical study of impurities and magnetic impurities in metals. He discovered Friedel oscillations, introduced the concept of virtual bound-state, and demonstrated that the charge on the impurity is related to the scattering phase-shift at the Fermi level (Friedel sum-rule). After a brief review of some of these concepts, I describe how they proved useful in two new contexts. The first one concerns the Coulomb blockade in quantum dots, and its suppression by the Kondo effect. The second one is the dynamical mean-field theory of strong electronic correlations. xml:lang="fr"
Quantum state engineering in hybrid open quantum systems
Joshi, Chaitanya; Larson, Jonas; Spiller, Timothy P.
2016-04-01
We investigate a possibility to generate nonclassical states in light-matter coupled noisy quantum systems, namely, the anisotropic Rabi and Dicke models. In these hybrid quantum systems, a competing influence of coherent internal dynamics and environment-induced dissipation drives the system into nonequilibrium steady states (NESSs). Explicitly, for the anisotropic Rabi model, the steady state is given by an incoherent mixture of two states of opposite parities, but as each parity state displays light-matter entanglement, we also find that the full state is entangled. Furthermore, as a natural extension of the anisotropic Rabi model to an infinite spin subsystem, we next explored the NESS of the anisotropic Dicke model. The NESS of this linearized Dicke model is also an inseparable state of light and matter. With an aim to enrich the dynamics beyond the sustainable entanglement found for the NESS of these hybrid quantum systems, we also propose to combine an all-optical feedback strategy for quantum state protection and for establishing quantum control in these systems. Our present work further elucidates the relevance of such hybrid open quantum systems for potential applications in quantum architectures.
Generalized Bell States and Quantum Teleportation
Fujii, Kazuyuki
2001-01-01
We make a brief comment on measurement of quantum operators with degenerate eigenstates and apply to quantum teleportation. We also try extending the quantum teleportation by Bennett et al [5] to more general situation by making use of generalized Bell states.
Quantum computation with mesoscopic superposition states
Oliveira, M. C.; Munro, W. J.
2000-01-01
We present a strategy to engineer a simple cavity-QED two-bit universal quantum gate using mesoscopic distinct quantum superposition states. The dissipative effect on decoherence and amplitude damping of the quantum bits are analyzed and the critical parameters are presented.
Gaussian private quantum channel with squeezed coherent states.
Jeong, Kabgyun; Kim, Jaewan; Lee, Su-Yong
2015-01-01
While the objective of conventional quantum key distribution (QKD) is to secretly generate and share the classical bits concealed in the form of maximally mixed quantum states, that of private quantum channel (PQC) is to secretly transmit individual quantum states concealed in the form of maximally mixed states using shared one-time pad and it is called Gaussian private quantum channel (GPQC) when the scheme is in the regime of continuous variables. We propose a GPQC enhanced with squeezed coherent states (GPQCwSC), which is a generalization of GPQC with coherent states only (GPQCo) [Phys. Rev. A 72, 042313 (2005)]. We show that GPQCwSC beats the GPQCo for the upper bound on accessible information. As a subsidiary example, it is shown that the squeezed states take an advantage over the coherent states against a beam splitting attack in a continuous variable QKD. It is also shown that a squeezing operation can be approximated as a superposition of two different displacement operations in the small squeezing regime. PMID:26364893
Robustness of asymmetry and coherence of quantum states
Piani, Marco; Bromley, Thomas R; Napoli, Carmine; Johnston, Nathaniel; Adesso, Gerardo
2016-01-01
Quantum states may exhibit asymmetry with respect to the action of a given group. Such an asymmetry of states can be considered as a resource in applications such as quantum metrology, and it is a concept that encompasses quantum coherence as a special case. We introduce explicitly and study the robustness of asymmetry, a quantifier of asymmetry of states that we prove to have many attractive properties, including efficient numerical computability via semidefinite programming, and an operational interpretation in a channel discrimination context. We also introduce the notion of asymmetry witnesses, whose measurement in a laboratory detects the presence of asymmetry. We prove that properly constrained asymmetry witnesses provide lower bounds to the robustness of asymmetry, which is shown to be a directly measurable quantity itself. We then focus our attention on coherence witnesses and the robustness of coherence, for which we prove a number of additional results; these include an analysis of its specific rele...
Controlled quantum state transfer via parity measurement
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
In this work,a scheme for controlled quantum state transfer is proposed using parity measurement in a cavity-waveguide system.As two special cases,two schemes of controlled quantum state transfer for one qubit and two qubits are investigated in detail.An important advantage is that controlled quantum state transfer can be completed by single-qubit rotations and the measurement of parity.Therefore,the present scheme might be realized in the scope of current experimental technology.
Controlled quantum state transfer via parity measurement
Institute of Scientific and Technical Information of China (English)
YUAN Quan; LI JiuHui
2009-01-01
In this work, a scheme for controlled quantum state transfer is proposed using parity measurement in a cavity-waveguide system. As two special cases, two schemes of controlled quantum state transfer for one qubit and two qubits are investigated in detail. An important advantage is that controlled quantum state transfer can be completed by single-qubit rotations and the measurement of parity. Therefore, the present scheme might be realized in the scope of current experimental technology.
Quantum communication based on orthogonal states enables quantum bit commitment
He, Guang Ping
2011-01-01
For more than a decade, it was believed that unconditionally secure quantum bit commitment (QBC) is impossible. But basing on a formerly proposed quantum communication scheme using orthogonal states, here we build a QBC protocol in which the density matrices of the quantum states encoding the commitment do not satisfy a crucial condition on which the impossibility proofs of QBC are based. Thus unconditional security can be achieved. Our protocol is very feasible with currently available technology. It re-opens the venue for other "post-cold-war" multi-party cryptographic protocols, e.g., unconditionally secure quantum bit string commitment and quantum strong coin tossing with an arbitrarily small bias. This result also has a strong influence on the Clifton-Bub-Halvorson theorem which suggests that quantum theory could be characterized in terms of information-theoretic constraints.
Quark-antiquark bound-state spectroscopy and QCD
Energy Technology Data Exchange (ETDEWEB)
Bloom, E.D.
1982-11-01
The discussion covers quarks as we know them, the classification of ordinary mesons in terms of constituent quarks, hidden charm states and charmed mesons, bottom quarks, positronium as a model for quarti q, quantum chromodynamics and its foundation in experiment, the charmonium model, the mass of states, fine structure and hyperfine structure, classification, widths of states, rate and multipolarity of gamma transitions, questions about bottom, leptonic widths and the determination of Q/sub b/, the mass splitting of the n/sup 3/S/sub 1/ states, the center of gravity of the masses of the n/sup 3/P; states, n/sup 3/ P; fine structure and classification, branching ratios for upsilon' ..-->.. tau chi/sub 6j/ and the tau cascade reactions, hyperfine splitting, and top. (GHT)
Gauge invariant formulation of 3$\\gamma$ decay of particle-antiparticle bound states
Blankleider, B; Silagadze, Z K
2014-01-01
We construct the gauge invariant three-photon decay amplitude of particle-antiparticle bound states modeled by the Dyson-Schwinger and Bethe-Salpeter equations. Application to the quark-antiquark ($q\\bar{q}$) bound states is emphasized. An essential aspect of our approach is that photons are allowed to couple to the $q\\bar{q}$ system in any way allowed by the given model, i.e., not just via the dressed quark propagator as in exact QCD. In this way, applications to effective field theories and other QCD motivated models are envisioned. The three-photon decay amplitude is constructed by attaching currents to all possible places in the Feynman diagrams contributing to the dressed quark propagator. The gauge invariance of our construction is thus a direct consequence of respecting the underlying structure of the quantum field theory determining the dynamics. In the resultant expression for the three-photon decay amplitude, all the basic ingredients consisting of the bound state wave function, the final-state inte...
Mapping quantum state dynamics in spontaneous emission
Naghiloo, M.; Foroozani, N.; Tan, D.; Jadbabaie, A.; Murch, K. W.
2016-05-01
The evolution of a quantum state undergoing radiative decay depends on how its emission is detected. If the emission is detected in the form of energy quanta, the evolution is characterized by a quantum jump to a lower energy state. In contrast, detection of the wave nature of the emitted radiation leads to different dynamics. Here, we investigate the diffusive dynamics of a superconducting artificial atom under continuous homodyne detection of its spontaneous emission. Using quantum state tomography, we characterize the correlation between the detected homodyne signal and the emitter's state, and map out the conditional back-action of homodyne measurement. By tracking the diffusive quantum trajectories of the state as it decays, we characterize selective stochastic excitation induced by the choice of measurement basis. Our results demonstrate dramatic differences from the quantum jump evolution associated with photodetection and highlight how continuous field detection can be harnessed to control quantum evolution.
Hydrogenic states of monopoles in diluted quantum spin ice
Petrova, Olga; Moessner, Roderich; Sondhi, S. L.
2015-09-01
We consider the effect of adding quantum dynamics to a classical topological spin liquid, with a particular view of how to best detect its presence in experiment. For the Coulomb phase of spin ice, we find quantum effects to be most visible in the gauge-charged monopole excitations. In the presence of weak dilution with nonmagnetic ions we find a particularly crisp phenomenon, namely, the emergence of hydrogenic excited states in which a magnetic monopole is bound to a vacancy at various distances. Via a mapping to an analytically tractable single particle problem on the Bethe lattice, we obtain an approximate expression for the dynamic neutron scattering structure factor.
Tuned Transition from Quantum to Classical for Macroscopic Quantum States
Fedorov, A.; Macha, P.; Feofanov, A.K.; Harmans, C.J.P.M.; Mooij, J.E.
2011-01-01
The boundary between the classical and quantum worlds has been intensely studied. It remains fascinating to explore how far the quantum concept can reach with use of specially fabricated elements. Here we employ a tunable flux qubit with basis states having persistent currents of 1 μA carried by a
Approximate Relativistic Bound State Solutions of the Tietz-Hua Rotating Oscillator for Any κ-State
International Nuclear Information System (INIS)
Approximate analytical solutions of the Dirac equation with Tietz-Hua (TH) potential are obtained for arbitrary spin-orbit quantum number κ using the Pekeris approximation scheme to deal with the spin-orbit coupling terms κ(κ±1)r-2. In the presence of exact spin and pseudo-spin symmetric limitation, the bound state energy eigenvalues and associated two-component wave functions of the Dirac particle moving in the field of attractive and repulsive TH potential are obtained using the parametric generalization of the Nikiforov-Uvarov method. The cases of the Morse potential, the generalized Morse potential and non-relativistic limits are studied. (author)
Quantum state tomography and fidelity estimation via Phaselift
Energy Technology Data Exchange (ETDEWEB)
Lu, Yiping; Liu, Huan; Zhao, Qing, E-mail: qzhaoyuping@bit.edu.cn
2015-09-15
Experiments of multi-photon entanglement have been performed by several groups. Obviously, an increase on the photon number for fidelity estimation and quantum state tomography causes a dramatic increase in the elements of the positive operator valued measures (POVMs), which results in a great consumption of time in measurements. In practice, we wish to obtain a good estimation of fidelity and quantum states through as few measurements as possible for multi-photon entanglement. Phaselift provides such a chance to estimate fidelity for entangling states based on less data. In this paper, we would like to show how the Phaselift works for six qubits in comparison to the data given by Pan’s group, i.e., we use a fraction of the data as input to estimate the rest of the data through the obtained density matrix, and thus goes beyond the simple fidelity analysis. The fidelity bound is also provided for general Schrödinger Cat state. Based on the fidelity bound, we propose an optimal measurement approach which could both reduce the copies and keep the fidelity bound gap small. The results demonstrate that the Phaselift can help decrease the measured elements of POVMs for six qubits. Our conclusion is based on the prior knowledge that a pure state is the target state prepared by experiments.
Quantum Sensors: Improved Optical Measurement via Specialized Quantum States
Directory of Open Access Journals (Sweden)
David S. Simon
2016-01-01
Full Text Available Classical measurement strategies in many areas are approaching their maximum resolution and sensitivity levels, but these levels often still fall far short of the ultimate limits allowed by the laws of physics. To go further, strategies must be adopted that take into account the quantum nature of the probe particles and that optimize their quantum states for the desired application. Here, we review some of these approaches, in which quantum entanglement, the orbital angular momentum of single photons, and quantum interferometry are used to produce optical measurements beyond the classical limit.
The inverse problem in the case of bound states
International Nuclear Information System (INIS)
We investigate the inverse problem for bound states in the D = 3 dimensional space. The potential is assumed to be local and spherically symmetric. The present method is based on relationships connecting the moments of the ground state density to the lowest energy of each state of angular momentum l. The reconstruction of the density ρ(r) from its moments is achieved by means of the series expansion of its Fourier transform F(q). The large q-behavior is described by Pade approximants. The accuracy of the solution depends on the number of known moments. The uniqueness is achieved if this number is infinite. In practice, however, an accuracy better than 1% is obtained with a set of about 15 levels. The method is tested on a simple example, and applied to three different spectra
The search for deeply bound kaonic states with FOPI
International Nuclear Information System (INIS)
Full text: New formation mechanisms for the creation of dense, exotic nuclear systems involving strangeness were recently proposed by Y. Akaishi and T. Yamazaki. Their calculations show that a K- might form deeply bound states in light nuclei - so called kaonic clusters - with central densities of several times the normal nuclear density. In the presentation a short overview of these exotic nuclear systems will be given and a new experiment with FOPI at GSI will be discussed. The aim of this experiment was to search for the simplest cluster - a ppK- state. This state is produced at GSI in the following high energy reaction: p + ''d'' → ppK- + K+ + n'' with incident energies of 3.5 GeV. The experimental set-up will be presented in detail. (author)
Autodetachment spectroscopy of the aluminum oxide anion dipole bound state
Energy Technology Data Exchange (ETDEWEB)
Mascaritolo, Kyle J.; Gardner, Adrian M.; Heaven, Michael C., E-mail: mheaven@emory.edu [Department of Chemistry, Emory University, Atlanta, Georgia 30322 (United States)
2015-09-21
The {sup 1}Σ{sup +}←X{sup 1}Σ{sup +} ground state to dipole bound state (DBS) electronic transition of AlO{sup −} has been studied by means of autodetachment spectroscopy. Vibrational and rotational molecular constants for AlO{sup −} have been determined for both the ground state (υ″ = 0, 1) and the excited DBS (υ′ = 0, 1). These data provide an improved determination of the electron affinity for AlO (2.6110(7) eV) that is consistent with an earlier measurement. The electron binding energy of the DBS was found to be 52 ± 6 cm{sup −1}. Experimental results are compared with the predictions from high level ab initio calculations.
