WorldWideScience

Sample records for boulby underground laboratory

  1. Limits on WIMP cross-sections from the NAIAD experiment at the Boulby Underground Laboratory

    CERN Document Server

    Alner, G J; Arnison, G J; Barton, J C; Bewick, A; Bungau, C; Camanzi, B; Carson, M J; Davidge, D; Daw, E; Dawson, J V; Davies, G J; Davies, J C; Duffy, C; Durkin, T J; Gamble, T; Hart, S P; Hollingworth, R; Homer, G J; Howard, A S; Ivaniouchenkov, Yu; Jones, W G; Joshi, M K; Kirkpatrick, J; Kudryavtsev, V A; Lawson, T B; Lebedenko, V; Lehner, M J; Lewin, J D; Lightfoot, P K; Liubarsky, I; Lüscher, R; McMillan, J E; Morgan, B; Murphy, A; Nickolls, A; Nicklin, G; Paling, S M; Preece, R M; Quenby, J J; Roberts, J W; Robinson, M; Smith, N J T; Smith, P F; Spooner, N J C; Sumner, T J; Tovey, Daniel R; Tziaferi, E

    2005-01-01

    The NAIAD experiment (NaI Advanced Detector) for WIMP dark matter searches at the Boulby Underground Laboratory (North Yorkshire, UK) ran from 2000 until 2003. A total of 44.9 kg x years of data collected with 2 encapsulated and 4 unencapsulated NaI(Tl) crystals with high light yield were included in the analysis. We present final results of this analysis carried out using pulse shape discrimination. No signal associated with nuclear recoils from WIMP interactions was observed in any run with any crystal. This allowed us to set upper limits on the WIMP-nucleon spin-independent and WIMP-proton spin-dependent cross-sections. The NAIAD experiment has so far imposed the most stringent constraints on the spin-dependent WIMP-proton cross-section.

  2. First measurement of low intensity fast neutron background from rock at the Boulby Underground Laboratory

    CERN Document Server

    Tziaferi, E; Kudryavtsev, V A; Lerner, R; Lightfoot, P K; Paling, S M; Robinson, M; Spooner, N J C

    2006-01-01

    A technique to measure low intensity fast neutron flux has been developed. The design, calibrations, procedure for data analysis and interpretation of the results are discussed in detail. The technique has been applied to measure the neutron background from rock at the Boulby Underground Laboratory, a site used for dark matter and other experiments, requiring shielding from cosmic ray muons. The experiment was performed using a liquid scintillation detector. A 6.1 litre volume stainless steel cell was filled with an in-house made liquid scintillator loaded with Gd to enhance neutron capture. A two-pulse signature (proton recoils followed by gammas from neutron capture) was used to identify the neutron events from much larger gamma background from PMTs. Suppression of gammas from the rock was achieved by surrounding the detector with high-purity lead and copper. Calibrations of the detector were performed with various gamma and neutron sources. Special care was taken to eliminate PMT afterpulses and correlated...

  3. Status of the Boulby dark matter programme

    International Nuclear Information System (INIS)

    We give a status report on three experiments aiming at the direct detection of dark matter. ZEPLIN II is a two phase xenon ionization/scintillation detector currently undergoing commissioning at the Boulby underground laboratory. ZEPLIN III is a two phase xenon ionization/scintillation detector currently being tested at a UKDMC surface facility. DRIFT II is a low pressure CS2 gas time proportional chamber currently taking data at the Boulby underground laboratory

  4. Underground laboratories in Asia

    International Nuclear Information System (INIS)

    Deep underground laboratories in Asia have been making huge progress recently because underground sites provide unique opportunities to explore the rare-event phenomena for the study of dark matter searches, neutrino physics and nuclear astrophysics as well as the multi-disciplinary researches based on the low radioactive environments. The status and perspectives of Kamioda underground observatories in Japan, the existing Y2L and the planned CUP in Korea, India-based Neutrino Observatory (INO) in India and China JinPing Underground Laboratory (CJPL) in China will be surveyed

  5. Underground laboratories in Asia

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Shin Ted, E-mail: linst@mails.phys.sinica.edu.tw [College of Physical Science and Technology, Sichuan University, Chengdu 610064 China (China); Yue, Qian, E-mail: yueq@mail.tsinghua.edu.cn [Key Laboratory of Particle and Radiation Imaging (Ministry of Education) and Department of Engineering Physics, Tsinghua University, Beijing 100084 China (China)

    2015-08-17

    Deep underground laboratories in Asia have been making huge progress recently because underground sites provide unique opportunities to explore the rare-event phenomena for the study of dark matter searches, neutrino physics and nuclear astrophysics as well as the multi-disciplinary researches based on the low radioactive environments. The status and perspectives of Kamioda underground observatories in Japan, the existing Y2L and the planned CUP in Korea, India-based Neutrino Observatory (INO) in India and China JinPing Underground Laboratory (CJPL) in China will be surveyed.

  6. The ANDES Deep Underground Laboratory

    CERN Document Server

    Bertou, X

    2013-01-01

    ANDES (Agua Negra Deep Experiment Site) is a unique opportunity to build a deep underground laboratory in the southern hemisphere. It will be built in the Agua Negra tunnel planned between Argentina and Chile, and operated by the CLES, a Latin American consortium. With 1750m of rock overburden, and no close- by nuclear power plant, it will provide an extremely radiation quiet environment for neutrino and dark matter experiments. In particular, its location in the southern hemisphere should play a major role in understanding dark matter modulation signals.

  7. The Henderson Mine as an Underground Laboratory

    International Nuclear Information System (INIS)

    The Henderson Mine, operated by the Climax Molybdenum Company, is one of two sites under consideration by NSF to host a Deep Underground Science and Engineering Laboratory (DUSEL). Henderson, in the Rocky Mountains west of Denver, is an active molybdenum mine with large access shafts and high rock processing and removal capability

  8. Underground laboratories: Cosmic silence, loud science

    International Nuclear Information System (INIS)

    Underground laboratories provide the low radioactive background environment necessary to host key experiments in the field of particle and astroparticle physics, nuclear astrophysics and other disciplines that can profit of their characteristics and of their infrastructures. The cosmic silence condition existing in these laboratories allows the search for extremely rare phenomena and the exploration of the highest energy scales that cannot be reached with accelerators. I briefly describe all the facilities that are presently in operation around the world.

  9. Master plan of Mizunami underground research laboratory

    International Nuclear Information System (INIS)

    In June 1994, the Atomic Energy Commission of Japan reformulated the Long-Term Programme for Research, Development and Utilisation of Nuclear Energy (LTP). The LTP (item 7, chapter 3) sets out the guidelines which apply to promoting scientific studies of the deep geological environment, with a view to providing a sound basis for research and development programmes for geological disposal projects. The Japan Nuclear Cycle Development Institute (JNC) has been conducting scientific studies of the deep geological environment as part of its Geoscientific Research Programme. The LTP also emphasised the importance of deep underground research facilities in the following terms: Deep underground research facilities play an important role in research relating to geological disposal. They allow the characteristics and features of the geological environment, which require to be considered in performance assessment of disposal systems, to be investigated in situ and the reliability of the models used for evaluating system performance to be developed and refined. They also provide opportunities for carrying out comprehensive research that will contribute to an improved overall understanding of Japan's deep geological environment. It is recommended that more than one facility should be constructed, considering the range of characteristics and features of Japan's geology and other relevant factors. It is important to plan underground research facilities on the basis of results obtained from research and development work already carried out, particularly the results of scientific studies of the deep geological environment. Such a plan for underground research facilities should be clearly separated from the development of an actual repository. JNC's Mizunami underground research laboratory (MIU) Project will be a deep underground research facility as foreseen by the above provisions of the LTP. (author)

  10. VIRTUS. Virtual underground laboratory in rock salt

    International Nuclear Information System (INIS)

    Germany does not have an underground laboratory to study the behavior of geological formations for the use as final repository for radioactive high-level wastes. VIRTUS was developed to have an adequate tool to study the complex and safety relevant processes in geological structures for a fast and effective planning and testing of final repository design. The three-dimensional visualization of the numerical simulations results will help n the scientists and the interested public to understand the process flows in a final repository.

  11. Inter-disciplinary Interactions in Underground Laboratories

    Science.gov (United States)

    Wang, J. S.; Bettini, A.

    2010-12-01

    Many of underground facilities, ranging from simple cavities to fully equipped laboratories, have been established worldwide (1) to evaluate the impacts of emplacing nuclear wastes in underground research laboratories (URLs) and (2) to measure rare physics events in deep underground laboratories (DULs). In this presentation, we compare similarities and differences between URLs and DULs in focus of site characterization, in quantification of quietness, and in improvement of signal to noise ratios. The nuclear waste URLs are located primarily in geological medium with potentials for slow flow/transport and long isolation. The URL medium include plastic salt, hard rock, soft clay, volcanic tuff, basalt and shale, at over ~500 m where waste repositories are envisioned to be excavated. The majority of URLs are dedicated facilities excavated after extensive site characterization. The focuses are on fracture distributions, heterogeneity, scaling, coupled processes, and other fundamental issues of earth sciences. For the physics DULs, the depth/overburden thickness is the main parameter that determines the damping of cosmic rays, and that, consequently, should be larger than, typically, 800m. Radioactivity from rocks, neutron flux, and radon gas, depending on local rock and ventilation conditions (largely independent of depth), are also characterized at different sites to quantify the background level for physics experiments. DULs have been constructed by excavating dedicated experimental halls and service cavities near to a road tunnel (horizontal access) or in a mine (vertical access). Cavities at shallower depths are suitable for experiments on neutrinos from artificial source, power reactors or accelerators. Rocks stability (depth dependent), safe access, and utility supply are among factors of main concerns for DULs. While the focuses and missions of URLs and DULs are very different, common experience and lessons learned may be useful for ongoing development of new

  12. Underground research laboratory room 209 instrument array

    International Nuclear Information System (INIS)

    An in situ excavation response test was conducted at the 240 level of the Underground Research Laboratory (URL). The test was carried out in conjunction with drill and blast excavation of a near-circular tunnel, about 3.5 m in diameter. The tunnel was excavated through a tunnel axis. Three modelling groups made predictions of the response of the rock mass and hydraulic behaviour of the water-bearing fracture to excavation. Two of the groups used the three-dimensional Finite-element Method and one group used the Discontinuous Deformation Analysis Method. Both methods predicted displacements and stress changes that agreed reasonably well with the measured response, but none of the methods predicted the hydraulic response of the fracture

  13. Underground research laboratory room 209 instrument array

    International Nuclear Information System (INIS)

    An in situ excavation response test was conducted at the 240 Level of the Underground Research Laboratory (URL). The test was carried out in conjunction with the drill and blast excavation of a near-circular tunnel, about 3.5 m in diameter. The tunnel was excavated through a near-vertical water-bearing fracture oriented almost perpendicular to the tunnel axis. Three modelling groups made predictions of the response of the rock mass and hydraulic behaviour of the water-bearing fracture to excavation. Two of the groups used the three-dimensional Finite-Element Method and one group used the Discontinuous Deformation Analysis Method. Both methods predicted displacements and stress changes that agreed reasonably well with the measured response, but none of the methods predicted the hydraulic response of the fracture

  14. Underground facility plan for Horonobe Underground Research Laboratory project

    International Nuclear Information System (INIS)

    The basic and most important conditions in forming plans for designing and constructing an underground research facility are ensuring the safety of the facility construction and securing an environment conductive to research. The site presently designated for construction an underground research facility is in a sedimentary soft rock (mudstone) of Neogene period, found to contain methane gas. Evaluating measures to deal with the geological characteristics, including assessment of the stability of support and handling of methane gas, is important in guaranteeing the safety of construction and operation of the research facility once completed. (author)

  15. Low energy neutron background in deep underground laboratories

    Science.gov (United States)

    Best, Andreas; Görres, Joachim; Junker, Matthias; Kratz, Karl-Ludwig; Laubenstein, Matthias; Long, Alexander; Nisi, Stefano; Smith, Karl; Wiescher, Michael

    2016-03-01

    The natural neutron background influences the maximum achievable sensitivity in most deep underground nuclear, astroparticle and double-beta decay physics experiments. Reliable neutron flux numbers are an important ingredient in the design of the shielding of new large-scale experiments as well as in the analysis of experimental data. Using a portable setup of 3He counters we measured the thermal neutron flux at the Kimballton Underground Research Facility, the Soudan Underground Laboratory, on the 4100 ft and the 4850 ft levels of the Sanford Underground Research Facility, at the Waste Isolation Pilot Plant and at the Gran Sasso National Laboratory. Absolute neutron fluxes at these laboratories are presented.

  16. Low energy neutron background in deep underground laboratories

    CERN Document Server

    Best, Andreas; Junker, Matthias; Kratz, Karl-Ludwig; Laubenstein, Matthias; Long, Alexander; Nisi, Stefano; Smith, Karl; Wiescher, Michael

    2015-01-01

    The natural neutron background influences the maximum achievable sensitivity in most deep underground nuclear, astroparticle and double-beta decay physics experiments. Reliable neutron flux numbers are an important ingredient in the design of the shielding of new large-scale experiments as well as in the analysis of experimental data. Using a portable setup of He-3 counters we measured the thermal neutron flux at the Kimballton Underground Research Facility, the Soudan Underground Laboratory, on the 4100 ft and the 4850 ft levels of the Sanford Underground Research Facility, at the Waste Isolation Pilot Plant and at the Gran Sasso National Laboratory. Absolute neutron fluxes at these laboratories are presented.

  17. Underground research laboratory room 209 instrument array

    International Nuclear Information System (INIS)

    An in situ excavation response test was conducted at the Canadian Underground Research Laboratory (URL) in conjunction with excavation of a tunnel (Room 209) through a near-vertical water-bearing fracture oriented almost perpendicular to the tunnel axis. Encountering a fracture with such desirable characteristics provided a unique opportunity during construction of the URL to try out instrumentation and analytical methods for use in the Excavation Response Experiment (ERE), one of the major URL experiments. This is the first of four reports that cover the excavation response test. This report contains the information provided to the numerical modelling groups before the start of excavation. It includes survey information of the excavations within 30 m of the instrument array; the layout of the instrument array; details of the geology, rock properties, joint characteristics, in situ stresses, and in situ rock temperature distribution; the results of hydrogeological testing and monitoring; the planned excavation sequence; and the format for the modellers to present their results to facilitate easy comparison with the measured responses. Includes 13 excavation charts in back pocket

  18. Low energy neutron background in deep underground laboratories

    International Nuclear Information System (INIS)

    The natural neutron background influences the maximum achievable sensitivity in most deep underground nuclear, astroparticle and double-beta decay physics experiments. Reliable neutron flux numbers are an important ingredient in the design of the shielding of new largescale experiments as well as in the analysis of experimental data. Using a portable setup of 3He counters and polyethylene moderators we measured the thermal and epithermal neutron flux at the Kimballton Underground Research Facility, the Soudan Underground Laboratory, on the 4100 ft and the 4850 ft levels of the Sanford Underground Research Facility, at the Waste Isolation Pilot Plant and at the Gran Sasso National Laboratory. Absolute neutron fluxes at these laboratories are presented and the consequences for future underground measurements of neutron producing reactions for nuclear astrophysics are discussed. (author)

  19. Progress report from the UK Dark Matter search Boulby Mine

    International Nuclear Information System (INIS)

    The UK Dark Matter Collaboration is currently running a series of scintillation devices at the Boulby mine in North Yorkshire to search for the neutralino, the hypothetical WIMP solution to the dark matter problem. Results of the current NaI(Tl) detector array will be discussed, illustrating a population of events of unknown origin. Diagnostic tests performed to investigate the origin of these anomalous events will be outlined, including alpha, beta and neutron calibrations

  20. Progress report from the UK Dark Matter search Boulby Mine

    Energy Technology Data Exchange (ETDEWEB)

    Liubarsky, I.; Alner, G. J.; Ahmed, B.; Barton, J.C.; Bewick, A.; Davidge, D.; Howard, A.S.; Jones, W.G.; Joshi, M.; Kudryavtsev, V.A.; Lehner, M.J.; Lewin, J.D.; Lightfoot, P.K.; McMillan, J.E.; Peak, C.D.; Quenby, J.J.; Roberts, J.W.; Smith, N.J.T.; Smith, P.F.; Spooner, N.J.C.; Sumner, T.J.; Tovey, D.R.; Ward, C

    2000-06-01

    The UK Dark Matter Collaboration is currently running a series of scintillation devices at the Boulby mine in North Yorkshire to search for the neutralino, the hypothetical WIMP solution to the dark matter problem. Results of the current NaI(Tl) detector array will be discussed, illustrating a population of events of unknown origin. Diagnostic tests performed to investigate the origin of these anomalous events will be outlined, including alpha, beta and neutron calibrations.

  1. Experiences and Prospects of Nuclear Astrophysics in Underground Laboratories

    Science.gov (United States)

    Junker, M.

    2016-01-01

    Impressive progress has been made in the course the last decades in understanding astrophysical objects. Increasing precision of nuclear physics data has contributed significantly to this success, but now a better understanding of several important findings is frequently limited by uncertainties related to the available nuclear physics data. Consequently it is desirable to improve significantly the quality of these data. An important step towards higher precision is an excellent signal to background ratio of the data. Placing an accelerator facility inside an underground laboratory reducing the cosmic ray induced background by six orders of magnitude is a powerful method to reach this goal, even though careful reduction of environmental and beam induced background must still be considered. Experience in the field of underground nuclear astrophysics has been gained since 20 years due to the pioneering work of the LUNA Collaboration (Laboratory for Underground Nuclear Astrophysics) operating inside the underground laboratories of the Laboratori Nazionali del Gran Sasso (LNGS) in Italy. Based on the success of this work presently also several other projects for underground laboratories dedicated to nuclear astrophysics are being pursued worldwide. This contribution will give a survey of the past experience in underground nuclear astrophysics as well as an outlook on future developments.

  2. Status and prospects of a deep underground laboratory in China

    International Nuclear Information System (INIS)

    An excellent candidate location for a deep underground laboratory with more than 2500 m of rock overburden has been identified at Sichuan Province in China. It can be accessed through a road tunnel of length 17.5 km, and is supported by services and amenities near the entrance provided by the local Ertan Hydropower Plant. The particle physics community in China is actively pursuing the construction of an underground laboratory at this location, under the leadership of Tsinghua University. Memorandum has been signed with Ertan Hydropower Plant which permits access to and construction of the underground laboratory - China JinPing Deep Underground Laboratory (CJPL). The basic features of this underground site, as well as the status and schedules of the construction of the first laboratory cavern are presented. The immediate goal is to have the first experiment operational in 2010, deploying an Ultra-Low-Energy Germanium detector for WIMP dark matter searches, with emphasis on the mass range of 1-10 GeV. The conceptual design of the experiment, as well as the future plans and prospects of the laboratory, will be surveyed.

  3. Master plan of the Mizunami Underground Research Laboratory project

    International Nuclear Information System (INIS)

    This document presents the Master Plan of the facility to be constructed for crystalline rock investigations. The facility is known as the Mizunami Underground Research Laboratory (MIU) and located in Akeyo-cho, Mizunami City. The facility consists of the MIU Construction Site where the underground research Stages will be excavated and the Shobasama Site, a sister site 1.5 km to the west, where an extensive network of deep boreholes were used for initial investigations of the deep geological environment. (author)

  4. Deep Underground Science and Engineering Laboratory - Preliminary Design Report

    CERN Document Server

    Lesko, Kevin T; Alonso, Jose; Bauer, Paul; Chan, Yuen-Dat; Chinowsky, William; Dangermond, Steve; Detwiler, Jason A; De Vries, Syd; DiGennaro, Richard; Exter, Elizabeth; Fernandez, Felix B; Freer, Elizabeth L; Gilchriese, Murdock G D; Goldschmidt, Azriel; Grammann, Ben; Griffing, William; Harlan, Bill; Haxton, Wick C; Headley, Michael; Heise, Jaret; Hladysz, Zbigniew; Jacobs, Dianna; Johnson, Michael; Kadel, Richard; Kaufman, Robert; King, Greg; Lanou, Robert; Lemut, Alberto; Ligeti, Zoltan; Marks, Steve; Martin, Ryan D; Matthesen, John; Matthew, Brendan; Matthews, Warren; McConnell, Randall; McElroy, William; Meyer, Deborah; Norris, Margaret; Plate, David; Robinson, Kem E; Roggenthen, William; Salve, Rohit; Sayler, Ben; Scheetz, John; Tarpinian, Jim; Taylor, David; Vardiman, David; Wheeler, Ron; Willhite, Joshua; Yeck, James

    2011-01-01

    The DUSEL Project has produced the Preliminary Design of the Deep Underground Science and Engineering Laboratory (DUSEL) at the rehabilitated former Homestake mine in South Dakota. The Facility design calls for, on the surface, two new buildings - one a visitor and education center, the other an experiment assembly hall - and multiple repurposed existing buildings. To support underground research activities, the design includes two laboratory modules and additional spaces at a level 4,850 feet underground for physics, biology, engineering, and Earth science experiments. On the same level, the design includes a Department of Energy-shepherded Large Cavity supporting the Long Baseline Neutrino Experiment. At the 7,400-feet level, the design incorporates one laboratory module and additional spaces for physics and Earth science efforts. With input from some 25 science and engineering collaborations, the Project has designed critical experimental space and infrastructure needs, including space for a suite of multi...

  5. Savannah River National Laboratory Underground Counting Facility

    Science.gov (United States)

    Brown, Tim

    2006-10-01

    The SRNL UCF is capable of detecting extremely small amounts of radioactivity in samples, providing applications in forensics, environmental analyses, and nonproliferation. Past customers of the UCF have included NASA, (Long Duration Exposure Facility) the IAEA, (Iraq), and nonproliferation concerns. The SRNL UCF was designed to conduct ultra-low level gamma-ray analyses for radioisotopes at trace levels. Detection sensitivity is enhanced by background reduction, high detector efficiency, and long counting times. Backgrounds from cosmic-rays, construction materials, and radon are reduced by counting underground, active and passive shielding, (pre-WWII steel) and situation behind a Class 10,000 clean facility. High-detection efficiency is provided by a well detector for small samples and three large HPGe detectors. Sample concentration methods such as ashing or chemical separation are also used. Count times are measured in days. Recently, two SCUREF programs were completed with the University of South Carolina to further enhance UCF detection sensitivity. The first developed an ultra-low background HPGe detector and the second developed an anti-cosmic shield that further reduces the detector background. In this session, we will provide an overview status of the recent improvements made in the UCF and future directions for increasing sensitivity.

  6. UNDERGROUND

    International Nuclear Information System (INIS)

    Full text: Cossetted deep underground, sheltered from cosmic ray noise, has always been a favourite haunt of neutrino physicists. Already in the 1930s, significant limits were obtained by taking a geiger counter down in Holborn 'tube' station, one of the deepest in London's underground system. Since then, neutrino physicists have popped up in many unlikely places - gold mines, salt mines, and road tunnels deep under mountain chains. Two such locations - the 1MB (Irvine/ Michigan/Brookhaven) detector 600 metres below ground in an Ohio salt mine, and the Kamiokande apparatus 1000m underground 300 km west of Tokyo - picked up neutrinos on 23 February 1987 from the famous 1987A supernova. Purpose-built underground laboratories have made life easier, notably the Italian Gran Sasso Laboratory near Rome, 1.4 kilometres below the surface, and the Russian Baksan Neutrino Observatory under Mount Andyrchi in the Caucasus range. Gran Sasso houses ICARUS (April, page 15), Gallex, Borexino, Macro and the LVD Large Volume Detector, while Baksan is the home of the SAGE gallium-based solar neutrino experiment. Elsewhere, important ongoing underground neutrino experiments include Soudan II in the US (April, page 16), the Canadian Sudbury Neutrino Observatory with its heavy water target (January 1990, page 23), and Superkamiokande in Japan (May 1991, page 8)

  7. Study of Fast Neutron Background Detection at Deep Underground Laboratory

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In order to detect very low flux neutron background at deep underground laboratory, a low background fast neutron detector will be developed. The detector is a Gd loaded liquid scintillator contained in a Φ30 cm×40 cm cylindrica

  8. SUNLAB-The Project of a Polish Underground Laboratory

    Science.gov (United States)

    Kisiel, J.; Budzanowski, M.; Chorowski, M.; Cygan, S.; Dorda, J.; Hanzel, S.; Harańczyk, M.; Horoszczak, L.; Januszewska, K.; Jaroń, L.; Konefalł, A.; Kozak, K.; Lankof, L.; Mania, S.; Markiewicz, A.; Markowski, P.; Mazur, J.; Mertuszka, P.; Mietelski, J. W.; Poliński, J.; Puchalska, M.; Pytel, W.; Raczyński, M.; Sadecki, Z.; Sadowski, A.; Ślizowski, J.; Sulej, R.; Szarska, M.; Szeglowski, T.; Tomankiewicz, E.; Urbańczyk, K.; Zalewska, A.

    2010-11-01

    The project of the first Polish underground laboratory SUNLAB, in the Polkowice-Sieroszowice copper mine, belonging to the KGHM Polska Miedź S.A. holding, is presented. Two stages of the project are foreseen: SUNLAB1 (a small laboratory in the salt layer exhibiting extremely low level of natural radioactivity) and SUNLAB2 (a big laboratory in the anhydrite layer, able to host the next generation liquid argon detector-GLACIER, which is considered within the LAGUNA FP7 project). The results of the natural radioactivity background measurements performed in the Polkowice-Sieroszowice salt cavern are also briefly summarized.

