WorldWideScience

Sample records for bound pionic states

  1. Soliton-like states of pionic field in nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Kurilkin, N.N.; Mishustin, I.N.; Khodel, V.A. (Gosudarstvennyj Komitet po Ispol' zovaniyu Atomnoj Ehnergii SSSR, Moscow. Inst. Atomnoj Ehnergii)

    1982-07-01

    Basing on the Weinberg nonlinear lagrangian, a possible existence of soliton-like clusters of pionic field in nuclear matter is shown. The clusters are multi-pion coherent states strongly interacting with the nuclear matter. The stability of these states with respect to various decay channels, in particular, decays into separate pions, is investigated. Properties of the pionic solitons and their relations to parameters of the sepctrum of linear pionic excitations in the nuclear matter are discussed.

  2. The strong interaction shift and width of the ground state of pionic hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Sigg, D. [Eidgenoessische Technische Hochschule, Villigen (Switzerland). Inst. fuer Teilchenphysik; Badertscher, A. [Eidgenoessische Technische Hochschule, Villigen (Switzerland). Inst. fuer Teilchenphysik; Bogdan, M. [Eidgenoessische Technische Hochschule, Villigen (Switzerland). Inst. fuer Teilchenphysik; Goudsmit, P.F.A. [Eidgenoessische Technische Hochschule, Villigen (Switzerland). Inst. fuer Teilchenphysik; Leisi, H.J. [Eidgenoessische Technische Hochschule, Villigen (Switzerland). Inst. fuer Teilchenphysik; Schroeder, H.-C. [Eidgenoessische Technische Hochschule, Villigen (Switzerland). Inst. fuer Teilchenphysik; Zhao, Z.G. [Eidgenoessische Technische Hochschule, Villigen (Switzerland). Inst. fuer Teilchenphysik; Chatellard, D. [Institut de Physique de l`Universite de Neuchatel, 2000 Neuchatel (Switzerland); Egger, J.-P. [Institut de Physique de l`Universite de Neuchatel, 2000 Neuchatel (Switzerland); Jeannet, E. [Institut de Physique de l`Universite de Neuchatel, 2000 Neuchatel (Switzerland); Aschenauer, E.C. [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Gabathuler, K. [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Simons, L.M. [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Rusi El Hassani, A.J. [Ecole Mohammadia d`Ingenieurs, Rabat (Morocco)

    1996-11-18

    The 3p-1s transition in pionic hydrogen was investigated with a high-resolution crystal spectrometer system. From the precisely measured transition energy, together with the (calculated) electromagnetic energy, the strong interaction shift of the 1s state was obtained as {epsilon}{sub 1s} = -7.127 {+-}0.028 (stat.) {+-}0.036 (syst.) eV (attractive). From the natural line width, measured for the first time, we determine the decay width of the 1s state: {Gamma}{sub 1s}{sup (decay)} = 0.97 {+-}0.10 (stat.) {+-}0.05 (syst.) eV. With the recently calculated electromagnetic corrections the s-wave scattering lengths of an isospin symmetric strong interaction are deduced. The scattering length for elastic scattering of a negative pion on a proton is a{sup h}{sub {pi}{sup -}p{yields}{pi}{sup -}p} = 0.0885 {+-}0.0003 (stat.) {+-}0.0006 (syst.) m{sub {pi}}{sup -1}. The scattering length for single charge exchange is found to be a{sup h}{sub {pi}{sup -}p{yields}{pi}{sup 0}n} = -0.136 {+-}0.007 (stat.) {+-}0.003 (syst.) m{sub {pi}}{sup -1}. The experiment was performed at the Paul Scherrer Institute (PSI) in Switzerland. A focussing crystal spectrometer with an array of bent crystals, the cyclotron trap (a magnetic system designed to increase the particle stop density) and a CCD (charge-coupled device) detector system were employed. The results from the pionic hydrogen experiment - together with those from the pionic deuterium experiment - were used to test the isospin symmetry of the strong interaction. The present data are still consistent with isospin symmetry. (orig.).

  3. Hadronic shift in pionic hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Hennebach, M.; Gotta, D. [Forschungszentrum Juelich, Institut fuer Kernphysik, Juelich (Germany); Anagnostopoulos, D.F. [University of Ioannina, Department of Materials Science and Engineering, Ioannina (Greece); Dax, A.; Liu, Y.W.; Markushin, V.E.; Simons, L.M. [Paul Scherrer Institut, Laboratory for Particle Physics, Villigen (Switzerland); Fuhrmann, H.; Gruber, A.; Hirtl, A.; Zmeskal, J. [Austrian Academy of Sciences, Stefan Meyer Institute for Subatomic Physics, Vienna (Austria); Indelicato, P. [UPMC Univ. Paris 06, Laboratoire Kastler Brossel, Sorbonne Universites, Paris (France); CNRS, Laboratoire Kastler Brossel, Paris (France); Departement de Physique de l' Ecole Normale Superieure, Laboratoire Kastler Brossel, Paris (France); Manil, B. [UPMC Univ. Paris 06, Laboratoire Kastler Brossel, Sorbonne Universites, Paris (France); Rusi el Hassani, A.J. [Universite Abdelmalek Essaadi, Faculte des Sciences et Techniques, Tanger (Morocco); Trassinelli, M. [Sorbonne Universites, Institut des NanoSciences de Paris, Paris (France); CNRS, Institut des NanoSciences de Paris, Paris (France)

    2014-12-01

    The hadronic shift in pionic hydrogen has been redetermined to be ε {sub 1s} = 7.086 ± 0.007(stat) ± 0.006(sys) eV by X-ray spectroscopy of ground-state transitions applying various energy calibration schemes. The experiment was performed at the high-intensity low-energy pion beam of the Paul Scherrer Institut by using the cyclotron trap and an ultimate-resolution Bragg spectrometer with bent crystals. (orig.)

  4. Born Level Bound States

    Science.gov (United States)

    Hoyer, Paul

    2017-05-01

    Bound state poles in the S-matrix of perturbative QED are generated by the divergence of the expansion in α . The perturbative corrections are necessarily singular when expanding around free, {O}( α ^0 ) in and out states that have no overlap with finite-sized atomic wave functions. Nevertheless, measurables such as binding energies do have well-behaved expansions in powers of α (and log α ). It is desirable to formulate the concept of "lowest order" for gauge theory bound states such that higher order corrections vanish in the α → 0 limit. This may allow to determine a lowest order term for QCD hadrons which incorporates essential features such as confinement and chiral symmetry breaking, and thus can serve as the starting point of a useful perturbative expansion. I discuss a "Born" (no loop, lowest order in \\hbar ) approximation. Born level states are bound by gauge fields which satisfy the classical field equations. Gauss' law determines a distinct field A^0({\\varvec{x}}) for each instantaneous position of the charges. A Poincaré covariant boundary condition for the gluon field leads to a confining potential for q\\bar{q} and qqq states. In frames where the bound state is in motion the classical gauge field is obtained by a Lorentz boost of the rest frame field.

  5. Bound states and the Bekenstein bound

    Energy Technology Data Exchange (ETDEWEB)

    Bousso, Raphael

    2003-10-16

    We explore the validity of the generalized Bekenstein bound, S<= pi M a. We define the entropy S as the logarithm of the number of states which have energy eigenvalue below M and are localized to a flat space region of width alpha. If boundary conditions that localize field modes are imposed by fiat, then the bound encounters well-known difficulties with negative Casimir energy and large species number, as well as novel problems arising only in the generalized form. In realistic systems, however, finite-size effects contribute additional energy. We study two different models for estimating such contributions. Our analysis suggests that the bound is both valid and nontrivial if interactions are properly included, so that the entropy S counts the bound states of interacting fields.

  6. Dromions bound states

    Energy Technology Data Exchange (ETDEWEB)

    Maccari, Attilio

    2003-03-01

    The asymptotic perturbation (AP) method is applied to the study of the nonlinear Klein-Gordon equation in 3+1 dimensions with harmonic potential and external periodic excitation supposed to be in primary resonance with the frequency of a generic mode. The AP method uses two different procedures for the solutions: introducing an asymptotic temporal rescaling and balancing of the harmonic terms with a simple iteration. Standard quantum mechanics can be used to derive the lowest order approximate solution and amplitude and phase modulation equations are obtained. External force-response and frequency-response curves are found and the existence of dromions trapped in bound states is demonstrated.

  7. Hadron-nucleus bound states

    CERN Document Server

    Yamazaki, T

    2000-01-01

    A new type of nuclear spectroscopy to study hadron-nucleus bound states is described. The first successful experiment was to search for deeply bound pi sup - states in heavy nuclei using the sup 2 sup 0 sup 8 Pb(d, sup 3 He) reaction at GSI, in which a narrow peak arising from the 2p pi sup - orbital coupled with the neutron-hole states was observed at 135 MeV excitation energy. An improved experiment has just been carried out to separately identify the 1s and 2p pi sup - states. These experiments provide important information on the local potential strength, from which the effective mass of pi sup - is deduced to be 20 MeV. This method will be extended to search for eta and omega bound states as well as for K sup - bound states. The advantage of the bound-state spectroscopy versus invariant mass spectroscopy is emphasized.

  8. Wronskian method for bound states

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Francisco M, E-mail: fernande@quimica.unlp.edu.ar [INIFTA (UNLP, CONICET), Division Quimica Teorica, Boulevard 113 S/N, Sucursal 4, Casilla de Correo 16, 1900 La Plata (Argentina)

    2011-05-15

    We propose a simple and straightforward method based on Wronskians for the calculation of bound-state energies and wavefunctions of one-dimensional quantum-mechanical problems. We explicitly discuss the asymptotic behaviour of the wavefunction and show that the allowed energies make the divergent part vanish. As illustrative examples we consider an exactly solvable model, the Gaussian potential well, and a two-well potential proposed earlier for the interpretation of the infrared spectrum of ammonia.

  9. Bound anionic states of adenine

    Energy Technology Data Exchange (ETDEWEB)

    Haranczyk, Maciej; Gutowski, Maciej S; Li, Xiang; Bowen, Kit H

    2007-03-20

    Anionic states of nucleic acid bases are involved in DNA damage by low-energy electrons and in charge transfer through DNA. Previous gas phase studies of free, unsolvated nucleic acid base parent anions probed only dipole-bound states, which are not present in condensed phase environments, but did not observe valence anionic states, which for purine bases, are thought to be adiabatically unbound. Contrary to this expectation, we have demonstrated that some thus far ignored tautomers of adenine, which result from enamine-imine transformations, support valence anionic states with electron vertical detachment energies as large as 2.2 eV, and at least one of these anionic tautomers is adiabatically bound. Moreover, we predict that the new anionic tautomers should also dominate in solutions and should be characterized by larger values of electron vertical detachment energy than the canonical valence anion. All of the new-found anionic tautomers might be formed in the course of dissociative electron attachment followed by a hydrogen atom attachment to a carbon atom, and they might affect the structure and properties of DNA and RNA exposed to low-energy electrons. The discovery of these valence anionic states of adenine was facilitated by the development of: (i) a new experimental method for preparing parent anions of nucleic acid bases for photoelectron experiments, and (ii) a new combinatorial/ quantum chemical approach for identification of the most stable tautomers of organic molecules. The computational portion of this work was supported by the: (i) Polish State Committee for Scientific Research (KBN) Grants: DS/8000-4-0140-7 (M.G.) and N204 127 31/2963 (M.H.), (ii) European Social Funds (EFS) ZPORR/2.22/II/2.6/ARP/U/2/05 (M.H.), and (iii) US DOE Office of Biological and Environmental Research, Low Dose Radiation Research Program (M.G.). M.H. holds the Foundation for Polish Science (FNP) award for young scientists. The calculations were performed at the Academic

  10. Instanton bound states in ABJM theory

    Energy Technology Data Exchange (ETDEWEB)

    Hatsuda, Yasuyuki [DESY Hamburg (Germany). Theory Group; Tokyo Institute of Technology (Japan). Dept. of Physics; Moriyama, Sanefumi [Nagoya Univ. (Japan). Kobayashi Maskawa Inst. and Graduate School of Mathematics; Okuyama, Kazumi [Shinshu Univ., Matsumoto, Nagano (Japan). Dept. of Physics

    2013-06-15

    The partition function of the ABJM theory receives non-perturbative corrections due to instanton effects. We study these non-perturbative corrections, including bound states of worldsheet instantons and membrane instantons, in the Fermi-gas approach. We require that the total non-perturbative correction should be always finite for arbitrary Chern-Simons level. This finiteness is realized quite non-trivially because each bound state contribution naively diverges at some levels. The poles of each contribution should be canceled out in total. We use this pole cancellation mechanism to find unknown bound state corrections from known ones. We conjecture a general expression of the bound state contribution. Summing up all the bound state contributions, we find that the effect of bound states is simply incorporated into the worldsheet instanton correction by a redefinition of the chemical potential in the Fermi-gas system. Analytic expressions of the 3- and 4-membrane instanton corrections are also proposed.

  11. Are the supergiant halos experimental evidence for the pionic radioactivity?

    Science.gov (United States)

    Ion, D. B.; Ion-Mihai, R.

    1994-10-01

    Pionic radiohalos (PIRH), as an integral time record of the pionic nuclear radioactivity of the heavy nuclides with Z > 80 from the inclusions from ancient minerals, are introduced. It is then shown that the essential characteristic features of the observed supergiant halos (SGH) are reproduced with a surprisingly high accuracy by those of the pionic radiohalos. For the clarification of this problem new experimental investigations including pionic detection methods are suggested.

  12. Calculation of the density shift and broadening of the transition lines in pionic helium: Computational problems

    Energy Technology Data Exchange (ETDEWEB)

    Bakalov, Dimitar, E-mail: dbakalov@inrne.bas.bg [Bulgarian Academy of Sciences, INRNE (Bulgaria)

    2015-08-15

    The potential energy surface and the computational codes, developed for the evaluation of the density shift and broadening of the spectral lines of laser-induced transitions from metastable states of antiprotonic helium, fail to produce convergent results in the case of pionic helium. We briefly analyze the encountered computational problems and outline possible solutions of the problems.

  13. Stable Bound States of Asymmetric Dark Matter

    OpenAIRE

    Wise, Mark B.; Zhang, Yue

    2014-01-01

    The simplest renormalizable effective field theories with asymmetric dark matter bound states contain two additional gauge singlet fields one being the dark matter and the other a mediator particle that the dark matter annihilates into. We examine the physics of one such model with a Dirac fermion as the dark matter and a real scalar mediator. For a range of parameters the Yukawa coupling of the dark matter to the mediator gives rise to stable asymmetric dark matter bound states. We derive pr...

  14. Quantum-electrodynamics corrections in pionic hydrogen

    NARCIS (Netherlands)

    Schlesser, S.; Le Bigot, E. -O.; Indelicato, P.; Pachucki, K.

    2011-01-01

    We investigate all pure quantum-electrodynamics corrections to the np --> 1s, n = 2-4 transition energies of pionic hydrogen larger than 1 meV, which requires an accurate evaluation of all relevant contributions up to order alpha 5. These values are needed to extract an accurate strong interaction

  15. Verifying bound entanglement of dephased Werner states

    Science.gov (United States)

    Thomas, P.; Bohmann, M.; Vogel, W.

    2017-10-01

    The verification of quantum entanglement under the influence of realistic noise and decoherence is crucial for the development of quantum technologies. Unfortunately, a full entanglement characterization is generally not possible with most entanglement criteria such as entanglement witnesses or the partial transposition criterion. In particular, so-called bound entanglement cannot be certified via the partial transposition criterion. Here we present the full entanglement verification of dephased qubit and qutrit Werner states via entanglement quasiprobabilities. Remarkably, we are able to reveal bound entanglement for noisy mixed states in the qutrit case. This example demonstrates the strength of the entanglement quasiprobabilities for verifying the full entanglement of quantum states suffering from noise.

  16. Yukawa Bound States and Their LHC Phenomenology

    Directory of Open Access Journals (Sweden)

    Enkhbat Tsedenbaljir

    2013-01-01

    Full Text Available We present the current status on the possible bound states of extra generation quarks. These include phenomenology and search strategy at the LHC. If chiral fourth-generation quarks do exist their strong Yukawa couplings, implied by current experimental lower bound on their masses, may lead to formation of bound states. Due to nearly degenerate 4G masses suggested by Precision Electroweak Test one can employ “heavy isospin” symmetry to classify possible spectrum. Among these states, the color-octet isosinglet vector ω 8 is the easiest to be produced at the LHC. The discovery potential and corresponding decay channels are covered in this paper. With possible light Higgs at ~125 GeV two-Higgs doublet version is briefly discussed.

  17. A note on BPS vortex bound states

    Directory of Open Access Journals (Sweden)

    A. Alonso-Izquierdo

    2016-02-01

    Full Text Available In this note we investigate bound states, where scalar and vector bosons are trapped by BPS vortices in the Abelian Higgs model with a critical ratio of the couplings. A class of internal modes of fluctuation around cylindrically symmetric BPS vortices is characterized mathematically, analyzing the spectrum of the second-order fluctuation operator when the Higgs and vector boson masses are equal. A few of these bound states with low values of quantized magnetic flux are described fully, and their main properties are discussed.

  18. A note on BPS vortex bound states

    Energy Technology Data Exchange (ETDEWEB)

    Alonso-Izquierdo, A., E-mail: alonsoiz@usal.es [Departamento de Matematica Aplicada, Universidad de Salamanca (Spain); Garcia Fuertes, W., E-mail: wifredo@uniovi.es [Departamento de Fisica, Universidad de Oviedo (Spain); Mateos Guilarte, J., E-mail: guilarte@usal.es [Departamento de Fisica Fundamental, Universidad de Salamanca (Spain)

    2016-02-10

    In this note we investigate bound states, where scalar and vector bosons are trapped by BPS vortices in the Abelian Higgs model with a critical ratio of the couplings. A class of internal modes of fluctuation around cylindrically symmetric BPS vortices is characterized mathematically, analyzing the spectrum of the second-order fluctuation operator when the Higgs and vector boson masses are equal. A few of these bound states with low values of quantized magnetic flux are described fully, and their main properties are discussed.

  19. Topological edge states of bound photon pairs

    Science.gov (United States)

    Gorlach, Maxim A.; Poddubny, Alexander N.

    2017-05-01

    We predict the existence of interaction-driven edge states of bound two-photon quasiparticles in a dimer periodic array of nonlinear optical cavities. The energy spectrum of photon pairs is dramatically richer than in the noninteracting case or in a simple lattice, featuring collapse and revival of multiple edge and bulk modes as well as edge states in continuum. We link the edge-state existence to the two-photon quantum walk graph connectivity. Our results offer a route to control quantum entanglement and provide insights into the physics of many-body topological states.

  20. Spectral singularities and zero energy bound states

    Energy Technology Data Exchange (ETDEWEB)

    Heiss, W.D. [National Institute for Theoretical Physics, Stellenbosch Institute for Advanced Study, and Institute of Theoretical Physics, University of Stellenbosch, 7602 Matieland (South Africa); Nazmitdinov, R.G. [Department de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation)

    2011-08-15

    Single particle scattering around zero energy is re-analysed in view of recent experiments with ultra-cold atoms, nano-structures and nuclei far from the stability valley. For non-zero orbital angular momentum the low energy scattering cross section exhibits dramatic changes depending on the occurrence of either a near resonance or a bound state or the situation in between, that is a bound state at zero energy. Such state is singular in that it has an infinite scattering length, behaves for the eigenvalues but not for the eigenfunctions as an exceptional point and has no pole in the scattering function. These results should be observable whenever the interaction or scattering length can be controlled. (authors)

  1. Novel black hole bound states and entropy

    CERN Document Server

    Govindarajan, T R

    2011-01-01

    We solve for the spectrum of the Laplacian as Hamiltonian on $\\mathbb{R}^{2}-\\mathbb{D}$ and in $\\mathbb{R}^{3}-\\mathbb{B}$. A self-adjointness analysis with $\\partial\\mathbb{D}$ and $\\partial\\mathbb{B}$ as the boundary for the two cases shows that a general class of boundary conditions for which the Hamiltonian operator is essentially self-adjoint are of the mixed (Robin) type. With this class of boundary conditions we obtain 'bound state' solutions for the Schroedinger equation. Interestingly, these solutions are all localized near the boundary. We further show that the number of bound states is finite and is infact proportional to the perimeter or area of the removed \\emph{disc} or \\emph{ball}. We then argue that similar considerations should hold for static black hole backgrounds with the horizon treated as the boundary.

  2. Closed form bound-state perturbation theory

    Directory of Open Access Journals (Sweden)

    Ollie J. Rose

    1980-01-01

    Full Text Available The perturbed Schrödinger eigenvalue problem for bound states is cast into integral form using Green's Functions. A systematic algorithm is developed and applied to the resulting equation giving rise to approximate solutions expressed as functions of the given perturbation parameter. As a by-product, convergence radii for the traditional Rayleigh-Schrödinger and Brillouin-Wigner perturbation theories emerge in a natural way.

  3. Analytic continuation of bound states to solve resonance states

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Norimichi; Arai, Koji [Niigata Univ. (Japan); Suzuki, Yoshiyuki; Varga, K.

    1997-05-01

    As a method to determine the parameters of the resonance state, a method is proposed using analytic continuation on bound constants of correlation. The characteristics of this method consists in probability of prediction of the parameters of the resonance state only by calculation of the bound state. Owing to conducting the analytic continuation on square root of energy in the bound state as a function relating to the bound constant, energy and width in the bound state was determined. Here was reported on a result of application of this method to three systems. Some partial wave on two systems showing correlation at a simple potential and a resonance state of zero of all orbital angular motion quality in three boson system were determined using the analytic continuation method. These results agreed well with one used a method of integrating Schroedinger equation directly and one used the complex scaling method, and this method was found to be much efficient for the study of the resonance state. Under a background of becoming applicable to the method of analytic continuation, there was development of calculating method for the recent small number multi system. As the characteristics of the analytic continuation method is used for only calculation of the bound state, it is convenient at a point applicable to the method to obtain conventional bound state and then is much efficient in a point of applicability of calculus of variations. However, in order to obtain coefficient of Pade approximation correctly, the bound state must be solved correctly, which is difficult for more complex system and is not always applicable to every systems. (G.K.)

  4. Andreev bound states. Some quasiclassical reflections

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Y., E-mail: yiriolin@illinois.edu; Leggett, A. J. [University of Illinois at Urhana-Champaign, Dept. of Physics (United States)

    2014-12-15

    We discuss a very simple and essentially exactly solvable model problem which illustrates some nice features of Andreev bound states, namely, the trapping of a single Bogoliubov quasiparticle in a neutral s-wave BCS superfluid by a wide and shallow Zeeman trap. In the quasiclassical limit, the ground state is a doublet with a splitting which is proportional to the exponentially small amplitude for “normal” reflection by the edges of the trap. We comment briefly on a prima facie paradox concerning the continuity equation and conjecture a resolution to it.

  5. Surface-bound states in nanodiamonds

    Science.gov (United States)

    Han, Peng; Antonov, Denis; Wrachtrup, Jörg; Bester, Gabriel

    2017-05-01

    We show via ab initio calculations and an electrostatic model that the notoriously low, but positive, electron affinity of bulk diamond becomes negative for hydrogen passivated nanodiamonds and argue that this peculiar situation (type-II offset with a vacuum level at nearly midgap) and the three further conditions: (i) a surface dipole with positive charge on the outside layer, (ii) a spherical symmetry, and (iii) a dielectric mismatch at the surface, results in the emergence of a peculiar type of surface state localized just outside the nanodiamond. These states are referred to as "surface-bound states" and have consequently a strong environmental sensitivity. These type of states should exist in any nanostructure with negative electron affinity. We further quantify the band offsets of different type of nanostructures as well as the exciton binding energy and contrast the results with results for "conventional" silicon quantum dots.

  6. Bound states in the strong coupling limit

    CERN Document Server

    Martin, A

    1972-01-01

    The author shows that the number of bound states of a particle in a short-range potential in n dimensions is given asymptotically by N=g /sup n/2/S/sub n//(2 pi )/sup n/ integral mod 2MV/sup -//h(cross)/sup 2/ mod /sup n/2/d/sup n/x+0(g/sup n/2-g/) for g to infinity , where gV /sup -/ is the attractive part of the potential, and S/sub /n is the volume of the n dimensional sphere with unit radius. (10 refs).

  7. Engineering the coupling between Majorana bound states

    Science.gov (United States)

    Shi, Z. C.; Shao, X. Q.; Xia, Y.; Yi, X. X.

    2017-09-01

    We study the coupling between Majorana bound states (CMBS), which is mediated by a topologically trivial chain in the presence of pairing coupling and long-range coupling. The results show that CMBS can be enhanced by the pairing coupling and long-range coupling of the trivial chain. When driving the trivial chain by periodic driving field, we deduce the analytical expressions of CMBS in the high-frequency limit, and demonstrate that CMBS can be modulated by the frequency and amplitude of driving field. Finally we exhibit the application of tunable CMBS in realizing quantum logic gates.

  8. Pionic Fusion of 4He +12 C

    Science.gov (United States)

    Zarrella, Andrew; Yennello, Sherry

    2017-09-01

    Pionic fusion is the process by which two nuclei fuse and then deexcite by the exclusive emission of a pion. These reactions represent the most extreme examples of deep subthreshold pion production and provide evidence for an unknown, collective mechanism for pion production. An experiment was performed at the Texas A&M University Cyclotron Institute to measure the cross section of the 4He +12 C -> 16N +π+ reaction. The Momentum Achromat Recoil Spectrometer (MARS) was used to separate and identify the 16N fusion residues and the newly constructed Partial Truncated Icosahedron (ParTI) phoswich array was used to identify charged pions. The detector responses for each phoswich unit were recorded using fast-sampling ADCs which allow all light charged particles in the ParTI phoswiches to be identified using ``fast vs. slow'' pulse shape discrimination. By writing the waveform responses, pions can also be identified by the presence of a characteristic muon decay pulse. The combination of the residue-pion coincidence and the two independent pion identification techniques represent a highly sensitive experimental design for studying pionic fusion reactions.

  9. The S-matrix for systems with bound states

    NARCIS (Netherlands)

    Ruijgrok, Th.W.

    A unitary S-matrix is defined for a system of three particles, two of which can form a bound state. It is shown how for elastic scattering the polarization of the bound state must be taken into account.

  10. A balance for dark matter bound states

    Science.gov (United States)

    Nozzoli, F.

    2017-05-01

    Massive particles with self interactions of the order of 0.2 barn/GeV are intriguing Dark Matter candidates from an astrophysical point of view. Current and past experiments for direct detection of massive Dark Matter particles are focusing to relatively low cross sections with ordinary matter, however they cannot rule out very large cross sections, σ/M > 0.01 barn/GeV, due to atmosphere and material shielding. Cosmology places a strong indirect limit for the presence of large interactions among Dark Matter and baryons in the Universe, however such a limit cannot rule out the existence of a small sub-dominant component of Dark Matter with non negligible interactions with ordinary matter in our galactic halo. Here, the possibility of the existence of bound states with ordinary matter, for a similar Dark Matter candidate with not negligible interactions, is considered. The existence of bound states, with binding energy larger than ∼ 1 meV, would offer the possibility to test in laboratory capture cross sections of the order of a barn (or larger). The signature of the detection for a mass increasing of cryogenic samples, due to the possible particle accumulation, would allow the investigation of these Dark Matter candidates with mass up to the GUT scale. A proof of concept for a possible detection set-up and the evaluation of some noise sources are described.

  11. Counting Majorana bound states using complex momenta

    Directory of Open Access Journals (Sweden)

    I. Mandal

    2016-09-01

    Full Text Available Recently, the connection between Majorana fermions bound to the defects in arbitrary dimensions, and complex momentum roots of the vanishing determinant of the corresponding bulk Bogoliubov–de Gennes (BdG Hamiltonian, has been established (EPL, 2015, 110, 67005. Based on this understanding, a formula has been proposed to count the number (n of the zero energy Majorana bound states, which is related to the topological phase of the system. In this paper, we provide a proof of the counting formula and we apply this formula to a variety of 1d and 2d models belonging to the classes BDI, DIII and D. We show that we can successfully chart out the topological phase diagrams. Studying these examples also enables us to explicitly observe the correspondence between these complex momentum solutions in the Fourier space, and the localized Majorana fermion wavefunctions in the position space. Finally, we corroborate the fact that for systems with a chiral symmetry, these solutions are the so-called "exceptional points", where two or more eigenvalues of the complexified Hamiltonian coalesce.

  12. Bound state in positron scattering by allene

    Science.gov (United States)

    Barbosa, Alessandra Souza; Sanchez, Sergio d'Almeida; Bettega, Márcio H. F.

    2017-12-01

    We report integral and differential cross sections for positron collisions with allene, calculated with the Schwinger multichannel method. The cross sections were computed in the static-polarization approximation for energies up to 7 eV. We have tested a series of single-particle basis sets and different polarization schemes to improve the description of low-energy positron scattering by the allene molecule. We have found that the use of extra centers with no net charge with additional single-particle s - and p -type functions centered at them are essential in order to accurately reproduce the polarization potential and, hence, obtain proper scattering cross sections. The choice of the allene molecule was due to the fact that it is a highly symmetric molecule with no permanent dipole moment and would allow several different calculations. Our cross sections are compared to the available experimental data for the total cross section with a reasonable agreement after correcting their results due to the low angular discrimination of their apparatus. Also, a virtual state was observed in the integral cross section that became a bound state when the description of the polarization potential is improved. We also observed a Ramsauer-Townsend minimum in the cross section whose location varies from 2.7 to 3.4 eV, depending on the polarization scheme used in the calculations.

  13. Viewing Majorana Bound States by Rabi Oscillations.

    Science.gov (United States)

    Wang, Zhi; Liang, Qi-Feng; Yao, Dao-Xin; Hu, Xiao

    2015-07-08

    We propose to use Rabi oscillation as a probe to view the fractional Josepshon relation (FJR) associated with Majorana bound states (MBSs) expected in one-dimensional topological superconductors. The system consists of a quantum dot (QD) and an rf-SQUID with MBSs at the Josephson junction. Rabi oscillations between energy levels formed by MBSs are induced by ac gate voltage controlling the coupling between QD and MBS when the photon energy proportional to the ac frequency matches gap between quantum levels formed by MBSs and QD. As a manifestation of the Rabi oscillation in the whole system involving MBSs, the electron occupation on QD oscillates with time, which can be measured by charge sensing techniques. With Floquet theorem and numerical analysis we reveal that from the resonant driving frequency for coherent Rabi oscillation one can directly map out the FJR cos(πΦ/Φ0) as a signature of MBSs, with Φ the magnetic flux through SQUID and Φ0 = hc/2e the flux quantum. The present scheme is expected to provide a clear evidence for MBSs under intensive searching.

  14. Higgs interchange and bound states of superheavy fermions

    Indian Academy of Sciences (India)

    Hypothetical superheavy fourth-generation fermions with a very small coupling with the rest of the Standard Model can give rise to long enough lived bound states. The production and the detection of these bound states would be experimentally feasible at the LHC. Extending, in the present study, the analysis of other ...

  15. Quasi-bound states, resonance tunnelling, and tunnelling times ...

    Indian Academy of Sciences (India)

    Abstract. In analogy with the definition of resonant or quasi-bound states used in three-dimensional quantal scattering, we define the quasi-bound states that occur in one- dimensional transmission generated by twin symmetric potential barriers and evaluate their energies and widths using two typical examples: (i) twin ...

  16. Bound states in a hyperbolic asymmetric double-well

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, R. R., E-mail: richard.hartmann@dlsu.edu.ph [Physics Department, De La Salle University, 2401 Taft Avenue, Manila (Philippines)

    2014-01-15

    We report a new class of hyperbolic asymmetric double-well whose bound state wavefunctions can be expressed in terms of confluent Heun functions. An analytic procedure is used to obtain the energy eigenvalues and the criterion for the potential to support bound states is discussed.

  17. Asymptotic-bound-state model for Feshbach resonances

    NARCIS (Netherlands)

    Tiecke, T.G.; Goosen, M.R.; Walraven, J.T.M.; Kokkelmans, S.J.J.M.F.

    2010-01-01

    We present an asymptotic-bound-state model which can be used to accurately describe all Feshbach resonance positions and widths in a two-body system. With this model we determine the coupled bound states of a particular two-body system. The model is based on analytic properties of the two-body

  18. Parity lifetime of bound states in a proximitized semiconductor nanowire

    DEFF Research Database (Denmark)

    Higginbotham, Andrew Patrick; Albrecht, Sven Marian; Kirsanskas, Gediminas

    2015-01-01

    superconductor layer, yielding an isolated, proximitized nanowire segment. We identify Andreev-like bound states in the semiconductor via bias spectroscopy, determine the characteristic temperatures and magnetic fields for quasiparticle excitations, and extract a parity lifetime (poisoning time) of the bound...... state in the semiconductor exceeding 10 ms....

  19. Detecting Majorana nonlocality using strongly coupled Majorana bound states

    NARCIS (Netherlands)

    Rubbert, S.H.P.; Akhmerov, A.R.

    2016-01-01

    Majorana bound states (MBS) differ from the regular zero energy Andreev bound states in their nonlocal properties, since two MBS form a single fermion. We design strategies for detection of this nonlocality by using the phenomenon of Coulomb-mediated Majorana coupling in a setting which still

  20. Nuclear parameters from muonic and pionic x rays

    Energy Technology Data Exchange (ETDEWEB)

    Steffen, R M

    1980-01-01

    In view of the higher precision of the experimental data in measurements of the energies and relative intensities of the muonic and pionic x-ray transitions, the validity of the approximations made in extracting nuclear spectroscopic values from the raw data must be scrutinized more carefully if the reliability of the extracted parameters are to approach the accuracy of the experimental data. (GHT)

  1. Mass spectrum bound state systems with relativistic corrections

    Energy Technology Data Exchange (ETDEWEB)

    Dineykhan, M; Zhaugasheva, S A [Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna (Russian Federation); Toinbaeva, N Sh; Jakhanshir, A [al-Farabi Kazak National University, 480012 Almaty (Kazakhstan)

    2009-07-28

    Based on the investigation of the asymptotic behaviour of the polarization loop function for charged n scalar particles in an external gauge field, we determine the interaction Hamiltonian including relativistic corrections. The mass spectrum of the bound state is analytically derived. The mechanism for arising of the constituent mass of the relativistic bound-state forming particles is explained. The mass and the constituent mass of the two-, three- and n-body relativistic bound states are calculated taking into account relativistic corrections. The corrections arising due to the one- and two-loop electron polarization to the energy spectrum of muonic hydrogen with orbital and radial excitations are calculated.

  2. Bound states in Galilean-invariant quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Corley, S.R.; Greenberg, O.W. [Center for Theoretical Physics, Department of Physics, University of Maryland, College Park, Maryland 20742-4111 (United States)

    1997-02-01

    We consider the nonrelativistic quantum mechanics of a model of two spinless fermions interacting via a two-body potential. We introduce quantum fields associated with the two particles as well as the expansion of these fields in asymptotic {open_quotes}in{close_quotes} and {open_quotes}out{close_quotes} fields, including such fields for bound states, in principle. We limit our explicit discussion to a two-body bound state. In this context we discuss the implications of the Galilean invariance of the model and, in particular, show how to include bound states in a strictly Galilean-invariant quantum field theory. {copyright} {ital 1997 American Institute of Physics.}

  3. The pion-nucleon scattering lengths from pionic hydrogen and deuterium

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, H.-C.; Badertscher, A.; Goudsmit, P.F.A.; Janousch, M.; Leisi, H.J.; Matsinos, E.; Sigg, D.; Zhao, Z.G. [ETH Zurich, Inst. for Particle Physics, Zurich (Switzerland); Chatellard, D.; Egger, J.P. [Neuchatel Univ. (Switzerland). Inst. de Physique; Gabathuler, K.; Hauser, P.; Simons, L.M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Rusi El Hassani, A.J. [Dept. de Physique, Faculte des Sciences et Technique, Tanger (Morocco)

    2001-07-01

    This is the final publication of the ETH Zurich-Neuchatel-PSI collaboration on the pionic hydrogen and deuterium precision X-ray experiments. We describe the recent hydrogen 3p-1s measurement, report on the determination of the Doppler effect correction to the transition line width, analyze the deuterium shift measurement and discuss implications of the combined hydrogen and deuterium results. From the pionic hydrogen 3p-1s transition experiments we obtain the strong-interaction energy level shift {epsilon}{sub 1s} = -7.108{+-}0.013 (stat.){+-}0.034 (syst.) eV and the total decay width {gamma}{sub 1s} = 0.868{+-}0.040 (stat.){+-}0.038 (syst.) eV of the 1s state. Taking into account the electromagnetic corrections we find the hadronic {pi}N s-wave scattering amplitude a{sub {pi}{sup -}p{yields}{pi}{sup -}p} = 0.0883{+-}0.0008 m{sub {pi}}{sup -1} for elastic scattering and a{sub {pi}{sup -}p{yields}{pi}{sup 0}n} = -0.128{+-}0.006 m{sub {pi}} {sup -1} for single charge exchange, respectively. We then combine the pionic hydrogen results with the 1s level shift measurement on pionic deuterium and test isospin symmetry of the strong interaction: our data are still compatible with isospin symmetry. The isoscalar and isovector {pi}N scattering lengths (within the framework of isospin symmetry) are found to be b{sub 0} = -0.0001{sup +0.0009}{sub -0.0021} m{sub {pi}}{sup -1} and b{sub 1} = -0.0885{sup +0.0010}{sub -0.0021} m{sub {pi}} {sup -1}, respectively. Using the GMO sum rule, we obtain from b{sub 1} a new value of the {pi}N coupling constant (g{sub {pi}}{sub N} = 13.21{sub -0.05}{sup +0.11}) from which follows the Goldberger-Treiman discrepancy {delta}{sub GT}=0.027{sub -0.008}{sup +0.012}. The new values of b{sub 0} and g{sub {pi}}{sub N} imply an increase of the nucleon sigma term by at least 9 MeV. (orig.)

  4. Search for Deeply Bound Kaonic Nuclear States with AMADEUS

    Directory of Open Access Journals (Sweden)

    Skurzok Magdalena

    2017-01-01

    Full Text Available We briefly report on the search for Deeply Bound Kaonic Nuclear States with AMADEUS in the Σ0p channel following K− absorption on 12C and outline future perspectives for this work.

  5. Shear viscosity of pionic and nucleonic components from their different possible mesonic and baryonic thermal fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Sabyasachi, E-mail: sabyaphy@gmail.com [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Sao Paulo, SP (Brazil). Instituto de Fisica Teorica

    2015-12-15

    Owing to the Kubo relation, the shear viscosities of pionic and nucleonic components have been evaluated from their corresponding retarded correlators of viscous stress tensor in the static limit, which become non-divergent only for the non-zero thermal widths of the constituent particles. In the real-time thermal field theory, the pion and nucleon thermal widths have respectively been obtained from the pion self-energy for different meson, baryon loops, and the nucleon self-energy for different pion-baryon loops. We have found non-monotonic momentum distributions of pion and nucleon thermal widths, which have been integrated out by their respective Bose-enhanced and Pauli-blocked phase space factors during evaluation of their shear viscosities. The viscosity to entropy density ratio for this mixed gas of pion-nucleon system decreases and approaches its lower bound as the temperature and baryon chemical potential increase within the relevant domain of hadronic matter. (author)

  6. Anisotropy-induced photonic bound states in the continuum

    Science.gov (United States)

    Gomis-Bresco, Jordi; Artigas, David; Torner, Lluis

    2017-03-01

    Bound states in the continuum (BICs) are radiationless localized states embedded in the part of the parameter space that otherwise corresponds to radiative modes. Many decades after their original prediction and early observations in acoustic systems, such states have been demonstrated recently in photonic structures with engineered geometries. Here, we put forward a mechanism, based on waveguiding structures that contain anisotropic birefringent materials, that affords the existence of BICs with fundamentally new properties. In particular, anisotropy-induced BICs may exist in symmetric as well as in asymmetric geometries; they may form in tunable angular propagation directions; their polarization may be pure transverse electric, pure transverse magnetic or full vector with tunable polarization hybridity; and they may be the only possible bound states of properly designed structures, and thus appear as a discrete, isolated bound state embedded in a whole sea of radiative states.

  7. Computed bound and continuum electronic states of the nitrogen molecule

    Directory of Open Access Journals (Sweden)

    Tennyson Jonathan

    2015-01-01

    Full Text Available The dissociative recombination (DR of N2+ is important for processes occurring in our atmosphere. However, it is not particularly well characterised, experimentally for the vibrational ground state and, theoretically for the v ≥ 4. We use the R-matrix method to compute potential energy curves for both the bound Rydberg states of nitrogen and for quasi-bound states lying in the continuum. Use of a fine mesh of internuclear separations allows the details of avoided crossings to be determined. The prospects for using the curves as the input for DR calculations is discussed.

  8. The generalized pseudospectral approach to the bound states of the ...

    Indian Academy of Sciences (India)

    Abstract. The generalized pseudospectral (GPS) method is employed to calculate the bound states of the Hulthén and the Yukawa potentials in quantum mechanics, with special emphasis on higher excited states and stronger couplings. Accurate energy eigenvalues, expectation values and radial probability densities are ...

  9. Relativistic bound state approach to fundamental forces including gravitation

    Directory of Open Access Journals (Sweden)

    Morsch H.P.

    2012-06-01

    Full Text Available To describe the structure of particle bound states of nature, a relativistic bound state formalism is presented, which requires a Lagrangian including scalar coupling of two boson fields. The underlying mechanisms are quite complex and require an interplay of overlapping boson fields and fermion-antifermion production. This gives rise to two potentials, a boson-exchange potential and one identified with the long sought confinement potential in hadrons. With minimal requirements, two elementary massless fermions (quantons - with and without charge - and one gauge boson, hadrons and leptons but also atoms and gravitational systems are described by bound states with electric and magnetic coupling between the charges and spins of quantons. No need is found for colour, Higgs-coupling and supersymmetry.

  10. Dancing Volvox: Hydrodynamic Bound States of Swimming Algae

    Science.gov (United States)

    Drescher, Knut; Leptos, Kyriacos C.; Tuval, Idan; Ishikawa, Takuji; Pedley, Timothy J.; Goldstein, Raymond E.

    2013-01-01

    The spherical alga Volvox swims by means of flagella on thousands of surface somatic cells. This geometry and its large size make it a model organism for studying the fluid dynamics of multicellularity. Remarkably, when two nearby Volvox colonies swim close to a solid surface, they attract one another and can form stable bound states in which they “waltz” or “minuet” around each other. A surface-mediated hydrodynamic attraction combined with lubrication forces between spinning, bottom-heavy Volvox explains the formation, stability, and dynamics of the bound states. These phenomena are suggested to underlie observed clustering of Volvox at surfaces. PMID:19518757

  11. Bound on local unambiguous discrimination between multipartite quantum states

    Science.gov (United States)

    Yang, Ying-Hui; Gao, Fei; Tian, Guo-Jing; Cao, Tian-Qing; Zuo, Hui-Juan; Wen, Qiao-Yan

    2015-02-01

    We investigate the upper bound on unambiguous discrimination by local operations and classical communication. We demonstrate that any set of linearly independent multipartite pure quantum states can be locally unambiguously discriminated if the number of states in the set is no more than , where the space spanned by the set can be expressed in the irreducible form and is the optimal local dimension of the party. That is, is an upper bound. We also show that it is tight, namely there exists a set of states, in which at least one of the states cannot be locally unambiguously discriminated. Our result gives the reason why the multiqubit system is the only exception when any three quantum states are locally unambiguously distinguished.

  12. Stieltjes electrostatic model interpretation for bound state problems

    Indian Academy of Sciences (India)

    In this paper, it is shown that Stieltjes electrostatic model and quantum Hamilton Jacobi formalism are analogous to each other. This analogy allows the bound state problem to mimic as unit moving imaginary charges i ℏ , which are placed in between the two fixed imaginary charges arising due to the classical turning ...

  13. A quantum bound-state description of black holes

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, Stefan [Arnold Sommerfeld Center for Theoretical Physics, LMU-München, Theresienstrasse 37, 80333 München (Germany); Rug, Tehseen, E-mail: Tehseen.Rug@physik.uni-muenchen.de [Arnold Sommerfeld Center for Theoretical Physics, LMU-München, Theresienstrasse 37, 80333 München (Germany); Max-Planck-Institut für Physik, Föhringer Ring 6, 80805 München (Germany)

    2016-01-15

    A relativistic framework for the description of bound states consisting of a large number of quantum constituents is presented, and applied to black-hole interiors. At the parton level, the constituent distribution, number and energy density inside black holes are calculated, and gauge corrections are discussed. A simple scaling relation between the black-hole mass and constituent number is established.

  14. Scaling properties of net information measures for bound states of ...

    Indian Academy of Sciences (India)

    Using dimensional analyses, the scaling properties of the Heisenberg uncertainty relationship as well as the various information theoretical uncertainty-like relationships are derived for the bound states corresponding to the superposition of the power potential of the form () = + $^{n_{i}}, where , , ,  ...

  15. Towards flavored bound states beyond rainbows and ladders

    Energy Technology Data Exchange (ETDEWEB)

    El-Bennich, B.; Rojas, E.; Melo, J. P. B. C. de [Laboratório de Física Teórica e Computacional, Universidade Cruzeiro do Sul, São Paulo 01506-000 SP (Brazil); Paracha, M. A. [Laboratorio de Fisica Teorica e Computacional, Universidade Cruzeiro do Sul, Sao Paulo 01506-000 SP, Brazil and Centre for Advanced Mathematics and Physics, National University of Science and Technology, Islamabad (Pakistan)

    2014-11-11

    We give a snapshot of recent progress in solving the Dyson-Schwinger equation with a beyond rainbow-ladder ansatz for the dressed quark-gluon vertex which includes ghost contributions. We discuss the motivations for this approach with regard to heavy-flavored bound states and form factors and briefly describe future steps to be taken.

  16. Higgs interchange and bound states of superheavy fermions

    Indian Academy of Sciences (India)

    Their dynamical production mechanisms are also considered. In §2.3 the existing theoretical models for 4G bound states are discussed. In §2.4 the general aspects of the present model are introduced. In §3 the dynamical model of the present work is discussed in detail. In particular, in. §3.1 the relativistic kinetic energy ...

  17. Hartree–Fock variational bounds for ground state energy of ...

    Indian Academy of Sciences (India)

    The existence of a stable equilibrium high density ferromagnetic state with spheroidal occupation function is possible as long as the ratio of coupling constants Γcm ≡ (U0a3/μ2) is not very small compared to 1. Keywords. Chargeless fermions; magnetic dipole–dipole interaction; Hartree–Fock bounds; ferromagnetic ground ...

  18. Hartree–Fock variational bounds for ground state energy of ...

    Indian Academy of Sciences (India)

    We use different determinantal Hartree–Fock (HF) wave functions to calculate true variational upper bounds for the ground state energy of spin-half fermions in volume 0, with mass , electric charge zero, and magnetic moment , interacting through magnetic dipole–dipole interaction. We find that at high densities ...

  19. In-medium K̄ interactions and bound states

    Directory of Open Access Journals (Sweden)

    Gal Avraham

    2014-01-01

    Full Text Available Correct treatment of subthreshold K̄ N dynamics is mandatory in K− -atom and K̄ -nuclear bound-state calculations, as demonstrated by using in-medium chirally-based models of K̄ N interactions. Recent studies of kaonic atom data reveal appreciable multi-nucleon contributions. K̄ -nuclear widths larger than 50 MeV are anticipated.

  20. Chiral Symmetry, Heavy Quark Symmetry and Bound States

    OpenAIRE

    Yoshida, Yuhsuke

    1995-01-01

    I investigate the bound state problems of lowest-lying mesons and heavy mesons. Chiral symmetry is essential when one consider lowest-lying mesons. Heavy quark symmetry plays an central role in considering the semi-leptonic form factors of heavy mesons. Various properties based on the symmetries are revealed using Bethe-Salpeter equations.

  1. Bound Electron States in Skew-symmetric Quantum Wire Intersections

    Science.gov (United States)

    2014-01-01

    for electronic transport studies was to confine resonant- tunneling heterostructures laterally with a fabrication-imposed po- tential. This approach...Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Quantum Wires, Crossed Nanowires , Trapped Electron States, Quantum Dots REPORT...realistic systems such as semiconductor nanowire films and carbon nanotube bundles. Bound electron states in skew-symmetric quantum wire intersections by

  2. Extending Quantum Chemistry of Bound States to Electronic Resonances

    Science.gov (United States)

    Jagau, Thomas-C.; Bravaya, Ksenia B.; Krylov, Anna I.

    2017-05-01

    Electronic resonances are metastable states with finite lifetime embedded in the ionization or detachment continuum. They are ubiquitous in chemistry, physics, and biology. Resonances play a central role in processes as diverse as DNA radiolysis, plasmonic catalysis, and attosecond spectroscopy. This review describes novel equation-of-motion coupled-cluster (EOM-CC) methods designed to treat resonances and bound states on an equal footing. Built on complex-variable techniques such as complex scaling and complex absorbing potentials that allow resonances to be associated with a single eigenstate of the molecular Hamiltonian rather than several continuum eigenstates, these methods extend electronic-structure tools developed for bound states to electronic resonances. Selected examples emphasize the formal advantages as well as the numerical accuracy of EOM-CC in the treatment of electronic resonances. Connections to experimental observables such as spectra and cross sections, as well as practical aspects of implementing complex-valued approaches, are also discussed.

  3. Bound state densities and the Helmholtz free energy

    Directory of Open Access Journals (Sweden)

    Souza S.R.

    2012-02-01

    Full Text Available Bohr's conception of the compound nucleus is based on the idea of ‘longlived’ nuclear states in which all single particles are bound. We briefly discuss the properties of the density of bound states and then use two prescriptions, that of Brack and Quentin and that of Bonche, Levit e Vautherin to calculate the equivalent temperaturedependent quantity – the Helmholtz free energy.We compare the temperature dependence of the latter, as well as that of the excitation energy and entropy, obtained using the two prescriptions in self-consistent calculations within the relativistic Hartree and Skyrme models. We then discuss the extended, temperature-dependent liquid-drop approximation to the excitation and free energies obtained from fits to the self-consistent calculations over a wide range of charge and mass numbers.

  4. Observation of Andreev bound states at spin-active interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Beckmann, Detlef; Wolf, Michael Johannes [KIT, Institut fuer Nanotechnologie (Germany); Huebler, Florian [KIT, Institut fuer Nanotechnologie (Germany); KIT, Institut fuer Festkoerperphysik (Germany); Loehneysen, Hilbert von [KIT, Institut fuer Festkoerperphysik (Germany); KIT, Physikalisches Institut (Germany)

    2013-07-01

    We report on high-resolution differential conductance experiments on nanoscale superconductor/ferromagnet tunnel junctions with ultra-thin oxide tunnel barriers. We observe subgap conductance features which are symmetric with respect to bias, and shift according to the Zeeman energy with an applied magnetic field. These features can be explained by resonant transport via Andreev bound states induced by spin-active scattering at the interface. From the energy and the Zeeman shift of the bound states, both the magnitude and sign of the spin-dependent interfacial phase shifts between spin-up and spin-down electrons can be determined. These results contribute to the microscopic insight into the triplet proximity effect at spin-active interfaces.

  5. Bound state equation for the Nakanishi weight function

    Directory of Open Access Journals (Sweden)

    J. Carbonell

    2017-06-01

    Full Text Available The bound state Bethe–Salpeter amplitude was expressed by Nakanishi using a two-dimensional integral representation, in terms of a smooth weight function g, which carries the detailed dynamical information. A similar, but one-dimensional, integral representation can be obtained for the Light-Front wave function in terms of the same weight function g. By using the generalized Stieltjes transform, we first obtain g in terms of the Light-Front wave function in the complex plane of its arguments. Next, a new integral equation for the Nakanishi weight function g is derived for a bound state case. It has the standard form g=Ng, where N is a two-dimensional integral operator. We give the prescription for obtaining the kernel N starting with the kernel K of the Bethe–Salpeter equation. The derivation is valid for any kernel given by an irreducible Feynman amplitude.

  6. Bound States in the Continuum in Nuclear and Hadron Physics

    CERN Document Server

    Lenske, H; Cao, Xu

    2015-01-01

    The population of bound states in the continuum and their spectral properties are studied on the nuclear and hadronic scale. The theoretical approach is presented and realizations in nuclear and charmonium spectroscopy are dis- cussed. The universality of the underlying dynamical principles is pointed out. Applications to nuclear systems at the neutron dripline and for charmonium spectroscopy by $e^- e^+ \\to D\\bar{D}$ production are discussed.

  7. A quantum bound-state description of black holes

    Directory of Open Access Journals (Sweden)

    Stefan Hofmann

    2016-01-01

    Full Text Available A relativistic framework for the description of bound states consisting of a large number of quantum constituents is presented, and applied to black-hole interiors. At the parton level, the constituent distribution, number and energy density inside black holes are calculated, and gauge corrections are discussed. A simple scaling relation between the black-hole mass and constituent number is established.

  8. R-matrix calculations for few-quark bound states

    Energy Technology Data Exchange (ETDEWEB)

    Shalchi, M.A. [Instituto de Fisica Teorica, UNESP, Sao Paulo, SP (Brazil); Hadizadeh, M.R. [Ohio University, Institute of Nuclear and Particle Physics and Department of Physics and Astronomy, Athens, OH (United States); Central State University, College of Science and Engineering, Wilberforce, OH (United States)

    2016-10-15

    The R-matrix method is implemented to study the heavy charm and bottom diquark, triquark, tetraquark, and pentaquarks in configuration space, as the bound states of quark-antiquark, diquark-quark, diquark-antidiquark, and diquark-antitriquark systems, respectively. The mass spectrum and the size of these systems are calculated for different partial wave channels. The calculated masses are compared with recent theoretical results obtained by other methods in momentum and configuration spaces and also by available experimental data. (orig.)

  9. Bound states of the Dirac equation on Kerr spacetime

    CERN Document Server

    Dolan, Sam R

    2015-01-01

    We formulate the Dirac equation for a massive neutral spin-half particle on a rotating black hole spacetime, and we consider its (quasi)bound states: gravitationally-trapped modes which are regular across the future event horizon. These bound states decay with time, due to the absence of superradiance in the (single-particle) Dirac field. We introduce a practical method for computing the spectrum of energy levels and decay rates, and we compare our numerical results with known asymptotic results in the small-$M \\mu$ and large-$M \\mu$ regimes. By applying perturbation theory in a horizon-penetrating coordinate system, we compute the `fine structure' of the energy spectrum, and show good agreement with numerical results. We obtain data for a hyperfine splitting due to black hole rotation. We evolve generic initial data in the time domain, and show how Dirac bound states appear as spectral lines in the power spectra. In the rapidly-rotating regime, we find that the decay of low-frequency co-rotating modes is sup...

  10. Bound-state formation in falling liquid films

    Science.gov (United States)

    Nguyen, Phuc-Khanh; Pradas, Marc; Kalliadasis, Serafim; Bontozoglou, Vasilis

    2012-11-01

    Direct numerical simulation shows that the interaction between solitary pulses may give rise to the formation of bound states consisting of two or more pulses separated by well-defined distances and traveling at the same velocity. Stationary pulse couples are studied first. The resulting equilibrium pulse distances compare favorably to theoretical predictions at large and intermediate pulse separations. When the two pulses are closely spaced, the theory becomes increasingly less accurate. Their time-dependent simulations indicate that all initial conditions of large separations lead to a monotonic attraction or repulsion to the stable bound states. However, intermediate range leads to a self-sustained oscillatory variation of the pulse separation distance, with well-defined amplitude and period, and a mean separation coinciding with the stationary distance. Eventually a very close separation causes an explosive repulsion of two pulses toward much larger stable separation. Bound states consisting of three pulses are computed next. The equilibrium separation distances in a symmetric system are similar to predictions based on simple couples. However, in an asymmetric one, they deviate significantly from simple predictions. Partially supported by FP7-Marie Curie ITN-``MULTIFLOW''-GA-214919-2.

  11. A narrow quasi-bound state of the DNN system

    Energy Technology Data Exchange (ETDEWEB)

    Doté, A., E-mail: dote@post.kek.jp [KEK Theory Center, Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, 305-0801 (Japan); J-PARC Branch, KEK Theory Center, IPNS, KEK, 203-1, Shirakata, Tokai, Ibaraki, 319-1106 (Japan); Bayar, M. [Departamento de Física Teórica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigación de Paterna, Aptdo. 22085, 46071 Valencia (Spain); Department of Physics, Kocaeli University, 41380 Izmit (Turkey); Xiao, C.W. [Departamento de Física Teórica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigación de Paterna, Aptdo. 22085, 46071 Valencia (Spain); Hyodo, T. [Department of Physics, Tokyo Institute of Technology, Meguro, 152-8551 (Japan); Oka, M. [J-PARC Branch, KEK Theory Center, IPNS, KEK, 203-1, Shirakata, Tokai, Ibaraki, 319-1106 (Japan); Department of Physics, Tokyo Institute of Technology, Meguro, 152-8551 (Japan); Oset, E. [Departamento de Física Teórica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigación de Paterna, Aptdo. 22085, 46071 Valencia (Spain)

    2013-09-20

    We have investigated a charmed system of DNN (composed of two nucleons and a D meson) by a complementary study with a variational calculation and a Faddeev calculation with fixed-center approximation (Faddeev-FCA). In the present study, we employ a DN potential based on a vector–meson exchange picture in which a resonant Λ{sub c}(2595) is dynamically generated as a DN quasi-bound state, similarly to the Λ(1405) as a K{sup ¯}N one in the strange sector. As a result of the study of variational calculation with an effective DN potential and three kinds of NN potentials, the DNN(J{sup π}=0{sup −},I=1/2) is found to be a narrow quasi-bound state below Λ{sub c}(2595)N threshold: total binding energy ∼225 MeV and mesonic decay width ∼25 MeV. On the other hand, the J{sup π}=1{sup −} state is considered to be a scattering state of Λ{sub c}(2595) and a nucleon. These results are essentially supported by the Faddeev-FCA calculation. By the analysis of the variational wave function, we have found a unique structure in the DNN(J{sup π}=0{sup −},I=1/2) such that the D meson stays around the center of the total system due to the heaviness of the D meson.

  12. Stationary bound states of Dirac particles in collapsar's fields

    Science.gov (United States)

    Gorbatenko, M. V.; Neznamov, V. P.

    2012-03-01

    For a Schwarzschild gravitational field by use of a self-conjugate Hamiltonian with a flat scalar product in a wide interval of gravitational constant stationary non-decaiing in time bound states for spin 1/2 elementary particles have been obtained for a first time. To obtain a discrete energies spectrum a boundary condition was introduced, corresponding to null current density of Dirac partciles near the events horizon. The results obtained could lead to reevaluation of some existing representations of the standart cosmological model, related with the Universe's evolution and with collapsars interactions with encountering media.

  13. Quarkonium-nucleus bound states from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Beane, S.  R. [Univ. of Washington, Seattle, WA (United States); Chang, E. [Univ. of Washington, Seattle, WA (United States); Cohen, S.  D. [Univ. of Washington, Seattle, WA (United States); Detmold, W. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Lin, H. -W. [Univ. of Washington, Seattle, WA (United States); Orginos, K. [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Parreño, A. [Univ., de Barcelona, Marti Franques (Spain); Savage, M.  J. [Univ. of Washington, Seattle, WA (United States)

    2015-06-11

    Quarkonium-nucleus systems are composed of two interacting hadronic states without common valence quarks, which interact primarily through multi-gluon exchanges, realizing a color van der Waals force. We present lattice QCD calculations of the interactions of strange and charm quarkonia with light nuclei. Both the strangeonium-nucleus and charmonium-nucleus systems are found to be relatively deeply bound when the masses of the three light quarks are set equal to that of the physical strange quark. Extrapolation of these results to the physical light-quark masses suggests that the binding energy of charmonium to nuclear matter is B < 40 MeV.