Configuration space Faddeev formalism: Λ + n + n bound state search
Suslov, Vladimir; Filikhin, Igor; Vlahovic, Branislav
2015-04-01
The HypHI Collaboration has recently reported the evidence for bound state of Λ + n + n system (Phys. Rev. C 88, 041001(R) (2013)). However, the theoretical analysis did not find Λ3n bound state (see, for instance, Phys. Lett. B 736, 93 (2014)). In the present work we will describe our attempt to construct a phenomenological three-body ΛNN force with the spin-isospin dependence that is attractive in the channel T=1, S=1/2. This dependence was tested to reproduce the value of ground state energy for Λ3H hypernuclei. The formalism of the configuration-space Faddeev equations is applied for Λ + n + n and Λ + n + p systems. As Λ + n interaction the s-wave potential simulating model NSC97f is used. This potential reproduces well the hyperon binding energy for Λ3H nuclei (J. Phys. G: 31, 389 (2005)). The details of the model and obtained results will be presented. This work is supported by the NSF (HRD-1345219) and NASA (NNX09AV07A).
R-Matrix Calculations for Few-Quark Bound States
Shalchi, M A
2016-01-01
The R-matrix method is implemented to study the heavy charm and bottom diquark, triquark, tetraquark and pentaquarks in configuration space, as the bound states of quark-antiquark, diquark-quark, diquark-antidiquark and diquark-antitriquark systems, respectively. The mass spectrum and the size of these systems are calculated for different partial wave channels. The calculated masses are compared with recent theoretical results obtained by %the solution of Lippmann-Schwinger equation other methods in momentum and configuration spaces and also by available experimental data.
Are $\\eta$- and $\\omega$-nuclear states bound ?
Tsushima, K; Thomas, A W; Saitô, K
1998-01-01
We investigate theoretically whether it is feasible to detect $\\eta$- and $^{40}$Ca, $^{90}$Zr and $^{208}$Pb, we also investigate $^6$He, $^{11}$B and $^{26}$Mg, which are the final nuclei in the proposed experiment involving the (d,$^3$He) reaction at GSI. Potentials for the $\\eta$ and $\\omega$ mesons in these nuclei are calculated in local density approximation, embedding the mesons in the nucleus described by solving the mean-field equations of motion in the QMC model. Our results suggest that one should expect to find $\\eta$- and $\\omega$-nucleus bound states in all these nuclei.
Tetraquark bound states in a Bethe-Salpeter approach
Heupel, Walter; Eichmann, Gernot; Fischer, Christian S.
2012-01-01
We determine the mass of tetraquark bound states from a coupled system of covariant Bethe-Salpeter equations. Similar in spirit to the quark-diquark model of the nucleon, we approximate the full four-body equation for the tetraquark by a coupled set of two-body equations with meson and diquark constituents. These are calculated from their quark and gluon substructure using a phenomenologically well-established quark-gluon interaction. For the lightest scalar tetraquark we find a mass of the o...
Exotic Hadron Bound State Production at Hadronic Colliders
Jin, Yi; Liu, Yan-Rui; Meng, Lu; Si, Zon-Guo; Zhang, Xiao-Feng
2016-01-01
The non-relativistic wave function framework is applied to study the production and decay of the exotic hadrons which can be effectively described as bound states of other hadrons. The ingredient hadron production can be calculated by event generators. We investigate the production of exotic hadrons in the multiproduction processes at high energy hadronic colliders with the help of the event generators. We illustrate the crucial information such as their momentum distributions and production rate for the measurements at the large hadron collider. This study provides crucial information for the measurements of the relevant exotic hadrons.
Quarkonium-nucleus bound states from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Beane, S. R. [Univ. of Washington, Seattle, WA (United States); Chang, E. [Univ. of Washington, Seattle, WA (United States); Cohen, S. D. [Univ. of Washington, Seattle, WA (United States); Detmold, W. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Lin, H. -W. [Univ. of Washington, Seattle, WA (United States); Orginos, K. [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Parreño, A. [Univ., de Barcelona, Marti Franques (Spain); Savage, M. J. [Univ. of Washington, Seattle, WA (United States)
2015-06-11
Quarkonium-nucleus systems are composed of two interacting hadronic states without common valence quarks, which interact primarily through multi-gluon exchanges, realizing a color van der Waals force. We present lattice QCD calculations of the interactions of strange and charm quarkonia with light nuclei. Both the strangeonium-nucleus and charmonium-nucleus systems are found to be relatively deeply bound when the masses of the three light quarks are set equal to that of the physical strange quark. Extrapolation of these results to the physical light-quark masses suggests that the binding energy of charmonium to nuclear matter is B < 40 MeV.
Three-body bound states in finite volume with EFT
International Nuclear Information System (INIS)
Three particles with large scattering length display a universal spectrum of three-body bound states called ''Efimov trimers''. We calculate the modification of the Efimov trimers of three identical bosons in a finite cubic box and compute the dependence of their energies on the box size using effective field theory. The renormalization of the effective field theory in the finite volume is explicitly verified. We investigate the effects of partial wave mixing and study the behavior of shallow trimers near the dimer energy. Finally, we present first results for the triton in a finite volume.
A search algorithm for quantum state engineering and metrology
Knott, P. A.
2016-07-01
In this paper we present a search algorithm that finds useful optical quantum states which can be created with current technology. We apply the algorithm to the field of quantum metrology with the goal of finding states that can measure a phase shift to a high precision. Our algorithm efficiently produces a number of novel solutions: we find experimentally ready schemes to produce states that show significant improvements over the state-of-the-art, and can measure with a precision that beats the shot noise limit by over a factor of 4. Furthermore, these states demonstrate a robustness to moderate/high photon losses, and we present a conceptually simple measurement scheme that saturates the Cramér-Rao bound.
Quantization of the Closed Mini-Superspace Models as Bound States
Kung, J H
1995-01-01
Wheeler-DeWitt equation is applied to $k > 0$ Friedmann Robertson Walker metric with various types of matter. It is shown that if the Universe ends in the matter dominated era (e.g., radiation or pressureless gas) with zero cosmological constant, then the resulting Wheeler-DeWitt equation describes a bound state problem. As solutions of a non-degenerate bound state system, the eigen-wave functions are real (Hartle-Hawking) and the usual issue associated with the ambiguity in the boundary conditions for the wave functions is resolved. Furthermore, as a bound state problem, there exists a quantization condition that relates the curvature of the three space with the energy density of the Universe. Incorporating a cosmological constant in the early Universe (inflation) is given as a natural explanation for the large quantum number associated with our Universe, which resulted from the quantization condition. It is also shown that if there is a cosmological constant $\\Lambda > 0$ in our Universe that persists for a...
Heat-machine control by quantum-state preparation: From quantum engines to refrigerators
Gelbwaser-Klimovsky, D.; Kurizki, G.
2014-08-01
We explore the dependence of the performance bounds of heat engines and refrigerators on the initial quantum state and the subsequent evolution of their piston, modeled by a quantized harmonic oscillator. Our goal is to provide a fully quantized treatment of self-contained (autonomous) heat machines, as opposed to their prevailing semiclassical description that consists of a quantum system alternately coupled to a hot or a cold heat bath and parametrically driven by a classical time-dependent piston or field. Here, by contrast, there is no external time-dependent driving. Instead, the evolution is caused by the stationary simultaneous interaction of two heat baths (having distinct spectra and temperatures) with a single two-level system that is in turn coupled to the quantum piston. The fully quantized treatment we put forward allows us to investigate work extraction and refrigeration by the tools of quantum-optical amplifier and dissipation theory, particularly, by the analysis of amplified or dissipated phase-plane quasiprobability distributions. Our main insight is that quantum states may be thermodynamic resources and can provide a powerful handle, or control, on the efficiency of the heat machine. In particular, a piston initialized in a coherent state can cause the engine to produce work at an efficiency above the Carnot bound in the linear amplification regime. In the refrigeration regime, the coefficient of performance can transgress the Carnot bound if the piston is initialized in a Fock state. The piston may be realized by a vibrational mode, as in nanomechanical setups, or an electromagnetic field mode, as in cavity-based scenarios.
Comparison of methods for quantum state tomography
International Nuclear Information System (INIS)
Estimation of quantum states is a basic task in quantum information science. The major problem is that the number of measurements scales exponentially with respect to the number of particles. Several methods can be used to extract information about the quantum state with a limited number of measurements, e.g. maximum likelihood estimation, hedged maximum likelihood estimation, compressed sensing, and Bayesian mean estimation. Here we do a comparison between these methods and show advantages/disadvantages as well as open problems.
Optimal Unambiguous Discrimination of Quantum States
Jafarizadeh, M. A.; Rezaei, M.; N. Karimi; Amiri, A. R.
2007-01-01
Unambiguously distinguishing between nonorthogonal but linearly independent quantum states is a challenging problem in quantum information processing. In this work, an exact analytic solution to an optimum measurement problem involving an arbitrary number of pure linearly independent quantum states is presented. To this end, the relevant semi-definite programming task is reduced to a linear programming one with a feasible region of polygon type which can be solved via simplex method. The stre...
Improved quantum state transfer via quantum partially collapsing measurements
Energy Technology Data Exchange (ETDEWEB)
Man, Zhong-Xiao, E-mail: manzhongxiao@163.com [Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Department of Physics, Qufu Normal University, Qufu 273165 (China); Ba An, Nguyen, E-mail: nban@iop.vast.ac.vn [Center for Theoretical Physics, Institute of Physics, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi (Viet Nam); Xia, Yun-Jie, E-mail: yjxia@mail.qfnu.edu.cn [Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Department of Physics, Qufu Normal University, Qufu 273165 (China)
2014-10-15
In this work, we present a general scheme to improve quantum state transfer (QST) by taking advantage of quantum partially collapsing measurements. The scheme consists of a weak measurement performed at the initial time on the qubit encoding the state of concern and a subsequent quantum reversal measurement at a desired time on the destined qubit. We determine the strength q{sub r} of the post quantum reversal measurement as a function of the strength p of the prior weak measurement and the evolution time t so that near-perfect QST can be achieved by choosing p close enough to 1, with a finite success probability, regardless of the evolution time and the distance over which the QST takes place. The merit of our scheme is twofold: it not only improves QST, but also suppresses the energy dissipation, if any. - Highlights: • A scheme using weak/reversal measurements is devised to improve quantum state transfer. • It can suppress dissipation allowing optimal quantum state transfer in open system. • Explicit condition for achieving near-perfect quantum state transfer is established. • Applications to spin chain and cavity array are considered in detail.
Upper bound for SL-invariant entanglement measures of mixed states
Osterloh, Andreas
2016-05-01
An algorithm is proposed that serves to handle full-rank density matrices when coming from a lower-rank method to compute the convex roof. This is in order to calculate an upper bound for any polynomial SL-invariant multipartite entanglement measure E . This study exemplifies how this algorithm works based on a method for calculating convex roofs of rank-2 density matrices. It iteratively considers the decompositions of the density matrix into two states each, exploiting the knowledge for the rank-2 case. The algorithm is therefore quasiexact as far as the rank-2 case is concerned, and it also hints where it should include more states in the decomposition of the density matrix. Focusing on the measure of three-way entanglement of qubits (called three-tangle), I show the results the algorithm gives for two states, one of which is the Greenberger-Horne-Zeilinger-Werner (GHZ-W ) state, for which the exact convex roof is known. It overestimates the three-tangle in the state, thereby giving insight into the optimal decomposition the GHZ-W state has. As a proof of principle, I have run the algorithm for the three-tangle on the transverse quantum Ising model. I give qualitative and quantitative arguments why the convex roof should be close to the upper bound found here.
Matrix product states for quantum metrology
Jarzyna, Marcin; Demkowicz-Dobrzanski, Rafal
2013-01-01
We demonstrate that the optimal states in lossy quantum interferometry may be efficiently simulated using low rank matrix product states. We argue that this should be expected in all realistic quantum metrological protocols with uncorrelated noise and is related to the elusive nature of the Heisenberg precision scaling in presence of decoherence.
Quantum state discrimination and enhancement by noise
Energy Technology Data Exchange (ETDEWEB)
Chapeau-Blondeau, François, E-mail: chapeau@univ-angers.fr
2014-06-13
Discrimination between two quantum states is addressed as a quantum detection process where a measurement with two outcomes is performed and a conclusive binary decision results about the state. The performance is assessed by the overall probability of decision error. Based on the theory of quantum detection, the optimal measurement and its performance are exhibited in general conditions. An application is realized on the qubit, for which generic models of quantum noise can be investigated for their impact on state discrimination from a noisy qubit. The quantum noise acts through random application of Pauli operators on the qubit prior to its measurement. For discrimination from a noisy qubit, various situations are exhibited where reinforcement of the action of the quantum noise can be associated with enhanced performance. Such implications of the quantum noise are analyzed and interpreted in relation to stochastic resonance and enhancement by noise in information processing. - Highlights: • We consider stochastic resonance or enhancement by noise for information processing. • An extension is realized to quantum state discrimination with quantum noise. • The optimal detector minimizing the discrimination error is derived and analyzed. • Forms of enhancement by noise are reported in the optimal detector performance. • This represents the first exploration of stochastic resonance for quantum detection.
Lower Bounds on Quantum Query Complexity for Read-Once Formulas with XOR and MUX Operators
Fukuhara, Hideaki; Takimoto, Eiji
We introduce a complexity measure r for the class F of read-once formulas over the basis {AND, OR, NOT, XOR, MUX} and show that for any Boolean formula F in the class F, r(F) is a lower bound on the quantum query complexity of the Boolean function that F represents. We also show that for any Boolean function f represented by a formula in F, the deterministic query complexity of f is only quadratically larger than the quantum query complexity of f. Thus, the paper gives further evidence for the conjecture that there is an only quadratic gap for all functions.
Practical security bounds against the Trojan-horse attack in quantum key distribution
Lucamarini, Marco; Choi, Iris; Ward, Martin B.; Dynes, James F.; Yuan, Zhiliang; Shields, Andrew J.
2015-01-01
In the quantum version of a Trojan-horse attack, photons are injected into the optical modules of a quantum key distribution system in an attempt to read information direct from the encoding devices. To stop the Trojan photons, the use of passive optical components has been suggested. However, to date, there is no quantitative bound that specifies such components in relation to the security of the system. Here, we turn the Trojan-horse attack into an information leakage problem. This allows u...
Achieving the Han-Kobayashi inner bound for the quantum interference channel by sequential decoding
Sen, Pranab
2011-01-01
In this paper, we study the power of sequential decoding strategies for several channels with classical input and quantum output. In our sequential decoding strategies, the receiver loops through all candidate messages trying to project the received state onto a `typical' subspace for the candidate message under consideration, stopping if the projection succeeds for a message, which is then declared as the guess of the receiver for the sent message. We show that even such a conceptually simple strategy can be used to achieve rates up to the mutual information for a single sender single receiver channel called cq-channel henceforth, as well as the standard inner bound for a two sender single receiver multiple access channel, called ccq-MAC in this paper. Our decoding scheme for the ccq-MAC uses a new kind of conditionally typical projector which is constructed using a geometric result about how two subspaces interact structurally. As the main application of our methods, we construct an encoding and decoding sc...