  9. Development of excavation technologies at the Canadian underground research laboratory

    International Nuclear Information System (INIS)

    Several countries, Canada being among them, are developing concepts for disposal of used fuel from power generating nuclear reactors. As in underground mining operations, the disposal facilities will require excavation of many kilometres of shafts and tunnels through the host rock mass. The need to maintain the stability of excavations and safety of workers will be of paramount importance. Also, excavations required for many radioactive waste repositories will ultimately need to be backfilled and sealed to maintain stability and minimize any potential for migration of radionuclides, should they escape their disposal containers. The method used to excavate the tunnels and shafts, and the rock damage that occurs due to excavation, will greatly affect the performance characteristics of repository sealing systems. The underground rock mechanics and geotechnical engineering work performed at the Canadian Underground Research Laboratory (URL) has led to the development of excavation technologies that reduce rock damage in subsurface excavations. This paper discusses the excavation methods used to construct the URL and their application in planning for the construction of similar underground laboratories and repositories for radioactive wastes. (author)

  10. Cosmic rays muon flux measurements at Belgrade shallow underground laboratory

    International Nuclear Information System (INIS)

    The Belgrade underground laboratory is a shallow underground one, at 25 meters of water equivalent. It is dedicated to low-background spectroscopy and cosmic rays measurement. Its uniqueness is that it is composed of two parts, one above ground, the other bellow with identical sets of detectors and analyzing electronics thus creating opportunity to monitor simultaneously muon flux and ambient radiation. We investigate the possibility of utilizing measurements at the shallow depth for the study of muons, processes to which these muons are sensitive and processes induced by cosmic rays muons. For this purpose a series of simulations of muon generation and propagation is done, based on the CORSIKA air shower simulation package and GEANT4. Results show good agreement with other laboratories and cosmic rays stations

  11. Proposal for the establishment of a national underground physics laboratory

    International Nuclear Information System (INIS)

    Advances in elementary particles physics and astrophysics during the past decade have indicated certain areas in those fields in which experiments of high potential significance, albeit great difficulty, need to be done. In general, these are experiments that seek to uncover rare, new physical phenomena, or to study quantitatively phenomena that are especially difficult to observe. Among them are: (1) the study of solar and other cosmic neutrinos; (2) the search for nucleon instability; (3) the search for non-zero neutrino mass through the study of neutrino stability and double beta-decay; and (4) intensive searches for and attempts to measure accurately very energetic, rare elementary particle interactions such as may be manifested, for example, in the so-called Centauro events. The nature of these experiments requires that they be shielded from the intense flux of cosmic ray muons and air showers on the earth's surface, and therefore that the experimental apparatus be located deep underground or in the deep sea. However, for most of the experiments, and the apparatus also needs to be very large in mass and volume, and highly instrumented to achieve the necessary measurement capability. It is proposed to establish a laboratory deep underground of sufficient scope to be capable of housing and maintaining a variety of experiments that employ the most advanced technology. A specific channel is discussed whereby a national underground physics laboratory might be formed. The desirable characteristics of such a laboratory are described, and a possible location is recommended. Detailed cost estimates are provided

  12. The Deep Underground Science and Engineering Laboratory at Homestake

    International Nuclear Information System (INIS)

    The National Science Foundation and the international underground science community are well into establishing a world-class, multidisciplinary Deep Underground Science and Engineering Laboratory (DUSEL) at the former Homestake mine in Lead South Dakota. The NSF's review committee, following the first two NSF solicitations, selected the Homestake Proposal and site as the prime location to be developed into an international research facility. Homestake DUSEL will provide much needed underground research space to help relieve the worldwide shortage, particularly at great depth, and will develop research campuses at several different depths to satisfy the research requirements for the coming decades. The State of South Dakota has demonstrated remarkable support for the project and has secured the site with the transfer from the Homestake Mining Corp. The State, through its Science and Technology Authority with state funds and those of a philanthropic donor has initiated rehabilitation of the surface and underground infrastructure including the Ross and Yates hoists accessing the 4850 Level (feet below ground, 4100 to 4200 mwe). The scientific case for DUSEL and the progress in establishing the preliminary design of the facility and the associated suite of experiments to be funded along with the facility by the NSF are presented.

  13. Recent activities at Underground Research Laboratories in Japan

    International Nuclear Information System (INIS)

    With a view to contributing to the HLW disposal project, JNC carries out R and D on geological disposal technologies for HLW and its basic geoscientific research in two Underground Research Laboratories (URLs) located in Mizunami and Horonobe. The URL in Mizunami is for conducting research on crystalline rock as an example of fractured media, while that in Horonobe is for sedimentary rock as porous media. The aim of the URLs is to enhance the reliability of geological disposal technologies and develop advanced safety assessment methodologies by collecting data for design studies and for input to safety assessment and by developing investigation and characterization techniques. Investigation of the geological environment will be conducted in a stepwise manner as the investigation program moves forward. Investigation from the surface (first phase) will be followed by excavation of shafts and drifts (2nd phase) and, eventually, detailed investigations in the underground facility (3rd phase). In each phase, information on the geological environment will be collected, evaluated and verified. The investigation techniques used will also be improved and integrated as necessary. At the same time, the applicability of engineering technologies for the design and construction of an underground facility will be verified. The URLs can provide a wide range of possibilities for underground research by universities or other research institutes, as well as serve as a tool for enhancing public understanding of R and D activities related to the geological disposal. (author)

  14. Low background Ge spectrometry at Gran Sasso underground laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Preusse, W. [Istituto Nazionale di Fisica Nucleare, Lab. Nazionali del Gran Sasso, Assergi (Italy); Bucci, C. [Istituto Nazionale di Fisica Nucleare, Lab. Nazionali del Gran Sasso, Assergi (Italy); Arpesella, C. [Istituto Nazionale di Fisica Nucleare, Lab. Nazionali del Gran Sasso, Assergi (Italy)

    1997-03-01

    Under the shelter of 1400 m limestone rock the Gran Sasso underground laboratories in the Apennines (110 km north-east of Rome at a turn-off inside the Gran Sasso motorway tunnel) were designed for running large experiments in the field of neutrino, particle and astrophysics by international collaborations. These experiments have in common the basic requirement to be capable to detect very rare events like e.g. neutrino interactions and double beta decays. Due to this their permanent demands for selecting radiopure materials have led to the equipping of a Ge detector laboratory - at present with 6 large detectors. (orig./DG)

  15. Low background Ge spectrometry at Gran Sasso underground laboratories

    International Nuclear Information System (INIS)

    Under the shelter of 1400 m limestone rock the Gran Sasso underground laboratories in the Apennines (110 km north-east of Rome at a turn-off inside the Gran Sasso motorway tunnel) were designed for running large experiments in the field of neutrino, particle and astrophysics by international collaborations. These experiments have in common the basic requirement to be capable to detect very rare events like e.g. neutrino interactions and double beta decays. Due to this their permanent demands for selecting radiopure materials have led to the equipping of a Ge detector laboratory - at present with 6 large detectors. (orig./DG)

  16. Storage of high-level wastes, investigations in underground laboratories

    International Nuclear Information System (INIS)

    This article reviews the different collaborations made by ANDRA (national agency for the management of radioactive wastes) in the fields of underground radioactive waste storage. ANDRA has taken part in various experimental research programs performed in laboratories such as Mol in Belgium, Aspo in Sweden, Pinawa in Canada and Grimsel in Switzerland. This article details the experiments led at Mol since 1984. ANDRA is commissioned by the 30.12.91 decree to study the possibility of storage in deep geological layers. A thorough knowledge of the matter requires the building of underground laboratories in order to test and validate technological choices on a real scale. 6 themes will have to be investigated: 1) the capacity to seal up the storage facility after its use in order to assure the protection of man and environment, 2) the effects of geological perturbations on the confining properties of the site, 3) the confining ability of the Callovian-Oxfordian geological formation, 4) the transfer of radionuclides from the geological formation to the biosphere, 5) the constructing possibility of an underground storage facility, and 6) the possibility of retrieving the stored packages. (A.C.)

  17. Developing Underground Research at DUSEL: Lessons from Other Laboratories (Invited)

    Science.gov (United States)

    Doe, T. W.

    2009-12-01

    The Deep Underground and Science and Engineering Laboratory (DUSEL) should provide a significant venue for advancing our understanding of groundwater processes in fractured, basement rocks. As the planning for experimentation goes forward, it is important to recognize that underground experimentation has been going through a true golden age stimulated mainly by radioactive waste research, but also by needs in contaminant transport and oil and gas exploration. A complete discussion of the advances of fractured-rock hydrogeology is beyond the scope a short presentation. One area of investigation that has some transfer value from other test facilities is the importance of pressure and flow monitoring in the development of new areas of underground space. Each borehole and underground opening has the potential for changing the flow system. Monitoring and measuring these changes is essential for developing hydrostructural models of the significant conductors and their properties. The employment of multipoint monitoring systems has shown that fractured rock masses may be highly compartmentalized. Results of block-scale experiments at the Kamaishi Mine in Japan and the Äspö hard Rock Laboratory in Sweden have demonstrate that there can be a significant level of isolation between conducting features based on pressure, flow, and geochemical responses. Similar compartmentalization effects are well documented at the USGS’s Mirror Lake facility and the Hungarian research site at Bátaapáti (Üveghuta). The DUSEL site at the Homestake Mine is not well-characterized, other than a recognition that it is largely a dry mine. That said, there has been evidence of large inflows at deep levels that may indicate a level of isolation of the mine from conducting features. The connectivity of the mine to the large flow system will be very important to understanding how mine operations have or have not influenced the hydrogeology of the surrounding rock masses, as some of the most

  18. The deep underground science and engineering laboratory at Homestake

    International Nuclear Information System (INIS)

    The US National Science Foundation and the US underground science community are well into the campaign to establish a world-class, multi-disciplinary deep underground science and engineering laboratory - DUSEL. The NSF's review committee, following the first two NSF solicitations, selected Homestake as the prime site to be developed into an international, multidisciplinary, world-class research facility. Homestake DUSEL will provide much needed underground research space to help relieve the worldwide shortage, particularly at great depth, and will develop research campuses at different depths to satisfy the research requirements for the coming decades. The State of South Dakota has demonstrated remarkable support for the project and has secured the site with the transfer of the former Homestake Gold Mine and has initiated re-entry and rehabilitation of the facility to host a modest interim science program with state funds and those from a substantial philanthropic donor. I review the scientific case for DUSEL and the progress in developing the preliminary design of DUSEL in Homestake and the initial suite of experiments to be funded along with the facility.

  19. AECL's underground research laboratory: technical achievements and lessons learned

    International Nuclear Information System (INIS)

    During the development of the research program for the Canadian Nuclear Fuel Waste Management Program in the 1970's, the need for an underground facility was recognized. AECL constructed an Underground Research Laboratory (URL) for large-scale testing and in situ engineering and performance-assessment-related experiments on key aspects of deep geological disposal in a representative geological environment. Ale URL is a unique geotechnical research and development facility because it was constructed in a previously undisturbed portion of a granitic pluton that was well characterized before construction began, and because most of the shaft and experimental areas are below the water table. The specific areas of research, development and demonstration include surface and underground characterization; groundwater and solute transport; in situ rock stress conditions; temperature and time-dependent deformation and failure characteristics of rock; excavation techniques to minimize damage to surrounding rock and to ensure safe working conditions; and the performance of seals and backfills. This report traces the evolution of the URL and summarizes the technical achievements and lessons learned during its siting, design and construction, and operating phases over the last 18 years. (author)

  20. Underground research laboratories (URLs) and geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    Final disposal in engineered repositories built deep underground in stable geological formations with low groundwater flow is the ultimate end-point for managing long-lived highly radioactive waste. Underground research laboratories (URLs) provide a realistic environment for characterizing the selected geological settings, testing the relevant engineering solutions and materials, and demonstrating the feasibility of disposal to a wide range of stakeholders. Nuclear waste repositories take decades to develop. Underground research laboratories (URLs) are necessary for acquiring the technical information and management expertise to allow progressing from one repository stage to another. URLs are located in geological environments that are suitable for repository implementation or that offer realistic reproduction of those environments. They may be constructed at a depth of a few hundred meters or also closer to the surface. There is now over 30 years experience worldwide in constructing and utilizing URLs. Generic URLs help create expertise for acquiring technical data in a geological environment. They are an excellent venue for international cooperation. Site-specific URLs help create expertise and acquire both technical and operational data that are useful in showing the safety and feasibility of a repository in the same formation or in a formation that closely mimics it. Major efforts are now directed towards large scale, realistic, integrated experiments in which a number of interacting components and/or processes are simultaneously studied. URLs are an important venue for building technical teams that integrate a wide range of scientific disciplines and for gaining practical experience. They also provide a visual example of what a geological repository may look like and contribute to confidence building by the general public

  1. The COBRA demonstrator at the LNGS underground laboratory

    Science.gov (United States)

    Ebert, J.; Fritts, M.; Gehre, D.; Gößling, C.; Göpfert, T.; Hagner, C.; Heidrich, N.; Klingenberg, R.; Köttig, T.; Kröninger, K.; Michel, T.; Neddermann, T.; Nitsch, C.; Oldorf, C.; Quante, T.; Rajek, S.; Rebber, H.; Reinecke, O.; Rohatsch, K.; Schulz, O.; Sörensen, A.; Stekl, I.; Tebrügge, J.; Temminghoff, R.; Theinert, R.; Timm, J.; Wester, T.; Wonsak, B.; Zatschler, S.; Zuber, K.

    2016-01-01

    The COBRA demonstrator, a prototype for a large-scale experiment searching for neutrinoless double beta-decay, was built at the underground laboratory Laboratori Nazionali del Gran Sasso (LNGS) in Italy. It consists of an array of 64 monolithic, calorimetric CdZnTe semiconductor detectors with a coplanar-grid design and a total mass of 380 g. It is used to investigate the experimental challenges faced when operating CdZnTe detectors in low-background mode, to identify potential background sources and to show the long-term stability of the detectors. The first data-taking period started in 2011 with a subset of the detectors, while the demonstrator was completed in November 2013. To date, more than 250 kg d of data have been collected. This paper describes the technical details of the experimental setup and the hardware components.

  2. The COBRA demonstrator at the LNGS underground laboratory

    CERN Document Server

    Ebert, J; Gößling, C; Göpfert, T; Gehre, D; Hagner, C; Heidrich, N; Klingenberg, R; Köttig, T; Kröninger, K; Michel, T; Neddermann, T; Nitsch, C; Oldorf, C; Quante, T; Rajek, S; Rebber, H; Reinecke, O; Rohatsch, K; Schulz, O; Stekl, I; Tebrügge, J; Temminghoff, R; Theinert, R; Timm, J; Wonsak, B; Zatschler, S; Zuber, K

    2015-01-01

    The COBRA demonstrator, a prototype for a large-scale experiment searching for neutrinoless double beta-decay, was built at the underground laboratory Laboratori Nazionali del Gran Sasso (LNGS) in Italy. It consists of an array of 64 monolithic, calorimetric CdZnTe semiconductor detectors with a coplanar-grid design and a total mass of 380g. It is used to investigate the experimental challenges faced when operating CdZnTe detectors in low-background mode, to identify potential background sources and to show the long-term stability of the detectors. The first data-taking period started in 2011 with a subset of the detectors, while the demonstrator was completed in November 2013. To date, more than 250kg d of data have been collected. This paper describes technical details of the experimental setup and the hardware components.

  3. CAST microbulk micromegas in the Canfranc Underground Laboratory

    CERN Document Server

    Tomás, A; Dafni, T; Fanourakis, G; Ferrer-Ribas, E; Galán, J; García, J A; Gardikiotis, A; Geralis, T; Giomataris, I; Gómez, H; Garza, J G; Herrera, D C; Iguaz, F J; Irastorza, I G; Luzón, G; Papaevangelou, T; Rodríguez, A; Ruz, J; Seguí, L; Vafeiadis, T; Yildiz, S C

    2012-01-01

    During the last taking data campaigns of the CAST experiment, the micromegas detectors have achieved background levels of $\\approx 5 \\times 10^{-6}$keV$^{-1}$cm$^{-2}$s$^{-1}$ between 2 and 9 keV. This performance has been possible thanks to the introduction of the microbulk technology, the implementation of a shielding and the development of discrimination algorithms. It has motivated new studies towards a deeper understanding of CAST detectors background. One of the working lines includes the construction of a replica of the set-up used in CAST by micromegas detectors and its installation in the Canfranc Underground Laboratory. Thanks to the comparison between the performance of the detectors underground and at surface, shielding upgrades, etc, different contributions to the detectors background have been evaluated. In particular, an upper limit $< 2 \\times 10^{-7}$keV$^{-1}$cm$^{-2}$s$^{-1}$ for the intrinsic background of the detector has been obtained. This work means a first evaluation of the potenti...

  4. Hydrochemical changes associated with construction of Mizunami Underground Research Laboratory

    International Nuclear Information System (INIS)

    Japan Atomic Energy Agency has undertaken the Mizunami Underground Research Laboratory (MIU) Project at Gifu Pref., central Japan. The aims of the project are to establish methodologies for investigation, analysis, and assessment of the deep geological environment, and to develop engineering techniques for deep-underground applications. The MIU consists of two vertical shafts and a number of horizontal tunnels connecting the two shafts. In this study, hydrochemical properties were monitored continuously to evaluate the hydrochemical changes during the MIU construction. The study demonstrated that groundwater salinity changed in relation to the variation of groundwater-flow conditions as a result of the shaft construction. In particular, “up-coning” of the salinity profile was observed at the bottom of the shafts owing to the upward movement of deeper groundwater. The intensity of up-coning was irregular, and depended on the hydrogeological heterogeneity of the groundwater system. Although pH rose to around 12 due to interaction with the concrete lining the shafts and with the grout injected into the adjacent host rock, it decreased to below 10 in less than 2 years. The redox condition remained reducing, which is considered to be controlled by Fe2+/Fe(OH)3(am) and/or SO42-/FeS2 couples. These findings can be summarized in a conceptual model. (author)

  5. Measurement of neutron fluxes in the underground laboratory LSM

    International Nuclear Information System (INIS)

    EDELWEISS-2 is a direct Dark Matter search experiment installed in the underground laboratory, Laboratoire Souterrain de Modane (LSM, France), and looking for weakly interacting massive particles (WIMP). The expected interaction rate of WIMPs is below 0.01 events/(kg day), thus rising the importance of having a detailed understanding of potential background. As the current analysis for Dark Matter search shows, ambient and muon-induced neutrons constitute a prominent background component. Detailed studies carried out by the EDELWEISS collaboration in this respect are presented. These activities include dedicated calibrations with neutron sources, monitoring the neutron flux with 3He detectors and measurements with a neutron counter based on Gd-loaded liquid scintillator as well as corresponding MC simulations with full event topology. Studies of muon-induced neutrons are of particular interest. The impact of the neutron background on current EDELWEISS-2 data-taking as well as for next generation experiments such as EURECA is discussed.

  6. Characterization of BEGe detectors in the HADES underground laboratory

    Science.gov (United States)

    Andreotti, Erica; Gerda Collaboration

    2013-08-01

    This paper describes the characterization of newly produced Broad Energy Germanium (BEGe) detectors, enriched in the isotope 76Ge. These detectors have been produced in the frame of the GERDA experiment. The aim of the characterization campaign consists in the determination of all the important operational parameters (active volume, dead layer thickness and uniformity, energy resolution, detector stability in time, quality of pulse shape discrimination). A protocol test procedure and devoted set-ups, partially automated, have been developed in view of the large number (∼ 25) of BEGe's detectors to be tested. The characterization is carried out in the HADES underground laboratory, located 225 m below ground (∼ 500 m water equivalent) in Mol, Belgium.

  7. Characterization of BEGe detectors in the HADES underground laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Andreotti, Erica, E-mail: Erica.ANDREOTTI@ec.europa.eu [Joint Research Centre, Institute for Reference Materials and Measurements, Retieseweg 111, B-2440 Geel (Belgium)

    2013-08-01

    This paper describes the characterization of newly produced Broad Energy Germanium (BEGe) detectors, enriched in the isotope {sup 76}Ge. These detectors have been produced in the frame of the GERDA experiment. The aim of the characterization campaign consists in the determination of all the important operational parameters (active volume, dead layer thickness and uniformity, energy resolution, detector stability in time, quality of pulse shape discrimination). A protocol test procedure and devoted set-ups, partially automated, have been developed in view of the large number (∼25) of BEGe's detectors to be tested. The characterization is carried out in the HADES underground laboratory, located 225 m below ground (∼500m water equivalent) in Mol, Belgium.

  8. Mizunami Underground Research Laboratory project. Program for fiscal year 2006

    International Nuclear Information System (INIS)

    Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is developing a geoscientific research project named the Mizunami Underground Research Laboratory (MIU) project in crystalline rock environment in order to establish scientific and technological basis for geological disposal of HLW. Geoscientific research at the MIU project is planned to be carried out in three Phases over a period of 20 years; Surface-based Investigation Phase (Phase 1), Construction Phase (Phase 2) and Operation Phase (Phase 3). Currently, the Project is under the Construction Phase. This document presents the following 2006 fiscal year plan based on the MIU Master Plan updated in 2002, 1) Investigation Plan, 2) Construction Plan, 3) Research Collaboration Plan, etc. (author)

  9. Mizunami Underground Research Laboratory project. Plan for fiscal year 2008

    International Nuclear Information System (INIS)

    Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is developing a geoscientific research project named the Mizunami Underground Research Laboratory (MIU) project in crystalline rock environment in order to establish scientific and technological basis for geological disposal of HLW. Geoscientific research at the MIU project is planned to be carried out in three phases over a period of 20 years; Surface-based Investigation Phase (Phase 1), Construction Phase (Phase 2) and Operation Phase (Phase 3). Currently, the project is under the Construction Phase. This document presents the following 2008 fiscal year plan based on the MIU Master Plan updated in 2002, 1) Investigation Plan, 2) Construction Plan, 3) Research Collaboration Plan, etc. (author)

  10. Mizunami Underground Research Laboratory project. Plan for fiscal year 2009

    International Nuclear Information System (INIS)

    Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is developing a geoscientific research project named the Mizunami Underground Research Laboratory (MIU) project in crystalline rock environment in order to establish scientific and technological basis for geological disposal of HLW. Geoscientific research at the MIU project is planned to be carried out in three phases over a period of 20 years; Surface-based Investigation Phase (Phase1), Construction Phase (Phase2) and Operation Phase (Phase3). Currently, the project is under the Construction Phase. This document presents the following 2009 fiscal year plan based on the MIU Master Plan updated in 2002, 1) Investigation Plan, 2) Construction Plan, 3) Research Collaboration Plan, etc. (author)

  11. Progress of Jinping Underground laboratory for Nuclear Astrophysics (JUNA)

    Science.gov (United States)

    Liu, WeiPing; Li, ZhiHong; He, JiangJun; Tang, XiaoDong; Lian, Gang; An, Zhu; Chang, JianJun; Chen, Han; Chen, QingHao; Chen, XiongJun; Chen, ZhiJun; Cui, BaoQun; Du, XianChao; Fu, ChangBo; Gan, Lin; Guo, Bing; He, GuoZhu; Heger, Alexander; Hou, SuQing; Huang, HanXiong; Huang, Ning; Jia, BaoLu; Jiang, LiYang; Kubono, Shigeru; Li, JianMin; Li, KuoAng; Li, Tao; Li, YunJu; Lugaro, Maria; Luo, XiaoBing; Ma, HongYi; Ma, ShaoBo; Mei, DongMing; Qian, YongZhong; Qin, JiuChang; Ren, Jie; Shen, YangPing; Su, Jun; Sun, LiangTing; Tan, WanPeng; Tanihata, Isao; Wang, Shuo; Wang, Peng; Wang, YouBao; Wu, Qi; Xu, ShiWei; Yan, ShengQuan; Yang, LiTao; Yang, Yao; Yu, XiangQing; Yue, Qian; Zeng, Sheng; Zhang, HuanYu; Zhang, Hui; Zhang, LiYong; Zhang, NingTao; Zhang, QiWei; Zhang, Tao; Zhang, XiaoPeng; Zhang, XueZhen; Zhang, ZiMing; Zhao, Wei; Zhao, Zuo; Zhou, Chao

    2016-04-01

    Jinping Underground laboratory for Nuclear Astrophysics (JUNA) will take the advantage of the ultra-low background of CJPL lab and high current accelerator based on an ECR source and a highly sensitive detector to directly study for the first time a number of crucial reactions occurring at their relevant stellar energies during the evolution of hydrostatic stars. In its first phase, JUNA aims at the direct measurements of 25Mg(p, γ)26Al, 19F(p, α)16O, 13C(α, n)16O and 12C(α, γ)16O reactions. The experimental setup, which includes an accelerator system with high stability and high intensity, a detector system, and a shielding material with low background, will be established during the above research. The current progress of JUNA will be given.

