WorldWideScience

Sample records for bound excited states

  1. Bogoliubov Excited States and the Lyth Bound

    CERN Document Server

    Aravind, Aditya; Paban, Sonia

    2014-01-01

    We show that Bogoliubov excited scalar and tensor modes do not alleviate Planckian evolution during inflation if one assumes that $r$ and the Bogoliubov coefficients are approximately scale invariant. We constrain the excitation parameter for the scalar fluctuations, $\\beta$, and tensor perturbations, $\\tilde{\\beta}$, by requiring that there be at least three decades of scale invariance in the scalar and tensor power spectrum. For the scalar fluctuations this is motivated by the observed nearly scale invariant scalar power spectrum. For the tensor fluctuations this assumption may be shown to be valid or invalid by future experiments.

  2. Bound states and entanglement in the excited states of quantum spin chains

    International Nuclear Information System (INIS)

    We investigate the entanglement properties of the excited states of the spin- (1/2) Heisenberg (XXX) chain with isotropic antiferromagnetic interactions, by exploiting the Bethe ansatz solution of the model. We consider eigenstates obtained from both real and complex solutions (‘strings’) of the Bethe equations. Physically, the former are states of interacting magnons, whereas the latter contain bound states of groups of particles. We first focus on the situation with few particles in the chain. Using exact results and semiclassical arguments, we derive an upper bound SMAX for the entanglement entropy. This exhibits an intermediate behaviour between logarithmic and extensive, and it is saturated for highly-entangled states. As a function of the eigenstate energy, the entanglement entropy is organized in bands. Their number depends on the number of blocks of contiguous Bethe–Takahashi quantum numbers. In the presence of bound states a significant reduction in the entanglement entropy occurs, reflecting that a group of bound particles behaves effectively as a single particle. Interestingly, the associated entanglement spectrum shows edge-related levels. At a finite particle density, the semiclassical bound SMAX becomes inaccurate. For highly-entangled states SA∝ Lc, with Lc the chord length, signalling the crossover to extensive entanglement. Finally, we consider eigenstates containing a single pair of bound particles. No significant entanglement reduction occurs, in contrast with the few-particle case. (paper)

  3. Excited hadrons and the analytical structure of bound-state interaction kernels

    CERN Document Server

    El-Bennich, Bruno; Rojas, Eduardo; Serna, Fernando E

    2016-01-01

    We highlight Hermiticity issues in bound-state equations whose kernels are subject to a highly asymmetric mass and momentum distribution and whose eigenvalue spectrum becomes complex for radially excited states. We trace back the presence of imaginary components in the eigenvalues and wave functions to truncation artifacts and suggest how they can be eliminated in the case of charmed mesons. The solutions of the gap equation in the complex plane, which play a crucial role in the analytic structure of the Bethe-Salpeter kernel, are discussed for several interaction models and qualitatively and quantitatively compared to analytic continuations by means of complex-conjugate pole models fitted to real solutions.

  4. One-photon excitation and dissociation of both weakly bound rotational excited states and vibrational excited states of HD2+ and photofragment branching ratio D+/H+ of the final predissociative states

    International Nuclear Information System (INIS)

    The presence of weakly bound rotationally excited initial states of HD2+ lying just below the lowest dissociation limit has been observed as well as quasi-bound, predissociative final states above the dissociation limit resulting from one-photon excitation of those weakly bound states. The excitation of the initial weakly bound and possibly only few quasi-bound states took place with 1064 nm laser radiation. The possibility of one-photon excitation of the vibrationally excited initial HD2+ ions is considered. The centre-of-mass kinetic energy distributions of the D+ and H+ fragment were used to identify the possible initial and final states involved in the transitions leading to these fragments. The fragment ratio D+/H+ is shown to be critically dependent on the ion source pressure. A strong preference is observed for the D++HD dissociation channel over the H++D2 channel at high source gas pressures. The centre-of-mass energy of the resulting H+ and D+ fragments was found to agree with predicted theoretical values, and suggest that among initially excited HD2+ ions, only a few of these lie initially above the lowest dissociation limit. (author)

  5. One-photon excitation and dissociation of both weakly bound rotational excited states and vibrational excited states of HD{sub 2}{sup +} and photofragment branching ratio D{sup +}/H{sup +} of the final predissociative states

    Energy Technology Data Exchange (ETDEWEB)

    Yousif, F.B. [Centro de Ciencias Fisicas, UNAM, Cuernavaca, Morelos (Mexico)]. E-mail: fbyousif@fis.unam.mx; Cisneros, C.; Urquijo, J. de; Alvarez, I. [Centro de Ciencias Fisicas, UNAM, Cuernavaca, Morelos (Mexico)

    2001-03-14

    The presence of weakly bound rotationally excited initial states of HD{sub 2}{sup +} lying just below the lowest dissociation limit has been observed as well as quasi-bound, predissociative final states above the dissociation limit resulting from one-photon excitation of those weakly bound states. The excitation of the initial weakly bound and possibly only few quasi-bound states took place with 1064 nm laser radiation. The possibility of one-photon excitation of the vibrationally excited initial HD{sub 2}{sup +} ions is considered. The centre-of-mass kinetic energy distributions of the D{sup +} and H{sup +} fragment were used to identify the possible initial and final states involved in the transitions leading to these fragments. The fragment ratio D{sup +}/H{sup +} is shown to be critically dependent on the ion source pressure. A strong preference is observed for the D{sup +}+HD dissociation channel over the H{sup +}+D{sub 2} channel at high source gas pressures. The centre-of-mass energy of the resulting H{sup +} and D{sup +} fragments was found to agree with predicted theoretical values, and suggest that among initially excited HD{sub 2}{sup +} ions, only a few of these lie initially above the lowest dissociation limit. (author)

  6. Ground state and excitations of a Bose-Einstein condensate of atoms and their diatomic bound states

    International Nuclear Information System (INIS)

    We study theoretically a many-body system of spinless atoms and their diatomic bound states (or molecules) which form a single Bose-Einstein condensate at zero temperature. The equilibrium states of such a system and its dynamics are analyzed within the Gross-Pitaevskii approach. It is shown that the system exhibits two phases depending on binding energy value: it can be in the states with atomic-molecular condensate or molecular condensate. The basic thermodynamic characteristics of the two phases and their stability conditions are obtained. Both phases are characterized by two branches of collective excitations. The first branch is acoustic mode and the second one is gapfull

  7. Excited states

    CERN Document Server

    Lim, Edward C

    1974-01-01

    Excited States, Volume I reviews radiationless transitions, phosphorescence microwave double resonance through optical spectra in molecular solids, dipole moments in excited states, luminescence of polar molecules, and the problem of interstate interaction in aromatic carbonyl compounds. The book discusses the molecular electronic radiationless transitions; the double resonance techniques and the relaxation mechanisms involving the lowest triplet state of aromatic compounds; as well as the optical spectra and relaxation in molecular solids. The text also describes dipole moments and polarizab

  8. Radiative decays of excited ΛQ baryons in the bound state picture

    International Nuclear Information System (INIS)

    It is shown that, in the bound state picture, the Λc(2593)→Λcγ and Λc(2625)→Λcγ decays are severely suppressed. On the other hand, for their bottom counterparts, which are predicted to have masses of 5900 and 5926 MeV, respectively, they may have significant radiative branching ratios. The Λb(5926)→Λbγ mode possibly dominates over the strong decay mode, while the Λb(5900) resonance lies below the strong decay threshold and can only decay radiatively. The isospin allowed ΛQ**→ΣQγ mode is expected to be small. copyright 1996 The American Physical Society

  9. Energies and excited-state dynamics of 1Bu+, 1Bu- and 3Ag- states of carotenoids bound to LH2 antenna complexes from purple photosynthetic bacteria

    Science.gov (United States)

    Christiana, Rebecca; Miki, Takeshi; Kakitani, Yoshinori; Aoyagi, Shiho; Koyama, Yasushi; Limantara, Leenawaty

    2009-10-01

    Time-resolved pump-probe stimulated-emission and transient-absorption spectra were recorded after excitation with ˜30 fs pulses to the 1Bu+(0) and optically-forbidden diabatic levels of carotenoids, neurosporene, spheroidene and lycopene having n = 9-11 double bonds, bound to LH2 antenna complexes from Rhodobacter sphaeroides G1C, 2.4.1 and Rhodospirillum molischianum. The low-energy shift of stimulated emission from the covalent 1Bu-(0) and 3Ag-(0) levels slightly larger than that from the ionic 1Bu+(0) state suggests the polarization, whereas more efficient triplet generation suggests the twisting of the conjugated chain in Cars bound to the LH2 complexes, when compared to Cars free in solution.

  10. Deeply bound pionic states

    International Nuclear Information System (INIS)

    We discuss the structure and formation of deeply bound π- states in heavy nuclei, which are expected to be narrow due to the repulsive π--nucleus interaction. Possible experiments to produce those states are described. (author)

  11. Lectures on Bound states

    CERN Document Server

    Hoyer, Paul

    2016-01-01

    Even a first approximation of bound states requires contributions of all powers in the coupling. This means that the concept of "lowest order bound state" needs to be defined. In these lectures I discuss the "Born" (no loop, lowest order in $\\hbar$) approximation. Born level states are bound by gauge fields which satisfy the classical field equations. As a check of the method, Positronium states of any momentum are determined as eigenstates of the QED Hamiltonian, quantized at equal time. Analogously, states bound by a strong external field $A^\\mu(\\xv)$ are found as eigenstates of the Dirac Hamiltonian. Their Fock states have dynamically created $e^+e^-$ pairs, whose distribution is determined by the Dirac wave function. The linear potential of $D=1+1$ dimensions confines electrons but repels positrons. As a result, the mass spectrum is continuous and the wave functions have features of both bound states and plane waves. The classical solutions of Gauss' law are explored for hadrons in QCD. A non-vanishing bo...

  12. Trinucleon Photo Reactions with ${\\Delta}$-Isobar Excitation Radiative Nucleon-Deuteron Capture and Two-Body Photo Disintegration of the Three-Nucleon Bound State

    CERN Document Server

    Yuan, L P; Oelsner, M; Sauer, P U; Fonseca, António C

    2002-01-01

    Radiative nucleon-deuteron capture and photo disintegration of the three-nucleo n bound state with two-body final states are described. The description uses nucleon degrees of freedom extended to include the excitation of a single nucleon to a \\diso. The baryonic interaction and the electromagnetic cu rrent couple nucleonic states and states with a \\diso. Exact solutions of three-p article scattering equations are employed for the initial or final states of the reactions. The current has one-baryon and two-baryon contributions. The role of t he \\diso in the description of the considered photo reactions is discussed and fo und to be moderate. The spin observables $A_{yy}$ and $T_{20}$ at $90^{\\circ}$ la b scattering angle can be calculated model-independently from the $E1$ Siegert te rm in the long-wavelength limit.

  13. Quantitative study of multiphoton multiple ionization: Second-harmonic Nd:YAG laser ionization of the doubly excited 2p23P bound state of H-

    International Nuclear Information System (INIS)

    Starting with the H- 2p23P excited bound state, we have studied the problem of direct versus sequential two-photon, two-electron ionization with linearly polarized laser light of λ=5320 A and intensity I=1.4x109 W/cm2. The theory is nonperturbative and electronic-structure oriented. It allows for the multiconfigurational zero-order representation of bound and autoionizing states, for electron correlation, and for the effects of nonorthonormality which cause multielectron excitation even without correlation corrections. The one- and two-electron multichannel continua are represented by square-integrable complex exponential functions. The results show that the sequential process is dominant, even though there exists the H- 4s4p 3P degree autoionizing state, which is near resonance. However, the direct process would dominate if the autoionization width, which is computed to be 1.16x10-3 a.u., happened to be smaller by about a factor of 100, which is a realistic possibility for other systems

  14. Reflecting Magnon Bound States

    CERN Document Server

    Ahn, C; Rey, S J

    2008-01-01

    In N=4 super Yang-Mills spin chain, we compute reflection amplitudes of magnon bound-state off giant graviton. We first compute the reflection amplitude off Y=0 brane boundary and compare it with the scattering amplitude between two magnon bound-states in the bulk. We find that analytic structure of the two amplitudes are intimately related each other: the boundary reflection amplitude is a square-root of the bulk scattering amplitude. Using such relation as a guide and taking known results at weak and strong coupling limits as inputs, we find the reflection amplitude of an elementary magnon off Z=0 giant graviton boundary. The reflection phase factor is shown to solve crossing and unitarity relations. We then compute the reflection amplitude of magnon bound-state off the Z=0 brane boundary and observe that its analytic structures are again intimately related to the bulk scattering and the Y=0 boundary reflection amplitudes. We also take dyonic giant magnon limit of these reflection amplitudes and confirm tha...

  15. Bound states and the Bekenstein bound

    CERN Document Server

    Bousso, R

    2004-01-01

    We explore the validity of the generalized Bekenstein bound, S <= pi M a. We define the entropy S as the logarithm of the number of states which have energy eigenvalue below M and are localized to a flat space region of width a. If boundary conditions that localize field modes are imposed by fiat, then the bound encounters well-known difficulties with negative Casimir energy and large species number, as well as novel problems arising only in the generalized form. In realistic systems, however, finite-size effects contribute additional energy. We study two different models for estimating such contributions. Our analysis suggests that the bound is both valid and nontrivial if interactions are properly included, so that the entropy S counts the bound states of interacting fields.

  16. A Universal Bound on Excitations of Heavy Fields during Inflation

    CERN Document Server

    Battefeld, Thorsten

    2014-01-01

    We discuss a universal bound on any excitation of heavy fields during inflation: the ratio of the heavy field's energy density to the one driving inflation must be less than the maximally allowed relative amplitude of oscillations in the power-spectrum (less than one percent according to PLANCK). This bound can be traced back to the sudden change of the equation of state parameter across the excitation event. We employ a sudden transition approximation at the perturbed level, which has been used before in different settings; we check its validity by comparison to the full multi-field result in a concrete case study involving a sudden mass change of an inflaton.

  17. Regularity of Bound States

    DEFF Research Database (Denmark)

    Faupin, Jeremy; Møller, Jacob Schach; Skibsted, Erik

    2011-01-01

    We study regularity of bound states pertaining to embedded eigenvalues of a self-adjoint operator H, with respect to an auxiliary operator A that is conjugate to H in the sense of Mourre. We work within the framework of singular Mourre theory which enables us to deal with confined massless Pauli......–Fierz models, our primary example, and many-body AC-Stark Hamiltonians. In the simpler context of regular Mourre theory, our results boil down to an improvement of results obtained recently in [8, 9]....

  18. Excited states v.6

    CERN Document Server

    Lim, Edward C

    2013-01-01

    Excited States, Volume 6 is a collection of papers that discusses the excited states of molecules. The first paper discusses the linear polyene electronic structure and potential surfaces, considering both the theoretical and experimental approaches in such electronic states. This paper also reviews the theory of electronic structure and cites some experimental techniques on polyene excitations, polyene spectroscopic phenomenology, and those involving higher states of polyenes and their triplet states. Examples of these experimental studies of excited states involve the high-resolution one-pho

  19. Excited states 2

    CERN Document Server

    Lim, Edward C

    2013-01-01

    Excited States, Volume 2 is a collection of papers that deals with molecules in the excited states. The book describes the geometries of molecules in the excited electronic states. One paper describes the geometries of a diatomic molecule and of polyatomic molecules; it also discusses the determination of the many excited state geometries of molecules with two, three, or four atoms by techniques similar to diatomic spectroscopy. Another paper introduces an ordered theory related to excitons in pure and mixed molecular crystals. This paper also presents some experimental data such as those invo

  20. A universal bound on excitations of heavy fields during inflation

    Energy Technology Data Exchange (ETDEWEB)

    Battefeld, Thorsten; Freitas, R.C., E-mail: tbattefe@gmail.com, E-mail: rodolfo.camargo@pq.cnpq.br [Institute for Astrophysics, University of Goettingen, Friedrich Hund Platz 1, D-37077 Goettingen (Germany)

    2014-09-01

    We discuss a universal bound on any excitation of heavy fields during inflation: the ratio of the heavy field's energy density to the one driving inflation must be less than the maximally allowed relative amplitude of oscillations in the power-spectrum ρ{sub h}/ρ{sub I} ∼< 0.01  according to PLANCK). This bound can be traced back to the sudden change of the equation of state parameter across the excitation event. We employ a sudden transition approximation at the perturbed level, which has been used before in different settings; we check its validity by comparison to the full multi-field result in a concrete case study involving a sudden mass change of an inflaton.

  1. On the Bound States of Matrix Strings

    OpenAIRE

    Sahakian, Vatche

    1997-01-01

    We investigate excitations in Matrix Theory on T^2 corresponding to bound states of strings. We demonstrate the Dirichlet aspect of R-R charged vacua through a non-trivial connection between the U(1) and SU(n) sectors of the matrix SYM.

  2. New ab initio adiabatic potential energy surfaces and bound state calculations for the singlet ground X˜ 1A1 and excited C˜ 1B2(21A') states of SO2

    Science.gov (United States)

    Kłos, Jacek; Alexander, Millard H.; Kumar, Praveen; Poirier, Bill; Jiang, Bin; Guo, Hua

    2016-05-01

    We report new and more accurate adiabatic potential energy surfaces (PESs) for the ground X˜ 1A1 and electronically excited C˜ 1B2(21A') states of the SO2 molecule. Ab initio points are calculated using the explicitly correlated internally contracted multi-reference configuration interaction (icMRCI-F12) method. A second less accurate PES for the ground X ˜ state is also calculated using an explicitly correlated single-reference coupled-cluster method with single, double, and non-iterative triple excitations [CCSD(T)-F12]. With these new three-dimensional PESs, we determine energies of the vibrational bound states and compare these values to existing literature data and experiment.

  3. Excited states 4

    CERN Document Server

    Lim, Edward C

    2013-01-01

    Excited States, Volume 4 is a collection of papers that deals with the excited states of molecular activity. One paper investigates the resonance Raman spectroscopy as the key to vibrational-electronic coupling. This paper reviews the basic theory of Raman scattering; it also explains the derivation of the Raman spectra, excitation profiles, and depolarization ratios for simple resonance systems. Another paper reviews the magnetic properties of triplet states, including the zero-field resonance techniques, the high-field experiments, and the spin Hamiltonian. This paper focuses on the magnetic

  4. Excited Charm States

    International Nuclear Information System (INIS)

    Characteristics of mass spectra and decays of orbitally excited charm mesons and baryons, expected on the basis of quark models and Heavy Quark Symmetry, are briefly described. The difficulties associated with measurements on these excited states are discussed. The accuracy and reliability of currently available experimental information is examined. The reasons, for the widely accepted spin-parity assignments to the observed excited mesons and baryons, are stated. Finally, the experimental data, with the accepted spin-parity assignments, is compared with expectations based on quark models and Heavy Quark Symmetry

  5. Bound states in string nets

    CERN Document Server

    Schulz, M D; Vidal, J

    2016-01-01

    We discuss the emergence of bound states in the low-energy spectrum of the string-net Hamiltonian in the presence of a string tension. In the ladder geometry, we show that a single bound state arises either for a finite tension or in the zero-tension limit depending on the theory considered. In the latter case, we perturbatively compute the binding energy as a function of the total quantum dimension. We also address this issue in the honeycomb lattice where the number of bound states in the topological phase depends on the total quantum dimension. Finally, the internal structure of these bound states is analyzed in the zero-tension limit.

  6. Bound anionic states of adenine

    OpenAIRE

    Harańczyk, Maciej; Gutowski, Maciej; Li, Xiang; Bowen, Kit H.

    2007-01-01

    Anionic states of nucleic acid bases are involved in DNA damage by low-energy electrons and in charge transfer through DNA. Previous gas phase studies of free, unsolvated nucleic acid base parent anions probed only dipole-bound states, which are not present in condensed phase environments, but did not observe valence anionic states, which for purine bases are thought to be adiabatically unbound. Contrary to this expectation, we have demonstrated that some thus far ignored tautomers of adenine...

  7. Three-body electrodisintegration of the three-nucleon bound state with ${\\Delta}$-isobar excitation: Processes below pion-production threshold

    OpenAIRE

    Deltuva, A.; Yuan, L. P.; Adam Jr., J.; Sauer, P. U.

    2004-01-01

    Electron scattering from the three-nucleon bound state with two- and three-body disintegration is described. The description uses the purely nucleonic charge-dependent CD-Bonn potential and its coupled-channel extension CD-Bonn + $\\Delta$. Exact solutions of three-particle equations are employed for the initial and final states of the reactions. The current has one-baryon and two-baryon contributions and couples nucleonic with $\\Delta$-isobar channels. $\\Delta$-isobar effects on the observabl...

  8. Bound states of 'dressed' particles

    International Nuclear Information System (INIS)

    A new approach to the problem of bound states in relativistic quantum field theories is suggested. It uses the creation - destruction operators of 'dresses' particles which have been granted by Faddeev's (1963) 'dressing' formalism. Peculiarities of the proposed approach as compared to the known ones are discussed. 8 refs. (author)

  9. Dark-matter bound states from Feynman diagrams

    NARCIS (Netherlands)

    K. Petraki; M. Postma; M. Wiechers

    2015-01-01

    If dark matter couples directly to a light force mediator, then it may form bound states in the early universe and in the non-relativistic environment of haloes today. In this work, we establish a field-theoretic framework for the computation of bound-state formation cross-sections, de-excitation an

  10. Novel Bound States in Graphene with Impurities

    CERN Document Server

    Gupta, Kumar S

    2008-01-01

    We obtain a novel bound state spectrum of the low energy excitations near the Fermi points of graphene in the presence of a charge impurity. The effects of possible short range interactions induced by the impurity are modelled by suitable boundary conditions. The spectrum in the subcritical region of the effective Coulomb coupling is labelled by a parameter which characterizes the boundary conditions and determines the inequivalent quantizations of the system. In the supercritical region we obtain a renormalization group flow for the effective Coulomb coupling.

  11. Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold

    Science.gov (United States)

    Casida, Mark E.; Jamorski, Christine; Casida, Kim C.; Salahub, Dennis R.

    1998-03-01

    This paper presents an evaluation of the performance of time-dependent density-functional response theory (TD-DFRT) for the calculation of high-lying bound electronic excitation energies of molecules. TD-DFRT excitation energies are reported for a large number of states for each of four molecules: N2, CO, CH2O, and C2H4. In contrast to the good results obtained for low-lying states within the time-dependent local density approximation (TDLDA), there is a marked deterioration of the results for high-lying bound states. This is manifested as a collapse of the states above the TDLDA ionization threshold, which is at -ɛHOMOLDA (the negative of the highest occupied molecular orbital energy in the LDA). The -ɛHOMOLDA is much lower than the true ionization potential because the LDA exchange-correlation potential has the wrong asymptotic behavior. For this reason, the excitation energies were also calculated using the asymptotically correct potential of van Leeuwen and Baerends (LB94) in the self-consistent field step. This was found to correct the collapse of the high-lying states that was observed with the LDA. Nevertheless, further improvement of the functional is desirable. For low-lying states the asymptotic behavior of the exchange-correlation potential is not critical and the LDA potential does remarkably well. We propose criteria delineating for which states the TDLDA can be expected to be used without serious impact from the incorrect asymptotic behavior of the LDA potential.

  12. Bound entangled states invariant under Ux

    Institute of Scientific and Technical Information of China (English)

    Wang Zhen; Wang Zhi-Xi

    2008-01-01

    This paper obtains an entangled condition for isotropic-like states by using an atomic map. It constructs a class of bound entangled states from the entangled condition and shows that the partial transposition of the state from the constructed bound entangled class is an edge bound entangled state by using range criterion.

  13. Antibaryon-nucleus bound states

    CERN Document Server

    Hrtánková, J

    2014-01-01

    We calculated antibaryon ($\\bar{B}$ = $\\bar{p}$, $\\bar{\\Lambda}$, $\\bar{\\Sigma}$, $\\bar{\\Xi}$) bound states in selected nuclei within the relativistic mean-field (RMF) model. The G-parity motivated $\\bar{B}$-meson coupling constants were scaled to yield corresponding potentials consistent with available experimental data. Large polarization of the nuclear core caused by $\\bar{B}$ was confirmed. The $\\bar{p}$ annihilation in the nuclear medium was incorporated by including a phenomenological imaginary part of the optical potential. The calculations using a complex $\\bar{p}$-nucleus potential were performed fully self-consistently. The $\\bar{p}$ widths significantly decrease when the phase space reduction is considered for $\\bar{p}$ annihilation products, but they still remain sizeable for potentials consistent with $\\bar{p}$-atom data.

  14. Families as radial excitations - meeting with experimental bounds

    International Nuclear Information System (INIS)

    Interpreting higher families (or generations) as radial excitations of composite leptons and quarks we have to take into account experimental constraints, especially on family number changing processes. This letter comments on g - 2, μ -> eγ, flavour changing neutral currents, Kobayashi-Maskawa mixing and related topics. A compositeness scale in the 1 TeV region seems sufficient to achieve consistency with experimental bounds. (orig.)

  15. Search for monopole excitation of nucleus in the bound muon decay

    International Nuclear Information System (INIS)

    The aim of the paper is the theoretical and experimantal foundation of investigation of nucleus excitation in the bound muon decay. Two other types of nucleus excitation in muon atoms are well known: excitation in muon cascade transitions and as a result of μ-capture. The energy, being considerably higher the energy of low-lying nuclear excitations, is related in μ-decay. The potential affecting from the side of the bound muon on the nucleus is practically turned off at once, that causes quantum transitions in the nucleus. Characteristics of nuclear O+ states and probabilities of their excitation in the bound muon decay for some nuclei of the Ca-Pu region are presented. The foundation for the experiment of searching for the phenomenon investigated is the registration of electron coincidence in μ-decay with γ-quanta of nuclear transitions. The 152Sn nucleus is chosen as a target. The experimental data obtained give the possibility to establish the upper limit of probability of the first O+ level excitation of 152Sm in the bound muon decay: w -3. It does not confirm the correctness of the experimental results given and closes the earlier estimation of probability w ∼ 1.6x10-2

  16. Instanton bound states in ABJM theory

    Energy Technology Data Exchange (ETDEWEB)

    Hatsuda, Yasuyuki [DESY Hamburg (Germany). Theory Group; Tokyo Institute of Technology (Japan). Dept. of Physics; Moriyama, Sanefumi [Nagoya Univ. (Japan). Kobayashi Maskawa Inst. and Graduate School of Mathematics; Okuyama, Kazumi [Shinshu Univ., Matsumoto, Nagano (Japan). Dept. of Physics

    2013-06-15

    The partition function of the ABJM theory receives non-perturbative corrections due to instanton effects. We study these non-perturbative corrections, including bound states of worldsheet instantons and membrane instantons, in the Fermi-gas approach. We require that the total non-perturbative correction should be always finite for arbitrary Chern-Simons level. This finiteness is realized quite non-trivially because each bound state contribution naively diverges at some levels. The poles of each contribution should be canceled out in total. We use this pole cancellation mechanism to find unknown bound state corrections from known ones. We conjecture a general expression of the bound state contribution. Summing up all the bound state contributions, we find that the effect of bound states is simply incorporated into the worldsheet instanton correction by a redefinition of the chemical potential in the Fermi-gas system. Analytic expressions of the 3- and 4-membrane instanton corrections are also proposed.

  17. Excited, bound and resonant positron-atom systems

    Energy Technology Data Exchange (ETDEWEB)

    Bromley, M W J [Department of Physics and Computational Science Research Center, San Diego State University, San Diego CA 92182 (United States); Mitroy, J, E-mail: mbromley@physics.sdsu.ed [ARC Centre for Antimatter-Matter Studies and Faculty of Education, Health and Science, Charles Darwin University, Darwin NT 0909 (Australia)

    2010-01-01

    Calculations have demonstrated that eleven neutral atoms can bind positrons, while many more can bind positronium. This is a short review of recent progress made in understanding some of the underlying mechanisms. The emphasis here being on configuration interaction calculations with excited state configurations. These have demonstrated the existence of a {sup 2}P{sup o} excited state of e{sup +}Ca, which consists predominantly of a positronium cluster orbiting the Ca{sup +} ion in the L = 1 partial wave. Preliminary results are presented of excited state positron binding to a model alkali atom, where the excited {sup 1}P{sup o} states are stable over a limited region. Implications for the unnatural parity, {sup 2,4}S{sup o}, states of PsH, LiPs, NaPs and KPs are also discussed. The e{sup +}Mg, e{sup +}Cu, e{sup +}Zn and e{sup +}Cd systems show a lack of a {sup 2}P{sup o} excited state, each instead possessing a low-energy p-wave shape resonance of varying strength.

  18. Excited, bound and resonant positron-atom systems

    International Nuclear Information System (INIS)

    Calculations have demonstrated that eleven neutral atoms can bind positrons, while many more can bind positronium. This is a short review of recent progress made in understanding some of the underlying mechanisms. The emphasis here being on configuration interaction calculations with excited state configurations. These have demonstrated the existence of a 2Po excited state of e+Ca, which consists predominantly of a positronium cluster orbiting the Ca+ ion in the L = 1 partial wave. Preliminary results are presented of excited state positron binding to a model alkali atom, where the excited 1Po states are stable over a limited region. Implications for the unnatural parity, 2,4So, states of PsH, LiPs, NaPs and KPs are also discussed. The e+Mg, e+Cu, e+Zn and e+Cd systems show a lack of a 2Po excited state, each instead possessing a low-energy p-wave shape resonance of varying strength.

  19. Bound States of Double Flavor Hyperons

    CERN Document Server

    Froemel, F; Riska, D O

    2005-01-01

    Several realistic phenomenological nucleon-nucleon interaction models are employed to investigate the possibility of bound deuteron-like states of such heavy flavor hyperons and nucleons, for which the interaction between the light flavor quark components is expected to be the most significant interaction. The results indicate that deuteron-like bound states are likely to form between nucleons and the $\\Xi_c^{'}$ and $\\Xi_{cc}$ charm hyperons as well as between $\\Xi$ hyperons and double-charm hyperons. Bound states between two $\\Sigma_c$ hyperons are also likely. In the case of beauty hyperons the corresponding states are likely to be deeply bound.

  20. Bound states of heavy flavor hyperons

    Science.gov (United States)

    Frömel, F.; Juliá-Díaz, B.; Riska, D. O.

    2005-04-01

    Several realistic phenomenological nucleon-nucleon interaction models are employed to investigate the possibility of bound deuteron-like states of such heavy flavor hyperons and nucleons, for which the interaction between the light flavor quark components is expected to be the most significant interaction. The results indicate that deuteron-like bound states are likely to form between nucleons and the Ξc' and Ξ charm hyperons as well as between Ξ hyperons and double-charm hyperons. Bound states between two Σ hyperons are also likely. In the case of beauty hyperons the corresponding states are likely to be deeply bound.

  1. Quasi-bound states in continuum

    International Nuclear Information System (INIS)

    We report the prediction of quasi-bound states (resonant states with very long lifetimes) that occur in the eigenvalue continuum of propagating states for a wide region of parameter space. These quasi-bound states are generated in a quantum wire with two channels and an adatom, when the energy bands of the two channels overlap. A would-be bound state that lays just below the upper energy band is slightly destabilized by the lower energy band and thereby becomes a resonant state with a very long lifetime (a second QBIC lays above the lower energy band). (author)

  2. A search for unexpected bound states in 15B

    Science.gov (United States)

    Hoffman, Calem R.

    2014-09-01

    Bound states in 15B are to be populated through the one proton removal reaction from a 16C beam produced at the RCNP EN Course through 18O fragmentation. γ-decays from these states will be identified by an array of Compton-suppressed HPGe Clover detectors (CAGRA). The goals consist of i) identifying any previously unobserved and unexpected bound states in 15B and ii) to assign total angular momenta to known excited states for the first time. At present only two bound states have been observed in 15B, neither with firm spin or parity assignments. The present work to be discussed is aimed at determining whether an excited 3 /2- state, a state with identical spin-parity as the ground state, resides below the neutron separation energy in 15B. Such an excited 3 /2- state is not predicted to appear below the 15B Sn by shell-model calculations using various p- sd interactions. However, a robust systematic, probably related to the s-wave trends found in the single-neutron states in this region, has been observed for neutron-rich N=10 nuclei and it suggests that the state may appear lower in excitation energy than expected. Providing some measure of validation for the N=10 prediction is a similar trend noticed in the energy differences between ground (p)2 neutron states and excited (sd)2 neutron states in the N=8 neutron-rich isotones. In addition to a search for this unexpected state, additional spectroscopic information on 15B will better aid in the understanding of the N=10 isotones when transitioning from 16C into sparsely probed 14Be. Details of the experimental procedures and motivation will be presented and discussed. Bound states in 15B are to be populated through the one proton removal reaction from a 16C beam produced at the RCNP EN Course through 18O fragmentation. γ-decays from these states will be identified by an array of Compton-suppressed HPGe Clover detectors (CAGRA). The goals consist of i) identifying any previously unobserved and unexpected bound

  3. Coulomb bound states of strongly interacting photons

    CERN Document Server

    Maghrebi, M F; Bienias, P; Choi, S; Martin, I; Firstenberg, O; Lukin, M D; Büchler, H P; Gorshkov, A V

    2015-01-01

    We show that two photons coupled to Rydberg states via electromagnetically induced transparency can interact via an effective Coulomb potential. This interaction gives rise to a continuum of two-body bound states. Within the continuum, metastable bound states are distinguished in analogy with quasi-bound states tunneling through a potential barrier. We find multiple branches of metastable bound states whose energy spectrum is governed by the Coulomb potential, thus obtaining a photonic analogue of the hydrogen atom. Under certain conditions, the wavefunction resembles that of a diatomic molecule in which the two polaritons are separated by a finite "bond length." These states propagate with a negative group velocity in the medium, allowing for a simple preparation and detection scheme, before they slowly decay to pairs of bound Rydberg atoms.

  4. Bound states of singlet quarks at LHC

    OpenAIRE

    Krasnikov, N. V.

    1996-01-01

    We discuss the discovery potential of the bound states of singlet quarks at LHC. We find that it is possible to discover bound states of singlet quarks at LHC with singlet quark masses up to 300 Gev for $e_{Q} = \\frac{2}{3}$ and up to 200 Gev for $e_{Q} = -\\frac{1}{3}$.

  5. Probing bound states of D-branes

    CERN Document Server

    Lifschytz, G

    1996-01-01

    A zero-brane is used to probe non-threshold BPS bound states of ($p$, $p+2$,$p+4$)-branes. At long distances the stringy calculation agrees with the supergravity calculations. The supergravity description is given, using the interpretation of the $D=8$ dyonic membrane as the bound state of a two-brane inside a four-brane. We investigate the short distance structure of these bound states, compute the phase shift of the scattered zero-brane and find the bound states characteristic size. It is found that there should be a supersymmetric solution of type IIa supergravity, describing a bound state of a zero-brane and two orthogonal two-brane, all inside a four-brane , with an additional unbound zero-brane. We comment on the relationship between $p$-branes and $(p-2)$-branes.

  6. Coulomb Bound States of Strongly Interacting Photons

    Science.gov (United States)

    Maghrebi, M. F.; Gullans, M. J.; Bienias, P.; Choi, S.; Martin, I.; Firstenberg, O.; Lukin, M. D.; Büchler, H. P.; Gorshkov, A. V.

    2015-09-01

    We show that two photons coupled to Rydberg states via electromagnetically induced transparency can interact via an effective Coulomb potential. This interaction gives rise to a continuum of two-body bound states. Within the continuum, metastable bound states are distinguished in analogy with quasibound states tunneling through a potential barrier. We find multiple branches of metastable bound states whose energy spectrum is governed by the Coulomb potential, thus obtaining a photonic analogue of the hydrogen atom. Under certain conditions, the wave function resembles that of a diatomic molecule in which the two polaritons are separated by a finite "bond length." These states propagate with a negative group velocity in the medium, allowing for a simple preparation and detection scheme, before they slowly decay to pairs of bound Rydberg atoms.

  7. On the reflection of magnon bound states

    CERN Document Server

    MacKay, Niall

    2010-01-01

    We investigate the reflection of two-particle bound states of a free open string in the light-cone AdS_5 x S^5 string sigma model, for large angular momentum J=J_56 and ending on a D7 brane which wraps the entire AdS_5 and a maximal S^3 of S^5. We use the superspace formalism to analyse fundamental and two-particle bound states in the cases of supersymmetry-preserving and broken-supersymmetry boundaries. We find the boundary S-matrices corresponding to bound states both in the bulk and on the boundary.

  8. Black Hole Bound State Metamorphosis

    CERN Document Server

    Chowdhury, Abhishek; Saha, Arunabha; Sen, Ashoke

    2012-01-01

    N=4 supersymmetric string theories contain negative discriminant states whose numbers are known precisely from microscopic counting formulae. On the macroscopic side, these results can be reproduced by regarding these states as multi-centered black hole configurations provided we make certain identification of apparently distinct multi-centered black hole configurations according to a precise set of rules. In this paper we provide a physical explanation of such identifications, thereby establishing that multi-centered black hole configurations reproduce correctly the microscopic results for the number of negative discriminant states without any ad hoc assumption.

  9. Computing electronic structures: A new multiconfiguration approach for excited states

    International Nuclear Information System (INIS)

    We present a new method for the computation of electronic excited states of molecular systems. This method is based upon a recent theoretical definition of multiconfiguration excited states [due to one of us, see M. Lewin, Solutions of the multiconfiguration equations in quantum chemistry, Arch. Rat. Mech. Anal. 171 (2004) 83-114]. Our algorithm, dedicated to the computation of the first excited state, always converges to a stationary state of the multiconfiguration model, which can be interpreted as an approximate excited state of the molecule. The definition of this approximate excited state is variational. An interesting feature is that it satisfies a non-linear Hylleraas-Undheim-MacDonald type principle: the energy of the approximate excited state is an upper bound to the true excited state energy of the N-body Hamiltonian. To compute the first excited state, one has to deform paths on a manifold, like this is usually done in the search for transition states between reactants and products on potential energy surfaces. We propose here a general method for the deformation of paths which could also be useful in other settings. We also compare our method to other approaches used in Quantum Chemistry and give some explanation of the unsatisfactory behaviours which are sometimes observed when using the latter. Numerical results for the special case of two-electron systems are provided: we compute the first singlet excited state potential energy surface of the H 2 molecule

  10. Introduction to QCD - a bound state perspective

    CERN Document Server

    Hoyer, Paul

    2011-01-01

    These lecture notes focus on the bound state sector of QCD. Motivated by data which suggests that the strong coupling \\alpha_s(Q) freezes at low Q, and by similarities between the spectra of hadrons and atoms, I discuss if and how QCD bound states may be treated perturbatively. I recall the basic principles of perturbative gauge theory bound states at lowest order in the \\hbar expansion. Born level amplitudes are insensitive to the i\\epsilon prescription of propagators, which allows to eliminate the Z-diagrams of relativistic, time-ordered Coulomb interactions. The Dirac wave function thus describes a single electron which propagates forward in time only, even though the bound state has any number of pair constituents when Feynman propagators are used. In the absence of an external potential, states that are bound by the Coulomb attraction of their constituents can be analogously described using only their valence degrees of freedom. The instantaneous A^0 field is determined by Gauss' law for each wave functi...

  11. Bound - states for truncated Coulomb potentials

    OpenAIRE

    Odeh, Maen; Mustafa, Omar

    2000-01-01

    The pseudoperturbative shifted - $l$ expansion technique PSLET is generalized for states with arbitrary number of nodal zeros. Bound- states energy eigenvalues for two truncated coulombic potentials are calculated using PSLET. In contrast with shifted large-N expansion technique, PSLET results compare excellently with those from direct numerical integration.

  12. Chirped-Frequency Excitation of Gravitationally Bound Ultracold Neutrons

    CERN Document Server

    Manfredi, Giovanni; Friedland, Lazar

    2015-01-01

    Ultracold neutrons confined in the Earth's gravitational field display quantized energy levels that have been observed for over a decade. In recent resonance spectroscopy experiments [T. Jenke et al., Nature Phys. 7, 468 (2011)], the transition between two such gravitational quantum states was driven by the mechanical modulation of one of the plates that confines the neutrons. Here we show that, by applying a sinusoidal modulation with slowly varying frequency (chirp), the neutrons can be brought to any excited state, however large its energy, by climbing the energy levels one by one. This technique should make it possible to observe the quantum-classical transition that occurs at high energies. The proposed experiment is realizable using current technology and could significantly improve the sensitivity of future tests of gravitational physics.

  13. D-Brane Bound States Redux

    CERN Document Server

    Sethi, S K; Sethi, Savdeep; Stern, Mark

    1998-01-01

    We study the existence of D-brane bound states at threshold in Type II string theories. In a number of situations, we can reduce the question of existence to quadrature, and the study of a particular limit of the propagator for the system of D-branes. This involves a derivation of an index theorem for a family of non-Fredholm operators. In support of the conjectured relation between compactified eleven-dimensional supergravity and Type IIA string theory, we show that a bound state exists for two coincident zero-branes. This result also provides support for the conjectured description of M-theory as a matrix model. In addition, we provide further evidence that there are no BPS bound states for two and three-branes twice wrapped on Calabi-Yau vanishing cycles.

  14. Initial state dependence of convoy electrons emitted from the excited ions by resonant coherent excitation

    Science.gov (United States)

    Azuma, T.; Nakano, Y.; Metoki, K.; Hatakeyama, A.; Nakai, Y.; Komaki, K.; Yamazaki, Y.; Takada, E.; Murakami, T.

    2009-11-01

    Convoy electrons emitted from 416 MeV/u heliumlike Ar16+ ions excited by three-dimensional resonant coherent excitation (3D-RCE) have been explored. The 1s electron in the ground state was excited to the 2p state by a periodic crystal field during the passage through a Si crystal and released into the continuum by collisions with target atoms to form a cusp-shaped peak in the energy distribution, referred to as convoy electron. Under the resonance condition, we found not only enhancement of the convoy electron yield but also significant narrowing in the energy distribution, reflecting the initial bound state momentum distribution of the excited ions. This suggests that RCE is well-suited to study fast ion collisions involving the specific excited state.

  15. Torons and D-Brane Bound States

    OpenAIRE

    Guralnik, Z.; Ramgoolam, S.

    1997-01-01

    We interpret instantons on a torus with twisted boundary conditions, in terms of bound states of branes. The interplay between the SU(N) and U(1) parts of the U(N) theory of N 4-branes allows the construction of a variety of bound states. The SU(N) and U(1) parts can contribute fractional amounts to the total instanton number which is integral. The geometry of non-self intersecting two-cycles in $T^4$ sheds some light on a number of properties of these solutions.

  16. Spin and relativistic motion of bound states

    OpenAIRE

    JÀrvinen, Matti

    2007-01-01

    The wave functions of moving bound states may be expected to contract in the direction of motion, in analogy to a rigid rod in classical special relativity, when the constituents are at equal (ordinary) time. Indeed, the Lorentz contraction of wave functions is often appealed to in qualitative discussions. However, only few field theory studies exist of equal-time wave functions in motion. In this thesis I use the Bethe-Salpeter formalism to study the wave function of a weakly bound state suc...

  17. Excited States in 207Rn

    Institute of Scientific and Technical Information of China (English)

    罗万居; 郭应祥; 周小红; 张玉虎; 雷相国; 刘忠; 郑勇; 柳敏良; 何建军; 竺礼华; 温书贤

    2003-01-01

    Excited states in 207Rn are investigated via the 196Pt(16O,Sn)207Rn reaction at beam energies from 85 to 95 MeV using techniques of in-beam γ-ray spectroscopy. Measurements ofγ-ray excitation function, x - γ and γ - γ- t coincidences are performed with ten BGO(AC)HPGe detectors. Based on these measurements, a level scheme of207Rn, including 17 γ-rays and 18 levels, is established. Spins for most of the levels are proposed according to the measured DCO ratios. The level structure is compared with a weak-coupling calculation using the interaction energies extracted from neighbouring nuclei.

  18. Do $\\Xi\\Xi$ bound states exist?

    CERN Document Server

    Haidenbauer, J; Petschauer, S

    2014-01-01

    The existence of baryon-baryon bound states in the strangeness sector is examined in the framework of SU(3) chiral effective field theory. Specifically, the role of SU(3) symmetry breaking contact terms that arise at next-to-leading order in the employed Weinberg power counting scheme is explored. We focus on the 1S0 partial wave and on baryon-baryon channels with maximal isospin since in this case there are only two independent SU(3) symmetry breaking contact terms. At the same time, those are the channels where most of the bound states have been predicted in the past. Utilizing $pp$ phase shifts and $\\Sigma^+ p$ cross section data allows us to pin down one of the SU(3) symmetry breaking contact terms and a clear indication for the decrease of attraction when going from the NN system to strangeness S=-2 is found, which rules out a bound state for $\\Sigma\\Sigma$ with isospin I=2. Assuming that the trend observed for S=0 to S=-2 is not reversed when going to $\\Xi\\Sigma$ and $\\Xi\\Xi$ makes also bound states in ...

  19. Scattering theory methods for bound state problems

    International Nuclear Information System (INIS)

    For the analysis of the properties of a bound state system one may use in place of the Schroedinger equation the Lippmann-Schwinger (LS) equation for the wave function or the LS equation for the reactance operator. Use of the LS equation for the reactance operator constrains the solution to have correct asymptotic behaviour, so this approach would appear to be desirable when the bound state wave function is to be used to calculate particle transfer form factors. The Schroedinger equation based N-level analysis of the s-wave bound states of a square well is compared to the ones based on the LS equation. It is found that the LS equation methods work better than the Schroedinger equation method. The method that uses the LS equation for the wave function gives the best results for the wave functions while the method that uses the LS equation for the reactance operator gives the best results for the binding energies. The accuracy of the reactance operator based method is remarkably insensitive to changes in the oscillator constant used for the harmonic oscillator function basis set. It is also remarkably insensitive to the number of nodes in the bound state wave function. (Auth.)

  20. Relativistic bound states at Born level

    CERN Document Server

    Hoyer, Paul

    2012-01-01

    Theoretical and phenomenological studies indicate that the QCD coupling \\alpha_s(Q^2) freezes in the infrared. Hadrons may then be described by a perturbative expansion around "Born" states bound only by a confining potential. A linear potential results from the QCD equations of motion when Gauss' law for A^0 is solved with F_{\\mu\

  1. Construction of bound entangled states based on permutation operators

    Science.gov (United States)

    Zhao, Hui; Guo, Sha; Jing, Naihuan; Fei, Shaoming

    2016-04-01

    We present a construction of new bound entangled states from given bound entangled states for arbitrary dimensional bipartite systems. One way to construct bound entangled states is to show that these states are positive partial transpose (PPT) and violate the range criterion at the same time. By applying certain operators to given bound entangled states or to one of the subsystems of the given bound entangled states, we obtain a set of new states which are both PPT and violate the range criterion. We show that the derived bound entangled states are not local unitary equivalent to the original bound entangled states by detail examples.

  2. Solitons in superfluid (He-3)-A - Bound states on domain walls

    Science.gov (United States)

    Ho, T. L.; Fulco, J. R.; Schrieffer, J. R.; Wilczek, F.

    1984-01-01

    The effects of solitons on the spectrum of fermion excitations in superfluid (He-3)-A are investigated. It is found that there is a two-dimensional manifold of bound states with energies within the gap of the bulk superfluid. The bound-state spectrum lacks inversion symmetry parallel to the wall.

  3. Deeply bound kaonic states in nuclei

    Institute of Scientific and Technical Information of China (English)

    LI Yi-He; WU Shi-Shu

    2009-01-01

    Using a new phenomenological (K)N interaction which reproduces A(1405) as an I = 0 bound state of (K)N, we have investigated K- -3 He(T = 0) and K- -4 He(T = 1/2) within the framework of the Brueckner-Hartree-Fock(BHF) theory. Our calculations show that the above kaonic nuclear systems are both deeply bound. The binding energy BK- is 124.4 MeV(94.1 MeV) and the width Γ is 11.8 MeV(25.8 MeV) for K- -3 He(T = 0)(K- -4 He(T= 1/2)).

  4. Two-polariton bound states in the Jaynes-Cummings-Hubbard model

    International Nuclear Information System (INIS)

    We examine the eigenstates of the one-dimensional Jaynes-Cummings-Hubbard model in the two-excitation subspace. We discover that two-excitation bound states emerge when the ratio of vacuum Rabi frequency to the tunneling rate between cavities exceeds a critical value. We determine the critical value as a function of the quasimomentum quantum number, and indicate that the bound states carry a strong correlation in which the two polaritons appear to be spatially confined together.

  5. Second bound state of PsH

    OpenAIRE

    Mitroy, J.; Bromley, M. W. J.

    2006-01-01

    The existence of a second bound state of PsH that is electronically stable and also stable against positron annihilation by the normal 2gamma and 3gamma processes is demonstrated by explicit calculation. The state can be found in the 2,4So symmetries with the two electrons in a spin triplet state. The binding energy against dissociation into the H(2p) + Ps(2p) channel was 6.06x10-4 Hartree. The dominant decay mode of the states will be radiative decay into a configuration that autoionizes or ...

  6. Two-body bound states & the Bethe-Salpeter equation

    Energy Technology Data Exchange (ETDEWEB)

    Pichowsky, M. [Argonne National Lab., IL (United States); Kennedy, M. [Univ. of New Hampshire, Durham, NH (United States). Physics Dept.; Strickland, M. [Duke Univ., Durham, NC (United States)

    1995-01-18

    The Bethe-Salpeter formalism is used to study two-body bound states within a scalar theory: two scalar fields interacting via the exchange of a third massless scalar field. The Schwinger-Dyson equation is derived using functional and diagrammatic techniques, and the Bethe-Salpeter equation is obtained in an analogous way, showing it to be a two-particle generalization of the Schwinger-Dyson equation. The authors also present a numerical method for solving the Bethe-Salpeter equation without three-dimensional reduction. The ground and first excited state masses and wavefunctions are computed within the ladder approximation and space-like form factors are calculated.

  7. Bound states in continuum: Quantum dots in a quantum well

    International Nuclear Information System (INIS)

    We report on the existence of a bound state in the continuum (BIC) of quantum rods (QR). QRs are novel elongated InGaAs quantum dot nanostructures embedded in the shallower InGaAs quantum well. BIC appears as an excited confined dot state and energetically above the bottom of a well subband continuum. We prove that high height-to-diameter QR aspect ratio and the presence of a quantum well are indispensable conditions for accommodating the BIC. QRs are unique semiconductor nanostructures, exhibiting this mathematical curiosity predicted 83 years ago by Wigner and von Neumann.

  8. Quarks as quasiparticles of bound states

    International Nuclear Information System (INIS)

    A treatment of quarks as strongly bound subsystems of the baryon structure is considered, with the baryons assigned to various states with integers G and B. The requirement that the appropriate fractional values of the quantum numbers of the quarks be obtained, and that appropriate integral values be obtained for the whole system of three bound quarks, uniquely determine the three initial states of the quarks, labeled by the set of values of the quantum numbers G, B, and J. In this connection the new color quantum number is interpreted as a quantity which characterizes the presence of the subsystems in different eigenstates. The self- consistency of the changes of color states in the three-quark system is explained on the basis of a generalized Sakata model. (author)

  9. Dynamic hyperpolarizabilities of excited states of hydrogen

    International Nuclear Information System (INIS)

    On the basis of the generalized Sturm expansion of the radial part of the Coulomb Green function, a computational method is proposed and numerical results are presented for the dynamic hyperpolarizability γ and the corrections E(4) (quadratic in the light intensity) to the quasi-energy of the ground and excited states of hydrogen with principal quantum numbers n ≤ 5 in a monochromatic light field. In this approach, the problem is reduced to the summation of well-convergent double series of the hypergeometric kind, which ensures reliable numerical results both for states with a large n, and in a wide range of field frequencies ω, including the above-threshold frequency range of (ℎ/2π)ω >> vertical bar En vertical bar (vertical bar En vertical bar is the ionization potential of the state |nlm> under investigation). We consider the frequency dependence of γ and E(4), their differences for the cases of linear and circular polarizations of the field, and the relation between their real and imaginary parts, which determine the laser field-induced corrections to the position and width of energy levels. For n = 5, the significant role of mixing the vertical bar nlm> states with different values of l by a laser field in the region of resonances on intermediate bound states is demonstrated. The linear (in intensity) corrections to the photoionization cross section for excited states are analyzed and the threshold intensity corresponding to the onset of atomic level stabilization is estimated for a number of states with n = 3 and n = 5

  10. Topological edge states of bound photon pairs

    CERN Document Server

    Gorlach, Maxim A

    2016-01-01

    We predict the existence of interaction-driven edge states of bound two-photon quasiparticles in a dimer periodic array of nonlinear optical cavities. Energy spectrum of photon pairs is dramatically richer than in the noninteracting case or in a simple lattice, featuring collapse and revival of multiple edge and bulk modes as well as edge states in continuum. Despite the unexpected breakdown of the Zak phase technique and the edge mixing of internal and center-of-mass motion we link the edge state existence to the two-photon quantum walk graph connectivity, thus uncovering the topological nature of the many-body problem in complex lattices.