Signatures of Majorana bound states in one-dimensional topological superconductors
Energy Technology Data Exchange (ETDEWEB)
Pientka, Falko
2014-11-03
Topological states of matter have fascinated condensed matter physicists for the past three decades. Famous examples include the integer and fractional quantum Hall states exhibiting a spectacular conductance quantization as well as topological insulators in two and three dimensions featuring gapless Dirac fermions at the boundary. Very recently, novel topological phases in superconductors have been subject of intense experimental and theoretical investigation. One-dimensional topological superconductors are particularly intriguing as they host exotic Majorana end states. These are zero-energy bound states with nonabelian exchange statistics potentially useful for topologically protected quantum computing. Recent theoretical and experimental advances have put the realization of Majorana states within reach of current measurement techniques. In this thesis we investigate signatures of Majorana bound states in realistic experiments aiming to improve the theoretical understanding of ongoing experimental efforts and to design novel measurement schemes, which exhibit convincing signatures of Majoranas. In particular we account for nonideal experimental conditions which can lead to qualitatively new features. Possible signatures of Majoranas can be accessed in the Josephson current through a weak link between two topological superconductors although the signatures in the dc Josephson effect are typically obscured by inevitable quasiparticle relaxation in the superconductor. Here we propose a measurement scheme in mesoscopic superconducting rings, where Majorana signatures persist even for infinitely fast relaxation. In a separate project we outline an alternative to the standard Josephson experiment in topological superconductors based on quantum wires. We delineate how Majoranas can be detected, when the Josephson current is induced by noncollinear magnetic fields applied to the two banks of the junction instead of a superconducting phase difference. Another important
Fingerprints of Majorana Bound States in Aharonov-Bohm Geometry
Tripathi, Krashna Mohan; Das, Sourin; Rao, Sumathi
2016-04-01
We study a ring geometry, coupled to two normal metallic leads, which has a Majorana bound state (MBS) embedded in one of its arms and is threaded by Aharonov-Bohm (A B ) flux ϕ . We show that by varying the A B flux, the two leads go through resonance in an anticorrelated fashion while the resonance conductance is quantized to 2 e2/h . We further show that such anticorrelation is completely absent when the MBS is replaced by an Andreev bound state (ABS). Hence this anti-correlation in conductance when studied as a function of ϕ provides a unique signature of the MBS which cannot be faked by an ABS. We contrast the phase sensitivity of the MBS and ABS in terms of tunneling conductances. We argue that the relative phase between the tunneling amplitude of the electrons and holes from either lead to the level (MBS or ABS), which is constrained to 0 ,π for the MBS and unconstrained for the ABS, is responsible for this interesting contrast in the A B effect between the MBS and ABS.
Topological nature of bound states in the radiation continuum
Zhen, Bo; Lu, Ling; Stone, A Doug; Soljacic, Marin
2014-01-01
Bound states in the continuum (BICs) are unusual solutions of wave equations describing light or matter: they are discrete and spatially bounded, but exist at the same energy as a continuum of states which propagate to infinity. Until recently, BICs were constructed through fine-tuning parameters in the wave equation or exploiting the separability of the wave equation due to symmetry. More recently, BICs that that are both robust and not symmetry-protected (accidental) have been predicted and experimentally realized in periodic structures; the simplest such system is a periodic dielectric slab, which also has symmetry-protected BICs. Here we show that both types of BICs in such systems are vortex centers in the polarization direction of far-field radiation. The robustness of these BICs is due to the existence of conserved and quantized topological charges, defined by the number of times the polarization vectors wind around the vortex centers. Such charges can only be generated or annihilated by making large c...
Quantum pump in quantum spin Hall edge states
Cheng, Fang
2016-09-01
We present a theory for quantum pump in a quantum spin Hall bar with two quantum point contacts (QPCs). The pump currents can be generated by applying harmonically modulating gate voltages at QPCs. The phase difference between the gate voltages introduces an effective gauge field, which breaks the time-reversal symmetry and generates pump currents. The pump currents display very different pump frequency dependence for weak and strong e-e interaction. These unique properties are induced by the helical feature of the edge states, and therefore can be used to detect and control edge state transport.
Introduction to quantum-state estimation
Teo, Yong Siah
2016-01-01
Quantum-state estimation is an important field in quantum information theory that deals with the characterization of states of affairs for quantum sources. This book begins with background formalism in estimation theory to establish the necessary prerequisites. This basic understanding allows us to explore popular likelihood- and entropy-related estimation schemes that are suitable for an introductory survey on the subject. Discussions on practical aspects of quantum-state estimation ensue, with emphasis on the evaluation of tomographic performances for estimation schemes, experimental realizations of quantum measurements and detection of single-mode multi-photon sources. Finally, the concepts of phase-space distribution functions, which compatibly describe these multi-photon sources, are introduced to bridge the gap between discrete and continuous quantum degrees of freedom. This book is intended to serve as an instructive and self-contained medium for advanced undergraduate and postgraduate students to gra...
Parametric separation of symmetric pure quantum states
Solís-Prosser, M. A.; Delgado, A.; Jiménez, O.; Neves, L.
2016-01-01
Quantum state separation is a probabilistic map that transforms a given set of pure states into another set of more distinguishable ones. Here we investigate such a map acting onto uniparametric families of symmetric linearly dependent or independent quantum states. We obtained analytical solutions for the success probability of the maps—which is shown to be optimal—as well as explicit constructions in terms of positive operator valued measures. Our results can be used for state discrimination strategies interpolating continuously between minimum-error and unambiguous (or maximum-confidence) discrimination, which, in turn, have many applications in quantum information protocols. As an example, we show that quantum teleportation through a nonmaximally entangled quantum channel can be accomplished with higher probability than the one provided by unambiguous (or maximum-confidence) discrimination and with higher fidelity than the one achievable by minimum-error discrimination. Finally, an optical network is proposed for implementing parametric state separation.
Bound states for non-symmetric evolution Schroedinger potentials
Energy Technology Data Exchange (ETDEWEB)
Corona, Gulmaro Corona [Area de Analisis Matematico y sus Aplicaciones, Universidad Autonoma Metropolitana-Azcapotalco, Atzcapotzalco, DF (Mexico)). E-mail: ccg@correo.azc.uam.mx
2001-09-14
We consider the spectral problem associated with the evolution Schroedinger equation, (D{sup 2}+ k{sup 2}){phi}=u{phi}, where u is a matrix-square-valued function, with entries in the Schwartz class defined on the real line. The solution {phi}, called the wavefunction, consists of a function of one real variable, matrix-square-valued with entries in the Schwartz class. This problem has been dealt for symmetric potentials u. We found for the present case that the bound states are localized similarly to the scalar and symmetric cases, but by the zeroes of an analytic matrix-valued function. If we add an extra condition to the potential u, we can determine these states by an analytic scalar function. We do this by generalizing the scalar and symmetric cases but without using the fact that the Wronskian of a pair of wavefunction is constant. (author)
Three-nucleon bound states using realistic potential models
Nogga, A.; Kievsky, A.; Kamada, H.; Glöckle, W.; Marcucci, L. E.; Rosati, S.; Viviani, M.
2003-03-01
The bound states of 3H and 3He have been calculated by using the Argonne v18 plus the Urbana IX three-nucleon potential. The isospin T=3/2 state have been included in the calculations as well as the n-p mass difference. The 3H-3He mass difference has been evaluated through the charge-dependent terms explicitly included in the two-body potential. The calculations have been performed using two different methods: the solution of the Faddeev equations in momentum space and the expansion on the correlated hyperspherical harmonic basis. The results are in agreement within 0.1% and can be used as benchmark tests. Results for the charge-dependent Bonn interaction in conjunction with the Tucson-Melbourne three-nucleon force are also presented. It is shown that the 3H and 3He binding energy difference can be predicted model independently.
The three-nucleon bound state using realistic potential models
Nogga, A; Kamada, H; Glöckle, W; Marcucci, L E; Rosati, S; Viviani, M
2003-01-01
The bound states of $^3$H and $^3$He have been calculated using the Argonne $v_{18}$ plus the Urbana three-nucleon potential. The isospin $T=3/2$ state have been included in the calculations as well as the $n$-$p$ mass difference. The $^3$H-$^3$He mass difference has been evaluated through the charge dependent terms explicitly included in the two-body potential. The calculations have been performed using two different methods: the solution of the Faddeev equations in momentum space and the expansion on the correlated hyperspherical harmonic basis. The results are in agreement within 0.1% and can be used as benchmark tests. Results for the CD-Bonn interaction are also presented. It is shown that the $^3$H and $^3$He binding energy difference can be predicted model independently.
Donor bound or negatively charged excitons in thin CdTe/Cd1-xMnxTe quantum wells
Paganotto, N.; Siviniant, J.; Coquillat, D.; Scalbert, D.; Lascaray, J.-P.; Kavokin, A. V.
1998-08-01
Magnetophotoluminescence spectroscopy of unintentionally doped thin CdTe/(Cd,Mn)Te single and double quantum wells (QW's) revealed a pronounced excitonic transition that can be associated with either an exciton bound to a neutral donor (D0X) or a negatively charged exciton (X-). Comparative experimental study and theoretical analysis of this transition in quantum wells of different thicknesses allowed us to attribute it to the D0X complex in a single QW and to the X- state in the double QW. A record X- binding energy of 3.7 meV has been detected. The double QW structure was shown to be favorable for the formation of X- in the wide well due to the efficient interwell electron tunneling.
The Monge distance between quantum states
Energy Technology Data Exchange (ETDEWEB)
Zyczkowski, Karol [Institute for Plasma Research, University of Maryland, College Park, MD (United States); Slomczynski, Wojciech [Instytut Matematyki, Uniwersytet Jagiellonski, Cracow (Poland)
1998-11-13
We define a metric in the space of quantum states taking the Monge distance between corresponding Husimi distributions (Q-functions). This quantity fulfils the axioms of a metric and satisfies the following semiclassical property: the distance between two coherent states is equal to the Euclidean distance between corresponding points in the classical phase space. We compute analytically distances between certain states (coherent, squeezed, Fock and thermal) and discuss a scheme for numerical computation of Monge distance for two arbitrary quantum states. (author)
Quantum Light States Engineering via Quantum Feedback Control
Negretti, A; Poulsen, U V; Molmer, Klaus; Negretti, Antonio; Poulsen, Uffe V.
2007-01-01
We present a protocol for deterministic generation of Fock states and Schroedinger cat-like states in an optical cavity by quantum non-demolition photon number measurements and coherent feeding of the cavity. We show how a careful feedback protocol design helps to achieve high success rates for generation of states with high fidelity.
Nonlocal edge state transport in the quantum spin Hall state
Roth, Andreas; Bruene, Christoph; Buhmann, Hartmut; Molenkamp, Laurens W.; Maciejko, Joseph; Qi, Xiao-Liang; Zhang, Shou-Cheng
2009-01-01
We present direct experimental evidence for nonlocal transport in HgTe quantum wells in the quantum spin Hall regime, in the absence of any external magnetic field. The data conclusively show that the non-dissipative quantum transport occurs through edge channels, while the contacts lead to equilibration between the counter-propagating spin states at the edge. We show that the experimental data agree quantitatively with the theory of the quantum spin Hall effect.
Pedrelli, Danilo C; Braga, Alessandra N; Alves, Danilo T
2016-01-01
We propose a model for energy-dependent $\\delta-\\delta^{\\prime}$ interactions which yields scattering coefficients exhibiting full transmission for high-energy incident particles, also computing the bound solutions in one-dimension nonrelativistic quantum mechanics.
Quantum state transfer and network engineering
Nikolopoulos, Georgios M
2013-01-01
Faithful communication is a necessary precondition for large-scale quantum information processing and networking, irrespective of the physical platform. Thus, the problems of quantum-state transfer and quantum-network engineering have attracted enormous interest over the last years, and constitute one of the most active areas of research in quantum information processing. The present volume introduces the reader to fundamental concepts and various aspects of this exciting research area, including links to other related areas and problems. The implementation of state-transfer schemes and the en
Quantum Statistical Properties of k-Quantum Nonlinear Coherent States
Institute of Scientific and Technical Information of China (English)
WANG Ji-Suo; LIU Tang-Kun; FENG Jian; SUN Jin-Zuo
2004-01-01
In our preceding work, a class of k-quantum nonlinear coherent states, i.e., the k eigenstates of the powersBk (k ≥ 3) of the annihilation operator B=-a1/f(N) of f-oscillators, are introduced. In this paper, we introduce a newkind of higher-order squeezing and an antibunching effect. The quantum statistical properties of the k states are studied.The result shows that the M-th order [M = (n + 1/2)k; n = 0, 1,...] squeezing effects exist in all of the k states when kis even. There is the antibunching effect in all of the k states.
Is the exotic X(5568) a bound state?
Energy Technology Data Exchange (ETDEWEB)
Chen, Xiaoyun; Ping, Jialun [Nanjing Normal University, Department of Physics and Jiangsu Key Laboratory for Numerical Simulation of Large Scale Complex Systems, Nanjing (China)
2016-06-15
Stimulated by the recent observation of the exotic X(5568) state by the D0 Collaboration, we study the four-quark system us anti b anti d with quantum numbers J{sup P} = 0{sup +} in the framework of the chiral quark model. Two structures, diquark-antidiquark and meson-meson, with all possible color configurations are investigated by using the Gaussian expansion method. The results show that the energies of the tetraquark states with diquark-antiquark structure are too high to be candidates of X(5568), and no molecular structure can be formed in our calculations. The calculation is also extended to the four-quark system us anti c anti d and the same results as that of us anti b anti d are obtained. (orig.)
Is the exotic $X(5568)$ a bound state?
Chen, Xiaoyun
2016-01-01
Stimulated by the recent observation of the exotic $X(5568)$ state by D0 Collaboration, we study the four-quark system $us\\bar{b}\\bar{d}$ with quantum numbers $J^P=0^+$ in the framework of chiral quark model. Two structures, diquark-antidiquark and meson-meson, with all possible color configurations are investigated by using Gaussian expansion method. The results show that energies of the tetraquark states with diquark-antiquark structure are too high to the candidate of $X(5568)$, and no molecular structure can be formed in our calculations. The calculation is also extended to the four-quark system $us\\bar{c}\\bar{d}$ and the same results as that of $us\\bar{b}\\bar{d}$ are obtained.