  14. Bridge between bound state and reaction effective nucleon–nucleon ...

    Indian Academy of Sciences (India)

    Bridge between bound state and N–N potentials. Table 2. Parameters of the potential. v0 (MeV). 590. 432. 448. 495 c (fm). 1.34. 1.12. 1.03. 0.99 r0 (fm). 1.2. 1.2. 1.2. 1.2 σ (fm). 0.8. 1.0. 1.2. 1.4. BE (MeV). 128.4. 127.6. 127.5. 126.8. R (fm). 2.73. 2.73. 2.73. 2.73. It must be mentioned here that in our earlier detailed analysis ...

  15. Resonantly Trapped Bound State in the Continuum Laser

    CERN Document Server

    Lepetit, Thomas; Kodigala, Ashok; Bahari, Babak; Fainman, Yeshaiahu; Kanté, Boubacar

    2015-01-01

    Cavities play a fundamental role in wave phenomena from quantum mechanics to electromagnetism and dictate the spatiotemporal physics of lasers. In general, they are constructed by closing all "doors" through which waves can escape. We report, at room temperature, a bound state in the continuum laser that harnesses optical modes residing in the radiation continuum but nonetheless may possess arbitrarily high quality factors. These counterintuitive cavities are based on resonantly trapped symmetry-compatible modes that destructively interfere. Our experimental demonstration opens exciting avenues towards coherent sources with intriguing topological properties for optical trapping, biological imaging, and quantum communication.

  16. Relation between properties of long-range diatomic bound states

    DEFF Research Database (Denmark)

    Spirko, Vladimir; Sauer, Stephan P. A.; Szalewicz, Krzysztof

    2013-01-01

    Long-range states of diatomic molecules have average values of internuclear separations at least one order of magnitude larger than the equilibrium value of R. For example, the helium dimer 4He2 has a single bound state with of about 50 Å. We show that the properties of these states, such as ...>, the dissociation energy, or the s-wave scattering length, can be related by simple, yet very accurate formulas if a potential energy curve is known. By examining a range of ab initio and empirical helium dimer potentials, as well as scaling these potentials, we found that the formulas remain accurate even if very...

  17. Helical liquids and Majorana bound states in quantum wires.

    Science.gov (United States)

    Oreg, Yuval; Refael, Gil; von Oppen, Felix

    2010-10-22

    We show that the combination of spin-orbit coupling with a Zeeman field or strong interactions may lead to the formation of a helical electron liquid in single-channel quantum wires, with spin and velocity perfectly correlated. We argue that zero-energy Majorana bound states are formed in various situations when such wires are situated in proximity to a conventional s-wave superconductor. This occurs when the external magnetic field, the superconducting gap, or, most simply, the chemical potential vary along the wire. These Majorana states do not require the presence of a vortex in the system. Experimental consequences of the helical liquid and the Majorana states are also discussed.

  18. Upper bounds on the number of bound states nsub(l)(E) below a certain energy E in Schroedinger theory

    Energy Technology Data Exchange (ETDEWEB)

    Requardt, M.

    1985-01-01

    For a large class of potentials the author proves upper bounds on the number of bound states in the various angular momentum channels below a certain energy E. As by-product he derives estimates on the maximal angular momentum etc. The class of allowed potentials enclose as typical candidate potentials with infinitely many bound states below the essential spectrum, respectively potentials which go to infinity for r ..-->.. infinity as e.g. the model potentials used in quarkonium physics like V(r) = -a(1/r) + br. Generalizations to the case of N-body quantum mechanics seem to be possible. (Auth.).

  19. X-ray spectroscopy of the pionic deuterium atom

    Energy Technology Data Exchange (ETDEWEB)

    Chatellard, D.; Egger, J.-P.; Jeannet, E. [Neuchatel Univ. (Switzerland). Inst. de Physique; Badertscher, A.; Bogdan, M.; Goudsmit, P.F.A.; Janousch, M.; Leisi, H.J.; Matsinos, E.; Schroeder, H.-C.; Sigg, D.; Zhao, Z.G. [Institut fuer Teilchenphysik der ETHZ, CH-5232 Villigen PSI (Switzerland); Aschenauer, E.C.; Gabathuler, K.; Hauser, P.; Simons, L.M. [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Rusi El Hassani, A.J. [Ecole Mohammadia des Ingenieurs, Rabat (Morocco)

    1997-11-10

    The low energy X-rays of the pionic deuterium 3P-1S transition were measured using a high resolution crystal spectrometer, together with a cyclotron trap (a magnetic device to increase the pion stopping density) and a CCD (charge-coupled device) detector system. The spectrometer resolution was 0.65 eV FWHM for a measured energy of approximately 3075 eV. This energy was measured with a precision of 0.1 eV. Compared to conventional methods, the cyclotron trap allowed for a gain in stopping density of about an order of magnitude. The CCDs had excellent spatial and energy resolutions. Non-X-ray background could therefore be almost completely eliminated. The 1S strong interaction shift {epsilon}{sub 1S} and total decay width {Gamma}{sub 1S} were determined from the position and line shape of the X-ray peak. They are {epsilon}{sub 1S}(shift)=2.43{+-}0.10 eV (repulsive), {Gamma}{sub 1S}(width)=1.02{+-}0.21 eV, where the statistical and systematic errors were added linearly. The total (complex) pionic deuterium S-wave scattering length a{sub {pi}{sup -}d} was deduced: a{sub {pi}{sup -}d}=-0.0259({+-}0.0011)+i0. 0054({+-}0.0011)m{sub {pi}}{sup -1}. From the real part of a{sub {pi}{sup -}d} a constraint in terms of the isoscalar and isovector {pi}N scattering lengths b{sub 0} and b{sub 1} was deduced. From Im a{sub {pi}{sup -}d} we determined the isoscalar coupling constant for {pi}{sup -} absorption: vertical stroke g{sub 0} vertical stroke =(2.6{+-}0.3)10{sup -2}m{sub {pi}}{sup -2}. The experiments of the pionic hydrogen and deuterium S-wave scattering lengths were analyzed within the framework of a search for isospin symmetry violation. The data are still compatible with isospin conservation. The scattering lengths deduced from the Karlsruhe-Helsinki phase shift analysis disagree with the present results. (orig.). 45 refs.

  20. In-medium bound states and pairing gap

    Science.gov (United States)

    Rubtsova, O. A.; Kukulin, V. I.; Pomerantsev, V. N.; Müther, H.

    2017-09-01

    The two-particle Green's function and T matrix including pphh correlations in infinite nuclear matter are evaluated by a diagonalization of the effective total Hamiltonian. This diagonalization procedure corresponds to the same eigenvalue problem as for the pphh Random Phase Approximation. The effective Hamiltonian is nonHermitian and, for specific density domains and partial waves, yields pairs of complex conjugated eigenvalues and eigenfunctions representing in-medium bound states of two nucleons. The occurrence of these complex poles of the two-particle in-medium Green's function indicates the well known pairing instability. It is shown that the corresponding bound-state wave functions contain momentum dependencies of the BCS gap function, so that the latter can be found from a single diagonalization procedure for the effective Hamiltonian matrix. The approach is illustrated by calculations for S10 and 2 3P F gap functions in neutron matter which essentially coincide with the results found by a direct solving of the BCS gap equation. However the developed approach shows a new interesting feature, i.e., the gap closure and a phase transition point at very low density in the case of coupled channels 1 3S D in symmetric nuclear matter. This finding goes beyond the conventional BCS treatment and is discussed in the context of transition from Bose-Einstein condensation of quasideuterons to the formation of BCS pairing.

  1. N2(+) bound quartet and sextet state potential energy curves

    Science.gov (United States)

    Partridge, H.; Bauschlicher, C. W., Jr.; Stallcop, J. R.

    1985-01-01

    The N2(+) potential energies have been determined from a complete active space self-consistent field calculation with active 2s and 2p electrons. A (6s 4p 3d 1f) Gaussian basis set was used together with additional higher angular momentum and diffuse functions. The calculated potential energy curves for the states 4Sigma(mu)(+), 4Pi(g), and 6Sigma(g)(+), for which there are no spectroscopic observations, are presented. The corresponding spectroscopic constants have been determined from a polynomial curve fit to the computed energies near the well minima and are shown. The 6Sigma(g)(+) state is found to be significantly bound, with a minimum at 1.72 A.

  2. Robust zero-energy bound states in a helical lattice

    Science.gov (United States)

    Li, Pengke; Sau, Jay D.; Appelbaum, Ian

    2017-09-01

    Atomic-scale helices exist as motifs for several material lattices. We examine a tight-binding model for a single one-dimensional monatomic chain with a p -orbital basis coiled into a helix. A topologically nontrivial phase emerging from this model supports a chiral symmetry-protected zero-energy mode localized to a boundary, always embedded within a continuum band, regardless of termination site. We identify a topological invariant for this phase that is related to the number of zero energy end modes by means of the bulk-boundary correspondence, and give strict conditions for the existence of the bound state. An additional class of gapped edge modes in the model spectrum has practical consequences for surface states in, e.g., trigonal tellurium and selenium and other van der Waals-bonded one-dimensional semiconductors.

  3. Nonvalence Correlation-Bound Anion States of Polycyclic Aromatic Hydrocarbons.

    Science.gov (United States)

    Voora, Vamsee K; Jordan, Kenneth D

    2015-10-15

    In this work, we characterize the nonvalence correlation-bound anion states of several polycyclic aromatic hydrocarbon (PAH) molecules. Unlike the analogous image potential states of graphene that localize the charge density of the excess electron above and below the plane of the sheet, we find that for PAHs, much of the charge distribution of the excess electron is localized around the periphery of the molecule. This is a consequence of the electrostatic interaction of the electron with the polar CH groups. By replacing the H atoms by F atoms or the CH groups by N atoms, the charge density of the excess electron shifts from the periphery to above and below the plane of the ring systems.

  4. Lasing action from photonic bound states in continuum

    Science.gov (United States)

    Kodigala, Ashok; Lepetit, Thomas; Gu, Qing; Bahari, Babak; Fainman, Yeshaiahu; Kanté, Boubacar

    2017-01-01

    In 1929, only three years after the advent of quantum mechanics, von Neumann and Wigner showed that Schrödinger’s equation can have bound states above the continuum threshold. These peculiar states, called bound states in the continuum (BICs), manifest themselves as resonances that do not decay. For several decades afterwards the idea lay dormant, regarded primarily as a mathematical curiosity. In 1977, Herrick and Stillinger revived interest in BICs when they suggested that BICs could be observed in semiconductor superlattices. BICs arise naturally from Feshbach’s quantum mechanical theory of resonances, as explained by Friedrich and Wintgen, and are thus more physical than initially realized. Recently, it was realized that BICs are intrinsically a wave phenomenon and are thus not restricted to the realm of quantum mechanics. They have since been shown to occur in many different fields of wave physics including acoustics, microwaves and nanophotonics. However, experimental observations of BICs have been limited to passive systems and the realization of BIC lasers has remained elusive. Here we report, at room temperature, lasing action from an optically pumped BIC cavity. Our results show that the lasing wavelength of the fabricated BIC cavities, each made of an array of cylindrical nanoresonators suspended in air, scales with the radii of the nanoresonators according to the theoretical prediction for the BIC mode. Moreover, lasing action from the designed BIC cavity persists even after scaling down the array to as few as 8-by-8 nanoresonators. BIC lasers open up new avenues in the study of light-matter interaction because they are intrinsically connected to topological charges and represent natural vector beam sources (that is, there are several possible beam shapes), which are highly sought after in the fields of optical trapping, biological sensing and quantum information.

  5. Effect of substrate on optical bound states in the continuum in 1D photonic structures

    DEFF Research Database (Denmark)

    Sadrieva, Z. F.; Sinev, I. S.; Samusev, A. K.

    2017-01-01

    Optical bound states in the continuum (BIC) are localized states with energy lying above the light line and having infinite lifetime. Any losses taking place in real systems result in transformation of the bound states into resonant states with finite lifetime. In this work, we analyze properties...... into resonant states due to leakage into the diffraction channels opening in the substrate.......Optical bound states in the continuum (BIC) are localized states with energy lying above the light line and having infinite lifetime. Any losses taking place in real systems result in transformation of the bound states into resonant states with finite lifetime. In this work, we analyze properties...

  6. Universal bounds on charged states in 2d CFT and 3d gravity

    Energy Technology Data Exchange (ETDEWEB)

    Benjamin, Nathan; Dyer, Ethan [Stanford Institute for Theoretical Physics, Via Pueblo, Stanford, CA, 94305 (United States); Fitzpatrick, A. Liam [Boston University Physics Department, Commonwealth Avenue, Boston, MA, 02215 (United States); Kachru, Shamit [Stanford Institute for Theoretical Physics, Via Pueblo, Stanford, CA, 94305 (United States)

    2016-08-04

    We derive an explicit bound on the dimension of the lightest charged state in two dimensional conformal field theories with a global abelian symmetry. We find that the bound scales with c and provide examples that parametrically saturate this bound. We also prove that any such theory must contain a state with charge-to-mass ratio above a minimal lower bound. We comment on the implications for charged states in three dimensional theories of gravity.

  7. Quarkonium as a relativistic bound state on the light front

    Science.gov (United States)

    Li, Yang; Maris, Pieter; Vary, James P.

    2017-07-01

    We study charmonium and bottomonium as relativistic bound states in a light-front quantized Hamiltonian formalism. The effective Hamiltonian is based on light-front holography. We use a recently proposed longitudinal confinement to complete the soft-wall holographic potential for the heavy flavors. The spin structure is generated from the one-gluon exchange interaction with a running coupling. The adoption of asymptotic freedom improves the spectroscopy compared with previous light-front results. Within this model, we compute the mass spectroscopy, decay constants and the r.m.s. radii. We also present a detailed study of the obtained light-front wave functions and use the wave functions to compute the light-cone distributions, specifically the distribution amplitudes and parton distribution functions. Overall, our model provides a reasonable description of the heavy quarkonia.

  8. High-precision measurement of strong-interaction effects in pionic deuterium

    Energy Technology Data Exchange (ETDEWEB)

    Strauch, Thomas

    2009-06-30

    The hadronic ground state shift {epsilon}{sub 1s} and width {gamma}{sub 1s} in pionic deuterium were measured with high precision at the pion factory of the Paul Scherrer Institut (PSI), Switzerland (PSI-Experiment R-06.03). In this experiment the {pi}D(3p-1s) X-ray transition of about 3 keV was measured using a high-resolution Bragg crystal spectrometer equipped with a large-area position sensitive CCD detector. The characteristic X-radiation stems from a de-excitation cascade of the pionic atom. In order to produce an intense X-ray source, the cyclotron trap was used to stop pions in a cryogenic D{sub 2} target after winding up the pion beam in a magnetic field. The hadronic shift {epsilon}{sub 1s} is obtained from the measured transition energy by comparison to the pure electromagnetic value, where the determination of the broadening {gamma}{sub 1s} requires the precise knowledge of the spectrometer response, obtained from measurements of narrow X-ray transitions from highly ionised atoms, produced in an electron cyclotron resonance ion trap. As the formation rate is assumed to be density dependent, the {pi}D(3p-1s) X-ray energy was measured at three different D{sub 2} pressures. Another cascade process (Coulomb de-excitation) transforms the energy release of de-excitation steps into kinetic energy of the collision partners leading to a Doppler broadening of subsequent X-ray transitions. The hadronic broadening {gamma}{sub 1s} is only obtained after deconvolution of the spectrometer response function and the contributions from Doppler broadening. No energy dependence of the {pi}D(3p-1s) was found, and it is concluded that radiative de-excitation from molecular states is negligible within the experimental accuracy. Hence, the result for the shift reads {epsilon}{sub 1s} = (-2.325{+-}0.031) eV, corresponding to an accuracy of 1.3% and represents the average of the three measured densities. The uncertainty is dominated by the accuracy of the gallium K{alpha}{sub 2

  9. Probing the Dark Sector with Dark Matter Bound States.

    Science.gov (United States)

    An, Haipeng; Echenard, Bertrand; Pospelov, Maxim; Zhang, Yue

    2016-04-15

    A model of the dark sector where O(few  GeV) mass dark matter particles χ couple to a lighter dark force mediator V, m_{V}≪m_{χ}, is motivated by the recently discovered mismatch between simulated and observed shapes of galactic halos. Such models, in general, provide a challenge for direct detection efforts and collider searches. We show that for a large range of coupling constants and masses, the production and decay of the bound states of χ, such as 0^{-+} and 1^{--} states, η_{D} and ϒ_{D}, is an important search channel. We show that e^{+}e^{-}→η_{D}+V or ϒ_{D}+γ production at B factories for α_{D}>0.1 is sufficiently strong to result in multiple pairs of charged leptons and pions via η_{D}→2V→2(l^{+}l^{-}) and ϒ_{D}→3V→3(l^{+}l^{-}) (l=e,μ,π). The absence of such final states in the existing searches performed at BABAR and Belle sets new constraints on the parameter space of the model. We also show that a search for multiple bremsstrahlung of dark force mediators, e^{+}e^{-}→χχ[over ¯]+nV, resulting in missing energy and multiple leptons, will further improve the sensitivity to self-interacting dark matter.

  10. Bounds for entanglement of formation of two mode squeezed thermal states

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiao-Yu; Qiu, Pei-Liang

    2003-07-28

    The upper and lower bounds of entanglement of formation are given for two mode squeezed thermal state. The bounds are compared with other entanglement measure or bounds. The entanglement distillation and the relative entropy of entanglement of infinitive squeezed state are obtained at the postulation of hashing inequality.

  11. Andreev bound states probed in three-terminal quantum dots

    Science.gov (United States)

    Gramich, J.; Baumgartner, A.; Schönenberger, C.

    2017-11-01

    Andreev bound states (ABSs) are well-defined many-body quantum states that emerge from the hybridization of individual quantum dot (QD) states with a superconductor and exhibit very rich and fundamental phenomena. We demonstrate several electron transport phenomena mediated by ABSs that form on three-terminal carbon nanotube (CNT) QDs, with one superconducting (S) contact in the center and two adjacent normal-metal (N) contacts. Three-terminal spectroscopy allows us to identify the coupling to the N contacts as the origin of the Andreev resonance (AR) linewidths and to determine the critical coupling strengths to S, for which a ground state (or quantum phase) transition in such S-QD systems can occur. In addition, we ascribe replicas of the lowest-energy ABS resonance to transitions between the ABS and odd-parity excited QD states, a process we call excited state ABS resonances. In the conductance between the two N contacts we find a characteristic pattern of positive and negative differential subgap conductance, which we explain by considering two nonlocal processes, the creation of Cooper pairs in S by electrons from both N terminals, and a transport mechanism we call resonant ABS tunneling, possible only in multiterminal QD devices. In the latter process, electrons are transferred via the ABS without effectively creating Cooper pairs in S. The three-terminal geometry also allows spectroscopy experiments with different boundary conditions, for example by leaving S floating. Surprisingly, we find that, depending on the boundary conditions and the device parameters, the experiments either show single-particle Coulomb blockade resonances, ABS characteristics, or both in the same measurements, seemingly contradicting the notion of ABSs replacing the single-particle states as eigenstates of the QD. We qualitatively explain these results as originating from the finite time scale required for the coherent oscillations between the superposition states after a single

  12. Vortex pinning by the point potential in topological superconductors: A scheme for braiding Majorana bound states

    Science.gov (United States)

    Wu, Hai-Dan; Zhou, Tao

    2017-11-01

    We propose theoretically an effective scheme for braiding Majorana bound states by manipulating the point potential. The vortex pinning effect is carefully elucidated. This effect can be used to control the vortices and Majorana bound states in topological superconductors. The exchange of two vortices induced by moving the potentials is simulated numerically. The zero-energy state in the vortex core is robust with respect to the strength of the potential. The Majorana bound states in a pinned vortex are identified numerically.

  13. Strong interaction shift and width of the 1{ital s} level in pionic hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Sigg, D.; Badertscher, A.; Bogdan, M.; Goudsmit, P.F.A.; Leisi, H.J.; Matsinos, E.; Schroeder, H.; Zhao, Z.G. [Institute for Particle Physics, Eidgenoessische Technische Hoschschule Zurich, CH-5232 Villigen PSI (Switzerland); Chatellard, D.; Egger, J.; Jeannet, E. [Institut de Physique de l` Universite de Neuchatel, CH-2000 Neuchatel (Switzerland); Aschenauer, E.C.; Gabathuler, K.; Simons, L.M. [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Rusi El Hassani, A.J. [Ecole Mohammadia d`Ingenieurs, Rabat (Morocco)

    1995-10-30

    The 3{ital p}{minus}1{ital s} x-ray line of pionic hydrogen was measured with a reflecting bent crystal spectrometer. The strong interaction energy level shift and the total decay width of the 1{ital s} state, obtained from the transition energy and the linewidth, are {var_epsilon}{sub 1{ital s}}={minus}7.127{plus_minus}0.028(stat){plus_minus}0.036(syst)eV (attractive) and {Gamma}{sub 1{ital s}}=0.97{plus_minus}0.10(stat){plus_minus}0.05(syst)eV. The corresponding hadronic {pi}{ital N} {ital s}-wave scattering lengths for elastic scattering and single charge exchange are {ital a}{sub {pi}{sup {minus}}{ital p}{r_arrow}{pi}{sup {minus}}{ital p}}{sup {ital h}}=0.0885{plus_minus}0.0009{ital m}{sub {pi}}{sup {minus}1} and {ital a}{sub {pi}{sup {minus}}{ital p}{r_arrow}{pi}{sup 0}{ital n}}{sup {ital h}}={minus}0.136{plus_minus}0.010{ital m}{sub {pi}}{sup {minus}1}. {copyright} {ital 1995} {ital The} {ital American} {ital Physical} {ital Society}.

  14. Majorana bound states in a coupled quantum-dot hybrid-nanowire system

    DEFF Research Database (Denmark)

    Deng, M. T.; Vaitiekenas, S.; Hansen, E. B.

    2017-01-01

    Hybrid nanowires combining semiconductor and superconductor materials appear well suited for the creation, detection, and control of Majorana bound states (MBSs). We demonstrate the emergence of MBSs from coalescing Andreev bound states (ABSs) in a hybrid InAs nanowire with epitaxial Al, using...... with the end-dot bound state, which is in agreement with a numerical model. The ABS/MBS spectra provide parameters that are useful for understanding topological superconductivity in this system....

  15. Bound states and perfect transmission scattering states in P T -symmetric open quantum systems

    Science.gov (United States)

    Garmon, Savannah; Gianfreda, Mariagiovanna; Hatano, Naomichi

    2014-03-01

    We study the point spectrum and transmission scattering spectrum in P T -symmetric open quantum systems containing balanced regions of energy amplification and attenuation, using tight-binding chains with matching sink and source sites as prototype models. For a given system geometry, we write the boundary conditions that permit scattering state and bound state solutions with wave functions that likewise satisfy P T symmetry; we further demonstrate the P T -symmetric scattering states give rise to perfect transmission through the scattering region. We also discuss bound states in continuum and other spectral effects that may be discovered in P T -symmetric open quantum systems. Finally we discuss the potential for experimental realization of our models in systems containing whispering gallery mode resonators with balanced loss and gain. S. G. acknowledges support from the Japan Society for the Promotion of Science.

  16. On the bound state of the antiproton-deuterium-tritium ion

    CERN Document Server

    Frolov, Alexei M

    2012-01-01

    It is shown that the ground state in the Coulomb three-body $\\bar{p}dt$ ion is bound. This ion consists of the positevely charged deuterium $d$ and tritum $t$ nuclei and one negatively charged antirpoton $\\bar{p}$. The $\\bar{p}dt$ ion has only one bound $S(L = 0)-$state which is weakly-bound. The properties of this weakly-bound state are investigated with the use of the results of recent highly accurate computations. Very likely, the actual proparties of the $\\bar{p}dt$ ion will be different from the results of our predictions due to additional contributions from strong interactions between particles.

  17. A study of the bound states for square potential wells with position-dependent mass

    Energy Technology Data Exchange (ETDEWEB)

    Ganguly, A. [Departamento de Fisica Teorica, Atomica y Optica, Universidad de Valladolid, 47071 Valladolid (Spain)]. E-mail: gangulyasish@rediffmail.com; Kuru, S. [Departamento de Fisica Teorica, Atomica y Optica, Universidad de Valladolid, 47071 Valladolid (Spain)]. E-mail: kuru@science.ankara.edu.tr; Negro, J. [Departamento de Fisica Teorica, Atomica y Optica, Universidad de Valladolid, 47071 Valladolid (Spain)]. E-mail: jnegro@fta.uva.es; Nieto, L.M. [Departamento de Fisica Teorica, Atomica y Optica, Universidad de Valladolid, 47071 Valladolid (Spain)]. E-mail: luismi@metodos.fam.cie.uva.es

    2006-12-25

    A potential well with position-dependent mass is studied for bound states. Applying appropriate matching conditions, a transcendental equation is derived for the energy eigenvalues. Numerical results are presented graphically and the variation of the energy of the bound states are calculated as a function of the well-width and mass.

  18. The bound state S-matrix for AdS5×S5 superstring

    NARCIS (Netherlands)

    Arutyunov, G.E.; de Leeuw, M.; Torrielli, A.

    2009-01-01

    We determine the S-matrix that describes scattering of arbitrary bound states in the light-cone string theory in AdS5×S5. The corresponding construction relies on the Yangian symmetry and the superspace formalism for the bound state representations. The basic analytic structure supporting the

  19. Stieltjes electrostatic model interpretation for bound state problems

    Indian Academy of Sciences (India)

    + iQ(xk) = 0, 1 ≤ k ≤ n. (17) the solution for the differential eq. (17), for an exactly solvable potential that is for cer- tain Q(xk), are the zeros of appropriate orthogonal polynomials. The interval is fixed by the fixed poles of the potential. It is well known that the classical orthogonal poly- nomials arise as solutions to the bound ...

  20. Controlling multipolar radiation with symmetries for electromagnetic bound states in the continuum

    Science.gov (United States)

    Lepetit, Thomas; Kanté, Boubacar

    2014-12-01

    Interferences in open systems embedded in a continuum can lead to states that are bound within the continuum itself. An electromagnetic state that naturally decays becomes bound at a unique point in phase space. We demonstrate the striking occurrence of multiple such peculiar states in coupled deep subwavelength resonators. The bound states in the continuum originate from the control of multipolar radiation and their symmetries. The architectures investigated here, using all-dielectric resonators, constitute a flexible and readily achievable platform for applications requiring strong light-matter interaction and light localization.

  1. Controlling the bound states in a quantum-dot hybrid nanowire

    Science.gov (United States)

    Ptok, Andrzej; Kobiałka, Aksel; Domański, Tadeusz

    2017-11-01

    Recent experiments using the quantum dot coupled to the topological superconducting nanowire [Deng et al., Science 354, 1557 (2016), 10.1126/science.aaf3961] revealed that the zero-energy bound state coalesces from the Andreev bound states. Such quasiparticle states, present in the quantum dot, can be controlled by magnetic and electrostatic means. We use a microscopic model of the quantum-dot-nanowire structure to reproduce the experimental results, applying the Bogoliubov-de Gennes technique. This is done by studying the gate voltage dependence of the various types of bound states and mutual influence between them. We show that the zero-energy bound states can emerge from the Andreev bound states in the topologically trivial phase and can be controlled using various means. In the nontrivial topological phase we show the possible resonance between these zero-energy levels with Majorana bound states. We discuss and explain this phenomenon as a result of dominant spin character of discussed bound states. Presented results can be applied in experimental studies by using the proposed nanodevice.

  2. Versatile mode-locked fiber laser with switchable operation states of bound solitons.

    Science.gov (United States)

    Zou, Xin; Qiu, Jifang; Wang, Xiaodong; Ye, Zi; Shi, Jindan; Wu, Jian

    2016-06-01

    Bound states of two solitons are among the typical forms of bound states and can be observed in various operation states of mode-locked fiber lasers. We experimentally investigated bound solitons (BSs) in a passively mode-locked erbium-doped fiber laser based on a semiconductor saturable absorber mirror, whose operation states can be switched among multiple pulses, passively harmonic mode-locking, and "giant pulses" by simply adjusting the in-line polarization controller with the pump power fixed. Up to four pulses, fourth-order harmonic mode-locking (HML), and a "giant pulse" with four BSs were obtained with increasing pump power. Experimental results showed a correlative relationship among those operation states (N pulses/Nth-order HML/"giant pulses" of N bound solitons) at different pump power levels. The birefringence induced by the erbium-doped fiber inside the laser cavity played a vital role in the transitions of those operation states.

  3. Dzyaloshinskii-Moriya interaction as an agent to free the bound entangled states

    Science.gov (United States)

    Sharma, Kapil K.; Pandey, S. N.

    2016-04-01

    In the present paper, we investigate the efficacy of Dzyaloshinskii-Moriya (DM) interaction to convert the bound entangled states into free entangled states. We consider the tripartite hybrid system as a pair of non interacting two qutrits initially prepared in bound entangled states and one auxiliary qubit. Here, we consider two types of bound entangled states investigated by Horodecki. The auxiliary qubit interacts with any one of the qutrit of the pair through DM interaction. We show that by tuning the probability amplitude of auxiliary qubit and DM interaction strength, one can free the bound entangled states, which can be further distilled. We use the reduction criterion to find the range of the parameters of probability amplitude of auxiliary qubit and DM interaction strength, for which the states are distillable. The realignment criterion and negativity have been used for detection and quantification of entanglement.

  4. Accidental bound states in the continuum in an open Sinai billiard

    Energy Technology Data Exchange (ETDEWEB)

    Pilipchuk, A.S. [Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 660036 Krasnoyarsk (Russian Federation); Siberian Federal University, 660080 Krasnoyarsk (Russian Federation); Sadreev, A.F., E-mail: almas@tnp.krasn.ru [Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 660036 Krasnoyarsk (Russian Federation)

    2017-02-19

    The fundamental mechanism of the bound states in the continuum is the full destructive interference of two resonances when two eigenlevels of the closed system are crossing. There is, however, a wide class of quantum chaotic systems which display only avoided crossings of eigenlevels. As an example of such a system we consider the Sinai billiard coupled with two semi-infinite waveguides. We show that notwithstanding the absence of degeneracy bound states in the continuum occur due to accidental decoupling of the eigenstates of the billiard from the waveguides. - Highlights: • Bound states in the continuum in open chaotic billiards occur to accidental vanishing of coupling of eigenstate of billiard with waveguides.

  5. Transport signatures of top-gate bound states with strong Rashba-Zeeman effect

    Science.gov (United States)

    Tang, Chi-Shung; Yu, Yun-Hsuan; Abdullah, Nzar Rauf; Gudmundsson, Vidar

    2017-12-01

    We suggest a single-mode spin injection scheme in non-ferromagnetic quantum channels utilizing perpendicular strong Rashba spin-orbit and Zeeman fields. By applying a positive top-gate potential in order to inject electrons from the spin-orbit gap to the low-energy regime, we observe coherent destruction of transport signatures of a hole-like quasi-bound state, an electron-like quasi-bound state, or a hole-like bound state features that are sensitive to the selection of the top-gate length along the transport direction.

  6. Tetraquark bound states and resonances in a unitary microscopic quark model: A case study of bound states of two light quarks and two heavy antiquarks

    Science.gov (United States)

    Bicudo, P.; Cardoso, M.

    2016-11-01

    We address q q Q ¯Q ¯ exotic tetraquark bound states and resonances with a fully unitarized and microscopic quark model. We propose a triple string flip-flop potential, inspired by lattice QCD tetraquark static potentials and flux tubes, combining meson-meson and double Y potentials. Our model includes the color excited potential, but neglects the spin-tensor potentials, as well as all the other relativistic effects. To search for bound states and resonances, we first solve the two-body mesonic problem. Then we develop fully unitary techniques to address the four-body tetraquark problem. We fold the four-body Schrödinger equation with the mesonic wave functions, transforming it into a two-body meson-meson problem with nonlocal potentials. We find bound states for some quark masses, including the one reported in lattice QCD. Moreover, we also find resonances and calculate their masses and widths, by computing the T matrix and finding its pole positions in the complex energy plane, for some quantum numbers. However, a detailed analysis of the quantum numbers where binding exists shows a discrepancy with recent lattice QCD results for the l l b ¯ b ¯ tetraquark bound states. We conclude that the string flip-flop models need further improvement.

  7. Disorder-induced bound states within an adatom-quantum wire system

    Science.gov (United States)

    Magnetta, Bradley; Ordonez, Gonzalo

    2014-03-01

    Bound states induced by disorder are theoretically observed within a quantum wire and adatom system. The quantum wire is modeled as an array of quantum wells with random energies and exhibits Anderson Localization. By varying the energy of our adatom and adjusting the tunneling strength between the adatom and the quantum wire we observe disorder-induced bound states between the the adatom and its attached point. The characteristics of these disorder-induced bound states are greatly influenced by the site of interest on the quantum wire. Utilizing random quantum wires and disordered superlattices to produce bound states may offer flexibility in fabrication as well as provide grounds for energy transmission in photovoltaics.

  8. Ultrasensitive optical absorption in graphene based on bound states in the continuum

    National Research Council Canada - National Science Library

    Zhang, Mingda; Zhang, Xiangdong

    2015-01-01

    We have designed a sphere-graphene-slab structure so that the electromagnetic wave can be well confined in the graphene due to the formation of a bound state in a continuum (BIC) of radiation modes...

  9. An Improved Lower Bound Limit State Optimisation Algorithm

    DEFF Research Database (Denmark)

    Frier, Christian; Damkilde, Lars

    2010-01-01

    Limit State analysis has been used in manual design methods for decades e.g. the yield line theory for concrete slabs.......Limit State analysis has been used in manual design methods for decades e.g. the yield line theory for concrete slabs....

  10. Quark-antiquark bound-state spectroscopy and QCD

    Energy Technology Data Exchange (ETDEWEB)

    Bloom, E.D.

    1982-11-01

    The discussion covers quarks as we know them, the classification of ordinary mesons in terms of constituent quarks, hidden charm states and charmed mesons, bottom quarks, positronium as a model for quarti q, quantum chromodynamics and its foundation in experiment, the charmonium model, the mass of states, fine structure and hyperfine structure, classification, widths of states, rate and multipolarity of gamma transitions, questions about bottom, leptonic widths and the determination of Q/sub b/, the mass splitting of the n/sup 3/S/sub 1/ states, the center of gravity of the masses of the n/sup 3/P; states, n/sup 3/ P; fine structure and classification, branching ratios for upsilon' ..-->.. tau chi/sub 6j/ and the tau cascade reactions, hyperfine splitting, and top. (GHT)

  11. Spectroscopy of η′-nucleus bound states at GSI-SIS

    Directory of Open Access Journals (Sweden)

    Outa Haruhiko

    2012-12-01

    Full Text Available The η′ meson mass may be reduced due to partial restoration of chiral symmetry. If this is the case, an η′-nucleus system may form a nuclear bound state.We plan to carry out a missing-mass spectroscopy experiment with the 12C(p,d reaction at GSI-SIS. Peak structures corresponding to such a bound state may be observed even in an inclusive measurement, if the decay width is narrow enough.

  12. Double pionic fusion. Towards an understanding of the ABC puzzle by exclusive measurements

    Energy Technology Data Exchange (ETDEWEB)

    Bashkanov, M.

    2006-07-01

    The ABC effect is a huge unexpected enhancement at twice the pion mass in the invariant mass spectrum of two pions, which are generated in double-pionic fusion to bound nuclear systems. This peculiar phenomenon has been missing a conclusive explanation all the time since it has been discovered 1960 in single-arm measurements of {sup 3}He ejectiles in the reaction pd{yields} {sup 3}HeX. One reason for this failure has been that all measurements to this subject have been inclusive, i.e., lacking the full experimentally accessible information. Hence exclusive measurements were performed at CELSIUS/WASA at an energy of T{sub p}=0.895 GeV, where the ABC effect is expected to be strongest. For the first time exclusive data of solid statistics for both the pd{yields}{sup 3}He{pi}{sup 0}{pi}{sup 0} and pd{yields}{sup 3}He{pi}{sup +}{pi}{sup -} reactions were obtained including also results for the three-pion production total cross-section. The new data are consistent with the previous inclusive data. They provide, however, much more additional information, which rule out all previous explications of the ABC effect. The now available kinematically complete set of data reveals that the low {pi}{pi}-mass enhancement (ABC-effect): - is not necessarily associated with a high {pi}{pi}-mass enhancement, - is always connected with the simultaneous excitation of two {delta} resonances, - is of scalar-isoscalar nature, i.e. a {sigma}-channel phenomenon, - requires dynamics in the reaction system, which has not been considered hitherto. Various possible solutions are discussed, however, all of them demand a high attraction in the {delta}{delta} system - a point, which has never been touched so far in theoretical and experimental investigations. For this data analysis new powerful methods based on neural nets have been developed. Their current and possible future applications are discussed. (orig.)

  13. Transfer Function Bounds for Partial-unit-memory Convolutional Codes Based on Reduced State Diagram

    Science.gov (United States)

    Lee, P. J.

    1984-01-01

    The performance of a coding system consisting of a convolutional encoder and a Viterbi decoder is analytically found by the well-known transfer function bounding technique. For the partial-unit-memory byte-oriented convolutional encoder with m sub 0 binary memory cells and (k sub 0 m sub 0) inputs, a state diagram of 2(K) (sub 0) was for the transfer function bound. A reduced state diagram of (2 (m sub 0) +1) is used for easy evaluation of transfer function bounds for partial-unit-memory codes.

  14. Nuclear structure of bound states of asymmetric dark matter

    Science.gov (United States)

    Gresham, Moira I.; Lou, Hou Keong; Zurek, Kathryn M.

    2017-11-01

    Models of asymmetric dark matter (ADM) with a sufficiently attractive and long-range force give rise to stable bound objects, analogous to nuclei in the Standard Model, called nuggets. We study the properties of these nuggets and compute their profiles and binding energies. Our approach, applicable to both elementary and composite fermionic ADM, utilizes relativistic mean field theory, and allows a more systematic computation of nugget properties, over a wider range of sizes and force mediator masses, compared to previous literature. We identify three separate regimes of nugget property behavior corresponding to (1) nonrelativistic and (2) relativistic constituents in a Coulomb-like limit, and (3) saturation in an anti-Coulomb limit when the nuggets are large compared to the force range. We provide analytical descriptions for nuggets in each regime. Through numerical calculations, we are able to confirm our analytic descriptions and also obtain smooth transitions for the nugget profiles between all three regimes. We also find that over a wide range of parameter space, the binding energy in the saturation limit is an O (1 ) fraction of the constituent's mass, significantly larger than expectations in the nonrelativistic case. In a companion paper, we apply our results to the synthesis of ADM nuggets in the early Universe.

  15. Scaling and universality in two dimensions: three-body bound states with short-ranged interactions

    Energy Technology Data Exchange (ETDEWEB)

    Bellotti, F F; Frederico, T [Instituto Tecnologico de Aeronautica, DCTA, 12.228-900 Sao Jose dos Campos, SP (Brazil); Yamashita, M T [Instituto de Fisica Teorica, UNESP-Univ Estadual Paulista, CP 70532-2, CEP 01156-970, Sao Paulo, SP (Brazil); Fedorov, D V; Jensen, A S; Zinner, N T, E-mail: zinner@phys.au.dk [Department of Physics and Astronomy-Aarhus University, Ny Munkegade, bygn. 1520, DK-8000 Arhus C (Denmark)

    2011-10-28

    The momentum space zero-range model is used to investigate universal properties of three interacting particles confined to two dimensions. The pertinent equations are first formulated for a system of two identical and one distinct particle and the two different two-body subsystems are characterized by two-body energies and masses. The three-body energy in units of one of the two-body energies is a universal function of the other two-body energy and the mass ratio. We derive convenient analytical formulae for calculations of the three-body energy as a function of these two independent parameters and exhibit the results as universal curves. In particular, we show that the three-body system can have any number of stable bound states. When the mass ratio of the distinct to identical particles is greater than 0.22, we find that at most two stable bound states exist, while for two heavy and one light mass an increasing number of bound states is possible. The specific number of stable bound states depends on the ratio of two-body bound state energies and on the mass ratio, and we map out an energy-mass phase diagram of the number of stable bound states. Realizable systems of both fermions and bosons are discussed in this framework.

  16. Transition from Optical Bound States in the Continuum to Leaky Resonances: Role of Substrate and Roughness

    DEFF Research Database (Denmark)

    Sadrieva, Zarina F.; Sinev, Ivan S.; Koshelev, Kirill L.

    2017-01-01

    into resonant states due to leakage into the diffraction channels opening in the substrate. We show how two concurrent loss mechanisms, scattering due to surface roughness and leakage into substrate, contribute to the suppression of the resonance lifetime and specify the condition when one of the mechanisms......Optical bound states in the continuum (BIC) are localized states with energy lying above the light line and having infinite lifetime. Any losses taking place in real systems result in transformation of the bound states into resonant states with finite lifetime. In this Letter, we analyze properties...... becomes dominant. The obtained results provide useful guidelines for practical implementations of structures supporting optical bound states in the continuum....

  17. Bounds on the number of bound states in the transfer matrix spectrum for some weakly correlated lattice models

    Energy Technology Data Exchange (ETDEWEB)

    O' Carroll, Michael [Departamento de Matematica Aplicada e Estatistica, ICMC-USP, C.P. 668,13560-970 Sao Carlos, Sao Paulo (Brazil)

    2012-07-15

    We consider the interaction of particles in weakly correlated lattice quantum field theories. In the imaginary time functional integral formulation of these theories there is a relative coordinate lattice Schroedinger operator H which approximately describes the interaction of these particles. Scalar and vector spin, QCD and Gross-Neveu models are included in these theories. In the weakly correlated regime H=H{sub o}+W where H{sub o}=-{gamma}{Delta}{sub l}, 0 < {gamma} Much-Less-Than 1 and {Delta}{sub l} is the d-dimensional lattice Laplacian: {gamma}={beta}, the inverse temperature for spin systems and {gamma}={kappa}{sup 3} where {kappa} is the hopping parameter for QCD. W is a self-adjoint potential operator which may have non-local contributions but obeys the bound Double-Vertical-Line W(x, y) Double-Vertical-Line Less-Than-Or-Slanted-Equal-To cexp ( -a( Double-Vertical-Line x Double-Vertical-Line + Double-Vertical-Line y Double-Vertical-Line )), a large: exp-a={beta}/{beta}{sub o}{sup (1/2)}({kappa}/{kappa}{sub o}) for spin (QCD) models. H{sub o}, W, and H act in l{sub 2}(Z{sup d}), d Greater-Than-Or-Slanted-Equal-To 1. The spectrum of H below zero is known to be discrete and we obtain bounds on the number of states below zero. This number depends on the short range properties of W, i.e., the long range tail does not increase the number of states.

  18. Bethe–Salpeter bound-state structure in Minkowski space

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, C. [Instituto de Física Teórica, Universidade Estadual Paulista, 01156-970 São Paulo, SP (Brazil); Gigante, V.; Frederico, T. [Instituto Tecnológico de Aeronáutica, DCTA, 12.228-900 São José dos Campos, SP (Brazil); Salmè, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Roma, P.le A. Moro 2, 00185 Roma (Italy); Viviani, M. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Largo Pontecorvo 3, 56100 Pisa (Italy); Tomio, Lauro, E-mail: tomio@ift.unesp.br [Instituto de Física Teórica, Universidade Estadual Paulista, 01156-970 São Paulo, SP (Brazil); Instituto Tecnológico de Aeronáutica, DCTA, 12.228-900 São José dos Campos, SP (Brazil)

    2016-08-10

    The quantitative investigation of the scalar Bethe–Salpeter equation in Minkowski space, within the ladder-approximation framework, is extended to include the excited states. This study has been carried out for an interacting system composed by two massive bosons exchanging a massive scalar, by adopting (i) the Nakanishi integral representation of the Bethe–Salpeter amplitude, and (ii) the formally exact projection onto the null plane. Our analysis, on one hand, confirms the reliability of the method already applied to the ground state and, on the other one, extends the investigation from the valence distribution in momentum space to the corresponding quantity in the impact-parameter space, pointing out some relevant features, like (i) the equivalence between Minkowski and Euclidean transverse-momentum amplitudes, and (ii) the leading exponential fall-off of the valence wave function in the impact-parameter space.

  19. The relativistic bound states of a non-central potential

    Indian Academy of Sciences (India)

    2017-03-29

    Mar 29, 2017 ... K(E + M),. ˜E0 = (1 − 2δ). (47). Obviously, we have chosen the negative solution as the appropriate solution of the quadratic equation in δ so that we can get a positive physical energy state ˜E0. We can now construct the two supersymmetric part- ner potentials as. V+(r) = W2(r)+W (r) = δ(δ − 1) r2. + 2r2+2δ+.

  20. A search for deeply bound kaonic nuclear states

    Science.gov (United States)

    Suzuki, T.; Bhang, H.; Franklin, G.; Gomikawa, K.; Hayano, R. S.; Hayashi, T.; Ishikawa, K.; Ishimoto, S.; Itahashi, K.; Iwasaki, M.; Katayama, T.; Kondo, Y.; Matsuda, Y.; Nakamura, T.; Okada, S.; Outa, H.; Quinn, B.; Sato, M.; Shindo, M.; So, H.; Strasser, P.; Sugimoto, T.; Suzuki, K.; Suzuki, S.; Tomono, D.; Vinodkumar, A. M.; Widmann, E.; Yamazaki, T.; Yoneyama, T.

    2005-05-01

    We have measured proton and neutron energy spectra by means of time-of-flight (TOF) from 4He( Kstopped-,p/n) reactions (KEK PS E471 experiment). In the proton spectrum, a clear mono-energetic peak was observed under semi-inclusive condition, which was assigned to the formation of a strange tribaryon S 0(3115) with isospin T=1. The mass and width of the state were deduced to be 3117.7-2.0+3.8(syst.)±0.9(stat.) MeV/c and <21.6 MeV/c, respectively, and its main decay mode was ΣNN. In the neutron spectrum, a mono-energetic peak was found as the result of a detailed analysis, which was assigned to the formation of another kind of strange tribaryon S +(3140). The mass and width of the state were deduced to be 3140.5-0.8+3.0(syst.)±2.3(stat.) MeV/c and <21.6 MeV/c, respectively, and its main decay mode was ΣNN. The isospin of the state is assigned to be 0. The results are compared with recent theoretical calculations.

  1. A search for deeply bound kaonic nuclear states

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, T. [Department of Physics, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)]. E-mail: takatosi@nucl.phys.s.u-tokyo.ac.jp; Bhang, H. [Department of Physics, Seoul National University, Shikkim-dong, Kwanak-gu, Seoul 151-742 (Korea, Republic of); Franklin, G. [Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Gomikawa, K. [Department of Physics, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Hayano, R.S. [Department of Physics, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Hayashi, T. [Department of Physics, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8551 (Japan); Ishikawa, K. [Department of Physics, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8551 (Japan); Ishimoto, S. [IPNS, KEK - High Energy Accelerator Research Organization, Oho, Tsukuba-shi, Ibaraki 305-0801 (Japan); Itahashi, K. [DRI, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Iwasaki, M. [DRI, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Department of Physics, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8551 (Japan); Katayama, T. [Department of Physics, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8551 (Japan); Kondo, Y. [Department of Physics, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8551 (Japan); Matsuda, Y. [DRI, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Nakamura, T. [Department of Physics, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8551 (Japan); Okada, S. [Department of Physics, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8551 (Japan); Outa, H. [IPNS, KEK - High Energy Accelerator Research Organization, Oho, Tsukuba-shi, Ibaraki 305-0801 (Japan); Quinn, B. [Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Sato, M. [Department of Physics, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8551 (Japan)] [and others

    2005-05-30

    We have measured proton and neutron energy spectra by means of time-of-flight (TOF) from {sup 4}He(Kstopped-,p/n) reactions (KEK PS E471 experiment). In the proton spectrum, a clear mono-energetic peak was observed under semi-inclusive condition, which was assigned to the formation of a strange tribaryon S{sup 0}(3115) with isospin T=1. The mass and width of the state were deduced to be 3117.7-2.0+3.8(syst.)+/-0.9(stat.) MeV/c2 and 21.6 MeV/c2, respectively, and its main decay mode was {sigma}NN. In the neutron spectrum, a mono-energetic peak was found as the result of a detailed analysis, which was assigned to the formation of another kind of strange tribaryon S{sup +}(3140). The mass and width of the state were deduced to be 3140.5-0.8+3.0(syst.)+/-2.3(stat.) MeV/c2 and 21.6 MeV/c2, respectively, and its main decay mode was {sigma}+/-NN. The isospin of the state is assigned to be 0. The results are compared with recent theoretical calculations.

  2. Subgap in the Surface Bound States Spectrum of Superfluid ^3 He-B with Rough Surface

    Science.gov (United States)

    Nagato, Y.; Higashitani, S.; Nagai, K.

    2017-12-01

    The subgap structure in the surface bound states spectrum of superfluid ^3 He-B with rough surface is discussed. The subgap is formed by the level repulsion between the surface bound state and the continuum states in the course of multiple scattering by the surface roughness. We show that the level repulsion is originated from the nature of the wave function of the surface bound state that is now recognized as Majorana fermion. We study the superfluid ^3 He-B with a rough surface and in a magnetic field perpendicular to the surface using the quasi-classical Green function together with a random S-matrix model. We calculate the self-consistent order parameters, the spin polarization density and the surface density of states. It is shown that the subgap is found also in a magnetic field perpendicular to the surface. The magnetic field dependence of the transverse acoustic impedance is also discussed.

  3. On the energy of bound states for magnetic Schrödinger operators

    DEFF Research Database (Denmark)

    Fournais, Søren; Kachmar, Ayman

    2009-01-01

    is varied near the value where bound states become allowed in the interior of the domain, we show that the energy has a boundary and a bulk component. The estimates rely on coherent states, in particular on the construction of ‘boundary coherent states’, and magnetic Lieb–Thirring estimates.......We provide a leading order semiclassical asymptotics of the energy of bound states for magnetic Neumann Schrödinger operators in two-dimensional (exterior) domains with smooth boundaries. The asymptotics is valid all the way up to the bottom of the essential spectrum. When the spectral parameter...

  4. Study of BB ¯*/DD ¯* bound states in a Bethe-Salpeter approach

    Science.gov (United States)

    He, Jun

    2014-10-01

    In this work the BB ¯*/DD ¯* system is studied in the Bethe-Salpeter approach with quasipotential approximation. In our calculation both direct and cross diagrams are included in the one-boson-exchange potential. The numerical results indicate the existence of an isoscalar bound state DD ¯* with JPC=1++, which may be related to the X(3872). In the isovector sector, no bound state is produced from the interactions of DD ¯* and BB ¯*, which suggests the molecular state explanations for Zb(10610) and Zc(3900) are excluded.

  5. Study of vison-spinon bound states on the kagome lattice

    Science.gov (United States)

    Shao, Junping; Ghosh, Shivam; Cho, Gil-Young; Lawler, Michael

    2014-03-01

    We search for low-energy vison-spinon bound states on the kagome lattice. We do this by applying an optimization algorithm to a bosonic spin liquid state with a well separated pair of visons inserted. The resulting wavefunction reveals that the low energy eigen-modes correspond to bound spinon states localized around the visons. We study these modes and their symmetry properties. Our results provide evidence supporting the low energy effective theories of Z2 spin liquids whose bosonic spinons, fermonic spinons and visions are characterized by projective symmetry groups consistent with the expected fusion rules and duality relations.

  6. SEARCH FOR eta' (958)-NUCLEUS BOUND STATES BY (p, d) REACTION AT GSI AND FAIR

    NARCIS (Netherlands)

    Fujioka, H.; Ayyad, Y.; Benlliure, J.; Brinkmann, K. -T.; Friedrich, S.; Geissel, H.; Gellanki, J.; Guo, C.; Gutz, E.; Haettner, E.; Harakeh, M. N.; Hayano, R. S.; Higashi, Y.; Hirenzaki, S.; Hornung, C.; Igarashi, Y.; Ikeno, N.; Itahashi, K.; Iwasaki, M.; Jido, D.; Kalantar-Nayestanaki, N.; Kanungo, R.; Knoebel, R.; Kurz, N.; Metag, V.; Mukha, I.; Nagae, T.; Nagahiro, H.; Nanova, M.; Nishi, T.; Ong, H. J.; Pietri, S.; Prochazka, A.; Rappold, C.; Reiter, M. P.; Rodriguez-Sanchez, J. L.; Scheidenberger, C.; Simon, H.; Sitar, B.; Strmen, P.; Sun, B.; Suzuki, K.; Szarka, I.; Takechi, M.; Tanaka, Y. K.; Tanihata, I.; Terashima, S.; Watanabe, Y. N.; Weick, H.; Widmann, E.; Winfield, J. S.; Xu, X.; Yamakami, H.; Zhao, J.

    The mass of the eta' meson is theoretically expected to be reduced at finite density, which indicates the existence of eta'-nucleus bound states. To investigate these states, we perform missing-mass spectroscopy for the (p, d) reaction near the eta' production threshold. The overview of the

  7. Search for eta '(958)-nucleus Bound States by (p,d) Reaction at GSI and FAIR

    Science.gov (United States)

    Fujioka, H.; Ayyad, Y.; Benlliure, J.; Brinkmann, K.-T.; Friedrich, S.; Geissel, H.; Gellanki, J.; Guo, C.; Gutz, E.; Haettner, E.; Harakeh, M. N.; Hayano, R. S.; Higashi, Y.; Hirenzaki, S.; Hornung, C.; Igarashi, Y.; Ikeno, N.; Itahashi, K.; Iwasaki, M.; Jido, D.; Kalantar-Nayestanaki, N.; Kanungo, R.; Knoebel, R.; Kurz, N.; Metag, V.; Mukha, I.; Nagae, T.; Nagahiro, H.; Nanova, M.; Nishi, T.; Ong, H. J.; Pietri, S.; Prochazka, A.; Rappold, C.; Reiter, M. P.; Rodríguez-Sánchez, J. L.; Scheidenberger, C.; Simon, H.; Sitar, B.; Strmen, P.; Sun, B.; Suzuki, K.; Szarka, I.; Takechi, M.; Tanaka, Y. K.; Tanihata, I.; Terashima, S.; Watanabe, Y. N.; Weick, H.; Widmann, E.; Winfield, J. S.; Xu, X.; Yamakami, H.; Zhao, J.

    The mass of the {\\eta}' meson is theoretically expected to be reduced at finite density, which indicates the existence of {\\eta}'-nucleus bound states. To investigate these states, we perform missing-mass spectroscopy for the (p, d) reaction near the {\\eta}' production threshold. The overview of the experimental situation is given and the current status is discussed.

  8. Boson bound states in the β-Fermi–Pasta–Ulam model

    Indian Academy of Sciences (India)

    The bound states of four bosons in the quantum -Fermi–Pasta–Ulam model are investigated and some interesting results are presented using the number conserving approximation combined with the number state method. We find that the relative magnitude of anharmonic coefficient has a significant effect on forming ...

  9. Explicit formula for the Holevo bound for two-parameter qubit-state estimation problem

    Science.gov (United States)

    Suzuki, Jun

    2016-04-01

    The main contribution of this paper is to derive an explicit expression for the fundamental precision bound, the Holevo bound, for estimating any two-parameter family of qubit mixed-states in terms of quantum versions of Fisher information. The obtained formula depends solely on the symmetric logarithmic derivative (SLD), the right logarithmic derivative (RLD) Fisher information, and a given weight matrix. This result immediately provides necessary and sufficient conditions for the following two important classes of quantum statistical models; the Holevo bound coincides with the SLD Cramér-Rao bound and it does with the RLD Cramér-Rao bound. One of the important results of this paper is that a general model other than these two special cases exhibits an unexpected property: the structure of the Holevo bound changes smoothly when the weight matrix varies. In particular, it always coincides with the RLD Cramér-Rao bound for a certain choice of the weight matrix. Several examples illustrate these findings.

  10. Interaction of solitons and the formation of bound states in the generalized Lugiato-Lefever equation

    Science.gov (United States)

    Parra-Rivas, Pedro; Gomila, Damia; Colet, Pere; Gelens, Lendert

    2017-07-01

    Bound states, also called soliton molecules, can form as a result of the interaction between individual solitons. This interaction is mediated through the tails of each soliton that overlap with one another. When such soliton tails have spatial oscillations, locking or pinning between two solitons can occur at fixed distances related with the wavelength of these oscillations, thus forming a bound state. In this work, we study the formation and stability of various types of bound states in the Lugiato-Lefever equation by computing their interaction potential and by analyzing the properties of the oscillatory tails. Moreover, we study the effect of higher order dispersion and noise in the pump intensity on the dynamics of bound states. In doing so, we reveal that perturbations to the Lugiato-Lefever equation that maintain reversibility, such as fourth order dispersion, lead to bound states that tend to separate from one another in time when noise is added. This separation force is determined by the shape of the envelope of the interaction potential, as well as an additional Brownian ratchet effect. In systems with broken reversibility, such as third order dispersion, this ratchet effect continues to push solitons within a bound state apart. However, the force generated by the envelope of the potential is now such that it pushes the solitons towards each other, leading to a null net drift of the solitons. Contribution to the Topical Issue "Theory and Applications of the Lugiato-Lefever Equation", edited by Yanne K. Chembo, Damia Gomila, Mustapha Tlidi, Curtis R. Menyuk.

  11. Large N Chern-Simons with massive fundamental fermions — A model with no bound states

    Energy Technology Data Exchange (ETDEWEB)

    Frishman, Yitzhak [Department of Particle Physics and Astrophysics, The Weizmann Institute of Science,Rehovot 76100 (Israel); Sonnenschein, Jacob [The Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University,Ramat Aviv 69978 (Israel)

    2014-12-29

    In a previous paper http://dx.doi.org/10.1007/JHEP12(2013)091, we analyzed the theory of massive fermions in the fundamental representation coupled to a U(N) Chern-Simons gauge theory in three dimensions at level K. It was done in the large N, large K limits where λ=(N/K) was kept fixed. Among other results, we showed there that there are no high mass “quark anti-quark' bound states. Here we show that there are no bound states at all.

  12. Accidental bound states in the continuum in an open Sinai billiard

    Science.gov (United States)

    Pilipchuk, A. S.; Sadreev, A. F.

    2017-02-01

    The fundamental mechanism of the bound states in the continuum is the full destructive interference of two resonances when two eigenlevels of the closed system are crossing. There is, however, a wide class of quantum chaotic systems which display only avoided crossings of eigenlevels. As an example of such a system we consider the Sinai billiard coupled with two semi-infinite waveguides. We show that notwithstanding the absence of degeneracy bound states in the continuum occur due to accidental decoupling of the eigenstates of the billiard from the waveguides.

  13. S-matrix method for the numerical determination of bound states.

    Science.gov (United States)

    Bhatia, A. K.; Madan, R. N.

    1973-01-01

    A rapid numerical technique for the determination of bound states of a partial-wave-projected Schroedinger equation is presented. First, one needs to integrate the equation only outwards as in the scattering case, and second, the number of trials necessary to determine the eigenenergy and the corresponding eigenfunction is considerably less than in the usual method. As a nontrivial example of the technique, bound states are calculated in the exchange approximation for the e-/He+ system and l equals 1 partial wave.

  14. Upper Bounds on the Degeneracy of the Ground State in Quantum Field Models

    Directory of Open Access Journals (Sweden)

    Asao Arai

    2016-01-01

    Full Text Available Axiomatic abstract formulations are presented to derive upper bounds on the degeneracy of the ground state in quantum field models including massless ones. In particular, given is a sufficient condition under which the degeneracy of the ground state of the perturbed Hamiltonian is less than or equal to the degeneracy of the ground state of the unperturbed one. Applications of the abstract theory to models in quantum field theory are outlined.