  12. Ventilation experiment in the Mont Terri underground laboratory

    International Nuclear Information System (INIS)

    The required ventilation of the underground drifts during the construction and operational phases of a radioactive waste repository could give rise to a process of desaturation of the rock around the drifts, changing its hydraulic and thermal properties. This change of rock properties may have an impact on the design of the repositories (drifts spacing and repository size), which depends on the thermal load that the clay barrier and the rock can accept. The Ventilation Experiment (VE) has been carried out at the Mont Terri underground laboratory (Switzerland), and has been co-financed by the EC under contract FIKW-CT-2001-00126. Its main objective was to evaluate in-situ and better understand the desaturation process of a consolidated clay formation, when subjected to a flow of dry air during several months. This VE test has been performed under practically isothermal conditions (T ≅ 15-16 C), in a 10 m long section of a non-lined horizontal micro-tunnel (diameter = 1,3 m), excavated in 1999 in the shaly facies of the Opalinus clay of Mont Terri. In the summer of year 2002 (3,4 years after the micro-tunnel excavation), the test section was sealed off by means of two double doors, and monitored with a total of 96 sensors (rock water potential, water content, temperature and displacements, and conditions of the air in the test section). Specifically, in a rock thickness of approximately two meters, 24 piezometers, 32 hygrometers, 10 TDR, 8 extensometers and 5 electrodes chains (geo-electrical survey) were installed. Hydraulic, geochemical and geo-electrical laboratory tests have been also performed to characterize the Opalinus clay properties. Besides, the in-situ VE test has been interpreted and modelled, using the obtained experimental data for calibration of several codes, such as the Code-Bright, Code-Aster, Tough 2 and Mherlin. (authors)

  13. Ventilation experiment in the Mont Terri underground laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Mayor, J.C. [Empresa Nacional de Residuos Radiactivos, SA (ENRESA), Madrid (Spain); Velasco, M. [Dm-Iberia, Consultores en ciencias de la tierra, Madrid (Spain); Garcia-Sineriz, J.L. [Aitemin, Madrid (Spain)

    2005-07-01

    The required ventilation of the underground drifts during the construction and operational phases of a radioactive waste repository could give rise to a process of desaturation of the rock around the drifts, changing its hydraulic and thermal properties. This change of rock properties may have an impact on the design of the repositories (drifts spacing and repository size), which depends on the thermal load that the clay barrier and the rock can accept. The Ventilation Experiment (VE) has been carried out at the Mont Terri underground laboratory (Switzerland), and has been co-financed by the EC under contract FIKW-CT-2001-00126. Its main objective was to evaluate in-situ and better understand the desaturation process of a consolidated clay formation, when subjected to a flow of dry air during several months. This VE test has been performed under practically isothermal conditions (T {approx_equal} 15-16 C), in a 10 m long section of a non-lined horizontal micro-tunnel (diameter = 1,3 m), excavated in 1999 in the shaly facies of the Opalinus clay of Mont Terri. In the summer of year 2002 (3,4 years after the micro-tunnel excavation), the test section was sealed off by means of two double doors, and monitored with a total of 96 sensors (rock water potential, water content, temperature and displacements, and conditions of the air in the test section). Specifically, in a rock thickness of approximately two meters, 24 piezometers, 32 hygrometers, 10 TDR, 8 extensometers and 5 electrodes chains (geo-electrical survey) were installed. Hydraulic, geochemical and geo-electrical laboratory tests have been also performed to characterize the Opalinus clay properties. Besides, the in-situ VE test has been interpreted and modelled, using the obtained experimental data for calibration of several codes, such as the Code-Bright, Code-Aster, Tough 2 and Mherlin. (authors)

  14. The PTB underground laboratory for dosimetry and spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Neumaier, S. E-mail: stefan.neumaier@ptb.de; Arnold, D.; Boehm, J.; Funck, E

    2000-07-15

    In 1991, the Physikalisch-Technische Bundesanstalt established an underground laboratory for dosimetry and spectrometry (UDO) at the Asse salt mine, near Braunschweig. Due to the depth of 925 m below ground (equivalent to about 2100 m of water), the cosmic ray muon intensity in this facility is reduced by more than 5 orders of magnitude. In addition, the low specific activity of the pure rock salt and a low concentration of radon lead to an extremely low ambient dose equivalent rate of less than 1 nSv/h. The UDO facility is therefore well suited for dosimetry at very low dose rates, as well as for Ultra-Low-Background (ULB) {gamma}-ray spectrometry. In 1998, a coaxial low-background HPGe-detector (88% relative efficiency, FWHM 2.0 keV at 1.33 MeV) with an extended shielding (20 cm low-activity lead, 1 cm electrolytic copper, N{sub 2}-flushing) was installed at UDO; the count rate per mass of germanium, integrated over the energy range from 40 to 2750 keV, was measured to be 0.012 s{sup -1} kg{sup -1}. Results from test measurements and first applications are reported. The design of a ULB {gamma}-detector system, presently under construction, is described.

  15. The PTB underground laboratory for dosimetry and spectrometry

    International Nuclear Information System (INIS)

    In 1991, the Physikalisch-Technische Bundesanstalt established an underground laboratory for dosimetry and spectrometry (UDO) at the Asse salt mine, near Braunschweig. Due to the depth of 925 m below ground (equivalent to about 2100 m of water), the cosmic ray muon intensity in this facility is reduced by more than 5 orders of magnitude. In addition, the low specific activity of the pure rock salt and a low concentration of radon lead to an extremely low ambient dose equivalent rate of less than 1 nSv/h. The UDO facility is therefore well suited for dosimetry at very low dose rates, as well as for Ultra-Low-Background (ULB) γ-ray spectrometry. In 1998, a coaxial low-background HPGe-detector (88% relative efficiency, FWHM 2.0 keV at 1.33 MeV) with an extended shielding (20 cm low-activity lead, 1 cm electrolytic copper, N2-flushing) was installed at UDO; the count rate per mass of germanium, integrated over the energy range from 40 to 2750 keV, was measured to be 0.012 s-1 kg-1. Results from test measurements and first applications are reported. The design of a ULB γ-detector system, presently under construction, is described

  16. Mizunami Underground Research Laboratory project. Plan for fiscal year 2011

    International Nuclear Information System (INIS)

    Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). Geoscientific research and the MIU project is planned in three overlapping phases ; Surface-based Investigation Phase (Phase1), Construction Phase (Phase2) and Operation Phase (Phase3). Currently, the project is under the Construction Phase, and the Operation Phase. This document introduces the research and development activities planned for 2011 fiscal year plan based on the MIU Master Plan updated in 2010, Investigation Plan, Construction Plan and Research Collaboration Plan, etc. The observations of hydraulic pressure, groundwater chemistries and rock mechanical properties have been continued at existing boreholes. Borehole investigations are carried out at the -300m stage in order to obtain data on geological structure, hydraulic properties and groundwater chemistries in/around the fault in the MIU Construction Site and characterize rock mechanical properties. For Phase III investigations, borehole investigation and laboratory test will be conducted for development of solute transport conceptual models and observation of solute transport properties. On research collaborations, various experiments and researches are carried out with CRIEPI(Central Research Institute of Electric Power Industry), AIST(National Institute of Advanced Industrial Science and Technology), Nagra(National Cooperative for the Disposal of Radioactive Waste) and other research organizations. For construction plan, Main and Ventilation Shafts of the MIU will be excavated approximately GL-500m, and then horizontal tunnels at the GL-500m level will be begun to be excavated. (author)

  17. A Deep Underground Science and Engineering Laboratory (DUSEL) at Kimballton

    Science.gov (United States)

    Vogelaar, R. Bruce

    2004-11-01

    The National Academy of Science, as well as several long-range plans from the physics communities, have endorsed the need to create a large, multi-disciplinary underground laboratory in the US. Several potential sites have been identified, and the National Science Foundation has begun a solicitation process to help formulate the science program as well as to identify and develop candidate sites. The only site on the East Coast is at Kimballton, near Blacksburg, in western Virginia. Of all the sites, it is the only one located in sedimentary rocks. This makes it an IDEAL and unique location for both physics, geoscience, and engineering studies. Kimballton is also only half an hour from Virginia Tech, the largest university in the state of Virginia. A multi-institution group has been developing this possibility, and will be competing on the national scale to have DUSEL located at Kimballton. One of the assets of this location is a large limestone mine, already at a depth of 2300 ft (1850 mwe), with true drive-in access and extremely large caverns. The DUSEL facility at this location will try to take advantage of the existing infrastructure, while at the same time develop complementary and adjacent facilities down to 7000 ft (6000 mwe) to allow independent operation of the future facility. Since 2003, Virginia Tech and the Naval Research Laboratory have been working to also develop a general low-level facility at this location. The initial program is to help develop extremely low-background germanium and gas proportional counters, and a single super-module of the Low-Energy Neutrino Spectroscopy (LENS) detector -- designed to measure the real-time low-energy neutrino spectrum from the Sun, including the pp-flux. Progress in this program (including seismic imaging), and the proposed overall extensive science program (Phys, Geo, Eng, Bio) which can be addressed at Kimballton will be presented. For further information, see our webpage http://www.phys.vt.edu/ kimballton

  18. Development of a low background liquid scintillation counter for a shallow underground laboratory

    CERN Document Server

    Erchinger, J L; Bernacki, B E; Douglas, M; Fuller, E S; Keillor, M E; Morley, S M; Mullen, C A; Orrell, J L; Panisko, M E; Warren, G A; Williams, R O; Wright, M E

    2015-01-01

    Pacific Northwest National Laboratory has recently opened a shallow underground laboratory intended for measurement of low-concentration levels of radioactive isotopes in samples collected from the environment. The development of a low-background liquid scintillation counter is currently underway to further augment the measurement capabilities within this underground laboratory. Liquid scintillation counting is especially useful for measuring charged particle (e.g., $\\beta$, $\\alpha$) emitting isotopes with no (or very weak) gamma-ray yields. The combination of high-efficiency detection of charged particle emission in a liquid scintillation cocktail coupled with the low-background environment of an appropriately-designed shield located in a clean underground laboratory provides the opportunity for increased-sensitivity measurements of a range of isotopes. To take advantage of the 35 meters-water-equivalent overburden of the underground laboratory, a series of simulations have evaluated the scintillation count...

  19. Dark matter searches with NaI scintillators in the Canfranc underground laboratory: ANAIS experiment

    International Nuclear Information System (INIS)

    A large mass dark matter search experiment with NaI scintillators at the Canfranc Underground Laboratory is underway. A 10.7 kg prototype with improved light collection efficiency and special low-background improvements has been tested and started taking data underground in summer 2005. Preliminary results and prospects for the experiment are presented

  20. Seismic anisotropy in granite at the Underground Research Laboratory, Manitoba

    International Nuclear Information System (INIS)

    The Shear-Wave Experiment at Atomic Energy of Canada Limited's Underground Research Laboratory was probably the first controlled-source shear-wave survey in a mine environment. Taking place in conjunction with the excavation of the Mine-by test tunnel at 420 m depth, the shear-wave experiment was designed to measure the in situ anisotropy of the rockmass and to use shear waves to observe excavation effects using the greatest variety of raypath directions of any in situ shear-wave survey to date. Inversion of the shear-wave polarizations shows that the anisotropy of the in situ rockmass is consistent with hexagonal symmetry with an approximate fabric orientation of strike 023degree and dip 35degree. The in situ anisotropy is probably due to microcracks with orientations governed by the in situ stress field and to mineral alignment within the weak gneissic layering. However, there is no unique interpretation as to the cause of the in situ anisotropy as the fabric orientation agrees approximately with both the orientation expected from extensive-dilatancy anisotropy and that of the gneissic layering. Eight raypaths with shear waves propagating wholly or almost wholly through granodiorite, rather than granite, do not show the expected shear-wave splitting and indicate a lower in situ anisotropy, which may be due to the finer grain size and/or the absence of gneissic layering within the granodiorite. These results suggest that shear waves may be used to determine crack and mineral orientations and for remote monitoring of a rockmass. This has potential applications in mining and waste monitoring

  1. Groundwater flow analysis of Horonobe underground research laboratory project

    International Nuclear Information System (INIS)

    This report shows the process and the result of the research on the hydrogeological modeling and groundwater flow (GW) analyses of Horonobe Underground Research Laboratory (URL) Project until fiscal year 2004. In the report, Surface-based Investigation (Phase 1) of the project was divided into two phases; the investigation phase based on literature review and the borehole investigation phase. In the investigation phase based on literature review, the sensitivity analyses were carried out with the hydrogeological model built based on the considerable information from the literature review. The results showed that the sensitivities of recharge rate and hydraulic conductivity of the surface layer on hydraulic head and those of hydraulic conductivities of both Wakkanai formation and Koetoi formation on GW migration time were high. The results also showed that the GW flow system in and around the URL area was governed by the Shimizu river and Penke-ebekorobetsu river in the shallower zone (local GW flow system) and the Teshio river in the deeper zone (regional GW flow system). 'Regional scale' analytical domain was defined based on the results. In the borehole investigation phase, the results of both the in-situ hydraulic tests and the laboratory hydraulic tests were summarized as follows: The deeper it was, the lower the hydraulic conductivity was in the same layer, especially in Wakkanai formation. The hydraulic conductivity of the upper layer was lower than that of the lower layer in the same depth. The distribution of hydraulic conductivity was strongly related to that of fracture zone. The GW flow analyses based on newly developed geological model and the results of the hydraulic tests described above were performed. The GW flow analyses were verified by comparing with the measured hydraulic pressures in the boreholes. Besides, the behavior of saline GW was examined. Furthermore, the excavation of the URL shafts and tunnels was simulated. From the results

  2. Measurement of cosmic ray flux in the China Jinping underground laboratory

    International Nuclear Information System (INIS)

    The China JinPing underground Laboratory (CJPL) is the deepest underground laboratory running in the world at present. In such a deep underground laboratory, the cosmic ray flux is a very important and necessary parameter for rare-event experiments. A plastic scintillator telescope system has been set up to measure the cosmic ray flux. The performance of the telescope system has been studied using the cosmic rays on the ground laboratory near the CJPL. Based on the underground experimental data taken from November 2010 to December 2011 in the CJPL, which has an effective live time of 171 days, the cosmic ray muon flux in the CJPL is measured to be (2.0±0.4)×10-10/(cm2·s). The ultra-low cosmic ray background guarantees an ideal environment for dark matter experiments at the CJPL. (authors)

  3. Progress of Jinping Underground laboratory for Nuclear Astrophysics (JUNA)

    OpenAIRE

    Liu WeiPing; Li ZhiHong; He JiangJun; Tang XiaoDong; Lian Gang; An Zhu; Chang JianJun; Chen Han; Chen QingHao; Chen XiongJun; Chen ZhiJun; Cui BaoQun; Du XianChao; Fu ChangBo; Gan Lin

    2016-01-01

    Jinping Underground lab for Nuclear Astrophysics (JUNA) will take the advantage of the ultralow background in Jinping underground lab, high current accelerator based on an ECR source and highly sensitive detector to study directly a number of crucial reactions to the hydrostatic stellar evolution for the first time at their relevant stellar energies. In its first phase, JUNA aims at the direct measurements of 25Mg(p,γ)26Al, 19F(p,α)16O, 13C(α,n)16O and 12C(α,γ)16O. The experimental setup, whi...

  4. Problems and countermeasures in construction of underground research shaft and drift of Horonobe Underground Research Laboratory Project

    International Nuclear Information System (INIS)

    The outline of design of construction of underground research facilities in Horonobe Underground Research Laboratory Project is described. The problems and investigations of countermeasures are reported. The bedrock in and around the underground research facilities consists of sedimentary soft rock. The competence factor is low. The groundwater contains salt, methane, boron and ammonium in the deep underground. The support design under the conditions of low competence factor is explained by rock classification, establishment of characteristic values of every classified rock, and the double supporting structure. The control methods for spring water in the shallow stratum are stated by the previous boring in and around shaft, countermeasures to spring water, and verification using comparison between the analytical results and the amount of spring water. The results showed the amount of spring water in the shaft was decreased by construction of cut-off wall. Rock classification standard, physical properties of rocks, flow of shaft support design, and results of permeability tests are illustrated. (S.Y.)

  5. Progress of Jinping Underground laboratory for Nuclear Astrophysics (JUNA

    Directory of Open Access Journals (Sweden)

    Liu WeiPing

    2016-01-01

    Full Text Available Jinping Underground lab for Nuclear Astrophysics (JUNA will take the advantage of the ultralow background in Jinping underground lab, high current accelerator based on an ECR source and highly sensitive detector to study directly a number of crucial reactions to the hydrostatic stellar evolution for the first time at their relevant stellar energies. In its first phase, JUNA aims at the direct measurements of 25Mg(p,γ26Al, 19F(p,α16O, 13C(α,n16O and 12C(α,γ16O. The experimental setup, which include the accelerator system with high stability and high intensity, the detector system, and the shielding material with low background, will be established during the above research. The current progress of JUNA will be given.

  6. The Deep Underground Science and Engineering Laboratory at Homestake

    Science.gov (United States)

    Lesko, Kevin T.

    2009-12-01

    The US National Science Foundation and the US underground science community are well into the campaign to establish a world-class, multi-disciplinary deep underground science and engineering laboratory—DUSEL. The NSF's review committee, following the first two NSF solicitations, selected Homestake as the prime site to be developed into an international, multidisciplinary, world-class research facility. Homestake DUSEL will provide much needed underground research space to help relieve the worldwide shortage, particularly at great depth, and will develop research campuses at different depths to satisfy the research requirements for the coming decades. The State of South Dakota demonstrates remarkable support for the project and has secured the site with the transfer of the former Homestake Gold Mine and has initiated re-entry and rehabilitation of the facility to host a modest interim science program with state funds and those from a substantial philanthropic donor. I review the scientific case for DUSEL and the progress in developing the preliminary design of DUSEL in Homestake and the integrated suite of experiments to be funded along with the facility.

  7. The Horonobe Underground Research Laboratory Project. Survey and research program in fiscal year 2000

    International Nuclear Information System (INIS)

    This booklet is the one on survey and research program in fiscal year 2001 of The Horonobe Underground Research Laboratory Project explained to Horonobe-machi and Hokkaido on April 5 and 6, 2001 by the Underground Research Group of the Horonobe Underground Research Center, according to the eighth article of the 'Agreement on the deep underground research in Horonobe-machi' concluded on November 16, 2000. This program aims at confirming technical reliability on geological disposal through tests and researches at actual stratum and preparing a site for common peoples' visits to and experiences of the deep underground. And, the obtained results are intended to reflect to disposal business of the Horonobe Underground Research Center and safety regulation and so on performed by the government, together with results of the stratum science research at the Tono Geoscience Center, of geological disposal Rand D at the Tokai Works, or of international collaborations. In this program, geo-science research and geological disposal R and D are carried out, where the former contains technical development on geological environment survey, development on geological environment monitoring technique, research on long-term stability of geological environment, and development on foundation of engineering technique at deep underground, and the latter contains verification on engineering technique of engineered barrier and so on, development on detailed design method of underground disposal facility, and upgrading on reliability of safety evaluation method. (G.K.)

  8. Horonobe Underground Research Laboratory project. Investigation report for the 2010 fiscal year

    International Nuclear Information System (INIS)

    The Horonobe Underground Research Laboratory Project is planned to extend over a period 20 years. The investigations will be conducted in three phases, namely 'Phase 1: Surface-based investigations', 'Phase 2: Construction Phase' (investigations during construction of the underground facilities) and 'Phase 3: Operation phase' (research in the underground facilities). This report summarizes the results of the investigations for the 2010 fiscal year (2010/2011). The investigations, which are composed of 'Geoscientific research' and 'R and D on geological disposal technology', were carried out according to 'Horonobe Underground Research Laboratory Project Investigation Program for the 2010 Fiscal year'. The results of these investigations, along with the results which were obtained in other departments of Japan Atomic Energy Agency (JAEA), are properly offered to the implementations and the safety regulations. For the sake of this, JAEA has proceeded with the project in collaboration with experts from domestic and overseas research organisations. (author)

  9. Horonobe Underground Research Laboratory project investigation report for the 2008 fiscal year

    International Nuclear Information System (INIS)

    The Horonobe Underground Research Laboratory Project is planned to extend over a period 20 years. The investigations will be conducted in three phases, namely 'Phase 1: Surface-based investigations' 'Phase 2: Construction Phase' (investigations during construction of the underground facilities) and 'Phase 3: Operation phase' (research in the underground facilities). This report summarizes the results of the investigations for the 2008 fiscal year (2008/2009), the 4th year of the Phase 2 investigations. The investigations, which are composed of 'Geoscientific research' and 'R and D on geological disposal technology', were carried out according to 'Horonobe Underground Research Laboratory Project Investigation Program for the 2008 Fiscal year'. The results of these investigations, along with the results which were obtained in other departments of Japan Atomic Energy Agency (JAEA), are properly offered to the implementations and the safety regulations. For the sake of this, JAEA has proceeded with the project in collaboration with experts from domestic and overseas research organisations. (author)

  10. Horonobe Underground Research Laboratory project. Investigation report for the 2009 fiscal year

    International Nuclear Information System (INIS)

    The Horonobe Underground Research Laboratory Project is planned to extend over a period 20 years. The investigations will be conducted in three phases, namely 'Phase 1: Surface-based investigations', 'Phase 2: Construction Phase' (investigations during construction of the underground facilities) and 'Phase 3: Operation phase' (research in the underground facilities). This report summarizes the results of the investigations for the 2009 fiscal year (2009/2010). The investigations, which are composed of 'Geoscientific research' and 'R and D on geological disposal technology', were carried out according to 'Horonobe Underground Research Laboratory Project Investigation Program for the 2009 Fiscal year'. The results of these investigations, along with the results which were obtained in other departments of Japan Atomic Energy Agency (JAEA), are properly offered to the implementations and the safety regulations. For the sake of this, JAEA has proceeded with the project in collaboration with experts from domestic and overseas research organisations. (author)

  11. Horonobe Underground Research Laboratory project. Investigation report for the 2006 fiscal year

    International Nuclear Information System (INIS)

    The Horonobe Underground Research Laboratory is planned to extend over a period of 20 years. The investigations will be conducted in three phases, namely 'Phase 1: Surface-based investigations', 'Phase 2: Construction Phase' (investigations during construction of the underground facilities) and 'Phase 3: Operation phase' (research in the underground facilities). This report summarizes the results of the investigations for the 2006 fiscal year (2006/2007), the second year of the Phase 2 investigations. The investigations, which are composed of 'Geoscientific research' and 'R and D on the geological disposal of high-level radioactive waste (HLW)', were carried out according to 'Horonobe Underground Research Laboratory Project Investigation Program for the 2006 Fiscal Year'. The results of these investigations, along with the results which were obtained in other departments of Japan Atomic Energy Agency (JAEA), are properly offered to the implementations and the safety regulations. JAEA proceeded with the project in, collaboration with experts from domestic and overseas research organisation. (author)

  12. Horonobe Underground Research Laboratory project. Investigation report for the 2012 fiscal year

    International Nuclear Information System (INIS)

    The Horonobe Underground Research Laboratory Project is planned to extend over a period 20 years. The investigations will be conducted in three phases, namely 'Phase 1: Surface-based investigations', 'Phase 2: Construction Phase' (investigations during construction of the underground facilities) and 'Phase 3: Operation phase' (research in the underground facilities). This report summarizes the results of the investigations for the 2012 fiscal year (2012/2013). The investigations, which are composed of 'Geoscientific research' and R and D on geological disposal technology', were carried out according to 'Horonobe Underground Research Laboratory Project Investigation Program for the 2012 Fiscal year'. The results of these investigations, along with the results which were obtained in other departments of Japan Atomic Energy Agency (JAEA), are properly offered to the implementations and the safety regulations. For the sake of this, JAEA has proceeded with the project in collaboration with experts from domestic and overseas research organisations. (author)

  13. Development of a low background liquid scintillation counter for a shallow underground laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Erchinger, Jennifer L.; Aalseth, Craig E.; Bernacki, Bruce E.; Douglas, Matthew; Fuller, Erin S.; Keillor, Martin E.; Morley, Shannon M.; Mullen, Crystal A.; Orrell, John L.; Panisko, Mark E.; Warren, Glen A.; Williams, Russell O.; Wright, Michael E.

    2015-08-20

    Pacific Northwest National Laboratory has recently opened a shallow underground laboratory intended for measurement of lowconcentration levels of radioactive isotopes in samples collected from the environment. The development of a low-background liquid scintillation counter is currently underway to further augment the measurement capabilities within this underground laboratory. Liquid scintillation counting is especially useful for measuring charged particle (e.g., B, a) emitting isotopes with no (orvery weak) gamma-ray yields. The combination of high-efficiency detection of charged particle emission in a liquid scintillation cocktail coupled with the low-background environment of an appropriately-designed shield located in a clean underground laboratory provides the opportunity for increased-sensitivity measurements of a range of isotopes. To take advantage of the 35-meter water-equivalent overburden of the underground laboratory, a series of simulations have evaluated the instrumental shield design requirements to assess the possible background rate achievable. This report presents the design and background evaluation for a shallow underground, low background liquid scintillation counter design for sample measurements.

