Bound Nucleon Form Factors, Quark-Hadron Duality, and Nuclear EMC Effect
Tsushima, K; Melnitchouk, W; Saitô, K; Thomas, A W
2003-01-01
We discuss the electromagnetic form factors, axial form factors, and structure functions of a bound nucleon in the quark-meson coupling (QMC) model. Free space nucleon form factors are calculated using the improved cloudy bag model (ICBM). After describing finite nuclei and nuclear matter in the quark-based QMC model, we compute the in-medium modification of the bound nucleon form factors in the same framework. Finally, limits on the medium modification of the bound nucleon $F_2$ structure function are obtained using the calculated in-medium electromagnetic form factors and local quark-hadron duality.
Effect of the bound nucleon form factors on charged-current neutrino-nucleus scattering
Tsushima, K; Saitô, K; Kim, Hungchong
2003-01-01
We study the effect of bound nucleon form factors on charged-current neutrino-nucleus scattering. The bound nucleon form factors associated with the vector and axial-vector currents are calculated in the quark-meson coupling model. We compute the inclusive $^{12}$C($nu_mu,mu^-$)$X$ differential and total cross sections, which have been measured by the LSND collaboration at Los Alamos, using a relativistic Fermi gas model with the calculated bound nucleon form factors. It is shown that the bound nucleon form factors reduce the total cross section by about 8% relative to that calculated with the free nucleon form factors, where most of the conventional calculations overestimate the total cross section data by about 30% to 100%.
Nucleon Electromagnetic Form Factors
Energy Technology Data Exchange (ETDEWEB)
Kees de Jager
2004-08-01
Although nucleons account for nearly all the visible mass in the universe, they have a complicated structure that is still incompletely understood. The first indication that nucleons have an internal structure, was the measurement of the proton magnetic moment by Frisch and Stern (1933) which revealed a large deviation from the value expected for a point-like Dirac particle. The investigation of the spatial structure of the nucleon, resulting in the first quantitative measurement of the proton charge radius, was initiated by the HEPL (Stanford) experiments in the 1950s, for which Hofstadter was awarded the 1961 Nobel prize. The first indication of a non-zero neutron charge distribution was obtained by scattering thermal neutrons off atomic electrons. The recent revival of its experimental study through the operational implementation of novel instrumentation has instigated a strong theoretical interest. Nucleon electro-magnetic form factors (EMFFs) are optimally studied through the exchange of a virtual photon, in elastic electron-nucleon scattering. The momentum transferred to the nucleon by the virtual photon can be selected to probe different scales of the nucleon, from integral properties such as the charge radius to scaling properties of its internal constituents. Polarization instrumentation, polarized beams and targets, and the measurement of the polarization of the recoiling nucleon have been essential in the accurate separation of the charge and magnetic form factors and in studies of the elusive neutron charge form factor.
Nucleon Electromagnetic Form Factors
Energy Technology Data Exchange (ETDEWEB)
Marc Vanderhaeghen; Charles Perdrisat; Vina Punjabi
2007-10-01
There has been much activity in the measurement of the elastic electromagnetic proton and neutron form factors in the last decade, and the quality of the data has greatly improved by performing double polarization experiments, in comparison with previous unpolarized data. Here we review the experimental data base in view of the new results for the proton, and neutron, obtained at JLab, MAMI, and MIT-Bates. The rapid evolution of phenomenological models triggered by these high-precision experiments will be discussed, including the recent progress in the determination of the valence quark generalized parton distributions of the nucleon, as well as the steady rate of improvements made in the lattice QCD calculations.
Flavour decomposition of electromagnetic transition form factors of nucleon resonances
Segovia, Jorge
2016-01-01
In Poincar\\'e-covariant continuum treatments of the three valence-quark bound-state problem, the force behind dynamical chiral symmetry breaking also generates nonpointlike, interacting diquark correlations in the nucleon and its resonances. We detail the impact of these correlations on the nucleon's elastic and nucleon-to-Roper transition electromagnetic form factors, providing flavour-separation versions that can be tested at modern facilities.
Maas, F. E.; Paschke, K. D.
2017-07-01
A broad program measuring parity-violation in electron-nuclear scattering has now provided a large set of precision data on the weak-neutral-current form-factors of the proton. Under comparison with well-measured electromagnetic nucleon form-factors, these measurements reveal the role of the strange quark sea on the low-energy interactions of the proton through the strange-quark-flavor vector form-factors. This review will describe the experimental program and the implications of the global data for the strange-quark vector form-factors. We present here a new fit to the world data.
Electromagnetic Form Factors of the Nucleon
Bijker, R
1997-01-01
We reanalyze the world data on the electromagnetic form factors of the nucleon. The calculations are performed in the framework of an algebraic model of the nucleon combined with vector meson dominance.
Strange chiral nucleon form factors
Hemmert, T R; Meißner, Ulf G; Hemmert, Thomas R.; Kubis, Bastian; Meissner, Ulf-G.
1999-01-01
We investigate the strange electric and magnetic form factors of the nucleon in the framework of heavy baryon chiral perturbation theory to third order in the chiral expansion. All counterterms can be fixed from data. In particular, the two unknown singlet couplings can be deduced from the parity-violating electron scattering experiments performed by the SAMPLE and the HAPPEX collaborations. Within the given uncertainties, our analysis leads to a small and positive electric strangeness radius, $ = (0.05 \\pm 0.16) fm^2$. We also deduce the consequences for the upcoming MAMI A4 experiment.
Dissecting nucleon transition electromagnetic form factors
Segovia, Jorge
2016-01-01
In Poincar\\'e-covariant continuum treatments of the three valence-quark bound-state problem, the force behind dynamical chiral symmetry breaking also generates nonpointlike, interacting diquark correlations in the nucleon and its resonances. We detail the impact of these correlations on the electromagnetically-induced nucleon-$\\Delta$ and nucleon-Roper transitions, providing a flavour-separation of the latter and associated predictions that can be tested at modern facilities.
Charge-symmetry-breaking nucleon form factors
Kubis, Bastian
2009-01-01
A quantitative understanding of charge-symmetry breaking is an increasingly important ingredient for the extraction of the nucleon's strange vector form factors. We review the theoretical understanding of the charge-symmetry-breaking form factors, both for single nucleons and for Helium-4.
Nucleon and Elastic and Transition Form Factors
Segovia, Jorge; Cloët, Ian C.; Roberts, Craig D.; Schmidt, Sebastian M.
2014-12-01
We present a unified study of nucleon and elastic and transition form factors, and compare predictions made using a framework built upon a Faddeev equation kernel and interaction vertices that possess QCD-like momentum dependence with results obtained using a symmetry-preserving treatment of a vector vector contact-interaction. The comparison emphasises that experiments are sensitive to the momentum dependence of the running couplings and masses in the strong interaction sector of the Standard Model and highlights that the key to describing hadron properties is a veracious expression of dynamical chiral symmetry breaking in the bound-state problem. Amongst the results we describe, the following are of particular interest: possesses a zero at Q 2 = 9.5 GeV2; any change in the interaction which shifts a zero in the proton ratio to larger Q 2 relocates a zero in to smaller Q 2; there is likely a value of momentum transfer above which ; and the presence of strong diquark correlations within the nucleon is sufficient to understand empirical extractions of the flavour-separated form factors. Regarding the -baryon, we find that, inter alia: the electric monopole form factor exhibits a zero; the electric quadrupole form factor is negative, large in magnitude, and sensitive to the nature and strength of correlations in the Faddeev amplitude; and the magnetic octupole form factor is negative so long as rest-frame P- and D-wave correlations are included. In connection with the transition, the momentum-dependence of the magnetic transition form factor, , matches that of once the momentum transfer is high enough to pierce the meson-cloud; and the electric quadrupole ratio is a keen measure of diquark and orbital angular momentum correlations, the zero in which is obscured by meson-cloud effects on the domain currently accessible to experiment. Importantly, within each framework, identical propagators and vertices are sufficient to describe all properties discussed herein. Our
Calculation of Nucleon Electromagnetic Form Factors
Renner, D B; Dolgov, D S; Eicker, N; Lippert, T; Negele, J W; Pochinsky, A V; Schilling, K; Lippert, Th.
2002-01-01
The fomalism is developed to express nucleon matrix elements of the electromagnetic current in terms of form factors consistent with the translational, rotational, and parity symmetries of a cubic lattice. We calculate the number of these form factors and show how appropriate linear combinations approach the continuum limit.
Axial Nucleon form factors from lattice QCD
Alexandrou, C; Carbonell, J; Constantinou, M; Harraud, P A; Guichon, P; Jansen, K; Korzec, T; Papinutto, M
2010-01-01
We present results on the nucleon axial form factors within lattice QCD using two flavors of degenerate twisted mass fermions. Volume effects are examined using simulations at two volumes of spatial length $L=2.1$ fm and $L=2.8$ fm. Cut-off effects are investigated using three different values of the lattice spacings, namely $a=0.089$ fm, $a=0.070$ fm and $a=0.056$ fm. The nucleon axial charge is obtained in the continuum limit and chirally extrapolated to the physical pion mass enabling comparison with experiment.
Nucleon Form Factors - A Jefferson Lab Perspective
Energy Technology Data Exchange (ETDEWEB)
John Arrington, Kees de Jager, Charles F. Perdrisat
2011-06-01
The charge and magnetization distributions of the proton and neutron are encoded in their elastic electromagnetic form factors, which can be measured in elastic electron--nucleon scattering. By measuring the form factors, we probe the spatial distribution of the proton charge and magnetization, providing the most direct connection to the spatial distribution of quarks inside the proton. For decades, the form factors were probed through measurements of unpolarized elastic electron scattering, but by the 1980s, progress slowed dramatically due to the intrinsic limitations of the unpolarized measurements. Early measurements at several laboratories demonstrated the feasibility and power of measurements using polarization degrees of freedom to probe the spatial structure of the nucleon. A program of polarization measurements at Jefferson Lab led to a renaissance in the field of study, and significant new insight into the structure of matter.
The Form Factors of the Nucleons
Energy Technology Data Exchange (ETDEWEB)
Perdrisat, Charles F. [William and Mary College, JLAB
2013-11-01
There has been much activity in the measurement of the elastic electromagnetic proton and neutron form factors in the last decade, and the quality of the data has been greatly improved by performing double-polarization experiments, in comparison with with pre-vious unpolarized cross section data. Here we will review the experimental data base in view of the new results for the proton and the neutron, obtained at MIT-Bates, JLab and MAMI. The rapid evolution of phenomenological models triggered by these high- precision experiments will be discussed. In particular, the possibility that the proton is non-spherical in its ground state, and that the transverse charge density are model in- dependently defined in the infinite momentum frame. Likewise, flavor decomposition of the nucleon form factors into dressed u and d quark form factors, may give information about the quark-diquark structure of the nucleon. The current proton radius "crisis" will also be discussed.
The form factors of the nucleons
Perdrisat, C. F.
2013-11-01
There has been much activity in the measurement of the elastic electromagnetic proton and neutron form factors in the last decade, and the quality of the data has been greatly improved by performing double-polarization experiments, in comparison with with previous unpolarized cross section data. Here we will review the experimental data base in view of the new results for the proton and the neutron, obtained at MIT-Bates, JLab and MAMI. The rapid evolution of phenomenological models triggered by these high-precision experiments will be discussed. In particular, the possibility that the proton is non-spherical in its ground state, and that the transverse charge density are model independently defined in the infinite momentum frame. Likewise, flavor decomposition of the nucleon form factors into dressed u and d quark form factors, may give information about the quark-diquark structure of the nucleon. The current proton radius "crisis" will also be discussed.
Elastic breakup cross sections of well-bound nucleons
Wimmer, K; Gade, A; Tostevin, J A; Baugher, T; Chajecki, Z; Coupland, D; Famiano, M A; Ghosh, T K; Howard, G F Grinyer M E; Kilburn, M; Lynch, W G; Manning, B; Meierbachtol, K; Quarterman, P; Ratkiewicz, A; Sanetullaev, A; Showalter, R H; Stroberg, S R; Tsang, M B; Weisshaar, D; Winkelbauer, J; Winkler, R; Youngs, M
2014-01-01
The 9Be(28Mg,27Na) one-proton removal reaction with a large proton separation energy of Sp(28Mg)=16.79 MeV is studied at intermediate beam energy. Coincidences of the bound 27Na residues with protons and other light charged particles are measured. These data are analyzed to determine the percentage contributions to the proton removal cross section from the elastic and inelastic nucleon removal mechanisms. These deduced contributions are compared with the eikonal reaction model predictions and with the previously measured data for reactions involving the re- moval of more weakly-bound protons from lighter nuclei. The role of transitions of the proton between different bound single-particle configurations upon the elastic breakup cross section is also quantified in this well-bound case. The measured and calculated elastic breakup fractions are found to be in good agreement.
Nucleon electromagnetic form factors with Wilson fermions
Energy Technology Data Exchange (ETDEWEB)
Goeckeler, M. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Haegler, P. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Theoretische Physik; Horsley, R. [Edinburgh Univ. (GB). School of Physics] (and others)
2007-10-15
The nucleon electromagnetic form factors continue to be of major interest for experimentalists and phenomenologists alike. They provide important insights into the structure of nuclear matter. For a range of interesting momenta they can be calculated on the lattice. The limiting factor continues to be the value of the pion mass. We present the latest results of the QCDSF collaboration using gauge configurations with two dynamical, non-perturbatively improved Wilson fermions at pion masses as low as 350 MeV. (orig.)
Isospin violation in the vector form factors of the nucleon
Kubis, B; Kubis, Bastian; Lewis, Randy
2006-01-01
A quantitative understanding of isospin violation is an increasingly important ingredient for the extraction of the nucleon's strange vector form factors from experimental data. We calculate the isospin violating electric and magnetic form factors in chiral perturbation theory to leading and next-to-leading order respectively, and we extract the low-energy constants from resonance saturation. Uncertainties are dominated largely by limitations in the current knowledge of some vector meson couplings. The resulting bounds on isospin violation are sufficiently precise to be of value to on-going experimental studies of the strange form factors.
Three-nucleon bound states using realistic potential models
Nogga, A.; Kievsky, A.; Kamada, H.; Glöckle, W.; Marcucci, L. E.; Rosati, S.; Viviani, M.
2003-03-01
The bound states of 3H and 3He have been calculated by using the Argonne v18 plus the Urbana IX three-nucleon potential. The isospin T=3/2 state have been included in the calculations as well as the n-p mass difference. The 3H-3He mass difference has been evaluated through the charge-dependent terms explicitly included in the two-body potential. The calculations have been performed using two different methods: the solution of the Faddeev equations in momentum space and the expansion on the correlated hyperspherical harmonic basis. The results are in agreement within 0.1% and can be used as benchmark tests. Results for the charge-dependent Bonn interaction in conjunction with the Tucson-Melbourne three-nucleon force are also presented. It is shown that the 3H and 3He binding energy difference can be predicted model independently.
Understanding the nucleon as a Borromean bound-state
Directory of Open Access Journals (Sweden)
Jorge Segovia
2015-11-01
Full Text Available Analyses of the three valence-quark bound-state problem in relativistic quantum field theory predict that the nucleon may be understood primarily as a Borromean bound-state, in which binding arises mainly from two separate effects. One originates in non-Abelian facets of QCD that are expressed in the strong running coupling and generate confined but strongly-correlated colour-antitriplet diquark clusters in both the scalar–isoscalar and pseudovector–isotriplet channels. That attraction is magnified by quark exchange associated with diquark breakup and reformation. Diquark clustering is driven by the same mechanism which dynamically breaks chiral symmetry in the Standard Model. It has numerous observable consequences, the complete elucidation of which requires a framework that also simultaneously expresses the running of the coupling and masses in the strong interaction. Planned experiments are capable of validating this picture.
Chiral extrapolation of nucleon magnetic form factors
Energy Technology Data Exchange (ETDEWEB)
P. Wang; D. Leinweber; A. W. Thomas; R.Young
2007-04-01
The extrapolation of nucleon magnetic form factors calculated within lattice QCD is investigated within a framework based upon heavy baryon chiral effective-field theory. All one-loop graphs are considered at arbitrary momentum transfer and all octet and decuplet baryons are included in the intermediate states. Finite range regularization is applied to improve the convergence in the quark-mass expansion. At each value of the momentum transfer (Q{sup 2}), a separate extrapolation to the physical pion mass is carried out as a function of m{sub {pi}} alone. Because of the large values of Q{sup 2} involved, the role of the pion form factor in the standard pion-loop integrals is also investigated. The resulting values of the form factors at the physical pion mass are compared with experimental data as a function of Q{sup 2} and demonstrate the utility and accuracy of the chiral extrapolation methods presented herein.
Gravitational form factors and nucleon spin structure
Teryaev, O. V.
2016-10-01
Nucleon scattering by the classical gravitational field is described by the gravitational (energy-momentum tensor) form factors (GFFs), which also control the partition of nucleon spin between the total angular momenta of quarks and gluons. The equivalence principle (EP) for spin dynamics results in the identically zero anomalous gravitomagnetic moment, which is the straightforward analog of its electromagnetic counterpart. The extended EP (ExEP) describes its (approximate) validity separately for quarks and gluons and, in turn, results in equal partition of the momentum and total angular momentum. It is violated in quantum electrodynamics and perturbative quantum chromodynamics (QCD), but may be restored in nonperturbative QCD because of confinement and spontaneous chiral symmetry breaking, which is supported by models and lattice QCD calculations. It may, in principle, be checked by extracting the generalized parton distributions from hard exclusive processes. The EP for spin-1 hadrons is also manifested in inclusive processes (deep inelastic scattering and the Drell-Yan process) in sum rules for tensor structure functions and parton distributions. The ExEP may originate in either gravity-proof confinement or in the closeness of the GFF to its asymptotic values in relation to the mediocrity principle. The GFFs in time-like regions reveal some similarity between inflation and annihilation.
The three-nucleon bound state using realistic potential models
Nogga, A; Kamada, H; Glöckle, W; Marcucci, L E; Rosati, S; Viviani, M
2003-01-01
The bound states of $^3$H and $^3$He have been calculated using the Argonne $v_{18}$ plus the Urbana three-nucleon potential. The isospin $T=3/2$ state have been included in the calculations as well as the $n$-$p$ mass difference. The $^3$H-$^3$He mass difference has been evaluated through the charge dependent terms explicitly included in the two-body potential. The calculations have been performed using two different methods: the solution of the Faddeev equations in momentum space and the expansion on the correlated hyperspherical harmonic basis. The results are in agreement within 0.1% and can be used as benchmark tests. Results for the CD-Bonn interaction are also presented. It is shown that the $^3$H and $^3$He binding energy difference can be predicted model independently.
The structure of the nucleon: Elastic electromagnetic form factors
Energy Technology Data Exchange (ETDEWEB)
Punjabi, V. [Norfolk State University, Norfolk, VA (United States); Perdrisat, C.F.; Carlson, C.E. [The College of William and Mary, Williamsburg, VA (United States); Jones, M.K. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Brash, E.J. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Christopher Newport University, Newport News, VA (United States)
2015-07-15
Precise proton and neutron form factor measurements at Jefferson Lab, using spin observables, have recently made a significant contribution to the unraveling of the internal structure of the nucleon. Accurate experimental measurements of the nucleon form factors are a test-bed for understanding how the nucleon's static properties and dynamical behavior emerge from QCD, the theory of the strong interactions between quarks. There has been enormous theoretical progress, since the publication of the Jefferson Lab proton form factor ratio data, aiming at reevaluating the picture of the nucleon. We will review the experimental and theoretical developments in this field and discuss the outlook for the future. (orig.)
Isospin mixing in the nucleon and 4He and the nucleon strange electric form factor
Viviani, M; Kievsky, A; Kubis, B; Lewis, R; Marcucci, L E; Rosati, S; Schiavilla, R
2007-01-01
In order to isolate the contribution of the nucleon strange electric form factor to the parity-violating asymmetry measured in 4He(\\vec e,e')4He experiments, it is crucial to have a reliable estimate of the magnitude of isospin-symmetry-breaking (ISB) corrections in both the nucleon and 4He. We examine this issue in the present letter. Isospin admixtures in the nucleon are determined in chiral perturbation theory, while those in 4He are derived from nuclear interactions, including explicit ISB terms. A careful analysis of the model dependence in the resulting predictions for the nucleon and nuclear ISB contributions to the asymmetry is carried out. We conclude that, at the low momentum transfers of interest in recent measurements reported by the HAPPEX collaboration at Jefferson Lab, these contributions are of comparable magnitude to those associated with strangeness components in the nucleon electric form factor.
Nucleon form factors program with SBS at JLAB
Energy Technology Data Exchange (ETDEWEB)
Wojtsekhowski, Bogdan B. [JLAB
2014-12-01
The physics of the nucleon form factors is the basic part of the Jefferson Laboratory program. We review the achievements of the 6-GeV era and the program with the 12- GeV beam with the SBS spectrometer in Hall A, with a focus on the nucleon ground state properties.
Progress in the Calculation of Nucleon Transition form Factors
Eichmann, Gernot
2016-10-01
We give a brief account of the Dyson-Schwinger and Faddeev-equation approach and its application to nucleon resonances and their transition form factors. We compare the three-body with the quark-diquark approach and present a quark-diquark calculation for the low-lying nucleon resonances including scalar, axialvector, pseudoscalar and vector diquarks. We also discuss the timelike structure of transition form factors and highlight the advantages of form factors over helicity amplitudes.
Progress in the calculation of nucleon transition form factors
Eichmann, Gernot
2016-01-01
We give a brief account of the Dyson-Schwinger and Faddeev-equation approach and its application to nucleon resonances and their transition form factors. We compare the three-body with the quark-diquark approach and present a quark-diquark calculation for the low-lying nucleon resonances including scalar, axialvector, pseudoscalar and vector diquarks. We also discuss the timelike structure of transition form factors and highlight the advantages of form factors over helicity amplitudes.
A Diquark-Quark Model with Its Use in Nucleon Form Factors
Institute of Scientific and Technical Information of China (English)
WANG Hong-Min; ZHANG Ben-Ai
2005-01-01
The nucleon electromagnetic form factors are investigated within a simple diquark-quark model using the light-front formalism. In this model, baryon is described as a bound state of one quark and one clustering diquark.The calculational results are compared with the experimental ones. We also regard the quarks in a baryon as pointlike constituent quarks.
Skyrme-Model $\\pi NN$ Form Factor and Nucleon-Nucleon Interaction
Holzwarth, G
1997-01-01
We apply the strong $\\pi NN$ form factor, which emerges from the Skyrme model, in the two-nucleon system using a one-boson-exchange (OBE) model for the nucleon-nucleon (NN) interaction. Deuteron properties and phase parameters of NN scattering are reproduced well. In contrast to the form factor of monopole shape that is traditionally used in OBE models, the Skyrme form factor leaves low momentum transfers essentially unaffected while it suppresses the high-momentum region strongly. It turns out that this behavior is very appropriate for models of the NN interaction and makes possible to use a soft pion form factor in the NN system. As a consequence, the $\\pi N$ and the $NN$ systems can be described using the same soft $\\pi NN$ form factor, which is impossible with the monopole.
Low energy analysis of the nucleon electromagnetic form factors
Kubis, B; Kubis, Bastian; Meissner, Ulf-G.
2001-01-01
We analyze the electromagnetic form factors of the nucleon to fourth order in relativistic baryon chiral perturbation theory. We employ the recently proposed infrared regularization scheme and show that the convergence of the chiral expansion is improved as compared to the heavy fermion approach. We also discuss the inclusion of vector mesons and obtain an accurate description of all four nucleon form factors for momentum transfer squared up to Q^2 \\simeq 0.4 GeV^2.
Nucleon electromagnetic form factors using lattice simulations at the physical point
Alexandrou, C.; Constantinou, M.; Hadjiyiannakou, K.; Jansen, K.; Kallidonis, Ch.; Koutsou, G.; Vaquero Aviles-Casco, A.
2017-08-01
We present results for the nucleon electromagnetic form factors using an ensemble of maximally twisted mass clover-improved fermions with pion mass of about 130 MeV. We use multiple sink-source separations and three analysis methods to probe ground-state dominance. We evaluate both the connected and disconnected contributions to the nucleon matrix elements. We find that the disconnected quark loop contributions to the isoscalar matrix elements are small, giving an upper bound of up to 2% of the connected and smaller than its statistical error. We present results for the isovector and isoscalar electric and magnetic Sachs form factors and the corresponding proton and neutron form factors. By fitting the momentum dependence of the form factors to a dipole form or to the z expansion, we extract the nucleon electric and magnetic radii, as well as the magnetic moment. We compare our results to experiment as well as to other recent lattice QCD calculations.
Dispersive analysis of the scalar form factor of the nucleon
Hoferichter, M; Kubis, B; Meißner, U -G
2012-01-01
Based on the recently proposed Roy-Steiner equations for pion-nucleon scattering, we derive a system of coupled integral equations for the pi pi --> N-bar N and K-bar K --> N-bar N S-waves. These equations take the form of a two-channel Muskhelishvili-Omnes problem, whose solution in the presence of a finite matching point is discussed. We use these results to update the dispersive analysis of the scalar form factor of the nucleon fully including K-bar K intermediate states. In particular, we determine the correction Delta_sigma=sigma(2M_pi^2)-sigma_{pi N}, which is needed for the extraction of the pion-nucleon sigma term from pi N scattering, as a function of pion-nucleon subthreshold parameters and the pi N coupling constant.
de Teramond, Guy F
2016-01-01
The superconformal algebraic approach to hadronic physics is used to construct a semiclassical effective theory for nucleons which incorporates essential nonperturbative dynamical features, such as the emergence of a confining scale and the Regge resonance spectrum. Relativistic bound-state equations for nucleons follow from the extension of superconformal quantum mechanics to the light front and its holographic embedding in a higher dimensional gravity theory. Superconformal algebra has been used elsewhere to describe the connections between the light mesons and baryons, but in the present context it relates the fermion positive and negative chirality states and uniquely determines the confinement potential of nucleons. The holographic mapping of multi-quark bound states also leads to a light-front cluster decomposition of form factors for an arbitrary number of constituents. The remarkable analytical structure which follows incorporates the correct scaling behavior at high photon virtualities and also vecto...
de Téramond, Guy F.
2016-10-01
The superconformal algebraic approach to hadronic physics is used to construct a semiclassical effective theory for nucleons which incorporates essential nonperturbative dynamical features, such as the emergence of a confining scale and the Regge resonance spectrum. Relativistic bound-state equations for nucleons follow from the extension of superconformal quantum mechanics to the light front and its holographic embedding in a higher dimensional gravity theory. Superconformal algebra has been used elsewhere to describe the connections between the light mesons and baryons, but in the present context it relates the fermion positive and negative chirality states and uniquely determines the confinement potential of nucleons. The holographic mapping of multi-quark bound states also leads to a light-front cluster decomposition of form factors for an arbitrary number of constituents. The remarkable analytical structure which follows incorporates the correct scaling behavior at high photon virtualities and also vector dominance at low energies.
Nucleon Form Factors in the Space- and Timelike Regions
Hammer, H W
2001-01-01
Dispersion relations provide a powerful tool to describe the electromagnetic form factors of the nucleon both in the spacelike and timelike regions with constraints from unitarity and perturbative QCD. We give a brief introduction into dispersion theory for nucleon form factors and present results from a recent form factor analysis. Particular emphasis is given to the form factors in the timelike region. Furthermore, some recent results for the spacelike form factors at low momentum transfer from a ChPT calculation by Kubis and Meissner are discussed.
Okołowicz, J.; Lam, Y. H.; Płoszajczak, M.; Macchiavelli, A. O.; Smirnova, N. A.
2016-06-01
There is a considerable interest in understanding the dependence of one-nucleon removal cross sections on the asymmetry of the neutron Sn and proton Sp separation energies, following a large amount of experimental data and theoretical analyses in a framework of sudden and eikonal approximations of the reaction dynamics. These theoretical calculations involve both the single-particle cross section and the shell-model description of the projectile initial state and final states of the reaction residues. The configuration mixing in shell-model description of nuclear states depends on the proximity of one-nucleon decay threshold but does it depend sensitively on Sn -Sp? To answer this question, we use the shell model embedded in the continuum to investigate the dependence of one-nucleon spectroscopic factors on the asymmetry of Sn and Sp for mirror nuclei 24Si, 24Ne and 28S, 28Mg and for a series of neon isotopes (20 ≤ A ≤ 28).
Dispersion-theoretical analysis of the nucleon electromagnetic form factors
Energy Technology Data Exchange (ETDEWEB)
Belushkin, M.
2007-09-29
The structure of the proton and the neutron is of fundamental importance for the study of the strong interaction dynamics over a wide range of momentum transfers. The nucleon form factors encode information on the internal structure of the nucleon as probed by the electromagnetic interaction, and, to a certain extent, reflect the charge and magnetisation distributions within the proton and the neutron. In this thesis we report on our investigation of the electromagnetic form factors of the proton and the neutron with dispersion relation techniques, including known experimental input on the {pi}{pi}, K anti K and the {rho}{pi} continua and perturbative QCD constraints. We include new experimental data on the pion form factor and the nucleon form factors in our simultaneous analysis of all four form factors in both the space- and the timelike regions for all momentum transfers, and perform Monte- Carlo sampling in order to obtain theoretical uncertainty bands. Finally, we discuss the implications of our results on the pion cloud of the nucleon, the nucleon radii and the Okubo-Zweig-Iizuka rule, and present our results of a model-independent approach to estimating two-photon effects in elastic electron-proton scattering. (orig.)
Dispersion-theoretical analysis of the nucleon electromagnetic form factors
Energy Technology Data Exchange (ETDEWEB)
Belushkin, M.
2007-09-29
The structure of the proton and the neutron is of fundamental importance for the study of the strong interaction dynamics over a wide range of momentum transfers. The nucleon form factors encode information on the internal structure of the nucleon as probed by the electromagnetic interaction, and, to a certain extent, reflect the charge and magnetisation distributions within the proton and the neutron. In this thesis we report on our investigation of the electromagnetic form factors of the proton and the neutron with dispersion relation techniques, including known experimental input on the {pi}{pi}, K anti K and the {rho}{pi} continua and perturbative QCD constraints. We include new experimental data on the pion form factor and the nucleon form factors in our simultaneous analysis of all four form factors in both the space- and the timelike regions for all momentum transfers, and perform Monte- Carlo sampling in order to obtain theoretical uncertainty bands. Finally, we discuss the implications of our results on the pion cloud of the nucleon, the nucleon radii and the Okubo-Zweig-Iizuka rule, and present our results of a model-independent approach to estimating two-photon effects in elastic electron-proton scattering. (orig.)
Form factors in an algebraic model of the nucleon
Bijker, R
1995-01-01
We study the electromagnetic form factors of the nucleon in a collective model of baryons. In an algebraic approach to hadron structure, we derive closed expressions for both elastic and transition form factors, and consequently for the helicity amplitudes that can be measured in electro- and photoproduction.
Nucleon form factors and O(a) Improvement
Capitani, S; Horsley, R; Klaus, B; Oelrich, H; Perlt, H; Petters, D; Pleiter, D; Rakow, P E L; Schierholz, G; Schiller, A; Stephenson, P W
1999-01-01
Nucleon form factors have been extensively studied both experimentally and theoretically for many years. We report here on new results of a high statistics quenched lattice QCD calculation of vector and axial-vector nucleon form factors at low momentum transfer within the Symanzik improvement programme. The simulations are performed at three kappa and three beta values allowing first an extrapolation to the chiral limit and then an extrapolation in the lattice spacing to the continuum limit. The computations are all fully non-perturbative. A comparison with experimental results is made.
Excited state systematics in extracting nucleon electromagnetic form factors
Capitani, Stefano; von Hippel, Georg; Jäger, Benjamin; Knippschild, Bastian; Meyer, Harvey B; Rae, Thomas D; Wittig, Hartmut
2012-01-01
We present updated preliminary results for the nucleon electromagnetic form factors for non-perturbatively $\\mathcal{O}(a)$ improved Wilson fermions in $N_f=2$ QCD measured on the CLS ensembles. The use of the summed operator insertion method allows us to suppress the influence of excited states in our measurements. A study of the effect that excited state contaminations have on the $Q^2$ dependence of the extracted nucleon form factors may then be made through comparisons of the summation method to standard plateau fits, as well as to excited state fits.
Okołowicz, J; Płoszajczak, M; Macchiavelli, A O; Smirnova, N A
2015-01-01
There is a considerable interest in understanding the dependence of one-nucleon removal cross sections on the asymmetry of the neutron $S_n$ and proton $S_p$ separation energies, following a large amount of experimental data and theoretical analyses in a framework of sudden and eikonal approximations of the reaction dynamics. These theoretical calculations involve both the single-particle cross section and the shell-model description of the projectile initial state and final states of the reaction residues. The configuration mixing in shell-model description of nuclear states depends on the proximity of one-nucleon decay threshold but does it depend sensitively on $S_n - S_p$? To answer this question, we use the shell model embedded in the continuum to investigate the dependence of one-nucleon spectroscopic factors on the asymmetry of $S_n$ and $S_p$ for mirror nuclei $^{24}$Si, $^{24}$Ne and $^{28}$S, $^{28}$Mg and for a series of neon isotopes ($20 \\leq A \\leq 28$).
Quasielastic Scattering from Relativistic Bound Nucleons: Transverse-Longitudinal Response
Energy Technology Data Exchange (ETDEWEB)
Udias, J. M. [Instituto de Estructura de la Materia, CSIC Serrano 123, E-28006 Madrid, (Spain); Departamento de Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid, E-28040 Madrid, (Spain); Caballero, J. A. [Instituto de Estructura de la Materia, CSIC Serrano 123, E-28006 Madrid, (Spain); Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Sevilla, E-41080 Sevilla, (Spain); Moya de Guerra, E. [Instituto de Estructura de la Materia, CSIC Serrano 123, E-28006 Madrid, (Spain); Amaro, J. E. [Departamento de Fisica Moderna, Universidad de Granada, E-18071 Granada, (Spain); Donnelly, T. W. [Center for Theoretical Physics, Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)
1999-12-27
Predictions for electron induced proton knockout from p{sub 1/2} and p{sub 3/2} shells in {sup 16}O are presented using various approximations for the relativistic nucleonic current. Results for differential cross section, transverse-longitudinal response (R{sub TL} ), and left-right asymmetry A{sub TL} are compared at |Q{sup 2}|=0.8(GeV/c){sup 2} . We show that there are important dynamical and kinematical relativistic effects which can be tested by experiment. (c) 1999 The American Physical Society.
Quaiselastic scattering from relativistic bound nucleons Transverse-Longitudinal response
Udias, J M; De Guerra, E M; Amaro, J E; Donnelly, T W
1999-01-01
Predictions for electron induced proton knockout from the $p_{1/2}$ and $p_{3/2}$ shells in $^{16}$O are presented using various approximations for the relativistic nucleonic current. Results for the differential cross section, transverse-longitudinal response ($R_{TL}$) and left-right asymmetry $A_{TL}$ are compared at $|Q^2|=0.8$ (GeV/c)$^2$ corresponding to TJNAF experiment 89-003. We show that there are important dynamical and kinematical relativistic effects which can be tested by experiment.
Preliminary Results on the Experimental Investigation of the Structure Functions of Bound Nucleons
Energy Technology Data Exchange (ETDEWEB)
Bodek, Arie [Univ. of Rochester, NY (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-08-01
We present preliminary results on an experimental study of the nuclear modification of the longitudinal ($\\sigma_L$) and transverse ($\\sigma_T$) structure functions of nucleons bound in nuclear targets. The origin of these modifications (commonly referred as as the EMC effect) is not fully understood. Our measurements of R= $\\sigma_L / \\sigma_T$ for nuclei ($R_A$) and for deuterium ($R_D$) indicate that nuclear modifications of the structure functions of bound nucleons are different for the longitudinal and transverse structure functions, and that contrary to expectation from several theoretical models, $R_A< R_D$.
Preliminary Results on the Experimental Investigation of the Structure Functions of Bound Nucleons
Bodek, A
2015-01-01
We present preliminary results on an experimental study of the nuclear modification of the longitudinal ($\\sigma_L$) and transverse ($\\sigma_T$) structure functions of nucleons bound in nuclear targets. The origin of these modifications (commonly referred as as the EMC effect) is not fully understood. Our measurements of R= $\\sigma_L / \\sigma_T$ for nuclei ($R_A$) and for deuterium ($R_D$) indicate that nuclear modifications of the structure functions of bound nucleons are different for the longitudinal and transverse structure functions, and that contrary to expectation from several theoretical models, $R_A< R_D$.
Nucleon electromagnetic form factors in twisted mass lattice QCD
Alexandrou, C; Carbonell, J; Constantinou, M; Harraud, P A; Guichon, P; Jansen, K; Korzec, T; Papinutto, M
2011-01-01
We present results on the nucleon electromagnetic form factors within lattice QCD using two flavors of degenerate twisted mass fermions. Volume effects are examined using simulations at two volumes of spatial length L=2.1 fm and L=2.8 fm. Cut-off effects are investigated using three different values of the lattice spacings, namely a=0.089 fm, a=0.070 and a=0.056 fm. The nucleon magnetic moment, Dirac and Pauli radii are obtained in the continuum limit and chirally extrapolated to the physical pion mass allowing for a comparison with experiment.
Nucleon form factors with Nf=2 dynamical twisted mass fermions
Alexandrou, C; Koutsou, G; Baron, R; Guichon, P; Brinet, M; Carbonell, J; Harraud, P -A; Jansen, K
2009-01-01
We present results on the electromagnetic and axial nucleon form factors using two degenerate flavors of twisted mass fermions on lattices of spatial size 2.1 fm and 2.7 fm and a lattice spacing of about 0.09 fm. We consider pion masses in the range of 260-470 MeV. We chirally extrapolate results on the nucleon axial ch arge, the isovector Dirac and Pauli root mean squared radii and magnetic moment to the physical point and co mpare to experiment.
Nucleon form factors with dynamical twisted mass fermions
Alexandrou, C; Brinet, M; Carbonell, J; Drach, V; Harraud, P A; Korzec, T; Koutsou, G
2008-01-01
The electromagnetic and axial form factors of the nucleon are evaluated in twisted mass QCD with two degenerate flavors of light, dynamical quarks. The axial charge g_A, magnetic moment and the Dirac and Pauli radii are determined for pion masses in the range 300 MeV to 500 MeV.
Electromagnetic Transition form Factor of Nucleon Resonances
Sato, Toru
2016-10-01
A dynamical coupled channel model for electron and neutrino induced meson production reactions is developed. The model is an extension of our previous reaction model to describe reactions at finite Q^2. The electromagnetic transition form factors of the first (3/2^+,3/2) and (3/2^-,1/2) resonances extracted from partial wave amplitude are discussed.
Survey of nucleon electromagnetic form factors
Energy Technology Data Exchange (ETDEWEB)
Perdrisat, Charles F. [William and Mary College; Punjabi, Vina A. [Norfolk State U.
2011-09-20
There has been much activity in the measurement of the elastic electromagnetic proton and neutron form factors in the last decade, and the quality of the data has been greatly improved by performing double polarization experiments, in compar- ison with previous unpolarized data. Here we review the experimental data base in view of the new results for the proton, and neutron, obtained at MIT-Bates, MAMI, and JLab. The rapid evolution of phenomenological models triggered by these high-precision experiments will be discussed.
Electromagnetic form factors in a collective model of the nucleon
Bijker, R; Leviatan, A
1995-01-01
We study the electromagnetic form factors of the nucleon in a collective model of baryons. Using the algebraic approach to hadron structure, we derive closed expressions for both elastic and transition form factors, and consequently for the helicity amplitudes that can be measured in electro- and photoproduction. Effects of spin-flavor symmetry breaking and of swelling of hadrons with increasing excitation energy are considered.
Electromagnetic form factors in a collective model of the nucleon
Energy Technology Data Exchange (ETDEWEB)
Bijker, R.; Iachello, F.; Leviatan, A. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-543, 04510 (Mexico)]|[Distrito Federale (Mexico)]|[Center for Theoretical Physics, Sloane Laboratory, Yale University, New Haven, Connecticut 06520-8120 (United States)]|[Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel)
1996-10-01
We study the electromagnetic form factors of the nucleon in a collective model of baryons. Using the algebraic approach to hadron structure, we derive closed expressions for both elastic and transition form factors, and consequently for the helicity amplitudes that can be measured in electro- and photoproduction. Effects of spin-flavor symmetry breaking and of swelling of hadrons with increasing excitation energy are considered. {copyright} {ital 1996 The American Physical Society.}
Form factors and other measures of strangeness in the nucleon
Energy Technology Data Exchange (ETDEWEB)
Diehl, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Feldmann, T. [Siegen Univ. (Germany). Theoretische Physik I; Kroll, P. [Bergische Univ., Wuppertal (Germany). Fachbereich Physik
2007-11-15
We discuss the phenomenology of strange-quark dynamics in the nucleon, based on experimental and theoretical results for electroweak form factors and for parton densities. In particular, we construct a model for the generalized parton distribution that relates the asymmetry s(x)- anti s(x) between the longitudinal momentum distributions of strange quarks and antiquarks with the form factor F{sup s}{sub 1}(t), which describes the distribution of strangeness in transverse position space. (orig.)
Nucleon form factors, generalized parton distributions and quark angular momentum
Energy Technology Data Exchange (ETDEWEB)
Diehl, Markus [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kroll, Peter [Bergische Univ., Wuppertal (Germany). Fachbereich Physik; Regensburg Univ. (Germany). Institut fuer Theoretische Physik
2013-02-15
We extract the individual contributions from u and d quarks to the Dirac and Pauli form factors of the proton, after a critical examination of the available measurements of electromagnetic nucleon form factors. From this data we determine generalized parton distributions for valence quarks, assuming a particular form for their functional dependence. The result allows us to study various aspects of nucleon structure in the valence region. In particular, we evaluate Ji's sum rule and estimate the total angular momentum carried by valence quarks at the scale {mu}=2 GeV to be J{sup u}{sub v}=0.230{sup +0.009}{sub -0.024} and J{sup d}{sub v}=-0.004{sup +0.010}{sub -0.016}.
Three-Nucleon Bound States and the Wigner-SU(4) Limit
Vanasse, Jared; Phillips, Daniel R.
2017-03-01
We examine the extent to which the properties of three-nucleon bound states are well-reproduced in the limit that nuclear forces satisfy Wigner's SU(4) (spin-isospin) symmetry. To do this we compute the charge radii up to next-to-leading order (NLO) in an effective field theory that is an expansion in powers of R/ a, with R the range of the nuclear force and a the nucleon-nucleon (N N) scattering lengths. In the Wigner-SU(4) limit, the triton and helium-3 point charge radii are equal. At NLO in the range expansion both are 1.66 fm. Adding the first-order corrections due to the breaking of Wigner symmetry in the N N scattering lengths gives a ^3{H} point charge radius of 1.58 fm, which is remarkably close to the experimental number, 1.5978± 0.040 fm (Angeli and Marinova in At Data Nucl Data Tables 99:69-95, 2013). For the ^3{He} point charge radius we find 1.70 fm, about 4% away from the experimental value of 1.77527± 0.0054 fm (Angeli and Marinova 2013). We also examine the Faddeev components that enter the tri-nucleon wave function and find that an expansion of them in powers of the symmetry-breaking parameter converges rapidly. Wigner's SU(4) symmetry is thus a useful starting point for understanding tri-nucleon bound-state properties.
Possible diquark signatures in the elastic nucleon form factors
Cates, Gordon
2013-10-01
There has been considerable interest in the elastic nucleon form factors ever since the discovery that the proton form-factor ratio, GEp /GMp , decreases nearly linearly above roughly Q2 = 1 GeV2 . More recent measurements of the neutron form-factor ratio, GEn /GMn , up to 3 . 4 GeV2 have made it possible to constrain calculations using both proton and neutron data in the Q2 regime where the interesting behavior of the proton was first observed. Calculations based on QCD's Dyson-Schwinger equations, as well as certain relativistic constituent quark models, suggest that the observed behavior is related to the importance of diquark degrees of freedom. To understand this connection, it is particularly useful to consider the flavor-separated form factors, which can be extracted by combining proton and neutron data, and assuming charge symmetry. Distinctly different behavior is seen for the u - and d - quarks. The behaviors of the different quark flavors and the connection to diquarks can also be understood using naive scaling arguments, although this approach has yet to be made more rigorous. This talk will discuss how measurements of the nucleon form factors at high Q2 provides a rich opportunity to better understand the structure of the nucleon.
Flavor Analysis of Nucleon, Δ , and Hyperon Electromagnetic Form Factors
Rohrmoser, Martin; Choi, Ki-Seok; Plessas, Willibald
2017-03-01
By the analysis of the world data base of elastic electron scattering on the proton and the neutron (for the latter, in fact, on ^2H and ^3He) important experimental insights have recently been gained into the flavor compositions of nucleon electromagnetic form factors. We report on testing the Graz Goldstone-boson-exchange relativistic constituent-quark model in comparison to the flavor contents in low-energy nucleons, as revealed from electron-scattering phenomenology. It is found that a satisfactory agreement is achieved between theory and experiment for momentum transfers up to Q^2˜ 4 GeV^2, relying on three-quark configurations only. Analogous studies have been extended to the Δ and the hyperon electromagnetic form factors. For them we here show only some sample results in comparison to data from lattice quantum chromodynamics.
Nucleon form factors in the canonically quantized Skyrme model
Energy Technology Data Exchange (ETDEWEB)
Acus, A.; Norvaisas, E. [Lithuanian Academy of Sciences, Vilnius (Lithuania). Inst. of Theoretical Physics and Astronomy; Riska, D.O. [Helsinki Univ. (Finland). Dept. of Physics; Helsinki Univ. (Finland). Helsinki Inst. of Physics
2001-08-01
The explicit expressions for the electric, magnetic, axial and induced pseudoscalar form factors of the nucleons are derived in the ab initio quantized Skyrme model. The canonical quantization procedure ensures the existence of stable soliton solutions with good quantum numbers. The form factors are derived for representations of arbitrary dimension of the SU(2) group. After fixing the two parameters of the model, f{sub {pi}} and e, by the empirical mass and electric mean square radius of the proton, the calculated electric and magnetic form factors are fairly close to the empirical ones, whereas the the axial and induced pseudoscalar form factors fall off too slowly with momentum transfer. (orig.)
Nucleon form factors in the canonically quantized Skyrme model
Acus, A; Riska, D O
2001-01-01
The explicit expressions for the electric, magnetic, axial and induced pseudoscalar form factors of the nucleons are derived in the {\\it ab initio} quantized Skyrme model. The canonical quantization procedure ensures the existence of stable soliton solutions with good quantum numbers. The form factors are derived for representations of arbitrary dimension of the SU(2) group. After fixing the two parameters of the model, $f_\\pi$ and $e$, by the empirical mass and electric mean square radius of the proton, the calculated electric and magnetic form factors are fairly close to the empirical ones, whereas the the axial and induced pseudoscalar form factors fall off too slowly with momentum transfer.
Dispersion Relation for the Nucleon Electromagnetic Form Factors
Furuichi, Susumu; Watanbe, Keiji
2010-01-01
Elastic electromagnetic form factors of nucleons are investigated both for the time-like and the space-like momentums by using the unsubtracted dispersion relation with QCD constraints. It is shown that the calculated form factors reproduce the experimental data reasonably well; they agree with recent experimental data for the neutron magnetic form factors for the space-like data obtained by the CLAS collaboration and are compatible with the ratio of the electric and magnetic form factors for the time-like momentum obtained by the BABAR collaboration.
Axial form factor of the nucleon at large momentum transfers
Anikin, I V; Offen, N
2016-01-01
Motivated by the emerging possibilities to study threshold pion electroproduction at large momentum transfers at Jefferson Laboratory following the 12 GeV upgrade, we provide a short theory summary and an estimate of the nucleon axial form factor for large virtualities in the $Q^2 = 1-10~\\text{GeV}^2$ range using next-to-leading order light-cone sum rules.
Quasi-free $\\pi^0$ Photoproduction from the Bound Nucleon
Kossert, K; Wissmann, F; Ahrens, J; Annand, J R M; Arends, H J; Beck, R; Caselotti, G; Grabmayr, P; Jahn, O; Jennewein, P; Levchuk, M I; Lvov, A I; McGeorge, J C; Natter, A; Olmos de Léon, V; Petrunkin, V A; Rosner, G; Schumacher, M; Seitz, B; Smend, F; Thomas, A; Weihofen, W; Zapadtka, F
2004-01-01
Differential cross-sections for quasi-free $\\pi^0$ photoproduction from the proton and neutron bound in the deuteron have been measured for $E_\\gamma= 200 - 400$ MeV at $\\theta^{\\rm lab}_\\gamma = 136.2^\\circ$ usind the Glasgow photon tagger at MAMI, the Mainz 48 cm $\\varnothing$ $\\times$ 64 cm NaI(Tl) photon detector and the G\\"ottingen SENECA recoil detector. For the proton measurements made with both liquid deuterium and liquid hydrogen targets allow direct comparison of "free" $\\pi^0$ photoproduction cross-sections as extracted from the bound proton data with experimental free cross sections which are found to be in reasonable agreement below 320 MeV. At higher energies the "free" cross sections extracted from quasifree data are significantly smaller than the experimental free cross sections and theoretical predictions based on multipole analysis. For the first time, "free" neutron cross sections have been extracted in the $\\Delta$-region. They are also in agreement with the predictions from multipole anal...
Bounds on the gluon mass from nucleon decay
Energy Technology Data Exchange (ETDEWEB)
Avila, M.A. [Universidad Autonoma del Estado de Morelos, Morelos (Mexico)
2001-04-01
Permanent confinement of quarks is assumed to hold in QCD. However, if the gluon has a small mass it is possible to produce-quarks in hadron decays, high-energy reactions or in the early-universe. This situation is modelled by a quark-diquark potential composed of a linear (or harmonic) plus a Yukawa term. We compare our prediction for the proton decay with the experimental lower bound on its life-time, and obtain an upper bound on the gluon mass. [Spanish] Se supone se cumple el confinamiento permanente de quarks en cromodinamica cuantica. Si el gluon tiene masa pequena es posible producir quarks libres en decaimiento hadronicos, reacciones de altas energias o en el universo temprano. Esta situacion es modelada por un potencial quark-diquark, compuesto de un termino lineal (o armonico) mas un termino Yukawa. Comparamos nuestra prediccion para el decaimiento del proton con la cota inferior experimental de su vida media y obtenemos una cota superior sobre la masa del gluon.
Flavor decomposition of the nucleon electromagnetic form factors
Qattan, I A
2012-01-01
Background: The spatial distribution of charge and magnetization in the proton and neutron are encoded in the nucleon electromagnetic form factors. The form factors are all approximated by a simple dipole function, normalized to the charge or magnetic moment of the nucleon. The differences between the proton and neutron form factors and the deviation of GEn from zero are sensitive to the difference between up- and down-quark contributions to the form factors. Methods: We combine recent measurements of the neutron form factors with updated extractions of the proton form factors, accounting for two-photon exchange corrections and including an estimate of the uncertainties for all of the form factors to obtain a complete set of measurements up to Q^2 approximately 4 (GeV/c)^2. We use this to extract the up- and down-quark contributions which we compare to recent fits and calculations. Results: We find a large differences between the up- and down-quark contributions to G_E and G_M, implying significant flavor dep...
Exploring strange nucleon form factors on the lattice
Babich, Ronald; Clark, Michael A; Fleming, George T; Osborn, James C; Rebbi, Claudio; Schaich, David
2010-01-01
We discuss techniques for evaluating sea quark contributions to hadronic form factors on the lattice and apply these to an exploratory calculation of the strange electromagnetic, axial, and scalar form factors of the nucleon. We employ the Wilson gauge and fermion actions on an anisotropic 24^3 x 64 lattice, probing a range of momentum transfer with Q^2 _0. We discuss the unique systematic uncertainties affecting the latter quantity relative to the continuum, as well as prospects for improving future determinations with Wilson-like fermions.
Preliminary Results on the Experimental Investigation of the Structure Functions of Bound Nucleons
Energy Technology Data Exchange (ETDEWEB)
Bodek, Arie [University of Rochester, Rochester, NY
2015-09-01
We present preliminary results on an experimental study of the nuclear modification of the longitudinal (σ_{L}) and transverse (σ_{T}) structure functions of nucleons bound in nuclear targets. The origin of these modifications (commonly referred as as the EMC effect) is not fully understood. Our measurements of R= σ_{L}/σ_{T} for nuclei (R_{A}) and for deuterium (RD) indicate that nuclear modifications of the structure functions of bound nucleons are different for the longitudinal and transverse structure functions, and that contrary to expectation from several theoretical models, R_{A} < R_{D}.
Institute of Scientific and Technical Information of China (English)
MA Wei-Xing; DONG Yu-Bing; ZHOU Li-Juan
2002-01-01
Based on the [SUSF(6) O(3)]sym SUc(3) quark model, we study transverse transition form factors fromthe nucleon to nucleonic excitation states △(1232), N* (1535), and N* (1680). The transition form factors GT(Q2) arecalculated with a realistic and relativistic electromagnetic interaction. Therefore, a fit to experimental data examinesto what extent the constituent quark model is workable. The comparison between theoretical results and experimentaldata shows that the constituent quark model cannot provide a successful description of the transitions.
Nucleon axial form factors from two-flavour Lattice QCD
Junnarkar, P M; Djukanovic, D; von Hippel, G; Hua, J; Jäger, B; Meyer, H B; Rae, T D; Wittig, H
2014-01-01
We present preliminary results on the axial form factor $G_A(Q^2)$ and the induced pseudoscalar form factor $G_P(Q^2)$ of the nucleon. A systematic analysis of the excited-state contributions to form factors is performed on the CLS ensemble `N6' with $m_\\pi = 340 \\ \\text{MeV}$ and lattice spacing $a \\sim 0.05 \\ \\text{fm}$. The relevant three-point functions were computed with source-sink separations ranging from $t_s \\sim 0.6 \\ \\text{fm}$ to $t_s \\sim \\ 1.4 \\ \\text{fm}$. We observe that the form factors suffer from non-trivial excited-state contributions at the source-sink separations available to us. It is noted that naive plateau fits underestimate the excited-state contributions and that the method of summed operator insertions correctly accounts for these effects.
Axial form factor of the nucleon in the perturbative chiral quark model
Khosonthongkee, K; Faessler, Amand; Gutsche, T; Lyubovitskij, V E; Pumsa-ard, K; Yan, Y
2004-01-01
We apply the perturbative chiral quark model (PCQM) at one loop to analyze the axial form factor of the nucleon. This chiral quark model is based on an effective Lagrangian, where baryons are described by relativistic valence quarks and a perturbative cloud of Goldstone bosons as dictated by chiral symmetry. We apply the formalism to obtain analytical expressions for the axial form factor of the nucleon, which is given in terms of fundamental parameters of low-energy pion-nucleon physics (weak pion decay constant, strong pion-nucleon form factor) and of only one model parameter (radius of the nucleonic three-quark core).
Three-nucleon bound states and the Wigner-SU(4) limit
Vanasse, Jared
2016-01-01
We examine the extent to which the properties of three-nucleon bound states are well-reproduced in the limit that nuclear forces satisfy Wigner's SU(4) (spin-isospin) symmetry. To do this we compute the charge radii up to next-to-leading order (NLO) in an effective field theory (EFT) that is an expansion in powers of $R/a$, with $R$ the range of the nuclear force and $a$ the nucleon-nucleon ($N\\!N$) scattering lengths. In the Wigner-SU(4) limit, the triton and Helium-3 point charge radii are equal. At NLO in the range expansion both are $1.66$ fm. Adding the first-order corrections due to the breaking of Wigner symmetry in the $N\\!N$ scattering lengths gives a ${}^3\\mathrm{H}$ point charge radius of $1.58$ fm, which is remarkably close to the experimental number, $1.5978\\pm0.040$ fm. For the ${}^3\\mathrm{He}$ point charge radius we find $1.70$ fm, about 4% away from the experimental value of $1.77527\\pm0.0054$ fm. We also examine the Faddeev components that enter the tri-nucleon wave function and find that an...