  15. The hyperbolic step potential: Anti-bound states, SUSY partners and Wigner time delays

    Energy Technology Data Exchange (ETDEWEB)

    Gadella, M. [Departamento de Física Teórica, Atómica y Óptica and IMUVA, Universidad de Valladolid, E-47011 Valladolid (Spain); Kuru, Ş. [Department of Physics, Faculty of Science, Ankara University, 06100 Ankara (Turkey); Negro, J., E-mail: jnegro@fta.uva.es [Departamento de Física Teórica, Atómica y Óptica and IMUVA, Universidad de Valladolid, E-47011 Valladolid (Spain)

    2017-04-15

    We study the scattering produced by a one dimensional hyperbolic step potential, which is exactly solvable and shows an unusual interest because of its asymmetric character. The analytic continuation of the scattering matrix in the momentum representation has a branch cut and an infinite number of simple poles on the negative imaginary axis which are related with the so called anti-bound states. This model does not show resonances. Using the wave functions of the anti-bound states, we obtain supersymmetric (SUSY) partners which are the series of Rosen–Morse II potentials. We have computed the Wigner reflection and transmission time delays for the hyperbolic step and such SUSY partners. Our results show that the more bound states a partner Hamiltonian has the smaller is the time delay. We also have evaluated time delays for the hyperbolic step potential in the classical case and have obtained striking similitudes with the quantum case. - Highlights: • The scattering matrix of hyperbolic step potential is studied. • The scattering matrix has a branch cut and an infinite number of poles. • The poles are associated to anti-bound states. • Susy partners using antibound states are computed. • Wigner time delays for the hyperbolic step and partner potentials are compared.

  16. Heavy quark bound states in a quark–gluon plasma: Dissociation and recombination

    Energy Technology Data Exchange (ETDEWEB)

    Blaizot, Jean-Paul, E-mail: jean-paul.blaizot@cea.fr [Institut de Physique Théorique (IPhT), CNRS/UMR 3681, CEA Saclay, F-91191 Gif-sur-Yvette (France); De Boni, Davide [Department of Physics, Swansea University, Swansea SA2 8PP, Wales (United Kingdom); Dipartimento di Fisica, Università degli Studi di Trento, Via Sommarive 14, Povo (Trento) 38123 (Italy); Faccioli, Pietro [Dipartimento di Fisica, Università degli Studi di Trento, Via Sommarive 14, Povo (Trento) 38123 (Italy); INFN-TIFPA, Via Sommarive 14, Povo (Trento) 38123 (Italy); Garberoglio, Giovanni [ECT*-FBK, Via Sommarive 18, Povo (Trento) 38123 (Italy); INFN-TIFPA, Via Sommarive 14, Povo (Trento) 38123 (Italy)

    2016-02-15

    We present a comprehensive approach to the dynamics of heavy quarks in a quark–gluon plasma, including the possibility of bound state formation and dissociation. In this exploratory paper, we restrict ourselves to the case of an Abelian plasma, but the extension of the techniques used to the non-Abelian case is doable. A chain of well defined approximations leads eventually to a generalized Langevin equation, where the force and the noise terms are determined from a correlation function of the equilibrium plasma, and depend explicitly on the configuration of the heavy quarks. We solve the Langevin equation for various initial conditions, numbers of heavy quark–antiquark pairs and temperatures of the plasma. Results of simulations illustrate several expected phenomena: dissociation of bound states as a result of combined effects of screening of the potential and collisions with the plasma constituent, formation of bound pairs (recombination) that occurs when enough heavy quarks are present in the system.

  17. Shell-model description of weakly bound and unbound nuclear states

    Energy Technology Data Exchange (ETDEWEB)

    Michel, N. [University of Tennessee, Department of Physics and Astronomy, Knoxville, TN (United States); Oak Ridge National Laboratory, Physics Division, Oak Ridge, TN (United States); Joint Institute for Heavy Ion Research, Oak Ridge, TN (United States); Nazarewicz, W. [University of Tennessee, Department of Physics and Astronomy, Knoxville, TN (United States); Oak Ridge National Laboratory, Physics Division, Oak Ridge, TN (United States); Warsaw University, Institute of Theoretical Physics, Warsaw (Poland); Ploszajczak, M.; Rotureau, J. [CEA/DSM-CNRS/IN2P3, Grand Accelerateur National d' Ions Lourds (GANIL), Caen (France)

    2005-09-01

    A consistent description of weakly bound and unbound nuclei requires an accurate description of the particle continuum properties when carrying out multiconfiguration mixing. This is the domain of the Gamow Shell Model (GSM) which is the multiconfigurational shell model in the complex k-plane formulated using a complete Berggren ensemble representing bound single-particle (s.p.) states, s.p. resonances, and non-resonant complex energy continuum states. We discuss the salient features of effective interactions in weakly bound systems and show selected applications of the GSM formalism to p-shell nuclei. Finally, a development of the new non-perturbative scheme based on Density Matrix Renormalization Group methods to select the most significant continuum configurations in GSM calculations is discussed shortly. (orig.)

  18. Effect of substrate on optical bound states in the continuum in 1D photonic structures

    Science.gov (United States)

    Sadrieva, Z. F.; Sinev, I. S.; Samusev, A. K.; Iorsh, I. V.; Koshelev, K. L.; Takayama, O.; Malureanu, R.; Lavrinenko, A. V.; Bogdanov, A. A.

    2017-09-01

    Optical bound states in the continuum (BIC) are localized states with energy lying above the light line and having infinite lifetime. Any losses taking place in real systems result in transformation of the bound states into resonant states with finite lifetime. In this work, we analyze properties of BIC in CMOS-compatible one-dimensional photonic structure based on silicon-on-insulator wafer at telecommunication wavelengths, where the absorption of silicon is negligible. We reveal that a high-index substrate could destroy both off-Γ BIC and in-plane symmetry protected at-Γ BIC turning them into resonant states due to leakage into the diffraction channels opening in the substrate.

  19. Morse potential, symmetric Morse potential and bracketed bound-state energies

    Czech Academy of Sciences Publication Activity Database

    Znojil, Miloslav

    2016-01-01

    Roč. 31, č. 14 (2016), s. 1650088 ISSN 0217-7323 R&D Projects: GA ČR GA16-22945S Institutional support: RVO:61389005 Keywords : quantum bound states * special functions * Morse potential * symmetrized Morse potential * upper and lower energy estimates * computer-assisted symbolic manipulations Subject RIV: BE - Theoretical Physics Impact factor: 1.165, year: 2016

  20. Quasi bound states in the continuum with few unit cells of photonic crystal slab

    DEFF Research Database (Denmark)

    Taghizadeh, Alireza; Chung, Il-Sug

    2017-01-01

    Bound states in the continuum (BICs) in photonic crystal slabs represent the resonances with an infinite quality (Q)-factor, occurring above the light line for an infinitely periodic structure. We show that a set of BICs can turn into quasi-BICs with a very high Q-factor even for two or three unit...

  1. Bound states emerging from below the continuum in a solvable PT-symmetric discrete Schrodinger equation

    Czech Academy of Sciences Publication Activity Database

    Znojil, Miloslav

    2017-01-01

    Roč. 96, č. 1 (2017), č. článku 012127. ISSN 2469-9926 R&D Projects: GA ČR GA16-22945S Institutional support: RVO:61389005 Keywords : non-Hermitian * PT symmetric * bound states Subject RIV: BE - Theoretical Physics Impact factor: 2.925, year: 2016

  2. Boson bound states in the β-Fermi–Pasta–Ulam model

    Indian Academy of Sciences (India)

    paper, we report our results on boson bound states (BBS) in the β-FPU model. The paper is organized as follows. In §2, we first describe the model and introduce the quantization scheme, then, at 4-quanta level, we introduce the basis we used to diagonalize the effective. Hamiltonian. The energy spectrum of the model at ...

  3. Manipulation of Squeezed Two-Phonon Bound States using Femtosecond Laser Pulses

    Directory of Open Access Journals (Sweden)

    Nakamura Kazutaka G.

    2013-03-01

    Full Text Available Two-phonon bound states have been excited exclusively in ZnTe(110 via impulsive stimulated second-order Raman scattering, essentially being squeezed states due to phase coherent excitation of two identical components anticorrelated in the wave vector. By using coherent control technique with a pair of femtosecond laser pulses, the manipulation of squeezed states has been demonstrated in which both the amplitude and lifetime of coherent oscillations of squeezed states are modulated, indicating the feasibility to control the quantum noise and the quantum nature of phonon squeezed states, respectively.

  4. Effects of local periodic driving on transport and generation of bound states

    Science.gov (United States)

    Agarwala, Adhip; Sen, Diptiman

    2017-09-01

    We periodically kick a local region in a one-dimensional lattice and demonstrate, by studying wave packet dynamics, that the strength and the time period of the kicking can be used as tuning parameters to control the transmission probability across the region. Interestingly, we can tune the transmission to zero which is otherwise impossible to do in a time-independent system. We adapt the nonequilibrium Green's function method to take into account the effects of periodic driving; the results obtained by this method agree with those found by wave packet dynamics if the time period is small. We discover that Floquet bound states can exist in certain ranges of parameters; when the driving frequency is decreased, these states get delocalized and turn into resonances by mixing with the Floquet bulk states. We extend these results to incorporate the effects of local interactions at the driven site, and we find some interesting features in the transmission and the bound states.

  5. ABC Effect in Double-Pionic Fusion – a New Resonance?

    Directory of Open Access Journals (Sweden)

    Skorodko T.

    2012-12-01

    Full Text Available ABC effect, an intriguing low-mass enhancement in the ππ invariant mass spectrum — known since more than 50 years from inclusive measurements of double-pionic fusion reactions — is reexamined. To this end exclusive and kinematically complete high-statistics experiments of the fusion reactions to d, 3He and 4He have been carried out with WASA at COSY. These measurements cover the full energy region, where the ABC effect has been observed previously. They also complement the systematic measurements of nucleon-nucleon induced two-pion production. An isospin decomposition of all three basic double-pionic fusion reactions leading to the deuteron uniquely shows that solely the isoscalar reaction part exhibits the ABC effect tightly correlated with a narrow resonance structure in the total cross section. The peak energy of the resonance structure is about 90 MeV below the nominal ΔΔ threshold of 2 mΔ and its width of only 70 MeV is much less than the 2 ГΔ expected from the conventional t-channel ΔΔ process. Based on angular distributions the quantum numbers I(JP = 0(3+ have been assigned. In the double-pionic fusion reaction dd→4Heπ0π0 again the ABC effect is observed to be correlated with the appearance of a resonance-like structure in the total cross section at the same excess energy. From this we conclude that this resonance structure obviously is strong enough to survive even in nuclei.

  6. Lower bounds for ballistic current and noise in non-equilibrium quantum steady states

    Energy Technology Data Exchange (ETDEWEB)

    Doyon, Benjamin, E-mail: benjamin.doyon@kcl.ac.uk

    2015-03-15

    Let an infinite, homogeneous, many-body quantum system be unitarily evolved for a long time from a state where two halves are independently thermalized. One says that a non-equilibrium steady state emerges if there are nonzero steady currents in the central region. In particular, their presence is a signature of ballistic transport. We analyze the consequences of the current observable being a conserved density; near equilibrium this is known to give rise to linear wave propagation and a nonzero Drude peak. Using the Lieb–Robinson bound, we derive, under a certain regularity condition, a lower bound for the non-equilibrium steady-state current determined by equilibrium averages. This shows and quantifies the presence of ballistic transport far from equilibrium. The inequality suggests the definition of “nonlinear sound velocities”, which specialize to the sound velocity near equilibrium in non-integrable models, and “generalized sound velocities”, which encode generalized Gibbs thermalization in integrable models. These are bounded by the Lieb–Robinson velocity. The inequality also gives rise to a bound on the energy current noise in the case of pure energy transport. We show that the inequality is satisfied in many models where exact results are available, and that it is saturated at one-dimensional criticality.

  7. Lower bounds for ballistic current and noise in non-equilibrium quantum steady states

    Directory of Open Access Journals (Sweden)

    Benjamin Doyon

    2015-03-01

    Full Text Available Let an infinite, homogeneous, many-body quantum system be unitarily evolved for a long time from a state where two halves are independently thermalized. One says that a non-equilibrium steady state emerges if there are nonzero steady currents in the central region. In particular, their presence is a signature of ballistic transport. We analyze the consequences of the current observable being a conserved density; near equilibrium this is known to give rise to linear wave propagation and a nonzero Drude peak. Using the Lieb–Robinson bound, we derive, under a certain regularity condition, a lower bound for the non-equilibrium steady-state current determined by equilibrium averages. This shows and quantifies the presence of ballistic transport far from equilibrium. The inequality suggests the definition of “nonlinear sound velocities”, which specialize to the sound velocity near equilibrium in non-integrable models, and “generalized sound velocities”, which encode generalized Gibbs thermalization in integrable models. These are bounded by the Lieb–Robinson velocity. The inequality also gives rise to a bound on the energy current noise in the case of pure energy transport. We show that the inequality is satisfied in many models where exact results are available, and that it is saturated at one-dimensional criticality.

  8. Resolving the Spatial Structures of Bound Hole States in Black Phosphorus.

    Science.gov (United States)

    Qiu, Zhizhan; Fang, Hanyan; Carvalho, Alexandra; Rodin, A S; Liu, Yanpeng; Tan, Sherman J R; Telychko, Mykola; Lv, Pin; Su, Jie; Wang, Yewu; Castro Neto, A H; Lu, Jiong

    2017-11-08

    Understanding the local electronic properties of individual defects and dopants in black phosphorus (BP) is of great importance for both fundamental research and technological applications. Here, we employ low-temperature scanning tunnelling microscope (LT-STM) to probe the local electronic structures of single acceptors in BP. We demonstrate that the charge state of individual acceptors can be reversibly switched by controlling the tip-induced band bending. In addition, acceptor-related resonance features in the tunnelling spectra can be attributed to the formation of Rydberg-like bound hole states. The spatial mapping of the quantum bound states shows two distinct shapes evolving from an extended ellipse shape for the 1s ground state to a dumbbell shape for the 2p x excited state. The wave functions of bound hole states can be well-described using the hydrogen-like model with anisotropic effective mass, corroborated by our theoretical calculations. Our findings not only provide new insight into the many-body interactions around single dopants in this anisotropic two-dimensional material but also pave the way to the design of novel quantum devices.

  9. A phenomenological determination of the pion-nucleon scattering lengths from pionic hydrogen

    CERN Document Server

    Ericson, Torleif Eric Oskar; Wycech, S

    2005-01-01

    A model independent expression for the electromagnetic corrections to a phenomenological hadronic pion-nucleon scattering length, extracted from pionic hydrogen, is obtained. In a non-relativistic approach and using an extended charge distribution, these corrections are derived up to terms of order (alpha)**2 log(alpha) in the limit of a short-range hadronic interaction. We infer a charged pion-proton scattering length of 0.0870(5) in units of inverse pion mass, which gives for the charged pion-proton-neutron coupling, through the GMO relation, a value of 14.04(17).

  10. Exclusive measurements of pp→dπ+π0: Double-pionic fusion without ABC effect

    Science.gov (United States)

    Kren, F.; Bashkanov, M.; Bogoslawsky, D.; Calén, H.; Clement, H.; Demiroers, L.; Ekström, C.; Fransson, K.; Greiff, J.; Gustafsson, L.; Höistad, B.; Ivanov, G.; Jacewicz, M.; Jiganov, E.; Johansson, T.; Khakimova, O.; Keleta, S.; Koch, I.; Kullander, S.; Kupść, A.; Marciniewski, P.; Meier, R.; Morosov, B.; Pauly, C.; Petrén, H.; Petukhov, Y.; Povtorejko, A.; Ruber, R. J. M. Y.; Schönning, K.; Scobel, W.; Skorodko, T.; Shwartz, B.; Stepaniak, J.; Thörngren-Engblom, P.; Tikhomirov, V.; Wagner, G. J.; Wolke, M.; Yamamoto, A.; Zabierowski, J.; Zlomanczuk, J.; Celsius/Wasa Collaboration

    2010-02-01

    Exclusive measurements of the reaction pp→dππ have been carried out at Tp=1.1 GeV at the CELSIUS storage ring using the WASA detector. The isovector ππ channel exhibits no enhancement at low invariant ππ masses, i.e. no ABC effect. Therefore this most basic isovector double-pionic fusion reaction qualifies as an ideal test case for the conventional t-channel ΔΔ excitation process. Indeed, the obtained differential distributions reveal the conventional t-channel ΔΔ mechanism as the appropriate reaction process, which also accounts for the observed energy dependence of the total cross section.

  11. Ionization and bound-state relativistic quantum dynamics in laser-driven multiply charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Hetzheim, Henrik

    2009-01-14

    The interaction of ultra-strong laser fields with multiply charged hydrogen-like ions can be distinguished in an ionization and a bound dynamics regime. Both are investigated by means of numerically solving the Dirac equation in two dimensions and by a classical relativistic Monte-Carlo simulation. For a better understanding of highly nonlinear physical processes the development of a well characterized ultra-intense relativistic laser field strength has been driven forward, capable of studying e.g. the magnetic field effects of the laser resulting in an additional electron motion in the laser propagation direction. A novel method to sensitively measure these ultra-strong laser intensities is developed and employed from the optical via the UV towards the XUV frequency regime. In the bound dynamics field, the determination of multiphoton transition matrixelements has been investigated between different bound states via Rabi oscillations. (orig.)

  12. Probing the superconducting state via Andreev bound states in (La,Ce){sub 2}CuO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Wagenknecht, Michael; Scharinger, Sebastian; Koelle, Dieter; Kleiner, Reinhold [Physikalisches Institut - Experimentalphysik II and Center for Collective Quantum Phenomena, Universitaet Tuebingen (Germany); Graser, Siegfried; Schopohl, Nils [Institut fuer Theoretische Physik, Universitaet Tuebingen (Germany); Chesca, Boris [Department of Physics, Loughborough University (United Kingdom); Tsukada, Aiko [NTT Basic Research Laboratories, Atsugi-shi (Japan); Goennenwein, Sebastian T.B.; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany)

    2008-07-01

    We present quasiparticle tunneling data of (La,Ce){sub 2}CuO{sub 4} thin film bicrystal junctions. The differential conductance in the superconducting state shows a pronounced zero bias conductance peak (ZBCP). This peak is attributed to zero energy surface Andreev bound states due to the d-wave symmetry of the order parameter in this electron doped cuprate. Such bound states are closely related to the macroscopic phase coherence of the superconducting state. Hence the ZBCP due to these bound states must disappear at or below the upper critical field B{sub c2}(T). By following the disappearance of the ZBCP in the B-T-phase diagram we find a lower bound for B{sub c2}(0){approx}25 T which is higher than values reported previously for any electron doped cuprate. Following this observation we suggest a modified B-T-phase diagram with a larger region of superconductivity, leaving less room for a possible pseudogap phase.

  13. Electron collisions with BF{sup +}: bound and continuum states of BF

    Energy Technology Data Exchange (ETDEWEB)

    Chakrabarti, K [Department of Mathematics, Scottish Church College, 1 and 3 Urquhart Sq., Kolkata 700006 (India); Schneider, I F [Laboratoire Ondes et Milieux Complexes (LOMC) CNRS-FRE-3102, Universite du Havre, 25, rue Philippe Lebon, BP 540, 76058 Le Havre (France); Tennyson, Jonathan, E-mail: j.tennyson@ucl.ac.uk [Department of Physics and Astronomy, University College London, Gower St., London WC1E 6BT (United Kingdom)

    2011-03-14

    Rydberg and continuum states of the BF molecule are studied as a function of geometry using an electron collision formalism in the framework of the R-matrix method. Up to 14 BF{sup +} target states are used in a close-coupling expansion and bound states are searched for as negative energy solutions of the scattering calculation. Potential energy curves and quantum defects are obtained for the excited states of BF. Resonance positions and widths are also calculated for Feshbach resonances in the system. The data obtained can be used to model dissociative recombination of the BF{sup +} molecular ion.

  14. Hadamard States for the Klein-Gordon Equation on Lorentzian Manifolds of Bounded Geometry

    Science.gov (United States)

    Gérard, Christian; Oulghazi, Omar; Wrochna, Michał

    2017-06-01

    We consider the Klein-Gordon equation on a class of Lorentzian manifolds with Cauchy surface of bounded geometry, which is shown to include examples such as exterior Kerr, Kerr-de Sitter spacetime and the maximal globally hyperbolic extension of the Kerr outer region. In this setup, we give an approximate diagonalization and a microlocal decomposition of the Cauchy evolution using a time-dependent version of the pseudodifferential calculus on Riemannian manifolds of bounded geometry. We apply this result to construct all pure regular Hadamard states (and associated Feynman inverses), where regular refers to the state's two-point function having Cauchy data given by pseudodifferential operators. This allows us to conclude that there is a one-parameter family of elliptic pseudodifferential operators that encodes both the choice of (pure, regular) Hadamard state and the underlying spacetime metric.

  15. Skyrmion-induced bound states on the surface of three-dimensional topological insulators

    Energy Technology Data Exchange (ETDEWEB)

    Andrikopoulos, Dimitrios, E-mail: dimitrios.andrikopoulos@imec.be; De Boeck, Jo [KU Leuven, ESAT, Kasteelpark Arenberg 10, Leuven B-3001 (Belgium); imec, Kapeeldreef 75, Leuven 3001 (Belgium); Sorée, Bart, E-mail: bart.soree@imec.be [KU Leuven, ESAT, Kasteelpark Arenberg 10, Leuven B-3001 (Belgium); Physics Department, Condensed Matter Theory, Universiteit Antwerpen, Groenenborgerlaan 171, Antwerpen B-2020 (Belgium); imec, Kapeeldreef 75, Leuven 3001 (Belgium)

    2016-05-21

    The interaction between the surface of a 3D topological insulator and a skyrmion/anti-skyrmion structure is studied in order to investigate the possibility of electron confinement due to the skyrmion presence. Both hedgehog (Néel) and vortex (Bloch) skyrmions are considered. For the hedgehog skyrmion, the in-plane components cannot be disregarded and their interaction with the surface state of the topological insulator (TI) has to be taken into account. A semi-classical description of the skyrmion chiral angle is obtained using the variational principle. It is shown that both the hedgehog and the vortex skyrmion can induce bound states on the surface of the TI. However, the number and the properties of these states depend strongly on the skyrmion type and the skyrmion topological number N{sub Sk}. The probability densities of the bound electrons are also derived where it is shown that they are localized within the skyrmion region.

  16. Formation of positron-atom bound states in collisions between Rydberg Ps and neutral atoms

    CERN Document Server

    Swann, A R; Deller, A; Gribakin, G F

    2016-01-01

    Predicted twenty years ago, positron binding to neutral atoms has not yet been observed experimentally. A new scheme is proposed to detect positron-atom bound states by colliding Rydberg positronium (Ps) with neutral atoms. Estimates of the charge-transfer-reaction cross section are obtained using the first Born approximation for a selection of neutral atom targets and a wide range of incident Ps energies and principal quantum numbers. We also estimate the corresponding Ps ionization cross section. The accuracy of the calculations is tested by comparison with earlier predictions for Ps charge transfer in collisions with hydrogen and antihydrogen. We describe an existing Rydberg Ps beam suitable for producing positron-atom bound states and estimate signal rates based on the calculated cross sections and realistic experimental parameters. We conclude that the proposed methodology is capable of producing such states and of testing theoretical predictions of their binding energies.

  17. Two-body bound and edge states in the extended SSH Bose-Hubbard model

    Science.gov (United States)

    Di Liberto, M.; Recati, A.; Carusotto, I.; Menotti, C.

    2017-07-01

    We study the bosonic two-body problem in a Su-Schrieffer-Heeger dimerized chain with on-site and nearest-neighbor interactions. We find two classes of bound states. The first, similar to the one induced by on-site interactions, has its center of mass on the strong link, whereas the second, existing only thanks to nearest-neighbor interactions, is centered on the weak link. We identify energy crossings between these states and analyse them using exact diagonalization and perturbation theory. In the presence of open boundary conditions, novel strongly-localized edge-bound states appear in the spectrum as a consequence of the interplay between lattice geometry, on-site and nearest-neighbor interactions. Contrary to the case of purely on-site interactions, such EBS persist even in the strongly interacting regime.

  18. Three-body bound states with zero-range interaction in the Bethe-Salpeter approach

    Science.gov (United States)

    Ydrefors, E.; Alvarenga Nogueira, J. H.; Gigante, V.; Frederico, T.; Karmanov, V. A.

    2017-07-01

    The Bethe-Salpeter equation for three bosons with zero-range interaction is solved for the first time. For comparison the light-front equation is also solved. The input is the two-body scattering length and the outputs are the three-body binding energies, Bethe-Salpeter amplitudes and light-front wave functions. Three different regimes are analyzed: (i) For weak enough two-body interaction the three-body system is unbound. (ii) For stronger two-body interaction a three-body bound state appears. It provides an interesting example of a deeply bound Borromean system. (iii) For even stronger two-body interaction this state becomes unphysical with a negative mass squared. However, another physical (excited) state appears, found previously in light-front calculations. The Bethe-Salpeter approach implicitly incorporates three-body forces of relativistic origin, which are attractive and increase the binding energy.

  19. Nonequilibrium Andreev bound states population in short superconducting junctions coupled to a resonator

    Science.gov (United States)

    Klees, Raffael L.; Rastelli, Gianluca; Belzig, Wolfgang

    2017-10-01

    Inspired by recent experiments, we study a short superconducting junction of length L ≪ξ (coherence length) inserted in a dc-SQUID containing an ancillary Josephson tunnel junction. We evaluate the nonequilibrium occupation of the Andreev bound states (ABS) for the case of a conventional junction and a topological junction, with the latter case of ABS corresponding to a Majorana mode. We take into account small phase fluctuations of the Josephson tunnel junction, acting as a damped LC resonator, and analyze the role of the distribution of the quasiparticles of the continuum assuming that these quasiparticles are in thermal distribution with an effective temperature different from the environmental temperature. We also discuss the effect of strong photon irradiation in the junction leading to a nonequilibrium occupation of the ABS. We systematically compare the occupations of the bound states and the supercurrents carried by these states for conventional and topological junctions.

  20. Structure and orientation of dynorphin bound to lipid bilayers by 13C solid-state NMR

    Science.gov (United States)

    Uezono, Takiko; Toraya, Shuichi; Obata, Maki; Nishimura, Katsuyuki; Tuzi, Satoru; Saitô, Hazime; Naito, Akira

    2005-07-01

    Secondary structure and orientation of dynorphin bound to dimyristoylphosphatidylcholine (DMPC) bilayer were investigated by solid-state 13C NMR spectroscopy. For this purpose, 13C NMR spectra of the site-specifically 13C-labeled dynorphin were measured in the membrane-bound state under static, magic angle spinning (MAS), and slow MAS conditions. In the static experiment, magnetically oriented vesicle system (MOVS) induced by dynorphin was successfully used to investigate the orientation of dynorphin bound to the lipid bilayers. It was found that dynorphin adopts an α-helical structure in the N-terminus from Gly 2 to Leu 5 by analyses of the isotropic chemical shifts obtained from the MAS experiments. In contrast, it adopts disordered conformations from the center to the C-terminus and is located on the membrane surface. The static 13C NMR spectra indicated that MOVS-bound dynorphin was oriented to the magnetic field and rotated rapidly about the bilayer normal. Subsequently, we analyzed the 13C chemical shift tensors of carbonyl carbons in the peptide backbone by considering the rotational motion of the N-terminal α-helix. It was revealed that the N-terminal α-helix is inserted into the membrane with the tilt angle of 21° to the bilayer normal. This structure suggests a possibility that dynorphin interacts with the extracellular loop II of the κ-receptor through a helix-helix interaction.

  1. Supersymmetrically bounding of asymmetric states and quantum phase transitions by anti-crossing of symmetric states

    CERN Document Server

    Afzal, Muhammad Imran; Lee, Yong Tak

    2016-01-01

    Von Neumann and Wigner theorized bounding of asymmetric eigenstates and anti-crossing of symmetric eigenstates. Experiments have shown that owing to anti-crossing and similar radiation rates, graphene-like resonance of inhomogeneously strained photonic eigenstates can generate pseudomagnetic field, bandgaps and Landau levels, while dissimilar rates induce non-Hermicity. Here, we showed experimentally higher-order supersymmetry and quantum phase transitions by resonance between similar one dimensional lattices. The lattices consisted of inhomgeneously strain-like phases of triangular solitons. The resonance created two dimensional inhomogeneously deformed photonic graphene. All parent eigenstates are annihilated. Where eigenstates of mildly strained solitons are annihilated with similar (power law) rates through one tail only and generated Hermitianally bounded eigenstates. The strongly strained solitons, positive defects are annihilated exponentially through both tails with dissimilar rates. Which bounded eig...

  2. Andreev reflection and bound states in topological insulator based planar and step Josephson junctions

    Science.gov (United States)

    Choudhari, Tarun; Deo, Nivedita

    2017-01-01

    A superconductor-topological insulator-superconductor (S/TI/S) junction having normal region at angle θ is studied theoretically to investigate the junction angle dependency of the Andreev reflection and the formation of the Andreev bound states in the step and planar S/TI/S structures. It is found that the Andreev reflection becomes θ dependent only in the presence of the potential barrier at the TI/S interface. In particular, the step and planar TI/S junction have totally different conductive behavior with bias voltage and potential barrier in the regime of retro and specular Andreev reflection. Interestingly, we find that the elliptical cross section of Dirac cone, an important feature of topological insulator with step surface defect, affects the Fabry-Perot resonance of the Andreev reflection induced Andreev bound states (which become Majorana zero energy states at low chemical potential) in the step S/TI/S structure. Unlike the usual planar S/TI/S structures, we find these ellipticity affected Andreev bound states lead to non-monotonic Josephson super-current in the step S/TI/S structure whose non-monotonicity can be controlled with the use of the potential barrier, which may find applications in nanoelectronics.

  3. Measurement of absolute yields of lyman transitions in pionic hydrogen and deuterium as a function of pressure

    Energy Technology Data Exchange (ETDEWEB)

    Rusi El Hassani, A.J. [Eidgenoessische Technische Hochschule, Villigen (Switzerland). Inst. fuer Teilchenphysik; Beer, W. [Eidgenoessische Technische Hochschule, Villigen (Switzerland). Inst. fuer Teilchenphysik; Gilot, J.F. [Eidgenoessische Technische Hochschule, Villigen (Switzerland). Inst. fuer Teilchenphysik; Goudsmit, P.F.A. [Eidgenoessische Technische Hochschule, Villigen (Switzerland). Inst. fuer Teilchenphysik; Leisi, H.J. [Eidgenoessische Technische Hochschule, Villigen (Switzerland). Inst. fuer Teilchenphysik; Thomann, S. [Eidgenoessische Technische Hochschule, Villigen (Switzerland). Inst. fuer Teilchenphysik; Volken, W. [Eidgenoessische Technische Hochschule, Villigen (Switzerland). Inst. fuer Teilchenphysik; Aschenauer, E.C. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Gabathuler, K. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Simons, L.M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Bovet, E. [Neuchatel Univ. (Switzerland). Inst. de Physique; Egger, J.P. [Neuchatel Univ. (Switzerland). Inst. de Physique; Fiorucci, G. [Neuchatel Univ. (Switzerland). Inst. de Physique; Markushin, V.E. [Kurchatov Inst. (RKI), Moscow (Russian Federation)

    1995-02-01

    Absolute yields of K X-ray transitions in pionic hydrogen and deuterium were determined with accuracies of typically {+-}10% at target pressures of 2.8, 15 and 40 bar and compared with the results of a recently developed cascade code. (orig.)

  4. Spectrum of Andreev bound states in Josephson junctions with a ferromagnetic insulator

    Energy Technology Data Exchange (ETDEWEB)

    Kawabata, Shiro, E-mail: s-kawabata@aist.go.jp [Nanosystem Research Institute (NRI), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); CREST, Japan Science and Technology Corporation (JST), Kawaguchi, Saitama 332-0012 (Japan); Tanaka, Yukio [Department of Applied Physics, Nagoya University, Nagoya 464-8603 (Japan); Golubov, Alexander A. [Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Vasenko, Andrey S. [Institut Laue-Langevin, 6 rue Jules Horowitz, BP 156, 38042 Grenoble (France); Asano, Yasuhiro [Department of Applied Physics, Hokkaido University, Sapporo 060-8628 (Japan)

    2012-10-15

    Ferromagnetic-insulator (FI) based Josephson junctions are promising candidates for a coherent superconducting quantum bit as well as a classical superconducting logic circuit. Recently the appearance of an intriguing atomic-scale 0-{pi} transition has been theoretically predicted. In order to uncover the mechanism of this phenomena, we numerically calculate the spectrum of Andreev bound states in a FI barrier by diagonalizing the Bogoliubov-de Gennes equation. We show that Andreev spectrum drastically depends on the parity of the FI-layer number L and accordingly the {pi}(0) state is always more stable than the 0 ({pi}) state if L is odd (even).

  5. Light-Front Hamiltonian Approach to the Bound-State Problem in Quantum Electrodynamics

    Science.gov (United States)

    Jones, Billy D.

    1997-10-01

    Why is the study of the Lamb shift in hydrogen, which at the level of detail found in this paper was largely completed by Bethe in 1947, of any real interest today? While completing such a calculation using new techniques may be very interesting for formal and academic reasons, our primary motivation is to lay groundwork for precision bound-state calculations in QCD. The Lamb shift provides an excellent pedagogical tool for illustrating light-front Hamiltonian techniques, which are not widely known; but more importantly it presents three of the central dynamical and computational problems that we must face to make these techniques useful for solving QCD: How does a constituent picture emerge in a gauge field theory? How do bound-state energy scales emerge non-perturbatively? How does rotational symmetry emerge in a non-perturbative light-front calculation?

  6. Robustness of Majorana bound states in the short-junction limit

    Science.gov (United States)

    Sticlet, Doru; Nijholt, Bas; Akhmerov, Anton

    2017-03-01

    We study the effects of strong coupling between a superconductor and a semiconductor nanowire on the creation of the Majorana bound states, when the quasiparticle dwell time in the normal part of the nanowire is much shorter than the inverse superconducting gap. This "short-junction" limit is relevant for the recent experiments using the epitaxially grown aluminum characterized by a transparent interface with the semiconductor and a small superconducting gap. We find that the small superconducting gap does not have a strong detrimental effect on the Majorana properties. Specifically, both the critical magnetic field required for creating a topological phase and the size of the Majorana bound states are independent of the superconducting gap. The critical magnetic field scales with the wire cross section, while the relative importance of the orbital and Zeeman effects of the magnetic field is controlled by the material parameters only: g factor, effective electron mass, and the semiconductor-superconductor interface transparency.

  7. Bound-state field-theory approach to proton-structure effects in muonic hydrogen

    Science.gov (United States)

    Mohr, Peter J.; Griffith, J.; Sapirstein, J.

    2013-05-01

    A bound-state field-theory approach to muonic hydrogen is set up using a variant of the Furry representation in which the lowest-order Hamiltonian describes a muon in the presence of a point Coulomb field, but the origin of the binding field is taken to be three charged quarks in the proton, which are modeled as Dirac particles that move freely within a spherical well. Bound-state field-theory techniques are used to evaluate one- and two-photon effects. Particular attention is paid to two-photon-exchange diagrams, which include the effect of proton polarizability. In addition, the modification of the electromagnetic self energy of the proton by the electric field of the muon is examined. Finally, the model is used to carry out a calculation of the static electric polarizability of the proton.

  8. Lower Bounds on the Capacity of the Relay Channel with States at the Source

    Directory of Open Access Journals (Sweden)

    Abdellatif Zaidi

    2009-01-01

    Full Text Available We consider a state-dependent three-terminal full-duplex relay channel with the channel states noncausally available at only the source, that is, neither at the relay nor at the destination. This model has application to cooperation over certain wireless channels with asymmetric cognition capabilities and cognitive interference relay channels. We establish lower bounds on the channel capacity for both discrete memoryless (DM and Gaussian cases. For the DM case, the coding scheme for the lower bound uses techniques of rate-splitting at the source, decode-and-forward (DF relaying, and a Gel'fand-Pinsker-like binning scheme. In this coding scheme, the relay decodes only partially the information sent by the source. Due to the rate-splitting, this lower bound is better than the one obtained by assuming that the relay decodes all the information from the source, that is, full-DF. For the Gaussian case, we consider channel models in which each of the relay node and the destination node experiences on its link an additive Gaussian outside interference. We first focus on the case in which the links to the relay and to the destination are corrupted by the same interference; and then we focus on the case of independent interferences. We also discuss a model with correlated interferences. For each of the first two models, we establish a lower bound on the channel capacity. The coding schemes for the lower bounds use techniques of dirty paper coding or carbon copying onto dirty paper, interference reduction at the source and decode-and-forward relaying. The results reveal that, by opposition to carbon copying onto dirty paper and its root Costa's initial dirty paper coding (DPC, it may be beneficial in our setup that the informed source uses a part of its power to partially cancel the effect of the interference so that the uninformed relay benefits from this cancellation, and so the source benefits in turn.

  9. Electroproduction of strangeness on (Lambda)H-3,4 bound states on helium

    Energy Technology Data Exchange (ETDEWEB)

    F. Dohrmann; D. Abbott; A. Ahmidouch; P. Ambrozewicz; C. S. Armstrong; J. Arrington; R. Asaturyan; K. Assamagan; S. Avery; K. Bailey; S. Beedoe; H. Bitao; H. Breuer; D. S. Brown; R. Carlini; J. Cha; N. Chant; E. Christy; A. Cochran; L. Cole; G. Collins; C. Cothran; J. Crowder; W. J. Cummings; S. Danagoulian; F. Duncan; J. Dunne; D. Dutta; T. Eden; M. Elaasar; R. Ent; L. Ewell; H. Fenker; H. T. Fortune; Y. Fujii; L. Gan; H. Gao; K. Garrow; D. F. Geesaman; P. Gueye; K. Gustafsson; K. Hafidi; J. O. Hansen; W. Hinton; H. E. Jackson; H. Juengst; C. Keppel; A. Klein; D. Koltenuk; Y. Liang; J. H. Liu; A. Lung; D. Mack; R. Madey; P. Markowitz; C. J. Martoff; D. Meekins; J. Mitchell; T. Miyoshi; H. Mkrtchyan; R. Mohring; S. K. Mtingwa; B. Mueller; T. G. O& #x27; Neill; G. Niculescu; I. Niculescu; D. Potterveld; J. W. Price; B. A. Raue; P. E. Reimer; J. Reinhold; ; J. Roche; P. Roos; M. Sarsour; Y. Sato; G. Savage; R. Sawafta; R. E. Segel; A. Yu. Semenov; S. Stepanyan; V. Tadevosian; S. Tajima; L. Tang; B. Terburg; A. Uzzle; S. Wood; H. Yamaguchi; C. Yan; C. Yan; L. Yuan; M. Zeier; B. Zeidman; B. Zihlmann

    2005-05-01

    The A(e,eK+)X reaction has been investigated at Jefferson Laboratory. Data were taken for Q{sup 2} approx. 0.35 GeV{sup 2} at a beam energy of 3.245 GeV for 1H,3He and 4He targets. Evidence for Lambda-hypernuclear bound states is seen for 3,4He targets. This is the first time that the electroproduction of these hypernuclei has been observed.

  10. Bound-states of D-branes in L-R asymmetric superstring vacua

    CERN Document Server

    Bianchi, Massimo

    2008-01-01

    We discuss bound-states of D-branes in truly L-R asymmetric and thus non-geometric Type II vacuum configurations with extended supersymmetry. We argue for their stability as a result of residual supersymmetry and coupling to R-R potentials surviving in the massless spectrum. We then identify the open string excitations of these L-R asymmetric BPS D-branes. Finally, we briefly comment on possible applications and extensions.

  11. Possible evidence for narrow bound states related to the $p\\overline{p}$ system

    CERN Document Server

    Pavlopoulos, P; Blüm, P; Fransson, K; Guigas, R; Hassler, N; Izycki, M; Koch, H; Nilsson, A; Poth, H; Suffert, Martin; Towscher, L; Zioutas, Konstantin

    1978-01-01

    A search for mesonic structure in the pp system below threshold is reported. Bound states are observed for the first time by observing gamma -rays accompanying the annihilation of stopped p in liquid hydrogen. A novel NaI handling technique is reported. Three narrow structures are observed related to the pp system at 183, 216 and 420 MeV, with confidence levels of 1%, 2.5% and 1.8% respectively. (47 refs).

  12. Dissecting zero modes and bound states on BPS vortices in Ginzburg-Landau superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Izquierdo, A. Alonso [Departamento de Matematica Aplicada, Universidad de Salamanca,Facultad de Ciencias Agrarias y Ambientales,Av. Filiberto Villalobos 119, E-37008 Salamanca (Spain); Fuertes, W. Garcia [Departamento de Fisica, Universidad de Oviedo, Facultad de Ciencias,Calle Calvo Sotelo s/n, E-33007 Oviedo (Spain); Guilarte, J. Mateos [Departamento de Fisica Fundamental, Universidad de Salamanca, Facultad de Ciencias,Plaza de la Merced, E-37008 Salamanca (Spain)

    2016-05-12

    In this paper the zero modes of fluctuation of cylindrically symmetric self-dual vortices are analyzed and described in full detail. These BPS topological defects arise at the critical point between Type II and Type I superconductors, or, equivalently, when the masses of the Higgs particle and the vector boson in the Abelian Higgs model are equal. In addition, novel bound states of Higss and vector bosons trapped by the self-dual vortices at their core are found and investigated.

  13. Ultraheavy Yukawa-bound states of fourth-generation at Large ...

    Indian Academy of Sciences (India)

    2012-10-05

    Oct 5, 2012 ... Fourth-generation; Yukawa-bound states; Large Hadron Collider phenomenology. PACS Nos 14.65.Jk; 11.10.St; 13.85.Rm; 13.25.Jx. 1. Introduction. The fourth-generation (4G), if exists, can play a crucial role in electroweak symmetry breaking [1] and baryon asymmetry of the Universe [2] due to their strong ...

  14. Conformation-selective resonant photoelectron imaging from dipole-bound states of cold 3-hydroxyphenoxide

    Science.gov (United States)

    Zhu, Guo-Zhu; Huang, Dao-Ling; Wang, Lai-Sheng

    2017-07-01

    We report a photoelectron imaging and photodetachment study of cryogenically cooled 3-hydroxyphenoxide (3HOP) anions, m-HO(C6H4)O-. In a previous preliminary study, two conformations of the cold 3HOP anions with different dipole bound states were observed [D. L. Huang et al., J. Phys. Chem. Lett. 6, 2153 (2015)]. Five near-threshold vibrational resonances were revealed in the photodetachment spectrum from the dipole-bound excited states of the two conformations. Here, we report a more extensive investigation of the two conformers with observation of thirty above-threshold vibrational resonances in a wide spectral range between 18 850 and 19 920 cm-1 (˜1000 cm-1 above the detachment thresholds). By tuning the detachment laser to the vibrational resonances in the photodetachment spectrum, high-resolution conformation-selective resonant photoelectron images are obtained. Using information of the autodetachment channels and theoretical vibrational frequencies, we are able to assign the resonant peaks in the photodetachment spectrum: seventeen are assigned to vibrational levels of anti-3HOP, eight to syn-3HOP, and five to overlapping vibrational levels of both conformers. From the photodetachment spectrum and the conformation-selective resonant photoelectron spectra, we have obtained fourteen fundamental vibrational frequencies for the neutral syn- and anti-m-HO(C6H4)Oṡ radicals. The possibility to produce conformation-selected neutral beams using resonant photodetachment via dipole-bound excited states of anions is discussed.

  15. Viscous dispersion effects on bound-state formation in falling liquid films

    Science.gov (United States)

    Pradas, Marc; Tseluiko, Dmitri; Kalliadasis, Serafim

    2010-11-01

    We examine the influence of viscous dispersion on the interaction of two-dimensional solitary pulses in falling liquid films at moderate Reynolds number. We make use of an averaged model that includes second-order viscous effects in the long-wave expansion. These effects play a dispersive role affecting primarily the shape of the capillary ripples in front of the solitary pulses. We show that different physical parameters, such as surface tension and viscosity, play a crucial role in the interaction between pulses giving rise eventually to the formation of bound states consisting of two or more pulses separated by well-defined distances and travelling at the same velocity. By developing a coherent-structures theory that assumes weak interaction between the pulses, we are able to theoretically predict the pulse-separation distances for which bound states are formed. It is shown that viscous dispersion significantly affects the distances at which bound states are observed. In all cases, there is very good agreement between the theory and computations of the fully nonlinear system.

  16. Gamow shell-model description of weakly bound and unbound nuclear states

    Energy Technology Data Exchange (ETDEWEB)

    Michel, N.; Nazarewicz, W. [Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996 (United States); Ploszajczak, M.; Rotureau, J. [Grand Accelerateur National d' Ions Lourds (GANIL), CEA/DSM- NRS/IN2P3, BP 55027, F-14076 Caen Cedex 05 (France)

    2004-12-01

    Recently, the shell model in the complex k-plane (the so-called Gamow Shell Model) has been formulated using a complex Berggren ensemble representing bound single-particle states, single-particle resonances, and non-resonant continuum states. In this framework, we shall discuss binding energies and energy spectra of neutron-rich helium and lithium isotopes. The single-particle basis used is that of the Hartree-Fock potential generated self-consistently by the finite-range residual interaction. (Author) 21 refs., 5 tabs., 2 figs.

  17. Bound states in a model of interaction of Dirac field with material plane

    Directory of Open Access Journals (Sweden)

    Pismak Yu. M.

    2016-01-01

    Full Text Available In the framework of the Symanzik approach model of the interaction of the Dirac spinor field with the material plane in the 3 + 1-dimensional space is constructed. The model contains eight real parameters characterizing the properties of the material plane. The general solution of the Euler-Lagrange equations of the model and dispersion equations for bound states are analyzed. It is shown that there is a choice of parameters of the model in which the connected states are characterized by dispersion law of a mass-less particle moving along the material plane with the dimensionless Fermi velocity not exceeding one.

  18. Klein-Gordon lower bound to the semirelativistic ground-state energy

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Richard L., E-mail: rhall@mathstat.concordia.c [Department of Mathematics and Statistics, Concordia University, 1455 de Maisonneuve Boulevard West, Montreal, Quebec, H3G 1M8 (Canada); Lucha, Wolfgang, E-mail: wolfgang.lucha@oeaw.ac.a [Institute for High Energy Physics, Austrian Academy of Sciences, Nikolsdorfergasse 18, A-1050 Vienna (Austria)

    2010-04-19

    For the class of attractive potentials V(r)<=0 which vanish at infinity, we prove that the ground-state energy E of the semirelativistic Hamiltonian H=sq root(m{sup 2}+p{sup 2})+V(r) is bounded below by the ground-state energy e of the corresponding Klein-Gordon problem (p{sup 2}+m{sup 2})phi=(V(r)-e){sup 2}phi. Detailed results are presented for the exponential and Woods-Saxon potentials.

  19. Mapping the orbital structure of impurity bound states in a superconductor.

    Science.gov (United States)

    Choi, Deung-Jang; Rubio-Verdú, Carmen; de Bruijckere, Joeri; Ugeda, Miguel M; Lorente, Nicolás; Pascual, Jose Ignacio

    2017-05-08

    A magnetic atom inside a superconductor locally distorts superconductivity. It scatters Cooper pairs as a potential with broken time-reversal symmetry, leading to localized bound states with subgap excitation energies, named Shiba states. Most conventional approaches regarding Shiba states treat magnetic impurities as point scatterers with isotropic exchange interaction. Here, we show that the number and the shape of Shiba states are correlated to the spin-polarized atomic orbitals of the impurity, hybridized with the superconductor. Using scanning tunnelling spectroscopy, we spatially map the five Shiba excitations found on subsurface chromium atoms in Pb(111), resolving their particle and hole components. While particle components resemble d orbitals of embedded Cr atoms, hole components differ strongly from them. Density functional theory simulations correlate the orbital shapes to the magnetic ground state of the atom, and identify scattering channels and interactions, all valuable tools for designing atomic-scale superconducting devices.

  20. Can one control systematic errors of QCD sum rule predictions for bound states?

    Energy Technology Data Exchange (ETDEWEB)

    Lucha, Wolfgang [Institute for High Energy Physics, Austrian Academy of Sciences, Nikolsdorfergasse 18, A-1050 Vienna (Austria); Melikhov, Dmitri [Institute for High Energy Physics, Austrian Academy of Sciences, Nikolsdorfergasse 18, A-1050 Vienna (Austria); Nuclear Physics Institute, Moscow State University, 119992 Moscow (Russian Federation)], E-mail: dmitri_melikhov@gmx.de; Simula, Silvano [INFN, Sezione di Roma III, Via della Vasca Navale 84, I-00146 Rome (Italy)

    2007-11-29

    We study the possibility to control systematic errors of the ground-state parameters obtained by Shifman-Vainshtein-Zakharov (SVZ) sum rules, making use of the harmonic-oscillator potential model as an example. In this case, one knows the exact solution for the polarization operator, which allows one to obtain both the OPE to any order and the parameters (masses and decay constants) of the bound states. We determine the parameters of the ground state making use of the standard procedures of the method of QCD sum rules, and compare the obtained results with the known exact values. We show that in the situation when the continuum contribution to the polarization operator is not known and is modelled by an effective continuum, the method of sum rules does not allow to control the systematic errors of the extracted ground-state parameters.

  1. Theoretical study of the low-lying bound states of O2

    Science.gov (United States)

    Partridge, Harry; Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1991-01-01

    It is demonstrated that a complete-active-space self-consistent-field (CASSCF) (2p)/MRCI + Q (multireference configuration interaction with a Davidson correction) description in a (13s8p6d 4f2g)/((5s4p3d 2f1g) atomic natural orbits (ANO) basis set supplemented with diffuse functions provides a quantitative description of the six lowest states of O2. The calculated potentials are within 0.05 eV (1.2 kilocal/mol) of accurate experimental results. The importance of substantially expanding the primitive basis set has been investigated, and it is demonstrated that such expansions yield insignificant improvement in the spectroscopic constants. Potential energy curves have also been reported for the weakly bound states of O2. The 5Pi(g) state is estimated to have a D(e) of 0.16 +/- 0.03 eV. The upper bound of D(e) is found to be sufficiently large that the importance of this state as a precursor for the formation of O2 (b 1Sigma(t)(+)) and O(1S) should be reconsidered.

  2. Neutrino masses and the dark energy equation of state: relaxing the cosmological neutrino mass bound.

    Science.gov (United States)

    Hannestad, Steen

    2005-11-25

    At present, cosmology provides the nominally strongest constraint on the masses of standard model neutrinos. However, this constraint is extremely dependent on the nature of the dark energy component of the Universe. When the dark energy equation of state parameter is taken as a free (but constant) parameter, the neutrino mass bound is sigma m(v) energy is in the form of a cosmological constant. This has important consequences for future experiments aimed at the direct measurement of neutrino masses. We also discuss prospects for future cosmological measurements of neutrino masses.

  3. Bound states of little strings and symmetric orbifold conformal field theories

    Science.gov (United States)

    Ahmed, Ambreen; Hohenegger, Stefan; Iqbal, Amer; Rey, Soo-Jong

    2017-10-01

    We study BPS bound states of little strings in a limit where they realize monopole strings in five dimensional gauge theories. The latter have gauge group U (M )N and arise from compactification of (1,0) little string theories of type AM -1×AN -1 . We find evidence that the partition function of a certain subclass of monopole strings of charge (k ,…,k ) (k ≥1 ) is expressible as the partition function of a symmetric orbifold sigma model, whose target space is precisely the symmetric product of the moduli space of monopoles with charge (1 ,…,1 ).

  4. Solitons shedding from Airy beams and bound states of breathing Airy solitons in nonlocal nonlinear media

    Science.gov (United States)

    Shen, Ming; Gao, Jinsong; Ge, Lijuan

    2015-01-01

    We investigate the spatially optical solitons shedding from Airy beams and anomalous interactions of Airy beams in nonlocal nonlinear media by means of direct numerical simulations. Numerical results show that nonlocality has profound effects on the propagation dynamics of the solitons shedding from the Airy beam. It is also shown that the strong nonlocality can support periodic intensity distribution of Airy beams with opposite bending directions. Nonlocality also provides a long-range attractive force between Airy beams, leading to the formation of stable bound states of both in-phase and out-of-phase breathing Airy solitons which always repel in local media. PMID:25900878

  5. Bound states of He(2 {sup 3}S)+He(2 {sup 3}P)

    Energy Technology Data Exchange (ETDEWEB)

    Cocks, D; Whittingham, I B [School of Engineering and Physical Sciences, James Cook University, Townsville, 4811 (Australia); Peach, G, E-mail: Daniel.Cocks@jcu.edu.a, E-mail: Ian.Whittingham@jcu.edu.a, E-mail: G.Peach@ucl.ac.u [Department of Physics and Astronomy, University College London, London, WC1E 6BT (United Kingdom)

    2009-11-01

    We report the results of coupled channel calculations of the bound states of the He(2 {sup 3}S{sub 1})+He(2 {sup 3}P{sub 0,1,2}) system using the recently available ab initio multi-configuration self-consistent field short range {sup 1,3,5}{Sigma}{sup +}{sub g,u} and {sup 1,3,5}{Pi}{sub g,u} potentials computed by Deguilhem et al. (J. Phys. B: At. Mol. Opt. Phys. 42 (2009) 015102) and present an analysis of the applicability of the single channel calculations of these authors.

  6. A search for deeply-bound kaonic nuclear states at J-PARC

    Directory of Open Access Journals (Sweden)

    Sakaguchi A.

    2010-04-01

    Full Text Available The J-PARC E15 experiment will be performed to search for the simplest kaonic nuclear bound state, K− pp, by the in-flight 3He(K−,n reaction. The exclusive measurement can be performed by a simultaneous measurement of the missing mass using the primary neutron and the invariant mass via the expected decay, K− pp → Λp → pπ− p. In this report, an overview of the experiment and the preparation status are presented.

  7. Wedge-Local Fields in Integrable Models with Bound States II: Diagonal S-Matrix

    Science.gov (United States)

    Cadamuro, Daniela; Tanimoto, Yoh

    2017-01-01

    We construct candidates for observables in wedge-shaped regions for a class of 1+1-dimensional integrable quantum field theories with bound states whose S-matrix is diagonal, by extending our previous methods for scalar S-matrices. Examples include the Z(N)-Ising models, the A_N-affine Toda field theories and some S-matrices with CDD factors. We show that these candidate operators which are associated with elementary particles commute weakly on a dense domain. For the models with two species of particles, we can take a larger domain of weak commutativity and give an argument for the Reeh-Schlieder property.

  8. Andreev reflection properties in a parallel mesoscopic circuit with Majorana bound states

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Jin-Tao; Han, Yu [Physics Department, Liaoning University, Shenyang 110036 (China); Gong, Wei-Jiang, E-mail: gwj@mail.neu.edu.cn [College of Sciences, Northeastern University, Shenyang 110819 (China)

    2017-03-15

    We investigate the Andreev reflection in a parallel mesoscopic circuit with Majorana bound states (MBSs). It is found that in such a structure, the Andreev current can be manipulated in a highly efficient way, by the adjustment of bias voltage, dot levels, inter-MBS coupling, and the applied magnetic flux. Besides, the dot-MBS coupling manner is an important factor to modulate the Andreev current, because it influences the period of the conductance oscillation. By discussing the underlying quantum interference mechanism, the Andreev-reflection property is explained in detail. We believe that all the results can assist to understand the nontrivial role of the MBSs in driving the Andreev reflection.

  9. The Partial Truncated Icosahedron Phoswich Detector Array: A Light Charged Particle Array for Pionic Fusion Measurements

    Science.gov (United States)

    Zarrella, A.; Galvan, L.; Heilborn, L.; Jedele, A.; McIntosh, A. B.; Manso, A. Rodriguez; Youngs, M.; Yennello, S. J.

    The Partial Truncated Icosahedron (ParTI) phoswich detector array has been designed to detect charged pions and other light charged particles in pionic fusion reactions. The array has been constructed and characterized in a series of beam experiments. It is composed of 15 plastic/thalium-doped cesium iodide (CsI(Tl)) phoswich detector units arranged on the faces of a truncated icosahedron geometry which covers approximately 20% of the solid angle. The phoswich detectors have been shown to be capable of isotopic identification of Z = 1 and Z = 2 particles and elemental identification of at least up to Z = 3 using fast vs. slow pulse shape discrimination (PSD). Some advantages of employing digital electronics are discussed including identification of charged pions independent of PSD using their characteristic waveform response and selective event triggering using a muon decay trigger. A calibration method for the array is also described.

  10. Isospin Decomposition of the Basic Double-Pionic Fusion in the Region of the ABC Effect

    Directory of Open Access Journals (Sweden)

    Skorodko T.

    2012-12-01

    Full Text Available With a proton beam of Tp = 1.2 GeV incident on the deuterium pellet target of the WASA detector setup all three basic double-pionic fusion reactions have been measured simultaneously. By use of quasifree kinematics the energy range 2.3 GeV ≤ √s < 2.5 GeV could be covered, which just coincides with the energy region, where the ABC effect and its associated resonance structure has been observed. From the isospin decomposition we see that the resonance effect is solely in the isoscalar part of the reaction process, whereas the isovector part exhibits a monotonic smoothly rising energy dependence and no ABC effect.

  11. Universal three-body bound states in mixed dimensions beyond the Efimov paradigm

    Science.gov (United States)

    Zhang, Pengfei; Yu, Zhenhua

    2017-09-01

    The Efimov effect was first predicted for three particles interacting at an s -wave resonance in three dimensions. A subsequent study showed that the same effect can be realized by considering two-body and three-body interactions in mixed dimensions. In this work, we consider the three-body problem of two bosonic A atoms interacting with another single B atom in mixed dimensions: The A atoms are confined in a space of dimension dA and the B atom in a space of dimension dB, and there is an interspecies s -wave interaction in a dint-codimensional space accessible to both species. We find that when the s -wave interaction is tuned on resonance, there emerge an infinite series of universal three-body bound states for {dA,dB,dint} ={2 ,2 ,0 } and {2 ,3 ,1 } . Going beyond the Efimov paradigm, the binding energies of these states follow the scaling ln| En|˜-s(n π -θ ) 2/4 , with the scaling factor s being unity for the former case and √{mB(2 mA+mB) }/(mA+mB) for the latter. We discuss the possibility of realizing our mixed-dimensional systems in a cold-atom experiment and how the effects of these universal three-body bound states may be detected.

  12. Topological Defects in Topological Insulators and Bound States at Topological Superconductor Vortices.

    Science.gov (United States)

    Parente, Vincenzo; Campagnano, Gabriele; Giuliano, Domenico; Tagliacozzo, Arturo; Guinea, Francisco

    2014-03-04

    The scattering of Dirac electrons by topological defects could be one of the most relevant sources of resistance in graphene and at the boundary surfaces of a three-dimensional topological insulator (3D TI). In the long wavelength, continuous limit of the Dirac equation, the topological defect can be described as a distortion of the metric in curved space, which can be accounted for by a rotation of the Gamma matrices and by a spin connection inherited with the curvature. These features modify the scattering properties of the carriers. We discuss the self-energy of defect formation with this approach and the electron cross-section for intra-valley scattering at an edge dislocation in graphene, including corrections coming from the local stress. The cross-section contribution to the resistivity, ρ, is derived within the Boltzmann theory of transport. On the same lines, we discuss the scattering of a screw dislocation in a two-band 3D TI, like Bi1-xSbx, and we present the analytical simplified form of the wavefunction for gapless helical states bound at the defect. When a 3D TI is sandwiched between two even-parity superconductors, Dirac boundary states acquire superconductive correlations by proximity. In the presence of a magnetic vortex piercing the heterostructure, two Majorana states are localized at the two interfaces and bound to the vortex core. They have a half integer total angular momentum each, to match with the unitary orbital angular momentum of the vortex charge.