  14. Development of a low background liquid scintillation counter for a shallow underground laboratory.

    Science.gov (United States)

    Erchinger, J L; Aalseth, C E; Bernacki, B E; Douglas, M; Fuller, E S; Keillor, M E; Morley, S M; Mullen, C A; Orrell, J L; Panisko, M E; Warren, G A; Williams, R O; Wright, M E

    2015-11-01

    Pacific Northwest National Laboratory has recently opened a shallow underground laboratory intended for measurement of low-concentration levels of radioactive isotopes in samples collected from the environment. The development of a low-background liquid scintillation counter is currently underway to further augment the measurement capabilities within this underground laboratory. Liquid scintillation counting is especially useful for measuring charged particle (e.g., β and α) emitting isotopes with no (or very weak) gamma-ray yields. The combination of high-efficiency detection of charged particle emission in a liquid scintillation cocktail coupled with the low-background environment of an appropriately designed shield located in a clean underground laboratory provides the opportunity for increased-sensitivity measurements of a range of isotopes. To take advantage of the 35m-water-equivalent overburden of the underground laboratory, a series of simulations have evaluated the scintillation counter's shield design requirements to assess the possible background rate achievable. This report presents the design and background evaluation for a shallow underground, low background liquid scintillation counter design for sample measurements. PMID:26334781

  15. The underground research laboratory room 209 excavation response test

    International Nuclear Information System (INIS)

    The response of the rock mass to excavation is an important factor in the design and performance of underground excavations and installations. This is particularly true in the excavation of vaults for the disposal of nuclear fuel waste, where the conditions in the rock mass around the disposal areas may affect the performance of engineered sealing systems installed to isolate the waste. The factors influencing, and mechanisms controlling, rock mass response to excavation must be understood in order to accommodate excavation response effects in disposal vault design and construction

  16. Site pre-selection of underground research laboratory in Beijing area

    International Nuclear Information System (INIS)

    The background of this study was reported in this paper. The aim of construction of underground research laboratory and its principles for site pre-selection were described. The research work which was performed by the former investigators and authors was also presented. Then the data on both Yangfang and Fenshuiyu granite bodies as candidate sites for underground research laboratory were given as viewed from natural and economic geography, properties of granite body, petrology, structure, hydrogeology, sorption and diffusion of radionuclides on/in granite. Finally, the comparison study on both granite bodies was conducted and it is considered that although there were many abandoned tunnels in Fenshuiling granite body, only the tunnels on B275m level may be used and a few experiments (for example, heater test) can be conducted there, but as a whole, Yangfang granite body is better than Fenshuiling granite body as a candidate site for underground research laboratory. (author)

  17. The Gran Sasso underground laboratories (measurements of rock radioactivity and neutron fluxes)

    International Nuclear Information System (INIS)

    The authors report on measurements of rock radioactivity and neutron flux performed in the Gran Sasso underground laboratories of the INFN in Italy. The Gran Sasso' Laboratories of the INFN are located underground, in galleries which have been excavated under the Gran Sasso mountain range. The minimum rock thickness covering the laboratories is about 1400 m of rock of average density 2.8 g cm/sup -3/, corresponding to a thickness of some 4000 m of water equivalent. The laboratories are located at about 1000 m above sea level. The main destination of these laboratories is to shelter very huge particle detectors which shall detect extremely rare nuclear events of extraordinary interest for particle physics as well as for astrophysics and cosmology. In these laboratories, the radiation background is expected to be extremely low, which is the main condition for performing the proposed experiments

  18. Horonobe Underground Research Laboratory project. Research and development plan. H22-H26

    International Nuclear Information System (INIS)

    The research and development plan in Horonobe Underground Research Laboratory are summarized according to the 2nd Midterm Plan till 2014 fiscal year of JAEA. In this Midterm, galleries and the infrastructures for the research and development up to the depth of 350 m are constructed by Private Financial Initiative (PFI). Additionally 'Phase 3: Operation phase (Investigations in the underground facilities)' in the galleries begins in parallel with 'Phase 2: Construction phase (Investigations during construction of the underground facilities)'. In these phases, various researches and developments including collaboration with other institutes are conducted in the galleries. Generallic applicable techniques on the subject of the investigation of the geological environment, facility construction in deep underground and the reliability of geological disposal are developed during the phase. The feasibility and reliance of various technologies concerning geological disposal are demonstrated by widely opening the outcome to the public in the society. (author)

  19. The planning of future research program of underground laboratories in overseas

    International Nuclear Information System (INIS)

    The objectives of this study is to identify the research issues, which are to be conducted in the future underground research laboratory, about operation and logistics systems for the planning of future research and development program. The research programs and experiments, etc. were investigated for the geological disposal projects in overseas sedimentary rocks and coastal geological environments aiming to reflect in the future underground research facility plan in Japan. In the investigation, information on the engineered-barrier performance, design and construction of underground facilities, tunnel support, transportation and emplacement, and backfilling technology, etc. were collected. Based on these informations, the purpose, the content, and the result of each investigations and tests were arranged. The strategy and the aim in the entire underground research facility, and the flow of investigations and tests, etc. were also arranged from the purpose, the relations and the sequence of each investigation and experiment, and the usage of results, etc. (author)

  20. Low-background Gamma Spectroscopy at Sanford Underground Laboratory

    Science.gov (United States)

    Chiller, Christopher; Alanson, Angela; Mei, Dongming

    2014-03-01

    Rare-event physics experiments require the use of material with unprecedented radio-purity. Low background counting assay capabilities and detectors are critical for determining the sensitivity of the planned ultra-low background experiments. A low-background counting, LBC, facility has been built at the 4850-Level Davis Campus of the Sanford Underground Research Facility to perform screening of material and detector parts. Like many rare event physics experiments, our LBC uses lead shielding to mitigate background radiation. Corrosion of lead brick shielding in subterranean installations creates radon plate-out potential as well as human risks of ingestible or respirable lead compounds. Our LBC facilities employ an exposed lead shield requiring clean smooth surfaces. A cleaning process of low-activity silica sand blasting and borated paraffin hot coating preservation was employed to guard against corrosion due to chemical and biological exposures. The resulting lead shield maintains low background contribution integrity while fully encapsulating the lead surface. We report the performance of the current LBC and a plan to develop a large germanium well detector for PMT screening. Support provided by Sd governors research center-CUBED, NSF PHY-0758120 and Sanford Lab.

  1. Current status of phase II investigations, Mizunami Underground Research Laboratory (MIU) project - 16262

    International Nuclear Information System (INIS)

    The Mizunami Underground Research Laboratory (MIU) Project, a comprehensive research project investigating the deep underground environment in crystalline rock, is being conducted by the Japan Atomic Energy Agency at Mizunami City, Central Japan. The MIU Project is being carried out in three overlapping phases: Surface-based Investigation (Phase I), Construction (Phase II), and Operation (Phase III), with a total duration of 20 years. The overall project goals of the MIU Project from Phase I through to Phase III are: 1) to establish techniques for investigation, analysis and assessment of the deep geological environment, and 2) to develop a range of engineering techniques for deep underground application. Phase I was completed in March 2004, and Phase II investigations associated with the construction of the underground facilities are currently underway. Phase II investigation goals are to evaluate the geological, hydrogeological, hydrogeochemical and rock mechanical models developed in Phase I and to assess changes in the deep geological environment caused by the construction of underground facilities. Geological mapping, borehole investigations for geological, hydrogeological, hydrochemical and rock mechanical studies are being carried out in shafts and research galleries in order to evaluate the models. Long-term monitoring of changes in groundwater chemistry and pressure associated with the construction of the underground facilities continue in and around the MIU site, using existing boreholes and monitoring systems. This report summarizes the current status of the MIU Project on results of the Phase II investigations to date. (authors)

  2. Evaluation of the IRAD sonic extensometers for application in the Canadian Underground Research Laboratory (FY 1983)

    International Nuclear Information System (INIS)

    This report supplements an earlier study that discussed the suitability of using the IRAD sonic extensometer in the Underground Research Laboratory proposed by the Atomic Energy of Canada, Ltd. In particular, it addresses the first and fourth recommendations made in that report concerning the basic accuracy of the instrument and evaluation of the electronic circuitry, respectively

  3. The CDEX Dark Matter Program at the China Jinping Underground Laboratory

    CERN Document Server

    Yue, Qian; Li, Jianming; Wong, Henry T

    2016-01-01

    The China Jinping Underground Laboratory (CJPL) is a new facility for conducting low event-rate experiments. We present an overview of CJPL and the CDEX Dark Matter program based on germanium detectors with sub-keV sensitivities. The achieved results, status as well as the R&D and technology acquisition efforts towards a ton-scale experiment are reported.

  4. Analysis of ground water from boreholes, river water and precipitation in the Underground Research Laboratory project

    International Nuclear Information System (INIS)

    In the Horonobe Underground Research Laboratory (URL) Project, ground water from boreholes, river water and precipitation have been periodically analyzed for the environmental monitoring since the fiscal year 2001. This report shows the data set of water chemistry since the fiscal year 2001 to the fiscal year 2006. (author)

  5. Measurement of low radioactivity in underground laboratories by means of many-dimensional spectrometry

    International Nuclear Information System (INIS)

    In this contribution beside the possibilities for the measurements in underground laboratories also the application of the many-dimensional spectrometry is considered, under which coincidence, anticoincidence, and time-resolving spectrometric are to be understood. Very extensively the interaction of cosmic radiation with matter is considered

  6. Validation of aerosol low-level activities by comparison with a deep underground laboratory

    International Nuclear Information System (INIS)

    The activities on air filters of the radionuclides 40K and 137Cs were measured in an above ground laboratory and compared with the activities measured in an underground laboratory. The average relative differences were lower than 20% for 137Cs and 40K. The temporal series of these radionuclides in the period 2006–2010 are also presented. These results form the baseline of these radionuclides in the studied period, and are particularly interesting because they correspond to the radioactive background in Barcelona before the Fukushima accident. - Highlights: • LARA laboratory in Barcelona validated measurements of 40K and 137Cs in air filters. • Validation by an exchange programme with an underground laboratory. • Baselines activities of 40K and 137Cs in Barcelona air of 2005–2010 are presented

  7. The Use of Underground Research Laboratories to Support Repository Development Programs. A Roadmap for the Underground Research Facilities Network.

    Energy Technology Data Exchange (ETDEWEB)

    MacKinnon, Robert J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-26

    Under the auspices of the International Atomic Energy Agency (IAEA), nationally developed underground research laboratories (URLs) and associated research institutions are being offered for use by other nations. These facilities form an Underground Research Facilities (URF) Network for training in and demonstration of waste disposal technologies and the sharing of knowledge and experience related to geologic repository development, research, and engineering. In order to achieve its objectives, the URF Network regularly sponsors workshops and training events related to the knowledge base that is transferable between existing URL programs and to nations with an interest in developing a new URL. This report describes the role of URLs in the context of a general timeline for repository development. This description includes identification of key phases and activities that contribute to repository development as a repository program evolves from an early research and development phase to later phases such as construction, operations, and closure. This information is cast in the form of a matrix with the entries in this matrix forming the basis of the URF Network roadmap that will be used to identify and plan future workshops and training events.

  8. Applicability of countermeasures during excavation and construction of the Mizunami Underground Research Laboratory

    International Nuclear Information System (INIS)

    Japan Atomic Energy Agency (JAEA)'s task is to provide the scientific and technical basis for safe geological disposal of high-level radioactive waste. This involves researches on development and improvement of techniques for characterization of the deep geological environment and a wide range of engineering for deep underground application in crystalline rock at 'Mizunami Underground Research Laboratory (MIU)'. MIU is currently being constructed. The Main and Ventilation Shafts had reached GL-460 m. This report describes the summary of construction, and pre-excavation grouting, supplementary excavation method. (author)

  9. Analysis of the Status of Foreign Underground Research Laboratories and In-situ Research Topics

    International Nuclear Information System (INIS)

    The status of 11 foreign underground research laboratories (URLs) for the study on high-level waste disposal in the 8 countries including USA has been investigated. The research topics of in-situ study which have been conducted and are planed to do in the URLs have been investigated and analyzed based on the Korean situation. Using the results, the essential in-situ research topics that should be carried out in KURT(KAERI Underground Research Tunnel) are suggested. These topics are classified into two groups, namely the field on engineered barriers and the field on natural barriers

  10. Study on an equivalent continuum model at the Mizunami Underground Research Laboratory

    International Nuclear Information System (INIS)

    The Japan Atomic Energy Agency (JAEA) is conducting the MIzunami Underground research laboratory (MIU) Project in order to develop comprehensive geological investigation and engineering techniques for deep underground applications (e.g. geological disposal of HLW). This modelling study has a two-fold objective, to contribute to the evaluation of the mechanical stability of shaft and research drifts, and to plan the future studies. A crack tensor model, a method of an equivalent continuum model, has been studied at the MIU. In this study, the relationship between the estimated crack tensor parameters and the rock mass classification was revealed. (author)

  11. Cold dark matter searches at the Canfranc underground laboratory

    International Nuclear Information System (INIS)

    An overview of the searches for weak interacting massive particles (WIMPs) through detection of their scattering off various target nuclei carried out in the Canfranc Tunnel Astroparticle Laboratory (at 675 and at 2450 metres of water equivalent (m.w.e.)) is given. The main experimental results both for conventional (COSME, IGEX and NaI-32) and for cryogenic detectors (ROSEBUD) are sketched, and a briefing on the forthcoming experiment ANAIS is also presented. The results of a solar axion search are also reported. (author)

  12. Measurements of muon flux in the Pyh\\"asalmi underground laboratory

    CERN Document Server

    Enqvist, T; F"ohr, V; Jämsén, T; Lehtola, M; Narkilahti, J; Joutsenvaara, J; Nurmenniemi, S; Peltoniemi, J; Remes, H; Sarkamo, J; Shen, C; Usoskin, I

    2005-01-01

    The cosmic-ray induced muon flux was measured at several depths in the Pyh\\"asalmi mine (Finland) using a plastic scintillator telescope mounted on a trailer. The flux was determined at four different depths underground at 400 m (980 m.w.e), at 660 m (1900 m.w.e), at 990 m (2810 m.w.e) and at 1390 m (3960 m.w.e) with the trailer, and also at the ground surface. In addition, previously measured fluxes from depths of 90 m (210 m.w.e) and 210 m (420 m.w.e) are shown. A relation was obtained for the underground muon flux as a function of the depth. The measured flux follows well the general behaviour and is consistent with results determined in other underground laboratories.

  13. Characterization of the seismic environment at the Sanford Underground Laboratory, South Dakota

    CERN Document Server

    Harms, Jan; Barone, Fabrizio; Bartos, Imre; Beker, Mark; Brand, J F J van den; Christensen, Nelson; Coughlin, Michael; DeSalvo, Riccardo; Dorsher, Steven; Heise, Jaret; Kandhasamy, Shivaraj; Mandic, Vuk; Márka, Szabolcs; Müller, Guido; Naticchioni, Luca; O'Keefe, Thomas; Rabeling, David S; Sajeva, Angelo; Trancynger, Tom; Wand, Vinzenz

    2010-01-01

    An array of seismometers is being developed at the Sanford Underground Laboratory, the former Homestake mine, in South Dakota to study the properties of underground seismic fields and Newtonian noise, and to investigate the possible advantages of constructing a third-generation gravitational-wave detector underground. Seismic data were analyzed to characterize seismic noise and disturbances. External databases were used to identify sources of seismic waves: ocean-wave data to identify sources of oceanic microseisms, and surface wind-speed data to investigate correlations with seismic motion as a function of depth. In addition, sources of events contributing to the spectrum at higher frequencies are characterized by studying the variation of event rates over the course of a day. Long-term observations of spectral variations provide further insight into the nature of seismic sources. Seismic spectra at three different depths are compared, establishing the 4100-ft level as a world-class low seismic-noise environ...

  14. Characterization of the seismic environment at the Sanford Underground Laboratory, South Dakota

    Energy Technology Data Exchange (ETDEWEB)

    Harms, J; Dorsher, S; Kandhasamy, S; Mandic, V [University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455 (United States); Acernese, F; Barone, F [Universita degli Studi di Salerno, Fisciano (Saudi Arabia) (Italy); Bartos, I; Marka, S [Columbia University, New York, NY 10027 (United States); Beker, M; Van den Brand, J F J; Rabeling, D S [Nikhef, National Institute for Subatomic Physics, Science Park 105, 1098 XG Amsterdam (Netherlands); Christensen, N; Coughlin, M [Carleton College, Northfield, MN 55057 (United States); DeSalvo, R [California Institute of Technology, Pasadena, CA 91125 (United States); Heise, J; Trancynger, T [Sanford Underground Laboratory, 630 East Summit Street, Lead, SD 57754 (United States); Mueller, G [University of Florida, Gainesville, FL 32611 (United States); Naticchioni, L [Department of Physics, University of Rome ' Sapienza' , P.le Aldo Moro 2, 00185 Rome (Italy); O' Keefe, T [Saint Louis University, 3450 Lindell Blvd., St. Louis, MO 63103 (United States); Sajeva, A, E-mail: janosch@caltech.ed [Dipartimento di Fisica ' Enrico Fermi' , Universita di Pisa, Largo Bruno Pontecorvo, Pisa (Italy)

    2010-11-21

    An array of seismometers is being developed at the Sanford Underground Laboratory, the former Homestake mine, in South Dakota to study the properties of underground seismic fields and Newtonian noise, and to investigate the possible advantages of constructing a third-generation gravitational-wave detector underground. Seismic data were analyzed to characterize seismic noise and disturbances. External databases were used to identify sources of seismic waves: ocean-wave data to identify sources of oceanic microseisms and surface wind-speed data to investigate correlations with seismic motion as a function of depth. In addition, sources of events contributing to the spectrum at higher frequencies are characterized by studying the variation of event rates over the course of a day. Long-term observations of spectral variations provide further insight into the nature of seismic sources. Seismic spectra at three different depths are compared, establishing the 4100 ft level as a world-class low seismic-noise environment.

  15. Characterization of the seismic environment at the Sanford Underground Laboratory, South Dakota

    International Nuclear Information System (INIS)

    An array of seismometers is being developed at the Sanford Underground Laboratory, the former Homestake mine, in South Dakota to study the properties of underground seismic fields and Newtonian noise, and to investigate the possible advantages of constructing a third-generation gravitational-wave detector underground. Seismic data were analyzed to characterize seismic noise and disturbances. External databases were used to identify sources of seismic waves: ocean-wave data to identify sources of oceanic microseisms and surface wind-speed data to investigate correlations with seismic motion as a function of depth. In addition, sources of events contributing to the spectrum at higher frequencies are characterized by studying the variation of event rates over the course of a day. Long-term observations of spectral variations provide further insight into the nature of seismic sources. Seismic spectra at three different depths are compared, establishing the 4100 ft level as a world-class low seismic-noise environment.

  16. Barometric pumping effect for radon-due neutron flux in underground laboratories

    CERN Document Server

    Stenkin, Yu V; Gromushkin, D M; Shchegolev, O B; Sulakov, V P

    2016-01-01

    It is known that neutron background is a big problem for low-background experiments in underground Laboratories. Our global net of en-detectors sensitive to thermal neutrons includes the detectors running both on the surface and at different depths underground. We present here results obtained with the en-detector of 0.75 m^2 which is running more than 3 years in underground room at a depth of 25 m of water equivalent in Skobeltsyn Institute of Nuclear Physics, Moscow. Spontaneous increases in thermal neutron flux up to a factor of 3 were observed in delayed anti-correlation with barometric pressure. The phenomenon can be explained by a radon barometric pumping effect resulting in similar effect in neutron flux produced in (alpha,n)-reactions by alpha-decays of radon and its daughters in surrounding rock

  17. Radon monitoring and early low background counting at the Sanford Underground Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, K.J.; Mei, D.M.; Heise, J.; Durben, D.; Salve, R.

    2010-09-01

    Radon detectors have been deployed underground at the Sanford Underground Laboratory at the site of the former Homestake Mine in Lead, SD. Currently, no radon mitigation measures are in place in the underground environment, and the continuing evolution of the facility ventilation systems has led to significant variations in early airborne radon concentrations. The average radon concentration measured near the primary ventilation intake for the 4850-ft level (Yates shaft) is 391 Bq/m{sup 3}, based on approximately 146 days of data. The corresponding average radon concentration near the other main ventilation intake for the 4850-ft level (Ross shaft) is 440 Bq/m{sup 3} based on approximately 350 days of data. Measurements have also been collected near the 1250-ft level Ross shaft, with average radon concentrations at 180 Bq/m{sup 3}. Secondary factors that may increase the baseline radon level underground include the presence of iron oxide and moisture, which are known to enhance radon emanation. The results of the current radon monitoring program will be used for the planning of future measurements and any potential optimization of ventilation parameters for the reduction of radon in relevant areas underground.

  18. The Cascades Proposal for the Deep Underground Science and Engineering Laboratory

    CERN Document Server

    Haxton, W C

    2011-01-01

    One of the options for creating a Deep Underground Science and Engineering Laboratory (DUSEL) is a site in the Mt. Stuart batholith, a granodiorite and tonalite rock mass in the Cascade mountain range in Washington State. The batholith's 100-year history in hard-rock tunneling includes the construction of the longest and deepest tunnels in the U.S., the parallel Cascade and Pioneer tunnels. The laboratory plan would utilize these two tunnels to produce a laboratory that has many desirable features, including dedi., clean, horizontal access, container-module transport, and low operations costs. Various aspects of the site help to reduce geotechnical, environmental, and safety risks.

  19. Horonobe Underground Research Laboratory project. Investigation report for the 2014 fiscal year

    International Nuclear Information System (INIS)

    The Horonobe Underground Research Laboratory Project is planned to extend over a period of 20 years. The project will be conducted in three phases, namely “Phase 1: Surface-based investigations”, “Phase 2: Construction Phase” (investigations during construction of the underground facilities) and “Phase 3: Operation phase” (research in the underground facilities). This report summarizes the results of the investigations for the 2014 fiscal year (2014/2015). The investigations, which are composed of “Geoscientific research” and “R and D on geological disposal technology”, were carried out according to “Horonobe Underground Research Laboratory Project Investigation Program for the 2014 fiscal year”. The results of these investigations, along with the results which were obtained in other departments of Japan Atomic Energy Agency (JAEA), are properly offered to the implementations and the safety regulations. For the sake of this, JAEA has proceeded with the project in collaboration with experts from domestic and overseas research organizations. (author)

  20. Horonobe Underground Research Laboratory project. Investigation report for the 2013 fiscal year

    International Nuclear Information System (INIS)

    The Horonobe Underground Research Laboratory Project is planned to extend over a period 20 years. The investigations will be conducted in three phases, namely 'Phase 1: Surface-based investigations', 'Phase 2: Construction Phase' (investigations during construction of the underground facilities) and 'Phase 3: Operation phase' (research in the underground facilities). This report summarizes the results of the investigations for the 2013 fiscal year (2013/2014). The investigations, which are composed of 'Geoscientific research' and 'R and D on geological disposal technology', were carried out according to 'Horonobe Underground Research Laboratory Project Investigation Program for the 2013 fiscal year'. The results of these investigations, along with the results which were obtained in other departments of Japan Atomic Energy Agency (JAEA), are properly offered to the implementations and the safety regulations. For the sake of this, JAEA has proceeded with the project in collaboration with experts from domestic and overseas research organisations. (author)

  1. Horonobe Underground Research Laboratory project. Investigation report for the 2007 fiscal year

    International Nuclear Information System (INIS)

    The Horonobe Underground Research Laboratory Project is planned to extend over a period of 20 years. The investigations will be conducted in three phases, namely 'Phase 1: Surface-based investigations', 'Phase 2: Construction Phase' (investigations during construction of the underground facilities) and 'Phase 3: Operation phase' (research in the underground facilities). This report summarizes the results of the investigations for the 2007 fiscal year (2007/2008), the 3rd year of the Phase 2 investigations. The investigations, which are composed of 'Geoscientific research' and 'R and D on the geological disposal of high-level radioactive waste (HLW)', were carried out according to 'Horonobe Underground Research Laboratory Project Investigation Program for the 2007 Fiscal Year'. The results of these investigations, along with the results which were obtained in other departments of Japan Atomic Energy Agency (JAEA), are properly offered to the implementations and the safety regulations. JAEA proceeded with the project in collaboration with experts from domestic and overseas research organisation. (author)

  2. The NAIAD experiment for WIMP searches at Boulby mine and recent results

    CERN Document Server

    Ahmed, B; Araújo, H M; Barton, J C; Bewick, A; Carson, M J; Davidge, D; Dawson, J V; Gamble, T; Hart, S P; Hollingworth, R J; Howard, A S; Jones, W G; Joshi, M K; Kudryavtsev, V A; Lawson, T B; Lebedenko, V; Lehner, M J; Lewin, J D; Lightfoot, P K; Liubarsky, I; Lüscher, R; McMillan, J E; Morgan, B; Nicklin, G; Paling, S M; Preece, R M; Quenby, J J; Roberts, J W; Robinson, M; Smith, N J T; Smith, P F; Spooner, N J C; Sumner, T J; Tovey, Daniel R

    2003-01-01

    The NAIAD experiment (NaI Advanced Detector) for WIMP dark matter searches at Boulby mine (UK) is described. The detector consists of an array of encapsulated and unencapsulated NaI(Tl) crystals with high light yield. Six crystals are collecting data at present. Data accumulated by four of them (10.6 kg x year exposure) have been used to set upper limits on the WIMP-nucleon spin-independent and WIMP-proton spin-dependent cross-sections. Pulse shape analysis has been applied to discriminate between nuclear recoils, as may be caused by WIMP interactions, and electron recoils due to gamma background. Various calibrations of crystals are presented.