Minimal time trajectories for two-level quantum systems with two bounded controls
Energy Technology Data Exchange (ETDEWEB)
Boscain, Ugo, E-mail: ugo.boscain@polytechnique.edu [CNRS, CMAP Ecole Polytechnique, France and Team GECO, INRIA Saclay (France); Grönberg, Fredrik, E-mail: gronb@kth.se [Department of Physics, Royal Institute of Technology (KTH) (Sweden); Long, Ruixing, E-mail: ruixing.long@gmail.com [General Motors of Canada, 1908 Colonel Sam Drive, Oshawa (Canada); Rabitz, Herschel, E-mail: hrabitz@princeton.edu [Department of Chemistry, Princeton University, Princeton, New Jersey 08544-1009 (United States)
2014-06-15
In this paper we consider the minimum time population transfer problem for a two level quantum system driven by two external fields with bounded amplitude. The controls are modeled as real functions and we do not use the Rotating Wave Approximation. After projection on the Bloch sphere, we treat the time-optimal control problem with techniques of optimal synthesis on 2D manifolds. Based on the Pontryagin Maximum Principle, we characterize a restricted set of candidate optimal trajectories. Properties on this set, crucial for complete optimal synthesis, are illustrated by numerical simulations. Furthermore, when the two controls have the same bound and this bound is small with respect to the difference of the two energy levels, we get a complete optimal synthesis up to a small neighborhood of the antipodal point of the initial condition.
Lower neutrino mass bound from SN1987A data and quantum geometry
Energy Technology Data Exchange (ETDEWEB)
Lambiase, G [Dipartimento di Fisica ' E R Caianiello' Universita di Salerno, 84081 Baronissi (Saudi Arabia) (Italy); INFN-Gruppo Collegato di Salerno (Italy); Papini, G [Department of Physics, University of Regina, Regina, SK S4S 0A2 (Canada); Prairie Particle Physics Institute, Regina, SK S4S 0A2 (Canada); International Institute for Advanced Scientific Studies, 89019 Vietri sul Mare (Saudi Arabia) (Italy); Punzi, R [Dipartimento di Fisica ' E R Caianiello' Universita di Salerno, 84081 Baronissi (Saudi Arabia) (Italy); INFN-Gruppo Collegato di Salerno (Italy); Scarpetta, G [Dipartimento di Fisica ' E R Caianiello' Universita di Salerno, 84081 Baronissi (Saudi Arabia) (Italy); INFN-Gruppo Collegato di Salerno (Italy); International Institute for Advanced Scientific Studies, 89019 Vietri sul Mare (Saudi Arabia) (Italy)
2006-02-21
A lower bound on the light neutrino mass m{sub {nu}} is derived in the framework of a geometrical interpretation of quantum mechanics. Using this model and the time-of-flight delay data for neutrinos coming from SN1987A, we find that the neutrino masses are bounded from below by m{sub {nu}} {approx}> 10{sup -4}-10{sup -3} eV, in agreement with the upper bound m{sub nu}
On Possible S-Wave Bound States for an N-(N) System Within a Constituent Quark Model
Institute of Scientific and Technical Information of China (English)
CHANG Chao-Hsi; PANG Hou-Rong
2005-01-01
We try to apply a constituent quark model (a variety chiral constituent quark model) and the resonating group approach for the multi-quark problems to compute the effective potential between the NN- in S-wave (the quarks in the nucleons N and N-, and the two nucleons relatively as well, are in S wave) so as to see the possibility if there may be a tight bound state of six quarks as indicated by a strong enhancement at threshold of pp- in J/ψ and B decays. The effective potential which we obtain in terms of the model and approach shows if the experimental enhancement is really caused by a tight S-wave bound state of six quarks, then the quantum number of the bound state is very likely to be I = 1, JPC= 0-+.
Mapping quantum state dynamics in spontaneous emission
Naghiloo, M; Tan, D; Jadbabaie, A; Murch, K W
2015-01-01
The evolution of a quantum state undergoing radiative decay depends on how the emission is detected. We employ phase-sensitive amplification to perform homodyne detection of the spontaneous emission from a superconducting artificial atom. Using quantum state tomography, we characterize the correlation between the detected homodyne signal and the emitter's state, and map out the conditional back-action of homodyne measurement. By tracking the diffusive quantum trajectories of the state as it decays, we characterize selective stochastic excitation induced by the choice of measurement basis. Our results demonstrate dramatic differences from the quantum jump evolution that is associated with photodetection and highlight how continuous field detection can be harnessed to control quantum evolution.
Quantum information processing with mesoscopic photonic states
DEFF Research Database (Denmark)
Madsen, Lars Skovgaard
2012-01-01
. Using this setup we have experimentally and theoretically investigated Gaussian quantum discord, continuous variable quantum key distribution and quantum polarization. The Gaussian discord broadens the definition of non-classical correlations from entanglement, to all types of correlations which cannot......The thesis is built up around a versatile optical experimental setup based on a laser, two optical parametric ampliers, a few sets of modulators and two sets of homodyne detectors, which together with passive linear optics generate, process and characterize various types of Gaussian quantum states...... in the mixture of coherent states. Further we investigate the robustness of the discord of a broader range of states and suggest a toolbox of states which can be used to test if a protocol is discord based, before performing a rigid proof. Gaussian quantum key distribution can be implemented with current...
Relativistic quantum correlations in bipartite fermionic states
Indian Academy of Sciences (India)
S KHAN; N A KHAN
2016-10-01
The influences of relative motion, the size of the wave packet and the average momentum of the particles on different types of correlations present in bipartite quantum states are investigated. In particular, the dynamics of the quantum mutual information, the classical correlation and the quantum discord on the spincorrelations of entangled fermions are studied. In the limit of small average momentum, regardless of the size of the wave packet and the rapidity, the classical and the quantum correlations are equally weighted. On the otherhand, in the limit of large average momentum, the only correlations that exist in the system are the quantum correlations. For every value of the average momentum, the quantum correlations maximize at an optimal size of the wave packet. It is shown that after reaching a minimum value, the revival of quantum discord occurs with increasing rapidity.
Manipulating Quantum Coherence in Solid State Systems
Flatté, Michael E; The NATO Advanced Study Institute "Manipulating Quantum Coherence in Solid State Systems"
2007-01-01
The NATO Advanced Study Institute "Manipulating Quantum Coherence in Solid State Systems", in Cluj-Napoca, Romania, August 29-September 9, 2005, presented a fundamental introduction to solid-state approaches to achieving quantum computation. This proceedings volume describes the properties of quantum coherence in semiconductor spin-based systems and the behavior of quantum coherence in superconducting systems. Semiconductor spin-based approaches to quantum computation have made tremendous advances in the past several years. Coherent populations of spins can be oriented, manipulated and detected experimentally. Rapid progress has been made towards performing the same tasks on individual spins (nuclear, ionic, or electronic) with all-electrical means. Superconducting approaches to quantum computation have demonstrated single qubits based on charge eigenstates as well as flux eigenstates. These topics have been presented in a pedagogical fashion by leading researchers in the fields of semiconductor-spin-based qu...
Fano effect and Andreev bound states in a hybrid superconductor–ferromagnetic nanostructure
International Nuclear Information System (INIS)
In this work, it is considered a hybrid nanostructure composed by a quantum dot coupled to two ferromagnetic leads and a superconductor lead. It is shown that the zero-bias transmittance for the co-tunneling between the ferromagnetic leads presents Fano anti-resonances due to the destructive interference between the two spin channels mixing by the relative orientation of the magnetizations in the leads. When the superconductor is coupled to the system, electron–hole correlations between different spin states lead to a resonance in the place of the dip appearing in the transmittance. Such an effect is accompanied by two Fano anti-resonances explained by a “leakage” of conduction channels from the co-tunneling to the Andreev transport. In the non-equilibrium regime, correlations within the quantum dot introduce a dependence of the resonance condition on the finite bias applied to the ferromagnetic leads. However, it is still possible to observe signatures of the same interference effect in the electrical current. - Highlights: • We have studied an hybrid nanostructure composed by quantum dot coupled to a superconductor and two ferromagnets. • The interplay between spin polarization and Andreev bound states leads to a Fano-like effect. • The Fano-like effect manifests as a resonance in the transmittance for the transport between the ferromagnets
Fano effect and Andreev bound states in a hybrid superconductor–ferromagnetic nanostructure
Energy Technology Data Exchange (ETDEWEB)
Siqueira, E.C., E-mail: ezcostta@gmail.com [Departamento de Física, Universidade Tecnológica Federal do Paraná – UTFPR, 84016210, Ponta Grossa, PR (Brazil); Orellana, P.A. [Departamento de Física, Universidad Técnica Federico Santa Maria, Av. Vicuña Mackenna 3939, Santiago (Chile); Cestari, R.C. [Departamento de Física e Química, Universidade Estadual Paulista – UNESP, 15385-000, Ilha Solteira, SP (Brazil); Figueira, M.S. [Instituto de Física, Universidade Federal Fluminense, 24210-340, Niterói, RJ (Brazil); Cabrera, G.G. [Instituto de Física ‘Gleb Wataghin’, Universidade Estadual de Campinas – UNICAMP, Campinas 13083-859, SP (Brazil)
2015-10-16
In this work, it is considered a hybrid nanostructure composed by a quantum dot coupled to two ferromagnetic leads and a superconductor lead. It is shown that the zero-bias transmittance for the co-tunneling between the ferromagnetic leads presents Fano anti-resonances due to the destructive interference between the two spin channels mixing by the relative orientation of the magnetizations in the leads. When the superconductor is coupled to the system, electron–hole correlations between different spin states lead to a resonance in the place of the dip appearing in the transmittance. Such an effect is accompanied by two Fano anti-resonances explained by a “leakage” of conduction channels from the co-tunneling to the Andreev transport. In the non-equilibrium regime, correlations within the quantum dot introduce a dependence of the resonance condition on the finite bias applied to the ferromagnetic leads. However, it is still possible to observe signatures of the same interference effect in the electrical current. - Highlights: • We have studied an hybrid nanostructure composed by quantum dot coupled to a superconductor and two ferromagnets. • The interplay between spin polarization and Andreev bound states leads to a Fano-like effect. • The Fano-like effect manifests as a resonance in the transmittance for the transport between the ferromagnets.
Multi-state Quantum Teleportation via One Entanglement State
International Nuclear Information System (INIS)
A multi-sender-controlled quantum teleportation scheme is proposed to teleport several secret quantum states from different senders to a distance receiver based on only one Einstein-Podolsky-Rosen (EPR) pair with controlled-NOT (CNOT) gates. In the present scheme, several secret single-qubit quantum states are encoded into a multi-qubit entangled quantum state. Two communication modes, i.e., the detecting mode and the message mode, are employed so that the eavesdropping can be detected easily and the teleported message may be recovered efficiently. It has an advantage over teleporting several different quantum states for one scheme run with more efficiency than the previous quantum teleportation schemes
Multi-state Quantum Teleportation via One Entanglement State
Institute of Scientific and Technical Information of China (English)
GUO Ying; ZENG Gui-Hua; Moon Ho Lee
2008-01-01
A multi-sender-controlled quantum teleportation scheme is proposed to teleport several secret quan-tum states from different senders to a distance receiver based on only one Einstein-Podolsky-Rosen (EPR) pair with controlled-NOT (CNOT) gates. In the present scheme, several secret single-qubit quantum states are encoded into a multi-qubit entangled quantum state. Two communication modes, i.e., the detecting mode and the message mode, are employed so that the eavesdropping can be detected easily and the teleported message may be recovered efficiently. It has an advantage over teleporting several different quantum states for one scheme run with more efficiency than the previous quantum teleportation schemes.
Remote Operation on Quantum State Among Multiparty
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
In this paper, a scheme is proposed for performing remote operation on quantum state among multiparty.We use three-particle GHZ state as quantum channels to prepare a state operator, which describes quantum correlation between states and operations. Based on the special characteristic of the state operator, observers can perform unitary operation on a system that is away from observers. Our studies show this process is deterministic. We further consider remote operation among N spatially distributed observers, and the results show the successful realization of remote operation needs collective participation of N parties, that is, there exists strong correlation among multiparty. In addition, we investigate the case in which observers share a three-particle W state as quantum channels to perform remote operation and studies find this process is probabilistic.
Quantum Teleportation of Superposition State for Squeezed States
Cai, Xin-Hua; Kuang, Le-Man
2002-01-01
This paper proposes a scheme for teleporting an arbitrary coherent superposition state of two equal-amplitude and opposite-phase squeezed vacuum states (SVS) via a symmetric 50/50 beam splitter and photodetectors. It is shown that the quantum teleportation scheme has the successful probability 1/4. Maximally entangled SVS's are used as quantum channel for realizing the teleportation scheme. It is shown that if an initial quantum channel is in a pure but not maximally entangled SVS, the quantu...
Edge states of periodically kicked quantum rotors
Floß, Johannes
2015-01-01
We present a quantum localization phenomenon that exists in periodically kicked 3D rotors, but is absent in the commonly studied 2D ones: edge localization. We show that under the condition of a fractional quantum resonance there are states of the kicked rotor that are strongly localized near the edge of the angular momentum space at $J=0$. These states are analogs of surface states in crystalline solids, and they significantly affect resonant excitation of molecular rotation by laser pulse trains.
Entanglement of Formation for Quantum States
Institute of Scientific and Technical Information of China (English)
ZHAO Hui; WANG Zhi-Xi
2007-01-01
We investigate the entanglement of formation for a class of high-dimensional quantum mixed states. We present a kind of generalized concurrence for a class of high-dimensional quantum pure states such that the entanglement of formation is a monotonically increasing convex function of the generalized concurrence. From the monotonicity and convexity the entanglement of formation for a class of high-dimensional mixed states has been calculated analytically.
Tetra quark bound states in a Bethe-Salpeter approach
Energy Technology Data Exchange (ETDEWEB)
Heupel, Walter; Eichmann, Gernot [Institut fuer Theoretische Physik, Justus-Liebig-Universitaet Giessen, D-35392 Giessen (Germany); Fischer, Christian S., E-mail: christian.fischer@theo.physik.uni-giessen.de [Institut fuer Theoretische Physik, Justus-Liebig-Universitaet Giessen, D-35392 Giessen (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Planckstr. 1, D-64291 Darmstadt (Germany)
2012-12-05
We determine the mass of tetraquark bound states from a coupled system of covariant Bethe-Salpeter equations. Similar in spirit to the quark-diquark model of the nucleon, we approximate the full four-body equation for the tetraquark by a coupled set of two-body equations with meson and diquark constituents. These are calculated from their quark and gluon substructure using a phenomenologically well-established quark-gluon interaction. For the lightest scalar tetraquark we find a mass of the order of 400 MeV and a wave function dominated by the pion-pion constituents. Both results are in agreement with a meson molecule picture for the f{sub 0}(600). Our results furthermore suggest the presence of a potentially narrow all-charm tetraquark in the mass region 5-6 GeV.