  13. Microwave spectroscopy of spinful Andreev bound states in ballistic semiconductor Josephson junctions

    Science.gov (United States)

    van Woerkom, David J.; Proutski, Alex; van Heck, Bernard; Bouman, Daniël; Väyrynen, Jukka I.; Glazman, Leonid I.; Krogstrup, Peter; Nygård, Jesper; Kouwenhoven, Leo P.; Geresdi, Attila

    2017-09-01

    The superconducting proximity effect in semiconductor nanowires has recently enabled the study of new superconducting architectures, such as gate-tunable superconducting qubits and multiterminal Josephson junctions. As opposed to their metallic counterparts, the electron density in semiconductor nanosystems is tunable by external electrostatic gates, providing a highly scalable and in situ variation of the device properties. In addition, semiconductors with large g-factor and spin-orbit coupling have been shown to give rise to exotic phenomena in superconductivity, such as φ0 Josephson junctions and the emergence of Majorana bound states. Here, we report microwave spectroscopy measurements that directly reveal the presence of Andreev bound states (ABS) in ballistic semiconductor channels. We show that the measured ABS spectra are the result of transport channels with gate-tunable, high transmission probabilities up to 0.9, which is required for gate-tunable Andreev qubits and beneficial for braiding schemes of Majorana states. For the first time, we detect excitations of a spin-split pair of ABS and observe symmetry-broken ABS, a direct consequence of the spin-orbit coupling in the semiconductor.

  14. Lower bound for the fermi level density of states of a disordered D-wave superconductor in two dimensions

    OpenAIRE

    Ziegler, Klaus (Prof.)

    1998-01-01

    Lower bound for the fermi level density of states of a disordered D-wave superconductor in two dimensions / M. H. Hettler, P. J. Hirschfeld, K. Ziegler. - In: Physical review. B. 57. 1998. S. 10825-10830

  15. Fireball as a Macroscopic Manifestation of the beta-Decay of the Radioactive Phosphor into Bound States

    CERN Document Server

    Ratis, Yu L

    2004-01-01

    This paper substantiates a hypothesis that the natural fireball represents an area of space where the chain nuclear reaction of the bound state beta-decay of radioactive phosphorus nuclei takes place.

  16. K− absorption on two nucleons and ppK− bound state search in the Σ0p final state

    Directory of Open Access Journals (Sweden)

    O. Vázquez Doce

    2016-07-01

    Full Text Available We report the measurement of K− absorption processes in the Σ0p final state and the first exclusive measurement of the two nucleon absorption (2NA with the KLOE detector. The 2NA process without further interactions is found to be 9% of the sum of all other contributing processes, including absorption on three and more nucleons or 2NA followed by final state interactions with the residual nucleons. We also determine the possible contribution of the ppK− bound state to the Σ0p final state. The yield of ppK−/Kstop− is found to be (0.044±0.009stat−0.005+0.004syst⋅10−2 but its statistical significance based on an F-test is only 1σ.

  17. Three-Nucleon Bound States and the Wigner-SU(4) Limit

    Science.gov (United States)

    Vanasse, Jared; Phillips, Daniel R.

    2017-03-01

    We examine the extent to which the properties of three-nucleon bound states are well-reproduced in the limit that nuclear forces satisfy Wigner's SU(4) (spin-isospin) symmetry. To do this we compute the charge radii up to next-to-leading order (NLO) in an effective field theory that is an expansion in powers of R/ a, with R the range of the nuclear force and a the nucleon-nucleon (N N) scattering lengths. In the Wigner-SU(4) limit, the triton and helium-3 point charge radii are equal. At NLO in the range expansion both are 1.66 fm. Adding the first-order corrections due to the breaking of Wigner symmetry in the N N scattering lengths gives a ^3{H} point charge radius of 1.58 fm, which is remarkably close to the experimental number, 1.5978± 0.040 fm (Angeli and Marinova in At Data Nucl Data Tables 99:69-95, 2013). For the ^3{He} point charge radius we find 1.70 fm, about 4% away from the experimental value of 1.77527± 0.0054 fm (Angeli and Marinova 2013). We also examine the Faddeev components that enter the tri-nucleon wave function and find that an expansion of them in powers of the symmetry-breaking parameter converges rapidly. Wigner's SU(4) symmetry is thus a useful starting point for understanding tri-nucleon bound-state properties.

  18. Multiple-Pulse Operation and Bound States of Solitons in Passive Mode-Locked Fiber Lasers

    Directory of Open Access Journals (Sweden)

    A. Komarov

    2012-01-01

    Full Text Available We present results of our research on a multiple-pulse operation of passive mode-locked fiber lasers. The research has been performed on basis of numerical simulation. Multihysteresis dependence of both an intracavity energy and peak intensities of intracavity ultrashort pulses on pump power is found. It is shown that the change of a number of ultrashort pulses in a laser cavity can be realized by hard as well as soft regimes of an excitation and an annihilation of new solitons. Bound steady states of interacting solitons are studied for various mechanisms of nonlinear losses shaping ultrashort pulses. Possibility of coding of information on basis of soliton trains with various bonds between neighboring pulses is discussed. The role of dispersive wave emitted by solitons because of lumped intracavity elements in a formation of powerful soliton wings is analyzed. It is found that such powerful wings result in large bounding energies of interacting solitons in steady states. Various problems of a soliton interaction in passive mode-locked fiber lasers are discussed.

  19. Anomalous thermoelectric properties in double quantum dots coupled with Majorana bound states

    Directory of Open Access Journals (Sweden)

    Yi-Jie Zheng

    2016-12-01

    Full Text Available We discuss the transport properties of thermal electrons in double quantum dots that are coupled with Majorana bound states (MBSs corresponding to two model systems with T-type structure and series connection structure. It has been found that the thermoelectric figure of merit ZT in these model systems is suppressed when we consider the effects of the Majorana bound states. Here, ZT=GS2Tκ, where G is the electric conductance, S is the thermopower, T is the temperature and κ is the thermal conductance. The sign of the thermopower S changes from negative to positive when the energy levels of the quantum dots are less than μ while the sign of the thermopower S changes from positive to negative when the energy levels of the quantum dots are above μ in the model system of T-type structure, where μ is the chemical potential. As a result, the figure of merit ZT first decreases and then increases as the temperature kBT increases. This behavior is different from what is seen in the general quantum dot structure without MBSs. It is interesting to show that in the series connection structure, the thermopower S and ZT are robustness and do not vary with changes in εM when |εd|<λ, even if κ changes with εM.

  20. Measurement of the strong interaction shift and width of the 1S levels in pionic hydrogen and deuterium

    Energy Technology Data Exchange (ETDEWEB)

    Badertscher, A. [Eidgenoessische Technische Hochschule, Zurich (Switzerland). Inst. fuer Teilchenphysik; Aschenauer, E.C. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Bogdan, M. [Eidgenoessische Technische Hochschule, Zurich (Switzerland). Inst. fuer Teilchenphysik; Chatellard, D. [Neuchatel Univ. (Switzerland). Inst. de Physique; Egger, J.P. [Neuchatel Univ. (Switzerland). Inst. de Physique; Gabathuler, K. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Goudsmit, P.F.A. [Eidgenoessische Technische Hochschule, Zurich (Switzerland). Inst. fuer Teilchenphysik; Jeannet, E. [Neuchatel Univ. (Switzerland). Inst. de Physique; Leisi, H.J. [Eidgenoessische Technische Hochschule, Zurich (Switzerland). Inst. fuer Teilchenphysik; Matsinos, E. [Eidgenoessische Technische Hochschule, Zurich (Switzerland). Inst. fuer Teilchenphysik; Rusi El Hassani, A.J. [Universite Mohammed 5, Rabat (Morocco). Ecole Mohammadia d`Ingenieurs; Schroeder, H.C. [Eidgenoessische Technische Hochschule, Zurich (Switzerland). Inst. fuer Teilchenphysik; Sigg, D. [Eidgenoessische Technische Hochschule, Zurich (Switzerland). Inst. fuer Teilchenphysik; Simons, L.M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Zhao, Z.G. [Eidgenoessische Technische Hochschule, Zurich (Switzerland). Inst. fuer Teilchenphysik

    1995-12-31

    The 3p-1s X-ray energies to be measured were 2.89 keV for pionic hydrogen and 3.07 keV for deuterium and the shifts measured with earlier experiments are -7.12 {+-} 0.32 eV (attractive) in hydrogen and +5.5 {+-} 1.3 eV in deuterium. The widts were expected to be about 0.9 eV and 1 eV; they have been measured for the first time with this experiment. The goal of the experiment was to reach a precision of {+-}1% for the shift and about {+-}10% for the width in pionic hydrogen and similar (absolute) precisions for deuterium. (orig.)

  1. Determination of the {ital S}-wave scattering length in pionic deuterium with a high resolution crystal spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Chatellard, D.; Egger, J.; Jeannet, E. [Institut de Physique de l`Universite, Breguet 1, CH-2000 Neuchatel (Switzerland); Badertscher, A.; Bogdan, M.; Goudsmit, P.F.A.; Leisi, H.J.; Matsinos, E.; Schroeder, H.; Sigg, D.; Zhao, Z.G. [Institut fuer Teilchenphysik der Eidgenoessische Technische Hochschule Zuerich, CH-5232 Villigen PSI (Switzerland); Aschenauer, E.C.; Gabathuler, K.; Hauser, P.; Simons, L.M. [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Rusi, A.J.; Hassani, E. [Ecole Mohammadia des Ingenieurs, Rabat (Morocco)

    1995-05-22

    The pionic deuterium 3{ital P}{minus}1{ital S} x-ray transition was measured with a quartz crystal spectrometer in combination with a cyclotron trap and charge coupled device detectors. The strong interaction shift and total decay width of the 1{ital S} level are {epsilon}{sub 1{ital S}}(shift)=2.48{plus_minus}0.10 eV (repulsive), {Gamma}{sub 1{ital S}}(width)=1.02{plus_minus}0.21 eV, where the statistical and systematic errors were added linearly. They yield the total pionic deuterium {ital S}-wave scattering length: {ital a}{sub {pi}{sup {minus}}{ital d}}= {minus}0.0264({plus_minus}0.0011)+{ital i}0.0054({plus_minus}0.0011){ital m}{sub {pi}}{sup {minus}1}.

  2. A tabulation of the bound-state energies of atomic hydrogen

    CERN Document Server

    Horbatsch, M

    2016-01-01

    We present tables for the bound-state energies for atomic hydrogen. The tabulated energies include the hyperfine structure, and thus this work extends the work of Rev. Mod. Phys. {\\bf 84}, 1527 (2012), which excludes hyperfine structure. The tabulation includes corrections of the hyperfine structure due to the anomalous moment of the electron, due to the finite mass of the proton, and due to off-diagonal matrix elements of the hyperfine Hamiltonian. These corrections are treated incorrectly in most other works. Simple formulas valid for all quantum numbers are presented for the hyperfine corrections. The tabulated energies have uncertainties of less than 1 kHz for all states. This accuracy is possible because of the recent precision measurement [Nature, {\\bf 466}, 213 (2010); Science, {\\bf 339}, 417] of the proton radius. The effect of this new radius on the energy levels is also tabulated, and the energies are compared to precision measurements of atomic hydrogen energy intervals.

  3. Topological Defects in Topological Insulators and Bound States at Topological Superconductor Vortices

    Directory of Open Access Journals (Sweden)

    Vincenzo Parente

    2014-03-01

    Full Text Available The scattering of Dirac electrons by topological defects could be one of the most relevant sources of resistance in graphene and at the boundary surfaces of a three-dimensional topological insulator (3D TI. In the long wavelength, continuous limit of the Dirac equation, the topological defect can be described as a distortion of the metric in curved space, which can be accounted for by a rotation of the Gamma matrices and by a spin connection inherited with the curvature. These features modify the scattering properties of the carriers. We discuss the self-energy of defect formation with this approach and the electron cross-section for intra-valley scattering at an edge dislocation in graphene, including corrections coming from the local stress. The cross-section contribution to the resistivity, ρ, is derived within the Boltzmann theory of transport. On the same lines, we discuss the scattering of a screw dislocation in a two-band 3D TI, like Bi1-xSbx, and we present the analytical simplified form of the wavefunction for gapless helical states bound at the defect. When a 3D TI is sandwiched between two even-parity superconductors, Dirac boundary states acquire superconductive correlations by proximity. In the presence of a magnetic vortex piercing the heterostructure, two Majorana states are localized at the two interfaces and bound to the vortex core. They have a half integer total angular momentum each, to match with the unitary orbital angular momentum of the vortex charge.

  4. An upper bound on the second order asymptotic expansion for the quantum communication cost of state redistribution

    Energy Technology Data Exchange (ETDEWEB)

    Datta, Nilanjana, E-mail: n.datta@statslab.cam.ac.uk [Statistical Laboratory, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Hsieh, Min-Hsiu, E-mail: Min-Hsiu.Hsieh@uts.edu.au [Centre for Quantum Computation and Intelligent Systems, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW 2007 (Australia); Oppenheim, Jonathan, E-mail: j.oppenheim@ucl.ac.uk [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Department of Computer Science and Centre for Quantum Technologies, National University of Singapore, Singapore 119615 (Singapore)

    2016-05-15

    State redistribution is the protocol in which given an arbitrary tripartite quantum state, with two of the subsystems initially being with Alice and one being with Bob, the goal is for Alice to send one of her subsystems to Bob, possibly with the help of prior shared entanglement. We derive an upper bound on the second order asymptotic expansion for the quantum communication cost of achieving state redistribution with a given finite accuracy. In proving our result, we also obtain an upper bound on the quantum communication cost of this protocol in the one-shot setting, by using the protocol of coherent state merging as a primitive.

  5. Bound states of water in gelatin discriminated by near-infrared spectroscopy

    Science.gov (United States)

    Otsuka, Yukiko; Shirakashi, Ryo; Hirakawa, Kazuhiko

    2017-11-01

    By near-infrared spectroscopy, we classified water molecules in hydrated gelatin membranes in a drying process. Absorbance spectra in the frequency range of 4500–5500 cm‑1 were resolved into three peaks, S0, S1, and S2, that correspond to water molecules with different hydrogen bond states. From the areas of the absorbance peaks as a function of the water content of gelatin, together with the information on the freezing properties of water measured by differential scanning calorimetry, we found that, when the water content is less than 20%, free water disappears and only weakly and strongly bound waters remain. We also found that the weakly bound water consists of S0, S1, and S2 water molecules with a simple composition of \\text{S}0:\\text{S}1:\\text{S}2 ≈ 1:2:0. Using this information, most of the freezable water was determined to be free water. Our classification provides a simple method of estimating the retention and freezing properties of processed foods or drugs by infrared spectroscopy.

  6. The effect of bound states on X-ray Thomson scattering for partially ionized plasmas

    CERN Document Server

    Nilsen, J; Cheng, K T

    2013-01-01

    X-ray Thomson scattering is being developed as a method to measure the temperature, electron density, and ionization state of high energy density plasmas such as those used in inertial confinement fusion. X-ray laser sources have always been of interest because of the need to have a bright monochromatic x-ray source to overcome plasma emission and eliminate other lines in the background that complicate the analysis. With the advent of the xray free electron laser (X-FEL) at the SLAC Linac Coherent Light Source (LCLS) and other facilities coming online worldwide, we now have such a source available in the keV regime. Most Thomson scattering codes used to model experimental data greatly simplify or neglect the contributions of the bound electrons to the scattered intensity. In this work we take the existing models of Thomson scattering that include elastic ion-ion scattering and inelastic electron-electron scattering and add the contribution of bound electrons in the partially ionized plasmas. To date, most exp...

  7. Diabetes Among United States-Bound Adult Refugees, 2009-2014.

    Science.gov (United States)

    Benoit, Stephen R; Gregg, Edward W; Zhou, Weigong; Painter, John A

    2016-12-01

    We reported diabetes prevalence among all US-bound adult refugees and assessed factors associated with disease. We analyzed overseas medical evaluations of US-bound refugees from 2009 through 2014 by using CDC's Electronic Disease Notification System. We identified refugees with diabetes by searching for diabetes-related keywords and medications in examination forms with text-parsing techniques. Age-adjusted prevalence rates were reported and factors associated with diabetes were assessed by using logistic regression. Of 248,850 refugees aged ≥18 years examined over 5 years, 5767 (2.3 %) had diabetes. Iraqis had the highest crude (5.1 %) and age-adjusted (8.9 %) prevalence of disease. Higher age group and body mass index were associated with diabetes in all regions. Diabetes prevalence varied by refugee nationality. Although the absolute rates were lower than rates in the United States, the prevalence is still concerning given the younger age of the population and their need for health services upon resettlement.

  8. In-situ measurement of bound states in the continuum in photonic crystal slabs (Conference Presentation)

    Science.gov (United States)

    Kalchmair, Stefan; Gansch, Roman; Genevet, Patrice; Zederbauer, Tobias; MacFarland, Donald; Detz, Hermann; Andrews, Aaron Maxwell; Schrenk, Werner; Strasser, Gottfried; Capasso, Federico; Loncar, Marko

    2016-04-01

    Photonic crystal slabs have been subject to research for more than a decade, yet the existence of bound states in the radiation continuum (BICs) in photonic crystals has been reported only recently [1]. A BIC is formed when the radiation from all possible channels interferes destructively, causing the overall radiation to vanish. In photonic crystals, BICs are the result of accidental phase matching between incident, reflected and in-plane waves at seemingly random wave vectors [2]. While BICs in photonic crystals have been discussed previously using reflection measurements, we reports for the first time in-situ measurements of the bound states in the continuum in photonic crystal slabs. By embedding a photodetector into a photonic crystal slab we were able to directly observe optical BICs. The photonic crystal slabs are processed from a GaAs/AlGaAs quantum wells heterostructure, providing intersubband absorption in the mid-infrared wavelength range. The generated photocurrent is collected via doped contact layers on top and bottom of the suspended photonic crystal slab. We were mapping out the photonic band structure by rotating the device and by acquiring photocurrent spectra every 5°. Our measured photonic bandstructure revealed several BICs, which was confirmed with a rigorously coupled-wave analysis simulation. Since coupling to external fields is suppressed, the photocurrent measured by the photodetector vanishes at the BIC wave vector. To confirm the relation between the measured photocurrent and the Q-factor we used temporal coupled mode theory, which yielded an inverse proportional relation between the photocurrent and the out-coupling loss from the photonic crystal. Implementing a plane wave expansion simulation allowed us to identify the corresponding photonic crystal modes. The ability to directly measure the field intensity inside the photonic crystal presents an important milestone towards integrated opto-electronic BIC devices. Potential

  9. Equation of state and self-bound droplet in Rabi-coupled Bose mixtures.

    Science.gov (United States)

    Cappellaro, Alberto; Macrì, Tommaso; Bertacco, Giovanni F; Salasnich, Luca

    2017-10-17

    Laser induced transitions between internal states of atoms have been playing a fundamental role to manipulate atomic clouds for many decades. In absence of interactions each atom behaves independently and their coherent quantum dynamics is described by the Rabi model. Since the experimental observation of Bose condensation in dilute gases, static and dynamical properties of multicomponent quantum gases have been extensively investigated. Moreover, at very low temperatures quantum fluctuations crucially affect the equation of state of many-body systems. Here we study the effects of quantum fluctuations on a Rabi-coupled two-component Bose gas of interacting alkali atoms. The divergent zero-point energy of gapless and gapped elementary excitations of the uniform system is properly regularized obtaining a meaningful analytical expression for the beyond-mean-field equation of state. In the case of attractive inter-particle interaction we show that the quantum pressure arising from Gaussian fluctuations can prevent the collapse of the mixture with the creation of a self-bound droplet. We characterize the droplet phase and discover an energetic instability above a critical Rabi frequency provoking the evaporation of the droplet. Finally, we suggest an experiment to observe such quantum droplets using Rabi-coupled internal states of K 39 atoms.

  10. Structural Model of the R State of Escherichia coli Aspartate Transcarbamoylase with Substrates Bound

    Energy Technology Data Exchange (ETDEWEB)

    Wang,J.; Eldo, J.; Kantrowitz, E.

    2007-01-01

    The allosteric enzyme aspartate transcarbamoylase (ATCase) exists in two conformational states. The enzyme, in the absence of substrates is primarily in the low-activity T state, is converted to the high-activity R state upon substrate binding, and remains in the R state until substrates are exhausted. These conformational changes have made it difficult to obtain structural data on R-state active-site complexes. Here we report the R-state structure of ATCase with the substrate Asp and the substrate analog phosphonoactamide (PAM) bound. This R-state structure represents the stage in the catalytic mechanism immediately before the formation of the covalent bond between the nitrogen of the amino group of Asp and the carbonyl carbon of carbamoyl phosphate. The binding mode of the PAM is similar to the binding mode of the phosphonate moiety of N-(phosphonoacetyl)-l-aspartate (PALA), the carboxylates of Asp interact with the same residues that interact with the carboxylates of PALA, although the position and orientations are shifted. The amino group of Asp is 2.9 {angstrom} away from the carbonyl oxygen of PAM, positioned correctly for the nucleophilic attack. Arg105 and Leu267 in the catalytic chain interact with PAM and Asp and help to position the substrates correctly for catalysis. This structure fills a key gap in the structural determination of each of the steps in the catalytic cycle. By combining these data with previously determined structures we can now visualize the allosteric transition through detailed atomic motions that underlie the molecular mechanism.

  11. Hyperon-nucleon bound states and electroproduction of strangeness on light nuclei.

    Energy Technology Data Exchange (ETDEWEB)

    Dohrmann, F.; Abbott, D.; Ahmidouch, A.; Ambrozewicz, P.; Armstrong, C. S.; Arrington, J.; Bailey, K.; Cummings, W. J.; Gao, H.; Garrow, K.; Geesaman, D. F.; Hafidi, K.; Hansen, J. O.; Jackson, H. E.; Mueller, B.; O' Neill, T. G.; Potterveld, D.; Reimer, P. E.; Reinhold, J.; Zeidman, B.

    2002-06-25

    The A(e,e{prime}K{sup +})Y X reaction has been investigated in Hall C at Jefferson Lab. Data were taken for Q{sup 2} {approx} 0.35 and 0.5 GeV{sup 2} at a beam energy of 3.245 GeV for {sup 1}H, {sup 2}H, {sup 3}He and {sup 4}He, C and Al targets. The missing mass spectra are fitted with Monte Carlo simulations including {Lambda}, {Sigma}{sup 0}, {Sigma}{sup -} hyperon production. Models for quasifree production are compared to the data, excess yields close to threshold are attributed to FSI. Evidence for {Lambda}-hypernuclear bound states is seen for {sup 3,4}He targets.

  12. Bound state properties of ABC-stacked trilayer graphene quantum dots.

    Science.gov (United States)

    Xiong, Haonan; Jiang, Wentao; Song, Yipu; Duan, Luming

    2017-06-01

    The few-layer graphene quantum dot provides a promising platform for quantum computing with both spin and valley degrees of freedom. Gate-defined quantum dots in particular can avoid noise from edge disorders. In connection with the recent experimental efforts (Song et al 2016 Nano Lett. 16 6245), we investigate the bound state properties of trilayer graphene (TLG) quantum dots (QDs) through numerical simulations. We show that the valley degeneracy can be lifted by breaking the time reversal symmetry through the application of a perpendicular magnetic field. The spectrum under such a potential exhibits a transition from one group of Landau levels to another group, which can be understood analytically through perturbation theory. Our results provide insight into the transport property of TLG QDs, with possible applications to study of spin qubits and valleytronics in TLG QDs.

  13. Toward the Application of Three-Dimensional Approach to Few-body Atomic Bound States

    Directory of Open Access Journals (Sweden)

    Hadizadeh M.R.

    2010-04-01

    Full Text Available The first step toward the application of an effective non partial wave (PW numerical approach to few-body atomic bound states has been taken. The two-body transition amplitude which appears in the kernel of three-dimensional Faddeev-Yakubovsky integral equations is calculated as function of two-body Jacobi momentum vectors, i.e. as a function of the magnitude of initial and final momentum vectors and the angle between them. For numerical calculation the realistic interatomic interactions HFDHE2, HFD-B, LM2M2 and TTY are used. The angular and momentum dependence of the fully off-shell transition amplitude is studied at negative energies. It has been numerically shown that, similar to the nuclear case, the transition amplitude exhibits a characteristic angular behavior in the vicinity of 4He dimer pole.

  14. Quantum chromodynamics and the dynamics of hadrons. [Review, bound state, perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, S.J.

    1979-03-01

    The application of perturbative quantum chromodynamics to the dynamics of hadrons at short distance is reviewed, with particular emphasis on the role of the hadronic bound state. A number of new applications are discussed, including the modification to QCD scaling violations in structure functions due to hadronic binding; a discussion of coherence and binding corrections to the gluon and sea-quark distributions; QCD radiative corrections to dimensional counting rules for exclusive processes and hadronic form factors at large momentum transfer; generalized counting rules for inclusive processes; the special role of photon-induced reactions in QCD, especially applications to jet production in photon-photon collisions, and photon production at large transverse momentum. Also presented is a short review of the central problems in large P/sub T/ hadronic reactions and the distinguishing characteristics of gluon and quark jets. 163 references.

  15. Bound state properties of ABC-stacked trilayer graphene quantum dots

    Science.gov (United States)

    Xiong, Haonan; Jiang, Wentao; Song, Yipu; Duan, Luming

    2017-06-01

    The few-layer graphene quantum dot provides a promising platform for quantum computing with both spin and valley degrees of freedom. Gate-defined quantum dots in particular can avoid noise from edge disorders. In connection with the recent experimental efforts (Song et al 2016 Nano Lett. 16 6245), we investigate the bound state properties of trilayer graphene (TLG) quantum dots (QDs) through numerical simulations. We show that the valley degeneracy can be lifted by breaking the time reversal symmetry through the application of a perpendicular magnetic field. The spectrum under such a potential exhibits a transition from one group of Landau levels to another group, which can be understood analytically through perturbation theory. Our results provide insight into the transport property of TLG QDs, with possible applications to study of spin qubits and valleytronics in TLG QDs.

  16. Meson-nucleus potentials and the search for meson-nucleus bound states

    Science.gov (United States)

    Metag, V.; Nanova, M.; Paryev, E. Ya.

    2017-11-01

    Recent experiments studying the meson-nucleus interaction to extract meson-nucleus potentials are reviewed. The real part of the potentials quantifies whether the interaction is attractive or repulsive while the imaginary part describes the meson absorption in nuclei. The review is focused on mesons which are sufficiently long-lived to potentially form meson-nucleus quasi-bound states. The presentation is confined to meson production off nuclei in photon-, pion-, proton-, and light-ion induced reactions and heavy-ion collisions at energies near the production threshold. Tools to extract the potential parameters are presented. In most cases, the real part of the potential is determined by comparing measured meson momentum distributions or excitation functions with collision model or transport model calculations. The imaginary part is extracted from transparency ratio measurements. Results on K+ ,K0 ,K- , η ,η‧ , ω, and ϕ mesons are presented and compared with theoretical predictions. The interaction of K+ and K0 mesons with nuclei is found to be weakly repulsive, while the K- , η ,η‧ , ω and ϕ meson-nucleus potentials are attractive, however, with widely different strengths. Because of meson absorption in the nuclear medium the imaginary parts of the meson-nucleus potentials are all negative, again with a large spread. An outlook on planned experiments in the charm sector is given. In view of the determined potential parameters, the criteria and chances for experimentally observing meson-nucleus quasi-bound states are discussed. The most promising candidates appear to be the η and η‧ mesons.

  17. Existence of Majorana bound states near impurities in the case of a small superconducting gap

    Science.gov (United States)

    Chuburin, Yu. P.

    2017-05-01

    We consider the edge states of a 2D topological insulator in the presence of the Zeeman field and in proximity to a s-wave superconductor. We analytically show that two linearly independent Majorana bound states (MBSs) can appear near the impurity located in a small region in which both the pairing parameter Δ and the Zeeman field M may be changed. We find two conditions for the existence of the MBSs: firstly, | Δ | ≈ | M | , ie, the superconducting gap in the spectrum should be sufficiently small; secondly, the absolute value of the average w of the impurity potential should have a certain value; the last condition is necessary. The equation | Δ | = | M | determines the boundary of the topological phase of the system, thus the system as a whole must be close to this boundary in relation to the parameters. If the same is true for the impurity region, then the second condition has the form w ≈ ± v / 2 where v is the edge states velocity. In this case, the electron transmission probability is equal to 1 for energies close to zero.

  18. Bound states in nanoscale graphene quantum dots in a continuous graphene sheet

    Science.gov (United States)

    Qiao, Jia-Bin; Jiang, Hua; Liu, Haiwen; Yang, Hong; Yang, Ning; Qiao, Kai-Yao; He, Lin

    2017-02-01

    Considerable efforts have been made to trap massless Dirac fermions in a graphene monolayer, but only quasibound states have been realized in continuous graphene sheets up to now. Here, we demonstrate the realization of bound states in nanoscale graphene quantum dots (GQDs) in a continuous graphene sheet. The GQDs are electronically isolated from the surrounding continuous graphene sheet by circular boundaries, which are generated by strong coupling between graphene and the substrate. By using scanning tunneling microscopy (STM), we observe single-electron charging states of the GQDs, seen as Coulomb oscillations in the tunneling conductance. The evolution of single-electron tunneling of the GQDs between the Coulomb blockade regime and the Coulomb staircase regime is observed by tuning the STM tip-sample distances. Spatial maps of the local electronic densities reveal concentric rings inside the GQDs with each ring corresponding to a single Coulomb oscillation of the tunneling spectra. These results indicate explicitly that the electrons are completely trapped inside the nanoscale GQDs.

  19. Fermion parity flips and Majorana bound states at twist defects in superconducting fractional topological phases

    Science.gov (United States)

    Khan, Mayukh Nilay; Teo, Jeffrey C. Y.; Hughes, Taylor L.; Vishveshwara, Smitha

    2017-05-01

    flip and charge conjugation are considered, they lead to Z2 n +1 parafermions in Laughlin 1 /(2 n +1 ) states. Our formalism also reproduces known results such as Majorana/parafermionic bound states at superconducting domain walls of topological/fractional Chern insulators when twist defects are constructed based on charge conjugation symmetry. Finally, we briefly describe more exotic twist liquid phases obtained by gauging the AS where the twist defects become deconfined anyonic excitations.

  20. Lowest Q2 Measurement of the γ*p→ Δ Reaction: Probing the Pionic Contribution

    Energy Technology Data Exchange (ETDEWEB)

    Stave, Sean C. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2006-06-01

    The first excited state of the proton, the Delat, can be reached through a magnetic dipole spin flip of one of the quarks (M1) or through electric and Coulomb quadrupole terms (E2 and C2) which indicate a deviation from spherical symmetry. The quark models using the color hyperfine interaction underestimate the size of the quadrupole terms by more than an order of magnitude. Models using the pion cloud do a much better job of describing the data. This is expected due to the spontaneous breaking of chiral symmetry which leads to a cloud of virtual p wave pions which introduce the non-spherical amplitudes. The data presented in this work fill gaps in the low Q², long distance region where the pion cloud is expected to dominate and to produce significant Q2 variation. The p(e¯, ép)π° reaction was measured in the Δ region at Q² = 0.060 (GeV/c)², the lowest Q² to date for pion electroproduction, utilizing out-of-plane magnetic spectrometers at the Mainz Microtron in Germany. This work reports results for the dominant transition magnetic dipole amplitude and the quadrupole to dipole ratios obtained from fitting the new data with models using a three parameter, resonant multipole fit: M³/²1+ = (40.33 +- 0.63stat+syst +-model)(10-³/mπ+), E2/M1=Re(E³/²1+M³/²1+) = (-2.28+- 0.29stat+syst +- 0.20model)%, and C2/M1 =Re(S³/²1+/M³/²1+) poles disagree with predictions of the quark models but are in reasonable agreement with a chiral extrapolation of lattice QCD, chiral effective field theory and dynamical model results confirming the dominance and general Q² variation of the long range pionic contribution. While there is qualitative agreement with the models, there is no quantitative agreement thus indicating the need for further improvement of the models.

  1. Fano effect and Andreev bound states in a hybrid superconductor–ferromagnetic nanostructure

    Energy Technology Data Exchange (ETDEWEB)

    Siqueira, E.C., E-mail: ezcostta@gmail.com [Departamento de Física, Universidade Tecnológica Federal do Paraná – UTFPR, 84016210, Ponta Grossa, PR (Brazil); Orellana, P.A. [Departamento de Física, Universidad Técnica Federico Santa Maria, Av. Vicuña Mackenna 3939, Santiago (Chile); Cestari, R.C. [Departamento de Física e Química, Universidade Estadual Paulista – UNESP, 15385-000, Ilha Solteira, SP (Brazil); Figueira, M.S. [Instituto de Física, Universidade Federal Fluminense, 24210-340, Niterói, RJ (Brazil); Cabrera, G.G. [Instituto de Física ‘Gleb Wataghin’, Universidade Estadual de Campinas – UNICAMP, Campinas 13083-859, SP (Brazil)

    2015-10-16

    In this work, it is considered a hybrid nanostructure composed by a quantum dot coupled to two ferromagnetic leads and a superconductor lead. It is shown that the zero-bias transmittance for the co-tunneling between the ferromagnetic leads presents Fano anti-resonances due to the destructive interference between the two spin channels mixing by the relative orientation of the magnetizations in the leads. When the superconductor is coupled to the system, electron–hole correlations between different spin states lead to a resonance in the place of the dip appearing in the transmittance. Such an effect is accompanied by two Fano anti-resonances explained by a “leakage” of conduction channels from the co-tunneling to the Andreev transport. In the non-equilibrium regime, correlations within the quantum dot introduce a dependence of the resonance condition on the finite bias applied to the ferromagnetic leads. However, it is still possible to observe signatures of the same interference effect in the electrical current. - Highlights: • We have studied an hybrid nanostructure composed by quantum dot coupled to a superconductor and two ferromagnets. • The interplay between spin polarization and Andreev bound states leads to a Fano-like effect. • The Fano-like effect manifests as a resonance in the transmittance for the transport between the ferromagnets.

  2. Electron-electron bound states in Maxwell-Chern-Simons-Proca QED sub 3

    CERN Document Server

    Belich, H; Ferreira, M M J; Helayel-Neto, J A

    2002-01-01

    We start from a parity-breaking MCS QED sub 3 model with spontaneous breaking of the gauge symmetry as a framework for evaluation of the electron-electron interaction potential and for attainment of numerical values for the e sup - e sup - - bound state. Three expressions V sub e sub f sub f subarrow down subarrow down, V sub e sub f sub f subarrow down subarrow up, V sub e sub f sub f subarrow down subarrow down) are obtained according to the polarization state of the scattered electrons. In an energy scale compatible with condensed matter electronic excitations, these potentials become degenerated. The resulting potential is implemented in the Schroedinger equation and the variational method is applied to carry out the electronic binding energy. The resulting binding energies in the scale of 10-100 meV and a correlation length in the scale of 10 - 30 Angstrom are possible indications that the MCS-QED sub 3 model adopted may be suitable to address an eventual case of e sup - e sup - pairing in the presence o...

  3. Electroweak-charged bound states as LHC probes of hidden forces

    Science.gov (United States)

    Li, Lingfeng; Salvioni, Ennio; Tsai, Yuhsin; Zheng, Rui

    2018-01-01

    We explore the LHC reach on beyond-the-standard model (BSM) particles X associated with a new strong force in a hidden sector. We focus on the motivated scenario where the SM and hidden sectors are connected by fermionic mediators ψ+,0 that carry SM electroweak charges. The most promising signal is the Drell-Yan production of a ψ±ψ¯ 0 pair, which forms an electrically charged vector bound state ϒ± due to the hidden force and later undergoes resonant annihilation into W±X . We analyze this final state in detail in the cases where X is a real scalar ϕ that decays to b b ¯, or a dark photon γd that decays to dileptons. For prompt X decays, we show that the corresponding signatures can be efficiently probed by extending the existing ATLAS and CMS diboson searches to include heavy resonance decays into BSM particles. For long-lived X , we propose new searches where the requirement of a prompt hard lepton originating from the W boson ensures triggering and essentially removes any SM backgrounds. To illustrate the potential of our results, we interpret them within two explicit models that contain strong hidden forces and electroweak-charged mediators, namely λ -supersymmetry (SUSY) and non-SUSY ultraviolet extensions of the twin Higgs model. The resonant nature of the signals allows for the reconstruction of the mass of both ϒ± and X , thus providing a wealth of information about the hidden sector.

  4. Determination of the effective quadrupole moment in $^{181}$Ta with pionic x-rays

    CERN Document Server

    Beetz, R; Fransson, K; Konijn, J; Panman, J; Tauscher, Ludwig; Tibell, G

    1978-01-01

    From the hyperfine splitting of the 5g to 4f and the 6g to 4f pionic X-rays in /sup 181/Ta, an effective quadrupole moment of Q/sub eff /=3.58+or-0.03 b was determined. The strong interaction monopole shift epsilon /sub 0/ and the width Gamma /sub 0/ of the 4f level were measured to be epsilon /sub 0/=540+or-100 eV and Gamma /sub 0 /=225+or-57 eV, in good agreement with the values obtained with the standard optical potential description of the pion-nucleus interaction. Estimating the influence of the finite nuclear size, the deformation induced through the strong interaction between the pion and the finite nucleus, and the relative magnitude between the strong and the electromagnetic quadrupole coupling constants values for the spectroscopic quadrupole moment of Q=3.30+or-0.06 b, and for the intrinsic quadrupole moment of Q/sub 0/=7.06+or-0.12 b are obtained. (28 refs).

  5. High precision spectroscopy of pionic and antiprotonic atoms; Spectroscopie de precision des atomes pioniques et antiprotoniques

    Energy Technology Data Exchange (ETDEWEB)

    El-Khoury, P

    1998-04-15

    The study of exotic atoms, in which an orbiting electron of a normal atom is replaced by a negatively charged particle ({pi}{sup -}, {mu}{sup -}, p, {kappa}{sup -}, {sigma}{sup -},...) may provide information on the orbiting particle and the atomic nucleus, as well as on their interaction. In this work, we were interested in pionic atoms ({pi}{sup -14} N) on the one hand in order to determine the pion mass with high accuracy (4 ppm), and on the other hand in antiprotonic atoms (pp-bar) in order to study the strong nucleon-antinucleon interaction at threshold. In this respect, a high-resolution crystal spectrometer was coupled to a cyclotron trap which provides a high stop density for particles in gas targets at low pressure. Using curved crystals, an extended X-ray source could be imaged onto the detector. Charge-Coupled Devices were used as position sensitive detectors in order to measure the Bragg angle of the transition to a high precision. The use of gas targets resolved the ambiguity owing to the number of K electrons for the value of the pion mass, and, for the first time, strong interaction shift and broadening of the 2p level in antiprotonic hydrogen were measured directly. (author)

  6. Bound states emerging from below the continuum in a solvable PT -symmetric discrete Schrödinger equation

    Science.gov (United States)

    Znojil, Miloslav

    2017-07-01

    The phenomenon of the birth of an isolated quantum bound state at the lower edge of the continuum is studied for a particle moving along a discrete real line of coordinates x ∈Z . The motion is controlled by a weakly nonlocal 2 J -parametric external potential V which is non-Hermitian but P T symmetric. The model is found exactly solvable. The bound states are interpreted as Sturmians. Their closed-form definitions are presented and discussed up to J =7 .

  7. The g-factor of the electron bound in {sup 28}Si{sup 13+}. The most stringent test of bound-state quantum electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Sturm, Sven

    2012-09-06

    This thesis describes the ultra-precise determination of the g-factor of the electron bound to hydrogenlike {sup 28}Si{sup 13+}. The experiment is based on the simultaneous determination of the cyclotron- and Larmor frequency of a single ion, which is stored in a triple Penning-trap setup. The continuous Stern-Gerlach effect is used to couple the spin of the bound electron to the motional frequencies of the ion via a magnetic bottle, which allows the non-destructive determination of the spin state. To this end, a highly sensitive, cryogenic detection system was developed, which allowed the direct, non-destructive detection of the eigenfrequencies with the required precision. The development of a novel, phase sensitive detection technique finally allowed the determination of the g-factor with a relative accuracy of 4 . 10{sup -11}, which was previously inconceivable. The comparison of the hereby determined value with the value predicted by quantumelectrodynamics (QED) allows the verification of the validity of this fundamental theory under the extreme conditions of the strong binding potential of a highly charged ion. The exact agreement of theory and experiment is an impressive demonstration of the exactness of QED. The experimental possibilities created in this work will allow in the near future not only further tests of theory, but also the determination of the mass of the electron with a precision that exceeds the current literature value by more than an order of magnitude.

  8. Bound states in the continuum and polarization singularities in periodic arrays of dielectric rods

    Science.gov (United States)

    Bulgakov, Evgeny N.; Maksimov, Dmitrii N.

    2017-12-01

    We consider optical bound states in the continuum (BICs) in periodic arrays of dielectric rods. The full classification of BICs in the above system is provided, including the modes propagating along the axes of the rods and bidirectional BICs propagating both along the axes of the rods and the axis of periodicity. It is shown that the leaky zones supporting the BICs generally have elliptically polarized far-field radiation patterns, with the polarization ellipses collapsing on approach to the BICs in momentum space. That allowed us to apply the concept of polarization singularities and demonstrate that the BICs possess a topological charge defined as the winding number of the polarization direction [Phys. Rev. Lett. 113, 257401 (2014), 10.1103/PhysRevLett.113.257401]. It is found that the evolution of the BICs, including their creation and annihilation, under variation of geometric parameters is controlled by the topological charge. Three scenarios of such evolution for different leaky zones are described. Finally, it is shown that the topological properties of the BICs can be extracted from transmission spectra when the system is illuminated by a plane wave of circular polarization.

  9. Lead poisoning in United States-bound refugee children: Thailand-Burma border, 2009.

    Science.gov (United States)

    Mitchell, Tarissa; Jentes, Emily; Ortega, Luis; Scalia Sucosky, Marissa; Jefferies, Taran; Bajcevic, Predrag; Parr, Valentina; Jones, Warren; Brown, Mary Jean; Painter, John

    2012-02-01

    Elevated blood lead levels lead to permanent neurocognitive sequelae in children. Resettled refugee children in the United States are considered at high risk for elevated blood lead levels, but the prevalence of and risk factors for elevated blood lead levels before resettlement have not been described. Blood samples from children aged 6 months to 14 years from refugee camps in Thailand were tested for lead and hemoglobin. Sixty-seven children with elevated blood lead levels (venous ≥10 µg/dL) or undetectable (capillary lead levels participated in a case-control study. Of 642 children, 33 (5.1%) had elevated blood lead levels. Children aged lead levels risk factors included hemoglobin lead levels among tested US-bound Burmese refugee children was higher than the current US prevalence, and was especially high among children lead levels. A population-specific understanding of preexisting lead exposures can enhance postarrival lead-poisoning prevention efforts, based on Centers for Disease Control and Prevention recommendations for resettled refugee children, and can lead to remediation efforts overseas.

  10. Color-suppression of non-planar diagrams in bosonic bound states

    Science.gov (United States)

    Alvarenga Nogueira, J. H.; Ji, Chueng-Ryong; Ydrefors, E.; Frederico, T.

    2018-02-01

    We study the suppression of non-planar diagrams in a scalar QCD model of a meson system in 3 + 1 space-time dimensions due to the inclusion of the color degrees of freedom. As a prototype of the color-singlet meson, we consider a flavor-nonsinglet system consisting of a scalar-quark and a scalar-antiquark with equal masses exchanging a scalar-gluon of a different mass, which is investigated within the framework of the homogeneous Bethe-Salpeter equation. The equation is solved by using the Nakanishi representation for the manifestly covariant bound-state amplitude and its light-front projection. The resulting non-singular integral equation is solved numerically. The damping of the impact of the cross-ladder kernel on the binding energies are studied in detail. The color-suppression of the cross-ladder effects on the light-front wave function and the elastic electromagnetic form factor are also discussed. As our results show, the suppression appears significantly large for Nc = 3, which supports the use of rainbow-ladder truncations in practical non-perturbative calculations within QCD.

  11. Interaction of rigid C3N- with He: Potential energy surface, bound states, and rotational spectrum

    Science.gov (United States)

    Lara-Moreno, Miguel; Stoecklin, Thierry; Halvick, Philippe

    2017-06-01

    A two-dimensional rigid rotor model of the potential energy surface is developed for the collision of C3N- with He. Ab initio calculations are performed at the coupled cluster level with single and double excitations and using a perturbative treatment of triple excitations. An augmented correlation consistent polarized valence quadruple zeta basis set complemented with a set of mid-bond functions is chosen for these calculations. The global T-shaped minimum (De = 62.114 cm-1) is found at the intermolecular distance R = 6.42 a0. A secondary minimum (De = 41.384 cm-1) is obtained for the linear configuration C3N--He and for R = 9.83 a0. Calculations of the rovibrational bound states are carried out by using a discrete variable representation method based on Sturmian functions. The first theoretical prediction of the absorption spectra for the He-C3N- complex in the microwave region is also provided.

  12. Experimental study of bound states in $^{12}$Be through low-energy $^{11}$Be($d,p$)-transfer reactions

    CERN Document Server

    Johansen, J G; Borge, M J G; Cubero, M; Diriken, J; Elsevier, J; Fraile, L M; Fynbo, H O U; Gaffney, L P; Gernhäuser, R; Jonson, B; Koldste, G T; Konki, J; Kröll, T; Krücken, R; Mücher, D; Nilsson, T; Nowak, K; Pakarinen, J; Pesudo, V; Raabe, R; Riisager, K; Seidlitz, M; Tengblad, O; Törnqvist, H; Voulot, D; Warr, N; Wenander, F; Wimmer, K; De Witte, H

    2013-01-01

    The bound states of $^{12}$Be have been studied through a $^{11}$Be$(d,p)^{12}$Be transfer reaction experiment in inverse kinematics. A 2.8 MeV/u beam of $^{11}$Be was produced using the REX-ISOLDE facility at CERN. The outgoing protons were detected with the T-REX silicon detector array. The MINIBALL germanium array was used to detect $\\gamma$-rays from the excited states in $^{12}$Be. The $\\gamma$-ray detection enabled a clear identification of the four known bound states in $^{12}$Be, and each of the states has been studied individually. Differential cross sections over a large angular range have been extracted. Spectroscopic factors for each of the states have been determined from DWBA calculations and have been compared to previous experimental and theoretical results.

  13. Localization behavior at bound Bi complex states in GaA s1 -xB ix

    Science.gov (United States)

    Alberi, K.; Christian, T. M.; Fluegel, B.; Crooker, S. A.; Beaton, D. A.; Mascarenhas, A.

    2017-07-01

    While bismuth-related states are known to localize carriers in GaA s1 -xB ix alloys, the localization behavior of distinct Bi pair, triplet, and cluster states bound above the valence band is less well understood. We probe localization at three different Bi complex states in dilute GaA s1 -xB ix alloys using magnetophotoluminescence and time-resolved photoluminescence spectroscopy. The mass of electrons Coulomb-bound to holes trapped at Bi pair states is found to increase relative to the average electron mass in the alloy. This increase is attributed to enhanced local compressive strain in the immediate vicinity of the pairs. The dependence of energy transfer between these states on composition is also explored.

  14. A New Proof of Existence of a Bound State in the Quantum Coulomb Field

    Science.gov (United States)

    Staruszkiewicz, A.

    2004-09-01

    Let S(x) be a massless scalar quantum field which lives on the three-dimensional hyperboloid xx= (x0)2-(x1)2-(x2)2-(x3)2=-1. The classical action is assumed to be (hbar=1=c)(8π e2)-1int dx gikpartial i Spartial k S, where e2 is the coupling constant, dx is the invariant measure on the de Sitter hyperboloid xx=-1 and gik, i,k=1,2,3, is the internal metric on this hyperboloid. Let u be a fixed four-velocity i.e. a fixed unit time-like vector. The field S(u)=(1/4 π )int dxδ (ux)S(x)is smooth enough to be exponentiated, being an average of the operator valued distribution S(x) over the entire Cauchy surface ux=0. We prove that if 0 = exp (-iS(u))mid 0>, where mid 0 > is the Lorentz invariant vacuum state, contains a normalizable eigenstate of the Casimir operator C1=-(1/2)Mμ ν Mμ ν ; Mμ ν are generators of the proper orthochronous Lorentz group. The eigenvalue is (e2/π )(2-(e2/π )). This theorem was first proven by the Author in 1992 in his contribution to the Czyz Festschrift, see Erratum Acta Phys. Pol. B 23, 959 (1992). In this paper a completely different proof is given: we derive the partial, differential equation satisfied by the matrix element , σ > 0, and show that the function exp(z)\\cdot (1-z)\\cdot exp [-σ z (2-z)], z= e2/ π , is an exact solution of this differential equation, recovering thus both the eigenvalue and the probability of occurrence of the bound state. A beautiful integral is calculated as a byproduct.

  15. Silica-coated gold nanorods as saturable absorber for bound-state pulse generation in a fiber laser with near-zero dispersion

    Science.gov (United States)

    Wang, Xude; Luo, Aiping; Luo, Zhichao; Liu, Meng; Zou, Feng; Zhu, Yanfang; Xue, Jianping; Xu, Wencheng

    2017-11-01

    We presented a bound-state operation in a fiber laser with near-zero anomalous dispersion based on a silica-coated gold nanorods (GNRs@SiO2) saturable absorber (SA). Using a balanced twin detector measurement technique, the modulation depth and nonsaturable loss of the GNRs@SiO2 SA were measured to be approximately 3.5% and 39.3%, respectively. By virtue of the highly nonlinear effect of the GNRs@SiO2 SA, the bound-state pulses could be easily observed. Besides the lower-order bound-state pulses with two, three, and four solitons, the higher-order bound states with up to 12 solitons were also obtained in the laser cavity. The pulse profiles of the higher-order bound states were further reconstructed theoretically. The experimental results would give further insight towards understanding the complex nonlinear dynamics of bound-state pulses in fiber lasers.

  16. Calculations of antiproton nucleus quasi-bound states using the Paris (N)over-barN potential

    Czech Academy of Sciences Publication Activity Database

    Hrtánková, Jaroslava; Mareš, Jiří

    2018-01-01

    Roč. 969, č. 1 (2018), s. 45-59 ISSN 0375-9474 R&D Projects: GA ČR(CZ) GA15-04301S Institutional support: RVO:61389005 Keywords : antiproton-nucleus interaction * Paris (N)over-barN potential * antiproton-nuclear bound states Subject RIV: BE - Theoretical Physics Impact factor: 1.916, year: 2016

  17. On the spin- 1/2 Aharonov–Bohm problem in conical space: Bound states, scattering and helicity nonconservation

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, F.M., E-mail: fmandrade@uepg.br [Departamento de Matemática e Estatística, Universidade Estadual de Ponta Grossa, 84030-900 Ponta Grossa-PR (Brazil); Silva, E.O., E-mail: edilbertoo@gmail.com [Departamento de Física, Universidade Federal do Maranhão, Campus Universitário do Bacanga, 65085-580 São Luís-MA (Brazil); Pereira, M., E-mail: marciano@uepg.br [Departamento de Matemática e Estatística, Universidade Estadual de Ponta Grossa, 84030-900 Ponta Grossa-PR (Brazil)

    2013-12-15

    In this work the bound state and scattering problems for a spin- 1/2 particle undergone to an Aharonov–Bohm potential in a conical space in the nonrelativistic limit are considered. The presence of a δ-function singularity, which comes from the Zeeman spin interaction with the magnetic flux tube, is addressed by the self-adjoint extension method. One of the advantages of the present approach is the determination of the self-adjoint extension parameter in terms of physics of the problem. Expressions for the energy bound states, phase-shift and S matrix are determined in terms of the self-adjoint extension parameter, which is explicitly determined in terms of the parameters of the problem. The relation between the bound state and zero modes and the failure of helicity conservation in the scattering problem and its relation with the gyromagnetic ratio g are discussed. Also, as an application, we consider the spin- 1/2 Aharonov–Bohm problem in conical space plus a two-dimensional isotropic harmonic oscillator. -- Highlights: •Planar dynamics of a spin- 1/2 neutral particle. •Bound state for Aharonov–Bohm systems. •Aharonov–Bohm scattering. •Helicity nonconservation. •Determination of the self-adjoint extension parameter.

  18. Spectroscopy of $η'$-nucleus bound states at GSI and FAIR --- very preliminary results and future prospects ---

    NARCIS (Netherlands)

    Fujioka, H.; Ayyad, Y.; Benlliure, J.; Brinkmann, K. -T.; Friedrich, S.; Geissel, H.; Gellanki, J.; Guo, C.; Gutz, E.; Haettner, E.; Harakeh, M. N.; Hayano, R. S.; Higashi, Y.; Hirenzaki, S.; Hornung, C.; Igarashi, Y.; Ikeno, N.; Itahashi, K.; Iwasaki, M.; Jido, D.; Kalantar-Nayestanaki, N.; Kanungo, R.; Knoebel, R.; Kurz, N.; Metag, V.; Mukha, I.; Nagae, T.; Nagahiro, H.; Nanova, M.; Nishi, T.; Ong, H. J.; Pietri, S.; Prochazka, A.; Rappold, C.; Reiter, M. P.; Rodríguez-Sánchez, J. L.; Scheidenberger, C.; Simon, H.; Sitar, B.; Strmen, P.; Sun, B.; Suzuki, K.; Szarka, I.; Takechi, M.; Tanaka, Y. K.; Tanihata, I.; Terashima, S.; Watanabe, Y. N.; Weick, H.; Widmann, E.; Winfield, J. S.; Xu, X.; Yamakami, H.; Zhao, J.

    2015-01-01

    The possible existence of \\eta'-nucleus bound states has been put forward through theoretical and experimental studies. It is strongly related to the \\eta' mass at finite density, which is expected to be reduced because of the interplay between the $U_A(1)$ anomaly and partial restoration of chiral

  19. Order, disorder, and tunable gaps in the spectrum of Andreev bound states in a multiterminal superconducting device

    NARCIS (Netherlands)

    Yokoyama, T.; Reutlinger, Johannes; Belzig, Wolfgang; Nazarov, Y.V.

    2017-01-01

    We consider the spectrum of Andreev bound states (ABSs) in an exemplary four-terminal superconducting structure where four chaotic cavities are connected by quantum point contacts to the terminals and to each other forming a ring. We nickname the resulting device 4T-ring. Such a tunable device

  20. Destruction of symmetry protected optical bound state in the continuum by high-index substrate and roughnesses

    DEFF Research Database (Denmark)

    Bogdanov, A. A.; Sadrieva, Z. F.; Sinev, I. S.

    2017-01-01

    We experimentally and theoretically analyze the role of substrate on the optical bound states in the continuum (BICs). We reveal that a high-index substrate could destroy even in-plane symmetry protected BIC due to leakage into the diffraction channels opening in the substrate. We show how two...

  1. Effects of spin-orbit coupling on zero-energy bound states localized at magnetic impurities in multiband superconductors

    Science.gov (United States)

    Seo, Kangjun; Sau, Jay D.; Tewari, Sumanta

    2017-05-01

    We investigate the effect of spin-orbit coupling on the in-gap bound states localized at magnetic impurities in multiband superconductors with unconventional (sign-changed) and conventional (sign-unchanged) s -wave pairing symmetry, which may be relevant to iron-based superconductors. Without spin-orbit coupling, for spin-singlet superconductors it is known that such bound states cross zero energy at a critical value of the impurity scattering strength and acquire a finite spin polarization. Moreover, the degenerate, spin-polarized, zero-energy bound states are unstable to applied Zeeman fields as well as a deviation of the impurity scattering strength away from criticality. Using a T -matrix formalism as well as analytical arguments, we show that, in the presence of spin-orbit coupling, the zero-energy bound states localized at magnetic impurities in unconventional, sign-changed, s -wave superconductors acquire surprising robustness to applied Zeeman fields and variation in the impurity scattering strength, an effect which is absent in the conventional, sign-unchanged, s -wave superconductors. Given that the iron-based multiband superconductors may possess a substantial spin-orbit coupling as seen in recent experiments, our results may provide one possible explanation to the recent observation of surprisingly robust zero bias scanning tunneling microscope peaks localized at magnetic impurities in iron-based superconductors provided the order parameter symmetry is sign changing s+--wave.

  2. Weakly bound states of two- and three-boson systems in the crossover from two to three dimensions

    DEFF Research Database (Denmark)

    Yamashita, Marcelo; Bellotti, Filipe Furlan; Frederico, Tobias

    2015-01-01

    The spectrum and properties of quantum bound states is strongly dependent on the dimensionality of space. How this comes about and how one may theoretically and experimentally study the interpolation between different dimensions is a topic of great interest in different fields of physics. In this...

  3. Analytical study of bound states in graphene nanoribbons and carbon nanotubes: The variable phase method and the relativistic Levinson theorem

    Energy Technology Data Exchange (ETDEWEB)

    Miserev, D. S., E-mail: d.miserev@student.unsw.edu.au, E-mail: erazorheader@gmail.com [University of New South Wales, School of Physics (Australia)

    2016-06-15

    The problem of localized states in 1D systems with a relativistic spectrum, namely, graphene stripes and carbon nanotubes, is studied analytically. The bound state as a superposition of two chiral states is completely described by their relative phase, which is the foundation of the variable phase method (VPM) developed herein. Based on our VPM, we formulate and prove the relativistic Levinson theorem. The problem of bound states can be reduced to the analysis of closed trajectories of some vector field. Remarkably, the Levinson theorem appears as the Poincaré index theorem for these closed trajectories. The VPM equation is also reduced to the nonrelativistic and semiclassical limits. The limit of a small momentum p{sub y} of transverse quantization is applicable to an arbitrary integrable potential. In this case, a single confined mode is predicted.

  4. Sulfur Atom in its Bound State Is a Unique Element Involved in Physiological Functions in Mammals

    Directory of Open Access Journals (Sweden)

    Shin Koike

    2016-12-01

    Full Text Available It was in the 1950s that the term polysulfide or persulfide was introduced in biological studies. The unfamiliar term “sulfane sulfur” sometimes appeared in papers published in the 1970s, and was defined in the review article by Westley in 1983. In the article, sulfane sulfur is described as sulfur atoms that are covalently bound only with sulfur atoms, and as this explanation was somewhat difficult to comprehend, it was not generally accepted. Thus, in the early 1990s, we redefined these sulfur species as “bound sulfur”, which easily converts to hydrogen sulfide on reduction with a thiol reducing agent. In other words, bound sulfur refers to a sulfur atom that exists in a zero to divalent form (0 to −2. The first part of this review focuses on the fluorescent derivatization HPLC method—which we developed for measurement of bound sulfur—and explains the distribution of bound sulfur and the hydrogen sulfide-producing ability of various tissues, as clarified by this method. Next, we discuss diverse physiological functions and involvement of polysulfide, a typical type of bound sulfur, in the redox regulation system. Additionally, we also address its possible physiological role in the central nervous system, based on its action of scavenging reactive carbonyl compounds.

  5. Nonlinear bayesian state filtering with missing measurements and bounded noise and its application to vehicle position estimation

    Czech Academy of Sciences Publication Activity Database

    Pavelková, Lenka

    2011-01-01

    Roč. 47, č. 3 (2011), s. 370-384 ISSN 0023-5954 R&D Projects: GA MŠk 1M0572 Institutional research plan: CEZ:AV0Z10750506 Keywords : non-linear state space model * bounded uncertainty * missing measurements * state filtering * vehicle position estimation Subject RIV: BC - Control Systems Theory Impact factor: 0.454, year: 2011 http://library.utia.cas.cz/separaty/2011/AS/pavelkova-0360239.pdf

  6. The ρ(ω/B*(B system and bound states in the unitary local Hidden Gauge approach

    Directory of Open Access Journals (Sweden)

    Fernandez-Soler P.

    2016-01-01

    Full Text Available In this work, we study systems composed of a ρ/ω and B* meson pair. We find three bound states in isospin, spin-parity channels (1/2, 0+, (1/2, 1+ and (1/2, 2+. The state with J = 2 can be a good candidate for the B*2(5747. We also study the ρB system, and a bound state with mass 5728 MeV and width around 20 MeV is obtained, which can be identified with the B1(5721 resonance. In the case of I = 3/2, one obtains repulsion and thus, no exotic (molecular mesons in this sector are generated in the approach.