  11. Excited state halos in 10Be

    International Nuclear Information System (INIS)

    The structure of certain bound excited states in 10Be have been shown to have exotic features because of their weak binding and cluster-like configurations. In this article, we investigate E1 and E2 transitions between these states and compare the findings with recent experimental results. We compare the predictions of two types of structure calculations: a microscopic multicluster model and an ab initio no-core shell model. Both predict very similar transition strengths. By considering the relative contributions from the various matrix elements contributing to the transitions arising from the coupling of different 9Bexn configurations in the wave functions making up the states, we conclude that the very weak B(E1;2-→21+) can only be understood if the 2- state (with a separation energy of its predominantly 1s1/2 neutron of just 0.548 MeV) is a clear halo state. Other nearby states, such as the 22+, do not exhibit a clear halo signature because of the less than clean decoupling into the well-defined 9Be core plus halo neutron

  12. Analytic continuation of bound states to solve resonance states

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Norimichi; Arai, Koji [Niigata Univ. (Japan); Suzuki, Yoshiyuki; Varga, K.

    1997-05-01

    As a method to determine the parameters of the resonance state, a method is proposed using analytic continuation on bound constants of correlation. The characteristics of this method consists in probability of prediction of the parameters of the resonance state only by calculation of the bound state. Owing to conducting the analytic continuation on square root of energy in the bound state as a function relating to the bound constant, energy and width in the bound state was determined. Here was reported on a result of application of this method to three systems. Some partial wave on two systems showing correlation at a simple potential and a resonance state of zero of all orbital angular motion quality in three boson system were determined using the analytic continuation method. These results agreed well with one used a method of integrating Schroedinger equation directly and one used the complex scaling method, and this method was found to be much efficient for the study of the resonance state. Under a background of becoming applicable to the method of analytic continuation, there was development of calculating method for the recent small number multi system. As the characteristics of the analytic continuation method is used for only calculation of the bound state, it is convenient at a point applicable to the method to obtain conventional bound state and then is much efficient in a point of applicability of calculus of variations. However, in order to obtain coefficient of Pade approximation correctly, the bound state must be solved correctly, which is difficult for more complex system and is not always applicable to every systems. (G.K.)

  13. Excited state Intramolecular Proton Transfer in Anthralin

    DEFF Research Database (Denmark)

    Møller, Søren; Andersen, Kristine B.; Spanget-Larsen, Jens;

    1998-01-01

    Quantum chemical calculations performed on anthralin (1,8-dihydroxy-9(10H)-anthracenone) predict the possibility of an excited-state intramolecular proton transfer process. Fluorescence excitation and emission spectra of the compound dissolved in n-hexane at ambient temperature results in an......, associated with an excited-state intramolecular proton transfer process....

  14. Tsirelson's bound and supersymmetric entangled states

    CERN Document Server

    Borsten, L; Duff, M J

    2012-01-01

    In order to see whether superqubits are more nonlocal than ordinary qubits, we construct a class of two-superqubit entangled states as a nonlocal resource in the CHSH game. Since super Hilbert space amplitudes are Grassmann numbers, the result depends on how we extract real probabilities and we examine three choices of map: (1) DeWitt (2) Trigonometric (3) Modified Rogers. In cases (1) and (2) the winning probability reaches the Tsirelson bound p(win) = cos^2 pi/8 \\simeq 0.8536 of standard quantum mechanics. Case (3) crosses Tsirelson's bound with p(win) = 0.9265. Although all states used in the game involve probabilities lying between 0 and 1, case (3) permits other changes of basis inducing negative transition probabilities.

  15. Excited states in Pd99

    Science.gov (United States)

    Sihotra, S.; Naik, Z.; Kumar, S.; Singh, K.; Goswamy, J.; Singh, N.; Kumar, R.; Singh, R. P.; Muralithar, S.; Bhowmik, R. K.; Palit, R.; Mehta, D.

    2011-02-01

    Excited states in the Pd99 nucleus populated in the As75(Si28, p3n) fusion-evaporation reaction at Elab=120 MeV have been investigated through in-beam γ-ray spectroscopic techniques using an array of Compton-suppressed clover detectors. The level scheme is established up to excitation energy ~11.5 MeV and spin ~25ℏ with the addition of about 60 new transitions. The level structures observed in Pd99 have been interpreted in the framework of a microscopic theory based on the deformed Hartree-Fock and angular momentum projection techniques. Band structures at lower spins are based on the low-Ω νg7/2 and νd5/2 orbitals, and those at higher spins are reproduced for the π(g9/2)5⊗π(g7/2)⊗ν(g7/2)2⊗ν(h11/2)2⊗ν(g9/2)-1 and π(g9/2)6⊗ν(g9/2)10⊗ν(g7/2)2⊗ν(h11/2) configurations. The octupole correlations in Pd99 have been inferred from new interband E1 transitions linking the ΔI=1 states of the bands based on the νh11/2 and νd5/2 orbitals (Δl=3, Δj=3, and Δπ=-1) with the deduced B(E1) values ~10-6 W.u.

  16. Accurate calculations of bound rovibrational states for argon trimer

    Energy Technology Data Exchange (ETDEWEB)

    Brandon, Drew; Poirier, Bill [Department of Chemistry and Biochemistry, and Department of Physics, Texas Tech University, Box 41061, Lubbock, Texas 79409-1061 (United States)

    2014-07-21

    This work presents a comprehensive quantum dynamics calculation of the bound rovibrational eigenstates of argon trimer (Ar{sub 3}), using the ScalIT suite of parallel codes. The Ar{sub 3} rovibrational energy levels are computed to a very high level of accuracy (10{sup −3} cm{sup −1} or better), and up to the highest rotational and vibrational excitations for which bound states exist. For many of these rovibrational states, wavefunctions are also computed. Rare gas clusters such as Ar{sub 3} are interesting because the interatomic interactions manifest through long-range van der Waals forces, rather than through covalent chemical bonding. As a consequence, they exhibit strong Coriolis coupling between the rotational and vibrational degrees of freedom, as well as highly delocalized states, all of which renders accurate quantum dynamical calculation difficult. Moreover, with its (comparatively) deep potential well and heavy masses, Ar{sub 3} is an especially challenging rare gas trimer case. There are a great many rovibrational eigenstates to compute, and a very high density of states. Consequently, very few previous rovibrational state calculations for Ar{sub 3} may be found in the current literature—and only for the lowest-lying rotational excitations.

  17. Accurate calculations of bound rovibrational states for argon trimer

    International Nuclear Information System (INIS)

    This work presents a comprehensive quantum dynamics calculation of the bound rovibrational eigenstates of argon trimer (Ar3), using the ScalIT suite of parallel codes. The Ar3 rovibrational energy levels are computed to a very high level of accuracy (10−3 cm−1 or better), and up to the highest rotational and vibrational excitations for which bound states exist. For many of these rovibrational states, wavefunctions are also computed. Rare gas clusters such as Ar3 are interesting because the interatomic interactions manifest through long-range van der Waals forces, rather than through covalent chemical bonding. As a consequence, they exhibit strong Coriolis coupling between the rotational and vibrational degrees of freedom, as well as highly delocalized states, all of which renders accurate quantum dynamical calculation difficult. Moreover, with its (comparatively) deep potential well and heavy masses, Ar3 is an especially challenging rare gas trimer case. There are a great many rovibrational eigenstates to compute, and a very high density of states. Consequently, very few previous rovibrational state calculations for Ar3 may be found in the current literature—and only for the lowest-lying rotational excitations

  18. Quantum Bound States Around Black Holes

    OpenAIRE

    Grain, J.; Barrau, A.

    2007-01-01

    Quantum mechanics around black holes has shown to be one of the most fascinating fields of theoretical physics. It involves both general relativity and particle physics, opening new eras to establish the principles of unified theories. In this article, we show that quantum bound states with no classical equivalent -- as it can easily be seen at the dominant monopolar order -- should be formed around black holes for massive scalar particles. We qualitatively investigate some important physical...

  19. Closed form bound-state perturbation theory

    Directory of Open Access Journals (Sweden)

    Ollie J. Rose

    1980-01-01

    Full Text Available The perturbed Schrödinger eigenvalue problem for bound states is cast into integral form using Green's Functions. A systematic algorithm is developed and applied to the resulting equation giving rise to approximate solutions expressed as functions of the given perturbation parameter. As a by-product, convergence radii for the traditional Rayleigh-Schrödinger and Brillouin-Wigner perturbation theories emerge in a natural way.

  20. Weakly bound states in heterogeneous waveguides

    Science.gov (United States)

    Amore, Paolo; Fernández, Francisco M.; Hofmann, Christoph P.

    2016-07-01

    We study the spectrum of the Helmholtz equation in a two-dimensional infinite waveguide, containing a weak heterogeneity localized at an internal point, and obeying Dirichlet boundary conditions at its border. We use the variational theorem to derive the condition for which the lowest eigenvalue of the spectrum falls below the continuum threshold and a bound state appears, localized at the heterogeneity. We devise a rigorous perturbation scheme and derive the exact expression for the energy to third order in the heterogeneity.

  1. Semirelativistic Bound-State Equations: Trivial Considerations

    Directory of Open Access Journals (Sweden)

    Lucha Wolfgang

    2014-01-01

    Full Text Available Observing renewed interest in long-standing (semi- relativistic descriptions of two-body bound states, we would like to make a few comments on the eigenvalue problem posed by the spinless Salpeter equation and, illustrated by the examples of the nonsingular Woods–Saxon potential and the singular Hulthén potential, recall elementary tools that, in their quest, practitioners looking for analytic albeit approximate solutions will find useful.

  2. K(6S-4P) stimulated emission excited by bound-bound transitions of NaK

    International Nuclear Information System (INIS)

    The stimulated fluorescence emission in potassium atom excited by hybrid transitions involving heteronuclear molecules has been studied by a wavelength tunable pump laser. The emission lines are identified as 691.1 nm and 693.9 nm (6S-4P1/2,3/2) transitions. The stimulated character is confirmed by measurements of threshold, exponential increase and high intensity as well as temporal and polarization properties. The origin of the stimulated emission are both Four Wave Parametric Emission and Amplified Spontaneous Emission, with the first one dominant as indicated by intensity and temporal measurements. The main excitation mechanism is shown to be bound-bound NaK (X-B) transitions. This is confirmed by the absence of signal in pure potassium vapour, coincidence of excitation lines with NaK (X-B) bound-bound transitions in the excitation and absorption spectra. The fluorescence spectra have been also identified as NaK (B-X). The process observed proceeds via hybrid resonances. The measured exponential gain factor of the signal is γEp-6.6. Using this process the rate of energy transfer NaK(B) → K(4P), K7s = 8.8x10-9 cm3s-1 and K5d 1.6x10-10 cm3s-1 has been estimated. (author)

  3. Andreev bound states. Some quasiclassical reflections

    International Nuclear Information System (INIS)

    We discuss a very simple and essentially exactly solvable model problem which illustrates some nice features of Andreev bound states, namely, the trapping of a single Bogoliubov quasiparticle in a neutral s-wave BCS superfluid by a wide and shallow Zeeman trap. In the quasiclassical limit, the ground state is a doublet with a splitting which is proportional to the exponentially small amplitude for “normal” reflection by the edges of the trap. We comment briefly on a prima facie paradox concerning the continuity equation and conjecture a resolution to it

  4. Andreev bound states. Some quasiclassical reflections

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Y., E-mail: yiriolin@illinois.edu; Leggett, A. J. [University of Illinois at Urhana-Champaign, Dept. of Physics (United States)

    2014-12-15

    We discuss a very simple and essentially exactly solvable model problem which illustrates some nice features of Andreev bound states, namely, the trapping of a single Bogoliubov quasiparticle in a neutral s-wave BCS superfluid by a wide and shallow Zeeman trap. In the quasiclassical limit, the ground state is a doublet with a splitting which is proportional to the exponentially small amplitude for “normal” reflection by the edges of the trap. We comment briefly on a prima facie paradox concerning the continuity equation and conjecture a resolution to it.

  5. Resonantly Trapped Bound State in the Continuum Laser

    CERN Document Server

    Lepetit, Thomas; Kodigala, Ashok; Bahari, Babak; Fainman, Yeshaiahu; Kanté, Boubacar

    2015-01-01

    Cavities play a fundamental role in wave phenomena from quantum mechanics to electromagnetism and dictate the spatiotemporal physics of lasers. In general, they are constructed by closing all "doors" through which waves can escape. We report, at room temperature, a bound state in the continuum laser that harnesses optical modes residing in the radiation continuum but nonetheless may possess arbitrarily high quality factors. These counterintuitive cavities are based on resonantly trapped symmetry-compatible modes that destructively interfere. Our experimental demonstration opens exciting avenues towards coherent sources with intriguing topological properties for optical trapping, biological imaging, and quantum communication.

  6. Unexpected strong attraction in the presence of continuum bound state

    International Nuclear Information System (INIS)

    The result of few-particle ground-state calculation employing a two-particle non-local potential supporting a continuum bound state in addition to a negative-energy bound state has occasionally revealed unexpected large attraction in producing a very strongly bound ground state. In the presence of the continuum bound state the difference of phase shift between zero and infinite energies has an extra jump of φ as in the presence of an additional bound state. The wave function of the continuum bound state is identical with that of a strongly bound negative-energy state, which leads us to postulate a pseudo bound state in the two-particle system in order to explain the unexpected attraction. The role of the Pauli forbidden states is expected to be similar to these pseudo states. (author)

  7. The mechanisms of Excited states in enzymes

    DEFF Research Database (Denmark)

    Petersen, Frederic Nicolas Rønne; Bohr, Henrik

    2010-01-01

    Enzyme catalysis is studied on the basis of excited state processes, which are of electronic, vibrational and thermal nature. The ways of achieving the excited state, such as photo-absorption and ligand binding, are discussed and exemplified by various cases of enzymes.......Enzyme catalysis is studied on the basis of excited state processes, which are of electronic, vibrational and thermal nature. The ways of achieving the excited state, such as photo-absorption and ligand binding, are discussed and exemplified by various cases of enzymes....

  8. Excited states rotational effects on the behavior of excited molecules

    CERN Document Server

    Lim, Edward C

    2013-01-01

    Excited States, Volume 7 is a collection of papers that discusses the excited states of molecules. The first paper reviews the rotational involvement in intra-molecular in vibrational redistribution. This paper analyzes the vibrational Hamiltonian as to its efficacy in detecting the manifestations of intra-molecular state-mixing in time-resolved and time-averaged spectroscopic measurements. The next paper examines the temporal behavior of intra-molecular vibration-rotation energy transfer (IVRET) and the effects of IVRET on collision, reaction, and the decomposition processes. This paper also

  9. Bound states -- from QED to QCD

    OpenAIRE

    Hoyer, Paul

    2014-01-01

    These lectures are divided into two parts. In Part 1 I discuss bound state topics at the level of a basic course in field theory: The derivation of the Schr\\"odinger and Dirac equations from the QED Lagrangian, by summing Feynman diagrams and in a Hamiltonian framework. Less well known topics include the equal-time wave function of Positronium in motion and the properties of the Dirac wave function for a linear potential. The presentation emphasizes physical aspects and provides the framework...

  10. Is there an quasi-bound state?

    CERN Document Server

    Wilkin, C; Chiladze, D; Dymov, S; Hanhart, C; Hartmann, M; Hejny, V; Kacharava, A K; Keshelashvili, I; Khoukaz, A; Maeda, Y; Mersmann, T; Mielke, M; Mikirtychiants, S; Papenbrock, M; Rathmann, F; Rausmann, T; Schleichert, R; Ströher, H; Täschner, A; Valdau, Yu; Wronska, A

    2007-01-01

    The observed variation of the total cross section for the dp -> 3He eta reaction near threshold means that the magnitude of the s--wave amplitude falls very rapidly with the eta centre--of--mass momentum. It is shown here that recent measurements of the momentum dependence of the angular distribution imply a strong variation also in the phase of this amplitude. Such a behaviour is that expected from a quasi--bound or virtual eta-3He state. The interpretation can be investigated further through measurements of the deuteron or proton analysing powers and/or spin--correlations.

  11. A balance for Dark Matter bound states

    OpenAIRE

    Nozzoli, F.

    2016-01-01

    Massive particles with self interactions of the order of 0.2 barn/GeV are intriguing Dark Matter candidates from an astrophysical point of view. Direct detection searches for very massive particles, with relatively high cross sections with ordinary matter, cannot rule out $\\sigma/M > 0.01$ barn/GeV, due to atmosphere and material shielding. Here, the possibility of the existence of bound states with ordinary matter, for Dark Matter candidates with not negligible interactions, is considered. T...

  12. On Aharonov-Casher bound states

    Energy Technology Data Exchange (ETDEWEB)

    Silva, E.O. [Universidade Federal do Maranhao, Departamento de Fisica, Sao Luis, MA (Brazil); Andrade, F.M. [Universidade Estadual de Ponta Grossa, Departamento de Matematica e Estatistica, Ponta Grossa, PR (Brazil); Filgueiras, C. [Universidade Federal de Campina Grande, Departamento de Fisica, Caixa Postal 10071, Campina Grande, PB (Brazil); Belich, H. [Universidade Federal do Espirito Santo, Departamento de Fisica e Quimica, Vitoria, ES (Brazil)

    2013-04-15

    In this work bound states for the Aharonov-Casher problem are considered. According to Hagen's work on the exact equivalence between spin-1/2 Aharonov-Bohm and Aharonov-Casher effects, is known that the {nabla}.E term cannot be neglected in the Hamiltonian if the spin of particle is considered. This term leads to the existence of a singular potential at the origin. By modeling the problem by boundary conditions at the origin which arises by the self-adjoint extension of the Hamiltonian, we derive for the first time an expression for the bound state energy of the Aharonov-Casher problem. As an application, we consider the Aharonov-Casher plus a two-dimensional harmonic oscillator. We derive the expression for the harmonic oscillator energies and compare it with the expression obtained in the case without singularity. At the end, an approach for determination of the self-adjoint extension parameter is given. In our approach, the parameter is obtained essentially in terms of physics of the problem. (orig.)

  13. Hadron QCD (Bound states in gauge theories)

    International Nuclear Information System (INIS)

    The general principles of the description of bound states in QED and QCD are proposed for the aim of construction of the consistent scheme of calculating hadron spectrum and interaction amplitudes. Such principles are the explicit solution of the Gauss equation for time component, the quantization of the minimal set physical variables and the choice of the time-axis of quantization in accordance with the Markov-Yukawa relativistic theory of bilocal fields. QCD constructed by these principles contains new infrared divergences, changing the behaviour of the Coulomb field on large distances. This divergences (like ones in QED) are removed out with the help of phenomenology, in this case, by taking into account the rising potential as the 'nonperturbative background' for a new perturbation theory. It is shown how in such hadron theory the parton model, nonrelativistic potential spectroscopy, chiral Lagrangian and confinement appear. The Dirac quantization method, renormalization group equations and lattice calculations in their conventional formulation are proved to be untenable for the description of bound states. 23 refs

  14. ADMonium: Asymmetric Dark Matter Bound State

    CERN Document Server

    Bi, Xiao-Jun; Ko, P; Li, Jinmian; Li, Tianjun

    2016-01-01

    We propose a novel framework for asymmetric scalar dark matter (ADM), which has interesting collider phenomenology in terms of an unstable ADM bound state (ADMonium) produced via Higgs portals. ADMonium is a natural consequence of the basic features of ADM: the (complex scalar) ADM is charged under a dark local $U(1)_d$ symmetry which is broken at a low scale and provides a light gauge boson $X$. The dark gauge coupling is strong and then ADM can annihilate away into $X$-pair effectively. Therefore, the ADM can form bound state due to its large self-interaction via $X$ mediation. To explore the collider signature of ADMonium, we propose that ADM has a two-Higgs doublet portal. The ADMonium can have a sizable mixing with the heavier Higgs boson, which admits a large cross section of ADMonium production associated with $b\\bar b$. Of particular interest, our setup nicely explains the recent di-photon anomaly at 750 GeV via the events from ${\\rm ADMonium}\\ra 2X(\\ra e^+e^-)$, where the electrons are identified as ...

  15. Bound states -- from QED to QCD

    CERN Document Server

    Hoyer, Paul

    2014-01-01

    These lectures are divided into two parts. In Part 1 I discuss bound state topics at the level of a basic course in field theory: The derivation of the Schr\\"odinger and Dirac equations from the QED Lagrangian, by summing Feynman diagrams and in a Hamiltonian framework. Less well known topics include the equal-time wave function of Positronium in motion and the properties of the Dirac wave function for a linear potential. The presentation emphasizes physical aspects and provides the framework for Part 2, which discusses the derivation of relativistic bound states at Born level in QED and QCD. A central aspect is the maintenance of Poincar\\'e invariance. The transformation of the wave function under boosts is studied in detail in D=1+1 dimensions, and its generalization to D=3+1 is indicated. Solving Gauss' law for $A^0$ with a non-vanishing boundary condition leads to a linear potential for QCD mesons, and an analogous confining potential for baryons.

  16. A balance for Dark Matter bound states

    CERN Document Server

    Nozzoli, F

    2016-01-01

    Massive particles with self interactions of the order of 0.2 barn/GeV are intriguing Dark Matter candidates from an astrophysical point of view. Direct detection searches for very massive particles, with relatively high cross sections with ordinary matter, cannot rule out $\\sigma/M > 0.01$ barn/GeV, due to atmosphere and material shielding. Here, the possibility of the existence of bound states with ordinary matter, for Dark Matter candidates with not negligible interactions, is considered. The existence of bound states, with binding energy larger than $\\sim$1 meV, would offer the possibility to test in laboratory capture cross sections of the order of a barn (or larger). The signature of the detection of a mass increasing of cryogenic samples, due to the possible Dark Matter accumulation, would allow the investigation of Dark Matter particles with mass up to the GUT scale. A proof of concept for a possible detection set-up and the evaluation of some noise sources are described.

  17. Numerical Simulation of FermionicWave Functions in PotentialWells: Bound State Transitions induced by Multi-Photon Excitation from Laser Sources operating within the Non-Perturbative Regime

    Science.gov (United States)

    Karasek, Stephen

    Energy state transitions leading to linear and nonlinear optical effects have had a major impact on many fields in optics since their discovery. We developed a numerical simulation to investigate how Time-Dependent Schrodinger Equations (TDSE) of electrons traveling within atomic and molecular potential wells, propagated with Finite Difference Methods, and excited with different types of laser sources, can show photonic output and the possibility of output which is nonlinear with respect to the excitation from the source. In particular, here we are interested in resonance conditions of these systems. The parameters of a laser source, as well as the source type, have a substantial impact on the wave equations of the particles within a system. With the right conditions, and knowledge of the systems current energy state, we can effectively choose what energy state to move the system to. We can likewise reduce the energy state by choosing conditions matching transitions to lower states, reducing the energy state of the system and stimulating photonic output. In this thesis we will show the effects of laser source conditions both in and out of resonance, in several different atomic systems with potential wells, and resulting photonic output from state transitions for each combination of parameters. The source will be strong enough to have a substantial impact on the system, thus leaving the perturbative range of intensity, yet not so strong as to completely overpower the system's coulomb potential, staying out of reach of the strong field range of intensity where system potential wells are next to irrelevant.

  18. Autodetachment spectroscopy of the aluminum oxide anion dipole bound state

    Energy Technology Data Exchange (ETDEWEB)

    Mascaritolo, Kyle J.; Gardner, Adrian M.; Heaven, Michael C., E-mail: mheaven@emory.edu [Department of Chemistry, Emory University, Atlanta, Georgia 30322 (United States)

    2015-09-21

    The {sup 1}Σ{sup +}←X{sup 1}Σ{sup +} ground state to dipole bound state (DBS) electronic transition of AlO{sup −} has been studied by means of autodetachment spectroscopy. Vibrational and rotational molecular constants for AlO{sup −} have been determined for both the ground state (υ″ = 0, 1) and the excited DBS (υ′ = 0, 1). These data provide an improved determination of the electron affinity for AlO (2.6110(7) eV) that is consistent with an earlier measurement. The electron binding energy of the DBS was found to be 52 ± 6 cm{sup −1}. Experimental results are compared with the predictions from high level ab initio calculations.

  19. Coexistence of bound and virtual-bound states in shallow-core to valence x-ray spectroscopies

    Science.gov (United States)

    Sen Gupta, Subhra; Bradley, J. A.; Haverkort, M. W.; Seidler, G. T.; Tanaka, A.; Sawatzky, G. A.

    2011-08-01

    With the example of the non-resonant inelastic x-ray scattering (NIXS) at the O45 edges (5d→5f) of the actinides, we develop the theory for shallow-core to valence excitations, where the multiplet spread is larger than the core-hole attraction, such as if the core and valence orbitals have the same principal quantum number. This involves very strong final state configuration interaction (CI), which manifests itself as huge reductions in the Slater-Condon integrals, needed to explain the spectral shapes within a simple renormalized atomic multiplet theory. But more importantly, this results in a cross-over from bound (excitonic) to virtual-bound excited states with increasing energy, within the same core-valance multiplet structure, and in large differences between the dipole and high-order multipole transitions, as observed in NIXS. While the bound states (often higher multipole allowed) can still be modeled using local cluster-like models, the virtual-bound resonances (often dipole-allowed) cannot be interpreted within such local approaches. This is in stark contrast to the more familiar core-valence transitions between different principal quantum number shells, where all the final excited states almost invariably form bound core-hole excitons and can be modeled using local approaches. The possibility of observing giant multipole resonances for systems with high angular momentum ground states is also predicted. The theory is important to obtain ground state information from core-level x-ray spectroscopies of strongly correlated transition metal, rare-earth, and actinide systems.

  20. Exact Entanglement Cost of Multi-Qubit Bound Entangled States

    OpenAIRE

    Bandyopadhyay, Somshubhro; Roychowdhury, Vwani P.

    2005-01-01

    We report the exact entanglement cost of a class of multiqubit bound entangled states, computed in the context of a universal model for multipartite state preparation. The exact amount of entanglement needed to prepare such states are determined by first obtaining lower bounds using a cut-set approach, and then providing explicit local protocols achieving the lower bound.

  1. Excited states of {sup 15}C

    Energy Technology Data Exchange (ETDEWEB)

    Cappuzzello, F.; Orrigo, S.E.A.; Cunsolo, A.; Allia, M.C.; Lazzaro, A.; Nociforo, C.; Winfield, J.S. [Istituto Nazionale di Fisica Nucleare, Lab. Nazionali del Sud, Catania (Italy); Lazzaro, A. [Catania Univ., Dipt. Fisica (Italy); Lenske, H. [Giessen Univ. (Germany). Inst. fuer Theoretische Physik; Beaumel, D.; Fortier, S. [Institut de Physique Nucleaire, (IN2P3/CNRS) 91 - Orsay (France); Foti, A. [Istituto Nazionale di Fisica Nucleare, Catania (Italy)

    2004-03-01

    The N{sup 15}(Li{sup 7},Be{sup 7})C{sup 15} reaction at 55 MeV incident energy was studied at forward angles in order to explore the C{sup 15} excitation energy spectrum. The C{sup 15} ground state and the states at E{sub x} = 0.77, 6.77, 7.30, 8.50 MeV excitation energies were populated. The energy resolution ({approx} 250 keV) allowed the identification of these transitions each for Be{sup 7} ground and first-excited state at E{sub x} = 0.429 MeV. Quasi-particle random phase approximation (QRPA) calculations reproduce the C{sup 15} level structure below 1.5 MeV excitation energy. The strength observed at higher excitation energies probably arises from core-excited components of C{sup 15}. (authors)

  2. The quantum probability equation: I. Bound state perturbation theory

    International Nuclear Information System (INIS)

    The partial-wave Schroedinger equation with real boundary conditions is recast as an equation for the probability density. When a small additional potential is included, the changes in the bound-state energy eigenvalues are obtained, up to third order in the perturbation, purely in terms of the perturbing potential and the unperturbed probability density. Although the approach is different, our results are equivalent to those derived by Bender (Bender C M 1978 Advanced Mathematical Methods for Scientists and Engineers (New York: McGraw-Hill) p 330). Knowledge of neither the unperturbed energy spectrum nor the wavefunctions of excited states is required. Evaluations of the second-order energy shift are given for some soluble S-wave problems. (author)

  3. Photodissociation of N2O: excitation of 1A" states.

    Science.gov (United States)

    Schinke, Reinhard; Schmidt, Johan A

    2012-11-26

    We investigate the contributions of the lowest two (1)A" states in the UV photodissociation of N(2)O employing three-dimensional potential energy surfaces and transition dipole moment functions. Because the transition dipole moments are much smaller than for the 2 (1)A' state, we conclude that excitation of the (1)A" states has a marginal effect. The dense vibrational spectrum of the quasi-bound 2(1)A" state possibly explains some of the tiny, noise-like structures of the measured absorption spectrum. PMID:22536943

  4. Direct excitation of butterfly states in Rydberg molecules

    Science.gov (United States)

    Lippe, Carsten; Niederpruem, Thomas; Thomas, Oliver; Eichert, Tanita; Ott, Herwig

    2016-05-01

    Since their first theoretical prediction Rydberg molecules have become an increasing field of research. These exotic states originate from the binding of a ground state atom in the electronic wave function of a highly-excited Rydberg atom mediated by a Fermi contact type interaction. A special class of long-range molecular states, the butterfly states, were first proposed by Greene et al.. These states arise from a shape resonance in the p-wave scattering channel of a ground state atom and a Rydberg electron and are characterized by an electron wavefunction whose density distribution resembles the shape of a butterfly. We report on the direct observation of deeply bound butterfly states of Rydberg molecules of 87 Rb. The butterfly states are studied by high resolution spectroscopy of UV-excited Rydberg molecules. We find states bound up to - 50 GHz from the 25 P1/2 , F = 1 state, corresponding to binding lengths of 50a0 to 500a0 and with permanent electric dipole moments of up to 500 Debye. This distinguishes the observed butterfly states from the previously observed long range Rydberg molecules in rubidium.

  5. Structural and excited-state properties of oligoacene crystals from first principles

    OpenAIRE

    Rangel, Tonatiuh; Berland, Kristian; Sharifzadeh, Sahar; Brown-Altvater, Florian; Lee, Kyuho; Hyldgaard, Per; Kronik, Leeor; Neaton, Jeffrey B.

    2016-01-01

    Molecular crystals are a prototypical class of van der Waals (vdW) bound organic materials with excited state properties relevant for optoelectronics applications. Predicting the structure and excited state properties of molecular crystals presents a challenge for electronic structure theory, as standard approximations to density functional theory (DFT) do not capture long range vdW dispersion interactions and do not yield excited state properties. In this work, we use a combination of DFT in...

  6. Excited-state dynamics of astaxanthin aggregates

    Czech Academy of Sciences Publication Activity Database

    Fuciman, M.; Durchan, Milan; Šlouf, V.; Kesan, G.; Polívka, Tomáš

    2013-01-01

    Roč. 568, č. 1 (2013), s. 21-25. ISSN 0009-2614 Institutional support: RVO:60077344 Keywords : astaxanthin * aggregates * excited states Subject RIV: BO - Biophysics Impact factor: 1.991, year: 2013

  7. Excited state g factors in Te125

    Science.gov (United States)

    Chamoli, S. K.; Stuchbery, A. E.; East, M. C.

    2009-11-01

    The transient-field technique has been used to measure, with considerably improved precision, the g factors of the 3/2+ and 5/2+ states in Te125 at 444 and 463 keV, respectively, relative to the g factor of the first excited state in Te126. Together with shell model and weak-coupling core-excitation model calculations, the g-factor measurements provide insight into the orbital occupation of the odd neutron for the low-excitation states in Te125. A new 9/2+ level at 1029 keV, together with a firm 7/2+ spin assignment for the level at 1018 keV, identifies candidate states for the coupling of the s1/2 neutron to the 4+ core excitation.

  8. Excited-state properties of hydrophilic carotenoids

    Czech Academy of Sciences Publication Activity Database

    Fuciman, M.; Chábera, P.; Naqvi, K.R.; Melo, T.B.; Sliwka, H.R.; Partali, V.; Lockwood, S.; Jackson, H.L.; Polívka, Tomáš

    - : -, 2009. s. 408. ISBN N. [International Conference on Photochemistry /24./. 19.07.2009-24.07.2009, Toledo] Institutional research plan: CEZ:AV0Z50510513 Keywords : carotenoids * excited-state dynamics * femtosecond spectroscopy Subject RIV: BO - Biophysics

  9. Excitation Halo States of 12B

    Institute of Scientific and Technical Information of China (English)

    林承键; 刘祖华; 张焕乔; 吴岳伟; 杨峰; 阮明

    2001-01-01

    Angular distributions for the 11 B(d,p)12 B transfer reactions have been measured at E1ab = 11.8 Me V. The asymp-totic normalization coefficients (ANC) of the ground state, the second and third excitation states for 12B ( 11 B+n) are extracted from the differential cross sections at three forward angles. With these ANCs, the root-mean-square radii are calculated for these three states. The results show that the second and third excitation states of 12B are neutron halo states.

  10. Rearrangements in ground and excited states

    CERN Document Server

    de Mayo, Paul

    2013-01-01

    Rearrangements in Ground and Excited States, Volume 3 presents essays on the chemical generation of excited states; the cis-trans isomerization of olefins; and the photochemical rearrangements in trienes. The book also includes essays on the zimmerman rearrangements; the photochemical rearrangements of enones; the photochemical rearrangements of conjugated cyclic dienones; and the rearrangements of the benzene ring. Essays on the photo rearrangements via biradicals of simple carbonyl compounds; the photochemical rearrangements involving three-membered rings or five-membered ring heterocycles;

  11. Excited states of 129Xe

    International Nuclear Information System (INIS)

    Here investigation of the observed yrast and excited bands in 129Xe populated by the heavy-ion fusion reaction 124Sn(11B, p5n)129Xe has been presented. An isotopically enriched (99.9%) self-supporting 124Sn target of thickness 2.2 mg/cm2 was utilized. The experiment was performed at the Linac accelerator facility at the Tata Institute of Fundamental Research (TIFR), Mumbai, India. The experimental set-up, called the Indian National Gamma Array (INGA), consisted of 21 Compton suppressed clover HPGe detectors. Two of these detectors were placed at 23°, three at 40°, three at 65°, four at 90°, three at 140°, three at 115° and three at 157° with respect to the beam direction. The triple gamma coincidence data were collected in the event-by-event mode

  12. Baryons as relativistic three-quark bound states

    CERN Document Server

    Eichmann, Gernot; Williams, Richard; Alkofer, Reinhard; Fischer, Christian S

    2016-01-01

    We review the spectrum and electromagnetic properties of baryons described as relativistic three-quark bound states within QCD. The composite nature of baryons results in a rich excitation spectrum, whilst leading to highly non-trivial structural properties explored by the coupling to external (electromagnetic and other) currents. Both present many unsolved problems despite decades of experimental and theoretical research. We discuss the progress in these fields from a theoretical perspective, focusing on nonperturbative QCD as encoded in the functional approach via Dyson-Schwinger and Bethe-Salpeter equations. We give a systematic overview as to how results are obtained in this framework and explain technical connections to lattice QCD. We also discuss the mutual relations to the quark model, which still serves as a reference to distinguish 'expected' from 'unexpected' physics. We confront recent results on the spectrum of non-strange and strange baryons, their form factors and the issues of two-photon proce...

  13. Bound states and Lorentz-Poincare symmetry

    International Nuclear Information System (INIS)

    A hypothesis of the ''relation-continuum'' C is put forward, closely connected with isolation of physical system, which extends to finite universal constant c the absolute nature of the Galilean relative coordinates and the absolute Newtonian time. Points of C4 continuum are directly unobservable and the relativistic symmetry L4 of directly observable space-time events becomes the limiting case of the C4-symmetry. Consequently, though the possibility of the hypothesis of C4-continuum is due to quantum physics, the modifications it implies come with finite universal constant (h/2π)/c and concern the description of the internal structure of bound states only. The C4-symmetry of relations, as weaker than the Lorentz-Poincare L4-symmetry of events, makes ''more room'' for quantum dynamical models. The Feynman graphs phenomenology with form factors (vertex functions) of non-point particles left for experimental determination can be connected with the C4-framework which determines their analytic structure. The C4-effects then would reveal themselves only in these processes in which composite particles participate. Therefore, the ''good'' quantum electrodynamics of point-particles is left unmodified. Two off-mass-shell effects are analyzed in the relatively low-energy processes which are connected with the mass-dependent localization of the center-of-mass of composite particle ''M''. They seem to be crucial for the hypothesis itself. (author)

  14. Squashed giants: bound states of giant gravitons

    International Nuclear Information System (INIS)

    We consider giant gravitons in the maximally supersymmetric type IIB plane-wave, in the presence of a constant NSNS B-field background. We show that in response to the background B-field the giant graviton would take the shape of a deformed three-sphere, the size and shape of which depend on the B-field, and that the giant becomes classically unstable once the B-field is larger than a critical value Bcr. In particular, for the B-field which is (anti-)self-dual under the SO(4) isometry of the original giant S3, the closed string metric is that of a round S3, while the open string metric is a squashed three-sphere. The squashed giant can be interpreted as a bound state of a spherical three-brane and circular D-strings. We work out the spectrum of geometric fluctuations of the squashed giant and study its stability. We also comment on the gauge theory which lives on the brane (which is generically a noncommutative theory) and a possible dual gauge theory description of the deformed giant. (author)

  15. Real weights, bound states and duality orbits

    CERN Document Server

    Marrani, Alessio; Romano, Luca

    2015-01-01

    We show that the duality orbits of extremal black holes in supergravity theories with symmetric scalar manifolds can be derived by studying the stabilizing subalgebras of suitable representatives, realized as bound states of specific weight vectors of the corresponding representation of the duality symmetry group. The weight vectors always correspond to weights that are real, where the reality properties are derived from the Tits-Satake diagram that identifies the real form of the Lie algebra of the duality symmetry group. Both N=2 magic Maxwell-Einstein supergravities and the semisimple infinite sequences of N=2 and N=4 theories in D=4 and 5 are considered, and various results, obtained over the years in the literature using different methods, are retrieved. In particular, we show that the stratification of the orbits of these theories occurs because of very specific properties of the representations: in the case of the theory based on the real numbers, whose symmetry group is maximally non-compact and there...

  16. Real weights, bound states and duality orbits

    Science.gov (United States)

    Marrani, Alessio; Riccioni, Fabio; Romano, Luca

    2016-01-01

    We show that the duality orbits of extremal black holes in supergravity theories with symmetric scalar manifolds can be derived by studying the stabilizing subalgebras of suitable representatives, realized as bound states of specific weight vectors of the corresponding representation of the duality symmetry group. The weight vectors always correspond to weights that are real, where the reality properties are derived from the Tits-Satake diagram that identifies the real form of the Lie algebra of the duality symmetry group. Both 𝒩 = 2 magic Maxwell-Einstein supergravities and the semisimple infinite sequences of 𝒩 = 2 and 𝒩 = 4 theories in D = 4 and 5 are considered, and various results, obtained over the years in the literature using different methods, are retrieved. In particular, we show that the stratification of the orbits of these theories occurs because of very specific properties of the representations: in the case of the theory based on the real numbers, whose symmetry group is maximally noncompact and therefore all the weights are real, the stratification is due to the presence of weights of different lengths, while in the other cases it is due to the presence of complex weights.

  17. Photoionization of excited molecular states using multiphoton excitation techniques

    International Nuclear Information System (INIS)

    Photoelectron spectra are reported for three photon resonant, four photon ionization of H2 via the B 1Σ/sub u/+, v = 7 (J = 2,4) and C 1π/sub u'/, v = 0-4 (J = 1) levels and of N2 via the o31π/sub u'/, v = 1,2, b 1π/sub u'/, v = 3-5, and c 1π/sub u'/, v = 0 levels. The results reflect both the spectroscopy and the dynamics of photoionization of excited molecular states and are discussed in terms of the selection rules for photoionization and the relative probabilities of photoionization from Rydberg and valence states. In some cases, in accordance with the Franck-Condon principle, the results demonstrate that resonant multiphoton ionization through Rydberg states may be a powerful technique for the production of electronic, vibrational, and rotational state selected ions. However, in other cases, systematic departures from Franck-Condon factors are observed, which reflect the more subtle dynamics of excited state photoionization. 23 references, 6 figures, 2 tables

  18. Photoionization of excited molecular states using multiphoton excitation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Dehmer, Patricia M. [Argonne National Laboratory (ANL), Argonne, IL (United States); Pratt, Stephen T. [Argonne National Laboratory (ANL), Argonne, IL (United States); Dehmer, Joseph L. [Argonne National Laboratory (ANL), Argonne, IL (United States)

    1984-01-01

    Photoelectron spectra are reported for three photon resonant, four photon ionization of H₂ via the B ¹Σu⁺, v = 7 (J = 2,4) and C ¹Πu v = 0-4 (J = 1) levels and of N₂ via the o₃ ¹Πu, v = 1,2, b ¹Πu, v = 3-5, and c ¹Πu, v = 0 levels. The results reflect both the spectroscopy and the dynamics of photoionization of excited molecular states and are discussed in terms of the selection rules for photoionization and the relative probabilities of photoionization from Rydberg and valence states. In some cases, in accordance with the Franck-Condon principle, the results demonstrate that resonant multiphoton ionization through Rydberg states may be a powerful technique for the production of electronic, vibrational, and rotational state selected ions. However, in other cases, systematic departures from Franck-Condon factors are observed, which reflect the more subtle dynamics of excited state photoionization.

  19. Nuclear excitation by positron annihilation with bound electrons in a screened atomic potential

    Energy Technology Data Exchange (ETDEWEB)

    Kaliman, Zoran E-mail: norlic@mapef.pefri.hr; Orlic, Nada

    2001-06-01

    We have calculated the total cross section for the process of nuclear excitation in positron-bound electron annihilation. The calculations presented in this work use a spherically symmetric screened atomic potential. Comparisons with more approximate treatments of the process are made. (author)

  20. Effects of Bound States on Dark Matter Annihilation

    OpenAIRE

    An, Haipeng; Wise, Mark B.; Zhang, Yue

    2016-01-01

    We study the impact of bound state formation on dark matter annihilation rates in models where dark matter interacts via a light mediator, the dark photon. We derive the general cross section for radiative capture into all possible bound states, and point out its non-trivial dependence on the dark matter velocity and the dark photon mass. For indirect detection, our result shows that dark matter annihilation inside bound states can play an important role in enhancing signal rates over the rat...

  1. Effects of Bound States on Dark Matter Annihilation

    OpenAIRE

    An, Haipeng; Wise, Mark B.; Zhang, Yue

    2016-01-01

    We study the impact of bound state formation on dark matter annihilation rates in models where dark matter interacts via a light mediator, the dark photon. We derive the general cross section for radiative capture into all possible bound states, and point out its non-trivial dependence on the dark matter velocity and the dark photon mass. For indirect detection, our result shows that dark matter annihilation inside bound states can play an important role in enhancing signal ...

  2. Microscopic observation of magnon bound states and their dynamics

    OpenAIRE

    Fukuhara, Takeshi; Schauß, Peter; Endres, Manuel; Hild, Sebastian; Cheneau, Marc; Bloch, Immanuel; Gross, Christian

    2013-01-01

    More than eighty years ago, H. Bethe pointed out the existence of bound states of elementary spin waves in one-dimensional quantum magnets. To date, identifying signatures of such magnon bound states has remained a subject of intense theoretical research while their detection has proved challenging for experiments. Ultracold atoms offer an ideal setting to reveal such bound states by tracking the spin dynamics after a local quantum quench with single-spin and single-site resolution. Here we r...

  3. Precision Study of Positronium: Testing Bound State QED Theory

    OpenAIRE

    Karshenboim, Savely G.

    2003-01-01

    As an unstable light pure leptonic system, positronium is a very specific probe atom to test bound state QED. In contrast to ordinary QED for free leptons, the bound state QED theory is not so well understood and bound state approaches deserve highly accurate tests. We present a brief overview of precision studies of positronium paying special attention to uncertainties of theory as well as comparison of theory and experiment. We also consider in detail advantages and disadvantages of positro...

  4. Effects of crossed states on photoluminescence excitation spectroscopy of InAs quantum dots

    Directory of Open Access Journals (Sweden)

    Lin Chien-Hung

    2011-01-01

    Full Text Available Abstract In this report, the influence of the intrinsic transitions between bound-to-delocalized states (crossed states or quasicontinuous density of electron-hole states on photoluminescence excitation (PLE spectra of InAs quantum dots (QDs was investigated. The InAs QDs were different in size, shape, and number of bound states. Results from the PLE spectroscopy at low temperature and under a high magnetic field (up to 14 T were compared. Our findings show that the profile of the PLE resonances associated with the bound transitions disintegrated and broadened. This was attributed to the coupling of the localized QD excited states to the crossed states and scattering of longitudinal acoustical (LA phonons. The degree of spectral linewidth broadening was larger for the excited state in smaller QDs because of the higher crossed joint density of states and scattering rate.

  5. Direct Experimental Evidence of Exciton-Phonon Bound States in Carbon Nanotubes

    OpenAIRE

    Plentz, Flavio; Henrique B. Ribeiro; Jorio, Ado; Pimenta, Marcos A.; Strano, Michael S.

    2005-01-01

    We present direct experimental observation of exciton-phonon bound states in the photoluminescence excitation spectra of isolated single walled carbon nanotubes in aqueous suspension. The photoluminescence excitation spectra from several distinct single-walled carbon nanotubes show the presence of at least one sideband related to the tangential modes, lying {200 meV} above the main absorption/emission peak. Both the energy position and line shapes of the sidebands are in excellent agreement w...

  6. Electron excitation from ground state to first excited state: Bohmian mechanics method

    Science.gov (United States)

    Yang, Song; Shuang, Zhao; Fu-Ming, Guo; Yu-Jun, Yang; Su-Yu, Li

    2016-03-01

    The excitation process of electrons from the ground state to the first excited state via the resonant laser pulse is investigated by the Bohmian mechanics method. It is found that the Bohmian particles far away from the nucleus are easier to be excited and are excited firstly, while the Bohmian particles in the ground state is subject to a strong quantum force at a certain moment, being excited to the first excited state instantaneously. A detailed analysis for one of the trajectories is made, and finally we present the space and energy distribution of 2000 Bohmian particles at several typical instants and analyze their dynamical process at these moments. Project supported by the Doctoral Research Start-up Funding of Northeast Dianli University, China (Grant No. BSJXM-201332), the National Natural Science Foundation of China (Grant Nos. 11547114, 11534004, 11474129, 11274141, 11447192, and 11304116), and the Graduate Innovation Fund of Jilin University, China (Grant No. 2015091).

  7. Application of the coherent state formalism to multiply excited states

    International Nuclear Information System (INIS)

    A general expression is obtained for the matrix element of an m-body operator between coherent states constructed from multiple orthogonal coherent boson species. This allows the coherent state formalism to be applied to states possessing an arbitrarily large number of intrinsic excitation quanta. For illustration, the formalism is applied to the two-dimensional vibron model (U(3) model), to calculate the energies of all excited states in the large-N limit

  8. Electronic excited states and relaxation dynamics in polymer heterojunction systems

    Science.gov (United States)

    Ramon, John Glenn Santos

    The potential for using conducting polymers as the active material in optoelectronic devices has come to fruition in the past few years. Understanding the fundamental photophysics behind their operations points to the significant role played by the polymer interface in their performance. Current device architectures involve the use of bulk heterojunctions which intimately blend the donor and acceptor polymers to significantly increase not only their interfacial surface area but also the probability of exciton formation within the vicinity of the interface. In this dissertation, we detail the role played by the interface on the behavior and performance of bulk heterojunction systems. First, we explore the relation between the exciton binding energy to the band offset in determining device characteristics. As a general rule, when the exciton binding energy is greater than the band offset, the exciton remains the lowest energy excited state leading to efficient light-emitting properties. On the other hand, if the offset is greater than the binding energy, charge separation becomes favorable leading to better photovoltaic behavior. Here, we use a Wannier function, configuration interaction based approach to examine the essential excited states and predict the vibronic absorption and emission spectra of the PPV/BBL, TFB/F8BT and PFB/F8BT heterojunctions. Our results underscore the role of vibrational relaxation in the formation of charge-transfer states following photoexcitation. In addition, we look at the relaxation dynamics that occur upon photoexcitation. For this, we adopt the Marcus-Hush semiclassical method to account for lattice reorganization in the calculation of the interconversion rates in TFB/F8BT and PFB/F8BT. We find that, while a tightly bound charge-transfer state (exciplex) remains the lowest excited state, a regeneration pathway to the optically active lowest excitonic state in TFB/F8BT is possible via thermal repopulation from the exciplex. Finally

  9. Bound states in a hyperbolic asymmetric double-well

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, R. R., E-mail: richard.hartmann@dlsu.edu.ph [Physics Department, De La Salle University, 2401 Taft Avenue, Manila (Philippines)

    2014-01-15

    We report a new class of hyperbolic asymmetric double-well whose bound state wavefunctions can be expressed in terms of confluent Heun functions. An analytic procedure is used to obtain the energy eigenvalues and the criterion for the potential to support bound states is discussed.

  10. Tauonium tau+tau-, a bound state of heavy leptons

    International Nuclear Information System (INIS)

    Some properties of an electromagnetically bound state of the recently discovered tau heavy lepton are analyzed. This bound state of tau+tau-, has been called tauonium, T. It is found that the process e+e-→T→X has a very high cross section but that it might have escaped observation because of the very narrow width of the T

  11. The representation of bound state wavefunctions by spherical Hankel functions

    International Nuclear Information System (INIS)

    The representation of a nucleon bound state by a single Hankel function is generalised such that the bound state is expanded as a linear combination of Hankel functions of the same l-value. The singularity at the origin due to the use of Hankel functions is removed. The arguments and coefficients of the expansion are determined by a variational method. (orig.)

  12. Nodal Variational Principle for Excited States

    CERN Document Server

    Zahariev, Federico; Levy, Mel

    2016-01-01

    It is proven that the exact excited-state wavefunction and energy may be obtained by minimizing the energy expectation value of a trial wave function that is constrained only to have the correct nodes of the state of interest. This excited-state nodal minimum principle has the advantage that it requires neither minimization with the con- straint of wavefunction orthogonality to all lower eigenstates nor the antisymmetry of the trial wavefunctions. It is also found that the minimization over the entire space can be partitioned into several in- terconnected minimizations within the individual nodal regions, and the exact excited-state energy may be obtained by a minimization in just one or several of these nodal regions. For the proofs of the the- orem, it is observed that the many-electron eigenfunction, restricted to a nodal region, is equivalent to a ground state wavefunction of one electron in a higher dimensional space; and an explicit excited-state energy variational expression is obtained by generalizing...

  13. Computing Correct Truncated Excited State Wavefunctions

    CERN Document Server

    Bacalis, N C; Zang, J; Karaoulanis, D

    2016-01-01

    We demonstrate that, if a truncated expansion of a wave function is small, then the standard excited states computational method, of optimizing one root of a secular equation, may lead to an incorrect wave function - despite the correct energy according to the theorem of Hylleraas, Undheim and McDonald - whereas our proposed method [J. Comput. Meth. Sci. Eng. 8, 277 (2008)] (independent of orthogonality to lower lying approximants) leads to correct reliable small truncated wave functions. The demonstration is done in He excited states, using truncated series expansions in Hylleraas coordinates, as well as standard configuration-interaction truncated expansions.