Tetraquark bound states in a Bethe-Salpeter approach
Heupel, Walter; Fischer, Christian S
2012-01-01
We determine the mass of tetraquark bound states from a coupled system of covariant Bethe-Salpeter equations. Similar in spirit to the quark-diquark model of the nucleon, we approximate the full four-body equation for the tetraquark by a coupled set of two-body equations with meson and diquark constituents. These are calculated from their quark and gluon substructure using a phenomenologically well-established quark-gluon interaction. For the lightest scalar tetraquark we find a mass of the order of 400 MeV and a wave function dominated by the pion-pion constituents. Both results are in agreement with a meson molecule picture for the f_0(600). Our results furthermore suggest the presence of a potentially narrow all-charm tetraquark in the mass region 5-6 GeV.
Tetraquark bound states in a Bethe-Salpeter approach
Heupel, Walter; Eichmann, Gernot; Fischer, Christian S.
2012-12-01
We determine the mass of tetraquark bound states from a coupled system of covariant Bethe-Salpeter equations. Similar in spirit to the quark-diquark model of the nucleon, we approximate the full four-body equation for the tetraquark by a coupled set of two-body equations with meson and diquark constituents. These are calculated from their quark and gluon substructure using a phenomenologically well-established quark-gluon interaction. For the lightest scalar tetraquark we find a mass of the order of 400 MeV and a wave function dominated by the pion-pion constituents. Both results are in agreement with a meson molecule picture for the f0 (600). Our results furthermore suggest the presence of a potentially narrow all-charm tetraquark in the mass region 5-6 GeV.
Bound states in the continuum in open acoustic resonators
Lyapina, A A; Pilipchuk, A S; Sadreev, A F
2015-01-01
We consider bound states in the continuum (BSC) or embedded trapped modes in two- and three-dimensional acoustic axisymmetric duct-cavity structures. We demonstrate numerically that under variation of the length of the cavity multiple BSCs occur due to the Friedrich-Wintgen two-mode full destructive interference mechanism. The BSCs are detected by tracing the resonant widths to the points of the collapse of Fano resonances where one of the two resonant modes acquires infinite life-time. It is shown that the approach of the acoustic coupled mode theory cast in the truncated form of a two-mode approximation allows us to analytically predict the BSC frequencies and shape functions to a good accuracy in both two and three dimensions.
Cooperativity, partially bound states, and enthalpy-entropy compensation.
Hunter, Christopher A; Tomas, Salvador
2003-11-01
Efforts to develop a quantitative understanding of molecular recognition rely on the additivity of individual intermolecular interactions, and cooperativity represents one of the major potential stumbling blocks. A chemical double-mutant cycle has been used to experimentally measure cooperativity between functional group interactions within a complex framework. The interaction between two aromatic groups varies by 0.2 +/- 0.4 kJ mol(-1) in synthetic H-bonded complexes that differ by 8-13 kJ mol(-1) in overall stability. In these systems, the free energies associated with individual intermolecular interactions can therefore be reliably treated in an additive fashion. The results suggest that alternative explanations should be considered for cooperative phenomena observed in other systems, and a rationale based on the population of partially bound states in flexible molecules is proposed to account for the enthalpic chelate effect and enthalpy-entropy compensation. PMID:14652069
Rapid thermal co-annihilation through bound states
Kim, Seyong
2016-01-01
The co-annihilation rate of heavy particles close to thermal equilibrium, which plays a role in many classic dark matter scenarios, can be "simulated" in QCD by considering the pair annihilation rate of a heavy quark and antiquark at a temperature of a few hundred MeV. We show that the so-called Sommerfeld factors, parameterizing the rate, can be defined and measured non-perturbatively within the NRQCD framework. Lattice measurements indicate a modest suppression in the octet channel, in reasonable agreement with perturbation theory, and a large enhancement in the singlet channel, much above the perturbative prediction. We suggest that the additional enhancement originates from bound state formation and subsequent decay, omitted in previous estimates of thermal Sommerfeld factors, which were based on Boltzmann equations governing single-particle phase space distributions.
Baryons as relativistic three-quark bound states
Eichmann, Gernot; Williams, Richard; Alkofer, Reinhard; Fischer, Christian S
2016-01-01
We review the spectrum and electromagnetic properties of baryons described as relativistic three-quark bound states within QCD. The composite nature of baryons results in a rich excitation spectrum, whilst leading to highly non-trivial structural properties explored by the coupling to external (electromagnetic and other) currents. Both present many unsolved problems despite decades of experimental and theoretical research. We discuss the progress in these fields from a theoretical perspective, focusing on nonperturbative QCD as encoded in the functional approach via Dyson-Schwinger and Bethe-Salpeter equations. We give a systematic overview as to how results are obtained in this framework and explain technical connections to lattice QCD. We also discuss the mutual relations to the quark model, which still serves as a reference to distinguish 'expected' from 'unexpected' physics. We confront recent results on the spectrum of non-strange and strange baryons, their form factors and the issues of two-photon proce...
Universal Bounds on Charged States in 2d CFT and 3d Gravity
Benjamin, Nathan; Fitzpatrick, A Liam; Kachru, Shamit
2016-01-01
We derive an explicit bound on the dimension of the lightest charged state in two dimensional conformal field theories with a global abelian symmetry. We find that the bound scales with $c$ and provide examples that parametrically saturate this bound. We also prove than any such theory must contain a state with charge-to-mass ratio above a minimal lower bound. We comment on the implications for charged states in three dimensional theories of gravity.
Quantum secret sharing between multiparty and multiparty with four states
Institute of Scientific and Technical Information of China (English)
YAN; FengLi; GAO; Ting; LI; YouCheng
2007-01-01
A protocol of quantum secret sharing between multiparty and multiparty with four states was presented. It was shown that this protocol can nullify the Trojan horse attack with a multi-photon signal, the fake-signal attack with Einstein-Podolsky- Rosen pairs, the attack with single photons, and the attack with invisible photons. In addition, the upper bounds of the average success probabilities were given for dishonest agent eavesdropping encryption using the fake-signal attack with any two-particle entangled states.
Macroscopicity of Mechanical Quantum Superposition States
Nimmrichter, Stefan; Hornberger, Klaus
2012-01-01
We propose an experimentally accessible, objective measure for the macroscopicity of superposition states in mechanical quantum systems. Based on the observable consequences of a minimal, macrorealist extension of quantum mechanics, it allows one to quantify the degree of macroscopicity achieved in different experiments.
Probing the Dark Sector with Dark Matter Bound States.
An, Haipeng; Echenard, Bertrand; Pospelov, Maxim; Zhang, Yue
2016-04-15
A model of the dark sector where O(few GeV) mass dark matter particles χ couple to a lighter dark force mediator V, m_{V}≪m_{χ}, is motivated by the recently discovered mismatch between simulated and observed shapes of galactic halos. Such models, in general, provide a challenge for direct detection efforts and collider searches. We show that for a large range of coupling constants and masses, the production and decay of the bound states of χ, such as 0^{-+} and 1^{--} states, η_{D} and ϒ_{D}, is an important search channel. We show that e^{+}e^{-}→η_{D}+V or ϒ_{D}+γ production at B factories for α_{D}>0.1 is sufficiently strong to result in multiple pairs of charged leptons and pions via η_{D}→2V→2(l^{+}l^{-}) and ϒ_{D}→3V→3(l^{+}l^{-}) (l=e,μ,π). The absence of such final states in the existing searches performed at BABAR and Belle sets new constraints on the parameter space of the model. We also show that a search for multiple bremsstrahlung of dark force mediators, e^{+}e^{-}→χχ[over ¯]+nV, resulting in missing energy and multiple leptons, will further improve the sensitivity to self-interacting dark matter.
Probing the Dark Sector with Dark Matter Bound States.
An, Haipeng; Echenard, Bertrand; Pospelov, Maxim; Zhang, Yue
2016-04-15
A model of the dark sector where O(few GeV) mass dark matter particles χ couple to a lighter dark force mediator V, m_{V}≪m_{χ}, is motivated by the recently discovered mismatch between simulated and observed shapes of galactic halos. Such models, in general, provide a challenge for direct detection efforts and collider searches. We show that for a large range of coupling constants and masses, the production and decay of the bound states of χ, such as 0^{-+} and 1^{--} states, η_{D} and ϒ_{D}, is an important search channel. We show that e^{+}e^{-}→η_{D}+V or ϒ_{D}+γ production at B factories for α_{D}>0.1 is sufficiently strong to result in multiple pairs of charged leptons and pions via η_{D}→2V→2(l^{+}l^{-}) and ϒ_{D}→3V→3(l^{+}l^{-}) (l=e,μ,π). The absence of such final states in the existing searches performed at BABAR and Belle sets new constraints on the parameter space of the model. We also show that a search for multiple bremsstrahlung of dark force mediators, e^{+}e^{-}→χχ[over ¯]+nV, resulting in missing energy and multiple leptons, will further improve the sensitivity to self-interacting dark matter. PMID:27127956
Probing the Dark Sector with Dark Matter Bound States
An, Haipeng; Pospelov, Maxim; Zhang, Yue
2015-01-01
A model of dark sector where $O({\\rm few~GeV})$ mass dark matter particles $\\chi$ are supplied by a lighter dark force mediator $V$, $m_V \\ll m_\\chi$, is motivated by the recently discovered mismatch between simulated and observed shapes of galactic haloes. Such models, in general, provide a challenge for direct detection efforts and collider searches. We show that for a large range of coupling constants and masses, the production and decay of the bound states of $\\chi$, such as $0^{-+}$ and $1^{--}$ states, $\\eta_D$ and $ \\Upsilon_D$, is an important search channel. We show that $e^+e^-\\to \\eta_D +V$ or $\\Upsilon_D +\\gamma$ production at $B$-factories for $\\alpha_D > 0.1$ is sufficiently strong to result in multiple pairs of charged leptons and pions via $\\eta_D\\to 2V \\to 2(l^+l^-)$ and $\\Upsilon_D\\to 3V \\to 3(l^+l^-)$ $(l=e,\\mu,\\pi)$. The absence of such final states in the existing searches performed at BaBar and Belle sets new constraints on the parameter space of the model. We also show that a search for...
Bound states of quarks and gluons and hadronic transitions
International Nuclear Information System (INIS)
A potential which incorporates the concepts of confinement and asymptotic freedom, previously utilized in the description of the spectroscopy of mesons and baryons, is extended to the gluon sector. The mass spectroscopy of glueballs and hybrids is analyzed considering only pairwise potentials and massive constituent gluons. The mass spectrum of the color octet two-gluon system is adopted as a suitable description of the intermediate states of hadronic transitions, within the framework of the multipole expansion for quantum chromodynamics. The spin-dependent effects in the gluonium spectrum, associated with the Coulombian potential, are calculated through the inverted first Born approximation for the gluon-gluon scattering. (author). 102 refs, 1 fig, 13 tabs
Observing Majorana bound states of Josephson vortices in topological superconductors
Grosfeld, Eytan; Stern, Ady
2011-01-01
In recent years there has been an intensive search for Majorana fermion states in condensed matter systems. Predicted to be localized on cores of vortices in certain nonconventional superconductors, their presence is known to render the exchange statistics of bulk vortices non-Abelian. Here we study the equations governing the dynamics of phase solitons (fluxons) in a Josephson junction in a topological superconductor. We show that the fluxon will bind a localized zero energy Majorana mode and will consequently behave as a non-Abelian anyon. The low mass of the fluxon, as well as its experimentally observed quantum mechanical wave-like nature, will make it a suitable candidate for vortex interferometry experiments demonstrating non-Abelian statistics. We suggest two experiments that may reveal the presence of the zero mode carried by the fluxon. Specific experimental realizations will be discussed as well. PMID:21730165
Invariant measures on multimode quantum Gaussian states
Energy Technology Data Exchange (ETDEWEB)
Lupo, C. [School of Science and Technology, Universita di Camerino, I-62032 Camerino (Italy); Mancini, S. [School of Science and Technology, Universita di Camerino, I-62032 Camerino (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia (Italy); De Pasquale, A. [NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, I-56126 Pisa (Italy); Facchi, P. [Dipartimento di Matematica and MECENAS, Universita di Bari, I-70125 Bari (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari (Italy); Florio, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari (Italy); Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Piazza del Viminale 1, I-00184 Roma (Italy); Dipartimento di Fisica and MECENAS, Universita di Bari, I-70126 Bari (Italy); Pascazio, S. [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari (Italy); Dipartimento di Fisica and MECENAS, Universita di Bari, I-70126 Bari (Italy)
2012-12-15
We derive the invariant measure on the manifold of multimode quantum Gaussian states, induced by the Haar measure on the group of Gaussian unitary transformations. To this end, by introducing a bipartition of the system in two disjoint subsystems, we use a parameterization highlighting the role of nonlocal degrees of freedom-the symplectic eigenvalues-which characterize quantum entanglement across the given bipartition. A finite measure is then obtained by imposing a physically motivated energy constraint. By averaging over the local degrees of freedom we finally derive the invariant distribution of the symplectic eigenvalues in some cases of particular interest for applications in quantum optics and quantum information.
Quantum channel of continuous variable teleportation and nonclassicality of quantum states
International Nuclear Information System (INIS)
Noisy teleportation of nonclassical quantum states via a two-mode squeezed-vacuum state is studied with the completely positive map and the Glauber-Sudarshan P-function. Using the nonclassical depth as a measure of transmission performance, we compare the teleportation scheme with the direct transmission through a noisy channel. The noise model is based on the coupling to the vacuum field. It is shown that the teleportation channel has better transmission performance than the direct transmission channel in a certain region. The bounds for such a region and for obtaining the nonvanished nonclassicality of the teleported quantum states are also discussed. Our model shows a reasonable agreement with the teleportation fidelity observed in the experiment performed by Furusawa et al (1998 Science 282 706). We finally mention the required conditions for transmitting nonclassical features in real experiments
Quantum state transfer and network engineering
Energy Technology Data Exchange (ETDEWEB)
Nikolopoulos, Georgios M. [Institute of Electronic Structure and Laser Foundation for Research and Technology, Hellas (Greece); Jex, Igor (ed.) [Czech Technical Univ., Prague (Czech Republic). Faculty of Nuclear Sciences and Physical Engineering
2014-03-01
Presents the basics of large-scale quantum information processing and networking. Covers most aspects of the problems of state transfer and quantum network engineering. Reflects the interdisciplinary nature of the field. Presents various theoretical approaches as well as possible implementations and related experiments. Faithful communication is a necessary precondition for large-scale quantum information processing and networking, irrespective of the physical platform. Thus, the problems of quantum-state transfer and quantum-network engineering have attracted enormous interest over the last years, and constitute one of the most active areas of research in quantum information processing. The present volume introduces the reader to fundamental concepts and various aspects of this exciting research area, including links to other related areas and problems. The implementation of state-transfer schemes and the engineering of quantum networks are discussed in the framework of various quantum optical and condensed matter systems, emphasizing the interdisciplinary character of the research area. Each chapter is a review of theoretical or experimental achievements on a particular topic, written by leading scientists in the field. The volume aims at both newcomers as well as experienced researchers.