  3. Studies on engineering technologies in the Mizunami Underground Research Laboratory. FY 2007 (Contract research)

    International Nuclear Information System (INIS)

    The Mizunami Underground Research Laboratory (MIU) of the Japan Atomic Energy Agency is a major site for geoscientific research to advance the scientific and technological basis for geological disposal of high-level radioactive waste in crystalline rock. Studies on relevant engineering technologies in the MIU consist of a) research on design and construction technology for very deep underground applications, and b) research on engineering technology as a basis of geological disposal. In the Second Phase of the MIU project (the construction phase), engineering studies have focused on research into design and construction technologies for deep underground. The main subjects in the study of very deep underground structures consist of the following: 'Demonstration of the design methodology', 'Demonstration of existing and supplementary excavation methods', 'Demonstration of countermeasures during excavation' and 'Demonstration of safe construction'. In the FY 2007 studies, identification and evaluation of the subjects for study of engineering technologies in the construction phase were carried out to optimize future research work. Specific studies included: validation of the existing design methodology based on data obtained during construction; validation of existing and supplementary rock excavation methods for very deep shafts; estimation of rock stability under high differential water pressures, methodology on long-term maintenance of underground excavations and risk management systems for construction of underground structures have been performed. Based on these studies, future research focused on the four subject areas, which are 'Demonstration of the design methodology', 'Demonstration of existing and supplementary excavation methods', 'Demonstration of countermeasures during excavation' and 'Demonstration of safe construction', has been identified. The design methodology in the first phase of the MIU Project (surface-based investigation phase) was verified to

  4. Horonobe Underground Research Laboratory project investigation program for the 2009 fiscal year

    International Nuclear Information System (INIS)

    As part of the research and development program on geological disposal of high-level radioactive waste (HLW), the Horonobe Underground Research Center, a division of the Japan Atomic Energy Agency (JAEA), is implementing the Horonobe Underground Research Laboratory Project (Horonobe URL Project) with the aim at investigating sedimentary rock formations. According to the research plan described in the Midterm Plan of JAEA, geological investigations are to be carried out during the drilling of a shaft down to intermediate depth, while research and development in the areas of engineering technology and safety assessment are to be promoted by collaboration with other research organizations. The results of the R and D activities will be systematized as a 'knowledge base' that supports a wide range of arguments related to the safety of geological disposal. The Horonobe URL Project is planned to extend over a period of 20 years. The investigations will be conducted in three phases, namely 'Phase 1: Surface-based investigations', 'Phase 2: Construction phase' (investigations during construction of the underground facilities) and 'Phase 3: Operation phase' (research in the underground facilities). This report summarizes the investigation program for the 2009 fiscal year (2009/2010), the 5th year of the Phase 2 investigations. In the 2009 fiscal year, investigations in 'geoscientific research', including 'development of techniques for investigating the geological environment', 'development of techniques for long-term monitoring of the geological environment', 'development of engineering techniques for use in the deep underground environment' and 'studies on the long-term stability of the geological environment', are continuously carried out. Investigations in 'research and development on geological disposal technology', including 'improving the reliability of disposal technologies' and 'enhancement of safety assessment methodologies', are also continuously carried out

  5. Horonobe Underground Research Laboratory project. Investigation program for the 2010 fiscal year

    International Nuclear Information System (INIS)

    As part of the research and development program on geological disposal of high-level radioactive waste (HLW), the Horonobe Underground Research Center, a division of the Japan Atomic Energy Agency (JAEA), is implementing the Horonobe Underground Research Laboratory Project (Horonobe URL Project) with the aim at investigating sedimentary rock formations. According to the research plan described in the Midterm Plan of JAEA, geological investigations are to be carried out during the drilling of a shaft down to around 350m depth, while research and development in the areas of engineering technology and safety assessment are to be promoted by collaboration with other research organizations. The results of the R and D activities will be systematized as a 'knowledge base' that supports a wide range of arguments related to the safety of geological disposal. The Horonobe URL Project is planned to extend over a period of 20 years. The investigations will be conducted in three phases, namely 'Phase 1: Surface-based investigations', 'Phase 2: Construction phase' (investigations during construction of the underground facilities) and 'Phase 3: Operation phase' (research in the underground facilities). This report summarizes the investigation program for the 2010 fiscal year (2010/2011). In the 2010 fiscal year, investigations in 'geoscientific research', including 'development of techniques for investigating the geological environment', 'development of techniques for long-term monitoring of the geological environment', 'development of engineering techniques for use in the deep underground environment' and 'studies on the long-term stability of the geological environment', are continuously carried out. Investigations in 'research and development on geological disposal technology', including 'improving the reliability of disposal technologies' and 'enhancement of safety assessment methodologies', are also continuously carried out. Construction of the underground facilities is

  6. HA Cells monitoring at the Underground Research Laboratory (URL) in the CMHM (Andra)

    International Nuclear Information System (INIS)

    The experimental monitoring program of the HA (High Activity) cells was carried out at the Underground Research Laboratory (URL) in the Meuse Haute Marne department in France (CMHM Andra). Inspections made by video and photographs, section measurements and geo-referenced trajectories, in addition to measurements of convergence, temperature and hygrometry over time, allowed a better analysis of the behaviour of the HA cells after excavation, and subsequently over the long term. (authors)

  7. Criteria and geological setting for the generic geothermal underground research laboratory, GEOLAB

    OpenAIRE

    E. Schill; Meixner, J.; Meller, C.; M. Grimm; Grimmer, J.C.; Stober, I.; Kohl, T

    2016-01-01

    High flow rate injection and related hydromechanical interaction are the most important factors in reservoir development of Enhanced Geothermal Systems (EGS). GeoLaB, a new generic geothermal underground research laboratory (URL), is proposed for controlled high flow rate experiments (CHFE) to address limited comprehension of coupled processes connected to EGS reservoir flow conditions. As analogue for typical EGS development, CHFE require specific hydromechanical conditions including a conne...

  8. The Horonobe Underground Research Laboratory (Tentative name) Project. A program on survey and research performed from earth surface

    International Nuclear Information System (INIS)

    The Horonobe Underground Research Laboratory (Tentative name) Project under planning at Horonobe-machi by the Japan Nuclear Cycle Development Institute (JNC) is a research facility on deep underground shown in the Long-term program on research, development and application of nuclear energy (June, 1994)' (LPNE), where some researches on the deep underground targeted at sedimentary rocks are carried out. The plan on The Horonobe Underground Research Laboratory performed at Horonobe-machi' is an about 20 years plan ranging from beginning to finishing of its survey and research, which is carried out by three steps such as 'Survey and research performed from earth surface', 'Survey and research performed under excavation of road', and Survey and research performed by using the road'. The Horonobe Underground Research Laboratory is one of research facilities on deep underground shown its importance in LPNE, and carries out some researches on the deep underground at a target of the sedimentary rocks. And also The Horonobe Underground Research Laboratory confirms some technical reliability and support on stratum disposal shown in the 'Technical reliability on stratum disposal of the high level radioactive wastes. The Second Progress Report of R and D on geological disposal' summarized on November, 1999 by JNC through actual tests and researches at the deep stratum. The obtained results are intended to reflect to disposal business of The Horonobe Underground Research Laboratory and safety regulation and so on performed by the government, together with results of stratum science research, at the Tono Geoscience Center, of geological disposal R and D at the Tokai Works, or of international collaborations. For R and D at the The Horonobe Underground Research Laboratory after 2000, following subjects are shown: 1) Survey technique on long-term stability of geological environment, 2) Survey technique on geological environment, 3) Engineering technique on engineered barrier and

  9. Low-level counting techniques in the underground laboratory `Felsenkeller` in Dresden

    Energy Technology Data Exchange (ETDEWEB)

    Niese, S. [Nuclear Engineering and Analytics Rossendorf, Inc., Dresden (Germany); Koehler, M. [Nuclear Engineering and Analytics Rossendorf, Inc., Dresden (Germany)

    1997-03-01

    Low radioactivity measurements are characterized by low detection limits. They are mainly determined by the background. The contribution of cosmic rays may be reduced drastically by installation of measurement devices in an underground laboratory. In 1982 we installed a chamber with a shield of ultramafic rock for low-level measurements within a cave of an old brewery named `Felsenkeller`. In this laboratory we used low-level {gamma}-spectrometry for the measurement of neutron activated samples of semiconductor silicon (Niese (1986)), of cosmic induced radioactivity in meteorites, chemically separated long-lived nuclides in low-level wastes, contaminated materials and of environmental samples. (orig./DG)

  10. The study of the thermal neutron flux in the deep underground laboratory DULB-4900

    CERN Document Server

    Gavrilyuk, Yu M; Gezhaev, A M; Kazalov, V V; Kuzminov, V V; Panasenko, S I; Ratkevich, S S; Tekueva, D A; Yakimenko, S P

    2015-01-01

    We report on the study of thermal neutron flux using monitors based on mixture of ZnS(Ag) and LiF enriched with a lithium-6 isotope at the deep underground laboratory DULB-4900 at the Baksan Neutrino Observatory. An annual modulation of thermal neutron flux in DULB-4900 is observed. Experimental evidences were obtained of correlation between the long-term thermal neutron flux variations and the absolute humidity of the air in laboratory. The amplitude of the modulation exceed 5\\% of total neutron flux flux.

  11. Collection of measurement data in 2012 fiscal year at the Horonobe Underground Research Laboratory project

    International Nuclear Information System (INIS)

    The Horonobe Underground Research Laboratory (URL) Project has being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formations at Horonobe, northern Hokkaido. The URL project consists of two major research areas, 'Geoscientific Research' and 'R and D on Geological Disposal Technologies', and proceeds in three overlapping phases, 'Phase I: Surface-based investigations', 'Phase II: Investigations during tunnel excavation' and 'Phase III: Investigations in the underground facilities', over a period of around 20 years. The Phase I geoscientific research was carried out from March 2001 to March 2006 in parallel with design and execution scheme on URL facilities. In addition, identifying key issues that need to be addressed in the Phase II/III investigations was planned. At the begining of the Phase II investigations, an investigation report titled 'Measurement Plan and Observational Construction Program on Shaft Excavation at the Horonobe Underground Research Laboratory Project' (hereinafter referred to as 'Observational Construction Program') and an investigation report titled 'Measurement Plan and Observational Construction Program on Drift Excavation at the Horonobe Underground Research Laboratory Project' were published. The Observational Construction Program summarizes the followings from the results of the Phase I investigations: measurements for safety and reasonable constructions, enhancement of shaft design and construction technologies and evaluation of appropriateness for the deep geological environment model estimated before shaft excavation. This report summarizes the measurements data acquired at the Ventilation Shaft, the East Shaft and the drifts in 2012 fiscal year based on the Observational Construction Program. The report summarizes the measurements data for the purpose of acquisition of the basic data

  12. Collection of URL measurement data in 2011 fiscal year at the Horonobe Underground Research Laboratory project

    International Nuclear Information System (INIS)

    The Horonobe Underground Research Laboratory (URL) Project has being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formations at Horonobe, northern Hokkaido. The URL project consists of two major research areas, 'Geoscientific Research' and 'R and D on Geological Disposal Technologies', and proceeds in three overlapping phases, 'Phase I: Surface-based investigations', 'Phase II: Investigations during tunnel excavation' and 'Phase III: Investigations in the underground facilities', over a period of around 20 years. The Phase I geoscientific research was carried out from March 2001 to March 2006 in parallel with design and execution scheme on URL facilities. In addition, identifying key issues that need to be addressed in the Phase II/III investigations was planned. At the beginning of the Phase II investigations, an investigation report titled 'Measurement Plan and Observational Construction Program on Shaft Excavation at the Horonobe Underground Research Laboratory Project' (hereinafter referred to as 'Observational Construction Program') and an investigation report titled 'Measurement Plan and Observational Construction Program on Drift Excavation at the Horonobe Underground Research Laboratory Project' were published. The Observational Construction Program summarizes the followings from the results of the Phase I investigations: measurements for safety and reasonable constructions, enhancement of shaft design and construction technologies and evaluation of appropriateness for the deep geological environment model estimated before shaft excavation. This report summarizes the measurements data acquired at the Ventilation Shaft, the East Shaft and the drifts in 2011 fiscal year based on the Observational Construction Program. The report summarizes the measurements data for the purpose of acquisition the basic data for

  13. Collection of URL measurement data in 2009 fiscal year at the Horonobe Underground Research Laboratory project

    International Nuclear Information System (INIS)

    The Horonobe Underground Research Laboratory (URL) Project has being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formations at Horonobe, northern Hokkaido. The URL project consists of two major research areas, 'Geoscientific Research' and 'R and D on Geological Disposal Technologies', and proceeds in three overlapping phases, 'Phase I: Surface-based investigations', 'Phase II: Investigations during tunnel excavation' and 'Phase III: Investigations in the underground facilities', over a period of around 20 years. The Phase I geoscientific research was carried out from March 2001 to March 2006 in parallel with design and execution scheme on URL facilities. In addition, identifying key issues that need to be addressed in the Phase II/III investigations was planned. At the beginning of the Phase II investigations, an investigation report titled 'Measurement Plan and Observational Construction Program on Shaft Excavation at the Horonobe Underground Research Laboratory Project' (hereinafter referred to as 'Observational Construction Program') and an investigation report titled 'Measurement Plan and Observational Construction Program on Drift Excavation at the Horonobe Underground Research Laboratory Project' were published. The Observational Construction Program summarizes the followings from the results of the Phase I investigations: measurements for safety and reasonable constructions, enhancement of shaft design and construction technologies and evaluation of appropriateness for the deep geological environment model estimated before shaft excavation. This report summarizes the measurements data acquired at the Ventilation Shaft, the East Shaft and the drifts in 2009 fiscal year based on the Observational Construction Program. The report summarizes the measurements data for the purpose of acquisition the basic data for

  14. Collection of URL measurement data in 2010 fiscal year at the Horonobe Underground Research Laboratory project

    International Nuclear Information System (INIS)

    The Horonobe Underground Research Laboratory (URL) Project has being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formations at Horonobe, northern Hokkaido. The URL project consists of two major research areas, 'Geoscientific Research' and 'R and D on Geological Disposal Technologies', and proceeds in three overlapping phases, 'Phase I: Surface-based investigations', 'Phase II: Investigations during tunnel excavation' and 'Phase III: Investigations in the underground facilities', over a period of around 20 years. The Phase I geoscientific research was carried out from March 2001 to March 2006 in parallel with design and execution scheme on URL facilities. In addition, identifying key issues that need to be addressed in the Phase II/III investigations was planned. At the begining of the Phase II investigations, an investigation report titled 'Measurement Plan and Observational Construction Program on Shaft Excavation at the Horonobe Underground Research Laboratory Project' (hereinafter referred to as 'Observational Construction Program') and an investigation report titled 'Measurement Plan and Observational Construction Program on Drift Excavation at the Horonobe Underground Research Laboratory Project' were published. The Observational Construction Program summarizes the followings from the results of the Phase I investigations: measurements for safety and reasonable constructions, enhancement of shaft design and construction technologies and evaluation of appropriateness for the deep geological environment model estimated before shaft excavation. This report summarizes the measurements data acquired at the Ventilation Shaft, the East Shaft and the drifts in 2010 fiscal year based on the Observational Construction Program. The report summarizes the measurements data for the purpose of acquisition the basic data for

  15. Horonobe Underground Research Laboratory project. Investigation program for the 2011 fiscal year

    International Nuclear Information System (INIS)

    As part of the research and development program on geological disposal of high-level radioactive waste (HLW), the Horonobe Underground Research Center, a division of the Japan Atomic Energy Agency (JAEA), is implementing the Horonobe Underground Research Laboratory Project (Horonobe URL Project) with the aim at investigating sedimentary rock formations. According to the research plan described in the 2nd Midterm Plan of JAEA, geological investigations are to be carried out during the drilling of a shaft down to around 350m depth, while research and development in the areas of engineering technology and safety assessment are to be promoted by collaboration with other research organizations. The results of the R and D activities will be systematized as a 'knowledge base' that supports a wide range of arguments related to the safety of geological disposal. The Horonobe URL Project is planned to extend over a period of about 20 years. The investigations will be conducted in three phases, namely 'Phase 1: Surface-based investigations', 'Phase 2: Construction phase' (investigations during construction of the underground facilities) and 'Phase 3: Operation phase' (research in the underground facilities). This report summarizes the investigation program for the 2011 fiscal year (2011/2012). In the 2011 fiscal year, investigations in 'geoscientific research', including 'development of techniques for investigating the geological environment', 'development of engineering techniques for use in the deep underground environment' and 'studies on the long-term stability of the geological environment', are continuously carried out. Investigations in 'research and development on geological disposal technology', including 'improving the reliability of disposal technologies' and 'enhancement of safety assessment methodologies', are also continuously carried out. (author)

  16. Horonobe Underground Research Laboratory project. Investigation program for the 2015 fiscal year

    International Nuclear Information System (INIS)

    As part of the research and development program on geological disposal of high-level radioactive waste (HLW), the Horonobe Underground Research Center, a division of the Japan Atomic Energy Agency (JAEA), is implementing the Horonobe Underground Research Laboratory Project (Horonobe URL Project) with the aim at investigating sedimentary rock formations. According to the research plan described in the 3rd Mid- and Long- term Plan of JAEA, “Near-field performance study”, “Demonstration of repository design option”, and “Verification of crustal-movement buffering capacity of sedimentary rocks” are the top priority issues of the Horonobe URL Project, and schedule of future research and backfill plans of the project will be decided by the end of 2019 fiscal year. The Horonobe URL Project is planned to extend over a period of about 20 years. The investigations will be conducted in three phases, namely “Phase 1: Surface-based investigations”, “Phase 2: Construction phase” (investigations during construction of the underground facilities) and “Phase 3: Operation phase” (research in the underground facilities). This report summarizes the investigation program for the 2015 fiscal year (2015/2016). In the 2015 fiscal year, investigations in “geoscientific research”, including “development of techniques for investigating the geological environment”, “development of engineering techniques for use in the deep underground environment” and “studies on the long-term stability of the geological environment”, are continuously carried out. Investigations in “research and development on geological disposal technology”, including “improving the reliability of disposal technologies” and “enhancement of safety assessment methodologies”, are also continuously carried out. (author)

  17. Recent results of the dark matter search with NaI(T1) detectors at boulby mine

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, B.; Alnerb, G.J.; Barton, J.C.; Bewick, A.; Carson, M.J. E-mail: m.j.carson@sheffield.ac.uk; Davidge, D.; Dawson, J.V.; Gamble, T.; Hart, S.P.; Hollingworth, R.; Howard, A.S.; Jones, W.G.; Joshi, M.K.; Kudryavtsev, V.A.; Lawson, T.B.; Lebedenko, V.; Lehner, M.J.; Lewin, J.D.; Lightfoot, P.K.; Liubaxsky, I.; Luescher, R.; McMillan, J.E.; Morgan, B.; Nicklin, G.; Paling, S.M.; Preece, R.M.; Quenby, J.J.; Roberts, J.W.; Robinson, M.; Smith, N.J.T.; Smith, P.F.; Spoone, N.J.C.; Sumner, T.J.; Tovey, D.R

    2003-07-01

    The NAIAD (NaI Advanced Detector) experiment for WIMP dark matter searches at Boulby Mine (UK) is described. The detector consists of an array of encapsulated and unencapsulated NaI(T1) crystals with high light yield. Six crystals are collecting data at present. Data accumulated by four of them have been used to set new limits on the WIMP-nucleon spin-independent cross-section.

  18. Recent results of the dark matter search with NaI(T1) detectors at boulby mine

    International Nuclear Information System (INIS)

    The NAIAD (NaI Advanced Detector) experiment for WIMP dark matter searches at Boulby Mine (UK) is described. The detector consists of an array of encapsulated and unencapsulated NaI(T1) crystals with high light yield. Six crystals are collecting data at present. Data accumulated by four of them have been used to set new limits on the WIMP-nucleon spin-independent cross-section

  19. Effect of thermal stresses on progressive rock failure at AECL's Underground Research Laboratory

    International Nuclear Information System (INIS)

    Thermal-mechanical behaviour of the rock mass is an important consideration in assessing concepts for deep underground disposal of nuclear fuel waste. The effects of thermal loading on the progressive failure of sparsely fractured granite were investigated in the Heated Failure Tests, conducted in situ at the Underground Research Laboratory (URL). Testing was carried out in four stages to assess the effects of drilling/heating sequence (i.e., loading path), borehole interaction and confining pressure on the development of an excavation damaged zone (EDZ) around a series of 600-mm-diameter observation boreholes. Acoustic emission (AE) activity was found to correlate well with damage development. Results of the tests show that the extent of the EDZ is influenced mainly by the magnitudes of the radial and tangential stresses generated at the periphery of the opening by the combined thermal-mechanical loading. However, the thermal-mechanical loading sequence was also found to affect EDZ development. (author)

  20. Large underground radioactive waste storage tanks successfully cleaned at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Waste retrieval operations were successfully completed in two large underground radioactive waste storage tanks in 1997. The US Department of Energy (DOE) and the Gunite Tanks Team worked cooperatively during two 10-week waste removal campaigns and removed approximately 58,300 gallons of waste from the tanks. About 100 gallons of a sludge and liquid heel remain in each of the 42,500 gallon tanks. These tanks are 25 ft. in diameter and 11 ft. deep, and are located in the North Tank Farm in the center of Oak Ridge National Laboratory. Less than 2% of the radioactive contaminants remain in the tanks, proving the effectiveness of the Radioactive Tank Cleaning System, and accomplishing the first field-scale cleaning of contaminated underground storage tanks with a robotic system in the DOE complex

  1. Early Earth Science Activities in the Sanford Underground Science and Engineering Laboratory at Homestake

    Science.gov (United States)

    Wang, J. S.; Glaser, S. D.; Moore, J. R.; Hart, K.; King, G.; Regan, T.; Bang, S. S.; Sani, R. K.; Roggenthen, W. M.

    2007-12-01

    On July 10, 2007, the former Homestake Mine, Lead, South Dakota, was selected as the development site for the Deep Underground Science and Engineering Laboratory, to become the Sanford Underground Science and Engineering Laboratory at Homestake. Work on refurbishment and certification of the Ross Shaft began in August 2007 to effect pumping of water that had reached the 5000 level in late July. Completion of this work will allow a physics and geosciences laboratory to be constructed on the 4,850 ft level (1,478 m from the surface). Concurrent with reentry operations, several earth science research activities have been initiated. These early activities are as follows: (1) Seismic monitoring system: Accelerometers will be installed in surface boreholes and underground drifts as they become available as a result of the reentry work. (2) Evaluation of the 300 level (91 m), which has multiple locations for horizontal access, is ongoing. This near- surface level, with varying overburden thicknesses, offers excellent opportunities to investigate the "critical zone" in terms of hydrology, ecology, and geochemistry, yielding measurements of both moisture and carbon fluxes to evaluate fluid exchanges with the atmosphere. (3) Water and soil samples were collected in the Ross Shaft as part of the first reentry work. Molecular survey of microbial diversity showed the presence of mesophilic and thermophilic cellulose-degrading microorganisms. (4) Supercritical carbon dioxide injection experiments are being planned that will take advantage of three pairs of existing, nearly vertical, open 8-inch (0.2 m) boreholes that are easily accessible from the Ross Shaft. The candidate holes are located between the 1550 and the 2900 levels and are between 90 to 180 m in length (5) Monitoring of the response of the water during the dewatering operations will be facilitated by the use of existing boreholes. Ultimately, the dewatering operation provide access to the 8000 level (depth of 2,438 m

  2. Scientific investigation in deep boreholes at the Meuse/Haute Marne underground research laboratory, northeastern France

    International Nuclear Information System (INIS)

    From 1994 to 1996, the preliminary investigation carried out by Andra, identified a sector favourable for hosting a laboratory in argillaceous Callovo-Oxfordian formation which has a thickness of 130 m and lies more than 400 m below ground level. In November 1999 Andra began building an Underground Research Laboratory (URL) with a 3D seismic survey over 4 km2. From 2000 to 2004, large programs of boreholes were carried out on site and on the sector in order to define the characteristics of formations, to improve the regional geological and hydrogeological knowledge and to provide an accurate definition of structural features in Callovo-Oxfordian argillites and Dogger limestones. These drilling programs have provided a fine characterization of the argillites on the laboratory area and a good correlation of geological properties at a sector scale. (author)

  3. Collection of URL measurement data in 2008 at the Horonobe Underground Research Laboratory project

    International Nuclear Information System (INIS)

    The Horonobe Underground Research Laboratory (URL) Project has being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formations at Horonobe, northern Hokkaido. The project consists of two major research areas, 'Geoscientific Research' and 'R and D on Geological Disposal', and proceeds in three overlapping phases, 'Phase 1: Surface-based investigation', 'Phase 2: Construction' and 'Phase 3: Operation', over a period of 20 years. The Phase I geoscientific research was carried out from March 2001 to March 2006 in parallel with design and execution scheme on URL facilities. In addition, identifying key issues that need to be addressed in the Phase 2/3 investigations was planned. At the beginning of the Phase 2 investigations, an investigation report titled 'Measurement Plan and Observational Construction Program on Shaft Excavation at the Horonobe Underground Research Laboratory Project' (hereinafter referred to as 'Observational Construction Program') and an investigation report titled 'Measurement Plan and Observational Construction Program on Drift Excavation at the Horonobe Underground Research Laboratory Project' were published. The Observational Construction Program summarizes the followings from the results of the Phase 1 investigations: measurements for safety and reasonable constructions, enhancement of shaft design and construction technologies and evaluation of appropriateness for the deep geological environment model estimated before shaft excavation. This report summarizes the measurements data acquired at the Ventilation Shaft, the East Shaft and the drifts in 2008 based on the Observational Construction Program. The report summarizes for the purpose of acquisition the basic data for carrying out the Observational Construction Program. Two CD-ROMs are attached as appendixes. (author)

  4. The ICARUS T600 Liquid Argon Detector Operation in the Underground Gran Sasso Laboratory

    CERN Document Server

    Vignoli, C

    2014-01-01

    The ICARUS T600 Module is the largest liquid argon detector (760 t LAr mass) ever realized to study neutrino oscill ations and matter stability in the deep underground Gran Sasso Laboratory. One of t he key elements for the detector performance is the liquid argon purity: residual electronegative compounds in argon have to be kept as low as 0.1 part s per billion all over the detector run. The T600 Module design was finalized by the ICARUS Collaboration after years of R&D studies that brought to the viable and scalable industrial solutions necessary for sized experiments with severe safety prescriptions for the underground operation . We present the T600 Module successful commissioning and the 3-years efficient, stable and continuous operation with extraordinary LAr purity, high performance and zero dead time data taking . This result demonstrates for the first time the feasibility of activation and long-term run in safe conditions of sized cryogenic detectors even in a confined underground location and r...