  14. Asymptotic properties of bound states in coupled quantum wave guides

    Energy Technology Data Exchange (ETDEWEB)

    Maglione, Enrico [Dipartimento di Fisica G Galilei, Via F Marzolo 8, Padova (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Padova (Italy); Centro de Fisica das Interaccoes Fundamentais (CFIF), Avenida Rovisco Pais, Lisbon (Portugal); Departamento de Fisica, Instituto Superior Tecnico, Avenida Rovisco Pais, P1049-001 Lisbon (Portugal); Ferreira, LIdia S [Centro de Fisica das Interaccoes Fundamentais (CFIF), Avenida Rovisco Pais, Lisbon (Portugal); Departamento de Fisica, Instituto Superior Tecnico, Avenida Rovisco Pais, P1049-001 Lisbon (Portugal); Cattapan, Giorgio [Dipartimento di Fisica G Galilei, Via F Marzolo 8, Padova (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Padova (Italy)

    2006-02-03

    We investigate the motion of bound-state poles in two quantum wave guides laterally coupled through a window. The imaginary momentum ik at the bound-state poles is studied as a function of the size a of the window. Both bound and virtual states appear as a spans the whole range from 0 up to +{infinity}. We are able to find simple scaling laws relating the critical value of the window size at which the nth bound state appears to the number n of bound states, in the limit of large n. A similar relation is also provided for the slope and the second derivative of the pole trajectories in the (k, a) plane. These relations are characterized by an extremely high numerical accuracy. We also evaluate the exact value of the first two derivatives for a = 0.

  15. Recent advances in bound state quantum electrodynamics

    International Nuclear Information System (INIS)

    Recent developments are reviewed in four areas of computational quantum electrodynamics: a new relativistic two-body formalism equal in rigor to the Bethe-Salpeter formalism but with strong calculational advantages is discussed; recent work on the computation of the decay rate of bound systems (positronium in particular) is presented; limits on possible composite structure of leptons are discussed; a new multidimensional integration program ('VEGAS') suitable for higher order calculations is presented

  16. Impact of ground- and excited-state aromaticity on cyclopentadiene and silole excitation energies and excited-state polarities.

    Science.gov (United States)

    Jorner, Kjell; Emanuelsson, Rikard; Dahlstrand, Christian; Tong, Hui; Denisova, Aleksandra V; Ottosson, Henrik

    2014-07-21

    A new qualitative model for estimating the properties of substituted cyclopentadienes and siloles in their lowest ππ* excited states is introduced and confirmed through quantum chemical calculations, and then applied to explain earlier reported experimental excitation energies. According to our model, which is based on excited-state aromaticity and antiaromaticity, siloles and cyclopentadienes are cross-hyperconjugated "aromatic chameleons" that adapt their electronic structures to conform to the various aromaticity rules in different electronic states (Hückel's rule in the π(2) electronic ground state (S0) and Baird's rule in the lowest ππ* excited singlet and triplet states (S1 and T1)). By using pen-and-paper arguments, one can explain polarity changes upon excitation of substituted cyclopentadienes and siloles, and one can tune their lowest excitation energies by combined considerations of ground- and excited-state aromaticity/antiaromaticity effects. Finally, the "aromatic chameleon" model can be extended to other monocyclic compound classes of potential use in organic electronics, thereby providing a unified view of the S0, T1, and S1 states of a range of different cyclic cross-π-conjugated and cross-hyperconjugated compound classes. PMID:25043523

  17. Excited state properties of aryl carotenoids

    Czech Academy of Sciences Publication Activity Database

    Fuciman, M.; Chábera, P.; Župčanová, Anita; Hříbek, P.; Arellano, J.B.; Vácha, František; Pšenčík, J.; Polívka, Tomáš

    2010-01-01

    Roč. 12, č. 13 (2010), s. 3112-3120. ISSN 1463-9076 R&D Projects: GA AV ČR IAA608170604 Institutional research plan: CEZ:AV0Z50510513 Keywords : carotenoids * excited-states * femtosecond spectroscopy Subject RIV: BO - Biophysics Impact factor: 3.454, year: 2010

  18. Excited-state properties of hydrophilic carotenoids

    Czech Academy of Sciences Publication Activity Database

    Chábera, P.; Naqvi, K.R.; Melo, T.B.; Sliwka, H.R.; Partali, V.; Lockwood, S.; Nodolski, G.; Polívka, Tomáš

    Nové Hrady : Academic and University Center, 2008. s. 40. [ESF Workshop on Novel Methods in Exploring Carotenoid Excited State Dynamics. 21.09.2008-25.09.2008, Nové Hrady] Institutional research plan: CEZ:AV0Z50510513 Keywords : carotenoids * biophysics Subject RIV: BO - Biophysics

  19. Realization of negative mass regime and bound state of solitons in inhomogeneous Bose-Einstein condensates

    Science.gov (United States)

    Das, Priyam; Khan, Ayan; Panigrahi, Prasanta K.

    2016-05-01

    We study the dispersion mechanism (Lieb-mode excitation) of both single and two-component Bose-Einstein condensates, subject to an external trap in a mean-field approach, where the second quantized Lieb-mode is realized as grey soliton. Through the coupling between the centre of mass motion (Kohn mode) and the soliton's momenta arising from the kinematic chirp, induced by time modulated trap, we realize the exotic negative mass regime of the solitonic excitation. We show that the expulsive parabolic trap significantly modifies the energy-momentum dispersion in the low momenta regime, where these modes can be clearly identified, opening up the possibility to observe the Lieb-mode excitation. In case of two-component, we demonstrate the controlled formation of a bound state, in presence of an expulsive harmonic trap, through the shape compatibility of grey and bright solitons. Possible application of such a bound state to information storage and retrieval is pointed out.

  20. Weakly bound states of polar molecules in bilayers

    CERN Document Server

    Fedorov, D V; Zinner, N T; Jensen, A S

    2011-01-01

    We investigate a system of two polarized molecules in a layered trap. The molecules reside in adjacent layers and interact purely via the dipole-dipole interaction. We determine the properties of the ground state of the system as a function of the dipole moment and polarization angle. A bound state is always present in the system and in the weak binding limit the bound state extends to a very large distance and shows universal behavior.

  1. Relativistic bound states: a mass formula for vector mesons

    International Nuclear Information System (INIS)

    In the framework of a relativistic description of two particles bound states, a mass formula for vector mesons considered as quark-antiquark systems bound by harmonic oscillator like forces is proposed. Results in good agreement with experimental values are obtained

  2. Generalized variational principle for excited states using nodes of trial functions

    International Nuclear Information System (INIS)

    The familiar variational principle provides an upper bound to the ground-state energy of a given Hamiltonian. This allows one to optimize a trial wave function by minimizing the expectation value of the energy. This approach is also trivially generalized to excited states, so that given a trial wave function of a certain symmetry, one can compute an upper bound to the lowest-energy level of that symmetry. In order to generalize further and build an upper bound of an arbitrary excited state of the desired symmetry, a linear combination of basis functions is generally used to generate an orthogonal set of trial functions, all bounding their respective states. However, sometimes a compact wave-function form is sought, and a basis-set expansion is not desirable or possible. Here we present an alternative generalization of the variational principle to excited states that does not require explicit orthogonalization to lower-energy states. It is valid for one-dimensional systems and, with additional information, to at least some n-dimensional systems. This generalized variational principle exploits information about the nodal structure of the trial wave function, giving an upper bound to the exact energy without the need to build a linear combination of basis functions. To illustrate the theorem we apply it to a nontrivial example: the 1s2s 1 S excited state of the helium atom.

  3. Femtosecond spectroscopy of reacting excited states

    International Nuclear Information System (INIS)

    Thanks to recent advance of ultra short pulse lasers, we are now able to observe ultra fast phenomena taking place in a time scale as short as 10 fs. This time scale is the time scale of the nuclear motion of molecules, and the observation of coherent nuclear wavepacket motion is a central issue of femtosecond spectroscopy. One of the dreams of chemists is to see chemical reactions, i.e., the change of chemical bonds, in real time. In a sense, observation of the wavepacket motion of reacting molecules is realization of this dream. However, the significance of the coherent nuclear motion in chemical reactions is still unclear for polyatomic molecules where the reaction coordinate does not simply correspond to the change of a particular chemical bond. To discuss the relation between the initial coherent wavepacket motion and the reaction coordinate, we studied several fundamental photochemical reactions in solution, i.e., photoisomerization of cis-stilbene, photodissociation of diphenylcyclopropenone and excited-state intramolecular proton transfer of 10-hydorxybenzoquinoline, using two-color pump-probe spectroscopy with time resolution of 30-70 fs. The photoisomerization of cis-stilbene proceeds in the S1 state in a time scale of ∼1 ps. Time-resolved absorption of cis-stilbene in cyclohexane (pump 315 nm; probe 660 nm) clearly showed an oscillatory feature, which was attributed to the ∼220 cm-1 wavepacket motion in the S1 state. The dephasing time of the wavepacket motion was 0.21±0.04 ps, which was much shorter than the isomerization time of S1 cis-stilbene (1.25 ps). This indicates that a fast dephasing of the vibrational coherence takes place before isomerization. The result of the experiments on the solvent dependence demonstrated that the dephasing rate and isomerization rate do not correlate with each other, indicating that the observed wavepacket motion is not directly coupled with the isomerization coordinate. Photoexcitation to the S2 state of

  4. Negative-continuum dielectronic recombination into excited states of highly-charged ions

    OpenAIRE

    Artemyev, A. N.; Shabaev, V. M.; Stöhlker, Th; Surzhykov, A. S.

    2009-01-01

    The recombination of a free electron into a bound state of bare, heavy nucleus under simultaneous production of bound-electron--free-positron pair is studied within the framework of relativistic first--order perturbation theory. This process, denoted as "negative-continuum dielectronic recombination" leads to a formation of not only the ground but also the singly- and doubly-excited states of the residual helium-like ion. The contributions from such an excited--state capture to the total as w...

  5. Higgs interchange and bound states of superheavy fermions

    Indian Academy of Sciences (India)

    M De Sanctis

    2013-09-01

    Hypothetical superheavy fourth-generation fermions with a very small coupling with the rest of the Standard Model can give rise to long enough lived bound states. The production and the detection of these bound states would be experimentally feasible at the LHC. Extending, in the present study, the analysis of other authors, a semirelativistic wave equation is solved using an accurate numerical method to determine the binding energies of these possible superheavy fermion-bound states. The interaction given by the Yukawa potential of the Higgs boson exchange is considered; the corresponding relativistic corrections are calculated by means of a model based on the covariance properties of the Hamiltonian. We study the effects given by the Coulomb force. Moreover, we calculate the contributions given by the Coulombic and confining terms of the strong interaction in the case of superheavy quark bound states. The results of the model are critically analysed.

  6. Transport Through Andreev Bound States in a Graphene Quantum Dot

    OpenAIRE

    Dirks, Travis; Hughes, Taylor L.; Lal, Siddhartha; Uchoa, Bruno; Chen, Yung-Fu; Chialvo, Cesar; Goldbart, Paul M.; Mason, Nadya

    2010-01-01

    Andreev reflection-where an electron in a normal metal backscatters off a superconductor into a hole-forms the basis of low energy transport through superconducting junctions. Andreev reflection in confined regions gives rise to discrete Andreev bound states (ABS), which can carry a supercurrent and have recently been proposed as the basis of qubits [1-3]. Although signatures of Andreev reflection and bound states in conductance have been widely reported [4], it has been difficult to directly...

  7. Rearrangements in ground and excited states

    CERN Document Server

    de Mayo, Paul

    2013-01-01

    Rearrangements in Ground and Excited States, Volume 2 covers essays on the theoretical approach of rearrangements; the rearrangements involving boron; and the molecular rearrangements of organosilicon compounds. The book also includes essays on the polytopal rearrangement at phosphorus; the rearrangement in coordination complexes; and the reversible thermal intramolecular rearrangements of metal carbonyls. Chemists and people involved in the study of rearrangements will find the book invaluable.

  8. Extension of LCAO to excited states

    OpenAIRE

    Koval, Peter; Foerster, Dietrich

    2009-01-01

    We extend the LCAO (Linear Combination of Atomic Orbitals) method to excited states by constructing a particularly simple basis in the space of orbital products. The residual error of our procedure vanishes exponentially with the number of products and our procedure avoids auxiliary sets of fitting functions and their intrinsic ambiguities. As an application of our technique, we compute the Kohn--Sham density response function $\\chi_{0}$ for a molecule consisting of $N$ atoms in $O(N^{2}N_{\\o...

  9. Excited States in Solution through Polarizable Embedding

    DEFF Research Database (Denmark)

    Olsen, Jógvan Magnus; Aidas, Kestutis; Kongsted, Jacob

    2010-01-01

    We present theory and implementation of an advanced quantum mechanics/molecular mechanics (QM/MM) approach using a fully self-consistent polarizable embedding (PE) scheme. It is a polarizable layered model designed for effective yet accurate inclusion of an anisotropic medium in a quantum mechani......, nanoparticles and solute−solvent systems. Here, we present numerical examples of solvent shifts and excited-state properties related to a set of organic molecules in aqueous solution....

  10. Experimental study of bound and autoionizing Rydberg states of the europium atom

    Science.gov (United States)

    Xiao, Ying; Dai, Chang-Jian; Qin, Wen-Jie

    2010-06-01

    An isolated-core-excitation (ICE) scheme and stepwise excitation are employed to study the highly excited states of the europium atom. The bound europium spectrum with odd parity in a region of 42400-43500 cm-1 is measured, from which spectral information on 38 transitions, such as level position and relative intensity, can be deduced. Combined with information about excitation calibration and the error estimation process, the selection rules enable us to determine the possible values of total angular momentum J for the observed states. The autoionization spectra of atomic europium, belonging to the 4f76pnl (l = 0, 2) configurations, are systematically investigated by using the three-step laser resonance ionization spectroscopy (RIS) approach. With the ICE scheme, all the experimental spectra of the autoionizing states have nearly symmetric profiles whose peak positions and widths can be easily obtained. A comparison between our results and those from the relevant literature shows that our work not only confirms many reported states, but also discovers 14 bound states and 16 autoionizing states.

  11. Bound States of a Ferromagnetic Wire in a Superconductor

    Science.gov (United States)

    Sau, Jay D.; Brydon, P. M. R.

    2015-09-01

    We consider the problem of bound states in strongly anisotropic ferromagnetic impurities in a superconductor, motivated by recent experiments that claim to observe Majorana modes at the ends of ferromagnetic wires on a superconducting substrate [S. Nadj-Perge et al., Science 346, 602 (2014)]. Generalizing the successful theory of bound states of spherically symmetric impurities, we consider a wirelike potential using both analytical and numerical approaches. We find that away from the ends of the wire the bound states form bands with pronounced van Hove singularities, giving rise to subgap peaks in the local density of states. For sufficiently strong magnetization of the wire, we show that this process generically produces a sharp peak at zero energy in the local density of states near the ends of the wire. This zero-energy peak has qualitative similarities to the claimed signature of a Majorana mode observed in the aforementioned experiment.

  12. Bound States of a Ferromagnetic Wire in a Superconductor.

    Science.gov (United States)

    Sau, Jay D; Brydon, P M R

    2015-09-18

    We consider the problem of bound states in strongly anisotropic ferromagnetic impurities in a superconductor, motivated by recent experiments that claim to observe Majorana modes at the ends of ferromagnetic wires on a superconducting substrate [S. Nadj-Perge et al., Science 346, 602 (2014)]. Generalizing the successful theory of bound states of spherically symmetric impurities, we consider a wirelike potential using both analytical and numerical approaches. We find that away from the ends of the wire the bound states form bands with pronounced van Hove singularities, giving rise to subgap peaks in the local density of states. For sufficiently strong magnetization of the wire, we show that this process generically produces a sharp peak at zero energy in the local density of states near the ends of the wire. This zero-energy peak has qualitative similarities to the claimed signature of a Majorana mode observed in the aforementioned experiment. PMID:26431011

  13. Identification of excited states in conjugated polymers

    CERN Document Server

    Hartwell, L J

    2003-01-01

    This thesis reports quasi steady state photoinduced absorption measurements from three conjugated polymers: polypyridine (PPy), polyfluorene (PFO) and the emeraldine base (EB) form of polyaniline. The aim of these experiments was to determine the nature of the photoexcited states existing in these materials in the millisecond time domain, as this has important consequences for the operation of real devices manufactured using these materials. The results from the photoinduced absorption experiments are closely compared with published results from pulse radiolysis experiments. In all cases there is very good correspondence between the two data sets, which has enabled the photoexcited states to be assigned with a high degree of confidence. Quasi steady-state photoinduced absorption involves the measurement of the change in absorption of a material in response to optical excitation with a laser beam. The changes in absorption are small, so a instrument was developed and optimised for each different sample. Lock-i...

  14. Holographic Construction of Excited CFT States

    CERN Document Server

    Christodoulou, Ariana

    2016-01-01

    We present a systematic construction of bulk solutions that are dual to CFT excited states. The bulk solution is constructed perturbatively in bulk fields. The linearised solution is universal and depends only on the conformal dimension of the primary operator that is associated with the state via the operator-state correspondence, while higher order terms depend on detailed properties of the operator, such as its OPE with itself and generally involve many bulk fields. We illustrate the discussion with the holographic construction of the universal part of the solution for states of two dimensional CFTs, either on $R \\times S^1$ or on $R^{1,1}$. We compute the 1-point function both in the CFT and in the bulk, finding exact agreement. We comment on the relation with other reconstruction approaches.

  15. Ultrafast excited-state dynamics of isocytosine.

    Science.gov (United States)

    Szabla, Rafał; Góra, Robert W; Šponer, Jiří

    2016-07-27

    The alternative nucleobase isocytosine has long been considered as a plausible component of hypothetical primordial informational polymers. To examine this hypothesis we investigated the excited-state dynamics of the two most abundant forms of isocytosine in the gas phase (keto and enol). Our surface-hopping nonadiabatic molecular dynamics simulations employing the algebraic diagrammatic construction to the second order [ADC(2)] method for the electronic structure calculations suggest that both tautomers undergo efficient radiationless deactivation to the electronic ground state with time constants which amount to τketo = 182 fs and τenol = 533 fs. The dominant photorelaxation pathways correspond to ring-puckering (ππ* surface) and C[double bond, length as m-dash]O stretching/N-H tilting (nπ* surface) for the enol and keto forms respectively. Based on these findings, we infer that isocytosine is a relatively photostable compound in the gas phase and in these terms resembles biologically relevant nucleobases. The estimated S1 [radiolysis arrow - arrow with voltage kink] T1 intersystem crossing rate constant of 8.02 × 10(10) s(-1) suggests that triplet states might also play an important role in the overall excited-state dynamics of the keto tautomer. The reliability of ADC(2)-based surface-hopping molecular dynamics simulations was tested against multireference quantum-chemical calculations and the potential limitations of the employed ADC(2) approach are briefly discussed. PMID:27346684

  16. Vibrational autodetachment spectroscopy of Au-6 : Image-charge-bound states of a gold ring

    International Nuclear Information System (INIS)

    Spectral experiments on mass-selected negative cluster ions of gold and silver were performed in the wavelength range near the threshold for one-photon photodetachment of the extra electron. The Au-6 cluster ion displayed a uniquely well resolved spectrum consisting of a progression in a single vibrational mode. Details of this threshold photodetachment spectrum and the associated photoelectron energy distribution suggest an explanation based on autodetachment from totally symmetric vibrational levels of very weakly bound excited electronic state (bound by image charge forces) of the Au-6 cluster in the form of a planar, six-fold symmetric, gold ring

  17. Graphene in inhomogeneous magnetic fields: bound, quasi-bound and scattering states

    Energy Technology Data Exchange (ETDEWEB)

    Ramezani Masir, M; Peeters, F M [Departement Fysica, Universiteit Antwerpen Groenenborgerlaan 171, B-2020 Antwerpen (Belgium); Vasilopoulos, P, E-mail: mrmphys@gmail.com, E-mail: takis@alcor.concordia.ca, E-mail: francois.peeters@ua.ac.be [Department of Physics, Concordia University, Montreal, Quebec, H4B 1R6 (Canada)

    2011-08-10

    The electron states in graphene-based magnetic dot and magnetic ring structures and combinations of both are investigated. The corresponding spectra are studied as a function of the radii, the strengths of the inhomogeneous magnetic field and of a uniform background field, the strength of an electrostatic barrier and the angular momentum quantum number. In the absence of an external magnetic field we have only long-lived quasi-bound and scattering states and we assess their influence on the density of states. In addition, we consider elastic electron scattering by a magnetic dot, whose average B vanishes, and show that the Hall and longitudinal resistivities, as a function of the Fermi energy, exhibit a pronounced oscillatory structure due to the presence of quasi-bound states. Depending on the dot parameters this oscillatory structure differs substantially for energies below and above the first Landau level.

  18. Hemispherical Asymmetry from Parity-Violating Excited Initial States

    CERN Document Server

    Ashoorioon, Amjad

    2015-01-01

    We investigate if the hemispherical asymmetry in the CMB is produced from parity-violating excited initial condition. We show that in the limit where the deviations from the Bunch-Davies vacuum is large and the scale of new physics is maximally separated from the inflationary Hubble parameter, the primordial power spectrum is modulated only by dipole and quadrupole terms. Requiring the dipole contribution in the power spectrum accounts for the observed power asymmetry, $A=0.07\\pm0.022$, we show that the amount of quadrupole terms is roughly equal to $A^2$, which is still consistent with the bounds from the CMB. The mean local bispectrum which gets enhanced for the excited initial states is within the $1\\sigma$ bound of Planck 2015 results, $f_{\\rm NL}\\simeq 4.17$, but reachable by future CMB experiments. The amplitude of the local non-gaussianity modulates around this mean value, approximately depending on the angle that the short wavelength mode makes with the preferred direction. The amount of variation max...

  19. Boson bound states in the -Fermi–Pasta–Ulam model

    Indian Academy of Sciences (India)

    Xin-Guang Hu; Ju Xiang; Zheng Jiao; Yang Liu; Guo-Qiu Xie; Ke Hu

    2013-11-01

    The bound states of four bosons in the quantum -Fermi–Pasta–Ulam model are investigated and some interesting results are presented using the number conserving approximation combined with the number state method. We find that the relative magnitude of anharmonic coefficient has a significant effect on forming localized energy in the model, and the wave number plays an important role in forming different bound states. The signature of the quantum breather is also set up by the square of the amplitudes of the corresponding eigenvectors in real space.

  20. Effects of Bound States on Dark Matter Annihilation

    CERN Document Server

    An, Haipeng; Zhang, Yue

    2016-01-01

    We study the impact of bound state formation on dark matter annihilation rates in models where dark matter interacts via a light mediator, the dark photon. We derive the general cross section for radiative capture into all possible bound states, and point out its non-trivial dependence on the dark matter velocity and the dark photon mass. For indirect detection, our result shows that dark matter annihilation inside bound states can play an important role in enhancing signal rates over the rate for direct dark matter annihilation with Sommerfeld enhancement. The effects are strongest for large dark gauge coupling and when the dark photon mass is smaller than the typical momentum of dark matter in the galaxy. As an example, we show that for thermal dark matter the Fermi gamma ray constraint is substantially increased once bound state effects are taken into account. We also find that bound state effects are not important for dark matter annihilation during the freeze out and recombination epochs.

  1. Proximity induced interface bound states in superconductor-graphene junctions

    OpenAIRE

    Burset, P.; Herrera, W.; Yeyati, A. Levy

    2009-01-01

    We show that interface bound states are formed at isolated graphene-superconductor junctions. These states arise due to the interplay of virtual Andreev and normal reflections taking place at these interfaces. Simple analytical expressions for their dispersion are obtained considering interfaces formed along armchair or zig-zag edges. It is shown that the states are sensitive to a supercurrent flowing on the superconducting electrode. The states provide long range superconducting correlations...

  2. Excited states of muonium in atomic hydrogen

    Indian Academy of Sciences (India)

    V S Kulhar

    2006-06-01

    Muonium formation in excited states in muon-hydrogen charge-exchange collision is investigated using a method developed in a previous paper. Differential cross-section results are found to resemble positronium formation cross-section results of positron-hydrogen charge-exchange problem. Forward differential and integrated cross-sections are computed for muon energy of 2 keV and higher. Total muonium formation cross-sections are computed using Jackson and Schiff scaling rules. Muonium formation cross-section results obtained from proton-hydrogen charge-exchange cross-section results, using velocity scaling are compared with the results of the present calculation.

  3. Excited state dynamics of DNA bases

    Czech Academy of Sciences Publication Activity Database

    Kleinermanns, K.; Nachtigallová, Dana; de Vries, M. S.

    2013-01-01

    Roč. 32, č. 2 (2013), s. 308-342. ISSN 0144-235X R&D Projects: GA ČR GAP208/12/1318 Grant ostatní: National Science Foundation(US) CHE-0911564; NASA(US) NNX12AG77G; Deutsche Forschungsgemeinschaft(DE) SFB 663; Deutsche Forschungsgemeinschaft(DE) KI 531-29 Institutional support: RVO:61388963 Keywords : DNA bases * nucleobases * excited state * dynamics * computations * gas phase * conical intersections Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.920, year: 2013

  4. Bounding the greybody factors for scalar excitations of the Kerr-Newman spacetime

    CERN Document Server

    Boonserm, Petarpa; Visser, Matt

    2014-01-01

    Finding exact solutions for black-hole greybody factors is generically impractical; typically one resorts either to making semi-analytic or numerical estimates, or alternatively to deriving rigorous analytic bounds. Indeed, rigorous bounds have already been established for the greybody factors of Schwarzschild and Riessner-Nordstrom black holes, and more generally for those of arbitrary static spherically symmetric asymptotically flat black holes. Adding rotation to the problem greatly increases the level of difficulty, both for purely technical reasons (the Kerr or Kerr-Newman black holes are generally much more difficult to work with than the Schwarzschild or Reissner-Nordstrom black holes), but also at a conceptual level (due to the generic presence of super-radiant modes). In the current article we analyze bounds on the greybody factors for scalar excitations of the Kerr-Newman geometry in some detail, first for zero-angular-momentum modes, then for the non-super-radiant modes, and finally for the super-r...

  5. Bounding the greybody factors for scalar field excitations on the Kerr-Newman spacetime

    International Nuclear Information System (INIS)

    Finding exact solutions for black-hole greybody factors is generically impractical; typically one resorts either to making semi-analytic or numerical estimates, or alternatively to deriving rigorous analytic bounds. Indeed, rigorous bounds have already been established for the greybody factors of Schwarzschild and Riessner-Nordström black holes, and more generally for those of arbitrary static spherically symmetric asymptotically flat black holes. Adding rotation to the problem greatly increases the level of difficulty, both for purely technical reasons (the Kerr or Kerr-Newman black holes are generally much more difficult to work with than the Schwarzschild or Reissner-Nordström black holes), but also at a conceptual level (due to the generic presence of super-radiant modes). In the current article we analyze bounds on the greybody factors for scalar field excitations on the Kerr-Newman geometry in some detail, first for zero-angular-momentum modes, then for the non-super-radiant modes, and finally for the super-radiant modes

  6. Probing Majorana Bound States in T-Shaped Junctions

    Science.gov (United States)

    Wu, Bin-He; Cheng, Xiao; Wang, Chun-Rui; Gong, Wei-Jiang

    2014-03-01

    We investigate the transport properties of a pair of Majorana bound states in a T-shaped junction, where two normal leads are coupled with an identical Majorana bound state. Both the scattering matrix and the recursive Green function method show that the peak value of the differential conductance (Gpeak) in units of e2/h and the shot noise Fano factor in the zero bias limit (F0), which are measured at the same lead and zero temperature, satisfy a linear relation as F0 = 1 + Gpeak/2, independent of the magnitude or symmetry of the coupling strengths to the leads. Therefore, combined measurements of the differential conductance and shot noise in the T-shaped geometry can serve as a characteristic signature in probing Majorana bound states.

  7. Relativistic bound state approach to fundamental forces including gravitation

    Directory of Open Access Journals (Sweden)

    Morsch H.P.

    2012-06-01

    Full Text Available To describe the structure of particle bound states of nature, a relativistic bound state formalism is presented, which requires a Lagrangian including scalar coupling of two boson fields. The underlying mechanisms are quite complex and require an interplay of overlapping boson fields and fermion-antifermion production. This gives rise to two potentials, a boson-exchange potential and one identified with the long sought confinement potential in hadrons. With minimal requirements, two elementary massless fermions (quantons - with and without charge - and one gauge boson, hadrons and leptons but also atoms and gravitational systems are described by bound states with electric and magnetic coupling between the charges and spins of quantons. No need is found for colour, Higgs-coupling and supersymmetry.

  8. A brief review on Majorana bound states in topological superconductors

    Science.gov (United States)

    Lin, Rui; Wang, Zhi

    2016-07-01

    Topological superconductivity has drawn much attention recently, and most interests are focused on the Majorana bound states existing at the edges of one-dimensional topological superconductors. These Majorana bound states are ideal platform for studying non-Abelian statistics. Meanwhile, they are proposed to be useful in quantum computation. In this review, we introduce the basic concepts and models in this area. We begin from the Kitaev model, which is the most concise model for one-dimensional topological superconductivity. Then, we discuss how to realize this model with spin-orbit coupling in realistic materials. Finally, we show some simple methods to detect the Majorana bound states and study their novel properties with the help of adjacent quantum dots.

  9. Bound States at Threshold resulting from Coulomb Repulsion

    CERN Document Server

    Gridnev, Dmitry K

    2011-01-01

    The eigenvalue absorption for a many-particle Hamiltonian depending on a parameter is analyzed in the framework of non-relativistic quantum mechanics. The long-range part of pair potentials is assumed to be pure Coulomb and no restriction on the particle statistics is imposed. It is proved that if the lowest dissociation threshold corresponds to the decay into two likewise non-zero charged clusters then the bound state, which approaches the threshold, does not spread and eventually becomes the bound state at threshold. The obtained results have applications in atomic and nuclear physics. In particular, we prove that atomic ion with atomic critical charge $Z_{cr}$ and $N_e$ electrons has a bound state at threshold given that $Z_{cr} \\in (N_e -2, N_e -1)$, whereby the electrons are treated as fermions and the mass of the nucleus is finite.

  10. Excited-state relaxation of some aminoquinolines

    Directory of Open Access Journals (Sweden)

    B. M. Uzhinov

    2006-04-01

    Full Text Available The absorption and fluorescence spectra, fluorescence quantum yields and lifetimes, and fluorescence rate constants (kf of 2-amino-3-(2′-benzoxazolylquinoline (I, 2-amino-3-(2′-benzothiazolylquinoline (II, 2-amino-3-(2′-methoxybenzothiazolyl-quinoline (III, 2-amino-3-(2′-benzothiazolylbenzoquinoline (IV at different temperatures have been measured. The shortwavelength shift of fluorescence spectra of compounds studied (23–49 nm in ethanol as the temperature decreases (the solvent viscosity increases points out that the excited-state relaxation process takes place. The rate of this process depends essentially on the solvent viscosity, but not the solvent polarity. The essential increasing of fluorescence rate constant kf (up to about 7 times as the solvent viscosity increases proves the existence of excited-state structural relaxation consisting in the mutual internal rotation of molecular fragments of aminoquinolines studied, followed by the solvent orientational relaxation.

  11. Lifetimes of excited states in 164Hf

    International Nuclear Information System (INIS)

    Lifetimes of excited states in 164Hf were measured using the Doppler-shift recoil-distance method. Gamma-gamma coincidences at eleven target-stopper distances were measured using the twelve Compton-suppressed Ge-detectors of the OSIRIS spectrometer. From the coincidence spectra the intensities of the Doppler-shifted and unshifted γ-lines were determined. The quadrupole moments Qt of transitions within the rotational bands derived from the lifetimes are constant within the experimental uncertainties up to the 18+ state. The Qt value for the transition between the ground- and the neutron i213/2 band (s-band) which is strongly reduced compared to the values of the in-band transitions is used to deduce a band interaction energy of 34 keV≤V≤57 keV. (orig.)

  12. Question of η- and K−- Nucleus Bound States

    International Nuclear Information System (INIS)

    Interaction of the η-meson and that of the K−-meson with nucleons is of special interest because both of them are strongly attractive near threshold. This raises the strong possibility that we may find in nature the bound η- and K−-nuclear (quasi) bound states. This led to experimental programs to hunt for the existence of these states and theoretical studies to keep pace with them. The efforts had positive results. The η-meson studies had been there for several years by now, while those with the K−-meson had been relatively recent. The talk gives a brief critical overview of the η-nuclear interaction studies, especially in context with the η-mesic state explorations. For the K−-meson we give a brief summary of the efforts in understanding the basic K−-nucleon interaction and theoretical explorations for the existence of K−-nucleus bound states. We critically examine the FINUDA measurements as a signal for the existence of the K−-nucleus bound states, especially in context with the contribution of the single nucleon knock-out final state interaction in the (K−, pΛ) reaction.

  13. An Upper Bound of Fully Entangled Fraction of Mixed States

    Science.gov (United States)

    Huang, Xiao-Fen; Jing, Nai-Huan; Zhang, Ting-Gui

    2016-06-01

    We study the fully entangled fraction of a quantum state. An upper bound is obtained for arbitrary bipartite system. This upper bound only depends on the Frobenius norm of the state. Supported by the National Natural Science Foundation of China under Grant Nos. 11401032, 11501153, 11271138, and 11531004; the Natural Science Foundation of Hainan Province under Grant Nos. 20151010, 114006 and 20161006; and the Scientific Research Foundation for Colleges of Hainan Province under Grant No. Hnky2015-18 and Simons Foundation under Grant No. 198129

  14. A framework for bounding nonlocality of state discrimination

    OpenAIRE

    Childs, Andrew M.; Leung, Debbie; Mancinska, Laura; Ozols, Maris

    2012-01-01

    We consider the class of protocols that can be implemented by local quantum operations and classical communication (LOCC) between two parties. In particular, we focus on the task of discriminating a known set of quantum states by LOCC. Building on the work in the paper "Quantum nonlocality without entanglement" [BDF+99], we provide a framework for bounding the amount of nonlocality in a given set of bipartite quantum states in terms of a lower bound on the probability of error in any LOCC dis...

  15. VISCO-ELASTIC SYSTEMS UNDER BOTH DETERMINISTIC AND BOUND RANDOM PARAMETRIC EXCITATION

    Institute of Scientific and Technical Information of China (English)

    徐伟; 戎海武; 方同

    2003-01-01

    The principal resonance of a visco-elastic systems under both deterministic and random parametric excitation was investigated. The method of multiple scales was used to determine the equations of modulation of amplitude and phase. The behavior, stability and bifurcation of steady state response were studied by means of qualitative analysis. The contributions from the visco-elastic force to both damping and stiffness can be taken into account. The effects of damping, detuning, bandwidth, and magnitudes of deterministic and random excitations were analyzed. The theoretical analysis is verified by numerical results.

  16. Directional detection of dark matter in universal bound states

    Energy Technology Data Exchange (ETDEWEB)

    Laha, Ranjan

    2015-10-01

    It has been suggested that several small-scale structure anomalies in CDM cosmology can be solved by strong self-interaction between dark matter particles. It was shown in Ref. [1] that the presence of a near threshold S-wave resonance can make the scattering cross section at nonrelativistic speeds come close to saturating the unitarity bound. This can result in the formation of a stable bound state of two asymmetric dark matter particles (which we call darkonium). Ref. [2] studied the nuclear recoil energy spectrum in dark matter direct detection experiments due to this incident bound state. Here we study the angular recoil spectrum, and show that it is uniquely determined up to normalization by the S-wave scattering length. Observing this angular recoil spectrum in a dark matter directional detection experiment will uniquely determine many of the low-energy properties of dark matter independent of the underlying dark matter microphysics.

  17. On Deusons or Deuteronlike Meson-Meson Bound States

    CERN Document Server

    Törnqvist, N A

    1994-01-01

    The systematics of deuteronlike two-meson bound states, {\\it deusons}, is discussed. Previous arguments that many of the present non-$q\\bar q$ states are such states are elaborated including, in particular, the tensor potential. For pseudoscalar states the important observation is made that the centrifugal barrier from the P-wave can be overcome by the $1/r^2$ and $1/r^3$ terms of the tensor potential. In the heavy meson sector one-pion exchange alone is strong enough to form at least deuteron-like $B\\bar B^*$ and $B^*\\bar B^*$ composites bound by approximately 50 MeV, while $D\\bar D^*$ and $D^*\\bar D^*$ states are expected near the threshold.

  18. Investigations of the potential functions of weakly bound diatomic molecules and laser-assisted excitive Penning ionization

    International Nuclear Information System (INIS)

    Three variations on the Dunham series expansion function of the potential of a diatomic molecule are compared. The differences among these expansions lie in the choice of the expansion variable, lambda. The functional form of these variables are lambda/sub s/ = l-r/sub e//r for the Simon-Parr-Finlan version, lambda/sub T/ - 1-(r/sub e//r)/sup p/ for that of Thakkar, and lambda/sub H/ = 1-exp(-rho(r/r/sub e/-1) for that of Huffaker. A wide selection of molecular systems are examined. It is found that, for potentials in excess of thirty kcal/mole, the Huffaker expansion provides the best description of the three, extrapolating at large internuclear separation to a value within 10% of the true dissociation energy. For potentials that result from the interaction of excited states, all series expansions show poor behavior away from the equilibrium internuclear separation of the molecule. The series representation of the potentials of weakly bound molecules are examined in more detail. The ground states of BeAr+, HeNe+, NaAr, and Ar2 and the excited states of HeNe+, NaNe, and NaAr are best described by the Thakkar expansion. Finally, the observation of laser-assisted excitive Penning ionization in a flowing afterglow is reported. The reaction Ar(3P2) + Ca + h nu → Ar + Ca+(5p 2P/sub J/) + e- occurs when the photon energy, h nu, is approximately equal to the energy difference between the metastable argon and one of the fine structure levels of the ion's doublet. By monitoring the cascade fluorescence of the above reaction and comparing it to the flourescence from the field-free process Ar(3P2) + Ca → Ar + Ca+(4p 2P/sub J/) + e- a surprisingly large cross section of 6.7 x 103 A2 is estimated

  19. Towards flavored bound states beyond rainbows and ladders

    CERN Document Server

    El-Bennich, B; Paracha, M A; de Melo, J P B C

    2013-01-01

    We give a snapshot of recent progress in solving the Dyson-Schwinger equation with a beyond rainbow-ladder ansatz for the dressed quark-gluon vertex which includes ghost contributions. We discuss the motivations for this approach with regard to heavy-flavored bound states and form factors and briefly describe future steps to be taken.

  20. Towards flavored bound states beyond rainbows and ladders

    Energy Technology Data Exchange (ETDEWEB)

    El-Bennich, B.; Rojas, E.; Melo, J. P. B. C. de [Laboratório de Física Teórica e Computacional, Universidade Cruzeiro do Sul, São Paulo 01506-000 SP (Brazil); Paracha, M. A. [Laboratorio de Fisica Teorica e Computacional, Universidade Cruzeiro do Sul, Sao Paulo 01506-000 SP, Brazil and Centre for Advanced Mathematics and Physics, National University of Science and Technology, Islamabad (Pakistan)

    2014-11-11

    We give a snapshot of recent progress in solving the Dyson-Schwinger equation with a beyond rainbow-ladder ansatz for the dressed quark-gluon vertex which includes ghost contributions. We discuss the motivations for this approach with regard to heavy-flavored bound states and form factors and briefly describe future steps to be taken.

  1. Detection of positron-atom bound states through resonant annihilation

    CERN Document Server

    Dzuba, V A; Gribakin, G F

    2010-01-01

    A method is proposed for detecting positron-atom bound states by observing Feshbach resonances in positron annihilation at electron volt energies. The method is applicable to a range of open-shell transition metal atoms which are likely to bind the positron: Si, Fe, Co, Ni, Ge, Tc, Ru, Rh, Sn, Sb, Ta, W, Os, Ir, and Pt.

  2. Bound States and Supercriticality in Graphene-Based Topological Insulators

    Directory of Open Access Journals (Sweden)

    Reinhold Egger

    2013-01-01

    Full Text Available We study the bound state spectrum and the conditions for entering a supercritical regime in graphene with strong intrinsic and Rashba spin-orbit interactions within the topological insulator phase. Explicit results are provided for a disk-shaped potential well and for the Coulomb center problem.

  3. In-medium antikaon interactions and bound states

    CERN Document Server

    Gal, Avraham; Barnea, Nir; Cieplý, Aleš; Mareš, Jiří; Gazda, Daniel

    2014-01-01

    Correct treatment of subthreshold Kbar-N dynamics is mandatory in kaonic-atom and Kbar-nuclear bound-state calculations, as demonstrated by using in-medium chirally-based models of Kbar-N interactions. Recent studies of kaonic-atom data reveal appreciable multi-nucleon contributions. Kbar-nuclear widths larger than 50 MeV are anticipated.

  4. Dynamics of deeply bound (K) over-bar states

    Czech Academy of Sciences Publication Activity Database

    Mareš, Jiří; Friedman, E.; Gal, A.

    2007-01-01

    Roč. 22, 2-3 (2007), s. 633-636. ISSN 0217-751X R&D Projects: GA AV ČR IAA100480617 Institutional research plan: CEZ:AV0Z10480505 Keywords : over-bar-nuclear bound states * over-bar-nuclear relativistic mean field calculations Subject RIV: BE - Theoretical Physics Impact factor: 0.764, year: 2007

  5. Approximate solution of bound state problems through continued fractions

    International Nuclear Information System (INIS)

    A method to solve ordinary linear differential equations through continued fractions is applied to several physical systems. In particular, results for the Schroedinger equation give a good accuracy for the eigenvalues of bound states in the S-wave Yukawa potential, and the lowest order approximations provide exact values for the harmonic oscillator and Coulomb potential eigenvalues and eigenfuctions. (orig.)

  6. Effective field theories for non-relativistic bound states

    International Nuclear Information System (INIS)

    I review some of the progress made in the last ten years in providing a solid foundation to the description of non-relativistic bound states in QED and QCD by means of effective field theories. I will discuss some applications. (author)

  7. K-nuclear bound states in a dynamical model

    Czech Academy of Sciences Publication Activity Database

    Mareš, Jiří; Friedman, E.; Gal, A.

    2006-01-01

    Roč. 770, 1/2 (2006), s. 84-105. ISSN 0375-9474 Institutional research plan: CEZ:AV0Z10480505 Keywords : kaonic atoms * K-nuclear bound states * K-nucleus interaction Subject RIV: BE - Theoretical Physics Impact factor: 2.155, year: 2006

  8. Bound states in the continuum in quasiperiodic systems

    Energy Technology Data Exchange (ETDEWEB)

    Hsueh, W.J., E-mail: hsuehwj@ntu.edu.t [Department of Engineering Science, National Taiwan University, Taipei 10660, Taiwan (China); Chen, C.H.; Chang, C.H. [Department of Engineering Science, National Taiwan University, Taipei 10660, Taiwan (China)

    2010-11-01

    We first propose the existence of bound states in the continuums (BICs) in quasiperiodic systems. Owing to long-range correlation, destructive interference may occur in quasiperiodic systems with higher generation order. Occurrences of BICs in Fibonacci quantum wells studied by localization analysis and gap map method are proposed.

  9. Polarization control of the bound state of a vector soliton

    International Nuclear Information System (INIS)

    This article demonstrates that the number of pulses in a group of vector bound solitons can be accurately adjusted by polarization control. We could achieve states with up to seven pulses trapped in a group with equally firm pulse separation. The stable relative phase between pulses within the group is manifested as an interference pattern in the soliton spectrum. (letter)

  10. Bound States in the AdS/CFT Correspondence

    CERN Document Server

    Minces, P

    2004-01-01

    We consider a massive scalar field theory in anti-de Sitter space, in both minimally and non-minimally coupled cases. We introduce a relevant double-trace perturbation at the boundary, by carefully identifying the correct source and generating functional for the corresponding conformal operator. We show that such relevant double-trace perturbation introduces changes in the coefficients in the boundary terms of the action, which in turn govern the existence of a bound state in the bulk. For instance, in the minimally coupled case, we show that the usual action, containing no additional boundary terms, gives rise to a bound state, which can be avoided only through the addition of a proper boundary term. Another notorious example is that of a conformally coupled scalar field, for which there is no associated bound state. In general, in both minimally and non-minimally coupled cases, we explicitly compute the boundary terms which give rise to a bound state, and which ones do not. In the non-minimally coupled case...

  11. Gluon mass generation in the massless bound-state formalism

    CERN Document Server

    Ibañez, D

    2012-01-01

    We present a detailed, all-order study of gluon mass generation within the massless bound-state formalism, which constitutes the general framework for the systematic implementation of the Schwinger mechanism in non-Abelian gauge theories. The main ingredient of this formalism is the dynamical formation of bound-states with vanishing mass, which give rise to effective vertices containing massless poles; these latter vertices, in turn, trigger the Schwinger mechanism, and allow for the gauge-invariant generation of an effective gluon mass. This particular approach has the conceptual advantage of relating the gluon mass directly to quantities that are intrinsic to the bound-state formation itself, such as the "transition amplitude" and the corresponding "bound-state wave-function". As a result, the dynamical evolution of the gluon mass is largely determined by a Bethe-Salpeter equation that controls the dynamics of the relevant wave-function, rather than the Schwinger-Dyson equation of the gluon propagator, as h...

  12. Lifetimes of 167Yb excited states

    International Nuclear Information System (INIS)

    Lifetimes of 167Yb excited states arising at the decay of 167Lu → 167Yb monoisotope have been determined using eγ and γγ delayed coincidence methods. The time spectrometers mounted on the base of a magnetic lens β-spectrometer and a scintillation detector, a scintillation and a Ge(Li) detectors, a scintillation and Si(Li)-detectors are used. 167Yb level fifetimes are measured with energies of 29 keV (Tsub(1/2)=13.5(7) ns), 78 keV (Tsub(1/2=0.84(4) ns), 178 keV (Tsub(1/2)167Yb investigated levels are analysed. On the basis of intrarotational transitions internal quadrupole momenta of 5/2-/523/, 3/2-/512/ and 1/2-/521/ bands have been determined

  13. Closed string brane-like states, brane bound states and noncommutative branes

    International Nuclear Information System (INIS)

    We study the mass and different RR charge distributions of the BPS (p,p-2)-brane bound states in the closed string brane-like σ-model. We show that such brane bound states can be realized by introducing a constant B field in the closed string theory. In addition we show that the worldvolume coordinates of these brane bound states turn out to be noncommutative. (author)

  14. Effective Hamiltonian for bound states in Yukawa theory

    International Nuclear Information System (INIS)

    A generalization of the Gell-Mann–Low theorem is applied to lowest nontrivial order to determine an effective Hamiltonian for two-fermion states in relativistic Yukawa theory. The consistency of the corresponding effective Schrödinger equation is thoroughly investigated in various aspects, among others the nonrelativistic and one-body limits, and the small-distance or large-momentum regime of the bound state solutions is discussed in detail. -- Highlights: •A generalization of the Gell-Mann–Low theorem is applied to Yukawa theory. •The effective Hamiltonian for two-fermion states is derived to lowest order. •The nonrelativistic and one-body limits are consistent. •The large-momentum behavior of the bound-state solutions is analyzed. •A critical value for the coupling constant is determined

  15. 'Dressing' and bound states in quantum field theory

    International Nuclear Information System (INIS)

    The program of introducing 'dressed' particles (instead of 'bare' ones) was suggested earlier by L. Faddev et al. It is modified here for the case when 'dressed' states can decay. On the basis of this 'dressing' formalism, a new approach is proposed to the problem of bound states in field theories such as the hydrogen atom and the positronium in QED or hadrons in QCD. Peculiarities of this approach as compared to the known ones are discussed. 22 refs

  16. Observation of bound states in Lieb photonic lattices

    CERN Document Server

    Vicencio, Rodrigo A; Morales-Inostroza, Luis; Real, Bastian; Weimann, Steffen; Szameit, Alexander; Molina, Mario I

    2014-01-01

    We present the first experimental demonstration of a new type of bound states in the continuum, namely, compacton-like linear states in flat bands lattices. To this end, photonic Lieb lattices are employed, which exhibit three tight-binding bands, with one being perfectly flat. Our results could be of great importance for fundamental physics as well as for various applications concerning imaging and data transmission.

  17. Interplay of projectile breakup and target excitation in reactions induced by weakly-bound nuclei

    CERN Document Server

    Gomez-Ramos, M

    2016-01-01

    In this work, we reexamine the extension of the CDCC formalism to include target excitation and apply it to a variety of reactions to study the effect of breakup on inelastic cross sections. We use a transformed oscillator basis to discretize the continuum of the projectiles in the different reactions and use the extended CDCC method developed in this work to solve the resulting coupled differential equations. A new code has been developed to perform the calculations. Reactions 58Ni(d, d) 58Ni*, 24Mg(d, d) 24Mg* , 144Sm( 6Li, 6Li) 144Sm* and 9Be( 6Li, 6Li) 9Be* are studied. Satisfactory agreement is found between experimental data and extended CDCC calculations. The studied CDCC method is proved to be an accurate tool to describe target excitation in reactions with weakly-bound nuclei. Moderate effects of breakup on inelastic observables are found for the reactions studied. Cross section magnitudes are not modified much, but angular distributions present smoothing when opposed to calculations without breakup.

  18. Monopole-fermion and dyon-fermion bound states II: Weakly bound states for the lowest angular momentum

    International Nuclear Information System (INIS)

    We investigate weakly bound dyon-fermion states of the lowest angular momentum. Both Coulomb attraction and Coulomb repulsion are studied. Binding energies are given by a transcendental equation which is solved explicitly in a number of limiting cases.Normalized wave functions are given in terms of Bessel functions and confluent hypergeometric functions. (orig.)

  19. Two-body bound states ampersand the Bethe-Salpeter equation

    International Nuclear Information System (INIS)

    The Bethe-Salpeter formalism is used to study two-body bound states within a scalar theory: two scalar fields interacting via the exchange of a third massless scalar field. The Schwinger-Dyson equation is derived using functional and diagrammatic techniques, and the Bethe-Salpeter equation is obtained in an analogous way, showing it to be a two-particle generalization of the Schwinger-Dyson equation. The authors also present a numerical method for solving the Bethe-Salpeter equation without three-dimensional reduction. The ground and first excited state masses and wavefunctions are computed within the ladder approximation and space-like form factors are calculated

  20. Schwinger functions, light-quark bound states and sigma terms

    Science.gov (United States)

    Höll, A.; Maris, P.; Roberts, C. D.; Wright, S. V.

    2006-11-01

    We explore the viability of using solely spacelike information about a Schwinger function to extract properties of bound states. In a concrete example it is not possible to determine properties of states with masses ≳1.2 GeV. Modern Dyson-Schwinger equation methods supply a well-constrained tool that provides access to hadron masses and σ-terms. We report values of the latter for a range of hadrons. Of interest is an analysis relating to a u,d scalar meson, which is compatible with a picture of the lightest 0 as a bound state of a dressed-quark and -antiquark supplemented by a material pion cloud. A constituent-quark σ-term is defined, which affords a means for assessing the flavour-dependence of dynamical chiral symmetry breaking.

  1. Bound States in the Continuum in double layer structures

    Science.gov (United States)

    Li, Liangsheng; Yin, Hongcheng

    2016-06-01

    We have theoretically investigated the reflectivity spectrums of single- and double-layer photonic crystal slabs and the dielectric multilayer stack. It is shown that light can be perfectly confined in a single-layer photonic crystal slab at a given incident angle by changing the thickness, permittivity or hole radius of the structure. With a tunable double-layer photonic crystal slab, we demonstrate that the occurrence of tunable bound states in the continuum is dependent on the spacing between two slabs. Moreover, by analytically investigating the Drude lossless multilayer stack model, the spacing dependence of bound states in the continuum is characterized as the phase matching condition that illuminates these states can occur at any nonzero incident angles by adjusting the spacing.