Classical topology and quantum states
Indian Academy of Sciences (India)
A P Balachandran
2001-02-01
Any two inﬁnite-dimensional (separable) Hilbert spaces are unitarily isomorphic. The sets of all their self-adjoint operators are also therefore unitarily equivalent. Thus if all self-adjoint operators can be observed, and if there is no further major axiom in quantum physics than those formulated for example in Dirac’s ‘quantum mechanics’, then a quantum physicist would not be able to tell a torus from a hole in the ground. We argue that there are indeed such axioms involving observables with smooth time evolution: they contain commutative subalgebras from which the spatial slice of spacetime with its topology (and with further reﬁnements of the axiom, its - and ∞ - structures) can be reconstructed using Gel’fand–Naimark theory and its extensions. Classical topology is an attribute of only certain quantum observables for these axioms, the spatial slice emergent from quantum physics getting progressively less differentiable with increasingly higher excitations of energy and eventually altogether ceasing to exist. After formulating these axioms, we apply them to show the possibility of topology change and to discuss quantized fuzzy topologies. Fundamental issues concerning the role of time in quantum physics are also addressed.
Intrinsic Quantum Correlations of Weak Coherent States for Quantum Communication
Sua, Yong Meng; Beaulieu, Travis; Bollen, Viktor; Lee, Kim Fook
2011-01-01
Intrinsic quantum correlations of weak coherent states are observed between two parties through a novel detection scheme, which can be used as a supplement to the existence decoy-state BB84 and differential phase-shift quantum key distribution (DPS-QKD) protocols. In a proof-of-principle experiment, we generate bi-partite correlations of weak coherent states using weak local oscillator fields in two spatially separated balanced homodyne detections. We employ nonlinearity of post-measurement method to obtain the bi-partite correlations from two single-field interferences at individual homodyne measurement. This scheme is then used to demonstrate bits correlations between two parties over a distance of 10 km through a transmission fiber. We believe that the scheme can add another physical layer of security to these protocols for quantum key distribution.
Fractional Quantum Hall States in a Ge Quantum Well.
Mironov, O A; d'Ambrumenil, N; Dobbie, A; Leadley, D R; Suslov, A V; Green, E
2016-04-29
Measurements of the Hall and dissipative conductivity of a strained Ge quantum well on a SiGe/(001)Si substrate in the quantum Hall regime are reported. We analyze the results in terms of thermally activated quantum tunneling of carriers from one internal edge state to another across saddle points in the long-range impurity potential. This shows that the gaps for different filling fractions closely follow the dependence predicted by theory. We also find that the estimates of the separation of the edge states at the saddle are in line with the expectations of an electrostatic model in the lowest spin-polarized Landau level (LL), but not in the spin-reversed LL where the density of quasiparticle states is not high enough to accommodate the carriers required. PMID:27176531
Fractional Quantum Hall States in a Ge Quantum Well
Mironov, O. A.; d'Ambrumenil, N.; Dobbie, A.; Leadley, D. R.; Suslov, A. V.; Green, E.
2016-04-01
Measurements of the Hall and dissipative conductivity of a strained Ge quantum well on a SiGe /(001 )Si substrate in the quantum Hall regime are reported. We analyze the results in terms of thermally activated quantum tunneling of carriers from one internal edge state to another across saddle points in the long-range impurity potential. This shows that the gaps for different filling fractions closely follow the dependence predicted by theory. We also find that the estimates of the separation of the edge states at the saddle are in line with the expectations of an electrostatic model in the lowest spin-polarized Landau level (LL), but not in the spin-reversed LL where the density of quasiparticle states is not high enough to accommodate the carriers required.
Individual Atoms in their Quantum Ground State
Schwartz, Eyal; Sompet, Pimonpan; Fung, Yin Hsien; Andersen, Mikkel F.
2016-05-01
An ultimate control of pure quantum states is an excellent platform for various quantum science and engineering. In this work, we perform quantum manipulation of individual Rubidium atoms in a tightly focus optical tweezer in order to cool them into their vibrational ground state via Raman sideband cooling. Our experimental scheme involves a combination of Raman sideband transitions and optical pumping of the atoms that couples two magnetic field sublevels indifferent to magnetic noise thus providing a much longer atomic coherence time compared to previous cooling schemes. By installing most of the atoms in their ground state, we managed to achieve two-dimensional cooling on the way to create a full nil entropy quantum state of single atoms and single molecules. We acknowledge the Marsden Fund, CORE and DWC for their support.
Quantum information. Unconditional quantum teleportation between distant solid-state quantum bits.
Pfaff, W; Hensen, B J; Bernien, H; van Dam, S B; Blok, M S; Taminiau, T H; Tiggelman, M J; Schouten, R N; Markham, M; Twitchen, D J; Hanson, R
2014-08-01
Realizing robust quantum information transfer between long-lived qubit registers is a key challenge for quantum information science and technology. Here we demonstrate unconditional teleportation of arbitrary quantum states between diamond spin qubits separated by 3 meters. We prepare the teleporter through photon-mediated heralded entanglement between two distant electron spins and subsequently encode the source qubit in a single nuclear spin. By realizing a fully deterministic Bell-state measurement combined with real-time feed-forward, quantum teleportation is achieved upon each attempt with an average state fidelity exceeding the classical limit. These results establish diamond spin qubits as a prime candidate for the realization of quantum networks for quantum communication and network-based quantum computing. PMID:25082696
Quantum information. Unconditional quantum teleportation between distant solid-state quantum bits.
Pfaff, W; Hensen, B J; Bernien, H; van Dam, S B; Blok, M S; Taminiau, T H; Tiggelman, M J; Schouten, R N; Markham, M; Twitchen, D J; Hanson, R
2014-08-01
Realizing robust quantum information transfer between long-lived qubit registers is a key challenge for quantum information science and technology. Here we demonstrate unconditional teleportation of arbitrary quantum states between diamond spin qubits separated by 3 meters. We prepare the teleporter through photon-mediated heralded entanglement between two distant electron spins and subsequently encode the source qubit in a single nuclear spin. By realizing a fully deterministic Bell-state measurement combined with real-time feed-forward, quantum teleportation is achieved upon each attempt with an average state fidelity exceeding the classical limit. These results establish diamond spin qubits as a prime candidate for the realization of quantum networks for quantum communication and network-based quantum computing.
Quantum Teleportation of Tripartite Arbitrary State via W State
Institute of Scientific and Technical Information of China (English)
XUE Zheng-Yuan; YI You-Min; CAO Zhuo-Liang
2005-01-01
A scheme of teleportation of a tripartite state via W state is suggested. The W state serves as quantum channels. Standard Bell-state measurements and Von Neumann measurements are performed. After the sender operates the measurements and informs the receiver her results, he can reconstruct the original state by the corresponding unitary transformation. The probability of the successful teleportation is also obtained.
Quantization ambiguities and bounds on geometric scalars in anisotropic loop quantum cosmology
Singh, Parampreet; Wilson-Ewing, Edward
2014-02-01
We study quantization ambiguities in loop quantum cosmology that arise for space-times with non-zero spatial curvature and anisotropies. Motivated by lessons from different possible loop quantizations of the closed Friedmann-Lemaître-Robertson-Walker cosmology, we find that using open holonomies of the extrinsic curvature, which due to gauge-fixing can be treated as a connection, leads to the same quantum geometry effects that are found in spatially flat cosmologies. More specifically, in contrast to the quantization based on open holonomies of the Ashtekar-Barbero connection, the expansion and shear scalars in the effective theories of the Bianchi type II and Bianchi type IX models have upper bounds, and these are in exact agreement with the bounds found in the effective theories of the Friedmann-Lemaître-Robertson-Walker and Bianchi type I models in loop quantum cosmology. We also comment on some ambiguities present in the definition of inverse triad operators and their role.
Thermally correlated states in loop quantum gravity
Chirco, Goffredo; Rovelli, Carlo; Ruggiero, Paola
2015-02-01
We study a class of loop-quantum-gravity states characterized by (ultra-local) thermal correlations that reproduce some features of the ultraviolet structure of the perturbative quantum field theory vacuum. In particular, they satisfy an analog of the Bisognano-Wichmann theorem. These states are peaked on the intrinsic geometry and admit a semiclassical interpretation. We study how the correlations extend on the spin network beyond the ultra local limit.
Quantum State Reduction: An Operational Approach
Ozawa, Masanao
1997-01-01
A rigorous theory of quantum state reduction, the state change of the measured system caused by a measurement conditional upon the outcome of measurement, is developed fully within quantum mechanics without leading to the vicious circle relative to the von Neumann chain. For the basis of the theory, the local measurement theorem provides the joint probability distribution for the outcomes of local successive measurements on a noninteracting entangled system without assuming the projection pos...
Quantum Discord of Non-X State
Institute of Scientific and Technical Information of China (English)
YAO Jing-Ying; DONG Yu-Li; ZHU Shi-Qun
2013-01-01
The level surfaces of quantum discord for a class of two-qubit states are investigated when the Bloch vectors (r) and (s) are perpendicularly oriented.The geometric objects of tetrahedron T and octahedron O are deformed.The level surfaces of constant discord are formed by three interaction “tubes” along three orthogonal directions.They shrink to the center when the Bloch vectors are increased and are expanded and cut off by the state tetrahedron T when the quantum discord is increased.In the phase damping channel,the quantum discord keeps approximately a constant when the time increases.
Affine Coherent States in Quantum Cosmology
Malkiewicz, Przemyslaw
2015-01-01
A brief summary of the application of coherent states in the examination of quantum dynamics of cosmological models is given. We discuss quantization maps, phase space probability distributions and semiclassical phase spaces. The implementation of coherent states based on the affine group resolves the hardest singularities, renders self-adjoint Hamiltonians without boundary conditions and provides a completely consistent semi-classical description of the involved quantum dynamics. We consider three examples: the closed Friedmann model, the anisotropic Bianchi Type I model and the deep quantum domain of the Bianchi Type IX model.
Energy Spectra of Excitons Bound to a Neutral Acceptor in Quantum Dots
Institute of Scientific and Technical Information of China (English)
XIE Wen-Fang
2004-01-01
The energy spectra of the ground state for an exciton (X) trapped by a neutral acceptor (A0) in a quantum dot with a parabolic confinement have been calculated as a function of the electron-to-hole mass ratio σ by using the hyperspherical coordinates. We find that the (A0, X) complex confined in a quantum dot has in general a larger binding energy than those in a two-dimensional quantum well and a three-dimensional bulk semiconductor, and the binding energy decreases with the increase of the electron-to-hole mass ratio.
Quantum state transfer in optomechanical arrays
de Moraes Neto, G. D.; Andrade, F. M.; Montenegro, V.; Bose, S.
2016-06-01
Quantum state transfer between distant nodes is at the heart of quantum processing and quantum networking. Stimulated by this, we propose a scheme where one can achieve quantum state transfer with a high fidelity between sites in a cavity quantum optomechanical network. In our lattice, each individual site is composed of a localized mechanical mode which interacts with a laser-driven cavity mode via radiation pressure, while photons hop between neighboring sites. After diagonalization of the Hamiltonian of each cell, we show that the system can be reduced to an effective Hamiltonian of two decoupled bosonic chains, and therefore we can apply the well-known results in quantum state transfer together with an additional condition on the transfer times. In fact, we show that our transfer protocol works for any arbitrary joint quantum state of a mechanical and an optical mode. Finally, in order to analyze a more realistic scenario we take into account the effects of independent thermal reservoirs for each site. By solving the standard master equation within the Born-Markov approximation, we reassure both the effective model and the feasibility of our protocol.
The symmetric extendibility of quantum states
Nowakowski, Marcin L.
2016-09-01
Studies on the symmetric extendibility of quantum states have become particularly important in the context of the analysis of one-way quantum measures of entanglement, and the distillability and security of quantum protocols. In this paper we analyze composite systems containing a symmetric extendible part, with particular attention devoted to the one-way security of such systems. Further, we introduce a new one-way entanglement monotone based on the best symmetric approximation of a quantum state and the extendible number of a quantum state. We underpin these results with geometric observations about the structures of multi-party settings which posses substantial symmetric extendible components in their subspaces. The impossibility of reducing the maximal symmetric extendibility by means of the one-way local operations and classical communication method is pointed out on multiple copies. Finally, we state a conjecture linking symmetric extendibility with the one-way distillability and security of all quantum states, analyzing the behavior of a private key in the neighborhood of symmetric extendible states.
Jamell, Christopher Ray
In this thesis, we focus on two broad categories of problems, exciton condensation and bound states, and two complimentary approaches, real and momentum space, to solve these problems. In chapter 2 we begin by developing the self-consistent mean field equations, in momentum space, used to calculate exciton condensation in semiconductor heterostructures/double quantum wells and graphene. In the double quantum well case, where we have one layer containing electrons and the other layer with holes separated by a distance d, we extend the analytical solution to the two dimensional hydrogen atom in order to provide a semi-quantitative measure of when a system of excitons can be considered dilute. Next we focus on the problem of electron-electron screening, using the random phase approximation, in double layer graphene. The literature contains calculations showing that when screening is not taken into account the temperature at which excitons in double layer graphene condense is approximately room temperature. Also in the literature is a calculation showing that under certain assumptions the transition temperature is approximately mK. The essential result is that the condensate is exponentially suppressed by the number of electron species in the system. Our mean field calculations show that the condensate, is in fact, not exponentially suppressed. Next, in chapter 3, we show the use of momentum space to solve the Schrodinger equation for a class of potentials that are not usually a part of a quantum mechanics courses. Our approach avoids the typical pitfalls that exist when one tries to discretize the real space Schrodinger equation. This technique widens the number of problems that can presented in an introductory quantum mechanics course while at the same time, because of the ease of its implementation, provides a simple introduction to numerical techniques and programming in general to students. We have furthered this idea by creating a modular program that allows
Fidelity between Gaussian mixed states with quantum state quadrature variances
Hai-Long, Zhang; Chun, Zhou; Jian-Hong, Shi; Wan-Su, Bao
2016-04-01
In this paper, from the original definition of fidelity in a pure state, we first give a well-defined expansion fidelity between two Gaussian mixed states. It is related to the variances of output and input states in quantum information processing. It is convenient to quantify the quantum teleportation (quantum clone) experiment since the variances of the input (output) state are measurable. Furthermore, we also give a conclusion that the fidelity of a pure input state is smaller than the fidelity of a mixed input state in the same quantum information processing. Project supported by the National Basic Research Program of China (Grant No. 2013CB338002) and the Foundation of Science and Technology on Information Assurance Laboratory (Grant No. KJ-14-001).