  5. Horonobe Underground Research Laboratory project investigation program for the 2007 fiscal year (Translated document)

    International Nuclear Information System (INIS)

    As past of the research and development program on the geological disposal of high-level radioactive waste (HLW), the Horonobe Underground Research Center, a division of the Japan Atomic Energy Agency (JAEA), is implementing the Horonobe Underground Research Laboratory Project (Horonobe URL Project) with the aim at investigating sedimentary rock formations. According to the research plan described in the Midterm Plan of JAEA, geological investigations are to be carried out during the drilling of a shaft down to intermediate depth, while research and development in the areas of engineering technology and safety assessment are to be promoted by collaboration with other research organizations. The results of the R and D activities will be systematized as a 'knowledge base' that supports a wide range of arguments related to the safety of geological disposal. The Horonobe URL Project is planned to extend over a period of 20 years. The investigations will be conducted in three phases, namely 'Phase 1: Surface-based investigations', 'Phase 2: Construction phase' (investigations during construction of the underground facilities) and 'Phase 3: Operation phase' (research in the underground facilities). This report summarizes the investigation program for the 2007 fiscal year (2007/2008), the third year of the Phase 2 investigations. In the 2007 fiscal year, investigations in geoscientific research', including 'development of techniques for investigating the geological environment', 'development of techniques for use in the deep underground environment' and 'studies on the long-term stability of the geological environment', is continuously carried out. Investigations in 'research and development on geological disposal technology', including improving the reliability of disposal technologies' and 'enhancement of safety assessment methodologies' are also continuously carried out. Construction of the underground facilities is ongoing at the Ventilation Shaft and the East Shaft

  6. Horonobe Underground Research Laboratory project investigation program for the 2007 fiscal year

    International Nuclear Information System (INIS)

    As part of the research and development program on geological disposal of high-level radioactive waste (HLW), the Horonobe Underground Research Center, a division of the Japan Atomic Energy Agency (JAEA), is implementing the Horonobe Underground Research Laboratory Project (Horonobe URL Project) with the aim of investigating sedimentary rock formations. According to the research plan described in the Midterm Plan of JAEA, geological investigations are to be carried out during the drilling of a shaft down to intermediate depth, while research and development in the areas of engineering technology and safety assessment are to be promoted by collaboration with other research organizations. The results of the R and D activities will be systematized as a 'knowledge base' that supports a wide range of arguments related to the safety of geological disposal. The Horonobe URL Project is planned to extend over a period of 20 years. The investigations will be conducted in three phases, namely 'Phase 1: Surface-based investigations', 'Phase 2: Construction phase' (investigations during construction of the underground facilities) and 'Phase 3: Operation phase' (research in the underground facilities). This report summarizes the investigation program for the 2007 fiscal year (2007/2008), the third year of the Phase 2 investigations. In the 2007 fiscal year, investigations in geoscientific research', including 'development of techniques for investigating the geological environment', 'development of techniques for long-term monitoring of the geological environment', development of engineering techniques for use in the deep underground environment' and studies on the long-term stability of the geological environment', is continuously carried out. Investigations in 'research and development on geological disposal technology', including 'improving the reliability of disposal technologies' and 'enhancement of safety assessment methodologies', is also continuously carried out

  7. Status of the Horonobe Underground Research Laboratory project, Hokkaido, Japan, and future plan

    International Nuclear Information System (INIS)

    The Horonobe Underground Research Laboratory (URL) project has been being pursued to develop the geological disposal technology of HLW intended for a sedimentary rock (mudstone) and saline groundwater distributing in the Horonobe area, north part of Hokkaido, Japan, as an off-site URL, since 2001. This project, extended over a period of about 20 years as a whole, has been being advanced divided into 3 phases; surface-based investigation phase (Phase I), construction phase (Phase II) and operation phase (Phase III). Phase I was completed in March, 2006 and Phase II initiated in November, 2005. In Phase I, the geological environment model (geology/geological structure, hydrology, groundwater chemistry and rock mechanics) was constructed based on the results of geophysical survey and deep borehole investigation, etc., and design of underground facilities and decision of the construction plan were carried out. The underground facilities consist of a ventilation shaft (the Ventilation shaft), 2 access shafts (the East and the West access shafts) and several horizontal drifts (140m, 250m, 350m and 500m in depth). By the first half of FY2010, both of the Ventilation shaft and the East access shaft were excavated up to 250m in depth and the 140m depth gallery was completed. The 250m depth drift was additionally connected between the Ventilation shaft and the East access shaft. The geological formation in the URL area consists of mainly the Koetoi Formation (shallower formation) and the Wakkanai Formation (deeper formation). During construction, so far, in-situ experiments and investigations for the geological environment and engineering technology such as measurements for EDZ/EdZ (Mine-by experiment, seismic tomography, hydraulic investigations, etc.), cross-hole hydraulic tests, initial rock stress measurements, in-situ construction test of shotcrete by low alkaline cement, etc. were carried out in the 140m depth gallery. Presently, monitoring of groundwater chemistry

  8. The LUNA experiment at Gran Sasso Laboratory: Studying stars by going underground

    International Nuclear Information System (INIS)

    Accurate knowledge of thermonuclear reaction rates is a key issue in nuclear astrophysics: it is important for understanding the energy generation, neutrino production and the synthesis of the elements in stars and during primordial nucleosynthesis. Cross-section measurements are mainly hampered by the very low counting rate and cosmic background. An underground location is extremely advantageous for such studies, as demonstrated by the LUNA experiment in the Gran Sasso Laboratory (Italy). This paper reports on the results recently obtained by this experiment and on the future perspectives in the field

  9. The Southern Hemisphere Hunt for Dark Matter at the Stawell Underground Physics Laboratory

    OpenAIRE

    Urquijo, Phillip

    2016-01-01

    I report on the Stawell Underground Physics Laboratory (SUPL), a new facility to be built in 2016, located 1 km below the surface in western Victoria, Australia. I will discuss the status of the proposed SABRE experiment, which will be comprised of a pair of high purity 50-60 kg NaI crystal detectors with active veto shielding to be located in labs in the Northern and Southern Hemispheres respectively. I also discuss projects beyond SABRE, including directional dark matter detectors, which wi...

  10. VIRTUS. Virtual underground laboratory in rock salt; VIRTUS. Virtuelles Untertagelabor im Steinsalz

    Energy Technology Data Exchange (ETDEWEB)

    Wieczorek, Klaus [Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH (GRS), Koeln (Germany); Behlau, Joachim; Heemann, Ulrich [Bundesanstalt fuer Geowissenschaften und Rohstoffe, Hannover (Germany); Masik, Steffen; Raab, Michael [Fraunhofer-Institut fuer Fabrikbetrieb und -Automatisierung (IFF), Magdeburg (Germany); Mueller, Christian; Simo, Eric Kuate [DBE Technology GmbH, Peine (Germany)

    2014-12-15

    Germany does not have an underground laboratory to study the behavior of geological formations for the use as final repository for radioactive high-level wastes. VIRTUS was developed to have an adequate tool to study the complex and safety relevant processes in geological structures for a fast and effective planning and testing of final repository design. The three-dimensional visualization of the numerical simulations results will help n the scientists and the interested public to understand the process flows in a final repository.

  11. The Southern Hemisphere Hunt for Dark Matter at the Stawell Underground Physics Laboratory

    CERN Document Server

    Urquijo, Phillip

    2016-01-01

    I report on the Stawell Underground Physics Laboratory (SUPL), a new facility to be built in 2016, located 1 km below the surface in western Victoria, Australia. I will discuss the status of the proposed SABRE experiment, which will be comprised of a pair of high purity 50-60 kg NaI crystal detectors with active veto shielding to be located in labs in the Northern and Southern Hemispheres respectively. I also discuss projects beyond SABRE, including directional dark matter detectors, which will be used to determine the origin of any true dark matter signals.

  12. The LUNA experiment at Gran Sasso Laboratory: Studying stars by going underground

    Science.gov (United States)

    Guglielmetti, Alessandra

    2015-10-01

    Accurate knowledge of thermonuclear reaction rates is a key issue in nuclear astrophysics: it is important for understanding the energy generation, neutrino production and the synthesis of the elements in stars and during primordial nucleosynthesis. Cross-section measurements are mainly hampered by the very low counting rate and cosmic background. An underground location is extremely advantageous for such studies, as demonstrated by the LUNA experiment in the Gran Sasso Laboratory (Italy). This paper reports on the results recently obtained by this experiment and on the future perspectives in the field.

  13. Numerical analysis for heating and infiltration test at model deposition hole in underground hard rock laboratory

    International Nuclear Information System (INIS)

    Various insitu tests for the safety disposal of radioactive waste are conducted in the Swedish underground hard rock laboratory. Canister Retrieval Test (CRT) is a heating and infiltration test at a full-scale deposition hole. In this paper, we conducted thermo-hydro-mechanical coupled analysis for CRT and compared the results with measured data. The evolution of temperature and relative humidity and the profiles of bentonite's dry density were well reproduced by numerical analysis. Sensitivity analysis was also conducted in order to investigate the influence of hydraulic properties of surrounding rock mass on re-saturation behavior of bentonite in a deposition hole. (author)

  14. New cosmic rays experiments in the underground laboratory of IFIN-HH from Slanic Prahova, Romania

    International Nuclear Information System (INIS)

    Since 2006 a modern laboratory has been developed by IFIN-HH in the underground of Slanic Prahova salt ore. This work presents a short review of previous scientific activities performed in the underground laboratory, in parallel with some plans for the future. A mobile detector for cosmic muon flux measurements has been set up at IFIN-HH, Romania. The device is used to measure the muon flux on different locations at the surface and underground and it consists of two detection layers, each one including four large scintillator plates. A new rotatable detector for measurements of the directional variation of the muon flux has been designed and it is presently under preliminary tests. Built from four layers of sensitive material and using for collecting the signals and directing them to the micro PMTs a new technique, through optical fibers instead wave length shifters, it allows an easy discrimination of the moun flux on the arrival directions of muons. Combining the possibility to rotate and the directionality properties, the underground muon detector is acting like a muon tomography device, being able to scan, using cosmic muons, the rock material above the detector. In parallel new detection system based on SiPM will be also installed in the following weeks. It should be composed by four layers, each layer consisting in 4 scintillator plates what we consider in the following as a module of detection. For this purpose, first two scintillator layers, with the optical fibers positioned on perpendicular directions are put in coincidence with other two layers, 1 m distance from the first two, with similar optical fiber arrangement, thus allowing reconstructing muon trajectory. It is intended also to design and construct an experimental device for the investigation of such radio antennas and the behavior of the signal in rock salt at the Slanic salt mine in Romania. Another method to detect high energy neutrinos is based on the detection of secondary particles resulting

  15. Study on applicability of low alkaline cement in Horonobe Underground Research Laboratory project (Contract research)

    International Nuclear Information System (INIS)

    In Horonobe Underground Research Center, construction of underground facility began in 2005 and in-situ experiment using the low alkaline cement: HFSC (Highly Fly-ash contained Silica-fume Cement) is planned in a part of the gallery. Before the experiment will be constructed in the gallery, it is necessary to check that the HFSC has performance as tunnel support under the actual construction. The main work in 2007 is making a detailed the plan of the in-situ experiment, that is scheduled after 2008 and laboratory tests on lowering behavior of pH in the HFSC concrete were conducted. On the construction practicality experiment with low alkaline concrete, HFSC in-situ experiment plan was studied in case using HSFC424N as shotcrete. The aims of the experiment are the validation in applicability of low alkaline concrete as a support member for underground opening in the realistic geological environment and building the method to evaluate influence to the surrounding geological environment. The location of the in-situ test is in the connection tunnel of a depth of 140m and the geology is the Koetoi formation. The period of the test is approximately 10 years. The test plan was designed to be able to make a comparison with Ordinary Portland Cement. As it is necessary to confirm the strength property of the HFSC concrete with materials produced at construction site, strength of the base concrete using local procured fine aggregate and coarse aggregate based on the result of the selection of mix proportion in 2005 research was checked. On laboratory tests on lowering behavior of pH in HFSC concrete, the pH of immersion fluid was measured and components of the immersion fluid and the solid phase were analyzed using test specimens in a long-term immersion test which had been continued since 2005. (author)

  16. The second-phase development of the China JinPing underground Laboratory

    CERN Document Server

    Li, Jainmin; Haxton, Wick; Wang, Joseph S Y

    2014-01-01

    During 2013-2015 an expansion of the China JinPing underground Laboratory (CJPL) will be undertaken along a main branch of a bypass tunnel in the JinPing tunnel complex. This second phase of CJPL will increase laboratory space to approximately 96,000 m^3, which can be compared to the existing CJPL-I volume of 4,000 m^3. One design configuration has eight additional hall spaces, each over 60 m long and approximately 12 m in width, with overburdens of about 2.4 km of rock, oriented parallel to and away from the main water transport and auto traffic tunnels. Concurrent with the excavation activities, planning is underway for dark matter and other rare-event detectors, as well as for geophysics/engineering and other coupled multi-disciplinary sensors. In the town meeting on 8 September, 2013 at Asilomar, CA, associated with the 13th International Conference on Topics in Astroparticle and Underground Physics (TAUP), presentations and panel discussions addressed plans for one-ton expansions of the current CJPL germ...

  17. Experiments performed on granite in the underground research laboratory at Fanay-Augeres, France

    International Nuclear Information System (INIS)

    The Department de Protection Technique (DPT), of the Institut de Protection et de Surete Nucleaire (IPSN), of the Commissariat a l'Energie Atomique (CEA) has developed in the Fanay-Augeres uranium mine, near Limoges, in a granitic formation of the Massif Central, and underground research laboratory in order to improve the knowledge of the properties and behaviour of the fractured medium. Two main programs are at present underway in this laboratory. They are: a study of the influence of the scale effect on the measured value of the permeability and dispersion coefficients and a hydro-thermo-mechanical experiment. This paper is devoted to the review and to the description of the second program, which is now being initiated

  18. Standard test method for laboratory evaluation of magnesium sacrificial anode test specimens for underground applications

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1997-01-01

    1.1 This test method covers a laboratory procedure that measures the two fundamental performance properties of magnesium sacrificial anode test specimens operating in a saturated calcium sulfate, saturated magnesium hydroxide environment. The two fundamental properties are electrode (oxidation potential) and ampere hours (Ah) obtained per unit mass of specimen consumed. Magnesium anodes installed underground are usually surrounded by a backfill material that typically consists of 75 % gypsum (CaSO4·2H2O), 20 % bentonite clay, and 5 % sodium sulfate (Na2SO4). The calcium sulfate, magnesium hydroxide test electrolyte simulates the long term environment around an anode installed in the gypsum-bentonite-sodium sulfate backfill. 1.2 This test method is intended to be used for quality assurance by anode manufacturers or anode users. However, long term field performance properties may not be identical to property measurements obtained using this laboratory test. Note 1—Refer to Terminology G 15 for terms used ...

  19. Daily and seasonal radon variability in the underground low-background laboratory in Belgrade, Serbia

    International Nuclear Information System (INIS)

    Radon time-series analysis, based on the short-term indoor radon measurements performed worldwide, shows two main periodicity: daily and seasonal. The information obtained from time series of the measured radon values is the results of the complex radon dynamics that arises from the influence of the large number of different parameters (the state of the indoor atmosphere (temperature, pressure and relative humidity, aerosol concentration), the exchange rate between indoor and outdoor air and so on). In this paper we considered daily radon variability in the underground low-background laboratory in Belgrade, Serbia. The results are originated from the radon time-series analysis based on the 3 y of the continuous short-term indoor radon measurements. At the same time, we obtained the time series of the temperature, pressure and relative humidity in the laboratory. We also tried to find the correlation between different time series. (authors)

  20. Selection of a site adapted to the realization of an underground laboratory in clay formations

    International Nuclear Information System (INIS)

    Research carried out in Italy by ENEA for site selection of an underground laboratory in a clay formation are presented. Mine roadways, abandoned tunnels, natural or artificial escarpments are prospected. The Pasquasia potash mine in Sicily was selected. The decline reach the lower pliocen starta from -110m to -200m below surface through a clay formation. The site selected for the laboratory is 160 m deep. A 50 meter-long horizontal tunnel will be dug. Experiments planned include thermal, hydrological, mechanical and thermomechanical behavior of clays. Data on temperature variations, interstitial fluid pressure, total pressure, deformations produced by a heater placed in clay will be obtained. Data related to mechanical behavior of formation will be recorded before, during and after the construction of the gallerie. Convergence of borehole will be also studied

  1. Mizunami Underground Research Laboratory project. Annual report for fiscal year 2013

    International Nuclear Information System (INIS)

    Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to construct scientific and technical basis for geological disposal of High-level Radioactive Waste (HLW). The MIU Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III). The MIU Project has been ongoing the Phase II and the Phase III in fiscal year 2013. For Phase II investigations, as establishment of techniques for investigation, analysis and assessment of the deep geological environment, geological mapping and pilot borehole investigations at the -500m stage were conducted, and borehole investigations were carried out at the -500m stage in order to characterize rock mechanical properties. Moreover, observations of hydraulic pressure and groundwater chemistry have been continued at the existing boreholes. As development of engineering technologies for deep underground application, validation and evaluation of design methodology, existing and supplementary excavation methods, countermeasures during excavation and safe construction of underground facilities were carried out based on data obtained during shafts and galleries construction. For Phase III investigations, laboratory tests were conducted for development of solute transport conceptual models and observation of solute transport properties. The groundwater recovery experiment has also been started in order to develop methodology for understanding the evolution of geological environment during/after the back-filling of drifts. Galleries at the GL-500m level have been excavated in fiscal year 2013. As collaboration studies, various experiments and researches have been performed with AIST (National Institute of Advanced Industrial Science and Technology), RWMC (Radioactive Waste Management

  2. Final report on the surface-based investigation (phase 1) at the Mizunami Underground Laboratory project

    International Nuclear Information System (INIS)

    The Mizunami Underground Laboratory (MIU) Project is a comprehensive research project investigating the deep underground environment within crystalline rock being conducted by Japan Atomic Energy Agency at Mizunami City in Gifu Prefecture, central Japan and its role is defined in 'Framework for Nuclear Energy Policy' by Japan Atomic Energy Commission. The MIU Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III), with a total duration of 20 years. The overall project goals of the MIU Project from Phase I through to Phase III are: 1) to establish techniques for investigation, analysis and assessment of the deep geological environment, and 2) to develop a range of engineering for deep underground application. During Phase I, the overall project goals were supported by Phase I goals. For the overall project goals 1), the Phase I goals were set to construct models of the geological environment from all surface-based investigation results that describe the geological environment prior to excavation and predict excavation response. For the overall project goals 2), the Phase I goals were set to formulate detailed design concepts and a construction plan for the underground facilities. This report summarizes the Phase I investigation which was completed in March 2005. The authors believe this report will make an important milestone, since this report clarifies how the Phase I goals are achieved and evaluate the future issues thereby direct the research which will be conducted during Phase II. With regard to the overall project goals 1), 'To establish techniques for investigation, analysis and assessment of the deep geological environment,' a step-wise investigation was conducted by iterating investigation, interpretation, and assessment, thereby understanding of geologic environment was progressively and effectively improved with progress of investigation. An optimal procedure from

  3. Study on engineering technologies in the Mizunami Underground Research Laboratory. FY 2009-2010 (Contract research)

    International Nuclear Information System (INIS)

    As Mizunami Underground Research Laboratory project, research on engineering technology at a deep underground has been carried out in order to establish the technological basis. The research is mainly aimed in four categories: “Development of design and construction planning technology”, “Development of construction technology”, “Development of countermeasure technology” and “Development of technology for security”. In the Construction Phase (Phase 2) of the MIU plan, these four categorized researches on engineering technology were examed based on the data obtained during construction. Following are the details of the research activities performed in each category. Regarding “Development of design and construction planning technology”, design validation using the data obtained during the excavation down through granite to GL-460m, evaluation of the pilot borehole investigation conducted at the Main and Ventilation shafts and the pilot borehole investigation plan below GL-500m, validity assessment of the risk management method using its prototype focused on the large scale underground development project, and social risk measurement and management of the MIU using case study were performed. As for “Development of construction technology”, as quality control management, evaluation of the technique applied for the execution management and examination focused on the liner concrete, also estimation of the short step method adopted for the shaft excavation based on the actual construction cycle time were conducted, and then excavation schedule down to GL-1000m was predicted based on the actual excavation progress. As for “Development of countermeasure technology”, countermeasure method adopted for groundwater inflow around GL-400m in the Ventilation shaft was evaluated and grouting plan below GL-500m was presented. And for “Development of technology for security”, from the point of view of long term maintenance including the safety

  4. Operation and performance of the ICARUS T600 cryogenic plant at Gran Sasso underground Laboratory

    International Nuclear Information System (INIS)

    ICARUS T600 liquid argon time projection chamber is the first large mass electronic detector of a new generation able to combine the imaging capabilities of the old bubble chambers with an excellent calorimetric energy measurement. After the three months demonstration run on surface in Pavia during 2001, the T600 cryogenic plant was significantly revised, in terms of reliability and safety, in view of its long term operation in an underground environment. The T600 detector was activated in Hall B of the INFN Gran Sasso Laboratory during spring 2010, where it was operated without interruption for about three years, taking data exposed to the CERN to Gran Sasso long baseline neutrino beam (CNGS) and cosmic rays. In this paper the T600 cryogenic plant is described in detail together with the commissioning procedures that lead to the successful operation of the detector shortly after the end of the filling with liquid argon. Overall plant performance and stability during the underground run are discussed. Finally, the decommissioning procedures, carried out about six months after the end of the CNGS neutrino beam operation, are reported

  5. Development and enhancement of grouting technologies in the Mizunami Underground Research Laboratory. Part 2 (Contract research)

    International Nuclear Information System (INIS)

    In the Tono Geoscience Center of Japan Atomic Energy Agency (hereafter, JAEA), Mizunami Underground Research Laboratory project has been conducted to develop scientific and technological basis for geological disposal. The concept of geological disposal is based on a multi-barrier system which combines a stable geological environment with an engineered barrier system (EBS). In order to develop an engineering basis for the construction of disposal system, the enhancement of grouting technologies among engineering technologies is needed. In this study, the comprehensive performance of suspension type grouting materials to seal rock fractures encountered in excavation works at deep underground has been checked, and the clogging phenomenon at the entrance of rock fractures has been investigated following the previous year. Research issues are as follows: study on rheology of high viscous grouting material, study of clogging phenomenon of suspension type grouting materials under high injection pressure, literature review on infiltration characteristics of grouting materials to point out research issues to be solved and summary of this research works to date. Among these, in high-pressure clogging test, prototype test equipment developed last year has been improved completely to simulate grout flow accurately in actual grouting scene. The test results indicate the possibility to prevent the clogging phenomenon of thick cement slurry by increasing the injection pressure gradually. (author)

  6. Development and enhancement of grouting technologies in the Mizunami Underground Research Laboratory (Contract research)

    International Nuclear Information System (INIS)

    In the Tono Geoscience Center of Japan Atomic Energy Agency (hereafter, JAEA), Mizunami Underground Research Laboratory project is being advanced to develop a scientific and technological basis for geological disposal. The concept of geological disposal is based on a multi-barrier system which combines a stable geological environment with an engineered barrier system (EBS). In order to develop a engineering basis for the construction of disposal system, the enhancement of grouting technologies among engineering technologies is needed. In this study, the comprehensive performance of suspension type grouting materials to seal rock fractures encountered in excavation works at deep underground has been checked, and the clogging phenomenon at the entrance of rock fractures has been investigated following the previous year. Research issues are as follows; Study on grouting concept to secure high-level water sealing, study on the test method to check grout clogging under high injection pressure, study on grouting material which can penetrate into finer fractures. Among these, in the study on penetrability test method, prototype test instruments were made and a series of preliminary tests were conducted. (author)

  7. Countermeasures planned for reducing water inflow into deep shafts at the Mizunami Underground Research Laboratory

    International Nuclear Information System (INIS)

    The Mizunami Underground Research Laboratory (MIU) is currently being constructed. The MIU design consists of two 1,000 m-deep shafts with several research galleries. The goals of the MIU project are to establish techniques for investigation, analysis and assessment of deep geological environments, and to develop a range of engineering expertise for application in deep underground excavations in crystalline rocks such as granite. The diameter of the Main and the Ventilation Shafts are 6.5 m and 4.5 m, respectively. Horizontal tunnels to connect the shafts will be excavated at 100 m depth intervals. The Middle Stage, at about 500 m in depth, and the Main Stage, at about 1,000 m in depth, will be the main locations for scientific investigations. The Main and the Ventilation Shafts were 180 m and 191 m deep, respectively, in November 2006. During construction, water inflow into the shafts has been increasing and affecting the project progress. In order to reduce the water inflow into the shafts, pre- and post-excavation grouting has been planned. A post-excavation grouting test has been undertaken in the Ventilation Shaft and the applicability of several techniques has been evaluated. This paper describes an outline of the MIU project, its work plan and the results of the post-excavation grouting test. (author)

  8. Low frequency vibration tests on a floating slab track in an underground laboratory

    Institute of Scientific and Technical Information of China (English)

    De-yun DING; Wei-ning LIU; Ke-fei LI; Xiao-jing SUN; Wei-feng LIU

    2011-01-01

    Low frequency vibrations induced by underground railways have attracted increasing attention in recent years. To obtain the characteristics of low frequency vibrations and the low frequency performance of a floating slab track (FST), low frequency vibration tests on an FST in an underground laboratory at Beijing Jiaotong University were carried out. The FST and an unbalanced shaker SBZ30 for dynamic simulation were designed for use in low frequency vibration experiments. Vibration measurements were performed on the bogie of the unbalanced shaker, the rail, the slab, the tunnel invert, the tunnel wall, the tunnel apex, and on the ground surface at distances varying from 0 to 80 m from the track. Measurements were also made on several floors of an adjacent building. Detailed results of low frequency vibration tests were reported. The attenuation of low frequency vibrations with the distance from the track was presented, as well as the responses of different floors of the building. The experimental results could be regarded as a reference for developing methods to control low frequency vibrations and for adopting countermeasures.