Nucleon electromagnetic form factors from the covariant Faddeev equation
Eichmann, G.
2011-07-01
We compute the electromagnetic form factors of the nucleon in the Poincaré-covariant Faddeev framework based on the Dyson-Schwinger equations of QCD. The general expression for a baryon’s electromagnetic current in terms of three interacting dressed quarks is derived. Upon employing a rainbow-ladder gluon-exchange kernel for the quark-quark interaction, the nucleon’s Faddeev amplitude and electromagnetic form factors are computed without any further truncations or model assumptions. The form-factor results show clear evidence of missing pion-cloud effects below a photon momentum transfer of ˜2GeV2 and in the chiral region, whereas they agree well with experimental data at higher photon momenta. Thus, the approach reflects the properties of the nucleon’s quark core.
Nucleon Structure and Hyperon Form Factors from Lattice QCD.
Energy Technology Data Exchange (ETDEWEB)
Lin,H.W.
2007-06-11
In this work, I report the latest lattice QCD calculations of nucleon and hyperon structure from chiral fermions in 2+1-flavor dynamical simulations. All calculations are done with a chirally symmetric fermion action, domain-wall fermions, for valence quarks. I begin with the latest lattice results on the nucleon structure, focusing on results from RBC/UKQCD using 2+1-flavor chiral fermion actions. We find the chiral-extrapolated axial coupling constant at physical pion mass point. to be 1.23(5), consistent with experimental value. The renormalization constants for the structure functions are obtained from RI/MOM-scheme non-perturbative renormalization. We find first moments of the polarized and unpolarized nucleon structure functions at zero transfer momentum to be 0.133(13) and 0.203(23) respectively, using continuum chiral extrapolation. These are consistent with the experimental values, unlike previous calculations which have been 50% larger. We also have a prediction for the transversity, which we find to be 0.56(4). The twist-3 matrix element is consistent with zero which agrees with the prediction of the Wandzura-Wilczek relation. In the second half of this work, I report an indirect dynamical estimation of the strangeness proton magnetic moments using mixed actions. With the analysis of hyperon form factors and using charge symmetry, the strangeness of proton is found to be -0.066(2G), consistent with the Adelaide-JLab Collaboration's result. The hyperon {Sigma} and {Xi} axial coupling constants are also performed for the first time in a lattice calculation, g{sub {Sigma}{Sigma}} = 0.441(14) and g{sub {Xi}{Xi}} = -0.277(11).
Nucleon Structure and hyperon form factors from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Lin, Huey-Wen
2007-06-11
In this work, I report the latest lattice QCD calculations of nucleon and hyperon structure from chiral fermions in 2+1-flavor dynamical simulations. All calculations are done with a chirally symmetric fermion action, domain-wall fermions, for valence quarks. I begin with the latest lattice results on the nucleon structure, focusing on results from RBC/UKQCD using 2+1-flavor chiral fermion actions. We find the chiral-extrapolated axial coupling constant at physical pion mass point to be 1.23(5), consistant with experimental value. The renormalization constants for the structure functions are obtained from RI/MOM-scheme non-perturbative renormalization. We find first moments of the polarized and unpolarized nucleon structure functions at zero transfer momentum to be 0.133(13) and 0.203(23) respectively, using continuum chiral extrapolation. These are consistent with the experimental values, unlike previous calculations which have been 50% larger. We also have a prediction for the transversity, which we find to be 0.56(4). The twist-3 matrix element is consistent with zero which agrees with the prediction of the Wandzura-Wilczek relation. In the second half of this work, I report an indirect dynamical estimation of the strangeness proton magnetic moments using mixed actions. With the analysis of hyperon form factors and using charge symmetry, the strangeness of proton is found to be -0.066(26), consistent with the Adelaide-JLab Collaboration's result. The hyperon Sigma and Xi axial coupling constants are also performed for the first time in a lattice calculation, g_SigmaSigma = 0.441(14) and g_XiXi = -0.277(11).
Nucleon form factors on the lattice with light dynamical fermions
Energy Technology Data Exchange (ETDEWEB)
Goeckeler, M. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Haegler, P. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Theoretische Physik T39; Horsley, R. [Edinburgh Univ. (GB). School of Physics] (and others)
2007-09-15
The electromagnetic form factors provide important insight into the internal structure of the nucleon and continue to be of major interest for experiment and phenomenology. For an intermediate range of momenta the form factors can be calculated on the lattice. However, the reliability of the results is limited by systematic errors mostly due to the required extrapolation to physical quark masses. Chiral effective field theories predict a rather strong quark mass dependence in a range which was yet inaccessible for lattice simulations. We give an update on recent results from the QCDSF collaboration using gauge configurations with dynamical N{sub f}=2, non-perturbatively O(a)-improved Wilson fermions at pion masses as low as 350 MeV. (orig.)
Nucleon electromagnetic form factors in two-flavour QCD
Capitani, S; Djukanovic, D; von Hippel, G; Hua, J; Knippschild, B Jäger B; Meyer, H B; Rae, T D; Wittig, H
2015-01-01
We present results for the nucleon electromagnetic form factors, including the momentum transfer dependence and derived quantities (charge radii and magnetic moment). The analysis is performed using O(a) improved Wilson fermions in Nf=2 QCD measured on the CLS ensembles. Particular focus is placed on a systematic evaluation of the influence of excited states in three-point correlation functions, which lead to a biased evaluation, if not accounted for correctly. We argue that the use of summed operator insertions and fit ans\\"atze including excited states allow us to suppress and control this effect. We employ a novel method to perform joint chiral and continuum extrapolations, by fitting the form factors directly to the expressions of covariant baryonic chiral effective field theory. The final results for the charge radii and magnetic moment from our lattice calculations include, for the first time, a full error budget. We find that our estimates are compatible with experimental results within their overall u...
Electromagnetic Form Factors of the Nucleon and Compton Scattering
Energy Technology Data Exchange (ETDEWEB)
Charles Hyde-Wright; Cornelis De Jager
2004-12-01
We review the experimental and theoretical status of elastic electron scattering and elastic low-energy photon scattering (with both real and virtual photons) from the nucleon. As a consequence of new experimental facilities and new theoretical insights, these subjects are advancing with unprecedented precision. These reactions provide many important insights into the spatial distributions and correlations of quarks in the nucleon.
Constructing Nucleon Operators on a Lattice for Form Factors with High Momentum Transfer
Energy Technology Data Exchange (ETDEWEB)
Syritsyn, Sergey [Stony Brook Univ., NY (United States); Gambhir, Arjun S. [College of William and Mary, Williamsburg, VA (United States); Musch, Bernhard U. [Univ. of Regensburg (Germany); Orginos, Konstantinos [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2017-05-01
We present preliminary results of computing nucleon form factor at high momentum transfer using the 'boosted' or 'momentum' smearing. We use gauge configurations generated with N f = 2 + 1dynamical Wilson-clover fermions and study the connected as well as disconnected contributions to the nucleon form factors. Our initial results indicate that boosted smearing helps to improve the signal for nucleon correlators at high momentum. However, we also find evidence for large excited state contributions, which will likely require variational analysis to isolate the boosted nucleon ground state.
Bonner Prize: The Elastic Form Factors of the Nucleon
Perdrisat, Charles F.
2017-01-01
A series of experiments initiated in 1998 at the then new Continuous Electron Beam Accelerator, or CEBAF in Newport News Virginia, resulted in unexpected results, changing significantly our understanding of the structure of the proton. These experiments used a relatively new technique to obtain the ratio of the two form factors of the proton, namely polarization. An intense beam of highly polarized electrons with energy up to 6 GeV was made to interact elastically with un-polarized protons in a hydrogen target. The polarization of the recoiling protons, with energies up to 5 GeV, was measured from a second interaction in a polarimeter consisting of blocs of graphite or CH2 and tracking wire chambers. The scattered electrons were detected in an electromagnetic lead-glass calorimeter, to select elastically scattered events. After a short introduction describing the path which brought me from the University of Geneva to the College of William and Mary in 1966, I will introduce the subject of elastic electron scattering, describe some of the apparatus required for such experiments, and show the results which were unexpected at the time. These results demonstrated unequivocally that the two form factors required to describe elastic ep scattering, electric GE and magnetic GM in the Born approximation, had a drastically different dependence upon the four-momentum squared q2 = q2 -ω2 with q the momentum, and ω the energy transferred in the reaction. The finding, in flagrant disagreement with the data available at the time, which had been obtained dominantly from cross section measurements of the type first used by Nobel Prize R. Hofstadter 60 years ago, have led to a reexamination of the information provided by form factors on the structure of the nucleon, in particular its quark-gluon content. The conclusion will then be a brief outline of several theoretical considerations to put the results in a proper perspective.
Nucleon generalized form factors and sigma term from lattice QCD near the physical quark mass
Bali, G S; Gläßle, B; Göckeler, M; Najjar, J; Rödl, R; Schäfer, A; Schiel, R; Söldner, W; Sternbeck, A; Wein, P
2013-01-01
We present new N_f=2 data for the nucleon generalized form factors, varying volume, lattice spacing and pion mass, down to 150 MeV. We also give an update of our direct calculation of the nucleon sigma term for a range of pion mass values including the lightest one.
The hyperon-nucleon interaction potential in the bound-state soliton model: the {lambda} N case
Energy Technology Data Exchange (ETDEWEB)
Thomas, G.L.; Herscovitz, V.E. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Inst. de Fisica; Schat, C.L. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Scoccola, N.N. [Comision Nacional de Energia Atomica, Buenos Aires (Argentina). Dept. de Fisica
1999-05-01
We develop the formalism the study the hyperon-nucleon interaction potential within the bound state approach to the SU (3) Skyrme model. The general framework is illustratedby applying it to the diagonal {lambda} N potential. The central, spin-spin and tensor components of this interaction are obtained and compared with those derived using alternative schemes. (author)
Aznauryan, I G
2012-01-01
We utilize a light-front relativistic quark model (LF RQM) to predict the 3q core contribution to the electroexcitation amplitudes for the Delta(1232)P33, N(1440)P11, N(1520)D13, and N(1535)S11 up to Q2= 12GeV2. The parameters of the model have been specified via description of the nucleon electromagnetic form factors in the approach that combines 3q and pion-cloud contributions in the LF dynamics.
Nucleon shape and electromagnetic form factors in the chiral constituent quark model
Dahiya, Harleen
2010-01-01
The electromagnetic form factors are the most fundamental quantities to describe the internal structure of the nucleon and the shape of a spatially extended particle is determined by its intrinsic quadrupole moment which can be related to the charge radii. We have calculated the electromagnetic form factors, nucleon charge radii and the intrinsic quadrupole moment of the nucleon in the framework of chiral constituent quark model. The results obtained are comparable to the latest experimental studies and also show improvement over some theoretical interpretations.
von Hippel, G M; Djukanovic, D; Hua, J; Jäger, B; Junnarkar, P; Meyer, H B; Rae, T D; Wittig, H
2014-01-01
We study the ability of a variety of fitting techniques to extract the ground state matrix elements of the vector current from ratios of nucleon three- and two-point functions that contain contaminations from excited states. Extending our high-statistics study of nucleon form factors, we are able to demonstrate that the treatment of excited-state contributions in conjunction with approaching the physical pion mass has a significant impact on the $Q^2$-dependence of the form factors.
K− absorption on two nucleons and ppK− bound state search in the Σ0p final state
Directory of Open Access Journals (Sweden)
O. Vázquez Doce
2016-07-01
Full Text Available We report the measurement of K− absorption processes in the Σ0p final state and the first exclusive measurement of the two nucleon absorption (2NA with the KLOE detector. The 2NA process without further interactions is found to be 9% of the sum of all other contributing processes, including absorption on three and more nucleons or 2NA followed by final state interactions with the residual nucleons. We also determine the possible contribution of the ppK− bound state to the Σ0p final state. The yield of ppK−/Kstop− is found to be (0.044±0.009stat−0.005+0.004syst⋅10−2 but its statistical significance based on an F-test is only 1σ.
A model of charmed baryon-nucleon potential and 2- and 3-body bound states with charmed baryon
Maeda, Saori; Yokota, Akira; Hiyama, Emiko; Liu, Yan-Rui
2015-01-01
Potential models of the interaction between a charmed baryon ($Y_c$) and the nucleon ($N$) are constructed on the basis of a long-range meson ($\\pi$ and $\\sigma$) exchange potential as well as a short-distance quark exchange interaction. The quark cluster model is used to evaluate the short-range repulsion between $Y_c$ and $N$, while the meson exchange potentials are modified by a form factor at short distances. We determine the cutoff parameters of the form factors so as to fit the $NN$ scattering data with the same approach. The ground state charmed baryons, $\\Lambda_c$, $\\Sigma_c$ and $\\Sigma_c^*$, are included as $Y_c$, and channel couplings of relevant $Y_c N$ channels are taken into account. We propose four sets of parameters (a -- d), among which the most attractive potential (d) predicts bound $\\Lambda_c N$ $J^\\pi= 0^+$ and $1^+$ states. In order to apply the potential to a many-body problem, we construct an effective $\\Lambda_c N$ one-channel potential for the parameter set (d). It is applied to the...
Calculation of the Nucleon Axial Form Factor Using Staggered Lattice QCD
Meyer, Aaron S; Kronfeld, Andreas S; Li, Ruizi; Simone, James N
2016-01-01
The nucleon axial form factor is a dominant contribution to errors in neutrino oscillation studies. Lattice QCD calculations can help control theory errors by providing first-principles information on nucleon form factors. In these proceedings, we present preliminary results on a blinded calculation of $g_A$ and the axial form factor using HISQ staggered baryons with 2+1+1 flavors of sea quarks. Calculations are done using physical light quark masses and are absolutely normalized. We discuss fitting form factor data with the model-independent $z$ expansion parametrization.
Nucleon Charges, Form-factors and Neutron EDM
Gupta, Rajan; Cirigliano, Vincenzo; Lin, Huey-Wen; Yoon, Boram
2016-01-01
We present an update of our analysis of statistical and systematic errors in the calculation of iso-vector scalar, axial and tensor charges of the nucleon. The calculations are done using $N_f=2+1+1$ flavor HISQ ensembles generated by the MILC Collaboration at three values of the lattice spacing ($a=0.12,\\ 0.09,$ and $0.06$ fm) and three values of the quark mass ($M_\\pi \\approx 310,\\ 220$ and $130$ MeV); and clover fermions for calculating the correlation functions, i.e., we use a clover-on-HISQ lattice formulation. The all-mode-averaging method allows us to increase the statistics by a factor of eight for the same computational cost leading to a better understanding of and control over excited state contamination. Our current results, after extrapolation to the continuum limit and physical pion mass are $g_A^{u-d} = 1.21(3)$, $g_T^{u-d} = 1.005(59)$ and $g_S^{u-d} = 0.95(12) $. Further checks of control over all systematic errors, especially in $g_A^{u-d}$, are still being performed. Using results for the fl...
Nucleon and gamma N -> Delta lattice form factors in a constituent quark model
Ramalho, G
2008-01-01
A covariant quark model, based both on the spectator formalism and on Vector Meson Dominance, and previously calibrated by the physical data, is here extended to the unphysical region of the lattice data by means of one single extra adjustable parameter - the constituent quark mass in the chiral limit. We calculated the Nucleon (N) and the Gamma N -> Delta form factors in the universe of values for that parameter described by quenched lattice QCD. A qualitative description of the Nucleon and Gamma N -> Delta form factors lattice data is achieved for light pion masses.
Sufian, Raza Sabbir; de Téramond, Guy F.; Brodsky, Stanley J.; Deur, Alexandre; Dosch, Hans Günter
2017-01-01
We present a comprehensive analysis of the spacelike nucleon electromagnetic form factors and their flavor decomposition within the framework of light-front (LF) holographic QCD (LFHQCD) We show that the inclusion of the higher Fock components |q q q q q ¯ ⟩ has a significant effect on the spin-flip elastic Pauli form factor and almost zero effect on the spin-conserving Dirac form factor. We present light-front holographic QCD results for the proton and neutron form factors at any momentum transfer range, including asymptotic predictions, and show that our results agree with the available experimental data with high accuracy. In order to correctly describe the Pauli form factor we need an admixture of a five quark state of about 30% in the proton and about 40% in the neutron. We also extract the nucleon charge and magnetic radii and perform a flavor decomposition of the nucleon electromagnetic form factors. The free parameters needed to describe the experimental nucleon form factors are very few: two parameters for the probabilities of higher Fock states for the spin-flip form factor and a phenomenological parameter r , required to account for possible SU(6) spin-flavor symmetry breaking effects in the neutron, whereas the Pauli form factors are normalized to the experimental values of the anomalous magnetic moments. The covariant spin structure for the Dirac and Pauli nucleon form factors prescribed by AdS5 semiclassical gravity incorporates the correct twist scaling behavior from hard scattering and also leads to vector dominance at low energy.
The Pion-Cloud Contribution to the Electromagnetic Nucleon Form Factors
Directory of Open Access Journals (Sweden)
Kupelwieser Daniel
2016-01-01
Full Text Available We study the electromagnetic structure of the nucleon within a hybrid constituent-quark model that comprises, in addition to the 3q valence component, also a 3q+π non-valence component. To this aim we employ a Poincaré-invariant multichannel formulation based on the point-form of relativistic quantum mechanics. With a simple 3-quark wave function for the bare nucleon, i.e. the 3q-component, we obtain reasonable results for the nucleon form factors and predict the meson-cloud contribution to be significant only below Q2 ≲ 0:5 GeV2 amounting to about 10% for Q2 → 0, in accordance with the findings of other authors.
Bridge between bound state and reaction effective nucleon–nucleon potentials
Indian Academy of Sciences (India)
Y R Waghmare
2002-01-01
It has been a long standing problem to ﬁnd the connection between the realistic nucleon–nucleon interaction and the interaction between two nucleons when they are embedded inside a nuclear medium, the so-called ‘effective interaction’. On the one hand various many-body approaches have been employed, while on the other hand, information is sought on the basis of static nuclear properties. Both provide partial information. An attempt is made to understand if there is an inherent link, a bridge, which connects all these informations, through the study of heavy ion fusion reactions.
A Perturbative QCD Analysis of the Nucleon's Pauli Form Factor F_2(Q^2)
Belitsky, A V; Yuan, F; Belitsky, Andrei V.; Ji, Xiangdong; Yuan, Feng
2003-01-01
We perform a perturbative QCD analysis of the nucleon's Pauli form factor $F_2(Q^2)$ in the asymptotically large $Q^2$ limit. We find that the leading contribution to $F_2(Q^2)$ goes like $1/Q^6$, consistent with the well-known folklore. Its coefficient is expressed in terms of an overlap integral involving the leading and subleading light-cone wave functions of the nucleon, the latter describing the quark state with one unit of orbital angular momentum. We estimate the numerical size of the coefficient and comment on the contribution from the end-point region.
Improved dispersive analysis of the scalar form factor of the nucleon
Hoferichter, Martin; Kubis, Bastian; ner, Ulf-G Meiß
2012-01-01
We present a coupled system of integral equations for the pi pi --> Nbar N and Kbar K --> Nbar N S-waves derived from Roy-Steiner equations for pion-nucleon scattering. We discuss the solution of the corresponding two-channel Muskhelishvili-Omnes problem and apply the results to a dispersive analysis of the scalar form factor of the nucleon fully including Kbar K intermediate states. In particular, we determine the corrections Delta_sigma and Delta_D, which are needed for the extraction of the pion-nucleon sigma term from pi N scattering, and show that the difference Delta_D - Delta_sigma=(-1.8 +/- 0.2) MeV is insensitive to the input pi N parameters.
Nucleon electromagnetic form factors in a relativistic quark model with chiral symmetry
Energy Technology Data Exchange (ETDEWEB)
Barik, N.; Das, M.
1987-05-01
The nucleon electromagnetic form factors are computed in an independent quark model based on the Dirac equation. Corrections for centre-of-mass motion and pion-cloud effects are incorporated. Results for static quantities are in reasonable agreement with the experimental data.
Axial Nucleon to Delta transition form factors on 2+1 flavor hybrid lattices
Alexandrou, C; Leontiou, Th; Negele, J W; Tsapalis, A; 10.1103/PhysRevD.80.099901
2009-01-01
We correct the values of the dominant nucleon to Delta axial transition form factors CA_5 and CA_6 published in C. Alexandrou et.al., Phys. Rev. D 76,094511 (2007). The analysis error affects only the values obtained when using the hybrid action in the low Q^2 regime bringing them into agreement with those obtained with Wilson fermions.
The electric dipole form factor of the nucleon in chiral perturbation theory to subleading order
Mereghetti, E; de Vries, Jordy; Hockings, W.H.; Maekawa, C.M.; van Kolck, U
2011-01-01
The electric dipole form factor (EDFF) of the nucleon stemming from the QCD ¯ term and from the quark color-electric dipole moments is calculated in chiral perturbation theory to sub-leading order. This is the lowest order in which the isoscalar EDFF receives a calculable, non-analytic contribution
The nucleon electric dipole form factor from dimension-six time-reversal violation
de Vries, J.; Mereghetti, E.; Timmermans, R. G. E.; van Kolck, U.
2011-01-01
We calculate the electric dipole form factor of the nucleon that arises as a low-energy manifestation of time-reversal violation in quark-gluon interactions of effective dimension 6: the quark electric and chromoelectric dipole moments, and the gluon chromoelectric dipole moment. We use the framewor
Electromagnetic form factors of the nucleon. Experiments at MAMI
Energy Technology Data Exchange (ETDEWEB)
Ostrick, M. [Universitaet Bonn, Physikalisches Institut, Bonn (Germany)
2006-05-15
Elastic form factors are of fundamental importance for the understanding of microscopic spatial structures. In case of the proton and the neutron, charge and magnetic form factors can be studied in elastic electron scattering. Techniques to accelerate polarised continuous electron beams, the availability of polarised targets as well as modern concepts and instrumentation for coincidence experiments and recoil polarimetry had an enormous impact on these measurements. The developments and experiments at the Mainz Microtron MAMI will be discussed in a general context. (orig.)
Lattice calculation of electric dipole moments and form factors of the nucleon
Abramczyk, M.; Aoki, S.; Blum, T.; Izubuchi, T.; Ohki, H.; Syritsyn, S.
2017-07-01
We analyze commonly used expressions for computing the nucleon electric dipole form factors (EDFF) F3 and moments (EDM) on a lattice and find that they lead to spurious contributions from the Pauli form factor F2 due to inadequate definition of these form factors when parity mixing of lattice nucleon fields is involved. Using chirally symmetric domain wall fermions, we calculate the proton and the neutron EDFF induced by the C P -violating quark chromo-EDM interaction using the corrected expression. In addition, we calculate the electric dipole moment of the neutron using a background electric field that respects time translation invariance and boundary conditions, and we find that it decidedly agrees with the new formula but not the old formula for F3. Finally, we analyze some selected lattice results for the nucleon EDM and observe that after the correction is applied, they either agree with zero or are substantially reduced in magnitude, thus reconciling their difference from phenomenological estimates of the nucleon EDM.
Lattice calculation of electric dipole moments and form factors of the nucleon
Energy Technology Data Exchange (ETDEWEB)
Abramczyk, M.; Aoki, S.; Blum, T.; Izubuchi, T.; Ohki, H.; Syritsyn, S.
2017-07-01
We analyze commonly used expressions for computing the nucleon electric dipole form factors (EDFF) $F_3$ and moments (EDM) on a lattice and find that they lead to spurious contributions from the Pauli form factor $F_2$ due to inadequate definition of these form factors when parity mixing of lattice nucleon fields is involved. Using chirally symmetric domain wall fermions, we calculate the proton and the neutron EDFF induced by the CP-violating quark chromo-EDM interaction using the corrected expression. In addition, we calculate the electric dipole moment of the neutron using background electric field that respects time translation invariance and boundary conditions, and find that it decidedly agrees with the new formula but not the old formula for $F_3$. Finally, we analyze some selected lattice results for the nucleon EDM and observe that after the correction is applied, they either agree with zero or are substantially reduced in magnitude, thus reconciling their difference from phenomenological estimates of the nucleon EDM.
Radiative corrections in nucleon time-like form factors measurements
Energy Technology Data Exchange (ETDEWEB)
Van de Wiele, Jacques [Universite de Paris-Sud, Institut de Physique Nucleaire, Orsay Cedex (France); Ong, Saro [Universite de Paris-Sud, Institut de Physique Nucleaire, Orsay Cedex (France); Universite de Picardie Jules Verne, Amiens (France)
2013-02-15
The completely general radiative corrections to lowest order, including the final- and initial-state radiations, are studied in proton-antiproton annihilation into an electron-positron pair. Numerical estimates have been made in a realistic configuration of the PANDA detector at FAIR for the proton time-like form factors measurements. (orig.)
Nucleon-to-Delta axial transition form factors in relativistic baryon chiral perturbation theory
Geng, L S; Alvarez-Ruso, L; Vacas, M J Vicente
2008-01-01
We report a theoretical study of the axial Nucleon to Delta(1232) ($N\\to\\Delta$) transition form factors up to one-loop order in relativistic baryon chiral perturbation theory. We adopt a formalism in which the $\\Delta$ couplings obey the spin-3/2 gauge symmetry and, therefore, decouple the unphysical spin-1/2 fields. We compare the results with phenomenological form factors obtained from neutrino bubble chamber data and in quark models.
De Sanctis, M; Santopinto, E; Vassallo, A
2015-01-01
We briefly describe our relativistic quark-diquark model, developed within the framework of point form dynamics, which is the relativistic extension of the interacting quark-diquark model. In order to do that we have to show the main properties and quantum numbers of the effective degree of freedom of constituent diquark. Our results for the nonstrange baryon spectrum and for the nucleon electromagnetic form factors are discussed.
Bounds for Siegel Modular Forms of genus 2 modulo $p$
Choi, Dohoon; Kikuta, Toshiyuki
2011-01-01
Sturm obtained the bounds for the number of the first Fourier coefficients of elliptic modular form $f$ to determine vanishing of $f$ modulo a prime $p$. In this paper, we study analogues of Sturm's bound for Siegel modular forms of genus 2. We show the resulting bound is sharp. As an application, we study congruences involving Atkin's $U(p)$-operator for the Fourier coefficients of Siegel mdoular forms of genus 2.
The one-pion-exchange potential in the three-body model of nucleon-nucleon scattering
Garcilazo, Humberto
1981-02-01
We derive the one-pion-exchange potential in the three-body model of nucleon-nucleon scattering in which the nucleon is treated as a bound state of a pion and a nucleon, and show that it has the same form as the usual Yukawa OPEP derived from field theory, except that its range is energy dependent and it becomes complex above the pion-production threshold.
Quasielastic Scattering from Relativistic Bound Nucleons: R{sub TL} Response
Energy Technology Data Exchange (ETDEWEB)
J. A. Caballero; E. Moya de Guerra; J. M. Udias; J. E. Amaro; T. W. Donnelly
1999-12-31
Predictions of relativistic calculations for electron induced knock-out from the p{sub 1/2} and p{sub 3/2} shells in {sup 16}O are presented. Results for differential cross-section, TL response function and left-right asymmetry are compared to recent (e,e'p) data at Q{sup 2} = 0.8 (GeV/c){sup 2} taken at TJNAF. We show that the trend of the fully relativistic results is closely followed by the experimental data, pointing to the importance of both kinematical and dynamical relativistic effects in the nucleonic current.
Extraction of the isovector magnetic form factor of the nucleon at zero momentum
Alexandrou, Constantia; Koutsou, Giannis; Ottnad, Konstantin; Petschlies, Marcus
2014-01-01
The extraction of the magnetic form factor of the nucleon at zero momentum transfer is usually performed by adopting a parametrization for its momentum dependence and fitting the results obtained at finite momenta. We present position space methods that rely on taking the derivative of relevant correlators to extract directly the magnetic form factor at zero momentum without the need to assume a functional form for its momentum dependence. These methods are explored on one ensemble using $N_f=2+1+1$ Wilson twisted mass fermions.
Revisiting surface-integral formulations for one-nucleon transfers to bound and resonance states
Escher, J E; Arbanas, G; Elster, Ch; Eremenko, V; Hlophe, L; Nunes, F M
2014-01-01
One-nucleon transfer reactions, in particular (d,p) reactions, have played a central role in nuclear structure studies for many decades. Present theoretical descriptions of the underlying reaction mechanisms are insufficient for addressing the challenges and opportunities that are opening up with new radioactive beam facilities. We investigate a theoretical approach that was proposed recently to address shortcomings in the description of transfers to resonance states. The method builds on ideas from the very successful R-matrix theory; in particular it uses a similar separation of the parameter space into interior and exterior regions, and introduces a parameterization that can be related to physical observables, which, in principle, makes it possible to extract meaningful spectroscopic information from experiments. We carry out calculations, for a selection of isotopes and energies, to test the usefulness of the new approach.
Kubis, B
2001-01-01
We analyze the electromagnetic form factors of the nucleon to fourth order in relativistic baryon chiral perturbation theory. We employ the recently proposed infrared regularization scheme and show that the convergence of the chiral expansion is improved as compared to the heavy-fermion approach. We also discuss the inclusion of vector mesons and obtain an accurate description of all four-nucleon form factors for momentum transfer squared up to Q sup 2 approx =0.4 GeV sup 2.
Overview of high-Q2 nucleon form factor program with Super BigBite Spectrometer in JLab's Hall A
Puckett, Andrew; Jefferson Lab Hall A; Super BigBite Spectrometer Collaboration
2017-01-01
The elastic electromagnetic form factors (EMFFs) of the nucleon describe the impact-parameter-space distributions of electric charge and magnetization in the nucleon in the infinite momentum frame. The form factors are among the simplest and most fundamental measurable dynamical quantities describing the nucleon's structure. Precision measurements of the nucleon form factors provide stringent benchmarks testing the most sophisticated theoretical models of the nucleon, as well as ab initio calculations in lattice QCD and continuum non-perturbative QCD calculations based on the Dyson-Schwinger equations. Measurements at momentum transfers Q in the few-GeV range probe the theoretically challenging region of transition between the non-perturbative and perturbative regimes of QCD. The recent upgrade of the Continuous Electron Beam Accelerator Facility (CEBAF) to a maximum electron beam energy of 11 GeV will facilitate the measurement of the nucleon helicity-conserving (F1) and helicity-flip (F2) form factors of both proton and neutron to Q2 > 10 GeV2, In this talk, I will present an overview of the Super BigBite Spectrometer, currently under construction in CEBAF's experimental Hall A, and its physics program of high-Q2 nucleon EMFF measurements. Supported by US DOE award DE-SC0014230.
On the pi pi continuum in the nucleon form factors and the proton radius puzzle
Hoferichter, M; de Elvira, J Ruiz; Hammer, H -W; Meißner, U -G
2016-01-01
We present an improved determination of the $\\pi\\pi$ continuum contribution to the isovector spectral functions of the nucleon electromagnetic form factors. Our analysis includes the most up-to-date results for the $\\pi\\pi\\to\\bar N N$ partial waves extracted from Roy-Steiner equations, consistent input for the pion vector form factor, and a thorough discussion of isospin-violating effects and uncertainty estimates. As an application, we consider the $\\pi\\pi$ contribution to the isovector electric and magnetic radii by means of sum rules, which, in combination with the accurately known neutron electric radius, are found to slightly prefer a small proton charge radius.
On the ππ continuum in the nucleon form factors and the proton radius puzzle
Hoferichter, M.; Kubis, B.; Ruiz de Elvira, J.; Hammer, H.-W.; Meißner, U.-G.
2016-11-01
We present an improved determination of the ππ continuum contribution to the isovector spectral functions of the nucleon electromagnetic form factors. Our analysis includes the most up-to-date results for the ππ→bar{N} N partial waves extracted from Roy-Steiner equations, consistent input for the pion vector form factor, and a thorough discussion of isospin-violating effects and uncertainty estimates. As an application, we consider the ππ contribution to the isovector electric and magnetic radii by means of sum rules, which, in combination with the accurately known neutron electric radius, are found to slightly prefer a small proton charge radius.
Nucleon momentum distributions and elastic electron scattering form factors for some 1p-shell nuclei
Indian Academy of Sciences (India)
A K Hamoudi; M A Hasan; A R Ridha
2012-05-01
The nucleon momentum distributions (NMD) and elastic electron scattering form factors of the ground state for 1p-shell nuclei with = (such as 6Li, 10B, 12C and 14N nuclei) have been calculated in the framework of the coherent density ﬂuctuation model (CDFM) and expressed in terms of the weight function $|f(x)|^2$. The weight function has been expressed in terms of nucleon density distribution (NDD) of the nuclei and determined from the theory and the experiment. The feature of the long-tail behaviour at high-momentum region of the NMDs has been obtained by both the theoretical and experimental weight functions. The experimental form factors $F(q)$ of all the considered nuclei are very well reproduced by the present calculations for all values of momentum transfer . It is found that the contributions of the quadrupole form factors $F_{C2}(q)$ in 10B and 14N nuclei, which are described by the undeformed p-shell model, are essential for obtaining a remarkable agreement between the theoretical and experimental form factors.
Strangeness Vector and Axial-Vector Form Factors of the Nucleon
Directory of Open Access Journals (Sweden)
Pate Stephen
2014-03-01
Full Text Available A revised global fit of electroweak ep and vp elastic scattering data has been performed, with the goal of determining the strange quark contribution to the vector and axial-vector form factors of the nucleon in the momentum-transfer range 0 < Q2 < 1 GeV2. The two vector (electric and magnetic form factors GsE(Q2 and GsM(Q2 are strongly constrained by ep elastic scattering data, while the major source of information on the axial-vector form factor GsA(Q2 is vp scattering data. Combining the two kinds of data into a single global fit makes possible additional precision in the determination of these form factors, and provides a unique way to determine the strange quark contribution to the nucleon spin, ΔS , independently of leptonic deep-inelastic scattering. The fit makes use of data from the BNL-E734, SAMPLE, HAPPEx, G0, and PVA4 experiments; we will also compare the result of the fit with recent data from MiniBooNE, and anticipate how this fit can be improved when new data from MicroBooNE become available.
Nucleon form factors and couplings with $N_\\mathrm{f} = 2 + 1$ Wilson fermions
Djukanovic, Dalibor; von Hippel, Georg; Junnarkar, Parikshit; Meyer, Harvey B; Wittig, Hartmut
2016-01-01
We present updated results on the nucleon electromagnetic form factors and axial coupling calculated using CLS ensembles with $N_\\mathrm{f}=2+1$ dynamical flavours of Wilson fermions. The measurements are performed on large, fine lattices with a pseudoscalar mass reaching down to 200 MeV. The truncated-solver method is employed to reduce the variance of the measurements. Estimation of the matrix elements is challenging due to large contamination from excited states and further investigation is necessary to bring these effects under control.
Error reduction technique using covariant approximation and application to nucleon form factor
Blum, Thomas; Shintani, Eigo
2012-01-01
We demonstrate the new class of variance reduction techniques for hadron propagator and nucleon isovector form factor in the realistic lattice of $N_f=2+1$ domain-wall fermion. All-mode averaging (AMA) is one of the powerful tools to reduce the statistical noise effectively for wider varieties of observables compared to existing techniques such as low-mode averaging (LMA). We adopt this technique to hadron two-point functions and three-point functions, and compare with LMA and traditional source-shift method in the same ensembles. We observe AMA is much more cost effective in reducing statistical error for these observables.
Electron-Positron to Nucleon-Antinucleon Pair at Threshold and Proton Form Factor
Yan, Y; Kobdaj, C; Suebka, P
2009-01-01
The reactions of electron-positron to nucleon-antinucleon pair at energy threshold are studied in a non-perturbative quark model. The puzzling experimental result that the ratio of the cross section of electron-positron to proton-antiproton to the one of electron-positron to neutron-antineutron is smaller than 1 can be understood in the framework of the phenomenological nonrelativistic quark model and the theoretical predictions for the time-like proton form factor at energy threshold are well consistent with the experimental data. The work suggests that the two-step process, in which the primary quark-antiquark pair forms first a vector meson which in turn decays into a hadron pair, is dominant over the one-step process in which the primary quark-antiquark pair is directly dressed by additional quark-antiquark pairs to form a hadron pair. The experimental data on the reactions of electron-positron to nucleon-antinucleon strongly suggest the reported vector meson omega(1930) to be a 2D-wave particle, while th...
Scalar and vector form factors of the in-medium nucleon
Saitô, K
2003-01-01
Using the quark-meson coupling model, we calculate the form factors at sigma- and omega-nucleon strong-interaction vertices in nuclear matter. The Peierls-Yoccoz projection technique is used to take account of center of mass and recoil corrections. We also apply the Lorentz contraction to the internal quark wave function. The form factors are reduced by the nuclear medium relative to those in vacuum. At normal nuclear matter density and Q^2 = 1 GeV^2, the reduction rate in the scalar form factor is about 15%, which is almost identical to that in the vector one. We parameterize the ratios of the form factors in symmetric nuclear matter to those in vacuum as a function of nuclear density and momentum transfer.
Ultrahigh-energy neutrino-nucleon deep-inelastic scattering and the Froissart bound
Illarionov, Alexey Yu; Kotikov, Anatoly V
2011-01-01
We present a simple formula for the total cross section sigma^{nu N} of neutral- and charged-current deep-inelastic scattering of ultrahigh-energy neutrinos on isoscalar nuclear targets, which is proportional to the structure function F_2^{nu N}(M_V^2/s, M_V^2), where M_V is the intermediate-boson mass and s is the square of the center-of-mass energy. The coefficient in the front of F_2^{nu N}(x, Q^2) depends on the asymptotic low-x behavior of F_2^{nu N}. It contains an additional ln(s) term if F_2^{nu N} scales with a power of ln(1/x). Hence, an asymptotic low-x behavior F_2^{nu N} propto ln^2(1/x), which is frequently assumed in the literature, already leads to a violation of the Froissart bound on sigma^{nu N}.
Excited state systematics in extracting nucleon electromagnetic form factors from the lattice
Energy Technology Data Exchange (ETDEWEB)
Rae, Thomas; Hippel, Georg von; Knippschild, Bastian [PRISMA Cluster of Excellence and Institut fuer Kernphysik, University of Mainz (Germany); Capitani, Stefano; Wittig, Hartmut; Jaeger, Benjamin; Meyer, Harvey; Della Morte, Michele [PRISMA Cluster of Excellence and Institut fuer Kernphysik, University of Mainz (Germany); Helmholtz Institute Mainz, University of Mainz (Germany)
2013-07-01
We present recent results for the nucleon electromagnetic form factors using lattice QCD. This includes the determination of the charge radii. The standard approach is to extract the form factors via a plateau fit to the lattice data using a 'large-enough' time separation between the operators at the source and sink. To check that this removes excited state contaminations to an acceptable level, we employ two further extraction methods: a fit that explicitly accounts for the contamination; and the use of a summed operator insertion, which suppresses the contamination. A comparison of the methods allows for the study of systematic effects related to excited state contributions entering in the q{sup 2} dependence of the form factors. We employ the CLS ensembles using non-perturbatively O(a) improved Wilson fermions in N{sub f}=2 QCD.
New large-$N_c$ relations for the electromagnetic nucleon-to-$\\Delta$ form factors
Energy Technology Data Exchange (ETDEWEB)
Vladimir Pascalutsa; Marc Vanderhaeghen
2007-12-01
We establish relations which express the three $N\\to \\Delta$ transition form factors in terms of the nucleon form factors. These relations are based on the known large-$N_c$ relation between the $N\\to \\De$ electric quadrupole moment and the neutron charge radius, and a newly derived large-$N_c$ relation between the electric quadrupole ($E2$) and Coulomb quadrupole ($C2$) transitions. Namely, in the large-$N_c$ limit we find $C2=E2$. We show that these relations provide predictions for the $N\\to\\Delta$ electromagnetic form factors which are found to be in very good agreement with experiment for moderate momentum transfers. They also provide constraints for the $N \\to \\Delta$ GPDs.
Ultrahigh-energy neutrino-nucleon deep-inelastic scattering and the Froissart bound
Energy Technology Data Exchange (ETDEWEB)
Illarionov, Alexey Yu. [Trento Univ. (Italy). Dipt. di Fisica; Kniehl, Bernd A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Kotikov, Anatoly V. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Joint Inst. of Nuclear Research, Moscow (Russian Federation). Bogoliubov Lab. of Theoretical Physics
2011-02-15
We present a simple formula for the total cross section {sigma}{sup {nu}}{sup N} of neutral- and charged-current deep-inelastic scattering of ultrahigh-energy neutrinos on isoscalar nuclear targets, which is proportional to the structure function F{sup {nu}}{sup N}{sub 2}(M{sup 2}{sub V}/s, M{sup 2}{sub V}), where M{sub V} is the intermediate-boson mass and s is the square of the center-of-mass energy. The coefficient in the front of F{sup {nu}}{sup N}{sub 2}(x, Q{sup 2}) depends on the asymptotic low-x behavior of F{sup {nu}}{sup N}{sub 2}. It contains an additional ln(s) term if F{sup {nu}}{sup N}{sub 2} scales with a power of ln(1/x). Hence, an asymptotic low-x behavior F{sup {nu}}{sup N}{sub 2} {proportional_to} ln{sup 2}(1/x), which is frequently assumed in the literature, already leads to a violation of the Froissart bound on {sigma}{sup {nu}}{sup N}. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Peters, Gerhard
2008-05-15
In this work the leading-twist next-to-leading order (NLO) correction to the light-cone sum rules prediction for the electromagnetic form factors of the nucleon are calculated. Here the Ioffe nucleon interpolation current is used and it is worked in the M{sub N}=0 approximation, with M{sub N} being the mass of the nucleon. In this approximation, only the Pauli form factor F{sub 2} receives a correction and the calculated correction is quite sizable. The numerical results for the proton form factors show the improved agreement with the experimental data. Furthermore the problems encountered when going away from M{sub N}=0 approximation at NLO, as well as, gauge invariance of the perturbative results are discussed. This work presents the first step towards the NLO accuracy in the light-cone sum rules for baryon form factors. (orig.)
SU(6) breaking effects in the nucleon elastic electromagnetic form factors
Cardarelli, F; Cardarelli, Fabio; Simula, Silvano
2000-01-01
The effects of SU(6) breaking on the nucleon elastic form factors are investigated within the constituent quark model formulated on the light-front. It is shown that the kinematical SU(6) breaking caused by the Melosh rotations of the quark spins as well as the dynamical SU(6) breaking due to the mixed-symmetry component generated in the nucleon wave function by the spin-dependent terms of the quark-quark interaction, can affect both GEn(Q**2) and GMp(Q**2)/GMn(Q**2). The calculated GEn(Q**2) is found to be qualitatively consistent with existing data. while the calculations of GM(Q**2) based on the plus component of the current are found to be plagued by spurious effects related to the loss of the rotational covariance in the light-front formalism. These unwanted effects can be avoided by considering the transverse y-component of the current. In this way our light-front predictions are found to be consistent with the data on both GEn(Q**2) and GMp(Q**2)/GMn(Q**2). Finally, it is shown that a suppression of th...
High-precision calculation of the strange nucleon electromagnetic form factors
Energy Technology Data Exchange (ETDEWEB)
Green, Jeremy [Johannes Gutenberg Univ., Mainz (Germany); Meinel, Stefan [Univ. of Arizona, Tucson, AZ (United States); Brookhaven National Lab. (BNL), Upton, NY (United States); Engelhardt, Michael G. [New Mexico State Univ., Las Cruces, NM (United States); Krieg, Stefan [Bergische Univ., Wuppertal (Germany); Julich Supercomputing Centre, Julich (Germany); Laeuchli, Jesse [College of William and Mary, Williamsburg, VA (United States); Negele, John W. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Orginos, Kostas [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Pochinsky, Andrew [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Syritsyn, Sergey [Brookhaven National Lab. (BNL), Upton, NY (United States)
2015-08-26
We report a direct lattice QCD calculation of the strange nucleon electromagnetic form factors G^{s}_{E} and G^{s}_{M} in the kinematic range 0 ≤ Q^{2} ≤ 1.2GeV^{2}. For the first time, both G^{s}_{E} and G^{s}_{M} are shown to be nonzero with high significance. This work uses closer-to-physical lattice parameters than previous calculations, and achieves an unprecented statistical precision by implementing a recently proposed variance reduction technique called hierarchical probing. We perform model-independent fits of the form factor shapes using the z-expansion and determine the strange electric and magnetic radii and magnetic moment. As a result, we compare our results to parity-violating electron-proton scattering data and to other theoretical studies.
Pinto, Sérgio Alexandre; Gross, Franz
2009-01-01
We present the first calculations of the electromagnetic form factors of $^3$He and $^3$H within the framework of the Covariant Spectator Theory (CST). This first exploratory study concentrates on the sensitivity of the form factors to the strength of the scalar meson-nucleon off-shell coupling, known from previous studies to have a strong influence on the three-body binding energy. Results presented here were obtained using the complete impulse approximation (CIA), which includes contributions of relativistic origin that appear as two-body corrections in a non-relativistic framework, such as "Z-graphs", but omits other two and three-body currents. We compare our results to non-relativistic calculations augmented by relativistic corrections of ${\\cal O}(v/c)^2$.
Energy Technology Data Exchange (ETDEWEB)
Pinto, Sérgio Alexandre; Stadler, Alfred; Gross, Franz
2009-05-01
We present the first calculations of the electromagnetic form factors of ^{3}He and ^{3}H within the framework of the Covariant Spectator Theory (CST). This first exploratory study concentrates on the sensitivity of the form factors to the strength of the scalar meson-nucleon off-shell coupling, known from previous studies to have a strong influence on the three-body binding energy. Results presented here were obtained using the complete impulse approximation (CIA), which includes contributions of relativistic origin that appear as two-body corrections in a non-relativistic framework, such as "Z-graphs," but omits other two and three-body currents. Finally, we compare our results to non-relativistic calculations augmented by relativistic corrections of O(v/c)^{2}.
Silva, A; Urbano, D; Göke, K; Silva, Antonio; Kim, Hyun-CHul; Urbano, Diana; Goeke, Klaus
2005-01-01
We investigate three different axial-vector form factors of the nucleon, $G_A^{0}$, $G_A^3$, $G_A^8$, within the framework of the SU(3) chiral quark-soliton model, emphasizing their strangeness content. We take into account the rotational $1/N_c$ and linear strange quark ($m_s$) contributions using the symmetry-conserving SU(3) quantization and assuming isospin symmetry. The strange axial-vector form factor is also obtained and they all are discussed in the context of the parity-violating scattering of polarized electrons off the nucleon and its relevance to the strange vector form factors.
Nucleon form factors and moments of parton distributions in twisted mass lattice QCD
Alexandrou, C; Carbonell, J; Constantinou, M; Guichon, P; Harraud, P A; Jansen, K; Kallidonis, C; Korzec, T; Papinutto, M
2012-01-01
We present results on the electroweak form factors and on the lower moments of parton distributions of the nucleon, within lattice QCD using two dynamical flavors of degenerate twisted mass fermions. Results are obtained on lattices with three different values of the lattice spacings, namely a=0.089 fm, a=0.070 fm and a=0.056 fm, allowing the investigation of cut-off effects. The volume dependence is examined by comparing results on two lattices of spatial length L=2.1 fm and L=2.8 fm. The simulations span pion masses in the range of 260-470 MeV. Our results are renormalized non-perturbatively and the values are given in the MS-scheme at a scale mu=2 GeV.
Silva, Antonio; Kim, Hyun-Chul
2013-01-01
We investigate the flavor decomposition of the electromagnetic form factors of the nucleon, based on the chiral quark-soliton model with symmetry-conserving quantization. We consider the rotational 1/N_c and linear strange-quark mass (m_s) corrections. To extend the results to higher momentum transfer, we take into account the kinematical relativistic effects. We discuss the results of the flavor-decomposed electromagnetic form factors in comparison with the recent experimental data. In order to see the effects of the strange quark, we compare the SU(3) results with those of SU(2). We finally discuss the transverse charge densities for both unpolarized and polarized nucleons.
Sufian, Raza Sabbir; Brodsky, Stanley J; Deur, Alexandre; Dosch, Hans Günter
2016-01-01
We present a comprehensive analysis of the nucleon electromagnetic form factors and their flavor decomposition within the framework of light-front holographic QCD. We show that the inclusion of the higher Fock components $|qqqq\\bar{q}>$ has a significant effect on the spin-flip elastic Pauli form factor and almost zero effect on the spin-conserving Dirac form factor. We present light-front holographic QCD predictions of proton and neutron form factors in the momentum transfer range of $0\\leq Q^2 \\leq 20\\, \\text{GeV}^2$ and show that these predictions agree with the available experimental data with high accuracy. In order to correctly describe the Pauli form factor we need an admixture of a five quark state of about 30$\\%$ in the proton and about 40$\\%$ in the neutron. We also extract the nucleon charge and magnetic radii and perform a flavor decomposition of the nucleon electromagnetic form factors. The number of free parameters needed to describe the experimental nucleon form factors in the space-like domain...
Nucleon form factors and static properties of baryons in a quark model
Energy Technology Data Exchange (ETDEWEB)
Barik, N. (Department of Physics, Utkal University, Bhubaneswar 751004, Orissa, India (IN) ); Jena, S.N. (Department of Physics, Berhampur University, Berhampur 760007, Orissa, India (IN)); Rath, D.P. (Department of Physics, Aska Science College, Aska 761110, Orissa, India (IN))
1990-03-01
The nucleon electromagnetic form factors {ital G}{sub {ital E}}{sup {ital p}}(q{sup 2}), {ital G}{sub {ital M}}{sup {ital p}}(q{sup 2}), {ital G}{sub {ital M}}{sup {ital n}}(q{sup 2}), and the axial-vector form factor {ital G}{sub {ital A}}(q{sup 2}) are calculated in a simple independent-quark model based on the Dirac equation with a logarithmic confining potential of the form {ital V}{prime}({ital r})=(1+{gamma}{sup 0})a ln({ital r}/{ital b}). The respective rms radii associated with {ital G}{sub {ital E}}{sup {ital p}}(q{sup 2}) and {ital G}{sub {ital A}}(q{sup 2}) come out as ({l angle}{ital r}{sup 2}{r angle}{sub E}{sup P}){sup 1/2}=0.938 fm and {l angle}{ital r}{sub {ital A}}{sup 2}{r angle}{sup 1/2}=0.953 fm. The magnetic moments, charge radii, and axial-vector coupling-constant ratios for octet baryons are also calculated with the appropriate center-of-mass correction. The results so obtained are quite comparable to experimental data.
The electric dipole form factor of the nucleon in chiral perturbation theory to sub-leading order
Mereghetti, E.; de Vries, J.; Hockings, W. H.; Maekawa, C. M.; van Kolck, U.
2011-01-01
The electric dipole form factor (EDFF) of the nucleon stemming from the QCD (theta) over bar term and from the quark color-electric dipole moments is calculated in chiral perturbation theory to sub-leading order. This is the lowest order in which the isoscalar EDFF receives a calculable, non-analyti
Energy Technology Data Exchange (ETDEWEB)
N. Suzuki, T. Sato, T.-S. H. Lee
2010-10-01
We explain the application of a recently developed analytic continuation method to extract the electromagnetic transition form factors for the nucleon resonances ($N^*$) within a dynamical coupled-channel model of meson-baryon reactions.Illustrative results of the obtained $N^*\\rightarrow \\gamma N$ transition form factors, defined at the resonance pole positions on the complex energy plane, for the well isolated $P_{33}$ and $D_{13}$, and the complicated $P_{11}$ resonances are presented. A formula has been developed to give an unified representation of the effects due to the first two $P_{11}$ poles, which are near the $\\pi\\Delta$ threshold, but are on different Riemann sheets. We also find that a simple formula, with its parameters determined in the Laurent expansions of $\\pi N \\rightarrow \\pi N$ and $\\gamma N \\rightarrow\\pi N$ amplitudes, can reproduce to a very large extent the exact solutions of the considered model at energies near the real parts of the extracted resonance positions. We indicate the differences between our results and those extracted from the approaches using the Breit-Wigner parametrization of resonant amplitudes to fit the data.
Energy Technology Data Exchange (ETDEWEB)
Barik, N.; Dash, B.K.
1986-10-01
Nucleon charge and magnetic form factors G/sub E//sub ,//sub M//sup p//sup ,//sup n/(q/sup 2/) have been presented in a quark model with an equally mixed scalar and vector potential in harmonic form taking the pionic contributions into account. The static properties such as the magnetic moment, charge radius, and axial-vector coupling constant in the neutron-..beta..-decay process are shown to be in excellent agreement with the corresponding experimental values. The role of the finite extension of the quark-pion vertex in determining the charge radius and magnetic moment due to the pion cloud surrounding the nucleons has been studied.
Indian Academy of Sciences (India)
M MOUSAVI; M R SHOJAEI
2017-02-01
In this work, we have obtained energy levels and charge radius for the $\\beta$-stability line nucleus, in relativistic shell model. In this model, we considered a close shell for each nucleus containing double magicnumber and a single nucleon energy level. Here we have taken $^{41}$Ca with a single neutron in the $^{40}$Ca core as an illustrative example. Then we have selected the Eckart plus Hulthen potentials for interaction between the coreand the single nucleon. By using parametric Nikiforov–Uvarov (PNU) method, we have calculated the energy values and wave function. Finally, we have calculated the charge radius for 17O, $^{41}$Ca, $^{49}$Ca and $^{57}$Ni. Our results are in agreement with experimental values and hence this model can be applied for similar nuclei.
Nucleon form factors in an independent-quark model based on Dirac equation with power-law potential
Energy Technology Data Exchange (ETDEWEB)
Barik, N.; Das, M.