  2. Andreev bound state spectrum in half-metallic ferromagnets

    International Nuclear Information System (INIS)

    Half-metallic ferromagnets are important for potential applications in spintronics and as sources of completely spin-polarized currents. In heterostructures with superconductors they introduce new effects in the interface regions, like spin-mixing and triplet rotation. A triplet supercurrent trough a half metal has been predicted and experimentally verified. Another interesing question regards the question how the density of states is modified in the half-metallic region. Here we present results of the Andreev bound state spectrum in a half-metal/superconductor proximity structure. We discuss the dependence on the interface parameters that enter the interface scattering matrix of the heterostructure. We discuss the role of odd-frequency pairing amplitudes in the proximity structure. We also study the modification of the Andreev bound state spectrum in a superflow

  3. Shooting quasiparticles from Andreev bound states in a superconducting constriction

    Energy Technology Data Exchange (ETDEWEB)

    Riwar, R.-P.; Houzet, M.; Meyer, J. S. [University of Grenoble Alpes, INAC-SPSMS (France); Nazarov, Y. V., E-mail: Y.V.Nazarov@tudelft.nl [Delft University of Technology, Kavli Institute of NanoScience (Netherlands)

    2014-12-15

    A few-channel superconducting constriction provides a set of discrete Andreev bound states that may be populated with quasiparticles. Motivated by recent experimental research, we study the processes in an a.c. driven constriction whereby a quasiparticle is promoted to the delocalized states outside the superconducting gap and flies away. We distinguish two processes of this kind. In the process of ionization, a quasiparticle present in the Andreev bound state is transferred to the delocalized states leaving the constriction. The refill process involves two quasiparticles: one flies away while another one appears in the Andreev bound state. We notice an interesting asymmetry of these processes. The electron-like quasiparticles are predominantly emitted to one side of the constriction while the hole-like ones are emitted to the other side. This produces a charge imbalance of accumulated quasiparticles, that is opposite on opposite sides of the junction. The imbalance may be detected with a tunnel contact to a normal metal lead.

  4. Excited state quantum phase transitions in many-body systems

    International Nuclear Information System (INIS)

    Phenomena analogous to ground state quantum phase transitions have recently been noted to occur among states throughout the excitation spectra of certain many-body models. These excited state phase transitions are manifested as simultaneous singularities in the eigenvalue spectrum (including the gap or level density), order parameters, and wave function properties. In this article, the characteristics of excited state quantum phase transitions are investigated. The finite-size scaling behavior is determined at the mean-field level. It is found that excited state quantum phase transitions are universal to two-level bosonic and fermionic models with pairing interactions

  5. Representation of electronic excited states by conditional wavefunction

    Science.gov (United States)

    Koichiro, Yamaguchi; Yoshiaki, Ito; Takeshi, Mukoyama

    2000-03-01

    Hartree-Fock scheme is an ordinary method to calculate the zeroth order approximation for non-relativistic electronic excited states of atoms and molecules. The accuracy of zeroth order hamiltonian affects the efficiency of higher order estimation of the Hamiltonian and the Green's function. To improve the preciseness of zeroth order Hamiltonian, we try to include the relaxation of electronic excited states into zeroth order approximation by using conditional wavefunction representation instead of Hartree-Fock method. Our method is illustrated by the calculation of electronic double-excited states of Helium and single-excited states of Neon. Further extention of our formulation for multiple-exfcited states are also discussed.

  6. Photoemission from excited states in rare gas solids by combining synchrotronradiation with a laser

    International Nuclear Information System (INIS)

    A new spectroscopic method has been developed to study excited states in rare gas solids: Excitons and conductionband-states are populated by synchrotron radiation (photon energy hwSR=5 - 30 eV). Subsequently electrons from these bound or conduction band-states are excited above the vacuum level of the solid by a pulsed dye laser (hwL=1.9 - 3.7 eV). This experimental technique was applied to solid Xe, Kr, Ar and Ne. (orig./GSCH)

  7. Are there compact heavy four-quark bound states?

    OpenAIRE

    Vijande, Javier; Weissman, E.; Valcarce, A.; Barnea, N.

    2007-01-01

    We present an exact method to study four-quark systems based on the hyperspherical harmonics formalism. We apply it to several physical systems of interest containing two heavy and two light quarks using different quark-quark potentials. Our conclusions mark the boundaries for the possible existence of compact, nonmolecular, four-quark bound states. While QQ (n) over bar(n) over bar states may be stable in nature, the stability of Q (Q) over barn (n) over bar states would imply the existence ...

  8. Photoionization spectra of even-parity states of Sm atom with multistep excitation

    International Nuclear Information System (INIS)

    Two-color stepwise excitation and photoionization schemes are adopted to study the spectra of bound even-parity high-lying states of the Sm atom with three different excitation paths via the 4f66s6p 7DJ (J=1, 2 and 3) intermediate states. In order to obtain the information of these high-lying states, the Sm atom in these high-lying states is photoionized with an extra photon. Among 231 states detected in the energy region between 35,545 and 44,225 cm-1, 108 states are newly discovered, while the rest can be identified as the same with the literature. In most cases, comparisons of the spectra corresponding to the three different excitation paths may partially determine the total angular momentum of the observed peaks with the selection rules. In addition, the relative intensities of all related transition lines are given.

  9. Bound states and critical behavior of the Yukawa potential

    Institute of Scientific and Technical Information of China (English)

    LI; Yongyao

    2006-01-01

    [1]Yukawa,H.,On the interaction of elementary particles,Proc.Phys.Math Soc.Jap.,1935,17:48-57.[2]Sachs,R.,Goeppert-Mayer,M.,Calculations on a new neutron-proton interaction potential,Phys.Rev.,1938,53:991-993.[3]Harris,G.,Attractive two-body interactions in partially ionized plasmas,Phys.Rev.,1962,125:1131-1140.[4]Schey,H.,Schwartz,J.,Counting the bound states in short-range central potentials,Phys.Rev.B,1965,139:1428-1432.[5]Rogers,J.,Graboske,H.,Harwood,E.,Bound eigenstates of the static screened Coulomb poten-tial,Phys.Rev.A,1970,1:1577-1586.[6]McEnnan,J.,Kissel,L.,Pratt,R.,Analytic perturbation theory for screened Coulomb potentials:non-relativistic case,Phys.Rev.A,1976,13:532-559.[7]Gerry,C.,Estimates of the ground states of the Yukawa potential from the Bogoliubov inequality,J.Phys.A,1984,17:L313-L315.[8]Kr(o)ger,H.,Girard,R.,Dufour,G.,Direct calculation of the S matrix in coordinate space,Phys.Rev.C,1988,37:486-496.[9]Girard,R.,Kr(o)ger,H.,Labelle,P.et al.,Computation of a long time evolution in a Schr(o)dinger system,Phys.Rev.A,1988,37:3195-3200.[10]Garavelli,S.,Oliveira,F.,Analytical solution for a Yukawa-type potential,Phys.Rev.Lett.,1991,66:1310-1313.[11]Gomes,O.,Chacham,H.,Mohallem,J.,Variational calculations for the bound-unbound transition of the Yukawa potential,Phys.Rev.A,1994,50:228-231.[12]Yukalov,V.,Yukalova,E.,Oliveira,F.,Renormalization-group solutions for Yukawa potential,J.Phys.A,1998,31:4337-4348.[13]Brau,F.,Necessary and sufficient conditions for existence of bound states in a central potential,J.Phys.A,2003,36:9907-9913.[14]Bertini,L.,Mella,M.,Bressanini,D.et al.,Borromean binding in H-2 with Yukawa potential:a nonadiabatic quantum Monte Carlo study,Phys.Rev.A,2004,69:042504.[15]Dean,D.,Drummond,I.,Horgan,R.,Effective diffusion constant in a two-dimensional medium of charged point scatterers,J.Phys.A,2004,37:2039-2046.[16]De-Leo,S.,Rotelli,P.,Amplification of coupling for Yukawa potentials,Phys.Rev.D,2004,69:034006.[17]Khrapak

  10. Kinetics studies following state-selective laser excitation. Final progress report, March 15, 1984--July 15, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Keto, J.W.

    1994-04-01

    The objective of this contract was the study of state-to-state, electronic energy transfer reactions relevant to the excited state chemistry observed in discharges. We studied deactivation reactions and excitation transfer in collisions of excited states of xenon and krypton atoms with Ar, Kr, Xe and chlorine. The reactant states were excited selectively in two-photon transitions using tunable u.v. and v.u.v. lasers. Excited states produced by the collision were observed by their fluorescence. Reaction rates were measured by observing the time dependent decay of signals from reactant and product channels. In addition we measured interaction potentials of the reactants by laser spectroscopy where the laser induced fluorescence or ionization is measured as a function of laser wavelength (excitation spectra) or by measuring fluorescence spectra at fixed laser frequencies with monochromators. The spectra were obtained in the form of either lineshapes or individual lines from rovibrational transitions of bound states. Our research then required several categories of experiments in order to fully understand a reaction process: 1. High resolution laser spectroscopy of bound molecules or lineshapes of colliding pairs is used to determine potential curves for reactants. 2. Direct measurements of state-to-state reaction rates were measured by studying the time dependent loss of excited reactants and the time dependent formation of products. 3. The energy selectivity of a laser can be used to excite reactants on an excited surface with controlled internuclear configurations. For free states of reactants (as exist in a gas cell) this has been termed laser assisted reactions, while for initially bound states (as chemically bound reactants or dimers formed in supersonic beams) the experiments have been termed photo-fragmentation spectroscopy.

  11. A variational study of bound states in the Higgs model

    CERN Document Server

    Siringo, F

    2000-01-01

    The possible existence of Higgs-Higgs bound states in the Higgs sector of the Standard Model is explored using the |hh>+|hhh> variational ansatz of Di Leo and Darewych. The resulting integral equations can be decoupled exactly, yielding a one-dimensional integral equation, solved numerically. We thereby avoid the extra approximations employed by Di Leo and Darewych, and we find a qualitatively different mass renormalization. Within the conventional scenario, where a not-too-large cutoff is invoked to avoid "triviality", we find, as usual, an upperbound on the Higgs mass. Bound-state solutions are only found in the very strong coupling regime, but at the same time a relatively small physical mass is required as a consequence of renormalization.

  12. Observation of Andreev bound states at spin-active interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Beckmann, Detlef; Wolf, Michael Johannes [KIT, Institut fuer Nanotechnologie (Germany); Huebler, Florian [KIT, Institut fuer Nanotechnologie (Germany); KIT, Institut fuer Festkoerperphysik (Germany); Loehneysen, Hilbert von [KIT, Institut fuer Festkoerperphysik (Germany); KIT, Physikalisches Institut (Germany)

    2013-07-01

    We report on high-resolution differential conductance experiments on nanoscale superconductor/ferromagnet tunnel junctions with ultra-thin oxide tunnel barriers. We observe subgap conductance features which are symmetric with respect to bias, and shift according to the Zeeman energy with an applied magnetic field. These features can be explained by resonant transport via Andreev bound states induced by spin-active scattering at the interface. From the energy and the Zeeman shift of the bound states, both the magnitude and sign of the spin-dependent interfacial phase shifts between spin-up and spin-down electrons can be determined. These results contribute to the microscopic insight into the triplet proximity effect at spin-active interfaces.

  13. Bound states in coupled guides. II. Three dimensions

    Science.gov (United States)

    Linton, C. M.; Ratcliffe, K.

    2004-04-01

    We compute bound-state energies in two three-dimensional coupled waveguides, each obtained from the two-dimensional configuration considered in paper I [J. Math. Phys. 45, 1359-1379 (2004)] by rotating the geometry about a different axis. The first geometry consists of two concentric circular cylindrical waveguides coupled by a finite length gap along the axis of the inner cylinder, and the second is a pair of planar layers coupled laterally by a circular hole. We have also extended the theory for this latter case to include the possibility of multiple circular windows. Both problems are formulated using a mode-matching technique, and in the cylindrical guide case the same residue calculus theory as used in paper I is employed to find the bound-state energies. For the coupled planar layers we proceed differently, computing the zeros of a matrix derived from the matching analysis directly.

  14. Bound States in Minkowski Space in 2 + 1 Dimensions

    International Nuclear Information System (INIS)

    The Nakanishi perturbative integral representation of the Bethe–Salpeter amplitude in three-dimensions (2 + 1) is used to solve the corresponding homogeneous Bethe–Salpeter equation in Minkowski space. The projection of this equation onto the null-plane, as reported here, leads to a bound-state equation for the Nakanishi weight function. The explicit forms of the integral equation for the Nakanishi weight function are shown in the ladder approximation. In addition, the valence light-front wave function is presented. The formal steps of the formalism are illustrated to some extend, with the resulting equation being applied to a bound state system composed by two identical scalar particles of mass m, interacting through the exchange of another massive scalar particle of mass μ. The results reported in this contribution show quite good agreement between our calculations obtained from the Bethe–Salpeter amplitude with the Nakanishi weight function with direct solutions obtained in the Euclidean space. (author)

  15. Understanding the nucleon as a Borromean bound-state

    Directory of Open Access Journals (Sweden)

    Jorge Segovia

    2015-11-01

    Full Text Available Analyses of the three valence-quark bound-state problem in relativistic quantum field theory predict that the nucleon may be understood primarily as a Borromean bound-state, in which binding arises mainly from two separate effects. One originates in non-Abelian facets of QCD that are expressed in the strong running coupling and generate confined but strongly-correlated colour-antitriplet diquark clusters in both the scalar–isoscalar and pseudovector–isotriplet channels. That attraction is magnified by quark exchange associated with diquark breakup and reformation. Diquark clustering is driven by the same mechanism which dynamically breaks chiral symmetry in the Standard Model. It has numerous observable consequences, the complete elucidation of which requires a framework that also simultaneously expresses the running of the coupling and masses in the strong interaction. Planned experiments are capable of validating this picture.

  16. Bound States in the Continuum in Nuclear and Hadron Physics

    CERN Document Server

    Lenske, H; Cao, Xu

    2015-01-01

    The population of bound states in the continuum and their spectral properties are studied on the nuclear and hadronic scale. The theoretical approach is presented and realizations in nuclear and charmonium spectroscopy are dis- cussed. The universality of the underlying dynamical principles is pointed out. Applications to nuclear systems at the neutron dripline and for charmonium spectroscopy by $e^- e^+ \\to D\\bar{D}$ production are discussed.

  17. Weakly bound states of neutrons in gravitational fields

    OpenAIRE

    Khugaev, Avas V.; Sultanov, Renat A.; Guster, Dennis

    2010-01-01

    In this paper a quantum-mechanical behaviour of neutrons in gravitational fields is considered. A first estimation is made using the semiclassical approximation, neglecting General Relativity, magnetic and rotation effects, for neutrons in weakly bound states in the weak gravitational field of the Earth. This result was generalized for a case, in which the Randall - Sundrum correction to Newton's gravitational law on the small scales was applied. Application of the results to Neutron Star phy...

  18. Approximate bound Dirac states for pseudoscalar Hulthen potential

    International Nuclear Information System (INIS)

    In this paper, we present approximate analytical solutions of the Dirac equation with the pseudoscalar Hulthen potential under spin and pseudospin (p-spin) symmetry limits in (3+1) dimensions. The energy eigenvalues and corresponding eigenfunctions are given in their closed forms by using the Nikiforov–Uvarov (NU) method. Numerical results of the energy eigenvalue equations are presented to show the effects of the potential parameters on the bound-state energies. (author)

  19. Bound states in weakly deformed waveguides: numerical vs analytical results

    CERN Document Server

    Amore, Paolo; Fernández, Francisco M; Jacobo, Martin; Zhevandrov, Petr

    2016-01-01

    We have studied the emergence of bound states in weakly deformed and/or heterogeneous waveguides, comparing the analytical predictions obtained using a recently developed perturbative method, with precise numerical results, for different configurations (a homogeneous asymmetric waveguide, a heterogenous asymmetric waveguide and a homogeneous broken-strip). In all the examples considered in this paper we have found excellent agreement between analytical and numerical results, thus providing a numerical verification of the analytical approach.

  20. Fermion Bound States Around Skyrmions in Doped Antiferromagnets

    Institute of Scientific and Technical Information of China (English)

    寇谡鹏

    2003-01-01

    We show the skyrmion effects in doped antiferromagnets for the uniform flux phase. The low-energy effective theory of the t′-J model can be mapped onto the massive quantum electrodynamics. There exist Fermion bound states around skyrmions. For each sublattice, there exist induced fractional fermion numbers around the skyrmions. The total induced fermion number is zero due to the "cancelling effect" between two sublattices with opposite charges.

  1. Excited states in DNA strands investigated by ultrafast laser spectroscopy.

    Science.gov (United States)

    Chen, Jinquan; Zhang, Yuyuan; Kohler, Bern

    2015-01-01

    Ultrafast laser experiments on carefully selected DNA model compounds probe the effects of base stacking, base pairing, and structural disorder on excited electronic states formed by UV absorption in single and double DNA strands. Direct π-orbital overlap between two stacked bases in a dinucleotide or in a longer single strand creates new excited states that decay orders of magnitude more slowly than the generally subpicosecond excited states of monomeric bases. Half or more of all excited states in single strands decay in this manner. Ultrafast mid-IR transient absorption experiments reveal that the long-lived excited states in a number of model compounds are charge transfer states formed by interbase electron transfer, which subsequently decay by charge recombination. The lifetimes of the charge transfer states are surprisingly independent of how the stacked bases are oriented, but disruption of π-stacking, either by elevating temperature or by adding a denaturing co-solvent, completely eliminates this decay channel. Time-resolved emission measurements support the conclusion that these states are populated very rapidly from initial excitons. These experiments also reveal the existence of populations of emissive excited states that decay on the nanosecond time scale. The quantum yield of these states is very small for UVB/UVC excitation, but increases at UVA wavelengths. In double strands, hydrogen bonding between bases perturbs, but does not quench, the long-lived excited states. Kinetic isotope effects on the excited-state dynamics suggest that intrastrand electron transfer may couple to interstrand proton transfer. By revealing how structure and non-covalent interactions affect excited-state dynamics, on-going experimental and theoretical studies of excited states in DNA strands can advance understanding of fundamental photophysics in other nanoscale systems. PMID:25326834

  2. Upsilon particles as bound states of new heavy quarks

    International Nuclear Information System (INIS)

    Charmonium spectroscopy (cc) was analysed, recently using a power confining potential and was determined that the energy eigenvalues are in good agreement with experimental values when it was used a power equal to 1/2 (square root potential). Assuming universality of the potential for quark-antiquark (qq) and assuming that the particle γ (9.4 GeV) is the fundamental state of the pair bb (beauty quark). The remaning bound states of this pair and their leptonic and hadronic decay widths are calculated

  3. Three-boson bound states in finite volume with EFT

    International Nuclear Information System (INIS)

    The universal properties of a three-boson system with large scattering length are well understood within the framework of Effective Field Theory. They include a geometric spectrum of shallow three-body bound states called Efimov states and log-periodic dependence of scattering observables on the scattering length. We investigate the modification of this spectrum in a finite cubic box using a partial wave expansion. The dependence of the binding energies on the box size is calculated and the renormalization of the Effective Field Theory in finite volume is verified explicitly.

  4. Analytic continuation as a bridge between continuum and bound states

    Directory of Open Access Journals (Sweden)

    Blokhintsev Leonid

    2015-01-01

    Full Text Available The problem of obtaining characteristics of bound nuclear states from continuum states data is discussed. It is shown that the ambiguities due to the existence of phase-equivalent potentials can be resolved by using the analytic properties of scattering amplitudes. The methods of determination of asymptotic normalization coefficients and vertex constants are considered. The asymptotic normalization coefficients for 6Li in the α + d channel are found by analytic continuation of the two-channel effective range expansion. The account of inelastic channels within the effective range approach is discussed.

  5. Structural and excited-state properties of oligoacene crystals from first principles

    Science.gov (United States)

    Rangel, Tonatiuh; Berland, Kristian; Sharifzadeh, Sahar; Brown-Altvater, Florian; Lee, Kyuho; Hyldgaard, Per; Kronik, Leeor; Neaton, Jeffrey B.

    2016-03-01

    Molecular crystals are a prototypical class of van der Waals (vdW) bound organic materials with excited-state properties relevant for optoelectronics applications. Predicting the structure and excited-state properties of molecular crystals presents a challenge for electronic structure theory, as standard approximations to density functional theory (DFT) do not capture long-range vdW dispersion interactions and do not yield excited-state properties. In this work, we use a combination of DFT including vdW forces, using both nonlocal correlation functionals and pairwise correction methods, together with many-body perturbation theory (MBPT) to study the geometry and excited states, respectively, of the entire series of oligoacene crystals, from benzene to hexacene. We find that vdW methods can predict lattice constants within 1% of the experimental measurements, on par with the previously reported accuracy of pairwise approximations for the same systems. We further find that excitation energies are sensitive to geometry, but if optimized geometries are used MBPT can yield excited-state properties within a few tenths of an eV from experiment. We elucidate trends in MBPT-computed charged and neutral excitation energies across the acene series and discuss the role of common approximations used in MBPT.

  6. Photo-production of Bound States with Hidden Charms

    CERN Document Server

    Wu, Jia-Jun

    2012-01-01

    The photo-production of $J/\\Psi$-$^3He$ bound state ($[^3He]_{J/\\Psi}$) on a $^4He$ target has been investigated using the impulse approximation. The calculations have been performed using several $\\gamma+N \\rightarrow J/\\Psi +N$ models based on the Pomeron-exchange and accounting for the pion-exchange mechanism at low energies. The $J/\\Psi$ wavefunctions in $[^3He]_{J/\\Psi}$ are generated from various $J/\\Psi$-nucleus potentials which are constructed by either using a procedure based on the Pomeron-quark coupling mechanism or folding a $J/\\Psi$-N potential ($v_{J/\\Psi,N}$) into the nuclear densities. We consider $v_{J/\\Psi,N}$ derived from the effective field theory approach, Lattice QCD, and Pomeron-quark coupling mechanism. The upper bound of the predicted total cross sections is about $0.1 - 0.3$ pico-barn. We also consider the possibility of photo-production of a six quark-$J/\\Psi$ bound state ($[q^6]_{J/\\Psi})$ on the $^3He$ target. The Compound Bag Model of $NN$ scattering and the quark cluster model o...

  7. Quantum localization and bound-state formation in Bose-Einstein condensates

    International Nuclear Information System (INIS)

    We discuss the possibility of exponential quantum localization in systems of ultracold bosonic atoms with repulsive interactions in open optical lattices without disorder. We show that exponential localization occurs in the maximally excited state of the lowest energy band. We establish the conditions under which the presence of the upper energy bands can be neglected, determine the successive stages and the quantum phase boundaries at which localization occurs, and discuss schemes to detect it experimentally by visibility measurements. The discussed mechanism is a particular type of quantum localization that is intuitively understood in terms of the interplay between nonlinearity and a bounded energy spectrum.

  8. Search for the η-mesic Helium bound state with the WASA-at-COSY facility

    Science.gov (United States)

    Skurzok, Magdalena; Krzemień, Wojciech; Rundel, Oleksandr; Moskal, Pawel

    2016-05-01

    We performed a search for 4He-η bound state with high statistics and high acceptance with the WASA-at-COSY facility using a ramped beam technique. The signature of η-mesic nuclei is searched for in dd → 3Henπ0 and dd → 3Hepπ- reactions by the measurement of the excitation functions in the vicinity of the η production threshold. This paper presents the experimental method and the preliminary results of the data analysis for dd → 3Henπ0 process.

  9. Search for the eta-mesic Helium bound state with the WASA-at-COSY facility

    CERN Document Server

    Skurzok, M; Rundel, O; Moskal, P

    2015-01-01

    We performed a search for 4He-eta bound state with high statistics and high acceptance with the WASA-at-COSY facility using a ramped beam technique. The signature of eta-mesic nuclei is searched for in dd -> 3Henpi0 and dd -> 3Heppi- reactions by the measurement of the excitation functions in the vicinity of the {\\eta} production threshold. This paper presents the experimental method and the preliminary results of the data analysis for dd -> 3Henpi0 process.

  10. Colour-octet bound states, induced by Higgs mechanism

    CERN Document Server

    Bladwell, S; Flambaum, V V; Kozlov, A

    2012-01-01

    The current limits for fourth generation quarks allows to expect their mass of the order of 500 GeV. In this mass region for quark-anti-quark pair the additional Yukawa-type attraction due to Higgs mechanism is expected to emerge. This Higgs induced attraction greatly exceeds strong interaction between quarks and leads to the formation of bound states in both colour octet $S^{(8)}$ and singlet $S^{(1)}$ states. In the key of recent works on significance of colour octet channel for production of colour singlet state of fourth generation $Q\\bar{Q}$ we calculated the binding energies for both octet and singlet states. Such attraction localizes quarks in extremely small area. Hence colour octet pair of fourth generation quarks can form the "nucleus" and together with colour neutralizing light particle that is captured by strong interaction in orbit around the nucleus, create particle, similar by its structure to Deuterium.

  11. A narrow quasi-bound state of the DNN system

    International Nuclear Information System (INIS)

    We have investigated a charmed system of DNN (composed of two nucleons and a D meson) by a complementary study with a variational calculation and a Faddeev calculation with fixed-center approximation (Faddeev-FCA). In the present study, we employ a DN potential based on a vector–meson exchange picture in which a resonant Λc(2595) is dynamically generated as a DN quasi-bound state, similarly to the Λ(1405) as a K¯N one in the strange sector. As a result of the study of variational calculation with an effective DN potential and three kinds of NN potentials, the DNN(Jπ=0−,I=1/2) is found to be a narrow quasi-bound state below Λc(2595)N threshold: total binding energy ∼225 MeV and mesonic decay width ∼25 MeV. On the other hand, the Jπ=1− state is considered to be a scattering state of Λc(2595) and a nucleon. These results are essentially supported by the Faddeev-FCA calculation. By the analysis of the variational wave function, we have found a unique structure in the DNN(Jπ=0−,I=1/2) such that the D meson stays around the center of the total system due to the heaviness of the D meson

  12. Exact ensemble density-functional theory for excited states

    CERN Document Server

    Yang, Zeng-hui; Pribram-Jones, Aurora; Burke, Kieron; Needs, Richard J; Ullrich, Carsten A

    2014-01-01

    We construct exact Kohn-Sham potentials for the ensemble density-functional theory (EDFT) of excited states from the ground and excited states of helium. The exchange-correlation potential is compared with current approximations, which miss prominent features. The ensemble derivative discontinuity is tested, and the virial theorem is proven and illustrated.

  13. Investigations of the potential functions of weakly bound diatomic molecules and laser-assisted excitive Penning ionization

    Energy Technology Data Exchange (ETDEWEB)

    Goble, J.H. Jr.

    1982-05-01

    Three variations on the Dunham series expansion function of the potential of a diatomic molecule are compared. The differences among these expansions lie in the choice of the expansion variable, lambda. The functional form of these variables are lambda/sub s/ = l-r/sub e//r for the Simon-Parr-Finlan version, lambda/sub T/ - 1-(r/sub e//r)/sup p/ for that of Thakkar, and lambda/sub H/ = 1-exp(-rho(r/r/sub e/-1) for that of Huffaker. A wide selection of molecular systems are examined. It is found that, for potentials in excess of thirty kcal/mole, the Huffaker expansion provides the best description of the three, extrapolating at large internuclear separation to a value within 10% of the true dissociation energy. For potentials that result from the interaction of excited states, all series expansions show poor behavior away from the equilibrium internuclear separation of the molecule. The series representation of the potentials of weakly bound molecules are examined in more detail. The ground states of BeAr/sup +/, HeNe/sup +/, NaAr, and Ar/sub 2/ and the excited states of HeNe+, NaNe, and NaAr are best described by the Thakkar expansion. Finally, the observation of laser-assisted excitive Penning ionization in a flowing afterglow is reported. The reaction Ar(/sup 3/P/sub 2/) + Ca + h nu ..-->.. Ar + Ca/sup +/(5p /sup 2/P/sub J/) + e/sup -/ occurs when the photon energy, h nu, is approximately equal to the energy difference between the metastable argon and one of the fine structure levels of the ion's doublet. By monitoring the cascade fluorescence of the above reaction and comparing it to the flourescence from the field-free process Ar(/sup 3/P/sub 2/) + Ca ..-->.. Ar + Ca/sup +/(4p /sup 2/P/sub J/) + e/sup -/ a surprisingly large cross section of 6.7 x 10/sup 3/ A/sup 2/ is estimated.

  14. Bound and continuum states of molecular anions C2H- and C3N-

    Science.gov (United States)

    Harrison, Stephen; Tennyson, Jonathan

    2011-02-01

    Recently a number of molecular anions, closed-shell linear carbon chains of the form CnH- and CnN-, have been detected in space. The molecules C2H- and C3N- are investigated by using the R-matrix method to consider electron scattering from the corresponding neutral targets. Initial target calculations are conducted and refined in order to produce target state characteristics similar to the experimental data. A number of different scattering models are tested including static exchange and close-coupling models, and the use of Hartree-Fock or natural orbitals in the close-coupling calculations. The calculations concentrate on bound and resonances states for the anions as well as eigenphase sums, elastic cross-sections and electronic excitation cross-sections for electron collisions with the neutral. It is found that electronic resonances are all too high in energy to be important for anion formation in the interstellar medium. However, C3N-, unlike C2H-, supports a number of very weakly bound excited states, which may well provide the route to electron attachment for this system.

  15. Charge-displacement analysis for excited states

    Energy Technology Data Exchange (ETDEWEB)

    Ronca, Enrico, E-mail: enrico@thch.unipg.it; Tarantelli, Francesco, E-mail: francesco.tarantelli@unipg.it [Istituto CNR di Scienze e Tecnologie Molecolari, via Elce di Sotto 8, I-06123 Perugia (Italy); Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, via Elce di Sotto 8, I-06123 Perugia (Italy); Pastore, Mariachiara, E-mail: chiara@thch.unipg.it; Belpassi, Leonardo; De Angelis, Filippo [Istituto CNR di Scienze e Tecnologie Molecolari, via Elce di Sotto 8, I-06123 Perugia (Italy); Angeli, Celestino; Cimiraglia, Renzo [Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Ferrara, via Borsari 46, I-44100 Ferrara (Italy)

    2014-02-07

    We extend the Charge-Displacement (CD) analysis, already successfully employed to describe the nature of intermolecular interactions [L. Belpassi et al., J. Am. Chem. Soc. 132, 13046 (2010)] and various types of controversial chemical bonds [L. Belpassi et al., J. Am. Chem. Soc. 130, 1048 (2008); N. Salvi et al., Chem. Eur. J. 16, 7231 (2010)], to study the charge fluxes accompanying electron excitations, and in particular the all-important charge-transfer (CT) phenomena. We demonstrate the usefulness of the new approach through applications to exemplary excitations in a series of molecules, encompassing various typical situations from valence, to Rydberg, to CT excitations. The CD functions defined along various spatial directions provide a detailed and insightful quantitative picture of the electron displacements taking place.

  16. Inelastic scattering of 9Li and excitation mechanism of its first excited state

    International Nuclear Information System (INIS)

    The first measurement of inelastic scattering of 9Li from deuterons at the ISAC facility is reported. The measured angular distribution for the first excited state confirms the nature of excitation to be an E2 transition. The quadrupole deformation parameter is extracted from an analysis of the angular distribution

  17. Static and dynamic properties of QCD bound states

    International Nuclear Information System (INIS)

    The QCD phenomenology can be faced with the framework of the coupled quark DSE, meson BSE and baryon Faddeev equation, providing non-perturbative, continuum and Poincare invariant scientific approach. The research performed throughout this thesis is twofold. From one perspective we focus on the investigation of mass spectra for mesons with total spin quantum number J=3 and arising Regge-trajectory for natural parity states JPC=1--,2++,3-- within rainbow-ladder single gluon exchange model. The other findings are concerning the impact of the pion cloud effect on J>2 meson states, baryon masses, namely on Nucleon and Delta three-body bound states and meson dynamical properties like the pion form factor.

  18. Static and dynamic properties of QCD bound states

    Energy Technology Data Exchange (ETDEWEB)

    Kubrak, Stanislav

    2015-07-01

    The QCD phenomenology can be faced with the framework of the coupled quark DSE, meson BSE and baryon Faddeev equation, providing non-perturbative, continuum and Poincare invariant scientific approach. The research performed throughout this thesis is twofold. From one perspective we focus on the investigation of mass spectra for mesons with total spin quantum number J=3 and arising Regge-trajectory for natural parity states J{sup PC}=1{sup --},2{sup ++},3{sup --} within rainbow-ladder single gluon exchange model. The other findings are concerning the impact of the pion cloud effect on J>2 meson states, baryon masses, namely on Nucleon and Delta three-body bound states and meson dynamical properties like the pion form factor.

  19. The inverse problem in the case of bound states

    International Nuclear Information System (INIS)

    We investigate the inverse problem for bound states in the D = 3 dimensional space. The potential is assumed to be local and spherically symmetric. The present method is based on relationships connecting the moments of the ground state density to the lowest energy of each state of angular momentum l. The reconstruction of the density ρ(r) from its moments is achieved by means of the series expansion of its Fourier transform F(q). The large q-behavior is described by Pade approximants. The accuracy of the solution depends on the number of known moments. The uniqueness is achieved if this number is infinite. In practice, however, an accuracy better than 1% is obtained with a set of about 15 levels. The method is tested on a simple example, and applied to three different spectra

  20. The search for deeply bound kaonic states with FOPI

    International Nuclear Information System (INIS)

    Full text: New formation mechanisms for the creation of dense, exotic nuclear systems involving strangeness were recently proposed by Y. Akaishi and T. Yamazaki. Their calculations show that a K- might form deeply bound states in light nuclei - so called kaonic clusters - with central densities of several times the normal nuclear density. In the presentation a short overview of these exotic nuclear systems will be given and a new experiment with FOPI at GSI will be discussed. The aim of this experiment was to search for the simplest cluster - a ppK- state. This state is produced at GSI in the following high energy reaction: p + ''d'' → ppK- + K+ + n'' with incident energies of 3.5 GeV. The experimental set-up will be presented in detail. (author)

  1. Configuration space Faddeev formalism: Λ + n + n bound state search

    Science.gov (United States)

    Suslov, Vladimir; Filikhin, Igor; Vlahovic, Branislav

    2015-04-01

    The HypHI Collaboration has recently reported the evidence for bound state of Λ + n + n system (Phys. Rev. C 88, 041001(R) (2013)). However, the theoretical analysis did not find Λ3n bound state (see, for instance, Phys. Lett. B 736, 93 (2014)). In the present work we will describe our attempt to construct a phenomenological three-body ΛNN force with the spin-isospin dependence that is attractive in the channel T=1, S=1/2. This dependence was tested to reproduce the value of ground state energy for Λ3H hypernuclei. The formalism of the configuration-space Faddeev equations is applied for Λ + n + n and Λ + n + p systems. As Λ + n interaction the s-wave potential simulating model NSC97f is used. This potential reproduces well the hyperon binding energy for Λ3H nuclei (J. Phys. G: 31, 389 (2005)). The details of the model and obtained results will be presented. This work is supported by the NSF (HRD-1345219) and NASA (NNX09AV07A).

  2. Tetraquark bound states in a Bethe-Salpeter approach

    OpenAIRE

    Heupel, Walter; Eichmann, Gernot; Fischer, Christian S.

    2012-01-01

    We determine the mass of tetraquark bound states from a coupled system of covariant Bethe-Salpeter equations. Similar in spirit to the quark-diquark model of the nucleon, we approximate the full four-body equation for the tetraquark by a coupled set of two-body equations with meson and diquark constituents. These are calculated from their quark and gluon substructure using a phenomenologically well-established quark-gluon interaction. For the lightest scalar tetraquark we find a mass of the o...

  3. Quarkonium-nucleus bound states from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Beane, S.  R. [Univ. of Washington, Seattle, WA (United States); Chang, E. [Univ. of Washington, Seattle, WA (United States); Cohen, S.  D. [Univ. of Washington, Seattle, WA (United States); Detmold, W. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Lin, H. -W. [Univ. of Washington, Seattle, WA (United States); Orginos, K. [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Parreño, A. [Univ., de Barcelona, Marti Franques (Spain); Savage, M.  J. [Univ. of Washington, Seattle, WA (United States)

    2015-06-11

    Quarkonium-nucleus systems are composed of two interacting hadronic states without common valence quarks, which interact primarily through multi-gluon exchanges, realizing a color van der Waals force. We present lattice QCD calculations of the interactions of strange and charm quarkonia with light nuclei. Both the strangeonium-nucleus and charmonium-nucleus systems are found to be relatively deeply bound when the masses of the three light quarks are set equal to that of the physical strange quark. Extrapolation of these results to the physical light-quark masses suggests that the binding energy of charmonium to nuclear matter is B < 40 MeV.

  4. R-Matrix Calculations for Few-Quark Bound States

    CERN Document Server

    Shalchi, M A

    2016-01-01

    The R-matrix method is implemented to study the heavy charm and bottom diquark, triquark, tetraquark and pentaquarks in configuration space, as the bound states of quark-antiquark, diquark-quark, diquark-antidiquark and diquark-antitriquark systems, respectively. The mass spectrum and the size of these systems are calculated for different partial wave channels. The calculated masses are compared with recent theoretical results obtained by %the solution of Lippmann-Schwinger equation other methods in momentum and configuration spaces and also by available experimental data.

  5. Three-body bound states in finite volume with EFT

    International Nuclear Information System (INIS)

    Three particles with large scattering length display a universal spectrum of three-body bound states called ''Efimov trimers''. We calculate the modification of the Efimov trimers of three identical bosons in a finite cubic box and compute the dependence of their energies on the box size using effective field theory. The renormalization of the effective field theory in the finite volume is explicitly verified. We investigate the effects of partial wave mixing and study the behavior of shallow trimers near the dimer energy. Finally, we present first results for the triton in a finite volume.

  6. Bound-state effects in B→K*γ

    International Nuclear Information System (INIS)

    Applying perturbative QCD methods recently seen to give a good description of the two-body hadronic decays of the B meson, we address the question of bound-state effects on the decay B→K*γ. Consistent with most analyses, we demonstrate that gluonic penguin diagrams, with photonic bremsstrahlung off a quark, change the decay rate by only a few percent. Using an asymptotic distribution amplitude for the K* and just the standard model, we can obtain a branching ratio of a few x10-5, consistent with the observed rate

  7. Stieltjes electrostatic model interpretation for bound state problems

    Indian Academy of Sciences (India)

    K V S Shiv Chaitanya

    2014-07-01

    In this paper, it is shown that Stieltjes electrostatic model and quantum Hamilton Jacobi formalism are analogous to each other. This analogy allows the bound state problem to mimic as unit moving imaginary charges $i\\hbar$, which are placed in between the two fixed imaginary charges arising due to the classical turning points of the potential. The interaction potential between unit moving imaginary charges $i\\hbar$ is given by the logarithm of the wave function. For an exactly solvable potential, this system attains stable equilibrium position at the zeros of the orthogonal polynomials depending upon the interval of the classical turning points.

  8. Bound states of string networks and D-branes

    International Nuclear Information System (INIS)

    We show the existence of nonthreshold bound states of (p, q) string networks and D3-branes, preserving 1/4 of the full type-IIB supersymmetry, interpreted as string networks 'dissolved' in D3-branes. We also explicitly write down the expression for the mass density of the system and discuss the extension of the construction to other Dp -branes. Differences in our construction of string networks with the ones interpreted as dyons in N=4 gauge theories are also pointed out

  9. Density functional theory generalized to degenerate excited states

    International Nuclear Information System (INIS)

    In this paper it is shown that the density functional theory can be generalized to systems with degenerate excited states. There is a one-to-one map between the subspace, spanned by the ground state and any one of the first degenerate excited states, and the sum of their densities. But only a one way correspondence exists between external potential and subspace, as well as between external potential and the sum of densities. The extension of the Hohenberg-Kohn-Sham theory for degenerate excited states has also been developed. (author)

  10. Charge transfer excitations from excited state Hartree-Fock subsequent minimization scheme

    CERN Document Server

    Theophilou, Iris; Thanos, S

    2014-01-01

    Photoinduced charge transfer processes play a key role for novel photovoltaic phenomena and devices. Thus, the development of ab initio methods that allow for accurate and computationally inexpensive treatment of charge transfer excitations is a topic that attracts nowadays a lot of scientific attention. In this paper we extend an approach recently introduced for the description of single and double excitations (M. Tassi, I. Theophilou and S. Thanos, Int. J. Quantum Chem., {113}, 690 (2013), M. Tassi, I. Theophilou and S. Thanos, J. Chem. Phys. {138}, 124107 (2013)) to allow for the description of intermolecular charge transfer excitations. For the description of an excitation where an electron is transferred from a donor system to an acceptor one, it is necessary to keep the excited state orthogonal to the ground sate in order to avoid variational collapse. These conditions are achieved by decomposing the subspace spanned by the Hartree-Fock (HF) ground state orbitals to four subspaces: The subspace spanned ...

  11. Strongly bound metastable states of B2 + 2

    Science.gov (United States)

    Bruna, Pablo J.; Wright, James S.

    1990-08-01

    The stabilities of about 25 electronic states of B2+2 have been investigated using a multireference CI (MRD-CI) method and an AO basis set composed of 6s4p2d contracted Gaussian species per atom, including semidiffuse functions relevant for an adequate description of charge transfer interactions. The ground state X1∑+g (σ2gσ2u) is repulsive, as expected by its electronic configuration with a zero bond order. In spite of this and the doubly-positive charge, many excited states are found to be metastable, four of them (11∏g, 11∏u, 13∑-g, and 11Δg ) having potential wells from 1.52 eV (11∏u) to 2.83 eV (13∑-g). Relative to the ground state configuration, the metastable states arise from the excitations σu→σg(3∑+u), σu→πu(3,1∏g), σ2u→σgπu(3,1∏u), and σ2u→π2u(3∑-g, 1Δg, 1∑+g); they are analogous to those states showing deep local minima in B2 and B+2. Differences in stabilities among quasibound states can be explained on the basis of the asymptotic ΔE's between repulsive channels B++B+ and appropriate higher-lying limits (states) B+B2+ of bonding character; another important factor governing stability is the actual bonding character of the electronic configurations assigned to each state. The vertical double-ionization potential B2→B2+2(π2u→∞) between both ground states is 27.97 eV, the repulsive X1∑+g dication state being created with 8.37 eV excess energy relative to B++B+. Doubly-ionized states with a chance of being detected because of their long lifetimes against predissociation are those showing a strongly quasibound character, such as (with the vertical double ionization potential in eV given in parentheses): 11∏g(σuπu→∞; 30.29); 11∏u(σ2uπu→σg∞; 31.30); 13∑-g(σ2u→∞; 31.33), and 11Δg(σ2u→∞; 31.95).

  12. Fingerprints of Majorana Bound States in Aharonov-Bohm Geometry

    Science.gov (United States)

    Tripathi, Krashna Mohan; Das, Sourin; Rao, Sumathi

    2016-04-01

    We study a ring geometry, coupled to two normal metallic leads, which has a Majorana bound state (MBS) embedded in one of its arms and is threaded by Aharonov-Bohm (A B ) flux ϕ . We show that by varying the A B flux, the two leads go through resonance in an anticorrelated fashion while the resonance conductance is quantized to 2 e2/h . We further show that such anticorrelation is completely absent when the MBS is replaced by an Andreev bound state (ABS). Hence this anti-correlation in conductance when studied as a function of ϕ provides a unique signature of the MBS which cannot be faked by an ABS. We contrast the phase sensitivity of the MBS and ABS in terms of tunneling conductances. We argue that the relative phase between the tunneling amplitude of the electrons and holes from either lead to the level (MBS or ABS), which is constrained to 0 ,π for the MBS and unconstrained for the ABS, is responsible for this interesting contrast in the A B effect between the MBS and ABS.

  13. Topological nature of bound states in the radiation continuum

    CERN Document Server

    Zhen, Bo; Lu, Ling; Stone, A Doug; Soljacic, Marin

    2014-01-01

    Bound states in the continuum (BICs) are unusual solutions of wave equations describing light or matter: they are discrete and spatially bounded, but exist at the same energy as a continuum of states which propagate to infinity. Until recently, BICs were constructed through fine-tuning parameters in the wave equation or exploiting the separability of the wave equation due to symmetry. More recently, BICs that that are both robust and not symmetry-protected (accidental) have been predicted and experimentally realized in periodic structures; the simplest such system is a periodic dielectric slab, which also has symmetry-protected BICs. Here we show that both types of BICs in such systems are vortex centers in the polarization direction of far-field radiation. The robustness of these BICs is due to the existence of conserved and quantized topological charges, defined by the number of times the polarization vectors wind around the vortex centers. Such charges can only be generated or annihilated by making large c...

  14. 18Ne Excited States Two-Proton Decay

    Science.gov (United States)

    de Napoli, M.; Rapisarda, E.; Raciti, G.; Cardella, G.; Amorini, F.; Giacoppo, F.; Sfienti, C.

    2008-04-01

    Two-proton radioactivity studies have been performed on excited states of 18Ne produced by 20Ne fragmentation at the FRS of the Laboratori Nazionali del Sud and excited via Coulomb excitation on a 209Pb target. The 18Ne levels decay has been studied by complete kinematical reconstruction. In spite of the low statistic, the energy and angular correlations of the emitted proton pairs indicate the presence of 2He emission toghether with the democratic decay.

  15. Energy levels of Sm2+ excited state

    International Nuclear Information System (INIS)

    The energy levels of excited configurations 4f5u'l' of Sm2+ calculated in detail by using unitary group approach are covered. The energy expressions with slater integral as parameters are given and the spin-orbit coupling is considered according to the Russell-Saunders approximation. The coupling parameters λ of the main energy levels are also calculated in the paper

  16. Photoionization of excited states of neon-like Mg III

    Indian Academy of Sciences (India)

    Narendra Singh; Man Mohan

    2002-04-01

    The close coupling -matrix method is used to calculate cross-sections for photoionization of Mg III from its first three excited states. Configuration interaction wave functions are used to represent two target states of Mg III retained in the -matrix expansion. The positions and effective quantum numbers for the Rydberg series converging to the excited state 2226 \\ 2 of the residual ion, are predicted.

  17. Quantum entanglement of localized excited states at finite temperature

    OpenAIRE

    Caputa, Pawel; Simón, Joan; Štikonas, Andrius(School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh, King’s Buildings, Edinburgh, EH9 3FD, U.K.); Takayanagi, Tadashi

    2015-01-01

    In this work we study the time evolutions of (Renyi) entanglement entropy of locally excited states in two dimensional conformal field theories (CFTs) at finite temperature.We consider excited states created by acting with local operators on thermal states and give both field theoretic and holographic calculations. In free field CFTs, we find that the growth of Renyi entanglement entropy at finite temperature is reduced compared to the zero temperature result by a small quantity proportional ...

  18. Bound states for non-symmetric evolution Schroedinger potentials

    Energy Technology Data Exchange (ETDEWEB)

    Corona, Gulmaro Corona [Area de Analisis Matematico y sus Aplicaciones, Universidad Autonoma Metropolitana-Azcapotalco, Atzcapotzalco, DF (Mexico)). E-mail: ccg@correo.azc.uam.mx

    2001-09-14

    We consider the spectral problem associated with the evolution Schroedinger equation, (D{sup 2}+ k{sup 2}){phi}=u{phi}, where u is a matrix-square-valued function, with entries in the Schwartz class defined on the real line. The solution {phi}, called the wavefunction, consists of a function of one real variable, matrix-square-valued with entries in the Schwartz class. This problem has been dealt for symmetric potentials u. We found for the present case that the bound states are localized similarly to the scalar and symmetric cases, but by the zeroes of an analytic matrix-valued function. If we add an extra condition to the potential u, we can determine these states by an analytic scalar function. We do this by generalizing the scalar and symmetric cases but without using the fact that the Wronskian of a pair of wavefunction is constant. (author)

  19. Bound states for non-symmetric evolution Schroedinger potentials

    International Nuclear Information System (INIS)

    We consider the spectral problem associated with the evolution Schroedinger equation, (D2+ k2)φ=uφ, where u is a matrix-square-valued function, with entries in the Schwartz class defined on the real line. The solution φ, called the wavefunction, consists of a function of one real variable, matrix-square-valued with entries in the Schwartz class. This problem has been dealt for symmetric potentials u. We found for the present case that the bound states are localized similarly to the scalar and symmetric cases, but by the zeroes of an analytic matrix-valued function. If we add an extra condition to the potential u, we can determine these states by an analytic scalar function. We do this by generalizing the scalar and symmetric cases but without using the fact that the Wronskian of a pair of wavefunction is constant. (author)

  20. Partial Unfolding of Tubulin Heterodimers Induced by Two-Photon Excitation of Bound meso-Tetrakis(sulfonatophenyl)porphyrin.

    Science.gov (United States)

    McMicken, Brady; Thomas, Robert J; Brancaleon, Lorenzo

    2016-04-21

    The water-soluble porphyrin meso-tetrakis(p-sulfonatophenyl)porphyrin (TSPP) can be noncovalently bound to tubulin and used as a photosensitizer, which upon irradiation triggers photochemical reactions that lead to conformational changes of the protein. These conformational changes in turn inhibit tubulin's primary function of polymerizing into microtubules. We explored the possibility of using two-photon excitation of the bound porphyrin to induce photosensitized protein unfolding. Although TSPP has a relatively low cross section (∼30 GM) our results did find that two-photon excitation of the ligand causes partial unfolding of the tubulin host and the inhibition of the in vitro formation of microtubules. Conversely, irradiating tubulin alone caused no such effects despite the large irradiance per pulse (97-190 GW/cm(2)). The conformational changes were characterized using spectroscopic studies and provide a promising protocol for the future application of non-native photosensitization of proteins. PMID:27035156

  1. Excited state systematics in extracting nucleon electromagnetic form factors

    CERN Document Server

    Capitani, Stefano; von Hippel, Georg; Jäger, Benjamin; Knippschild, Bastian; Meyer, Harvey B; Rae, Thomas D; Wittig, Hartmut

    2012-01-01

    We present updated preliminary results for the nucleon electromagnetic form factors for non-perturbatively $\\mathcal{O}(a)$ improved Wilson fermions in $N_f=2$ QCD measured on the CLS ensembles. The use of the summed operator insertion method allows us to suppress the influence of excited states in our measurements. A study of the effect that excited state contaminations have on the $Q^2$ dependence of the extracted nucleon form factors may then be made through comparisons of the summation method to standard plateau fits, as well as to excited state fits.

  2. Anisotropy of electronic states excited in ion-atom collisions

    International Nuclear Information System (INIS)

    The author reports coincidence measurements made on the He+ + Ne and He+ + He systems. The complex population amplitudes for the magnetic sublevels of the investigated excited states, Ne(2p43s2)1D and He(2p2)1D, were completely determined and possible excitation mechanisms are described. (Auth.)

  3. Coherent excitation of a single atom to a Rydberg state

    DEFF Research Database (Denmark)

    Miroshnychenko, Yevhen; Gaëtan, Alpha; Evellin, Charles;

    2010-01-01

    We present the coherent excitation of a single Rubidium atom to the Rydberg state 58d3/2 using a two-photon transition. The experimental setup is described in detail, as are experimental techniques and procedures. The coherence of the excitation is revealed by observing Rabi oscillations between...

  4. Superposition of Fragment Excitations for Excited States of Large Clusters with Application to Helium Clusters.

    Science.gov (United States)

    Closser, Kristina D; Ge, Qinghui; Mao, Yuezhi; Shao, Yihan; Head-Gordon, Martin

    2015-12-01

    We develop a local excited-state method, based on the configuration interaction singles (CIS) wave function, for large atomic and molecular clusters. This method exploits the properties of absolutely localized molecular orbitals (ALMOs), which strictly limits the total number of excitations, and results in formal scaling with the third power of the system size for computing the full spectrum of ALMO-CIS excited states. The derivation of the equations and design of the algorithm are discussed in detail, with particular emphasis on the computational scaling. Clusters containing ∼500 atoms were used in evaluating the scaling, which agrees with the theoretical predictions, and the accuracy of the method is evaluated with respect to standard CIS. A pioneering application to the size dependence of the helium cluster spectrum is also presented for clusters of 25-231 atoms, the largest of which results in the computation of 2310 excited states per sampled cluster geometry. PMID:26609558

  5. Bethe-Salpeter bound-state structure in Minkowski space

    Science.gov (United States)

    Gutierrez, C.; Gigante, V.; Frederico, T.; Salmè, G.; Viviani, M.; Tomio, Lauro

    2016-08-01

    The quantitative investigation of the scalar Bethe-Salpeter equation in Minkowski space, within the ladder-approximation framework, is extended to include the excited states. This study has been carried out for an interacting system composed by two massive bosons exchanging a massive scalar, by adopting (i) the Nakanishi integral representation of the Bethe-Salpeter amplitude, and (ii) the formally exact projection onto the null plane. Our analysis, on one hand, confirms the reliability of the method already applied to the ground state and, on the other one, extends the investigation from the valence distribution in momentum space to the corresponding quantity in the impact-parameter space, pointing out some relevant features, like (i) the equivalence between Minkowski and Euclidean transverse-momentum amplitudes, and (ii) the leading exponential fall-off of the valence wave function in the impact-parameter space.