  7. In-medium bound-state formation and inhomogeneous condensation in Fermi gases in a hard-wall box

    Science.gov (United States)

    Roscher, Dietrich; Braun, Jens

    2017-10-01

    The formation of bosonic bound states underlies the formation of a superfluid ground state in the many-body phase diagram of ultracold Fermi gases. We study bound-state formation in a spin- and mass-imbalanced ultracold Fermi gas confined in a box with hard-wall boundary conditions. Because of the presence of finite Fermi spheres, the center-of-mass momentum of the potentially formed bound states can be finite, depending on the parameters controlling mass and spin imbalance as well as the coupling strength. We exploit this observation to estimate the potential location of inhomogeneous phases in the many-body phase diagram as a function of spin- and mass imbalance as well as the box size. Our results suggest that a hard-wall box does not alter substantially the many-body phase diagram calculated in the thermodynamic limit. Therefore, such a box may serve as an ideal trap potential to bring experiment and theory closely together and facilitate the search for exotic inhomogeneous ground states.

  8. Bubble-bound state of triple-stranded DNA: Efimov physics in DNA with repulsion

    Science.gov (United States)

    Maji, Jaya; Seno, Flavio; Trovato, Antonio; Bhattacharjee, Somendra M.

    2017-07-01

    The presence of a thermodynamic phase of a three-stranded DNA, namely, a mixed phase of bubbles of two bound strands and a single one, is established for large dimensions (d≥slant 5 ) by using exact real space renormalization group transformations and exact computations of specific heat for finite length chains. Similar exact computations for the fractal Sierpinski gasket of dimension d  stability of the phase in the presence of a repulsive three chain interaction. Although, for d  DNA, where three strands are bound though no two are bound, the mixed phase appears at temperatures less than the two chain melting temperature. Both the Efimov-DNA and the mixed phase are formed essentially due to the strand exchange mechanism.

  9. Application of solid state NMR for the study of surface bound species and fossil fuels

    Science.gov (United States)

    Althaus, Stacey

    Recent advances in solid state NMR have been utilized to study a variety of systems. These advancements have allowed for the acquisition of sequences previously only available for solution state detection. The protocol for the measurement of coals and other carbonaceous materials was updated to incorporate the recent advancements in fast magic angle spinning (MAS) and high magnetic fields. Argonne Premium Coals were used to test the sensitivity and resolution of the experiments preformed at high field and fast MAS. The higher field spectra were shown to be slightly less sensitive than the traditional lower field spectra, however, the new high field fast MAS spectra had better resolution. This increased resolution allowed for the separation of a variety of different functional groups, thereby allowing the composition of the coal to be determined. The use of 1 H detection allowed for 2D spectra of coals for the first time. These spectra could be filtered to examine either through-space or through-bond correlations. Indirect detection via 1 H was also pivotal in the detection of natural abundance 15 N spectra. Through-space and through-bond 2D spectra of natural abundance bulk species are shown with a sensitivity increase of 15 fold over traditional detection. This sensitivity enhancement allowed for the detection of natural abundance 15 N surface bound species in 2D, something that could not be acquired via traditional methods. The increased efficiency of the through-space magnetization transfer, Cross polarization, at fast MAS compared to the slower MAS rates is shown. The through-bond magnetization transfer via INEPT was examined and the effect of J-coupling is confirmed. Solid State NMR can be utilized to help improve catalytic interactions. Solid state NMR was used to examine the aldol condensation between p-nitrobenzaldehyde and acetone. The formation of a stable intermediate with p-nitrobenzaldehyde was found on the primary functionalized amine mesoporous

  10. Spectroscopy of η'-nucleus bound states at GSI and FAIR — very preliminary results and future prospects —

    Science.gov (United States)

    Fujioka, H.; Ayyad, Y.; Benlliure, J.; Brinkmann, K.-T.; Friedrich, S.; Geissel, H.; Gellanki, J.; Guo, C.; Gutz, E.; Haettner, E.; Harakeh, M. N.; Hayano, R. S.; Higashi, Y.; Hirenzaki, S.; Hornung, C.; Igarashi, Y.; Ikeno, N.; Itahashi, K.; Iwasaki, M.; Jido, D.; Kalantar-Nayestanaki, N.; Kanungo, R.; Knoebel, R.; Kurz, N.; Metag, V.; Mukha, I.; Nagae, T.; Nagahiro, H.; Nanova, M.; Nishi, T.; Ong, H. J.; Pietri, S.; Prochazka, A.; Rappold, C.; Reiter, M. P.; Rodríguez-Sánchez, J. L.; Scheidenberger, C.; Simon, H.; Sitar, B.; Strmen, P.; Sun, B.; Suzuki, K.; Szarka, I.; Takechi, M.; Tanaka, Y. K.; Tanihata, I.; Terashima, S.; Watanabe, Y. N.; Weick, H.; Widmann, E.; Winfield, J. S.; Xu, X.; Yamakami, H.; Zhao, J.

    2015-08-01

    The possible existence of η'-nucleus bound states has been put forward through theoretical and experimental studies. It is strongly related to the η' mass at finite density, which is expected to be reduced because of the interplay between the U A (1) anomaly and partial restoration of chiral symmetry. The investigation of the C( p, d) reaction at GSI and FAIR, as well as an overview of the experimental program at GSI and future plans at FAIR are discussed.

  11. Unconventional monetary policy at the zero nominal bound : a case study of United States, United Kingdom and Japan

    OpenAIRE

    Hatleskog, Anne; Lappi, Henna

    2010-01-01

    The objective of this paper is to assess unconventional monetary policy at the zero nominal bound: First, we assemble a framework for implementing and evaluating unconventional monetary policy. Second, we use the framework to conduct three detailed case studies on unconventional policy responses in Japan, United States and United Kingdom. Third, we make a cross-country analysis of the development in key macroeconomic variables after the adaption of unconventional monetary policies. We find...

  12. How does a synthetic non-Abelian gauge field influence the bound states of two spin- 1 / 2 fermions?

    Science.gov (United States)

    Vyasanakere, Jayantha; Shenoy, Vijay

    2011-03-01

    We study the bound states of two spin- 1 / 2 fermions interacting via a contact attraction (characterized by the scattering length) in the singlet channel in 3 D space in presence of a uniform non-Abelian gauge field. The configuration of the gauge field that generates a Rashba type spin-orbit interaction is described by three coupling parameters (λx ,λy ,λz) . For a generic gauge field configuration, the critical scattering length required for the formation of a bound state is negative, i.e., shifts to the ``BCS side'' of the resonance. Interestingly, we find that there are special high-symmetry configurations (e.g., λx =λy =λz) for which there is a two body bound state for any scattering length however small and negative. Our results show that the BCS-BEC crossover is drastically affected by the presence of a non-Abelian gauge field. We discuss possible experimental signatures of our findings both at high and low temperatures. Work supported by DST, India through Ramanujan grant.

  13. Nonlocal,Dynamic Dielectric Response of a Quantum Well with Bound State in a Bulk Medium having a 3D Band of Extended States

    Science.gov (United States)

    Horing, N. J. M.

    1997-03-01

    An explicit position-space inversion of the dielectric function of a planar quantum well with a bound state embedded in a bulk medium having a 3D band of extended states is carried out here in closed form.The resulting nonlocal dynamic inverse dielectric function K(z,z^';barq,w) is exact within the framework of the random phase approximation with the assumption that the 3D band of extended states is translationally invariant in the z-direction,and that intersubband transitions between the 3D band and the discrete bound state are negligible.The frequency poles of K(z,z^';barq,w) obtained here represent the coupling of nonlocal bulk plasmons with 2D intrasubband plasmons of the quantum well and the residues of these poles provide the oscillator strength of such coupled collective modes.

  14. Determination of the s-wave pion-nucleon threshold scattering parameters from the results of experiments on pionic hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Oades, G.C. [Institute of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark); Rasche, G. [Institut fuer Theoretische Physik der Universitaet, Winterthurerstrasse 190, CH-8057 Zuerich (Switzerland); Woolcock, W.S. [Department of Theoretical Physics, IAS, Australian National University, Canberra, ACT 0200 (Australia); Matsinos, E. [Varian Medical Systems Imaging Laboratory GmbH, Taefernstrasse 7, CH-5405 Baden-Daettwil (Switzerland)], E-mail: evangelos.matsinos@varian.com; Gashi, A. [Mediscope AG, Alfred Escher-Str. 27, CH-8002 Zuerich (Switzerland)

    2007-10-01

    We give the conversion equations which lead from experimental values of the 3p{yields}1s transition energy in pionic hydrogen and the total width of the 1s level to values of the s-wave threshold scattering parameters for the processes {pi}{sup -}p{yields}{pi}{sup -}p and {pi}{sup -}p{yields}{pi}{sup 0}n respectively. Using a three-channel potential model, we then calculate the electromagnetic corrections to these quantities, which remove the effects of the Coulomb interaction, the external mass differences and the presence of the {gamma}n channel. We give the s-wave scattering parameters obtained from the present experimental data and these electromagnetic corrections. Finally we discuss the implications for isospin invariance.

  15. Exclusive measurements of pp->dpi{sup +}pi{sup 0}: Double-pionic fusion without ABC effect

    Energy Technology Data Exchange (ETDEWEB)

    Kren, F.; Bashkanov, M. [Physikalisches Institut der Universitaet Tuebingen, D-72076 Tuebingen (Germany); Bogoslawsky, D. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Calen, H. [Svedberg Laboratory, Uppsala (Sweden); Clement, H., E-mail: Clement@pit.physik.uni-tuebingen.d [Physikalisches Institut der Universitaet Tuebingen, D-72076 Tuebingen (Germany); Demiroers, L. [Hamburg University, Hamburg (Germany); Ekstroem, C.; Fransson, K.; Greiff, J. [The Svedberg Laboratory, Uppsala (Sweden); Gustafsson, L.; Hoeistad, B. [Uppsala University, Uppsala (Sweden); Ivanov, G. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Jacewicz, M. [Uppsala University, Uppsala (Sweden); Jiganov, E. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Johansson, T. [Uppsala University, Uppsala (Sweden); Khakimova, O. [Physikalisches Institut der Universitaet Tuebingen, D-72076 Tuebingen (Germany); Keleta, S.; Koch, I.; Kullander, S. [Uppsala University, Uppsala (Sweden); Kupsc, A. [Svedberg Laboratory, Uppsala (Sweden)

    2010-02-08

    Exclusive measurements of the reaction pp->dpi{sup +}pi{sup 0} have been carried out at T{sub p}=1.1 GeV at the CELSIUS storage ring using the WASA detector. The isovector pi{sup +}pi{sup 0} channel exhibits no enhancement at low invariant pipi masses, i.e. no ABC effect. Therefore this most basic isovector double-pionic fusion reaction qualifies as an ideal test case for the conventional t-channel DELTADELTA excitation process. Indeed, the obtained differential distributions reveal the conventional t-channel DELTADELTA mechanism as the appropriate reaction process, which also accounts for the observed energy dependence of the total cross section.

  16. Modelling near-surface bound electron states in a 3D topological insulator: analytical and numerical approaches.

    Science.gov (United States)

    Men'shov, V N; Tugushev, V V; Menshchikova, T V; Eremeev, S V; Echenique, P M; Chulkov, E V

    2014-12-03

    We apply both analytical and ab-initio methods to explore heterostructures composed of a 3D topological insulator (3D TI) and an ultrathin normal insulator (NI) overlayer as a proving ground for the principles of topological phase engineering. Using the continual model of a semi-infinite 3D TI we study the surface potential (SP) effect caused by an attached ultrathin layer of 3D NI on the formation of topological bound states at the interface. The results reveal that the spatial profile and spectrum of these near-surface states strongly depend on both the sign and the strength of the SP. Using ab-initio band structure calculations to take the specificity of the materials into account, we investigate the NI/TI heterostructures formed by a single tetradymite-type quintuple or septuple layer block and the 3D TI substrate. The analytical continuum theory results relate the near-surface state evolution with the SP variation and are in good qualitative agreement with those obtained from density-functional theory (DFT) calculations. We also predict the appearance of the quasi-topological bound state on the 3D NI surface caused by a local band gap inversion induced by an overlayer.

  17. High precision hyperfine measurements in Bismuth challenge bound-state strong-field QED.

    Science.gov (United States)

    Ullmann, Johannes; Andelkovic, Zoran; Brandau, Carsten; Dax, Andreas; Geithner, Wolfgang; Geppert, Christopher; Gorges, Christian; Hammen, Michael; Hannen, Volker; Kaufmann, Simon; König, Kristian; Litvinov, Yuri A; Lochmann, Matthias; Maaß, Bernhard; Meisner, Johann; Murböck, Tobias; Sánchez, Rodolfo; Schmidt, Matthias; Schmidt, Stefan; Steck, Markus; Stöhlker, Thomas; Thompson, Richard C; Trageser, Christian; Vollbrecht, Jonas; Weinheimer, Christian; Nörtershäuser, Wilfried

    2017-05-16

    Electrons bound in highly charged heavy ions such as hydrogen-like bismuth 209 Bi 82+ experience electromagnetic fields that are a million times stronger than in light atoms. Measuring the wavelength of light emitted and absorbed by these ions is therefore a sensitive testing ground for quantum electrodynamical (QED) effects and especially the electron-nucleus interaction under such extreme conditions. However, insufficient knowledge of the nuclear structure has prevented a rigorous test of strong-field QED. Here we present a measurement of the so-called specific difference between the hyperfine splittings in hydrogen-like and lithium-like bismuth 209 Bi 82+,80+ with a precision that is improved by more than an order of magnitude. Even though this quantity is believed to be largely insensitive to nuclear structure and therefore the most decisive test of QED in the strong magnetic field regime, we find a 7-σ discrepancy compared with the theoretical prediction.

  18. High precision hyperfine measurements in Bismuth challenge bound-state strong-field QED

    Science.gov (United States)

    Ullmann, Johannes; Andelkovic, Zoran; Brandau, Carsten; Dax, Andreas; Geithner, Wolfgang; Geppert, Christopher; Gorges, Christian; Hammen, Michael; Hannen, Volker; Kaufmann, Simon; König, Kristian; Litvinov, Yuri A.; Lochmann, Matthias; Maaß, Bernhard; Meisner, Johann; Murböck, Tobias; Sánchez, Rodolfo; Schmidt, Matthias; Schmidt, Stefan; Steck, Markus; Stöhlker, Thomas; Thompson, Richard C.; Trageser, Christian; Vollbrecht, Jonas; Weinheimer, Christian; Nörtershäuser, Wilfried

    2017-05-01

    Electrons bound in highly charged heavy ions such as hydrogen-like bismuth 209Bi82+ experience electromagnetic fields that are a million times stronger than in light atoms. Measuring the wavelength of light emitted and absorbed by these ions is therefore a sensitive testing ground for quantum electrodynamical (QED) effects and especially the electron-nucleus interaction under such extreme conditions. However, insufficient knowledge of the nuclear structure has prevented a rigorous test of strong-field QED. Here we present a measurement of the so-called specific difference between the hyperfine splittings in hydrogen-like and lithium-like bismuth 209Bi82+,80+ with a precision that is improved by more than an order of magnitude. Even though this quantity is believed to be largely insensitive to nuclear structure and therefore the most decisive test of QED in the strong magnetic field regime, we find a 7-σ discrepancy compared with the theoretical prediction.

  19. Scattering and bound-state problems with non-local potentials application of the variable-phase approach

    CERN Document Server

    Kidun, O; Berakdar, J

    2002-01-01

    Following the framework of the variable-phase approach, we derive an equation for determining the scattering amplitude of a non-relativistic quantum particle in a non-local potential. Its solution implies the integration of the Volterra integro-differential equation of the first kind and allows determination of bound-state energies and wavefunctions. A fast numerical scheme for the solution of these equations is suggested and it is demonstrated that the proposed method requires the numerical efforts of the same order as in the local potential case.

  20. Kondo correlations and Majorana bound states in a metal to quantum-dot to topological-superconductor junction.

    Science.gov (United States)

    Golub, A; Kuzmenko, I; Avishai, Y

    2011-10-21

    Electron transport through a normal-metal-quantum-dot-topological-superconductor junction is studied and reveals interlacing physics of Kondo correlations with two Majorana fermions bound states residing on the opposite ends of the topological superconductor. When the strength of the Majorana fermion coupling exceeds the temperature T, this combination of Kondo-Majorana fermion physics might be amenable for an experimental test: The usual peak of the temperature dependent zero bias conductance σ(V=0,T) splits and the conductance has a dip at T=0. The heights of the conductance side peaks decrease with magnetic field. © 2011 American Physical Society

  1. Bulk boundary correspondence and the existence of Majorana bound states on the edges of 2D topological superconductors

    Science.gov (United States)

    Sedlmayr, Nicholas; Kaladzhyan, Vardan; Dutreix, Clément; Bena, Cristina

    2017-11-01

    The bulk-boundary correspondence establishes a connection between the bulk topological index of an insulator or superconductor, and the number of topologically protected edge bands or states. For topological superconductors in two dimensions, the first Chern number is related to the number of protected bands within the bulk energy gap, and is therefore assumed to give the number of Majorana band states in the system. Here we show that this is not necessarily the case. As an example, we consider a hexagonal-lattice topological superconductor based on a model of graphene with Rashba spin-orbit coupling, proximity-induced s -wave superconductivity, and a Zeeman magnetic field. We explore the full Chern number phase diagram of this model, extending what is already known about its parity. We then demonstrate that, despite the high Chern numbers that can be seen in some phases, these do not strictly always contain Majorana bound states.

  2. Electron-{{He}}_{2}^{+} scattering calculation using the R-matrix method: resonant and bound states of He2

    Science.gov (United States)

    Epée Epée, M. D.; Motapon, O.; Darby-Lewis, D.; Tennyson, J.

    2017-06-01

    The UK molecular R-matrix codes are used to study electron collisions with the {{He}}2+ molecular ion. Full configuration interaction calculations are performed to obtain the potential energy curves of the ground X {}2{{{Σ }}}u+ and the first excited A {}2{{{Σ }}}g+ electronic states of {{He}}2+. Resonances, effective quantum numbers, and resonance widths as a function of the internuclear separation are determined for the lowest singlet {}1{{{Σ }}}g+,{}1{{{Σ }}}u+,{}1{{{\\Pi }}}g and {}1{{{\\Pi }}}u and triplet {}3{{{Σ }}}g+,{}3{{{Σ }}}u+,{}3{{{\\Pi }}}g,{}3{{{\\Pi }}}u and {}3{{{Δ }}}u states, which are relevant for the study of the reactive collision of {{He}}2+ with low-energy electrons. In addition, bound states are also calculated for each symmetry of {{He}}2 at several geometries.

  3. Influence of quasi-bound states on the carrier capture into quantum dots

    DEFF Research Database (Denmark)

    Magnúsdóttir, Ingibjörg; Uskov, A.; Bischoff, Svend

    2002-01-01

    An important characteristic of quantum dot (QD) materials is the timescale on which carriers are captured into the dots and relax to their ground state. The properties of devices based on QDs, such as lasers, thus rely on efficient carrier feeding to the active QD states. These processes are beli...

  4. Topologically protected bound states in photonic parity-time-symmetric crystals

    Science.gov (United States)

    Weimann, S.; Kremer, M.; Plotnik, Y.; Lumer, Y.; Nolte, S.; Makris, K. G.; Segev, M.; Rechtsman, M. C.; Szameit, A.

    2017-04-01

    Parity-time (PT)-symmetric crystals are a class of non-Hermitian systems that allow, for example, the existence of modes with real propagation constants, for self-orthogonality of propagating modes, and for uni-directional invisibility at defects. Photonic PT-symmetric systems that also support topological states could be useful for shaping and routing light waves. However, it is currently debated whether topological interface states can exist at all in PT-symmetric systems. Here, we show theoretically and demonstrate experimentally the existence of such states: states that are localized at the interface between two topologically distinct PT-symmetric photonic lattices. We find analytical closed form solutions of topological PT-symmetric interface states, and observe them through fluorescence microscopy in a passive PT-symmetric dimerized photonic lattice. Our results are relevant towards approaches to localize light on the interface between non-Hermitian crystals.

  5. Search for the He-η bound states with the WASA-at-COSY facility

    Directory of Open Access Journals (Sweden)

    Krzemien W.

    2012-12-01

    Full Text Available The η-mesic nuclei in which the η meson is bound with nucleus via strong interaction was postulated already in 1986, however till now no experiment confirmed empirically its existence. The discovery of this new kind of an exotic nuclear matter would be very important for better understanding of the η meson structure and its interaction with nucleons. The search for η-mesic helium is carried out with high statistic and high acceptance with the WASA-at-COSY detection setup in the Research Center Jülich. The search is conducted via the measurement of the excitation function for the chosen decay channels of the 4He-η system. Till now two reactions dd → (4He-ηbs → 3Hepπ− and dd → (4He-ηbs → 3Henπ0 were measured with the beam momentum ramped around the η production threshold. This report includes the description of experimental method and status of the analysis.

  6. Scattering and bound states for the Hulthén potential in a cosmic string background

    Science.gov (United States)

    Hosseinpour, Mansoureh; Andrade, Fabiano M.; Silva, Edilberto O.; Hassanabadi, Hassan

    2017-05-01

    In this work we study the Dirac equation with vector and scalar potentials in the spacetime generated by a cosmic string. Using an approximation for the centrifugal term, a solution for the radial differential equation is obtained. We consider the scattering states under the Hulthén potential and obtain the phase shifts. From the poles of the scattering S-matrix the states energies are determined as well.

  7. Scattering and bound states for the Hulthen potential in a cosmic string background

    Energy Technology Data Exchange (ETDEWEB)

    Hosseinpour, Mansoureh; Hassanabadi, Hassan [Shahrood University of Technology, Physics Department, P. O. Box: 3619995161-316, Shahrood (Iran, Islamic Republic of); Andrade, Fabiano M. [Universidade Estadual de Ponta Grossa, Departamento de Matematica e Estatistica, Ponta Grossa, PR (Brazil); Silva, Edilberto O. [Universidade Federal do Maranhao, Departamento de Fisica, Sao Luis, MA (Brazil)

    2017-05-15

    In this work we study the Dirac equation with vector and scalar potentials in the spacetime generated by a cosmic string. Using an approximation for the centrifugal term, a solution for the radial differential equation is obtained. We consider the scattering states under the Hulthen potential and obtain the phase shifts. From the poles of the scattering S-matrix the states energies are determined as well. (orig.)

  8. Effect of a Culture-Based Screening Algorithm on Tuberculosis Incidence in Immigrants and Refugees Bound for the United States

    Science.gov (United States)

    Liu, Yecai; Posey, Drew L.; Cetron, Martin S.; Painter, John A.

    2015-01-01

    Background Before 2007, U.S.-bound immigrants and refugees were screened for tuberculosis (TB) by a smear-based algorithm that could not diagnose smear-negative and culture-positive TB. In 2007, the Centers for Disease Control and Prevention began to implement a culture-based algorithm. Objective To evaluate the effect of the culture-based algorithm on preventing the importation of TB to the United States by immigrants and refugees from foreign countries. Design Population-based, cross-sectional study. Setting Panel physician sites for overseas medical examination. Patients Immigrants and refugees with TB. Measurements Comparison of the increase of smear-negative and culture-positive TB cases diagnosed overseas among immigrants and refugees by the culture-based algorithm with the decline of reported TB cases among foreign-born persons within 1 year after arrival in the United States from 2007 to 2012. Results Of the 3 212 421 arrivals of immigrants and refugees from 2007 to 2012, 1 650 961 (51.4%) were screened by the smear-based algorithm and 1 561 460 (48.6%) were screened by the culture-based algorithm. Among the 4032 TB cases diagnosed by the culture-based algorithm, 2195 (54.4%) were smear-negative and culture-positive. Before implementation (2002 to 2006), the annual number of reported TB cases among foreign-born persons within 1 year after arrival was relatively constant (range, 1424 to 1626 cases; mean, 1504 cases) but decreased from 1511 to 940 cases during implementation (2007 to 2012). During the same period, the annual number of smear-negative and culture-positive TB cases diagnosed overseas among U.S.-bound immigrants and refugees by the culture-based algorithm increased from 4 in 2007 to 629 in 2012. Limitation This analysis did not control for the decline in new arrivals of nonimmigrant visitors to the United States and the decrease of incidence of TB in their countries of origin. Conclusion Implementation of the culture-based algorithm in U.S.-bound

  9. Inversion symmetry breaking of atomic bound states in strong and short laser fields

    CERN Document Server

    Stooß, Veit; Ott, Christian; Blättermann, Alexander; Ding, Thomas; Pfeifer, Thomas

    2015-01-01

    In any atomic species, the spherically symmetric potential originating from the charged nucleus results in fundamental symmetry properties governing the structure of atomic states and transition rules between them. If atoms are exposed to external electric fields, these properties are modified giving rise to energy shifts such as the AC Stark-effect in varying fields and, contrary to this in a constant (DC) electric field for high enough field strengths, the breaking of the atomic symmetry which causes fundamental changes in the atom's properties. This has already been observed for atomic Rydberg states with high principal quantum numbers. Here, we report on the observation of symmetry breaking effects in Helium atoms for states with principal quantum number n=2 utilizing strong visible laser fields. These findings were enabled by temporally resolving the dynamics better than the sub-optical cycle of the applied laser field, utilizing the method of attosecond transient absorption spectroscopy (ATAS). We ident...

  10. Biexcitonic bound and continuum states of homogeneously and inhomogeneously broadened exciton resonances

    DEFF Research Database (Denmark)

    Langbein, W.; Hvam, Jørn Märcher

    2002-01-01

    We investigate the influence of excitonic localization on the corresponding biexcitonic states in GaAs quantum wells by spectrally resolved four-wave mixing. With increasing localization, the biexciton binding energy increases, while the biexciton continuum shifts to higher energies....... The localization leads to an inhomogeneous broadening of the biexciton binding energy and the biexciton continuum edge. Simultaneously, the oscillator strength of the biexciton continuum-edge is reduced. This is interpreted as a result of the different localization of biexcitonic and excitonic states by the random...

  11. State-dependent self-representations: a culture-bound aspect of identity.

    Science.gov (United States)

    Ghorpade, Amar

    2009-03-01

    The concepts of identity, self and self-representation have been discussed extensively in psychoanalytic metapsychology. These concepts are at times confusing and are used interchangeably by various authors. Regardless of what one calls it, what one experiences in a given moment is one's representation as an analyst or a father or a son or daughter, depending on the situation one is in. This paper describes such state-dependent self-representations as an aspect of the self and argues that state-dependent self-representations are probably more clinically relevant and useful in day-to-day practice.

  12. Bound states of Dirac electrons in a graphene-based magnetic quantum dot

    Science.gov (United States)

    Wang, Dali; Jin, Guojun

    2009-10-01

    We investigate the magnetically confined states of the massless Dirac fermions in a graphene quantum dot formed by the inhomogeneous distributions of the magnetic fields inside and outside the dot. The calculated energy spectrum exhibits quite different features with and without the magnetic field inside the dot. It is found that the degeneracy of the relativistic Landau level with negative angular momenta can be lifted, and this degeneracy breaking can be modulated by the magnetic field inside the dot. Moreover, such a system can form the strongly localized states within the dot and along its boundary, especially with the magnetic field inside the dot.

  13. On the construction of quasidiabatic state representations of bound adiabatic state potential energy surfaces coupled by accidental conical intersections: incorporation of higher order terms.

    Science.gov (United States)

    Dillon, Joseph; Yarkony, David R; Schuurman, Michael S

    2011-01-28

    The quadratic vibronic coupling model is an important computational tool for simulating photoelectron spectra involving strongly coupled electronic states in polyatomic molecules. However, recent work has indicated the need for higher order terms, with most of the initial studies focusing on molecules with symmetry-required degeneracies. In this study we report an extension of our approach for constructing fully quadratic representations of bound electronic states coupled by conical intersections, which allows for the inclusion of higher order terms, demonstrated here employing a quartic expansion. Procedures are developed that eliminate unphysical behavior for large displacements, a problem likely to be an endemic to anharmonic expansions. Following work on representing dissociative electronic states, Lagrange multipliers are used to constrain the constructed representation to reproduce exactly the energy, energy gradients, and∕or derivative couplings at specific points, or nodes, in nuclear coordinate space. The approach is illustrated and systematically studied using the four lowest electronic states of triazolyl, (CH)(2)N(3).

  14. Bound states within the radiation continuum in diffraction gratings and the role of leaky modes

    Science.gov (United States)

    Monticone, Francesco; Alù, Andrea

    2017-09-01

    We discuss resonant states with diverging Q factor within the radiation continuum based on the anomalous interaction of leaky guided modes and diffracted waves in suitably designed reflection gratings. We show that these trapped optical states can be understood within the framework of leaky-wave theory, which unveils their generation process and dynamics. Our findings reveal an interesting mechanism to realize embedded eigenstates in periodic structures, shedding light on their electromagnetic properties, and offering the possibility to quantitatively predict their occurrence and systematically design optimal structures that support them. The realization of extraordinary optical trapping in open structures may be important for applications that require strongly confined and enhanced fields and high selectivity in angle and frequency.

  15. An Efficient Implementation of Non-Linear Limit State Analysis Based on Lower-Bound Solutions

    DEFF Research Database (Denmark)

    Damkilde, Lars; Schmidt, Lotte Juhl

    2005-01-01

    Limit State analysis has been used in design for decades e.g. the yield line theory for concrete slabs or slip line solutions in geotechnics. In engineering practice manual methods have been dominating but in recent years the interest in numerical methods has been increasing. In this respect...... it is mandatory to formulate the methods using the well-known finite element concept in order to interface with other types of analysis....

  16. Bound states in one-dimensional acoustic parity-time-symmetric lattices for perfect sensing

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Degang; Shen, Yaxi; Zhang, Yu; Zhu, Xuefeng, E-mail: xfzhu@hust.edu.cn; Yi, Lin

    2016-08-06

    In this letter, we study the propagation of acoustic waves through a one-dimensional multilayer structure composed of a thin defect layer sandwiched by two phononic crystals. Two kinds of defect states will generate in band gaps and both of them cause unitary transmission. However, they have very unlike field distributions due to the different contrasted acoustic impedances between the defect layer and its neighboring layers. Spectral positions of transmission peaks can be exactly determined by the resonant phase condition. In a non-dissipative system, these resonant states correspond to single crossing point of two eigenvalues of scattering matrix. When gain and loss are introduced to judiciously construct an acoustic parity-time-symmetric lattice, the crossing point will split into a pair of exceptional points (EPs). Interestingly, the EPs correspond to unidirectional zero reflection that is very sensitive to the thickness of defect layer. Taking advantage of this virtue, a very sensitive acoustic sensor can be designed, which has potentially applications in ultrasonic inspection, noise detection, ultrasonic medicine, etc. - Highlights: • Two kinds of defect states have been systematically studied. • Studying the eigenvalues of scattering matrix for non-dissipative and PT-symmetric system. • Proposing a design of sensitive acoustic sensor.

  17. Accuracy of bound-state form factors extracted from dispersive sum rules

    Energy Technology Data Exchange (ETDEWEB)

    Lucha, Wolfgang [Institute for High Energy Physics, Austrian Academy of Sciences, Nikolsdorfergasse 18, A-1050 Vienna (Austria); Melikhov, Dmitri [Institute for High Energy Physics, Austrian Academy of Sciences, Nikolsdorfergasse 18, A-1050 Vienna (Austria); Nuclear Physics Institute, Moscow State University, 119992 Moscow (Russian Federation)], E-mail: dmitri_melikhov@gmx.de; Simula, Silvano [INFN, Sezione di Roma III, Via della Vasca Navale 84, I-00146 Roma (Italy)

    2009-02-02

    We discuss the extraction of form factors from three-point sum rules making use of a harmonic-oscillator model, where we derive the exact expression for the relevant correlator. We determine the form factor of the ground state by the standard procedures adopted in the method of sum rules, and compare the obtained results with the known exact values. We show that the uncontrollable uncertainty in the extracted value of the form factor is typically much larger than that for the decay constant. In the example considered, we find the uncontrolled systematic error in the extracted form factor to exceed the 10% level.

  18. isospin mixing in the 4He bound state and the nucleon strange form factor

    Energy Technology Data Exchange (ETDEWEB)

    Rocco Schiavilla

    2006-10-11

    The contribution of isospin admixtures in the ground state of the {sup 4}He nucleus is studied using wave functions derived from the most modern nuclear interactions, including isospin symmetry breaking terms. The present calculations show that this contribution is larger than previous estimates had indicated. Its effect on parity violating elastic scattering of polarized electrons from {sup 4}He is investigated. In particular, a simple analysis of the recently measured left-right asymmetry at low Q{sup 2} shows that the contribution of these isospin admixtures is of comparable magnitude to that associated with strangeness components in the nucleon electric form factor.

  19. Aspects of Majorana Bound States in One-Dimensional Systems with and without Time-Reversal Symmetry

    DEFF Research Database (Denmark)

    Wölms, Konrad Udo Hannes

    . In particular they are very important for the closely related phase of one-dimensional topological superconductors with time-reversal symmetry. This phase also exhibits Majorana bound states, and we will study some of its aspects in this thesis. We will discuss some issues related to obtaining this topological......In recent years there has been a lot of interest in topological phases of matter. Unlike conventional phases of matter, topological phases are not distinguished by symmetries, but by so-called topological invariants which have more subtle physical implications. It comes therefore as no surprise...... that for a long time only a few topological phases were studied and those that were, were not studied in the full topological context, which is only known now. One of the topological phases that has been know for a very long time is the quantum Hall eect. The quantum Hall eect is a topological phase in two...

  20. Albendazole therapy and enteric parasites in United States-bound refugees.

    Science.gov (United States)

    Swanson, Stephen J; Phares, Christina R; Mamo, Blain; Smith, Kirk E; Cetron, Martin S; Stauffer, William M

    2012-04-19

    Beginning on May 1, 1999, the Centers for Disease Control and Prevention (CDC) recommended presumptive treatment of refugees for intestinal parasites with a single dose of albendazole (600 mg), administered overseas before departure for the United States. We conducted a retrospective cohort study involving 26,956 African and Southeast Asian refugees who were screened by means of microscopical examination of stool specimens for intestinal parasites on resettlement in Minnesota between 1993 and 2007. Adjusted prevalence ratios for intestinal nematodes, schistosoma species, giardia, and entamoeba were calculated among refugees who migrated before versus those who migrated after the CDC recommendation of presumptive predeparture albendazole treatment. Among 4370 untreated refugees, 20.8% had at least one stool nematode, most commonly hookworm (in 9.2%). Among 22,586 albendazole-treated refugees, only 4.7% had one or more nematodes, most commonly trichuris (in 3.9%). After adjustment for sex, age, and region, albendazole-treated refugees were less likely than untreated refugees to have any nematodes (prevalence ratio, 0.19), ascaris (prevalence ratio, 0.06), hookworm (prevalence ratio, 0.07), or trichuris (prevalence ratio, 0.27) but were not less likely to have giardia or entamoeba. Schistosoma ova were identified exclusively among African refugees and were less prevalent among those treated with albendazole (prevalence ratio, 0.60). After implementation of the albendazole protocol, the most common pathogens among 17,011 African refugees were giardia (in 5.7%), trichuris (in 5.0%), and schistosoma (in 1.8%); among 5575 Southeast Asian refugees, only giardia remained highly prevalent (present in 17.2%). No serious adverse events associated with albendazole use were reported. Presumptive albendazole therapy administered overseas before departure for the United States was associated with a decrease in the prevalence of intestinal nematodes among newly arrived African and

  1. Gauge invariant description of heavy quark bound states in quantum chromodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Moore, S.E.

    1980-08-01

    A model for a heavy quark meson is proposed in the framework of a gauge-invariant version of quantum chromodynamics. The field operators in this formulation are taken to be Wilson loops and strings with quark-antiquark ends. The fundamental differential equations of point-like Q.C.D. are expressed as variational equations of the extended loops and strings. The 1/N expansion is described, and it is assumed that nonleading effects such as intermediate quark pairs and nonplanar gluonic terms can be neglected. The action of the Hamiltonian in the A/sub 0/ = 0 gauge on a string operator is derived. A trial meson wave functional is constructed consisting of a path-averaged string operator applied to the full vacuum. A Gaussian in the derivative of the path location is assumed for the minimal form of the measure over paths. A variational parameter is incorporated in the measure as the exponentiated coefficient of the squared path location. The expectation value of the Hamiltonian in the trial state is evaluated for the assumption that the negative logarithm of the expectation value of a Wilson loop is proportional to the loop area. The energy is then minimized by deriving the equivalent quantum mechanical Schroedinger's equation and using the quantum mechanical 1/n expansion to estimate the effective eigenvalues. It is found that the area law behavior of the Wilson loop implies a nonzero best value of the variational parameter corresponding to a quantum broadening of the flux tube.

  2. The conversion of resonances to bound states in the presence of a Coulomb potential and the computation of autoionization lifetimes from quantum defects

    Science.gov (United States)

    Lucchese, Robert; McCurdy, C. W.; Rescigno, T. N.

    2017-04-01

    The conversion of resonant metastable states to bound states with changing potential strength in the presence of a Coulomb potential proceeds by a mechanism fundamentally different from the same process in the case of short-range potentials. This phenomenon, which can accompany changes in molecular geometry, is central to the physics of the process of dissociative recombination of electrons with molecular cations. We verify computationally that there is no direct connection between a resonance pole of the S-matrix and the bound state poles for several model problems. We present a detailed analysis of the analytic structure of the scattering matrix in which the resonance pole remains distinct in the complex plane while a new state appears in the bound state spectrum. Nonetheless, as might be expected from quantum-defect theory, there is a close analytic relation between the resonant behavior of scattering at positive energies and the energies of the bound states. This connection allows the width of a resonance at low energies to be calculated directly from the behavior of the quantum defects with changing potential strength or molecular geometry. US-DOE, OBES, Chemical Sciences, Geosciences, and Biosciences Division.

  3. Bounded Rationality

    Directory of Open Access Journals (Sweden)

    Ballester Pla, Coralio

    2012-03-01

    Full Text Available The observation of the actual behavior by economic decision makers in the lab and in the field justifies that bounded rationality has been a generally accepted assumption in many socio-economic models. The goal of this paper is to illustrate the difficulties involved in providing a correct definition of what a rational (or irrational agent is. In this paper we describe two frameworks that employ different approaches for analyzing bounded rationality. The first is a spatial segregation set-up that encompasses two optimization methodologies: backward induction and forward induction. The main result is that, even under the same state of knowledge, rational and non-rational agents may match their actions. The second framework elaborates on the relationship between irrationality and informational restrictions. We use the beauty contest (Nagel, 1995 as a device to explain this relationship.

    La observación del comportamiento de los agentes económicos tanto en el laboratorio como en la vida real justifica que la racionalidad acotada sea un supuesto aceptado en numerosos modelos socio-económicos. El objetivo de este artículo es ilustrar las dificultades que conlleva una correcta definición de qué es un agente racional (irracional. En este artículo se describen dos marcos que emplean diferentes metodologías para analizar la racionalidad acotada. El primero es un modelo de segregación espacial donde se contrastan dos metodologías de optimización: inducción hacia atrás y hacia adelante. El resultado principal es que, incluso con el mismo nivel de conocimiento, tanto agentes racionales como irracionales podrían coincidir en sus acciones. El segundo marco trabaja sobre la relación entre irracionalidad y restricción de información. Se utiliza el juego llamado “beauty contest” (Nagel 1995 como mecanismo para explicar dicha relación.

  4. Rigorous coherent-structure theory for falling liquid films: Viscous dispersion effects on bound-state formation and self-organization

    Science.gov (United States)

    Pradas, Marc; Tseluiko, Dmitri; Kalliadasis, Serafim

    2011-04-01

    We examine the interaction of two-dimensional solitary pulses on falling liquid films. We make use of the second-order model derived by Ruyer-Quil and Manneville [Eur. Phys. J. B 6, 277 (1998); Eur. Phys. J. B 15, 357 (2000); Phys. Fluids 14, 170 (2002)] by combining the long-wave approximation with a weighted residual technique. The model includes (second-order) viscous dispersion effects which originate from the streamwise momentum equation and tangential stress balance. These effects play a dispersive role that primarily influences the shape of the capillary ripples in front of the solitary pulses. We show that different physical parameters, such as surface tension and viscosity, play a crucial role in the interaction between solitary pulses giving rise eventually to the formation of bound states consisting of two or more pulses separated by well-defined distances and traveling at the same velocity. By developing a rigorous coherent-structure theory, we are able to theoretically predict the pulse-separation distances for which bound states are formed. Viscous dispersion affects the distances at which bound states are observed. We show that the theory is in very good agreement with computations of the second-order model. We also demonstrate that the presence of bound states allows the film free surface to reach a self-organized state that can be statistically described in terms of a gas of solitary waves separated by a typical mean distance and characterized by a typical density.

  5. Quasi-bound state resonances of charged massive scalar fields in the near-extremal Reissner-Nordstroem black-hole spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Hod, Shahar [The Ruppin Academic Center, Emeq Hefer (Israel); The Hadassah Academic College, Jerusalem (Israel)

    2017-05-15

    The quasi-bound states of charged massive scalar fields in the near-extremal charged Reissner-Nordstroem black-hole spacetime are studied analytically. These discrete resonant modes of the composed black-hole-field system are characterized by the physically motivated boundary condition of ingoing waves at the black-hole horizon and exponentially decaying (bounded) radial eigenfunctions at spatial infinity. Solving the Klein-Gordon wave equation for the linearized scalar fields in the black-hole spacetime, we derive a remarkably compact analytical formula for the complex frequency spectrum which characterizes the quasi-bound state resonances of the composed Reissner-Nordstroem-black-hole-charged-massive-scalar-field system. (orig.)

  6. Search for Bound $\\overline{N}N$ States Using a Precision Gamma and Charged Pion Spectrometer at LEAR

    CERN Multimedia

    2002-01-01

    This experiment uses a magnetic spectrometer to search for monoenergetic @g and @p@+ transitions between bound N&bar.N states. The spectrometer is instrumented with drift chambers (NDC, RDC and PDC), proportional wire chambers (A-E), and various thin scintillation counters (S,M,G,AH,V,Q,D,E and PH) f purposes, as shown in the accompanying drawing.\\\\ \\\\ Gamma-rays produced in the LH^2 target are materialized by a 10\\% converter located in the B chamber with an acceptance (@D@W/4@p) of @=2-6x10|-|3 (100-400 MeV) and 6x10|-|3 ($>$400 MeV). Trajectories of bent electron-positron pairs and @p@+ are measured in the A-E~chambers. Trajectories of less frequent high energy penetrating tracks, as well as the remaining associated charged annihilation products exiting the target, are measured in the drift chamber system. \\\\ \\\\ The resultant energy resolution (@DE/E) is better than 1,5\\% R.M.S. over the full range of energies studied. To illustrate the sensitivity of this experiment, a @g line at 300 MeV produced at t...

  7. Aluminium and Acrylamide Disrupt Cerebellum Redox States, Cholinergic Function and Membrane-Bound ATPase in Adult Rats and Their Offspring.

    Science.gov (United States)

    Ghorbel, Imen; Amara, Ibtissem Ben; Ktari, Naourez; Elwej, Awatef; Boudawara, Ons; Boudawara, Tahia; Zeghal, Najiba

    2016-12-01

    Accumulation of aluminium and acrylamide in food is a major source of human exposure. Their adverse effects are well documented, but there is no information about the health problems arising from their combined exposure. The aim of the present study was to examine the possible neurotoxic effects after co-exposure of pregnant and lactating rats to aluminium and acrylamide in order to evaluate redox state, cholinergic function and membrane-bound ATPases in the cerebellum of adult rats and their progeny. Pregnant female rats have received aluminium (50 mg/kg body weight) via drinking water and acrylamide (20 mg/kg body weight) by gavage, either individually or in combination from the 14th day of pregnancy until day 14 after delivery. Exposure to these toxicants provoked an increase in malondialdehyde (MDA) and advanced oxidation protein product (AOPP) levels and a decrease in SOD, CAT, GPx, Na+K+-ATPase, Mg2+-ATPase and AChE activities in the cerebellum of mothers and their suckling pups. A reduction in GSH, NPSH and vitamin C levels was also observed. These changes were confirmed by histological results. Interestingly, co-exposure to these toxicants exhibited synergism based on physical and biochemical variables in the cerebellum of mothers and their progeny.

  8. Electronic bound states in parity-preserving QED{sub 3} applied to high-T{sub c} cuprate superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Christiansen, H.R. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Teoria de Campos e Particulas]. E-mail: hugo@cbpf.br; Cima, O.M. Del [Universidade Catolica de Petropolis, RJ (Brazil). Grupo de Fisica Teorica]. E-mail: delcima@gft.ucp.br; Ferreira Junior, M.M. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Teoria de Campos e Particulas]|[Maranhao Univ., Sao Luis, MA (Brazil). Dept. de Fisica]. E-mail: manojr@cbpf.br; Helayel-Neto, J.A. [Universidade Catolica de Petropolis, RJ (Brazil). Grupo de Fisica Teorica]|[Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Teoria de Campos e Particulas]. E-mail: helayel@gft.ucp.br

    2001-08-01

    We consider a parity-preserving QED{sub 3} model with spontaneous breaking of the gauge symmetry as a framework for the evaluation of the electron-electron interaction potential underlying high-T{sub e} superconductivity. The fact that resulting potential, - C{sub s} K{sub o} (Mr), is non-confining and weak (in the sense of Kato) strongly suggests the mechanism of pair-condensation. This potential, compatible with an s-wave order parameters, is then applied to the Schrodinger equation for the sake of numerical calculations, thereby enforcing the existence of bound states. The results worked out by means of our theoretical framework are checked by considering a number of phenomenological data extracted from different copper oxide superconductors. The agreement may motivate a deeper analysis of our model viewing an application to quasi-planar cuprate superconductors. The data analyzed here suggest an energy scale of 1-10 meV for the breaking of the U(1)-symmetry. (author)

  9. Results from (anti-)(hyper-)nuclei production and searches for exotic bound states with ALICE at the LHC

    CERN Document Server

    Sharma, Natasha

    2016-01-01

    The excellent particle identification capabilities of the ALICE detector, using the time projection chamber and the time-of-flight detector, allow the detection of light nuclei and anti-nuclei. Furthermore, the high tracking resolution provided by the inner tracking system enables the separation of primary nuclei from those coming from the decay of heavier systems. This allows for the reconstruction of decays such as the hypertriton mesonic weak decay ($^3_{\\Lambda}$H$\\rightarrow ^3$He + $\\pi^-$), the decay of a hypothetical bound state of a $\\Lambda$n into a deuteron and pion or the H-dibaryon decaying into a $\\Lambda$, a proton and a $\\pi^{-}$. An overview of the production of stable nuclei and anti-nuclei in proton-proton, proton-lead and, in particular, lead-lead collisions is presented. Hypernuclei production rates in Pb--Pb are also shown, together with the upper limits estimated on the production of hypothetical exotica candidates. The results are compared with predictions for the production in thermal...

  10. Bounded Rationality

    National Research Council Canada - National Science Library

    Ballester Pla, Coralio; Hernández, Penélope

    2012-01-01

    The observation of the actual behavior by economic decision makers in the lab and in the field justifies that bounded rationality has been a generally accepted assumption in many socio-economic models...

  11. Bounding the $\

    CERN Document Server

    Gutiérrez-Rodríguez, A

    2003-01-01

    A bound on the nu /sup tau / magnetic moment is calculated through the reaction e/sup +/e/sup -/ to nu nu gamma at the Z/sub 1/-pole, and in the framework of a left-right symmetric model at LEP energies. We find that the bound is almost independent of the mixing angle phi of the model in the allowed experimental range for this parameter. (31 refs).

  12. Bounding Species Distribution Models

    Science.gov (United States)

    Stohlgren, Thomas J.; Jarnevich, Cahterine S.; Morisette, Jeffrey T.; Esaias, Wayne E.

    2011-01-01

    Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern. Many investigators now recognize that extrapolations of these models with geographic information systems (GIS) might be sensitive to the environmental bounds of the data used in their development, yet there is no recommended best practice for "clamping" model extrapolations. We relied on two commonly used modeling approaches: classification and regression tree (CART) and maximum entropy (Maxent) models, and we tested a simple alteration of the model extrapolations, bounding extrapolations to the maximum and minimum values of primary environmental predictors, to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States. Findings suggest that multiple models of bounding, and the most conservative bounding of species distribution models, like those presented here, should probably replace the unbounded or loosely bounded techniques currently used [Current Zoology 57 (5): 642-647, 2011].

  13. Bound-state energy of the three-dimensional Ising model in the broken-symmetry phase: suppressed finite-size corrections.

    Science.gov (United States)

    Nishiyama, Yoshihiro

    2008-05-01

    The low-lying spectrum of the three-dimensional Ising model is investigated numerically; we made use of an equivalence between the excitation gap and the reciprocal correlation length. In the broken-symmetry phase, the magnetic excitations are attractive, forming a bound state with an excitation gap m_{2} (mass-gap ratio as m_{2}/m_{1}=1.84(3) .

  14. Experimental study of bound states in 12Be through low-energy 11Be(d,p)-transfer reactions

    DEFF Research Database (Denmark)

    Johansen, Jacob S.; Bildstein, V.; Borge, M. J. G.

    2013-01-01

    The bound states of 12Be have been studied through a 11Be(d,p)12Be transfer reaction experiment in inverse kinematics. A 2.8 MeV/u beam of 11Be was produced using the REX-ISOLDE facility at CERN. The outgoing protons were detected with the T-REX silicon detector array. The MINIBALL germanium arra...

  15. Single-molecule folding mechanisms of the apo- and Mg2+-bound states of human neuronal calcium sensor-1

    DEFF Research Database (Denmark)

    Naqvi, Mohsin M; Heiðarsson, Pétur Orri; Otazo, Mariela R

    2015-01-01

    were reconstructed through hidden Markov model analysis. Unlike what has been observed with the Ca(2+)-bound state, the presence of Mg(2+) allows both the N- and C-domain to fold through all-or-none transitions with similar refolding rates. In the absence of divalent ions, NCS-1 unfolds and refolds...

  16. Quantum electrodynamics tests and X-rays standards using pionic atoms and highly charged ions; Tests d'electrodynamique quantique et etalons de rayons-X a l'aide des atomes pioniques et des ions multicharges

    Energy Technology Data Exchange (ETDEWEB)

    Martino, Trassinelli

    2005-12-15

    The object of this thesis is to present a new measurement of the pion mass using pionic nitrogen X-ray spectroscopy and results on helium-like argon and sulphur spectroscopy. The new pion mass has been measured with an accuracy of 1.7 ppm, 30% better that the present world average value, and it is obtained from Bragg spectroscopy of 5 ->4 pionic nitrogen transitions using the theoretical predictions provided by quantum electrodynamics. We have got: m({pi}{sup -}) = (139.571042 {+-} 0.000210 {+-} 0.000110) where the first error is due to the statistics and the second is the systematic error. I present the calculation of the hyperfine structure and recoil corrections for pionic atoms using a new perturbation method for the Klein-Gordon equation. The spectrometer used for this measurement has been characterized with the relativistic M1 transitions from helium-like ions produced with a new device, the Electron-Cyclotron-Resonance Ion Trap. High statistics spectra from these ions have enabled us to measure transition energies with an accuracy of some ppm which has allowed us to compare theoretical predictions with experiment data. X-ray emission from pionic atoms and multicharged ions can be used to define new types of X-ray standards for energies of a few keV.

  17. Improvement of Ligand Affinity and Thermodynamic Properties by NMR-Based Evaluation of Local Dynamics and Surface Complementarity in the Receptor-Bound State.

    Science.gov (United States)

    Mizukoshi, Yumiko; Takeuchi, Koh; Arutaki, Misa; Tokunaga, Yuji; Takizawa, Takeshi; Hanzawa, Hiroyuki; Shimada, Ichio

    2016-11-14

    The thermodynamic properties of a ligand in the bound state affect its binding specificity. Strict binding specificity can be achieved by introducing multiple spatially defined interactions, such as hydrogen bonds and van der Waals interactions, into the ligand-receptor interface. These introduced interactions are characterized by restricted local dynamics and improved surface complementarity in the bound state. In this study, we experimentally evaluated the local dynamics and the surface complementarity of weak-affinity ligands in the receptor-bound state by forbidden coherence transfer analysis in free-bound exchange systems (Ex-FCT), using the interaction between a ligand, a myocyte-enhancer factor 2A (MEF2A) docking peptide, and a receptor, p38α, as a model system. The Ex-FCT analyses successfully provided information for the rational design of a ligand with higher affinity and preferable thermodynamic properties for p38α. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Quantum transport through a quantum dot structure side coupled with many quantum-dot and Majorana-bound-state pairs

    Directory of Open Access Journals (Sweden)

    Z. T. Jiang

    2016-12-01

    Full Text Available We theoretically investigate the electron transport properties of a wheel-like quantum dot (QD structure with a central QD side coupled with many pairs of QD and Majorana bound states (MBSs by using the nonequilibrium Green’s function method. For clarity, we concentrate our researches on the parameter regime where interdot couplings is much smaller than the inter-MBS and MBS-QD couplings, which ensures the conductance peaks induced by them distinguishable. In the absence of the interdot couplings among the side QDs, the increase of the MBS-QD pair number is equivalent to the increase of the interdot coupling in the QD structure including one central QD and one MBS-QD pair. It is shown that as a response the interval between two side symmetrical peaks will be enlarged, and the MBS-QD couplings will bring into being a zero-bias conductance peak which can be split into two symmetrical sub-peaks by the nonzero inter-MBS couplings. In the presence of the interdot couplings among the side QDs, they make serious influences on the conductance peaks determined by the QD energy levels, and still comes into being the zero-bias conductance peak due to the MBS-QD couplings, yet which is split into two asymmetrical sub-peaks under the influences of the nonzero inter-MBS couplings. Moreover, we conduct a detailed investigation into how the couplings among side QDs affect the transport properties, clearly exposing the underneath mechanics responsible for producing these phenomena. Finally, a generalization is made so as to discuss the geometry universality and the parameter universality of the conclusion drawn in the present work. It should be emphasized that this research will be helpful for a comprehensive understanding the quantum transport through the QD systems coupled with MBSs.

  19. Quasi-bound alpha resonant states populated by the {sup 12}C({sup 6}Li, d) reaction

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, M.R.D.; Borello-Lewin, T.; Miyake, H.; Horodynski-Matsushigue, L.B.; Duarte, J.L.M.; Rodrigues, C.L.; Souza, M.A. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica; Cunsolo, A.; Cappuzzello, F.; Foti, A.; Agodi, C.; Cavallaro, M. [Istituto Nazionale di Fisica Nucleare (LNS/INFN), Catania (Italy). Lab. Nazionali del Sud; Ukita, G.M. [Universidade de Santo Amaro (UNISA), Sao Paulo, SP (Brazil). Faculdade de Psicologia

    2012-07-01

    Full text: The alpha cluster phenomenon in the light nuclei structure has been the subject of a long time investigation since the proposal of the Ikeda diagrams [1]. The main purpose of the research program in progress is the investigation of this phenomenon in (x{alpha}) and (x{alpha}+n) nuclei through the ({sup 6}Li, d) alpha transfer reaction [2-4]. Alpha resonant states around the (4{alpha}) threshold in the nucleus {sup 16}O are the focus of the present contribution. In fact, the importance of these resonances at the elements production in stars is recognized, as primarily pointed out by Hoyle in {sup 12}C [6]. The existence of a rotational band with the {alpha} +{sup 12} C (Hoyle) cluster state structure was recently demonstrated by Ohkubo and Hirabayashi [6]. In order to explore this region of interest, measurements of the {sup 12}C({sup 6}Li, d){sup 16}O reaction up to 17 MeV of excitation at an incident energy of 25.5 MeV, have been performed employing the Sao Paulo Pelletron-Enge Split-Pole facility and the nuclear emulsion detection technique (plates Fuji G6B, 50 {mu}m thick). Spectra associated with six scattering angles, from 5 deg to 29 deg in the laboratory frame, each one 50 cm along the focal surface, were measured. Several narrow resonances with a quasi-bound behavior embedded in the continuum were detected and the resolution of 25 keV allowed for the separation of doublets not resolved before [7,8]. The absolute cross sections and the respective deuteron angular distributions were determined and the analysis is in progress. [1] K. Ikeda et al., Prog. Theor. Phys. Suppl. E 68, 464 (1968); H. Horiuchi, K. Ikeda, and Y. Suzuki, ibid. 44, 225 (1978). [2] M.R.D.Rodrigues et al., in12th International Conference on Nuclear Reaction Mechanism, Varenna, Italy, edited by F. Cerutti and A. Ferrari , CERN Proceedings, 2010-2, pp. 331- 335. [3] T. Borello-Lewin et al., Proceedings of SOTANCP2, Brussels, Belgium 2010, edited by P. Descouvemount et al., Int. J

  20. Order, disorder, and tunable gaps in the spectrum of Andreev bound states in a multiterminal superconducting device

    Science.gov (United States)

    Yokoyama, Tomohiro; Reutlinger, Johannes; Belzig, Wolfgang; Nazarov, Yuli V.

    2017-01-01

    We consider the spectrum of Andreev bound states (ABSs) in an exemplary four-terminal superconducting structure where four chaotic cavities are connected by quantum point contacts to the terminals and to each other forming a ring. We nickname the resulting device 4T-ring. Such a tunable device can be realized in a 2D electron gas-superconductor or a graphene-based hybrid structure. We concentrate on the limit of a short structure and large conductance of the point contacts where there are many ABS in the device forming a quasicontinuous spectrum. The energies of the ABS can be tuned by changing the superconducting phases of the terminals. We observe the opening and closing of gaps in the spectrum upon changing the phases. This concerns the usual proximity gap that separates the levels from zero energy as well as less usual "smile" gaps that split the levels of the quasicontinuous spectrum. We demonstrate a remarkable crossover in the overall spectrum that occurs upon changing the ratio of conductances of the inner and outer point contacts. At big values of the ratio (closed limit), the levels exhibit a generic behavior expected for the spectrum of a disordered system manifesting level repulsion and Brownian "motion" upon changing the phases. At small values of the ratio (open limit), the levels are squeezed into narrow bunches separated by wide smile gaps. Each bunch consists of almost degenerate ABS formed by Andreev reflection between two adjacent terminals. We study in detail the properties of the spectrum in the limit of a small ratio, paying special attention to the crossings of bunches. We distinguish two types of crossings: (i) with a regular phase dependence of the levels and (ii) crossings where the Brownian motion of the levels leads to an apparently irregular phase dependence. We work out a perturbation theory that explains the observations both at a detailed level of random scattering in the device and at a phenomenological level of positively defined

  1. Analysis, structure and geochemical significance of organically-bound sulphur in the geosphere : State of the art and future research

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Leeuw, J.W. de

    1990-01-01

    This paper reviews the developments of the 1980s in the characterisation of organically-bound sulphur in the geosphere and summarises the geochemical significance of the results obtained by these studies. The identification of more than 1500 novel OSC (organic sulphur compounds) with structures

  2. Experimental investigation of supercurrent enhancement in S-N-S junctions by non-equilibrium injection into supercurrent-carrying bound Andreev states

    DEFF Research Database (Denmark)

    Kutchinsky, Jonatan; Taboryski, Rafael Jozef; Sørensen, C B

    2001-01-01

    We report measurements on three-terminal superconductor-semiconductor-superconductor injection devices demonstrating enhancement of the supercurrent by injection from a superconducting injector electrode. Two other electrodes were used to form the detector junction. Applying a small voltage to th...... of enhancement of the supercurrent by non-equilibrium injection into bound supercurrent-carrying Andreev states. The effect persists to temperatures where the equilibrium supercurrent has vanished. (C) 2001 Elsevier Science B.V. All rights reserved....