1986-01-01
The nucleon electromagnetic form factors G/sub E//sup p/(qS) and G/sub M//sup p/(qS) and the axial-vector form factor G/sub A/(qS) are investigated in a simple model of relativistic quarks confined by a vector-scalar mixed potential U/sub q/(r) = (1+el)(a/sup nu+1/r/sup / +V0) without taking into account the center-of-mass correction and the pion-cloud effects. The respective rms radii associated with G/sub E//sup p/(qS) and G/sub A/(qS) come out as
Energy Technology Data Exchange (ETDEWEB)
Jardillier, Johann [Lab. de Physique Corpusculaire, Clermont-Ferrand-2 Univ., 63 - Aubiere (France)
1999-09-21
In the quark model, the proton is described as a system of three quarks UUD. However, recent experiments (CERN, SLAC) have shown that the strange quarks may contribute in a significant way to the mass and the spin of the proton. The HAPPEX experiment gives one further knowledge about the question of the role the strange quarks play inside the proton. It measures parity violating asymmetry in the scattering of polarized electrons from a proton because the latter is sensitive to the contribution of the strange quarks to the electromagnetic form factors of the nucleon. The observed asymmetry is in the order of a few ppm (part per million). The main difficulty of the experiment is to identify, to estimate and to minimize, as much as possible, all the systematic effects which could give rise to false asymmetries. This thesis discusses the principle of the HAPPEX experiment, its implementation at the Jefferson Lab (JLab), the processing and the analysis of the data, the systematic errors, and finally presents the result of the first data taking (1999) and its present interpretation. The HAPPEX experiment has measured, at Q{sup 2} = 0.5 (GeV/c){sup 2}, a strange quarks contribution of (1.0 {+-} 2.3)% to the electromagnetic form factors of the nucleon. The statistics and the systematic effects (measure of the electron beam polarization and knowledge of the neutron electric form factor) contribute equally to the error. (author)
Parity-Violating Electron Scattering from 4He and the Strange Electric Form Factor of the Nucleon
Airapetian, A; Akopov, Z; Amarian, M; Ammosov, V V; Andrus, A; Aschenauer, E C; Augustyniak, W; Avakian, R; Avetisian, A; Avetissian, E; Bailey, P; Balin, D; Baturin, V; Beckmann, M; Belostotskii, S; Bernreuther, S; Bianchi, N; Blok, H P; Böttcher, Helmut B; Borisov, A; Borysenko, A; Bouwhuis, M; Brack, J; Brüll, A; Bryzgalov, V; Capitani, G P; Chen, T; Chiang, H C; Ciullo, G; Contalbrigo, M; Dalpiaz, P F; De Leo, R; Demey, M; De Nardo, L; De Sanctis, E; Devitsin, E G; Di Nezza, P; Dreschler, J; Düren, M; Ehrenfried, M; Elalaoui-Moulay, A; Elbakian, G; Ellinghaus, F; Elschenbroich, U; Fabbri, R; Fantoni, A; Feshchenko, A; Felawka, L; Fox, B; Frullani, S; Gapienko, G; Gapienko, V; Garibaldi, F; Garrow, K; Garutti, E; Gaskell, D; Gavrilov, G; Karibian, V; Graw, G; Grebenyuk, O; Greeniaus, L G; Gregor, I M; Hafidi, K; Hartig, M; Hasch, D; Heesbeen, D; Henoch, M; Hertenberger, R; Hesselink, W H A; Hillenbrand, A; Hoek, M; Holler, Y; Hommez, B; Iarygin, G; Ivanilov, A; Izotov, A; Jackson, H E; Jgoun, A; Kaiser, R; Kinney, E; Kiselev, A; Kopytin, M; Korotkov, V; Kozlov, V; Krauss, B; Krivokhizhin, V G; Lagamba, L; Lapikas, L; Laziev, A; Lenisa, P; Liebing, P; Linden-Levy, L A; Lipka, K; Lorenzon, W; Lü, H; Lü, J; Lu, S; Ma, B Q; Maiheu, B; Makins, N C R; Mao, Y; Marianski, B; Marukyan, H; Masoli, F; Mexner, V; Meyners, N; Miklukho, O; Miller, C A; Miyachi, Y; Muccifora, V; Nagaitsev, A; Nappi, E; Naryshkin, Yu; Nass, A; Negodaev, M; Nowak, Wolf-Dieter; Oganessyan, K; Ohsuga, H; Pickert, N; Potashov, S Yu; Potterveld, D H; Raithel, M; Reggiani, D; Reimer, P E; Reischl, A; Reolon, A R; Riedl, C; Rith, K; Rosner, G; Rostomyan, A; Rubacek, L; Rubin, J; Ryckbosch, D; Salomatin, Y; Sanjiev, I; Savin, I; Schäfer, A; Schill, C; Schnell, G; Schüler, K P; Seele, J; Seidl, R; Seitz, B; Shanidze, R; Shearer, C; Shibata, T A; Shutov, V; Simani, M C; Sinram, K; Stancari, M; Statera, M; Steffens, E; Steijger, J J M; Stenzel, H; Stewart, J; Stinzing, F; Stösslein, U; Tait, P; Tanaka, H; Taroian, S P; Tchuiko, B; Terkulov, A R; Tkabladze, A; Trzcinski, A; Tytgat, M; Vandenbroucke, A; Van der Nat, P B; van der Steenhoven, G; Vetterli, M C; Vikhrov, V; Vincter, M G; Vogel, C; Vogt, M; Volmer, J; Weiskopf, C; Wendland, J; Wilbert, J; Ye, Y; Ye, Z; Yen, S; Zihlmann, B; Zupranski, P; Aniol, K A; Armstrong, D S; Averett, T; Benaoum, H; Bertin, P Y; Burtin, E; Cahoon, J; Cates, G D; Chang, C C; Chao Yu Chiu; Chen, J P; Seonho Choi; Chudakov, E; Craver, B; Cusanno, F; Decowski, P; Deepa, D; Ferdi, C; Feuerbach, R J; Finn, J M; Fuoti, K; Gilman, R; Glamazdin, A; Gorbenko, V; Grames, J M; Hansknecht, J; Higinbotham, D W; Holmes, R; Holmstrom, T; Humensky, T B; Ibrahim, H; De Jager, C W; Jiang, X; Kaufman, L J; Kelleher, A; Kolarkar, A; Kowalski, S; Kumar, K S; Lambert, D; La Violette, P; Le Rose, J; Lhuillier, D; Liyanage, N; Margaziotis, D J; Mazouz, M; McCormick, K; Meekins, D G; Meziani, Z E; Michaels, R; Moffit, B; Monaghan, P; Munoz-Camacho, C; Nanda, S; Nelyubin, V V; Neyret, D; Paschke, K D; Poelker, M; Pomatsalyuk, R I; Qiang, Y; Reitz, B; Roche, J; Saha, A; Singh, J; Snyder, R; Souder, P A; Subedi, R; Suleiman, R; Sulkosky, V; Tobias, W A; Urciuoli, G M; Vacheret, A; Voutier, E; Wang, K; Wilson, R; Wojtsekhowski, B; Zheng, X
2006-01-01
We have measured the parity-violating electroweak asymmetry in the elastic scattering of polarized electrons from ^4He at an average scattering angle = 5.7 degrees and a four-momentum transfer Q^2 = 0.091 GeV^2. From these data, for the first time, the strange electric form factor of the nucleon G^s_E can be isolated. The measured asymmetry of A_PV = (6.72 +/- 0.84 (stat) +/- 0.21 (syst) parts per million yields a value of G^s_E = -0.038 +/- 0.042 (stat) +/- 0.010 (syst), consistent with zero.
Contribution of Quark Structure Term in Nucleon Electric and Magnetic Form Factors
Institute of Scientific and Technical Information of China (English)
WANG Hong-Min; ZHANG Ben-Ai
2004-01-01
The constituent quarks in the nucleon have always been considered as a point-like particle in the relativistic constituent quark model. However its calculation results of GnE agree poorly with the new experimental data. The electromagnetic structure of light front constituent quarks is considered in this paper. We find that the calculation results have good agreement with the new experimental data of GnE after considering the contribution of the quark structure term. This treatment seems to be able to improve the fit to experimental data of Gep/GMp, /Q2F2p/kpF1p,and Gen/GMn as well.
Contribution of Quark Structure Term in Nucleon Electric and Magnetic Form Factors
Institute of Scientific and Technical Information of China (English)
WANGHong-Min; ZHANGBen-Ai
2004-01-01
The constituent quarks in the nucleon have always been considered as a point-like particle in the relativisticconstituent quark model. However its calculation results of GEn agree poorly with the new experimental data. Theelectromagnetic structure of light front constituent quarks is considered in this paper. We find that the calculationresults have good agreement with the new experimental data of GEn after considering the contribution of the quarkstructure term. This treatment seems to be able to improve the fit to experimental data of GEp/GMp,√Q2F2p/kpF1p,and GEn/GMn as well.
Energy Technology Data Exchange (ETDEWEB)
Alexandrou, C. [Univ. of Cyprus, Nicosia (Cyprus). Dept. of Physics; Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; Constantinou, M.; Kallidonis, C. [Univ. of Cyprus, Nicosia (Cyprus). Dept. of Physics; Dinter, S.; Drach, V. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Jansen, K. [Univ. of Cyprus, Nicosia (Cyprus). Dept. of Physics; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Koutsou, G. [Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; Collaboration: European Twisted Mass Collaboration
2013-04-15
We present results on the axial and the electromagnetic form factors of the nucleon, as well as, on the first moments of the nucleon generalized parton distributions using maximally twisted mass fermions. We analyze two N{sub f}=2+1+1 ensembles having pion masses of 210 MeV and 354 MeV at two values of the lattice spacing. The lattice scale is determined using the nucleon mass computed on a total of 18 N{sub f}=2+1+1 ensembles generated at three values of the lattice spacing, a. The renormalization constants are evaluated non-perturbatively with a perturbative subtraction of O(a''2)-terms. The moments of the generalized parton distributions are given in the MS scheme at a scale of {mu}=2 GeV. We compare with recent results obtained using different discretization schemes. The implications on the spin content of the nucleon are also discussed.
Does \\Sigma -\\Sigma -\\alpha Form a Quasi-Bound State?
Htun Oo, H; Kamada, H; Glöckle, W
2004-01-01
We have investigated the possible existence of a quasi-bound state for the \\Sigma -\\Sigma -\\alpha system in the framework of Faddeev calculations. We are particularly interested in the state of total iso-spin T=2, since for an inert \\alpha particle there is no strong conversion to \\Xi -N-\\alpha or \\Lambda -\\Lambda -\\alpha possible. A \\Sigma -\\alpha optical potential based on Nijmegen model D and original \\Sigma -\\Sigma interactions of the series of Nijmegen potentials NSC97 as well a simulated Gaussian type versions thereof are used. Our investigation of the \\Sigma -\\Sigma -\\alpha system leads to a quasi bound state where, depending on the potential parameters, the energy ranges between -1.4 and -2.4 MeV and the level width is about 0.2MeV.
Neutrinos and nucleon structure
Sehgal, L M
1979-01-01
The study of neutrino interactions in matter is yielding a wealth of information on the form factors and structure functions of the nucleon. These data allow tests of models of nucleon structure and of dynamical theories of quarks and gluons. The author attempts a critical appraisal of recent facts and their impact on our theoretical understanding. (35 refs).
Energy Technology Data Exchange (ETDEWEB)
Aniol, Konrad; Armstrong, David; Averett, Todd; Benaoum, Hachemi; Bertin, Pierre; Burtin, Etienne; Cahoon, Jason; Cates, Gordon; Chang, C; Chao, Yu-Chiu; Chen, Jian-Ping; Choi, Seonho; Chudakov, Eugene; Craver, Brandon; Cusanno, Francesco; Decowski, Piotr; Deepa, Deepa; Ferdi, Catherine; Feuerbach, Robert; Finn, John; Frullani, Salvatore; Fuoti, Kirsten; Garibaldi, Franco; Gilman, Ronald; Glamazdin, Oleksandr; Gorbenko, V; Grames, Joseph; Hansknecht, John; Higinbotham, Douglas; Holmes, Richard; Holmstrom, Timothy; Humensky, Thomas; Ibrahim, Hassan; Jager, Cornelis De; Jiang, Xiaodong; Kaufman, Lisa; Kelleher, Aidan; Kolarkar, Ameya; Kowalski, Stanley; Kumar, Krishna; Lambert, Daniel; Laviolette, Peter; LeRose, John; Lhuillier, David; Liyanage, Nilanga; Margaziotis, Demetrius; Mazouz, Malek; McCormick, Kathy; Meekins, David; Meziani, Zein-Eddine; Michaels, Robert; Moffit, Bryan; Monaghan, Peter; Camacho, Carlos Munoz; Nanda, Sirish; Nelyubin, Vladimir; Neyret, Damien; Paschke, Kent; Poelker, Benard; Pomatsalyuk, Roman; Qiang, Yi; Reitz, Bodo; Roche, Julie; Saha, Arunava; Singh, Jaideep; Snyder, Ryan; Souder, Paul; Subedi, Ramesh; Suleiman, Riad; Sulkosky, Vincent; Tobias, William; Urciuoli, Guido; Vacheret, Antonin; Voutier, Eric; Wang, Kebin; Wilson, R; Wojtsekhowski, Bogdan; Zheng, Xiaochao
2005-06-01
We have measured the parity-violating electroweak asymmetry in the elastic scattering of polarized electrons from {sup 4}He at an average scattering angle {theta}{sub lab} = 5.7 degrees and a four-momentum transfer Q{sup 2} = 0.091 GeV{sup 2}. From these data, for the first time, the strange electric form factor of the nucleon G{sub E}{sup s} can be isolated. The measured asymmetry of A{sub PV} = 6.72 {+-} 0.84 (stat) {+-} 0.21 (syst) parts per million yields a value of G{sub E}{sup s} = -0.038 {+-} 0.042 (stat) {+-} 0.010 (syst), consistent with zero.
Energy Technology Data Exchange (ETDEWEB)
Schaub, John [New Mexico State Univ., Las Cruces, NM (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2010-07-01
We studied the strange contributions to the elastic vector and axial form factors of the nucleon using all available elastic electroweak scattering data. Specifically, we combine elastic nu-p and nubar-p scattering cross-section data from the Brookhaven E734 experiment with elastic ep and quasi-elastic ed and e-^{4}He scattering parity-violating asymmetry data from the SAMPLE, HAPPEx, PVA4 and G0 experiments. We not only determined these form factors at individual values of momentum-transfer (Q^{2}), as other groups have done recently, but also fit the Q^{2}-dependence of these form factors using simple functional forms. I present an overview of the G^{0} backward-angle experiment as well as the results of these fits using existing data, along with some expectations of how we can improve our knowledge of these form factors if the MicroBooNE collaboration completes their experiment.
Göke, K; Ossmann, J; Schweitzer, P; Silva, A; Urbano, D
2007-01-01
The nucleon form factors of the energy-momentum tensor are studied in the large-Nc limit in the framework of the chiral quark-soliton model for model parameters that simulate physical situations in which pions are heavy. This allows for a direct comparison to lattice QCD results.
Duda, G; Kemper, A; Duda, Gintaras; Gondolo, Paolo; Kemper, Ann
2006-01-01
Theoretical calculations of neutralino cross sections with various nuclei are of great interest to direct dark matter searches such as CDMS, EDELWEISS, ZEPLIN, and other experiments. These cross sections and direct detection rates are generally computed with standard, one or two parameter model-dependent nuclear form factors, which may not exactly mirror the actual form factor for the particular nucleus in question. As is well known, elastic electron scattering can allow for very precise determinations of nuclear form factors and hence nuclear charge densities for spherical or near-spherical nuclei. We use charge densities derived from elastic electron scattering data to calculate model independent form factors for various target nuclei important in dark matter searches, such as Si, Ge, S, Ca and others. We have found that for nuclear recoils in the range of 1-100 keV significant differences in cross sections and rates exist when the model independent form factors are used. DarkSUSY, a publicly-available adva...
Bianconi, Andrea; Tomasi-Gustafsson, Egle
2017-01-01
As is well known, spacelike proton form factors expressed in the Breit frame may be interpreted as the Fourier transform of static space distributions of electric charge and current. In particular, the electric form factor is simply the Fourier transform of the charge distribution F (q ) =∫ei q ⃗.r ⃗ρ (r ) d3r . We do not have an intuitive interpretation of the same level of simplicity for the proton timelike form factor appearing in the reactions e+e-↔p ¯p . However, one may suggest that, in the center-of-mass frame, where qμxμ=q t , a timelike electric form factor is the Fourier transform F (q ) =∫ei q tR (t ) d t of a function R (t ) expressing how the electric properties of the forming (or annihilating) proton-antiproton pair evolve in time. Here we analyze in depth this idea and show that the functions ρ (r ) and R (t ) can be formally written as the time and space integrals of a unique correlation function depending on both time and space coordinates.
Bianconi, Andrea
2016-01-01
As well known, spacelike proton form factors expressed in the Breit frame may be interpreted as the Fourier transform of static space distributions of electric charge and current. In particular, the electric form factor is simply the Fourier transform of the charge distribution $F(q)=\\int e^{i\\vec q \\cdot \\vec r} \\rho(r)d^3r$. We don't have an intuitive interpretation of the same level of simplicity for the proton timelike form factor appearing in the reactions $e^+e^-\\leftrightarrow \\bar{p}p$. However, one may suggest that in the center of mass (CM) frame, where $q_\\mu x^\\mu =qt$, a timelike electric form factor is the Fourier transform $F(q) =\\int e^{iqt} R(t)dt$ of a function $R(t)$ expressing how the electric properties of the forming (or annihilating) proton-antiproton pair evolve in time. Here we analyze in depth this idea, show that the functions $\\rho(r)$ and $R(t)$ can be formally written as the time and space integrals of a unique correlation function depending on both time and space coordinates.
A high-statistics study of the nucleon EM form factors, axial charge and quark momentum fraction
Jäger, B; Capitani, S; Della Morte, M; Djukanovic, D; von Hippel, G; Knippschild, B; Meyer, H B; Wittig, H
2013-01-01
We present updated results for the nucleon axial charge and electromagnetic (EM) form factors, which include a significant increase in statistics for all ensembles (up to 4000 measurements), as well as the addition of ensembles with pion masses down to $m_\\pi\\sim195$ MeV. We also present results for the average quark momentum fraction. The new data allows us to perform a thorough study of the systematic effects encountered in the lattice extraction. We concentrate on systematic effects due to excited-state contaminations for each of the quantities, which we check using several different time separations between the operators at the source and sink through a comparison of plateau fits and the summed operator insertion method (which provides a mechanism to suppress the excited-state contamination). We confirm our earlier finding that a reliable extraction of the axial charge must be based on a method which eliminates excited-state contaminations. Similar conclusions apply to our EM form factor calculations . Th...
Clean measurements of the nucleon axial-vector and free-neutron magnetic form factors
Energy Technology Data Exchange (ETDEWEB)
Deur, Alexandre P. [JLAB
2013-11-01
We discuss the feasibility of a weak charged current experiment using a low energy electron beam. A first goal is to measure the Q^2 dependence of the axial-vector form factor g_a(Q^2). It can be measured model-independently and as robustly as for electromagnetic form factors from typical electron scattering experiments, in contrast to the methods used so far to measure g_a(Q^2). If g_a(Q^2) follows a dipole form, the axial mass can be extracted with a better accuracy than the world data altogether. The most important detection equipment would be a segmented neutron detector with good momentum and angular resolution that is symmetric about the beam direction, and covers a moderate angular range. A high intensity beam (100 uA) is necessary. Beam polarization is highly desirable as it provides a clean measurement of the backgrounds. Beam energies between 70 and 110 MeV are ideal. This range would provide a Q^2 mapping of g_a between 0.01
Generation of self-clusters of galectin-1 in the farnesyl-bound form
Yamaguchi, Kazumi; Niwa, Yusuke; Nakabayashi, Takakazu; Hiramatsu, Hirotsugu
2016-09-01
Ras protein is involved in a signal transduction cascade in cell growth, and cluster formation of H-Ras and human galectin-1 (Gal-1) complex is considered to be crucial to achieve its physiological roles. It is considered that the complex is formed through interactions between Gal-1 and the farnesyl group (farnesyl-dependent model), post-translationally modified to the C-terminal Cys, of H-Ras. We investigated the role of farnesyl-bound Gal-1 in the cluster formation by analyzing the structure and properties of Gal-1 bound to farnesyl thiosalicylic acid (FTS), a competitive inhibitor of the binding of H-Ras to Gal-1. Gal-1 exhibited self-cluster formation upon interaction with FTS, and small- and large-size clusters were formed depending on FTS concentration. The galactoside-binding pocket of Gal-1 in the FTS-bound form was found to play an important role in small-size cluster formation. Large-size clusters were likely formed by the interaction among the hydrophobic sites of Gal-1 in the FTS-bound form. The present results indicate that Gal-1 in the FTS-bound form has the ability to form self-clusters as well as intrinsic lectin activity. Relevance of the self-clustering of FTS-bound Gal-1 to the cluster formation of the H-Ras-Gal-1complex was discussed by taking account of the farnesyl-dependent model and another (Raf-dependent) model.
Determination of the Axial Nucleon Form Factor from the MiniBooNE Data
Energy Technology Data Exchange (ETDEWEB)
Butkevich, A. V. [Moscow, INR; Perevalov, D. [Fermilab
2014-03-26
Both neutrino and antineutrino charged-current quasi-elastic scattering on a carbon target are studied to investigate the nuclear effect on the determination of the axial form factor F_A(Q^2). A method for extraction of F_A(Q^2) from the flux-integrated $d\\sigma/dQ^2$ cross section of (anti)neutrino scattering on nuclei is presented. Data from the MiniBooNE experiment are analyzed in the relativistic distorted-wave impulse approximation, Fermi gas model, and in the Fermi gas model with enhancements in the transverse cross section. We found that the values of the axial form factor, extracted in the impulse approximation and predicted by the dipole approximation with the axial mass M_A~1.37 GeV are in good agreement. On the other hand, the Q^2-dependence of F_A extracted in the approach with the transverse enhancement is found to differ significantly from the dipole approximation.
Precision Measurements of the Nucleon Strange Form Factors at Q^2 ~0.1 GeV^2
Acha, A; Armstrong, D S; Arrington, J; Averett, T; Bailey, S L; Barber, J; Beck, A; Benaoum, H; Benesch, J; Bertin, P Y; Bosted, P; Butaru, F; Burtin, E; Cates, G D; Chao Yu Chiu; Chen, J P; Chudakov, E; Cisbani, E; Craver, B; Cusanno, F; De Leo, R; Decowski, P; Deur, A; Feuerbach, R J; Finn, J M; Frullani, S; Fuchs, S A; Fuoti, K; Gilman, R; Glesener, L E; Grimm, K; Grames, J M; Hansen, J O; Hansknecht, J; Higinbotham, D W; Holmes, R; Holmstrom, T; Ibrahim, H; De Jager, C W; Jiang, X; Katich, J; Kaufman, L J; Kelleher, A; King, P M; Kolarkar, A; Kowalski, S; Kuchina, E; Kumar, K S; Lagamba, L; La Violette, P; Le Rose, J; Lindgren, R A; Lhuillier, D; Liyanage, N; Margaziotis, D J; Markowitz, P; Meekins, D G; Meziani, Z E; Michaels, R; Moffit, B; Nanda, S; Nelyubin, V V; Otis, K; Paschke, K D; Phillips, S K; Poelker, M; Pomatsalyuk, R I; Potokar, M; Prok, Y; Puckett, A; Qian, Y; Qiang, Y; Reitz, B; Roche, J; Saha, A; Sawatzky, B; Singh, J; Slifer, K J; Sirca, S; Snyder, R; Solvignon, P; Souder, P A; Stutzman, M L; Subedi, R; Suleiman, R; Sulkosky, V; Tobias, W A; Ulmer, P E; Urciuoli, G M; Wang, K; Whitbeck, A; Wilson, R; Wojtsekhowski, B; Yao, H; Ye, Y; Zhan, X; Zheng, X; Zhou, S; Ziskin, V
2006-01-01
We report new measurements of the parity-violating asymmetry A_PV in elastic scattering of 3 GeV electrons off hydrogen and 4He targets with ~0.6 degrees. The 4He result is A_PV = (+6.40 +/- 0.23 (stat) +/- 0.12 (syst)) x10^-6. The hydrogen result is A_PV = (-1.58 +/- 0.12 (stat) +/- 0.04 (syst)) x10^-6. These results significantly improve constraints on the electric and magnetic strange form factors G_E^s and G_M^s. We extract G_E^s = 0.002 +/- 0.014 +/- 0.007 at = 0.077 GeV^2, and G_E^s + 0.09 G_M^s = 0.007 +/- 0.011 +/- 0.006 at = 0.109 GeV^2, providing new limits on the role of strange quarks in the nucleon charge and magnetization distributions.
Precision Measurements of the Nucleon Strange Form Factors at Q^2 ~ 0.1GeV^2
Energy Technology Data Exchange (ETDEWEB)
Armando Acha Quimper; Konrad Aniol; David Armstrong; John Arrington; Todd Averett; Stephanie Bailey; James Barber; Arie Beck; Hachemi Benaoum; Jay Benesch; Pierre Bertin; Peter Bosted; Florentin Butaru; Etienne Burtin; Gordon Cates; Yu-Chiu Chao; Jian-Ping Chen; Eugene Chudakov; Evaristo Cisbani; Brandon Craver; Francesco Cusanno; Raffaele De Leo; Piotr Decowski; Alexandre Deur; Robert Feuerbach; John Finn; Salvatore Frullani; Sabine Fuchs; Kirsten Fuoti; Ronald Gilman; Lindsay Glesener; Klaus Grimm; Joseph Grames; Jens-ole Hansen; John Hansknecht; Douglas Higinbotham; Richard Holmes; Timothy Holmstrom; Hassan Ibrahim; Cornelis De Jager; Xiaodong Jiang; Joseph Katich; Lisa Kaufman; Aidan Kelleher; Paul King; Ameya Kolarkar; Stanley Kowalski; Elena Kuchina; Krishna Kumar; Luigi Lagamba; Peter Laviolette; John LeRose; Richard Lindgren; David Lhuillier; Nilanga Liyanage; Demetrius Margaziotis; Pete Markowitz; David Meekins; Zein-Eddine Meziani; Robert Michaels; Bryan Moffit; Sirish Nanda; Vladimir Nelyubin; Keith Otis; Kent Paschke; Sasha Philips; Benard Poelker; Roman Pomatsalyuk; Milan Potokar; Yelena Prok; Andrew Puckett; Y. Qian; Yi Qiang; Bodo Reitz; Julie Roche; Arunava Saha; Bradley Sawatzky; Jaideep Singh; Karl Slifer; Simon Sirca; Ryan Snyder; Patricia Solvignon; Paul Souder; Marcy Stutzman; Ramesh Subedi; Riad Suleiman; Vincent Sulkosky; William Tobias; Paul Ulmer; Guido Urciuoli; Kebin Wang; Richard Wilson; Bogdan Wojtsekhowski; Huan Yao; Yunxiu Ye; Xiaohui Zhan; Xiaochao Zheng; Shi-Lin Zhu; Vitaliy Ziskin
2006-09-11
We report new measurements of the parity-violating asymmetry A{sub PV} in elastic scattering of 3 GeV electrons off hydrogen and {sup 4}He targets with ({theta}{sub lab}) {approx} 6.0{sup o}. The {sup 4}He result is A{sub PV} = (+6.40 {+-} 0.23 (stat) {+-} 0.12 (syst)) x 10{sup -6}. The hydrogen result is A{sub PV} = (-1.58 {+-} 0.12 (stat) {+-} 0.04 (syst)) x 10{sup -6}. These results significantly improve constraints on the electric and magnetic strange form factors G{sub E}{sup s} and G{sub M}{sup s}. We extract G{sub E}{sup s} = 0.002 {+-} 0.014 {+-} 0.007 at (Q{sup 2}) = 0.077 GeV{sup 2}, and G{sub E}{sup s} + 0.09 G{sub M}{sup s} = 0.007 {+-} 0.011 {+-} 0.006 at (Q{sup 2}) = 0.109 GeV{sup 2}, providing new limits on the role of strange quarks in the nucleon charge and magnetization distributions.
Nucleon-nucleon collision profile and cross section fluctuations
Rybczynski, Maciej
2013-01-01
The nucleon-nucleon collision profile, being the basic entity of the wounded nucleon model, is usually adopted in the form of hard sphere or the Gaussian shape. We suggest that the cross section fluctuations given by the gamma distribution leads to the profile function which smoothly ranges between the both limiting forms. Examples demonstrating sensitivity of profile function on cross section fluctuations are discussed.
[A primary study on chemical bound forms of copper and zinc in wheat and rape].
Wang, J; Zhu, Q; Liu, Z
2000-08-01
Sequential extraction method was used to analyze and distinguish various chemical bound forms of copper and zinc in rape and wheat. The results show that in these two crops, copper was mainly in the form of wate soluble and ethanol soluble, which can be easily transferred in crops. The total content of various chemical bound forms of copper was higher in aboveground part than in underground part, and their content was decreased in the order of water soluble form (W.S. form) > residual form (Re. form) > ethanol soluble form(Eth. S. form) > acid soluble form (A.S. form). Zinc was mainly in the form of acid soluble, which is hard to be transferred in crops. The total content of various chemical bound forms of zinc was lower in aboveground part than in roots, and their content was decreased in the order of A.S. form > Re. form > W.S. form > Eth. S. form. In comparing with copper, a large amount of zinc was enriched in seeds and pods of rape.
Energy Technology Data Exchange (ETDEWEB)
Miceli, Tia [New Mexico State U.; Papavassiliou, Vassili [New Mexico State U.; Pate, Stephen [New Mexico State U.; Woodruff, Katherine [New Mexico State U.
2015-11-01
The MicroBooNE neutrino experiment at Fermilab is constructing a liquid-argon time-projection chamber for the Booster Neutrino Beam to study neutrino oscillations and interactions with nucleons and nuclei, starting in 2014. We describe the experiment and focus on its unique abilities to measure cross sections at low values of $Q^2$. In particular, the neutral-current elastic scattering cross section is especially interesting, as it is sensitive to the contribution of the strange sea quark spin to the angular-momentum of the nucleon, $\\Delta s$. Implications for dark-matter searches are discussed.
Local Quark-Hadron Duality and Magnetic Form Factors of Bound Proton
Institute of Scientific and Technical Information of China (English)
WANG Hong-Min; ZHANG Ben-Ai
2005-01-01
We discuss the consequence of local duality for elastic scattering, and derive a model-independent equation between structure functions at x ～ 1 and elastic electromagnetic form factors. Then the electromagnetic form factors of proton are discussed using the quark-hadron duality theory. We also debate the form factor of proton in a bound state.It may be an effective approach to study the form factor of proton in media.
Anomalous delta-type electric and magnetic two-nucleon interactions
Mandache, Nicolae Bogdan
2009-01-01
Anomalous delta-type interactions, of both electric and magnetic nature, are introduced between the overlapping peripheral structures of the nucleons, which may explain the spin-triplet deuteron state and the absence of other nucleon-nucleon bound states.
Transversity of quarks in a nucleon
Indian Academy of Sciences (India)
K Bora; D K Choudhury
2003-11-01
The transversity distribution of quarks in a nucleon is one of the three fundamental distributions, that characterize nucleon’s properties in hard scattering processes at leading twist (twist 2). It measures the distribution of quark transverse spin in a nucleon polarized transverse to its (inﬁnite) momentum. It is a chiral-odd twist-two distribution function – gluons do not couple to it. Quarks in a nucleon/hadron are relativistically bound and transversity is a measure of the relativistic nature of bound quarks in a nucleon. In this work, we review some important aspects of this less familiar distribution function which has not been measured experimentally so far.
27 CFR 73.33 - Am I legally bound by a form I sign electronically?
2010-04-01
... TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY (CONTINUED) PROCEDURES AND PRACTICES ELECTRONIC SIGNATURES; ELECTRONIC SUBMISSION OF FORMS Electronic Filing of Documents with TTB § 73.33 Am I legally bound... paper document submitted to satisfy the same reporting requirement. Persons using electronic...
Energy Technology Data Exchange (ETDEWEB)
Simonetti, Angelita [IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre National de la Recherche Scientifique (CNRS) UMR 7104/Institut National de la Santé de la Recherche Médicale - INSERM U964/Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch (France); Marzi, Stefano [Architecture et Réactivité de l’ARN, UPR 9002 CNRS, IBMC (Institute of Molecular and Cellular Biology), 15 Rue R. Descartes, 67084 Strasbourg, France, Université de Strasbourg, 67000 Strasbourg (France); Fabbretti, Attilio [University of Camerino, 62032 Camerino (Monaco) (Italy); Hazemann, Isabelle; Jenner, Lasse [IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre National de la Recherche Scientifique (CNRS) UMR 7104/Institut National de la Santé de la Recherche Médicale -INSERM U964/Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch (France); Urzhumtsev, Alexandre [IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre National de la Recherche Scientifique (CNRS) UMR 7104/Institut National de la Santé de la Recherche Médicale - INSERM U964/Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch (France); Université de Lorraine, 54506 Vandoeuvre-lès-Nancy (France); Gualerzi, Claudio O. [University of Camerino, 62032 Camerino (Monaco) (Italy); Klaholz, Bruno P., E-mail: klaholz@igbmc.fr [IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre National de la Recherche Scientifique (CNRS) UMR 7104/Institut National de la Santé de la Recherche Médicale - INSERM U964/Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch (France)
2013-06-01
The crystal structures of the eubacterial translation initiation factor 2 in apo form and with bound GDP and GTP reveal conformational changes upon nucleotide binding and hydrolysis, notably of the catalytically important histidine in the switch II region. Translation initiation factor 2 (IF2) is involved in the early steps of bacterial protein synthesis. It promotes the stabilization of the initiator tRNA on the 30S initiation complex (IC) and triggers GTP hydrolysis upon ribosomal subunit joining. While the structure of an archaeal homologue (a/eIF5B) is known, there are significant sequence and functional differences in eubacterial IF2, while the trimeric eukaryotic IF2 is completely unrelated. Here, the crystal structure of the apo IF2 protein core from Thermus thermophilus has been determined by MAD phasing and the structures of GTP and GDP complexes were also obtained. The IF2–GTP complex was trapped by soaking with GTP in the cryoprotectant. The structures revealed conformational changes of the protein upon nucleotide binding, in particular in the P-loop region, which extend to the functionally relevant switch II region. The latter carries a catalytically important and conserved histidine residue which is observed in different conformations in the GTP and GDP complexes. Overall, this work provides the first crystal structure of a eubacterial IF2 and suggests that activation of GTP hydrolysis may occur by a conformational repositioning of the histidine residue.
Invariant Measures and Asymptotic Gaussian Bounds for Normal Forms of Stochastic Climate Model
Institute of Scientific and Technical Information of China (English)
Yuan YUAN; Andrew J.MAJDA
2011-01-01
The systematic development of reduced low-dimensional stochastic climate models from observations or comprehensive high dimensional climate models is an important topic for atmospheric low-frequency variability, climate sensitivity, and improved extended range forecasting. Recently, techniques from applied mathematics have been utilized to systematically derive normal forms for reduced stochastic climate models for low-frequency variables. It was shown that dyad and multiplicative triad interactions combine with the climatological linear operator interactions to produce a normal form with both strong nonlinear cubic dissipation and Correlated Additive and Multiplicative (CAM) stochastic noise. The probability distribution functions (PDFs) of low frequency climate variables exhibit small but significant departure from Gaussianity but have asymptotic tails which decay at most like a Gaussian. Here, rigorous upper bounds with Gaussian decay are proved for the invariant measure of general normal form stochastic models. Asymptotic Gaussian lower bounds are also established under suitable hypotheses.
Das, S; Kumar, G S; Maiti, M
1999-02-22
The interaction of sanguinarine and ethidium with right-handed (B-form), left-handed (Z-form) and left-handed protonated (designated as H(L)-form) structures of poly(dG-dC).poly(dG-dC) and poly(dG-me5dC).poly(dG-me5dC) was investigated by measuring the circular dichroism and UV absorption spectral analysis. Both sanguinarine and ethidium bind strongly to the B-form DNA and convert the Z-form and the H(L)-form back to the bound right-handed form. Circular dichroic data also show that the conformation at the binding site is right-handed, even though adjacent regions of the polymer have a left-handed conformation either in Z-form or in H(L)-form. Both the rate and extent of B-form to Z-form transition were decreased by sanguinarine and ethidium under ionic conditions that otherwise favour the left-handed conformation of the polynucleotides. The rate of decrease is faster in the case of ethidium as compared to that of sanguinarine. Scatchard analysis of the spectrophotometric data shows that sanguinarine binds strongly to both the polynucleotides in a non-cooperative manner under B-form conditions, in sharp contrast to the highly-cooperative binding under Z-form and H(L)-form conditions. Correlation of binding isotherms with circular dichroism data indicates that the cooperative binding of sanguinarine under the Z-form and the H(L)-form conditions is associated with a sequential conversion of the polymer from a left-handed to a bound right-handed conformation. Determination of bound alkaloid concentration by spectroscopic titration technique and the measurement of circular dichroic spectra have enabled us to calculate the number of base pairs of Z-form and H(L)-form that adopt a right-handed conformation for each bound alkaloid. Analysis reveals that 2-3 base pairs (bp) of Z-form of poly(dG-dC).poly(dG-dC) and poly(dG-me5dC).poly(dG-me5dC) switch to the right-handed form for each bound sanguinarine, while approximately same number of base pairs switch to the bound
Electromagnetic Excitation of Nucleon Resonances
Tiator, L; Kamalov, S S; Vanderhaeghen, M
2011-01-01
Recent progress on the extraction of electromagnetic properties of nucleon resonance excitation through pion photo- and electroproduction is reviewed. Cross section data measured at MAMI, ELSA, and CEBAF are analyzed and compared to the analysis of other groups. On this basis, we derive longitudinal and transverse transition form factors for most of the four-star nucleon resonances. Furthermore, we discuss how the transition form factors can be used to obtain empirical transverse charge densities. Contour plots of the thus derived densities are shown for the Delta, Roper, S11, and D13 nucleon resonances.
Coordination of copper to the membrane-bound form of α-synuclein.
Dudzik, Christopher G; Walter, Eric D; Abrams, Benjamin S; Jurica, Melissa S; Millhauser, Glenn L
2013-01-08
Aggregation of the 140-amino acid protein α-synuclein (α-syn) is linked to the development of Parkinson's disease (PD). α-Syn is a copper binding protein with potential function as a regulator of metal-dependent redox activity. Epidemiological studies suggest that human exposure to excess copper increases the incidence of PD. α-Syn exists in both solution and membrane-bound forms. Previous work evaluated the Cu(2+) uptake for α-syn in solution and identified Met1-Asp2 and His50 as primary contributors to the coordination shell, with a dissociation constant of approximately 0.1 nM. When bound to the membrane bilayer, α-syn takes on a predominantly helical conformation, which spatially separates His50 from the N-terminus of the protein and is therefore incompatible with the copper coordination geometry of the solution state. Here we use circular dichroism and electron paramagnetic resonance (continuous wave and pulsed) to evaluate the coordination of copper to the membrane-bound form of α-syn. In this molecular environment, Cu(2+) binds exclusively to the N-terminus of the protein (Met1-Asp2) with no participation from His50. Copper does not alter the membrane-bound α-syn conformation or enhance the release of the protein from the bilayer. The Cu(2+) affinity is similar to that identified for solution α-syn, suggesting that copper coordination is retained in the membrane. Consideration of these results demonstrates that copper exerts its greatest conformational effect on the solution form of α-syn.
Coordination of Copper to the Membrane-Bound Form of α-Synuclein
Energy Technology Data Exchange (ETDEWEB)
Dudzik, Christopher G.; Walter, Eric D.; Abrams, Benjamin S.; Jurica, Melissa S.; Millhauser, Glenn L.
2013-01-01
Aggregation of the 140 amino acid protein α-synuclein (α-syn) is linked to the development of Parkinson's disease (PD). α-Syn is a copper binding protein with potential function as a regulator of metal dependent redox activity. Epidemiological studies suggest that human exposure to excess copper increases the incidence of PD. α-Syn exists in both solution and membrane bound forms. Previous work evaluated the Cu2+ uptake for α-syn in solution and identified Met1-Asp2 and His50 as primary contributors to the coordination shell, with a dissociation constant of approximately 0.1 nM. When bound to the membrane bilayer, α-syn takes on a predominantly helical conformation, which spatially separates His50 from the protein N-terminus and is therefore incompatible with the copper coordination geometry of the solution state. Here we use circular dichroism and electron paramagnetic resonance (continuous wave and pulsed) to evaluate copper coordination to the membrane bound form of α-syn. In this molecular environment, Cu2+ binds exclusively to the protein N-terminus (Met1-Asp2) with no participation from His50. Copper does not alter the membrane bound α-syn conformation, or enhance the protein's release from the bilayer. The Cu2+ affinity is similar to that identified for solution α-syn suggesting that copper coordination is retained in the membrane. Consideration of these results suggests that copper exerts its greatest conformational affect on the solution form of α-syn and this species may therefore be precursor to PD arising from environmental copper exposure.
Mapolelo, Daphne T; Zhang, Bo; Naik, Sunil G; Huynh, Boi Hanh; Johnson, Michael K
2012-10-16
The ability of Azotobacter vinelandii(Nif)IscA to bind Fe has been investigated to assess the role of Fe-bound forms in NIF-specific Fe-S cluster biogenesis. (Nif)IscA is shown to bind one Fe(III) or one Fe(II) per homodimer and the spectroscopic and redox properties of both the Fe(III)- and Fe(II)-bound forms have been characterized using the UV-visible absorption, circular dichroism, and variable-temperature magnetic circular dichroism, electron paramagnetic resonance, Mössbauer and resonance Raman spectroscopies. The results reveal a rhombic intermediate-spin (S = 3/2) Fe(III) center (E/D = 0.33, D = 3.5 ± 1.5 cm(-1)) that is most likely 5-coordinate with two or three cysteinate ligands and a rhombic high spin (S = 2) Fe(II) center (E/D = 0.28, D = 7.6 cm(-1)) with properties similar to reduced rubredoxins or rubredoxin variants with three cysteinate and one or two oxygenic ligands. Iron-bound (Nif)IscA undergoes reversible redox cycling between the Fe(III)/Fe(II) forms with a midpoint potential of +36 ± 15 mV at pH 7.8 (versus NHE). l-Cysteine is effective in mediating release of free Fe(II) from both the Fe(II)- and Fe(III)-bound forms of (Nif)IscA. Fe(III)-bound (Nif)IscA was also shown to be a competent iron source for in vitro NifS-mediated [2Fe-2S] cluster assembly on the N-terminal domain of NifU, but the reaction occurs via cysteine-mediated release of free Fe(II) rather than direct iron transfer. The proposed roles of A-type proteins in storing Fe under aerobic growth conditions and serving as iron donors for cluster assembly on U-type scaffold proteins or maturation of biological [4Fe-4S] centers are discussed in light of these results.
Copper Coordination to the Membrane Bound Form of α-Synuclein
Dudzik, Christopher G.; Walter, Eric D; Abrams, Benjamin S.; Jurica, Melissa S.; Millhauser, Glenn L.
2012-01-01
Aggregation of the 140 amino acid protein α-synuclein (α-syn) is linked to the development of Parkinson’s disease (PD). α-Syn is a copper binding protein with potential function as a regulator of metal dependent redox activity. Epidemiological studies suggest that human exposure to excess copper increases the incidence of PD. α-Syn exists in both solution and membrane bound forms. Previous work evaluated the Cu2+ uptake for α-syn in solution and identified Met1 Asp2 and His50 as primary contr...
Pion production in nucleon-nucleon scattering
Energy Technology Data Exchange (ETDEWEB)
Afnan, I.R.
1982-01-01
A model describing pion production in proton-proton interactions is presented. The model includes both single nucleon and two nucleon mechanisms. A system of equations representing the reaction is derived and results calculated using these equations are presented.
The Properties of Bound and Unbound Molecular Cloud Populations Formed in Galactic Disc Simulations
Ward, Rachel L; Wadsley, James; Sills, Alison; Couchman, H M P
2015-01-01
We explore the effect of galactic environment on properties of molecular clouds. Using clouds formed in a large-scale galactic disc simulation, we measure the observable properties from synthetic column density maps. We confirm that a significant fraction of unbound clouds forms naturally in a galactic disc environment and that a mixed population of bound and unbound clouds can match observed scaling relations and distributions for extragalactic molecular clouds. By dividing the clouds into inner and outer disc populations, we compare their distributions of properties and test whether there are statistically significant differences between them. We find that clouds in the outer disc have lower masses, sizes, and velocity dispersions as compared to those in the inner disc for reasonable choices of the inner/outer boundary. We attribute the differences to the strong impact of galactic shear on the disc stability at large galactocentric radii. In particular, our Toomre analysis of the disc shows a narrowing enve...
Bound state structure and electromagnetic form factor beyond the ladder approximation
Gigante, V; Ydrefors, E; Gutierrez, C; Karmanov, V A; Frederico, T
2016-01-01
We investigate the response of the bound state structure of a two-boson system, within a Yukawa model with a scalar boson exchange, to the inclusion of the cross-ladder contribution to the ladder kernel of the Bethe-Salpeter equation. The equation is solved by means of the Nakanishi integral representation and light-front projection. The valence light-front wave function and the elastic electromagnetic form factor beyond the impulse approximation, with the inclusion of the two-body current, generated by the cross-ladder kernel, are computed. The valence wave function and electromagnetic form factor, considering both ladder and ladder plus cross-ladder kernels, are studied in detail. Their asymptotic forms are found to be quite independent of the inclusion of the cross-ladder kernel, for a given binding energy. The asymptotic decrease of form factor agrees with the counting rules. This analysis can be generalized to fermionic systems, with a wide application in the study of the meson structure.
Nucleon-nucleon theory and phenomenology
Energy Technology Data Exchange (ETDEWEB)
Signell, P.
1981-03-01
This project involves five inter-related subprojects: (1) derivation of the intermediate range nucleon-nucleon interaction using a new method that utilizes much shorter and simpler analytic continuation through the unphysical region that lies between the ..pi..N and ..pi pi.. physical regions of the N anti N ..-->.. ..pi pi.. amplitude (with significantly improved accuracy for the nucleon-nucleon interaction); (2) construction of a short range phenomenological potential that, with the theoretical part mentioned above, gives a precise fit to the nucleon-nucleon data and is parameterized for easy use in nucleon calculations; (3) phase shift analyses of the world data below 400 MeV, especially the large amount of very precise data below 20 MeV and the new data near 55 MeV that have never been analyzed properly; (4) the introduction of a K-matrix formulation of the Optimal Polynomial Expansion in order to accelerate convergence of the partial wave series at LAMPF energies; and (5) setting up of a cooperatively evaluated permanent nucleon-nucleon data bank in the 0-1200 MeV range that can be used by all nucleon-nucleon reseachers.
Comparing Some Nucleon-Nucleon Potentials
Naghdi, M
2013-01-01
The aim is to compare a few Nucleon-Nucleon (NN) potentials especially Reid68, Reid68-Day, Reid93, UrbanaV14, ArgonneV18, Nijmegen 93, Nijmegen I, Nijmegen II. Although these potentials have some likenesses and are almost phenomenological, they include in general different structures and its own characteristics. The potentials are constructed in a manner that fit the NN scattering data or phase shifts and are compared in this way. A high-quality scale of a potential is that it fits the data with $\\chi^{2}/N_{data} \\approx 1$, describes well deuteron properties or gives satisfactory results in nuclear structure calculations. However, these scales have some failures. Here, we first compare many potentials by confronting with data. Then, we try to compare the potential forms by considering the potential structures directly and therefore regarding their substantial basis somehow. On the other hand, since the potentials are written in different schema, it is necessary to write the potentials in a unique schema to ...
Fundamental nucleon-nucleon interaction: probing exotic nuclear structure using GEANIE at LANCE/WNR
Energy Technology Data Exchange (ETDEWEB)
Bernstein, L
2000-02-25
The initial goal of this project was to study the in-medium nucleon-nucleon interaction by testing the fundamental theory of nuclear structure, the shell model, for nuclei between {sup 8}Zr and {sup 100}Sn. The shell model predicts that nuclei with ''magic'' (2,8,20,28,40,50, and 82) numbers of protons or neutrons form closed shells in the same fashion as noble gas atoms [may49]. A ''doubly magic'' nucleus with a closed shell of both protons and neutrons has an extremely simple structure and is therefore ideal for studying the nucleon-nucleon interaction. The shell model predicts that doubly magic nuclei will be spherical and that they will have large first-excited-state energies ({approx} 1 to 3 MeV). Although the first four doubly-magic nuclei exhibit this behavior, the N = Z = 40 nucleus, {sup 80}Zr, has a very low first-excited-state energy (290 keV) and appears to be highly deformed. This breakdown is attributed to the small size of the shell gap at N = Z = 40. If this description is accurate, then the N = Z = 50 doubly magic nucleus, {sup 100}Sn, will exhibit ''normal'' closed-shell behavior. The unique insight provided by doubly-magic nuclei from {sup 80}Zr to {sup 100}Sn has made them the focus of tremendous interest in the nuclear structure community. However, doubly-magic nuclei heavier than {sup 56}Ni become increasingly difficult to form due to the coulomb repulsion between the protons which favors the formation of neutron-rich nuclei. The coulomb repulsion creates a ''proton drip-line'' beyond which the addition of any additional bound protons is energetically impossible. The drip line renders the traditional experimental technique used in their formation, the heavy-ion reaction, less than ideal as a method of forming doubly-magic nuclei beyond {sup 80}Zr. The result has been a lack of an new spectroscopic information on doubly magic nuclei in more than a decade [lis87
The pretranslocation ribosome is targeted by GTP-bound EF-G in partially activated form
Hauryliuk, Vasili; Mitkevich, Vladimir A.; Eliseeva, Natalia A.; Petrushanko, Irina Yu.; Ehrenberg, Måns; Makarov, Alexander A.
2008-01-01
Translocation of the tRNA·mRNA complex through the bacterial ribosome is driven by the multidomain guanosine triphosphatase elongation factor G (EF-G). We have used isothermal titration calorimetry to characterize the binding of GDP and GTP to free EF-G at 4°C, 20°C, and 37°C. The binding affinity of EF-G is higher to GDP than to GTP at 4°C, but lower at 37°C. The binding enthalpy and entropy change little with temperature in the case of GDP binding but change greatly in the case of GTP binding. These observations are compatible with a large decrease in the solvent-accessible hydrophobic surface area of EF-G on GTP, but not GDP, binding. The explanation we propose is the locking of the switch 1 and switch 2 peptide loops in the G domain of EF-G to the γ-phosphate of GTP. From these data, in conjunction with previously reported structural data on guanine nucleotide-bound EF-G, we suggest that EF-G enters the pretranslocation ribosome as an “activity chimera,” with the G domain activated by the presence of GTP but the overall factor conformation in the inactive form typical of a GDP-bound multidomain guanosine triphosphatase. We propose that the active overall conformation of EF-G is attained only in complex with the ribosome in its “ratcheted state,” with hybrid tRNA binding sites. PMID:18836081
The properties of bound and unbound molecular cloud populations formed in galactic disc simulations
Ward, Rachel L.; Benincasa, Samantha M.; Wadsley, James; Sills, Alison; Couchman, H. M. P.
2016-01-01
We explore the effect of galactic environment on properties of molecular clouds. Using clouds formed in a large-scale galactic disc simulation, we measure the observable properties from synthetic column density maps. We confirm that a significant fraction of unbound clouds forms naturally in a galactic disc environment and that a mixed population of bound and unbound clouds can match observed scaling relations and distributions for extragalactic molecular clouds. By dividing the clouds into inner and outer disc populations, we compare their distributions of properties and test whether there are statistically significant differences between them. We find that clouds in the outer disc have lower masses, sizes, and velocity dispersions as compared to those in the inner disc for reasonable choices of the inner/outer boundary. We attribute the differences to the strong impact of galactic shear on the disc stability at large galactocentric radii. In particular, our Toomre analysis of the disc shows a narrowing envelope of unstable masses as a function of radius, resulting in the formation of smaller, lower mass fragments in the outer disc. We also show that the star formation rate is affected by the environment of the parent cloud, and is particularly influenced by the underlying surface density profile of the gas throughout the disc. Our work highlights the strengths of using galaxy-scale simulations to understand the formation and evolution of cloud properties - and the star formation within them - in the context of their environment.
Energy Technology Data Exchange (ETDEWEB)
Van de Wiele, Jacques; Ong, Saro [Universite de Paris-Sud, Institut de Physique Nucleaire d' Orsay (UMR 8608), IN2P3-CNRS, Orsay Cedex (France)
2015-10-15
We study the strong energy dependence of the proton electromagnetic form factors in the time-like region, taking into account the one-pion-exchange final-state interaction in a covariant way. This effect is quantified in terms of the corrected Dirac F{sub 1} and Pauli F{sub 2} form factors and in the commonly used electric G{sub E} and magnetic G{sub M} ones. Our results on the ratio G{sub E} /G{sub M} depend only on the values of two free parameters and allow significant comparisons with the BaBar data. (orig.)
Constraints on the Nucleon Strange Form Factors at Q^2 ~ 0.1 GeV^2
Airapetian, A; Akopov, Z; Amarian, M; Ammosov, V V; Andrus, A; Aschenauer, E C; Augustyniak, W; Avakian, R; Avetisian, A; Avetissian, E; Bailey, P; Balin, D; Baturin, V; Beckmann, M; Belostotskii, S; Bernreuther, S; Bianchi, N; Blok, H P; Böttcher, Helmut B; Borisov, A; Borysenko, A; Bouwhuis, M; Brack, J; Brüll, A; Bryzgalov, V; Capitani, G P; Chen, T; Chiang, H C; Ciullo, G; Contalbrigo, M; Dalpiaz, P F; De Leo, R; Demey, M; De Nardo, L; De Sanctis, E; Devitsin, E G; Di Nezza, P; Dreschler, J; Düren, M; Ehrenfried, M; Elalaoui-Moulay, A; Elbakian, G; Ellinghaus, F; Elschenbroich, U; Fabbri, R; Fantoni, A; Feshchenko, A; Felawka, L; Fox, B; Frullani, S; Gapienko, G; Gapienko, V; Garibaldi, F; Garrow, K; Garutti, E; Gaskell, D; Gavrilov, G; Karibian, V; Graw, G; Grebenyuk, O; Greeniaus, L G; Gregor, I M; Hafidi, K; Hartig, M; Hasch, D; Heesbeen, D; Henoch, M; Hertenberger, R; Hesselink, W H A; Hillenbrand, A; Hoek, M; Holler, Y; Hommez, B; Iarygin, G; Ivanilov, A; Izotov, A; Jackson, H E; Jgoun, A; Kaiser, R; Kinney, E; Kiselev, A; Kopytin, M; Korotkov, V; Kozlov, V; Krauss, B; Krivokhizhin, V G; Lagamba, L; Lapikas, L; Laziev, A; Lenisa, P; Liebing, P; Linden-Levy, L A; Lipka, K; Lorenzon, W; Lü, H; Lü, J; Lu, S; Ma, B Q; Maiheu, B; Makins, N C R; Mao, Y; Marianski, B; Marukyan, H; Masoli, F; Mexner, V; Meyners, N; Miklukho, O; Miller, C A; Miyachi, Y; Muccifora, V; Nagaitsev, A; Nappi, E; Naryshkin, Yu; Nass, A; Negodaev, M; Nowak, Wolf-Dieter; Oganessyan, K; Ohsuga, H; Pickert, N; Potashov, S Yu; Potterveld, D H; Raithel, M; Reggiani, D; Reimer, P E; Reischl, A; Reolon, A R; Riedl, C; Rith, K; Rosner, G; Rostomyan, A; Rubacek, L; Rubin, J; Ryckbosch, D; Salomatin, Y; Sanjiev, I; Savin, I; Schäfer, A; Schill, C; Schnell, G; Schüler, K P; Seele, J; Seidl, R; Seitz, B; Shanidze, R; Shearer, C; Shibata, T A; Shutov, V; Simani, M C; Sinram, K; Stancari, M; Statera, M; Steffens, E; Steijger, J J M; Stenzel, H; Stewart, J; Stinzing, F; Stösslein, U; Tait, P; Tanaka, H; Taroian, S P; Tchuiko, B; Terkulov, A R; Tkabladze, A; Trzcinski, A; Tytgat, M; Vandenbroucke, A; Van der Nat, P B; van der Steenhoven, G; Vetterli, M C; Vikhrov, V; Vincter, M G; Vogel, C; Vogt, M; Volmer, J; Weiskopf, C; Wendland, J; Wilbert, J; Ye, Y; Ye, Z; Yen, S; Zihlmann, B; Zupranski, P; Aniol, K A; Armstrong, D S; Averett, T; Benaoum, H; Bertin, P Y; Burtin, E; Cahoon, J; Cates, G D; Chang, C C; Chao Yu Chiu; Chen, J P; Seonho Choi; Chudakov, E; Craver, B; Cusanno, F; Decowski, P; Deepa, D; Ferdi, C; Feuerbach, R J; Finn, J M; Fuoti, K; Gilman, R; Glamazdin, A; Gorbenko, V; Grames, J M; Hansknecht, J; Higinbotham, D W; Holmes, R; Holmstrom, T; Humensky, T B; Ibrahim, H; De Jager, C W; Jiang, X; Kaufman, L J; Kelleher, A; Kolarkar, A; Kowalski, S; Kumar, K S; Lambert, D; La Violette, P; Le Rose, J; Lhuillier, D; Liyanage, N; Margaziotis, D J; Mazouz, M; McCormick, K; Meekins, D G; Meziani, Z E; Michaels, R; Moffit, B; Monaghan, P; Munoz-Camacho, C; Nanda, S; Nelyubin, V V; Neyret, D; Paschke, K D; Poelker, M; Pomatsalyuk, R I; Qiang, Y; Reitz, B; Roche, J; Saha, A; Singh, J; Snyder, R; Souder, P A; Subedi, R; Suleiman, R; Sulkosky, V; Tobias, W A; Urciuoli, G M; Vacheret, A; Voutier, E; Wang, K; Wilson, R; Wojtsekhowski, B; Zheng, X
2006-01-01
We report the most precise measurement to date of a parity-violating asymmetry in elastic electron-proton scattering. The measurement was carried out with a beam energy of 3.03 GeV and a scattering angle = 6.0 degrees, with the result A_PV = -1.14 +/- 0.24 (stat) +/- 0.06 (syst) parts per million. From this we extract, at Q^2 = 0.099 GeV^2, the strange form factor combination G_E^s + 0.080 G_M^s = 0.030 +/- 0.025 (stat) +/- 0.006 (syst) +/- 0.012 (FF) where the first two errors are experimental and the last error is due to the uncertainty in the neutron electromagnetic form factor. The measurement significantly improves existing constraints on G_E^s and G_M^s at Q^2 ~0.1 GeV^2. A consistent picture emerges from all measurements at this Q^2. A combined fit shows that G_E^s is consistent with zero while G_M^s prefers positive values though G_E^s=G_M^s=0 is compatible with the data at 95% C.L.