Quantum filtering of optical coherent states
DEFF Research Database (Denmark)
Wittmann, C.; Elser, D.; Andersen, Ulrik Lund;
2008-01-01
We propose and experimentally demonstrate nondestructive and noiseless removal (filtering) of vacuum states from an arbitrary set of coherent states of continuous variable systems. Errors, i.e., vacuum states in the quantum information are diagnosed through a weak measurement, and on that basis...
Classical and Quantum-Mechanical State Reconstruction
Khanna, F. C.; Mello, P. A.; Revzen, M.
2012-01-01
The aim of this paper is to present the subject of state reconstruction in classical and in quantum physics, a subject that deals with the experimentally acquired information that allows the determination of the physical state of a system. Our first purpose is to explain a method for retrieving a classical state in phase space, similar to that…
Quantum superreplication of states and gates
Chiribella, Giulio; Yang, Yuxiang
2016-06-01
Although the no-cloning theorem forbids perfect replication of quantum information, it is sometimes possible to produce large numbers of replicas with vanishingly small error. This phenomenon, known as quantum superreplication, can occur for both quantum states and quantum gates. The aim of this paper is to review the central features of quantum superreplication and provide a unified view of existing results. The paper also includes new results. In particular, we show that when quantum superreplication can be achieved, it can be achieved through estimation up to an error of size O( M/ N 2), where N and M are the number of input and output copies, respectively. Quantum strategies still offer an advantage for superreplication in that they allow for exponentially faster reduction of the error. Using the relation with estimation, we provide i) an alternative proof of the optimality of Heisenberg scaling in quantum metrology, ii) a strategy for estimating arbitrary unitary gates with a mean square error scaling as log N/ N 2, and iii) a protocol that generates O( N 2) nearly perfect copies of a generic pure state U |0> while using the corresponding gate U only N times. Finally, we point out that superreplication can be achieved using interactions among k systems, provided that k is large compared to M 2/ N 2.
Marciani, M.; Schomerus, H.; Beenakker, C. W. J.
2016-08-01
We calculate the joint distribution P(S , Q) of the scattering matrix S and time-delay matrix Q = - iℏS† dS / dE of a chaotic quantum dot coupled by point contacts to metal electrodes. While S and Q are statistically independent for ballistic coupling, they become correlated for tunnel coupling. We relate the ensemble averages of Q and S and thereby obtain the average density of states at the Fermi level. We apply this to a calculation of the effect of a tunnel barrier on the Majorana resonance in a topological superconductor. We find that the presence of a Majorana bound state is hidden in the density of states and in the thermal conductance if even a single scattering channel has unit tunnel probability. The electrical conductance remains sensitive to the appearance of a Majorana bound state, and we calculate the variation of the average conductance through a topological phase transition.
Xie, Hang; Sha, Wei E I
2015-01-01
Numerical methods are developed in the quantum transport calculations for electron in the waveguides with spin-orbital (Rashba) interaction. The methods are based on a hybrid mode-matching scheme in which the wavefunctions are expressed as the superposition of eigenmodes in the lead regions and in the device region the wavefunction is expressed on the discrete basis. Two versions are presented for the lead without and with the Rashba interaction. In the latter case the eigenmodes are obtained from a quadratic eigenproblem calculation. These methods are suitable for the systems with variable geometries or arbitrary potential profiles. The computation can be effectively accelerated by the sparse matrix technique. We also investigate the Fano-Rashba bound states in the Rashba waveguides by some nonlinear eigenstate calculation. This calculation is based on a mode-matching method and self-consistent results are obtained in our calculations.
Practical Security Bounds Against the Trojan-Horse Attack in Quantum Key Distribution
Lucamarini, M.; Choi, I.; Ward, M. B.; Dynes, J. F.; Yuan, Z. L.; Shields, A. J.
2015-07-01
In the quantum version of a Trojan-horse attack, photons are injected into the optical modules of a quantum key distribution system in an attempt to read information direct from the encoding devices. To stop the Trojan photons, the use of passive optical components has been suggested. However, to date, there is no quantitative bound that specifies such components in relation to the security of the system. Here, we turn the Trojan-horse attack into an information leakage problem. This allows us to quantify the system security and relate it to the specification of the optical elements. The analysis is supported by the experimental characterization, within the operation regime, of reflectivity and transmission of the optical components most relevant to security.
Sequential quantum teleportation of optical coherent states
International Nuclear Information System (INIS)
We demonstrate a sequence of two quantum teleportations of optical coherent states, combining two high-fidelity teleporters for continuous variables. In our experiment, the individual teleportation fidelities are evaluated as F1=0.70±0.02 and F2=0.75±0.02, while the fidelity between the input and the sequentially teleported states is determined as F(2)=0.57±0.02. This still exceeds the optimal fidelity of one half for classical teleportation of arbitrary coherent states and almost attains the value of the first (unsequential) quantum teleportation experiment with optical coherent states
Nonlocal entanglement and noise between spin qubits induced by Majorana bound states
Energy Technology Data Exchange (ETDEWEB)
Ke, Sha-Sha [State Key Laboratory of Electronic Thin Films and Integrated Devices and School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Lü, Hai-Feng, E-mail: lvhf81@gmail.com [State Key Laboratory of Electronic Thin Films and Integrated Devices and School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Yang, Hua-Jun [State Key Laboratory of Electronic Thin Films and Integrated Devices and School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Guo, Yong [Department of Physics and State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084 (China); Collaborative Innovation Center of Quantum Matter, Beijing (China); Zhang, Huai-Wu [State Key Laboratory of Electronic Thin Films and Integrated Devices and School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China)
2015-01-23
We propose a scheme to create nonlocal entanglement between two spatially separated electron spin qubits by coupling them with a pair of Majorana bound states (MBSs). The spin qubits are based on the spins of electrons confined in quantum dots. It is shown that spin entanglement between two dots could be generated by the nonlocality of MBSs. We also demonstrate that in the transport regime, the current noise cross correlation can serve as a good indicator of spin entanglement. The Majorana-dot coupling not only induces an indirect interaction between qubits, but also produces spin localization in the strong coupling limit. These two competing effects lead to a nonmonotonic dependence of current cross-correlation and entanglement on the Majorana-qubit coupling strength. - Highlights: • We propose a scheme to create nonlocal entanglement between two spatially separated electron spin qubits by coupling them with a pair of Majorana bound states. • Spin entanglement between two dots could be generated by the nonlocality of MBSs. • The current noise cross correlation can serve as a good indicator of spin entanglement.
Baryons as relativistic three-quark bound states
Eichmann, Gernot; Sanchis-Alepuz, Hèlios; Williams, Richard; Alkofer, Reinhard; Fischer, Christian S.
2016-11-01
We review the spectrum and electromagnetic properties of baryons described as relativistic three-quark bound states within QCD. The composite nature of baryons results in a rich excitation spectrum, whilst leading to highly non-trivial structural properties explored by the coupling to external (electromagnetic and other) currents. Both present many unsolved problems despite decades of experimental and theoretical research. We discuss the progress in these fields from a theoretical perspective, focusing on nonperturbative QCD as encoded in the functional approach via Dyson-Schwinger and Bethe-Salpeter equations. We give a systematic overview as to how results are obtained in this framework and explain technical connections to lattice QCD. We also discuss the mutual relations to the quark model, which still serves as a reference to distinguish 'expected' from 'unexpected' physics. We confront recent results on the spectrum of non-strange and strange baryons, their form factors and the issues of two-photon processes and Compton scattering determined in the Dyson-Schwinger framework with those of lattice QCD and the available experimental data. The general aim is to identify the underlying physical mechanisms behind the plethora of observable phenomena in terms of the underlying quark and gluon degrees of freedom.
Bound States via Higgs Exchanging and Resonant Di-Higgs
Kang, Zhaofeng
2016-01-01
The standard model (SM)-like Higgs boson $h$ has spin zero and light mass around weak scale, so it has the potential to mediate a new and relatively strong force for the particle $\\phi$ in the new physics (NP) sector; then $\\phi$ may form bound state $B_h$ via exchanging $h$. This phenomena may arise in a wide context, for instance composite Higgs, supersymmetry (SUSY) and radiative neutrino (or more widely in the models with a strong Higgs portal for triggering classical scale symmetry breaking or strong first-order phase transition). For illustration we focus on two typical examples, the stop/sbottom sector and an inert Higgs doublet. Furthermore, we point out that $B_h$ must give rise to a clear resonant di-Higgs signature, which recently has been extensively searched for at the large hadron collider (LHC). Moreover, Higgs radiative decay such as to di-photon probably will be significantly modified provided that $\\phi$ is charged or/and colored.
Macroscopic superpositions as quantum ground states
Dakić, Borivoje; Radonjić, Milan
2016-01-01
We study the question of whether a macroscopic superposition can naturally exist as a ground state of some gapped many-body Hamiltonian. We derive an upper bound on the energy gap of an arbitrary physical Hamiltonian provided that its ground state is a superposition of two macroscopic "semi-classical" states. For a large class of such macroscopic superposition states we show that the gap vanishes in the macroscopic limit. Our main result shows an interesting quantitative relation between the ...
Quantum information processing with noisy cluster states
Tame, M S; Kim, M S; Vedral, V
2005-01-01
We provide an analysis of basic quantum information processing protocols under the effect of intrinsic non-idealities in cluster states. These non-idealities are based on the introduction of randomness in the entangling steps that create the cluster state and are motivated by the unavoidable imperfections faced in creating entanglement using condensed-matter systems. Aided by the use of an alternative and very efficient method to construct cluster state configurations, which relies on the concatenation of fundamental cluster structures, we address quantum state transfer and various fundamental gate simulations through noisy cluster states. We find that a winning strategy to limit the effects of noise, is the management of small clusters processed via just a few measurements. Our study also reinforces recent ideas related to the optical implementation of a one-way quantum computer.
A Note on Coherent States with Quantum Gravity Effects
Sadeghnezhad, N
2016-01-01
Existence of a minimal measurable length and an upper bound for the momentum fluctuations are the casting reasons for generalization of uncertainty principle and then reformulation of Hilbert space representation of quantum mechanics. In this paper, we study the consequences of the Generalized Uncertainty Principle (GUP) in the presence of both minimal length and maximal momentum. We consider a simple harmonic oscillator in the framework of GUP by introducing it's energy eigenstates and energy spectrum. Investigation of coherent states for a generalized harmonic oscillator and it's generic behavior are the other topics in our study.
Coherent-state analysis of the quantum bouncing ball
Mather, William H.; Fox, Ronald F.
2006-03-01
Gaussian-Klauder coherent states are applied to the bound “quantum bouncer,” a gravitating particle above an infinite potential boundary. These Gaussian-Klauder states, originally created for Rydberg atoms, provide an overcomplete set of wave functions that mimic classical trajectories for extended times through the utilization of energy localization. For the quantum bouncer, analytic methods are applied presently to compute first and second moments of position and momentum operators, and from these results, at least two scalings of Gaussian-Klauder parameters are highlighted, one of which tends to remains localized for markedly more bounces than comparable states that are Gaussian in position (by an order of magnitude in some cases). We close with a connection that compares Gaussian-Klauder states and positional Gaussian states directly for the quantum bouncer, relating the two through a known energy-position duality of Airy functions. Our results, taken together, ultimately reemphasize the primacy of energy localization as a key ingredient for long-lived classical correspondence in systems with smooth spectra.
Quantum phase estimation using path-symmetric entangled states
Lee, Su-Yong; Lee, Chang-Woo; Lee, Jaehak; Nha, Hyunchul
2016-07-01
We study the sensitivity of phase estimation using a generic class of path-symmetric entangled states |φ>|0> + |0>|φ>, where an arbitrary state |φ> occupies one of two modes in quantum superposition. With this generalization, we identify the fundamental limit of phase estimation under energy constraint that is characterized by the photon statistics of the component state |φ>. We show that quantum Cramer-Rao bound (QCRB) can be indefinitely lowered with super-Poissonianity of the state |φ>. For possible measurement schemes, we demonstrate that a full photon-counting employing the path-symmetric entangled states achieves the QCRB over the entire range [0, 2π] of unknown phase shift ϕ whereas a parity measurement does so in a certain confined range of ϕ. By introducing a component state of the form , we particularly show that an arbitrarily small QCRB can be achieved even with a finite energy in an ideal situation. This component state also provides the most robust resource against photon loss among considered entangled states over the range of the average input energy Nav > 1. Finally we propose experimental schemes to generate these path-symmetric entangled states for phase estimation.
State preparation for quantum information science and metrology
Energy Technology Data Exchange (ETDEWEB)
Samblowski, Aiko
2012-06-08
The precise preparation of non-classical states of light is a basic requirement for performing quantum information tasks and quantum metrology. Depending on the assignment, the range of required states varies from preparing and modifying squeezed states to generating bipartite entanglement and establishing multimode entanglement networks. Every state needs special preparation techniques and hence it is important to develop the experimental expertise to generate all states with the desired degree of accuracy. In this thesis, the experimental preparation of different kinds of non-classical states of light is demonstrated. Starting with a multimode entangled state, the preparation of an unconditionally generated bound entangled state of light of unprecedented accuracy is shown. Its existence is of fundamental interest, since it certifies an intrinsic irreversibility of entanglement and suggests a connection with thermodynamics. The state is created in a network of linear optics, utilizing optical parametric amplifiers, operated below threshold, beam splitters and phase gates. The experimental platform developed here afforded the precise and stable control of all experimental parameters. Focusing on the aspect of quantum information networks, the generation of suitable bipartite entangled states of light is desirable. The optical connection between atomic transitions and light that can be transmitted via telecommunications fibers opens the possibility to employ quantum memories within fiber networks. For this purpose, a non-degenerate optical parametric oscillator is operated above threshold and the generation of bright bipartite entanglement between its twin beams at the wavelengths of 810 nm and 1550 nm is demonstrated. In the field of metrology, quantum states are used to enhance the measurement precision of interferometric gravitational wave (GW) detectors. Recently, the sensitivity of a GW detector operated at a wavelength of 1064 nm was increased using squeezed
State preparation for quantum information science and metrology
International Nuclear Information System (INIS)
The precise preparation of non-classical states of light is a basic requirement for performing quantum information tasks and quantum metrology. Depending on the assignment, the range of required states varies from preparing and modifying squeezed states to generating bipartite entanglement and establishing multimode entanglement networks. Every state needs special preparation techniques and hence it is important to develop the experimental expertise to generate all states with the desired degree of accuracy. In this thesis, the experimental preparation of different kinds of non-classical states of light is demonstrated. Starting with a multimode entangled state, the preparation of an unconditionally generated bound entangled state of light of unprecedented accuracy is shown. Its existence is of fundamental interest, since it certifies an intrinsic irreversibility of entanglement and suggests a connection with thermodynamics. The state is created in a network of linear optics, utilizing optical parametric amplifiers, operated below threshold, beam splitters and phase gates. The experimental platform developed here afforded the precise and stable control of all experimental parameters. Focusing on the aspect of quantum information networks, the generation of suitable bipartite entangled states of light is desirable. The optical connection between atomic transitions and light that can be transmitted via telecommunications fibers opens the possibility to employ quantum memories within fiber networks. For this purpose, a non-degenerate optical parametric oscillator is operated above threshold and the generation of bright bipartite entanglement between its twin beams at the wavelengths of 810 nm and 1550 nm is demonstrated. In the field of metrology, quantum states are used to enhance the measurement precision of interferometric gravitational wave (GW) detectors. Recently, the sensitivity of a GW detector operated at a wavelength of 1064 nm was increased using squeezed
International Nuclear Information System (INIS)
The determination of the energy states is highly studied issue in the quantum mechanics. Based on expectation values dynamics, energy states can be observed. But conditions and calculations vary depending on the created system. In this work, a symmetric exponential anharmonic oscillator is considered and development of a recursive approximation method is studied to find its ground energy state. The use of majorant values facilitates the approximate calculation of expectation values
Energy Technology Data Exchange (ETDEWEB)
Özdemir, Semra Bayat; Demiralp, Metin [Computational Science and Engineering Department, Informatics Institute, Istanbul Technical University, Istanbul (Turkey)
2015-12-31
The determination of the energy states is highly studied issue in the quantum mechanics. Based on expectation values dynamics, energy states can be observed. But conditions and calculations vary depending on the created system. In this work, a symmetric exponential anharmonic oscillator is considered and development of a recursive approximation method is studied to find its ground energy state. The use of majorant values facilitates the approximate calculation of expectation values.