  6. Bethe-Salpeter bound-state structure in Minkowski space

    CERN Document Server

    Gutierrez, C; Frederico, T; Salmè, G; Viviani, M; Tomio, Lauro

    2016-01-01

    The quantitative investigation of the scalar Bethe-Salpeter equation in Minkowski space, within the ladder-approximation framework, is extended to include the excited states. This study has been carried out for an interacting system composed by two massive bosons exchanging a massive scalar, by adopting (i) the Nakanishi integral representation of the Bethe-Salpeter amplitude, and (ii) the formally exact projection onto the null plane. Our analysis, on one hand, confirms the reliability of the method already applied to the ground state and, on the other one, extends the investigation from the valence distribution in momentum space to the corresponding quantity in the impact-parameter space, pointing out some relevant features, like (i) the equivalence between Minkowski and Euclidean transverse-momentum amplitudes, and (ii) the leading exponential fall-off of the valence wave function in the impact-parameter space.

  7. Production and decay of scalar stoponium bound states

    CERN Document Server

    Drees, Manuel

    1994-01-01

    In this paper we discuss possible signatures for the production of scalar \\stst\\ (stoponium) bound states \\sigst\\ at hadron colliders, where \\st\\ is the lighter scalar top eigenstate. We first study the decay of \\sigst; explicit expressions are given for all potentially important decay modes. If \\st\\ has unsuppressed two--body decays, they will always overwhelm the annihilation decays of \\sigst. Among the latter, we find that usually either the $gg$ or $hh$ final state dominates, depending on the size of the off--diagonal entry of the stop mass matrix; $h$ is the lighter neutral scalar Higgs boson of the minimal supersymmetric model. If \\msig\\ happens to be close to the mass of one of the neutral scalar Higgs bosons, $Q \\bar{Q}$ final states dominate ($Q=b$ or $t$). \\ww\\ and $ZZ$ final states are subdominant. We argue that $\\sigst \\rightarrow \\gamgam$ decays offer the best signal for stoponium production at hadron colliders. The tevatron should be able to close the light stop window left open by LEP searches,...

  8. Vibronic coupling in the excited-states of carotenoids.

    Science.gov (United States)

    Miki, Takeshi; Buckup, Tiago; Krause, Marie S; Southall, June; Cogdell, Richard J; Motzkus, Marcus

    2016-04-20

    The ultrafast femtochemistry of carotenoids is governed by the interaction between electronic excited states, which has been explained by the relaxation dynamics within a few hundred femtoseconds from the lowest optically allowed excited state S2 to the optically dark state S1. Extending this picture, some additional dark states (3A and 1B) and their interaction with the S2 state have also been suggested to play a major role in the ultrafast deactivation of carotenoids and their properties. Here, we investigate the interaction between such dark and bright electronic excited states of open chain carotenoids, particularly its dependence on the number of conjugated double bonds (N). We focus on the ultrafast wave packet motion on the excited potential surface, which is modified by the interaction between bright and dark electronic states. Such a coupling between electronic states leads to a shift of the vibrational frequency during the excited-state evolution. In this regard, pump-degenerate four-wave mixing (pump-DFWM) is applied to a series of carotenoids with different numbers of conjugated double bonds N = 9, 10, 11 and 13 (neurosporene, spheroidene, lycopene and spirilloxanthin, respectively). Moreover, we demonstrate in a closed-chain carotenoid (lutein) that the coupling strength and therefore the vibrational shift can be tailored by changing the energy degeneracy between the 1B and 1B states via solvent interaction. PMID:27055720

  9. Quantification of Entanglement Entropies for Doubly Excited States in Helium

    International Nuclear Information System (INIS)

    In this work, we study the quantum entanglement for doubly excited resonance states in helium by using highly correlated Hylleraas type functions to represent such states of the two-electron system. The doubly-excited resonance states are determined by calculation of density of resonance states under the framework of the stabilization method. The spatial (electron–electron orbital) entanglement measures for the low-lying doubly excited 2s2, 2s3s, and 2p21 Se states are carried out. Once a resonance state wave function is obtained, the linear entropy and von Neumann entropy for such a state are quantified using the Schmidt-Slater decomposition method. To check the consistence, linear entropy is also determined by solving analytically the needed four-electron (12-dimensional) integrals. (author)

  10. Optimal control of peridinin excited-state dynamics

    Czech Academy of Sciences Publication Activity Database

    Chábera, P.; Dietzek, B.; Yartsev, A.; Polívka, Tomáš

    Nové Hrady: Academic and University Center, 2008. s. 15. [ESF Workshop on Novel Methods in Exploring Carotenoid Excited State Dynamics. 21.09.2008-25.09.2008, Nové Hrady] Keywords : peridinin * biophysics Subject RIV: BO - Biophysics

  11. Ultrafast Excited-State Dynamics in Biological Environments

    OpenAIRE

    Fürstenberg, Alexandre; Vauthey, Eric

    2007-01-01

    We discuss and illustrate by several examples how the ultrafast excited-state dynamics of a chromophore can be altered when changing its environment from a homogenous solution to a biological molecule such as proteins or nucleic acids.

  12. Boson analysis of the excited O+ state in Ge isotopes

    International Nuclear Information System (INIS)

    Motivated by attemp to explain the strong variation in energy of the excited O+ state in even Ge isotopes in terms of a simple collective configuration, a boson mapping is introduced for proton, neutron and proton-neutron pairing

  13. The examination of berberine excited state by laser flash photolysis

    Science.gov (United States)

    Cheng, Lingli; Wang, Mei; Zhao, Ping; Zhu, Hui; Zhu, Rongrong; Sun, Xiaoyu; Yao, Side; Wang, Shilong

    2009-07-01

    The property of the excited triplet state of berberine (BBR) was investigated by using time-resolved laser flash photolysis of 355 nm in acetonitrile. The transient absorption spectra of the excited triplet BBR were obtained in acetonitrile, which have an absorption maximum at 420 nm. And the ratio of excitation to ionization of BBR in acetonitrile solvent was calculated. The self-decay and self-quenching rate constants, and the absorption coefficient of 3BBR* were investigated and the excited state quantum yield was determined. Furthermore utilizing the benzophenone (BEN) as a triplet sensitizer, and the β-carotene (Car) as an excited energy transfer acceptor, the assignment of 3BBR* was further confirmed and the related energy transfer rate constants were also determined.

  14. G-factors of hole bound states in spherically symmetric potentials in cubic semiconductors

    Science.gov (United States)

    Miserev, Dmitry; Sushkov, Oleg

    2016-03-01

    Holes in cubic semiconductors have effective spin 3/2 and very strong spin orbit interaction. Due to these factors properties of hole bound states are highly unusual. We consider a single hole bound by a spherically symmetric potential, this can be an acceptor or a spherically symmetric quantum dot. Linear response to an external magnetic field is characterized by the bound state Lande g-factor. We calculate analytically g-factors of all bound states.

  15. G-factors of hole bound states in spherically symmetric potentials in cubic semiconductors

    OpenAIRE

    Miserev, D. S.; Sushkov, O. P.

    2015-01-01

    Holes in cubic semiconductors have effective spin 3/2 and very strong spin orbit interaction. Due to these factors properties of hole bound states are highly unusual. We consider a single hole bound by a spherically symmetric potential, this can be an acceptor or a spherically symmetric quantum dot. Linear response to an external magnetic field is characterized by the bound state Lande g-factor. We calculate analytically g-factors of all bound states.

  16. Universal Bounds on Charged States in 2d CFT and 3d Gravity

    CERN Document Server

    Benjamin, Nathan; Fitzpatrick, A Liam; Kachru, Shamit

    2016-01-01

    We derive an explicit bound on the dimension of the lightest charged state in two dimensional conformal field theories with a global abelian symmetry. We find that the bound scales with $c$ and provide examples that parametrically saturate this bound. We also prove than any such theory must contain a state with charge-to-mass ratio above a minimal lower bound. We comment on the implications for charged states in three dimensional theories of gravity.

  17. Tetra quark bound states in a Bethe-Salpeter approach

    Energy Technology Data Exchange (ETDEWEB)

    Heupel, Walter; Eichmann, Gernot [Institut fuer Theoretische Physik, Justus-Liebig-Universitaet Giessen, D-35392 Giessen (Germany); Fischer, Christian S., E-mail: christian.fischer@theo.physik.uni-giessen.de [Institut fuer Theoretische Physik, Justus-Liebig-Universitaet Giessen, D-35392 Giessen (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Planckstr. 1, D-64291 Darmstadt (Germany)

    2012-12-05

    We determine the mass of tetraquark bound states from a coupled system of covariant Bethe-Salpeter equations. Similar in spirit to the quark-diquark model of the nucleon, we approximate the full four-body equation for the tetraquark by a coupled set of two-body equations with meson and diquark constituents. These are calculated from their quark and gluon substructure using a phenomenologically well-established quark-gluon interaction. For the lightest scalar tetraquark we find a mass of the order of 400 MeV and a wave function dominated by the pion-pion constituents. Both results are in agreement with a meson molecule picture for the f{sub 0}(600). Our results furthermore suggest the presence of a potentially narrow all-charm tetraquark in the mass region 5-6 GeV.

  18. Tetraquark bound states in a Bethe-Salpeter approach

    CERN Document Server

    Heupel, Walter; Fischer, Christian S

    2012-01-01

    We determine the mass of tetraquark bound states from a coupled system of covariant Bethe-Salpeter equations. Similar in spirit to the quark-diquark model of the nucleon, we approximate the full four-body equation for the tetraquark by a coupled set of two-body equations with meson and diquark constituents. These are calculated from their quark and gluon substructure using a phenomenologically well-established quark-gluon interaction. For the lightest scalar tetraquark we find a mass of the order of 400 MeV and a wave function dominated by the pion-pion constituents. Both results are in agreement with a meson molecule picture for the f_0(600). Our results furthermore suggest the presence of a potentially narrow all-charm tetraquark in the mass region 5-6 GeV.

  19. Tetraquark bound states in a Bethe-Salpeter approach

    Science.gov (United States)

    Heupel, Walter; Eichmann, Gernot; Fischer, Christian S.

    2012-12-01

    We determine the mass of tetraquark bound states from a coupled system of covariant Bethe-Salpeter equations. Similar in spirit to the quark-diquark model of the nucleon, we approximate the full four-body equation for the tetraquark by a coupled set of two-body equations with meson and diquark constituents. These are calculated from their quark and gluon substructure using a phenomenologically well-established quark-gluon interaction. For the lightest scalar tetraquark we find a mass of the order of 400 MeV and a wave function dominated by the pion-pion constituents. Both results are in agreement with a meson molecule picture for the f0 (600). Our results furthermore suggest the presence of a potentially narrow all-charm tetraquark in the mass region 5-6 GeV.

  20. Bound-state properties from field-theory correlators

    CERN Document Server

    Melikhov, Dmitri

    2011-01-01

    We discuss the details of calculating hadron properties from the OPE for correlators of quark currents in QCD, which constitutes the basis of the method of QCD sum rules. The main emphasis is laid on gaining control over the systematic uncertainties of the hadron parameters obtained within this method. We start with examples from quantum mechanics, where bound-state properties may be calculated independently in two ways: exactly, by solving the Schroedinger equation, and approximately, by the method of sum rules. Knowing the exact solution allows us to control each step of the sum-rule extraction procedure. On the basis of this analysis, we formulate several improvements of the method of sum rules. We then apply these modifications to the analysis of the decay constants of heavy mesons.

  1. Bound-state properties from field-theory correlators

    International Nuclear Information System (INIS)

    We discuss the details of calculating hadron properties from the OPE for correlators of quark currents in QCD, which constitutes the basis of the method of QCD sum rules. The main emphasis is laid on gaining control over the systematic uncertainties of the hadron parameters obtained within this method. We start with examples from quantum mechanics, where bound-state properties may be calculated independently in two ways: exactly, by solving the Schroedinger equation, and approximately, by the method of sum rules. Knowing the exact solution allows us to control each step of the sum-rule extraction procedure. On the basis of this analysis, we formulate several improvements of the method of sum rules. We then apply these modifications to the analysis of the decay constants of heavy mesons.

  2. The structure of the D0-D4 bound state

    International Nuclear Information System (INIS)

    We derive a set of equations for the wavefunction describing the marginal bound state of a single D0-brane with a single D4-brane. These are equations determining the vacuum of an N=8 Abelian gauge theory with a charged hypermultiplet. We then solve these equations for the most general possible zero-energy solution using a Taylor series. We find that there are an infinite number of such solutions of which only one must be normalizable. We explore the structure of a normalizable solution under the assumption of an asymptotic expansion. Even the leading terms in the asymptotic series, which should reflect the supergravity solution, are unusual. Through the Spin(5) flavor symmetry, the modes which are massive at long distance actually influence the leading behavior. Lastly, we show that the vacuum equations can quite remarkably be reduced to a single equation involving one unknown function. The resulting equation has a surprisingly simple and suggestive form

  3. Cooperativity, partially bound states, and enthalpy-entropy compensation.

    Science.gov (United States)

    Hunter, Christopher A; Tomas, Salvador

    2003-11-01

    Efforts to develop a quantitative understanding of molecular recognition rely on the additivity of individual intermolecular interactions, and cooperativity represents one of the major potential stumbling blocks. A chemical double-mutant cycle has been used to experimentally measure cooperativity between functional group interactions within a complex framework. The interaction between two aromatic groups varies by 0.2 +/- 0.4 kJ mol(-1) in synthetic H-bonded complexes that differ by 8-13 kJ mol(-1) in overall stability. In these systems, the free energies associated with individual intermolecular interactions can therefore be reliably treated in an additive fashion. The results suggest that alternative explanations should be considered for cooperative phenomena observed in other systems, and a rationale based on the population of partially bound states in flexible molecules is proposed to account for the enthalpic chelate effect and enthalpy-entropy compensation. PMID:14652069

  4. Bound states in the continuum in open acoustic resonators

    CERN Document Server

    Lyapina, A A; Pilipchuk, A S; Sadreev, A F

    2015-01-01

    We consider bound states in the continuum (BSC) or embedded trapped modes in two- and three-dimensional acoustic axisymmetric duct-cavity structures. We demonstrate numerically that under variation of the length of the cavity multiple BSCs occur due to the Friedrich-Wintgen two-mode full destructive interference mechanism. The BSCs are detected by tracing the resonant widths to the points of the collapse of Fano resonances where one of the two resonant modes acquires infinite life-time. It is shown that the approach of the acoustic coupled mode theory cast in the truncated form of a two-mode approximation allows us to analytically predict the BSC frequencies and shape functions to a good accuracy in both two and three dimensions.

  5. Dark matter and stable bound states of primordial black holes

    CERN Document Server

    Chavda, L K; Chavda, Abhijit L.

    2002-01-01

    We present three reasons for the formation of gravitational bound states of primordial black holes,called holeums,in the early universe.Using Newtonian gravity and nonrelativistic quantum mechanics we find a purely quantum mechanical mass-dependant exclusion property for the nonoverlap of the constituent black holes in a holeum.This ensures that the holeum occupies space just like ordinary matter.A holeum emits only gravitational radiation whose spectrum is an exact analogue of that of a hydrogen atom. A part of this spectrum lies in the region accessible to the detectors being built.The holeums would form haloes around the galaxies and would be an important component of the dark matter in the universe today.They may also be the constituents of the invisible domain walls in the universe.

  6. Rapid thermal co-annihilation through bound states

    CERN Document Server

    Kim, Seyong

    2016-01-01

    The co-annihilation rate of heavy particles close to thermal equilibrium, which plays a role in many classic dark matter scenarios, can be "simulated" in QCD by considering the pair annihilation rate of a heavy quark and antiquark at a temperature of a few hundred MeV. We show that the so-called Sommerfeld factors, parameterizing the rate, can be defined and measured non-perturbatively within the NRQCD framework. Lattice measurements indicate a modest suppression in the octet channel, in reasonable agreement with perturbation theory, and a large enhancement in the singlet channel, much above the perturbative prediction. We suggest that the additional enhancement originates from bound state formation and subsequent decay, omitted in previous estimates of thermal Sommerfeld factors, which were based on Boltzmann equations governing single-particle phase space distributions.

  7. Tetra quark bound states in a Bethe-Salpeter approach

    International Nuclear Information System (INIS)

    We determine the mass of tetraquark bound states from a coupled system of covariant Bethe-Salpeter equations. Similar in spirit to the quark-diquark model of the nucleon, we approximate the full four-body equation for the tetraquark by a coupled set of two-body equations with meson and diquark constituents. These are calculated from their quark and gluon substructure using a phenomenologically well-established quark-gluon interaction. For the lightest scalar tetraquark we find a mass of the order of 400 MeV and a wave function dominated by the pion-pion constituents. Both results are in agreement with a meson molecule picture for the f0(600). Our results furthermore suggest the presence of a potentially narrow all-charm tetraquark in the mass region 5-6 GeV.

  8. Dark matter and stable bound states of primordial black holes

    International Nuclear Information System (INIS)

    We present three reasons for the formation of gravitational bound states of primordial black holes, called holeums, in the early universe. Using Newtonian gravity and nonrelativistic quantum mechanics we find a purely quantum mechanical mass-dependent exclusion property for the nonoverlap of the constituent black holes in a holeum. This ensures that the holeum occupies space just like ordinary matter. A holeum emits only gravitational radiation whose spectrum is an exact analogue of that of a hydrogen atom. A part of this spectrum lies in the region accessible to the detectors being built. The holeums would form haloes around the galaxies and would be an important component of the dark matter in the universe today. They may also be the constituents of the invisible domain walls in the universe

  9. Controlling Chimera States - The influence of excitable units

    OpenAIRE

    Isele, Thomas; Hizanidis, Johanne; Provata, Astero; Hövel, Philipp

    2015-01-01

    We explore the influence of a block of excitable units on the existence and behavior of chimera states in a nonlocally coupled ring-network of FitzHugh-Nagumo elements. The FitzHugh-Nagumo system, a paradigmatic model in many fields from neuroscience to chemical pattern formation and nonlinear electronics, exhibits oscillatory or excitable behavior depending on the values of its parameters. Until now, chimera states have been studied in networks of coupled oscillatory FitzHugh-Nagumo elements...

  10. Stability of Majorana vortex bound states on the surface of superconducting topological insulators

    Science.gov (United States)

    Zhang, Junyi; Cano, Jennifer; Neupert, Titus

    Fu and Kane showed that superconductivity induced on the surface of a 3D topological insulator results in isolated Majorana bound states that appear in the cores of vortices. Many efforts to realize this idea are based on proximity-induced superconducting order in a heterostructure. Recently, superconductivity has been observed in PbTaSe2, which has the band topology of a topological insulator with Dirac cone surface states. Hence, it nourishes the vision of realizing the Fu and Kane proposal in a stoichiometric material without the need for doping or fabricating heterostructures. Motivated by this possibility, we give a comprehensive analysis of stability and localization properties of the vortex Majorana modes in such a topological superconducting material. In particular, we address the experimentally relevant questions regarding (i) the energy separation between the vortex bound and excited states, (ii) the dependence of the hybridization between Majorana modes from opposite surfaces on the thickness of a thin-film sample, (iii) the influence of the bulk superconducting pockets on the Majorana states.

  11. Investigation into chromophore excited-state coupling in allophycocyanin

    Science.gov (United States)

    Zheng, Xiguang; Zhao, Fuli; Wang, He Z.; Gao, Zhaolan; Yu, Zhenxin; Zhu, Jinchang; Xia, Andong; Jiang, Lijin

    1994-08-01

    Both theoretical and experimental studies are presented on chromophore excited-state coupling in linker-free allophycocyanin (APC), one of the antenna phycobiliproteins in algal photosynthesis. A three-site-coupling model has been introduced to describe the exciton interaction mechanism amoung the excited (beta) chromophore in APC, and the exciton energy splitting is estimated. Picosecond polarized fluorescence experiments both on monomeric and trimeric APC isolated from alga Spirulina platensis have been performed. The experimental results show that APC monomer and trimer exhibit remarkedly different spectropic characteristics, and satisfy the suggestion of strong excited- state coupling among chromophores in APC.

  12. Photoacoustic imaging of the excited state lifetime of fluorophores

    Science.gov (United States)

    Märk, Julia; Schmitt, Franz-Josef; Laufer, Jan

    2016-05-01

    Photoacoustic (PA) imaging using pump-probe excitation has been shown to allow the detection and visualization of fluorescent contrast agents. The technique relies upon inducing stimulated emission using pump and probe pulses at excitation wavelengths that correspond to the absorption and fluorescence spectra. By changing the time delay between the pulses, the excited state lifetime of the fluorophore is modulated to vary the amount of thermalized energy, and hence PA signal amplitude, to provide fluorophore-specific PA contrast. In this study, this approach was extended to the detection of differences in the excited state lifetime of fluorophores. PA waveforms were measured in solutions of a near-infrared fluorophore using simultaneous and time-delayed pump-probe excitation. The lifetime of the fluorophore solutions was varied by using different solvents and quencher concentrations. By calculating difference signals and by plotting their amplitude as a function of pump-probe time delay, a correlation with the excited state lifetime of the fluorophore was observed. The results agreed with the output of a forward model of the PA signal generation in fluorophores. The application of this method to tomographic PA imaging of differences in the excited state lifetime was demonstrated in tissue phantom experiments.

  13. Multichannel quantum defect theory of strontium bound Rydberg states

    International Nuclear Information System (INIS)

    Using the reactance matrix approach, we systematically develop new multichannel quantum defect theory (MQDT) models for the singlet and triplet S, P, D and F states of strontium below the first ionization limit, based on improved energy level measurements. The new models reveal additional insights into the character of doubly excited perturber states, and the improved energy level measurements for certain series allow fine structure to be resolved for those series’ perturbers. Comparison between the predictions of the new models and those of previous empirical and ab initio studies reveals good agreement with most series; however, some discrepancies are highlighted. Using the MQDT wave functions derived from our models we calculate other observables such as Landé gJ-factors and radiative lifetimes. The analysis reveals the impact of perturbers on the Rydberg state properties of divalent atoms, highlighting the importance of including two-electron effects in the calculations of these properties. The work enables future investigations of properties such as Stark maps and long-range interactions of Rydberg states of strontium. (paper)

  14. Metastable states of highly excited heavy ions

    Science.gov (United States)

    Pegg, D. J.; Griffin, P. M.; Sellin, I. A.; Smith, W. W.; Donnally, B.

    1973-01-01

    Description of the method used and results obtained in an experimental study of the metastable states of highly stripped heavy ions, aimed at determining the lifetimes of such states by the rates of autoionization and radiation. The significance and limitations of the results presented are discussed.

  15. Excited-state Halo of 14C

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Neutron capture processes on carbon isotope play an important role in astrophysics ranging fromnucleosynthesis in the stellar helium and carbon burning stages to possibly inhomogeneous big bangmodels. The capture rate in astrophysical environments strongly depends on the structure of these carbonnuclei. For example, the first 1/2+ state in 13C is a neutron halo state, and these results in an enormous

  16. 2νββ decay of 76Ge into excited states with GERDA phase I

    Science.gov (United States)

    GERDA Collaboration; Agostini, M.; Allardt, M.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Barros, N.; Baudis, L.; Bauer, C.; Becerici-Schmidt, N.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode, T.; Borowicz, D.; Brudanin, V.; Brugnera, R.; Budjáš, D.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; D'Andrea, V.; Demidova, E. V.; di Vacri, A.; Domula, A.; Doroshkevich, E.; Egorov, V.; Falkenstein, R.; Fedorova, O.; Freund, K.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Gooch, C.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hegai, A.; Heisel, M.; Hemmer, S.; Heusser, G.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Janicskó Csáthy, J.; Jochum, J.; Junker, M.; Kazalov, V.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Klimenko, A.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Liao, H. Y.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Majorovits, B.; Maneschg, W.; Medinaceli, E.; Mi, Y.; Misiaszek, M.; Moseev, P.; Nemchenok, I.; Palioselitis, D.; Panas, K.; Pandola, L.; Pelczar, K.; Pullia, A.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salathe, M.; Schmitt, C.; Schneider, B.; Schreiner, J.; Schulz, O.; Schwingenheuer, B.; Schönert, S.; Schütz, A.-K.; Selivanenko, O.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Stepaniuk, M.; Ur, C. A.; Vanhoefer, L.; Vasenko, A. A.; Veresnikova, A.; von Sturm, K.; Wagner, V.; Walter, M.; Wegmann, A.; Wester, T.; Wilsenach, H.; Wojcik, M.; Yanovich, E.; Zavarise, P.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.

    2015-11-01

    Two neutrino double beta decay of {}76{Ge} to excited states of {}76{Se} has been studied using data from Phase I of the GERDA experiment. An array composed of up to 14 germanium detectors including detectors that have been isotopically enriched in {}76{Ge} was deployed in liquid argon. The analysis of various possible transitions to excited final states is based on coincidence events between pairs of detectors where a de-excitation γ ray is detected in one detector and the two electrons in the other. No signal has been observed and an event counting profile likelihood analysis has been used to determine Frequentist 90% C.L. bounds for three transitions: {0}{{g}.{{s}}.}+-{2}1+: {T}1/22ν \\gt 1.6× {10}23 yr, {0}{{g}.{{s}}.}+-{0}1+: {T}1/22ν \\gt 3.7× {10}23 yr and {0}{{g}.{{s}}.}+-{2}2+: {T}1/22ν \\gt 2.3× {10}23 yr. These bounds are more than two orders of magnitude larger than those reported previously. Bayesian 90% credibility bounds were extracted and used to exclude several models for the {0}{{g}.{{s}}.}+-{0}1+ transition.

  17. Probing the Dark Sector with Dark Matter Bound States

    Science.gov (United States)

    An, Haipeng; Echenard, Bertrand; Pospelov, Maxim; Zhang, Yue

    2016-04-01

    A model of the dark sector where O (few GeV ) mass dark matter particles χ couple to a lighter dark force mediator V , mV≪mχ, is motivated by the recently discovered mismatch between simulated and observed shapes of galactic halos. Such models, in general, provide a challenge for direct detection efforts and collider searches. We show that for a large range of coupling constants and masses, the production and decay of the bound states of χ , such as 0-+ and 1-- states, ηD and ϒD, is an important search channel. We show that e+e-→ηD+V or ϒD+γ production at B factories for αD>0.1 is sufficiently strong to result in multiple pairs of charged leptons and pions via ηD→2 V →2 (l+l-) and ϒD→3 V →3 (l+l-) (l =e ,μ ,π ). The absence of such final states in the existing searches performed at BABAR and Belle sets new constraints on the parameter space of the model. We also show that a search for multiple bremsstrahlung of dark force mediators, e+e-→χ χ ¯+n V , resulting in missing energy and multiple leptons, will further improve the sensitivity to self-interacting dark matter.

  18. Probing the Dark Sector with Dark Matter Bound States.

    Science.gov (United States)

    An, Haipeng; Echenard, Bertrand; Pospelov, Maxim; Zhang, Yue

    2016-04-15

    A model of the dark sector where O(few  GeV) mass dark matter particles χ couple to a lighter dark force mediator V, m_{V}≪m_{χ}, is motivated by the recently discovered mismatch between simulated and observed shapes of galactic halos. Such models, in general, provide a challenge for direct detection efforts and collider searches. We show that for a large range of coupling constants and masses, the production and decay of the bound states of χ, such as 0^{-+} and 1^{--} states, η_{D} and ϒ_{D}, is an important search channel. We show that e^{+}e^{-}→η_{D}+V or ϒ_{D}+γ production at B factories for α_{D}>0.1 is sufficiently strong to result in multiple pairs of charged leptons and pions via η_{D}→2V→2(l^{+}l^{-}) and ϒ_{D}→3V→3(l^{+}l^{-}) (l=e,μ,π). The absence of such final states in the existing searches performed at BABAR and Belle sets new constraints on the parameter space of the model. We also show that a search for multiple bremsstrahlung of dark force mediators, e^{+}e^{-}→χχ[over ¯]+nV, resulting in missing energy and multiple leptons, will further improve the sensitivity to self-interacting dark matter. PMID:27127956

  19. Microwave spectroscopy of furfural in vibrationally excited states

    Science.gov (United States)

    Motiyenko, R. A.; Alekseev, E. A.; Dyubko, S. F.

    2007-07-01

    The results of microwave spectrum investigation of the excited vibrational states of furfural in the frequency range between 49 and 149 GHz are reported. In total 15 excited vibrational states (9 for trans-furfural and 6 for cis-furfural) were assigned and analyzed. Six of the 15 investigated states were assigned for the first time. Accurate values of rigid rotor and quartic centrifugal distortion constants of asymmetric top Hamiltonian have been determined for 13 excited states. Also for some states several sextic and octic level constants were needed in order to fit the data within experimental accuracy. The vt = 3 and vs = 1, va = 1 states of trans-furfural were found to be strongly perturbed and only rotational transitions with low Ka values can be reliably identified in this study.

  20. Neutral Excitations in the Gaffnian state

    Science.gov (United States)

    Kang, Byungmin; Moore, Joel E.

    The Fractional Quantum Hall Effect (FQHE) is one of the most well-studied systems having topological order. Starting with the pioneering work by Laughlin, the model wave function approach has been shown to provide essential information for understanding topological order in gapped incompressible states. We study a model wave function called the Gaffnian state which is believed to represent a gapless, strongly correlated state that is very different from conventional metals. To understand this exotic gapless state better, we provide a representation in which the pairing structure of the Gaffnian state becomes more explicit. We employ the single-mode approximation of the Girvin-MacDonald-Platzman (GMP) mode, which is a neutral collective exitation mode, in order to have a physical picture of the gaplessness of the Gaffnian state. In particular, we discuss how to extract systematically the relevant physics in the long-distance, large electron number limit of the FQH states using a numerical calculation with relatively few electrons.

  1. Two-vibron bound states in the β-Fermi-Pasta-Ulam model

    Institute of Scientific and Technical Information of China (English)

    Hu Xin-Guang; Tang Yi

    2008-01-01

    This paper studies the two-vibron bound states in the β-Fermi-Pasta-Ulam model by means of the number conserving approximation combined with the number state method.The results indicate that on-site,adjacent-site and mixed two-vibron bound states may exist in the model.Specially,wave number has a significant effect on such bound states,which may be considered as the quantum effects of the localized states in quantum systems.

  2. Experimental study of bound states in $^{12}$Be through low-energy $^{11}$Be($d,p$)-transfer reactions

    CERN Document Server

    Johansen, J G; Borge, M J G; Cubero, M; Diriken, J; Elsevier, J; Fraile, L M; Fynbo, H O U; Gaffney, L P; Gernhäuser, R; Jonson, B; Koldste, G T; Konki, J; Kröll, T; Krücken, R; Mücher, D; Nilsson, T; Nowak, K; Pakarinen, J; Pesudo, V; Raabe, R; Riisager, K; Seidlitz, M; Tengblad, O; Törnqvist, H; Voulot, D; Warr, N; Wenander, F; Wimmer, K; De Witte, H

    2013-01-01

    The bound states of $^{12}$Be have been studied through a $^{11}$Be$(d,p)^{12}$Be transfer reaction experiment in inverse kinematics. A 2.8 MeV/u beam of $^{11}$Be was produced using the REX-ISOLDE facility at CERN. The outgoing protons were detected with the T-REX silicon detector array. The MINIBALL germanium array was used to detect $\\gamma$-rays from the excited states in $^{12}$Be. The $\\gamma$-ray detection enabled a clear identification of the four known bound states in $^{12}$Be, and each of the states has been studied individually. Differential cross sections over a large angular range have been extracted. Spectroscopic factors for each of the states have been determined from DWBA calculations and have been compared to previous experimental and theoretical results.

  3. Search for the 4He-eta bound state in dd->(4He-eta)_{bound}->3He n pi0 and dd->(4He-eta)_{bound}->3He p pi- reactions with the WASA-at-COSY facility

    CERN Document Server

    Skurzok, M; Moskal, P

    2014-01-01

    In November 2010, the search for the 4He-{\\eta} bound state was per formed with high statistics and high acceptance with the WASA-at-COSY facility using a ramped beam technique. The signature of eta - mesic nuclei is searched for in the measured excitation functions for the two reaction channels: dd ->3He n pi0 and dd ->3He p pi- near the eta production threshold. This report includes the description of the experimental method and the status of the data analysis.

  4. The excited state antiaromatic benzene ring: a molecular Mr Hyde?

    Science.gov (United States)

    Papadakis, Raffaello; Ottosson, Henrik

    2015-09-21

    The antiaromatic character of benzene in its first ππ* excited triplet state (T1) was deduced more than four decades ago by Baird using perturbation molecular orbital (PMO) theory [J. Am. Chem. Soc. 1972, 94, 4941], and since then it has been confirmed through a range of high-level quantum chemical calculations. With focus on benzene we now first review theoretical and computational studies that examine and confirm Baird's rule on reversal in the electron count for aromaticity and antiaromaticity of annulenes in their lowest triplet states as compared to Hückel's rule for the ground state (S0). We also note that the rule according to quantum chemical calculations can be extended to the lowest singlet excited state (S1) of benzene. Importantly, Baird, as well as Aihara [Bull. Chem. Soc. Jpn. 1978, 51, 1788], early put forth that the destabilization and excited state antiaromaticity of the benzene ring should be reflected in its photochemical reactivity, yet, today these conclusions are often overlooked. Thus, in the second part of the article we review photochemical reactions of a series of benzene derivatives that to various extents should stem from the excited state antiaromatic character of the benzene ring. We argue that benzene can be viewed as a molecular "Dr Jekyll and Mr Hyde" with its largely unknown excited state antiaromaticity representing its "Mr Hyde" character. The recognition of the "Jekyll and Hyde" split personality feature of the benzene ring can likely be useful in a range of different areas. PMID:25960203

  5. Statistical Production of Antikaon Nuclear Bound States in Heavy Ion Collisions

    CERN Document Server

    Andronic, A; Redlich, K

    2006-01-01

    Recently it was shown that the strongly attractive antikaon--nucleon potential can result in the formation of the antikaon nuclear bound states. We discuss the formation of such states as possible residues in heavy ion collisions. In this context, we calculate the excitation functions of single- and double-K- clusters in terms of the statistical thermal model. We show that, if such objects indeed exist, then, in heavy ion collisions, the single-K- clusters are most abundantly produced at present SIS energies, while the double-$K^-$ clusters show a pronounced maximum yield in the energy domain of the future accelerator at GSI. This is a direct consequence of: i) the baryonic dominance in low energy heavy ion collisions and the large baryonic content of the antikaonic bound states; ii) the strong energy dependence of strangeness production at low energies. The production yields of double-strange clusters is compared with that of double strange baryons. It is shown that at SIS energies there is a linear scaling ...

  6. Controlling chimera states: The influence of excitable units

    Science.gov (United States)

    Isele, Thomas; Hizanidis, Johanne; Provata, Astero; Hövel, Philipp

    2016-02-01

    We explore the influence of a block of excitable units on the existence and behavior of chimera states in a nonlocally coupled ring-network of FitzHugh-Nagumo elements. The FitzHugh-Nagumo system, a paradigmatic model in many fields from neuroscience to chemical pattern formation and nonlinear electronics, exhibits oscillatory or excitable behavior depending on the values of its parameters. Until now, chimera states have been studied in networks of coupled oscillatory FitzHugh-Nagumo elements. In the present work, we find that introducing a block of excitable units into the network may lead to several interesting effects. It allows for controlling the position of a chimera state as well as for generating a chimera state directly from the synchronous state.

  7. Three-nucleon problem: trinucleon bound states and trinucleon interactions

    International Nuclear Information System (INIS)

    The assumptions underlying the formulation and solution of the Schroedinger equation for three nucleons in configuration space are reviewed, in conjunction with those qualitative aspects of the two-nucleon problem which are important. The geometrical features of the problem and the crucial role of the angular momentum barrier are developed. The boundary conditions for scattering are discussed qualitatively, and the Faddeev-Noyes equation is motivated. The method of splines and orthogonal collocation are shown to provide convenient techniques for generating numerical solutions. Properties of the many numerical solutions for the bound states and zero-energy scattering states are discussed. The evidence for three-body forces is reviewed, and the results of the recent calculations including such forces are discussed. The importance of electromagnetic interactions in the three-nucleon systems is motivated. Relativistic corrections and meson-exchange currents are discussed in the context of ''rules of scale'', and the pion-exchange currents of nonrelativistic order are derived. The experimental results for trinucleon electromagnetic interactions are reviewed, including recent tritium data. Conclusions are presented. 56 refs., 23 figs

  8. Even-parity states of the Sm atom with stepwise excitation

    Institute of Scientific and Technical Information of China (English)

    Li Ming; Dai Chang-Jian; Xie Jun

    2011-01-01

    Two-colour stepwise excitation and photoionization schemes are adopted to study the spectra of high-lying states of the Sm atom. These bound even-parity states are excited with three different excitation paths from the 4f66s6p7DJ (J = 1, 2, 3) intermediate states, respectively. They are probed by photoionization process with an extra photon driving them to the continuum states. In this experiment, 270 states are detected in an energy range from 36160 cm-1 to 42250 cm-1, 109 of which are newly discovered, while the rest of them are confirmed to be the energy levels reported previously. Furthermore, based on the J-momentum selection rules of three excitation paths, a unique assignment of J-momentum for all observed states is determined, eliminating all remaining ambiguities in the literature. Finally, 53 single-colour transitions originating from the scanning laser are also identified. For all the relevant transitions, the information about their relative intensities is also given in the paper.

  9. Even-parity states of the Sm atom with stepwise excitation

    International Nuclear Information System (INIS)

    Two-colour stepwise excitation and photoionization schemes are adopted to study the spectra of high-lying states of the Sm atom. These bound even-parity states are excited with three different excitation paths from the 4f66s6p7DJ (J = 1, 2, 3) intermediate states, respectively. They are probed by photoionization process with an extra photon driving them to the continuum states. In this experiment, 270 states are detected in an energy range from 36160 cm−1 to 42250 cm−1, 109 of which are newly discovered, while the rest of them are confirmed to be the energy levels reported previously. Furthermore, based on the J-momentum selection rules of three excitation paths, a unique assignment of J-momentum for all observed states is determined, eliminating all remaining ambiguities in the literature. Finally, 53 single-colour transitions originating from the scanning laser are also identified. For all the relevant transitions, the information about their relative intensities is also given in the paper. (atomic and molecular physics)

  10. Shape vibration and quasiparticle excitations in the lowest 0+ excited state in erbium isotopes

    Science.gov (United States)

    Chen, Fang-Qi; Egido, J. Luis

    2016-06-01

    The ground and first excited 0+ states of the -172Er156 isotopes are analyzed in the framework of the generator coordinate method. The shape parameter β is used to generate wave functions with different deformations which together with the two-quasiparticle states built on them provide a set of states. An angular momentum and particle number projection of the latter spawn the basis states of the generator coordinate method. With this ansatz and using the separable pairing plus quadrupole interaction we obtain a good agreement with the experimental spectra and E 2 transition rates up to moderate spin values. The structure of the wave functions suggests that the first excited 0+ states in the soft Er isotopes are dominated by shape fluctuations, while in the well deformed Er isotopes the two-quasiparticle states are more relevant. In between, both degrees of freedom are necessary.

  11. Shape vibrations and quasiparticle excitations in the lowest 0+ excited state of the Erbium isotopes

    CERN Document Server

    Chen, Fang-Qi

    2016-01-01

    The ground and first excited 0+ states of the {156-172}Er isotopes are analyzed in the framework of the generator coordinate method. The shape parameter beta is used to generate wave functions with different deformations which together with the two-quasiparticle states built on them provide a set of states. An angular momentum and particle number projection of the latter spawn the basis states of the generator coordinate method. With this ansatz and using the separable pairing plus quadrupole interaction we obtain a good agreement with the experimental spectra and E2 transition rates up to moderate spin values. The structure of the wave functions suggests that the first excited 0+ states in the soft Er isotopes are dominated by shape fluctuations, while in the well deformed Er isotopes the two-quasiparticle states are more relevant. In between both degrees of freedom are necessary .

  12. Lifetimes and branching ratios of excited states in La-, Os-, Lu-, Lr-, and Pr-

    International Nuclear Information System (INIS)

    Relativistic configuration-interaction calculations have been performed for all possible E1, M1, and E2 transitions between bound anion states of La- and Os-. We pay particular attention to E1 transitions in each case that may be of use in laser cooling of these anions. Although the La- transition energy is approximately one-third of the Os- transition, our results indicate that the Einstein A coefficient is nearly two orders of magnitude larger, which would lead to more efficient laser cooling. We have also explored long-lived opposite-parity excited states in Lu- and Lr- which are restricted to M2 decay by selection rules. Finally, in Pr-, we find sufficient mixing between a weakly bound excited 4f25d26s2 state with a nearby 4f36s26p resonance to result in a lifetime similar to that of the other excited anion states, despite the fact that the dominant configurations of these M1 and E2 transitions differ by two electrons.

  13. Lower bound on concurrence for arbitrary-dimensional tripartite quantum states

    Science.gov (United States)

    Chen, Wei; Fei, Shao-Ming; Zheng, Zhu-Jun

    2016-06-01

    In this paper, we study the concurrence of arbitrary-dimensional tripartite quantum states. An explicit operational lower bound of concurrence is obtained in terms of the concurrence of substates. A given example shows that our lower bound may improve the well-known existing lower bounds of concurrence. The significance of our result is to get a lower bound when we study the concurrence of arbitrary m⊗ n⊗ l -dimensional tripartite quantum states.

  14. Cluster structure in highly-excited states of light nuclei

    International Nuclear Information System (INIS)

    The cluster structure in the highly-excited states of light nuclei are investigated using the multi-cluster model. For this purpose, we propose a developed treatment method of the multi-cluster model. The method consists of two parts: One is a systematic construction method of the multi-cluster Pauli-allowed states. Another is a truncation method of the large model space of the multi-cluster system. We show that we can easily solve the equation of the orthogonality condition model (OCM) for complex multi-cluster systems by the use of the method. We apply the multi-cluster models 3α, 4α, 12C + 2α and 16O + 2α to 12C, 16O, 20Ne and 24Mg, respectively. As shown in the Ikeda diagram, these models open a very interesting problem not only of the cluster structure in the highly-excited states of those nuclei but also of the structure change between different cluster structures. We show a typical example of the 16O + 2α model for 24Mg ; 1) many excited states with the 20Ne-α cluster structure are obtained at excitation energies above 10 MeV, 2) the 16O-8Be cluster states are obtained at the energy region higher than 20 MeV, and 3) the very interesting states with the α-16O-α linear-chain-like structure are predicted at about 20 MeV excitation energy. (author)

  15. Doubly excited 3P(e) resonant states in Ps(-)

    Science.gov (United States)

    Ho, Y. K.; Bhatia, A. K.

    1992-01-01

    Doubly excited 3P(e) resonant states in Ps(-) are calculated using a method of complex-coordinate rotation. Resonance parameters (both resonance positions and widths) for doubly excited states associated with the n = 2, 3, 4, 5, and 6 thresholds of positronium atoms are evaluated using elaborate Hylleraas-type functions. In addition to ten Feshbach-type resonances lying below various Ps thresholds, three shape resonances were identified, one each lying above the n = 2, 4, and 6 Ps thresholds. It is further noted that the energy levels for the present 3P(e) states are nearly degenerate with respect to the previously calculated 1P(0) states. Such a symmetric character suggests that the highly and doubly excited Ps(-), similar to its counterpart in H(-), would exhibit rovibrational behaviors analogous to those of XYX triatomic molecules.

  16. Neutron halos in the excited states for N=127 isotones

    Institute of Scientific and Technical Information of China (English)

    SUN Qin; GUO Jian-You

    2009-01-01

    Properties of the ground states and the excited states of N=127 isotones are investigated by using the nonlinear relativistic mean field theory with the interactions PK1. By analyzing the rms of proton and neutron, the single particle energies of valence nucleon and the density distributions of neutron, proton and the last neutron, it can be found that there exists a neutron halo in the excited states of 3d5/2, 4s1/2 and 3d3/2 in 209Pb. It is also predicted that there exists a neutron halo in the excited states of 3d5/2, 4s1/2 and 3d3/2 in 207Hg, 208Tl, 210Bi and 211Po.

  17. Excited states and transition metal compounds with quantum Monte Carlo

    OpenAIRE

    Bande, Annika

    2007-01-01

    To the most challenging electron structure calculations belong weak interactions, excited state calculations, transition metals and properties. In this work the performance of variational (VMC) and fixed-node diffusion quantum Monte Carlo (FN-DMC) is tested for challenging electron structure problems using the quantum Monte Carlo amolqc code by Lüchow et al. The transition metal compounds under consideration are vanadium oxides. Here excitation, ionization, oxygen atom and molecule abstractio...

  18. Charge transfer excitations from excited state Hartree-Fock subsequent minimization scheme

    Energy Technology Data Exchange (ETDEWEB)

    Theophilou, Iris, E-mail: i.theophilou@fz-juelich.de [Peter Grunberg Institut (PGI) Forschungszentrum Jülich, D-52425 Jülich (Germany); Tassi, M.; Thanos, S. [Institute for Advanced Materials, Physicochemical Processes, Nanotechnology and Microsystems, ‘Demokritos’ National Center for Scientific Research, 15310 Athens (Greece)

    2014-04-28

    Photoinduced charge-transfer processes play a key role for novel photovoltaic phenomena and devices. Thus, the development of ab initio methods that allow for an accurate and computationally inexpensive treatment of charge-transfer excitations is a topic that nowadays attracts a lot of scientific attention. In this paper we extend an approach recently introduced for the description of single and double excitations [M. Tassi, I. Theophilou, and S. Thanos, Int. J. Quantum Chem. 113, 690 (2013); M. Tassi, I. Theophilou, and S. Thanos, J. Chem. Phys. 138, 124107 (2013)] to allow for the description of intermolecular charge-transfer excitations. We describe an excitation where an electron is transferred from a donor system to an acceptor one, keeping the excited state orthogonal to the ground state and avoiding variational collapse. These conditions are achieved by decomposing the space spanned by the Hartree-Fock (HF) ground state orbitals into four subspaces: The subspace spanned by the occupied orbitals that are localized in the region of the donor molecule, the corresponding for the acceptor ones and two more subspaces containing the virtual orbitals that are localized in the neighborhood of the donor and the acceptor, respectively. Next, we create a Slater determinant with a hole in the subspace of occupied orbitals of the donor and a particle in the virtual subspace of the acceptor. Subsequently we optimize both the hole and the particle by minimizing the HF energy functional in the corresponding subspaces. Finally, we test our approach by calculating the lowest charge-transfer excitation energies for a set of tetracyanoethylene-hydrocarbon complexes that have been used earlier as a test set for such kind of excitations.

  19. Excited State Spectra and Dynamics of Phenyl-Substituted Butadienes

    DEFF Research Database (Denmark)

    Wallace-Williams, Stacie E.; Schwartz, Benjamin J.; Møller, Søren;

    1994-01-01

    A combination of steady-state and dynamic spectral measurements are used to provide new insights into the nature of the excited-state processes of all-trans-1,4-diphenyl-1,3-butadiene and several analogs: 1,4-diphenyl- 1,3-cyclopentadiene, 1,1,4,4-tetraphenylbutadiene, 1,2,3,4-tetraphenyl-1...

  20. Extended Eckart Theorem and New Variation Method for Excited States of Atoms

    CERN Document Server

    Xiong, Zhuang; Bacalis, N C; Zhou, Qin

    2016-01-01

    We extend the Eckart theorem, from the ground state to excited statew, which introduces an energy augmentation to the variation criterion for excited states. It is shown that the energy of a very good excited state trial function can be slightly lower than the exact eigenvalue. Further, the energy calculated by the trial excited state wave function, which is the closest to the exact eigenstate through Gram-Schmidt orthonormalization to a ground state approximant, is lower than the exact eigenvalue as well. In order to avoid the variation restrictions inherent in the upper bound variation theory based on Hylleraas, Undheim, and McDonald [HUM] and Eckart Theorem, we have proposed a new variation functional Omega-n and proved that it has a local minimum at the eigenstates, which allows approaching the eigenstate unlimitedly by variation of the trial wave function. As an example, we calculated the energy and the radial expectation values of Triplet-S(even) Helium atom by the new variation functional, and by HUM a...

  1. The three-nucleon bound state with isobaric and pionic degrees of freedom

    International Nuclear Information System (INIS)

    Wave function components containing a single Δ-isobar are included in the calculation of the three-nucleon bound states. The two-nucleon interaction acts in all partial waves up to total angular momentum I=2. The presence of a Δ-isobar increases the three-nucleon binding energy by about 0.3 MeV, 0.6 MeV repulsion being a dispersive two-body effect, 0.9 MeV attraction arising from the three-nucleon force with intermediate Δ-isobar. The effect of the Δ on the three-nucleon charge and magnetic form factors is investigated. The possibility of treating the Δ-isobar as a dynamic pion-nucleon system in nuclear structure and nuclear-structure corrections beyond single Δ excitation in the coupled channel approach are also discussed

  2. Unitary Transformations in Quantum Field Theory and Bound States

    CERN Document Server

    Shebeko, A V

    2001-01-01

    Finding the eigenstates of the total Hamiltonian H or its diagonalization is the important problem of quantum physics. However, in relativistic quantum field theory (RQFT) its complete and exact solution is possible for a few simple models only. Unitary transformations (UT's) considered in this survey do not diagonalize H, but convert H into a form which enables us to find approximately some H eigenstates. During the last years there have appeared many papers devoted to physical applications of such UT's. Our aim is to present a systematic and self-sufficient exposition of the UT method. The two general kinds of UT's are pointed out, distinct variations of each kind being possible. We consider in detail the problem of finding the simplest H eigenstates for interacting mesons and nucleons using the so-called ``clothing'' UT and Okubo's UT. These UT's allow us to suggest definite approaches to the problem of two-particle (deuteron-like) bound states in RQFT. The approaches are shown to yield the same two-nucleo...

  3. Bound States via Higgs Exchanging and Resonant Di-Higgs

    CERN Document Server

    Kang, Zhaofeng

    2016-01-01

    The standard model (SM)-like Higgs boson $h$ has spin zero and light mass around weak scale, so it has the potential to mediate a new and relatively strong force for the particle $\\phi$ in the new physics (NP) sector; then $\\phi$ may form bound state $B_h$ via exchanging $h$. This phenomena may arise in a wide context, for instance composite Higgs, supersymmetry (SUSY) and radiative neutrino (or more widely in the models with a strong Higgs portal for triggering classical scale symmetry breaking or strong first-order phase transition). For illustration we focus on two typical examples, the stop/sbottom sector and an inert Higgs doublet. Furthermore, we point out that $B_h$ must give rise to a clear resonant di-Higgs signature, which recently has been extensively searched for at the large hadron collider (LHC). Moreover, Higgs radiative decay such as to di-photon probably will be significantly modified provided that $\\phi$ is charged or/and colored.