  9. Countermeasures Planned for Reducing Water Inflow into Deep Shafts at the Mizunami Underground Research Laboratory

    Science.gov (United States)

    Kuji, Masayoshi; Sato, Toshinori; Mikake, Shinichiro; Hara, Nasato; Minamide, Masashi; Sugihara, Kozo

    The Mizunami Underground Research Laboratory (MIU) is currently being constructed. The MIU design consists of two 1,000 m-deep shafts with several research galleries. The goals of the MIU project are to establish techniques for investigation, analysis and assessment of deep geological environments, and to develop a range of engineering expertise for application in deep underground excavations in crystalline rocks such as granite. The diameter of the Main and the Ventilation Shafts are 6.5 m and 4.5 m, respectively. Horizontal tunnels to connect the shafts will be excavated at 100 m depth intervals. The Middle Stage, at about 500 m in depth, and the Main Stage, at about 1,000 m in depth, will be the main locations for scientific investigations. The Main and the Ventilation Shafts were 180 m and 191 m deep, respectively, in November 2006. During construction, water inflow into the shafts has been increasing and affecting the project progress. In order to reduce the water inflow into the shafts, pre- and post-excavation grouting has been planned. A post-excavation grouting test has been undertaken in the Ventilation Shaft and the applicability of several techniques has been evaluated. This paper describes an outline of the MIU project, its work plan and the results of the post-excavation grouting test.

  10. Operation and performance of the ICARUS-T600 cryogenic plant at Gran Sasso underground Laboratory

    CERN Document Server

    Antonello, M; Baibussinov, B; Boffelli, F; Bubak, A; Calligarich, E; Canci, N; Centro, S; Cesana, A; Cieślik, K; Cline, D B; Cocco, A G; Dabrowska, A; Dermenev, A; Disdier, J M; Falcone, A; Farnese, C; Fava, A; Ferrari, A; Gibin, D; Gninenko, S; Guglielmi, A; Haranczyk, M; Holeczek, J; Ivashkin, A; Kirsanov, M; Kisiel, J; Kochanek, I; Lagoda, J; Mania, S; Menegolli, A; Meng, G; Montanari, C; Otwinowski, S; Picchi, P; Pietropaolo, F; Plonski, P; Rappoldi, A; Raselli, G L; Rossella, M; Rubbia, C; Sala, P R; Scaramelli, A; Segreto, E; Sergiampietri, F; Stefan, D; Sulej, R; Szarska, M; Terrani, M; Torti, M; Varanini, F; Ventura, S; Vignoli, C; Wang, H G; Yang, X; Zalewska, A; Zani, A; Zaremba, K

    2015-01-01

    ICARUS T600 liquid argon time projection chamber is the first large mass electronic detector of a new generation able to combine the imaging capabilities of the old bubble chambers with the excellent calorimetric energy measurement. After the three months demonstration run on surface in Pavia during 2001, the T600 cryogenic plant was significantly revised, in terms of reliability and safety, in view of its long-term operation in an underground environment. The T600 detector was activated in Hall B of the INFN Gran Sasso Laboratory during Spring 2010, where it was operated without interruption for about three years, taking data exposed to the CERN to Gran Sasso long baseline neutrino beam and cosmic rays. In this paper the T600 cryogenic plant is described in detail together with the commissioning procedures that lead to the successful operation of the detector shortly after the end of the filling with liquid Argon. Overall plant performance and stability during the long-term underground operation are discusse...

  11. Influence of rock spalling on concrete lining in shaft sinking at the Horonobe Underground Research Laboratory

    International Nuclear Information System (INIS)

    A shaft is the shortest way to access the deep underground. In shaft sinking through large-scale faults or under low competence factor, spalling of shaft walls is likely to occur. Although earlier studies indicated that rock spalling is an undesirable phenomenon that threatens safety in excavation work and causes delay in construction schedule, there have been few studies which discussed damage to concrete lining induced by spalling. Japan Atomic Energy Agency has been constructing three shafts (one for ventilation and the others for access) to a depth of 500 m in the Horonobe Underground Research Laboratory. During the construction of the Ventilation Shaft (4.5 m diameter) below a depth of 250 m, rock spalling occurred at several depths and an open crack developed in the concrete lining installed just above the location of the rock spalling. In this study, the geometry of the shaft wall was measured using a three-dimensional laser scanner. Numerical analysis was also conducted to estimate changes in stress distribution and deformation induced by rock spalling in both the concrete lining and the surrounding rock. As a result, it was clarified that rock spalling induced a vertical tensile stress in the concrete lining. Especially, the tensile stress in a concrete lining was likely to exceed the tensile strength of the concrete lining when it developed more than 100 cm into the wall rock. (author)

  12. Earthquake induced vibrations versus depth at the underground research laboratory of Meuse/Haute-Marne

    International Nuclear Information System (INIS)

    Document available in extended abstract form only. Meuse/Haute-Marne underground research laboratory is installed in a region rated at very low seismic hazard for obvious safety reasons. No earthquake of magnitude greater than 3.5 has been reported or identified in the area of interest through historical evidence or records. There are nevertheless a few active faults over the 60 km distance range whose induced traveling vibrations can be detected. Known historical earthquakes showed a magnitude between 3 and 6. Even if the seismic waves, as a transient mechanical input, are of very low levels, it is of interest to characterize their amplitudes in the laboratory to find out if they may have some influence on the design of underground installations. Another issue is to know whether or not seismic waves are amplified or attenuated according to depth and the lithology of the geological overburden. It is known that seismic ground-motion is generally stronger at the surface than underground. For shallow underground structures, Power et al (1996) have estimated the ratio between the maximum acceleration and the surface at different depths; they observed that it decreased by 10% every 15 meters. This result cannot be generalized since it depends largely on the geological setting. More recently Aydan et al (2009) compared the acceleration of the earthquake in L'Aquila in Italy (6.3 magnitude) between a surface station and a station located at the Underground Physics Laboratory at Gran Sasso, 1400 m depth. In this case, the maximum acceleration of the surface wave was found to be more than 6 times higher than in the deep gallery. This amplification is due mainly to the interface between soil and atmosphere, where the bulk waves are largely reflected or refracted and while surface waves are dominant. There are also site effects that amplify the wave amplitude especially in the superficial sedimentary layers. Furthermore, for the same wave, the amplitude of ground motion is

  13. First results of the IGEX dark matter experiment at the Canfranc Underground Laboratory

    International Nuclear Information System (INIS)

    The enriched 76Ge double-beta decay detectors from the International Germanium EXperiment (IGEX), operating in the Canfranc Underground Laboratory with an overbuden of 2450 m.w.e., were recently upgraded to use them also in a search for WIMPs. This paper presents a description of the experiment and the data analysis as well as a new exclusion plot, σ(m), derived from the IGEX data for WIMP-nucleon spin-independent interaction. To obtain this result, 30 days of data from one 2-kg IGEX detector, with an energy threshold Ethr ∼ 4 keV, have been considered. These results improve the exclusion limits derived from other conventional ionization germanium experiments in the ∼ 50 GeV DAMA region

  14. Gator: a low-background counting facility at the Gran Sasso Underground Laboratory

    CERN Document Server

    Baudis, L; Askin, A; Angle, J; Aprile, E; Bruch, T; Kish, A; Laubenstein, M; Manalaysay, A; Undagoitia, T Marrodan; Schumann, M

    2011-01-01

    A low-background germanium spectrometer has been installed and is being operated in an ultra-low background shield (the Gator facility) at the Gran Sasso underground laboratory in Italy (LNGS). With an integrated rate of ~0.16 events/min in the energy range between 100-2700 keV, the background is comparable to those of the world's most sensitive germanium detectors. After a detailed description of the facility, its background sources as well as the calibration and efficiency measurements are introduced. Two independent analysis methods are described and compared using examples from selected sample measurements. The Gator facility is used to screen materials for XENON, GERDA, and in the context of next-generation astroparticle physics facilities such as DARWIN.

  15. Status of the ANAIS Dark Matter Project at the Canfranc Underground Laboratory

    CERN Document Server

    Amaré, J; Cuesta, C; García, E; Martínez, M; Oliván, M A; Ortigoza, Y; de Solórzano, A Ortiz; Pobes, C; Puimedón, J; Sarsa, M L; Villar, J A; Villar, P

    2015-01-01

    The ANAIS (Annual modulation with NaI(Tl) Scintillators) experiment aims at the confirmation of the DAMA/LIBRA signal using the same target and technique at the Canfranc Underground Laboratory (LSC). Along 2016, 112.5 kg of ultra pure NaI(Tl) crystals will be installed at LSC in a 3x3 modules matrix configuration. The ANAIS-25 and ANAIS-37 set-ups have been taking data at the LSC testing the detector performance, the DAQ and analysis systems, and assessing the background. Main results coming from both set-ups will be summarized in this paper, focusing on the excellent detector performance and background understanding. Prospects for the experiment will be also briefly revised.

  16. Mizunami Underground Research Laboratory project. Annual report for fiscal year 2006

    International Nuclear Information System (INIS)

    Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is developing a geoscientific research project named Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to establish scientific and technological basis for geological disposal of HLW. Geoscientific research at MIU is planned to be carried out in three phases over a period of 20 years; Surface-based Investigation Phase (Phase I), Construction Phase (Phase II) and Operation Phase (Phase III). Currently, the project is under the Construction Phase. This document presents the following results of the research and development performed in 2006 fiscal year, as a part of the Construction Phase based on the MIU Master Plan updated in 2002, 1) Investigation at the MIU Construction Site and the Shobasama Site, 2) Construction at the MIU Construction Site, 3) Research Collaboration. (author)

  17. Estimating the state of stress from subhorizontal hydraulic fractures at the Underground Research Laboratory, Manitoba

    International Nuclear Information System (INIS)

    We conducted 9 complete hydraulic fracturing in situ stress measurements in vertical borehole HF1 at the 420 Level of AECL's Underground Research Laboratory (URL), near Pinawa, Manitoba. The tests did not result in vertical fractures. Thus, a generalized least-squares criterion was employed to compute the estimated principal horizontal in situ stresses. The large number of redundant test results enabled us to estimate the stress condition with confidence, even though the hydraulic fractures were only gently inclined. The estimated in situ stress regime within the range between 25 and 95 m below the 420 Level (445-515 m below the surface) is Sv 12-14 MPa; Sh = 36(±16) MPa; SH = 54(±13) MPa at 120o(±32o). The results are consistent with other independently conducted measurements at the URL. (Author)

  18. In-situ chemical osmosis experiment in boom clay at the underground research laboratory of Mol

    International Nuclear Information System (INIS)

    Clay rich layers have traditionally been regarded as natural protective covers in regional aquifers because of their low permeability. In the absence of water conducting features, these deposits provide the low flow environment required for waste containment. Comprehensive understanding of the physical and chemical processes that control water and solute transport through low permeability argillaceous formations and to the environment is a key factor for assessing their suitability as host rocks. The Boom Clay, an over consolidated marine Oligocene deposit, is considered as a potential host rock for radioactive waste disposal. For more than two decades, extensive hydraulic and hydrochemical research has been carried out in the Boom Clay at the HADES Underground Research Laboratory (URL) in Mol (Belgium). The main objective of the experiments conducted at the HADES URL has been to characterize the in-situ hydrogeological conditions, to determine the hydraulic parameters, and to study the mechanisms controlling the chemistry and the composition of the Boom Clay pore water. (authors)

  19. Microbial analysis of the buffer/container experiment at AECL's underground research laboratory

    International Nuclear Information System (INIS)

    The Buffer/Container Experiment (BCE) was carried out at AECL's Underground Research Laboratory (URL) for 2.5 years to examine the in situ performance of compacted buffer material in a single emplacement borehole under vault-relevant conditions. During decommissioning of this experiment, numerous samples were taken for microbial analysis to determine if the naturally present microbial population in buffer material survived the conditions (i.e., compaction, heat and desiccation) in the BCE and to determine which group(s) of microorganisms would be dominant in such a simulated vault environment. Such knowledge will be very useful in assessing the potential effects of microbial activity on the concept for deep disposal of Canada's nuclear fuel waste, proposed by AECL. 46 refs., 31 tabs., 35 figs

  20. Program of experiments for the operating phase of the Underground Research Laboratory

    International Nuclear Information System (INIS)

    The Underground Research Laboratory (URL) is one of the major research and development facilities that AECL Research has constructed in support of the Canadian Nuclear Fuel Waste Management Program. The URL is a unique geotechnical research facility constructed in previously undisturbed plutonic rock, which was well characterized before construction. The site evaluation and construction phases of the URL project have been completed and the operating phase is beginning. A program of operating phase experiments that address AECL's objectives for in situ testing has been selected. These experiments were subjected to an external peer review and a subsequent review by the URL Experiment Committee in 1989. The comments from the external peer review were incorporated into the experiment plans, and the revised experiments were accepted by the URL Experiment Committee. Summaries of both reviews are presented. The schedule for implementing the experiments and the quality assurance to be applied during implementation are also summarized. (Author) (9 refs., 11 figs.)

  1. Initial stress measurement by hydraulic fracturing method in diatomaceous mudstone in the Horonobe Underground Research Laboratory

    International Nuclear Information System (INIS)

    Japan Atomic Energy Agency has been constructing an underground research laboratory in Horonobe, Hokkaido. The rock consists of diatomaceous and siliceous mudstones and the site are located in the vicinity of anticline axis. Initial stress measurements were conducted by hydraulic fracturing method at five locations in the experimental drift, two at a depth of 140 m and three at a depth of 250 m in order to evaluate the results of initial stress measurements in deep boreholes from the surface. As a result, on the vicinity of geological boundary, it was not correspondence with the results in surface-based investigation and it was considered that it is necessary to care about a relation with geological boundary. (author)

  2. Studies with a low-background germanium detector in the Holborn Underground laboratory

    International Nuclear Information System (INIS)

    This paper reports on the performance and use of a low background HPGe detector, which was operated in the Holborn Underground laboratory from May 1990 to July 1993, and on some of the results obtained from it. The analysis includes sections on measuring the efficiency of the system and a discussion of the contributions to the background. Most of the materials studied were those being considered for use in the Solar Neutrino Observatory or in the UK Dark Matter programme. Results for the natural radioactivity in various classes of materials include those for the glass used in photomultipliers, the extent of non-equilibrium in the main decay series of thorium and uranium and the presence of protactinium in samples of zirconium oxide. There is also a summary of the cosmogenic isotopes found in the meteorite Glatton which fell in 1991. ((orig.))

  3. Studies with a low-background germanium detector in the Holborn Underground laboratory

    Science.gov (United States)

    Barton, J. C.

    1995-02-01

    This paper reports on the performance and use of a low background HPGe detector, which was operated in the Holborn Underground laboratory from May 1990 to July 1993, and on some of the results obtained from it. The analysis includes sections on measuring the efficiency of the system and a discussion of the contributions to the background. Most of the materials studied were those being considered for use in the Solar Neutrino Observatory or in the UK Dark Matter programme. Results for the natural radioactivity in various classes of materials include those for the glass used in photomultipliers, the extent of non-equilibrium in the main decay series of thorium and uranium and the presence of protactinium in samples of zirconium oxide. There is also a summary of the cosmogenic isotopes found in the meteorite Glatton which fell in 1991.

  4. Mizunami Underground Research Laboratory project. Rock mechanical investigations at the -500m stage

    International Nuclear Information System (INIS)

    In order to establish the scientific and technological basis for geological disposal of high-level radioactive waste, Japan Atomic Energy Agency (JAEA) is pursuing a geoscientific research project namely the Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in Mizunami City, Gifu Prefecture, Central Japan. In the MIU Project, geoscientific research has being carried out in three overlapping phases; Surface-based Investigation Phase (Phase I), Construction Phase (Phase II) and Operation Phase (Phase III). In rock mechanical investigations, the research aims at 'Characterization of geological environment in the Excavation Disturbed Zone (EDZ)' which is an important research issue from the viewpoint of safety assessment. The research topics are as follows: (1) size and structures, (2) petrophysical/geomechanical properties, and (3) stress state of the EDZ. The research also aims at 'Characterization of geomechanical stability around tunnels' from the viewpoint of design and construction of underground facilities. For the research, the specific data on: (4) local stress regime, (5) spatial variability of petrophysical/geomechanical properties of rocks, and (6) distribution of discontinuities intersecting tunnels are required. This report presents the results of following rock mechanical investigations conducted at the GL.-500m Stage. The investigations consist of four parts: 1) Laboratory tests using cores and block samples obtained at the GL.-500m Stage. 2) In-situ stress measurement using Compact Conical-ended Borehole Overcoring (CCBO) method at the GL.-500m Stage. 3) In-situ stress measurements using Differential Strain Curve Analysis (DSCA) method at the GL.-500m Stage. 4)Development of rock mechanical model. (author)

  5. DUSEL CO2: A deep underground laboratory for geologic carbon sequestration studies

    Science.gov (United States)

    Peters, C. A.; Dobson, P. F.; Oldenburg, C. M.; Scherer, G.; Onstott, T. C.; Birkholzer, J. T.; Freifeld, B. M.; Celia, M. A.; Wang, J. S.; Prevost, J.

    2009-12-01

    The objective of geologic sequestration of carbon dioxide as a greenhouse gas mitigation strategy is the long-term containment of CO2 in deep underground formations. To develop a sound understanding of geologic carbon sequestration, we will build a deep underground laboratory to study the processes of storing and trapping CO2, including the risks of unintended leakage. The laboratory will be part of the new DUSEL facility at the Homestake mine in South Dakota. In this presentation, we will highlight the features and capabilities of the planned facility, to be called “DUSEL CO2”. The experimental design exploits the nearly half-kilometer vertical extent of existing “sandline” borings at Homestake. Pipes will be installed within the sandlines to serve as long flow columns. These columns will contain the CO2 and allow experimentation at the same pressure and temperature conditions as in deep subsurface reservoirs. Fill materials will mimic sedimentary layering, as well as cements in plugged wells. Instrumentation will enable detailed monitoring of flow, pressure, temperature, brine composition, geomechanics, and microbial activity. As part of the initial suite of experiments, we plan to simulate a leak in which CO2 changes from a supercritical fluid to a subcritical gas as the pressure drops during upflow over tens to hundreds of meters. We will test for possible acceleration in CO2 flow due to increasing buoyancy. Also, we will examine the interactions of CO2 with caprocks and well cements, and determine whether CO2 will enlarge flow pathways or cause self-sealing. Finally, we will investigate the effects of anaerobic, thermophilic bacteria on CO2 conversion to methane and carbonate. The findings from these unique experiments will advance carbon management technology worldwide and help reduce global greenhouse gas emissions.

  6. Collection of URL measurement data in 2006 at the Horonobe Underground Research Laboratory project

    International Nuclear Information System (INIS)

    The Horonobe Underground Research Laboratory (URL) Project is being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formations at Horonobe, northern Hokkaido. The project consists two major research area, Geoscientific Research' and 'R and D on Geological Disposal', and proceeds in three overlapping phases, 'Phase I: Surface-based investigation', 'Phase II: Construction' and 'Phase III: Operation', over a period of 20 years. The Phase I geoscientific research was carried out from March 2001 to March 2005 in parallel with design and execution scheme on URL facilities. In addition, identifying key issues that need to be addressed in the Phase II/III investigations was carried out. At the inception of the Phase II investigations, an investigation report titled 'Measurement Plan and Observational Construction Program on Shaft Excavation at the Horonobe Underground Research Laboratory Project' (hereinafter referred to as Observational Construction Program') was published. The Observational Construction Program summarizes followings lessons learnt from the Phase I investigations: measurements for safety/reasonable construction, measurements for R and D on enhancement of shaft design/construction technology, and measurements for verification of the deep geological environment estimated before shaft excavation. This report summarizes the measurements data acquired at the Ventilation Shaft (to approx. 50m depth) and the East Shaft (to approx. 40m depth) in 2006 based on the Observational Construction Program. CD-ROM and DVD-ROM are attached as an appendix. (J.P.N.)

  7. Collection of URL measurement data in 2007 at the Horonobe Underground Research Laboratory project

    International Nuclear Information System (INIS)

    The Horonobe Underground Research Laboratory (URL) Project has being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formations at Horonobe, northern Hokkaido. The project consists of two major research areas, Geoscientific Research' and 'R and D on Geological Disposal', and proceeds in three overlapping phases, 'Phase I: Surface-based investigation', 'Phase II: Construction' and 'Phase III: Operation', over a period of 20 years. The Phase I geoscientific research was planned from March 2001 to March 2006 in parallel with design and execution scheme on URL facilities. In addition, identifying key issues that need to be addressed in the Phase II/III investigations was planned. At the beginning of the Phase II investigations, an investigation report titled 'Measurement Plan and Observational Construction Program on Shaft Excavation at the Horonobe Underground Research Laboratory Project' (hereinafter referred to as 'Observational Construction Program') was published. The Observational Construction Program summarizes the followings from the results of the Phase I investigations: measurements for safety and reasonable constructions, enhancement of shaft design and construction technologies and evaluation of appropriateness for the deep geological environment model estimated before shaft excavation. This report summarizes the measurements data acquired at the Ventilation Shaft, the East Shaft and the drifts in 2007 based on the Observational Construction Program. The report summarizes for the purpose of the following: sharing the investigation and measurements data, preventing the loss of them and acquisition the basic data for carrying out the Observational Construction Program. Two DVD-ROMs are attached as an appendix. (J.P.N.)

  8. Laboratory testing of rock core samples from pre-excavation grouting area at Mizunami Underground Research Laboratory

    International Nuclear Information System (INIS)

    Japan Atomic Energy Agency has been conducting a research project on 'Grouting Technology Development for the Radioactive Waste Repository' funded by Ministry of Economy, Trade and Industry (METI), Japan. As a part of the project, various investigations were carried out in the -200m Refuge Niche where pre-excavation grouting was performed and the distribution of the injected grouting material, also the effectiveness of grouting penetration for reduction of groundwater inflow were confirmed. As the continuation of these investigations, chemical influences of grouting material on the rock mass were determined through 'Laboratory testing of rock core samples from pre-excavation grouting area at Mizunami Underground Research Laboratory'. Specifically, core samples were obtained by check boring at where infiltration solidification of the grouting material was expected, and X-ray florescent analysis and Transmission Electron Microscope observation were performed focused on the contact parts of the grouting material and rock mass in fractures. As a result, the chemical influences of grouting material on the rock mass were identified. A CD-ROM is attached as an appendix. (J.P.N.)