Ionization Potentials and Quantum Defects of 1s2np2P Rydberg States of Lithium Atom
Institute of Scientific and Technical Information of China (English)
CHEN Chao
2008-01-01
In this work,ionization potentials and quantum effects of 1s2np2p Rydberg states of lithium are calculated based on the calibrated quantum defect function.Energy levels and quantum defects for 1s2np2P bound states and their adjacent continuum states are calculated with the R-matrix theory,and then the quantum defect function of the 1s2np (n ≥ 7) channel is obtained,which varies smoothly with the energy based on the quantum defect theory.The accurate quantum defect of the 1s27p2P state derived from the experimental data is used to calibrate the original quantum defect function.The new function is used to calculate ionization potentials and quantum effects of 1s2np2P (n ≥ 7) Rydberg states.Present calculations are in agreement with recent experimental data in whole.
Quantum typicality in spin network states of quantum geometry
Anzà, Fabio
2016-01-01
In this letter we extend the so-called typicality approach, originally formulated in statistical mechanics contexts, to SU(2) invariant spin network states. Our results do not depend on the physical interpretation of the spin-network, however they are mainly motivated by the fact that spin-network states can describe states of quantum geometry, providing a gauge-invariant basis for the kinematical Hilbert space of several background independent approaches to quantum gravity. The first result is, by itself, the existence of a regime in which we show the emergence of a typical state. We interpret this as the prove that, in that regime there are certain (local) properties of quantum geometry which are "universal". Such set of properties is heralded by the typical state, of which we give the explicit form. This is our second result. In the end, we study some interesting properties of the typical state, proving that the area-law for the entropy of a surface must be satisfied at the local level, up to logarithmic c...
Quantum communication with macroscopically bright nonclassical states.
Usenko, Vladyslav C; Ruppert, Laszlo; Filip, Radim
2015-11-30
We analyze homodyne detection of macroscopically bright multimode nonclassical states of light and propose their application in quantum communication. We observe that the homodyne detection is sensitive to a mode-matching of the bright light to the highly intense local oscillator. Unmatched bright modes of light result in additional noise which technically limits detection of Gaussian entanglement at macroscopic level. When the mode-matching is sufficient, we show that multimode quantum key distribution with bright beams is feasible. It finally merges the quantum communication with classical optical technology of visible beams of light. PMID:26698776
Normalization of the covariant three-body bound state vertex function
Adam, J; Savkli, C; Van Orden, J W; Gross, Franz; Savkli, Cetin
1997-01-01
The normalization condition for the relativistic three nucleon Bethe-Salpeter and Gross bound state vertex functions is derived, for the first time, directly from the three body wave equations. It is also shown that the relativistic normalization condition for the two body Gross bound state vertex function is identical to the requirement that the bound state charge be conserved, proving that charge is automatically conserved by this equation.
Asymptotic properties of quantum dynamics in bounded domains at various time scales
International Nuclear Information System (INIS)
We study a peculiar semiclassical limit of the dynamics of quantum states on a circle and in a box (infinitely deep potential well with rigid walls) as the Planck constant tends to zero and time tends to infinity. Our results describe the dynamics of coherent states on the circle and in the box at all time scales in semiclassical approximation. They give detailed information about all stages of quantum evolution in the semiclassical limit. In particular, we rigorously justify the fact that the spatial distribution of a wave packet is most often close to a uniform distribution. This fact was previously known only from numerical experiments. We apply the results obtained to a problem of classical mechanics: deciding whether the recently suggested functional formulation of classical mechanics is preferable to the traditional one. To do this, we study the semiclassical limit of Husimi functions of quantum states. Both formulations of classical mechanics are shown to adequately describe the system when time is not arbitrarily large. But the functional formulation remains valid at larger time scales than the traditional one and, therefore, is preferable from this point of view. We show that, although quantum dynamics in finite volume is commonly believed to be almost periodic, the probability distribution of the position of a quantum particle in a box has a limit distribution at infinite time if we take into account the inaccuracy in measuring the size of the box.
Free energy barrier for melittin reorientation from a membrane-bound state to a transmembrane state
Irudayam, Sheeba J.; Pobandt, Tobias; Berkowitz, Max L.
2013-01-01
An important step in a phospholipid membrane pore formation by melittin antimicrobial peptide is a reorientation of the peptide from a surface into a transmembrane conformation. In this work we perform umbrella sampling simulations to calculate the potential of mean force (PMF) for the reorientation of melittin from a surface-bound state to a transmembrane state and provide a molecular level insight into understanding peptide and lipid properties that influence the existence of the free energ...
Magnetic quantum dots and magnetic edge states
International Nuclear Information System (INIS)
Starting with defining the magnetic edge state in a magnetic quantum dot, which becomes quite popular nowadays conjunction with a possible candidate for a high density memory device or spintronic materials, various magnetic nano-quantum structures are reviewed in detail. We study the magnetic edge states of the two dimensional electron gas in strong perpendicular magnetic fields. We find that magnetic edge states are formed along the boundary of the magnetic dot, which is formed by a nonuniform distribution of magnetic fields. These magnetic edge states circulate either clockwise or counterclockwise, depending on the number of missing flux quanta, and exhibit quite different properties, as compared to the conventional ones which are induced by electrostatic confinements in the quantum Hall system. We also find that a close relation between the quantum mechanical eigenstates and the classical trajectories in the magnetic dot. When a magnetic dot is located inside a quantum wire, the edge-channel scattering mechanism by the magnetic quantum dot is very different from that by electrostatic dots. Here, the magnetic dot is formed by two different magnetic fields inside and outside the dot. We study the ballistic edge-channel transport and magnetic edge states in this situation. When the inner field is parallel to the outer one, the two-terminal conductance is quantized and shows the features of a transmission barrier and a resonator. On the other hand, when the inner field is reversed, the conductance is not quantized and all channels can be completely reflected in some energy ranges. The difference between the above two cases results from the distinct magnetic confinements. We also describe successfully the edge states of magnetic quantum rings and others in detail
Fractional Quantum Hall States in Graphene
Jellal, Ahmed
2008-01-01
We quantum mechanically analyze the fractional quantum Hall effect in graphene. This will be done by building the corresponding states in terms of a potential governing the interactions and discussing other issues. More precisely, we consider a system of particles in the presence of an external magnetic field and take into account of a specific interaction that captures the basic features of the Laughlin series \
Siegert State Approach to Quantum Defect Theory
Hategan, C; Wolter, H H
2016-01-01
The Siegert states are approached in framework of Bloch-Lane-Robson formalism for quantum collisions. The Siegert state is not described by a pole of Wigner R- matrix but rather by the equation $1- R_{nn}L_n = 0$, relating R- matrix element $R_{nn}$ to decay channel logarithmic derivative $L_n$. Extension of Siegert state equation to multichannel system results into replacement of channel R- matrix element $R_{nn}$ by its reduced counterpart ${\\cal R}_{nn}$. One proves the Siegert state is a pole, $(1 - {\\cal R}_{nn} L_{n})^{-1}$, of multichannel collision matrix. The Siegert equation $1 - {\\cal R}_{nn} L_{n} = 0$, ($n$ - Rydberg channel), implies basic results of Quantum Defect Theory as Seaton's theorem, complex quantum defect, channel resonances and threshold continuity of averaged multichannel collision matrix elements.
Edge states of periodically kicked quantum rotors.
Floss, Johannes; Averbukh, Ilya Sh
2015-05-01
We present a quantum localization phenomenon that exists in periodically kicked three-dimensional rotors, but is absent in the commonly studied two-dimensional ones: edge localization. We show that under the condition of a fractional quantum resonance there are states of the kicked rotor that are strongly localized near the edge of the angular momentum space at J=0. These states are analogs of surface states in crystalline solids, and they significantly affect resonant excitation of molecular rotation by laser pulse trains.
Quantum wormhole states and local supersymmetry
International Nuclear Information System (INIS)
The existence of quantum wormhole states is studied in a minisuperspace model with local supersymmetry, where supergravity is coupled to a massless multiplet consisting of a spin-1/2 and complex scalar field. The geometry is taken to be that of a k=+1 Friedmann universe, the other fields being subject to a suitable homogeneous ansatz. An integral expression is found for the wormhole ground state, and the other quantum wormhole states can be found from it by simple differential operations. The effective mass of the scalar-spin-1/2 multiplet remains zero when wormhole effects are included
Necessary detection efficiencies for secure quantum key distribution and bound randomness
Acín, Antonio; Cavalcanti, Daniel; Passaro, Elsa; Pironio, Stefano; Skrzypczyk, Paul
2016-01-01
In recent years, several hacking attacks have broken the security of quantum cryptography implementations by exploiting the presence of losses and the ability of the eavesdropper to tune detection efficiencies. We present a simple attack of this form that applies to any protocol in which the key is constructed from the results of untrusted measurements performed on particles coming from an insecure source or channel. Because of its generality, the attack applies to a large class of protocols, from standard prepare-and-measure to device-independent schemes. Our attack gives bounds on the critical detection efficiencies necessary for secure quantum key distribution, which show that the implementation of most partly device-independent solutions is, from the point of view of detection efficiency, almost as demanding as fully device-independent ones. We also show how our attack implies the existence of a form of bound randomness, namely nonlocal correlations in which a nonsignalling eavesdropper can find out a posteriori the result of any implemented measurement.
Institute of Scientific and Technical Information of China (English)
Li Hong-Wei; Yin Zhen-Qiang; Wang Shuang; Bao Wan-Su; Guo Guang-Can; Han Zheng-Fu
2011-01-01
Quantum key distribution is the art of sharing secret keys between two distant parties,and has attracted a lot of attention due to its unconditional security.Compared with other quantum key distribution protocols,the differential phase shift quantum key distribution protocol has higher efficiency and simpler apparatus.Unfortunately,the unconditional security of differential phase shift quantum key distribution has not been proved.Utilizing the sharp continuity of the von Neuman entropy and some basic inequalities,we estimate the upper bound for the eavesdropper Eve's information.We then prove the lower bound for the security of the differential phase shift quantum key distribution protocol against a one-pulse attack with Devatak-Winter's secret key rate formula.
Efimov effect and higher bound states in a three particle system
International Nuclear Information System (INIS)
The J=0 bound states for a system of three identical spinless particles interacting in pairs through delta-shell potentials are studied. The Efimov states are identified, and their wave functions obtained. A new family of bound states, which occurs for higher values of the attractive coupling strength was found
Atomic Quantum State Teleportation and Swapping
Kuzmich, A.; Polzik, E. S.
2000-01-01
A set of protocols for atomic quantum state teleportation and swapping utilizing Einstein-Podolsky-Rosen light is proposed. The protocols are suitable for collective spin states of a macroscopic sample of atoms, i.e. for continuous atomic variables. Feasibility of experimental realization for teleportation of a gas sample of atoms is analyzed.
Hiding Quantum States in a Superposition
Younes, Ahmed
2008-01-01
A method to hide certain quantum states in a superposition will be proposed. Such method can be used to increase the security of a communication channel. States represent an encrypted message will disappear during data exchange. This makes the message 100% safe under direct measurement by an eavesdropper. No entanglement sharing is required among the communicating parties.
Average fidelity between random quantum states
Zyczkowski, K; Zyczkowski, Karol; Sommers, Hans-Jurgen
2003-01-01
We analyze mean fidelity between random density matrices of size N, generated with respect to various probability measures in the space of mixed quantum states: Hilbert-Schmidt measure, Bures (statistical) measure, the measures induced by partial trace and the natural measure on the space of pure states. In certain cases explicit probability distributions for fidelity are derived.
Quantum teleportation of entangled squeezed vacuum states
Institute of Scientific and Technical Information of China (English)
蔡新华
2003-01-01
An optical scheme for probabilistic teleporting entangled squeezed vacuum states (SVS) is proposed. In this scheme,the teleported state is a bipartite entangled SVS,and the quantum channel is a tripartite entangled SVS.The process of the teleportation is achieved by using a 50/50 symmetric beamsplitter and photon detectors with the help of classical information.
Fano effect in the Andreev reflection of the Aharonov-Bohm-Fano ring with Majorana bound states
Jiang, Cui; Zheng, Yi-Song
2015-06-01
The Andreev reflection in an Aharonov-Bohm-Fano ring induced by Majorana bound states (MBSs) is theoretically investigated. We find that compared with the Fano effect in the normal electron tunneling process, the Fano effect here is more determined by the structural parameters, i.e., the quantum dot level, the dot-MBS coupling, and the dot-MBS and MBS-lead couplings. By transforming the ring into its Nambu representation, we present a comprehensive analysis about the quantum interference in the Andreev reflection, and then explain the reason for the occurrence of the Fano effect. These results will be helpful for understanding the quantum interference in the MBS-assisted Andreev reflection.
Asymptotics of Ground State Degeneracies in Quiver Quantum Mechanics
Cordova, Clay
2015-01-01
We study the growth of the ground state degeneracy in the Kronecker model of quiver quantum mechanics. This is the simplest quiver with two gauge groups and bifundamental matter fields, and appears universally in the context of BPS state counting in four-dimensional N=2 systems. For large ranks, the ground state degeneracy is exponential with slope a modular function that we are able to compute at integral values of its argument. We also observe that the exponential of the slope is an algebraic number and determine its associated algebraic equation explicitly in several examples. The speed of growth of the degeneracies, together with various physical features of the bound states, suggests a dual string interpretation.