  3. Nuclear macroscopic properties and pionic exchange currents in (e,e/sup '/) processes

    Energy Technology Data Exchange (ETDEWEB)

    Lallena, A.M.; Dehesa, J.S.; Krewald, S.

    1986-07-01

    Using the effective pion propagator approximation, the two-body pion exchange current contributions to the form factor of the inelastic electron scattering from closed-shell nuclei are explicitly calculated in terms of nuclear densities (nucleon density, kinetic energy density, . . .). The electroexcitation of some high-spin magnetic stretched states in /sup 16/O and /sup 208/Pb is studied to illustrate our approach, and the goodness of the agreement with the exact results is discussed.

  4. Bounding approaches to system identification

    CERN Document Server

    Norton, John; Piet-Lahanier, Hélène; Walter, Éric

    1996-01-01

    In response to the growing interest in bounding error approaches, the editors of this volume offer the first collection of papers to describe advances in techniques and applications of bounding of the parameters, or state variables, of uncertain dynamical systems. Contributors explore the application of the bounding approach as an alternative to the probabilistic analysis of such systems, relating its importance to robust control-system design.

  5. Crystal Structures of SecYEG in Lipidic Cubic Phase Elucidate a Precise Resting and a Peptide-Bound State

    Directory of Open Access Journals (Sweden)

    Yoshiki Tanaka

    2015-11-01

    Full Text Available The bacterial SecYEG translocon functions as a conserved protein-conducting channel. Conformational transitions of SecYEG allow protein translocation across the membrane without perturbation of membrane permeability. Here, we report the crystal structures of intact SecYEG at 2.7-Å resolution and of peptide-bound SecYEG at 3.6-Å resolution. The higher-resolution structure revealed that the cytoplasmic loop of SecG covers the hourglass-shaped channel, which was confirmed to also occur in the membrane by disulfide bond formation analysis and molecular dynamics simulation. The cytoplasmic loop may be involved in protein translocation. In addition, the previously unknown peptide-bound crystal structure of SecYEG implies that interactions between the cytoplasmic side of SecY and signal peptides are related to lateral gate opening at the first step of protein translocation. These SecYEG structures therefore provide a number of structural insights into the Sec machinery for further study.

  6. Double-Wall Carbon Nanotube Hybrid Mode-Locker in Tm-doped Fibre Laser: A Novel Mechanism for Robust Bound-State Solitons Generation

    Science.gov (United States)

    Chernysheva, Maria; Bednyakova, Anastasia; Al Araimi, Mohammed; Howe, Richard C. T.; Hu, Guohua; Hasan, Tawfique; Gambetta, Alessio; Galzerano, Gianluca; Rümmeli, Mark; Rozhin, Aleksey

    2017-03-01

    The complex nonlinear dynamics of mode-locked fibre lasers, including a broad variety of dissipative structures and self-organization effects, have drawn significant research interest. Around the 2 μm band, conventional saturable absorbers (SAs) possess small modulation depth and slow relaxation time and, therefore, are incapable of ensuring complex inter-pulse dynamics and bound-state soliton generation. We present observation of multi-soliton complex generation in mode-locked thulium (Tm)-doped fibre laser, using double-wall carbon nanotubes (DWNT-SA) and nonlinear polarisation evolution (NPE). The rigid structure of DWNTs ensures high modulation depth (64%), fast relaxation (1.25 ps) and high thermal damage threshold. This enables formation of 560-fs soliton pulses; two-soliton bound-state with 560 fs pulse duration and 1.37 ps separation; and singlet+doublet soliton structures with 1.8 ps duration and 6 ps separation. Numerical simulations based on the vectorial nonlinear Schr¨odinger equation demonstrate a transition from single-pulse to two-soliton bound-states generation. The results imply that DWNTs are an excellent SA for the formation of steady single- and multi-soliton structures around 2 μm region, which could not be supported by single-wall carbon nanotubes (SWNTs). The combination of the potential bandwidth resource around 2 μm with the soliton molecule concept for encoding two bits of data per clock period opens exciting opportunities for data-carrying capacity enhancement.

  7. Soliton-like states of the pion field in nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Kurilkin, N.N.; Mishustin, I.N.; Khodel' , V.A.

    1982-07-01

    The Weinberg nonlinear Lagrangian is used to demonstrate the possibility that soliton-like clusters of the pion field exist in nuclear matter. These clusters are multipion coherent states which interact strongly with the surrounding nuclear matter. The stability of these states with respect to various decay channels, in particular, decay into separate pions, is studied. The properties of these pionic solitons and their relation to the parameters of the spectrum of linear pion excitations in nuclear matter are discussed.

  8. Bound State Solution of Dirac Equation for Generalized Pöschl-Teller plus Trigomometric Pöschl-Teller Non- Central Potential Using SUSY Quantum Mechanics

    Directory of Open Access Journals (Sweden)

    Suparmi

    2014-12-01

    Full Text Available The bound state solution of the Dirac equation for generalized PöschlTeller and trigonometric Pöschl-Teller non-central potentials was obtained using SUSY quantum mechanics and the idea of shape invariance potential. The approximate relativistic energy spectrum was expressed in the closed form. The radial and polar wave functions were obtained using raising and lowering of radial and polar operators. The orbital quantum numbers were found from the polar Dirac equation, which was solved using SUSY quantum mechanics and the idea of shape invariance.

  9. A search for the K−pp bound state in the 3He(K−in-flight, n reaction at J-PARC

    Directory of Open Access Journals (Sweden)

    Hashimoto T.

    2014-03-01

    Full Text Available We have collected the first physics data of an experimental search for the simplest kaonic nuclear bound state, “K− pp”, by the 3He(K− n reaction at J-PARC. We confirmed that our spectrometer system works as designed and observed clear peak structure composed of the quasi-elastic K−“n” → K−n and the charge-exchange K−“p” → ¯̅K0n reactions in the forward neutron spectrum.

  10. Bound and continuum states of molecular anions C{sub 2}H{sup -} and C{sub 3}N{sup -}

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Stephen; Tennyson, Jonathan, E-mail: j.tennyson@ucl.ac.uk [Department of Physics and Astronomy, University College London, Gower St, London WC1E 6BT (United Kingdom)

    2011-02-28

    Recently a number of molecular anions, closed-shell linear carbon chains of the form C{sub n}H{sup -} and C{sub n}N{sup -}, have been detected in space. The molecules C{sub 2}H{sup -} and C{sub 3}N{sup -} are investigated by using the R-matrix method to consider electron scattering from the corresponding neutral targets. Initial target calculations are conducted and refined in order to produce target state characteristics similar to the experimental data. A number of different scattering models are tested including static exchange and close-coupling models, and the use of Hartree-Fock or natural orbitals in the close-coupling calculations. The calculations concentrate on bound and resonances states for the anions as well as eigenphase sums, elastic cross-sections and electronic excitation cross-sections for electron collisions with the neutral. It is found that electronic resonances are all too high in energy to be important for anion formation in the interstellar medium. However, C{sub 3}N{sup -}, unlike C{sub 2}H{sup -}, supports a number of very weakly bound excited states, which may well provide the route to electron attachment for this system.

  11. Virtual-bound, filamentary and layered states in a box-shaped quantum dot of square potential form the exact numerical solution of the effective mass Schrödinger equation

    Energy Technology Data Exchange (ETDEWEB)

    Luque, A., E-mail: a.luque@upm.es [Instituto de Energía Solar, Universidad Politécnica de Madrid (Spain); Mellor, A.; Tobías, I.; Antolín, E.; Linares, P.G.; Ramiro, I.; Martí, A. [Instituto de Energía Solar, Universidad Politécnica de Madrid (Spain)

    2013-03-15

    The effective mass Schrödinger equation of a QD of parallelepipedic shape with a square potential well is solved by diagonalizing the exact Hamiltonian matrix developed in a basis of separation-of-variables wavefunctions. The expected below bandgap bound states are found not to differ very much from the former approximate calculations. In addition, the presence of bound states within the conduction band is confirmed. Furthermore, filamentary states bounded in two dimensions and extended in one dimension and layered states with only one dimension bounded, all within the conduction band—which are similar to those originated in quantum wires and quantum wells—coexist with the ordinary continuum spectrum of plane waves. All these subtleties are absent in spherically shaped quantum dots, often used for modeling.

  12. Relativistic actions for bound-states and applications in the meson spectroscopy; Acoes relativisticas para estados ligados e aplicacoes na espectroscopia de mesons

    Energy Technology Data Exchange (ETDEWEB)

    Silva Carvalho, Hendly da

    1991-08-01

    We study relativistic equations for bound states of two-body systems using Dirac`s constraint formalism and supersymmetry. The two-body system can be of spinless particles, one of them spinning and the other one spinless, or both of them spinning. The interaction is described by scalar, timelike four-vector and spacelike four-vector potentials under Lorentz transformations. As an application we use the relativistic wave equation for two scalar particles and calculate the mass spectra of the mesons treating them as spinless quark-antiquark bound states. The interaction potential in this case is a convenient adaptation of the potential employed in non-relativistic calculations. Finally, we compare our results with more recent experimental data and with theoretical results obtained with the same potential used by us but with a non-relativistic wave equation. We also compare our results with results obtained with the relativistic wave equation but with a different interaction potential. (author). 38 refs, 9 figs, 8 tabs.

  13. First determination of the ρ parameter at √s = 13 TeV – probing the existence of a colourless three-gluon bound state

    CERN Document Server

    Antchev, G.; The TOTEM collaboration; Atanassov, I.; Avati, V.; Baechler, J.; Barrera, C. B.; Berardi, V.; Berretti, M.; Bossini, E.; Bottigli, U.; Bozzo, M.; Bruce, R.; Burkhardt, H.; Cafagna, F.S.; Catanesi, M.G.; Csanad, M.; Csorgo, T.; Deile, M.; De Leonardis, F.; D'Orazio, A.; Doubek, M.; Druzhkin, D.; Eggert, K.; Eremin, V.; Ferro, F.; Fiergolski, A.; Garcia, F.; Garcia Morales, H.; Georgiev, V.; Giani, S.; Grzanka, L.; Hammerbauer, J.; Heino, J.; Helander, P.; Isidori, T.;; Ivanchenko, V.; Karev, A.; Kavspar, J.; Kopal, J.; Kosinski, J.; Kundrat, V.; Lami, S.; Latino, G.; Lauhakangas, R.; Linhart, R.; Lindsey, C.;; Lokajivcek, M.V.; Losurdo, L; Lo Vetere, M.; Lucas-Rodriguez, F.; Lucsanyi, D.; Macri, M.; Malwski, M.; Minafra, N.; Minutoli, S.; Naaranoja, T.; Nemes, F.; Niewiadomski, H.; Novak, T.; Oliveri, E.; Oljemark, F.; Oriunno, M.; Osterberg, K.; Palazzi, P.; Palocko, L.; Passaro, V.; Peroutka, Z.; Prochazka, J.; Quinto, M.; Radermacher, E.; Radicioni, E.; Ravotti, F.; Redaelli, S.; Robutti, E.; Royon, C.; Ruggiero, G.; Saarikko, H.; Scribano, A.; Siroky, J.; Smajek, J.; Snoeys, W.; Stefanovitch, R.; Sziklai, J.; Taylor, C.; Tcherniaev, E.;; Turini, N.; Vacek, V.; Valentino, G.; Wenninger, J.; Welti, J.; Williams, J.; Wyszkowski, P.; Zich, J.; Zielinski, K

    2017-01-01

    The TOTEM experiment at the LHC has performed the first measurement at √s = 13 TeV of the ρ parameter, the real to imaginary ratio of the nuclear elastic scattering amplitude at t = 0, obtaining the following results: ρ = 0.09 ± 0.01 and ρ = 0.10 ± 0.01, depending on different physics assumptions and mathematical modelling. The unprecedented precision of the ρ measurement, combined with the TOTEM total cross-section measurements in an energy range larger than 10TeV (from 2.76 to 13TeV), has implied the exclusion of all the models classified and published by COMPETE. The ρ results obtained by TOTEM are compatible with the predictions, from alternative theoretical models both in the Regge-like framework and in the modern QCD framework, of a colourless 3-gluon bound state exchange in the t-channel of the proton-proton elastic scattering. On the contrary, if shown that the 3-gluon bound state t-channel exchange is not of importance for the description of elastic scattering, the ρ value determined by TOT...

  14. Synaptobrevin N-terminally bound to syntaxin-SNAP-25 defines the primed vesicle state in regulated exocytosis

    DEFF Research Database (Denmark)

    Walter, Alexander M; Wiederhold, Katrin; Bruns, Dieter

    2010-01-01

    Rapid neurotransmitter release depends on the ability to arrest the SNAP receptor (SNARE)-dependent exocytosis pathway at an intermediate "cocked" state, from which fusion can be triggered by Ca(2+). It is not clear whether this state includes assembly of synaptobrevin (the vesicle membrane SNARE......) to the syntaxin-SNAP-25 (target membrane SNAREs) acceptor complex or whether the reaction is arrested upstream of that step. In this study, by a combination of in vitro biophysical measurements and time-resolved exocytosis measurements in adrenal chromaffin cells, we find that mutations of the N...

  15. First direct observation of bound-state beta-decay. Measurements of branching and lifetime of {sup 207}Tl{sup 81+} fragments

    Energy Technology Data Exchange (ETDEWEB)

    Boutin, D.

    2005-08-01

    The first experimental observation of bound-state beta-decay showed, that due solely to the electron stripping, a stable nuclide, e.g. {sup 163}Dy, became unstable. Also a drastic modification of the half-life of bare {sup 187}Re, from 4.12(2) x 10{sup 10} years down to 32.9(20) years, could be observed. It was mainly due to the possibility for the mother nuclide to decay into a previously inaccessible nuclear level of the daughter nuclide. It was proposed to study a nuclide where this decay mode was competing with continuum-state beta-decay, in order to measure their respective branchings. The ratio {beta}{sub b}/{beta}{sub c} could also be evaluated for the first time. {sup 207}Tl was chosen due to its high atomic number, and Q-value of about 1.4 MeV, small enough to enhance the {beta}{sub b} probability and large enough to allow the use of time-resolved Schottky Mass Spectrometry (SMS) to study the evolution of mother and bound-state beta-decay daughter ions. The decay properties of the ground state and isomeric state of {sup 207}Tl{sup 81+} have been investigated at the GSI accelerator facility in two separate experiments. For the first time {beta}-decay where the electron could go either to a bound state (atomic orbitals) and lead to {sup 207}Pb{sup 81+} as a daughter nuclide, or to a continuum state and lead to {sup 207}Pb{sup 82+}, has been observed. The respective branchings of these two processes could be measured as well. The deduced total nuclear half-life of 255(17) s for {sup 207}Tl{sup 81+}, was slightly modified with respect to the half-life of the neutral atom of 286(2) s. It was nevertheless in very good agreement with calculations based on the assumption that the beta-decay was following an allowed type of transition. The branching {beta}{sub b}/{beta}{sub c}=0.192(20), was also in very good agreement with the same calculations. The application of stochastic precooling allowed to observe in addition the 1348 keV short-lived isomeric state of {sup

  16. Inquiry for the pi sup + -pi sup - bound state conversion into two pi sup 0 's as being due to the Weinberg pi-pi interaction

    CERN Document Server

    Bunatian, G G

    1999-01-01

    In this paper the decay of the pionium, i.e. the (pi sup +pi sup -) bound state into two pi sup 0 's, is studied, with the pi pi interaction causing this transition described by the underlying Weinberg Lagrangian. The calculation with such a pi pi-Lagrangian being carried out, the pi-meson size r sub 0 emerges unavoidably to be drawn into consideration. The bound pi sup +pi sup - system itself is presumed to be due to the instantaneous Coulomb interaction and is treated as a consistently non-relativistic one, the Bethe-Salpeter equation being used. In the calculations the terms to the lowest orders in the fine structure constant alpha and the terms approx Ln(r sub 0) are retained. The obtained pionium lifetime tau is thought to be compatible with conceivable future experimental data. The dependence of the results on the effective Lagrangian parameters is discussed. The investigation carried out tells us that it is the complete form of the genuine pi pi-interaction that determines the pionium lifetime, not jus...

  17. Quasi-bounded sets

    Directory of Open Access Journals (Sweden)

    Jan Kucera

    1990-01-01

    Full Text Available It is proved in [1] & [2] that a set bounded in an inductive limit E=indlim En of Fréchet spaces is also bounded in some En iff E is fast complete. In the case of arbitrary locally convex spaces En every bounded set in a fast complete indlim En is quasi-bounded in some En, though it may not be bounded or even contained in any En. Every bounded set is quasi-bounded. In a Fréchet space every quasi-bounded set is also bounded.

  18. Effect of a culture-based screening algorithm on tuberculosis incidence in immigrants and refugees bound for the United States: a population-based cross-sectional study.

    Science.gov (United States)

    Liu, Yecai; Posey, Drew L; Cetron, Martin S; Painter, John A

    2015-03-17

    Before 2007, immigrants and refugees bound for the United States were screened for tuberculosis (TB) by a smear-based algorithm that could not diagnose smear-negative/culture-positive TB. In 2007, the Centers for Disease Control and Prevention implemented a culture-based algorithm. To evaluate the effect of the culture-based algorithm on preventing the importation of TB to the United States by immigrants and refugees from foreign countries. Population-based, cross-sectional study. Panel physician sites for overseas medical examination. Immigrants and refugees with TB. Comparison of the increase of smear-negative/culture-positive TB cases diagnosed overseas among immigrants and refugees by the culture-based algorithm with the decline of reported cases among foreign-born persons within 1 year after arrival in the United States from 2007 to 2012. Of the 3 212 421 arrivals of immigrants and refugees from 2007 to 2012, a total of 1 650 961 (51.4%) were screened by the smear-based algorithm and 1 561 460 (48.6%) were screened by the culture-based algorithm. Among the 4032 TB cases diagnosed by the culture-based algorithm, 2195 (54.4%) were smear-negative/culture-positive. Before implementation (2002 to 2006), the annual number of reported cases among foreign-born persons within 1 year after arrival was relatively constant (range, 1424 to 1626 cases; mean, 1504 cases) but decreased from 1511 to 940 cases during implementation (2007 to 2012). During the same period, the annual number of smear-negative/culture-positive TB cases diagnosed overseas among immigrants and refugees bound for the United States by the culture-based algorithm increased from 4 to 629. This analysis did not control for the decline in new arrivals of nonimmigrant visitors to the United States and the decrease of incidence of TB in their countries of origin. Implementation of the culture-based algorithm may have substantially reduced the incidence of TB among newly arrived, foreign-born persons in

  19. Synaptobrevin N-terminally bound to syntaxin–SNAP-25 defines the primed vesicle state in regulated exocytosis

    Science.gov (United States)

    Walter, Alexander M.; Wiederhold, Katrin; Bruns, Dieter; Fasshauer, Dirk

    2010-01-01

    Rapid neurotransmitter release depends on the ability to arrest the SNAP receptor (SNARE)–dependent exocytosis pathway at an intermediate “cocked” state, from which fusion can be triggered by Ca2+. It is not clear whether this state includes assembly of synaptobrevin (the vesicle membrane SNARE) to the syntaxin–SNAP-25 (target membrane SNAREs) acceptor complex or whether the reaction is arrested upstream of that step. In this study, by a combination of in vitro biophysical measurements and time-resolved exocytosis measurements in adrenal chromaffin cells, we find that mutations of the N-terminal interaction layers of the SNARE bundle inhibit assembly in vitro and vesicle priming in vivo without detectable changes in triggering speed or fusion pore properties. In contrast, mutations in the last C-terminal layer decrease triggering speed and fusion pore duration. Between the two domains, we identify a region exquisitely sensitive to mutation, possibly constituting a switch. Our data are consistent with a model in which the N terminus of the SNARE complex assembles during vesicle priming, followed by Ca2+-triggered C-terminal assembly and membrane fusion. PMID:20142423

  20. Effects of non-adiabatic and Coriolis couplings on the bound states of He(2 {sup 3}S)+He(2 {sup 3}P)

    Energy Technology Data Exchange (ETDEWEB)

    Cocks, D G; Whittingham, I B [School of Engineering and Physical Sciences, James Cook University, Townsville 4811 (Australia); Peach, G, E-mail: daniel.cocks@jcu.edu.a [Department of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom)

    2010-07-14

    The effects of non-adiabatic and Coriolis couplings on the bound states of the He(2 {sup 3}S{sub 1}) + He(2 {sup 3}P{sub j}) system, where j = 0, 1, 2, are investigated using the recently available ab initio short-range {sup 1,} {sup 3,} {sup 5{Sigma}+}{sub g,} {sub u} and {sup 1,} {sup 3,} {sup 5{Pi}}{sub g,} {sub u} potentials computed by Deguilhem et al (2009 J. Phys. B: At. Mol. Opt. Phys. 42 015102). Three sets of calculations have been undertaken: single-channel, multichannel without Coriolis couplings and full multichannel with Coriolis couplings. We find that non-adiabatic effects are negligible for 0{sup -}{sub u}, 0{sup {+-}}{sub g}, 1{sub u}, 2{sub g}, 2{sub u}, 3{sub g} Hund case (c) sets of levels in the j = 2 asymptote but can be up to 15% for some of the 0{sup +}{sub u} and 1{sub g} sets of levels where near degeneracies are present in the single-channel diagonalized potentials. Coriolis couplings are most significant for weakly bound levels, ranging from 1% to 5% for total angular momenta J = 1, 2 and up to 10% for J = 3. Levels near the j = 1 and j = 0 asymptotes agree closely with previous multichannel calculations based upon long-range potentials constructed from retarded resonance dipole and dispersion interactions. Assignment of theoretical levels to experimental observations using criteria based upon the short-range character of each level and their coupling to metastable ground states produces well-matched assignments for the majority of observations. After a 1% increase in the slope of the {sup 5{Sigma}+}{sub g,} {sub u} and {sup 5{Pi}}{sub g,} {sub u} input potentials near the classical turning point is applied, improved matching of previous assignments is obtained and further assignments can be made, reproducing very closely the number of experimental observations.

  1. Bound states of quarks and gluons and hadronic transitions; Estados ligados de quarks e gluons e transicoes hadronicas

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Antonio Soares de

    1990-05-01

    A potential which incorporates the concepts of confinement and asymptotic freedom, previously utilized in the description of the spectroscopy of mesons and baryons, is extended to the gluon sector. The mass spectroscopy of glueballs and hybrids is analyzed considering only pairwise potentials and massive constituent gluons. The mass spectrum of the color octet two-gluon system is adopted as a suitable description of the intermediate states of hadronic transitions, within the framework of the multipole expansion for quantum chromodynamics. The spin-dependent effects in the gluonium spectrum, associated with the Coulombian potential, are calculated through the inverted first Born approximation for the gluon-gluon scattering. (author). 102 refs, 1 fig, 13 tabs.

  2. The X(3872) as a D{sup 0} anti D{sup 0}π{sup 0} bound state

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Marcel; Jansen, Maximilian; Hammer, Hans-Werner [Institut fuer Kernphysik, TU Darmstadt, 64289 Darmstadt (Germany)

    2016-07-01

    Three-body physics may play a crucial role for the exotic charmonium state X(3872) which can be interpreted as a hadronic molecule. We propose a new effective field theory with D{sup 0}, anti D{sup 0} and π{sup 0} fields, considering Galilean invariance to be an exact symmetry of the problem. Moreover, heavy D{sup 0*} (anti D{sup 0*}) mesons implicitly enter as p-wave resonances in the D{sup 0}π{sup 0} (anti D{sup 0}π{sup 0}) system. They are treated using dimeson auxiliary fields in the respective channels. In this talk, we first discuss the underlying Lagrangian. Afterwards, we construct the non-perturbative three-body amplitude for the X(3872) and elucidate its relation to the D{sup 0} anti D{sup 0*} scattering length.

  3. Search for weakly decaying $\\overline{\\Lambda\\mathrm{n}}$ and $\\Lambda\\Lambda $ exotic bound states in central Pb-Pb collisions at $\\sqrt{s_{\\rm NN}}$ = 2.76 TeV

    CERN Document Server

    Adam, Jaroslav; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agrawal, Neelima; Ahammed, Zubayer; Ahmed, Ijaz; Ahn, Sang Un; Aimo, Ilaria; Aiola, Salvatore; Ajaz, Muhammad; Akindinov, Alexander; Alam, Sk Noor; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Alme, Johan; Alt, Torsten; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arcelli, Silvia; Armesto Perez, Nestor; Arnaldi, Roberta; Aronsson, Tomas; Arsene, Ionut Cristian; Arslandok, Mesut; Augustinus, Andre; Averbeck, Ralf Peter; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Baldisseri, Alberto; Ball, Markus; Baltasar Dos Santos Pedrosa, Fernando; Baral, Rama Chandra; Barbano, Anastasia Maria; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartalini, Paolo; Bartke, Jerzy Gustaw; Bartsch, Esther; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batista Camejo, Arianna; Batyunya, Boris; Batzing, Paul Christoph; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bello Martinez, Hector; Bellwied, Rene; Belmont Iii, Ronald John; Belmont Moreno, Ernesto; Belyaev, Vladimir; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhat, Inayat Rasool; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Biswas, Saikat; Bjelogrlic, Sandro; Blanco, Fernando; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Boldizsar, Laszlo; Bombara, Marek; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Borri, Marcello; Bossu, Francesco; Botje, Michiel; Botta, Elena; Boettger, Stefan; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Brucken, Erik Jens; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Buxton, Jesse Thomas; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calero Diaz, Liliet; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Carena, Francesco; Carena, Wisla; Castillo Castellanos, Javier Ernesto; Castro, Andrew John; Casula, Ester Anna Rita; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Chang, Beomsu; Chapeland, Sylvain; Chartier, Marielle; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chelnokov, Volodymyr; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Chochula, Peter; Choi, Kyungeon; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dahms, Torsten; Dainese, Andrea; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; De Caro, Annalisa; De Cataldo, Giacinto; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; Deisting, Alexander; Deloff, Andrzej; Denes, Ervin Sandor; D'Erasmo, Ginevra; Di Bari, Domenico; Di Mauro, Antonio; Di Nezza, Pasquale; Diaz Corchero, Miguel Angel; Dietel, Thomas; Dillenseger, Pascal; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Ehlers Iii, Raymond James; Elia, Domenico; Engel, Heiko; Erazmus, Barbara Ewa; Erhardt, Filip; Eschweiler, Dominic; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Evans, David; Evdokimov, Sergey; Eyyubova, Gyulnara; Fabbietti, Laura; Fabris, Daniela; Faivre, Julien; Fantoni, Alessandra; Fasel, Markus; Feldkamp, Linus; Felea, Daniel; Feliciello, Alessandro; Feofilov, Grigorii; Ferencei, Jozef; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Fleck, Martin Gabriel; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Furs, Artur; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Gao, Chaosong; Garabatos Cuadrado, Jose; Garcia-Solis, Edmundo Javier; Gargiulo, Corrado; Gasik, Piotr Jan; Germain, Marie; Gheata, Andrei George; Gheata, Mihaela; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Giubilato, Piero; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez Ramirez, Andres; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Grabski, Varlen; Graczykowski, Lukasz Kamil; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grynyov, Borys; Grion, Nevio; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Gulbrandsen, Kristjan Herlache; Gulkanyan, Hrant; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Haake, Rudiger; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hanratty, Luke David; Hansen, Alexander; Harris, John William; Hartmann, Helvi; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hilden, Timo Eero; Hillemanns, Hartmut; Hippolyte, Boris; Hristov, Peter Zahariev; Huang, Meidana; Humanic, Thomas; Hussain, Nur; Hussain, Tahir; Hutter, Dirk; Hwang, Dae Sung; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Ionita, Costin; Ippolitov, Mikhail; Irfan, Muhammad; Ivanov, Marian; Ivanov, Vladimir; Izucheev, Vladimir; Jacholkowski, Adam Wlodzimierz; Jacobs, Peter Martin; Jahnke, Cristiane; Jang, Haeng Jin; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Chitrasen; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jung, Hyungtaik; Jusko, Anton; Kalinak, Peter; Kalweit, Alexander Philipp; Kamin, Jason Adrian; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Keijdener, Darius Laurens; Keil, Markus; Khan, Kamal; Khan, Mohammed Mohisin; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Beomkyu; Kim, Do Won; Kim, Dong Jo; Kim, Hyeonjoong; Kim, Jinsook; Kim, Mimae; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Carsten; Klein, Jochen; Klein-Boesing, Christian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobayashi, Taiyo; Kobdaj, Chinorat; Kofarago, Monika; Kohler, Markus Konrad; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratev, Valerii; Kondratyeva, Natalia; Kondratyuk, Evgeny; Konevskikh, Artem; Kouzinopoulos, Charalampos; Kovalenko, Vladimir; Kowalski, Marek; Kox, Serge; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kravcakova, Adela; Krelina, Michal; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Kryshen, Evgeny; Krzewicki, Mikolaj; Kubera, Andrew Michael; Kucera, Vit; Kucheryaev, Yury; Kugathasan, Thanushan; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kulakov, Igor; Kumar, Jitendra; Lokesh, Kumar; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kushpil, Svetlana; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; Laudi, Elisa; Lea, Ramona; Leardini, Lucia; Lee, Graham Richard; Lee, Seongjoo; Legrand, Iosif; Lehnert, Joerg Walter; Lemmon, Roy Crawford; Lenti, Vito; Leogrande, Emilia; Leon Monzon, Ildefonso; Leoncino, Marco; Levai, Peter; Li, Shuang; Li, Xiaomei; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Lonne, Per-Ivar; Loggins, Vera Renee; Loginov, Vitaly; Loizides, Constantinos; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lowe, Andrew John; Lu, Xianguo; Luettig, Philipp Johannes; Lunardon, Marcello; Luparello, Grazia; Maevskaya, Alla; Mager, Magnus; Mahajan, Sanjay; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manceau, Loic Henri Antoine; Manko, Vladislav; Manso, Franck; Manzari, Vito; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Margutti, Jacopo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martashvili, Irakli; Martin, Nicole Alice; Martin Blanco, Javier; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-Garcia, Gines; Martinez Pedreira, Miguel; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Mastroserio, Annalisa; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzoni, Alessandra Maria; Mcdonald, Daniel; Meddi, Franco; Menchaca-Rocha, Arturo Alejandro; Meninno, Elisa; Mercado-Perez, Jorge; Meres, Michal; Miake, Yasuo; Mieskolainen, Matti Mikael; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Minervini, Lazzaro Manlio; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mohammadi, Naghmeh; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Montes Prado, Esther; Morando, Maurizio; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Muller, Hans; Mulligan, James Declan; Gameiro Munhoz, Marcelo; Murray, Sean; Musa, Luciano; Musinsky, Jan; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Naru, Muhammad Umair; Nattrass, Christine; Nayak, Kishora; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Nellen, Lukas; Ng, Fabian; Nicassio, Maria; Niculescu, Mihai; Niedziela, Jeremi; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Norman, Jaime; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Ohlson, Alice Elisabeth; Okatan, Ali; Okubo, Tsubasa; Olah, Laszlo; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Oliver, Michael Henry; Onderwaater, Jacobus; Oppedisano, Chiara; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozdemir, Mahmut; Pachmayer, Yvonne Chiara; Pagano, Paola; Paic, Guy; Pajares Vales, Carlos; Pal, Susanta Kumar; Pan, Jinjin; Pandey, Ashutosh Kumar; Pant, Divyash; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Woojin; Parmar, Sonia; Passfeld, Annika; Paticchio, Vincenzo; Paul, Biswarup; Pawlak, Tomasz Jan; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitry Yurevich; Perez Lara, Carlos Eugenio; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petrov, Viacheslav; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polishchuk, Boris; Poljak, Nikola; Poonsawat, Wanchaloem; Pop, Amalia; Porteboeuf, Sarah Julie; Porter, R Jefferson; Pospisil, Jan; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Raha, Sibaji; Rajput, Sonia; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Razazi, Vahedeh; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reicher, Martijn; Reidt, Felix; Ren, Xiaowen; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Ristea, Catalin-Lucian; Rivetti, Angelo; Rocco, Elena; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roeed, Ketil; Rogochaya, Elena; Rohr, David Michael; Roehrich, Dieter; Romita, Rosa; Ronchetti, Federico; Ronflette, Lucile; Rosnet, Philippe; Rossi, Andrea; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Sadovskiy, Sergey; Safarik, Karel; Sahlmuller, Baldo; Sahoo, Pragati; Sahoo, Raghunath; Sahoo, Sarita; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Saleh, Mohammad Ahmad; Salgado Lopez, Carlos Alberto; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sanchez Castro, Xitzel; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Santagati, Gianluca; Sarkar, Debojit; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schuchmann, Simone; Schukraft, Jurgen; Schulc, Martin; Schuster, Tim Robin; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca Michelle; Seeder, Karin Soraya; Seger, Janet Elizabeth; Sekiguchi, Yuko; Selyuzhenkov, Ilya; Senosi, Kgotlaesele; Seo, Jeewon; Serradilla Rodriguez, Eulogio; Sevcenco, Adrian; Shabanov, Arseniy; Shabetai, Alexandre; Shadura, Oksana; Shahoyan, Ruben; Shangaraev, Artem; Sharma, Ankita; Sharma, Natasha; Shigaki, Kenta; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Sielewicz, Krzysztof Marek; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Slupecki, Maciej; Smirnov, Nikolai; Snellings, Raimond; Snellman, Tomas Wilhelm; Soegaard, Carsten; Soltz, Ron Ariel; Song, Jihye; Song, Myunggeun; Song, Zixuan; Soramel, Francesca; Sorensen, Soren Pontoppidan; Spacek, Michal; Spiriti, Eleuterio; Sputowska, Iwona Anna; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Steinpreis, Matthew Donald; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Sultanov, Rishat; Sumbera, Michal; Symons, Timothy; Szabo, Alexander; Szanto De Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Takahashi, Jun; Tanaka, Naoto; Tangaro, Marco-Antonio; Tapia Takaki, Daniel Jesus; Tarantola Peloni, Attilio; Tariq, Mohammad; Tarzila, Madalina-Gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terasaki, Kohei; Terrevoli, Cristina; Teyssier, Boris; Thaeder, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony Robert; Toia, Alberica; Trogolo, Stefano; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Uras, Antonio; Usai, Gianluca; Utrobicic, Antonija; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vanat, Tomas; Vande Vyvre, Pierre; Varga, Dezso; Diozcora Vargas Trevino, Aurora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vauthier, Astrid; Vechernin, Vladimir; Veen, Annelies Marianne; Veldhoen, Misha; Velure, Arild; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Vislavicius, Vytautas; Viyogi, Yogendra; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Jan; Wang, Hongkai; Wang, Mengliang; Wang, Yifei; Watanabe, Daisuke; Weber, Michael; Weber, Steffen Georg; Wessels, Johannes Peter; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Yaldo, Chris G; Yamaguchi, Yorito; Yang, Hongyan; Yang, Ping; Yano, Satoshi; Yasnopolskiy, Stanislav; Yin, Zhongbao; Yokoyama, Hiroki; Yoo, In-Kwon; Yurchenko, Volodymyr; Yushmanov, Igor; Zaborowska, Anna; Zaccolo, Valentina; Zaman, Ali; Zampolli, Chiara; Correia Zanoli, Henrique Jose; Zaporozhets, Sergey; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zhu, Xiangrong; Zichichi, Antonino; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zyzak, Maksym

    2016-01-10

    We present results of a search for two hypothetical strange dibaryon states, i.e. the H-dibaryon and the possible $\\overline{\\Lambda\\mathrm{n}}$ bound state. The search is performed with the ALICE detector in central (0-10%) Pb-Pb collisions at $ \\sqrt{s_{\\rm{NN}}} = 2.76$ TeV, by invariant mass analysis in the decay modes $\\overline{\\Lambda\\mathrm{n}} \\rightarrow \\overline{\\mathrm{d}} \\pi^{+} $ and H-dibaryon $\\rightarrow \\Lambda \\mathrm{p} \\pi^{-}$. No evidence for these bound states is observed. Upper limits are determined at 99% confidence level for a wide range of lifetimes and for the full range of branching ratios. The results are compared to thermal, coalescence and hybrid UrQMD model expectations, which describe correctly the production of other loosely bound states, like the deuteron and the hypertriton.

  4. Search for weakly decaying Λn‾ and ΛΛ exotic bound states in central Pb–Pb collisions at sNN=2.76 TeV

    Directory of Open Access Journals (Sweden)

    J. Adam

    2016-01-01

    Full Text Available We present results of a search for two hypothetical strange dibaryon states, i.e. the H-dibaryon and the possible Λn‾ bound state. The search is performed with the ALICE detector in central (0–10% Pb–Pb collisions at sNN=2.76 TeV, by invariant mass analysis in the decay modes Λn‾→d‾π+ and H-dibaryon →Λpπ−. No evidence for these bound states is observed. Upper limits are determined at 99% confidence level for a wide range of lifetimes and for the full range of branching ratios. The results are compared to thermal, coalescence and hybrid UrQMD model expectations, which describe correctly the production of other loosely bound states, like the deuteron and the hypertriton.

  5. Interplay of superconductivity and electrically controlled band structure in silicene 0- π transitions, φ0-junctions, Majorana bound states, and odd-frequency superconductivity

    Science.gov (United States)

    Kuzmanovski, Dushko; Black-Schaffer, Annica; Linder, Jacob

    Silicene, the Si-atom analog of graphene, is a viable candidate for experimental realization of non-trivial topological phases due to the larger spin-orbit coupling. Also, owing to the buckled structure, it allows for tuning of its various band gaps by an applied electric field. An intriguing prospect is to consider effects due to the interplay between the non-trivial band structure and superconducting correlations in silicene, and to study the external control of such unusual phenomena via an electric field. We demonstrate theoretically that proximity-induced superconductivity in silicene offers the possibility to exert strong quantum ground state control. We show that electrically controlled 0- π transitions occur in Josephson junctions in the presence of an exchange field. We also discover that zigzag-oriented interfaces, featuring intervalley scattering, cause a φ0 state with an applied electric field. Additionally, we demonstrate that Majorana bound states along the silicene edge are tunable via the edge orientation, electric, and in-plane spin exchange fields. Finally, we investigate odd-frequency superconducting pair amplitudes in both bulk silicene, and nanoribbons with two kinds of edges.

  6. Purity- and Gaussianity-bounded uncertainty relations

    Science.gov (United States)

    Mandilara, A.; Karpov, E.; Cerf, N. J.

    2014-01-01

    Bounded uncertainty relations provide the minimum value of the uncertainty assuming some additional information on the state. We derive analytically an uncertainty relation bounded by a pair of constraints, those of purity and Gaussianity. In a limiting case this uncertainty relation reproduces the purity-bounded derived by Man’ko and Dodonov and the Gaussianity-bounded one (Mandilara and Cerf 2012 Phys. Rev. A 86 030102R).

  7. Bound Exciton Complexes

    Science.gov (United States)

    Meyer, B. K.

    In the preceding chapter, we concentrated on the properties of free excitons. These free excitons may move through the sample and hit a trap, a nonradiative or a radiative recombination center. At low temperatures, the latter case gives rise to either deep center luminescence, mentioned in Sect. 7.1 and discussed in detail in Chap. 9, or to the luminescence of bound exciton complexes (BE or BEC). The chapter continues with the most prominent of these BECs, namely A-excitons bound to neutral donors. The next aspects are the more weakly BEs at ionized donors. The Sect. 7.4 treats the binding or localization energies of BEC from a theoretical point of view, while Sect. 7.5 is dedicated to excited states of BECs, which contain either holes from deeper valence bands or an envelope function with higher quantum numbers. The last section is devoted to donor-acceptor pair transitions. There is no section devoted specifically to excitons bound to neutral acceptors, because this topic is still partly controversially discussed. Instead, information on these A0X complexes is scattered over the whole chapter, however, with some special emphasis seen in Sects. 7.1, 7.4, and 7.5.

  8. Coupling of the distal hydrogen bond network to the exogenous ligand in substrate-bound, resting state human heme oxygenase.

    Science.gov (United States)

    Peng, Dungeng; Ogura, Hiroshi; Zhu, Wenfeng; Ma, Li-Hua; Evans, John P; Ortiz de Montellano, Paul R; La Mar, Gerd N

    2009-12-01

    Mammalian heme oxygenase (HO) possesses catalytically implicated distal ordered water molecules within an extended H-bond network, with one of the ordered water molecules (#1) providing a bridge between the iron-coordinated ligand and the catalytically critical Asp140, that, in turn, serves as an acceptor for the Tyr58 OH H-bond. The degree of H-bonding by the ligated water molecule and the coupling of this water molecule to the H-bond network are of current interest and are herein investigated by (1)H NMR. Two-dimensional NMR allowed sufficient assignments to provide both the H-bond strength and hyperfine shifts, the latter of which were used to quantify the magnetic anisotropy in both the ferric high-spin aquo and low-spin hydroxo complexes. The anisotropy in the aquo complex indicates that the H-bond donation to water #1 is marginally stronger than in a bacterial HO, while the anisotropy for the hydroxo complex reveals a conventional (d(xz), d(yz))(1) ground state indicative of only moderate to weak H-bond acceptance by the ligated hydroxide. Mapping out the changes of the H-bond strengths in the network during the ligated water --> hydroxide conversion by correcting for the effects of magnetic anisotropy reveals a very substantial change in H-bond strength for Tyr58 OH and lesser effects on nearby H-bonds. The effect of pH on the H-bonding network in human HO is much larger and transmitted much further from the iron than in a pathogenic bacterial HO. The implications for the HO mechanism of the H-bond of Tyr58 to Asp140 are discussed.

  9. Tetraquark bound states and resonances in the unitary and microscopic triple string flip-flop quark model, the light-light-antiheavy-antiheavy $q q \\bar Q\\bar Q$ case study

    OpenAIRE

    Bicudo, P; Cardoso, M.

    2015-01-01

    We address $q q \\bar Q\\bar Q$ exotic tetraquark bound states and resonances with a fully unitarized and microscopic quark model. We propose a triple string flip-flop potential, inspired in lattice QCD tetraquarks static potentials and fluxtubes, combining meson-meson and tetraquark potentials. Our potential goes up to the color excited potential, but neglects spin-tensor potentials. To search for bound states and resonances, we first solve the two-body mesonic problem. Then we develop fully u...

  10. Fluoride-Mediated Capture of a Noncovalent Bound State of a Reversible Covalent Enzyme Inhibitor: X-ray Crystallographic Analysis of an Exceptionally Potent [alpha]-Ketoheterocycle Inhibitor of Fatty Acid Amide Hydrolase

    Energy Technology Data Exchange (ETDEWEB)

    Mileni, Mauro; Garfunkle, Joie; Ezzili, Cyrine; Cravatt, Benjamin F.; Stevens, Raymond C.; Boger, Dale L. (Scripps)

    2011-11-02

    Two cocrystal X-ray structures of the exceptionally potent {alpha}-ketoheterocycle inhibitor 1 (K{sub i} = 290 pM) bound to a humanized variant of rat fatty acid amide hydrolase (FAAH) are disclosed, representing noncovalently and covalently bound states of the same inhibitor with the enzyme. Key to securing the structure of the noncovalently bound state of the inhibitor was the inclusion of fluoride ion in the crystallization conditions that is proposed to bind the oxyanion hole precluding inhibitor covalent adduct formation with stabilization of the tetrahedral hemiketal. This permitted the opportunity to detect important noncovalent interactions stabilizing the binding of the inhibitor within the FAAH active site independent of the covalent reaction. Remarkably, noncovalently bound 1 in the presence of fluoride appears to capture the active site in the same 'in action' state with the three catalytic residues Ser241-Ser217-Lys142 occupying essentially identical positions observed in the covalently bound structure of 1, suggesting that this technique of introducing fluoride may have important applications in structural studies beyond inhibiting substrate or inhibitor oxyanion hole binding. Key insights to emerge from the studies include the observations that noncovalently bound 1 binds in its ketone (not gem diol) form, that the terminal phenyl group in the acyl side chain of the inhibitor serves as the key anchoring interaction overriding the intricate polar interactions in the cytosolic port, and that the role of the central activating heterocycle is dominated by its intrinsic electron-withdrawing properties. These two structures are also briefly compared with five X-ray structures of {alpha}-ketoheterocycle-based inhibitors bound to FAAH recently disclosed.

  11. Accurate Three-Nucleon Bound-State Calculation with an Extended Separable Expansion of the Two-Body T-Matrix

    Science.gov (United States)

    Koike, Y.; Parke, W. C.; Maximon, L. C.; Lehman, D. R.

    An accurate solution for the three-nucleon bound state is obtained within 1 keV in the binding energy and, on the whole, better than 1% in the wave function, using a new systematic and efficient method. The method is based on a recently developed separable expansion for any finite-range interaction, in which a rigorous separable series for the two-body t-matrix is obtained by expanding the wave function in terms of a complete set of basis functions inside the range of the potential. In order to treat a potential with a strong repulsive core, as in the case of the Argonne potential, we develop a two-potential formalism. The expansion starts with a few EST (Ernst, Shakin, and Thaler) terms in order to accelerate the convergence and continues with an orthogonal set of polynomials, avoiding the known difficulties of a pure EST expansion. Thus, several techniques are combined in the present extended separable expansion (ESE). In this way, the method opens a new systematic treatment for accurate few-body calculations resulting in a dramatic reduction in the CPU time required to solve few-body equations.

  12. The role of free and bound water in irradiation preservation: Free radical damage as a function of the physical state of water

    Science.gov (United States)

    Wedemeyer, Gary; Dollar, A.M.

    1964-01-01

    English sole fillets previously equilibrated with aqueous 0.1% cysteine were dehydrated by three methods to moisture levels ranging from 2 to 72%. Model systems using cellulose to replace the fish tissue were also used. The samples were irradiated at 1 Mrad in an air, nitrogen, or oxygen atmosphere. The destruction of −SH groups was measured and related to the amount and physical state of the tissue water. As free water was removed, destruction steadily increased, reaching a maximum at about 20% moisture. Destruction decreased markedly at moisture levels below 10%, and calorimetric measurements confirmed that 10% moisture was about the level of bound water in this species. These data suggest that dehydration favors the reaction of solute molecules with free radicals formed in the free water of muscle cells. At moisture levels greater than about 20%, simple free radical recombination is more likely than reaction with solute molecules, while below 20% moisture the reverse is true. The calculated α values support this conclusion, as do the results from model systems using cellulose.

  13. Rigorous coherent-structure theory for falling liquid films: Viscous dispersion effects on bound-state formation and self-organization

    CERN Document Server

    Pradas, Marc; Kalliadasis, Serafim

    2011-01-01

    We examine the interaction of two-dimensional solitary pulses on falling liquid films. We make use of the second-order model derived by Ruyer-Quil and Manneville [Eur. Phys. J. B 6, 277 (1998); Eur. Phys. J. B 15, 357 (2000); Phys. Fluids 14, 170 (2002)] by combining the long-wave approximation with a weighted residuals technique. The model includes (second-order) viscous dispersion effects which originate from the streamwise momentum equation and tangential stress balance. These effects play a dispersive role that primarily influences the shape of the capillary ripples in front of the solitary pulses. We show that different physical parameters, such as surface tension and viscosity, play a crucial role in the interaction between solitary pulses giving rise eventually to the formation of bound states consisting of two or more pulses separated by well-defined distances and travelling at the same velocity. By developing a rigorous coherent-structure theory, we are able to theoretically predict the pulse-separat...

  14. Test of N.bar.N potential models isospin relations in p.bar.d annihilations at rest and the search for quasinuclear bound states

    CERN Document Server

    Abele, A; Amsler, Claude; Baker, C A; Barnett, B M; Batty, C J; Benayoun, M; Bischoff, S; Blüm, H P; Braune, K; Case, T; Credé, V; Crowe, K M; Degener, T F; Doser, Michael; Dünnweber, W; Engelhardt, D; Faessler, M A; Giarritta, P; Haddock, R P; Heinsius, F H; Heinzelmann, M; Herbstrith, A; Hessey, N P; Hidas, P; Holtzhaussen, C; Jamnik, D; Kalinowsky, H; Kammel, P; Kisiel, J; Klempt, E; Koch, H; Kunze, M; Kurilla, U; Lakata, M T; Landua, Rolf; Mathhay, H; Meyer, C A; Meyer-Wildhagen, F; Ouared, R; Peters, K; Pick, B; Ratajczak, M; Regenfus, C; Röthel, W; Spanier, S M; Stöck, H; Strohbusch, U; Suffert, Martin; Suh, J S; Thoma, U; Tischhäuser, M; Uman, I; Völcker, C; Wallis-Plachner, S; Walther, D; Wiedner, U; Wittmack, K

    2000-01-01

    We have determined branching ratios for antiproton annihilations at rest on protons or neutrons in liquid deuterium which we compare to frequencies of isospin-related processes in antiproton-proton annihilations. Using the annihilation rates into pi /sup 0/ pi /sup 0 / and pi /sup -/ pi /sup 0/ where the annihilation took place on the proton or neutron, respectively, we discuss the fraction of S-wave and P-wave annihilation in liquid D/sub 2/. The frequencies for pi /sup -/ omega and rho /sup -/ pi /sup 0/, and pi /sup -/ eta and pi /sup -/ eta ' and the corresponding frequencies for pp annihilations are used to determine isoscalar and isovector contributions to the protonium wave function. We observe rho - omega interference in pp to pi /sup +/ pi /sup -/ eta and pi /sup +/ pi /sup -/ pi /sup 0/ annihilation. The annihilation rate for pd to K/sup -/K/sup 0/p confirms the dominance of the isovector contribution to NN to KK annihilations. Furthermore, we searched for narrow quasinuclear bound states close to t...

  15. Capacity Bounds for Parallel Optical Wireless Channels

    KAUST Repository

    Chaaban, Anas

    2016-01-01

    A system consisting of parallel optical wireless channels with a total average intensity constraint is studied. Capacity upper and lower bounds for this system are derived. Under perfect channel-state information at the transmitter (CSIT), the bounds have to be optimized with respect to the power allocation over the parallel channels. The optimization of the lower bound is non-convex, however, the KKT conditions can be used to find a list of possible solutions one of which is optimal. The optimal solution can then be found by an exhaustive search algorithm, which is computationally expensive. To overcome this, we propose low-complexity power allocation algorithms which are nearly optimal. The optimized capacity lower bound nearly coincides with the capacity at high SNR. Without CSIT, our capacity bounds lead to upper and lower bounds on the outage probability. The outage probability bounds meet at high SNR. The system with average and peak intensity constraints is also discussed.

  16. A ``new'' approach to the quantitative statistical dynamics of plasma turbulence: The optimum theory of rigorous bounds on steady-state transport

    Science.gov (United States)

    Krommes, John A.; Kim, Chang-Bae

    1990-06-01

    The fundamental problem in the theory of turbulent transport is to find the flux Γ of a quantity such as heat. Methods based on statistical closures are mired in conceptual controversies and practical difficulties. However, it is possible to bound Γ by employing constraints derived rigorously from the equations of motion. Brief reviews of the general theory and its application to passive advection are given. Then, a detailed application is made to anomalous resistivity generated by self-consistent turbulence in a reversed-field pinch. A nonlinear variational principle for an upper bound on the turbulent electromotive force for fixed current is formulated from the magnetohydrodynamic equations in cylindrical geometry. Numerical solution of a case constrained solely by energy balance leads to a reasonable bound and nonlinear eigenfunctions that share intriguing features with experimental data: The dominant mode numbers appear to be correct, and field reversal is predicted at reasonable values of the pinch parameter. Although open questions remain, upon considering all bounding calculations to date it can be concluded, remarkably, that global energy balance constrains transport sufficiently so that bounds derived therefrom are not unreasonable and that bounding calculations are feasible even for involved practical problems. The potential of the method has hardly been tapped; it provides a fertile area for future research.

  17. Distance bounds on quantum dynamics

    Science.gov (United States)

    Lidar, Daniel A.; Zanardi, Paolo; Khodjasteh, Kaveh

    2008-07-01

    We derive rigorous upper bounds on the distance between quantum states in an open-system setting in terms of the operator norm between Hamiltonians describing their evolution. We illustrate our results with an example taken from protection against decoherence using dynamical decoupling.

  18. Physical Uncertainty Bounds (PUB)

    Energy Technology Data Exchange (ETDEWEB)

    Vaughan, Diane Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Preston, Dean L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-19

    This paper introduces and motivates the need for a new methodology for determining upper bounds on the uncertainties in simulations of engineered systems due to limited fidelity in the composite continuum-level physics models needed to simulate the systems. We show that traditional uncertainty quantification methods provide, at best, a lower bound on this uncertainty. We propose to obtain bounds on the simulation uncertainties by first determining bounds on the physical quantities or processes relevant to system performance. By bounding these physics processes, as opposed to carrying out statistical analyses of the parameter sets of specific physics models or simply switching out the available physics models, one can obtain upper bounds on the uncertainties in simulated quantities of interest.

  19. The DMM Bound

    DEFF Research Database (Denmark)

    Emiris, Ioannis Z.; Mourrain, Bernard; Tsigaridas, Elias

    2010-01-01

    In this paper we derive aggregate separation bounds, named after Davenport-Mahler-Mignotte (DMM), on the isolated roots of polynomial systems, specifically on the minimum distance between any two such roots. The bounds exploit the structure of the system and the height of the sparse (or toric) re...... bound on the number of steps that subdivision-based algorithms perform in order to isolate all real roots of a polynomial system. This leads to the first complexity bound of Milne's algorithm [22] in 2D....

  20. Bounded Parikh Automata

    Directory of Open Access Journals (Sweden)

    Michaël Cadilhac

    2011-08-01

    Full Text Available The Parikh finite word automaton model (PA was introduced and studied by Klaedtke and Ruess in 2003. Here, by means of related models, it is shown that the bounded languages recognized by PA are the same as those recognized by deterministic PA. Moreover, this class of languages is the class of bounded languages whose set of iterations is semilinear.

  1. Bounded Gaussian process regression

    DEFF Research Database (Denmark)

    Jensen, Bjørn Sand; Nielsen, Jens Brehm; Larsen, Jan

    2013-01-01

    We extend the Gaussian process (GP) framework for bounded regression by introducing two bounded likelihood functions that model the noise on the dependent variable explicitly. This is fundamentally different from the implicit noise assumption in the previously suggested warped GP framework. We...

  2. Cost-Benefit Analysis of Nanoparticle Albumin-Bound Paclitaxel versus Solvent-Based Paclitaxel for the Treatment of Metastatic Breast Cancer in the United States

    Science.gov (United States)

    Vichansavakul, Kittaya

    Breast cancer is the second leading cause of death among women in the US. Although early detection and treatment help to increase survival rates, some unfortunate patients develop metastatic breast cancer that has no cure. Palliative treatment is the main objective in this group of patients in order to prolong life and reduce toxicities from interventions. In the advancement of treatment for metastatic breast cancer, solvent-based paclitaxel has been widely used. However, solvent-based paclitaxel often causes adverse reactions. Therefore, researchers have developed a new chemotherapy based on nanotechnology. One of these drugs is the Nanoparticle albumin-bound Paclitaxel. This nanodrug aims to increase therapeutic index by reducing adverse reactions from solvents and to improve efficacy of conventional cytotoxic chemotherapy. Breast cancer is a disease with high epidemiological and economic burden. The treatment of metastatic breast cancer has not only high direct costs but also high indirect costs. Breast cancer affects mass populations, especially women younger than 50 years of age. It relates to high indirect costs due to lost productivity and premature death because the majority of these patients are in the workforce. Because of the high cost of breast cancer therapies and short survival rates, the question is raised whether the costs and benefits are worth paying or not. Due to the rising costs in healthcare and new financing policies that have been developed to address this issue, economic evaluation is an important aspect of the development and use of any new interventions. To guide policy makers on how to allocate limited healthcare resources in the most efficient and effective manner, many economic evaluation methods can be used to measure the costs, benefits, and impacts of healthcare innovations. Currently, economic evaluation and health outcomes studies have focused greatly on cost-effectiveness and cost-utility analysis. However, the previous studies

  3. Derivative-free method for bound constrained nonlinear monotone equations and its application in solving steady state reaction-diffusion problems

    Directory of Open Access Journals (Sweden)

    Octavio Batta

    2016-10-01

    Full Text Available We present a derivative-free algorithm for solving bound constrained systems of nonlinear monotone equations. The algorithm generates feasible iterates using in a systematic way the residual as search direction and a suitable step-length closely related to the Barzilai-Borwein choice. A convergence analysis is described. We also present one application in solving problems related with the study of reaction-diffusion processes that can be described by nonlinear partial differential equations of elliptic type. Numerical experiences are included to highlight the efficacy of proposed algorithm.

  4. Crystal Structure of the Zinc-dependent MarR Family Transcriptional Regulator AdcR in the Zn(II)-bound State

    OpenAIRE

    Guerra, Alfredo J.; Dann, Charles E.; Giedroc, David P.

    2011-01-01

    S. pneumoniae adhesin competence regulator (AdcR), the first metal dependent member of the MarR family of proteins, represses the transcription of a high affinity zinc-specific uptake transporter, a group of surface antigen zinc-binding pneumococcal histidine triad proteins (PhtA, PhtB, PhtD and PhtE) and an AdcA homologue (AdcAII). The 2.0 Å resolution structure of Zn(II)-bound AdcR reveals a highly helical two-fold symmetric dimer with two distinct metal binding sites per protomer. Zn(II) i...

  5. Virial Expansion Bounds

    Science.gov (United States)

    Tate, Stephen James

    2013-10-01

    In the 1960s, the technique of using cluster expansion bounds in order to achieve bounds on the virial expansion was developed by Lebowitz and Penrose (J. Math. Phys. 5:841, 1964) and Ruelle (Statistical Mechanics: Rigorous Results. Benjamin, Elmsford, 1969). This technique is generalised to more recent cluster expansion bounds by Poghosyan and Ueltschi (J. Math. Phys. 50:053509, 2009), which are related to the work of Procacci (J. Stat. Phys. 129:171, 2007) and the tree-graph identity, detailed by Brydges (Phénomènes Critiques, Systèmes Aléatoires, Théories de Jauge. Les Houches 1984, pp. 129-183, 1986). The bounds achieved by Lebowitz and Penrose can also be sharpened by doing the actual optimisation and achieving expressions in terms of the Lambert W-function. The different bound from the cluster expansion shows some improvements for bounds on the convergence of the virial expansion in the case of positive potentials, which are allowed to have a hard core.

  6. Bounds in the generalized Weber problem under locational uncertainty

    DEFF Research Database (Denmark)

    Juel, Henrik

    1981-01-01

    An existing analysis of the bounds on the Weber problem solution under uncertainty is incorrect. For the generalized problem with arbitrary measures of distance, we give easily computable ranges on the bounds and state the conditions under which the exact values of the bounds can be found...

  7. Sound velocity bound and neutron stars.

    Science.gov (United States)

    Bedaque, Paulo; Steiner, Andrew W

    2015-01-23

    It has been conjectured that the velocity of sound in any medium is smaller than the velocity of light in vacuum divided by sqrt[3]. Simple arguments support this bound in nonrelativistic and/or weakly coupled theories. The bound has been demonstrated in several classes of strongly coupled theories with gravity duals and is saturated only in conformal theories. We point out that the existence of neutron stars with masses around two solar masses combined with the knowledge of the equation of state of hadronic matter at "low" densities is in strong tension with this bound.

  8. Lower bound for the nuclear kinetic energy

    Energy Technology Data Exchange (ETDEWEB)

    Dehesa, J.S. (Granada Univ. (Spain). Dept. de Fisica Nuclear); Galvez, F.J. (Granada Univ. (Spain). Dept. de Fisica Teorica)

    1985-06-27

    We argue that the kinetic energy of a many-fermion system is bounded from below by Kqsup(-2/3)A sup(5/3) / , with K = 0.565 where q is the number of spin states available to each particle and sup(1/2) is the root mean square radius of the single-particle density. A simple lower bound for the nuclear kinetic energy is found. Numerical values of the bound for several nuclei are shown, and a comparison with some self-consistent calculations and some pseudo-empirical values is made.