Jump-type Hunt processes generated by lower bounded semi-Dirichlet forms
Fukushima, Masatoshi; 10.1214/10-AOP633
2012-01-01
Let $E$ be a locally compact separable metric space and $m$ be a positive Radon measure on it. Given a nonnegative function $k$ defined on $E\\times E$ off the diagonal whose anti-symmetric part is assumed to be less singular than the symmetric part, we construct an associated regular lower bounded semi-Dirichlet form $\\eta$ on $L^2(E;m)$ producing a Hunt process $X^0$ on $E$ whose jump behaviours are governed by $k$. For an arbitrary open subset $D\\subset E$, we also construct a Hunt process $X^{D,0}$ on $D$ in an analogous manner. When $D$ is relatively compact, we show that $X^{D,0}$ is censored in the sense that it admits no killing inside $D$ and killed only when the path approaches to the boundary. When $E$ is a $d$-dimensional Euclidean space and $m$ is the Lebesgue measure, a typical example of $X^0$ is the stable-like process that will be also identified with the solution of a martingale problem up to an $\\eta$-polar set of starting points. Approachability to the boundary $\\partial D$ in finite time o...
Matrix-bound phosphine:A new form of phosphorus found in sediment of Jiaozhou Bay
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
Matrix-bound phosphine (PH3), a new form of phosphorus, was found in sediment of Jiaozhou Bay in December 2001. Concentration and distribution of PH3 in different layers of sediment with different stations were analyzed. The results show that PH3 concentrations are various with different layers and different stations. PH3 concentrations in the bottom layer of sediment (20-30 cm) are usually higher than those in the surface layer (0-4 cm). The highest PH3 concentration in our investigation reaches 685 ng/kg (dry), which is much higher than those in terrestrial paddy soil, marsh and landfill that have been reported up to now. The correlation analysis indicates that there is no apparent correlation between the concentrations of PH3 and inorganic phosphorus in sediment. However, the correlation between the concentrations of phosphine and organic phosphorus in the bottom layer of sediment is remarkable (R2=0.83). It is considered that PH3 in sediment of Jiaozhou Bay is mainly produced from the decomposition of organic phosphorus in the anaerobic condition, and so PH3 concentrations are related to organic phosphorus concentration and anaerobic environment in sediment. The discovery of PH3 in sediment will give people some new ideas on the mechanisms of phosphorus supplement and biogeochemical cycle in Jiaozhou Bay.
Dugger, Jason W; Webb, Lauren J
2015-03-24
The ability to maintain or reproduce biomolecular structures on inorganic substrates has the potential to impact diverse fields such as sensing and molecular electronics, as well as the study of biological self-assembly and structure-function relationships. Because the structure and self-assembly of biomolecules are exquisitely sensitive to their local chemical and electrostatic environment, the goal of reproducing or mimicking biological function in an abiological environment, including at a surface, is challenging. However, simple and well-characterized chemical modifications of prepared surfaces can be used to tune surface chemistry, structure, electrostatics, and reactivity of inorganic materials to facilitate biofunctionalization and function. Here, we describe the covalent attachment of 13-residue β-stranded peptides containing alkyne groups to a flat gold surface functionalized with an azide-terminated self-assembled monolayer through a Huisgen cycloaddition, or "click", reaction. The chemical composition and structural morphology of these surfaces were characterized using X-ray photoelectron spectroscopy, grazing incidence angle reflection-absorption infrared spectroscopy, surface circular dichroism, and atomic force microscopy. The surface-bound β-strands self-assemble into antiparallel β-sheets to form fibrillar structures 24.9 ± 1.6 nm in diameter and 2.83 ± 0.74 nm in height on the reactive surface. The results herein provide a platform for studying and controlling the self-assembly process of biomolecules into larger supermolecular structures while allowing tunable control through chemical functionalization of the surface. Interest in the mechanisms of formation of fibrillar structures has most commonly been associated with neurodegenerative diseases, such as Alzheimer's and Parkinson's, but fibrils may actually represent the thermodynamic low-energy conformation of a much larger class of peptides and proteins. The protocol developed here is an
Study of nucleon-nucleon and hyperon-nucleon interaction
Energy Technology Data Exchange (ETDEWEB)
Shimizu, Kiyotaka [Department of Physics, Sophia University, Tokyo (Japan); Takeuchi, Sachiko [Japan College of Social Work, Kiyose (Japan); Buchmann, A.J. [Institute for Theoretical Physics, University of Tuebinge (Germany)
2000-04-01
In this paper we review recent investigations of nucleon-nucleon and hyperon-nucleon interactions employing a non-relativistic quark cluster model. We concentrate mainly on the short and medium-range behavior of the baryon-baryon interaction based on the one-gluon and meson exchange potentials. The chiral quark model based on pion and sigma exchange between quarks is also discussed. We also review a study of the deuteron and its electromagnetic properties in a quark model with exchange currents. (author)
Nucleon-Nucleon Scattering in a Three Dimensional Approach
Fachruddin, I; Glöckle, W; Elster, Ch.
2000-01-01
The nucleon-nucleon (NN) t-matrix is calculated directly as function of two vector momenta for different realistic NN potentials. To facilitate this a formalism is developed for solving the two-nucleon Lippmann-Schwinger equation in momentum space without employing a partial wave decomposition. The total spin is treated in a helicity representation. Two different realistic NN interactions, one defined in momentum space and one in coordinate space, are presented in a form suited for this formulation. The angular and momentum dependence of the full amplitude is studied and displayed. A partial wave decomposition of the full amplitude it carried out to compare the presented results with the well known phase shifts provided by those interactions.
A pure S-wave covariant model for the nucleon
Gross, F; Peña, M T; Gross, Franz
2006-01-01
Using the manifestly covariant spectator theory, and modeling the nucleon as a system of three constituent quarks with their own electromagnetic structure, we show that all four nucleon electromagnetic form factors can be very well described by a manifestly covariant nucleon wave function with zero orbital angular momentum.
Treatment of Two Nucleons in Three Dimensions
Directory of Open Access Journals (Sweden)
Glöckle W.
2010-04-01
Full Text Available We extend a new treatment proposed for two-nucleon (2N and three-nucleon (3N bound states to 2N scattering. This technique takes momentum vectors as variables, thus, avoiding partial wave decomposition, and handles spin operators analytically. We apply the general operator structure of a nucleon-nucleon (NN potential to the NN T-matrix, which becomes a sum of six terms, each term being scalar products of spin operators and momentum vectors multiplied with scalar functions of vector momenta. Inserting this expansions of the NN force and T-matrix into the Lippmann-Schwinger equation allows to remove the spin dependence by taking traces and yields a set of six coupled equations for the scalar functions found in the expansion of the T-matrix.
Insights into nucleon structure from parton distributions
Energy Technology Data Exchange (ETDEWEB)
Melnitchouk, Wally [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2017-05-01
We review recent progress in understanding the substructure of the nucleon from global QCD analysis of parton distribution functions (PDFs). New high-precision data onW-boson production in p ¯ p collisions have significantly reduced the uncertainty on the d=u PDF ratio at large values of x, indirectly constraining models of the medium modification of bound nucleons. Drell-Yan data from pp and pd scattering reveal new information on the d¯-u¯ asymmetry, clarifying the role of chiral symmetry breaking in the nucleon. In the strange sector, a new chiral SU(3) analysis finds a valence-like component of the strange-quark PDF, giving rise to a nontrivial s- ¯ s asymmetry at moderate x values. We also review recent analyses of charm in the nucleon, which have found conflicting indications of the size of the nonperturbative charm component.
Nucleon Resonance Transition Form factors
Energy Technology Data Exchange (ETDEWEB)
Burkert, Volker D. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Mokeev, Viktor I. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Aznauryan, Inna G. [Yerevan Physics Inst. (YerPhI) (Armenia)
2016-08-01
We discuss recent results from CLAS on electromagnetic resonance transition amplitudes and their dependence on the distance scale (Q2). From the comparison of these results with most advanced theoretical calculations within QCD-based approaches there is clear evidence that meson-baryon contributions are present and important at large distances, i.e. small Q2, and that quark core contributions dominate the short distance behavior.
Nucleon wave function from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Warkentin, Nikolaus
2008-04-15
In this work we develop a systematic approach to calculate moments of leading-twist and next-to-leading twist baryon distribution amplitudes within lattice QCD. Using two flavours of dynamical clover fermions we determine low moments of nucleon distribution amplitudes as well as constants relevant for proton decay calculations in grand unified theories. The deviations of the leading-twist nucleon distribution amplitude from its asymptotic form, which we obtain, are less pronounced than sometimes claimed in the literature. The results are applied within the light cone sum rule approach to calculate nucleon form factors that are compared with recent experimental data. (orig.)
Introduction to Nucleonics: A Laboratory Course.
Phelps, William; And Others
This student text and laboratory manual is designed primarily for the non-college bound high school student. It can be adapted, however, to a wide range of abilities. It begins with an examination of the properties of nuclear radiation, develops an understanding of the fundamentals of nucleonics, and ends with an investigation of careers in areas…
Non-autonomous maximal regularity for forms given by elliptic operators of bounded variation
Fackler, Stephan
2017-09-01
We show maximal Lp-regularity for non-autonomous Cauchy problems provided the trace spaces are stable in some parameterized sense and the time dependence is of bounded variation. In particular on L2 (Ω), for Lipschitz domains Ω and under mixed boundary conditions, we obtain maximal Lp-regularity for all p ∈ (1 , 2 ] for elliptic operators with coefficients aij : Ω → C satisfying aij (ṡ , x) ∈ BV uniformly in x ∈ Ω.
Consistent off-shell pi NN vertex and nucleon self-energy
Kondratyuk, S; Scholten, O
1999-01-01
We present a consistent calculation of half-off-shell form factors in the pion-nucleon vertex and the nucleon self-energy. Numerical results are presented. Near the on-shell point the pion-nucleon vertex is dominated by the pseudovector coupling, while at large nucleon invariant masses we find a siz
Consistent off-shell πNN vertex and nucleon self-energy
Kondratyuk, S.; Scholten, O.
1999-01-01
We present a consistent calculation of half-off-shell form factors in the pion-nucleon vertex and the nucleon self-energy. Numerical results are presented. Near the on-shell point the pion-nucleon vertex is dominated by the pseudovector coupling, while at large nucleon invariant masses we find a siz
Physics with loosely bound nuclei
Indian Academy of Sciences (India)
Chhanda Samanta
2001-08-01
The essential aspect of contemporary physics is to understand properties of nucleonic matter that constitutes the world around us. Over the years research in nuclear physics has provided strong guidance in understanding the basic principles of nuclear interactions. But, the scenario of nuclear physics changed drastically as the new generation of accelerators started providing more and more rare isotopes, which are away from the line of stability. These weakly bound nuclei are found to exhibit new forms of nuclear matter and unprecedented exotic behaviour. The low breakup thresholds of these rare nuclei are posing new challenges to both theory and experiments. Fortunately, nature has provided a few loosely bound stable nuclei that have been studied thoroughly for decades. Attempts are being made to ﬁnd a consistent picture for the unstable nuclei starting from their stable counterparts. Some signiﬁcant differences in the structure and reaction mechanisms are found.
Close, Frank
1995-01-01
This talk summarises the discussions during the conference on the spin structure of the nucleon held at Erice; July 1995. The summary focuses on where we have come, where we are now, and the emerging questions that direct where we go next in the quest to understand the nucleon spin.
Nucleon distribution amplitudes from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Goeckeler, M. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics; Kaltenbrunner, T. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (DE). John von Neumann-Inst. fuer Computing NIC] (and others)
2008-04-15
We calculate low moments of the leading-twist and next-to-leading twist nucleon distribution amplitudes on the lattice using two flavors of clover fermions. The results are presented in the MS scheme at a scale of 2 GeV and can be immediately applied in phenomenological studies. We find that the deviation of the leading-twist nucleon distribution amplitude from its asymptotic form is less pronounced than sometimes claimed in the literature. (orig.)
Flavor asymmetry of the nucleon
Bijker, R
2008-01-01
The flavor asymmetry of the nucleon sea is discussed in an unquenched quark model for baryons in which the effects of quark-antiquark pairs (u anti-u, d anti-d and s anti-s) are taken into account in an explicit form. The inclusion of q anti-q pairs leads automatically to an excess of anti-d over anti-u quarks in the proton, in agreement with experimental data.
Multiple sources of carbonic anhydrase activity in pea thylakoids: soluble and membrane-bound forms.
Rudenko, Natalia N; Ignatova, Lyudmila K; Ivanov, Boris N
2007-01-01
Carbonic anhydrase (CA) activity of pea thylakoids, thylakoid membranes enriched with photosystem I (PSI-membranes), or photosystem II (PSII-membranes) as well as both supernatant and pellet after precipitation of thylakoids treated with detergent Triton X-100 were studied. CA activity of thylakoids in the presence of varying concentrations of Triton X-100 had two maxima, at Triton/chlorophyll (triton/Chl) ratios of 0.3 and 1.0. CA activities of PSI-membranes and PSII-membranes had only one maximum each, at Triton/Chl ratio 0.3 or 1.0, respectively. Two CAs with characteristics of the membrane-bound proteins and one CA with characteristics of the soluble proteins were found in the medium after thylakoids were incubated with Triton. One of the first two CAs had mobility in PAAG after native electrophoresis the same as that of CA residing in PSI-membranes, and the other CA had mobility the same as the mobility of CA residing in PSII-membranes, but the latter was different from CA situated in PSII core-complex (Ignatova et al. 2006 Biochemistry (Moscow) 71:525-532). The properties of the "soluble" CA removed from thylakoids were different from the properties of the known soluble CAs of plant cell: apparent molecular mass was about 262 kD and it was three orders more sensitive to the specific CA inhibitor, ethoxyzolamide, than soluble stromal CA. The data are discussed as indicating the presence of, at least, four CAs in pea thylakoids.
Kattesh, H G; Baumbach, G A; Gillespie, B B; Schneider, J F; Murai, J T
1997-01-01
Thirty-five time-dated pregnant gilts were used to document plasma levels of total and free cortisol, corticosteroid-binding globulin (CBG) binding capacity, and percent distribution of cortisol among protein-bound (CBG and albumin) and free forms in the fetal pig during the last 24 days of gestation. Plasma from fetal pigs on days 110-114 of gestation (gestation length 114 days) had significantly higher levels of total cortisol (p pigs located in the cervical region of the uterus had lower (p pig are directly related and highly similar to those of another precocious species, the sheep.
Coupled-cluster calculations of nucleonic matter
Hagen, G; Ekström, A; Wendt, K A; Baardsen, G; Gandolfi, S; Hjorth-Jensen, M; Horowitz, C J
2014-01-01
Background: The equation of state (EoS) of nucleonic matter is central for the understanding of bulk nuclear properties, the physics of neutron star crusts, and the energy release in supernova explosions. Purpose: This work presents coupled-cluster calculations of infinite nucleonic matter using modern interactions from chiral effective field theory (EFT). It assesses the role of correlations beyond particle-particle and hole-hole ladders, and the role of three-nucleon-forces (3NFs) in nuclear matter calculations with chiral interactions. Methods: This work employs the optimized nucleon-nucleon NN potential NNLOopt at next-to-next-to leading-order, and presents coupled-cluster computations of the EoS for symmetric nuclear matter and neutron matter. The coupled-cluster method employs up to selected triples clusters and the single-particle space consists of a momentum-space lattice. We compare our results with benchmark calculations and control finite-size effects and shell oscillations via twist-averaged bound...
Ridge-forming, ice-bounded lava flows at Mount Rainier, Washington
Lescinsky, D. T.; Sisson, T. W.
1998-04-01
Large (0.3 4 km3) andesite and dacite lava flows at Mount Rainier, Washington, sit atop or are perched along the sides of high ridges separating deep valleys. Early researchers proposed that these ridge-forming lavas flowed into paleovalleys and displaced rivers to their margins; entrenchment of the rivers then left the lavas atop ridges. On the basis of exceptional flow thickness, ice-contact features, and eruption age measurements, we propose that the lavas flowed beside and between valley glaciers that filled the adjacent valleys in the Pleistocene. When the glaciers retreated, the flows were left high on the adjacent ridges. These lavas were never situated at valley floors and do not represent products of reversed topography. Instead, ridge-forming and perched lava flows at Mount Rainier and at many other high stratovolcanoes illustrate the ability of ice to dam, deflect, and confine flowing lava.
The morphogenetic MreBCD proteins of Escherichia coli form an essential membrane-bound complex
DEFF Research Database (Denmark)
Kruse, Thomas; Bork-Jensen, Jette; Gerdes, Kenn
2005-01-01
MreB proteins of Escherichia coli, Bacillus subtilis and Caulobacter crescentus form actin-like cables lying beneath the cell surface. The cables are required to guide longitudinal cell wall synthesis and their absence leads to merodiploid spherical and inflated cells prone to cell lysis. In B...... on these and other observations we propose a model in which the membrane-associated MreBCD complex directs longitudinal cell wall synthesis in a process essential to maintain cell morphology....
A case study to quantify prediction bounds caused by model-form uncertainty of a portal frame
Van Buren, Kendra L.; Hall, Thomas M.; Gonzales, Lindsey M.; Hemez, François M.; Anton, Steven R.
2015-01-01
Numerical simulations, irrespective of the discipline or application, are often plagued by arbitrary numerical and modeling choices. Arbitrary choices can originate from kinematic assumptions, for example the use of 1D beam, 2D shell, or 3D continuum elements, mesh discretization choices, boundary condition models, and the representation of contact and friction in the simulation. This work takes a step toward understanding the effect of arbitrary choices and model-form assumptions on the accuracy of numerical predictions. The application is the simulation of the first four resonant frequencies of a one-story aluminum portal frame structure under free-free boundary conditions. The main challenge of the portal frame structure resides in modeling the joint connections, for which different modeling assumptions are available. To study this model-form uncertainty, and compare it to other types of uncertainty, two finite element models are developed using solid elements, and with differing representations of the beam-to-column and column-to-base plate connections: (i) contact stiffness coefficients or (ii) tied nodes. Test-analysis correlation is performed to compare the lower and upper bounds of numerical predictions obtained from parametric studies of the joint modeling strategies to the range of experimentally obtained natural frequencies. The approach proposed is, first, to characterize the experimental variability of the joints by varying the bolt torque, method of bolt tightening, and the sequence in which the bolts are tightened. The second step is to convert what is learned from these experimental studies to models that "envelope" the range of observed bolt behavior. We show that this approach, that combines small-scale experiments, sensitivity analysis studies, and bounding-case models, successfully produces lower and upper bounds of resonant frequency predictions that match those measured experimentally on the frame structure. (Approved for unlimited, public
Structure functions for the three-nucleon system
Bissey, F.; Thomas, A. W.; Afnan, I. R.
2001-08-01
The spectral functions and light-cone momentum distributions of protons and neutrons in 3He and 3H are given in terms of the three-nucleon wave function for realistic nucleon-nucleon interactions. To reduce computational complexity, separable expansions are employed for the nucleon-nucleon potentials. The results for the light-cone momentum distributions suggest that they are not very sensitive to the details of the two-body interaction, as long as it has reasonable short-range repulsion. The unpolarized and polarized structure functions are examined for both 3He and 3H in order to test the usefulness of 3He as a neutron target. It is found that the measurement of the spin structure function of polarized 3H would provide a very clear test of the predicted change in the polarized parton distributions of a bound proton.
Resonance assignments of the 56 kDa chimeric avidin in the biotin-bound and free forms.
Tossavainen, Helena; Helppolainen, Satu H; Määttä, Juha A E; Pihlajamaa, Tero; Hytönen, Vesa P; Kulomaa, Markku S; Permi, Perttu
2013-04-01
Avidin is a homotetrameric ~56 kDa protein found in chicken egg white. Avidin's ability to bind biotin with a very high affinity has widely been exploited in biotechnological applications. Protein engineering has further diversified avidin's feasibility. ChiAVD(I117Y) is a product of rational protein engineering. It is a hyperthermostable synthetic hybrid of avidin and avidin-related protein 4 (AVR4). In this chimeric protein a 23-residue segment in avidin has been replaced with the corresponding sequence found in AVR4, and a point mutation at subunit interface 1-3 (and 2-4) has been introduced. Here we report the backbone and sidechain resonance assignments of the biotin-bound form of ChiAVD(I117Y) as well as the backbone resonance assignments of the free form.
New Forms of Deuteron Equations and Wave Function Representations
Fachruddin, I; Glöckle, W; Elster, Ch.
2001-01-01
A recently developed helicity basis for nucleon-nucleon (NN) scattering is applied to th e deuteron bound state. Here the total spin of the deuteron is treated in such a helicity representation. For the bound state, two sets of two coupled eigenvalue equations are developed, where the amplitudes depend on two and one variable, respectively. Numerical illustrations based on the realistic Bonn-B NN potential are given. In addition, an `operator form' of the deuteron wave function is presented, and several momentum dependent spin densities are derived and shown, in which the angular dependence is given analytically.
Electroexcitation of nucleon resonances
Aznauryan, I G
2011-01-01
We review recent progress in the investigation of the electroexcitation of nucleon resonances, both in experiment and in theory. The most accurate results have been obtained for the electroexcitation amplitudes of the four lowest excited states, which have been measured in a range of Q2 up to 8 and 4.5 GeV2 for the Delta(1232)P33, N(1535)S11 and N(1440)P11, N(1520)D13}, respectively. These results have been confronted with calculations based on lattice QCD, large-Nc relations, perturbative QCD (pQCD), and QCD-inspired models. The amplitudes for the Delta(1232) indicate large pion-cloud contributions at low Q2 and don't show any sign of approaching the pQCD regime for Q2 0.5 GeV2, confirming a long-standing prediction of the constituent quark model. The interpretation of the moments of resonance transition form factors in terms of transition transverse charge distributions in infinite momentum frame is presented.
Krabbendam, M.; Bradwell, T.; Everest, J. D.; Eyles, N.
2017-08-01
Glaciers and ice sheets are important agents of bedrock erosion, yet the precise processes of bedrock failure beneath glacier ice are incompletely known. Subglacially formed erosional crescentic markings (crescentic gouges, lunate fractures) on bedrock surfaces occur locally in glaciated areas and comprise a conchoidal fracture dipping down-ice and a steep fracture that faces up-ice. Here we report morphologically distinct crescentic scars that are closely associated with preexisting joints, termed here joint-bounded crescentic scars. These hitherto unreported features are ca. 50-200 mm deep and involve considerably more rock removal than previously described crescentic markings. The joint-bounded crescentic scars were found on abraded rhyolite surfaces recently exposed (ice produces a continuously migrating clast-bed contact force as it is dragged over the hard (bedrock) bed. As the ice-embedded boulder approaches a preexisting joint in the bedrock, stress concentrations build up in the bed that exceed the intact rock strength, resulting in conchoidal fracturing and detachment of a crescentic wedge-shaped rock fragment. Subsequent removal of the rock fragment probably involves further fracturing or crushing (comminution) under high contact forces. Formation of joint-bounded crescentic scars is favoured by large boulders at the base of the ice, high basal melting rates, and the presence of preexisting subvertical joints in the bedrock bed. We infer that the relative scarcity of crescentic markings in general on deglaciated surfaces shows that fracturing of intact bedrock below ice is difficult, but that preexisting weaknesses such as joints greatly facilitate rock failure. This implies that models of glacial erosion need to take fracture patterns of bedrock into account.
Three-Nucleon Force in the 4He Scattering System
Hofmann, H M; Hofmann, Hartmut M.; Hale, Gerald M.
2002-01-01
We report on a consistent, microscopic calculation of the bound and scattering states in the 4He system employing modern realistic two-nucleon and three-nucleon potentials in the framework of the resonating group model (RGM). We present for comparison with these microscopic RGM calculations the results from a charge-independent, Coulomb-corrected R-matrix analysis of all types of data for reactions in the A=4 system. Comparisons are made for selected examples of phase shifts and measurements from reactions sensitive to three-nucleon force effects.
The total nucleon-nucleon cross section at large N_c
Cohen, Thomas D
2012-01-01
It is shown that at sufficiently large $N_c$ for incident momenta which are much larger than the QCD, the total nucleon-nucleon cross section is independent of incident momentum and given by $\\sigma^{\\rm total}=2 \\pi \\log^2(N_c) / (m^2_{\\pi})$. This result is valid in the extreme large $N_c$ regime of $\\log(N_c) \\gg 1$ and has corrections of relative order $\\log (\\log(N_c))/\\log(N_c)$. A possible connection of this result to the Froissart-Martin bound is discussed.
Kondratyuk, S
2000-01-01
Pion-loop corrections for Compton scattering are calculated in a novel approach based on the use of dispersion relations in a formalism obeying unitarity. The basic framework is presented, including an application to Compton scattering. In the approach the effects of the non-pole contribution arising from pion dressing are expressed in terms of (half-off-shell) form factors and the nucleon self-energy. These quantities are constructed through the application of dispersion integrals to the pole contribution of loop diagrams, the same as those included in the calculation of the amplitudes through a K-matrix formalism. The prescription of minimal substitution is used to restore gauge invariance. The resulting relativistic-covariant model combines constraints from unitarity, causality, and crossing symmetry.
Effect of zinc and calcium ions on the rat kidney membrane-bound form of dipeptidyl peptidase IV
Indian Academy of Sciences (India)
Hansel Gómez; Mae Chappé; Pedroa Valiente; Tirso Pons; María de Los Angeles Chávez; Jean-Louis Charli; Isel Pascual
2013-09-01
Dipeptidyl peptidase IV (DPP-IV) is an ectopeptidase with many roles, and a target of therapies for different pathologies. Zinc and calcium produce mixed inhibition of porcine DPP-IV activity. To investigate whether these results may be generalized to mammalian DPP-IV orthologues, we purified the intact membrane-bound form from rat kidney. Rat DPP-IV hydrolysed Gly-Pro--nitroanilide with an average Vmax of 0.86±0.01 mol min–1mL–1 and KM of 76±6 M. The enzyme was inhibited by the DPP-IV family inhibitor L-threo-Ile-thiazolidide (Ki=64.0±0.53 nM), competitively inhibited by bacitracin (Ki=0.16±0.01 mM) and bestatin (Ki=0.23±0.02 mM), and irreversibly inhibited by TLCK (IC50 value of 1.20±0.11 mM). The enzyme was also inhibited by divalent ions like Zn2+ and Ca2+, for which a mixed inhibition mechanism was observed (Ki values of the competitive component: 0.15±0.01 mM and 50.0±1.05 mM, respectively). According to bioinformatic tools, Ca2+ ions preferentially bound to the -propeller domain of the rat and human enzymes, while Zn2+ ions to the - hydrolase domain; the binding sites were essentially the same that were previously reported for the porcine DPP-IV. These data suggest that the cationic susceptibility of mammalian DPP-IV orthologues involves conserved mechanisms.
Electroexcitation of nucleon resonances
Energy Technology Data Exchange (ETDEWEB)
Inna Aznauryan, Volker D. Burkert
2012-01-01
We review recent progress in the investigation of the electroexcitation of nucleon resonances, both in experiment and in theory. The most accurate results have been obtained for the electroexcitation amplitudes of the four lowest excited states, which have been measured in a range of Q2 up to 8 and 4.5 GeV2 for the Delta(1232)P33, N(1535)S11 and N(1440)P11, N(1520)D13, respectively. These results have been confronted with calculations based on lattice QCD, large-Nc relations, perturbative QCD (pQCD), and QCD-inspired models. The amplitudes for the Delta(1232) indicate large pion-cloud contributions at low Q2 and don't show any sign of approaching the pQCD regime for Q2<7 GeV2. Measured for the first time, the electroexcitation amplitudes of the Roper resonance, N(1440)P11, provide strong evidence for this state as a predominantly radial excitation of a three-quark (3q) ground state, with additional non-3-quark contributions needed to describe the low Q2 behavior of the amplitudes. The longitudinal transition amplitude for the N(1535)S11 was determined and has become a challenge for quark models. Explanations may require large meson-cloud contributions or alternative representations of this state. The N(1520)D13 clearly shows the rapid changeover from helicity-3/2 dominance at the real photon point to helicity-1/2 dominance at Q2 > 0.5 GeV2, confirming a long-standing prediction of the constituent quark model. The interpretation of the moments of resonance transition form factors in terms of transition transverse charge distributions in infinite momentum frame is presented.
Extra dimensions, SN1987a, and nucleon-nucleon scattering data
Hanhart, C; Reddy, S; Savage, M J; Hanhart, Christoph; Phillips, Daniel R.; Reddy, Sanjay; Savage, Martin J.
2001-01-01
One of the strongest constraints on the existence of large, compact, "gravity-only" dimensions comes from SN1987a. If the rate of energy loss into these putative extra dimensions is too high, then the neutrino pulse from the supernova will differ from that actually seen. The dominant mechanism for the production of Kaluza-Klein gravitons and dilatons in the supernova is via gravistrahlung and dilastrahlung from the nucleon-nucleon system. In this paper we compute the rates for these processes in a model-independent way using low-energy theorems which relate the emissivities to the measured nucleon-nucleon cross section. This is possible because for soft gravitons and dilatons the leading contribution to the energy-loss rate is from graphs in which the gravitational radiation is produced from external nucleon legs. Previous calculations neglected these mechanisms. We re-evaluate the bounds on toroidally-compactified "gravity-only" dimensions (GODs), and find that consistency with the observed SN1987a neutrino ...
Electromagnetic couplings in a collective model of the nucleon
Bijker, R
1995-01-01
We study the electromagnetic properties of the nucleon and its excitations in a collective model. In the ensuing algebraic treatment all results for helicity amplitudes and form factors can be derived in closed form in the limit of a large model space. We discuss nucleon form factors and transverse electromagnetic couplings in photo- and electroproduction, including transition form factors that can be measured at new electron facilities.
Nucleon localization and fragment formation in nuclear fission
Zhang, C. L.; Schuetrumpf, B.; Nazarewicz, W.
2016-12-01
Background: An electron localization measure was originally introduced to characterize chemical bond structures in molecules. Recently, a nucleon localization based on Hartree-Fock densities has been introduced to investigate α -cluster structures in light nuclei. Compared to the local nucleonic densities, the nucleon localization function has been shown to be an excellent indicator of shell effects and cluster correlations. Purpose: Using the spatial nucleon localization measure, we investigate the emergence of fragments in fissioning heavy nuclei. Methods: To illustrate basic concepts of nucleon localization, we employ the self-consistent energy density functional method with a quantified energy density functional optimized for fission studies. Results: We study the particle densities and spatial nucleon localization distributions along the fission pathways of 264Fm, 232Th, and 240Pu. We demonstrate that the fission fragments are formed fairly early in the evolution, well before scission. We illustrate the usefulness of the localization measure by showing how the hyperdeformed state of 232Th can be understood in terms of a quasimolecular state made of 132Sn and 100Zr fragments. Conclusions: Compared to nucleonic distributions, the nucleon localization function more effectively quantifies nucleonic clustering: its characteristic oscillating pattern, traced back to shell effects, is a clear fingerprint of cluster/fragment configurations. This is of particular interest for studies of fragment formation and fragment identification in fissioning nuclei.
Banerjee, S. N.; Chakraborty, S. N.
1980-01-01
Presents the outline of an approach related to the teaching of the chapter on bound and scattering states in a short-range potential, which forms a standard part of an undergraduate quantum mechanics course or nuclear physics course. (HM)
Nucleon structure using lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Alexandrou, C.; Kallidonis, C. [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; The Cyprus Institute, Nicosia (Cyprus). Computational-Based Science and technology Research Center; Constantinou, M.; Hatziyiannakou, K. [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Drach, V. [DESY Zeuthen (Germany). John von Neumann-Institut fuer Computing NIC; Jansen, K. [DESY Zeuthen (Germany). John von Neumann-Institut fuer Computing NIC; Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Koutsou, G.; Vaquero, A. [The Cyprus Institute, Nicosia (Cyprus). Computational-Based Science and technology Research Center; Leontiou, T. [Frederick Univ, Nicosia (Cyprus). General Dept.
2013-03-15
A review of recent nucleon structure calculations within lattice QCD is presented. The nucleon excited states, the axial charge, the isovector momentum fraction and helicity distribution are discussed, assessing the methods applied for their study, including approaches to evaluate the disconnected contributions. Results on the spin carried by the quarks in the nucleon are also presented.
Axial structure of the nucleon
Energy Technology Data Exchange (ETDEWEB)
Veronique Bernard; Latifa Elouadrhiri; Ulf-G Meissner
2002-01-01
We review the current status of experimental and theoretical understanding of the axial nucleon structure at low and moderate energies. Topics considered include (quasi)elastic (anti)neutrino-nucleon scattering, charged pion electroproduction off nucleons and ordinary as well as radiative muon capture on the proton.
Quasielastic production of polarized hyperons in antineutrino--nucleon reactions
Akbar, F; Athar, M Sajjad; Singh, S K
2016-01-01
We have studied the longitudinal and perpendicular polarizations of final hyperon($\\Lambda$,$\\Sigma$) produced in the antineutrino induced quasielastic charged current reactions on nucleon targets. The nucleon-hyperon transition form factors are determined from the experimental data on quasielastic $(\\Delta S =0)$ charged current (anti)neutrino--nucleon scattering and the semileptonic decay of neutron and hyperons assuming G--invariance, T--invariance and SU(3) symmetry. The vector transition form factors are obtained in terms of nucleon electromagnetic form factors for which various parameterizations available in literature have been used. A dipole parameterization for the axial vector form factor and the pseudoscalar transition form factor derived in terms of axial vector form factor assuming PCAC and GT relation extended to strangeness sector have been used in numerical evaluations. The flux averaged cross section and polarization observables corresponding to CERN Gargamelle experiment have been calculated...
Energy Technology Data Exchange (ETDEWEB)
Schroers, W. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC
2007-01-15
This review focuses on the discussion of three key results of nucleon structure calculations on the lattice. These three results are the quark contribution to the nucleon spin, J{sub q}, the nucleon-{delta} transition form factors, and the nucleon axial coupling, g{sub A}. The importance for phenomenology and experiment is discussed and the requirements for future simulations are pointed out. (orig.)
More on Heisenberg's model for high energy nucleon-nucleon scattering
Nastase, Horatiu
2015-01-01
We revisit Heisenberg's model for nucleon-nucleon scattering which admits a saturation of the Froissart bound. We examine its uniqueness, and find that up to certain natural generalizations, it is the only action that saturates the bound. We find that we can extract also sub-leading behaviour for $\\sigma_{\\rm tot}(s)$ from it, though that requires a knowledge of the wavefunction solution that is hard to obtain, and a black-disk model allows the calculation of $\\sigma_{elastic}(s)$ as well. The wavefunction solution is analyzed perturbatively, and its source is interpreted. Generalizations to several mesons, addition of vector mesons, and curved space regimes are also found. We discuss the relations between Heisenberg's model and holographic models that are dual to QCD-like theories.
Energy Technology Data Exchange (ETDEWEB)
Loeb, K.E.; Westre, T.E.; Hedman, B.; Hodgson, K.O.; Solomon, E.I. [Stanford Univ., CA (United States); Kappock, T.J.; Mitic, N.; Glasfeld, E.; Caradonna, J.P. [Yale Univ., New Haven, CT (United States)
1997-02-26
The geometric structure of the catalytically relevant ferrous active site of phenylalanine hydroxylase (PAH) has been investigated using magnetic circular dichroism (MCD) and X-ray absorption (XAS) spectroscopies. From the excited state ligand field transitions in the MCD spectrum, the temperature and field dependence of these transitions, and the XAS pre-edge shapes and intensities, the resting ferrous site of the `tense` from PAH is six-coordinate distorted octahedral. The low ligand field strength observed in the MCD spectrum results from significant oxygen ligation and longer Fe-O/N bond distances relative to model complexes as determined from an EXAFS analysis. Substrate-induced allosteric activation ({approx}34 kcal/mol) does not alter the structure of the iron site in the `relaxed` form of PAH compared to the substrate-bound `tense` state. Thus, while activation is necessary for the enzyme to achieve complete catalytic competence, it does not appear to affect the geometry of the catalytically relevent six-coordinate ferrous active site and only directly influences the surrounding protein conformation. In contrast, substrate addition results in a geometric and electronic structural change at the iron center which may help orient the substrate for completely coupled hydroxylation. 106 refs., 10 figs., 6 tabs.
Khoa, D T
2004-01-01
Fully quantal calculations of the total reaction cross sections \\sigR and interaction cross sections \\sigI, induced by stable and unstable He, Li, C and O isotopes on $^{12}$C target at $E_{\\rm lab}\\approx 0.8$ and 1 GeV/nucleon have been performed, for the first time, in the distorted wave impulse approximation (DWIA) using the microscopic \\emph{complex} optical potential and inelastic form factors given by the folding model. Realistic nuclear densities for the projectiles and $^{12}$C target as well as the complex $t$-matrix parameterization of free nucleon-nucleon interaction by Franey and Love were used as inputs of the folding calculation. Our \\emph{parameter-free} folding + DWIA approach has been shown to give a very good account (within 1--2%) of the experimental \\sigI measured at these energies for the stable, strongly bound isotopes. With the antisymmetrization of the dinuclear system properly taken into account, this microscopic approach is shown to be more accurate than the simple optical limit of ...
Directory of Open Access Journals (Sweden)
Zhili Liang
2016-07-01
Full Text Available Pyrraline, a causative factor for the recent epidemics of diabetes and cardiovascular disease, is also employed as an indicator to evaluate heat damage and formation of advanced glycation end-products (AGEs in foods. Peptide-enriched drinks (PEDs are broadly consumed worldwide due to rapid rate of absorption and perceived health effects. It can be hypothesized that PED is an important source of pyrraline, especially peptide bound pyrraline (Pep-Pyr. In this study we determined free-form pyrraline (Free-Pyr and Pep-Pyr in drinks enriched with whey protein hydrolysate (WPH, soy protein hydrolysate (SPH and collagen protein hydrolysate (CPH. A detection method was developed using ultrahigh-performance liquid chromatography with UV-visible detector coupled with tandem mass spectrometry after solid-phase extraction (SPE. The SPE led to excellent recovery rates ranging between 93.2% and 98.5% and a high reproducibility with relative standard deviations (RSD of <5%. The limits of detection and quantification obtained were 30.4 and 70.3 ng/mL, respectively. Pep-Pyr was identified as the most abundant form (above 96 percent of total pyrraline, whereas Free-Pyr was present in a small proportion (less than four percent of total pyrraline. The results indicate that PED is an important extrinsic source of pyrraline, especially Pep-Pyr. As compared with CPH- and SPH-enriched drinks, WPH-enriched drinks contained high content of Pep-Pyr. The Pep-Pyr content is associated with the distribution of peptide lengths and the amino acid compositions of protein in PEDs.
Hen, O; Piasetzky, E; Weinstein, L B
2016-01-01
This article reviews our current understanding of how the internal quark structure of a nucleon bound in nuclei differs from that of a free nucleon. We focus on the interpre- tation of measurements of the EMC effect for valence quarks, a reduction in the Deep Inelastic Scattering (DIS) cross-section ratios for nuclei relative to deuterium, and its possible connection to nucleon-nucleon Short-Range Correlations (SRC) in nuclei. Our review of the available experimental and theoretical evidence shows that there is a phe- nomenological relation between between the EMC effect and the effects of SRC that is not an accident. There is an underlying cause of both effects: the influence of strongly correlated neutron-proton pairs is largely responsible. This conclusion needs to be so- lidified by the future experiments and improved theoretical analyses that are discussed herein.
Meson-cloud effects in the electromagnetic nucleon structure
Kupelwieser, Daniel
2013-01-01
We study how the electromagnetic structure of the nucleon is influenced by a pion cloud. To this aim we make use of a constituent-quark model with instantaneous confinement and a pion that couples directly to the quarks. To derive the invariant 1- photon-exchange electron-nucleon scattering amplitude we employ a Poincar\\'e- invariant coupled-channel formulation which is based on the point-form of relativistic quantum mechanics. We argue that the electromagnetic nucleon current extracted from this amplitude can be reexpressed in terms of pure hadronic degrees of freedom with the quark substructure of the pion and the nucleon being encoded in electromagnetic and strong vertex form factors. These are form factors of bare particles, i.e. eigenstates of the pure confinement problem. First numerical results for (bare) photon-nucleon and pion-nucleon form factors, which are the basic ingredients of the further calculation, are given for a simple 3-quark wave function of the nucleon.
Roy-Steiner-equation analysis of pion-nucleon scattering
Meißner, U.-G.; Ruiz de Elvira, J.; Hoferichter, M.; Kubis, B.
2017-03-01
Low-energy pion-nucleon scattering is relevant for many areas in nuclear and hadronic physics, ranging from the scalar couplings of the nucleon to the long-range part of two-pion-exchange potentials and three-nucleon forces in Chiral Effective Field Theory. In this talk, we show how the fruitful combination of dispersion-theoretical methods, in particular in the form of Roy-Steiner equations, with modern high-precision data on hadronic atoms allows one to determine the pion-nucleon scattering amplitudes at low energies with unprecedented accuracy. Special attention will be paid to the extraction of the pion-nucleon σ-term, and we discuss in detail the current tension with recent lattice results, as well as the determination of the low-energy constants of chiral perturbation theory.c
Electromagnetic properties of nucleons and hyperons in a Lorentz covariant quark model
Faessler, A; Holstein, B R; Lyubovitskij, V E; Nicmorus, D; Pumsa-ard, K; Faessler, Amand; Gutsche, Thomas; Holstein, Barry R.; Lyubovitskij, Valery E.; Nicmorus, Diana; Pumsa-ard, Kem
2006-01-01
We calculate magnetic moments of nucleons and hyperons and N -> Delta + gamma transition characteristics using a manifestly Lorentz covariant chiral quark approach for the study of baryons as bound states of constituent quarks dressed by a cloud of pseudoscalar mesons.
A measurement of the ratio of the nucleon structure function in copper and deuterium
Energy Technology Data Exchange (ETDEWEB)
Ashman, J.; Combley, F.; Salmon, D. (Sheffield Univ. (United Kingdom). Dept. of Physics); Badelek, B.; Ciborowski, J.; Gajewski, J.; Rondio, E.; Ropelewski, L. (Warsaw Univ. (Poland). Inst. of Physics); Baum, G.; Caputo, M.C.; Hughes, V.W.; Oppenheim, R.F.; Papavassiliou, V.; Piegaia, R.; Schueler, K.P. (Yale Univ., New Haven, CT (United States). Dept. of Physics); Beaufays, J.; Jacholkowska, A.; Niinikowski, T.; Osborne, A.M.; Rieubland, J.M. (European Organization for Nuclear Research, Geneva (Switzerland)); Bee, C.P.; Brown, S.C.; Court, G.; Francis, D.; Gabathuler, E.; Gamet, R.; Hayman, P.; Holt, J.R.; Jones, T.; Matthews, M.; Wimpenny, S.J. (Liverpool Univ. (United Kingdom). Dept. of Physics); Benchouk, C.; D' Agostini, G.; Montanet, F.; Pietrzyk, B. (Aix-Marseille-2 Univ., 13 - Marseille (France). Faculte des Sciences de Luminy); Bird, I.G.; Dyce, N.; Sloan, T. (Lancaster Univ. (United Kingdom). Dept. of Physics); Cheung, H.W.K.; Gibson, V.; Gillies, J.; Renton, P.; Taylor; European Muon Collaboration
1993-02-01
Results are presented on the ratios of the nucleon structure function in copper to deuterium from two separate experiments. The data confirm that the nucleon structure function, F[sub 2], is different for bound nucleons than for the quasi-free ones in the deuteron. The redistribution in the fraction of the nucleon's momentum carried by quarks is investigated and it is found that the data are compatible with no integral loss of quark momenta due to nuclear effects. (orig.).
Mapolelo, Daphne T; Zhang, Bo; Naik, Sunil G; Huynh, Boi Hanh; Johnson, Michael K
2012-10-16
The mechanism of [4Fe-4S] cluster assembly on A-type Fe-S cluster assembly proteins, in general, and the specific role of (Nif)IscA in the maturation of nitrogen fixation proteins are currently unknown. To address these questions, in vitro spectroscopic studies (UV-visible absorption/CD, resonance Raman and Mössbauer) have been used to investigate the mechanism of [4Fe-4S] cluster assembly on Azotobacter vinelandii(Nif)IscA, and the ability of (Nif)IscA to accept clusters from NifU and to donate clusters to the apo form of the nitrogenase Fe-protein. The results show that (Nif)IscA can rapidly and reversibly cycle between forms containing one [2Fe-2S](2+) and one [4Fe-4S](2+) cluster per homodimer via DTT-induced two-electron reductive coupling of two [2Fe-2S](2+) clusters and O(2)-induced [4Fe-4S](2+) oxidative cleavage. This unique type of cluster interconversion in response to cellular redox status and oxygen levels is likely to be important for the specific role of A-type proteins in the maturation of [4Fe-4S] cluster-containing proteins under aerobic growth or oxidative stress conditions. Only the [4Fe-4S](2+)-(Nif)IscA was competent for rapid activation of apo-nitrogenase Fe protein under anaerobic conditions. Apo-(Nif)IscA was shown to accept clusters from [4Fe-4S] cluster-bound NifU via rapid intact cluster transfer, indicating a potential role as a cluster carrier for delivery of clusters assembled on NifU. Overall the results support the proposal that A-type proteins can function as carrier proteins for clusters assembled on U-type proteins and suggest that they are likely to supply [2Fe-2S] clusters rather than [4Fe-4S] for the maturation of [4Fe-4S] cluster-containing proteins under aerobic or oxidative stress growth conditions.
Introduction to Nucleonics: A Laboratory Course. Teacher's Guide.
Phelps, William; And Others
This collection of laboratory lessons is designed primarily for the non-college bound high school student. It can be adapted, however, to a wide range of abilities. It begins with an examination of the properties of nuclear radiation, develops an understanding of the fundamentals of nucleonics, and ends with an investigation of careers in areas…
Momentum Distribution of a Fragment and Nucleon Removal Cross Section in the Reaction of Halo Nuclei
Institute of Scientific and Technical Information of China (English)
ZHAOYao-Lin; MAZhong-Yu; CHENBao-Qiu
2003-01-01
Recently the research on the halo structure of drip-line nuclei has shown some interesting properties of the existence of one or more halo nucleons. In the framework of few-body Glauber model, the momentum distribution of a fragment and nucleon removal cross section in the reaction of halo nuclei is presented and extended to nuclei having more than one halo nucleons. The reaction mechanism is treated with and without taking account of the final-state interaction. The wave function of removal halo nucleons in the continuum state is modified by imposing an orthogonal condition to the bound state. An analytical expression of the longitudinal momentum distribution of the fragment is derived when the bound state wave function of halo nucleons is taken as a Gaussian-type function. This is useful in the further investigation on the structure of halo nuclei.
A novel nuclear dependence of nucleon-nucleon short-range correlations
Dai, Hongkai; Huang, Yin; Chen, Xurong
2016-01-01
A linear correlation is found between the magnitude of nucleon-nucleon short-range correlations and the nuclear binding energy per nucleon with pairing energy removed. By using this relation, the strengths of nucleon-nucleon short-range correlations of some unmeasured nuclei are predicted. Discussions on nucleon-nucleon pairing energy and nucleon-nucleon short-range correlations are made. The found nuclear dependence of nucleon-nucleon short-range correlations may shed some lights on the short-range structure of nucleus.
Polarized lepton-nucleon scattering
Energy Technology Data Exchange (ETDEWEB)
Hughes, E.
1994-02-01
Deep inelastic polarized lepton-nucleon scattering is reviewed in three lectures. The first lecture covers the polarized deep inelastic scattering formalism and foundational theoretical work. The second lecture describes the nucleon spin structure function experiments that have been performed up through 1993. The third lecture discusses implication of the results and future experiments aimed at high-precision measurements of the nucleon spin structure functions.
Pion production off the nucleon
Alam, M Rafi; Chauhan, Shikha; Singh, S K
2016-01-01
We have studied charged current neutrino/antineutrino induced weak pion production from nucleon. For the present study, contributions from $\\Delta(1232)$-resonant term, non-resonant background terms as well as contribution from higher resonances viz. $P_{11}$(1440), $D_{13}$(1520), $S_{11}$(1535), $S_{11}$(1650) and $P_{13}$(1720) are taken. To write the hadronic current for the non-resonant background terms, a microscopic approach based on SU(2) non-linear sigma model has been used. The vector form factors for the resonances are obtained from the helicity amplitudes provided by MAID. Axial coupling in the case of $\\Delta(1232)$ resonance is obtained by fitting the ANL and BNL $\
Nucleon Resonances in Kaon Photoproduction
Bennhold, C; Waluyo, A; Haberzettl, H; Penner, G; Feuster, T; Mosel, U
1999-01-01
Nucleon resonances are investigated through the electromagnetic production of K-mesons. We study the kaon photoproduction process at tree-level and compare to a recently developed unitary K-matrix approach. Employing hadronic form factors along with the proper gauge prescription yields suppression of the Born terms and leads a resonance dominated process for both K-Lambda and K-Sigma photoproduction. Using new SAPHIR data we find the K+-Lambda photoproduction to be dominated by the S11(1650) at threshold, with additional contributions from the P11(1710) and P13(1720) states. The K-Sigma channel couples to a cluster of Delta resonances around W = 1900 MeV. We briefly discuss some tantalizing evidence for a missing D13 resonance around 1900 MeV with a strong branching ratio into KLambda channel.
Parton promenade into the nucleon
Voutier, Eric
2010-01-01
Generalized parton distributions (GPDs) offer a comprehensive picture of the nucleon struture and dynamics and provide a link between microscopic and macroscopic properties of the nucleon. These quantities, which can be interpreted as the transverse distribution of partons carrying a certain longitudinal momentum fraction of the nucleon, can be accessed in deep exclusive processes. This lecture reviews the main features of the nucleon structure as obtained from elastic and inelastic lepton scatterings and unified in the context of the GPDs framework. Particular emphasis is put on the experimental methods to access these distributions and the today experimental status.
Energy Technology Data Exchange (ETDEWEB)
Shi, Rong; Munger, Christine; Asinas, Abdalin; Benoit, Stephane L.; Miller, Erica; Matte, Allan; Maier, Robert J.; Cygler, Miroslaw (McGill); (Georgia); (Biotech Res.)
2010-10-22
The crystal structure of the urease maturation protein UreE from Helicobacter pylori has been determined in its apo form at 2.1 {angstrom} resolution, bound to Cu{sup 2+} at 2.7 {angstrom} resolution, and bound to Ni{sup 2+} at 3.1 {angstrom} resolution. Apo UreE forms dimers, while the metal-bound enzymes are arranged as tetramers that consist of a dimer of dimers associated around the metal ion through coordination by His102 residues from each subunit of the tetramer. Comparison of independent subunits from different crystal forms indicates changes in the relative arrangement of the N- and C-terminal domains in response to metal binding. The improved ability of engineered versions of UreE containing hexahistidine sequences at either the N-terminal or C-terminal end to provide Ni{sup 2+} for the final metal sink (urease) is eliminated in the H102A version. Therefore, the ability of the improved Ni{sup 2+}-binding versions to deliver more nickel is likely an effect of an increased local concentration of metal ions that can rapidly replenish transferred ions bound to His102.
Measurement of Strange Quark Contributions to the Nucleon's Form Factors at Q^2=0.230 (GeV/c)^2
Maas, F E; Aulenbacher, K; Baunack, S; Capozza, L; Diefenbach, J; Grimm, K; Imai, Y; Hammel, T; Von Harrach, D; Kabuss, E M; Kothe, R; Lee, J H; Lorente, A; Ginja, A L; Nungesser, L; Schilling, E P; Stephan, G; Weinrich, C; Altarev, I S; Arvieux, J; Collin, B; Frascaria, R; Guidal, M; Kunne, Ronald Alexander; Marchand, D; Morlet, M; Ong, S; Van de Wiele, J; Kowalski, S; Plaster, B; Suleiman, R; Taylor, S
2004-01-01
We report on a measurement of the parity-violating asymmetry in the scattering of longitudinally polarized electrons on unpolarized protons at a $Q^2$ of 0.230 (GeV/c)^2 and a scattering angle of \\theta_e = 30^o - 40^o. Using a large acceptance fast PbF_2 calorimeter with a solid angle of \\Delta\\Omega = 0.62 sr the A4 experiment is the first parity violation experiment to count individual scattering events. The measured asymmetry is A_{phys} =(-5.44 +- 0.54_{stat} +- 0.27_{\\rm sys}) 10^{-6}. The Standard Model expectation assuming no strangeness contributions to the vector form factors is $A_0=(-6.30 +- 0.43) 10^{-6}$. The difference is a direct measurement of the strangeness contribution to the vector form factors of the proton. The extracted value is G^s_E + 0.225 G^s_M = 0.039 +- 0.034 or F^s_1 + 0.130 F^s_2 = 0.032 +- 0.028.
Constraints on the Nucleon Strange Form Factors at Q{sup 2} {approx} 0.1 GeV{sup 2}
Energy Technology Data Exchange (ETDEWEB)
K.A. Aniol; D.S. Armstrong; T. Averett; H. Benaoum; P.Y. Bertin; E. Burtin; J. Cahoon; G.D. Cates; C.C. Chang; Y.-C. Chao; J.-P. Chen; Seonho Choi; E. Chudakov; B. Craver; F. Cusanno; Piotr Decowski; D. Deepa; C. FERDI; R.J. Feuerbach; J.M. Finn; S. Frullani; K. Fuoti; F. Garibaldi; R. Gilman; A. Glamazdin; V. Gorbenko; J.M. Grames; J. Hansknecht; D.W. Higinbotham; R. Holmes; T. Holmstrom; T.B. Humensky; H. Ibrahim; C.W. de Jager; X. Jiang; L.J. Kaufman; A. Kelleher; A. Kolarkar; S. Kowalski; K.S. Kumar; D. Lambert; P. LaViolette; J. LeRose; D. Lhuillier; N. Liyanage; M. Mazouz; K. McCormick; D.G. Meekins; Z.-E. Meziani; R. Michaels; B. Moffit; P. Monaghan; C. Munoz-Camacho; S. Nanda; V. Nelyubin; D. Neyret; K.D. Paschke; M. Poelker; R. Pomatsalyuk; Y. Qiang; B. Reitz; J. Roche; A. Saha; J. Singh; R. Snyder; P.A. Souder; R. Subedi; R. Suleiman; V. Sulkosky; W.A. Tobias; G.M. Urciuoli; A. Vacheret; E. Voutier; K. Wang; R. Wilson; B. Wojtsekhowski; X. Zheng
2005-06-01
We report the most precise measurement to date of a parity-violating asymmetry in elastic electron-proton scattering. The measurement was carried out with a beam energy of 3.03 GeV and a scattering angle <{theta}{sub lab}> = 6.0 degrees, with the result A{sub PV} = -1.14 {+-} 0.24 (stat) {+-} 0.06 (syst) parts per million. From this we extract, at Q{sup 2} = 0.099 GeV{sup 2}, the strange form factor combination G{sub E}{sup s} + 0.080 G{sub M}{sup s} = 0.030 {+-} 0.025 (stat) {+-} 0.006 (syst) {+-} 0.012 (FF) where the first two errors are experimental and the last error is due to the uncertainty in the neutron electromagnetic form factor. The measurement significantly improves existing constraints on G{sub E}{sup s} and G{sub M}{sup s} at Q{sup 2} {approx}0.1 GeV{sup 2}. A consistent picture emerges from all measurements at this Q{sup 2}. A combined fit shows that G{sub E}{sup s} is consistent with zero while G{sub M}{sup s} prefers positive values though G{sub E}{sup s} = G{sub M}{sup s} = 0 is compatible with the data at 95% C.L.