  4. Unified description of bound, resonant and scattering states

    International Nuclear Information System (INIS)

    Recently we have introduced a general method for calculating the discrete Hilbert-space basis representation of the Green's operators of those Hamiltonians which have infinite symmetric tridiagonal matrix forms. The elements of this matrix are used in the calculation of the Green's matrix in terms of a three-term recurrence relation and continued fractions. We specified our general approach to the case of the Coulomb problem and the Coulomb-Sturmian basis associated with it. As a further step, we can combine this new way of calculating the Coulomb-Green's matrix with a technique of solving integral equations in discrete Hilbert-space-basis representations. This provides us with a quantum mechanical approximation method which is rather general in the sense that it is equally applicable to solving bound-, resonant- and scattering-state problems with practically any potential of physical relevance. The method is especially suited to problems where Coulomb-like asymptotics have to be treated, but the formalism also contains the case of the free Green's operator as a special case. (author)

  5. Optimal Bounded Control for Stationary Response of Strongly Nonlinear Oscillators under Combined Harmonic and Wide-Band Noise Excitations

    Directory of Open Access Journals (Sweden)

    Yongjun Wu

    2011-01-01

    Full Text Available We study the stochastic optimal bounded control for minimizing the stationary response of strongly nonlinear oscillators under combined harmonic and wide-band noise excitations. The stochastic averaging method and the dynamical programming principle are combined to obtain the fully averaged Itô stochastic differential equations which describe the original controlled strongly nonlinear system approximately. The stationary joint probability density of the amplitude and phase difference of the optimally controlled systems is obtained from solving the corresponding reduced Fokker-Planck-Kolmogorov (FPK equation. An example is given to illustrate the proposed procedure, and the theoretical results are verified by Monte Carlo simulation.

  6. Multiple-Pulse Operation and Bound States of Solitons in Passive Mode-Locked Fiber Lasers

    Directory of Open Access Journals (Sweden)

    A. Komarov

    2012-01-01

    Full Text Available We present results of our research on a multiple-pulse operation of passive mode-locked fiber lasers. The research has been performed on basis of numerical simulation. Multihysteresis dependence of both an intracavity energy and peak intensities of intracavity ultrashort pulses on pump power is found. It is shown that the change of a number of ultrashort pulses in a laser cavity can be realized by hard as well as soft regimes of an excitation and an annihilation of new solitons. Bound steady states of interacting solitons are studied for various mechanisms of nonlinear losses shaping ultrashort pulses. Possibility of coding of information on basis of soliton trains with various bonds between neighboring pulses is discussed. The role of dispersive wave emitted by solitons because of lumped intracavity elements in a formation of powerful soliton wings is analyzed. It is found that such powerful wings result in large bounding energies of interacting solitons in steady states. Various problems of a soliton interaction in passive mode-locked fiber lasers are discussed.

  7. Lifetimes of ultralong-range Rydberg molecules in vibrational ground and excited states

    Energy Technology Data Exchange (ETDEWEB)

    Butscher, Bjoern; Bendkowsky, Vera; Nipper, Johannes; Balewski, Jonathan B; Kukota, Ludmila; Loew, Robert; Pfau, Tilman [5. Physikalisches Institut, Universitaet Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart (Germany); Li, Weibin; Pohl, Thomas; Rost, Jan Michael, E-mail: b.butscher@physik.uni-stuttgart.de [Max-Planck-Institut fuer Physik komplexer Systeme, Noethnitzer Str. 38, 01187 Dresden (Germany)

    2011-09-28

    Since their first experimental observation, ultralong-range Rydberg molecules consisting of a highly excited Rydberg atom and a ground state atom [1, 2] have attracted the interest in the field of ultracold chemistry [3, 4]. Especially the intriguing properties such as size, polarizability and type of binding they inherit from the Rydberg atom are of interest. An open question in the field is the reduced lifetime of the molecules compared to the corresponding atomic Rydberg states [2]. In this paper we present an experimental study on the lifetimes of the {sup 3}{Sigma}(5s - 35s) molecule in its vibrational ground state and in an excited state. We show that the lifetimes depend on the density of ground state atoms and that this can be described in the frame of a classical scattering between the molecules and ground state atoms. We also find that the excited molecular state has an even more reduced lifetime compared to the ground state which can be attributed to an inward penetration of the bound atomic pair due to imperfect quantum reflection that takes place in the special shape of the molecular potential [5].

  8. Excited-state dynamics of astaxanthin aggregates

    Science.gov (United States)

    Fuciman, Marcel; Durchan, Milan; Šlouf, Václav; Keşan, Gürkan; Polívka, Tomáš

    2013-05-01

    Astaxanthin forms three types of aggregates in hydrated dimethyl sulfoxide (DMSO). In DMSO/water ratio of 1:1, a red-shifted J-aggregate with maximum at 570 nm is generated, while a ratio of 1:9 produces blue-shifted H-aggregates with peaks at 386 nm (H1) and 460 nm (H2). Monomeric astaxanthin in DMSO has an S1 lifetime of 5.3 ps, but a long-lived (33 ps) S∗ signal was also identified. Aggregation changes the S1 lifetimes to 17 ps (H1), 30 ps (H2), and 14 ps (J). Triplet state of astaxanthin, most likely generated via singlet homofission, was observed in H1 and H2 aggregates.

  9. Measurement of excited states of Sb impurity in Si by traveling–wave method

    International Nuclear Information System (INIS)

    The ground and excited states of Sb atom in Si, 1s (A1), 1s (T2), 1s (E), and 2p0, were measured by using a traveling-wave method. The Sb-doped Si crystal with donor concentration of 2 × 1015 cm−3 was placed the distance of 5 μm above a piezoelectric crystal in the fringe field of a surface acoustic wave. The free electrons excited from the bound states of the Sb atom are drifted by the traveling-wave, and thus lose their energy as the Joule heat through lattice and ion scattering processes. A strong temperature-dependent energy loss of the traveling-wave can be observed at temperatures below 200 K. The values of the bound states of the Sb atom can be characterized by using the Arrhenius plot for thermal activation process of the electrons in the bound states. The measurements were carried out at two frequencies of the traveling-wave, 50 MHz and 200 MHz. At the frequency of 50 MHz, the dielectric properties of the Si crystal are governed by dopant polarization but by electronic polarization at 200 MHz. We found that measurement accuracy of the bound states depends mainly on the electron mobility and the dielectric constant of the Si crystal, which are sensitive to the frequency and strength of the traveling-wave as well as electronic polarization properties of the Si crystal.

  10. Quantum entanglement of localized excited states at finite temperature

    Science.gov (United States)

    Caputa, Pawel; Simón, Joan; Štikonas, Andrius; Takayanagi, Tadashi

    2015-01-01

    In this work we study the time evolutions of (Renyi) entanglement entropy of locally excited states in two dimensional conformal field theories (CFTs) at finite temperature. We consider excited states created by acting with local operators on thermal states and give both field theoretic and holographic calculations. In free field CFTs, we find that the growth of Renyi entanglement entropy at finite temperature is reduced compared to the zero temperature result by a small quantity proportional to the width of the localized excitations. On the other hand, in finite temperature CFTs with classical gravity duals, we find that the entanglement entropy approaches a characteristic value at late time. This behaviour does not occur at zero temperature. We also study the mutual information between the two CFTs in the thermofield double (TFD) formulation and give physical interpretations of our results.

  11. Quantum Entanglement of Localized Excited States at Finite Temperature

    CERN Document Server

    Caputa, Pawel; Stikonas, Andrius; Takayanagi, Tadashi

    2014-01-01

    In this work we study the time evolutions of (Renyi) entanglement entropy of locally excited states in two dimensional conformal field theories (CFTs) at finite temperature. We consider excited states created by acting with local operators on thermal states and give both field theoretic and holographic calculations. In free field CFTs, we find that the growth of Renyi entanglement entropy at finite temperature is reduced compared to the zero temperature result by a small quantity proportional to the width of the localized excitations. On the other hand, in finite temperature CFTs with classical gravity duals, we find that the entanglement entropy approaches a characteristic value at late time. This behaviour does not occur at zero temperature. We also study the mutual information between the two CFTs in the thermofield double (TFD) formulation and give physical interpretations of our results.

  12. State-Selective Excitation of Quantum Systems via Geometrical Optimization.

    Science.gov (United States)

    Chang, Bo Y; Shin, Seokmin; Sola, Ignacio R

    2015-09-01

    We lay out the foundations of a general method of quantum control via geometrical optimization. We apply the method to state-selective population transfer using ultrashort transform-limited pulses between manifolds of levels that may represent, e.g., state-selective transitions in molecules. Assuming that certain states can be prepared, we develop three implementations: (i) preoptimization, which implies engineering the initial state within the ground manifold or electronic state before the pulse is applied; (ii) postoptimization, which implies engineering the final state within the excited manifold or target electronic state, after the pulse; and (iii) double-time optimization, which uses both types of time-ordered manipulations. We apply the schemes to two important dynamical problems: To prepare arbitrary vibrational superposition states on the target electronic state and to select weakly coupled vibrational states. Whereas full population inversion between the electronic states only requires control at initial time in all of the ground vibrational levels, only very specific superposition states can be prepared with high fidelity by either pre- or postoptimization mechanisms. Full state-selective population inversion requires manipulating the vibrational coherences in the ground electronic state before the optical pulse is applied and in the excited electronic state afterward, but not during all times. PMID:26575896

  13. Excited states structure and processes: Understanding organic light-emitting diodes at the molecular level

    International Nuclear Information System (INIS)

    Photo- or electro-excited states in polyatomic molecules, aggregates, and conjugated polymers are at the center of organic light-emitting diodes (OLEDs). These can decay radiatively or non-radiatively, determining the luminescence quantum efficiency of molecular materials. According to Kasha’s rule, light-emission is dictated by the lowest-lying excited state. For conjugated polymers, the electron correlation effect can lead the lowest-lying excited state to the even-parity 2Ag state which is non-emissive. To understand the nature of the low-lying excited state structure, we developed the density matrix renormalization group (DMRG) theory and its symmetrization scheme for quantum chemistry applied to calculate the excited states structure. We found there are three types of 1Bu/2Ag crossover behaviors: with electron correlation strength U, with bond length alternation, and with conjugation length. These directly influence the light-emitting property. For the electro-excitation, carriers (electron and hole) are injected independently, forming both singlet and triplet excited bound states with statistically 25% and 75% portions, respectively. We found that the exciton formation rate can depend on spin manifold, and for conjugated polymers, the singlet exciton can have larger formation rate leading to the internal electroluminescence quantum efficiency larger than the 25% spin statistical limit. It is originated from the interchain electron correlation as well as intrachain lattice relaxation. For the dipole allowed emissive state, the radiative decay process via either spontaneous emission or stimulated emission can be computed from electronic structure plus vibronic couplings. The challenging issue lies in the non-radiative decay via non-adiabatic coupling and/or spin–orbit coupling. We developed a unified correlation function formalism for the excited state radiative and non-radiative decay rates. We emphasized the low-frequency mode mixing (Duschinsky rotation

  14. Calculations of K{sup -} nuclear quasi-bound states based on chiral meson-baryon amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Gazda, Daniel [Nuclear Physics Institute, 250 68 Rez (Czech Republic); Mares, Jiri, E-mail: mares@ujf.cas.cz [Nuclear Physics Institute, 250 68 Rez (Czech Republic)

    2012-05-01

    In-medium K{sup Macron}N scattering amplitudes developed within a new chirally motivated coupled-channel model due to Cieply and Smejkal that fits the recent SIDDHARTA kaonic hydrogen 1s level shift and width are used to construct K{sup -} nuclear potentials for calculations of K{sup -} nuclear quasi-bound states. The strong energy and density dependence of scattering amplitudes at and near threshold leads to K{sup -} potential depths -ReV{sub K} Almost-Equal-To 80-120 MeV. Self-consistent calculations of all K{sup -} nuclear quasi-bound states, including excited states, are reported. Model dependence, polarization effects, the role of p-wave interactions, and two-nucleon K{sup -}NN{yields}YN absorption modes are discussed. The K{sup -} absorption widths {Gamma}{sub K} are comparable or even larger than the corresponding binding energies B{sub K} for allK{sup -} nuclear quasi-bound states, exceeding considerably the level spacing. This discourages search for K{sup -} nuclear quasi-bound states in any but the lightest nuclear systems.

  15. Supersymmetry Approaches to the Bound States of the Generalized Woods-Saxon Potential

    Science.gov (United States)

    Fakhri, H.; Sadeghi, J.

    Using the associated Jacobi differential equation, we obtain exactly bound states of the generalization of Woods-Saxon potential with the negative energy levels based on the analytic approach. According to the supersymmetry approaches in quantum mechanics, we show that these bound states by four pairs of the first-order differential operators, represent four types of the laddering equations. Two types of these supersymmetry structures, suggest the derivation of algebraic solutions by two different approaches for the bound states.

  16. Normalization of the covariant three-body bound state vertex function

    CERN Document Server

    Adam, J; Savkli, C; Van Orden, J W; Gross, Franz; Savkli, Cetin

    1997-01-01

    The normalization condition for the relativistic three nucleon Bethe-Salpeter and Gross bound state vertex functions is derived, for the first time, directly from the three body wave equations. It is also shown that the relativistic normalization condition for the two body Gross bound state vertex function is identical to the requirement that the bound state charge be conserved, proving that charge is automatically conserved by this equation.

  17. Near optimal bounds on quantum communication complexity of single-shot quantum state redistribution

    OpenAIRE

    Anshu, Anurag; Devabathini, Vamsi Krishna; Jain, Rahul

    2014-01-01

    We show near optimal bounds on the worst case quantum communication of single-shot entanglement-assisted one-way quantum communication protocols for the {\\em quantum state redistribution} task and for the sub-tasks {\\em quantum state splitting} and {\\em quantum state merging}. Our bounds are tighter than previously known best bounds for the latter two sub-tasks. A key technical tool that we use is a {\\em convex-split} lemma which may be of independent interest.

  18. Free energy barrier for melittin reorientation from a membrane-bound state to a transmembrane state

    OpenAIRE

    Irudayam, Sheeba J.; Pobandt, Tobias; Berkowitz, Max L.

    2013-01-01

    An important step in a phospholipid membrane pore formation by melittin antimicrobial peptide is a reorientation of the peptide from a surface into a transmembrane conformation. In this work we perform umbrella sampling simulations to calculate the potential of mean force (PMF) for the reorientation of melittin from a surface-bound state to a transmembrane state and provide a molecular level insight into understanding peptide and lipid properties that influence the existence of the free energ...

  19. Accurate Excited State Geometries within Reduced Subspace TDDFT/TDA.

    Science.gov (United States)

    Robinson, David

    2014-12-01

    A method for the calculation of TDDFT/TDA excited state geometries within a reduced subspace of Kohn-Sham orbitals has been implemented and tested. Accurate geometries are found for all of the fluorophore-like molecules tested, with at most all valence occupied orbitals and half of the virtual orbitals included but for some molecules even fewer orbitals. Efficiency gains of between 15 and 30% are found for essentially the same level of accuracy as a standard TDDFT/TDA excited state geometry optimization calculation. PMID:26583218

  20. Coupled cluster calculations of ground and excited states of nuclei

    International Nuclear Information System (INIS)

    The standard and renormalized coupled cluster methods with singles, doubles, and noniterative triples and their generalizations to excited states, based on the equation of motion coupled cluster approach, are applied to the He4 and O16 nuclei. A comparison of coupled cluster results with the results of the exact diagonalization of the Hamiltonian in the same model space shows that the quantum chemistry inspired coupled cluster approximations provide an excellent description of ground and excited states of nuclei. The bulk of the correlation effects is obtained at the coupled cluster singles and doubles level. Triples, treated noniteratively, provide the virtually exact description

  1. First-principles Calculation of Excited State Spectra in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Jozef Dudek,Robert Edwards,Michael Peardon,David Richards,Christopher Thomas

    2011-05-01

    Recent progress at understanding the excited state spectra of mesons and baryons is described. I begin by outlining the application of the variational method to compute the spectrum of QCD, and then present results for the excited meson spectrum, with continuum quantum numbers of the states clearly delineated. I emphasise the need to extend the calculation to encompass multi-hadron contributions, and describe a recent calculation of the I=2 pion-pion energy-dependent phase shifts as a precursor to the study of channels with resonant behavior. I conclude with recent results for the low lying baryon spectrum, and the prospects for future calculations.

  2. Equations of state for self-excited MHD generator studies

    International Nuclear Information System (INIS)

    We have constructed a state-of-the-art equation of state (EOS) for argon covering the temperature density range attainable by currently proposed self-excited MHD generators. The EOS for conditions in the flow channel was obtained primarily by a non-ideal plasma code (ACTEX) that is based on a many body activity expansion. For conditions in the driver chamber the EOS was primarily obtained from a fluid code (HDFP) that calculates the fluid properties from perturbation theory based on the insulator interatomic pair potential but including electronic excitations. The results are in agreement with several sets of experimental data in the 0.6 - 91 GPa pressure range

  3. Equations of state for self-excited MHD generator studies

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, F.J.; Ross, M.; Haggin, G.L.; Wong, L.K.

    1980-02-26

    We have constructed a state-of-the-art equation of state (EOS) for argon covering the temperature density range attainable by currently proposed self-excited MHD generators. The EOS for conditions in the flow channel was obtained primarily by a non-ideal plasma code (ACTEX) that is based on a many body activity expansion. For conditions in the driver chamber the EOS was primarily obtained from a fluid code (HDFP) that calculates the fluid properties from perturbation theory based on the insulator interatomic pair potential but including electronic excitations. The results are in agreement with several sets of experimental data in the 0.6 - 91 GPa pressure range.

  4. Kinetic studies following state-selective laser excitation

    International Nuclear Information System (INIS)

    The objective of this contract is the study of state-to-state, electronic energy transfer reactions following two-photon laser excitation. We have chosen to study reactions of Xe 5p5np because of their relevance to the XeCl excimer laser. We are studying deactivation reactions in collisions with heavy atoms such as Ar, Kr, and Xe and reactive collisions with chlorides. The reactants are excited by multiphoton laser absorption. Product channels are observed by their fluorescence, or by laser induced fluorescence using a second color laser. 36 refs., 16 figs., 5 tabs

  5. The excited level of the 2pσu electronic state in H2+

    International Nuclear Information System (INIS)

    In an earlier paper (J. Carbonell et al. (2003)) a new weakly bound vibrational level of the H2+ molecular ion with a binding energy of only 1.0851 x 10-9a.u.∼30 neV is predicted from three-body calculations. It is the (rotationless) excited vibrational level ν=1 of the 2pσu electronic state. It is argued that calculations using the asymptotic expansion of the effective two-body potential for the ungerade state given by Landau can reproduce neither the bound state energy of the v=1 state nor the scattering properties with sufficient accuracy. We point out that the ν=1 vibrational state can well be described as a bound state in the distant well of the enhanced p-H two-body potential with a binding energy of 0.9749 x 10-9a.u., very close to the exact result (∼10%). The exact scattering properties including the scattering length are also reproduced with good accuracy.

  6. First clear evidence of quantum chaos in the bound states of an atomic nucleus

    CERN Document Server

    Muñoz, L; Gómez, J M G; Heusler, A

    2016-01-01

    We study the spectral fluctuations of the $^{208}$Pb nucleus using the complete experimental spectrum of 151 states up to excitation energies of $6.20$ MeV recently identified at the Maier-Leibnitz-Laboratorium at Garching, Germany. For natural parity states the results are very close to the predictions of Random Matrix Theory (RMT) for the nearest-neighbor spacing distribution. A quantitative estimate of the agreement is given by the Brody parameter $\\omega$, which takes the value $\\omega=0$ for regular systems and $\\omega \\simeq 1$ for chaotic systems. We obtain $\\omega=0.85 \\pm 0.02$ which is, to our knowledge, the closest value to chaos ever observed in experimental bound states of nuclei. By contrast, the results for unnatural parity states are far from RMT behavior. We interpret these results as a consequence of the strength of the residual interaction in $^{208}$Pb, which, according to experimental data, is much stronger for natural than for unnatural parity states. In addition our results show that ch...

  7. Efimov effect and higher bound states in a three particle system

    International Nuclear Information System (INIS)

    The J=0 bound states for a system of three identical spinless particles interacting in pairs through delta-shell potentials are studied. The Efimov states are identified, and their wave functions obtained. A new family of bound states, which occurs for higher values of the attractive coupling strength was found

  8. Vibrational relaxation pathways in the electronic excited state of carotenoid

    International Nuclear Information System (INIS)

    The intra- and inter-molecular vibrational relaxation in the electronic excited state (1Bu+) of spheroidene derivative (the number of conjugated double bonds, n=8) has been investigated at room temperature by means of femtosecond time-resolved fluorescence spectroscopy based on an optical-Kerr-gate technique. Depending on the photo-excitation either to the 1Bu+(v=1) or 1Bu+(v=2) vibronic level, remarkable differences were observed in hot luminescence spectra related to the vibrational relaxation process of high- and low-frequency modes. Under the excitation to the 1Bu+(v=2) state hot luminescence from the 1Bu+(v=1) state was observed as a dominant feature of the time-resolved spectra while the dynamic Stokes shift originating from the low-frequency-modes dynamics was clearly observed under the excitation to the 1Bu+(v=1). These observations of the excitation energy dependence of time-resolved fluorescence spectra were discussed by analyzing the Franck-Condon factors of transitions from v=0,1, and 2 levels of high-frequency modes

  9. Attosecond dynamics of electron correlation in doubly excited atomic states

    International Nuclear Information System (INIS)

    We have solved the time-dependent Schroedinger equation describing the simultaneous interaction of the He 1s2s 1S state with two laser-generated pulses of trapezoidal or Gaussian shape, of duration 86 fs and of frequencies ω1=1.453 au and ω2=1.781 au. The system is excited to the energy region of two strongly correlated doubly excited states, chosen for this study according to specific criteria. It is demonstrated quantitatively that, provided one focuses on the dynamics occurring within the attosecond timescale, the corresponding orbital configurations, 2s2p and 2p3d 1P0, exist as nonstationary states, with occupation probabilities that are oscillating as the states decay exponentially into the 1sεp continuum, during and after the laser-atom interaction. It follows that it is feasible to probe by attosecond pulses the motion of configurations of electrons as they correlate via the total Hamiltonian. For the particular system studied here, the probe pulses could register the oscillating doubly excited configurations by de-exciting to the He 1s3d 1D state, which emits at 6680 A. (author). Letter-to-the-editor

  10. Excited State Structural Dynamics of Carotenoids and Charge Transfer Systems

    International Nuclear Information System (INIS)

    This dissertation describes the development and implementation of a visible/near infrared pump/mid-infrared probe apparatus. Chapter 1 describes the background and motivation of investigating optically induced structural dynamics, paying specific attention to solvation and the excitation selection rules of highly symmetric molecules such as carotenoids. Chapter 2 describes the development and construction of the experimental apparatus used throughout the remainder of this dissertation. Chapter 3 will discuss the investigation of DCM, a laser dye with a fluorescence signal resulting from a charge transfer state. By studying the dynamics of DCM and of its methyl deuterated isotopomer (an otherwise identical molecule), we are able to investigate the origins of the charge transfer state and provide evidence that it is of the controversial twisted intramolecular (TICT) type. Chapter 4 introduces the use of two-photon excitation to the S1 state, combined with one-photon excitation to the S2 state of the carotenoid beta-apo-8'-carotenal. These 2 investigations show evidence for the formation of solitons, previously unobserved in molecular systems and found only in conducting polymers Chapter 5 presents an investigation of the excited state dynamics of peridinin, the carotenoid responsible for the light harvesting of dinoflagellates. This investigation allows for a more detailed understanding of the importance of structural dynamics of carotenoids in light harvesting

  11. Long-range states in excited ultracold 3He*-4He* dimers

    CERN Document Server

    Cocks, Daniel G; Whittingham, Ian B

    2014-01-01

    Long-range bound states of the excited heteronuclear 3He*--4He* system that dissociate to either 3He(1s2s 3S_1) + 4He(1s2p 3P_j) or 3He(1s2p 3P_j) + 4He(1s2s 3S_1), where j=0, 1, 2, are investigated using both single-channel and multichannel calculations in order to analyse the effects of Coriolis and non-adiabatic couplings. The multichannel calculations predict two groups of resonances above the lowest asymptotic energy. One of these groups dissociates to an atomic pair with the 2p excitation on the fermionic atom and the other dissociates to two asymptotes which correspond to the 2p excitation on either atom. Many of these resonances could be identified with levels in the single-channel calculation although the differences in energies were large. The total parity was found to have a significant influence on the ability to make these identifications. No purely bound states were found, although several resonances with line widths smaller than 1 MHz were obtained.

  12. Wave packet dynamics in molecular excited electronic states

    International Nuclear Information System (INIS)

    We theoretically explore the use of UV pump – UV probe schemes to resolve in time the dynamics of nuclear wave packets in excited electronic states of the hydrogen molecule. The pump pulse ignites the dynamics in singly excited states, that will be probed after a given time delay by a second identical pulse that will ionize the molecule. The field-free molecular dynamics is first explored by analyizing the autocorrelation function for the pumped wave packet and the excitation probabilities. We investigate both energy and angle differential ionization probabilities and demonstrate that the asymmetry induced in the electron angular distributions gives a direct map of the time evolution of the pumped wave packet

  13. Excited charmonium states from Bethe-Salpeter equation

    CERN Document Server

    Sauli, Vladimir

    2011-01-01

    We solve the Bethe-Salpeter equation for a system of a heavy quark-antiquark pair interacting with a screened linear confining potential. First we show the spinless QFT model is inadequate and fail to describe even gross feature of the quarkonia spectrum. In order to get reliable description the spine degrees of freedom has to be considered. Within the approximation employed we reasonably reproduce known radial excitation of vector charmonium. The BSE favors relatively large string breaking scale $\\mu\\simeq 350MeV$ . Using free charm quark propagators we observe that $J/\\Psi$ is the only charmonium left bellow naive quark-antiquark threshold $2m_c$, while the all excited states are situated above this threshold. Within the numerical method we overcome obstacles related with threshold singularity and discuss the consequences of the use of free propagators for calculation of excited states above the threshold.

  14. Nuclear asymptotic normalization coefficients and neutron halo of the excited states

    International Nuclear Information System (INIS)

    The authors have extracted the nuclear asymptotic normalization coefficients for the virtual transitions 12B ↔ 11B + n and 13C ↔12C + n via two transfer reactions 11B(d, p)12B and 12C(d, p)13C. With these coefficients, root-mean-square radii for the valence neutron in 12B and 13C have been calculated. Authors' results show that the second (Jπ = 2-), third (Jπ = 1-) excited states in 12B, and the first (Jπ = 1/2+) excited state in 13C are neutron halo states, whereas the third (Jπ = 5/2+) excited state in 13C is a neutron skin state. The retard effects of the Coulomb potential and the orbital angular momentum on halo formation have been quantitatively examined. A unified scaling law for the mean-square radius versus the effective nucleon separation energy is established for the systems with a neutron or proton in a weekly bound state

  15. Thermodynamic properties of highly frustrated quantum spin ladders: Influence of many-particle bound states

    Science.gov (United States)

    Honecker, A.; Wessel, S.; Kerkdyk, R.; Pruschke, T.; Mila, F.; Normand, B.

    2016-02-01

    Quantum antiferromagnets have proven to be some of the cleanest realizations available for theoretical, numerical, and experimental studies of quantum fluctuation effects. At finite temperatures, however, the additional effects of thermal fluctuations in the restricted phase space of a low-dimensional system have received much less attention, particularly the situation in frustrated quantum magnets, where the excitations may be complex collective (bound or even fractionalized) modes. We investigate this problem by studying the thermodynamic properties of the frustrated two-leg S =1/2 spin ladder, with particular emphasis on the fully frustrated case. We present numerical results for the magnetic specific heat and susceptibility, obtained from exact diagonalization and quantum Monte Carlo studies, which we show can be rendered free of the sign problem even in a strongly frustrated system and which allow us to reach unprecedented sizes of L =200 ladder rungs. We find that frustration effects cause an unconventional evolution of the thermodynamic response across the full parameter regime of the model. However, close to the first-order transition they cause a highly anomalous reduction in temperature scales with no concomitant changes in the gap; the specific heat shows a very narrow peak at very low energies and the susceptibility rises abruptly at extremely low temperatures. Unusually, the two quantities have different gaps over an extended region of the parameter space. We demonstrate that these results reflect the presence of large numbers of multiparticle bound-state excitations, whose energies fall below the one-triplon gap in the transition region.

  16. Optimal control of peridinin excited-state dynamics

    Czech Academy of Sciences Publication Activity Database

    Dietzek, B.; Chábera, P.; Hanf, R.; Tschierlei, S.; Popp, J.; Pascher, T.; Yartsev, A.; Polívka, Tomáš

    2010-01-01

    Roč. 373, 1-2 (2010), s. 129-136. ISSN 0301-0104 Institutional research plan: CEZ:AV0Z50510513 Keywords : peridin * excited-state dynamics * coherent control Subject RIV: BO - Biophysics Impact factor: 2.017, year: 2010

  17. Size dependent deactivation of the excited state of DHICA

    DEFF Research Database (Denmark)

    Gauden, Magdalena; Pezzella, Alessandro; Panzella, Lucia;

    2008-01-01

    Melanin is a natural pigment mainly responsible for the protection of skin and eyes from UV damage. 5,6- dihydroxyindole- 2 carboxylic acid (DHICA) is a key melanin building block. We have investigated the excited state dynamics of DHICA as well as its derivatives and oligomeric units using...

  18. Dark excited states of carotenoids: Consensus and controversy

    Czech Academy of Sciences Publication Activity Database

    Polívka, Tomáš; Sundström, V.

    2009-01-01

    Roč. 477, 1-3 (2009), s. 1-11. ISSN 0009-2614 Institutional research plan: CEZ:AV0Z50510513 Keywords : carotenoids * excited states * relaxation pathways * femtosecond spectroscopy Subject RIV: BO - Biophysics Impact factor: 2.291, year: 2009

  19. Calculation of neutral beam deposition accounting for excited states

    International Nuclear Information System (INIS)

    Large-scale neutral-beam auxillary heating of plasmas has led to new plasma operational regimes which are often dominated by fast ions injected via the absorption of an energetic beam of hydrogen neutrals. An accurate simulation of the slowing down and transport of these fast ions requires an intimate knowledge of the hydrogenic neutral deposition on each flux surface of the plasma. As a refinement to the present generation of transport codes, which base their beam deposition on ground-state reaction rates, a new set of routines, based on the excited states of hydrogen, is presented as mechanism for computing the attenuation and deposition of a beam of energetic neutrals. Additionally, the numerical formulations for the underlying atomic physics for hydrogen impacting on the constiuent plasma species is developed and compiled as a numerical database. Sample results based on this excited state model are compared with the ground-state model for simple plasma configurations

  20. Calculation of neutral beam deposition accounting for excited states

    Energy Technology Data Exchange (ETDEWEB)

    Gianakon, T.A.

    1992-09-01

    Large-scale neutral-beam auxillary heating of plasmas has led to new plasma operational regimes which are often dominated by fast ions injected via the absorption of an energetic beam of hydrogen neutrals. An accurate simulation of the slowing down and transport of these fast ions requires an intimate knowledge of the hydrogenic neutral deposition on each flux surface of the plasma. As a refinement to the present generation of transport codes, which base their beam deposition on ground-state reaction rates, a new set of routines, based on the excited states of hydrogen, is presented as mechanism for computing the attenuation and deposition of a beam of energetic neutrals. Additionally, the numerical formulations for the underlying atomic physics for hydrogen impacting on the constiuent plasma species is developed and compiled as a numerical database. Sample results based on this excited state model are compared with the ground-state model for simple plasma configurations.

  1. Systematic search of excited states of negative ions lying above the ground state of the neutral atom

    International Nuclear Information System (INIS)

    Nonrelativistic fixed-core valence-shell configuration interaction calculations are carried out for excited states of atomic negative ions in the range H through Ca, in an effort to identify the ones which are metastable against autoionization. Approximate relativistic corrections are included in some cases. From Be onwards, all (Core)sub(n)(n + 1)ssup(q)(n + 1)psup(r) neutrals appear to bind an extra electron into a bound (Core)sub(n)(n + 1)ssup(q)(n + 1)psup(r+1 2 + 1)L negative ion, in all cases where the sup(2S + 1)L continuum starts at the corresponding neutral atom state. Similarly as in the recently discussed case of Li-, alkali-earths (Be-, Mg-, Ca-), Zn-, B-, Al-, C-, Si-, Ar-, and possibly S-, have two bound excited states connected by an E1 transition in regions extending from infrared to vacuum ultraviolet. Negative neon is found to decay by E1 radiation into a continuum, thus Ne- beams are unlikely to be made in the future. However, there exists a metastable [Ne]3p54s4p 4S state of negative argon, making possible the production of Ar- beams. (orig.)

  2. Systematic search of excited states of negative ions lying above the ground state of the neutral atom

    Energy Technology Data Exchange (ETDEWEB)

    Bunge, C.F.; Galan, M.; Jauregui, R. (Universidad Nacional Autonoma de Mexico, Mexico City. Inst. de Fisica); Bunge, A.V. (Universidad Autonoma Metropolitana, Mexico City. Dept. de Quimica)

    1982-11-01

    Nonrelativistic fixed-core valence-shell configuration interaction calculations are carried out for excited states of atomic negative ions in the range H through Ca, in an effort to identify the ones which are metastable against autoionization. Approximate relativistic corrections are included in some cases. From Be onwards, all (Core)sub(n)(n + 1)ssup(q)(n + 1)psup(r) neutrals appear to bind an extra electron into a bound (Core)sub(n)(n + 1)ssup(q)(n + 1)psup(r+1 2 + 1)L negative ion, in all cases where the sup(2S + 1)L continuum starts at the corresponding neutral atom state. Similarly as in the recently discussed case of Li/sup -/, alkali-earths (Be/sup -/, Mg/sup -/, Ca/sup -/), Zn/sup -/, B/sup -/, Al/sup -/, C/sup -/, Si/sup -/, Ar/sup -/, and possibly S/sup -/, have two bound excited states connected by an E1 transition in regions extending from infrared to vacuum ultraviolet. Negative neon is found to decay by E1 radiation into a continuum, thus Ne/sup -/ beams are unlikely to be made in the future. However, there exists a metastable (Ne)3p/sup 5/4s4p /sup 4/S state of negative argon, making possible the production of Ar/sup -/ beams.

  3. Enhanced excitation of Giant Pairing Vibrations in heavy-ion reactions induced by weakly-bound projectiles

    CERN Document Server

    Fortunato, L; Sofia, H M; Vitturi, A

    2002-01-01

    The use of radioactive ion beams is shown to offer the possibility to study collective pairing states at high excitation energy, which are not usually accessible with stable projectiles because of large energy mismatch. In the case of two-neutron stripping reactions induced by 6He, we predict a population of the Giant Pairing Vibration in 208Pb or 116Sn with cross sections of the order of a millibarn, dominating over the mismatched transition to the ground state.

  4. Continuum bound states as surface states of a finite periodic system

    International Nuclear Information System (INIS)

    We discuss the relation between continuum bound states (CBSs) localized on a defect, and surface states of a finite periodic system. We model an experiment of Capasso et al. [F. Capasso, C. Sirtori, J. Faist, D. L. Sivco, S-N. G. Chu, and A. Y. Cho, Nature (London) 358, 565 (1992)] using the transfer-matrix method. We compute the rate for intrasubband transitions from the ground state to the CBS and derive a sum rule. Finally we show how to improve the confinement of a CBS while keeping the energy fixed

  5. Optimized resonating valence bond state in square lattice: correlations & excitations

    Directory of Open Access Journals (Sweden)

    Z Nourbakhsh

    2009-09-01

    Full Text Available We consider RVB state as a variational estimate for the ground state of Heisenberg antiferromagnet in square lattice. We present numerical calculation of energy, spin-spin correlation function and spin excitation spectrum. We show, that the quantum flactuations reduce of magnetization respect to Neel order. Our results are in good agreement with other methods such as spin-wave calculation and series expansions.

  6. Excited States of the Diatomic Molecule CrHe

    Science.gov (United States)

    Pototschnig, Johann V.; Ratschek, Martin; Hauser, Andreas W.; Ernst, Wolfgang E.

    2013-06-01

    Chromium (Cr) atoms embedded in superfluid helium nanodroplets (He_N) have been investigated by laser induced fluorescence, beam depletion and resonant two-photon ionization spectroscopy in current experiments at our institute. Cr is found to reside inside the He_N in the a^7S ground state. Two electronically excited states, z^7P and y^7P, are involved in a photoinduced ejection process which allowed us to study Fano resonances in the photoionisation spectra The need for a better understanding of the experimental observations triggered a theoretical approach towards the computation of electronically excited states via high-level methods of computational chemistry. Two well-established, wave function-based methods, CASSCF and MRCI, are combined to calculate the potential energy curves for the three states involved. The character of the two excited states z^7P and y^7P turns out to be significantly different. Theory predicts the ejection of the Cr atom in the case of an y^7P excitation as was observed experimentally. The quasi-inert helium environment is expected to weaken spin selection rules, allowing a coupling between different spin states especially during the ejection process. We therefore extend our theoretical analysis to the lowest state in the triplet- and quintet- manifold. Most of these alternative states show very weak bonding of only a few wn. A. Kautsch, M. Hasewend, M. Koch and W. E. Ernst, Phys. Rev. A 86, 033428 (2012). A. Kautsch, M. Koch and W. E. Ernst, J. Phys. Chem. A, accepted, doi:10.1021/jp312336m}.

  7. Coupling of single-particle states to collective excitations

    International Nuclear Information System (INIS)

    We discuss the effects of colletive vibrations of the closed shell core on the fragmentation of single-particle states in the neighbouring odd nuclei. A scheme for calculating microscopically these effects is presented. Starting from a Skyrme-type effective interaction, one can obtain the Hartree-Fock spectrum, the core excited states and giant resonances and then the energy-dependent mass operator which determines the fragmentation. Results for the 207Pb are discussed and compared with the data

  8. Quantum Chernoff bound as a measure of efficiency of quantum cloning for mixed states

    OpenAIRE

    Ghiu, Iulia

    2014-01-01

    In this paper we investigate the efficiency of quantum cloning of $N$ identical mixed qubits. We employ a recently introduced measure of distinguishability of quantum states called quantum Chernoff bound. We evaluate the quantum Chernoff bound between the output clones generated by the cloning machine and the initial mixed qubit state. Our analysis is illustrated by performing numerical calculation of the quantum Chernoff bound for different scenarios that involves the number of initial qubit...

  9. Temperature measurements from relative populations of excited states with INDRA

    International Nuclear Information System (INIS)

    For the first time, INDRA has been used to analyse resonances observed in correlation functions, giving thus the possibility to probe the caloric curve (correlation between the excitation energy and the temperature). First results obtained for the reaction 1836Ar+2858Ni at 95 MeV/nucleon are presented where the projectile-like apparent temperature has been evaluated. Moreover, the measured populations of excited states are compared with the predictions of a statistical model which includes an original hypothesis of excluded volume for species at the freeze-out. (author)

  10. Solid-State Excitation Laser for Laser-Ultrasonics

    OpenAIRE

    Schnars, U.; Platz, W.; Mahnke, P.; A. Fix; Frede, M; Neumann, J.; Peuser, P.

    2010-01-01

    The inspection speed of laser-ultrasonics compared with conventional ultrasonic testing is limited by the pulse repetition rate of the excitation laser. The maximum pulse repetition rate reported up to now for CO2-lasers, which are presently used for nearly all systems, is in the range of 400 Hz. In this paper a new approach based on a diode-pumped solid-state laser is discussed, which is currently being developed. This new excitation laser is designed for a repetition rate of 1 kHz and will ...

  11. Scattering and Bound State Solutions of the Yukawa Potential within the Dirac Equation

    International Nuclear Information System (INIS)

    In the presence of spin symmetry case, we obtain bound and scattering states solutions of the Dirac equation for the equal scalar and vector Yukawa potentials for any spin-orbit quantum number κ. The approximate analytical solutions are presented for the bound and scattering states and scattering phase shifts

  12. Calculations of deeply bound pionic states in heavy and superheavy atoms

    International Nuclear Information System (INIS)

    Binding energies and widths of pions bound in the 1s-state of heavy and superheavy atoms are evaluated. The repulsive strong interaction lowers the Coulomb binding energy by up to 50%. The energy width of the strongest bound state investigated becomes comparable with the binding energy. No drastic consequence on the pion propagation in nuclear matter is expected. (orig.)

  13. The $DKP$ equation in the Woods-Saxon potential well: Bound states

    CERN Document Server

    Boutabia-Chéraitia, Boutheina

    2016-01-01

    We solve the Duffin-Kemmer-P\\'{e}tiau equation in the presence of a spatially one-dimensional symmetric potential well. We compute the scattering state solutions and we derive conditions for transmission resonances. The bound solutions are derived by a graphic study and the appearance of the antiparticle bound state is discussed.

  14. Sub-50 fs excited state dynamics of 6-chloroguanine upon deep ultraviolet excitation.

    Science.gov (United States)

    Mondal, Sayan; Puranik, Mrinalini

    2016-05-18

    The photophysical properties of natural nucleobases and their respective nucleotides are ascribed to the sub-picosecond lifetime of their first singlet states in the UV-B region (260-350 nm). Electronic transitions of the ππ* type, which are stronger than those in the UV-B region, lie at the red edge of the UV-C range (100-260 nm) in all isolated nucleobases. The lowest energetic excited states in the UV-B region of nucleobases have been investigated using a plethora of experimental and theoretical methods in gas and solution phases. The sub-picosecond lifetime of these molecules is not a general attribute of all nucleobases but specific to the five primary nucleobases and a few xanthine and methylated derivatives. To determine the overall UV photostability, we aim to understand the effect of more energetic photons lying in the UV-C region on nucleobases. To determine the UV-C initiated photophysics of a nucleobase system, we chose a halogen substituted purine, 6-chloroguanine (6-ClG), that we had investigated previously using resonance Raman spectroscopy. We have performed quantitative measurements of the resonance Raman cross-section across the Bb absorption band (210-230 nm) and constructed the Raman excitation profiles. We modeled the excitation profiles using Lee and Heller's time-dependent theory of resonance Raman intensities to extract the initial excited state dynamics of 6-ClG within 30-50 fs after photoexcitation. We found that imidazole and pyrimidine rings of 6-ClG undergo expansion and contraction, respectively, following photoexcitation to the Bb state. The amount of distortions of the excited state structure from that of the ground state structure is reflected by the total internal reorganization energy that is determined at 112 cm(-1). The contribution of the inertial component of the solvent response towards the total reorganization energy was obtained at 1220 cm(-1). In addition, our simulation also yields an instantaneous response of the first

  15. MULTIPLY CHARGED IONS COLLISIONS WITH ATOMS INTO EXCITED STATES

    Institute of Scientific and Technical Information of China (English)

    PanGuangyan

    1990-01-01

    The emission spectra in collisions between Ions and Atoms have been measured by an Optical Multichannel Analysis System (OMA).The experimental results demonstrate that there are two channels of excitation in collision between single charged ions and atoms and three channels of excitation in collision between double charged ions and atoms.Emission cross cestions and excitation cross sections have been obtained.K.Kadota et al and R.Shingal et al suggested that,under the appropriate conditions,the H42+-Li and He2++Na collision systems can be used efficiently to produce a laser of Lyman-α(30,4nm) and Lyman-β(25.6nm)lines via cascade to He+(2P)state.

  16. Ensemble-based characterization of unbound and bound states on protein energy landscape

    CERN Document Server

    Ruvinsky, Anatoly M; Tuzikov, Alexander V; Vakser, Ilya A

    2012-01-01

    Characterization of protein energy landscape and conformational ensembles is important for understanding mechanisms of protein folding and function. We studied ensembles of bound and unbound conformations of six proteins to explore their binding mechanisms and characterize the energy landscapes in implicit solvent. First, results show that bound and unbound spectra often significantly overlap. Moreover, the larger the overlap the smaller the RMSD between bound and unbound conformational ensembles. Second, the analysis of the unbound-to-bound changes points to conformational selection as the binding mechanism for four of the proteins. Third, the center of the unbound spectrum has a higher energy than the center of the corresponding bound spectrum of the dimeric and multimeric states for most of the proteins. This suggests that the unbound states often have larger entropy than the bound states considered outside of the complex. Fourth, the exhaustively long minimization, making small intra-rotamer adjustments, ...

  17. Bounds on the Capacity of the Relay Channel with Noncausal State Information at Source

    CERN Document Server

    Zaidi, Abdellatif; Piantanida, Pablo; Vandendorpe, Luc

    2010-01-01

    We consider a three-terminal state-dependent relay channel with the channel state available non-causally at only the source. Such a model may be of interest for node cooperation in the framework of cognition, i.e., collaborative signal transmission involving cognitive and non-cognitive radios. We study the capacity of this communication model. One principal problem in this setup is caused by the relay's not knowing the channel state. In the discrete memoryless (DM) case, we establish lower bounds on channel capacity. For the Gaussian case, we derive lower and upper bounds on the channel capacity. The upper bound is strictly better than the cut-set upper bound. We show that one of the developed lower bounds comes close to the upper bound, asymptotically, for certain ranges of rates.

  18. Clustered chimera states in systems of type-I excitability

    International Nuclear Information System (INIS)

    The chimera state is a fascinating phenomenon of coexisting synchronized and desynchronized behaviour that was discovered in networks of nonlocally coupled identical phase oscillators over ten years ago. Since then, chimeras have been found in numerous theoretical and experimental studies and more recently in models of neuronal dynamics as well. In this work, we consider a generic model for a saddle-node bifurcation on a limit cycle representative of neural excitability type I. We obtain chimera states with multiple coherent regions (clustered chimeras/multi-chimeras) depending on the distance from the excitability threshold, the range of nonlocal coupling and the coupling strength. A detailed stability diagram for these chimera states and other interesting coexisting patterns (like traveling waves) is presented. (paper)

  19. Super-atom molecular orbital excited states of fullerenes.

    Science.gov (United States)

    Johansson, J Olof; Bohl, Elvira; Campbell, Eleanor E B

    2016-09-13

    Super-atom molecular orbitals are orbitals that form diffuse hydrogenic excited electronic states of fullerenes with their electron density centred at the centre of the hollow carbon cage and a significant electron density inside the cage. This is a consequence of the high symmetry and hollow structure of the molecules and distinguishes them from typical low-lying molecular Rydberg states. This review summarizes the current experimental and theoretical studies related to these exotic excited electronic states with emphasis on femtosecond photoelectron spectroscopy experiments on gas-phase fullerenes.This article is part of the themed issue 'Fullerenes: past, present and future, celebrating the 30th anniversary of Buckminster Fullerene'. PMID:27501970

  20. Controlling excited-state contamination in nucleon matrix elements

    Science.gov (United States)

    Yoon, Boram; Gupta, Rajan; Bhattacharya, Tanmoy; Engelhardt, Michael; Green, Jeremy; Joó, Bálint; Lin, Huey-Wen; Negele, John; Orginos, Kostas; Pochinsky, Andrew; Richards, David; Syritsyn, Sergey; Winter, Frank; Nucleon Matrix Elements NME Collaboration

    2016-06-01

    We present a detailed analysis of methods to reduce statistical errors and excited-state contamination in the calculation of matrix elements of quark bilinear operators in nucleon states. All the calculations were done on a 2 +1 -flavor ensemble with lattices of size 323×64 generated using the rational hybrid Monte Carlo algorithm at a =0.081 fm and with Mπ=312 MeV . The statistical precision of the data is improved using the all-mode-averaging method. We compare two methods for reducing excited-state contamination: a variational analysis and a 2-state fit to data at multiple values of the source-sink separation tsep. We show that both methods can be tuned to significantly reduce excited-state contamination and discuss their relative advantages and cost effectiveness. A detailed analysis of the size of source smearing used in the calculation of quark propagators and the range of values of tsep needed to demonstrate convergence of the isovector charges of the nucleon to the tsep→∞ estimates is presented.

  1. Excited state dynamics of the astaxanthin radical cation

    Science.gov (United States)

    Amarie, Sergiu; Förster, Ute; Gildenhoff, Nina; Dreuw, Andreas; Wachtveitl, Josef

    2010-07-01

    Femtosecond transient absorption spectroscopy in the visible and NIR and ultrafast fluorescence spectroscopy were used to examine the excited state dynamics of astaxanthin and its radical cation. For neutral astaxanthin, two kinetic components corresponding to time constants of 130 fs (decay of the S 2 excited state) and 5.2 ps (nonradiative decay of the S 1 excited state) were sufficient to describe the data. The dynamics of the radical cation proved to be more complex. The main absorption band was shifted to 880 nm (D 0 → D 3 transition), showing a weak additional band at 1320 nm (D 0 → D 1 transition). We found, that D 3 decays to the lower-lying D 2 within 100 fs, followed by a decay to D 1 with a time constant of 0.9 ps. The D 1 state itself exhibited a dual behavior, the majority of the population is transferred to the ground state in 4.9 ps, while a small population decays on a longer timescale of 40 ps. Both transitions from D 1 were found to be fluorescent.

  2. Controlling Excited-State Contamination in Nucleon Matrix Elements

    CERN Document Server

    Yoon, Boram; Bhattacharya, Tanmoy; Engelhardt, Michael; Green, Jeremy; Joó, Bálint; Lin, Huey-Wen; Negele, John; Orginos, Kostas; Pochinsky, Andrew; Richards, David; Syritsyn, Sergey; Winter, Frank

    2016-01-01

    We present a detailed analysis of methods to reduce statistical errors and excited-state contamination in the calculation of matrix elements of quark bilinear operators in nucleon states. All the calculations were done on a 2+1 flavor ensemble with lattices of size $32^3 \\times 64$ generated using the rational hybrid Monte Carlo algorithm at $a=0.081$~fm and with $M_\\pi=312$~MeV. The statistical precision of the data is improved using the all-mode-averaging method. We compare two methods for reducing excited-state contamination: a variational analysis and a two-state fit to data at multiple values of the source-sink separation $t_{\\rm sep}$. We show that both methods can be tuned to significantly reduce excited-state contamination and discuss their relative advantages and cost-effectiveness. A detailed analysis of the size of source smearing used in the calculation of quark propagators and the range of values of $t_{\\rm sep}$ needed to demonstrate convergence of the isovector charges of the nucleon to the $t_...

  3. Bound entangled states with a private key and their classical counterpart.

    Science.gov (United States)

    Ozols, Maris; Smith, Graeme; Smolin, John A

    2014-03-21

    Entanglement is a fundamental resource for quantum information processing. In its pure form, it allows quantum teleportation and sharing classical secrets. Realistic quantum states are noisy and their usefulness is only partially understood. Bound-entangled states are central to this question--they have no distillable entanglement, yet sometimes still have a private classical key. We present a construction of bound-entangled states with a private key based on classical probability distributions. From this emerge states possessing a new classical analogue of bound entanglement, distinct from the long-sought bound information. We also find states of smaller dimensions and higher key rates than previously known. Our construction has implications for classical cryptography: we show that existing protocols are insufficient for extracting private key from our distributions due to their "bound-entangled" nature. We propose a simple extension of existing protocols that can extract a key from them. PMID:24702340

  4. The effect of η-η' mixing in the bound state version of the Skyrme model

    International Nuclear Information System (INIS)

    The η-η' mixing is incorporated in the symmetry breaking term in the extended Skyrme model Lagrangian. Besides η-soliton bound states, an s-wave and a p-wave η'-soliton bound states are found. After fixing the value of the strength parameter X of the ''alternative term'' to fit the s-wave η'-soliton bound state to the N(1535) negative-parity nucleon resonance, the η-soliton bound states disappear. Then only η'-soliton bound states are identified with nucleon resonances (I=1/2) and delta resonances (I=3/2). The predicted resonance masses agree well with experimental values. The decay widths ΓN*→N+η of the relevant nucleon resonances are also calculated to explain why these particles have large branching ratios in the ηN channel. (orig.)

  5. Dynamics of F/D networks: the role of bound states

    International Nuclear Information System (INIS)

    In a field theory model, we study, via numerical experiments, the role of bound states in the evolution of cosmic superstring networks, being composed by p F strings, q D strings and (p,q) bound states. We find robust evidence for scaling of all three components of the network, independently of initial conditions. The novelty of our numerical approach consists of having control over the initial abundance of bound states. This indeed allows us to identify the effect of bound states on the evolution of the network. We also find an additional energy loss mechanism, resulting in a lower overall string network energy, and thus scaling of the network. This new mechanism consists of the formation of bound states with an increasing length

  6. Excited-state evolution probed by convoy-electron emission in relativistic heavy-ion collisions

    Science.gov (United States)

    Takabayashi, Y.; Ito, T.; Azuma, T.; Komaki, K.; Yamazaki, Y.; Tawara, H.; Takada, E.; Murakami, T.; Seliger, M.; Tökési, K.; O. Reinhold, C.; Burgdörfer, J.