  9. Cyclotron transitions of bound ions

    Science.gov (United States)

    Bezchastnov, Victor G.; Pavlov, George G.

    2017-06-01

    A charged particle in a magnetic field possesses discrete energy levels associated with particle rotation around the field lines. The radiative transitions between these levels are the well-known cyclotron transitions. We show that a bound complex of particles with a nonzero net charge displays analogous transitions between the states of confined motion of the entire complex in the field. The latter bound-ion cyclotron transitions are affected by a coupling between the collective and internal motions of the complex and, as a result, differ from the transitions of a "reference" bare ion with the same mass and charge. We analyze the cyclotron transitions for complex ions by including the coupling within a rigorous quantum approach. Particular attention is paid to comparison of the transition energies and oscillator strengths to those of the bare ion. Selection rules based on integrals of collective motion are derived for the bound-ion cyclotron transitions analytically, and the perturbation and coupled-channel approaches are developed to study the transitions quantitatively. Representative examples are considered and discussed for positive and negative atomic and cluster ions.

  10. Validation of EMP bounds

    Energy Technology Data Exchange (ETDEWEB)

    Warne, L.K.; Merewether, K.O.; Chen, K.C.; Jorgenson, R.E.; Morris, M.E.; Solberg, J.E.; Lewis, J.G. [Sandia National Labs., Albuquerque, NM (United States); Derr, W. [Derr Enterprises, Albuquerque, NM (United States)

    1996-07-01

    Test data on canonical weapon-like fixtures are used to validate previously developed analytical bounding results. The test fixtures were constructed to simulate (but be slightly worse than) weapon ports of entry but have known geometries (and electrical points of contact). The exterior of the test fixtures exhibited exterior resonant enhancement of the incident fields at the ports of entry with magnitudes equal to those of weapon geometries. The interior consisted of loaded transmission lines adjusted to maximize received energy or voltage but incorporating practical weapon geometrical constraints. New analytical results are also presented for bounding the energies associated with multiple bolt joints and for bounding the exterior resonant enhancement of the exciting fields.

  11. Bounded Tamper Resilience

    DEFF Research Database (Denmark)

    Damgård, Ivan Bjerre; Faust, Sebastian; Mukherjee, Pratyay

    2013-01-01

    a bounded tamper and leakage resilient CCA secure public key cryptosystem based on the DDH assumption. We first define a weaker CPA-like security notion that we can instantiate based on DDH, and then we give a general compiler that yields CCA-security with tamper and leakage resilience. This requires...... a public tamper-proof common reference string. Finally, we explain how to boost bounded tampering and leakage resilience (as in 1. and 2. above) to continuous tampering and leakage resilience, in the so-called floppy model where each user has a personal hardware token (containing leak- and tamper...

  12. Accessing a low-lying bound electronic state of the alkali oxides, LiO and NaO, using laser induced fluorescence

    Science.gov (United States)

    Pugh, J. V.; Shen, K. K.; Winstead, C. B.; Gole, J. L.

    1996-01-01

    The first laser based probe for the sodium and lithium monoxides is established. The Li(Na)+N 2O reactions studied in a multiple collision entrainment mode produce the LiO and NaO ground X 2Π and low-lying monoxide excited states. In contrast to the alkali halides, laser induced excitation spectroscopy confirms that the LiO and NaO B 2Π states, counter to recent predictions, are located at energies well below the ground state dissociation asymptote and, as predicted, possess significant binding energies. An assignment of the laser induced excitation spectra (LIF) for the B 2Π-X 2Π transitions of LiO in the region 3940-4300 Å is based on a direct correlation with the observed chemiluminescence (CL) from the lowest level of the LiO B 2Π state ( ˜4000-7000 Å) and high quality ab initio calculations for the ground state. The self-consistent assignment of the observed LIF and CL spectra makes use of the complimentary extended progressions in the X 2Π (CL) and B 2Π (LIF) vibrational level structure which results from the significant shift of the B 2Π excited state potential relative to that of the ground state. The experimental data are consistent with an excited state vibrational frequency separation of order 130 cm -1, and T e( B2Π) ≈ 26078 ± 800 cm-1. The latter value, in correlation with the ground state dissociation energy of LiO, suggests a B 2Π excited state dissociation energy well in excess of 2000 cm -1. The radiative lifetimes of the lowest levels of the LiO B 2Π state, isoergic with the highest levels of the LiO ground state, are determined to be in excess of 600 ns. The corresponding NaO excitation spectra in the range 6680-7250 Å also correlate well with ab initio calculations for the ground electronic state of NaO. Within this study, we provide optical signatures which one might consider to monitor LiO or NaO in process streams. In correlation with the observed chemiluminescence from B 2Π states of the higher alkali oxides KO, RbO, and

  13. Bounded variation and around

    CERN Document Server

    Appell, Jürgen; Merentes Díaz, Nelson José

    2013-01-01

    This monographis a self-contained exposition of the definition and properties of functionsof bounded variation and their various generalizations; the analytical properties of nonlinear composition operators in spaces of such functions; applications to Fourier analysis, nonlinear integral equations, and boundary value problems. The book is written for non-specialists. Every chapter closes with a list of exercises and open problems.

  14. Crystal structure of the zinc-dependent MarR family transcriptional regulator AdcR in the Zn(II)-bound state.

    Science.gov (United States)

    Guerra, Alfredo J; Dann, Charles E; Giedroc, David P

    2011-12-14

    Streptococcus pneumoniae adhesin competence regulator (AdcR), the first metal-dependent member of the multiple antibiotic resistance regulator (MarR) family of proteins, represses the transcription of a high-affinity zinc-specific uptake transporter, a group of surface antigen zinc-binding pneumococcal histidine triad proteins (PhtA, PhtB, PhtD, and PhtE), and an AdcA homologue (AdcAII). The 2.0 Å resolution structure of Zn(II)-bound AdcR reveals a highly helical two-fold-symmetric dimer with two distinct metal-binding sites per protomer. Zn(II) is tetrahedrally coordinated by E24, H42, H108, and H112 in what defines the primary sensing site in AdcR. Site 2 is a tetracoordinate site whose function is currently unknown. NMR methyl group perturbation experiments reveal that Zn(II) drives a global change in the structure of apo-AdcR that stabilizes a conformation that is compatible with DNA binding. This co-repression mechanism is unprecedented in MarR transcriptional regulators. © 2011 American Chemical Society

  15. Structure of Amantadine-Bound M2 Transmembrane Peptide of Influenza A in Lipid Bilayers from Magic-Angle-Spinning Solid-State NMR: the Role of Ser31 in Amantadine Binding

    Science.gov (United States)

    Cady, Sarah D.; Mishanina, Tatiana V.; Hong, Mei

    2014-01-01

    The M2 proton channel of influenza A is the target of the antiviral drugs amantadine and rimantadine, whose effectiveness has been abolished by a single-site mutation of Ser31 to Asn in the transmembrane domain of the protein. Recent high-resolution structures of the M2 transmembrane domain obtained from detergent-solubilized protein in solution and crystal environments gave conflicting drug binding sites. We present magic-angle-spinning solid-state NMR results of Ser31 and a number of other residues in the M2 transmembrane peptide (M2TMP) bound to lipid bilayers. Comparison of the spectra of the membrane-bound apo and complexed M2TMP indicates that Ser31 is the site of the largest chemical shift perturbation by amantadine. The chemical shift constraints lead to a monomer structure with a small kink of the helical axis at Gly34. A tetramer model is then constructed using the helix tilt angle and several interhelical distances previously measured on unoriented bilayer samples. This tetramer model differs from the solution and crystal structures in terms of the openness of the N-terminus of the channel, the constriction at Ser31, and the sidechain conformations of Trp41, a residue important for channel gating. Moreover, the tetramer model suggests that Ser31 may interact with amantadine amine via hydrogen bonding. While the apo and drug-bound M2TMP have similar average structures, the complexed peptide has much narrower linewidths at physiological temperature, indicating drug-induced changes of the protein dynamics in the membrane. Further, at low temperature, several residues show narrower lines in the complexed peptide than the apo peptide, indicating that amantadine binding reduces the conformational heterogeneity of specific residues. The differences of the current solid-state NMR structure of the bilayer-bound M2TMP from the detergent-based M2 structures suggest that the M2 conformation is sensitive to the environment, and care must be taken when interpreting

  16. The Predominant Molecular State of Bound Enzyme Determines the Strength and Type of Product Inhibition in the Hydrolysis of Recalcitrant Polysaccharides by Processive Enzymes*

    Science.gov (United States)

    Kuusk, Silja; Sørlie, Morten; Väljamäe, Priit

    2015-01-01

    Processive enzymes are major components of the efficient enzyme systems that are responsible for the degradation of the recalcitrant polysaccharides cellulose and chitin. Despite intensive research, there is no consensus on which step is rate-limiting for these enzymes. Here, we performed a comparative study of two well characterized enzymes, the cellobiohydrolase Cel7A from Hypocrea jecorina and the chitinase ChiA from Serratia marcescens. Both enzymes were inhibited by their disaccharide product, namely chitobiose for ChiA and cellobiose for Cel7A. The products behaved as noncompetitive inhibitors according to studies using the 14C-labeled crystalline polymeric substrates 14C chitin nanowhiskers and 14C-labeled bacterial microcrystalline cellulose for ChiA and Cel7A, respectively. The resulting observed Ki(obs) values were 0.45 ± 0.08 mm for ChiA and 0.17 ± 0.02 mm for Cel7A. However, in contrast to ChiA, the Ki(obs) of Cel7A was an order of magnitude higher than the true Ki value governed by the thermodynamic stability of the enzyme-inhibitor complex. Theoretical analysis of product inhibition suggested that the inhibition strength and pattern can be accounted for by assuming different rate-limiting steps for ChiA and Cel7A. Measuring the population of enzymes whose active site was occupied by a polymer chain revealed that Cel7A was bound predominantly via its active site. Conversely, the active-site-mediated binding of ChiA was slow, and most ChiA exhibited a free active site, even when the substrate concentration was saturating for the activity. Collectively, our data suggest that complexation with the polymer chain is rate-limiting for ChiA, whereas Cel7A is limited by dissociation. PMID:25767120

  17. The predominant molecular state of bound enzyme determines the strength and type of product inhibition in the hydrolysis of recalcitrant polysaccharides by processive enzymes.

    Science.gov (United States)

    Kuusk, Silja; Sørlie, Morten; Väljamäe, Priit

    2015-05-01

    Processive enzymes are major components of the efficient enzyme systems that are responsible for the degradation of the recalcitrant polysaccharides cellulose and chitin. Despite intensive research, there is no consensus on which step is rate-limiting for these enzymes. Here, we performed a comparative study of two well characterized enzymes, the cellobiohydrolase Cel7A from Hypocrea jecorina and the chitinase ChiA from Serratia marcescens. Both enzymes were inhibited by their disaccharide product, namely chitobiose for ChiA and cellobiose for Cel7A. The products behaved as noncompetitive inhibitors according to studies using the (14)C-labeled crystalline polymeric substrates (14)C chitin nanowhiskers and (14)C-labeled bacterial microcrystalline cellulose for ChiA and Cel7A, respectively. The resulting observed Ki (obs) values were 0.45 ± 0.08 mm for ChiA and 0.17 ± 0.02 mm for Cel7A. However, in contrast to ChiA, the Ki (obs) of Cel7A was an order of magnitude higher than the true Ki value governed by the thermodynamic stability of the enzyme-inhibitor complex. Theoretical analysis of product inhibition suggested that the inhibition strength and pattern can be accounted for by assuming different rate-limiting steps for ChiA and Cel7A. Measuring the population of enzymes whose active site was occupied by a polymer chain revealed that Cel7A was bound predominantly via its active site. Conversely, the active-site-mediated binding of ChiA was slow, and most ChiA exhibited a free active site, even when the substrate concentration was saturating for the activity. Collectively, our data suggest that complexation with the polymer chain is rate-limiting for ChiA, whereas Cel7A is limited by dissociation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Correlation Distance and Bounds for Mutual Information

    Directory of Open Access Journals (Sweden)

    Michael J. W. Hall

    2013-09-01

    Full Text Available The correlation distance quantifies the statistical independence of two classical or quantum systems, via the distance from their joint state to the product of the marginal states. Tight lower bounds are given for the mutual information between pairs of two-valued classical variables and quantum qubits, in terms of the corresponding classical and quantum correlation distances. These bounds are stronger than the Pinsker inequality (and refinements thereof for relative entropy. The classical lower bound may be used to quantify properties of statistical models that violate Bell inequalities. Partially entangled qubits can have lower mutual information than can any two-valued classical variables having the same correlation distance. The qubit correlation distance also provides a direct entanglement criterion, related to the spin covariance matrix. Connections of results with classically-correlated quantum states are briefly discussed.

  19. Entropy Bounds, Holographic Principle and Uncertainty Relation

    Directory of Open Access Journals (Sweden)

    I. V. Volovich

    2001-06-01

    Full Text Available Abstract: A simple derivation of the bound on entropy is given and the holographic principle is discussed. We estimate the number of quantum states inside space region on the base of uncertainty relation. The result is compared with the Bekenstein formula for entropy bound, which was initially derived from the generalized second law of thermodynamics for black holes. The holographic principle states that the entropy inside a region is bounded by the area of the boundary of that region. This principle can be called the kinematical holographic principle. We argue that it can be derived from the dynamical holographic principle which states that the dynamics of a system in a region should be described by a system which lives on the boundary of the region. This last principle can be valid in general relativity because the ADM hamiltonian reduces to the surface term.

  20. Tight bounds on computing error-correcting codes by bounded-depth circuits with arbitrary gates

    DEFF Research Database (Denmark)

    Gál, Anna; Hansen, Kristoffer Arnsfelt; Koucký, Michal

    2011-01-01

    We bound the minimum number w of wires needed to compute any (asymptotically good) error-correcting code C:01(n)01n with minimum distance (n), using unbounded fan-in circuits of depth d with arbitrary gates. Our main results are: (1) If d=2 then w=(n(lognloglogn)2) . (2) If d=3 then w=(nlglgn). (3......, our (n(lognloglogn)2) lower bound gives the largest known lower bound for computing any linear map, improving on the (nlg32n) bound of Pudlak and Rodl (Discrete Mathematics '94). We find the upper bounds surprising. They imply that a (necessarily dense) generator matrix for the code can be written...... as the product of two sparse matrices. The upper bounds are non-explicit: we show the existence of circuits (consisting of only XOR gates) computing good codes within the stated bounds. Using a result by Ishai, Kushilevitz, Ostrovsky, and Sahai (STOC '08), we also obtain similar bounds for computing pairwise...

  1. Effect of electron-phonon interaction and external magnetic field on the bound state in the Anderson-Holstein model: an improved variational treatment

    Science.gov (United States)

    Narasimha Raju, Ch.; Chatterjee, Ashok

    2015-05-01

    The single-impurity Anderson-Holstein model is investigated in the presence of a magnetic field by an improved variational method. The phonon degrees of freedom are first eliminated by a modified Lang-Firsov transformation followed by a zero-phonon averaging. The resulting Hamiltonian is then treated by a cluster variational method to study the effects of the electron-phonon interaction and the magnetic field on the ground state energy, local magnetic moment and the binding energy between the magnetic impurity and the conduction electrons.

  2. Partial wave analysis of the reaction p (3.5 GeV) + p → pK+ Λ to search for the " ppK-" bound state

    Science.gov (United States)

    Agakishiev, G.; Arnold, O.; Belver, D.; Belyaev, A.; Berger-Chen, J. C.; Blanco, A.; Böhmer, M.; Boyard, J. L.; Cabanelas, P.; Chernenko, S.; Dybczak, A.; Epple, E.; Fabbietti, L.; Fateev, O.; Finocchiaro, P.; Fonte, P.; Friese, J.; Fröhlich, I.; Galatyuk, T.; Garzón, J. A.; Gernhäuser, R.; Göbel, K.; Golubeva, M.; González-Díaz, D.; Guber, F.; Gumberidze, M.; Heinz, T.; Hennino, T.; Holzmann, R.; Ierusalimov, A.; Iori, I.; Ivashkin, A.; Jurkovic, M.; Kämpfer, B.; Karavicheva, T.; Koenig, I.; Koenig, W.; Kolb, B. W.; Kornakov, G.; Kotte, R.; Krása, A.; Krizek, F.; Krücken, R.; Kuc, H.; Kühn, W.; Kugler, A.; Kunz, T.; Kurepin, A.; Ladygin, V.; Lalik, R.; Lapidus, K.; Lebedev, A.; Lopes, L.; Lorenz, M.; Maier, L.; Mangiarotti, A.; Markert, J.; Metag, V.; Michel, J.; Müntz, C.; Münzer, R.; Naumann, L.; Pachmayer, Y. C.; Palka, M.; Parpottas, Y.; Pechenov, V.; Pechenova, O.; Pietraszko, J.; Przygoda, W.; Ramstein, B.; Reshetin, A.; Rustamov, A.; Sadovsky, A.; Salabura, P.; Schmah, A.; Schwab, E.; Siebenson, J.; Sobolev, Yu. G.; Spataro, S.; Spruck, B.; Ströbele, H.; Stroth, J.; Sturm, C.; Tarantola, A.; Teilab, K.; Tlusty, P.; Traxler, M.; Tsertos, H.; Vasiliev, T.; Wagner, V.; Weber, M.; Wendisch, C.; Wüstenfeld, J.; Yurevich, S.; Zanevsky, Y.; Sarantsev, A. V.

    2015-03-01

    Employing the Bonn-Gatchina partial wave analysis framework (PWA), we have analyzed HADES data of the reaction p (3.5 GeV) + p → pK+ Λ. This reaction might contain information about the kaonic cluster " ppK-" (with quantum numbers JP =0- and total isospin I = 1 / 2) via its decay into pΛ. Due to interference effects in our coherent description of the data, a hypothetical K ‾ NN (or, specifically " ppK-") cluster signal need not necessarily show up as a pronounced feature (e.g. a peak) in an invariant mass spectrum like pΛ. Our PWA analysis includes a variety of resonant and non-resonant intermediate states and delivers a good description of our data (various angular distributions and two-hadron invariant mass spectra) without a contribution of a K ‾ NN cluster. At a confidence level of CLs = 95% such a cluster cannot contribute more than 2-12% to the total cross section with a pK+ Λ final state, which translates into a production cross-section between 0.7 μb and 4.2 μb, respectively. The range of the upper limit depends on the assumed cluster mass, width and production process.

  3. Imaging correlated three-particle continuum states. Experiment and theory on the non-adiabatic projection of bound triatomic hydrogen into three separated atoms

    Energy Technology Data Exchange (ETDEWEB)

    Fechner, Peer Cornelis

    2015-07-21

    The central topic of this thesis is the experimental observation and the theoretical modeling of non-adiabatic three-body dissociation of H{sub 3} and D{sub 3} neutral triatomic hydrogen molecules. Our goal is to lend a meaning to the observed momentum vector correlation (MVC) of the three emerging ground state hydrogen atoms, for example H{sub 3}→H(1s)+H(1s)+H(1s), in terms of symmetries of the nuclear molecular wave function and of the non-adiabatic coupling which initiates this decay. In many experiments carried out over the years, a wealth of state specific MVCs was collected by different research groups. The MVCs are imaged in form of so-called Dalitz plots which show a rich structure of maxima and nodal lines, depending on the initial state of the triatomic hydrogen neutral. Theory was slow to catch up with experiment and only by this year, 2015, a general agreement was accomplished. Nevertheless, these models lack of an easy understanding of the underlying physics as many numerical calculations are involved. The theoretical model presented in this thesis follows a different approach which is more guided by the imaging character of our experiments. We concentrate on a rather qualitative treatment by limiting ourselves to the essential ingredients only. This proceeding contributes to giving a physical interpretation of the structures in the Dalitz plots in the following form: Three-particle coincident imaging offers a direct view of the emerging spatial continuum wave function of a predissociating triatomic molecule as it evolves from molecular spatial dimensions into the realm of independent free particles. This latter result is discussed in the context of the so-called Imaging Theorem, the second main part of this work. A third major part of this thesis pertains to obtaining molecular momentum wave functions in separated degrees-of-freedom via Fourier transformation. Even for triatomic hydrogen - the most simple polyatomic molecule - this is a challenging

  4. Coupling of the Distal H-bond Network to the Exogenous Ligand in Substrate-bound, Resting State Human Heme Oxygenase ‡

    Science.gov (United States)

    Peng, Dungeng; Ogura, Hiroshi; Zhu, Wenfeng; Ma, Li-Hua; Evans, John P.; Ortiz de Montellano, Paul R.; La Mar, Gerd N.

    2010-01-01

    Mammalian heme oxygenase, HO, possesses catalytically implicated distal ordered water molecules within an extended H-bond network, with one of the ordered water molecules (#1) providing a bridge between the iron-coordinated ligand and the catalytically critical Asp140, that, in turn, serves as an acceptor for the Tyr58 OH H-bond. The degree of H-bonding by the ligated water molecule and the coupling of this water molecule to the H-bond network are of current interest and are herein investigated by 1H NMR. 2D NMR allowed sufficient assignments to provide both the H-bond strength and hyperfine shifts, the latter of which were used to quantify the magnetic anisotropy in both the ferric high-spin aquo and low-spin hydroxo complexes. The anisotropy in the aquo complex indicates that the H-bond donation to water #1 is marginally stronger than in a bacterial HO, while the anisotropy for the hydroxo complex reveals a conventional (dxz, dyz)1 ground state indicative of only moderate to weak H-bond acceptance by the ligated hydroxide. Mapping out the changes of the H-bond strengths in the network during the ligated water → hydroxide conversion by correcting for the effects of magnetic anisotropy, reveals a very substantial change in H-bond strength for Tyr58 OH, and lesser effects on nearby H-bonds. The effect of pH on the H-bonding network in human HO is much larger and transmitted much further from the iron than in a pathogenic bacterial HO. The implications for the HO mechanism of the H-bond of Tyr58 to Asp140 are discussed. PMID:19842713

  5. Refining Multivariate Value Set Bounds

    Science.gov (United States)

    Smith, Luke Alexander

    Over finite fields, if the image of a polynomial map is not the entire field, then its cardinality can be bounded above by a significantly smaller value. Earlier results bound the cardinality of the value set using the degree of the polynomial, but more recent results make use of the powers of all monomials. In this paper, we explore the geometric properties of the Newton polytope and show how they allow for tighter upper bounds on the cardinality of the multivariate value set. We then explore a method which allows for even stronger upper bounds, regardless of whether one uses the multivariate degree or the Newton polytope to bound the value set. Effectively, this provides an alternate proof of Kosters' degree bound, an improved Newton polytope-based bound, and an improvement of a degree matrix-based result given by Zan and Cao.

  6. Properties of Water Bound in Hydrogels

    Directory of Open Access Journals (Sweden)

    Vladimir M. Gun’ko

    2017-10-01

    Full Text Available In this review, the importance of water in hydrogel (HG properties and structure is analyzed. A variety of methods such as 1H NMR (nuclear magnetic resonance, DSC (differential scanning calorimetry, XRD (X-ray powder diffraction, dielectric relaxation spectroscopy, thermally stimulated depolarization current, quasi-elastic neutron scattering, rheometry, diffusion, adsorption, infrared spectroscopy are used to study water in HG. The state of HG water is rather non-uniform. According to thermodynamic features of water in HG, some of it is non-freezing and strongly bound, another fraction is freezing and weakly bound, and the third fraction is non-bound, free water freezing at 0 °C. According to structural features of water in HG, it can be divided into two fractions with strongly associated and weakly associated waters. The properties of the water in HG depend also on the amounts and types of solutes, pH, salinity, structural features of HG functionalities.

  7. Braneworld black holes and entropy bounds

    Directory of Open Access Journals (Sweden)

    Y. Heydarzade

    2018-01-01

    Full Text Available The Bousso's D-bound entropy for the various possible black hole solutions on a 4-dimensional brane is checked. It is found that the D-bound entropy here is apparently different from that of obtained for the 4-dimensional black hole solutions. This difference is interpreted as the extra loss of information, associated to the extra dimension, when an extra-dimensional black hole is moved outward the observer's cosmological horizon. Also, it is discussed that N-bound entropy is hold for the possible solutions here. Finally, by adopting the recent Bohr-like approach to black hole quantum physics for the excited black holes, the obtained results are written also in terms of the black hole excited states.

  8. Braneworld black holes and entropy bounds

    Science.gov (United States)

    Heydarzade, Y.; Hadi, H.; Corda, C.; Darabi, F.

    2018-01-01

    The Bousso's D-bound entropy for the various possible black hole solutions on a 4-dimensional brane is checked. It is found that the D-bound entropy here is apparently different from that of obtained for the 4-dimensional black hole solutions. This difference is interpreted as the extra loss of information, associated to the extra dimension, when an extra-dimensional black hole is moved outward the observer's cosmological horizon. Also, it is discussed that N-bound entropy is hold for the possible solutions here. Finally, by adopting the recent Bohr-like approach to black hole quantum physics for the excited black holes, the obtained results are written also in terms of the black hole excited states.

  9. Universal bounds in even-spin CFTs

    Energy Technology Data Exchange (ETDEWEB)

    Qualls, Joshua D. [Department of Physics, National Taiwan University,Taipei, Taiwan (China)

    2015-12-01

    We prove using invariance under the modular S− and ST−transformations that every unitary two-dimensional conformal field theory (CFT) having only even-spin primary operators (with no extended chiral algebra and with right- and left-central charges c,c̃>1) contains a primary operator with dimension Δ{sub 1} satisfying 0<Δ{sub 1}<((c+c̃)/24)+0.09280…. After deriving both analytical and numerical bounds, we discuss how to extend our methods to bound higher conformal dimensions before deriving lower and upper bounds on the number of primary operators in a given energy range. Using the AdS{sub 3}/CFT{sub 2} dictionary, the bound on Δ{sub 1} proves the lightest massive excitation in appropriate theories of 3D matter and gravity with cosmological constant Λ<0 can be no heavier than 1/8G{sub N}+O(√(−Λ)); the bounds on the number of operators are related via AdS/CFT to the entropy of states in the dual gravitational theory. In the flat-space approximation, the limiting mass is exactly that of the lightest BTZ black hole.

  10. Bounds on the Effect of Progressive Structural Degradation

    DEFF Research Database (Denmark)

    Achtziger, Wolfgang; Bendsøe, Martin P; Taylor, John E.

    1997-01-01

    Problem formulations are presented for the evaluation of upper and lower bounds on the effect of progressive structural degradation. For the purposes of this study, degradation effect is measured by an increase in global structural compliance (flexibility). Thus the stated bounds are given simply...

  11. Universal Bound on the Fano Factor in Enzyme Kinetics

    CERN Document Server

    Barato, Andre C

    2015-01-01

    The Fano factor, an observable quantifying fluctuations of product generation by a single enzyme, can reveal information about the underlying reaction scheme. A lower bound on this Fano factor that depends on the thermodynamic affinity driving the transformation from substrate to product constrains the number of intermediate states of an enzymatic cycle. So far, this bound has been proven only for a unicyclic network of states. We show that the bound can be extended to arbitrary multicyclic networks, with the Fano factor constraining the largest value of the effective length, which is the ratio between the number of states and the number of products, among all cycles.

  12. with Bounded Failure Intensity

    Directory of Open Access Journals (Sweden)

    Preeti Wanti Srivastava

    2011-01-01

    Full Text Available This paper deals with the Bayes prediction of the future failures of a deteriorating repairable mechanical system subject to minimal repairs and periodic overhauls. To model the effect of overhauls on the reliability of the system a proportional age reduction model is assumed and the 2-parameter Engelhardt-Bain process (2-EBP is used to model the failure process between two successive overhauls. 2-EBP has an advantage over Power Law Process (PLP models. It is found that the failure intensity of deteriorating repairable systems attains a finite bound when repeated minimal repair actions are combined with some overhauls. If such a data is analyzed through models with unbounded increasing failure intensity, such as the PLP, then pessimistic estimates of the system reliability will arise and incorrect preventive maintenance policy may be defined. On the basis of the observed data and of a number of suitable prior densities reflecting varied degrees of belief on the failure/repair process and effectiveness of overhauls, the prediction of the future failure times and the number of failures in a future time interval is found. Finally, a numerical application is used to illustrate the advantages from overhauls and sensitivity analysis of the improvement parameter carried out.

  13. Bounded Semantics of CTL and SAT-Based Verification

    Science.gov (United States)

    Zhang, Wenhui

    Bounded model checking has been proposed as a complementary approach to BDD based symbolic model checking for combating the state explosion problem, esp. for efficient error detection. This has led to a lot of successful work with respect to error detection in the checking of LTL, ACTL (the universal fragment of CTL) and ACTL* properties by satisfiability testing. The use of bounded model checking for verification (in contrast to error detection) of LTL and ACTL properties has later also been studied. This paper studies the potentials and limitations of bounded model checking for the verification of CTL and CTL* formulas. On the theoretical side, we first provide a framework for discussion of bounded semantics, which serves as the basis for bounded model checking, then extend the bounded semantics of ACTL to a bounded semantics of CTL, and discuss the limitation of developing such a bounded semantics for CTL*. On the practical side, a deduction of a SAT-based bounded model checking approach for ACTL properties from the bounded semantics of CTL is demonstrated, and a comparison of such an approach with BDD-based model checking is presented based on experimental results.

  14. ExtremeBounds: Extreme Bounds Analysis in R

    Directory of Open Access Journals (Sweden)

    Marek Hlavac

    2016-08-01

    Full Text Available This article introduces the R package ExtremeBounds to perform extreme bounds analysis (EBA, a sensitivity test that examines how robustly the dependent variable of a regression model is related to a variety of possible determinants. ExtremeBounds supports Leamer's EBA that focuses on the upper and lower extreme bounds of regression coefficients, as well as Sala-i-Martin's EBA which considers their entire distribution. In contrast to existing alternatives, it can estimate models of a variety of user-defined sizes, use regression models other than ordinary least squares, incorporate non-linearities in the model specification, and apply custom weights and standard errors. To alleviate concerns about the multicollinearity and conceptual overlap of examined variables, ExtremeBounds allows users to specify sets of mutually exclusive variables, and can restrict the analysis to coefficients from regression models that yield a variance inflation factor within a prespecified limit.

  15. Lower bound of multipartite concurrence based on sub-partite quantum systems

    Science.gov (United States)

    Chen, Wei; Zhu, Xue-Na; Fei, Shao-Ming; Zheng, Zhu-Jun

    2017-12-01

    We study the concurrence of arbitrary dimensional multipartite quantum systems. An explicit analytical lower bound of concurrence for four-partite mixed states is obtained in terms of the concurrences of tripartite mixed states. Detailed examples are given to show that our lower bounds improve the existing lower bounds of concurrence. The approach is generalized to five-partite quantum systems.

  16. Localization behavior at bound Bi complex states in GaAs1-xBix

    Energy Technology Data Exchange (ETDEWEB)

    Alberi, K.; Christian, T. M.; Fluegel, B.; Crooker, S. A.; Beaton, D. A.; Mascarenhas, A.

    2017-07-01

    While bismuth-related states are known to localize carriers in GaAs1-xBix alloys, the localization behavior of distinct Bi pair, triplet and cluster states bound above the valence band is less well understood. We probe localization at three different Bi complex states in dilute GaAs1-xBix alloys using magneto-photoluminescence and time-resolved photoluminescence spectroscopy. The mass of electrons Coulomb-bound to holes trapped at Bi pair states is found to increase relative to the average electron mass in the alloy. This increase is attributed to enhanced local compressive strain in the immediate vicinity of the pairs. The dependence of energy transfer between these states on composition is also explored.

  17. Bounds for Asian basket options

    Science.gov (United States)

    Deelstra, Griselda; Diallo, Ibrahima; Vanmaele, Michèle

    2008-09-01

    In this paper we propose pricing bounds for European-style discrete arithmetic Asian basket options in a Black and Scholes framework. We start from methods used for basket options and Asian options. First, we use the general approach for deriving upper and lower bounds for stop-loss premia of sums of non-independent random variables as in Kaas et al. [Upper and lower bounds for sums of random variables, Insurance Math. Econom. 27 (2000) 151-168] or Dhaene et al. [The concept of comonotonicity in actuarial science and finance: theory, Insurance Math. Econom. 31(1) (2002) 3-33]. We generalize the methods in Deelstra et al. [Pricing of arithmetic basket options by conditioning, Insurance Math. Econom. 34 (2004) 55-57] and Vanmaele et al. [Bounds for the price of discrete sampled arithmetic Asian options, J. Comput. Appl. Math. 185(1) (2006) 51-90]. Afterwards we show how to derive an analytical closed-form expression for a lower bound in the non-comonotonic case. Finally, we derive upper bounds for Asian basket options by applying techniques as in Thompson [Fast narrow bounds on the value of Asian options, Working Paper, University of Cambridge, 1999] and Lord [Partially exact and bounded approximations for arithmetic Asian options, J. Comput. Finance 10 (2) (2006) 1-52]. Numerical results are included and on the basis of our numerical tests, we explain which method we recommend depending on moneyness and time-to-maturity.

  18. Market Access through Bound Tariffs

    DEFF Research Database (Denmark)

    Sala, Davide; Schröder, Philipp J.H.; Yalcin, Erdal

    on the risk that exporters face in destination markets. The present paper formalizes the underlying interaction of risk, fixed export costs and firms' market entry decisions based on techniques known from the real options literature; doing so we highlight the important role of bound tariffs at the extensive......WTO negotiations deal predominantly with bound - besides applied - tariff rates. But, how can reductions in tariffs ceilings, i.e. tariff rates that no exporter may ever actually be confronted with, generate market access? The answer to this question relates to the effects of tariff bindings...... margin of trade. We find that bound tariffs are more effective with higher risk destination markets, that a large binding overhang may still command substantial market access, and that reductions in bound tariffs generate effective market access even when bound rates are above current and long...

  19. Market access through bound tariffs

    DEFF Research Database (Denmark)

    Sala, Davide; Schröder, Philipp J.H.; Yalcin, Erdal

    2010-01-01

    on the risk that exporters face in destination markets. The present paper formalizes the underlying interaction of risk, fixed export costs and firms' market entry decisions based on techniques known from the real options literature; doing so we highlight the important role of bound tariffs at the extensive......WTO negotiations deal predominantly with bound - besides applied - tariff rates. But, how can reductions in tariffs ceilings, i.e. tariff rates that no exporter may ever actually be confronted with, generate market access? The answer to this question relates to the effects of tariff bindings...... margin of trade. We find that bound tariffs are more effective with higher risk destination markets, that a large binding overhang may still command substantial market access, and that reductions in bound tariffs generate effective market access even when bound rates are above current and longterm...

  20. Belief and bounded rationality

    OpenAIRE

    Jago, Mark

    2006-01-01

    Predictive accounts of belief ascription, either following the principle of charity or Dennett's intentional stance, have proved popular recently. However, such accounts require us first to treat agents as perfectly rational agents and then revise this assumption as appropriate. I argue that such downwards revision is no easy task and that several proposed accounts are not satisfactory. I propose a way of characterising agent's belief states which shares Dennett's approach but avoids treating...

  1. Combining Alphas via Bounded Regression

    Directory of Open Access Journals (Sweden)

    Zura Kakushadze

    2015-11-01

    Full Text Available We give an explicit algorithm and source code for combining alpha streams via bounded regression. In practical applications, typically, there is insufficient history to compute a sample covariance matrix (SCM for a large number of alphas. To compute alpha allocation weights, one then resorts to (weighted regression over SCM principal components. Regression often produces alpha weights with insufficient diversification and/or skewed distribution against, e.g., turnover. This can be rectified by imposing bounds on alpha weights within the regression procedure. Bounded regression can also be applied to stock and other asset portfolio construction. We discuss illustrative examples.

  2. Computational Lower Bounds Using Diagonalization

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 7. Computational Lower Bounds Using Diagonalization - Languages, Turing Machines and Complexity Classes. M V Panduranga Rao. General Article Volume 14 Issue 7 July 2009 pp 682-690 ...

  3. Bounded Rationality in Transposition Processes

    DEFF Research Database (Denmark)

    Vollaard, Hans; Martinsen, Dorte Sindbjerg

    2014-01-01

    perspective may affect the commonly employed explanatory factors of administrative capacities, misfit and the heterogeneity of preferences among veto players. To prevent retrospective rationalisation of the transposition process, this paper traces this process as it unfolded in Denmark and the Netherlands....... As bounded rationality is apparent in the transposition processes in these relatively well-organised countries, future transposition studies should devote greater consideration to the bounded rationality perspective....

  4. Complementarity reveals bound entanglement of two twisted photons

    Science.gov (United States)

    Hiesmayr, Beatrix C.; Löffler, Wolfgang

    2013-08-01

    We demonstrate the detection of bipartite bound entanglement as predicted by the Horodecki's in 1998. Bound entangled states, being heavily mixed entangled quantum states, can be produced by incoherent addition of pure entangled states. Until 1998 it was thought that such mixing could always be reversed by entanglement distillation; however, this turned out to be impossible for bound entangled states. The purest form of bound entanglement is that of only two particles, which requires higher-dimensional (d > 2) quantum systems. We realize this using photon qutrit (d = 3) pairs produced by spontaneous parametric downconversion, that are entangled in the orbital angular momentum degrees of freedom, which is scalable to high dimensions. Entanglement of the photons is confirmed via a ‘maximum complementarity protocol’. This conceptually simple protocol requires only maximized complementary of measurement bases; we show that it can also detect bound entanglement. We explore the bipartite qutrit space and find that, also experimentally, a significant portion of the entangled states are actually bound entangled.

  5. Space-bounded communication complexity

    DEFF Research Database (Denmark)

    Brody, Joshua Eric; Chen, Shiteng; Papakonstantinou, Periklis A.

    2013-01-01

    -obliviousness shows up. For this model we also introduce new techniques through which certain limitations of space-bounded computation are revealed. One of the main motivations of this work is in understanding the difference in the use of space when computing the following functions: Equality (EQ), Inner Product (IP......In the past thirty years, Communication Complexity has emerged as a foundational tool to proving lower bounds in many areas of computer science. Its power comes from its generality, but this generality comes at a price---no superlinear communication lower bound is possible, since a player may...... communicate his entire input. However, what if the players are limited in their ability to recall parts of their interaction? We introduce memory models for 2-party communication complexity. Our general model is as follows: two computationally unrestricted players, Alice and Bob, each have s(n) bits of memory...

  6. A useful strong lower bound on two-qubit concurrence

    Science.gov (United States)

    Jafarpour, Mojtaba; Sabour, Abbass

    2012-12-01

    A new strong lower bound on concurrence for two-qubit states is derived. Its equality with the concurrence itself for the pure- and X-states is proved analytically; while extensive numerical computations show that equality for a general mixed state may also exist. Being a very simple function and easy to calculate, it is more convenient and practical than the exact value in some cases, including entanglement investigations in spin chains. We study thermal localizable entanglement in spin chains as an example, to demonstrate the convenience of this bound.

  7. Score Bounded Monte-Carlo Tree Search

    Science.gov (United States)

    Cazenave, Tristan; Saffidine, Abdallah

    Monte-Carlo Tree Search (MCTS) is a successful algorithm used in many state of the art game engines. We propose to improve a MCTS solver when a game has more than two outcomes. It is for example the case in games that can end in draw positions. In this case it improves significantly a MCTS solver to take into account bounds on the possible scores of a node in order to select the nodes to explore. We apply our algorithm to solving Seki in the game of Go and to Connect Four.

  8. Bounded Densities and Their Derivatives

    DEFF Research Database (Denmark)

    Kozine, Igor; Krymsky, V.

    2009-01-01

    This paper describes how one can compute interval-valued statistical measures given limited information about the underlying distribution. The particular focus is on a bounded derivative of a probability density function and its combination with other available statistical evidence for computing ...

  9. Physics with loosely bound nuclei

    Indian Academy of Sciences (India)

    nuclear physics changed drastically as the new generation of accelerators started providing more and more rare isotopes, which are away from the line of stability. These weakly bound nuclei are found to exhibit new forms of nuclear matter and unprecedented exotic behaviour. The low breakup thresholds of these rare ...

  10. Moderate deviations for bounded subsequences

    Directory of Open Access Journals (Sweden)

    George Stoica

    2006-01-01

    Full Text Available We study Davis' series of moderate deviations probabilities for Lp-bounded sequences of random variables (p>2. A certain subseries therein is convergent for the same range of parameters as in the case of martingale difference or i.i.d. sequences.

  11. Matrix inhibition PCR and Microtox® 81.9% screening assay analytical results for samples collected for the Sediment-Bound Contaminant Resiliency and Response Strategy pilot study, northeastern United States, 2015

    Science.gov (United States)

    Schill, William B.; Benzel, William M.; Fisher, Shawn C.; Griffin, Dale W.; Jones, Daniel K.; Loftin, Keith A.; Iwanowicz, Luke R.; Reilly, Timothy J.

    2017-01-01

    Coastal communities are uniquely vulnerable to sea-level rise (SLR) and severe storms such as hurricanes. These events enhance the dispersion and concentration of natural and anthropogenic chemicals and pathogenic microorganisms that could adversely affect the health and resilience of coastal communities and ecosystems in coming years. The U.S. Geo­logical Survey has developed the Sediment-Bound Contaminant Resiliency and Response (SCoRR) strategy to define baseline and post-event sediment-bound environmental health (EH) stressors. These data document toxicity measured by reduction of the light emission of Aliivibrio (formerly Photobacterium) fischeri and the inhibition of polymerase chain reactions caused by environmental components of aqueous extracts of soil and sediment from selected stations in the northeastern US during the 2015 pilot implementation of the SCoRR strategy in response to Hurricane Joaquin and the 2015 South Carolina flood events.

  12. Capacity bounds for parallel IM-DD optical wireless channels

    KAUST Repository

    Chaaban, Anas

    2016-07-26

    A system consisting of parallel intensity-modulation direct-detection optical wireless channels with a total average intensity constraint is studied. Capacity upper and lower bounds for this system are derived. If channel-state information is available at the transmitter, the bounds have to be optimized with respect to intensity allocation over the parallel channels. The optimization of the lower bound is non-convex, however, the Karush-Kuhn-Tucker conditions can be used to find a list of possible solutions one of which is optimal. The optimal solution can then be found by an exhaustive search algorithm, which is computationally expensive. To overcome this, we propose a low-complexity intensity allocation algorithm which is nearly optimal. The optimized capacity lower bound coincides with the capacity at high signal-to-noise ratio. © 2016 IEEE.

  13. Tight bounds on accessible information and informational power

    Science.gov (United States)

    Dall'Arno, Michele; Buscemi, Francesco; Ozawa, Masanao

    2014-06-01

    The accessible information quantifies the amount of classical information that can be extracted from an ensemble of quantum states. Analogously, the informational power quantifies the amount of classical information that can be extracted by a quantum measurement. For both quantities, we provide upper and lower bounds that depend only on the dimension of the system, and we prove their tightness. In the case of symmetric informationally complete (SIC) ensembles and measurements, stronger bounds are provided and their tightness proved for qubits and qutrits. From our upper bounds, we notice, perhaps surprisingly, that the statistics generated by SIC ensembles or measurements in arbitrary dimension, though optimal for tomographic purposes, in fact never contain more than just one bit of information, the rest being constituted by completely random bits. On the other hand, from our lower bounds, we obtain an explicit strategy beating the so-called pretty-good one for the extraction of mutual information in the case of SIC ensembles and measurements.

  14. Lower bounds in differential privacy

    OpenAIRE

    De, Anindya

    2011-01-01

    This is a paper about private data analysis, in which a trusted curator holding a confidential database responds to real vector-valued queries. A common approach to ensuring privacy for the database elements is to add appropriately generated random noise to the answers, releasing only these {\\em noisy} responses. In this paper, we investigate various lower bounds on the noise required to maintain different kind of privacy guarantees.

  15. Geometry of Homogeneous Bounded Domains

    CERN Document Server

    Vesentini, E

    2011-01-01

    This title includes: S.G. Gindikin, I.I. Pjateckii-Sapiro, E.B. Vinberg: Homogeneous Kahler manifolds; S.G. Greenfield: Extendibility properties of real submanifolds of Cn; W. Kaup: Holomorphische Abbildungen in Hyperbolische Raume; A. Koranyi: Holomorphic and harmonic functions on bounded symmetric domains; J.L. Koszul: Formes harmoniques vectorielles sur les espaces localement symetriques; S. Murakami: Plongements holomorphes de domaines symetriques; and E.M. Stein: The analogues of Fatous' theorem and estimates for maximal functions.

  16. Acyldepsipeptide Antibiotics Induces the Formation of a Structured Axial Channel in ClpP: a Model for the ClpX/ClpA Bound State of ClpP

    OpenAIRE

    Li, Dominic Him Shun; Chung, Yu Seon; Gloyd, Melanie; Joseph, Ebenezer; Ghirlando, Rodolfo; Wright, Gerard D.; Cheng, Yi-Qiang; Maurizi, Michael R.; Guarné, Alba; Ortega, Joaquin

    2010-01-01

    In ClpXP and ClpAP complexes, ClpA and ClpX use the energy of ATP hydrolysis to unfold proteins and translocate them into the self-compartmentalized ClpP protease. ClpP requires the ATPases to degrade folded or unfolded substrates, but binding of acyldepsipeptide antibiotics (ADEPs) to ClpP bypasses this requirement with unfolded proteins. We present the crystal structure of Escherichia coli ClpP bound to ADEP1 and report the structural changes underlying ClpP activation. ADEP1 binds in the h...

  17. Meson exchange current effects in the electroexcitation of magnetic states in closed shell nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Lallena, A.M.; Dehesa, J.S. (Granada Univ. (Spain). Dept. de Fisica Nuclear); Krewald, S. (Kernforschungsanlage Juelich G.m.b.H. (Germany, F.R.). Inst. fuer Kernphysik)

    1984-10-18

    A microscopic approach to evaluate the contributions of one-pion exchange currents to the inelastic (e, e') scattering form factor of closed shell nuclei is developed. Both segull and pionic parts of the two-body term are treated on the same footing and their final expressions are simple, clear and physically transparent. Application to the magnetic stretched states 4/sup -/(18.98 MeV) of /sup 16/O and 14/sup -/(6.74 MeV) of /sup 208/Pb is done. Agreement with the available experimental data is discussed. It is found that the effect of the meson exchange currents is a smooth but non-negligible enhancement (> or approx. 15% at the first scattering maximum) at small momentum transfers and an increase by a factor bigger than 1.5 in the region of the second maximum.

  18. Lower bounds for randomized Exclusive Write PRAMs

    Energy Technology Data Exchange (ETDEWEB)

    MacKenzie, P.D.

    1995-05-02

    In this paper we study the question: How useful is randomization in speeding up Exclusive Write PRAM computations? Our results give further evidence that randomization is of limited use in these types of computations. First we examine a compaction problem on both the CREW and EREW PRAM models, and we present randomized lower bounds which match the best deterministic lower bounds known. (For the CREW PRAM model, the lower bound is asymptotically optimal.) These are the first non-trivial randomized lower bounds known for the compaction problem on these models. We show that our lower bounds also apply to the problem of approximate compaction. Next we examine the problem of computing boolean functions on the CREW PRAM model, and we present a randomized lower bound, which improves on the previous best randomized lower bound for many boolean functions, including the OR function. (The previous lower bounds for these functions were asymptotically optimal, but we improve the constant multiplicative factor.) We also give an alternate proof for the randomized lower bound on PARITY, which was already optimal to within a constant additive factor. Lastly, we give a randomized lower bound for integer merging on an EREW PRAM which matches the best deterministic lower bound known. In all our proofs, we use the Random Adversary method, which has previously only been used for proving lower bounds on models with Concurrent Write capabilities. Thus this paper also serves to illustrate the power and generality of this method for proving parallel randomized lower bounds.

  19. On the Content Bound for Real Quadratic Field Extensions

    Directory of Open Access Journals (Sweden)

    Robert G. Underwood

    2012-12-01

    Full Text Available Let K be a finite extension of Q and let S = {ν} denote the collection of K normalized absolute values on K. Let V+K denote the additive group of adeles over K and let K ≥0   c : V + → R denote the content map defined as c({aν } = Q K   ν ∈S ν (aν for {aν } ∈ V+K A classical result of J. W. S. Cassels states that there is a constant c > 0 depending only on the field K  with the following property: if {aν } ∈ V+K with c({aν }  > c, then there exists a non-zero element b  ∈ K for which ν (b ≤ ν (aν , ∀ν  ∈ S. Let cK be the greatest lower bound of the set of all c that satisfy this property. In the case that K is a real quadratic extension there is a known upper bound for cK due to S. Lang. The purpose of this paper is to construct a new upper bound for cK in the case that K has class number one. We compare our new bound with Lang’s bound for various real quadratic extensions and find that our new bound is better than Lang’s in many instances.

  20. Free and bound water in normal and cataractous human lenses.

    Science.gov (United States)

    Heys, Karl R; Friedrich, Michael G; Truscott, Roger J W

    2008-05-01

    To analyze free and total water in human normal and cataractous lenses. Thermogravimetric analysis was used to determine total water, and differential scanning calorimetry was used for free water. In normal human lenses, the total water content of the nucleus remained unchanged with age, but the state of the water altered. The ratio of free to bound water increased steadily throughout adult life. In a 20-year-old person, there was approximately one bound water molecule for each free water molecule in the lens center, whereas in a 70- to 80-year-old person, there were two free water molecules for each bound water molecule. This conversion of bound to free water does not appear to be simply a consequence of the aggregation of soluble crystallins into high molecular weight aggregates because studies with intact pig lenses, in which such processes were facilitated by heat, did not show similar changes. The region of the lens in which the barrier to diffusion develops at middle age corresponds to a transition zone in which the protein concentration is intermediate between that of the cortex and the nucleus. In cataractous lenses, the free-to-bound water ratio was not significantly different from that of age-matched normal lenses; however, total water content in the center of advanced nuclear cataractous lenses was slightly lower than in normal lenses. As the human lens ages, bound water is progressively changed to free water. Advanced nuclear cataract may be associated with lower total hydration of the lens nucleus.

  1. More loosely bound hadron molecules at CDF?

    CERN Document Server

    Bignamini, C; Piccinini, F; Polosa, A D; Riquer, V; Sabelli, C

    2010-01-01

    In a recent paper we have proposed a method to estimate the prompt production cross section of X(3872) at the Tevatron assuming that this particle is a loosely bound molecule of a D and a D*bar meson. Under this hypothesis we find that it is impossible to explain the high prompt production cross section found by CDF at sigma(X(3872)) \\sim 30-70 nb as our theoretical prediction is about 300 times smaller than the measured one. Following our work, Artoisenet and Braaten, have suggested that final state interactions in the DD*bar system might be so strong to push the result we obtained for the cross section up to the experimental value. Relying on their conclusions we show that the production of another very narrow loosely bound molecule, the X_s=D_s D_s*bar, could be similarly enhanced. X_s should then be detectable at CDF with a mass of 4080 MeV and a prompt production cross section of sigma(X_s) \\sim 1-3 nb.

  2. Search for a bound K− pp system

    Directory of Open Access Journals (Sweden)

    Camerini P.

    2010-04-01

    Full Text Available Data from the K− absorption reaction on 6,7Li, 9Be, 13C and 16O have recently been collected by FINUDA at the DAΦNE φ-factory (Laboratori Nazionali di Frascati-INFN, following an earlier lower statitics run on 12C and some other targets. FINUDA is a high acceptance magnetic spectrometer which performed a wide range of studies by detecting the charged particles and neutrons exiting the targets after the absorption event. In this paper it is discussed about the study of the A(K− , Λp reaction in the context of the search for deeply bound $ar{K}$ - nuclear states. The observation of a bump in the Λp invariant mass distribution is discussed in terms of a possible signature of a deeply bound K− pp kaonic cluster as well as of more conventional physics. An overview of the experimental situation in this field will be given.

  3. Towards Automatic Resource Bound Analysis for OCaml

    OpenAIRE

    Hoffmann, Jan; Das, Ankush; Weng, Shu-Chun

    2016-01-01

    This article presents a resource analysis system for OCaml programs. This system automatically derives worst-case resource bounds for higher-order polymorphic programs with user-defined inductive types. The technique is parametric in the resource and can derive bounds for time, memory allocations and energy usage. The derived bounds are multivariate resource polynomials which are functions of different size parameters that depend on the standard OCaml types. Bound inference is fully automatic...

  4. Distance hijacking attacks on distance bounding protocols

    OpenAIRE

    Cremers, Cas; Rasmussen, Kasper Bonne; Čapkun, Srdjan

    2011-01-01

    Distance bounding protocols are typically analyzed with respect to three types of attacks: Distance Fraud, Mafia Fraud, and Terrorist Fraud. We define and analyze a fourth main type of attack on distance bounding protocols, called Distance Hijacking. We show that many proposed distance bounding protocols are vulnerable to this type of attack, and we propose solutions to make these protocols resilient to Distance Hijacking. We further show that verifying distance bounding protocols using exist...

  5. Bounded rationality and heterogeneous expectations in macroeconomics

    NARCIS (Netherlands)

    Massaro, D.

    2012-01-01

    This thesis studies the effect of individual bounded rationality on aggregate macroeconomic dynamics. Boundedly rational agents are specified as using simple heuristics in their decision making. An important aspect of the type of bounded rationality described in this thesis is that the population of

  6. Labeling schemes for bounded degree graphs

    DEFF Research Database (Denmark)

    Adjiashvili, David; Rotbart, Noy Galil

    2014-01-01

    graphs. Our results complement a similar bound recently obtained for bounded depth trees [Fraigniaud and Korman, SODA 2010], and may provide new insights for closing the long standing gap for adjacency in trees [Alstrup and Rauhe, FOCS 2002]. We also provide improved labeling schemes for bounded degree...

  7. Upper bound on quantum stabilizer codes

    Science.gov (United States)

    Li, Zhuo; Xing, Li-Juan

    2009-03-01

    By studying sets of operators having constant weight, we present an analytical upper bound on the pure quantum stabilizer codes whose underlying quantum system can be of arbitrary dimension, which outperforms the well-known quantum Hamming bound, the optimal analytical upper bound so far for small code length.

  8. 1967-1968 UPWARD BOUND PROPOSAL AND STATEMENTS. (TITLE SUPPLIED).

    Science.gov (United States)

    San Francisco State Coll., CA.

    THIS DOCUMENT IS A PROPOSAL FOR THE CONTINUATION OF THE UPWARD BOUND SUMMER RESIDENTIAL AND ACADEMIC-YEAR PROGRAMS AT SAN FRANCISCO STATE COLLEGE. TO PREPARE DISADVANTAGED HIGH SCHOOL STUDENTS FOR HIGHER EDUCATION, THE PROJECT WILL OFFER REMEDIAL WORK AND COUNSELING SERVICES. INCLUDED IN THE SUMMER CURRICULUM WILL BE A COMMUNICATIONS CORE COURSE,…

  9. On BPS bounds in D = 4 N = 2 gauged supergravity

    NARCIS (Netherlands)

    Hristov, K.; Toldo, C.|info:eu-repo/dai/nl/355384027; Vandoren, S.J.G.|info:eu-repo/dai/nl/304830739

    2011-01-01

    We determine the BPS bounds in minimal gauged supergravity in four space- time dimensions. We concentrate on asymptotically anti-de Sitter (AdS) spacetimes, and find that there exist two disconnected BPS ground states of the theory, depending on the presence of magnetic charge. Each of these ground

  10. What lies beneath : Bounded manageability in complex underground infrastructure projects

    NARCIS (Netherlands)

    Leijten, M.

    2017-01-01

    Complex underground infrastructure construction projects tend to develop in a state of “bounded manageability”. Various types of uncertainties are inherent to these projects and put the project manager in front of serious challenges, risking budget overruns, delays and sometimes even technical

  11. Organizational coordination and costly communication with boundedly rational agents

    DEFF Research Database (Denmark)

    Dietrichson, Jens; Jochem, Torsten

    How does costly communication affect organizational coordination? This paper develops a model of costly communication based on the weakest-link game and boundedly rational agents. Solving for the stochastically stable states, we find that communication increases the possibilities for efficient...

  12. Performance Bounds of Quaternion Estimators.

    Science.gov (United States)

    Xia, Yili; Jahanchahi, Cyrus; Nitta, Tohru; Mandic, Danilo P

    2015-12-01

    The quaternion widely linear (WL) estimator has been recently introduced for optimal second-order modeling of the generality of quaternion data, both second-order circular (proper) and second-order noncircular (improper). Experimental evidence exists of its performance advantage over the conventional strictly linear (SL) as well as the semi-WL (SWL) estimators for improper data. However, rigorous theoretical and practical performance bounds are still missing in the literature, yet this is crucial for the development of quaternion valued learning systems for 3-D and 4-D data. To this end, based on the orthogonality principle, we introduce a rigorous closed-form solution to quantify the degree of performance benefits, in terms of the mean square error, obtained when using the WL models. The cases when the optimal WL estimation can simplify into the SWL or the SL estimation are also discussed.

  13. Spectral computations for bounded operators

    CERN Document Server

    Ahues, Mario; Limaye, Balmohan

    2001-01-01

    Exact eigenvalues, eigenvectors, and principal vectors of operators with infinite dimensional ranges can rarely be found. Therefore, one must approximate such operators by finite rank operators, then solve the original eigenvalue problem approximately. Serving as both an outstanding text for graduate students and as a source of current results for research scientists, Spectral Computations for Bounded Operators addresses the issue of solving eigenvalue problems for operators on infinite dimensional spaces. From a review of classical spectral theory through concrete approximation techniques to finite dimensional situations that can be implemented on a computer, this volume illustrates the marriage of pure and applied mathematics. It contains a variety of recent developments, including a new type of approximation that encompasses a variety of approximation methods but is simple to verify in practice. It also suggests a new stopping criterion for the QR Method and outlines advances in both the iterative refineme...

  14. On order bounded subsets of locally solid Riesz spaces | Hong ...

    African Journals Online (AJOL)

    In a topological Riesz space there are two types of bounded subsets: order bounded subsets and topologically bounded subsets. It is natural to ask (1) whether an order bounded subset is topologically bounded and (2) whether a topologically bounded subset is order bounded. A classical result gives a partial answer to (1) ...

  15. Neutron bound beta-decay: BOB

    Science.gov (United States)

    McAndrew, Josephine; Paul, Stephan; Emmerich, Ralf; Engels, Ralf; Fierlinger, Peter; Gabriel, Mirko; Gutsmiedl, Erwin; Mellenthin, Johannes; Schön, Johannes; Schott, Wolfgang; Ulrich, Andreas; Grüenauer, Florian; Röhrmoser, Anton

    2012-05-01

    An experiment to observe the bound beta-decay (BOB) of the free neutron into a hydrogen atom and an electron anti-neutrino is described. The hyperfine spin state population of the monoenergetic hydrogen atom yields the neutrino left-handedness or possible right-handed admixture as well as possible small scalar and tensor contributions to the weak force. The BOB H(2s) hyperfine states can be separated with a Lamb-Shift Spin Filter. These monoenergetic H(2s) atoms are ionised into H- by charge exchanging within an argon cell. These ions are then separated using an adaptation of a MAC-E Filter. A first experiment is proposed at the FRMII high thermal-neutron flux beam reactor SR6 through-going beam tube, where we will seek to observe this rare neutron decay-mode for the first time and determine the branching ratio. After successful completion, the hyperfine spin state population will be determined, possibly at the ILL high-flux beam reactor through-going beam tube H6-H7, where the thermal neutron flux is a factor of four larger.

  16. Structure of Gαi1 bound to a GDP-selective peptide provides insight into guanine nucleotide exchange

    OpenAIRE

    Johnston, Christopher A.; Willard, Francis S.; Jezyk, Mark R.; Fredericks, Zoey; Bodor, Erik T.; Jones, Miller B.; Blaesius, Rainer; Watts, Val J.; Harden, T. Kendall; Sondek, John; Ramer, J. Kevin; Siderovski, David P.