Estimates of the Nucleon Tensor Charge
Gamberg, L P; Gamberg, Leonard; Goldstein, Gary R.
2001-01-01
Like the axial vector charges, defined from the forward nucleon matrix element of the axial vector current on the light cone, the nucleon tensor charge, defined from the corresponding matrix element of the tensor current, is essential for characterizing the momentum and spin structure of the nucleon. Because there must be a helicity flip of the struck quark in order to probe the transverse spin polarization of the nucleon, the transversity distribution (and thus the tensor charge) decouples at leading twist in deep inelastic scattering, although no such suppression appears in Drell-Yan processes. This makes the tensor charge difficult to measure and its non-conservation makes its prediction model dependent. We present a different approach. Exploiting an approximate SU(6)xO(3) symmetric mass degeneracy of the light axial vector mesons (a1(1260), b1(1235) and h1(1170)) and using pole dominance, we calculate the tensor charge. The result is simple in form and depends on the decay constants of the axial vector me...
Perevalova, I A; Schweitzer, P
2016-01-01
The pentaquark $P_c^+(4450)$ recently discovered by LHCb has been interpreted as a bound state of $\\Psi(2S)$ and nucleon. The charmonium-nucleon interaction which provides the binding mechanism is given, in the heavy quark limit, in terms of charmonium chromoelectric polarizabilities and densities of the nucleon energy-momentum tensor (EMT). In this work we show in model-independent way, by exploring general properties of the effective interaction, that $\\Psi(2S)$ can form bound states with nucleon and $\\Delta$. Using the Skyrme model to evaluate the effective interaction in the large-$N_c$ limit and estimate $1/N_c$ corrections, we confirm the results from prior work which were based on a different effective model (chiral quark soliton model). This shows that the interpretation of $P_c^+(4450)$ is remarkably robust and weakly dependent on the details of the effective theories for the nucleon~EMT. We explore the formalism further and present robust predictions of isospin $\\frac32$ bound states of $\\Psi(2S)$ a...
Few-nucleon systems with state-of-the-art chiral nucleon-nucleon forces
Binder, S; Epelbaum, E; Furnstahl, R J; Golak, J; Hebeler, K; Kamada, H; Krebs, H; Langhammer, J; Liebig, S; Maris, P; Meißner, U -G; Minossi, D; Nogga, A; Potter, H; Roth, R; Skibinski, R; Topolnicki, K; Vary, J P; Witala, H
2015-01-01
We apply improved nucleon-nucleon potentials up to fifth order in chiral effective field theory, along with a new analysis of the theoretical truncation errors, to study nucleon-deuteron (Nd) scattering and selected low-energy observables in 3H, 4He, and 6Li. Calculations beyond second order differ from experiment well outside the range of quantified uncertainties, providing truly unambiguous evidence for missing three-nucleon forces within the employed framework. The sizes of the required three-nucleon force contributions agree well with expectations based on Weinberg's power counting. We identify the energy range in elastic Nd scattering best suited to study three-nucleon force effects and estimate the achievable accuracy of theoretical predictions for various observables.
Maekawa, Nobuhiro; Muramatsu, Yu
2017-04-01
Recent discovery of neutrino large mixings implies the large mixings in the diagonalizing matrices of 5 bar fields in SU (5) grand unified theory (GUT), while the diagonalizing matrices of 10 fields of SU (5) are expected to have small mixings like Cabibbo-Kobayashi-Maskawa matrix. We calculate the predictions of flavor changing nucleon decays (FCND) in SU (5), SO (10), and E6 GUT models which have the above features for mixings. We found that FCND can be the main decay mode and play an important role to test GUT models.
Dimensional versus cut-off renormalization and the nucleon-nucleon interaction
Ghosh, A; Talukdar, B; Ghosh, Angsula; Adhikari, Sadhan K.
1998-01-01
The role of dimensional regularization is discussed and compared with that of cut-off regularization in some quantum mechanical problems with ultraviolet divergence in two and three dimensions with special emphasis on the nucleon-nucleon interaction. Both types of renormalizations are performed for attractive divergent one- and two-term separable potentials, a divergent tensor potential, and the sum of a delta function and its derivatives. We allow energy-dependent couplings, and determine the form that these couplings should take if equivalence between the two regularization schemes is to be enforced. We also perform renormalization of an attractive separable potential superposed on an analytic divergent potential.
Dimensional versus cut-off renormalization and the nucleon-nucleon interaction
Ghosh, Angsula; Adhikari, Sadhan K.; Talukdar, B.
1998-10-01
The role of dimensional regularization is discussed and compared with that of cut-off regularization in some quantum mechanical problems with ultraviolet divergence in two and three dimensions with special emphasis on the nucleon-nucleon interaction. Both types of renormalizations are performed for attractive divergent one- and two-term separable potentials, a divergent tensor potential, and the sum of a delta function and its derivatives. We allow energy-dependent couplings, and determine the form that these couplings should take if equivalence between the two regularization schemes is to be enforced. We also perform renormalization of an attractive separable potential superposed on an analytic divergent potential.
Evidence for Strange Quark Contributions to the Nucleon's Form Factors at $Q^2$ = 0.108 (GeV/c)$^2$
Maas, F E; Baunack, S; Capozza, L; Diefenbach, J; Gl"aser, B; Hammel, T; Von Harrach, D; Imai, Y; Kabuss, E M; Kothe, R; Lee, J H; Lorente, A; Schilling, E P; Schwaab, D; Sikora, M; Stephan, G; Weber, G; Weinrich, C; Altarev, I S; Arvieux, J; El-Yakoubi, M; Frascaria, R; Kunne, Ronald Alexander; Morlet, M; Ong, S; Van de Wiele, J; Kowalski, S; Plaster, B; Suleiman, R; Taylor, S
2004-01-01
We report on a measurement of the parity violating asymmetry in the elastic scattering of polarized electrons off unpolarized protons with the A4 apparatus at MAMI in Mainz at a four momentum transfer value of $Q^2$ = \\Qsquare (GeV/c)$^2$ and at a forward electron scattering angle of 30$^\\circ < \\theta_e < 40^\\circ$. The measured asymmetry is $A_{LR}(\\vec{e}p)$ = (\\Aphys $\\pm$ \\Deltastat$_{stat}$ $\\pm$ \\Deltasyst$_{syst}$) $\\times$ 10$^{-6}$. The expectation from the Standard Model assuming no strangeness contribution to the vector current is A$_0$ = (\\Azero $\\pm$ \\DeltaAzero) $\\times$ 10$^{-6}$. We have improved the statistical accuracy by a factor of 3 as compared to our previous measurements at a higher $Q^2$. We have extracted the strangeness contribution to the electromagnetic form factors from our data to be $G_E^s$ + \\FakGMs $G_M^s$ = \\GEsGMs $\\pm $ \\DeltaGEsGMs at $Q^2$ = \\Qsquare (GeV/c)$^2$. As in our previous measurement at higher momentum transfer for $G_E^s$ + 0.230 $G_M^s$, we again find t...
Energy Technology Data Exchange (ETDEWEB)
Deur, Alexandre
2009-12-01
We discuss the Jefferson Lab low momentum transfer data on moments of the nucleon spin structure functions $g_1$ and $g_2$ and on single charged pion electroproduction off polarized proton and polarized neutron. A wealth of data is now available, while more is being analyzed or expected to be taken in the upcoming years. Given the low momentum transfer selected by the experiments, these data can be compared to calculations from Chiral Perturbation theory, the effective theory of strong force that should describe it at low momentum transfer. The data on various moments and the respective calculations do not consistently agree. In particular, experimental data for higher moments disagree with the calculations.The absence of contribution from the $\\Delta$ resonance in the various observables was expected to facilitate the calculations and hence make the theory predictions either more robust or valid over a larger $Q^2$ range. Such expectation is verified only for the Bjorken sum, but not for other observables in which the $\\Delta$ is suppressed. Preliminary results on pion electroproduction off polarized nucleons are also presented and compared to phenomenological models for which contributions from different resonances are varied. Chiral Perturbation calculations of these observables, while not yet available, would be valuable and, together with these data, would provide an extensive test of the effective theory.
Burkert, Volker D
2016-01-01
Recent results of meson photo-production at the existing electron machines with polarized real photon beams and the measurement of polarization observables of the final state baryons have provided high precision data that led to the discovery of new excited nucleon and $\\Delta$ states using multi-channel partial wave analyses procedures. The internal structure of several prominent excited states has been revealed employing meson electroproduction processes. On the theoretical front, lattice QCD is now predicting the baryon spectrum with very similar characteristics as the constituent quark model, and continuum QCD, such as is represented in the Dyson-Schwinger Equations approach and in light front relativistic quark models, describes the non-perturbative behavior of resonance excitations at photon virtuality of $Q^2 > 1.5GeV^2$. In this talk I discuss the need to continue a vigorous program of nucleon spectroscopy and the study of the internal structure of excited states as a way to reveal the effective degre...
Burkert, Volker D.
2016-10-01
Recent results of meson photo-production at the existing electron machines with polarized real photon beams and the measurement of polarization observables of the final state baryons have provided high precision data that led to the discovery of new excited nucleon and Δ states using multi-channel partial wave analyses procedures. The internal structure of several prominent excited states has been revealed employing meson electroproduction processes. On the theoretical front, lattice QCD is now predicting the baryon spectrum with very similar characteristics as the constituent quark model, and continuum QCD, such as is represented in the Dyson-Schwinger equations approach and in light front relativistic quark models, describes the non-perturbative behavior of resonance excitations at photon virtuality of Q^2 > 1.5 GeV^2. In this talk I discuss the need to continue a vigorous program of nucleon spectroscopy and the study of the internal structure of excited states as a way to reveal the effective degrees of freedom underlying the excited states and their dependence on the distance scale probed.
Strange Quark Contribution to the Nucleon - (Dissertation)
Darnell, Dean
2008-01-01
The strangeness contribution to the electric and magnetic properties of the nucleon has been under investigation experimentally for many years. Lattice Quantum Chromodynamics (LQCD) gives theoretical predictions of these measurements by implementing the continuum gauge theory on a discrete, mathematical Euclidean space-time lattice which provides a cutoff removing the ultra-violet divergences. In this dissertation we will discuss effective methods using LQCD that will lead to a better determination of the strangeness contribution to the nucleon properties. Strangeness calculations are demanding technically and computationally. Sophisticated techniques are required to carry them to completion. In this thesis, new theoretical and computational methods for this calculation such as twisted mass fermions, perturbative subtraction, and General Minimal Residual (GMRES) techniques which have proven useful in the determination of these form factors will be investigated. Numerical results of the scalar form factor usin...
Peletminskii, A. S.; Peletminskii, S. V.; Slyusarenko, Yu V.
2017-07-01
We study a many-body system of interacting fermionic atoms of two species that are in thermodynamic equilibrium with their condensed heteronuclear bound states (molecules). In order to describe such an equilibrium state, we use a microscopic approach that involves the Bogoliubov model for a weakly interacting Bose gas and approximate formulation of the second quantization method in the presence of bound states of particles elaborated earlier by the authors. This microscopic approach is valid at low temperatures, when the average kinetic energy of all the components in the system is small in comparison with the bound state energy. The coupled equations, which relate the chemical potentials of fermionic components and molecular condensate density, are obtained within the proposed theory. At zero temperature, these equations are analyzed both analytically and numerically, attracting the relevant experimental data. We find the conditions at which a condensate of heteronuclear molecules coexists in equilibrium with degenerate components of a Fermi gas. The ground state energy and single-particle excitation spectrum are found. The boundaries of the applicability of the developed microscopic approach are analyzed.
Pion-nucleon scattering: from chiral perturbation theory to Roy-Steiner equations
Kubis, Bastian; Hoferichter, Martin; de Elvira, Jacobo Ruiz; Meißner, Ulf-G.
2016-11-01
Ever since Weinberg's seminal predictions of the pion-nucleon scattering amplitudes at threshold, this process has been of central interest for the study of chiral dynamics involving nucleons. The scattering lengths or the pion-nucleon σ-term are fundamental quantities characterizing the explicit breaking of chiral symmetry by means of the light quark masses. On the other hand, pion-nucleon dynamics also strongly affects the long-range part of nucleon-nucleon potentials, and hence has a far-reaching impact on nuclear physics. We discuss the fruitful combination of dispersion-theoretical methods, in the form of Roy-Steiner equations, with chiral dynamics to determine pion-nucleon scattering amplitudes at low energies with high precision.*
Effective nucleon mass and the nuclear caloric curve
Shetty, D V; Galanopoulos, S; Yennello, S J
2009-01-01
Assuming a schematic form of the nucleon effective mass as a function of nuclear excitation energy and mass, we provide a simple explanation for understanding the experimentally observed mass dependence of the nuclear caloric curve. It is observed that the excitation energy at which the caloric curve enters into a plateau region, could be sensitive to the nuclear mass evolution of the effective nucleon mass.
Gauge-invariant meson photoproduction with extended nucleons
Haberzettl, H; Mart, T; Feuster, T
1998-01-01
The general gauge-invariant photoproduction formalism given by Haberzettl is applied to kaon photoproduction off the nucleon at the tree level, with form factors describing composite nucleons. Numerical results show that this gauge-invariance procedure, when compared to Ohta's, leads to a much improved description of experimental data. Predictions for the new Bonn SAPHIR data for $p(\\gamma,K^+)\\Lambda$ are given.
Three pion nucleon coupling constants
Arriola, E Ruiz; Perez, R Navarro
2016-01-01
There exist four pion nucleon coupling constants, $f_{\\pi^0, pp}$, $-f_{\\pi^0, nn}$, $f_{\\pi^+, pn} /\\sqrt{2}$ and $ f_{\\pi^-, np} /\\sqrt{2}$ which coincide when up and down quark masses are identical and the electron charge is zero. While there is no reason why the pion-nucleon-nucleon coupling constants should be identical in the real world, one expects that the small differences might be pinned down from a sufficiently large number of independent and mutually consistent data. Our discussion provides a rationale for our recent determination $$f_p^2 = 0.0759(4) \\, , \\quad f_{0}^2 = 0.079(1) \\,, \\quad f_{c}^2 = 0.0763(6) \\, , $$ based on a partial wave analysis of the $3\\sigma$ self-consistent nucleon-nucleon Granada-2013 database comprising 6713 published data in the period 1950-2013.
Fukuda, Mitsunori
2003-04-25
Slp4-a (synaptotagmin-like protein 4-a)/granuphilin-a is specifically localized on dense-core vesicles in PC12 cells and negatively controls dense-core vesicle exocytosis through specific interaction with Rab27A via the N-terminal Slp homology domain (SHD) (Fukuda, M., Kanno, E., Saegusa, C., Ogata, Y., and Kuroda, T. S. (2002) J. Biol. Chem. 277, 39673-39678). However, the mechanism of the inhibition by Slp4-a has never been elucidated at the molecular level and is still a matter of controversy. In this study, I discovered an unexpected biochemical property of Slp4-a, that Slp4-a, but not other Rab27 effectors reported thus far, is capable of interacting with both Rab27A(T23N), a dominant negative form that mimics the GDP-bound form, and Rab27A(Q78L), a dominant active form that mimics the GTP-bound form, whereas Slp4-a specifically recognizes the GTP-bound form of Rab3A and Rab8A and does not recognize their GDP-bound form. I show by deletion and mutation analyses that the TGDWFY sequence in SHD2 is essential for Rab27A(T23N) binding, whereas SHD1 is involved in Rab27A(Q78L) binding. I further show by immunoprecipitation and cotransfection assays that Munc18-1, but not syntaxin IA, directly interacts with the C-terminal domain of Slp4-a in a Rab27A-independent manner. Expression of Slp4-a mutants that lack Rab27A(T23N) binding activity (i.e. specific binding to Rab27A(Q78L)) completely reverses the inhibitory effect of the wild-type Slp4-a on high KCl-dependent neuropeptide Y secretion in PC12 cells. The results strongly indicate that interaction of Slp4-a with the GDP-bound form of Rab27A, not with syntaxin IA or Munc18-1, is the primary reason that Slp4-a expression inhibits dense core vesicle exocytosis in PC12 cells.
Two-Nucleon Systems in a Finite Volume
Energy Technology Data Exchange (ETDEWEB)
Briceno, Raul
2014-11-01
I present the formalism and methodology for determining the nucleon-nucleon scattering parameters from the finite volume spectra obtained from lattice quantum chromodynamics calculations. Using the recently derived energy quantization conditions and the experimentally determined scattering parameters, the bound state spectra for finite volume systems with overlap with the 3S1-3D3 channel are predicted for a range of volumes. It is shown that the extractions of the infinite-volume deuteron binding energy and the low-energy scattering parameters, including the S-D mixing angle, are possible from Lattice QCD calculations of two-nucleon systems with boosts of |P| <= 2pi sqrt{3}/L in volumes with spatial extents L satisfying fm <~ L <~ 14 fm.
A Quark Transport Theory to describe Nucleon--Nucleon Collisions
Kalmbach, U; Biro, T S; Mosel, U
1993-01-01
On the basis of the Friedberg-Lee model we formulate a semiclassical transport theory to describe the phase-space evolution of nucleon-nucleon collisions on the quark level. The time evolution is given by a Vlasov-equation for the quark phase-space distribution and a Klein-Gordon equation for the mean-field describing the nucleon as a soliton bag. The Vlasov equation is solved numerically using an extended testparticle method. We test the confinement mechanism and mean-field effects in 1+1 dimensional simulations.
A New Optimal Bound on Logarithmic Slope of Elastic Hadron-Hadron Scattering
Ion, D B
2005-01-01
In this paper we prove a new optimal bound on the logarithmic slope of the elastic slope when: elastic cross section and differential cross sections in forward and backward directions are known from experimental data. The results on the experimental tests of this new optimal bound are presented in Sect. 3 for the principal meson-nucleon elastic scatterings: pion-nucleon, kaon-nucleon at all available energies. Then we have shown that the saturation of this optimal bound is observed with high accuracy practically at all available energies in meson-nucleon scattering.
Statistical Error analysis of Nucleon-Nucleon phenomenological potentials
Perez, R Navarro; Arriola, E Ruiz
2014-01-01
Nucleon-Nucleon potentials are commonplace in nuclear physics and are determined from a finite number of experimental data with limited precision sampling the scattering process. We study the statistical assumptions implicit in the standard least squares fitting procedure and apply, along with more conventional tests, a tail sensitive quantile-quantile test as a simple and confident tool to verify the normality of residuals. We show that the fulfilment of normality tests is linked to a judicious and consistent selection of a nucleon-nucleon database. These considerations prove crucial to a proper statistical error analysis and uncertainty propagation. We illustrate these issues by analyzing about 8000 proton-proton and neutron-proton scattering published data. This enables the construction of potentials meeting all statistical requirements necessary for statistical uncertainty estimates in nuclear structure calculations.
Induced Hyperon-Nucleon-Nucleon Interactions and the Hyperon Puzzle
Wirth, Roland
2016-01-01
We present the first ab initio calculations for $p$-shell hypernuclei including hyperon-nucleon-nucleon (YNN) contributions induced by a Similarity Renormalization Group transformation of the initial hyperon-nucleon interaction. The transformation including the YNN terms conserves the spectrum of the Hamiltonian while drastically improving model-space convergence of the Importance-Truncated No-Core Shell Model, allowing a precise extraction of binding and excitation energies. Results using a hyperon-nucleon interaction at leading order in chiral effective field theory for lower- to mid-$p$-shell hypernuclei show a good reproduction of experimental excitation energies while hyperon binding energies are typically overestimated. The induced YNN contributions are strongly repulsive and we show that they are related to a decoupling of the $\\Sigma$ hyperons from the hypernuclear system, i.e., a suppression of the $\\Lambda$-$\\Sigma$ conversion terms in the Hamiltonian. This is linked to the so-called hyperon puzzle ...
Thomas, Anthony William
2001-01-01
As the only stable baryon, the nucleon is of crucial importance in particle physics. Since the nucleon is a building block for all atomic nuclei, there is a need to analyse the its structure in order to fully understand the essential properties of all atomic nuclei. After more than forty years of research on the nucleon, both the experimental and theoretical situations have matured to a point where a synthesis of the results becomes indispensable. Here, A.W. Thomas and W. Weise present a unique report on the extensive empirical studies, theoretical foundations and the different models of t
Nucleon-Nucleon Scattering From Fully-Dynamical Lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Konstantinos Orginos; Martin Savage; Paulo Bedaque; Silas Beane
2006-07-01
We present results of the first fully-dynamical lattice QCD determination of nucleon-nucleon scattering lengths in the 1 S0 channel and 3 S1 - 3 D1 coupled channels. The calculations are performed with domain-wall valence quarks on the MILC staggered configurations with lattice spacing of b = 0.125 fm in the isospin-symmetric limit, and in the absence of electromagnetic interactions
Photoproduction ofeta-pi pairs off nucleons and deuterons
Kaeser, A; Ahrens, J; Annand, J R M; Arends, H J; Bantawa, K; Bartolome, P A; Beck, R; Braghieri, A; Briscoe, W J; Cherepnya, S; Costanza, S; Dieterle, M; Downie, E J; Drexler, P; Fil'kov, L V; Fix, A; Garni, S; Glazier, D I; Hamilton, D; Hornidge, D; Howdle, D; Huber, G M; Jaegle, I; Jude, T C; Kashevarov, V L; Keshelashvili, I; Kondratiev, R; Korolija, M; Krusche, B; Lisin, V; Livingston, K; MacGregor, I J D; Maghrbi, Y; Mancell, J; Manley, D M; Marinides, Z; McGeorge, J C; McNicoll, E; Mekterovic, D; Metag, V; Micanovic, S; Middleton, D G; Mushkarenkov, A; Nikolaev, A; Novotny, R; Oberle, M; Ostrick, M; Otte, P; Oussena, B; Pedroni, P; Pheron, F; Polonski, A; Prakhov, S; Robinson, J; Rostomyan, T; Schumann, S; Sikora, M H; Sober, D; Starostin, A; Strub, Th; Supek, I; Thiel, M; Thomas, A; Unverzagt, M; Walford, N K; Watts, D P; Werthmueller, D; Witthauer, L
2016-01-01
Quasi-free photoproduction of $\\pi\\eta$-pairs has been investigated from threshold up to incident photon energies of 1.4 GeV, respectively up to photon-nucleon invariant masses up to 1.9 GeV. Total cross sections, angular distributions, invariant-mass distributions of the $\\pi\\eta$ and meson-nucleon pairs, and beam-helicity asymmetries have been measured for the reactions $\\gamma p\\rightarrow p\\pi^0\\eta$, $\\gamma n\\rightarrow n\\pi^0\\eta$, $\\gamma p\\rightarrow n\\pi^+\\eta$, and $\\gamma n\\rightarrow p\\pi^-\\eta$ from nucleons bound inside the deuteron. For the $\\gamma p$ initial state data for free protons have also been analyzed. Finally, the total cross sections for quasi-free production of $\\pi^0\\eta$ pairs from nucleons bound in $^3$He nuclei have been investigated in view of final state interaction (FSI) effects. The experiments were performed at the tagged photon beam facility of the Mainz MAMI accelerator using an almost $4\\pi$ covering electromagnetic calorimeter composed of the Crystal Ball and TAPS dete...
Nucleon-Nucleon Scattering Parameters in the Limit of SU(3) Flavor Symmetry
Beane, S R; Cohen, S D; Detmold, W; Junnarkar, P; Lin, H W; Luu, T C; Orginos, K; Parreno, A; Savage, M J; Walker-Loud, A
2013-01-01
The scattering lengths and effective ranges that describe low-energy nucleon-nucleon scattering are calculated in the limit of SU(3)-flavor symmetry at the physical strange-quark mass with Lattice Quantum Chromodynamics. The calculations are performed with an isotropic clover discretization of the quark action in three volumes with spatial extents of L \\sim 3.4 fm, 4.5fm and 6.7 fm, and with a lattice spacing of b \\sim 0.145 fm. With determinations of the energies of the two-nucleon systems (both of which contain bound states at these up and down quark masses) at rest and moving in the lattice volume, Luscher's method is used to determine the low-energy phase shifts in each channel, from which the scattering length and effective range are obtained. The scattering parameters, in the 1S0 channel are found to be m_pi a^(1S0) = 9.50^{+0.78}_{-0.69}^{+1.10}_{-0.80} and m_pi r^(1S0) = {4.61^{+0.29}_{-0.31}^{+0.24}_{-0.26}, and in the 3S1 channel are m_pi a^(3S1) = 7.45^{+0.57}_{-0.53}^{+0.71}_{-0.49} and m_pi r^(3S...
Energy Technology Data Exchange (ETDEWEB)
Ghosh, Sabyasachi, E-mail: sabyaphy@gmail.com [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Sao Paulo, SP (Brazil). Instituto de Fisica Teorica
2015-12-15
Owing to the Kubo relation, the shear viscosities of pionic and nucleonic components have been evaluated from their corresponding retarded correlators of viscous stress tensor in the static limit, which become non-divergent only for the non-zero thermal widths of the constituent particles. In the real-time thermal field theory, the pion and nucleon thermal widths have respectively been obtained from the pion self-energy for different meson, baryon loops, and the nucleon self-energy for different pion-baryon loops. We have found non-monotonic momentum distributions of pion and nucleon thermal widths, which have been integrated out by their respective Bose-enhanced and Pauli-blocked phase space factors during evaluation of their shear viscosities. The viscosity to entropy density ratio for this mixed gas of pion-nucleon system decreases and approaches its lower bound as the temperature and baryon chemical potential increase within the relevant domain of hadronic matter. (author)
Weak $\\eta$ production off the nucleon
Alam, M Rafi; Athar, M Sajjad; Vacas, M J Vicente
2013-01-01
The weak $\\eta$-meson production off the nucleon induced by (anti)neutrinos is studied at low and intermediate energies, the range of interest for several ongoing and future neutrino experiments. We consider Born diagrams and the excitation of $N^\\ast (1535)S_{11}$ and $N^\\ast(1650)S_{11}$ resonances. The vector part of the N-$S_{11}$ transition form factors has been obtained from the MAID helicity amplitudes while the poorly known axial part is constrained with the help of the partial conservation of the axial current (PCAC) and assuming the pion-pole dominance of the pseudoscalar form factor.
Weak η production off the nucleon
Energy Technology Data Exchange (ETDEWEB)
Alam, M. Rafi; Athar, M. Sajjad [Department of Physics, Aligarh Muslim University, Aligarh-202 002 (India); Alvarez-Ruso, L.; Vacas, M. J. Vicente [Departamento de Física Teórica and Instituto de Física Corpuscular, Centro Mixto Universidad de Valencia-CSIC, E-46071 Valencia (Spain)
2015-05-15
The weak η-meson production off the nucleon induced by (anti)neutrinos is studied at low and intermediate energies, the range of interest for several ongoing and future neutrino experiments. We consider Born diagrams and the excitation of N{sup *} (1535)S{sub 11} and N{sup *} (1650)S{sub 11} resonances. The vector part of the N-S{sub 11} transition form factors has been obtained from the MAID helicity amplitudes while the poorly known axial part is constrained with the help of the partial conservation of the axial current (PCAC) and assuming the pion-pole dominance of the pseudoscalar form factor.
Jayalakshmi, V.; Rama Krishna, N.
2004-05-01
We describe an intensity-restrained optimization procedure for refining approximate structures of ligands within the protein binding pockets using STD-NMR intensity data on reversibly forming weak complexes. In this approach, the global minimum for the bound-ligand conformation is obtained by a hybrid structure refinement method involving CORCEMA calculation of intensities and simulated annealing optimization of torsion angles of the bound ligand using STD-NMR intensities as experimental constraints and the NOE R-factor as the pseudo-energy function to be minimized. This method is illustrated using simulated STD data sets for typical carbohydrate and peptide ligands. Our procedure also allows for the optimization of side chain torsion angles of protein residues within the binding pocket. This procedure is useful in refining and improving initial models based on crystallography or computer docking or other algorithms to generate models for the bound ligand (e.g., a lead compound) within the protein binding pocket compatible with solution STD-NMR data. This method may facilitate structure-based drug design efforts.
Ortenzi, Claudio; Alimenti, Claudio; Vallesi, Adriana; Di Pretoro, Barbara; Terza, Antonietta La; Luporini, Pierangelo
2000-01-01
Homologous proteins, denoted pheromones, promote cell mitotic proliferation and mating pair formation in the ciliate Euplotes raikovi, according to whether they bind to cells in an autocrine- or paracrine-like manner. The primary transcripts of the genes encoding these proteins undergo alternate splicing, which generates at least two distinct mRNAs. One is specific for the soluble pheromone, the other for a pheromone isoform that remains anchored to the cell surface as a type II protein, whose extracellular C-terminal region is structurally equivalent to the secreted form. The 15-kDa membrane-bound isoform of pheromone Er-1, denoted Er-1mem and synthesized by the same E. raikovi cells that secrete Er-1, has been purified from cell membranes by affinity chromatography prepared with matrix-bound Er-1, and its extracellular and cytoplasmic regions have been expressed as recombinant proteins. Using the purified material and these recombinant proteins, it has been shown that Er-1mem has the property of binding pheromones competitively through its extracellular pheromone-like domain and associating reversibly and specifically with a guanine nucleotide-binding protein through its intracellular domain. It has been concluded that the membrane-bound pheromone isoforms of E. raikovi represent the cell effective pheromone binding sites and are functionally equipped for transducing the signal generated by this binding. PMID:10749941
Charmonium-Nucleon Interaction from Quenched Lattice QCD with Relativistic Heavy Quark Action
Kawanai, Taichi; Sasaki, Shoichi; Hatsuda, Tetsuo
2009-10-01
Low energy charmonium-nucleon interaction is of particular interest in this talk. A heavy quarkonium state like the charmonium does not share the same quark flavor with the nucleon so that cc-nucleon interaction might be described by the gluonic van der Waals interaction, which is weak but attractive. Therefore, the information of the strength of cc-nucleon interaction is vital for considering the possibility of the formation of charmonium bound to nuclei. We will present the preliminary results for the scattering length and the interaction range of charmonium-nucleon s-wave scattering from quenched lattice QCD. These low-energy quantities can provide useful constraints on the phenomenological cc-nucleon potential, which is required for precise prediction of the binding energy of nuclear-bound charmonium in exact few body calculations. Our simulations are performed at a lattice cutoff of 1/a=2.0 GeV with the nonperturbatively O(a) improved Wilson action for the light quark and a relativistic heavy quark action for the charm quark. A new attempt of calculating the cc-nucleon potential through the Bethe-Salpeter wave function will be also discussed.
In Medium Nucleon Structure Functions, SRC, and the EMC effect
Hen, O; Gilad, S; Wood, S A
2014-01-01
A proposal approved by the Jefferson Lab PAC to study semi-inclusive deep inelastic scattering (DIS) off the deuteron, tagged with high momentum recoiling protons or neutrons emitted at large angle relative to the momentum transfer. This experiment aims at studying the virtuality dependence of the bound nucleon structure function as a possible cause to the EMC effect and the EMC-SRC correlations. The experiment was approved in 2011 for a total run time of 40 days.
Empirical transverse charge densities in the nucleon and the nucleon-to-Delta transition
Energy Technology Data Exchange (ETDEWEB)
Carl Carlson; Marc Vanderhaeghen
2008-01-01
Using only the current empirical information on the nucleon electromagnetic form factors we map out the transverse charge density in proton and neutron as viewed from a light front moving towards a transversely polarized nucleon. These charge densities are characterized by a dipole pattern, in addition to the monopole field corresponding with the unpolarized density. Furthermore, we use the latest empirical information on the $N \\to \\Delta$ transition form factors to map out the transition charge density which induces the $N \\to \\Delta$ excitation. This transition charge density in a transversely polarized $N$ and $\\Delta$ contains both monopole, dipole and quadrupole patterns, the latter corresponding with a deformation of the hadron's charge distribution.
Di-nucleon structures in homogeneous nuclear matter based on two- and three-nucleon interactions
Energy Technology Data Exchange (ETDEWEB)
Arellano, Hugo F. [University of Chile, Department of Physics - FCFM, Santiago (Chile); CEA, DAM, DIF, Arpajon (France); Isaule, Felipe [University of Chile, Department of Physics - FCFM, Santiago (Chile); Rios, Arnau [University of Surrey, Department of Physics, Faculty of Engineering and Physical Sciences, Guildford (United Kingdom)
2016-09-15
We investigate homogeneous nuclear matter within the Brueckner-Hartree-Fock (BHF) approach in the limits of isospin-symmetric nuclear matter (SNM) as well as pure neutron matter at zero temperature. The study is based on realistic representations of the internucleon interaction as given by Argonne v{sub 18}, Paris, Nijmegen I and II potentials, in addition to chiral N{sup 3}LO interactions, including three-nucleon forces up to N{sup 2}LO. Particular attention is paid to the presence of di-nucleon bound states structures in {sup 1}S{sub 0} and {sup 3}SD{sub 1} channels, whose explicit account becomes crucial for the stability of self-consistent solutions at low densities. A characterization of these solutions and associated bound states is discussed. We confirm that coexisting BHF single-particle solutions in SNM, at Fermi momenta in the range 0.13-0.3 fm{sup -1}, is a robust feature under the choice of realistic internucleon potentials. (orig.)
Direct Detection of Dark Matter Bound to the Earth
Catena, Riccardo
2016-01-01
We study the properties and direct detection prospects of an as of yet neglected population of dark matter (DM) particles moving in orbits gravitationally bound to the Earth. This DM population is expected to form via scattering by nuclei in the Earth's interior. We compute fluxes and nuclear recoil energy spectra expected at direct detection experiments for the new DM population considering detectors with and without directional sensitivity, and different types of target materials and DM-nucleon interactions. DM particles bound to the Earth manifest as a prominent rise in the low-energy part of the observed nuclear recoil energy spectrum. Ultra-low threshold energies of about 1 eV are needed to resolve this effect. Its shape is independent of the DM-nucleus scattering cross-section normalisation.
Nucleon self-energies for supernova equations of state
Hempel, Matthias
2015-05-01
Nucleon self-energies and interaction potentials in supernova (SN) matter, which are known to have an important effect on nucleosynthesis conditions in SN ejecta are investigated. Corresponding weak charged-current interaction rates with unbound nucleons that are consistent with existing SN equations of state (EOSs) are specified. The nucleon self-energies are made available online as electronic tables. The discussion is mostly restricted to relativistic mean-field models. In the first part of the article, the generic properties of this class of models at finite temperature and asymmetry are studied. It is found that the quadratic expansion of the EOS in terms of asymmetry works reasonably well at finite temperatures and deviations originate mostly from the kinetic part. The interaction part of the symmetry energy is found to be almost temperature independent. At low densities, the account of realistic nucleon masses requires the introduction of a linear term in the expansion. Finally, it is shown that the important neutron-to-proton potential difference is given approximately by the asymmetry of the system and the interaction part of the zero-temperature symmetry energy. The results of different interactions are then compared with constraints from nuclear experiments and thereby the possible range of the potential difference is limited. In the second part, for a certain class of SN EOS models, the formation of nuclei is considered. Only moderate modifications are found for the self-energies of unbound nucleons that enter the weak charged-current interaction rates. This is because in the present approach the binding energies of bound states do not contribute to the single-particle energies of unbound nucleons.
Energy Technology Data Exchange (ETDEWEB)
Yokoyama, Hideshi, E-mail: h-yokoya@u-shizuoka-ken.ac.jp [School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526 (Japan); Tsuruta, Osamu; Akao, Naoya; Fujii, Satoshi [School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526 (Japan)
2012-06-15
Highlights: Black-Right-Pointing-Pointer Structures of a metal-bound Helicobacter pylori neutrophil-activating protein were determined. Black-Right-Pointing-Pointer Two zinc ions were tetrahedrally coordinated by ferroxidase center (FOC) residues. Black-Right-Pointing-Pointer Two cadmium ions were coordinated in a trigonal-bipyramidal and octahedral manner. Black-Right-Pointing-Pointer The second metal ion was more weakly coordinated than the first at the FOC. Black-Right-Pointing-Pointer A zinc ion was found in one negatively-charged pore suitable as an ion path. -- Abstract: Helicobacter pylori neutrophil-activating protein (HP-NAP) is a Dps-like iron storage protein forming a dodecameric shell, and promotes adhesion of neutrophils to endothelial cells. The crystal structure of HP-NAP in a Zn{sup 2+}- or Cd{sup 2+}-bound form reveals the binding of two zinc or two cadmium ions and their bridged water molecule at the ferroxidase center (FOC). The two zinc ions are coordinated in a tetrahedral manner to the conserved residues among HP-NAP and Dps proteins. The two cadmium ions are coordinated in a trigonal-bipyramidal and distorted octahedral manner. In both structures, the second ion is more weakly coordinated than the first. Another zinc ion is found inside of the negatively-charged threefold-related pore, which is suitable for metal ions to pass through.
Nucleon-nucleon scattering from effective field theory
Kaplan, D B; Wise, M B; Kaplan, David B; Savage, Martin J; Wise, Mark B
1996-01-01
We perform a nonperturbative calculation of the 1S0 nucleon-nucleon scattering amplitude, using an effective field theory (EFT) expansion. We use dimensional regularization throughout, and the MS-bar renormalization scheme; our final result depends only on physical observables. We show that the EFT expansion of the real part of the inverse of the Feynman amplitude converges at momenta much greater than the scale that characterizes the derivative expansion of the EFT Lagrangian. Our conclusions are optimistic about the applicability of an EFT approach to the quantitative study of nuclear matter.
Kaon-Nucleon systems and their interactions in the Skyrme model
Ezoe, Takashi
2016-01-01
We study kaon-nucleon systems in the Skyrme model in a method based on the bound state approach of Callan-Klebanov but with the kaon around the physical nucleon of the rotating hedgehog. This corresponds to the variation after projection, reversing the order of semiclassical quantization of $1/N_c$ expansion. The method, however, is considered to be suited to the study of weakly interacting kaon-nucleon systems including loosely $\\bar{K}N$ bound states such as $\\Lambda(1405)$. We have found a bound state with binding energy of order ten MeV, consistent with the observed state. We also discuss the $\\bar{K}N$ interaction and find that it consists of an attraction in the middle range and a repulsion in the short range.
Rybczyński, Maciej
2011-01-01
We investigate the influence of the nucleon-nucleon collision profile (probability of interaction as a function of the nucleon-nucleon impact parameter) in the wounded nucleon model and its extensions on several observables measured in relativistic heavy-ion collisions. We find that the participant eccentricity coefficient, $\\epsilon^\\ast$, as well as the higher harmonic coefficients, $\\epsilon_n^\\ast$, are reduced by 10-20% for mid-peripheral collisions when the realistic (Gaussian) profile is used, as compared to the case with the commonly-used hard-sphere profile. Similarly, the multiplicity fluctuations, treated as the function of the number of wounded nucleons in one of the colliding nuclei, are reduced by 10-20%. This demonstrates that the Glauber Monte Carlo codes should necessarily use the realistic nucleon-nucleon collision profile in precision studies of these observables. The Gaussian collision profile is built-in in {\\tt GLISSANDO}.
General aspects of the nucleon-nucleon interaction and nuclear matter properties
Energy Technology Data Exchange (ETDEWEB)
Plohl, Oliver
2008-07-25
The subject of the present thesis is at first the investigation of model independent properties of the nucleon-nucleon (NN) interaction in the vacuum concerning the relativistic structure and the implications for nuclear matter properties. Relativistic and non-relativistic meson-exchange potentials, phenomenological potentials s well as potentials based on effective field theory (EFT) are therefore mapped on a relativistic operator basis given by the Clifford Algebra. This allows to compare the various approaches at the level of covariant amplitudes where a remarkable agreement is found. Furthermore, the relativistic self-energy is determined in the Hartree-Fock (HF) approximation. The appearance of a scalar and vector field of several hundred MeV magnitude is a general feature of relativistic descriptions of nuclear matter. Within QCD sum rules these fields arise due to the density dependence of chiral condensates. We find that independent of the applied NN interaction large scalar and vector fields are generated when the symmetries of the Lorentz group are restored. In the framework of chiral EFT (chEFT) it is shown, that these fields are generated by short-range next-to-leading order (NLO) contact terms, which are connected to the spin-orbit interaction. To estimate the effect arising from NN correlations the equation of state of nuclear and neutron matter is calculated in the Brueckner-HF (BHF) approximation applying chEFT. Although, as expected, a clear over-binding is found (at NLO a saturating behavior is observed), the symmetry energy shows realistic properties when compared to phenomenological potentials (within the same approximation) and other approaches. The investigation of the pion mass dependence within chEFT at NLO shows that the magnitude of the scalar and vector fields persists in the chiral limit - nuclear matter is still bound. In contrast to the case of a pion mass larger than the physical one the binding energy and saturation density are
$\\chi$EFT studies of few-nucleon systems: a status report
Energy Technology Data Exchange (ETDEWEB)
Schiavilla, Rocco [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Old Dominion Univ., Norfolk, VA (United States)
2016-06-01
A status report on $\\chi$EFT studies of few-nucleon electroweak structure and dynamics is provided, including electromagnetic elastic form factors of few-nucleon systems, the $pp$ weak fusion and muon weak captures on deuteron and $^3$He, and a number of parity-violating processes induced by hadronic weak interactions.
Manifestation of Symmetry Properties of Nucleon Structure in Strong and Electromagnetic Processes
Tomasi-Gustafsson, Egle; Rekalo, Michail P.
2004-04-01
In this contribution we present a specific application of a result obtained by Franco Iachello (in collaboration with R. Bijker and A. Leviatan), which concerns the inelastic electromagnetic form factors on the nucleons. In particular we show examples where symmetries inherent to the structure of the nucleon resonances can manifest in complicated processes of the strong interaction.
New large-Nc relations among the nucleon and nucleon-to-Delta GPDs
Energy Technology Data Exchange (ETDEWEB)
Marc Vanderhaeghen; Vladimir Pascalutsa
2006-11-15
We establish relations which express the generalized parton distributions (GPDs) describing the N {yields} {Delta} transition in terms of the nucleon GPDs. These relations are based on the known large-N{sub c} relation between the N {yields} {Delta} electric quadrupole moment and the neutron charge radius, and a newly derived large-N{sub c} relation between the electric quadrupole (E2) and Coulomb quadrupole (C2) transitions. Namely, in the large-N{sub c} limit we find C2=E2. The resulting relations among the nucleon and N {yields} {Delta} GPDs provide predictions for the N {yields} {Delta} electromagnetic form factors which are found to be in very good agreement with experiment for moderate momentum transfers.
Stopped nucleons in configuration space
Bialas, Andrzej; Koch, Volker
2016-01-01
In this note, using the colour string model, we study the configuration space distribution of stopped nucleons in heavy-ion collisions. We find that the stopped nucleons from the target and the projectile end up separated from each other by the distance increasing with the collision energy. In consequence, for the center of mass energies larger than 6 or 10 GeV (depending on the details of the model) it appears that the system created is not in thermal and chemical equilibrium, and the net baryon density reached is likely not much higher than that already present in the colliding nuclei.
New Spectral Features from Bound Dark Matter
Catena, Riccardo
2016-01-01
We demonstrate that dark matter particles gravitationally bound to the Earth can induce a characteristic nuclear recoil signal at low energies in direct detection experiments. The new spectral feature we predict can provide the ultimate smoking gun for dark matter discovery for experiments with positive signal but unclear background. The new feature is universal, in that the ratio of bound over halo dark matter event rates at detectors is independent of the dark matter-nucleon cross section.
New Spectral Features from Bound Dark Matter
DEFF Research Database (Denmark)
Catena, Riccardo; Kouvaris, Chris
2016-01-01
We demonstrate that dark matter particles gravitationally bound to the Earth can induce a characteristic nuclear recoil signal at low energies in direct detection experiments. The new spectral feature we predict can provide the ultimate smoking gun for dark matter discovery for experiments...... with positive signal but unclear background. The new feature is universal, in that the ratio of bound over halo dark matter event rates at detectors is independent of the dark matter-nucleon cross section....
New Spectral Features from Bound Dark Matter
DEFF Research Database (Denmark)
Catena, Riccardo; Kouvaris, Chris
2016-01-01
We demonstrate that dark matter particles gravitationally bound to the Earth can induce a characteristic nuclear recoil signal at low energies in direct detection experiments. The new spectral feature we predict can provide the ultimate smoking gun for dark matter discovery for experiments...... with positive signal but unclear background. The new feature is universal, in that the ratio of bound over halo dark matter event rates at detectors is independent of the dark matter-nucleon cross section....
New spectral features from bound dark matter
Catena, Riccardo; Kouvaris, Chris
2016-07-01
We demonstrate that dark matter particles gravitationally bound to the Earth can induce a characteristic nuclear recoil signal at low energies in direct detection experiments. The new spectral feature that we predict can provide a complementary verification of dark matter discovery at experiments with positive signal but unclear background. The effect is generically expected, in that the ratio of bound over halo dark matter event rates at detectors is independent of the dark matter-nucleon cross section.
Electromagnetic matrix elements for negative parity nucleons
Owen, Benjamin; Leinweber, Derek; Mahbub, Selim; Menadue, Benjamin
2014-01-01
Here we present preliminary results for the evaluation of the electromagnetic form factors for the lowest-lying negative-parity, spin-$\\frac{1}{2}$ nucleons, namely the $S_{11}(1535)$ and $S_{11}(1650)$, through the use of the variational method. We find that the characteristics of the electric form factor, $G_{E}$, are similar between these states, however significant differences are observed between the quark-sector contributions to the magnetic form factor, $G_{M}$. Within simple constituent quark models, these states are understood to be admixtures of $s=\\frac{1}{2}$ and $s=\\frac{3}{2}$ states coupled to orbital angular momentum $\\ell = 1$. Our results reveal a qualitative difference in the manner in which the singly-represented quark sector contributes to these baryon magnetic form factors.
Hammer events, neutrino energies, and nucleon-nucleon correlations
Weinstein, L B; Piasetzky, E
2016-01-01
Neutrino oscillation measurements depend on a difference between the rate of neutrino-nucleus interactions at different neutrino energies or different distances from the source. Knowledge of the neutrino energy spectrum and neutrino-detector interactions are crucial for these experiments. Short range nucleon-nucleon correlations in nuclei (SRC) affect properties of nuclei. The ArgoNeut liquid Argon Time Projection Chamber (lArTPC) observed neutrino-argon scattering events with two protons back-to-back in the final state ("hammer" events) which they associated with SRC pairs. The MicroBoone lArTPC will measure far more of these events. We simulate hammer events using two simple models. We use the well-known electron-nucleon cross section to calculate e-argon interactions where the e- scatters from a proton, ejecting a pi+, and the pi+ is then absorbed on a moving deuteron-like $np$ pair. We also use a model where the electron excites a nucleon to a Delta, which then deexcites by interacting with a second nucle...
Studies of the dilepton emission from nucleon-nucleon interactions
Bacelar, JCS; Fujiwara, M; Shima, T
2002-01-01
real- and virtual-photon emission during interactions between few-nucleon systems have been investigated at KVI with a 190 MeV proton beam. Here I will concentrate the discussion on the results of the virtual-photon emission for the proton-proton system and proton-deuteron capture. Predictions of a
Nuclear effects on neutrino emissivities from nucleon-nucleon bremsstrahlung
Stoica, S.; Paun, V. P.; Negoita, A. G.
2004-06-01
The rates of neutrino pair emission by nucleon-nucleon (NN) bremsstrahlung are calculated with the inclusion of the full contribution from a nuclear one pion exchange potential (OPEP). We compute the contributions from the neutron-neutron (nn), proton-proton (pp), and neutron-proton (np) processes for physical conditions encountered in supernovae and neutron stars, both in the degenerate (D) and nondegenerate (ND) limits. We find a significant reduction of these rates, especially for the nn and pp processes, in comparison with the case when the whole nuclear contribution was replaced by constants, representing the high-momentum limits of the expressions of the nuclear potential. Furthermore, we also perform the calculations by including contributions due to the ρ meson exchange between nucleons, in the OPEP. This may be relevant for processes produced in the inner core of neutron stars, where the density may exceed several times the standard nuclear density, and the short-range part of the NN interaction should be taken into account. These corrections lead to an additional suppression of the neutrino emission rates between (8 and 36)%, depending on the process [nn (pp) or np] and physical conditions (temperature and degeneracy of the nucleons).
Studies of the dilepton emission from nucleon-nucleon interactions
Bacelar, JCS; Fujiwara, M; Shima, T
2002-01-01
real- and virtual-photon emission during interactions between few-nucleon systems have been investigated at KVI with a 190 MeV proton beam. Here I will concentrate the discussion on the results of the virtual-photon emission for the proton-proton system and proton-deuteron capture. Predictions of a
Energy Technology Data Exchange (ETDEWEB)
Wirth, Christophe; Hoegy, Françoise; Pattus, Franc; Cobessi, David, E-mail: cobessi@esbs.u-strasbg.fr [Institut Gilbert-Laustriat UMR 7175 CNRS/Université Strasbourg I, Département Récepteurs et Protéines Membranaires, Ecole Supérieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brandt, BP 10413, F-67412 Illkirch (France)
2006-05-01
The crystallization and X-ray data analysis of three crystal forms of the outer membrane pyoverdine transducer FpvA from P. aeruginosa bound to ferripyoverdine are described. The resolution of the crystals ranges from 3.15 to 2.7 Å depending on the crystal form; all were obtained in the presence of C{sub 8}E{sub 4} detergent. Ferripyoverdine transport across the outer membrane of Pseudomonas aeruginosa by the pyoverdine receptor FpvA and the transcriptional regulation of FpvA involve interactions of the FpvA N-terminal TonB box and signalling domain with proteins from the inner membrane. Several crystallization conditions of FpvA–Pvd-Fe solubilized in C{sub 8}E{sub 4} detergent were obtained and X-ray data were collected from three crystal forms. The resolution limits range from 3.15 to 2.7 Å depending on the crystal form. From preliminary analysis of the electron-density maps, the first full-length structure of an outer membrane receptor including a signalling domain should be determined.
Precision nucleon-nucleon potential at fifth order in the chiral expansion
Epelbaum, E; Meißner, U -G
2014-01-01
We present a nucleon-nucleon potential at fifth order in chiral effective field theory. We find a substantial improvement in the description of nucleon-nucleon phase shifts as compared to the fourth-order results of Ref. [E. Epelbaum, H. Krebs, U.-G. Mei{\\ss}ner, arXiv:1412.0142 [nucl-th
Thermodynamic Properties of a Nucleon under the Generalized Symmetric Woods-Saxon Potential
Lütfüoğlu, B C
2016-01-01
The exact analytical solution of the Schr\\"{o}dinger equation for a generalized symmetrical Woods-Saxon potential are examined for a nucleon in an atomic nucleus for bound and quasi-bound states in one dimension. Examining the wave functions, it is observed that the nucleon is completely confined within the nucleus, i.e., no decay probability for bound states, while tunneling probabilities arise for quasi-bound states. We have calculated the temperature dependent Helmholtz free energies, the internal energies, the entropies and the specific heat capacities of the system. It is shown that, when the quasi-bound states are included, the internal energy and entropy increase, while the Helmholtz energy decreases at high temperatures. The internal energy has an inflection point at the first excited state, at which the specific heat capacity passes through a maximum.
Leading chiral logarithms for the nucleon mass
Energy Technology Data Exchange (ETDEWEB)
Vladimirov, Alexey A.; Bijnens, Johan [Department of Astronomy and Theoretical Physics, Lund University, Sölvegatan 14A, SE 223 62 Lund (Sweden)
2016-01-22
We give a short introduction to the calculation of the leading chiral logarithms, and present the results of the recent evaluation of the LLog series for the nucleon mass within the heavy baryon theory. The presented results are the first example of LLog calculation in the nucleon ChPT. We also discuss some regularities observed in the leading logarithmical series for nucleon mass.
A primary study on chemical bound forms of copper and zinc in wheat and rape%小麦和油菜中Cu和Zn的化学结合形态初步研究
Institute of Scientific and Technical Information of China (English)
汪金舫; 朱其清; 刘铮
2000-01-01
Sequential extraction method was used to analyze and distinguish various chemical bound forms of copper and zine in rape and wheat.The results show that in these two crops,copper was mainly in the form of wate soluble and ethanol soluble, which can be easily transferred in crops.The total content of various chemical bound forms of copper was higher in aboveground part than in underground part,and their content was decreased in the order of water soluble form(W.S.form)>residual form (Re.form)>ethanol soluble form(Eth.S.form)>acid soluble form (A.S.form). Zinc was mainly in the form of acid soluble, which is hard to be transferred in crops.The total content of various chemical bound forms of zinc was lower in aboveground part than in roots, and their content was decreased in the order of A.S.form>Re.form>W.S.form>Eth.S.form.In comparing with copper,a large amount of zinc was enriched in seeds and pods of rape.
Popovic, Bojana; Tang, Xiao; Chirgadze, Dimitri Y; Huang, Fanglu; Blundell, Tom L; Spencer, Jonathan B
2006-10-01
The aminotransferase (BtrR), which is involved in the biosynthesis of butirosin, a 2-deoxystreptamine (2-DOS)-containing aminoglycoside antibiotic produced by Bacillus circulans, catalyses the pyridoxal phosphate (PLP)-dependent transamination reaction both of 2-deoxy-scyllo-inosose to 2-deoxy-scyllo-inosamine and of amino-dideoxy-scyllo-inosose to 2-DOS. The high-resolution crystal structures of the PLP- and PMP-bound forms of BtrR aminotransferase from B. circulans were solved at resolutions of 2.1 A and 1.7 A with R(factor)/R(free) values of 17.4/20.6 and 19.9/21.9, respectively. BtrR has a fold characteristic of the aspartate aminotransferase family, and sequence and structure analysis categorises it as a member of SMAT (secondary metabolite aminotransferases) subfamily. It exists as a homodimer with two active sites per dimer. The active site of the BtrR protomer is located in a cleft between an alpha helical N-terminus, a central alphabetaalpha sandwich domain and an alphabeta C-terminal domain. The structures of the PLP- and PMP-bound enzymes are very similar; however BtrR-PMP lacks the covalent bond to Lys192. Furthermore, the two forms differ in the side-chain conformations of Trp92, Asp163, and Tyr342 that are likely to be important in substrate selectivity and substrate binding. This is the first three-dimensional structure of an enzyme from the butirosin biosynthesis gene cluster.
Polarized strangeness in the nucleon
Sapozhnikov, M G
2001-01-01
A large violation of the Okubo-Zweig-Iizuka rule was discovered in the annihilation of stopped antiprotons. The explanation of these experimental data is discussed in the framework of the model assumed that the nucleon strange sea quarks are polarized.
How important is the three-nucleon force\\?
Saito, T.-Y.; Afnan, I. R.
1994-12-01
By calculating the contribution of the π-π three-body force to the three-nucleon binding energy in terms of the πN amplitude using perturbation theory, we are able to determine the contribution of the different πN partial waves to the three-nucleon force. The division of the πN amplitude into a pole and nonpole gives a unique procedure for the determination of the πNN form factor in the model. The total contribution of the three-body force to the binding energy of the triton is found to be very small.
How important is the three-nucleon force
Energy Technology Data Exchange (ETDEWEB)
Saito, T.; Afnan, I.R. (School of Physical Sciences, The Flinders University of South Australia, Bedford Park, SA 5042 (Australia))
1994-12-01
By calculating the contribution of the [pi]-[pi] three-body force to the three-nucleon binding energy in terms of the [pi][ital N] amplitude using perturbation theory, we are able to determine the contribution of the different [pi][ital N] partial waves to the three-nucleon force. The division of the [pi][ital N] amplitude into a pole and nonpole gives a unique procedure for the determination of the [pi][ital NN] form factor in the model. The total contribution of the three-body force to the binding energy of the triton is found to be very small.