    2003-10-01

    We present a joint experimental and theoretical study of convoy-electron emission resulting from highly-charged-ion transport through carbon foils at moderately relativistic speeds. Energy spectra of electrons ejected at 0° have been measured for 390 MeV/u hydrogen-like Ar17+ ions and 460 MeV/u (β=v/c=0.74,γ=1.49) Fe25+ (1s), Fe24+ (1s2), and Fe23+ (1s22s) incident on carbon foils with thicknesses from 25 to 8700 μg/cm2. Due to this unprecedented wide range of thicknesses, the sequential excitation and ionization of initially deeply bound electrons to highly excited states and continuum states can be followed in considerable detail. The analysis of the spectra is aided by simulations based on the classical transport theory which has been extended to relativistic energies and to multielectron projectiles. The motion of the projectile electron inside the solid target is calculated taking into account the Coulomb potential of the projectile ion and the multiple stochastic collisions with target cores and target electrons. Different phases of the convoy-electron emissions can be disentangled: direct ejection to the continuum, the transient buildup of an excited-state wave packet followed by ionization, and postionization modification of the continuum spectrum. We find good agreement between experiment and simulation for the evolution of charge states and the emission spectrum.

  7. Exact finite volume expectation values of local operators in excited states

    CERN Document Server

    Pozsgay, B; Takacs, G

    2014-01-01

    We present a conjecture for the exact expression of finite volume expectation values in excited states in integrable quantum field theories, which is an extension of an earlier conjecture to the case of general diagonal factorized scattering with bound states and a nontrivial bootstrap structure. The conjectured expression is a spectral expansion which uses the exact form factors and the excited state thermodynamic Bethe Ansatz as building blocks. The conjecture is proven for the case of the trace of the energy-moment tensor. Concerning its validity for more general operators, we provide numerical evidence using the truncated conformal space approach. It is found that the expansion fails to be well-defined for small values of the volume in cases when the singularity structure of the TBA equations undergoes a non-trivial rearrangement under some critical value of the volume. Despite these shortcomings, the conjectured expression is expected to be valid for all volumes for most of the excited states, and as an ...

  8. A differential method for bounding the ground state energy

    CERN Document Server

    Mouchet, A

    2005-01-01

    For a wide class of Hamiltonians, a novel method to obtain lower and upper bounds for the lowest energy is presented. Unlike perturbative or variational techniques, this method does not involve the computation of any integral (a normalisation factor or a matrix element). It just requires the determination of the absolute minimum and maximum in the whole configuration space of the local energy associated with a normalisable trial function (the calculation of the norm is not needed). After a general introduction, the method is applied to three non-integrable systems: the asymmetric annular billiard, the many-body spinless Coulombian problem, the hydrogen atom in a constant and uniform magnetic field. Being more sensitive than the variational methods to any local perturbation of the trial function, this method can used to systematically improve the energy bounds with a local skilled analysis; an algorithm relying on this method can therefore be constructed and an explicit example for a one-dimensional problem is...

  9. Interacting quantum walkers: two-body bosonic and fermionic bound states

    Science.gov (United States)

    Krapivsky, P. L.; Luck, J. M.; Mallick, K.

    2015-11-01

    We investigate the dynamics of bound states of two interacting particles, either bosons or fermions, performing a continuous-time quantum walk on a one-dimensional lattice. We consider the situation where the distance between both particles has a hard bound, and the richer situation where the particles are bound by a smooth confining potential. The main emphasis is on the velocity characterizing the ballistic spreading of these bound states, and on the structure of the asymptotic distribution profile of their center-of-mass coordinate. The latter profile generically exhibits many internal fronts.

  10. First observation of excited states in {sup 182}Pb.

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, D. G.; Muikku, M.; Greenlees, P. T.; Hauschild, K.; Helarjutta, K.; Jones, P. M.; Julin, R.; Juutinen, S.; Kankaanpaa, H.; Kelsall, N. S.; Kettunen, H.; Kuusiniemi, P.; Leino, M.; Moore, C. J.; Nieminen, P.; O' Leary, C. D.; Page, R. D.; Rakhila, P.; Reviol, W.; Taylor, M. J.; Uusitalo, J.; Wadsworth, R.; Physics; Univ. of York; Univ. of Jyvaskyla; CEA Saclay; Univ. of Liverpool; Univ. of Tennessee

    2000-01-01

    Excited states in the light lead nucleus, {sup 182}Pb, have been observed for the first time, by means of the recoil-decay tagging technique. A rotational band has been observed which has features in common with bands attributed to a prolate configuration in the heavier neutron deficient lead nuclei, {sup 184-188}Pb. A variable moment of inertia fit to the states in this band suggests that the prolate minimum has risen significantly in energy compared to the next even lead nucleus, {sup 184}Pb. This constitutes firm evidence for the minimization of this configuration with respect to the spherical ground state around N=103.

  11. Strong-Field Photoionization as Excited-State Tunneling.

    Science.gov (United States)

    Serebryannikov, E E; Zheltikov, A M

    2016-03-25

    We show that, in an intense laser field, ultrafast photoionization can occur through quantum pathways that cannot be categorized as multiphoton ionization or ground-state tunneling. In this regime, the subcycle electron-wave-packet dynamics leading to photoionization occurs via electron excited states, from where the electrons tunnel to the continuum within a tiny fraction of the field cycle. For high field intensities, this ionization pathway is shown to drastically enhance the dynamic leakage of the electron wave packet into the continuum, opening an ionization channel that dominates over ground-state electron tunneling. PMID:27058079

  12. Quasi-bound states, resonance tunnelling, and tunnelling times generated by twin symmetric barriers

    Indian Academy of Sciences (India)

    A Uma Maheswari; P Prema; S Mahadevan; C S Shastry

    2009-12-01

    In analogy with the definition of resonant or quasi-bound states used in three-dimensional quantal scattering, we define the quasi-bound states that occur in one-dimensional transmission generated by twin symmetric potential barriers and evaluate their energies and widths using two typical examples: (i) twin rectangular barrier and (ii) twin Gaussian-type barrier. The energies at which reflectionless transmission occurs correspond to these states and the widths of the transmission peaks are also the same as those of quasi-bound states. We compare the behaviour of the magnitude of wave functions of quasi-bound states with those for bound states and with the above-barrier state wave function. We deduce a Breit–Wigner-type resonance formula which neatly describes the variation of transmission coefficient as a function of energy at below-barrier energies. Similar formula with additional empirical term explains approximately the peaks of transmission coefficients at above-barrier energies as well. Further, we study the variation of tunnelling time as a function of energy and compare the same with transmission, reflection time and Breit–Wigner delay time around a quasi-bound state energy. We also find that tunnelling time is of the same order of magnitude as lifetime of the quasi-bound state, but somewhat larger.

  13. Ultrafast excited state dynamics in 9,9'-bifluorenylidene.

    Science.gov (United States)

    Conyard, Jamie; Heisler, Ismael A; Browne, Wesley R; Feringa, Ben L; Amirjalayer, Saeed; Buma, Wybren Jan; Woutersen, Sander; Meech, Stephen R

    2014-08-01

    9,9'-Bifluorenylidene has been proposed as an alternative and flexible electron acceptor in organic photovoltaic cells. Here we characterize its excited state properties and photokinetics, combining ultrafast fluorescence and transient IR measurements with quantum chemical calculations. The fluorescence decay is ultrafast (sub-100 fs) and remarkably independent of viscosity. This suggests that large scale structure change is not the primary relaxation mode. The ultrafast decay populates a dark state characterized by distinct vibrational and electronic spectra. This state decays with a 6 ps time constant to a hot ground state that ultimately populates the initial state with a 20 ps time constant; these times are also insensitive to solvent viscosity. No metastable intermediate structures are resolved in the photocycle after population of the dark state. The implications of these results for the operation of 9,9'-bifluorenylidene as an electron acceptor and as a potential molecular switch are discussed. PMID:25025227

  14. Negative-parity nucleon excited state in nuclear matter

    CERN Document Server

    Ohtani, Keisuke; Oka, Makoto

    2016-01-01

    Spectral functions of the nucleon and its negative parity excited state in nuclear matter are studied using QCD sum rules and the maximum entropy method (MEM). It is found that in-medium modifications of the spectral functions are attributed mainly to density dependencies of the $\\langle \\bar{q}q \\rangle $ and $\\langle q^{\\dagger}q \\rangle $ condensates. The MEM reproduces the lowest-energy peaks of both the positive and negative parity nucleon states at finite density up to $\\rho \\sim \\rho_N$ (normal nuclear matter density). As the density grows, the residue of the nucleon ground state decreases gradually while the residue of the lowest negative parity excited state increases slightly. On the other hand, the positions of the peaks, which correspond to the total energies of these states, are almost density independent for both parity states. The density dependencies of the effective masses and vector self-energies are also extracted by assuming the mean-field green functions for the peak states. We find that,...

  15. Physical Properties, Exciton Analysis, and Visualization of Core-Excited States: An Intermediate State Representation Approach.

    Science.gov (United States)

    Wenzel, Jan; Dreuw, Andreas

    2016-03-01

    The theoretical simulation of X-ray absorption spectra is in general a challenging task. However, for small and medium-sized organic molecules, the algebraic diagrammatic construction scheme (ADC) for the polarization operator in combination with the core-valence separation approximation (CVS) has proven to yield core-excitation energies and transition moments with almost quantitative accuracy allowing for reliable construction of X-ray absorption spectra. Still, to understand core-excitation processes in detail, it is not sufficient to only compute energies, but also properties like static dipole moments and state densities are important as they provide deeper insight into the nature of core-excited states. Here, we present for the first time an implementation of the intermediate state representation (ISR) approach in combination with the CVS approximation (CVS-ISR), which gives, in combination with the CVS-ADC method, direct access to core-excited state properties. The performance of the CVS-ADC/CVS-ISR approach is demonstrated by means of small- and medium-sized organic molecules. Besides the calculation of core-excited state dipole moments, advanced analyses of core-excited state densities are performed using descriptors like exciton sizes and distances. Plotting electron and hole densities helps to determine the character of the state, and in particular, the investigation of detachment/attachment densities provides information about orbital relaxation effects that are crucial for understanding core excitations. PMID:26845396

  16. On the nature of highly vibrationally excited states of thiophosgene

    Indian Academy of Sciences (India)

    Srihari Keshavamurthy

    2012-01-01

    In this work an analysis of the highly vibrationally excited states of thiophosgene (SCCl2) is made in order to gain insights into some of the experimental observations and spectral features. The states analysed here lie in a spectrally complex region where strong mode mixings are expected due to the overlap of several strong anharmonic Fermi resonances. Two recent techniques, a semiclassical angle space representation of the eigenstates and the parametric variation of the eigenvalues (level-velocities) are used to identify eigenstate sequences exhibiting common localization characteristics. Preliminary results on the influence of highly excited out-of-plane bending modes on the nature of the eigenstates suggest a possible bifurcation in the system.

  17. The effects of doubly excited states on ionization balance

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The effects of highly doubly excited states on ionization balance are investigated. In the calculation, A Collisional-Radiative model in Detailed-Configuration-Accounting (DCA) is applied to population calculations for NLTE plasmas. Configuration-averaged rate coefficients that needed in the rate equations are obtained based on the first order perturbation theory. The Hatree-Fock-Slater self-consistent-field method is used to calculate the electron wave functions. The mean ionization stage of high-Z plasma Lu is presented. The comparison shows that the mean ionization stage increases more than 3 stages when doubly excited states 5l6l' and 5l5l' are not included in the population calculations.

  18. Excited states in large molecular systems through polarizable embedding.

    Science.gov (United States)

    List, Nanna Holmgaard; Olsen, Jógvan Magnus Haugaard; Kongsted, Jacob

    2016-07-27

    In this perspective, we provide an overview of recent work within the polarizable embedding scheme to describe properties of molecules in realistic environments of increasing complexity. After an outline of the theoretical basis for the polarizable embedding model, we discuss the importance of using an accurate embedding potential, and how this may be used to significantly reduce the size of the part of the system treated using quantum mechanics without compromising the accuracy of the final results. Furthermore, we discuss the calculation of local electronic excited states based on response theory. We finally discuss aspects related to two recent extensions of the model (i) effective external field and (ii) polarizable density embedding emphasizing their importance for efficient yet accurate description of excited-state properties in complex environments. PMID:27416749

  19. Electron attachment to excited states of silane: Implications for plasma processing discharges

    International Nuclear Information System (INIS)

    Observation of enhanced negative-ion formation in ArF endash excimer endash laser irradiated silane was reported in a recent paper [L. A. Pinnaduwage, M. Z. Martin, and L. G. Christophorou, Appl. Phys. Lett. 65, 2571 (1994)]. In that paper, preliminary evidence was presented to show that highly excited electronic states of silane or its photofragments could be responsible for the observed enhanced negative-ion formation. In the present paper, we report evidence, obtained using a new experimental technique, that the electron attaching species are high-Rydberg (HR) states of silane indirectly populated via laser irradiation and show that an absolute lower bound for the corresponding electron attachment rate constant is ∼4x10-7cm3s-1. The initial capture of the electron by the HR states is likely to be a diabatic process and the large polarizabilities associated with the HR states appear to be responsible for the observed large electron attachment rate constants. We also measured electron attachment to thermally excited vibrational states of the ground electronic state of silane, which showed no measurable electron attachment up to 750 K. Implications of these observations in modeling of silane discharges used for plasma processing of amorphous silicon are discussed. It is also pointed out that large negative ion formation observed in many open-quotes weakly electronegativeclose quotes plasma processing gas discharges could be due to enhanced electron attachment to HR states: such states could be populated via direct electron impact and/or via excitation transfer from the metastable states of rare gases that are commonly used in these processing discharges. copyright 1997 American Institute of Physics

  20. Recombination rates and excited state formation and collisional destruction in plasma-afterglows

    International Nuclear Information System (INIS)

    The dissociative recombination process for heavy diatomic molecular ions capturing electrons, Hg2+ + e- reversible arrows (Hg2/sup *>)/sub r/ → Hg/sup */+ Hg, has been studied using a plasma/afterglow method. Microwave techniques are employed to generate the plasma, measure the electron density decay and control the electron temperature. Optical spectrometric observations of afterglow radiation are also performed. The recombination coefficient, α(Hg2+) and the excited states of mercury produced by this process are determined as a function of electron temperature. We also measured the two-body collisional destruction rates and partial recombination rates for the argon excited states, 5p12, 5p23, 6s12, 4d12, 4d01, 4d00, 4d33, 4d34, 5d33, 5d34, 4p00/sup prime/, and 4p00, produced by dissociative recombination of Ar2+ ions by measuring the variation of the intensity of radiation from these states with argon pressure. (Production and destruction of a few xenon excited states were also studied qualitatively in this respect.) The collisional destruction (quenching) rate coefficients for the argon states range from approx. 2 x 10-11cm3/sec to approx. 2 x 10-10 cm3/s The quenching rates for the states lying above the ground state of Ar2+ provide an upper bound on the associative ionization rates for these states. The states which have large collisional destruction rates (approx. 2 x 10-10cm3/s) are found to have large partial recombination coefficients

  1. Algorithm for Computing Excited States in Quantum Theory

    OpenAIRE

    Luo, X. Q.; Jirari, H.; Kroger, H; Moriarty, K.

    2001-01-01

    Monte Carlo techniques have been widely employed in statistical physics as well as in quantum theory in the Lagrangian formulation. However, in the conventional approach, it is extremely difficult to compute the excited states. Here we present a different algorithm: the Monte Carlo Hamiltonian method, designed to overcome the difficulties of the conventional approach. As a new example, application to the Klein-Gordon field theory is shown.

  2. Time evolution of vibration-induced excited state decay

    Czech Academy of Sciences Publication Activity Database

    Menšík, Miroslav; Nešpůrek, Stanislav

    2002-01-01

    Roč. 52, č. 8 (2002), s. 945-962. ISSN 0011-4626 R&D Projects: GA AV ČR IAB1050903; GA AV ČR IAA1050901 Institutional research plan: CEZ:AV0Z4050913 Keywords : excited state decay * exciton-phonon interaction Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.311, year: 2002

  3. Clustered Chimera States in Systems of Type-I Excitability

    OpenAIRE

    Vüllings, Andrea; Hizanidis, Johanne; Omelchenko, Iryna; Hövel, Philipp

    2014-01-01

    Chimera is a fascinating phenomenon of coexisting synchronized and desynchronized behaviour that was discovered in networks of nonlocally coupled identical phase oscillators over ten years ago. Since then, chimeras were found in numerous theoretical and experimental studies and more recently in models of neuronal dynamics as well. In this work, we consider a generic model for a saddle-node bifurcation on a limit cycle representative for neural excitability type I. We obtain chimera states wit...

  4. Minimal-excitation states for electron quantum optics using levitons

    Science.gov (United States)

    Dubois, J.; Jullien, T.; Portier, F.; Roche, P.; Cavanna, A.; Jin, Y.; Wegscheider, W.; Roulleau, P.; Glattli, D. C.

    2013-10-01

    The on-demand generation of pure quantum excitations is important for the operation of quantum systems, but it is particularly difficult for a system of fermions. This is because any perturbation affects all states below the Fermi energy, resulting in a complex superposition of particle and hole excitations. However, it was predicted nearly 20 years ago that a Lorentzian time-dependent potential with quantized flux generates a minimal excitation with only one particle and no hole. Here we report that such quasiparticles (hereafter termed levitons) can be generated on demand in a conductor by applying voltage pulses to a contact. Partitioning the excitations with an electronic beam splitter generates a current noise that we use to measure their number. Minimal-excitation states are observed for Lorentzian pulses, whereas for other pulse shapes there are significant contributions from holes. Further identification of levitons is provided in the energy domain with shot-noise spectroscopy, and in the time domain with electronic Hong-Ou-Mandel noise correlations. The latter, obtained by colliding synchronized levitons on a beam splitter, exemplifies the potential use of levitons for quantum information: using linear electron quantum optics in ballistic conductors, it is possible to imagine flying-qubit operation in which the Fermi statistics are exploited to entangle synchronized electrons emitted by distinct sources. Compared with electron sources based on quantum dots, the generation of levitons does not require delicate nanolithography, considerably simplifying the circuitry for scalability. Levitons are not limited to carrying a single charge, and so in a broader context n-particle levitons could find application in the study of full electron counting statistics. But they can also carry a fraction of charge if they are implemented in Luttinger liquids or in fractional quantum Hall edge channels; this allows the study of Abelian and non-Abelian quasiparticles in the

  5. Electron-electron bound states in Maxwell-Chern-Simons-Proca QED{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Belich, H.; Helayel-Neto, J.A. [Grupo de Fisica Teorica Jose Leite Lopes, Petropolis, RJ (Brazil)]|[Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Teoria de Campos e Particulas]. E-mail: belich@cbpf.br; helayel@gft.ucp.br; Del Cima, O.M. [Grupo de Fisica Teorica Jose Leite Lopes, Petropolis, RJ (Brazil)]. E-mail: delcima@gft.ucp.br; Ferreira, M.M. Jr. [Grupo de Fisica Teorica Jose Leite Lopes, Petropolis, RJ (Brazil)]|[Maranhao Univ., Sao Luis, MA (Brazil). Dept. de Fisica]. E-mail: manojr@cbpf.br

    2002-10-01

    We start from a parity-breaking MCS QED{sub 3} model with spontaneous breaking of the gauge symmetry as a framework for evaluation of the electron-electron interaction potential and for attainment of numerical values for the e{sup -}e{sup -} - bound state. Three expressions (V{sub eff{down_arrow}}{sub {down_arrow}}, V{sub eff{down_arrow}}{sub {up_arrow}}, V{sub eff{down_arrow}}{sub {down_arrow}}) are obtained according to the polarization state of the scattered electrons. In an energy scale compatible with condensed matter electronic excitations, these potentials become degenerated. The resulting potential is implemented in the Schroedinger equation and the variational method is applied to carry out the electronic binding energy. The resulting binding energies in the scale of 10-100 meV and a correlation length in the scale of 10 - 30 Angstrom are possible indications that the MCS-QED{sub 3} model adopted may be suitable to address an eventual case of e{sup -}e{sup -} pairing in the presence of parity-symmetry breakdown. The data analyzed here suggest an energy scale of 10-100 meV to fix the breaking of the U(1)-symmetry. (author)

  6. Spin radical enhanced magnetocapacitance effect in intermolecular excited states.

    Science.gov (United States)

    Zang, Huidong; Wang, Jianguo; Li, Mingxing; He, Lei; Liu, Zitong; Zhang, Deqing; Hu, Bin

    2013-11-14

    This article reports the magnetocapacitance effect (MFC) based on both pristine polymer MEH-PPV and its composite system doped with spin radicals (6R-BDTSCSB). We observed that a photoexcitation leads to a significant positive MFC in the pristine MEH-PPV. Moreover, we found that a low doping of spin radicals in polymer MEH-PPV causes a significant change on the MFC signal: an amplitude increase and a line-shape narrowing under light illumination at room temperature. However, no MFC signal was observed under dark conditions in either the pristine MEH-PPV or the radical-doped MEH-PPV. Furthermore, the magnitude increase and line-shape narrowing caused by the doped spin radicals are very similar to the phenomena induced by increasing the photoexcitation intensity. Our studies suggest that the MFC is essentially originated from the intermolecular excited states, namely, intermolecular electron-hole pairs, generated by a photoexcitation in the MEH-PPV. More importantly, by comparing the effects of spin radicals and electrically polar molecules on the MFC magnitude and line shape, we concluded that the doped spin radicals can have the spin interaction with intermolecular excited states and consequently affect the internal spin-exchange interaction within intermolecular excited states in the development of MFC. Clearly, our experimental results indicate that dispersing spin radicals forms a convenient method to enhance the magnetocapacitance effect in organic semiconducting materials. PMID:24144347

  7. Doubly excited triplet states of highly stripped ions

    International Nuclear Information System (INIS)

    Transition energies, Coulomb repulsions and effective quantum numbers have been calculated for the doubly excited Nsnp: 3P0 (for N=2, n=N,..,5); Nsnd: 3De (for N=2, n=N+1,..,5) and Npnd: 3F0 (for N=2, n=N+1,..,5) states for the highly stripped ions Na9+,Mg10+,Al11+,Si12+,P13+ and S14+. Time-dependent perturbation theory has been applied to calculate such transitions properties. A time-dependent harmonic perturbation causes simultaneous excitation of both the electrons with a change of spin state. The doubly excited energy levels and the analytic representation of their wave functions are obtained by identifying the poles of an appropriately constructed linearized variational functional with respect to driving frequency. Most of the results are new. The transition energies and effective quantum numbers of 2s2p: 3P0 states of all the ions agree well with the only available experimental data. (orig.)

  8. Kinetic studies following state-selective laser excitation: Progress report, March 15, 1988--March 14, 1989

    International Nuclear Information System (INIS)

    The objective of this contract is the study of state-to-state, electronic energy transfer reactions following two-photon laser excitation. We have chosen to study reactions of Xe 5p5np because of their relevance to the XeCl excimer laser. We are studying deactivation reactions in collisions with heavy atoms such as Ar, Kr, and Xe and reactive collisions with chlorides. The reactants are excited by multiphoton laser absorption. Product channels are observed by their fluorescence, or by laser induced fluorescence using a second color laser. Reaction rates are measured by observing the time dependent decay of signals from reactant and product channels. In addition we measure interaction potentials of the reactants by laser spectroscopy where the laser induced fluorescence or ionization is measured as a function of laser wavelength (excitation spectra) or by measuring fluorescence spectra at fixed laser frequencies with monochromators. The spectra are obtained in the form of either lineshapes or individual lines from rovibrational transitions of bound states. 11 refs. 4 figs., 3 tabs

  9. Red and blue shift of liquid water's excited states: A many body perturbation study

    Science.gov (United States)

    Ziaei, Vafa; Bredow, Thomas

    2016-08-01

    In the present paper, accurate optical absorption spectrum of liquid H2O is calculated in the energy range of 5-20 eV to probe the nature of water's excited states by means of many body perturbation approach. Main features of recent inelastic X-ray measurements are well reproduced, such as a bound excitonic peak at 7.9 eV with a shoulder at 9.4 eV as well as the absorption maximum at 13.9 eV, followed by a broad shoulder at 18.4 eV. The spectrum is dominated by excitonic effects impacting the structures of the spectrum at low and higher energy regimes mixed by single particle effects at high energies. The exciton distribution of the low-energy states, in particular of S1, is highly anisotropic and localized mostly on one water molecule. The S1 state is essentially a HOCO-LUCO (highest occupied crystal orbital - lowest unoccupied crystal orbital) transition and of intra-molecular type, showing a localized valence character. Once the excitation energy is increased, a significant change in the character of the electronically excited states occurs, characterized through emergence of multiple quasi-particle peaks at 7.9 eV in the quasi-particle (QP) transition profile and in the occurring delocalized exciton density distribution, spread over many more water molecules. The exciton delocalization following a change of the character of excited states at around 7.9 eV causes the blue shift of the first absorption band with respect to water monomer S1. However, due to reduction of the electronic band gap from gas to liquid phase, following enhanced screening upon condensation, the localized S1 state of liquid water is red-shifted with respect to S1 state of water monomer. For higher excitations, near vertical ionization energy (11 eV), quasi-free electrons emerge, in agreement with the conduction band electron picture. Furthermore, the occurring red and blue shift of the excited states are independent of the coupling of resonant and anti-resonant contributions to the

  10. Versatile mode-locked fiber laser with switchable operation states of bound solitons.

    Science.gov (United States)

    Zou, Xin; Qiu, Jifang; Wang, Xiaodong; Ye, Zi; Shi, Jindan; Wu, Jian

    2016-06-01

    Bound states of two solitons are among the typical forms of bound states and can be observed in various operation states of mode-locked fiber lasers. We experimentally investigated bound solitons (BSs) in a passively mode-locked erbium-doped fiber laser based on a semiconductor saturable absorber mirror, whose operation states can be switched among multiple pulses, passively harmonic mode-locking, and "giant pulses" by simply adjusting the in-line polarization controller with the pump power fixed. Up to four pulses, fourth-order harmonic mode-locking (HML), and a "giant pulse" with four BSs were obtained with increasing pump power. Experimental results showed a correlative relationship among those operation states (N pulses/Nth-order HML/"giant pulses" of N bound solitons) at different pump power levels. The birefringence induced by the erbium-doped fiber inside the laser cavity played a vital role in the transitions of those operation states. PMID:27411182

  11. Photon-assisted tunneling through a topological superconductor with Majorana bound states

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Han-Zhao; Zhang, Ying-Tao, E-mail: zhangyt@mail.hebtu.edu.cn [College of Physics, Hebei Normal University, Shijiazhuang 050024 (China); Liu, Jian-Jun, E-mail: liujj@mail.hebtu.edu.cn [College of Physics, Hebei Normal University, Shijiazhuang 050024 (China); Department of Physics, Shijiazhuang University, Shijiazhuang 050035 (China)

    2015-12-15

    Employing the Keldysh Nonequilibrium Green’s function method, we investigate time-dependent transport through a topological superconductor with Majorana bound states in the presence of a high frequency microwave field. It is found that Majorana bound states driven by photon-assisted tunneling can absorb(emit) photons and the resulting photon-assisted tunneling side band peaks can split the Majorana bound state that then appears at non-zero bias. This splitting breaks from the current opinion that Majorana bound states appear only at zero bias and thus provides a new experimental method for detecting Majorana bound states in the Non-zero-energy mode. We not only demonstrate that the photon-assisted tunneling side band peaks are due to Non-zero-energy Majorana bound states, but also that the height of the photon-assisted tunneling side band peaks is related to the intensity of the microwave field. It is further shown that the time-varying conductance induced by the Majorana bound states shows negative values for a certain period of time, which corresponds to a manifestation of the phase coherent time-varying behavior in mesoscopic systems.

  12. Photon-assisted tunneling through a topological superconductor with Majorana bound states

    Directory of Open Access Journals (Sweden)

    Han-Zhao Tang

    2015-12-01

    Full Text Available Employing the Keldysh Nonequilibrium Green’s function method, we investigate time-dependent transport through a topological superconductor with Majorana bound states in the presence of a high frequency microwave field. It is found that Majorana bound states driven by photon-assisted tunneling can absorb(emit photons and the resulting photon-assisted tunneling side band peaks can split the Majorana bound state that then appears at non-zero bias. This splitting breaks from the current opinion that Majorana bound states appear only at zero bias and thus provides a new experimental method for detecting Majorana bound states in the Non-zero-energy mode. We not only demonstrate that the photon-assisted tunneling side band peaks are due to Non-zero-energy Majorana bound states, but also that the height of the photon-assisted tunneling side band peaks is related to the intensity of the microwave field. It is further shown that the time-varying conductance induced by the Majorana bound states shows negative values for a certain period of time, which corresponds to a manifestation of the phase coherent time-varying behavior in mesoscopic systems.

  13. Entanglement Temperature and Entanglement Entropy of Excited States

    CERN Document Server

    Wong, Gabriel; Zayas, Leopoldo A Pando; Vaman, Diana

    2013-01-01

    We derive a general relation between the ground state entanglement Hamiltonian and the physical stress tensor within the path integral formalism. For spherical entangling surfaces in a CFT, we reproduce the \\emph{local} ground state entanglement Hamiltonian derived by Casini, Huerta and Myers. The resulting reduced density matrix can be interpreted as a state of local thermal equilibrium with a spatially varying "entanglement temperature." Using the entanglement Hamiltonian, we calculate the first order change in the entanglement entropy due to changes in conserved charges of the ground state, and find a generalized, local first law-like relation for the entanglement entropy. Our approach provides a field theory derivation and generalization of recent results obtained by holographic techniques. However, we note a discrepancy between our field theoretically derived results for the entanglement entropy of excited states with a non-uniform energy density and current holographic results in the literature. Finally...

  14. Aqueous secondary organic aerosol (SOA) production from the oxidation of phenols by triplet excited state organics

    Science.gov (United States)

    Smith, J.; Yu, L.; Zhang, Q.; Anastasio, C.

    2011-12-01

    Recent literature has shown that atmospheric condensed-phase chemistry can play a significant role in the evolution of organic aerosols, including the formation of secondary organic aerosol (SOA). SOA formation from the oxidation of volatile organic compounds (VOCs) in the aqueous phase has largely focused on oxidations involving the hydroxyl radical and other oxidants, such as photochemically created triplet excited states, have not been fully investigated. Phenolic compounds are one of the primary carbon emission classes from biomass and wood combustion and have significant water solubility. Once in the aqueous phase, phenolic compounds can react with the triplet excited states of non-phenolic aromatic carbonyls (NPCs), particle-bound organics that are also emitted in large quantities from wood combustion. The oxidation of phenolic species in the condensed phase by triplet excited states can result in the production of SOA. A main goal of this study was to investigate bulk solution reaction kinetics under atmospherically relevant conditions in order to ascertain how these reactions can impact aqueous-phase SOA production. In our experiments, we studied the reactions of five phenols (phenol, guaiacol, syringol, catechol, and resorcinol) with the triplet state of 3,4-dimethoxybenzaldehyde (34-DMB) during simulated solar radiation. We have characterized the impacts of pH, ionic strength and reactant concentrations on the reaction behavior of this system. In addition, we analyzed the SOA formed using high-resolution aerosol mass spectrometry, ion chromatography, and liquid chromatography-mass spectrometry to infer the reaction mechanisms. Our evidence suggests that under atmospherically relevant conditions, triplet excited states can be the dominant oxidant of phenolics and contribute significantly to the total SOA budget.

  15. On accurate computations of bound state properties in three- and four-electron atomic systems

    CERN Document Server

    Frolov, Alexei M

    2016-01-01

    Results of accurate computations of bound states in three- and four-electron atomic systems are discussed. Bound state properties of the four-electron lithium ion Li$^{-}$ in its ground $2^{2}S-$state are determined from the results of accurate, variational computations. We also consider a closely related problem of accurate numerical evaluation of the half-life of the beryllium-7 isotope. This problem is of paramount importance for modern radiochemistry.

  16. Two-sided bounds on the mean vector and covariance matrix in linear stochastically excited vibration systems with application of the differential calculus of norms

    Directory of Open Access Journals (Sweden)

    Ludwig Kohaupt

    2015-12-01

    Full Text Available For a linear stochastic vibration model in state-space form, $ \\dot{x}(t = A x(t+b(t, \\, x(0=x_0, $ with system matrix A and white noise excitation $ b(t $, under certain conditions, the solution $ x(t $ is a random vector that can be completely described by its mean vector, $ m_x(t:=m_{x(t} $, and its covariance matrix, $ P_x(t:=P_{x(t} $. If matrix $ A $ is asymptotically stable, then $ m_x(t \\rightarrow 0 \\, (t \\rightarrow \\infty $ and $ P_x(t \\rightarrow P \\, (t \\rightarrow \\infty $, where $ P $ is a positive (semi-definite matrix. As the main new points, in this paper, we derive two-sided bounds on $ \\Vert m_x(t\\Vert _2 $ and $ \\Vert P_x(t- P\\Vert _2 $ as well as formulas for the right norm derivatives $ D_+^k \\Vert P_x(t- P\\Vert _2, \\, k=0,1,2 $, and apply these results to the computation of the best constants in the two-sided bounds. The obtained results are of special interest to applied mathematicians and engineers.

  17. Is the Z+(4430) a radially excited state of Ds?

    International Nuclear Information System (INIS)

    We present the interpretation that the recently discovered Z+(4430) by the Belle Collaboration can be a radial excitation of the cs-bar state, being consistent with an observed value of the product of branching ratios, B(B0→K±Z±(4430))xB(Z±(4430)→π±ψ')∼10-5. We give an explicit cs-bar candidate for this state by calculating the mass value in our semirelativistic quark potential model and also give a natural understanding for the facts that the decay mode Z→J/ψπ+ has not yet been seen while Z→ψ'π can be seen

  18. Modular Hamiltonian for Excited States in Conformal Field Theory

    Science.gov (United States)

    Lashkari, Nima

    2016-07-01

    We present a novel replica trick that computes the relative entropy of two arbitrary states in conformal field theory. Our replica trick is based on the analytic continuation of partition functions that break the Zn replica symmetry. It provides a method for computing arbitrary matrix elements of the modular Hamiltonian corresponding to excited states in terms of correlation functions. We show that the quantum Fisher information in vacuum can be expressed in terms of two-point functions on the replica geometry. We perform sample calculations in two-dimensional conformal field theories.

  19. Internal-nuclear conversion of energy of nucleus excited state

    International Nuclear Information System (INIS)

    In the work an effect of penetration electrons of internal conversion showing in hindered M1-transitions was studied. At the moment of a nucleus transition from excited state in low state, electron of atomic shell can appear inside a nucleus and the internal conversion of electrons occur. For such transitions nuclear parameter do not equal zero. The analytical method of definition of nuclear parameter is offered from the relation of intensities L1/L2, L1/L3, L2/L3 of internal conversion of electrons. (authors)

  20. Skyrmion model in 2+1 dimensions with soliton bound states

    Energy Technology Data Exchange (ETDEWEB)

    Piette, B.; Zakrzewski, W.J. (Dept. of Mathematical Sciences, Univ. Durham (United Kingdom))

    1993-03-22

    We consider a class of skyrmion models in 2+1 dimensions which possess bound stable solitons. We show that these models have one-soliton solutions as well as static solutions corresponding to their bound states. We study the scattering and stability properties of these solutions, compute their energies and estimate their binding energies. (orig.).

  1. Bound states of fermions on 2D lattice in a dilute limit

    International Nuclear Information System (INIS)

    We examine extended bound states in a dilute limit of the extended Hubbard model on the two-dimensional square lattice. By solving exactly the two-body problem we have determined the binding energies, mobilities and dispersion curves across the Brillouin zone for bound states of various symmetries. It turns out that the d-wave pairing is strongly favoured by the nnn hopping and the intersite local pairs can have small effective masses, even on the case of strong binding.We have also found a possibility of extended s-dx2-y2 mixing of the bound states. (author)

  2. Taming the Yukawa potential singularity: improved evaluation of bound states and resonance energies

    Energy Technology Data Exchange (ETDEWEB)

    Alhaidari, A D [Shura Council, Riyadh 11212 (Saudi Arabia); Bahlouli, H [Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Abdelmonem, M S [Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2008-01-25

    Using the tools of the J-matrix method, we absorb the 1/r singularity of the Yukawa potential in the reference Hamiltonian, which is handled analytically. The remaining part, which is bound and regular everywhere, is treated by an efficient numerical scheme in a suitable basis using the Gauss quadrature approximation. Analysis of resonance energies and bound states spectrum is performed using the complex scaling method, where we show their trajectories in the complex energy plane and construct a video showing how bound states cross over into resonance states by varying the potential parameters. (fast track communication)

  3. Terahertz-induced depletion of the ground-state population of neutral donors in GaAs measured by resonant elastic light scattering from donor-bound excitons

    CERN Document Server

    Allen, D G; Sherwin, M S

    2005-01-01

    Strong resonant elastic light scattering (RELS) from the donor-bound exciton transition in GaAs (1.514eV) occurs at neutral donors in the ground (1S) state, but not at neutral donors in excited hydrogenic states. When 1.6 THz radiation is incident on an ensemble of neutral donors, we observe up to a 30% decrease in the RELS, corresponding to a decrease in the population of neutral donors in their ground states. This optical detection method is similar to quantum nondemolition measurement techniques used for readout of ion trap quantum computers and diamond nitrogen-vacancy centers. In this scheme, Auger recombination of the bound exciton, which changes the state of the donor during measurement, limits the measurement fidelity and maximum NIR excitation intensity.

  4. Self-Scattering for Dark Matter with an Excited State

    CERN Document Server

    Schutz, Katelin

    2014-01-01

    Self-interacting dark matter scenarios have recently attracted much attention, as a possible means to alleviate the tension between N-body simulations and observations of the dark matter distribution on galactic and sub-galactic scales. The presence of internal structure for the dark matter --- for example, a nearly-degenerate state in the spectrum that could decay, or be collisionally excited or de-excited --- has also been proposed as a possible means to address these discrepancies. Such internal structure can be a source of interesting signatures in direct and indirect dark matter searches, for example providing a novel explanation for the 3.5 keV line recently observed in galaxies and galaxy clusters. We analyze a simple model of dark matter self-scattering including a nearly-degenerate excited state, and develop an accurate analytic approximation for the elastic and inelastic $s$-wave cross sections, which is valid outside the perturbative regime provided the particle velocity is sufficiently low (this c...

  5. Quantum Entanglement of Locally Excited States in Maxwell Theory

    CERN Document Server

    Nozaki, Masahiro

    2016-01-01

    In 4 dimensional Maxwell gauge theory, we study the changes of (Renyi) entangle-ment entropy which are defined by subtracting the entropy for the ground state from the one for the locally excited states generated by acting with the gauge invariant local operators on the state. The changes for the operators which we consider in this paper reflect the electric-magnetic duality. The late-time value of changes can be interpreted in terms of electromagnetic quasi-particles. When the operator constructed of both electric and magnetic fields acts on the ground state, it shows that the operator acts on the late-time structure of quantum entanglement differently from free scalar fields.

  6. Excited-State Properties of Molecular Solids from First Principles.

    Science.gov (United States)

    Kronik, Leeor; Neaton, Jeffrey B

    2016-05-27

    Molecular solids have attracted attention recently in the context of organic (opto)electronics. These materials exhibit unique charge carrier generation and transport phenomena that are distinct from those of conventional semiconductors. Understanding these phenomena is fundamental to optoelectronics and requires a detailed description of the excited-state properties of molecular solids. Recent advances in many-body perturbation theory (MBPT) and density functional theory (DFT) have made such description possible and have revealed many surprising electronic and optical properties of molecular crystals. Here, we review this progress. We summarize the salient aspects of MBPT and DFT as well as various properties that can be described by these methods. These properties include the fundamental gap and its renormalization, hybridization and band dispersion, singlet and triplet excitations, optical spectra, and excitonic properties. For each, we present concrete examples, a comparison to experiments, and a critical discussion. PMID:27090844

  7. Excited-State Properties of Molecular Solids from First Principles

    Science.gov (United States)

    Kronik, Leeor; Neaton, Jeffrey B.

    2016-05-01

    Molecular solids have attracted attention recently in the context of organic (opto)electronics. These materials exhibit unique charge carrier generation and transport phenomena that are distinct from those of conventional semiconductors. Understanding these phenomena is fundamental to optoelectronics and requires a detailed description of the excited-state properties of molecular solids. Recent advances in many-body perturbation theory (MBPT) and density functional theory (DFT) have made such description possible and have revealed many surprising electronic and optical properties of molecular crystals. Here, we review this progress. We summarize the salient aspects of MBPT and DFT as well as various properties that can be described by these methods. These properties include the fundamental gap and its renormalization, hybridization and band dispersion, singlet and triplet excitations, optical spectra, and excitonic properties. For each, we present concrete examples, a comparison to experiments, and a critical discussion.

  8. Pair creation induced by transitions between electronic and positronic bound states

    Science.gov (United States)

    Liu, Y.; Lv, Q. Z.; Li, Y. T.; Grobe, R.; Su, Q.

    2015-05-01

    We study the creation process of electron-positron pairs from the quantum electrodynamical vacuum under very strong electric fields by solving the quantum field theoretical Dirac equation on a space-time grid. We investigate the role of bound-bound state mixing in such a process, which can be studied if the external force can be modeled by a combination of a potential barrier and a potential well. By increasing the magnitude of the two potentials, discrete states that originate from the positive and negative energy continua can become quasidegenerate in the mass gap region (between -mc 2 and mc 2). We show that this bound-bound state mixing is quite different from the usual bound-continuum state mixing where the particles are created until the Pauli exclusion principle inhibits this process. In the case of bound-bound mixing the particle number exhibits a characteristic oscillatory behavior that in principle can last forever. These findings can be modeled by an effective two-state model.

  9. Systematic study of double beta decay to excited final states

    International Nuclear Information System (INIS)

    A systematic study of two-neutrino double beta (2νββ) decay to the final ground state and excited states is performed within a microscopic quasiparticle random phase approximation (QRPA) model. The excited states are assumed to have the structure of one or two QRPA phonons. This study of the 2νββ decay rates is complemented with the study of single-beta-decay feeding of the relevant nuclei taking part in the double beta process. The Woods-Saxon single-particle energies have been corrected near the Fermi surface by comparing the BCS quasi-particle energies with spectroscopic data of the relevant odd-mass nuclei. Pairing gaps, energy systematics of the Gamow-Teller-States and the available beta-decay data have been used to obtain effective, model-space adapted, two-body matrix elements starting from the G-matrix elements of the Bonn one-boson-exchange potential. This enables a parameter-free calculation of the double Gamow-Teller matrix elements and theoretical prediction of double-beta half lives. The harmonic two-phonon approximation has been used in the beta-decay analysis and the subsequent 2νββ calculations. (authors)

  10. Self-scattering for Dark Matter with an excited state

    International Nuclear Information System (INIS)

    Self-interacting dark matter scenarios have recently attracted much attention, as a possible means to alleviate the tension between N-body simulations and observations of the dark matter distribution on galactic and sub-galactic scales. The presence of internal structure for the dark matter—for example, a nearly-degenerate state in the spectrum that could decay, or be collisionally excited or de-excited—has also been proposed as a possible means to address these discrepancies. Such internal structure can be a source of interesting signatures in direct and indirect dark matter searches, for example providing a novel explanation for the 3.5 keV line recently observed in galaxies and galaxy clusters. We analyze a simple model of dark matter self-scattering including a nearly-degenerate excited state, and develop an accurate analytic approximation for the elastic and inelastic s-wave cross sections, which is valid outside the perturbative regime provided the particle velocity is sufficiently low (this condition is also required for the s-wave to dominate over higher partial waves). We anticipate our results will be useful in incorporating inelastic self-scattering into N-body simulations, in order to study the quantitative impact of nearly-degenerate states in the dark matter spectrum on galactic structure and dynamics, and in computing the indirect signatures of multi-state dark matter

  11. An Improved Lower Bound Limit State Optimisation Algorithm

    DEFF Research Database (Denmark)

    Frier, Christian; Damkilde, Lars

    2010-01-01

    Limit State analysis has been used in engineering practice for many years e.g. the yield-line method for concrete slabs and slip-line solutions in geotechnics. In the recent years there has been an increased interest in numerical Limit State analysis, and today algorithms take into account the non...

  12. An Improved Lower Bound Limit State Optimisation Algorithm

    DEFF Research Database (Denmark)

    Frier, Christian; Damkilde, Lars

    2010-01-01

    Limit State analysis has been used in manual design methods for decades e.g. the yield line theory for concrete slabs.......Limit State analysis has been used in manual design methods for decades e.g. the yield line theory for concrete slabs....

  13. Output power of a quantum dot laser: Effects of excited states

    International Nuclear Information System (INIS)

    A theory of operating characteristics of quantum dot (QD) lasers is discussed in the presence of excited states in QDs. We consider three possible situations for lasing: (i) ground-state lasing only; (ii) ground-state lasing at first and then the onset of also excited-state lasing with increasing injection current; (iii) excited-state lasing only. The following characteristics are studied: occupancies of the ground-state and excited-state in QDs, free carrier density in the optical confinement layer, threshold currents for ground- and excited-state lasing, densities of photons emitted via ground- and excited-state stimulated transitions, output power, internal and external differential quantum efficiencies. Under the conditions of ground-state lasing only, the output power saturates with injection current. Under the conditions of both ground- and excited-state lasing, the output power of ground-state lasing remains pinned above the excited-state lasing threshold while the power of excited-state lasing increases. There is a kink in the light-current curve at the excited-state lasing threshold. The case of excited-state lasing only is qualitatively similar to that for single-state QDs—the role of ground-state transitions is simply reduced to increasing the threshold current

  14. Excited state dynamics and isomerization in ruthenium sulfoxide complexes.

    Science.gov (United States)

    King, Albert W; Wang, Lei; Rack, Jeffrey J

    2015-04-21

    Molecular photochromic compounds are those that interconvert between two isomeric forms with light. The two isomeric forms display distinct electronic and molecular structures and must not be in equilibrium with one another. These light-activated molecular switch compounds have found wide application in areas of study ranging from chemical biology to materials science, where conversion from one isomeric form to another by light prompts a response in the environment (e.g., protein or polymeric material). Certain ruthenium and osmium polypyridine sulfoxide complexes are photochromic. The mode of action is a phototriggered isomerization of the sulfoxide from S- to O-bonded. The change in ligation drastically alters both the spectroscopic and electrochemical properties of the metal complex. Our laboratory has pioneered the preparation and study of these complexes. In particular, we have applied femtosecond pump-probe spectroscopy to reveal excited state details of the isomerization mechanism. The data from numerous complexes allowed us to predict that the isomerization was nonadiabatic in nature, defined as occurring from a S-bonded triplet excited state (primarily metal-to-ligand charge transfer in character) to an O-bonded singlet ground state potential energy surface. This prediction was corroborated by high-level density functional theory calculations. An intriguing aspect of this reactivity is the coupling of nuclear motion to the electronic wave function and how this coupling affects motions productive for isomerization. In an effort to learn more about this coupling, we designed a project to examine phototriggered isomerization in bis-sulfoxide complexes. The goal of these studies was to determine whether certain complexes could be designed in which a single photon excitation event would prompt two sulfoxide isomerizations. We employed chelating sulfoxides in this study and found that both the nature of the chelate ring and the R group on the sulfoxide affect

  15. Fano effect and Andreev bound states in T-shape double quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Calle, A.M.; Pacheco, M. [Departamento de Física, Universidad Técnica Federico Santa María, Casilla 110-V, Valparaíso (Chile); Orellana, P.A., E-mail: orellana@ucn.cl [Departamento de Física, Universidad Católica del Norte, Casilla 1280, Antofagasta (Chile)

    2013-09-02

    In this Letter, we investigate the transport through a T-shaped double quantum dot coupled to two normal metal leads left and right and a superconducting lead. Analytical expressions of Andreev transmission and local density of states of the system at zero temperature have been obtained. We study the role of the superconducting lead in the quantum interferometric features of the double quantum dot. We report for first time the Fano effect produced by Andreev bound states in a side quantum dot. Our results show that as a consequence of quantum interference and proximity effect, the transmission from normal to normal lead exhibits Fano resonances due to Andreev bound states. We find that this interference effect allows us to study the Andreev bound states in the changes in the conductance between two normal leads. - Highlights: • Transport properties of a double quantum dot coupled in T-shape configuration to conducting and superconducting leads are studied. • We report Fano antiresonances in the normal transmission due to the Andreev reflections in the superconducting lead. • We report for first time the Fano effect produced by Andreev bound states in a side quantum dot. • Fano effect allows us to study the Andreev bound states in the changes in the conductance between two normal leads. • Andreev bound states survives even for strong dot-superconductor coupling.

  16. Fano effect and Andreev bound states in T-shape double quantum dots

    International Nuclear Information System (INIS)

    In this Letter, we investigate the transport through a T-shaped double quantum dot coupled to two normal metal leads left and right and a superconducting lead. Analytical expressions of Andreev transmission and local density of states of the system at zero temperature have been obtained. We study the role of the superconducting lead in the quantum interferometric features of the double quantum dot. We report for first time the Fano effect produced by Andreev bound states in a side quantum dot. Our results show that as a consequence of quantum interference and proximity effect, the transmission from normal to normal lead exhibits Fano resonances due to Andreev bound states. We find that this interference effect allows us to study the Andreev bound states in the changes in the conductance between two normal leads. - Highlights: • Transport properties of a double quantum dot coupled in T-shape configuration to conducting and superconducting leads are studied. • We report Fano antiresonances in the normal transmission due to the Andreev reflections in the superconducting lead. • We report for first time the Fano effect produced by Andreev bound states in a side quantum dot. • Fano effect allows us to study the Andreev bound states in the changes in the conductance between two normal leads. • Andreev bound states survives even for strong dot-superconductor coupling

  17. The bound state Aharonov-Bohm effect around a cosmic string revisited

    OpenAIRE

    Filgueiras, C.; Moraes, Fernando

    2005-01-01

    In this article we observe that the self-adjoint extension of the Hamiltonian of a particle moving around a shielded cosmic string gives rise to a gravitational analogue of the bound state Aharonov-Bohm effect.

  18. Sufficient conditions for the existence of a bound state in the N-body problem

    International Nuclear Information System (INIS)

    Simple sufficient conditions for the existence of a bound state in the system of N particles interacting via a purely attractive two-body potential are provided. This method is based on a variational approach. (Author)

  19. The dynamical gluon mass in the massless bound-state formalism

    CERN Document Server

    Ibanez, David

    2014-01-01

    We describe the phenomenon of dynamical gluon mass generation within the massless bound-state formalism, which constitutes the general framework for the systematic implementation of the Schwinger mechanism in non-Abelian gauge theories. The main ingredient of this formalism is the dynamical formation of bound states with vanishing mass, which gives rise to effective vertices containing massless poles; these vertices, in turn, trigger the Schwinger mechanism, and allow for the gauge-invariant generation of an effective gluon mass. In this particular approach, the gluon mass is directly related to quantities that are intrinsic to the bound-state formation itself, such as the "transition amplitude" and the corresponding "bound-state wave-function". Specifically, a set of powerful relations discussed in the text, allows one to determine the dynamical evolution of the gluon mass through a Bethe-Salpeter equation, which controls the dynamics of the relevant wave-function. In addition, it is possible to demonstrate ...

  20. Bound states in the dynamics of a dipole in the presence of a conical defect

    CERN Document Server

    De Ribeiro, C A L; Moraes, F; Furtado, Claudio; Moraes, Fernando

    2005-01-01

    In this work we investigate the quantum dynamics of an electric dipole in a $(2+1)$-dimensional conical spacetime. For specific conditions, the Schr\\"odinger equation is solved and bound states are found with the energy spectrum and eigenfunctions determined. We find that the bound states spectrum extends from minus infinity to zero with a point of accumulation at zero. This unphysical result is fixed when a finite radius for the defect is introduced.