    2005-01-01

    Heterotrimeric G-proteins are molecular switches that regulate numerous signaling pathways involved in cellular physiology. This characteristic is achieved by the adoption of two principal states: an inactive, GDP-bound and an active, GTP-bound state. Under basal conditions G-proteins exist in the inactive GDP-bound state, thus nucleotide exchange is crucial to the onset of signaling. Despite our understanding of G-protein signaling pathways, the mechanism of nucleotide exchange remains elusi...

  17. Bionic Control of Cheetah Bounding with a Segmented Spine

    Directory of Open Access Journals (Sweden)

    Chunlei Wang

    2016-01-01

    Full Text Available A cheetah model is built to mimic real cheetah and its mechanical and dimensional parameters are derived from the real cheetah. In particular, two joints in spine and four joints in a leg are used to realize the motion of segmented spine and segmented legs which are the key properties of the cheetah bounding. For actuating and stabilizing the bounding gait of cheetah, we present a bioinspired controller based on the state-machine. The controller mainly mimics the function of the cerebellum to plan the locomotion and keep the body balance. The haptic sensor and proprioception system are used to detect the trigger of the phase transition. Besides, the vestibular modulation could perceive the pitching angle of the trunk. At last, the cerebellum acts as the CPU to operate the information from the biological sensors. In addition, the calculated results are transmitted to the low-level controller to actuate and stabilize the cheetah bounding. Moreover, the delay feedback control method is employed to plan the motion of the leg joints to stabilize the pitching motion of trunk with the stability criterion. Finally, the cyclic cheetah bounding with biological properties is realized. Meanwhile, the stability and dynamic properties of the cheetah bounding gait are analyzed elaborately.

  18. Bounding the space of holographic CFTs with chaos

    Energy Technology Data Exchange (ETDEWEB)

    Perlmutter, Eric [Department of Physics, Princeton University,Jadwin Hall, Princeton, NJ 08544 (United States)

    2016-10-13

    Thermal states of quantum systems with many degrees of freedom are subject to a bound on the rate of onset of chaos, including a bound on the Lyapunov exponent, λ{sub L}≤2π/β. We harness this bound to constrain the space of putative holographic CFTs and their would-be dual theories of AdS gravity. First, by studying out-of-time-order four-point functions, we discuss how λ{sub L}=2π/β in ordinary two-dimensional holographic CFTs is related to properties of the OPE at strong coupling. We then rule out the existence of unitary, sparse two-dimensional CFTs with large central charge and a set of higher spin currents of bounded spin; this implies the inconsistency of weakly coupled AdS{sub 3} higher spin gravities without infinite towers of gauge fields, such as the SL(N) theories. This fits naturally with the structure of higher-dimensional gravity, where finite towers of higher spin fields lead to acausality. On the other hand, unitary CFTs with classical W{sub ∞}[λ] symmetry, dual to 3D Vasiliev or hs[λ] higher spin gravities, do not violate the chaos bound, instead exhibiting no chaos: λ{sub L}=0. Independently, we show that such theories violate unitarity for |λ|>2. These results encourage a tensionless string theory interpretation of the 3D Vasiliev theory.

  19. Using tolerance bounds in scientific investigations

    Energy Technology Data Exchange (ETDEWEB)

    Wendelberger, J.R.

    1996-07-01

    Assessment of the variability in population values plays an important role in the analysis of scientific data. Analysis of scientific data often involves developing a bound on a proportion of a population. Sometimes simple probability bounds are obtained using formulas involving known mean and variance parameters and replacing the parameters by sample estimates. The resulting bounds are only approximate and fail to account for the variability in the estimated parameters. Tolerance bounds provide bounds on population proportions which account for the variation resulting from the estimated mean and variance parameters. A beta content, gamma confidence tolerance interval is constructed so that a proportion beta of the population lies within the region bounded by the interval with confidence gamma. An application involving corrosion measurements is used to illustrate the use of tolerance bounds for different situations. Extensions of standard tolerance intervals are applied to generate regression tolerance bounds, tolerance bounds for more general models of measurements collected over time, and tolerance intervals for varying precision data. Tolerance bounds also provide useful information for designing the collection of future data.

  20. Resignation Syndrome: Catatonia? Culture-Bound?

    Science.gov (United States)

    Sallin, Karl; Lagercrantz, Hugo; Evers, Kathinka; Engström, Ingemar; Hjern, Anders; Petrovic, Predrag

    2016-01-01

    Resignation syndrome (RS) designates a long-standing disorder predominately affecting psychologically traumatized children and adolescents in the midst of a strenuous and lengthy migration process. Typically a depressive onset is followed by gradual withdrawal progressing via stupor into a state that prompts tube feeding and is characterized by failure to respond even to painful stimuli. The patient is seemingly unconscious. Recovery ensues within months to years and is claimed to be dependent on the restoration of hope to the family. Descriptions of disorders resembling RS can be found in the literature and the condition is unlikely novel. Nevertheless, the magnitude and geographical distribution stand out. Several hundred cases have been reported exclusively in Sweden in the past decade prompting the Swedish National Board of Health and Welfare to recognize RS as a separate diagnostic entity. The currently prevailing stress hypothesis fails to account for the regional distribution and contributes little to treatment. Consequently, a re-evaluation of diagnostics and treatment is required. Psychogenic catatonia is proposed to supply the best fit with the clinical presentation. Treatment response, altered brain metabolism or preserved awareness would support this hypothesis. Epidemiological data suggests culture-bound beliefs and expectations to generate and direct symptom expression and we argue that culture-bound psychogenesis can accommodate the endemic distribution. Last, we review recent models of predictive coding indicating how expectation processes are crucially involved in the placebo and nocebo effect, delusions and conversion disorders. Building on this theoretical framework we propose a neurobiological model of RS in which the impact of overwhelming negative expectations are directly causative of the down-regulation of higher order and lower order behavioral systems in particularly vulnerable individuals. PMID:26858615

  1. Resignation syndrome: Catatonia? Culture-bound?

    Directory of Open Access Journals (Sweden)

    Karl eSallin

    2016-01-01

    Full Text Available Resignation syndrome (RS designates a long-standing disorder predominately affecting psychologically traumatised children and adolescents in the midst of a strenuous and lengthy migration process. Typically a depressive onset is followed by gradual withdrawal progressing via stupor into a state that prompts tube feeding and is characterised by failure to respond even to painful stimuli. The patient is seemingly unconscious. Recovery ensues within months to years and is claimed to be dependent on the restoration of hope to the family.Descriptions of disorders resembling RS can be found in the literature and the condition is unlikely novel. Nevertheless, the magnitude and geographical distribution stand out. Several hundred cases have been reported exclusively in Sweden in the past decade prompting the Swedish National Board of Health and Welfare to recognise RS as a separate diagnostic entity. The currently prevailing stress hypothesis fails to account for the regional distribution and contributes little to treatment. Consequently, a re-evaluation of diagnostics and treatment is required. Psychogenic catatonia is proposed to supply the best fit with the clinical presentation. Treatment response, altered brain metabolism or preserved awareness would support this hypothesis.Epidemiological data suggests culture-bound beliefs and expectations to generate and direct symptom expression and we argue that culture-bound psychogenesis can accommodate the endemic distribution.Last, we review recent models of predictive coding indicating how expectation processes are crucially involved in the placebo and nocebo effect, delusions and conversion disorders. Building on this theoretical framework we propose a neurobiological model of RS in which the impact of overwhelming negative expectations are directly causative of the down-regulation of higher order and lower order behavioural systems in particularly vulnerable individuals.

  2. Resignation Syndrome: Catatonia? Culture-Bound?

    Science.gov (United States)

    Sallin, Karl; Lagercrantz, Hugo; Evers, Kathinka; Engström, Ingemar; Hjern, Anders; Petrovic, Predrag

    2016-01-01

    Resignation syndrome (RS) designates a long-standing disorder predominately affecting psychologically traumatized children and adolescents in the midst of a strenuous and lengthy migration process. Typically a depressive onset is followed by gradual withdrawal progressing via stupor into a state that prompts tube feeding and is characterized by failure to respond even to painful stimuli. The patient is seemingly unconscious. Recovery ensues within months to years and is claimed to be dependent on the restoration of hope to the family. Descriptions of disorders resembling RS can be found in the literature and the condition is unlikely novel. Nevertheless, the magnitude and geographical distribution stand out. Several hundred cases have been reported exclusively in Sweden in the past decade prompting the Swedish National Board of Health and Welfare to recognize RS as a separate diagnostic entity. The currently prevailing stress hypothesis fails to account for the regional distribution and contributes little to treatment. Consequently, a re-evaluation of diagnostics and treatment is required. Psychogenic catatonia is proposed to supply the best fit with the clinical presentation. Treatment response, altered brain metabolism or preserved awareness would support this hypothesis. Epidemiological data suggests culture-bound beliefs and expectations to generate and direct symptom expression and we argue that culture-bound psychogenesis can accommodate the endemic distribution. Last, we review recent models of predictive coding indicating how expectation processes are crucially involved in the placebo and nocebo effect, delusions and conversion disorders. Building on this theoretical framework we propose a neurobiological model of RS in which the impact of overwhelming negative expectations are directly causative of the down-regulation of higher order and lower order behavioral systems in particularly vulnerable individuals.

  3. Distance hijacking attacks on distance bounding protocols

    OpenAIRE

    Cremers, Cas; Rasmussen, Kasper Bonne; Čapkun, Srdjan

    2011-01-01

    Distance bounding protocols are typically analyzed with respect to three types of attacks: Distance Fraud, Mafia Fraud, and Terrorist Fraud. We define a fourth main type of attacks on distance bounding protocols, called Distance Hijacking attacks. We show that many proposed distance bounding protocols are vulnerable to these attacks, and we propose solutions to make these protocols resilient to Distance Hijacking. Additionally, we generalize Distance Hijacking to Location Hijacking, to which ...

  4. Boundedly UC spaces: characterisations and preservation | Jain ...

    African Journals Online (AJOL)

    A metric space (X, d) is called a boundedly UC space if every closed and bounded subset of X is a UC space. A metric space (X, d) is called a UC space if each real-valued continuous function on (X, d) is uniformly continuous. In this paper, we study twenty-two equivalent conditions for a metric space to be a boundedly UC ...

  5. Bounded cohomology of discrete groups

    CERN Document Server

    Frigerio, Roberto

    2017-01-01

    The author manages a near perfect equilibrium between necessary technicalities (always well motivated) and geometric intuition, leading the readers from the first simple definition to the most striking applications of the theory in 13 very pleasant chapters. This book can serve as an ideal textbook for a graduate topics course on the subject and become the much-needed standard reference on Gromov's beautiful theory. -Michelle Bucher The theory of bounded cohomology, introduced by Gromov in the late 1980s, has had powerful applications in geometric group theory and the geometry and topology of manifolds, and has been the topic of active research continuing to this day. This monograph provides a unified, self-contained introduction to the theory and its applications, making it accessible to a student who has completed a first course in algebraic topology and manifold theory. The book can be used as a source for research projects for master's students, as a thorough introduction to the field for graduate student...

  6. Bounded sets in fast complete inductive limits

    Directory of Open Access Journals (Sweden)

    Jan Kucera

    1984-01-01

    Full Text Available Let E1⊂E2⊂… be a sequence of locally convex spaces with all identity maps: En→En+1 continuous and E=indlim En fast complete. Then each set bounded in E is also bounded in some En iff for any Banach disk B bounded in E and n∈N, the closure of B⋂En in B is bounded in some Em. This holds, in particular, if all spaces En are webbed.

  7. Valuation models and Simon's bounded rationality

    National Research Council Canada - National Science Library

    Alexandra Strommer de Farias Godoi

    2009-01-01

    This paper aims at reconciling the evidence that sophisticated valuation models are increasingly used by companies in their investment appraisal with the literature of bounded rationality, according...

  8. Some Improved Nonperturbative Bounds for Fermionic Expansions

    Energy Technology Data Exchange (ETDEWEB)

    Lohmann, Martin, E-mail: marlohmann@gmail.com [Universita di Roma Tre, Dipartimento di Matematica (Italy)

    2016-06-15

    We reconsider the Gram-Hadamard bound as it is used in constructive quantum field theory and many body physics to prove convergence of Fermionic perturbative expansions. Our approach uses a recursion for the amplitudes of the expansion, discovered in a model problem by Djokic (2013). It explains the standard way to bound the expansion from a new point of view, and for some of the amplitudes provides new bounds, which avoid the use of Fourier transform, and are therefore superior to the standard bounds for models like the cold interacting Fermi gas.

  9. A strongly quasiconvex PAC-Bayesian bound

    DEFF Research Database (Denmark)

    Thiemann, Niklas; Igel, Christian; Wintenberger, Olivier

    We propose a new PAC-Bayesian bound and a way of constructing a hypothesis space, so that the bound is convex in the posterior distribution and also convex in a trade-off parameter between empirical performance of the posterior distribution and its complexity. The complexity is measured by the Ku......We propose a new PAC-Bayesian bound and a way of constructing a hypothesis space, so that the bound is convex in the posterior distribution and also convex in a trade-off parameter between empirical performance of the posterior distribution and its complexity. The complexity is measured...

  10. New lower bound for the Capacitated Arc Routing Problem

    DEFF Research Database (Denmark)

    Wøhlk, Sanne

    2006-01-01

    We present a new lower bound, the Multiple Cuts Node Duplication Lower Bound, for the undirected Capacitated Arc Routing Problem.We prove that this new bound dominates the existing bounds for the problem. Computational results are also provided.......We present a new lower bound, the Multiple Cuts Node Duplication Lower Bound, for the undirected Capacitated Arc Routing Problem.We prove that this new bound dominates the existing bounds for the problem. Computational results are also provided....

  11. Bounded rationality and learning in complex markets

    NARCIS (Netherlands)

    Hommes, C.H.; Barkely Rosser Jr, J.

    2009-01-01

    This chapter reviews some work on bounded rationality, expectation formation and learning in complex markets, using the familiar demand-supply cobweb model. We emphasize two stories of bounded rationality, one story of adaptive learning and another story of evolutionary selection. According to the

  12. Bounded rationality and learning in complex markets

    NARCIS (Netherlands)

    Hommes, C.H.

    2007-01-01

    This chapter reviews some work on bounded rationality, expectation formation and learning in complex markets, using the familiar demand-supply cobweb model. We emphasize two stories of bounded rationality, one story of adaptive learning and another story of evolutionary selection. According to the

  13. Spatial coagulation with bounded coagulation rate

    OpenAIRE

    Bailleul, Ismael

    2010-01-01

    We prove that the spatial coagulation equation with bounded coagulation rate is well-posed for all times in a given class of kernels if the convection term of the underlying particle dynamics has divergence bounded below by a positive constant. Multiple coagulations, fragmentation and scattering are also considered.

  14. Schroedinger upper bounds to semirelativistic eigenvalues

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Richard L [Department of Mathematics and Statistics, Concordia University, 1455 de Maisonneuve Boulevard West, Montreal, Quebec, H3G 1M8 (Canada); Lucha, Wolfgang [Institut fuer Hochenergiephysik, Oesterreichische Akademie der Wissenschaften, Nikolsdorfergasse 18, A-1050 Vienna (Austria)

    2005-09-16

    Problems posed by semirelativistic Hamiltonians of the form H = {radical}(m{sup 2} + p{sup 2}) + V(r) are studied. It is shown that energy upper bounds can be constructed in terms of certain related Schroedinger operators; these bounds include free parameters which can be chosen optimally.

  15. No-arbitrage bounds for financial scenarios

    DEFF Research Database (Denmark)

    Geyer, Alois; Hanke, Michael; Weissensteiner, Alex

    2014-01-01

    We derive no-arbitrage bounds for expected excess returns to generate scenarios used in financial applications. The bounds allow to distinguish three regions: one where arbitrage opportunities will never exist, a second where arbitrage may be present, and a third, where arbitrage opportunities...

  16. Nonatomic dual bakery algorithm with bounded tokens

    NARCIS (Netherlands)

    Aravind, Alex A.; Hesselink, Wim H.

    A simple mutual exclusion algorithm is presented that only uses nonatomic shared variables of bounded size, and that satisfies bounded overtaking. When the shared variables behave atomically, it has the first-come-first-served property (FCFS). Nonatomic access makes information vulnerable. The

  17. Polynomially Bounded Sequences and Polynomial Sequences

    Directory of Open Access Journals (Sweden)

    Okazaki Hiroyuki

    2015-09-01

    Full Text Available In this article, we formalize polynomially bounded sequences that plays an important role in computational complexity theory. Class P is a fundamental computational complexity class that contains all polynomial-time decision problems [11], [12]. It takes polynomially bounded amount of computation time to solve polynomial-time decision problems by the deterministic Turing machine. Moreover we formalize polynomial sequences [5].

  18. Upper Bounds on Numerical Approximation Errors

    DEFF Research Database (Denmark)

    Raahauge, Peter

    2004-01-01

    This paper suggests a method for determining rigorous upper bounds on approximationerrors of numerical solutions to infinite horizon dynamic programming models.Bounds are provided for approximations of the value function and the policyfunction as well as the derivatives of the value function...

  19. On the range of completely bounded maps

    Directory of Open Access Journals (Sweden)

    Richard I. Loebl

    1978-01-01

    Full Text Available It is shown that if every bounded linear map from a C*-algebra α to a von Neumann algebra β is completely bounded, then either α is finite-dimensional or β⫅⊗Mn, where is a commutative von Neumann algebra and Mn is the algebra of n×n complex matrices.

  20. A polynomial lower bound for testing monotonicity

    NARCIS (Netherlands)

    A. Belovs (Aleksandr); Blais, E. (Eric)

    2016-01-01

    textabstractWe show that every algorithm for testing n-variate Boolean functions for monotonicity has query complexity Ω(n1/4). All previous lower bounds for this problem were designed for nonadaptive algorithms and, as a result, the best previous lower bound for general (possibly adaptive)

  1. Lower and Upper Bounds for Deniable Public-Key Encryption

    DEFF Research Database (Denmark)

    Bendlin, Rikke; Nielsen, Jesper Buus; Nordholt, Peter Sebastian

    2011-01-01

    A deniable cryptosystem allows a sender and a receiver to communicate over an insecure channel in such a way that the communication is still secure even if the adversary can threaten the parties into revealing their internal states after the execution of the protocol. This is done by allowing...... the parties to change their internal state to make it look like a given ciphertext decrypts to a message different from what it really decrypts to. Deniable encryption was in this way introduced to allow to deny a message exchange and hence combat coercion. Depending on which parties can be coerced...... that it is impossible to construct a non-interactive bi-deniable public-key encryption scheme with better than polynomial security. Specifically, we give an explicit bound relating the security of the scheme to how efficient the scheme is in terms of key size. Our impossibility result establishes a lower bound...

  2. Quantum discord bounds the amount of distributed entanglement.

    Science.gov (United States)

    Chuan, T K; Maillard, J; Modi, K; Paterek, T; Paternostro, M; Piani, M

    2012-08-17

    The ability to distribute quantum entanglement is a prerequisite for many fundamental tests of quantum theory and numerous quantum information protocols. Two distant parties can increase the amount of entanglement between them by means of quantum communication encoded in a carrier that is sent from one party to the other. Intriguingly, entanglement can be increased even when the exchanged carrier is not entangled with the parties. However, in light of the defining property of entanglement stating that it cannot increase under classical communication, the carrier must be quantum. Here we show that, in general, the increase of relative entropy of entanglement between two remote parties is bounded by the amount of nonclassical correlations of the carrier with the parties as quantified by the relative entropy of discord. We study implications of this bound, provide new examples of entanglement distribution via unentangled states, and put further limits on this phenomenon.

  3. Spin relaxation via exchange with donor impurity-bound electrons

    Science.gov (United States)

    Appelbaum, Ian

    In the Bir-Aronov-Pikus depolarization process affecting conduction electrons in p-type cubic semiconductors, spin relaxation is driven by exchange with short-lived valence band hole states. We have identified an analogous spin relaxation mechanism in nominally undoped silicon at low temperatures, when many electrons are bound to dilute dopant ion potentials. Inelastic scattering with externally injected conduction electrons accelerated by electric fields can excite transitions into highly spin-orbit-mixed bound excited states, driving strong spin relaxation of the conduction electrons via exchange interaction. We reveal the consequences of this spin depolarization mechanism both below and above the impact ionization threshold, where conventional charge and spin transport are restored. Based upon: Lan Qing, Jing Li, Ian Appelbaum, and Hanan Dery, Phys Rev. B 91, 241405(R) (2015). We acknowledge support from NSF, DTRA, and ONR.

  4. Contribution of boundness and motion of nucleons to the EMC effect

    OpenAIRE

    Birbrair, B. L.; Ryskin, M.G; Ryazanov, V. I.

    2004-01-01

    The kinematical corrections to the structure function of nucleon in nucleus due to the boundness and motion of nucleons arise from the excitation of the doorway states for one-nucleon transfer reactions in the deep inelastic scattering on nuclei.

  5. A Liapounov bound for solutions of the Poisson equation

    OpenAIRE

    Glynn, Peter W.; Meyn, Sean P.

    1996-01-01

    In this paper we consider $\\psi$-irreducible Markov processes evolving in discrete or continuous time on a general state space. We develop a Liapounov function criterion that permits one to obtain explicit bounds on the solution to the Poisson equation and, in particular, obtain conditions under which the solution is square integrable. ¶ These results are applied to obtain sufficient conditions that guarantee the validity of a functional central limit theorem for the Markov ...

  6. NITRO MUSK BOUND TO CARP HEMOGLOBIN ...

    Science.gov (United States)

    Nitroaromatic compounds including synthetic nitro musks are important raw materials and intermediates in the synthesis of explosives, dyes, and pesticides, pharmaceutical and personal care-products (PPCPs). The nitro musks such as musk xylene (MX) and musk ketone (MK) are extensively used as fragrance ingredients in PPCPs and other commercial toiletries. Identification and quantification of a bound 4-amino-MX (4-AMX) metabolite as well as a 2- amino-MK (2-AMK) metabolite were carried out by gas chromatography-mass spectrometry' (GC/MS), with selected ion monitoring (SIM) in both the electron ionization (ElMS) and electron capture (EC) negative ion chemical ionization (NICIMS) modes. Detection of 4-AMX and 2-AMK occurred after the cysteine adducts in carp hemoglobin, derived from the nitroso metabolites, were released by alkaline hydrolysis. The released metabolites were extracted into n-hexane. The extract was preconcentrated by evaporation, and analyzed by GC-SIM-MS. A comparison between the El and EC approaches was made. EC NICIMS detected both metabolites whereas only 4-AMX was detected by ElMS. The EC NICIMS approach exhibited fewer matrix responses and provided a lower detection limit. Quantitation in both approaches was based on internal standard and a calibration plot. The research focused on in the subtasks is the development and application of state-of the-art technologies to meet the needs of the public, Office of Water, and ORD in the area of Water Q

  7. Dynamics of water bound to crystalline cellulose

    Energy Technology Data Exchange (ETDEWEB)

    O’Neill, Hugh; Pingali, Sai Venkatesh; Petridis, Loukas; He, Junhong; Mamontov, Eugene; Hong, Liang; Urban, Volker; Evans, Barbara; Langan, Paul; Smith, Jeremy C.; Davison, Brian H.

    2017-09-19

    Interactions of water with cellulose are of both fundamental and technological importance. Here, we characterize the properties of water associated with cellulose using deuterium labeling, neutron scattering and molecular dynamics simulation. Quasi-elastic neutron scattering provided quantitative details about the dynamical relaxation processes that occur and was supported by structural characterization using small-angle neutron scattering and X-ray diffraction. We can unambiguously detect two populations of water associated with cellulose. The first is “non-freezing bound” water that gradually becomes mobile with increasing temperature and can be related to surface water. The second population is consistent with confined water that abruptly becomes mobile at ~260 K, and can be attributed to water that accumulates in the narrow spaces between the microfibrils. Quantitative analysis of the QENS data showed that, at 250 K, the water diffusion coefficient was 0.85 ± 0.04 × 10-10 m2sec-1 and increased to 1.77 ± 0.09 × 10-10 m2sec-1 at 265 K. MD simulations are in excellent agreement with the experiments and support the interpretation that water associated with cellulose exists in two dynamical populations. Our results provide clarity to previous work investigating the states of bound water and provide a new approach for probing water interactions with lignocellulose materials.

  8. Decision theory with resource-bounded agents.

    Science.gov (United States)

    Halpern, Joseph Y; Pass, Rafael; Seeman, Lior

    2014-04-01

    There have been two major lines of research aimed at capturing resource-bounded players in game theory. The first, initiated by Rubinstein (), charges an agent for doing costly computation; the second, initiated by Neyman (), does not charge for computation, but limits the computation that agents can do, typically by modeling agents as finite automata. We review recent work on applying both approaches in the context of decision theory. For the first approach, we take the objects of choice in a decision problem to be Turing machines, and charge players for the "complexity" of the Turing machine chosen (e.g., its running time). This approach can be used to explain well-known phenomena like first-impression-matters biases (i.e., people tend to put more weight on evidence they hear early on) and belief polarization (two people with different prior beliefs, hearing the same evidence, can end up with diametrically opposed conclusions) as the outcomes of quite rational decisions. For the second approach, we model people as finite automata, and provide a simple algorithm that, on a problem that captures a number of settings of interest, provably performs optimally as the number of states in the automaton increases. Copyright © 2014 Cognitive Science Society, Inc.

  9. PICO: An Object-Oriented Framework for Branch and Bound

    Energy Technology Data Exchange (ETDEWEB)

    ECKSTEIN,JONATHAN; HART,WILLIAM E.; PHILLIPS,CYNTHIA A.

    2000-12-01

    This report describes the design of PICO, a C++ framework for implementing general parallel branch-and-bound algorithms. The PICO framework provides a mechanism for the efficient implementation of a wide range of branch-and-bound methods on an equally wide range of parallel computing platforms. We first discuss the basic architecture of PICO, including the application class hierarchy and the package's serial and parallel layers. We next describe the design of the serial layer, and its central notion of manipulating subproblem states. Then, we discuss the design of the parallel layer, which includes flexible processor clustering and communication rates, various load balancing mechanisms, and a non-preemptive task scheduler running on each processor. We describe the application of the package to a branch-and-bound method for mixed integer programming, along with computational results on the ASCI Red massively parallel computer. Finally we describe the application of the branch-and-bound mixed-integer programming code to a resource constrained project scheduling problem for Pantex.

  10. Quasi-One-Dimensional Electron Gas Bound to a Helium-Coated Nanotube

    Science.gov (United States)

    Liebrecht, Michael; Del Maestro, Adrian; Cole, Milton W.

    2016-05-01

    A much-studied system is the quasi-2D electron gas in image-potential bound states at the surface of helium and hydrogen. In this paper, we report on an analogous quasi-1D system: electrons bound by image-like polarization forces to the surface of a helium-coated carbon nanotube. The potential is computed from an electron-helium pseudopotential, plus a dynamic image term evaluated from a semi-classical model of the nanotube's response function. Predictions are made for the bound states and potential many-body properties of this novel electron gas for a specific choice of tube radius and film thickness.

  11. The neural basis of bounded rational behavior

    Directory of Open Access Journals (Sweden)

    Coricelli, Giorgio

    2012-03-01

    Full Text Available Bounded rational behaviour is commonly observed in experimental games and in real life situations. Neuroeconomics can help to understand the mental processing underlying bounded rationality and out-of-equilibrium behaviour. Here we report results from recent studies on the neural basis of limited steps of reasoning in a competitive setting —the beauty contest game. We use functional magnetic resonance imaging (fMRI to study the neural correlates of human mental processes in strategic games. We apply a cognitive hierarchy model to classify subject’s choices in the experimental game according to the degree of strategic reasoning so that we can identify the neural substrates of different levels of strategizing. We found a correlation between levels of strategic reasoning and activity in a neural network related to mentalizing, i.e. the ability to think about other’s thoughts and mental states. Moreover, brain data showed how complex cognitive processes subserve the higher level of reasoning about others. We describe how a cognitive hierarchy model fits both behavioural and brain data.

    La racionalidad limitada es un fenómeno observado de manera frecuente tanto en juegos experimentales como en situaciones cotidianas. La Neuroeconomía puede mejorar la comprensión de los procesos mentales que caracterizan la racionalidad limitada; en paralelo nos puede ayudar a comprender comportamientos que violan el equilibrio. Nuestro trabajo presenta resultados recientes sobre la bases neuronales del razonamiento estratégico (y sus límite en juegos competitivos —como el juego del “beauty contest”. Estudiamos las bases neuronales del comportamiento estratégico en juegos con interacción entre sujetos usando resonancia magnética funcional (fMRI. Las decisiones de los participantes se clasifican acorde al grado de razonamiento estratégico: el llamado modelo de Jerarquías Cognitivas. Los resultados muestran una correlación entre niveles de

  12. Match-bounded String Rewriting Systems

    Science.gov (United States)

    Geser, Alfons; Hofbauer, Dieter; Waldmann, Johannes

    2003-01-01

    We introduce a new class of automated proof methods for the termination of rewriting systems on strings. The basis of all these methods is to show that rewriting preserves regular languages. To this end, letters are annotated with natural numbers, called match heights. If the minimal height of all positions in a redex is h+1 then every position in the reduct will get height h+1. In a match-bounded system, match heights are globally bounded. Using recent results on deleting systems, we prove that rewriting by a match-bounded system preserves regular languages. Hence it is decidable whether a given rewriting system has a given match bound. We also provide a sufficient criterion for the abence of a match-bound. The problem of existence of a match-bound is still open. Match-boundedness for all strings can be used as an automated criterion for termination, for match-bounded systems are terminating. This criterion can be strengthened by requiring match-boundedness only for a restricted set of strings, for instance the set of right hand sides of forward closures.

  13. Lability of copper bound to humic acid

    OpenAIRE

    Mao, Lingchen; Young, Scott D.; Bailey, Liz

    2015-01-01

    Geochemical speciation models generally include the assumption that all metal bound to humic acid and fulvic acid (HA, FA) is labile. However, in the current study, we determined the presence of a soluble ‘non-labile’ Cu fraction bound to HA extracted from grassland and peat soils. This was quantified by determining isotopically-exchangeable Cu (E-value) and EDTA-extraction of HA-bound Cu, separated by size-exclusion chromatography (SEC) and assayed by coupled ICP-MS. Evidence of time-depend...

  14. Positivity bounds on double parton distributions

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, Markus; Kasemets, Tomas

    2013-03-15

    Double hard scattering in proton-proton collisions is described in terms of double parton distributions. We derive bounds on these distributions that follow from their interpretation as probability densities, taking into account all possible spin correlations between two partons in an unpolarized proton. These bounds constrain the size of the polarized distributions and can for instance be used to set upper limits on the effects of spin correlations in double hard scattering. We show that the bounds are stable under leading-order DGLAP evolution to higher scales.

  15. Continuous bounded cohomology of locally compact groups

    CERN Document Server

    2001-01-01

    Recent research has repeatedly led to connections between important rigidity questions and bounded cohomology. However, the latter has remained by and large intractable. This monograph introduces the functorial study of the continuous bounded cohomology for topological groups, with coefficients in Banach modules. The powerful techniques of this more general theory have successfully solved a number of the original problems in bounded cohomology. As applications, one obtains, in particular, rigidity results for actions on the circle, for representations on complex hyperbolic spaces and on Teichmüller spaces. A special effort has been made to provide detailed proofs or references in quite some generality.

  16. Air quality in bounded environments

    OpenAIRE

    Salvatore Lorusso; Andrea Natali

    2004-01-01

    Some measurements were made on the total suspended particulate (PTS) and on the fraction PM 10 of dusts within some environments, in particular in cultural institutes such us the State Archives in Rome, Florence and Rimini. The aim is not only to highlight the alteration-degradation of the above-said dusts on the manufactures placed and kept there, but also to quantify the polluting substance that can be inhaled by any guest of the Archive during his or her normal working activity, respecting...

  17. Air quality in bounded environments

    Directory of Open Access Journals (Sweden)

    Salvatore Lorusso

    2004-02-01

    Full Text Available Some measurements were made on the total suspended particulate (PTS and on the fraction PM 10 of dusts within some environments, in particular in cultural institutes such us the State Archives in Rome, Florence and Rimini. The aim is not only to highlight the alteration-degradation of the above-said dusts on the manufactures placed and kept there, but also to quantify the polluting substance that can be inhaled by any guest of the Archive during his or her normal working activity, respecting the limits defined by the law for human protection.

  18. Exclusion Bounds for Extended Anyons

    Science.gov (United States)

    Larson, Simon; Lundholm, Douglas

    2017-08-01

    We introduce a rigorous approach to the many-body spectral theory of extended anyons, that is quantum particles confined to two dimensions that interact via attached magnetic fluxes of finite extent. Our main results are many-body magnetic Hardy inequalities and local exclusion principles for these particles, leading to estimates for the ground-state energy of the anyon gas over the full range of the parameters. This brings out further non-trivial aspects in the dependence on the anyonic statistics parameter, and also gives improvements in the ideal (non-extended) case.

  19. From 'I' to 'L' and back again: the odyssey of membrane-bound M13 protein.

    Science.gov (United States)

    Vos, Werner L; Nazarov, Petr V; Koehorst, Rob B M; Spruijt, Ruud B; Hemminga, Marcus A

    2009-05-01

    The major coat protein of the filamentous bacteriophage M13 is a surprising protein because it exists both as a membrane protein and as part of the M13 phage coat during its life cycle. Early studies showed that the phage-bound structure of the coat protein was a continuous I-shaped alpha-helix. However, throughout the years various structural models, both I-shaped and L-shaped, have been proposed for the membrane-bound state of the coat protein. Recently, site-directed labelling approaches have enabled the study of the coat protein under conditions that more closely mimic the in vivo membrane-bound state. Interestingly, the structure that has emerged from this work is I-shaped and similar to the structure in the phage-bound state.

  20. Precision Measurement of the Position-Space Wave Functions of Gravitationally Bound Ultracold Neutrons

    Directory of Open Access Journals (Sweden)

    Y. Kamiya

    2014-01-01

    Full Text Available Gravity is the most familiar force at our natural length scale. However, it is still exotic from the view point of particle physics. The first experimental study of quantum effects under gravity was performed using a cold neutron beam in 1975. Following this, an investigation of gravitationally bound quantum states using ultracold neutrons was started in 2002. This quantum bound system is now well understood, and one can use it as a tunable tool to probe gravity. In this paper, we review a recent measurement of position-space wave functions of such gravitationally bound states and discuss issues related to this analysis, such as neutron loss models in a thin neutron guide, the formulation of phase space quantum mechanics, and UCN position sensitive detectors. The quantum modulation of neutron bound states measured in this experiment shows good agreement with the prediction from quantum mechanics.

  1. Modifying the upper bound on the length of minimal synchronizing word

    CERN Document Server

    Trahtman, A N

    2011-01-01

    A word $w$ is called synchronizing (recurrent, reset, magic, directable) word of deterministic finite automaton (DFA) if $w$ sends all states of the automaton to a unique state. In 1964 Jan \\v{C}erny found a sequence of n-state complete DFA possessing a minimal synchronizing word of length $(n-1)^2$. He conjectured that it is an upper bound on the length of such words for complete DFA. Nevertheless, the best upper bound $(n^3-n)/6$ was found almost 30 years ago. We reduce the upper bound on the length of the minimal synchronizing word to $n(7n^2+12n-4)/48$. An implemented algorithm for finding synchronizing word with restricted upper bound is described. The work presents the distribution of all synchronizing automata of small size according to the length of an almost minimal synchronizing word.

  2. Redshift-space limits of bound structures

    NARCIS (Netherlands)

    Duenner, Rolando; Reisenegger, Andreas; Meza, Andres; Araya, Pablo A.; Quintana, Hernan

    2007-01-01

    An exponentially expanding Universe, possibly governed by a cosmological constant, forces gravitationally bound structures to become more and more isolated, eventually becoming causally disconnected from each other and forming so-called 'island universes'. This new scenario reformulates the question

  3. New Spectral Features from Bound Dark Matter

    DEFF Research Database (Denmark)

    Catena, Riccardo; Kouvaris, Chris

    2016-01-01

    We demonstrate that dark matter particles gravitationally bound to the Earth can induce a characteristic nuclear recoil signal at low energies in direct detection experiments. The new spectral feature we predict can provide the ultimate smoking gun for dark matter discovery for experiments...... with positive signal but unclear background. The new feature is universal, in that the ratio of bound over halo dark matter event rates at detectors is independent of the dark matter-nucleon cross section....

  4. On bounds for symmetric divergence measures

    Science.gov (United States)

    Furuichi, S.; Yanagi, K.; Kuriyama, K.

    2017-06-01

    In the paper [1], tight bounds for symmetric divergence measures applying the results established by G.L.Gilardoni. In this article, we report on two kinds of extensions for the Sason's results, namely a classical q-extension and a non-commutative(quantum) extension. Especially, we improve Sason's bound of the summation of the absolute value for the difference between two probability distributions, applying the parameter q of Tsallis entropy, under a certain assumption.

  5. Malabsorption of protein bound vitamin B12.

    OpenAIRE

    Dawson, D W; Sawers, A H; Sharma, R K

    1984-01-01

    Patients with subnormal serum vitamin B12 concentrations were tested for absorption of protein bound vitamin B12 and compared with controls. Absorption of the protein bound vitamin appeared to decrease with increasing age in healthy subjects. Differences between the result of this test and the result of the Schilling test in patients who had undergone gastric surgery were confirmed; such differences were also seen in some patients who had iron deficiency anaemia, an excessive alcohol intake, ...

  6. Dynamic optimization problems with bounded terminal conditions

    Science.gov (United States)

    Lee, A. Y.

    1987-01-01

    Bounded terminal conditions of nonlinear optimization problems are converted to equality terminal conditions via Valentine's device. In so doing, additional unknown parameters are introduced into the problem. The transformed problems can still be easily solved using the sequential gradient-restoration algorithm (SGRA) via a simple augmentation of the unknown parameter vector pi. Three example problems with bounded terminal conditions are solved to verify this technique.

  7. Tight bounds on computing error-correcting codes by bounded-depth circuits with arbitrary gates

    DEFF Research Database (Denmark)

    Gal, A.; Hansen, Kristoffer Arnsfelt; Koucky, Michal

    2013-01-01

    We bound the minimum number w of wires needed to compute any (asymptotically good) error-correcting code C:{0,1}Ω(n)→{0,1}n with minimum distance Ω(n), using unbounded fan-in circuits of depth d with arbitrary gates. Our main results are: 1) if d=2, then w=Θ(n (lgn/lglgn)2); 2) if d=3, then w...... bound gives the largest known lower bound for computing any linear map. The upper bounds imply that a (necessarily dense) generator matrix for our code can be written as the product of two sparse matrices. Using known techniques, we also obtain similar (but not tight) bounds for computing pairwise......-independent hash functions. Our lower bounds are based on a superconcentrator-like condition that the graphs of circuits computing good codes must satisfy. This condition is provably intermediate between superconcentrators and their weakenings considered before...

  8. Dynamics of quadratic polynomials: Complex bounds for real maps

    OpenAIRE

    Lyubich, Mikhail; Yampolsky, Michael

    1995-01-01

    We extend Sullivan's complex a priori bounds to real quadratic polynomials with essentially bounded combinatorics. Combined with the previous results of the first author, this yields complex bounds for all real quadratics. Local connectivity of the corresponding Julia sets follows.

  9. Bounds Estimation Via Regression with Asymmetric Cost Functions

    Science.gov (United States)

    DeCoste, D.

    1997-01-01

    This paper addresses a significant but mostly-neglected class of problems that we call bounds estimation. This includes learning empirical best-case and worst-case algorithmic complexity bounds and red-line bounds on sensor data.

  10. Upper and Lower Bounds of Frequency Interval Gramians for a Class of Perturbed Linear Systems

    DEFF Research Database (Denmark)

    Shaker, Hamid Reza

    2012-01-01

    if the system is controllable or observable, but also it is required to know the degree of controllability or observability of the system. Gramian matrices were introduced to address this issue by providing a quantitative measure for controllability and observability. In many applications, the information...... of uncertain systems. In this paper, we derive upper and lower bounds of frequency interval gramians under perturbations of an A-matrix in the state-space form. These bounds are obtained by solving algebraic Riccati equations. The results are further used to obtain upper and lower bounds of the frequency...

  11. The relativistic bound states of a non-central potential

    Indian Academy of Sciences (India)

    Yang Researchers and Elite Club, Central Tehran Branch, Islamic Azad University, Tehran, Iran; Department of Physics, University of Semnan, Semnan, Iran; Department of Physics, Faculty of Science, an-Najah National University, Nablus, Palestine; Department of Electrical Engineering, Near East University, Nicosia, ...

  12. D-particle bound states and generalized instantons

    CERN Document Server

    Moore, Gregory W.; Shatashvili, Samson

    2000-01-01

    We compute the principal contribution to the index in the supersymmetric quantum mechanical systems which are obtained by reduction to 0+1 dimensions of results are: ${1\\over{N^{2}}}$ for $D=4,6$, $\\sum_{d | N} {1\\over{d^{2}}}$ for D=10. We also discuss the D=3 case.

  13. Dirac bound states of anharmonic oscillator in external fields

    Energy Technology Data Exchange (ETDEWEB)

    Hamzavi, Majid, E-mail: majid.hamzavi@gmail.com [Department of Physics, University of Zanjan, Zanjan (Iran, Islamic Republic of); Ikhdair, Sameer M., E-mail: sikhdair@gmail.com [Department of Physics, Faculty of Science, an-Najah National University, Nablus, West Bank, Palestine (Country Unknown); Department of Electrical and Electronic Engineering, Near East University, 922022 Nicosia, Northern Cyprus, Mersin 10 (Turkey); Falaye, Babatunde J., E-mail: fbjames11@physicist.net [Theoretical Physics Section, Department of Physics, University of Ilorin, P. M. B. 1515, Ilorin (Nigeria)

    2014-02-15

    We explore the effect of the external magnetic and Aharonov–Bohm (AB) flux fields on the energy levels of Dirac particle subjects to mixed scalar and vector anharmonic oscillator field in the two-dimensional (2D) space. We calculate the exact energy eigenvalues and the corresponding un-normalized two-spinor-components wave functions in terms of the chemical potential parameter, magnetic field strength, AB flux field and magnetic quantum number by using the Nikiforov–Uvarov (NU) method. -- Highlights: • Effect of the external fields on the energy levels of Dirac particle with the anharmonic oscillator is investigated. • The solutions are discussed in view of spin and pseudospin symmetries limits. • The energy levels and wave function are presented by the Nikiforov–Uvarov method.

  14. Model Studies of CBES (Chemically Bound Excited States) Decomposition.

    Science.gov (United States)

    1988-02-01

    the nuclear coordinates. Since photons carry virtually no momentum, radiative decay is strictly forbidden. Molecules, such as FN3, which are...thermometer. Stainless steel cooling coils in the annulus between the reaction kettle and the pot were 7 Y*’ IL He COLD MASS TRAP FLOWMETER VACUUM I UV... SPACER T PYREX HN3 KETTLE ~~~TEFLON .v, COATED0 PADDLE H20 0 0 E FLECTRICALLY NaN 3 AND HEATED POT STEARIC ACID 0 0 0 DRAIN OIL Fig. 3 Detailed view of HN

  15. Bound states of Dipolar Bosons in One-dimensional Systems

    DEFF Research Database (Denmark)

    G. Volosniev, A.; R. Armstrong, J.; V. Fedorov, D.

    2013-01-01

    We consider one-dimensional tubes containing bosonic polar molecules. The long-range dipole-dipole interactions act both within a single tube and between different tubes. We consider arbitrary values of the externally aligned dipole moments with respect to the symmetry axis of the tubes. The few-...

  16. Geometry of non-supersymmetric three-charge bound states

    Energy Technology Data Exchange (ETDEWEB)

    Gimon, Eric; Gimon, Eric G.; Levi, Thomas S.; Ross, Simon F.

    2007-05-14

    We study the smooth non-supersymmetric three-charge microstatesof Jejjala, Madden, Ross and Titchener using Kaluza-Klein reductions of the solutions to five and four dimensions. Our aim is to improve our understanding of the relation between these non-supersymmetric solutions and the well-studied supersymmetric cases. We find some surprising qualitative differences. In the five-dimensional description, the solution has orbifold fixed points which break supersymmetry locally, so the geometries cannot be thought of as made up of separate half-BPS centers. In the four-dimensional description, the two singularities in the geometry are connected by a conical singularity, which makes it impossible to treat them independently and assign unambiguous brane charges to these centers.

  17. Bound States of Skyrmions and Merons near the Lifshitz Point

    NARCIS (Netherlands)

    Kharkov, Y. A.; Sushkov, O. P.; Mostovoy, M.

    2017-01-01

    We study topological defects in anisotropic ferromagnets with competing interactions near the Lifshitz point. We show that Skyrmions and bimerons are stable in a large part of the phase diagram. We calculate Skyrmion-Skyrmion and meron-meron interactions and show that Skyrmions attract each other

  18. Scaling properties of net information measures for bound states of ...

    Indian Academy of Sciences (India)

    Introduction. The uncertainty relations are the basic properties of quan- tum mechanics, in particular, we have the Heisenberg uncertainty principle1 for the product of the uncertain- ties in position ... sures expressed through the electron probability density as the key ..... Fourth Berkeley Symposium on Mathematics, Statistics.

  19. Bound and scattering states with non-local potentials.

    Energy Technology Data Exchange (ETDEWEB)

    Viviani, M; Girlanda, L; Kievsky, A; Marcucci, L E; Rosati, S; Schiavilla, R

    2007-06-01

    The application of the hyperspherical harmonics method to the case of non-local potentials is described. Given the properties of the hyperspherical harmonic functions, there are no difficulties in considering the approach in both coordinate and momentum space. The results for the 3H and 4He binding energies and n - 3H scattering lengths are found to be in good agreement with those obtained with other different techniques. A study of the 4He form factor is also reported, with a careful investigation of the contribution from isospin symmetry violation. Its effect on parity violating elastic scattering of polarized electrons from 4He is investigated. In particular, a simple analysis of the recently measured left-right asymmetry at low Q2 shows that the contribution of these isospin admixture are found of comparable magnitude to that associated with strangeness components in the nucleon electric form factor.

  20. Bounds on dark matter interactions with electroweak gauge bosons

    Energy Technology Data Exchange (ETDEWEB)

    Cotta, R. C.; Hewett, J. L.; Le, M. -P.; Rizzo, T. G.

    2013-12-01

    We investigate scenarios in which dark matter interacts with the Standard Model primarily through electroweak gauge bosons. We employ an effective field theory framework wherein the Standard Model and the dark matter particle are the only light states in order to derive model-independent bounds. Bounds on such interactions are derived from dark matter production by weak boson fusion at the LHC, indirect detection searches for the products of dark matter annihilation and from the measured invisible width of the Z 0 . We find that limits on the UV scale, Λ , reach weak scale values for most operators and values of the dark matter mass, thus probing the most natural scenarios in the weakly interacting massive particle dark matter paradigm. Our bounds suggest that light dark matter ( m χ ≲ m Z / 2 or m χ ≲ 100 – 200 GeV , depending on the operator) cannot interact only with the electroweak gauge bosons of the Standard Model, but rather requires additional operator contributions or dark sector structure to avoid overclosing the Universe.

  1. Beating Landauer's Bound: Tradeoff between Accuracy and Heat Dissipation

    Science.gov (United States)

    Talukdar, Saurav; Bhaban, Shreyas; Salapaka, Murti

    The Landauer's Principle states that erasing of one bit of stored information is necessarily accompanied by heat dissipation of at least kb Tln 2 per bit. However, this is true only if the erasure process is always successful. We demonstrate that if the erasure process has a success probability p, the minimum heat dissipation per bit is given by kb T(plnp + (1 - p) ln (1 - p) + ln 2), referred to as the Generalized Landauer Bound, which is kb Tln 2 if the erasure process is always successful and decreases to zero as p reduces to 0.5. We present a model for a one-bit memory based on a Brownian particle in a double well potential motivated from optical tweezers and achieve erasure by manipulation of the optical fields. The method uniquely provides with a handle on the success proportion of the erasure. The thermodynamics framework for Langevin dynamics developed by Sekimoto is used for computation of heat dissipation in each realization of the erasure process. Using extensive Monte Carlo simulations, we demonstrate that the Landauer Bound of kb Tln 2 is violated by compromising on the success of the erasure process, while validating the existence of the Generalized Landauer Bound.

  2. Bounded Perturbation Regularization for Linear Least Squares Estimation

    KAUST Repository

    Ballal, Tarig

    2017-10-18

    This paper addresses the problem of selecting the regularization parameter for linear least-squares estimation. We propose a new technique called bounded perturbation regularization (BPR). In the proposed BPR method, a perturbation with a bounded norm is allowed into the linear transformation matrix to improve the singular-value structure. Following this, the problem is formulated as a min-max optimization problem. Next, the min-max problem is converted to an equivalent minimization problem to estimate the unknown vector quantity. The solution of the minimization problem is shown to converge to that of the ℓ2 -regularized least squares problem, with the unknown regularizer related to the norm bound of the introduced perturbation through a nonlinear constraint. A procedure is proposed that combines the constraint equation with the mean squared error (MSE) criterion to develop an approximately optimal regularization parameter selection algorithm. Both direct and indirect applications of the proposed method are considered. Comparisons with different Tikhonov regularization parameter selection methods, as well as with other relevant methods, are carried out. Numerical results demonstrate that the proposed method provides significant improvement over state-of-the-art methods.

  3. Multipole-bound molecular negative ions

    CERN Document Server

    Abdul-Karim, H; Desfrançois, C

    2002-01-01

    Within the framework of a simple electrostatic model, as compared to recent experimental results, we here discuss the stability of very weakly bound molecular negative ions. In contrast with the case of conventional valence anions, the excess electron is then located in a very diffuse orbital and is mainly bound by electrostatic dipolar, quadrupolar, and polarization forces, at large distances from the neutral molecular core. By fitting a single repulsion parameter of the model to the available experimental data, it is possible to make quantitative predictions of the excess-electron binding energies in these species. Critical values of the dipole moment, quadrupole moment or polarizability required for the observation of stable multipole-bound negative ions are predicted and compared to available experimental data and ab initio calculations. Refs. 26 (author)

  4. Resistivity bound for hydrodynamic bad metals

    Science.gov (United States)

    Lucas, Andrew; Hartnoll, Sean A.

    2017-10-01

    We obtain a rigorous upper bound on the resistivity ρ of an electron fluid whose electronic mean free path is short compared with the scale of spatial inhomogeneities. When such a hydrodynamic electron fluid supports a nonthermal diffusion process—such as an imbalance mode between different bands—we show that the resistivity bound becomes ρ≲AΓ. The coefficient A is independent of temperature and inhomogeneity lengthscale, and Γ is a microscopic momentum-preserving scattering rate. In this way, we obtain a unified mechanism—without umklapp—for ρ˜T2 in a Fermi liquid and the crossover to ρ˜T in quantum critical regimes. This behavior is widely observed in transition metal oxides, organic metals, pnictides, and heavy fermion compounds and has presented a long-standing challenge to transport theory. Our hydrodynamic bound allows phonon contributions to diffusion constants, including thermal diffusion, to directly affect the electrical resistivity.

  5. Equivalence principle and bound kinetic energy.

    Science.gov (United States)

    Hohensee, Michael A; Müller, Holger; Wiringa, R B

    2013-10-11

    We consider the role of the internal kinetic energy of bound systems of matter in tests of the Einstein equivalence principle. Using the gravitational sector of the standard model extension, we show that stringent limits on equivalence principle violations in antimatter can be indirectly obtained from tests using bound systems of normal matter. We estimate the bound kinetic energy of nucleons in a range of light atomic species using Green's function Monte Carlo calculations, and for heavier species using a Woods-Saxon model. We survey the sensitivities of existing and planned experimental tests of the equivalence principle, and report new constraints at the level of between a few parts in 10(6) and parts in 10(8) on violations of the equivalence principle for matter and antimatter.

  6. Career Development and Personal Functioning Differences between Work-Bound and Non-Work Bound Students

    Science.gov (United States)

    Creed, Peter A.; Patton, Wendy; Hood, Michelle

    2010-01-01

    We surveyed 506 Australian high school students on career development (exploration, planning, job-knowledge, decision-making, indecision), personal functioning (well-being, self-esteem, life satisfaction, school satisfaction) and control variables (parent education, school achievement), and tested differences among work-bound, college-bound and…

  7. 78 FR 18326 - Agency Information Collection Activities; Comment Request; Upward Bound and Upward Bound Math...

    Science.gov (United States)

    2013-03-26

    ... Agency Information Collection Activities; Comment Request; Upward Bound and Upward Bound Math Science... hand delivery. Please note that comments submitted by fax or email and those submitted after the... 1995 (PRA) (44 U.S.C. 3506(c)(2)(A)), provides the general public and Federal agencies with an...

  8. Violation of Energy Bounds in Designer Gravity

    CERN Document Server

    Hertog, T

    2007-01-01

    We continue our study of the stability of designer gravity theories, where one considers anti-de Sitter gravity coupled to certain tachyonic scalars with boundary conditions defined by a smooth function W. It has recently been argued there is a lower bound on the conserved energy in terms of the global minimum of W, if the scalar potential arises from a superpotential P and the scalar reaches an extremum of P at infinity. We show, however, there are superpotentials for which these bounds do not hold.

  9. G-frames with bounded linear operators

    OpenAIRE

    Xiao, Xiang-chun; Zhu, Yu-can; Shu, Zhi-biao; Ding, Ming-ling

    2015-01-01

    In this paper, we introduce the more general g-frame which is called a $K$-g-frame by combining a g-frame with a bounded linear operator $K$ in a Hilbert space. We give several equivalent characterizations for $K$-g-frames and discuss the stability of perturbation for $K$-g-frames. We also investigate the relationship between a $K$-g-frame and the range of the bounded linear operator $K$. In the end, we give two sufficient conditions for the remainder of a $K$-g-frame after an erasure to stil...

  10. Bounds on fake weighted projective space

    OpenAIRE

    Kasprzyk, Alexander M.

    2009-01-01

    A fake weighted projective space X is a Q-factorial toric variety with Picard number one. As with weighted projective space, X comes equipped with a set of weights (λ0, ..., λn). We see how the singularities of P (λ0, ..., λn) influence the singularities of X, and how the weights bound the number of possible fake weighted projective spaces for a fixed dimension. Finally, we present an upper bound on the ratios λj/Σλi if we wish X to have only terminal (or canonical) singularities.

  11. Fibered Transverse Knots and the Bennequin Bound

    OpenAIRE

    Etnyre, John B.; Van Horn-Morris, Jeremy

    2008-01-01

    We prove that a nicely fibered link (by which we mean the binding of an open book) in a tight contact manifold $(M,\\xi)$ with zero Giroux torsion has a transverse representative realizing the Bennequin bound if and only if the contact structure it supports (since it is also the binding of an open book) is $\\xi.$ This gives a geometric reason for the non-sharpness of the Bennequin bound for fibered links. We also note that this allows the classification, up to contactomorphism, of maximal self...

  12. Heterologous expression and purification of membrane-bound pyrophosphatases

    DEFF Research Database (Denmark)

    Kellosalo, J.; Kajander, T.; Palmgren, Michael Broberg

    2011-01-01

    Membrane-bound pyrophosphatases (M-PPases) are enzymes that couple the hydrolysis of inorganic pyrophosphate to pumping of protons or sodium ions. In plants and bacteria they are important for relieving stress caused by low energy levels during anoxia, drought, nutrient deficiency, cold and low...... and monodisperse active states. To generate M-PPases with an increased hydrophilic surface area, which potentially should facilitate formation of crystal contacts, phage T4 lysozyme was inserted into different extramembraneous loops of one of these M-PPases. Two of these fusion proteins were active and expressed...

  13. Upper Bounds on Performance Measures of Heterogeneous // Queues

    Directory of Open Access Journals (Sweden)

    F. S. Q. Alves

    2011-01-01

    Full Text Available In many real-life queueing systems, the servers are often heterogeneous, namely they work at different rates. This paper provides a simple method to compute tight upper bounds on two important performance measures of single-class heterogeneous multi-server Markovian queueing systems, namely the average number in queue and the average waiting time in queue. This method is based on an expansion of the state space that is followed by an approximate reduction of the state space, only considering the most probable states. In most cases tested, we were able to approximate the actual behavior of the system with smaller errors than those obtained from traditional homogeneous multiserver Markovian queues, as shown by GPSS simulations. In addition, we have correlated the quality of the approximation with the degree of heterogeneity of the system, which was evaluated using its Gini index. Finally, we have shown that the bounds are robust and still useful, even considering quite different allocation strategies. A large number of simulation results show the accuracy of the proposed method that is better than that of classical homogeneous multiserver Markovian formulae in many situations.

  14. The lower bound on complexity of parallel branch-and-bound algorithm for subset sum problem

    Science.gov (United States)

    Kolpakov, Roman; Posypkin, Mikhail

    2016-10-01

    The subset sum problem is a particular case of the Boolean knapsack problem where each item has the price equal to its weight. This problem can be informally stated as searching for most dense packing of a set of items into a box with limited capacity. Recently, coarse-grain parallelization approaches to Branch-and-Bound (B&B) method attracted some attention due to the growing popularity of weakly-connected distributed computing platforms. In this paper we consider one of such approaches for solving the subset sum problem. One of the processors (manager) performs some number of B&B steps on the first stage with generating some subproblems. On the second stage, the generated subproblems are sent to other processors, one subproblem per processor. The processors solve completely the received subproblems, the manager collects all the obtained solutions and chooses the optimal one. For this algorithm we formally define the parallel execution model (frontal scheme of parallelization) and the notion of the frontal scheme complexity. We study the frontal scheme complexity for a series of subset sum problems.

  15. Relativistic effects in the study of weakly bound F and Be nuclei

    Indian Academy of Sciences (India)

    FAHIME REZVANI

    2018-01-03

    Jan 3, 2018 ... Abstract. Relativistic effects are employed to describe the weakly bound nuclei of 17F and 11Be. In order to calculate the energy levels of the ground state and the excited states of these nuclei, we solved the Dirac equation with pseudospin symmetry in the shell model by using the basic concept of ...

  16. Relativistic effects in the study of weakly bound 17 F and 11 Be nuclei

    Indian Academy of Sciences (India)

    Relativistic effects are employed to describe the weakly bound nuclei of 17 F and 11 B e . In order to calculate the energy levels of the ground state and the excited states of these nuclei, we solved the Dirac equation with pseudospin symmetry in the shell model by using the basic concept of supersymmetric shape ...

  17. Characterization of plasma membrane bound inorganic ...

    African Journals Online (AJOL)

    Background: Currently, a major problem in the management of visceral leishmaniasis or kala-azar, especially in the Indian subcontinent, is the growing unresponsiveness to conventional antimonial therapy. Membrane bound pyrophophatase (PPases) do not exist in plasma membrane from mammals. Thus, H+-PPases ...

  18. Stacked spheres and lower bound theorem

    Indian Academy of Sciences (India)

    BASUDEB DATTA

    2011-11-20

    Nov 20, 2011 ... Using Kalai's result, Tay (1995) proved LBT for a bigger class of simplicial complexes (namely, normal pseudomanifolds). In 2008, we (Bagchi & Datta) have presented a self-contained combinatorial proof of LBT for normal pseudomanifolds. Stacked spheres and lower bound theorem. Basudeb Datta.

  19. Computational Lower Bounds Using Diagonalization-II

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 4. Computational Lower Bounds Using Diagonalization - II. M V Panduranga Rao. General Article Volume 15 Issue 4 April 2010 pp 337-346 ... Keywords. Diagonalization; time–hierarchy theorem; relativization; Baker–Gill–Solovay theorem.

  20. Vulnerable Derivatives and Good Deal Bounds

    DEFF Research Database (Denmark)

    Murgoci, Agatha

    2013-01-01

    We price vulnerable derivatives – i.e. derivatives where the counterparty may default. These are basically the derivatives traded on the over-the-counter (OTC) markets. Default is modelled in a structural framework. The technique employed for pricing is good deal bounds (GDBs). The method imposes...