Nucleon structure from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Dinter, Simon
2012-11-13
In this thesis we compute within lattice QCD observables related to the structure of the nucleon. One part of this thesis is concerned with moments of parton distribution functions (PDFs). Those moments are essential elements for the understanding of nucleon structure and can be extracted from a global analysis of deep inelastic scattering experiments. On the theoretical side they can be computed non-perturbatively by means of lattice QCD. However, since the time lattice calculations of moments of PDFs are available, there is a tension between these lattice calculations and the results from a global analysis of experimental data. We examine whether systematic effects are responsible for this tension, and study particularly intensively the effects of excited states by a dedicated high precision computation. Moreover, we carry out a first computation with four dynamical flavors. Another aspect of this thesis is a feasibility study of a lattice QCD computation of the scalar quark content of the nucleon, which is an important element in the cross-section of a heavy particle with the nucleon mediated by a scalar particle (e.g. Higgs particle) and can therefore have an impact on Dark Matter searches. Existing lattice QCD calculations of this quantity usually have a large error and thus a low significance for phenomenological applications. We use a variance-reduction technique for quark-disconnected diagrams to obtain a precise result. Furthermore, we introduce a new stochastic method for the calculation of connected 3-point correlation functions, which are needed to compute nucleon structure observables, as an alternative to the usual sequential propagator method. In an explorative study we check whether this new method is competitive to the standard one. We use Wilson twisted mass fermions at maximal twist in all our calculations, such that all observables considered here have only O(a{sup 2}) discretization effects.
DVCS on the nucleon to the twist-3 accuracy
Kivel, N A
2001-01-01
The amplitude of the deeply virtual Compton scattering off nucleon is computed to the twist-3 accuracy in the Wandzura-Wilczek (WW) approximation. The result is presented in the form which can be easily used for analysis of DVCS observables.
A relativistic quark–diquark model for the nucleon
Indian Academy of Sciences (India)
Cristian Leonardo Gutierrez; Maurizio De Sanctis
2009-02-01
We developed a constituent quark–diquark model for the nucleon and its resonances using a harmonic oscillator potential for the interaction. The effects due to relativistic kinetic energy correction are studied. Finally, charge form factor of the model is calculated and compared with experimental data.
Nucleon Structure in Lattice QCD using twisted mass fermions
Alexandrou, C; Korzec, T; Carbonell, J; Harraud, P A; Papinutto, M; Guichon, P; Jansen, K
2010-01-01
We present results on the nucleon form factors and moments of generalized parton distributions obtained within the twisted mass formulation of lattice QCD. We include a discussion of lattice artifacts by examining results at different volumes and lattice spacings. We compare our results with those obtained using different discretization schemes and to experiment.
GUT Model Discrimination by Nucleon Decay via Dim. 6 Effective Int.
Maekawa, Nobuhiuro; Muramatsu, Yu
Anomalous U(1)A SUSY GUT models are attractive because they can solve most of difficulties in SUSY GUT models in a natural manner. One of the most important predictions of anomalous U(1)A SUSY GUT is that the nucleon decay via dim. 6 interactions are enhanced and the rough estimation gives τ(p→π0+e+)˜1034 years which is nothing but the present experimental lower bound, while nucleon decay via dim. 5 interactions are suppressed. We calculate dim. 6 effective int. and nucleon lifetimes for each decay mode in SU(5), SO(10) or E6 GUT models with various unitary matrices which diagonalize Yukawa matrices. In this calculation we use more than 50000 model points. One important observation is that the gauge group can be determined by measuring the branching ratios of nucleon. The detailed results will be given in our paper.1
Bound entanglement and entanglement bounds
Energy Technology Data Exchange (ETDEWEB)
Sauer, Simeon [Physikalisch-Astronomische Fakultaet, Friedrich-Schiller-Univesitaet Jena (Germany)]|[Physikalisches Institut, Albert-Ludwigs-Universitaet Freiburg, Hermann-Herder-Strasse 3, D-79104 Freiburg (Germany); Melo, Fernando de; Mintert, Florian; Buchleitner, Andreas [Physikalisches Institut, Albert-Ludwigs-Universitaet Freiburg, Hermann-Herder-Strasse 3, D-79104 Freiburg (Germany)]|[Max-Planck-Institut fuer Physik komplexer Systeme, Noethnitzer Str.38, D-01187 Dresden (Germany); Bae, Joonwoo [School of Computational Sciences, Korea Institute for Advanced Study, Seoul 130-012 (Korea); Hiesmayr, Beatrix [Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna (Austria)
2008-07-01
We investigate the separability of Bell-diagonal states of two qutrits. By using lower bounds to algebraically estimate concurrence, we find convex regions of bound entangled states. Some of these regions exactly coincide with the obtained results when employing optimal entanglement witnesses, what shows that the lower bound can serve as a precise detector of entanglement. Some hitherto unknown regions of bound entangled states were discovered with this approach, and delimited efficiently.
Chiral Symmetry and the Nucleon-Nucleon Interaction
Directory of Open Access Journals (Sweden)
Ruprecht Machleidt
2016-04-01
Full Text Available We review how nuclear forces emerge from low-energy quantum chromodynamics (QCD via chiral effective field theory (EFT. During the past two decades, this approach has evolved into a powerful tool to derive nuclear two- and many-body forces in a systematic and model-independent way. We then focus on the nucleon-nucleon (N N interaction and show in detail how, governed by chiral symmetry, the long- and intermediate-range of the N N potential builds up order by order. We proceed up to sixth order in small momenta, where convergence is achieved. The final result allows for a full assessment of the validity of the chiral EFT approach to the N N interaction.
Open and Hidden Strangeness Production in Nucleon-Nucleon Collisions
Shyam, Radhey
2008-01-01
We present an overview of the description of K and eta meson productions in nucleon-nucleon collisions within an effective Lagrangian model where meson production proceeds via excitation, propagation and subsequent decay of intermediate baryonic resonant states. The $K$ meson contains a strange quark ($s$) or antiquark ($\\bar s$) while the $\\eta$ meson has hidden strangeness as it contains some component of the $s{\\bar s}$ pair. Strange meson production is expected to provide information on the manifestation of quantum chromodynamics in the non-perturbative regime of energies larger than that of the low energy pion physics. We discuss specific examples where proper understanding of the experimental data for these reactions is still lacking.
Photoproduction of ηπ pairs off nucleons and deuterons
Energy Technology Data Exchange (ETDEWEB)
Kaeser, A.; Mueller, F.; Dieterle, M.; Garni, S.; Jaegle, I.; Keshelashvili, I.; Krusche, B.; Maghrbi, Y.; Oberle, M.; Pheron, F.; Rostomyan, T.; Strub, T.; Walford, N.K.; Witthauer, L. [University of Basel, Department of Physics, Basel (Switzerland); Ahrens, J.; Arends, H.J.; Bartolome, P.A.; Ostrick, M.; Otte, P.; Thomas, A. [University of Mainz, Institut fuer Kernphysik, Mainz (Germany); Annand, J.R.M.; Hamilton, D.; Howdle, D.; Livingston, K.; MacGregor, I.J.D.; Mancell, J.; McGeorge, J.C.; McNicoll, E.; Robinson, J. [University of Glasgow, SUPA School of Physics and Astronomy, Glasgow (United Kingdom); Bantawa, K.; Manley, D.M. [Kent State University, Kent, OH (United States); Beck, R.; Nikolaev, A.; Schumann, S.; Unverzagt, M. [University of Mainz, Institut fuer Kernphysik, Mainz (Germany); University Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik, Bonn (Germany); Braghieri, A.; Costanza, S.; Mushkarenkov, A.; Pedroni, P. [INFN Sezione di Pavia, Pavia (Italy); Briscoe, W.J.; Marinides, Z. [The George Washington University, Center for Nuclear Studies, Washington (United States); Cherepnya, S.; Fil' kov, L.V. [Lebedev Physical Institute, Moscow (Russian Federation); Downie, E.J. [University of Mainz, Institut fuer Kernphysik, Mainz (Germany); University of Glasgow, SUPA School of Physics and Astronomy, Glasgow (United Kingdom); The George Washington University, Center for Nuclear Studies, Washington (United States); Drexler, P.; Metag, V.; Novotny, R.; Thiel, M. [University of Giessen, II. Physikalisches Institut, Giessen (Germany); Fix, A. [Tomsk Polytechnic University, Laboratory of Mathematical Physics, Tomsk (Russian Federation); Glazier, D.I. [University of Glasgow, SUPA School of Physics and Astronomy, Glasgow (United Kingdom); University of Edinburgh, SUPA School of Physics, Edinburgh (United Kingdom); Hornidge, D.; Middleton, D.G. [Mount Allison University, Sackville, New Brunswick (Canada); Huber, G.M. [University of Regina, Regina (Canada); Jude, T.C.; Sikora, M.H.; Watts, D.P. [University of Edinburgh, SUPA School of Physics, Edinburgh (United Kingdom); Kashevarov, V.L. [University of Mainz, Institut fuer Kernphysik, Mainz (Germany); Lebedev Physical Institute, Moscow (Russian Federation); Kondratiev, R.; Lisin, V.; Polonski, A. [Institute for Nuclear Research, Moscow (Russian Federation); Korolija, M.; Mekterovic, D.; Micanovic, S.; Supek, I. [Rudjer Boskovic Institute, Zagreb (Croatia); Oussena, B. [University of Mainz, Institut fuer Kernphysik, Mainz (Germany); The George Washington University, Center for Nuclear Studies, Washington (United States); Prakhov, S.; Starostin, A. [University of California Los Angeles, Los Angeles, California (United States); Sober, D. [The Catholic University of America, Washington (United States); Werthmueller, D. [University of Basel, Department of Physics, Basel (Switzerland); University of Glasgow, SUPA School of Physics and Astronomy, Glasgow (United Kingdom); Collaboration: The A2 Collaboration
2016-09-15
Quasi-free photoproduction of πη-pairs has been investigated from threshold up to incident photon energies of 1.4 GeV, respectively up to photon-nucleon invariant masses up to 1.9 GeV. Total cross sections, angular distributions, invariant-mass distributions of the πη and meson-nucleon pairs, and beam-helicity asymmetries have been measured for the reactions γp → pπ{sup 0}η, γn → nπ{sup 0}η, γp → nπ{sup +}η, and γn → pπ{sup -}η from nucleons bound inside the deuteron. For the γp initial-state data for free protons have also been analyzed. Finally, the total cross sections for quasi-free production of π{sup 0}η pairs from nucleons bound in {sup 3} He nuclei have been investigated in view of final state interaction (FSI) effects. The experiments were performed at the tagged photon beam facility of the Mainz MAMI accelerator using an almost 4π covering electromagnetic calorimeter composed of the Crystal Ball and TAPS detectors. The shapes of all differential cross section data and the asymmetries are very similar for protons and neutrons and agree with the conjecture that the reactions are dominated by the sequential Δ*3/2{sup -} → ηΔ(1232) → πηN decay chain, mainly with Δ(1700)3/2{sup -} and Δ(1940)3/2{sup -}. The ratios of the magnitude of the total cross sections also agree with this assumption. However, the absolute magnitudes of the cross sections are reduced by FSI effects with respect to free proton data. (orig.)
Food, Michael R; Sekyere, Eric O; Richardson, Des R
2002-09-01
Melanotransferrin (MTf) is a membrane-bound transferrin (Tf) homologue found particularly in melanoma cells. Apart from membrane-bound MTf, a soluble form of the molecule (sMTf) has been identified in vitro[Food, M.R., Rothenberger, S., Gabathuler, R., Haidl, I.D., Reid, G. & Jefferies, W.A. (1994) J. Biol. Chem.269, 3034-3040] and in vivo in Alzheimer's disease. However, nothing is known about the function of sMTf or its role in Fe uptake. In this study, sMTf labelled with 59Fe and 125I was used to examine its ability to donate 59Fe to SK-Mel-28 melanoma cells and other cell types. sMTf donated 59Fe to cells at 14% of the rate of Tf. Analysis of sMTf binding showed that unlike Tf, sMTf did not bind to a saturable Tf-binding site. Studies with Chinese hamster ovary cells with and without specific Tf receptors showed that unlike Tf, sMTf did not donate its 59Fe via these pathways. This was confirmed by experiments using lysosomotropic agents that markedly reduced 59Fe uptake from Tf, but had far less effect on 59Fe uptake from sMTf. In addition, an excess of 56Fe-labelled Tf or sMTf had no effect on 125I-labelled sMTf uptake, suggesting a nonspecific interaction of sMTf with cells. Protein-free 125I determinations demonstrated that in contrast with Tf, sMTf was markedly degraded. We suggest that unlike the binding of Tf to specific receptors, sMTf was donating Fe to cells via an inefficient mechanism involving nonspecific internalization and subsequent degradation.
Kaur, Mandeep; Sharma, Manoj K; Gupta, Raj K
2015-01-01
The dynamics of the reactions forming compound nuclei using loosely bound projectiles is analysed within the framework of dynamical cluster decay model (DCM) of Gupta and Collaborators. We have analysed different reactions with $^{7}Li$, $^{9}Be$ and $^{7}Be$ as neutron rich and neutron deficient projectiles, respectively, on different targets at the three $E_{lab}$ values, forming compound nuclei within the mass region A$\\sim 30-200$. The contributions of light particles LPs ($A\\le4$) cross sections $\\sigma_{LP}$, energetically favoured intermediate mass fragments IMFs ($5 \\le A_2 \\le 20$) cross sections $\\sigma_{IMF}$ as well as fusion-fission $\\it{ff}$ cross sections $\\sigma_{ff}$ constitute the $\\sigma_{fus}$ (=$\\sigma_{LP}$+$\\sigma_{IMF}$+$\\sigma_{ff}$) for these reactions. The contribution of the emitted LPs, IMFs and ff fragments is added for all the angular momentum upto the $\\ell_{max}$ value, for the resepctive reactions. Interestingly, we find that the $\\Delta R^{emp}$, the only parameter of model ...
The SAMPLE Experiment and Weak Nucleon Structure
Beise, E J; Spayde, D T
2004-01-01
One of the key elements to understanding the structure of the nucleon is the role of its quark-antiquark sea in its ground state properties such as charge, mass, magnetism and spin. In the last decade, parity-violating electron scattering has emerged as an important tool in this area, because of its ability to isolate the contribution of strange quark-antiquark pairs to the nucleon's charge and magnetism. The SAMPLE experiment at the MIT-Bates Laboratory, which has been focused on s-sbar contributions to the proton's magnetic moment, was the first of such experiments and its program has recently been completed. In this paper we give an overview of some of the experimental aspects of parity-violating electron scattering, briefly review the theoretical predictions for strange quark form factors, summarize the SAMPLE measurements, and place them in context with the program of experiments being carried out at other electron scattering facilities such as Jefferson Laboratory and the Mainz Microtron.
Nucleon and Delta structure in continuum QCD
Cloet, Ian
2014-03-01
Quantum Chromodynamics (QCD) is the only known example in nature of a fundamental quantum field theory that is innately non-perturbative. Solving QCD will have profound implications for our understanding of the natural world, for example, it will explain how light quarks and massless gluons bind together to form the observed mesons and baryons; hence explaining the origin of more than 98% of the mass in the visible universe. Given the challenges posed by QCD, it is insufficient to study hadron ground-states alone if one seeks a solution; in this regard the delta plays a special role as the lightest baryon resonance. I will discuss recent progress using continuum QCD approaches to the study of nucleon and delta properties, with a focus on insights gained by the calculation (and measurement) of their electromagnetic form factors.
Monte Carlo simulation of finite mass nucleons interacting via a neutral, scalar boson field
Szybisz, L.; Zabolitzky, J. G.
1987-03-01
A recently proposed Monte Carlo method to solve the Schrödinger equation when expressed in Fock space is applied to the hamiltonian which describes the interaction of nucleons via a neutral, scalar boson field. The fact that a nucleon has finite mass is taken into account and a gaussian cut-off for the nucleon form factor is adopted. The problem is solved for systems with A = 1 and 2 sources (nucleons) in the three-dimensional continuous space. From the results for A = 1 a bare nucleon mass, mB c2 = 962.58 ± 0.06 MeV, is obtained. This value is used to determine the binding energy for an A = 2 system by means of this new algorithm. The result, B(2) = 2.14 ± 0.50 MeV, is consistent with the value corresponding to the static potential approximation.
Monte Carlo simulation of finite mass nucleons interacting via a neutral, scalar boson field
Energy Technology Data Exchange (ETDEWEB)
Szybisz, L.; Zabolitzky, J.G.
1987-03-23
A recently proposed Monte Carlo method to solve the Schroedinger equation when expressed in Fock space is applied to the hamiltonian which describes the interaction of nucleons via a neutral, scalar boson field. The fact that a nucleon has finite mass is taken into account and a gaussian cut-off for the nucleon form factor is adopted. The problem is solved for systems with A=1 and 2 sources (nucleons) in the three-dimensional continuous space. From the results for A=1 a bare nucleon mass, m/sub B/c/sup 2/=962.58+-0.06 MeV, is obtained. This value is used to determine the binding energy for an A=2 system by means of this new algorithm. The result, B(2)=2.14+-0.50 MeV, is consistent with the value corresponding to the static potential approximation.
Can the 4He experiments serve as a database for determining the three-nucleon force?
Hofmann, H M; Hale, Gerald M.; Hofmann, Hartmut M.
2005-01-01
We report on microscopic calculations for the 4He compound system in the framework of the resonating group model employing realistic nucleon-nucleon and three nucleon forces. The resulting scattering phase shifts are compared to those of a comprehensive R-matrix analysis of all data in this system, which are available in numerical form. The agreement between calculation and analysis is in most cases very good. Adding three-nucleon forces yields in many cases large effects. For a few cases the new agreement is striking. We relate some differencies between calculation and analysis to specific data and discuss neccessary experiments to clarify the situation. From the results we conclude that the data of the 4He system might be well suited to determine the structure of the three-nucleon force.
Cottingham formula and nucleon polarisabilities
Energy Technology Data Exchange (ETDEWEB)
Gasser, J.; Leutwyler, H. [Universitaet Bern, Albert Einstein Center for Fundamental Physics, Institut fuer theoretische Physik, Bern (Switzerland); Hoferichter, M. [Universitaet Bern, Albert Einstein Center for Fundamental Physics, Institut fuer theoretische Physik, Bern (Switzerland); Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, ExtreMe Matter Institute EMMI, Darmstadt (Germany); University of Washington, Institute for Nuclear Theory, Seattle, WA (United States); Rusetsky, A. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Bonn (Germany)
2015-08-15
The difference between the electromagnetic self-energies of proton and neutron can be calculated with the Cottingham formula, which expresses the self-energies as an integral over the electroproduction cross sections - provided the nucleon matrix elements of the current commutator do not contain a fixed pole. We show that, under the same proviso, the subtraction function occurring in the dispersive representation of the virtual Compton forward scattering amplitude is determined by the cross sections. The representation in particular leads to a parameter-free sum rule for the nucleon polarisabilities. We evaluate the sum rule for the difference between the electric polarisabilities of proton and neutron by means of the available parameterisations of the data and compare the result with experiment. (orig.)
Nucleon Polarizibilities for Virtual Photons
Edelmann, J; Piller, G; Weise, W
1998-01-01
We generalize the sum rules for the nucleon electric plus magnetic polarizability $\\Sigma=\\alpha+\\beta$ and for the nucleon spin-polarizability sections are represented in our calculation by one-pion-loop graphs of relativistic baryon chiral perturbation theory and the $\\Delta(1232)$-resonance excitation. For the proton we find good agreement of the calculated electroproduction data for $Q^2<0.4 GeV^2$. The proton spin-polarizability "partonic" curve, extracted from polarized deep-inelastic scattering, around $Q^2=0.7 GeV^2$. For the neutron our predictions of $\\Sigma_n(Q^2)$ and Upcoming (polarized) electroproduction experiments will be able to test the generalized polarizability sum rules investigated here.
Fission: statistical nucleon pair breaking
Energy Technology Data Exchange (ETDEWEB)
Montoya, M. (Instituto Peruano de Energia Nuclear, Lima (Peru))
1984-06-01
In order to explain the odd-even effect observed in low energy fission fragment distributions it has been recently required a double mechanism of nucleon pair breaking: before scission (early pair breaking) and at scission (late pair breaking), respectively. In the present work we show that, using the same formulae but considering only the early pair breaking mechanism, one can reproduce fairly well all the available experimental data on the odd-even effects.
Energy Technology Data Exchange (ETDEWEB)
Bratt, Jonathan; Engelhardt, Michael; Haegler, Philipp; Huey-Wen, Lin; Lin, Meifeng; Meyer, Harvey; Musch, Bernhard; Negele, John; Orginos, Konstantinos; Pochinsky, Andrew; Procura, Massimiliano; Richards, David; Schroers, Wolfram; Syritsyn, Sergey
2010-11-01
We present high statistics results for the structure of the nucleon from a mixed-action calculation using 2+1 flavors of asqtad sea and domain wall valence fermions. We perform extrapolations of our data based on different chiral effective field theory schemes and compare our results with available information from phenomenology. We discuss vector and axial form factors of the nucleon, moments of generalized parton distributions, including moments of forward parton distributions, and implications for the decomposition of the nucleon spin.
Fujiwara, Y; Kohno, M; Suzuki, Y
2004-01-01
Quark-model nucleon-nucleon and hyperon-nucleon interactions by the Kyoto- Niigata group are applied to the hypertriton calculation in a new three-cluster Faddeev formalism using the two-cluster resonating-group method kernels. The most recent model, fss2, gives a reasonable result similar to the Nijmegen soft-core model NSC89, except for an appreciable contributions of higher partial waves.
Sigma terms and strangeness content of the nucleon with N{sub f}=2+1+1 twisted mass fermions
Energy Technology Data Exchange (ETDEWEB)
Dinter, Simon; Drach, Vincent [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Frezzotti, Roberto; Rossi, Giancarlo [Roma Tor Vergata Univ. (Italy). Dipt. di Fisica; INFN Sezione di Roma Tor Vergata, Roma (Italy); Herdoiza, Gregorio [Univ. Autonoma de Madrid (Spain). Dept. de Fisica Teorica y Inst. de Fisica Teorica UAM/CSIC; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Roma Tor Vergata Univ. (Italy). Dipt. di Fisica; INFN Sezione di Roma Tor Vergata, Roma (Italy)
2012-02-15
We study the nucleon matrix elements of the quark scalar-density operator using maximally twisted mass fermions with dynamical light (u,d), strange and charm degrees of freedom. We demonstrate that in this setup the nucleon matrix elements of the light and strange quark densities can be obtained with good statistical accuracy, while for the charm quark counterpart only a bound can be provided. The present calculation which is performed at only one value of the lattice spacing and pion mass serves as a benchmark for a future more systematic computation of the scalar quark content of the nucleon. (orig.)
López-Carrasco, Amparo; Flores, Ricardo
2017-07-01
Avocado sunblotch viroid (ASBVd), the type member of the family Avsunviroidae, replicates and accumulates in chloroplasts. Whether this minimal non-protein-coding circular RNA of 246-250 nt exists in vivo as a free nucleic acid or closely associated with host proteins remains unknown. To tackle this issue, the secondary structures of the monomeric circular (mc) (+) and (-) strands of ASBVd have been examined in silico by searching those of minimal free energy, and in vitro at single-nucleotide resolution by selective 2'-hydroxyl acylation analysed by primer extension (SHAPE). Both approaches resulted in predominant rod-like secondary structures without tertiary interactions, with the mc (+) RNA being more compact than its (-) counterpart as revealed by non-denaturing polyacryamide gel electrophoresis. Moreover, in vivo SHAPE showed that the mc ASBVd (+) form accumulates in avocado leaves as a free RNA adopting a similar rod-shaped conformation unprotected by tightly bound host proteins. Hence, the mc ASBVd (+) RNA behaves in planta like the previously studied mc (+) RNA of potato spindle tuber viroid, the type member of nuclear viroids (family Pospiviroidae), indicating that two different viroids replicating and accumulating in distinct subcellular compartments, have converged into a common structural solution. Circularity and compact secondary structures confer to these RNAs, and probably to all viroids, the intrinsic stability needed to survive in their natural habitats. However, in vivo SHAPE has not revealed the (possibly transient or loose) interactions of the mc ASBVd (+) RNA with two host proteins observed previously by UV irradiation of infected avocado leaves.
Chen, Peter X; Tang, Yao; Zhang, Bing; Liu, Ronghua; Marcone, Massimo F; Li, Xihong; Tsao, Rong
2014-05-21
A common protocol for the extraction of phenolic aglycons or bound phenolics in plants generally involves hydrothermal hydrolysis in an aqueous methanol or ethanol solution containing 2-4 N HCl. However, as shown in the present study, this process also forms 5-(hydroxymethyl)furan-2-carbaldehyde (HMF) and its derivative products 5-(methoxymethyl)furan-2-carbaldehyde (MMF) and 5-(ethoxymethyl)furan-2-carbaldehyde (EMF), as identified by HPLC-DAD-ESI-MS/MS and NMR. These compounds are commonly misidentified as phenolics due to similar UV absorption at 280 nm. In this study, production of HMF, MMF, and EMF was shown to be dependent on the solvent condition and duration and temperature of hydrolysis. Fruits and vegetables produced HMF more readily than grains. HMF and its derivatives were subjected to various spectrophotometric antioxidant assays [2-diphenyl-1-picryhydrazyl radical scavenging activity (DPPH), ferric-reducing antioxidant power (FRAP), and oxygen radical absorbing capacity (ORAC)] and displayed antioxidant activity mainly in the ORAC assay. Results of this study help avoid overestimation of phenolic content and antioxidant activities of plant foods.
Pohl, Pawel; Prusisz, Bartlomiej
2009-03-15
A tandem column solid phase extraction (SPE) procedure has been devised to examine the fractionation of Fe in wine. Wine was filtered through a 0.45 microm filter and then, the filtrate was driven through an adsorbing Amberlite XAD-7HP column followed by a cation exchange Dowex 50 W-x8-200 column. Three different Fe groupings are discriminated and assessed, including hydrophobic species of Fe bound to phenolic substances and related species (phenolic fraction), cationic species comprising simple Fe ions and labile Fe forms (cationic fraction), in addition to anionic and/or neutral Fe complexes with organic acids (residual fraction). The suitability of the procedure has been evaluated analyzing four bottled red wines. The results obtained were verified using another tandem column assemblage in which an adsorbing Amberlite XAD-16 column was exchanged by the Amberlite XAD-7HP column. The fractionation pattern ascertained for Fe in analyzed wines is discussed in reference to previously published works. In addition, a conditioning treatment and preparation of Amberlite XAD resins have been revised.
A Realistic Description of Nucleon-Nucleon and Hyperon-Nucleon Interactions in the SU_6 Quark Model
Fujiwara, Y; Kohno, M; Nakamoto, C; Suzuki, Y
2001-01-01
We upgrade a SU_6 quark-model description for the nucleon-nucleon and hyperon-nucleon interactions by improving the effective meson-exchange potentials acting between quarks. For the scalar- and vector-meson exchanges, the momentum-dependent higher-order term is incorporated to reduce the attractive effect of the central interaction at higher energies. The single-particle potentials of the nucleon and Lambda, predicted by the G-matrix calculation, now have proper repulsive behavior in the momentum region q_1=5 - 20 fm^-1. A moderate contribution of the spin-orbit interaction from the scalar-meson exchange is also included. As to the vector mesons, a dominant contribution is the quadratic spin-orbit force generated from the rho-meson exchange. The nucleon-nucleon phase shifts at the non-relativistic energies up to T_lab=350 MeV are greatly improved especially for the 3E states. The low-energy observables of the nucleon-nucleon and the hyperon-nucleon interactions are also reexamined. The isospin symmetry break...
A Search for Nucleon Decay via $n \\rightarrow \\bar{\
:,; Hayato, Y; Iida, T; Iyogi, K; Kameda, J; Koshio, Y; Kozuma, Y; Marti, Ll; Miura, M; Moriyama, S; Nakahata, M; Nakayama, S; Obayashi, Y; Sekiya, H; Shiozawa, M; Suzuki, Y; Takeda, A; Takenaga, Y; Ueno, K; Ueshima, K; Yamada, S; Yokozawa, T; Ishihara, C; Kaji, H; Kajita, T; Kaneyuki, K; Lee, K P; McLachlan, T; Okumura, K; Shimizu, Y; Tanimoto, N; Kearns, E; Litos, M; Raaf, J L; Stone, J L; Sulak, L R; Goldhaber, M; Bays, K; Kropp, W R; Mine, S; Regis, C; Renshaw, A; Smy, M B; Sobel, H W; Ganezer, K S; Hill, J; Keig, W E; Jang, J S; Kim, J Y; Lim, I T; Albert, J B; Scholberg, K; Walter, C W; Wendell, R; Wongjirad, T M; Ishizuka, T; Tasaka, S; Learned, J G; Matsuno, S; Smith, S N; Hasegawa, T; Ishida, T; Ishii, T; Kobayashi, T; Nakadaira, T; Nakamura, K; Nishikawa, K; Oyama, Y; Sakashita, K; Sekiguchi, T; Tsukamoto, T; Suzuki, A T; Takeuchi, Y; Ikeda, M; Minamino, A; Nakaya, T; Fukuda, Y; Itow, Y; Mitsuka, G; Tanaka, T; Jung, C K; Lopez, G D; Taylor, I; Yanagisawa, C; Ishino, H; Kibayashi, A; Mino, S; Mori, T; Sakuda, M; Toyota, H; Kuno, Y; Yoshida, M; Kim, S B; Yang, B S; Okazawa, H; Choi, Y; Nishijima, K; Koshiba, M; Yokoyama, M; Totsuka, Y; Martens, K; Schuemann, J; Vagins, M R; Chen, S; Heng, Y; Yang, Z; Zhang, H; Kielczewska, D; Mijakowski, P; Connolly, K; Dziomba, M; Thrane, E; Wilkes, R J
2013-01-01
We present the results of searches for nucleon decay via bound neutron to antineutrino plus pizero and proton to antineutrino plus piplus using data from a combined 172.8 kiloton-years exposure of Super-Kamiokande-I, -II, and -III. We set lower limits on the partial lifetime for each of these modes. For antineutrino pizero, the partial lifetime is >1.1x10^{33} years; for antineutrino piplus, the partial lifetime is >3.9x10^{32} years at 90% confidence level.
Institute of Scientific and Technical Information of China (English)
HE Yuhong; LI Xianghui; WANG Fu; XUE Yi; SUI Senfang
2003-01-01
The synaptic vesicle protein synaptotagminⅠ (sytⅠ) is a vesicle trans membrane protein present in synaptic vesicles, which has been proposed as the Ca 2+ sensor that regulates secretion. The C2A domain is the membrane proximal part of its cytoplasmic domain. The interaction between C2A and lipid bilayer has be en considered to be essential for triggering neurotransmitter release. In the pr esent work, the measurements of membrane surface tension and surface concentrati on showed that the C2A domain of sytⅠexhibited two membrane-bound states: the s urface adsorption state and the membrane insertion state. The surface absorption state formed in a Ca2+-independent manner with lower affinity, while the membra ne insertion state formed with high affinity was only found in the presence of C a2+. Both the Ca2+-independent and Ca2+-dependent sytⅠ- membrane interactions r equired anionic phospholipids, such as phosphatidylserine (PS). When expressed i nto rat pheochromocytoma (PC12) cells and human embryonic kidney (HEK-293) cells , as demonstrated by immunofluorescence staining and subcellular fractionation, most of the C2A was found at the plasma membrane, even when the cells were deple ted of Ca2+ by incubation with EGTA. These results suggested a new molecular mec hanism of sytⅠas a Ca2+ sensor in membrane fusion. Ca2+-independent surface ads orption might attach sytⅠto the release site during the docking or priming step . When intracellular Ca2+ increased, sytⅠtriggered the neurotransmitter release following the Ca2+-dependent penetration into the target membrane.
The Scattering of Fast Nucleons from Nuclei
Kerman, A. K.; McManus, H.; Thaler, R. M.
2000-04-01
The formal theory of the scattering of high-energy nucleons by nuclei is developed in terms of the nucleon-nucleon scattering amplitude. The most important approximations necessary to make numerical calculation feasible are then examined. The optical model potential is derived on this basis and compared with the optical model parameters found from experiment. The elastic scattering and polarization of nucleons from light nuclei is predicted and compared with experiment. The effect of nuclear correlations is discussed. The polarization of inelastically scattered nucleons is discussed and predictions compared with experiments. To within the validity of the approximations the experimental data on the scattering of nucleons from nuclei at energies above ˜100 Mev appears to be consistent with the theory.
The scattering of fast nucleons from nuclei
Energy Technology Data Exchange (ETDEWEB)
Kerman, A. K. [Massachusetts Institute of Technology, Cambridge, Massachusetts (United States); McManus, H. [Chalk River Laboratory, Chalk River, Ontario, (Canada); Thaler, R. M. [Los Alamos Scientific Laboratory, Los Alamos, New Mexico (United States)
2000-04-10
The formal theory of the scattering of high-energy nucleons by nuclei is developed in terms of the nucleon nucleon scattering amplitude. The most important approximations necessary to make numerical calculation feasible are then examined. The optical model potential is derived on this basis and compared with the optical model parameters found from experiment. The elastic scattering and polarization of nucleons from light nuclei is predicted and compared with experiment. The effect of nuclear correlations is discussed. The polarization of inelastically scattered nucleons is discussed and predictions compared with experiments. To within the validity of the approximations the experimental data on the scattering of nucleons from nuclei at energies above {approx}100 Mev appears to be consistent with the theory. (c) 2000 Academic Press, Inc.
Nucleon localization in light and heavy nuclei
Zhang, C L; Nazarewicz, W
2016-01-01
An electron localization measure was originally introduced to characterize chemical bond structures in molecules. Recently, a nucleon localization based on Hartree-Fock densities has been introduced to investigate $\\alpha$-cluster structures in light nuclei. Compared to the local nucleonic densities, the nucleon localization function has been shown to be an excellent indicator of shell effects and cluster correlations. Using the spatial nucleon localization measure, we investigate the cluster structures in deformed light nuclei and study the emergence of fragments in fissioning heavy nuclei. To illustrate basic concepts of nucleon localization, we employ the deformed harmonic oscillator model. Realistic calculations are carried out using self-consistent nuclear density functional theory with quantified energy density functionals optimized for fission studies. We study particle densities and spatial nucleon localization distributions for deformed cluster configurations of $^{8}$Be and $^{20}$Ne, and also along...
Chiral nucleon-nucleon forces in nuclear structure calculations
Directory of Open Access Journals (Sweden)
Coraggio L.
2016-01-01
Full Text Available Realistic nuclear potentials, derived within chiral perturbation theory, are a major breakthrough in modern nuclear structure theory, since they provide a direct link between nuclear physics and its underlying theory, namely the QCD. As a matter of fact, chiral potentials are tailored on the low-energy regime of nuclear structure physics, and chiral perturbation theory provides on the same footing two-nucleon forces as well as many-body ones. This feature fits well with modern advances in ab-initio methods and realistic shell-model. Here, we will review recent nuclear structure calculations, based on realistic chiral potentials, for both finite nuclei and infinite nuclear matter.
Chiral nucleon-nucleon forces in nuclear structure calculations
Coraggio, L; Holt, J W; Itaco, N; Machleidt, R; Marcucci, L E; Sammarruca, F
2016-01-01
Realistic nuclear potentials, derived within chiral perturbation theory, are a major breakthrough in modern nuclear structure theory, since they provide a direct link between nuclear physics and its underlying theory, namely the QCD. As a matter of fact, chiral potentials are tailored on the low-energy regime of nuclear structure physics, and chiral perturbation theory provides on the same footing two-nucleon forces as well as many-body ones. This feature fits well with modern advances in ab-initio methods and realistic shell-model. Here, we will review recent nuclear structure calculations, based on realistic chiral potentials, for both finite nuclei and infinite nuclear matter.
Database of Nucleon-Nucleon Scattering Cross Sections by Stochastic Simulation Project
National Aeronautics and Space Administration — A database of nucleon-nucleon elastic differential and total cross sections will be generated by stochastic simulation of the quantum Liouville equation in the...
Nucleon structure functions in noncommutative space-time
Energy Technology Data Exchange (ETDEWEB)
Rafiei, A.; Rezaei, Z.; Mirjalili, A. [Yazd University, Physics Department, Yazd (Iran, Islamic Republic of)
2017-05-15
In the context of noncommutative space-time we investigate the nucleon structure functions which play an important role in identifying the internal structure of nucleons. We use the corrected vertices and employ new vertices that appear in two approaches of noncommutativity and calculate the proton structure functions in terms of the noncommutative tensor θ{sub μν}. To check our results we plot the nucleon structure function (NSF), F{sub 2}(x), and compare it with experimental data and the results from the GRV, GJR and CT10 parametrization models. We show that with the new vertex that arises the noncommutativity correction will lead to a better consistency between theoretical results and experimental data for the NSF. This consistency will be better for small values of the Bjorken variable x. To indicate and confirm the validity of our calculations we also act conversely. We obtain a lower bound for the numerical values of Λ{sub NC} scale which correspond to recent reports. (orig.)
Nucleon properties inside compressed nuclear matter
Rozynek, Jacek
2014-01-01
Our model calculations performed in the frame of the Bag Model (BM) approach show the modifications of nucleon mass, nucleon radius and a Parton Distribution Function (PDF) in Nuclear Matter (NM) above the saturation point. They originated from the pressure correction to the nucleon rest energy. Similar correction leads to conservation of a nuclear longitudinal momenta - essential in the explanation of the EMC effect at the saturation point of NM. Presented finite pressure corrections are generalization of the Hugenholtz-van Hove theorem valid for finite nucleon sizes inside NM.
Leading order covariant chiral nucleon-nucleon interaction
Ren, Xiu-Lei; Geng, Li-Sheng; Long, Bing-Wei; Ring, Peter; Meng, Jie
2016-01-01
Motivated by the successes of relativistic theories in studies of atomic/molecular and nuclear systems and the strong need for a covariant chiral force in relativistic nuclear structure studies, we develop a new covariant scheme to construct the nucleon-nucleon interaction in the framework of chiral effective field theory. The chiral interaction is formulated up to leading order with a covariant power counting and a Lorentz invariant chiral Lagrangian. We find that the covariant scheme induces all the six invariant spin operators needed to describe the nuclear force, which are also helpful to achieve cutoff independence for certain partial waves. A detailed investigation of the partial wave potentials shows a better description of the scattering phase shifts with low angular momenta than the leading order Weinberg approach. Particularly, the description of the $^1S_0$, $^3P_0$, and $^1P_1$ partial waves is similar to that of the next-to-leading order Weinberg approach. Our study shows that the relativistic fr...
Hard probes of short-range nucleon-nucleon correlations
Energy Technology Data Exchange (ETDEWEB)
J. Arrington, D. W. Higinbotham, G. Rosner, M. Sargsian
2012-10-01
The strong interaction of nucleons at short distances leads to a high-momentum component to the nuclear wave function, associated with short-range correlations between nucleons. These short-range, high-momentum structures in nuclei are one of the least well understood aspects of nuclear matter, relating to strength outside of the typical mean-field approaches to calculating the structure of nuclei. While it is difficult to study these short-range components, significant progress has been made over the last decade in determining how to cleanly isolate short-range correlations in nuclei. We have moved from asking if such structures exist, to mapping out their strength in nuclei and studying their microscopic structure. A combination of several different measurements, made possible by high-luminosity and high-energy accelerators, coupled with an improved understanding of the reaction mechanism issues involved in studying these structures, has led to significant progress, and provided significant new information on the nature of these small, highly-excited structures in nuclei. We review the general issues related to short-range correlations, survey recent experiments aimed at probing these short-range structures, and lay out future possibilities to further these studies.
Static and dynamic properties of QCD bound states
Energy Technology Data Exchange (ETDEWEB)
Kubrak, Stanislav
2015-07-01
The QCD phenomenology can be faced with the framework of the coupled quark DSE, meson BSE and baryon Faddeev equation, providing non-perturbative, continuum and Poincare invariant scientific approach. The research performed throughout this thesis is twofold. From one perspective we focus on the investigation of mass spectra for mesons with total spin quantum number J=3 and arising Regge-trajectory for natural parity states J{sup PC}=1{sup --},2{sup ++},3{sup --} within rainbow-ladder single gluon exchange model. The other findings are concerning the impact of the pion cloud effect on J>2 meson states, baryon masses, namely on Nucleon and Delta three-body bound states and meson dynamical properties like the pion form factor.
DEFF Research Database (Denmark)
Nielson, Hanne Riis; Nielson, Flemming
1992-01-01
they obtain a quadratic bound. These bounds are shown to be tight. Specializing the case of strict and additive functions to functionals of a form that would correspond to iterative programs they show that a linear bound is tight. This is related to several analyses studied in the literature (including...
Viscosity of a nucleonic fluid
Mekjian, Aram Z
2012-01-01
The viscosity of nucleonic matter is studied both classically and in a quantum mechanical description. The collisions between particles are modeled as hard sphere scattering as a baseline for comparison and as scattering from an attractive square well potential. Properties associated with the unitary limit are developed which are shown to be approximately realized for a system of neutrons. The issue of near perfect fluid behavior of neutron matter is remarked on. Using some results from hard sphere molecular dynamics studies near perfect fluid behavior is discussed further.
Accardi, Alberto
2016-01-01
I review recent progress in the extraction of unpolarized parton distributions in the proton and in nuclei from a unified point of view that highlights how the interplay between high energy particle physics and lower energy nuclear physics can be of mutual benefit to either field. Areas of overlap range from the search for physics beyond the standard model at the LHC, to the study of the non perturbative structure of nucleons and the emergence of nuclei from quark and gluon degrees of freedom, to the interaction of colored probes in a cold nuclear medium.
Qian, Li; Ji, Ming-Chun; Pan, Xin-Yuan; Gong, Wei-Juan; Tian, Fang; Duan, Qiu-Fang
2011-05-01
Interleukin 15 (IL-15) is a pivotal cytokine for the proliferation and activation of a specific group of immune cells such as natural killer (NK), IFN-producing killer dendritic cells (IKDC) and CD8 T cells. RAE-1ε, the ligand for the activating NKG2D receptor, which also play an important role in the proliferation and activation of NK cells and IKDCs. In this study, a membrane-bound form of IL-15 (termed mb15) encoding sequence and RAE-1ε gene were obtained by SOE-PCR or PCR amplification. The amplified mb15 and RAE-1ε gene were then digested and inserted into the multiple cloning site1 (MCS1) and MCS2 of pVITRO2-mcs vector, respectively. A recombinant eukaryotic expression vector for co-expression of mb15 and RAE-1ε was successfully constructed. After it was transfected to BaF3 cells, the expression of IL-15 and RAE-1ε in recombinant BaF3/mb15/RAE-1ε cells were verified by RT-PCR, western blot and FCM analysis. Furthermore, BaF3/mb15/RAE-1ε cells had the ability of promoting NK cells proliferation and IFN-γ secretion. In conclusion, BaF3/mb15/RAE-1ε cells were successfully constructed, which is very useful for further studies, especially for the expansion and activation of certain subsets of immune cells such as NK cells and IKDCs. Copyright © 2011 Elsevier Inc. All rights reserved.
Effect of nucleon and hadron structure changes in-medium and its impact on observables
Energy Technology Data Exchange (ETDEWEB)
K. Saito; K. Tsushima; A.W. Thomas
2005-07-05
We study the effect of hadron structure changes in a nuclear medium using the quark-meson coupling (QMC) model. The QMC model is based on a mean field description of non-overlapping nucleon (or baryon) bags bound by the self-consistent exchange of scalar and vector mesons in the isoscalar and isovector channels. The model is extended to investigate the properties of finite nuclei, in which, using the Born-Oppenheimer approximation to describe the interacting quark-meson system, one can derive the effective equation of motion for the nucleon (or baryon), as well as the self-consistent equations for the meson mean fields.
Nucleon-nucleon interaction with one-pion exchange and instanton-induced interactions
Vanamali, C. S.; Kumar, K. B. Vijaya
2016-11-01
Singlet (S10) and triplet (S31) nucleon-nucleon potentials are obtained in the framework of the SU(2) nonrelativistic quark model using the resonating-group method in the Born-Oppenheimer approximation. The full Hamiltonian used in the investigation includes the kinetic energy, two-body confinement potential, one-gluon-exchange potential (OGEP), one-pion exchange potential (OPEP), and instanton induced interaction (III), which includes the effect of quark exchange between the nucleons. The contribution of the OGEP, III, and OPEP to the nucleon-nucleon adiabatic potential is discussed.
Systematics of intermediate-energy single-nucleon removal cross sections
Tostevin, J A
2014-01-01
There is now a large and increasing body of experimental data and theoretical analyses for reactions that remove a single nucleon from an intermediate-energy beam of neutron- or proton-rich nuclei. In each such measurement, one obtains the inclusive cross section for the population of all bound final states of the mass A-1 reaction residue. These data, from different regions of the nuclear chart, and that involve weakly- and strongly-bound nucleons, are compared with theoretical expectations. These calculations include an approximate treatment of the reaction dynamics and shell-model descriptions of the projectile initial state, the bound final states of the residues, and the single-particle strengths computed from their overlap functions. The results are discussed in the light of recent data, more exclusive tests of the eikonal dynamical description, and calculations that take input from more microscopic nuclear structure models.
The nucleon wave function in light-front dynamics
Karmanov, V A
1998-01-01
The general spin structure of the relativistic nucleon wave function in the $3q$-model is found. It contains 16 spin components, in contrast to 8 ones known previously, since in a many-body system the parity conservation does not reduce the number of the components. The explicitly covariant form of the wave function automatically takes into account the relativistic spin rotations, without introducing any Melosh rotation matrices. It also reduces the calculations to the standard routine of the Dirac matrices and of the trace techniques. In examples of the proton magnetic moment and of the axial nucleon form factor, with a particular wave function, we reproduce the results of the standard approach. Calculations beyond the standard assumptions give different results.
Population of 13Be with a Nucleon-Exchange Reaction
Marks, Bradon; Deyoung, Paul; Smith, Jenna; Thoennessen, Michael; MoNA Collaboration
2015-10-01
Neutron-unbound nuclei are traditionally formed by the removal of one or more nucleons from a fast beam of ions. This method often results in a background, which is difficult to separate from the particle of interest. Nucleon-removal entrance-channels also require the ion beam to be more massive than the particle of interest, which presents the additional challenges of the beam being difficult to make. The present work was done with a nucleon-exchange entrance channel. At the National Superconducting Cyclotron Laboratory, a 71 MeV/u 13B beam impinged on a 47 mg/cm2 thick target of 9Be. As a result numerous reactions occurred, including the population of 13Be through the nucleon-exchange entrance-channel. The 13Be nuclei decayed to 12Be and one neutron in approximately 10-21 seconds. The resulting neutrons were detected by either the Modular Neutron Array (MoNA) or the Large multi-Institution Scintillator Array (LISA), while the 12Be nuclei were directed through an array of charged particle detectors by a 4T superconducting sweeper magnet. The four-momentum vectors of the fragment nucleus and the neutron were calculated to determine the decay energy of 13Be. Monte-Carlo simulations consistent with results from previous analyses of 13Be were satisfactorily fit to the decay-energy spectrum. Additionally, the cross-section for the nucleon-exchange entrance-channel is consistent with a theoretical prediction. This material is based upon work supported by the National Science Foundation under Grant No. PHY-1306074.
Nucleon-XcJ Dissociation Cross Sections
Institute of Scientific and Technical Information of China (English)
冯又层; 许晓明; 周代翠
2002-01-01
Nucleon-XcJ dissociation cross sections are calculated in a constituent interexchange model in which quark-quark potential is derived from the Buchmüller-Tye quark-anti-quark potential. These new cross sections for dominant reaction channels depend on the centre-of-mass energy of the nucleon and the charmonium.
Spin-orbit correlations in the nucleon
Lorcé, Cédric
2014-01-01
We investigate the correlations between the quark spin and orbital angular momentum inside the nucleon. Similarly to the Ji relation, we show that these correlations can be expressed in terms of specific moments of measurable parton distributions. This provides a whole new piece of information about the partonic structure of the nucleon.
Covariant formulation of pion-nucleon scattering
Lahiff, A. D.; Afnan, I. R.
A covariant model of elastic pion-nucleon scattering based on the Bethe-Salpeter equation is presented. The kernel consists of s- and u-channel nucleon and delta poles, along with rho and sigma exchange in the t-channel. A good fit is obtained to the s- and p-wave phase shifts up to the two-pion production threshold.
DEFF Research Database (Denmark)
Christgau, S; Schierbeck, H; Aanstoot, H J
1991-01-01
The 64-kDa pancreatic beta-cell autoantigen, which is a target of autoantibodies associated with early as well as progressive stages of beta-cell destruction, resulting in insulin-dependent diabetes (IDDM) in humans, has been identified as the gamma-aminobutyric acid-synthesizing enzyme glutamic...... acid decarboxylase. We have identified two autoantigenic forms of this protein in rat pancreatic beta-cells, a Mr 65,000 (GAD65) hydrophilic and soluble form of pI 6.9-7.1 and a Mr 64,000 (GAD64) component of pI 6.7. GAD64 is more abundant than GAD65 and has three distinct forms with regard to cellular...... compartment and hydrophobicity. A major portion of GAD64 is hydrophobic and firmly membrane-anchored and can only be released from membrane fractions by detergent. A second portion is hydrophobic but soluble or of a low membrane avidity, and a third minor portion is soluble and hydrophilic. All the GAD64...
Spin observables in nucleon-deuteron scattering and three-nucleon forces
Ishikawa, S; Iseri, Y
2002-01-01
Three-nucleon forces, which compose an up-to-date subject in few-nucleon systems, provide a good account of the triton binding energy and the cross section minimum in proton-deuteron elastic scattering, while do not succeed in explaining spin observables such as the nucleon and deuteron analyzing powers, suggesting serious defects in their spin dependence. We study the spin structure of nucleon-deuteron elastic amplitudes by decomposing them into spin-space tensors and examine effects of three-nucleon forces to each component of the amplitudes obtained by solving the Faddeev equation. Assuming that the spin-scalar amplitudes dominate the others, we derive simple expressions for spin observables in the nucleon-deuteron elastic scattering. The expressions suggest that a particular combination of spin observables in the scattering provides direct information of scalar, vector, or tensor component of the three-nucleon forces. These effects are numerically investigated by the Faddeev calculation.
Chinn, C. R.; Elster, Ch.; Thaler, R. M.; Weppner, S. P.
1995-01-01
The theory of the elastic scattering of a nucleon from a nucleus is presented in the form of a Spectator Expansion of the optical potential. Particular attention is paid to the treatment of the free projectile$\\,-\\,$nucleus propagator when the coupling of the struck target nucleon to the residual target must be taken into consideration. First order calculations within this framework are shown for neutron total cross-sections and for proton scattering for a number of target nuclides at a varie...
Flavor content of the nucleon in an unquenched quark model
Bijker, R
2008-01-01
We discuss the flavor content of the nucleon in an unquenched quark model in which the effects of quark-antiquark pairs (up, down and strange) are taken into account in an explicit form. It is shown that the inclusion of quark-antiquark pairs leads to an excess of anti-d over anti-u quarks in the proton and to a large contribution of orbital angular momentum to the spin of the proton.
Nucleon structure from 2+1-flavor dynamical DWF ensembles
Abramczyk, Michael; Lytle, Andrew; Ohta, Shigemi
2016-01-01
Nucleon isovector vector- and axialvector-current form factors, the renormalized isovector transversity and scalar charge, and the bare quark momentum and helicity moments of isovector structure functions are reported with improved statistics from two recent RBC+UKQCD 2+1-flavor dynamical domain-wall fermions ensembles: Iwasaki\\(\\times\\)DSDR gauge \\(32^3\\times64\\) at inverse lattice spacing of 1.38 GeV and pion mass of 249 and 172 MeV.
Determination of Transverse Charge Density from Kaon Form Factor Data
Mejia-Ott, Johann; Horn, Tanja; Pegg, Ian; Mecholski, Nicholas; Carmignotto, Marco; Ali, Salina
2016-09-01
At the level of nucleons making up atomic nuclei, among subatomic particles made up of quarks, K-mesons or kaons represent the most simple hadronic system including the heavier strange quark, having a relatively elementary bound state of a quark and an anti-quark as its valence structure. Its electromagnetic structure is then parametrized by a single, dimensionless quantity known as the form factor, the two-dimensional Fourier transform of which yields the quantity of transverse charge density. Transverse charge density, in turn, provides a needed framework for the interpretation of form factors in terms of physical charge and magnetization, both with respect to the propagation of a fast-moving nucleon. To this is added the value of strange quarks in ultimately presenting a universal, process-independent description of nucleons, further augmenting the importance of studying the kaon's internal structure. The pressing character of such research questions directs the present paper, describing the first extraction of transverse charge density from electromagnetic kaon form factor data. The extraction is notably extended to form factor data at recently acquired higher energy levels, whose evaluation could permit more complete phenomenological models for kaon behavior to be proposed. This work was supported in part by NSF Grant PHY-1306227.
Two photon exchange in elastic electron-nucleon scattering
Energy Technology Data Exchange (ETDEWEB)
Peter Blunden; Wolodymyr Melnitchouk; John Tjon
2005-06-01
A detailed study of two-photon exchange in unpolarized and polarized elastic electron-nucleon scattering is presented, taking particular account of nucleon finite size effects. Contributions from nucleon elastic intermediate states are found to have a strong angular dependence, which leads to a partial resolution of the discrepancy between the Rosenbluth and polarization transfer measurements of the proton electric to magnetic form factor ratio. The two-photon exchange contribution to the longitudinal polarization transfer ratio P{sub L} is small, whereas the contribution to the transverse polarization transfer ratio P{sub T} is enhanced at backward angles by several percent, increasing with Q{sup 2}. This gives rise to a several percent enhancement of the polarization transfer ratio P{sub T}/P{sub l} at large Q{sup 2} and backward angles. We compare the two-photon exchange effects with data on the ratio of e{sup +p} to e{sup -p} cross sections, which is predicted to be enhanced at backward angles. Finally, we evaluate the corrections to the form factors of the neutron, and estimate the elastic intermediate state contribution to the {sup 3}He form factors.
A Covariant model for the nucleon and the $\\Delta$
Ramalho, G; Gross, Franz
2008-01-01
The covariant spectator formalism is used to model the nucleon and the $\\Delta$(1232) as a system of three constituent quarks with their own electromagnetic structure. The definition of the ``fixed-axis'' polarization states for the diquark emitted from the initial state vertex and absorbed into the final state vertex is discussed. The helicity sum over those states is evaluated and seen to be covariant. Using this approach, all four electromagnetic form factors of the nucleon, together with the {\\it magnetic} form factor, $G_M^*$, for the $\\gamma N \\to \\Delta$ transition, can be described using manifestly covariant nucleon and $\\Delta$ wave functions with {\\it zero} orbital angular momentum $L$, but a successful description of $G_M^*$ near $Q^2=0$ requires the addition of a pion cloud term not included in the class of valence quark models considered here. We also show that the pure $S$-wave model gives electric, $G_E^*$, and coulomb, $G^*_C$, transition form factors that are identically zero, showing that th...