  1. Bound states in the two-dimension massive quantum electrodynamics (Qed2)

    International Nuclear Information System (INIS)

    This work studies the fermion-antifermion bound states in the (1+1)D two-dimension massive quantum electrodynamic in the 1/N expansion. The scattering matrices in the non-relativistic approximation have been calculated through TQC, and compared with the cross section in the Born approximation, and therefore the potential responsible by the interactions in the scattering processes have been obtained. Using Schroedinger equation, the existence of possible bound states have been investigated

  2. Quantum Chernoff bound as a measure of the efficiency of quantum cloning for mixed states

    International Nuclear Information System (INIS)

    In this paper we investigate the efficiency of quantum cloning of N identical mixed qubits. We employ a recently introduced measure of distinguishability of quantum states called the quantum Chernoff bound. We evaluate the quantum Chernoff bound between the output clones generated by the cloning machine and the initial mixed qubit state. Our analysis is illustrated by performing numerical calculation of the quantum Chernoff bound for different scenarios that involves the number of initial qubits N and the number of output imperfect copies M. (paper)

  3. Theoretical aspects of multiphoton ionization with many resonant excited states

    International Nuclear Information System (INIS)

    The variety of the parameters involved in multi-color multi-step ionization makes it a formidable job to obtain a theoretically comprehensible overview of the process. We examine these parameters of such processes as well as commonly used assumptions in theoretical investigations of multiphoton ionization with many resonantly excited levels. The density matrix formalism is adequate to treat resonant multiphoton ionization when the number of the resonant levels involved is not too large, solving the resonantly coupled states separately beyond the lowest order perturbation theory, while the rest of the states are treated perturbatively. An example of such formalism is given for a four-level system ionized with three lasers each of which resonantly couples the adjacent pairs of the atomic states.

  4. Excited states in 146Sm and 147Sm

    International Nuclear Information System (INIS)

    The sup(144,146)Nd(α,xn) and sup(146,148)Nd(3He,xn) reactions with Esub(α) = 20 - 43 MeV and E3sub(He) = 19 - 27 MeV are used to investigate excited states in the isotopes 146Sm and 147Sm. The experiments involve measurements of singles γ-ray spectra and conversion electron spectra, γ-ray angular distributions and three parameter (E sub(γ)E sub(γ) time) coincidences. From these experiments information is obtained for states with spin up to I = 13+ and I = 27/2-, respectively, These states are interpeted within the framework of the cluster-vibration model (CVM) as well as the shell model. (author)

  5. Excitation and ionization of hydrogen and helium atoms by femtosecond laser pulses: theoretical approach by Coulomb-Volkov states

    International Nuclear Information System (INIS)

    We present a theoretical approach using Coulomb-Volkov states that appears useful for the study of atomic multi-photonic processes induced by intense XUV femtosecond laser pulses. It predicts hydrogen ionization spectra when it is irradiated by laser pulses in perturbations conditions. Three ways have been investigated. Extension to strong fields when ℎω > Ip: it requires to include the hydrogen ground state population, introducing it in standard Coulomb-Volkov amplitude leads to saturated multi-photonic ionization. Extension to multi-photonic transitions with ℎω p: new quantum paths are open by the possibility to excite the lower hydrogen bound states. Multiphoton excitation of these states is investigated using a Coulomb-Volkov approach. Extension to helium: two-photon double ionization study shows the influence of electronic correlations in both ground and final state. Huge quantity of information such as angular and energetic distributions as well as total cross sections is available. (author)

  6. Excited states above the proton threshold in {sup 26}Si

    Energy Technology Data Exchange (ETDEWEB)

    Komatsubara, T. [Institute for Basic Science (IBS), Rare Isotope Science Project, Yuseong-gu Daejeon (Korea, Republic of); Kubono, S.; Ito, Y. [RIKEN, Saitama (Japan); Hayakawa, T.; Shizuma, T. [Japan Atomic Energy Agency, Tokai, Ibaraki (Japan); Ozawa, A.; Ishibashi, Y. [University of Tsukuba, Institute of Physics, Tsukuba, Ibaraki (Japan); Moriguchi, T. [National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka (Japan); Yamaguchi, H.; Kahl, D. [University of Tokyo, Wako Branch, Center for Nuclear Study (CNS), Wako, Saitama (Japan); Hayakawa, S. [Laboratori Nazionali del Sud-INFN, Catania (Italy); Nguyen Binh, Dam [Vietnamese Academy for Science and Technology, Institute of Physics, Hanoi (Viet Nam); Chen, A.A.; Chen, J. [McMaster University, Hamilton, Ontario (Canada); Setoodehnia, K. [University of Notre Dame, Department of Physics, Notre Dame, Indiana (United States); Kajino, T. [National Astronomical Observatory, Tokyo (Japan); University of Tokyo, Department of Astronomy, Graduate School of Science, Tokyo (Japan)

    2014-09-15

    The level scheme above the proton threshold in {sup 26}Si is crucial for evaluating the {sup 25}Al(p, γ){sup 26}Si stellar reaction, which is important for understanding the astrophysical origin of the long-lived cosmic radioactivity {sup 26}Al(T{sub 1/2} = 7.17 x 10{sup 5} y) in the Galaxy. The excited states in {sup 26}Si have been studied using an in-beam γ-ray spectroscopy technique with the {sup 24}Mg({sup 3}He, nγ){sup 26}Si reaction. γ-rays with energies up to 4.6 MeV emitted from excited states in {sup 26}Si have been measured using large volume HPGe detectors. The spin-parity of one of the most important states reported recently at 5890.0keV has been assigned as 0{sup +} by γ-γ angular correlation measurements in this work. (orig.)

  7. The generalized pseudospectral approach to the bound states of the Hulthén and the Yukawa potentials

    Indian Academy of Sciences (India)

    Amlan K Roy

    2005-07-01

    The generalized pseudospectral (GPS) method is employed to calculate the bound states of the Hulthén and the Yukawa potentials in quantum mechanics, with special emphasis on higher excited states and stronger couplings. Accurate energy eigenvalues, expectation values and radial probability densities are obtained through a non-uniform and optimal spatial discretization of the radial Schrödinger equation. Results accurate up to thirteen to fourteen significant figures are reported for all the 55 eigenstates of both these potentials with ≤ 10 for arbitrary values of the screening parameters covering a wide range of interaction. Furthermore, excited states as high as = 17 have been computed with good accuracy for both these potentials. Excellent agreement with the available literature data has been observed in all cases. The > 6 states of the Yukawa potential has been considerably improved over all other existing results currently available, while the same for Hulthén potential are reported here for the first time. Excepting the 1 and 2 states of the Yukawa potential, the present method surpasses the accuracy of all other existing results in the stronger coupling region for all other states of both these systems. This offers a simple and efficient scheme for the accurate calculation of these and other screened Coulomb potentials.

  8. Weighing excited nuclear states with a Penning trap mass spectrometer

    International Nuclear Information System (INIS)

    We report on high-accuracy mass measurements and isomer identification of 187Pb. In this nuclide, two close-lying isomeric states are known from α-decay studies. With the combined use of the ISOLDE resonance ionization laser ion source and the Penning trap mass spectrometer ISOLTRAP the energy difference of 187Pb and 187mPb was determined to be E = 33(13) keV. This is the lowest isomeric excitation energy ever determined by weighing nuclei. (orig.)

  9. Coherence, energy and charge transfers in de-excitation pathways of electronic excited state of biomolecules in photosynthesis

    DEFF Research Database (Denmark)

    Bohr, Henrik; Malik, F. Bary

    2013-01-01

    The observed multiple de-excitation pathways of photo-absorbed electronic excited state in the peridinin–chlorophyll complex, involving both energy and charge transfers among its constituents, are analyzed using the bio-Auger (B-A) theory. It is also shown that the usually used F¨orster–Dexter...

  10. QQqq Four-Quark Bound States in Chiral SU(3) Quark Model

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ming; ZHANG Hai-Xia; ZHANG Zong-Ye

    2008-01-01

    The possibility of QQqq heavy-light four-quark bound states has been analyzed by means of the chiral SU(3) quark model, where Q is the heavy quark (c or b) and q is the light quark (u, d, or s). We obtain a bound state for the bbnn configuration with quantum number JP=1+, I=0 and for the ccnn (JP=1+, I=0) configuration, which is not bound but slightly above the D*D* threshold (n is u or d quark). Meanwhile, we also conclude that a weakly bound state in bbnn system can also be found without considering the chiral quark interactions between the two light quarks, yet its binding energy is weaker than that with the chiral quark interactions.

  11. From the Deuteron to Deusons, an Analysis of Deuteronlike Meson-Meson Bound States

    CERN Document Server

    Törnqvist, N A

    1994-01-01

    A systematic study of possible deuteronlike two-meson bound states, {\\it deusons}, is presented. Previous arguments that many such bound states may exist are elaborated with detailed arguments and numerical calculations including, in particular, the tensor potential. In the heavy meson sector one-pion exchange alone is strong enough to form at least deuteron-like $B\\bar B^*$ and $B^*\\bar B^*$ composites bound by approximately 50 MeV. Composites of $D\\bar D^*$ and $D^*\\bar D^*$ states bound by pion exchange alone are expected near the thresholds, while in the light meson sector one generally needs some additional short range attraction to form bound states. The quantum numbers of these states are I=0, In $B\\bar B^*$ one predictss the states: $\\eta_b(\\approx 10545),\\ \\chi_{b1}(\\approx 10562)$, and in $B^*\\bar B^*$ one finds the states: $\\eta_b(\\approx 10590),\\ \\chi_{b0}(\\approx 10582),\\ h_b(\\approx 10608),\\ \\chi_{b2}(\\approx 10602)$. Near the $D\\bar D^*$ threshold the states: $\\eta_c(\\approx 3870),\\ \\chi_{c0}(\\...

  12. Probing the Locality of Excited States with Linear Algebra.

    Science.gov (United States)

    Etienne, Thibaud

    2015-04-14

    This article reports a novel theoretical approach related to the analysis of molecular excited states. The strategy introduced here involves gathering two pieces of physical information, coming from Hilbert and direct space operations, into a general, unique quantum mechanical descriptor of electronic transitions' locality. Moreover, the projection of Hilbert and direct space-derived indices in an Argand plane delivers a straightforward way to visually probe the ability of a dye to undergo a long- or short-range charge-transfer. This information can be applied, for instance, to the analysis of the electronic response of families of dyes to light absorption by unveiling the trend of a given push-pull chromophore to increase the electronic cloud polarization magnitude of its main transition with respect to the size extension of its conjugated spacer. We finally demonstrate that all the quantities reported in this article can be reliably approximated by a linear algebraic derivation, based on the contraction of detachment/attachment density matrices from canonical to atomic space. This alternative derivation has the remarkable advantage of a very low computational cost with respect to the previously used numerical integrations, making fast and accurate characterization of large molecular systems' excited states easily affordable. PMID:26574379

  13. Is the exotic $X(5568)$ a bound state?

    CERN Document Server

    Chen, Xiaoyun

    2016-01-01

    Stimulated by the recent observation of the exotic $X(5568)$ state by D0 Collaboration, we study the four-quark system $us\\bar{b}\\bar{d}$ with quantum numbers $J^P=0^+$ in the framework of chiral quark model. Two structures, diquark-antidiquark and meson-meson, with all possible color configurations are investigated by using Gaussian expansion method. The results show that energies of the tetraquark states with diquark-antiquark structure are too high to the candidate of $X(5568)$, and no molecular structure can be formed in our calculations. The calculation is also extended to the four-quark system $us\\bar{c}\\bar{d}$ and the same results as that of $us\\bar{b}\\bar{d}$ are obtained.

  14. Long range coherent magnetic bound states in superconductors

    OpenAIRE

    Ménard, Gerbold C.; Guissart, Sébastien; Brun, Christophe; Pons, Stéphane; Stolyarov, Vasily S.; Debontridder, François; Leclerc, Matthieu V.; Janod, Etienne; Cario, Laurent; Roditchev, Dimitri; Simon, Pascal; Cren, Tristan

    2015-01-01

    The quantum coherent coupling of completely different degrees of freedom is a challenging path towards creating new functionalities for quantum electronics. Usually the antagonistic coupling between spins of magnetic impurities and superconductivity leads to the destruction of the superconducting order. Here we show that a localized classical spin of an iron atom immersed in a superconducting condensate can give rise to new kind of long range coherent magnetic quantum state. In addition to th...

  15. Excitation gap of fractal quantum hall states in graphene

    Science.gov (United States)

    Luo, Wenchen; Chakraborty, Tapash

    2016-01-01

    In the presence of a magnetic field and an external periodic potential the Landau level spectrum of a two-dimensional electron gas exhibits a fractal pattern in the energy spectrum which is described as the Hofstadter’s butterfly. In this work, we develop a Hartree-Fock theory to deal with the electron-electron interaction in the Hofstadter’s butterfly state in a finite-size graphene with periodic boundary conditions, where we include both spin and valley degrees of freedom. We then treat the butterfly state as an electron crystal so that we could obtain the order parameters of the crystal in the momentum space and also in an infinite sample. A phase transition between the liquid phase and the fractal crystal phase can be observed. The excitation gaps obtained in the infinite sample is comparable to those in the finite-size study, and agree with a recent experimental observation.

  16. $D^*$ $\\Xi N$ bound state in strange three-body systems

    CERN Document Server

    Garcilazo, H

    2016-01-01

    The recent update of the strangeness $-2$ ESC08c Nijmegen potential incorporating the NAGARA and KISO events predicts a $\\Xi N$ bound state, $D^*$, in the $^3S_1 (I=1)$ channel. We study if the existence of this two-body bound state could give rise to stable three-body systems. For this purpose we solve the bound state problem of three-body systems where the $\\Xi N$ state is merged with $N$'s, $\\Lambda$'s, $\\Sigma's$ or $\\Xi$'s, making use of the most recent updates of the two-body ESC08c Nijmegen potentials. We found that there appear stable states in the $\\Xi NN$ and $\\Xi \\Xi N$ systems, the $\\Xi \\Lambda N$ and $\\Xi \\Sigma N$ systems being unbound.

  17. 3alpha clustering in the excited states of 16C

    CERN Document Server

    Baba, T; Kimura, M

    2014-01-01

    The alpha cluster states of 16C are investigated by using the antisymmetrized molecular dynamics. It is shown that two different types of alpha cluster states exist: triangular and linear-chain states. The former has an approximate isosceles triangular configuration of alpha particles surrounded by four valence neutrons occupying sd-shell, while the latter has the linearly aligned alpha particles with two sd-shell neutrons and two pf-shell neutrons. It is found that the structure of the linear-chain state is qualitatively understood in terms of the 3/2 pi- and 1/2 sigma- molecular orbit as predicted by molecular-orbital model, but there exists non-negligible Be+alpha+2n correlation. The band-head energies of the triangular and linear-chain rotational bands are 8.0 and 15.5 MeV, and the latter is close to the He+Be threshold energy. It is also shown that the linear-chain state becomes the yrast sstate at J=10 with excitation energy 27.8 MeV owing to its very large moment-of-inertia comparable with hyperdeforma...

  18. Kinetic studies following state-selective laser excitation

    International Nuclear Information System (INIS)

    We have made measurements of state-to-state deactivation cross sections and radiative lifetimes for Xe*(6p,6p',7p) and Kr*(5p) states in xenon and krypton buffer gases. These results are relevant to kinetic models and both excimer lasers and the infrared xenon laser; and they are a significant improvement in the precision of the known radiative lifetimes. This type of experiment can now be compared with recent calculations of state-to-state collisional relaxation in rare-gases by Hickman, Huestis, and Saxon. We have also made significant progress in the study of the electronic spectra of small molecules of the rare gases. Spectra have been obtained for Xe2, Xe3, Xe4, and larger clusters. As guidance for the larger clusters of the rare gases we have obtained the first multiphoton spectra for excitons in condensed xenon. In collaboration with research on the multiphoton spectra of the rare gases, we have continued experiments using synchrotron radiation in collaboration with the University of Hamburg. In experiments there we have observed excitation and fluorescence spectra for single xenon atoms at the surface, within the second layer, and within the bulk of large argon clusters

  19. Excited state properties of the astaxanthin radical cation: A quantum chemical study

    Science.gov (United States)

    Dreuw, Andreas; Starcke, Jan Hendrik; Wachtveitl, Josef

    2010-07-01

    Using time-dependent density functional theory, the excited electronic states of the astaxanthin radical cation (AXT rad + ) are investigated. While the optically allowed excited D 1 and D 3 states are typical ππ∗ excited states, the D 2 and D 4 states are nπ∗ states. Special emphasis is put onto the influence of the carbonyl groups onto the excited states. For this objective, the excited states of four hypothetical carotenoids and zeaxanthin have been computed. Addition of a carbonyl group to a conjugated carbon double bond system does essentially not change the vertical excitation energies of the optically allowed ππ∗ states due to two counter-acting effects: the excitation energy should increase due to the -M-effect of the carbonyl group and at the same time decrease owing to the elongation of the conjugated double bond system by the carbonyl group itself.

  20. Excited state properties of the astaxanthin radical cation: A quantum chemical study

    Energy Technology Data Exchange (ETDEWEB)

    Dreuw, Andreas, E-mail: andreas.dreuw@theochem.uni-frankfurt.de [Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Max von Laue-Str. 7, 60438 Frankfurt am Main (Germany); Starcke, Jan Hendrik; Wachtveitl, Josef [Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Max von Laue-Str. 7, 60438 Frankfurt am Main (Germany)

    2010-07-19

    Using time-dependent density functional theory, the excited electronic states of the astaxanthin radical cation (AXT{sup {center_dot}+}) are investigated. While the optically allowed excited D{sub 1} and D{sub 3} states are typical {pi}{pi}* excited states, the D{sub 2} and D{sub 4} states are n{pi}* states. Special emphasis is put onto the influence of the carbonyl groups onto the excited states. For this objective, the excited states of four hypothetical carotenoids and zeaxanthin have been computed. Addition of a carbonyl group to a conjugated carbon double bond system does essentially not change the vertical excitation energies of the optically allowed {pi}{pi}* states due to two counter-acting effects: the excitation energy should increase due to the -M-effect of the carbonyl group and at the same time decrease owing to the elongation of the conjugated double bond system by the carbonyl group itself.

  1. Excited state properties of the astaxanthin radical cation: A quantum chemical study

    International Nuclear Information System (INIS)

    Using time-dependent density functional theory, the excited electronic states of the astaxanthin radical cation (AXT·+) are investigated. While the optically allowed excited D1 and D3 states are typical ππ* excited states, the D2 and D4 states are nπ* states. Special emphasis is put onto the influence of the carbonyl groups onto the excited states. For this objective, the excited states of four hypothetical carotenoids and zeaxanthin have been computed. Addition of a carbonyl group to a conjugated carbon double bond system does essentially not change the vertical excitation energies of the optically allowed ππ* states due to two counter-acting effects: the excitation energy should increase due to the -M-effect of the carbonyl group and at the same time decrease owing to the elongation of the conjugated double bond system by the carbonyl group itself.

  2. A benchmark study of electronic excitation energies, transition moments, and excited-state energy gradients on the nicotine molecule

    Energy Technology Data Exchange (ETDEWEB)

    Egidi, Franco, E-mail: franco.egidi@sns.it; Segado, Mireia; Barone, Vincenzo, E-mail: vincenzo.barone@sns.it [Scuola Normale Superiore, Piazza dei Cavalieri, 7 I-56126 Pisa (Italy); Koch, Henrik [Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim (Norway); Cappelli, Chiara [Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via G. Moruzzi, 3 I-56124 Pisa (Italy)

    2014-12-14

    In this work, we report a comparative study of computed excitation energies, oscillator strengths, and excited-state energy gradients of (S)-nicotine, chosen as a test case, using multireference methods, coupled cluster singles and doubles, and methods based on time-dependent density functional theory. This system was chosen because its apparent simplicity hides a complex electronic structure, as several different types of valence excitations are possible, including n-π{sup *}, π-π{sup *}, and charge-transfer states, and in order to simulate its spectrum it is necessary to describe all of them consistently well by the chosen method.

  3. Observation of interference effects via four photon excitation of highly excited Rydberg states in thermal cesium vapor

    CERN Document Server

    Kondo, Jorge M; Guttridge, Alex; Wade, Christopher G; De Melo, Natalia R; Adams, Charles S; Weatherill, Kevin J

    2015-01-01

    We report on the observation of Electromagnetically Induced Transparency (EIT) and Absorption (EIA) of highly-excited Rydberg states in thermal Cs vapor using a 4-step excitation scheme. The advantage of this 4-step scheme is that the final transition to the Rydberg state has a large dipole moment and one can achieve similar Rabi frequencies to 2 or 3 step excitation schemes using two orders of magnitude less laser power. Consequently each step is driven by a relatively low power infra-red diode laser opening up the prospect for new applications. The observed lineshapes are in good agreement with simulations based on multilevel optical Bloch equations.

  4. A benchmark study of electronic excitation energies, transition moments, and excited-state energy gradients on the nicotine molecule

    International Nuclear Information System (INIS)

    In this work, we report a comparative study of computed excitation energies, oscillator strengths, and excited-state energy gradients of (S)-nicotine, chosen as a test case, using multireference methods, coupled cluster singles and doubles, and methods based on time-dependent density functional theory. This system was chosen because its apparent simplicity hides a complex electronic structure, as several different types of valence excitations are possible, including n-π*, π-π*, and charge-transfer states, and in order to simulate its spectrum it is necessary to describe all of them consistently well by the chosen method

  5. Ultrafast electronic relaxation of excited state vitamin B12 in the gas phase

    International Nuclear Information System (INIS)

    The time evolution of electronically excited vitamin B12 (cyanocobalamin) has been observed for the first time in the gas phase. It reveals an ultrafast decay to a state corresponding to metal excitation. This decay is interpreted as resulting from a ring to metal electron transfer. This opens the observation of the excited state of other complex biomimetic systems in the gas phase, the key to the characterisation of their complex evolution through excited electronic states

  6. Bound states of quarks and gluons and hadronic transitions

    International Nuclear Information System (INIS)

    A potential which incorporates the concepts of confinement and asymptotic freedom, previously utilized in the description of the spectroscopy of mesons and baryons, is extended to the gluon sector. The mass spectroscopy of glueballs and hybrids is analyzed considering only pairwise potentials and massive constituent gluons. The mass spectrum of the color octet two-gluon system is adopted as a suitable description of the intermediate states of hadronic transitions, within the framework of the multipole expansion for quantum chromodynamics. The spin-dependent effects in the gluonium spectrum, associated with the Coulombian potential, are calculated through the inverted first Born approximation for the gluon-gluon scattering. (author). 102 refs, 1 fig, 13 tabs

  7. Free energy barrier for melittin reorientation from a membrane-bound state to a transmembrane state

    CERN Document Server

    Irudayam, Sheeba J; Berkowitz, Max L

    2013-01-01

    An important step in a phospholipid membrane pore formation by melittin antimicrobial peptide is a reorientation of the peptide from a surface into a transmembrane conformation. In this work we perform umbrella sampling simulations to calculate the potential of mean force (PMF) for the reorientation of melittin from a surface-bound state to a transmembrane state and provide a molecular level insight into understanding peptide and lipid properties that influence the existence of the free energy barrier. The PMFs were calculated for a peptide to lipid (P/L) ratio of 1/128 and 4/128. We observe that the free energy barrier is reduced when the P/L ratio increased. In addition, we study the cooperative effect; specifically we investigate if the barrier is smaller for a second melittin reorientation, given that another neighboring melittin was already in the transmembrane state. We observe that indeed the barrier of the PMF curve is reduced in this case, thus confirming the presence of a cooperative effect.

  8. Breathing-like excited state of the Hoyle state in ${^{12}{\\rm C}}$

    CERN Document Server

    Zhou, Bo; Horiuchi, Hisashi; Ren, Zhongzhou

    2016-01-01

    The existence of the $0_3^+$ and $0_4^+$ states around 10 MeV excitation energy in ${^{12}{\\rm C}}$ is confirmed by a fully microscopic 3$\\alpha$ cluster model. Firstly, a GCM (generator coordinate method) calculation is performed by superposing optimized 2$\\alpha$+$\\alpha$ THSR (Tohsaki-Horiuchi-Schuck-R\\"{o}pke) wave functions with the radius-constraint method. The obtained two excited $0^+$ states above the Hoyle state are consistent with the recently observed states by experiment. Secondly, a variational calculation using the single 2$\\alpha$+$\\alpha$ THSR wave function orthogonalized to the ground and Hoyle states is made and it also supports the existence of the $0_3^+$ state obtained by the GCM calculation. The analysis of the obtained $0_3^+$ state is made by studying its 2$\\alpha$-$\\alpha$ reduced width amplitude, its 2$\\alpha$ correlation function, and the large monopole matrix element between this state and the Hoyle state, which shows that this $0_3^+$ state is a breathing-like excited state of th...

  9. Electronic structure and excited state dynamics in optically excited PTCDA films investigated with two-photon photoemission

    Science.gov (United States)

    Marks, M.; Sachs, S.; Schwalb, C. H.; Schöll, A.; Höfer, U.

    2013-09-01

    We present an investigation of the electronic structure and excited state dynamics of optically excited 3,4,9,10-perylene-tetracarboxylic acid dianhydride (PTCDA) thin films adsorbed on Ag(111) using two-photon photoemission spectroscopy (2PPE). 2PPE allows us to study both occupied and unoccupied electronic states, and we are able to identify signals from the highest occupied and the two lowest unoccupied electronic states of the PTCDA thin film in the 2PPE spectra. The energies for occupied states are identical to values from ultraviolet photoelectron spectroscopy. Compared to results from inverse photoelectron spectroscopy (IPES), the 2PPE signals from the two lowest unoccupied electronic states, LUMO and LUMO+1, are found at 0.8 eV and 1.0 eV lower energies, respectively. We attribute this deviation to the different final states probed in 2PPE and IPES and the attractive interaction of the photoexcited electron and the remaining hole. Furthermore, we present a time-resolved investigation of the excited state dynamics of the PTCDA film in the femtosecond time regime. We observe a significantly shorter inelastic excited state lifetime compared to findings from time-resolved photoluminescence spectroscopy of PTCDA single crystals which could originate from excitation quenching by the metal substrate.

  10. X(3872) and Bound State Problem of D~0(D)*~0((D)~0D*~0)

    Institute of Scientific and Technical Information of China (English)

    LIU Tan-rui; LIU Xiang; DENG Wei-zhen

    2009-01-01

    We have performed a dynamical calculation of the bound state problem of D~0(D)~(*0) by considering the pion and sigma meson exchange potential.Our preliminary analysis disfavors the molecular interpretation of X(3872) if we use the experimental D~* Dπ coupling constant g=0.59 and a reasonable cutoff around 1 GeV,which is the typical hadronic scale.In contrast,there probably exists a loosely bound S-wave B (-B)~* molecular state.Such a molecular state would be rather stable since its dominant decay mode is the radiative decay through B~*→Bγ.

  11. Effect of quasi-bound states on coherent electron transport in twisted nanowires

    OpenAIRE

    Cuoghi, Giampaolo; Bertoni, Andrea; Sacchetti, Andrea

    2010-01-01

    Quantum transmission spectra of a twisted electron waveguide expose the coupling between traveling and quasi-bound states. Through a direct numerical solution of the open-boundary Schr\\"odinger equation we single out the effects of the twist and show how the presence of a localized state leads to a Breit-Wigner or a Fano resonance in the transmission. We also find that the energy of quasi-bound states is increased by the twist, in spite of the constant section area along the waveguide. While ...

  12. Tunable Plasmonic Reflection by Bound 1D Electron States in a 2D Dirac Metal

    Science.gov (United States)

    Jiang, B.-Y.; Ni, G. X.; Pan, C.; Fei, Z.; Cheng, B.; Lau, C. N.; Bockrath, M.; Basov, D. N.; Fogler, M. M.

    2016-08-01

    We show that the surface plasmons of a two-dimensional Dirac metal such as graphene can be reflected by linelike perturbations hosting one-dimensional electron states. The reflection originates from a strong enhancement of the local optical conductivity caused by optical transitions involving these bound states. We propose that the bound states can be systematically created, controlled, and liquidated by an ultranarrow electrostatic gate. Using infrared nanoimaging, we obtain experimental evidence for the locally enhanced conductivity of graphene induced by a carbon nanotube gate, which supports this theoretical concept.

  13. Spectral Singularities do not Correspond to Bound States in the Continuum

    Directory of Open Access Journals (Sweden)

    Ali Mostafazadeh

    2013-01-01

    Full Text Available We show that, contrary to a claim made in arXiv:1011.0645, the von Neumann-Winger bound states that lie in the continuum of the scattering states are fundamentally different from Naimark’s spectral singularities.

  14. Study of the deeply bound hole states by the (3He,α) reaction

    International Nuclear Information System (INIS)

    The (3He,α) reactions at 110 - 120 MeV on even tin isotopes revealed the presence of the new (1g)-1 state at Ex = 6 -- 7 MeV with a spectroscopic factor comparable to the known (1g sub(9/2))-1 deeply bound hole state. (author)

  15. Normalization and perturbation theory for tightly bound states of the spinor Bethe-Salpeter equation

    NARCIS (Netherlands)

    L.G. Suttorp

    1976-01-01

    The normalisation integrals for the tightly-bound-state solutions of the spinor Bethe-Salpeter equation that have been derived recently are evaluated. Ghost states are found to appear when the continuous parameters characterising the type of fermion-boson interaction reach a critical value. Perturba

  16. Search for $\\eta$'(958)-nucleus bound states by (p,d) reaction at GSI and FAIR

    CERN Document Server

    Fujioka, H; Benlliure, J; Brinkmann, K -T; Friedrich, S; Geissel, H; Gellanki, J; Guo, C; Gutz, E; Haettner, E; Harakeh, M N; Hayano, R S; Higashi, Y; Hirenzaki, S; Hornung, C; Igarashi, Y; Ikeno, N; Itahashi, K; Iwasaki, M; Jido, D; Kalantar-Nayestanaki, N; Kanungo, R; Knoebel, R; Kurz, N; Metag, V; Mukha, I; Nagae, T; Nagahiro, H; Nanova, M; Nishi, T; Ong, H J; Pietri, S; Prochazka, A; Rappold, C; Reiter, M P; Rodríguez-Sánchez, J L; Scheidenberger, C; Simon, H; Sitar, B; Strmen, P; Sun, B; Suzuki, K; Szarka, I; Takechi, M; Tanaka, Y K; Tanihata, I; Terashima, S; Watanabe, Y N; Weick, H; Widmann, E; Winfield, J S; Xu, X; Yamakami, H; Zhao, J

    2015-01-01

    The mass of the {\\eta}' meson is theoretically expected to be reduced at finite density, which indicates the existence of {\\eta}'-nucleus bound states. To investigate these states, we perform missing-mass spectroscopy for the (p, d) reaction near the {\\eta}' production threshold. The overview of the experimental situation is given and the current status is discussed.

  17. Excited states of quantum many-body interacting systems: A variational coupled-cluster description

    OpenAIRE

    Xian, Y.

    2007-01-01

    We extend recently proposed variational coupled-cluster method to describe excitation states of quantum many-body interacting systems. We discuss, in general terms, both quasiparticle excitations and quasiparticle-density-wave excitations (collective modes). In application to quantum antiferromagnets, we reproduce the well-known spin-wave excitations, i.e. quasiparticle magnons of spin $\\pm 1$. In addition, we obtain new, spin-zero magnon-density-wave excitations which has been missing in Ans...

  18. Masses of ground and excited-state hadrons

    CERN Document Server

    Roberts, H L L; Cloet, I C; Roberts, C D

    2011-01-01

    We present the first Dyson-Schwinger equation calculation of the light hadron spectrum that simultaneously correlates the masses of meson and baryon ground- and excited-states within a single framework. At the core of our analysis is a symmetry-preserving treatment of a vector-vector contact interaction. In comparison with relevant quantities the root-mean-square-relative-error/degree-of freedom is 13%. Notable amongst our results is agreement between the computed baryon masses and the bare masses employed in modern dynamical coupled-channels models of pion-nucleon reactions. Our analysis provides insight into numerous aspects of baryon structure; e.g., relationships between the nucleon and Delta masses and those of the dressed-quark and diquark correlations they contain.

  19. Masses of Ground- and Excited-State Hadrons

    Science.gov (United States)

    Roberts, Hannes L. L.; Chang, Lei; Cloët, Ian C.; Roberts, Craig D.

    2011-07-01

    We present the first Dyson-Schwinger equation calculation of the light hadron spectrum that simultaneously correlates the masses of meson and baryon ground- and excited-states within a single framework. At the core of our analysis is a symmetry-preserving treatment of a vector-vector contact interaction. In comparison with relevant quantities the root-mean-square-relative-error/degree-of freedom is 13%. Notable amongst our results is agreement between the computed baryon masses and the bare masses employed in modern dynamical coupled-channels models of pion-nucleon reactions. Our analysis provides insight into numerous aspects of baryon structure; e.g., relationships between the nucleon and Δ masses and those of the dressed-quark and diquark correlations they contain.

  20. Chimera states and excitation waves in networks with complex topologies

    Science.gov (United States)

    Schöll, Eckehard

    2016-06-01

    Chimera patterns, which consist of coexisting spatial domains of coherent (synchronized) and incoherent (desyn- chronized) dynamics are studied in networks of FitzHugh-Nagumo systems with complex topologies. To test the robustness of chimera patterns with respect to changes in the structure of the network, we study the following network topologies: Regular ring topology with R nearest neigbors coupled to each side, small-world topology with additional long-range random links, and a hierarchical geometry in the connectivity matrix. We find that chimera states are generally robust with respect to these perturbations, but qualitative changes of the chimera patterns in form of nested coherent and incoherent regions can be induced by a hierarchical topology. The suppression of propagating excitation waves by a small-world topology is also reviewed.

  1. Bounds on the Hausdorff dimension of a renormalisation map arising from an excitable reaction-diffusion system on a fractal lattice

    International Nuclear Information System (INIS)

    A renormalisation approach to investigate travelling wave solutions of an excitable reaction-diffusion system on a deterministic fractal structure has recently been derived. The dynamics of a particular class of solutions which are governed by a two-dimensional subspace of these renormalisation recursion relationships are discussed in this paper. The bifurcations of this mapping are discussed with reference to the discontinuities which arise at the singularities. The map is chaotic for a bounded region in parameter space and bounds on the Hausdorff dimension of the associated invariant hyperbolic set are calculated

  2. Photoelectron spectroscopy of hexachloroplatinate-nucleobase complexes: Nucleobase excited state decay observed via delayed electron emission

    International Nuclear Information System (INIS)

    We report low-temperature photoelectron spectra of isolated gas-phase complexes of the hexachloroplatinate dianion bound to the nucleobases uracil, thymine, cytosine, and adenine. The spectra display well-resolved, distinct peaks that are consistent with complexes where the hexachloroplatinate dianion is largely intact. Adiabatic electron detachment energies for the hexachloroplatinate-nucleobase complexes are measured as 2.26-2.36 eV. The magnitudes of the repulsive Coulomb barriers (RCBs) of the complexes are all ∼1.7 eV, values that are lower than the RCB of the uncomplexed PtCl62− dianion as a result of charge solvation by the nucleobases. In addition to the resolved spectral features, broad featureless bands indicative of delayed electron detachment are observed in the 193 nm photoelectron spectra of the four clusters. The 266 nm spectra of the PtCl62− ⋅ thymine and PtCl62− ⋅ adenine complexes also display very prominent delayed electron emission bands. These results mirror recent results on the related Pt(CN)42− ⋅ nucleobase complexes [A. Sen et al., J. Phys. Chem. B 119, 11626 (2015)]. The observation of delayed electron emission bands in the PtCl62− ⋅ nucleobase spectra obtained in this work, as for the previously studied Pt(CN)42− ⋅ nucleobase complexes, is attributed to one-photon excitation of nucleobase-centred excited states that can effectively couple to the electron detachment continuum, producing strong electron detachment. Moreover, the selective, strong excitation of the delayed emission bands in the 266 nm spectra is linked to fundamental differences in the individual nucleobase photophysics at this excitation energy. This strongly supports our previous suggestion that the dianion within these clusters can be viewed as a “dynamic tag” which has the propensity to emit electrons when the attached nucleobase decays over a time scale long enough to allow autodetachment

  3. Photoelectron Spectroscopy of Hexachloroplatinate-Nucleobase Complexes: Nucleobase Excited State Decay Observed via Delayed Electron Emission

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Ananya; Matthews, Edward M.; Hou, Gao-Lei; Wang, Xue B.; Dessent, Caroline

    2015-11-14

    We report low-temperature photoelectron spectra of isolated gas-phase complexes of the hexachloroplatinate dianion bound to the nucleobases uracil, thymine, cytosine and adenine. The spectra display well-resolved, distinct peaks that are consistent with complexes where the hexachloroplatinate dianion is largely intact. Adiabatic electron detachment energies for the hexachloroplatinate-nucleobase complexes are measured as 2.26-2.36 eV. The magnitudes of the repulsive Coulomb barriers (RCBs) of the complexes are all ~1.7 eV, values that are lower than the RCB of the uncomplexed PtCl6 2- dianion as a result of charge solvation by the nucleobases. In addition to the resolved spectral features, broad featureless bands indicative of delayed electron detachment are observed in the 193 nm photoelectron spectra of the four clusters. The 266 nm spectra of the PtCl6 2-∙thymine and PtCl6 2-∙adenine complexes also display very prominent delayed electron emission bands. These results mirror recent results on the related Pt(CN)4 2-∙nucleobase complexes [Sen et al, J. Phys. Chem. B, 119, 11626, 2015]. The observation of delayed electron emission bands in the PtCl6 2-∙nucleobase spectra obtained in this work, as for the previously studied Pt(CN)4 2-∙nucleobase complexes, is attributed to onephoton excitation of nucleobase-centred excited states that can effectively couple to the electron detachment continuum, producing strong electron detachment. Moreover, the selective, strong excitation of the delayed emission bands in the 266 nm spectra is linked to fundamental differences in the individual nucleobase photophysics at this excitation energy. This strongly supports our previous suggestion that the dianion within these clusters can be viewed as a “dynamic tag” which has the propensity to emit electrons when the attached nucleobase decays over a timescale long enough to allow autodetachment.

  4. Ultrafast Spectroscopy of Delocalized Excited States of the Hydrated Electron

    International Nuclear Information System (INIS)

    Research under support of this grant has been focused on the understanding of highly delocalized ''conduction-band-like'' excited states of solvated electrons in bulk water, in water trapped in the core of reverse micelles, and in alkane solvents. We have strived in this work to probe conduction-band-like states by a variety of ultrafast spectroscopy techniques. (Most of which were developed under DOE support in a previous funding cycle.) We have recorded the optical spectrum of the hydrated electron for the first time. This was accomplished by applying a photo-detrapping technique that we had developed in a previous funding cycle, but had not yet been applied to characterize the actual spectrum. In the cases of reverse micelles, we have been investigating the potential role of conduction bands in the electron attachment process and the photoinduced detrapping, and have published two papers on this topic. Finally, we have been exploring solvated electrons in isooctane from various perspectives. All of these results strongly support the conclusion that optically accessible, highly delocalized electronic states exist in these various media

  5. Foil dissociation of fast molecular ions into atomic excited states

    International Nuclear Information System (INIS)

    The intensity and polarizations of light emitted from atomic excited states of dissociated molecular ions were measured. The dissociations are induced when fast molecular ions (50 to 500 keV/amu) are transmitted through thin carbon foils. A calculation of multiple scattering and the Coulomb explosion gives the average internuclear separation of the projectile at the foil surface. Experimentally, the foil thickness is varied to give varying internuclear separations at the foil surface and observe the consequent variation in light yield and optical polarization. Using HeH+ projectiles, factors of 1 to 5 enhancements of the light yields from n = 3, 13P,D states of He I and some He II and H I emissions were observed. The results can be explained in terms of molecular level crossings which provide mixings of the various final states during dissociation of the molecular ions at the exit surface. They suggest a short range surface interaction of the electron pick-up followed by a slow molecular dissociation. Alignment measurements confirm the essential features of the model. Observations of Lyman α emission after dissociation of H2+ amd H3+ show rapid variations in light yield for small internuclear separations at the foil surface

  6. Suppression of Excited-State Contributions to Stellar Reaction Rates

    CERN Document Server

    Rauscher, T

    2013-01-01

    It has been shown in previous work [Phys. Rev. Lett. 101, 191101 (2008); Phys. Rev. C 80, 035801 (2009)] that a suppression of the stellar enhancement factor (SEF) occurs in some endothermic reactions at and far from stability. This effect is re-evaluated using the ground-state contributions to the stellar reaction rates, which were shown to be better suited to judge the importance of excited state contributions than the previously applied SEFs. An update of the tables shown in Phys. Rev. C 80, 035801 (2009) is given. The new evalution finds 2350 cases (out of a full set of 57513 reactions) for which the ground-state contribution is larger in the reaction direction with negative reaction Q-value than in the exothermic direction, thus providing exceptions to the commonly applied Q-value rule. The results confirm the Coulomb suppression effect but lead to a larger number of exceptions than previously found. This is due to the fact that often a large variation in the g.s. contribution does not lead to a sizeable...

  7. Extended supersymmetry for the bound states of the generalized Hulthen potential hierarchy

    International Nuclear Information System (INIS)

    Using the associated hypergeometric differential equation, we analytically solve the bound states corresponding to a hierarchy of the radial potential -v0 e-δr/(1 - e-δr) + c e-δr/(1 - e-δr)2 as a generalization of the Hulthen potential. Then, an analytic solution corresponding to a special case for which the parameter c is expected to be in terms of l(l + 1) is also derived. Meanwhile without introducing a superpotential and in the framework of supersymmetric quantum mechanics, it is shown that these bound states can be calculated by two different algebraic methods. Based on these two approaches, it is noted that the bound states realize an extended supersymmetry structure

  8. Extended supersymmetry for the bound states of the generalized Hulthén potential hierarchy

    Science.gov (United States)

    Fakhri, H.; Chenaghlou, A.

    2004-09-01

    Using the associated hypergeometric differential equation, we analytically solve the bound states corresponding to a hierarchy of the radial potential -v0 e-dgrr/(1 - e-dgrr) + c e-dgrr/(1 - e-dgrr)2 as a generalization of the Hulthén potential. Then, an analytic solution corresponding to a special case for which the parameter c is expected to be in terms of l(l + 1) is also derived. Meanwhile without introducing a superpotential and in the framework of supersymmetric quantum mechanics, it is shown that these bound states can be calculated by two different algebraic methods. Based on these two approaches, it is noted that the bound states realize an extended supersymmetry structure.

  9. Extended supersymmetry for the bound states of the generalized Hulthen potential hierarchy

    Energy Technology Data Exchange (ETDEWEB)

    Fakhri, H [Institute for Studies in Theoretical Physics and Mathematics (IPM), PO Box 19395-5531, Tehran (Iran, Islamic Republic of); Chenaghlou, A [Institute for Studies in Theoretical Physics and Mathematics (IPM), PO Box 19395-5531, Tehran (Iran, Islamic Republic of)

    2004-09-03

    Using the associated hypergeometric differential equation, we analytically solve the bound states corresponding to a hierarchy of the radial potential -v{sub 0} e{sup -{delta}}{sup r}/(1 - e{sup -{delta}}{sup r}) + c e{sup -{delta}}{sup r}/(1 - e{sup -{delta}}{sup r}){sup 2} as a generalization of the Hulthen potential. Then, an analytic solution corresponding to a special case for which the parameter c is expected to be in terms of l(l + 1) is also derived. Meanwhile without introducing a superpotential and in the framework of supersymmetric quantum mechanics, it is shown that these bound states can be calculated by two different algebraic methods. Based on these two approaches, it is noted that the bound states realize an extended supersymmetry structure.

  10. Critical field enhancement of asymptotic optical bound states in the continuum

    Science.gov (United States)

    Yoon, Jae Woong; Song, Seok Ho; Magnusson, Robert

    2015-12-01

    We study spectral singularities and critical field enhancement factors associated with embedded photonic bound states in subwavelength periodic Si films. Ultrahigh-Q resonances supporting field enhancement factor exceeding 108 are obtained in the spectral vicinity of exact embedded eigenvalues in spite of deep surface modulation and vertical asymmetry of the given structure. Treating relations between the partial resonance Q and field enhancement factors with an analytical coupled-mode model, we derive a general strategy to maximize the field enhancement associated with these photonic bound states in the presence of material dissipation. The analytical expression for the field enhancement quantitatively agrees with rigorous numerical calculations. Therefore, our results provide a general knowledge for designing practical resonance elements based on optical bound states in the continuum in various applications.

  11. Propagators for Scalar Bound States at Finite Temperature in an NJL Model

    Institute of Scientific and Technical Information of China (English)

    ZHOU BangRong

    2002-01-01

    We re-examine physical causal propagators for scalar and pseudoscalar bound states at finite temperaturein a chiral Ut(1) x UR(1) NJL model, defined by four-point amputated fimctions subtracted through the gap equation,and prove that they are completely equivalent in the imaginary-time and real-time formalisms by separating carefiullythe imaginary part of the zero-temperature loop integral. It is shown that the same thermal transformation matrix ofthe matrix propagators for these bound states in the real-time formalism is precisely the one of the matrix propagatorfor an elementary scalar particle and this fact shows the similarity of thermodynamic property between a composite andelementary scalar particle. The retarded and advanced propagators for these bound states are also given explicitly fromthe imaginary-time formalism.

  12. He-2D weakly bound triply excited resonances: Interpretation of previously unexplained structures in the experimental spectrum

    International Nuclear Information System (INIS)

    A He plus electron scattering experiment by Gosselin and Marmet [Phys. Rev. A 41, 1335 (1990)] produced the previously known He- 2s2p22D resonance at 58.283±0.003 eV with a width Γ=59±4 meV, and two new structures at 58.415±0.005 and 58.48±0.02 eV with Γ- and of conditions of electron correlation and possible localization, and application of the state-specific theory (SST) for the calculation of electronic structures and properties led to the determination of three resonance states of 2D symmetry that explain quantitatively the experimental data. The implementation of the SST involved the combination of suitable choices of optimized orbitals, of nonorthonormal configuration interaction, and of mixing of bound with scattering configurations. The first two 2D TES contain the 2s2p2 configuration as a major component, but strong radial correlation results in the spatial separation of the two p spin orbitals. The third TES, computed systematically with up to 996 optimized configurations, is an open-channel like localized wave packet

  13. Bound states in the continuum and spin filter in quantum-dot molecules

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, J.P. [Departamento de Física, Universidad Católica del Norte, Casilla 1280, Antofagasta (Chile); Orellana, P.A., E-mail: pedro.orellana@usm.cl [Departamento de Física, Universidad Técnica Federico Santa María, Vicuña Mackenna 3939, Santiago (Chile)

    2014-12-15

    In this paper we study the formation of bound states in the continuum in a quantum dot molecule coupled to leads and their potential application in spintronics. Based on the combination of bound states in the continuum and Fano effect, we propose a new design of a spin-dependent polarizer. By lifting the spin degeneracy of the carriers in the quantum dots by means of a magnetic field the system can be used as a spin-polarized device. A detailed analysis of the spin-dependent conductance and spin polarization as a function of the applied magnetic field and gate voltages is carried out.

  14. Three-particle hyper-spherical harmonics and quark bound states

    Science.gov (United States)

    Salom, Igor; Dmitrašinović, V.

    2016-01-01

    We construct the three-body permutation symmetric hyperspherical harmonics based on the subgroup chain S3 ⊗ SO (3)rot ⊂ O(2) ⊗ SO (3)rot ⊂ O(6) (and the subalgebra chain u(1) ⊗ so(3)rot ⊂ u(3) ⊂ so(6)). These hyperspherical harmonics represent a natural basis for solving non-relativistic three-body Schrodinger equation in three spatial dimensions. In particular, we apply the calculated three-particle harmonics to the three-quark bound state problem. We consider confining Δ- and Y-string three-quark effective potentials, and then calculate the spectrum of low-lying (K < 4) bound states.

  15. Bound states of the $\\phi^4$ model via the Non-Perturbative Renormalization Group

    CERN Document Server

    Rose, F; Leonard, F; Delamotte, B

    2016-01-01

    Using the nonperturbative renormalization group, we study the existence of bound states in the symmetry-broken phase of the scalar $\\phi^4$ theory in all dimensions between two and four and as a function of the temperature. The accurate description of the momentum dependence of the two-point function, required to get the spectrum of the theory, is provided by means of the Blaizot--M\\'endez-Galain--Wschebor approximation scheme. We confirm the existence of a bound state in dimension three, with a mass within 1% of previous Monte-Carlo and numerical diagonalization values.

  16. Propagators for scalar bound states at finite temperature in a NJL model

    CERN Document Server

    Zhou Bang Rong

    2002-01-01

    We show that, in a chiral $U_L(1)\\times U_R(1)$ NJL model, the physical propagators at finite temperature for scalar and pseudoscalar bound states in the imaginary-time formalism defined by amputated four-point functions, may have identical expressions to corresponding ones in the real-time formalism defined by diagonalization of amputated four-point function matrices only if the momentum $p$ of those bound states satisfy the condition $0\\leq p^2 < 4m^2$ ($m$ is the dynamical fermion mass). In the other case, the propagators in the two formalisms will have different imaginary parts in their denominators.

  17. Scattering integral equations and four nucleon problem. Four nucleon bound states and scattering

    International Nuclear Information System (INIS)

    Existing results from the application of integral equation technique four-nucleon bound states and scattering are reviewed. The purpose of this review is to provide a clear and elementary introduction in the integral equation method and to demonstrate its usefulness in physical applications. Developments in the actual numerical solutions of Faddeev-Yakubovsky type equations are such that a detailed comparison can be made with experiment. Bound state calculations indicate that a nonrelativistic description with pairwise nuclear forces does not suffice and additional degrees of freedom are noted

  18. Bound states in the (2+1)D scalar electrodynamics with Chern-Simons term

    International Nuclear Information System (INIS)

    This work studies the existence of bound states for the 3-dimensions scalar electrodynamics, with the Chern-Simons. Quantum field theory is used for calculation of the Mfi scattering matrices, in the non-relativistic approximation. The field propagators responsible for the interaction in the scattering processes have been calculated, and scattering matrices have been constructed. After obtaining the scattering matrix, the cross section in the quantum field theory has been compared with the quantum mechanic cross section in the Born approximation, allowing to obtain the form of the potential responsible for the interactions in the scattering processes. The possibility of bound states are analyzed by using the Schroedinger equation

  19. Dynamics of the excited state intramolecular charge transfer

    International Nuclear Information System (INIS)

    The 6-dodecanoyl-2-dimethylaminonaphtalene (laurdan), a derivative of 6-propanoyl- 2-dimethylaminonaphthalene (prodan), has been used as a fluorescent probe in cell imaging, especially in visualizing the lipid rafts by the generalized polarization (GP) images, where GP=(I440-I490)/(I440+I490) with I being the fluorescence intensity. The fluorescence spectrum of laurdan is sensitive to its dipolar environment due to the intramolecular charge transfer (ICT) process in S1 state, which results in a dual emission from the locally excited (LE) and the ICT states. The ICT process and the solvation of the ICT state are very sensitive to the dipolar nature of the environment. In this work, the ICT of laurdan in ethanol has been studied by femtosecond time resolved fluorescence (TRF), especially TRF spectra measurement without the conventional spectral reconstruction method. TRF probes the excited states exclusively, a unique advantage over the pump/probe transient absorption technique, although time resolution of the TRF is generally lower than transient absorption and the TRF spectra measurement was possible only though the spectral reconstruction. Over the years, critical advances in TRF technique have been made in our group to achieve <50 fs time resolution with direct full spectra measurement capability. Detailed ICT and the subsequent solvation processes can be visualized unambiguously from the TRF spectra. Fig. 1 shows the TRF spectra of laurdan in ethanol at several time delays. Surprisingly, two bands at 433 and 476 nm are clearly visible in the TRF spectra of laurdan even at T = 0 fs. As time increases, the band at 476 nm shifts to the red while its intensity increases. The band at 433 nm also shifts slightly to the red, but loses intensity as time increases. The intensity of the 476 nm band reaches maximum at around 5 ps, where it is roughly twice as intense as that at 0 fs, and stays constant until lifetime decay is noticeable. The spectra were fit by two log

  20. Carotenoid excited states: Mystery of the dark states and their roles in relaxation pathways

    Czech Academy of Sciences Publication Activity Database

    Polívka, Tomáš

    Messina : Universitá di Messina, 2008. s. 36. [ESF Workshop on Ultrafast Excited-State Processes in Condensed Phases. 18.06.2008-21.06.2008, Santa Tecla] Institutional research plan: CEZ:AV0Z50510513 Keywords : carotenoids Subject RIV: BO - Biophysics