Backward pion-nucleon scattering
Energy Technology Data Exchange (ETDEWEB)
Huang, F. [Univ. of Georgia, Athens, GA (United States); Sibirtsev, Alex [Helmholtz-Institut furr Strahlen- und Kernphysik (Theorie) und Bethe Center for Theoretical Physics, Universitat Bonn, D-53115 Bonn, Germany; Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Haidenbauer, Johann [Forschungszentrum Julich (Germany); Meissner, Ulf-G. [Helmholtz-Institut fur Strahlen- und Kernphysik (Theorie) und Bethe Center for Theoretical Physics, Universitat Bonn, Bonn, Germany; Forschungszentrum Julich (Germany)
2010-02-01
A global analysis of the world data on differential cross sections and polarization asymmetries of backward pion-nucleon scattering for invariant collision energies above 3 GeV is performed in a Regge model. Including the $N_\\alpha$, $N_\\gamma$, $\\Delta_\\delta$ and $\\Delta_\\beta$ trajectories, we reproduce both angular distributions and polarization data for small values of the Mandelstam variable $u$, in contrast to previous analyses. The model amplitude is used to obtain evidence for baryon resonances with mass below 3 GeV. Our analysis suggests a $G_{39}$ resonance with a mass of 2.83 GeV as member of the $\\Delta_{\\beta}$ trajectory from the corresponding Chew-Frautschi plot.
Two-nucleon scattering in a modified Weinberg approach with a symmetry-preserving regularization
Behrendt, J; Gegelia, J; Meißner, Ulf-G; Nogga, A
2016-01-01
We consider the nucleon-nucleon scattering problem by applying time-ordered perturbation theory to the Lorentz invariant formulation of baryon chiral perturbation theory. Using a symmetry preserving higher derivative form of the effective Lagrangian, we exploit the freedom of the choice of the renormalization condition and obtain an integral equation for the scattering amplitude with an improved ultraviolet behavior. The resulting formulation is used to quantify finite regulator artifacts in two-nucleon phase shifts as well as in the chiral extrapolations of the S-wave scattering lengths and the deuteron binding energy. This approach can be straightforwardly extended to analyze few-nucleon systems and processes involving external electroweak sources.
Roy-Steiner equations for pion-nucleon scattering
Ditsche, C; Kubis, B; Meißner, U -G
2012-01-01
Starting from hyperbolic dispersion relations, we derive a closed system of Roy-Steiner equations for pion-nucleon scattering that respects analyticity, unitarity, and crossing symmetry. We work out analytically all kernel functions and unitarity relations required for the lowest partial waves. In order to suppress the dependence on the high-energy regime we also consider once- and twice-subtracted versions of the equations, where we identify the subtraction constants with subthreshold parameters. Assuming Mandelstam analyticity we determine the maximal range of validity of these equations. As a first step towards the solution of the full system we cast the equations for the $\\pi\\pi\\to\\bar NN$ partial waves into the form of a Muskhelishvili-Omn\\`es problem with finite matching point, which we solve numerically in the single-channel approximation. We investigate in detail the role of individual contributions to our solutions and discuss some consequences for the spectral functions of the nucleon electromagneti...
Feasibility studies for nucleon structure measurements with PANDA
Directory of Open Access Journals (Sweden)
Atomssa Ermias
2014-01-01
Full Text Available The study of nucleon structure is one of the main physics goals of PANDA to be built at the FAIR accelerator complex. The excellent particle identification performance of the PANDA detector will enable measurements of exclusive channels p̄ p → e+e− and p̄ p → π0 J/ψ → π0e+e− to extract the electromagnetic form factors of protons and π-nucleon Transition Distribution Amplitudes (π-N TDAs. After a brief description of the PANDA apparatus and a method to handle momentum resolution degradation due to Bremsstrahlung, the physics of π-N TDAs is discussed. An estimate for the expected signal to background ratio for p̄ p → π0 J/ψ → π0e+e− that takes into account the main background source is given.
Feasibility studies for nucleon structure measurements with PANDA
Atomssa, Ermias; Ma, Binsong
2014-11-01
The study of nucleon structure is one of the main physics goals of PANDA to be built at the FAIR accelerator complex. The excellent particle identification performance of the PANDA detector will enable measurements of exclusive channels p¯ p → e+e- and p¯ p → π0 J/ψ → π0e+e- to extract the electromagnetic form factors of protons and π-nucleon Transition Distribution Amplitudes (π-N TDAs). After a brief description of the PANDA apparatus and a method to handle momentum resolution degradation due to Bremsstrahlung, the physics of π-N TDAs is discussed. An estimate for the expected signal to background ratio for p¯ p → π0 J/ψ → π0e+e- that takes into account the main background source is given.
Lattice Calculation of the Strangeness Magnetic Moment of the Nucleon
Dong, S J; Williams, A G
1998-01-01
We report on a lattice QCD calculation of the strangeness magnetic moment of the nucleon. Our result is $G_M^s(0) = - 0.36 \\pm 0.20 $. The sea contributions from the u and d quarks are about 80% larger. However, they cancel to a large extent due to their electric charges, resulting in a smaller net sea contribution of $ - 0.097 \\pm 0.037 \\mu_N$ to the nucleon magnetic moment. As far as the neutron to proton magnetic moment ratio is concerned, this sea contribution tends to cancel out the cloud-quark effect from the Z-graphs and result in a ratio of $ -0.68 \\pm 0.04$ which is close to the SU(6) relation and the experiment. The strangeness Sachs electric mean-square radius $_E$ is found to be small and negative and the total sea contributes substantially to the neutron electric form factor.
Relativistic Treatments of the Nucleon-Nucleon System
Beachey, David Joseph
The relativistically minimalist Breit equation is used to study the two-nucleon system. Generally, the equation is noncovariant and its realm of applicability is limited. It is not a field-theoretical equation but, at low energy, it was thought to be a promising candidate to explore the scheme of repulsive vector and attractive scalar interactions as the dominant ingredient of the two -nucleon interaction. In the ^1S_0 singlet case, the equation does indeed seem viable. Dynamically sound interactions and a reasonable fit of the scattering data arise. In a specific application, the discrepancy between the ^1S_0 isovector scattering lengths of the p-p and n -n interactions is explored. This novel charge -symmetry-breaking (CSB) mechanism enlarges the discrepancy between the two lengths, implying a still larger correction is required by other documented (CSB) mechanisms. An all-encompassing model of the ^3S _1-^3D_1 state is, on the other hand, not achieved. Models which best fit the experimental deuteron and elastic scattering data, are unphysical. The vector coupling is driven strongly negative and a dominant interference mechanism arises involving the entirely phenomenological short range OPEP. It was hoped that this parametrized short range OPEP would remain benign while the scalar/vector interference scheme took a lead role. Instead the constraint of avoiding Klein paradox difficulties defeats this picture and achieves the short-range repulsion in the N-N force by ramping up the phenomenological OPEP. It is finally argued that the Breit framework almost certainly does not lend itself to an adequate description of the N-N system. It does, however, point to novel relativistic elements which may ultimately resolve celebrated outstanding problems such as the a_ {t}-r_{m} discrepancy. The triplet scattering length a_ {t} and deuteron matter-radius r _{m} are tightly correlated and resistant to simultaneous fitting in conventional models. The p-wave amplitudes of the
Ab initio many-body calculations of nucleon-nucleus scattering
Quaglioni, Sofia; Navrátil, Petr
2009-04-01
We develop a new ab initio many-body approach capable of describing simultaneously both bound and scattering states in light nuclei, by combining the resonating-group method with the use of realistic interactions, and a microscopic and consistent description of the nucleon clusters. This approach preserves translational symmetry and the Pauli principle. We outline technical details and present phase-shift results for neutron scattering on H3, He4, and Be10 and proton scattering on He3,4, using realistic nucleon-nucleon (NN) potentials. Our A=4 scattering results are compared to earlier ab initio calculations. We find that the CD-Bonn NN potential in particular provides an excellent description of nucleon-He4S-wave phase shifts. In contrast, the experimental nucleon-He4P-wave phase shifts are not well reproduced by any NN potential we use. We demonstrate that a proper treatment of the coupling to the n-Be10 continuum is successful in explaining the parity-inverted ground state in Be11.
Ab initio many-body calculations of nucleon-nucleus scattering
Quaglioni, Sofia
2009-01-01
We develop a new ab initio many-body approach capable of describing simultaneously both bound and scattering states in light nuclei, by combining the resonating-group method with the use of realistic interactions, and a microscopic and consistent description of the nucleon clusters. This approach preserves translational symmetry and Pauli principle. We outline technical details and present phase shift results for neutron scattering on 3H, 4He and 10Be and proton scattering on 3He and 4He, using realistic nucleon-nucleon (NN) potentials. Our A=4 scattering results are compared to earlier ab initio calculations. We find that the CD-Bonn NN potential in particular provides an excellent description of nucleon-4He S-wave phase shifts. On the contrary, the experimental nucleon-4He P-wave phase shifts are not well reproduced by any NN potential we use. We demonstrate that a proper treatment of the coupling to the n-10Be continuum is successful in explaining the parity-inverted ground state in 11Be.
On the strangeness content of the nucleon
Alarcon, J M; Camalich, J Martin; Oller, J A
2012-01-01
We revisit the classical relation between the strangeness content of the nucleon, the pion-nucleon sigma term and the $SU(3)_F$ breaking of the baryon masses in the context of covariant chiral perturbation theory. In particular, we consider the contributions of the decuplet resonances explicitly. We find that a value of the pion-nucleon sigma term of $\\sim$60 MeV is not at odds with, but favored by the fulfillment of the Zweig rule. We compare these results with earlier ones and discuss the convergence of the chiral series as well as the uncertainties of chiral approaches to the determination of the sigma terms.
Orbital angular momentum in the nucleons
Lorcé, Cédric
2014-01-01
In the last decade, it has been realized that the orbital angular momentum of partons inside the nucleon plays a major role. It contributes significantly to nucleon properties and is at the origin of many asymmetries observed in spin physics. It is therefore of paramount importance to determine this quantity if we want to understand the nucleon internal structure and experimental observables. This triggered numerous discussions and controversies about the proper definition of orbital angular momentum and its extraction from experimental data. We summarize the present situation and discuss recent developments in this field.
Quark model for kaon nucleon scattering
Indian Academy of Sciences (India)
Ahmed Osman
2011-12-01
Kaon nucleon elastic scattering is studied using chiral (3) quark model including antiquarks. Parameters of the present model are essentially based on nucleon–nucleon and nucleon–hyperon interactions. The mass of the scalar meson is taken as 635 MeV. Using this model, the phase shifts of the and partial waves of the kaon nucleon elastic scattering are investigated for isospins 0 and 1. The results of the numerical calculations of different partial waves are in good agreement with experimental data.
In-medium K̄ interactions and bound states
Directory of Open Access Journals (Sweden)
Gal Avraham
2014-01-01
Full Text Available Correct treatment of subthreshold K̄ N dynamics is mandatory in K− -atom and K̄ -nuclear bound-state calculations, as demonstrated by using in-medium chirally-based models of K̄ N interactions. Recent studies of kaonic atom data reveal appreciable multi-nucleon contributions. K̄ -nuclear widths larger than 50 MeV are anticipated.
Unno, Masaki; Ardèvol, Albert; Rovira, Carme; Ikeda-Saito, Masao
2013-11-29
Heme oxygenase catalyzes the degradation of heme to biliverdin, iron, and carbon monoxide. Here, we present crystal structures of the substrate-free, Fe(3+)-biliverdin-bound, and biliverdin-bound forms of HmuO, a heme oxygenase from Corynebacterium diphtheriae, refined to 1.80, 1.90, and 1.85 Å resolution, respectively. In the substrate-free structure, the proximal and distal helices, which tightly bracket the substrate heme in the substrate-bound heme complex, move apart, and the proximal helix is partially unwound. These features are supported by the molecular dynamic simulations. The structure implies that the heme binding fixes the enzyme active site structure, including the water hydrogen bond network critical for heme degradation. The biliverdin groups assume the helical conformation and are located in the heme pocket in the crystal structures of the Fe(3+)-biliverdin-bound and the biliverdin-bound HmuO, prepared by in situ heme oxygenase reaction from the heme complex crystals. The proximal His serves as the Fe(3+)-biliverdin axial ligand in the former complex and forms a hydrogen bond through a bridging water molecule with the biliverdin pyrrole nitrogen atoms in the latter complex. In both structures, salt bridges between one of the biliverdin propionate groups and the Arg and Lys residues further stabilize biliverdin at the HmuO heme pocket. Additionally, the crystal structure of a mixture of two intermediates between the Fe(3+)-biliverdin and biliverdin complexes has been determined at 1.70 Å resolution, implying a possible route for iron exit.
Nucleon Resonance Excitation with Virtual Photons
Tiator, L
2007-01-01
The unitary isobar model MAID is used for a partial wave analysis of pion photoproduction and electroproduction data on the nucleon. In particular we have taken emphasis on the region of the Delta(1232) resonance and have separated the resonance and background amplitudes with the K-matrix approach. This leads to electromagnetic properties of the dressed Delta resonance, where all multipole amplitudes become purely imaginary and all form factors and helicity amplitudes become purely real at the K-matrix pole of W=M_Delta=1232 MeV. The REM=E2/M1 and RSM=C2/M1 ratios of the quadrupole excitation are compared to recent data analysis of different groups. The REM ratio of MAID2005 agrees very well with the data and has a linear behavior over the whole experimentally explored Q^2 region with a small positive slope that predicts a zero crossing around 3.5 GeV^2. The recent RSM data for Q^2 < 0.2 GeV^2 indicate a qualitative change in the shape of the ratio which can be explained by the impact of the Siegert theore...
Göke, K; Silva, A; Urbano, D; Goeke, Klaus; Kim, Hyun-Chul; Silva, Antonio; Urbano, Diana
2006-01-01
We summarize the results of the chiral quark-soliton model ($\\chi$QSM) concerning basically all form factors necessary to interpret the present data of the parity violating electron scattering experiments SAMPLE, HAPPEX, A4 and G0. The results particularly focus on the recently measured asymmetries and the detailed data for various combinations of $G_{M}^{s}$, $G_{E}^{s}$, $\\tilde{G}_{A}^{p}$ and $\\tilde{G}_{A}^{n}$ at $Q^2=0.1$ GeV$^2$. The calculations yield positive strange magnetic and electric form factors and a negative axial vector one, all being rather small. The results are very close to the combined experimental world data from parity violating electron scattering and elastic $\
Nucleon-Nucleon Phase Shifts in the Extended Quark-Delocalization Colour-Screening Model
Institute of Scientific and Technical Information of China (English)
LU Xi-Feng; PING Jia-Lun; WANG Fan
2003-01-01
An alternative method is applied to the study of nucleon-nucleon scattering phase shifts within the framework of the extended quark demoralization colour-screening model, in which the one-pion exchange with short-range cutoff is included.
SPHINX v 1.1 Monte Carlo Program for Polarized Nucleon-Nucleon Collisions (update)
Güllenstern, S; Górnicki, P; Mankiewicz, L; Schäfer, A; Güllenstern, Stefan; Martin, Oliver; Gornicki, Pawel; Mankiewicz, Lech; Schäfer, Andreas
1996-01-01
We present the updated long write-up for version 1.1 of the SPHINX Monte Carlo. The program can be used to simulate polarized nucleon - nucleon collisions at high energies. Spins of colliding particles are taken into account. The program allows the calculation of cross sections for various processes.
Experimental study of the knockout reaction mechanism using O14 at 60 MeV/nucleon
Sun, Y. L.; Lee, J.; Ye, Y. L.; Obertelli, A.; Li, Z. H.; Aoi, N.; Ong, H. J.; Ayyad, Y.; Bertulani, C. A.; Chen, J.; Corsi, A.; Cappuzzello, F.; Cavallaro, M.; Furono, T.; Ge, Y. C.; Hashimoto, T.; Ideguchi, E.; Kawabata, T.; Lou, J. L.; Li, Q. T.; Lorusso, G.; Lu, F.; Liu, H. N.; Nishimura, S.; Suzuki, H.; Tanaka, J.; Tanaka, M.; Tran, D. T.; Tsang, M. B.; Wu, J.; Xu, Z. Y.; Yamamoto, T.
2016-04-01
Background: For the deeply bound one-nucleon removal at intermediate energies using a Be9 or C12 target, a strong reduction of cross section was observed relative to the prediction of eikonal theoretical model. The large disagreement has not been explained and the systematic trend is inconsistent with results from transfer reactions. The recently observed asymmetric parallel momentum distribution of the knockout residue indicates the significant dissipative core-target interaction in the knockout reaction with a composite target, implying new reaction mechanisms beyond the eikonal reaction descriptions. Purpose: To investigate the reaction mechanism for deeply bound nucleon removal at intermediate energies. Method: Neutron removal from O14 using a C12 target at 60 MeV/nucleon was performed. Nucleon knockout cross sections were measured. The unbound excited states of O13 were reconstructed by using the invariant mass method with the residues and the associated decay protons measured in coincidence. The measured cross sections are compared with an intra-nuclear cascade (INC) prediction. Results: The measured cross section of (O14C11,) is 60(9) mb, which is 3.5 times larger than that of (O14O13,) channel. This 2 p n -removal cross section is consistent with INC prediction, which is 66 mb with the main contribution being non-direct reaction processes. On the other hand, the upper limit of the cross section for one-neutron removal from O14 followed by proton evaporation is 4.6(20) mb, integrated up to 6 MeV above the proton separation energy of O13 . The calculated total cross section for such reaction processes by the INC model is 2.5 mb, which is within the measured upper limit. Conclusions: The data provide the first constraint on the role of core excitation and evaporation processes in deeply bound nucleon removal from asymmetric nuclei. The experiment results suggest that non-direct reaction processes, which are not considered in the eikonal model, play an
Anaphoric Pronouns and Bound Variables
Wasow, Thomas
1975-01-01
Deals with certain problems inherent in deriving anaphoric pronouns from bound variables. Syntactic rules applied to determine anaphora relations cannot be applied if anaphoric pronouns and their antecedents have identical underlying forms. An approach to anaphora which preserves some advantages of the bound-variable theory without the problems is…
FSI corrections for near threshold meson production in nucleon-nucleon collisions
Moalem, A; Gedalin, E
1995-01-01
A procedure is proposed which accounts for final state interaction corrections for near threshold meson production in nucleon-nucleon scattering. In analogy with the Watson-Migdal approximation, it is shown that in the limit of extremely strong final state effects, the amplitude factorizes into a primary production amplitude and an elastic scattering amplitude describing a 3 \\to 3 transition. This amplitude determines the energy dependence of the reaction cross section near the reaction threshold almost solely. The approximation proposed satisfies the Fermi-Watson theorem and the coherence formalism. Application of this procedure to meson production in nucleon-nucleon scattering shows that, while corrections due to the meson-nucleon interaction are small for s-wave pion production, they are crucial for reproducing the energy dependence of the \\eta production cross section.
Time-reversal-invariance-violating nucleon-nucleon potential in the 1/N_c expansion
Samart, Daris; Schindler, Matthias R; Phillips, Daniel R
2016-01-01
We apply the large-$N_c$ expansion to the time-reversal-invariance-violating (TV) nucleon-nucleon potential. The operator structures contributing to next-to-next-to-leading order in the large-$N_c$ counting are constructed. For the TV and parity-violating case we find a single operator structure at leading order. The TV but parity-conserving potential contains two leading-order terms, which however are suppressed by 1/$N_c$ compared to the parity-violating potential. Comparison with phenomenological potentials, including the chiral EFT potential in the TV parity-violating case, leads to large-$N_c$ scaling relations for TV meson-nucleon and nucleon-nucleon couplings.
Positive Root Bounds and Root Separation Bounds
Herman, Aaron Paul
In this thesis, we study two classes of bounds on the roots of a polynomial (or polynomial system). A positive root bound of a polynomial is an upper bound on the largest positive root. A root separation bound of a polynomial is a lower bound on the distance between the roots. Both classes of bounds are fundamental tools in computer algebra and computational real algebraic geometry, with numerous applications. In the first part of the thesis, we study the quality of positive root bounds. Higher quality means that the relative over-estimation (the ratio of the bound and the largest positive root) is smaller. We find that all known positive root bounds can be arbitrarily bad. We then show that a particular positive root bound is tight for certain important classes of polynomials. In the remainder of the thesis, we turn to root separation bounds. We observe that known root separation bounds are usually very pessimistic. To our surprise, we also find that known root separation bounds are not compatible with the geometry of the roots (unlike positive root bounds). This motivates us to derive new root separation bounds. In the second part of this thesis, we derive a new root separation for univariate polynomials by transforming a known bound into a new improved bound. In the third part of this thesis, we use a similar strategy to derive a new improved root separation bound for polynomial systems.
Light hypernuclei and hyperon-nucleon interaction
Energy Technology Data Exchange (ETDEWEB)
Carlson, J.; Gibson, B.F.
1990-01-01
Light Hypernuclei are a vital testing ground for our understanding of the Hyperon-Nucleon interaction. We have performed microscopic calculations of four and five-body hypernuclei using the Nijmegen nucleon-nucleon and hyperon-nucleon interactions. Our calculations include explicit Sigma degrees of freedom. These degrees of freedom are quite important since, in contrast to the {Delta} {minus} N mass difference of {approx} 300 MeV, the {Sigma} resonance is only about 80 MeV above the {Lambda}. In addition, although there is no one-pion-exchange in the {Lambda}N diagonal channel, this longest-range term does contribute to the transition {Lambda}N {minus} {Sigma}N interaction. Our variational calculations show that the A=4 spin 0 ground state binding energy is well reproduced by the Nijmegen HN integration, a one-boson exchange model fit to the available scattering data. The spin 1 excited state and the A=5 ground state are strongly underbound, however. We demonstrate the importance of the strong tensor terms of the Nijmegen model, particularly those in the transition channel, in obtaining this result. The limited data currently available for hyperon-nucleon scattering must be greatly improved in order to place reasonable constraints on the interaction. 12 refs., 3 figs., 3 tabs.
Lattice QCD Calculation of Nucleon Structure
Energy Technology Data Exchange (ETDEWEB)
Liu, Keh-Fei [University of Kentucky, Lexington, KY (United States). Dept. of Physics and Astronomy; Draper, Terrence [University of Kentucky, Lexington, KY (United States). Dept. of Physics and Astronomy
2016-08-30
It is emphasized in the 2015 NSAC Long Range Plan that "understanding the structure of hadrons in terms of QCD's quarks and gluons is one of the central goals of modern nuclear physics." Over the last three decades, lattice QCD has developed into a powerful tool for ab initio calculations of strong-interaction physics. Up until now, it is the only theoretical approach to solving QCD with controlled statistical and systematic errors. Since 1985, we have proposed and carried out first-principles calculations of nucleon structure and hadron spectroscopy using lattice QCD which entails both algorithmic development and large-scale computer simulation. We started out by calculating the nucleon form factors -- electromagnetic, axial-vector, πNN, and scalar form factors, the quark spin contribution to the proton spin, the strangeness magnetic moment, the quark orbital angular momentum, the quark momentum fraction, and the quark and glue decomposition of the proton momentum and angular momentum. The first round of calculations were done with Wilson fermions in the `quenched' approximation where the dynamical effects of the quarks in the sea are not taken into account in the Monte Carlo simulation to generate the background gauge configurations. Beginning in 2000, we have started implementing the overlap fermion formulation into the spectroscopy and structure calculations. This is mainly because the overlap fermion honors chiral symmetry as in the continuum. It is going to be more and more important to take the symmetry into account as the simulations move closer to the physical point where the u and d quark masses are as light as a few MeV only. We began with lattices which have quark masses in the sea corresponding to a pion mass at ~ 300 MeV and obtained the strange form factors, charm and strange quark masses, the charmonium spectrum and the D_{s} meson decay constant f_{Ds}, the strangeness and charmness, the meson mass
Lattice QCD Calculation of Nucleon Structure
Energy Technology Data Exchange (ETDEWEB)
Liu, Keh-Fei; Draper, Terrence
2016-08-30
It is emphasized in the 2015 NSAC Long Range Plan [1] that \\understanding the structure of hadrons in terms of QCD's quarks and gluons is one of the central goals of modern nuclear physics." Over the last three decades, lattice QCD has developed into a powerful tool for ab initio calculations of strong-interaction physics. Up until now, it is the only theoretical approach to solving QCD with controlled statistical and systematic errors. Since 1985, we have proposed and carried out rst-principles calculations of nucleon structure and hadron spectroscopy using lattice QCD which entails both algorithmic development and large scale computer simulation. We started out by calculating the nucleon form factors { electromagnetic [2], axial-vector [3], NN [4], and scalar [5] form factors, the quark spin contribution [6] to the proton spin, the strangeness magnetic moment [7], the quark orbital angular momentum [8], the quark momentum fraction [9], and the quark and glue decomposition of the proton momentum and angular momentum [10]. These rst round of calculations were done with Wilson fermions in the `quenched' approximation where the dynamical e ects of the quarks in the sea are not taken into account in the Monte Carlo simulation to generate the background gauge con gurations. Beginning in 2000, we have started implementing the overlap fermion formulation into the spectroscopy and structure calculations [11, 12]. This is mainly because the overlap fermion honors chiral symmetry as in the continuum. It is going to be more and more important to take the symmetry into account as the simulations move closer to the physical point where the u and d quark masses are as light as a few MeV only. We began with lattices which have quark masses in the sea corresponding to a pion mass at 300 MeV and obtained the strange form factors [13], charm and strange quark masses, the charmonium spectrum and the Ds meson decay constant fDs [14], the strangeness and charmness [15], the
Directory of Open Access Journals (Sweden)
Ballester Pla, Coralio
2012-03-01
Full Text Available The observation of the actual behavior by economic decision makers in the lab and in the field justifies that bounded rationality has been a generally accepted assumption in many socio-economic models. The goal of this paper is to illustrate the difficulties involved in providing a correct definition of what a rational (or irrational agent is. In this paper we describe two frameworks that employ different approaches for analyzing bounded rationality. The first is a spatial segregation set-up that encompasses two optimization methodologies: backward induction and forward induction. The main result is that, even under the same state of knowledge, rational and non-rational agents may match their actions. The second framework elaborates on the relationship between irrationality and informational restrictions. We use the beauty contest (Nagel, 1995 as a device to explain this relationship.
La observación del comportamiento de los agentes económicos tanto en el laboratorio como en la vida real justifica que la racionalidad acotada sea un supuesto aceptado en numerosos modelos socio-económicos. El objetivo de este artículo es ilustrar las dificultades que conlleva una correcta definición de qué es un agente racional (irracional. En este artículo se describen dos marcos que emplean diferentes metodologías para analizar la racionalidad acotada. El primero es un modelo de segregación espacial donde se contrastan dos metodologías de optimización: inducción hacia atrás y hacia adelante. El resultado principal es que, incluso con el mismo nivel de conocimiento, tanto agentes racionales como irracionales podrían coincidir en sus acciones. El segundo marco trabaja sobre la relación entre irracionalidad y restricción de información. Se utiliza el juego llamado “beauty contest” (Nagel 1995 como mecanismo para explicar dicha relación.
Radiative corrections and parity violating electron-nucleon scattering
Energy Technology Data Exchange (ETDEWEB)
S. Barkanova; A. Aleksejevs; P.G. Blunden
2002-11-01
Radiative corrections to the parity-violating asymmetry measured in elastic electron-proton scattering are analyzed in the framework of the Standard Model. We include the complete set of one-loop contributions to one quark current amplitudes. The contribution of soft photon emission to the asymmetry is also calculated, giving final results free of infrared divergences. The one quark radiative corrections, when combines with previous work on many quark effects and recent SAMPLE experimental data, are used to place some new constraints on electroweak form factors of the nucleon.
Radiative corrections and parity-violating electron-nucleon scattering
Barkanova, S; Blunden, P G
2002-01-01
Radiative corrections to the parity-violating asymmetry measured in elastic electron-proton scattering are analyzed in the framework of the Standard Model. We include the complete set of one-loop contributions to one quark current amplitudes. The contribution of soft photon emission to the asymmetry is also calculated, giving final results free of infrared divergences. The one quark radiative corrections, when combined with previous work on many quark effects and recent SAMPLE experimental data, are used to place some new constraints on electroweak form factors of the nucleon.
Statistical effect in the parton distribution functions of the nucleon
Zhang, Yunhua; Ma, Bo-Qiang
2008-01-01
A new and simple statistical approach is performed to calculate the parton distribution functions (PDFs) of the nucleon in terms of light-front kinematic variables. We do not put in any extra arbitrary parameter or corrected term by hand, which guarantees the stringency of our approach. Analytic expressions of the $x$-dependent PDFs are obtained in the whole $x$ region [0,1], and some features, especially the low-$x$ rise, are more agreeable with experimental data than those in some previous instant-form statistical models in the infinite-momentum frame (IMF). Discussions on heavy-flavored PDFs are also presented.
Energy Dependence of the πN Amplitude and the Three-Nucleon Interaction
Saito, T.-Y.; Afnan, I. R.
1995-08-01
By calculating the contribution of the ππ three-body force to the three-nucleon binding energy in terms of the πN amplitude using perturbation theory, we are able to determine the importance of the energy dependence and the contribution of the different partial waves of the πN amplitude to the three-nucleon force. A separable representation of the non-pole πN amplitude allows us to write the three-nucleon force in terms of the amplitude for NN → NN*, propagation of the NNN* system, and the amplitude for NN* → NN , with N* being the πN quasi-particle amplitude in a given state. The division of the πN amplitude into a pole and non-pole part gives a procedure for the determination of the πNN form factor within the model. The total contribution of the three-body force to the binding energy of the triton for the separable approximation to the Paris nucleon-nucleon potential (PEST) is found to be very small mainly as a result of the energy dependence of the πN amplitude, the cancellation between the S- and P-wave πN amplitudes, and the soft πNN form factor.
Chia, Jyh Yea; Tan, Wen Siang; Ng, Chyan Leong; Hu, Nien-Jen; Foo, Hooi Ling; Ho, Kok Lian
2016-08-09
DNA methylation in a CpG context can be recognised by methyl-CpG binding protein 2 (MeCP2) via its methyl-CpG binding domain (MBD). An A/T run next to a methyl-CpG maximises the binding of MeCP2 to the methylated DNA. The A/T run characteristics are reported here with an X-ray structure of MBD A140V in complex with methylated DNA. The A/T run geometry was found to be strongly stabilised by a string of conserved water molecules regardless of its flanking nucleotide sequences, DNA methylation and bound MBD. New water molecules were found to stabilise the Rett syndrome-related E137, whose carboxylate group is salt bridged to R133. A structural comparison showed no difference between the wild type and MBD A140V. However, differential scanning calorimetry showed that the melting temperature of A140V constructs in complex with methylated DNA was reduced by ~7 °C, although circular dichroism showed no changes in the secondary structure content for A140V. A band shift analysis demonstrated that the larger fragment of MeCP2 (A140V) containing the transcriptional repression domain (TRD) destabilises the DNA binding. These results suggest that the solution structure of MBD A140V may differ from the wild-type MBD although no changes in the biochemical properties of X-ray A140V were observed.
Directory of Open Access Journals (Sweden)
Lushchak V.I.
2001-01-01
Full Text Available The effects of short-term burst (5 min at 1.8 m/s swimming and long-term cruiser (60 min at 1.2 m/s swimming on maximal enzyme activities and enzyme distribution between free and bound states were assessed for nine glycolytic and associated enzymes in tissues of horse mackerel, Trachurus mediterraneus ponticus. The effects of exercise were greatest in white muscle. The activities of phosphofructokinase (PFK, pyruvate kinase (PK, fructose-1,6-bisphosphatase (FBPase, and phosphoglucomutase (PGM all decreased to 47, 37, 37 and 67%, respectively, during 60-min exercise and all enzymes except phosphoglucoisomerase (PGI and PGM showed a change in the extent of binding to subcellular particulate fractions during exercise. In red muscle, exercise affected the activities of PGI, FBPase, PFK, and lactate dehydrogenase (LDH and altered percent binding of only PK and LDH. In liver, exercise increased the PK activity 2.3-fold and reduced PGI 1.7-fold only after 5 min of exercise but altered the percent binding of seven enzymes. Fewer effects were seen in brain, with changes in the activities of aldolase and PGM and in percent binding of hexokinase, PFK and PK. Changes in enzyme activities and in binding interactions with subcellular particulate matter appear to support the altered demands of tissue energy metabolism during exercise.
Nucleon Parton Structure from Continuum QCD
Bednar, Kyle; Cloet, Ian; Tandy, Peter
2017-01-01
The parton structure of the nucleon is investigated using QCD's Dyson-Schwinger equations (DSEs). This formalism builds in numerous essential features of QCD, for example, the dressing of parton propagators and dynamical formation of non-pointlike di-quark correlations. All needed elements of the approach, including the nucleon wave function solution from a Poincaré covariant Faddeev equation, are encoded in spectral-type representations in the Nakanishi style. This facilitates calculations and the necessary connections between Euclidean and Minkowski metrics. As a first step results for the nucleon quark distribution functions will be presented. The extension to the transverse momentum-dependent parton distributions (TMDs) also be discussed. Supported by NSF Grant No. PHY-1516138.
Probing nucleon strangeness structure with $\\phi$ electroproduction
Oh, Yu; Yang, S N; Mori, T; Oh, Yongseok; Titov, Alexander I.; Yang, Shin Nan; Morii, Toshiyuki
1999-01-01
We study the possibility to constrain the hidden strangeness content of the nucleon by means of the polarization observables in phi meson electroproduction. We consider the OZI evading direct knockout mechanism that arises from the non-vanishing s\\bar{s} sea quark admixture of the nucleon as well as the background of the dominant diffractive and the one-boson-exchange processes. Large sensitivity on the nucleon strangeness are found in several beam-target and beam-recoil double polarization observables. The small \\sqrt{s} and W region, which is accesible at some of the current high-energy electron facilities, is found to be the optimal energy region for extracting out the OZI evasion process.
Vector Meson Production in Collisions of Nucleons
Brinkmann, K.-Th.; Abdel-Bary, M.; Abdel-Samad, S.; Clement, H.; Doroshkevich, E.; Dshemuchadse, S.; Dutz, H.; Ehrhardt, K.; Erhardt, A.; Eyrich, W.; Filippi, A.; Freiesleben, H.; Fritsch, M.; Georgi, J.; Gillitzer, A.; Gonser, P.; Jäkel, R.; Karsch, L.; Kilian, K.; Koch, H.; Kreß, J.; Kuhlmann, E.; Marcello, S.; Meyer, W.; Michel, P.; Morsch, H. P.; Möller, K.; Mörtel, H.; Naumann, L.; Pinna, L.; Pizzolotto, L.; Roderburg, E.; Schamlott, A.; Schönmeier, P.; Schroeder, W.; Schulte-Wissermann, M.; Sefzick, T.; Steinke, M.; Stinzing, F.; Sun, G. Y.; Ucar, A.; Ullrich, W.; Wagner, G. J.; Wagner, M.; Wilms, A.; Wintz, P.; Wirth, S.; Wüstner, P.; Zupranski, P.
The production of vector mesons in collisions between nucleons is studied in order to address a variety of issues concerning nucleon-nucleon interaction, reaction mechanism and properties of baryons. These studies are summarized with emphasis on the most recent experiments at the Time-of-Flight spectrometer TOF and results obtained at the COoler SYnchrotron COSY in Jülich. While currently the open questions regarding the so-called OZI violation, its relation to the meson exchange picture and the relative importance of contributions to the production mechanism from various channels within this formalism are still unresolved, the present-day experiments hold the potential to clarify the situation greatly. Possible extensions of the experimental program on vector mesons using 4π detection techniques for charged as well as neutral particles, in particular π0, are discussed.
Effects of pion-fold-pion diagrams in the energy-independent nucleon-nucleon potential
de Guzman, G.; Kuo, T. T. S.; Holinde, K.; Machleidt, R.; Faessler, A.; Müther, H.
1985-10-01
Based on a T-matrix equivalence theory, an energy-independent or locally energy-dependent nucléon-nucléon potential VNN derived from meson exchanges is studied. The potential, given as a series expansion of folded diagrams, is independent of the asymptotic energy of the scattering nucleons. It is, however, locally energy dependent in the sense that its matrix elements depend on the energies associated with its bra and ket states a and b. Our formulation makes use of right-hand-side on-shell T-matrix equivalence of the field-theoretical and potential descriptions when limited to the space of neutrons and protons only. This preserves not only scattering (e.g. phase shifts, projections of wave functions) but also bound-state properties. The matrix elements of V were calculated for two potential models, one based on one-pion exchange (OPEP) and the other on one-boson exchange (OBEP) using {π, ρ, σ, ω, δ, η }. Three types of phase-shift calculations have been carried out to study the viability of constructing an energy-independent potential using the folded-diagram expansion: (A) NN phase shifts for an energy-dependent OPEP and OBEP. For the OBEP we used parameters adjusted to fit experimental data. (B) The same phase shifts for the energy-independent case for both OPEP and OBEP. (C) Repetition of (B) with effects of the two-pion folded diagrams included. Our results show two important points: (i) folded diagrams are of essential importance, and (ii) the first-order folded diagrams contain the dominant effect and the neglect of terms with more than two folds can be regarded as a good approximation. The effects of folded diagrams are large especially for low partial waves and high energies. For high partial waves ( J greater than 2) the folded terms are negligible, and the phase shifts given by (A), (B) and (C) practically coincide.
Two-pion exchange nucleon-nucleon potential Model independent features
Robilotta, Manoel R.; da Rocha, Carlos A.
1997-02-01
A chiral pion-nucleon amplitude supplemented by the HJS subthreshold coefficients is used to calculate the the long range part of the two-pion exchange nucleon-nucleon potential. In our expressions the HJS coefficients factor out, allowing a clear identification of the origin of the various contributions. A discussion of the configuration space behaviour of the loop integrals that determine the potential is presented, with emphasis on cancellations associated with chiral symmetry. The profile function for the scalar-isoscalar component of the potential is produced and shown to disagree with those of several semi-phenomenological potentials.
Precise Determination of Charge Dependent Pion-Nucleon-Nucleon Coupling Constants
Perez, R Navarro; Arriola, E Ruiz
2016-01-01
We undertake a covariance error analysis of the pion-nucleon-nucleon coupling constants from the Granada-2013 np and pp database comprising a total of 6713 scattering data. Assuming a unique pion-nucleon coupling constant we obtain $f^2=0.0761(3)$. The effects of charge symmetry breaking on the $^3P_0$, $^3P_1$ and $^3P_2$ partial waves are analyzed and we find $f_{p}^2 = 0.0759(4)$, $f_{0}^2 = 0.079(1)$ and $f_{c}^2 = 0.0763(6)$ with minor correlations among the coupling constants. We successfully test normality for the residuals of the fit.
Probing nuclear structure with nucleons; Sonder la structure nucleaire avec des nucleons
Energy Technology Data Exchange (ETDEWEB)
Bauge, E. [CEA Bruyeres-le-Chatel, Service de Physique Nucl aire, 91 (France)
2007-07-01
The goal of this lecture is to show how nucleon scattering can be used to probe the structure of target nuclei, and how nucleon scattering observables can be interpreted in terms of nuclear structure using microscopic optical potentials. After a brief overview of the specificities of nucleon-nucleus scattering, and a quick reminder on scattering theory, the main part of this lecture is devoted to the construction of optical potentials in which the target nuclei structure information is folded with an effective interaction. Several examples of such microscopic optical model potentials are given. (author)
Hilton, Robert J; Seare, Matthew C; Andros, N David; Kenealey, Zachary; Orozco, Catalina Matias; Webb, Michael; Watt, Richard K
2012-05-01
In chronic kidney diseases, NTBI can occur even when total iron levels in serum are low and transferrin is not saturated. We postulated that elevated serum phosphate concentrations, present in CKD patients, might disrupt Fe(3+) loading into apo-transferrin by forming Fe(III)-phosphate species. We report that phosphate competes with apo-transferrin for Fe(3+) by forming a soluble Fe(III)-phosphate complex. Once formed, the Fe(III)-phosphate complex is not a substrate for donating Fe(3+) to apo-transferrin. Phosphate (1-10mM) does not chelate Fe(III) from diferric transferrin under the conditions examined. Complexed forms of Fe(3+), such as iron nitrilotriacetic acid (Fe(3+)-NTA), and Fe(III)-citrate are not susceptible to this phosphate complexation reaction and efficiently deliver Fe(3+) to apo-transferrin in the presence of phosphate. This reaction suggests that citrate might play an important role in protecting against Fe(III), phosphate interactions in vivo. In contrast to the reactions of Fe(3+) and phosphate, the addition of Fe(2+) to a solution of apo-transferrin and phosphate lead to rapid oxidation and deposition of Fe(3+) into apo-transferrin. These in vitro data suggest that, in principle, elevated phosphate concentrations can influence the ability of apo-transferrin to bind iron, depending on the oxidation state of the iron.
Yoshida, Hisashi; Kawai, Fumihiro; Obayashi, Eiji; Akashi, Satoko; Roper, David I; Tame, Jeremy R H; Park, Sam-Yong
2012-10-26
Staphylococcus aureus is a widespread Gram-positive opportunistic pathogen, and a methicillin-resistant form (MRSA) is particularly difficult to treat clinically. We have solved two crystal structures of penicillin-binding protein (PBP) 3 (PBP3) from MRSA, the apo form and a complex with the β-lactam antibiotic cefotaxime, and used electrospray mass spectrometry to measure its sensitivity to a variety of penicillin derivatives. PBP3 is a class B PBP, possessing an N-terminal non-penicillin-binding domain, sometimes called a dimerization domain, and a C-terminal transpeptidase domain. The model shows a different orientation of its two domains compared to earlier models of other class B PBPs and a novel, larger N-domain. Consistent with the nomenclature of "dimerization domain", the N-terminal region forms an apparently tight interaction with a neighboring molecule related by a 2-fold symmetry axis in the crystal structure. This dimer form is predicted to be highly stable in solution by the PISA server, but mass spectrometry and analytical ultracentrifugation provide unequivocal evidence that the protein is a monomer in solution.
Charged and Neutral Current Neutrino Induced Nucleon Emission Reactions
Nieves, J; Vacas, M J V
2006-01-01
By means of a Monte Carlo cascade method, to account for the rescattering of the outgoing nucleon, we study the charged and neutral current inclusive one nucleon knockout reactions off nuclei induced by neutrinos. The nucleon emission process studied here is a clear signal for neutral--current neutrino driven reactions, and can be used in the analysis of future neutrino experiments.
Isospin dependence of the three-nucleon force
Energy Technology Data Exchange (ETDEWEB)
Evgeny Epelbaum; Ulf-G. Meissner; Juan Palomar
2004-07-01
We classify A--nucleon forces according to their isospin dependence and discuss the most general isospin structure of the three--nucleon force. We derive the leading and subleading isospin--breaking corrections to the three--nucleon force using the framework of chiral effective field theory.
Institute of Scientific and Technical Information of China (English)
XING Yong-Zhong; HAO Huan-Feng; LIU Xiao-Bin; FANG Yu-Tian; LIU Bao-Yi
2007-01-01
@@ Influences of the isospin dependence of the in-medium nucleon-nucleon cross section and the momentum-dependent interaction (MDI) on the isotope scaling are investigated by using the isospin-dependent quantum molecular dynamics model (IQMD). The results show that both the isospin dependence of the in-medium nucleon-nucleon cross section and the momentum-dependent interaction affect the isoscaling parameters appreciably and independently. The influence caused by the isospin dependence of two-body collision is relatively larger than that from the MDI in the mean field. Aiming at exploring the implication of isoscaling behaviour, which the statistical equilibrium in the reaction is reached, the statistical properties in the mass distribution and the kinetic energy distribution of the fragments simulated by IQMD are presented.
A transport theory of relativistic nucleon-nucleon collisions with confinement
Vetter, T; Mosel, U
1994-01-01
A transport theory is developed on the quark level to describe nucleon--nucleon collisions. We treat the strong interaction effectively by the Friedberg-Lee model both in its original and in its modified confining version. First we study the stability of the static three-dimensional semiclassical configuration, then we present results of the time evolution given by a Vlasov equation for the quarks coupled to a Klein-Gordon equation for the mean field. We find at higher energies that the nucleons are almost transparent, whereas at lower energies we observe a substantial interaction. At very low energies we see a fusion of our bags, which is due to the purely attractive nature of the mean field and hence is an artifact of our model. We test the confinement mechanism and find that at higher energies the nucleons are restored shortly after the collision.
Peripheral nucleon-nucleon scattering at fifth order of chiral perturbation theory
Entem, D R; Machleidt, R; Nosyk, Y
2014-01-01
We present the two- and three-pion exchange contributions to the nucleon-nucleon interaction which occur at next-to-next-to-next-to-next-to-leading order (N4LO, fifth order) of chiral effective field theory, and calculate nucleon-nucleon scattering in peripheral partial waves with L>=3 using low-energy constants that were extracted from pi-N analysis at fourth order. While the net three-pion exchange contribution is moderate, the two-pion exchanges turn out to be sizeable and prevailingly repulsive, thus, compensating the excessive attraction characteristic for NNLO and N3LO. As a result, the N4LO predictions for the phase shifts of peripheral partial waves are in very good agreement with the data (with the only exception of the 1F3 wave). We also discuss the issue of the order-by-order convergence of the chiral expansion for the NN interaction.
Nucleon-nucleon scattering at small angles, measured at ANKE-COSY
Bagdasarian, Z.
2016-03-01
The most accepted approach to describe nucleon-nucleon (NN) interaction is the partial wave analysis (PWA), which translates various experimental observables to the common language of the partial waves. The reliable analysis relies not only on the quality experimental data, but also on the measurements of scattering observables over preferably the full angular range. Small angle scattering has been measured for six beam energies between 0.8 and 2.4 GeV using polarized proton beam incident on both proton and deuteron unpolarized targets at COSY-ANKE. This proceeding will report on the published and preliminary results for both pp and pn scattering from this and other recent experiments at ANKE. This study aims to provide the valuable observables to the SAID group in order to improve the phenomenological understanding of the nucleon-nucleon interaction.
The energy dependence of the $\\pi$N amplitude and the three-nucleon interaction
Saitô, T; Saito, T Y
1994-01-01
By calculating the contribution of the \\pi-\\pi three-body force to the three-nucleon binding energy in terms of the \\pi N amplitude using perturbation theory, we are able to determine the importance of the energy dependence and the contribution of the different partial waves of the \\pi N amplitude to the three-nucleon force. A separable representation of the non-pole \\pi N amplitude allows us to write the three-nucleon force in terms of the amplitude for NN\\rightarrow NN^*, propagation of the NNN^* system, and the amplitude for NN^*\\rightarrow NN, with N^* being the \\pi N quasi-particle amplitude in a given state. The division of the \\pi N amplitude into a pole and non-pole gives a procedure for the determination of the \\pi NN form factor within the model. The total contribution of the three-body force to the binding energy of the triton for the separable approximation to the Paris nucleon-nucleon potential (PEST) is found to be very small mainly as a result of the energy dependence of the \\pi N amplitude, th...
Study of excited nucleons and their structure
Energy Technology Data Exchange (ETDEWEB)
Burkert, Volker D. [JLAB, Newport News, VA (United States)
2014-01-01
Recent advances in the study of excited nucleons are discussed. Much of the progress has been achieved due to the availability of high precision meson production data in the photoproduction and electroproduction sectors, the development of multi-channel partial wave analysis techniques, and advances in Lattice QCD with predictions of the full excitation spectrum.
Strong decays of nucleon and $\\Delta$ resonances
Bijker, R
1996-01-01
We study the strong couplings of the nucleon and delta resonances in a collective model. In the ensuing algebraic treatment we derive closed expressions for decay widths which are used to analyze the experimental data for strong decays into the pion and eta channels.
Nucleon transfer studies with radioactive beams
Catford, W N
2002-01-01
The potential of nucleon transfer experiments using radioactive beams is described, and set in the context of the new experimental challenges and the first reported experiments. Particular attention is paid to the requirements imposed on experiments by studying reactions in inverse kinematics on very light targets.
Present understanding of the nucleon spin structure
Metz, A
2005-01-01
The present understanding of the spin structure of the nucleon is briefly reviewed. The main focus is on parton helicity distributions, orbital angular momentum of partons as defined through generalized parton distributions, as well as single spin asymmetries and time-reversal odd correlation functions.
Nuclear data requirements for fusion reactor nucleonics
Energy Technology Data Exchange (ETDEWEB)
Bhat, M.R.; Abdou, M.A.
1980-01-01
Nuclear data requirements for fusion reactor nucleonics are reviewed and the present status of data are assessed. The discussion is divided into broad categories dealing with data for Fusion Materials Irradiation Test Facility (FMIT), D-T Fusion Reactors, Alternate Fuel Cycles and the Evaluated Data Files that are available or would be available in the near future.
Nucleon-decay like signatures of Hylogenesis
Demidov, S V
2015-01-01
We consider nucleon-decay like signatures of the hylogenesis, a variant of antibaryonic dark matter model. For the interaction between visible and dark matter sectors through the neutron portal, we calculate rates of dark matter scatterings off neutron which mimic neutron-decay processes $n\\to \
Propagator modifications in elastic nucleon-nucleus scattering within the spectator expansion
Energy Technology Data Exchange (ETDEWEB)
Chinn, C.R.; Elster, C.; Thaler, R.M.; Weppner, S.P. [Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235 (United States)]|[Center for Computationally Intensive Physics, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)]|[Institute of Nuclear and Particle Physics, and Department of Physics, Ohio University, Athens, Ohio 45701 (United States)]|[Physics Department, Case Western Reserve University, Cleveland, Ohio 44106 (United States)
1995-10-01
The theory of the elastic scattering of a nucleon from a nucleus is presented in the form of a spectator expansion of the optical potential. Particular attention is paid to the treatment of the free projectile-nucleus propagator when the coupling of the struck target nucleon to the residual target must be taken into consideration. First order calculations within this framework are shown for neutron total cross sections and for proton scattering for a number of target nuclides at a variety of energies. The calculated values of these observables are in very good agreement with measurement.
Roy-Steiner equations for pion-nucleon scattering
Ditsche, C.; Hoferichter, M.; Kubis, B.; Meißner, U.-G.
2012-06-01
Starting from hyperbolic dispersion relations, we derive a closed system of Roy-Steiner equations for pion-nucleon scattering that respects analyticity, unitarity, and crossing symmetry. We work out analytically all kernel functions and unitarity relations required for the lowest partial waves. In order to suppress the dependence on the high energy regime we also consider once- and twice-subtracted versions of the equations, where we identify the subtraction constants with subthreshold parameters. Assuming Mandelstam analyticity we determine the maximal range of validity of these equations. As a first step towards the solution of the full system we cast the equations for the π π to overline N N partial waves into the form of a Muskhelishvili-Omnès problem with finite matching point, which we solve numerically in the single-channel approximation. We investigate in detail the role of individual contributions to our solutions and discuss some consequences for the spectral functions of the nucleon electromagnetic form factors.
Energy Technology Data Exchange (ETDEWEB)
Szpigel, S. [Centro de Ciencias e Humanidades, Universidade Presbiteriana Mackenzie, Sao Paulo, SP (Brazil); Timoteo, V.S. [Faculdade de Tecnologia, Universidade Estadual de Campinas, Limeira, SP (Brazil); Duraes, F. de O [Centro de Ciencias e Humanidades, Universidade Presbiteriana Mackenzie, Sao Paulo, SP (Brazil)
2010-02-15
In this work we study the Similarity Renormalization Group (SRG) evolution of effective nucleon-nucleon (NN) interactions derived using the Subtracted Kernel Method (SKM) approach. We present the results for the phaseshifts in the {sup 1}S{sub 0} channel calculated using a SRG potential evolved from an initial effective potential obtained by implementing the SKM scheme for the leading-order NN interaction in chiral effective field theory (ChEFT).
Three-pion exchange a gap in the nucleon-nucleon potential
Pupin, J C
1999-01-01
The leading contribution to the three-pion exchange nucleon-nucleon potential is calculated in the framework of chiral symmetry. It has pseudoscalar and axial components and is dominated by the former, which has a range of about 1.5 fm and tends to enhance the OPEP. The strength of this force does not depend on the pion mass and hence it survives in the chiral limit.
Brazilian relativistic O(q**4) two-pion exchange nucleon nucleon potential: Parametrized version
Energy Technology Data Exchange (ETDEWEB)
C.A. da Rocha; R. Higa; M.R. Robilotta
2007-03-01
In our recent works we derived a chiral O(q4) two-pion exchange nucleon-nucleon potential (TPEP) formulated in a relativistic baryon (RB) framework, expressed in terms of the so called low energy constants (LECs) and functions representing covariant loop integrations. In order to facilitate the use of the potential in nuclear applications, we present a parametrized version of our configuration space TPEP.
Nuclear effects on axions emission rates from nucleon-nucleon bremsstrahlung
Pastrav, B.; Scafes, A. C.
2010-11-01
The rates of axion emissions by nucleon-nucleon bremsstrahlung from neutron stars obtained with the inclusion of the full angular momentum contribution from a nuclear one-pion-exchange potential (OPEP), are studied in different conditions of temperature and degeneracy in both, non degenerate (ND) and degenerate (D) regimes. The comparison with the previous results obtained in literature, where only the high momentum limit of the OPEP expressions are used, is done and the differences discussed.
The effect of nonlinearity in relativistic nucleon–nucleon potential
Indian Academy of Sciences (India)
B B Sahu; S K Singh; M Bhuyan; S K Patra
2014-04-01
A simple form for nucleon–nucleon (NN) potential is introduced as an alternative to the popular M3Y form using the relativistic mean field theory (RMFT) with the non-linear terms in -meson for the first time. In contrast to theM3Y form, the new interaction becomes exactly zero at a finite distance and the expressions are analogous with the M3Y terms. Further, its applicability is examined by the study of proton and cluster radioactivity by folding it with the RMFT-densities of the cluster and daughter nuclei to obtain the optical potential in the region of proton-rich nuclides just above the double magic core 100Sn. The results obtained were found comparable with the widely used M3Y interactions.
Pion-cloud effects on the electromagnetic properties of nucleons in a quark model
Energy Technology Data Exchange (ETDEWEB)
Barik, N. (Utkal Univ., Bhubaneswar (India). Dept. of Physics); Jena, S.N. (Berhampur Univ. (India). Dept. of Physics); Rath, D.P. (Dept. of Physics, Aska Science College, ASKA-761110, Orissa (India))
1992-10-30
This paper reports that incorporating corrections for the center-of-mass motion and pion-cloud effects the nucleon electromagnetic form factors G[sup N][sub E.M] (q[sup 2]) are computed in an independent quark model based on the Dirac equation with a confining potential V[sub q](r) = (1 + [gamma][sup 0]) a 1n (r/b). The static quantities like magnetic moment [mu]n, charge radius (r[sup 2]) [sup 1/2][sub N] and axial vector coupling constant (g[sub A])[sub n [r arrow] pev] of the nucleons computed in this model are in reasonable agreement with the experiment. The pseudoscalar and the pseudovector pion-nucleon coupling constants are obtained as g[sub NN[pi
Energy Technology Data Exchange (ETDEWEB)
Wickham, Joseph Jr; Walsh, Scott T. R., E-mail: walsh.220@osu.edu [Department of Molecular and Cellular Biochemistry, Comprehensive Cancer Center, Ohio State University, 467 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210 (United States)
2007-10-01
Bacterial and insect cell expression systems have been developed to produce unglycosylated and glycosylated forms of human interleukin-7 (IL-7) and the extracellular domain of its α receptor, IL-7Rα. We report the crystallization and X-ray diffraction of IL-7 complexes to both unglycosylated and glycosylated forms of the IL-7Rα to 2.7 and 3.0 Å, respectively. The interleukin-7 (IL-7) signaling pathway plays an essential role in the development, proliferation and homeostasis of T and B cells in cell-mediated immunity. Understimulation and overstimulation of the IL-7 signaling pathway leads to severe combined immunodeficiency, autoimmune reactions, heart disease and cancers. Stimulation of the IL-7 pathway begins with IL-7 binding to its α-receptor, IL-7Rα. Protein crystals of unglycosylated and glycosylated complexes of human IL-7–IL-7Rα extracellular domain (ECD) obtained using a surface entropy-reduction approach diffract to 2.7 and 3.0 Å, respectively. Anomalous dispersion methods will be used to solve the unglycosylated IL-7–IL-7Rα ECD complex structure and this unglycosylated structure will then serve as a model in molecular-replacement attempts to solve the structure of the glycosylated IL-7–α-receptor complex.
Magnetic moments of the nucleon octet in a relativistic quark model with chiral symmetry
Energy Technology Data Exchange (ETDEWEB)
Barik, N.; Dash, B.K.
1986-11-01
Incorporating the lowest-order pionic correction, the magnetic moments of the nucleon octet have been calculated in a chiral potential model. The potential, representing phenomenologically the nonperturbative gluon interactions including gluon self-couplings, is chosen with equally mixed scalar and vector parts in harmonic form. The results are in reasonable agreement with experiment.
Electromagnetic and Strong Decays in a Collective Model of the Nucleon
Leviatan, A
1997-01-01
We present an analysis of electromagnetic elastic form factors, helicity amplitudes and strong decay widths of non-strange baryon resonances, within a collective model of the nucleon. Flavor-breaking and stretching effects are considered. Deviations from the naive three-constituents description are pointed out.
Bloom-Gilman Duality of Nucleon Spin Structure Function and Elastic Peak Contribution
Institute of Scientific and Technical Information of China (English)
DONG Yu-Bing
2005-01-01
By employing the parametrization form of the nucleon spin structure function in the resonance region,which includes the contributions of the resonance peaks and of nonresonance background, we study Bloom-Gilman quark-hadron duality of g1 both in the inelastic resonance region and elastic one.
The phase-functions method and full cross-section of nucleon-nucleon scattering
Zhaba, V I
2016-01-01
For calculation of the single-channel nucleon-nucleon scattering a phase-functions method has been considered. Using a phase-functions method the following phase shifts of a nucleon-nucleon scattering are calculated numerically: nn (1S0-, 3P0-, 3P1-, 1D2-, 3F3- state), pp (1S0-, 3P0-, 3P1-, 1D2- state) and np (1S0-, 1P1-, 3P0-, 3P1-, 1D2-, 3D2- state). The calculations has been performed using realistic nucleon-nucleon potentials Nijmegen groups (NijmI, NijmII, Reid93) and potential Argonne v18. Obtained phase shifts are in good agreement with the results obtained in the framework of other methods. Using the obtained phase shifts we have calculated the full cross-section. Our results are in good agreement with those obtained by using known phases published in literature. The odds between calculations depending on a computational method of phases of scattering makes: 0,2-6,3% for pp- and 0,1-5,3% for np- scatterings (NijmI, NijmII), 0,1-4,1% for pp- and 0,1-0,4% for np- scatterings (Reid93), no more than 4,5% ...
Probing short-range nucleon-nucleon interactions with an Electron-Ion Collider
Miller, Gerald A; Venugopalan, Raju
2015-01-01
We derive the cross-section for exclusive vector meson production in high energy deeply inelastic scattering off a deuteron target that disintegrates into a proton and a neutron carrying large relative momentum in the final state. This cross-section can be expressed in terms of a novel gluon Transition Generalized Parton Distribution (T-GPD); the hard scale in the final state makes the T-GPD sensitive to the short distance nucleon-nucleon interaction. We perform a toy model computation of this process in a perturbative framework and discuss the time scales that allow the separation of initial and final state dynamics in the T-GPD. We outline the more general computation based on the factorization suggested by the toy computation: in particular, we discuss the relative role of "point-like" and "geometric" Fock configurations that control the parton dynamics of short range nucleon-nucleon scattering. With the aid of exclusive $J/\\Psi$ production data at HERA, as well as elastic nucleon-nucleon cross-sections, w...
Nucleon electromagnetic structure studies in the spacelike and timelike regions
Energy Technology Data Exchange (ETDEWEB)
Guttmann, Julia
2013-07-23
The thesis investigates the nucleon structure probed by the electromagnetic interaction. One of the most basic observables, reflecting the electromagnetic structure of the nucleon, are the form factors, which have been studied by means of elastic electron-proton scattering with ever increasing precision for several decades. In the timelike region, corresponding with the proton-antiproton annihilation into a electron-positron pair, the present experimental information is much less accurate. However, in the near future high-precision form factor measurements are planned. About 50 years after the first pioneering measurements of the electromagnetic form factors, polarization experiments stirred up the field since the results were found to be in striking contradiction to the findings of previous form factor investigations from unpolarized measurements. Triggered by the conflicting results, a whole new field studying the influence of two-photon exchange corrections to elastic electron-proton scattering emerged, which appeared as the most likely explanation of the discrepancy. The main part of this thesis deals with theoretical studies of two-photon exchange, which is investigated particularly with regard to form factor measurements in the spacelike as well as in the timelike region. An extraction of the two-photon amplitudes in the spacelike region through a combined analysis using the results of unpolarized cross section measurements and polarization experiments is presented. Furthermore, predictions of the two-photon exchange effects on the e{sup +}p/e{sup -}p cross section ratio are given for several new experiments, which are currently ongoing. The two-photon exchange corrections are also investigated in the timelike region in the process p anti p → e{sup +}e{sup -} by means of two factorization approaches. These corrections are found to be smaller than those obtained for the spacelike scattering process. The influence of the two-photon exchange corrections on
Low-energy kaon-nucleon/nuclei interaction studies at DAΦNE by AMADEUS
Directory of Open Access Journals (Sweden)
Tucaković Ivana
2015-01-01
Full Text Available The AMADEUS experiment deals with the investigation of the low-energy kaon-nuclei hadronic interaction at the DAΦNE collider at LNF-INFN, fundamental to respond to longstanding open questions in the non-perturbative QCD in the strangeness sector. One of the most interesting aspects is to understand how hadron masses and interactions change in the nuclear environment. The antikaon-nucleon potential is investigated searching for signals from possible bound kaonic clusters, which would imply a strongly attractive antikaon-nucleon potential. AMADEUS step 0 consists in the analysis of 2004/2005 KLOE data, exploring K− absorptions in H, 4He, 9Be and 12C present in setup materials. The status of the various preliminary analyses is presented, together with future perspectives.
Nucleon propagation through nuclear matter in chiral effective field theory
Mallik, S; Mishra, Hiranmaya
2007-01-01
We treat the propagation of nucleon in nuclear matter by evaluating the ensemble average of the two-point function of nucleon currents in the framework of the chiral effective field theory. We first derive the effective parameters of nucleon to one loop. The resulting formula for the effective mass was known previously and gives an absurd value at normal nuclear density. We then modify it following Weinberg's method for the two-nucleon system in the effective theory. Our results for the effective mass and the width of nucleon are compared with those in the literature.
Nucleon propagation through nuclear matter in chiral effective field theory
Energy Technology Data Exchange (ETDEWEB)
Mallik, S. [Saha Institute of Nuclear Physics, Kolkata (India); Mishra, H. [Physical Research Laboratory, Theory Divison, Ahmedabad (India)
2007-05-15
We treat the propagation of a nucleon in nuclear matter by evaluating the ensemble average of the two-point function of the nucleon currents in the framework of chiral effective field theory. We first derive the effective parameters of the nucleon to one loop. The resulting formula for the effective mass has been known since before and gives an absurd value at normal nuclear density. We then modify it following Weinberg's method for the two-nucleon system in the effective theory. Our results for the effective mass and the width of the nucleon are compared with those in the literature. (orig.)
Nucleon propagation through nuclear matter in chiral effective field theory
Mallik, S.; Mishra, H.
2007-05-01
We treat the propagation of a nucleon in nuclear matter by evaluating the ensemble average of the two-point function of the nucleon currents in the framework of chiral effective field theory. We first derive the effective parameters of the nucleon to one loop. The resulting formula for the effective mass has been known since before and gives an absurd value at normal nuclear density. We then modify it following Weinberg’s method for the two-nucleon system in the effective theory. Our results for the effective mass and the width of the nucleon are compared with those in the literature.
The effects of density-dependent form factors for (e, e'p) reaction in quasi-elastic region
Energy Technology Data Exchange (ETDEWEB)
Kim, K.S. [Korea Aerospace University, School of Liberal Arts and Science, Goyang (Korea, Republic of); Cheoun, Myung-Ki [Soongsil University, Department of Physics, Seoul (Korea, Republic of); Kim, Hungchong [Kookmin University, Department of General Education, Seoul (Korea, Republic of); So, W.Y. [Kangwon National University at Dogye, Department of Radiological Science, Samcheok (Korea, Republic of)
2016-04-15
Within the framework of a relativistic single particle model, the effects of density-dependent electromagnetic form factors on the exclusive (e, e'p) reaction are investigated in the quasi-elastic region. The density-dependent electromagnetic form factors are generated from a quark-meson coupling model and used to calculate the cross sections in two different densities, either at the normal density of ρ{sub 0} ∝ 0.15 fm{sup -3} or at the lower density, 0.5ρ{sub 0}. Then these cross sections are analyzed in the two different kinematics: One is that the momentum of the outgoing nucleon is along the momentum transfer. The other is that the angle between the momentum of the outgoing nucleon and the momentum transfer is varied at fixed magnitude of the momentum of the outgoing nucleon. Our theoretical differential reduced cross sections are compared with the NIKHEF data for the {sup 208}Pb(e, e'p) reaction, which is related to the probability that a bound nucleon from a given orbit can be knocked-out of the nucleus. The effects of the density-dependent form factors increase the differential cross sections for both knocked-out proton and neutron by an amount of a few percent. Moreover they are shown to be almost the same within only a few percent, i.e., nearly independent of the shell location of knockout nucleons. These results are quite consistent with the characteristics of double magic nuclei which have relatively sharp smearing in the density distribution. (orig.)
Bounds for Asian basket options
Deelstra, Griselda; Diallo, Ibrahima; Vanmaele, Michèle
2008-09-01
In this paper we propose pricing bounds for European-style discrete arithmetic Asian basket options in a Black and Scholes framework. We start from methods used for basket options and Asian options. First, we use the general approach for deriving upper and lower bounds for stop-loss premia of sums of non-independent random variables as in Kaas et al. [Upper and lower bounds for sums of random variables, Insurance Math. Econom. 27 (2000) 151-168] or Dhaene et al. [The concept of comonotonicity in actuarial science and finance: theory, Insurance Math. Econom. 31(1) (2002) 3-33]. We generalize the methods in Deelstra et al. [Pricing of arithmetic basket options by conditioning, Insurance Math. Econom. 34 (2004) 55-57] and Vanmaele et al. [Bounds for the price of discrete sampled arithmetic Asian options, J. Comput. Appl. Math. 185(1) (2006) 51-90]. Afterwards we show how to derive an analytical closed-form expression for a lower bound in the non-comonotonic case. Finally, we derive upper bounds for Asian basket options by applying techniques as in Thompson [Fast narrow bounds on the value of Asian options, Working Paper, University of Cambridge, 1999] and Lord [Partially exact and bounded approximations for arithmetic Asian options, J. Comput. Finance 10 (2) (2006) 1-52]. Numerical results are included and on the basis of our numerical tests, we explain which method we recommend depending on moneyness and time-to-maturity.
Glasauer, S.; Langley, S.; Beveridge, T. J.
2001-01-01
Shewanella putrefaciens, a gram-negative, facultative anaerobe, is active in the cycling of iron through its interaction with Fe (hydr)oxides in natural environments. Fine-grained Fe precipitates that are attached to the outer membranes of many gram-negative bacteria have most often been attributed to precipitation and growth of the mineral at the cell surface. Our study of the sorption of nonbiogenic Fe (hydr)oxides revealed, however, that large quantities of nanometer-scale ferrihydrite (hydrous ferric oxide), goethite (α-FeOOH), and hematite (α-Fe2O3) adhered to the cell surface. Attempts to separate suspensions of cells and minerals with an 80% glycerin cushion proved that the sorbed minerals were tightly attached to the bacteria. The interaction between minerals and cells resulted in the formation of mineral-cell aggregates, which increased biomass density and provided better sedimentation of mineral Fe compared to suspensions of minerals alone. Transmission electron microscopy observations of cells prepared by whole-mount, conventional embedding, and freeze-substitution methods confirmed the close association between cells and minerals and suggested that in some instances, the mineral crystals had even penetrated the outer membrane and peptidoglycan layers. Given the abundance of these mineral types in natural environments, the data suggest that not all naturally occurring cell surface-associated minerals are necessarily formed de novo on the cell wall. PMID:11722905
Jensen, Chantel N; Mielke, Tamara; Farrugia, Joseph E; Frank, Annika; Man, Henry; Hart, Sam; Turkenburg, Johan P; Grogan, Gideon
2015-04-13
The FAD-dependent monooxygenase HbpA from Pseudomonas azelaica HBP1 catalyses the hydroxylation of 2-hydroxybiphenyl (2HBP) to 2,3-dihydroxybiphenyl (23DHBP). HbpA has been used extensively as a model for studying flavoprotein hydroxylases under process conditions, and has also been subjected to directed-evolution experiments that altered its catalytic properties. The structure of HbpA has been determined in its apo and FAD-complex forms to resolutions of 2.76 and 2.03 Å, respectively. Comparisons of the HbpA structure with those of homologues, in conjunction with a model of the reaction product in the active site, reveal His48 as the most likely acid/base residue to be involved in the hydroxylation mechanism. Mutation of His48 to Ala resulted in an inactive enzyme. The structures of HbpA also provide evidence that mutants achieved by directed evolution that altered activity are comparatively remote from the substrate-binding site.
Cao, X. G.; Cai, X. Z.; Ma, Y. G.; Fang, D. Q.; Zhang, G. Q.; Guo, W.; Chen, J. G.; Wang, J. S.
2012-10-01
Proton-neutron, neutron-neutron, and proton-proton momentum-correlation functions (Cpn,Cnn, and Cpp) are systematically investigated for 15C and other C-isotope-induced collisions at different entrance channel conditions within the framework of the isospin-dependent quantum-molecular-dynamics model complemented by the correlation after burner (crab) computation code. 15C is a prime exotic nucleus candidate due to the weakly bound valence neutron coupling with closed-neutron-shell nucleus 14C. To study density dependence of the correlation function by removing the isospin effect, the initialized 15C projectiles are sampled from two kinds of density distribution from the relativistic mean-field (RMF) model in which the valence neutron of 15C is populated in both 1d5/2 and 2s1/2 states, respectively. The results show that the density distributions of the valence neutron significantly influence the nucleon-nucleon momentum-correlation function at large impact parameters and high incident energies. The extended density distribution of the valence neutron largely weakens the strength of the correlation function. The size of the emission source is extracted by fitting the correlation function by using the Gaussian source method. The emission source size as well as the size of the final-state phase space are larger for projectile samplings from more extended density distributions of the valence neutron, which corresponds to the 2s1/2 state in the RMF model. Therefore, the nucleon-nucleon momentum-correlation function can be considered as a potentially valuable tool to diagnose exotic nuclear structures, such as the skin and halo.
Babenko, V A
2016-01-01
We study relationship between the physical quantities that characterize pion-nucleon and nucleon-nucleon interaction on the basis of the fact that nuclear forces in the nucleon-nucleon system at low energies are mainly determined by the one-pion exchange mechanism. By making use of the recommended proton-proton low-energy scattering parameters, we obtain the following value for the charged pion-nucleon coupling constant g$_{\\pi ^{\\pm }}^{2}/4\\pi =14.55(13)$. Calculated value of this quantity is in excellent agreement with the experimental result g$_{\\pi ^{\\pm }}^{2}/4\\pi =14.52(26)$ of the Uppsala Neutron Research Group. At the same time, the obtained value of the charged pion-nucleon coupling constant differs markedly from the value of the neutral pion-nucleon coupling constant g$_{\\pi ^{0}}^{2}/4\\pi =13.55(13)$. Thus, our results show considerable charge splitting of the pion-nucleon coupling constant.
Rai, Anand Kumar; Kundu, Nidhi; Chattopadhyay, Kausik
2015-10-01
Vibrio cholerae cytolysin (VCC) is a potent membrane-damaging cytotoxic protein. VCC causes permeabilization of the target cell membranes by forming transmembrane oligomeric beta-barrel pores. Membrane pore formation by VCC involves following key steps: (i) membrane binding, (ii) formation of a pre-pore oligomeric intermediate, (iii) membrane insertion of the pore-forming motifs, and (iv) formation of the functional transmembrane pore. Membrane binding, oligomerization, and subsequent pore-formation process of VCC appear to be facilitated by multiple regulatory mechanisms that are only partly understood. Here, we have explored the role(s) of the physicochemical constraints, specifically imposed by the elevated pH conditions, on the membrane pore-formation mechanism of VCC. Elevated pH abrogates efficient interaction of VCC with the target membranes, and blocks its pore-forming activity. Under the elevated pH conditions, membrane-bound fractions of VCC remain trapped in the form of abortive oligomeric species that fail to generate the functional transmembrane pores. Such an abortive oligomeric assembly appears to represent a distinct, more advanced intermediate state than the pre-pore state. The present study offers critical insights regarding the implications of the physicochemical constraints for regulating the efficient membrane interaction and pore formation by VCC.
Parity violation in few-nucleon systems
Schindler, Matthias
2017-01-01
Parity-violating interactions between nucleons are the manifestation of an interplay between strong and weak quark-quark interactions at the hadronic level. Because of the short range of the weak interactions, these parity-violating forces provide a unique probe of low-energy strong interactions. In addition, a better understanding of parity violation in nuclei could also shed light on problems in the hadronic weak interactions involving strange quarks. An ongoing experimental program is mapping out the weak component of the nuclear force in few-nucleon systems. Recent theoretical progress in analyzing and interpreting hadronic parity violation in such systems, based on effective field theory methods, will be described. This work was supported by the DOE Office of Science, Office of Nuclear Physics.
Physics of the nucleon sea quark distributions
Energy Technology Data Exchange (ETDEWEB)
Vogt, R.
2000-03-10
Sea quark distributions in the nucleon have naively been expected to be generated perturbatively by gluon splitting. In this case, there is no reason for the light quark and anti-quark sea distributions to be different. No asymmetries in the strange or heavy quark sea distributions are predicted in the improved parton model. However,recent experiments have called these naive expectations into question. A violation of the Gottfried sum rule has been measured in several experiments, suggesting that (bar u) < (bar d) in the proton. Additionally, other measurements, while not definitive, show that there may be an asymmetry in the strange and anti-strange quark sea distributions. These effects may require nonperturbative explanations. In this review we first discuss the perturbative aspects of the sea quark distributions. We then describe the experiments that could point to nonperturbative contributions to the nucleon sea. Current phenomenological models that could explain some of these effects are reviewed.
Spin and angular momentum in the nucleon
Gross, Franz; Pena, M T
2012-01-01
Using the covariant spectator theory (CST), we present the results of a valence quark-diquark model calculation of the nucleon structure function f(x) measured in unpolarized deep inelastic scattering (DIS), and the structure functions g1(x) and g2(x) measured in DIS using polarized beams and targets. Parameters of the wave functions are adjusted to fit all the data. The fit fixes both the shape of the wave functions and the relative strength of each component. Two solutions are found that fit f(x) and g1(x), but only one of these gives a good description of g2(x). This fit requires the nucleon CST wave functions contain a large D-wave component (about 35%) and a small P-wave component (about 0.6%). The significance of these results is discussed.
From Extraction of Nucleon Resonances to LQCD
Lee, T -S H; Kamano, Hiroyuki
2016-01-01
The intrinsic difficulties in extracting the hadron resonances from reaction data are illustrated by using several exactly soluble $\\pi\\pi$ scattering models. The finite-volume Hamiltonian method is applied to predict spectra using two meson-exchange Hamiltonians of $\\pi N$ reactions. Within a three-channel model with $\\pi N$, $\\pi\\Delta$ and $\\sigma N$ channels, we show the advantage of the finite-volume Hamiltonian method over the approach using the L\\"uscher formula to test Lattice QCD calculations aimed at predicting nucleon resonances. We discuss the necessary steps for using the ANL-Osaka eight-channel Hamiltonian to predict the spectra for testing the LQCD calculations for determining the excited nucleon states up to invariant mass $W= 2 $ GeV.
Sammarruca, Francesca
2013-01-01
After reviewing our microscopic approach to nuclear and neutron-rich matter, we focus on how nucleon-nucleon scattering is impacted by the presence of a dense hadronic medium, with special emphasis on the case where neutron and proton densities are different. We discuss in detail medium and isospin asymmetry effects on the total elastic cross section and the mean free path of a neutron or a proton in isospin-asymmetric nuclear matter. We point out that in-medium cross sections play an important role in heavy-ion simulations aimed at extracting constraints on the symmetry potential. We argue that medium and isospin dependence of microscopic cross sections are the results of a complex balance among various effects, and cannot be simulated with a simple phenomenological model.
Spin and angular momentum in the nucleon
Energy Technology Data Exchange (ETDEWEB)
Franz Gross, Gilberto Ramalho, Teresa Pena
2012-05-01
Using the covariant spectator theory (CST), we present the results of a valence quark-diquark model calculation of the nucleon structure function f(x) measured in unpolarized deep inelastic scattering (DIS), and the structure functions g1(x) and g2(x) measured in DIS using polarized beams and targets. Parameters of the wave functions are adjusted to fit all the data. The fit fixes both the shape of the wave functions and the relative strength of each component. Two solutions are found that fit f(x) and g1(x), but only one of these gives a good description of g2(x). This fit requires the nucleon CST wave functions contain a large D-wave component (about 35%) and a small P-wave component (about 0.6%). The significance of these results is discussed.
Exclusive measurements of pion nucleon going to pion pion nucleon
Kermani, Mohammad Arjomand
The pion induced pion production reactions π±p/toπ±π+n were studied at projectile incident energies of 223, 243, 264, 284, and 305 MeV. The Canadian High Acceptance Orbit Spectrometer (CHAOS) was used to detected the charged particles, which originated from the interaction of the incident pion beam with a cryogenic liquid hydrogen target. The experimental results are presented in the form of single, double and triple differential cross sections. Total cross sections obtained by integrating the differential quantities are also reported. The experimental data, namely the π-p/toπ-π+n double differential cross sections, were used as input to the Chew-Low extrapolation procedure which was utilized to determine on-shell π+π- elastic scattering cross sections in the near threshold region. The Chew-Low results (the extrapolated πpi cross sections) were then used in a dispersion analysis (Roy equations) to obtain the πpi isospin zero S-wave scattering length. We find a00=0.209/pm 0.011μ-1. In addition, the invariant mass distributions from the (π+π-) channel were fitted to determine the model parameters for the extended model of Oset and Vicente-Vacas. We find that the model parameters obtained from fitting the (π+π-) data do not describe the invariant mass distributions in the (π+π+) channel.
Note on Strange Quarks in the Nucleon
Steininger, K
1994-01-01
Scalar matrix elements involving strange quarks are studied in several models. Apart from a critical reexamination of results obtained in the Nambu and Jona-Lasinio model we study a scenario, motivated by instanton physics, where spontaneous chiral symmetry breaking is induced by the flavor-mixing 't Hooft interaction only. We also investigate possible contributions of virtual kaon loops to the strangeness content of the nucleon.
Electromagnetic interactions with nuclei and nucleons
Energy Technology Data Exchange (ETDEWEB)
Thornton, S.T.; Sealock, R.M.
1990-11-10
This report discusses the following topics: general LEGS work; photodisintegration of the deuteron; progress towards other experiments; LEGS instrumentation; major LEGS software projects; NaI detector system; nucleon detector system; waveshifting fibers; EGN prototype detector for CEBAF; photon beam facility at CEBAF; delta electroproduction in nuclei; quasielastic scattering and excitation of the Delta by {sup 4}He(e,e{prime}); and quasielastic scattering at high Q{sup 2}.
The nucleon spin structure at short distance
Seidl, Ralf
2008-10-01
The spin structure of the nucleon has been the basis of several surprises in the past. After the EMC experiment showed that the quark spin contribution to the nucleon spin was small, several experiments were performed to further investigate this ``spin crisis.'' Deep inelastic scattering (DIS) experiments at CERN, SLAC, and DESY successfully confirmed the low quark spin contribution to the nucleon. Using semi-inclusive DIS, SMC, HERMES and COMPASS were also able to obtain flavor separated quark polarizations. DIS experiments are only sensitive to gluon polarization at NLO via the QCD evolution of the structure function g1, or through di-jet/hadron production in photon-gluon fusion processes. Proton-proton collisions are sensitive to the gluon polarization at leading order. The RHIC experiments PHENIX and STAR have measured inclusive pion and jet asymmetries which exclude huge gluon polarizations but a substantial contribution to the spin of the nucleon is still possible. Another aspect of spin measurements are transverse spin phenomena. Once deemed to be vanishing in perturbative QCD recent nonzero transverse single spin asymmetries observed at RHIC and HERMES could be explained in the framework of transverse momentum dependent (TMD) distribution and fragmentation functions. One is the so-called Sivers function which requires a nonzero parton orbital angular momentum. Early global analysises were able to combine the data obtained at RHIC, COMPASS and HERMES. Another TMD function is the Collins fragmentation function, first measured at BELLE, which serves as a transverse spin analyzer to extract the quark transverse spin distribution from the SIDIS experiments. Also here a first global analysis of SIDIS and BELLE data has been successfully performed. An overview on recent spin related measurements at short distance, performed at PHENIX, STAR, BRAHMS, HERMES, COMPASS and Belle will be given.
Dense nucleonic matter and the renormalization group
Drews, Matthias; Klein, Bertram; Weise, Wolfram
2013-01-01
Fluctuations are included in a chiral nucleon-meson model within the framework of the functional renormalization group. The model, with parameters fitted to reproduce the nuclear liquid-gas phase transition, is used to study the phase diagram of QCD. We find good agreement with results from chiral effective field theory. Moreover, the results show a separation of the chemical freeze-out line and chiral symmetry restoration at large baryon chemical potentials.
Dense nucleonic matter and the renormalization group
Directory of Open Access Journals (Sweden)
Drews Matthias
2014-03-01
Full Text Available Fluctuations are included in a chiral nucleon-meson model within the framework of the functional renormalization group. The model, with parameters fitted to reproduce the nuclear liquid-gas phase transition, is used to study the phase diagram of QCD. We find good agreement with results from chiral effective field theory. Moreover, the results show a separation of the chemical freeze-out line and chiral symmetry restoration at large baryon chemical potentials.
The nucleon in a periodic magnetic field
Agadjanov, Andria; Rusetsky, Akaki
2016-01-01
The energy shift of a nucleon in a static periodic magnetic field is evaluated at second order in the external field strength in perturbation theory. It is shown that the measurement of this energy shift on the lattice allows one to determine the unknown subtraction function in the forward doubly-virtual Compton scattering amplitude. The limits of applicability of the obtained formula for the energy shift are discussed.
Fision: Nucleon pair breaking before scission
Montoya, Modesto
1984-01-01
In order to explain the odd-even effect observed in low energy fission fragment distributions it has been recently required a double mechanism of nucleon pair breaking: before scission (early pair breaking) and at scission (late pair breaking), respectively. In the present work we show that, using the same formulae but considering only the early pair breaking mechanism, one can reproduce fairly well all the available experimental data on the odd-even effects.
Nucleon and $N^* (1535)$ Distribution Amplitudes
Braun, V M; Göckeler, M; Hagen, C; Horsley, R; Nakamura, Y; Pleiter, D; Rakow, P E L; Schäfer, A; Schiel, R W; Schierholz, G; Stüben, H; Zanotti, J M
2010-01-01
The QCDSF collaboration has investigated the distribution amplitudes and wavefunction normalization constants of the nucleon and its parity partner, the $N^* (1535)$. We report on recent progress in the calculation of these quantities on configurations with two dynamical flavors of $\\mathcal{O}(a)$-improved Wilson fermions. New data at pion masses of approximately 270 MeV helps in significantly reducing errors in the extrapolation to the physical point.
Eisenreichova, Andrea; Klima, Martin; Boura, Evzen
2016-11-01
14-3-3 proteins bind phosphorylated binding partners to regulate several of their properties, including enzymatic activity, stability and subcellular localization. Here, two crystal structures are presented: the crystal structures of the 14-3-3 protein (also known as Bmh1) from the yeast Lachancea thermotolerans in the unliganded form and bound to a phosphopeptide derived from human PI4KB (phosphatidylinositol 4-kinase B). The structures demonstrate the high evolutionary conservation of ligand recognition by 14-3-3 proteins. The structural analysis suggests that ligand recognition by 14-3-3 proteins evolved very early in the evolution of eukaryotes and remained conserved, underlying the importance of 14-3-3 proteins in physiology.
Nucleon mass and pion-nucleon sigma term from a chiral analysis of lattice QCD world data
Directory of Open Access Journals (Sweden)
Alvarez-Ruso L.
2014-06-01
Full Text Available The chiral behavior of the nucleon mass is studied within the covariant SU(2 baryon chiral perturbation theory up to order p4. Lattice QCD data for the ensembles of 2 and 2 + 1 flavors are separately fitted, paying special attention to explicit Δ(1232 degrees of freedom, finite volume corrections and finite spacing effects. In the case of the 2 flavor ensemble, we fit simultaneously nucleon mass data together with new and updated data for the σπN term both in their dimensionless forms and determine a Sommer-scale of r0 = 0.493(23 fm. We obtain low-energy constants of natural size that are compatible with the rather linear pion-mass dependence observed in lattice QCD and report a preliminary updated value of σπN = 43(5(4 MeV for the 2 flavor case and σπN = 52(3(8 MeV for 2 + 1 flavor case.
Zhang, Huaqun; McGlone, Cameron; Mannion, Matthew M; Page, Richard C
2017-04-01
The ubiquitin ligase CHIP catalyzes covalent attachment of ubiquitin to unfolded proteins chaperoned by the heat shock proteins Hsp70/Hsc70 and Hsp90. CHIP interacts with Hsp70/Hsc70 and Hsp90 by binding of a C-terminal IEEVD motif found in Hsp70/Hsc70 and Hsp90 to the tetratricopeptide repeat (TPR) domain of CHIP. Although recruitment of heat shock proteins to CHIP via interaction with the CHIP-TPR domain is well established, alterations in structure and dynamics of CHIP upon binding are not well understood. In particular, the absence of a structure for CHIP-TPR in the free form presents a significant limitation upon studies seeking to rationally design inhibitors that may disrupt interactions between CHIP and heat shock proteins. Here we report the (1)H, (13)C, and (15)N backbone and side chain chemical shift assignments for CHIP-TPR in the free form, and backbone chemical shift assignments for CHIP-TPR in the IEEVD-bound form. The NMR resonance assignments will enable further studies examining the roles of dynamics and structure in regulating interactions between CHIP and the heat shock proteins Hsp70/Hsc70 and Hsp90.
Isospin-violating nucleon-nucleon forces using the method of unitary transformation
Energy Technology Data Exchange (ETDEWEB)
Evgeny Epelbaum; Ulf-G. Meissner
2005-02-01
Recently, we have derived the leading and subleading isospin-breaking three-nucleon forces using the method of unitary transformation. In the present work we extend this analysis and consider the corresponding two-nucleon forces using the same approach. Certain contributions to the isospin-violating one- and two-pion exchange potential have already been discussed by various groups within the effective field theory framework. Our findings agree with the previously obtained results. In addition, we present the expressions for the subleading charge-symmetry-breaking two-pion exchange potential which were not considered before. These corrections turn out to be numerically important. Together with the three-nucleon force results presented in our previous work, the results of the present study specify completely isospin-violating nuclear force up to the order {Lambda}{sup 5}.
Analytical Solution for the SU(2)Hedgehog Skyrmion and Static Properties of Nucleons
Institute of Scientific and Technical Information of China (English)
JIA Duo-Jie; WANG Xiao-Wei; LIU Feng
2010-01-01
@@ An analytical solution for symmetric Skyrmion is proposed for the SU(2)Skyrme model,which takes the form of the hybrid form of a kink-like solution,given by the instanton method.The static properties of nucleons is then computed within the framework of collective quantization of the Skyrme model,in a good agreement with that given by the exact numeric solution.The comparisons with the previous results as well as the experimental values are also presented.
Probing short-range nucleon-nucleon interactions with an electron-ion collider
Miller, Gerald A.; Sievert, Matthew D.; Venugopalan, Raju
2016-04-01
We derive the cross section for exclusive vector meson production in high-energy deeply inelastic scattering off a deuteron target that disintegrates into a proton and a neutron carrying large relative momentum in the final state. This cross section can be expressed in terms of a novel gluon transition generalized parton distribution (T-GPD); the hard scale in the final state makes the T-GPD sensitive to the short-distance nucleon-nucleon interaction. We perform a toy model computation of this process in a perturbative framework and discuss the time scales that allow the separation of initial- and final-state dynamics in the T-GPD. We outline the more general computation based on the factorization suggested by the toy computation: In particular, we discuss the relative role of "pointlike" and "geometric" Fock configurations that control the parton dynamics of short-range nucleon-nucleon scattering. With the aid of exclusive J /ψ production data at the Hadron-Electron Ring Accelerator at DESY, as well as elastic nucleon-nucleon cross sections, we estimate rates for exclusive deuteron photodisintegration at a future Electron-Ion Collider (EIC). Our results, obtained using conservative estimates of EIC integrated luminosities, suggest that center-of-mass energies sNN˜12 GeV2 of the neutron-proton subsystem can be accessed. We argue that the high energies of the EIC can address outstanding dynamical questions regarding the short-range quark-gluon structure of nuclear forces by providing clean gluon probes of such "knockout" exclusive reactions in light and heavy nuclei.
Spectrum of recoil nucleons in quasi-elastic neutrino-nucleus interactions
Energy Technology Data Exchange (ETDEWEB)
Juszczak, C.; Nowak, J.A.; Sobczyk, J.T. [Wroclaw University, Institute of Theoretical Physics, Wroclaw (Poland)
2005-02-01
We have analyzed the consequences of introducing the local density approximation combined with an effective nuclear momentum-dependent potential into the CC quasi-elastic neutrino-nucleus scattering. We note that the distribution of recoil nucleons momenta becomes smooth for low momentum values and the sharp threshold is removed. Our results may be relevant for Sci-Fi detector analysis of K2K experiments. The total amount of observed recoil protons is reduced because some of them remain bound inside the nucleus. We compare theoretical predictions for a probability of such events with the results given by NUX+FLUKA MC simulations. (orig.)
Nucleon-nucleon resonances at intermediate energies using a complex energy formalism
Papadimitriou, G
2015-01-01
We apply our method of complex scaling, valid for a general class of potentials, in a search for nucleon-nucleon S-matrix poles up to 2 GeV laboratory kinetic energy. We find that the realistic potentials JISP16, constructed from inverse scattering, and chiral field theory potentials N$^3$LO and N$^2$LO$_{opt}$ support resonances in energy regions well above their fit regions. In some cases these resonances have widths that are narrow when compared with the real part of the S-matrix pole.
$^1S_0$ nucleon-nucleon scattering in the modified Weinberg approach
Epelbaum, E; Gegelia, J; Krebs, H
2015-01-01
Nucleon-nucleon scattering in the $^1S_0$ partial wave is considered in chiral effective field theory within the renormalizable formulation of Ref. [1] beyond the leading-order approximation. By applying subtractive renormalization, the subleading contact interaction in this channel is taken into account non-perturbatively. For a proper choice of renormalization conditions, the predicted energy dependence of the phase shift and the coefficients in the effective range expansion are found to be in a good agreement with the results of the Nijmegen partial wave analysis.
Comparison between chiral and meson-theoretic nucleon-nucleon potentials through (p,p') reactions
Sammarruca, F; Stephenson, E J
2002-01-01
We use proton-nucleus reaction data at intermediate energies to test the emerging new generation of chiral nucleon-nucleon (NN) potentials. Predictions from a high quality one-boson-exchange (OBE) force are used for comparison and evaluation. Both the chiral and OBE models fit NN phase shifts accurately, and the differences between the two forces for proton-induced reactions are small. A comparison to a chiral model with a less accurate NN description sets the scale for the ability of such models to work for nuclear reactions.
Prediction of the anomalous magnetic moment of nucleon from the nucleon anomaly
Lin, Y C
1995-01-01
We construct the effective anomaly lagrangian involving nucleons and photons by using current-current coupling method. The contribution of this lagrangian to the anomalous magnetic moment of nucleon is purely isovector. The anomalous magnetic moment of proton, \\kappa_P, can be calculated from the this lagrangian and it is found to be \\kappa_P^{Theor.} = 1.77, which is in excellent agreement with the experimental value \\kappa_P^{Exp.} = 1.79. While the case of neutron, \\kappa_N^{Theor.} = -2.58 as compared to \\kappa_N^{Exp.} =-1.91, is less satisfactory, but the sign is correct.
{sup 1}S{sub 0} nucleon-nucleon scattering in the modified Weinberg approach
Energy Technology Data Exchange (ETDEWEB)
Epelbaum, E.; Krebs, H. [Ruhr-Universitaet Bochum, Institut fuer Theoretische Physik II, Fakultaet fuer Physik und Astronomie, Bochum (Germany); Gasparyan, A.M. [Ruhr-Universitaet Bochum, Institut fuer Theoretische Physik II, Fakultaet fuer Physik und Astronomie, Bochum (Germany); SSC RF ITEP, Moscow (Russian Federation); Gegelia, J. [Ruhr-Universitaet Bochum, Institut fuer Theoretische Physik II, Fakultaet fuer Physik und Astronomie, Bochum (Germany); Tbilisi State University, Tbilisi (Georgia)
2015-06-15
Nucleon-nucleon scattering in the {sup 1}S{sub 0} partial wave is considered in chiral effective field theory within the renormalizable formulation of a previous work (Phys. Lett. B 716, 338 (2012)) beyond the leading-order approximation. By applying subtractive renormalization, the subleading contact interaction in this channel is taken into account non-perturbatively. For a proper choice of renormalization conditions, the predicted energy dependence of the phase shift and the coefficients in the effective range expansion are found to be in a good agreement with the results of the Nijmegen partial wave analysis. (orig.)
Nucleon-nucleon scattering in the 1S0 partial wave in the modified Weinberg approach
Directory of Open Access Journals (Sweden)
Gasparyan A. M.
2016-01-01
Full Text Available Nucleon-nucleon scattering in the 1S0 partial wave is considered in chiral effective field theory within the recently suggested renormalizable formulation based on the Kadyshevsky equation. Contact interactions are taken into account beyond the leading-order approximation. The subleading contact terms are included non-perturbatively by means of subtractive renormalization. The dependence of the phase shifts on the choice of the renormalization condition is discussed. Perturbative inclusion of the subleading contact interaction is found to be justified only very close to threshold. The low-energy theorems are reproduced significantly better compared with the leading order results.
Navarro Pérez, R.; Amaro, J. E.; Ruiz Arriola, E.
2016-11-01
We analyze the low-energy nucleon-nucleon (NN) interaction by confronting statistical versus systematic uncertainties. This is carried out with the help of model potentials fitted to the Granada-2013 database where a statistically meaningful partial wave analysis comprising a total of 6713 np and pp published scattering data below 350 MeV from 1950 till 2013 has been made. We extract threshold parameter uncertainties from the coupled-channel effective range expansion up to j≤slant 5. We find that for threshold parameters systematic uncertainties are generally at least an order of magnitude larger than statistical uncertainties. Similar results are found for np phase shifts and amplitude parameters.
Partial-wave analysis of nucleon-nucleon elastic scattering data
Workman, Ron L.; Briscoe, William J.; Strakovsky, Igor I.
2016-12-01
Energy-dependent and single-energy fits to the existing nucleon-nucleon database have been updated to incorporate recent measurements. The fits cover a region from threshold to 3 GeV, in the laboratory kinetic energy, for proton-proton scattering, with an upper limit of 1.3 GeV for neutron-proton scattering. Experiments carried out at the COSY-WASA and COSY-ANKE facilities have had a significant impact on the partial-wave solutions. Results are discussed in terms of both partial-wave and direct reconstruction amplitudes.
Ladygina, N B
2008-01-01
The model suggested by Love and Franey for description of the nucleon-nucleon interaction was used as the base. The new fitting of the model parameters was done in the energy range from 100 MeV up to 1100 MeV. It is based on the modern partial-wave-analysis solution for NN-amplitudes. The three observables: differential cross section, vector analyzing power, and spin correlation coefficient -- were obtained at every energy. The results are compared with existing the experimental data.
Partial-Wave Analysis of Nucleon-Nucleon Elastic Scattering Data
Workman, Ron L; Strakovsky, Igor I
2016-01-01
Energy-dependent and single-energy fits to the existing nucleon-nucleon database have been updated to incorporate recent measurements. The fits cover a region from threshold to 3 GeV, in the laboratory kinetic energy, for proton-proton scattering, with an upper limit of 1.3 GeV for neutron-proton scattering. Experiments carried out at the COSY-WASA and COSY-ANKE facilities have had a significant impact on the partial-wave solutions. Results are discussed in terms of both partial-wave and direct reconstruction amplitudes.
High energy nucleonic component of cosmic rays at mountain altitudes
Stora, Raymond Félix
The diffusion equations describing the unidimensional propagation of .the high energy nucleonic component of cosmic rays throughout the atmosphere are sol"V'ed under two assumptions: (l) The nucleon-nucleon collisions are described according to Fermi's therlnOdynamical model involving completely inelastic pion and.nucleon-antinucleon pair production. (2) A somewhat opposite assumption is made assuming partially elastic collisions without nucleon-anti.nucleon pair production. Due to the present inaccuracy of experiments, we are able to derive only tentati v.e conclusions. The values computed under both hypotheses for the absorption mean free path and the charged to neutral particles ratio are found in acceptable ranges when compared to experimental data. The diffeential energy spectrum at a given depth is always found steeper than the primary, and steeper than indicated by experimental values if the primary is taken proportional to the 2.5 inverse power of energy.
Three nucleon forces in nuclear matter in QCD sum rules
Drukarev, E. G.; Ryskin, M. G.; Sadovnikova, V. A.
2017-03-01
We calculate the single-particle nucleon characteristics in symmetric nuclear matter with inclusion of the 3N interactions. The contributions of the 3N forces to nucleon self energies are expressed in terms of the nonlocal scalar condensate (d = 3) and of the configuration of the four-quark condensates (d = 6) in which two diquark operators act on two different nucleons of the matter. The most important part of the contribution of the four-quark condensate is calculated in a model-independent way. We employed a relativistic quark model of nucleon for calculation of the other parts. The density dependence of the vector and scalar nucleon self energies and of the single-particle potential energy are obtained. Estimations on contributions of the 4N forces to the nucleon self energies are made.
Panofsky Prize talk: The Structure of the Nucleon
Bodek, Arie
2004-05-01
Information about the quark distribution functions in nucleons and nuclei has been obtained from a range of experiments in various laboratories including electron-nucleon/nucleus, neutrino-nucleon/nucleus, and production of W and Z Bosons in proton-antiproton collisions. I review the the different experimental and theoretical tools that were developed to extract parton distribution functions from these experiments with very different probes.
Electromagnetic Meson Production in the Nucleon Resonance Region
Energy Technology Data Exchange (ETDEWEB)
Volker Burkert; T.-S. H. Lee
2004-10-01
Recent experimental and theoretical advances in investigating electromagnetic meson production reactions in the nucleon resonance region are reviewed. The article gives a description of current experimental facilities with electron and photon beams and presents a unified derivation of most of the phenomenological approaches being used to extract the resonance parameters from the data. The analyses of {pi} and {eta} production data and the resulting transition form factors for the {Delta}(1232)P{sub 33}, N(1535)S{sub 11}, N(1440)P{sub 11}, and N(1520)D{sub 13} resonances are discussed in detail. The status of our understanding of the reactions with production of two pions, kaons, and vector mesons is also reviewed.
Few Nucleon Systems From Expanding About the Unitarity Limit
Griesshammer, Harald W.
2017-01-01
Can one understand the structure of nuclei at the physical point by an expansion about the unitarity limit? When the NN S-wave binding energies are zero, the NN system has no scale. Still, the 3 N system has one dimensionful quantity Λ*, related to the breaking of scale invariance to a discrete scaling symmetry (Efimov effect). The scale is set by the triton binding energy. While qualitatively this has been known for a long time, one may speculate that Nuclear Physics resides then in a sweet spot: bound weakly enough to be insensitive to the details of the nuclear interaction and thus to be described by ``pionless'' EFT; but dense enough that the NN scattering lengths are perturbatively close to the unitarity limit. In this case, Λ* sets the only low-energy scale of all observables. Without it, no scale exists, and all nuclei have zero or infinite binding energy in the unitarity limit. For A <= 4 nucleons, the spectrum is indeed described well in this simplified version: a converging, perturbative expansion around the unitarity limit, with controlled corrections in the inverse scattering lengths, the interaction ranges and isospin breaking. Supported in part by US DOE and George Washington University.
Frediani, Luca; Fossgaard, Eirik; Flå, Tor; Ruud, Kenneth
2013-07-01
We have developed and implemented a general formalism for fast numerical solution of time-independent linear partial differential equations as well as integral equations through the application of numerically separable integral operators in d ≥ 1 dimensions using the non-standard (NS) form. The proposed formalism is universal, compact and oriented towards the practical implementation into a working code using multiwavelets. The formalism is applied to the case of Poisson and bound-state Helmholtz operators in d = 3. Our algorithms are fully adaptive in the sense that the grid supporting each function is obtained on the fly while the function is being computed. In particular, when the function g = O f is obtained by applying an integral operator O, the corresponding grid is not obtained by transferring the grid from the input function f. This aspect has significant implications that will be discussed in the numerical section. The operator kernels are represented in a separated form with finite but arbitrary precision using Gaussian functions. Such a representation combined with the NS form allows us to build a sparse, banded representation of Green's operator kernel. We have implemented a code for the application of such operators in a separated NS form to a multivariate function in a finite but, in principle, arbitrary number of dimensions. The error of the method is controlled, while the low complexity of the numerical algorithm is kept. The implemented code explicitly computes all the 22d components of the d-dimensional operator. Our algorithms are described in detail in the paper through pseudo-code examples. The final goal of our work is to be able to apply this method to build a fast and accurate Kohn-Sham solver for density functional theory.
Ciofi degli Atti, Claudio; Mezzetti, Chiara Benedetta; Morita, Hiko
2017-04-01
Background: Two-nucleon (2 N ) short-range correlations (SRC) in nuclei have been recently thoroughly investigated, both theoretically and experimentally and the study of three-nucleon (3 N ) SRC, which could provide important information on short-range hadronic structure, is underway. Novel theoretical ideas concerning 2 N and 3 N SRC are put forward in the present paper. Purpose: The general features of a microscopic one-nucleon spectral function which includes the effects of both 2 N and 3 N SRC and its comparison with ab initio spectral functions of the three-nucleon systems are illustrated. Methods: A microscopic and parameter-free one-nucleon spectral function expressed in terms of a convolution integral involving ab initio relative and center-of-mass (c.m.) momentum distributions of a 2 N pair and aimed at describing two- and three-nucleon short-range correlations, is obtained by using: (i) the two-nucleon momentum distributions obtained within ab initio approaches based upon nucleon-nucleon interactions of the Argonne family; (ii) the exact relation between one- and two-nucleon momentum distributions; (iii) the fundamental property of factorization of the nuclear wave function at short internucleon ranges. Results: The comparison between the ab initio spectral function of 3He and the one based upon the convolution integral shows that when the latter contains only two-nucleon short-range correlations the removal energy location of the peaks and the region around them exhibited by the ab initio spectral function are correctly predicted, unlike the case of the high and low removal energy tails; the inclusion of the effects of three-nucleon correlations brings the convolution model spectral function in much better agreement with the ab initio one; it is also found that whereas the three-nucleon short-range correlations dominate the high energy removal energy tail of the spectral function, their effects on the one-nucleon momentum distribution are almost one
Stellar cooling bounds on new light particles: including plasma effects
Hardy, Edward
2016-01-01
Strong constraints on the coupling of new light particles to the Standard Model (SM) arise from their production in the hot cores of stars, and the effects of this on stellar cooling. The large electron density in stellar cores significantly modifies the in-medium propagation of SM states. For new light particles which have an effective in-medium mixing with the photon, such plasma effects can result in parametrically different production rates to those obtained from a naive calculation. Taking these previously-neglected contributions into account, we make updated estimates for the stellar cooling bounds on a number of light new particle candidates. In particular, we improve the bounds on light (m < keV) scalars coupling to electrons or nucleons by up to 3 orders of magnitude in the coupling squared, significantly revise the supernova cooling bounds on dark photon couplings, and qualitatively change the mass dependence of stellar bounds on new vectors.
Directory of Open Access Journals (Sweden)
Shimizu Y.
2010-04-01
Full Text Available Measurements of a complete set of deuteron analyzing powers (iT11, T20, T21, T22 for elastic deuteron–proton scattering at 250 MeV/nucleon have been performed with polarized deuteron beams at RIKEN RI Beam Factory. The obtained data are compared with the Faddeev calculations based on the modern nucleon–nucleon forces together with the Tucson-Melbourne’99, and UrbanaIX three nucleon forces.
Collective multipole excitations based on correlated realistic nucleon-nucleon interactions
Energy Technology Data Exchange (ETDEWEB)
Paar, N. [Zagreb Univ. (Croatia). Fac. of Science, Physics Dept.; Papakonstantinou, P.; Hergert, H.; Roth, R. [Technische Univ. Darmstadt (Germany). Inst. fuer Kernphysik
2006-05-24
We investigate collective multipole excitations for closed shell nuclei from {sup 16}O to {sup 208}Pb using correlated realistic nucleon-nucleon interactions in the framework of the random phase approximation (RPA). The dominant short-range central and tensor correlations a re treated explicitly within the Unitary Correlation Operator Method (UCOM), which provides a phase-shift equivalent correlated interaction VUCOM adapted to simple uncorrelated Hilbert spaces. The same unitary transformation that defines the correlated interaction is used to derive correlated transition operators. Using VUCOM we solve the Hartree-Fock problem and employ the single-particle states as starting point for the RPA. By construction, the UCOM-RPA is fully self-consistent, i.e. the same correlated nucleon-nucleon interact ion is used in calculations of the HF ground state and in the residual RPA interaction. Consequently, the spurious state associated with the center-of-mass motion is properly removed and the sum-rules are exhausted within {+-}3%. The UCOM-RPA scheme results in a collective character of giant monopole, dipole, and quadrupole resonances in closed-shell nuclei across the nuclear chart. For the isoscalar giant monopole resonance, the resonance energies are in agreement with experiment hinting at a reasonable compressibility. However, in the 1{sup -} and 2{sup +} channels the resonance energies are overestimated due to missing long-range correlations and three-body contributions. (orig.)
Bacelar, JCS
2001-01-01
The real- and virtual-photon emission during interactions between few-nucleon systems have been investigated at KVI with a 190 MeV proton beam. Here I will concentrate on the discussion of the results of the virtual-photon emission for the proton-proton system and proton-deuteron capture. Prediction
Bacelar, JCS
2001-01-01
The real- and virtual-photon emission during interactions between few-nucleon systems have been investigated at KVI with a 190 MeV proton beam. Here I will concentrate on the discussion of the results of the virtual-photon emission for the proton-proton system and proton-deuteron capture. Prediction
Peripheral nucleon-nucleon scattering at fifth order of chiral perturbation theory
Entem, D. R.; Kaiser, N.; Machleidt, R.; Nosyk, Y.
2015-01-01
We present the two- and three-pion-exchange contributions to the nucleon-nucleon interaction which occur at next-to-next-to-next-to-next-to-leading order (N4LO , fifth order) of chiral effective field theory and calculate nucleon-nucleon scattering in peripheral partial waves with L ≥3 by using low-energy constants that were extracted from π N analysis at fourth order. While the net three-pion-exchange contribution is moderate, the two-pion exchanges turn out to be sizable and prevailingly repulsive, thus compensating the excessive attraction characteristic for next-to-next-to-leading order and N3LO . As a result, the N4LO predictions for the phase shifts of peripheral partial waves are in very good agreement with the data (with the only exception being the 1F3 wave). We also discuss the issue of the order-by-order convergence of the chiral expansion for the N N interaction.
Electromagnetic studies of nucleon and nuclear structure
Energy Technology Data Exchange (ETDEWEB)
Heisenberg, J.H.; Calarco, J.R.; Hersman, F.W.; Dawson, J.F.
1993-06-01
Important objectives of the group are the study of subatomic structure through experimental measurements and the interpretation of the data through modeling. The common theme that unifies the studies of strong interactions and hadronic systems is the effort to determine the electromagnetic response as completely as possible. The general approach is coincidence detection of exclusive final states and determination of the dependence on the spin variables using polarized beams and targets and outgoing nucleon polarimetry. Direct reaction and giant resonance studies of electron quasi-elastic scattering on {sup 12}C and {sup 16}O are reported, as well as work on nuclear structure models and instrumentation development.
New Results on Nucleon Spin Structure
Energy Technology Data Exchange (ETDEWEB)
Jian-Ping Chen
2005-09-10
Recent precision spin structure data from Jefferson Lab have significantly advanced our knowledge of nucleon structure in the valence quark (high-x) region and improved our understanding of higher-twist effects, spin sum rules and quark-hadron duality. First, results of a precision measurement of the neutron spin asymmetry, A{sub 1}{sup n}, in the high-x region are discussed. The new data shows clearly, for the first time, that A{sub 1}{sup n} becomes positive at high x. They provide crucial input for the global fits to world data to extract polarized parton distribution functions. Preliminary results on A{sub 1}{sup p} and A{sub 1}{sup d} in the high-x region have also become available. The up and down quark spin distributions in the nucleon were extracted. The results for {Delta}d/d disagree with the leading-order pQCD prediction assuming hadron helicity conservation. Then, results of a precision measurement of the g{sub 2}{sup n} structure function to study higher-twist effects are presented. The data show a clear deviation from the lead-twist contribution, indicating a significant higher-twist (twist-3 or higher) effect. The second moment of the spin structure functions and the twist-3 matrix element d{sub 2}{sup n} results were extracted at a high Q{sup 2} of 5 GeV{sup 2} from the measured A{sub 2}{sup n} in the high-x region in combination with existing world data and compared with a Lattice QCD calculation. Results for d{sub 2}{sup n} at low-to-intermediate Q{sup 2} from 0.1 to 0.9 GeV{sup 2} were also extracted from the JLab data. In the same Q{sup 2} range, the Q{sup 2} dependence of the moments of the nucleon spin structure functions was measured, providing a unique bridge linking the quark-gluon picture of the nucleon and the coherent hadronic picture. Sum rules and generalized forward spin polarizabilities were extracted and compared with Chiral Perturbation Theory calculations and phenomenological models. Finally, preliminary results on the resonance
Experimental study of the nucleon spin structure
Energy Technology Data Exchange (ETDEWEB)
Litmaath, M.F.
1996-05-07
After introducing the theoretical framework, which includes DIS, the Quark Parton Model (QPM) and QCD, we describe the implementation of the experiment. The SMC uses a beam of 190 GeV naturally polarized muons, scattering off nucleons in a large cryogenic target containing protons or deuterons that are polarized through Dynamic Nuclear Polarization (DNP). The target material is located in two cells in a row, with opposite polarizations. Every 5 hours the polarizations of both cells are reversed. The target polarization is measured by an NMR system. The polarization of the beam is measured in a polarimeter, located downstream of the main experimental setup. (orig.).
Quark sea asymmetry of the nucleon
Mírez, Carlos; Tomio, Lauro; Trevisan, L. A.; Frederico, T.
2010-02-01
The light anti-quark and quark distribution in the proton, as well as the neutron to proton ratio of the structure functions, extracted from experimental data, are well fitted by a statistical model of linear-confined quarks. The parameters of the model are given by a temperature, which is adjusted by the Gottfried sum-rule violation, and two chemical potentials given by the corresponding up ( u) and down ( d) quark normalizations in the nucleon. The quark energy levels are generated by a relativistic linear-confined scalar plus vector potential.
On Narrow Nucleon Excitation N*(1685)
Kuznetsov, V; Thuermann, M
2011-01-01
We collected notes and simple estimates about putative narrow nucleon N*(1685) - the candidate for the non-strange member of the exotic anti-decuplet of baryons. In particular, we consider the recent high precision data on eta photoproduction off free proton obtained by the Crystal Ball Collaboration at MAMI. We show that it is difficult to describe peculiarities of these new data in the invariant energy interval of W ~ 1650-1750 MeV in terms of known wide resonances. Using very simple estimates, we show that the data may indicate an existence of a narrow N*(1685) with small photocoupling to the proton.