  9. Study on hydrogeology on the Mizunami Underground Research Laboratory project. Annual report for fiscal year 2008

    International Nuclear Information System (INIS)

    Tono Geoscience Center (TGC) of Japan Atomic Energy Agency (JAEA) is performing the Mizunami Underground Research Laboratory (MIU) Project, which is a broad scientific study of the deep geological environment as a basis of research and development for geological disposal of nuclear wastes, in order to establish comprehensive techniques for the investigation, analysis and assessment of the deep geological environment in fractured crystalline rock. The MIU Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III), with a total duration of about 20 years. The project goals of the MIU Project from Phase I through to Phase III are: to establish techniques for investigation, analysis and assessment of the deep geological environment, and to develop a range of engineering for deep underground application. Currently, the project is under the Phase II. One of the Phase II goals, which is for the Project goal, was set to develop and revise models of the geological environment using the investigation results obtained during excavation, and determine and assess changes in the geological environment in response to excavation. This document presents the overview of results of the research and development on 'hydrogeology' performed in fiscal year 2008, with regard to the Phase II goal. The main content is as follows. Results of long term monitoring (Volume of inflow into the shafts, groundwater pressure monitoring). Results of surface hydrological investigations. Modeling and simulation (Revision and construction of hydrogeological model based on the new data, On-site/time groundwater flow modeling and simulation). Development of investigation technology in the Phase II. (author)

  10. Mizunami Underground Research Laboratory project (rock mechanical investigations). MIZ-1 borehole investigations

    International Nuclear Information System (INIS)

    In order to establish the scientific and technical basis of geological disposal of high level radioactive waste, Japan Atomic Energy Agency (JAEA) is advancing the geo-scientific research at the Mizunami Underground Laboratory (MIU). In this project, the surface-based investigation phase (Phase I) was finished in fiscal year 2004. Rock mechanics investigations were conducted in Phase I using the MIZ-1 borehole in order to understand the rock mechanical conditions deep underground and to construct a rock mechanical model of the MIU construction site. This report describes the results of these investigations. A brief summary is shown as follows. 1) Determining the average rock physical and mechanical properties using core from Toki Granite are: - apparent specific gravity: 2.62; - unconfined compressive strength (U.C.S.): 173Mpa; - tangent modulus at 50% U.C.S: 51.8Gpa; - poisson's ratio: 0.265. These results are consistent with the results of similar investigations in the nearby Shobasama site. 2) Estimation of in situ stress by stress measurements using cores. Four different methods (AE, DRA, ASR, and DSCA) were applied to estimate the in situ stress state. However the results are very low confidence due to very small deformation during drilling, excepting DSCA. 3) Determining of in situ stress by hydraulic fracturing. The horizontal, maximum principal stress is oriented to NW-SE (using north magnetic pole). Above six hundred meters depth, the in situ stress state is reverse fault type (SH > Sh ≥ Sv overburden pressure ρgh as Sv). But below it, the in situ stress state changed to a wrench or normal fault type (SV ≥ SH > Sh). 4) Rock mechanical model. In consideration of the investigations and geological model, we proposed a rock mechanical model consisting of two in situ stress states and homogeneous, rock mechanical properties. (author)

  11. Mizunami underground research laboratory project. Results from 1996-1999 period

    International Nuclear Information System (INIS)

    Tono Geoscience Center (TGC), Japan Nuclear Cycle Development Institute (JNC) has been conducting a wide range of geoscientific research in order to build a firm scientific and technological basis for the research and development of geological disposal. One of the major components of the ongoing gescientific research programme is the Mizunami Underground Research Laboratory (MIU) project in the Tono region, central Japan. The R and D work of the MIU project has the following main goals: Develop comprehensive investigation techniques for the geological environment. Acquire data on the deep geological environment. Develop a range of engineering techniques for deep underground application. The development of the MIU will occur in three overlapping phases over a 20-year life cycle: Phase One: Surface-based Investigations, began in 1996; Phase Two: Construction and Phase Three: Operations, have not started. The MIU site has been investigated by geological, geophysical, hydrogeological, hydrochemical and rock mechanical surveys on the surface and in the boreholes. To date, ground geophysics and investigation in three 1,000m-deep boreholes have been carried out. The hydro monitoring equipment has set up. Based on the information, modelling work on the geological, hydrogeological and rock mechanical conditions at the MIU site has been conducted. The groundwater simulation has been carried out in order to confirm the usefulness of the hydrogeological modelling methodology. Technical knowledge and experience have been accumulated, which allow application of the methodologies and techniques to characterize the deep geological environment in crystalline rock. The results from these R and D activities were used as prime inputs for the H12 report that JNC submitted to the Japanese Government in 1999. Results from such R and D are also acknowledged by other geoscientific studies in general. JNC will synthesize the results from R and D activities to provide a scientific and

  12. Study on engineering technologies in the Mizunami Underground Research Laboratory. FY 2008 (Contract research)

    International Nuclear Information System (INIS)

    The researches on engineering technology in the Mizunami Underground Research Laboratory project consist of (1) research on engineering technology at a deep underground, and (2) research on engineering technology as a basis of geological disposal. The former research mainly aimed in this study are categorized in (a) development of design and construction planning technology, (b) development of construction technology, (c) development of countermeasure technology and (d) development of technology for security. In this study, the researches on engineering technology are proceeded in these four categories by using data measured during construction as a part of the Construction Phase (Phase 2) of the MIU plan. The validation of design was checked based on data measured during the excavation in granite up to GL-300m. The risk events considered for a geological disposal project are categorized in those being possible or difficult for a quantitative evaluation. For the latter, assumable scenarios are drawn up, occurrence frequency and loss of damage are assumed, and how much risk can be reduced by taking a preventive measure and an immediate action is evaluated. The problems in the measurement for execution management were pointed out and their countermeasures were presented. For availability assessment of rock stability technology for MIU shaft excavation the planning for assessment of the applied technology has been proposed. For applicability assessment of shaft excavation technology the smooth blasting technology has been tried and assessed by the data acquainted during implemented. The construction cycle time for MIU main shaft has been analyzed and assessed. At the great depth, countermeasure technology was examined focused on the high difference water pressure occurred around the rock mass and grouting zone of shaft and drift during excavation, which may affect rock stability around the tunnel. From the point of view of long term maintenance regarding ensuring the

  13. Study on applicability of low alkaline cement in Horonobe Underground Research Laboratory project (3) (Contract research)

    International Nuclear Information System (INIS)

    In Horonobe Underground Research Laboratory (Horonobe URL) Project, construction practicality test with HFSC (Highly Flyash contained Silica-fume Cement) is planned in a part of the gallery. Before HFSC is placed in the gallery, it is necessary to check that HFSC has performance as tunnel support under the actual construction. The research results in 2008 were as follows. For liner concrete of shaft in Horonobe URL, 4 types of mix proportion suggested for ordinary concrete and high strength concrete which contains polypropylene fiber or not. As early age strength, 5N/mm2 is required because of concrete formwork. HFSC424 with low water binder ratio can fulfill this requirement in combination with super plasticizer. On laboratory tests in lowering behavior of pH in HFSC concrete, the pH of immersion fluid was measured and components of the immersion fluid and the solid phase were analyzed using test specimens in a long-term immersion test which had been continued since 2003. An experiment which investigates dissolution of HFSC cement hydrates to ground water around Horonobe URL was carried out. According to the experiment, dissolving depth of HFSC is 1/4 compared with the depth of Ordinary Portland Cement hydrates after 90 days. (author)

  14. Potential of a Neutrino Detector in the ANDES Underground Laboratory for Geophysics and Astrophysics of Neutrinos

    CERN Document Server

    Machado, P A N; Nunokawa, H; Funchal, R Zukanovich

    2012-01-01

    The construction of the Agua Negra tunnels that will link Argentina and Chile under the Andes, the world longest mountain range, opens the possibility to build the first deep underground labo- ratory in the Southern Hemisphere. This laboratory has the acronym ANDES (Agua Negra Deep Experiment Site) and its overburden could be as large as \\sim 1.7 km of rock, or 4500 mwe, providing an excellent low background environment to study physics of rare events like the ones induced by neutrinos and/or dark matter. In this paper we investigate the physics potential of a few kiloton size liquid scintillator detector, which could be constructed in the ANDES laboratory as one of its possible scientific programs. In particular, we evaluate the impact of such a detector for the studies of geoneutrinos and galactic supernova neutrinos assuming a fiducial volume of 3 kilotons as a reference size. We emphasize the complementary roles of such a detector to the ones in the Northern Hemisphere neutrino facilities through some adv...

  15. Test execution of liquid-type grout at depth of 300 m of Mizunami Underground Research Laboratory

    International Nuclear Information System (INIS)

    At Mizunami Underground Research Laboratory, the water inflow should be minimized, considering water treatment expense. Although cement grout has been applied to reduce water inflow up to 460 m depth, water inflow through small fractures which cement grout cannot penetrate cannot be neglected at deeper underground. Liquid-type grout which has high durability as well as good penetrability was therefore tested at the depth of 300 m. Test results indicated that liquid-type grout could sufficiently reduce hydraulic conductivity of rock mass with less than 1 Lu, and could keep improvement effect even after applied water pressure of more than 9 MPa was applied. (author)

  16. Evaluation of applicability of a new quantitative rock mass classification method at the Mizunami Underground Research Laboratory

    International Nuclear Information System (INIS)

    Considering the design, construction and safe operation of large underground facilities such as for the geological disposal of high-level radioactive waste, an important requirement is to utilize a rock mass classification method that can estimate site specific rock mechanical properties based on surface-based investigations and geological observations during excavation. For this study, a new quantitative rock mass classification method based on the Japanese Geotechnical Society standard was proposed and applied to the sedimentary formations and the granite at the Mizunami Underground Research Laboratory. Then the applicability of the new rock mass classification method could be evaluated. (author)

  17. On area-specific underground research laboratory for geological disposal of high-level radioactive waste in China

    OpenAIRE

    Ju Wang

    2014-01-01

    Underground research laboratories (URLs), including “generic URLs” and “site-specific URLs”, are underground facilities in which characterisation, testing, technology development, and/or demonstration activities are carried out in support of the development of geological repositories for high-level radioactive waste (HLW) disposal. In addition to the generic URL and site-specific URL, a concept of “area-specific URL”, or the third type of URL, is proposed in this paper. It is referred to as t...

  18. Geoengineering Research for a Deep Underground Science and Engineering Laboratory in Sedimentary Rock

    Science.gov (United States)

    Mauldon, M.

    2004-12-01

    A process to identify world-class research for a Deep Underground Science and Engineering Laboratory (DUSEL) in the USA has been initiated by NSF. While allowing physicists to study, inter alia, dark matter and dark energy, this laboratory will create unprecedented opportunities for biologists to study deep life, geoscientists to study crustal processes and geoengineers to study the behavior of rock, fluids and underground cavities at depth, on time scales of decades. A substantial portion of the nation's future infrastructure is likely to be sited underground because of energy costs, urban crowding and vulnerability of critical surface facilities. Economic and safe development of subsurface space will require an improved ability to engineer the geologic environment. Because of the prevalence of sedimentary rock in the upper continental crust, much of this subterranean infrastructure will be hosted in sedimentary rock. Sedimentary rocks are fundamentally anisotropic due to lithology and bedding, and to discontinuities ranging from microcracks to faults. Fractures, faults and bedding planes create structural defects and hydraulic pathways over a wide range of scales. Through experimentation, observation and monitoring in a sedimentary rock DUSEL, in conjunction with high performance computational models and visualization tools, we will explore the mechanical and hydraulic characteristics of layered rock. DUSEL will permit long-term experiments on 100 m blocks of rock in situ, accessed via peripheral tunnels. Rock volumes will be loaded to failure and monitored for post-peak behavior. The response of large rock bodies to stress relief-driven, time-dependent strain will be monitored over decades. Large block experiments will be aimed at measurement of fluid flow and particle/colloid transport, in situ mining (incl. mining with microbes), remediation technologies, fracture enhancement for resource extraction and large scale long-term rock mass response to induced

  19. The Second-phase Development of the China JinPing Underground Laboratory

    Science.gov (United States)

    Li, Jianmin; Ji, Xiangdong; Haxton, Wick; Wang, Joseph S. Y.

    During 2013-2015 an expansion of the China JinPing underground Laboratory (CJPL) will be undertaken along a main branch of a bypass tunnel in the JinPing tunnel complex. This second phase of CJPL will increase laboratory space to approximately 96,000 m3, which can be compared to the existing CJPL-I volume of ∼ 4,000 m3. One design configuration has eight additional hall spaces, each over 60 m long and approximately12 m in width, with overburdens of about 2.4 km of rock, oriented parallel to and away from the main water transport and auto traffic tunnels. There are additional possibilities for further expansions at a nearby second bypass tunnel and along the entrance and exit branches of both bypass tunnels, potentially leading to an expanded CJPL comparable in size to Gran Sasso. Concurrent with the excavation activities, planning is underway for dark matter and other rare-event detectors, as well as for geophysics/engineering and other coupled multi-disciplinary sensors. In the town meeting on 8 September, 2013 at Asilomar, CA, associated with the 13th International Conference on Topics in Astroparticle and Underground Physics (TAUP), presentations and panel discussions addressed plans for one-ton expansions of the current CJPL germanium detector array of the China Darkmatter EXperiment (CDEX) collaboration and of the duel-phase xenon detector of the Panda-X collaboration, as well as possible new detector initiatives for dark matter studies, low-energy solar neutrino detection, neutrinoless double beta searches, and geoneutrinos. JinPing was also discussed as a site for a low-energy nuclear astrophysics accelerator. Geophysics/engineering opportunities include acoustic and micro-seismic monitoring of rock bursts during and after excavation, coupled-process in situ measurements, local, regional, and global monitoring of seismically induced radon emission, and electromagnetic signals. Additional ideas and projects will likely be developed in the next few years

  20. Horonobe underground research laboratory project investigation report for the 2005 fiscal year

    International Nuclear Information System (INIS)

    The investigations in 2005 fiscal year (2005/2006) were focused on the Hokushin area, which was selected as the area for laboratory construction. The main investigation region extends over approximately 3 km x 3 km. Geophysical, geological and surface hydrogeological investigations are carried out to acquire the geoscientific data needed to develop techniques for investigating the geological environment. And the borehole investigation at HDB-11 was finished in 2005. About development of techniques for long-term monitoring of the geological environment, long-term monitoring systems were operative in boreholes drilled in a previous investigation, and were also installed in the remaining boreholes (HDB-9, 10; drilled in 2004). A remotely operated monitoring system (ACROSS) was also installed and tested. About study on long-term stability of the geological environment, for tracing tectonic changes at Horonobe, geological survey and ground penetrating radar were carried out. Observations using seismograph, global positioning system (GPS) and electromagnetic exploration system installed until 2006 were continuing. About improving the reliability of disposal technology, laboratory tests of low alkaline concrete, shotcrete test at full-size simulated tunnel were carried out. Applicability confirmation of EBS designing methods was carried out with geological environmental data of Phase 1. About sophistication of safety assessment methodologies, Sorption test using drill core was carried out. Solute transport analysis was also carried out. In parallel with these investigations, Phase 2 investigation program were planned. About surface facility, Research and Administration Facility and Test Facility were constructed and started to use since February 2006. Public information house was begun to construct. About underground facility, temporary surplus soil (muck) yard was constructed. Surplus soil yard and drainage line were designed. These caused by toxic substance founded in

  1. Low-level γ-ray spectrometry at the underground laboratory Garching

    International Nuclear Information System (INIS)

    Two low-background setups for material screening based on HPGe detectors were built in the Garching Underground Laboratory with an overburden of ∼10 m.w.e. They include several layers of passive shielding as well as an active muon veto. The first setup (GEM) comprises a 150% efficiency HPGe detector which can optionally be surrounded by a NaI(Tl) scintillation detector that serves as anti-Compton veto. The second setup (LoAx) consists of two smaller HPGe detectors which are arranged face-to-face to cover a larger solid angle around the sample and to allow coincidence measurements. For a 5.6 kg piece of copper after 11 days of measurement we have reached a sensitivity for 226Ra and 228Ra/228Th of ∼5 mBq kg−1 with the GEM setup. In the LoAx setup we have achieved limits of less than 100 mBq kg−1 for 234Th and 210Pb with a 156 g sample of PPO wavelength shifter after 18 days of measurement. - Highlights: • Two setups for low-level γ-ray spectrometry were built. • The background count rate between 100 and 2700 keV is 5700 day−1. • Sensitivities of 5 mBq/kg were achieved for 226Ra and 228Th. • Sensitivities of less than 100 mBqkg−1 were achieved for 210Pb and 234Th

  2. Present status of IGEX dark matter search at Canfranc Underground Laboratory

    International Nuclear Information System (INIS)

    One IGEX 76Ge double-beta decay detector is currently operating in the Canfranc Underground Laboratory in a search for dark matter WIMPs, through the Ge nuclear recoil produced by the WIMP elastic scattering. A new exclusion plot, σ(m), has been derived for WIMP-nucleon spin-independent interactions. To obtain this result, 40 days of data from the IGEX detector (energy threshold Ethr ∼ 4 keV), recently collected, have been analyzed. These data improve the exclusion limits derived from all the other ionization germanium detectors in the mass region from 20 GeV to 200 GeV, where a WIMP supposedly responsible for the annual modulation effect reported by the DAMA experiment would be located. The new IGEX exclusion contour enters, by the first time, the DAMA region by using only raw data, with no background discrimination, and excludes its upper left part. It is also shown that with a moderate improvement of the detector performances, the DAMA region could be fully explored

  3. Underground Research Laboratory room 209 instrument array. Vol. 1,2

    International Nuclear Information System (INIS)

    An in situ excavation response test was conducted at the 240 Level of the Underground Research Laboratory (URL). The test was carried out in conjunction with the drill-and-blast excavation of a near-circular tunnel (Room 209), about 3.5 m in diameter. The tunnel was excavated through a tunnel axis. Three modelling groups made predictions of the response of the rock mass and hydraulic behaviour of the water-bearing fracture to excavation. The tunnel was excavated in two stages, a pilot tunnel followed by a slash, providing two complete sets of response measurements. Careful excavation was carried out to ensure the excavation shape after each blast round agreed closely with the planned shape incorporated in the numerical models. Instrumentation installed before the tunnel was extended monitored the complete strain tensor at eight locations around the tunnel, radial displacements and piezometric pressures at nine locations in the fracture. As well, tunnel convergence, water flows from the fracture, and hydraulic conductivity of the fracture at nine locations, were measured after each excavation step. The final tunnel profiles were accurately surveyed, and the geology was mapped in detail. The results are presented in this report for comparison with the modellers' predictions (reported in AECL--9566-2). Some preliminary conclusions and recommendations regarding the field testing are presented

  4. In situ stress measurements at the 350 m pumping station in the Horonobe Underground Research Laboratory

    International Nuclear Information System (INIS)

    The objective of this report is to investigate the three dimensional stress state in the 350 m pumping station at the Horonobe Underground Research Laboratory. For the measurement, four boreholes were drilled; three 20.0 m long boreholes and one 6.0 m long borehole. Hydraulic fracturing was applied as a stress measurement method. For the analysis, shut-in pressure of transverse fractures, reopening pressure of longitudinal fractures and stress condition causing borehole breakouts were integrated into the equation; then stress state was calculated by inversion technique. As a result, considering the stress condition causing breakouts, the value of the maximum principal stress (σ1) was 12 MPa, two times larger than overburden pressure. Furthermore, the ratio between σ1 to minimum principal stress (σ3) was 6. On the other hand, without considering the stress condition causing breakout, σ1 was 6 MPa; almost same as overburden pressure. The ratio between σ1 to σ3 was 2.7, thus the result was almost coincided with the result of surface-based investigation. The orientation of the σ1 was N30°W, dipping 45° from vertical axis. A CD-ROM is attached as an appendix. (J.P.N)

  5. Isotopic methods in hydrogeology and their application to the Underground Research Laboratory, Manitoba

    International Nuclear Information System (INIS)

    This review examines isotopic methods used to determine groundwater sources, residence times and processes of geochemical evolution that have been published in the international literature, with specific reference to AECL's experience in these methods and applications to groundwaters at the Underground Research Laboratory (URL), Manitoba. The program of groundwater sampling and analysis currently being planned for the URL area over the next several years will concentrate on specific isotopic measurements that may assist in understanding the groundwater flow system at the URL site. These results will add to the existing data for the URL area and indicate which isotopes are most useful when applied to the known groundwater flow system of the URL. This program of study is especially important because it not only uses standard geochemical and isotopic measurements (e.g., major ion, trace elements, 2H/18O, 14C, 34S) of groundwaters, but will determine values of more exotic and unusual ratios, such as 6Li/7Li, and B11/B10, whose potential for understanding groundwater geochemical evolution is largely unknown at present. In addition, the more established but equally complex methods of isotopic analysis, to determine 3He/4He, 36Cl/Cl and 129I/I, will be used to assess their potential for adding to the hydrogeochemical understanding of flow paths in crystalline rock. (author). 182 refs., 11 tabs., 27 figs

  6. Low level gamma-ray spectrometry at the PTB underground laboratory UDO

    International Nuclear Information System (INIS)

    A new ultra low level background (ULB) gamma-ray spectrometry system has been installed 925 m below ground at the underground laboratory 'UDO' of the Physikalisch-Technische Bundesanstalt, Braunschweig. This new system, consisting of a 95% coaxial HPGe-detector and a passive shielding (20 cm of low-activity lead, 10 cm electrolytic copper and radon suppression by N2-flushing), will be described. Most of the peak count rates are less than 1 count per day and the integral background count rate in the energy range from 40 keV to 2750 keV is about 20 h-1. The background spectrum of the system is shown. Note that there are empty channels in the measured spectrum where no count was measured in 40 days. This system was especially used to determine very small activity concentrations of 60Co in environmental samples from Hiroshima and Tokaymura as well as for the determination of very small concentrations of long-lived radionuclides in meteorites. Results from these applications will be reported

  7. Blasting in the lower shaft station of Atomic Energy of Canada Limited's Underground Research Laboratory

    International Nuclear Information System (INIS)

    Atomic Energy of Canada Limited (AECL) has the responsibility for research, and development of technologies, for the safe and permanent disposal of Canada's nuclear fuel wastes. As part of this comprehensive program, AECL is constructing an Underground Research Laboratory (URL) near Lac du Bonnet, Manitoba, to evaluate aspects of the concepts of waste disposal deep in stable geological formations. No nuclear wastes will be used in the URL program. The lower shaft station of the URL was excavated between 1984 December and 1985 February. Substantial effort went into producing good results from the blasting to minimize the blast damage to the rock surrounding the excavation. All headings of the lower shaft station were excavated by the pilot heading and slash method. The blasts for the pilot headings were designed using a combination of Swedish and Canadian blast design methods, with the detailed layout of the blast holes being finalized at the excavation face. By experimenting with the perimeter of the pilot headings, it was possible to finalize the perimeter blast design before starting on the final walls

  8. Monitoring hydrogeological conditions in fractured rock at the site of Canada's underground research laboratory

    International Nuclear Information System (INIS)

    Atomic Energy of Canada Limited is constructing an Underground Research Laboratory (URL) at a depth of 250 m in a plutonic rock body near Lac du Bonnet, Manitoba. The facility is being constructed to carry out a variety of in situ geotechnical experiments as part of the Canadian Nuclear Fuel Waste Management Program. A unique feature of the URL, in comparison to other similar facilities such as the Stripa Mine in Sweden, is that it is to be constructed below the groundwater table in a previously undisturbed plutonic rock body. One of the main research objectives of the project is to develop and validate comprehensive three-dimensional models of the hydrogeology of the rock mass encompassing the URL site. Measurements made in an array of boreholes extending to depths of 1000 m on the 4.8-km2 study area have established that the permeability distribution in three major extensive subhorizontal fracture zones controls the movement of groundwater within the rock mass. An automated, electronic, piezometric pressure-monitoring system has been designed to collect continuous measurements from 75 isolated hydrogeological monitoring positions within the rock mass. Piezometric data have been collected from this monitoring network to establish baseline conditions prior to any excavation into the rock mass. These data have also been used to determine the steady-state, three-dimensional, groundwater flow regimes that exist at the URL site under natural conditions

  9. Control of blast overpressure and vibrations at the Underground Research Laboratory

    International Nuclear Information System (INIS)

    AECL Research (AECL) has constructed an Underground Research Laboratory (URL) as a facility for research and development in the Canadian Nuclear Fuel Waste Management Program. The objectives of the program are to develop and evaluate the technology to ensure safe, permanent disposal of Canada's nuclear fuel waste. Several multidisciplinary experiments and engineering demonstrations are planned for the URL over the next ten years. In 1989, AECL excavated a test room for the Buffer/Container Experiment at the 240 Level. The blasts were designed to limit vibration and overpressure damage because the excavation was located close to existing furnishings and services that were very susceptible to blast-induced vibration and overpressure. An experimental room, which contained sensitive instrumentation, was located within 30 m of the initial blasts. A concrete floor slab, timber curtains and a bulkhead were installed to protect furnishings and services from fly-rock and overpressure. Five of the initial blasts were monitored. This paper describes the results of the monitoring program and the effectiveness of the blast design, floor slab and timber curtains and bulkhead in reducing blast overpressure and vibrations at the blast site. It is shown that greater than a 20-fold reduction in both blast vibrations and air overpressures can be achieved with specific combinations of blast design, installation of timber curtains and construction of a concrete floor slab

  10. Verification and characterization of continuum behavior of fractured rock at AECL Underground Research Laboratory

    International Nuclear Information System (INIS)

    The purposes of this study are to determine when a fracture system behaves as a porous medium and what the corresponding permeability tensor is. A two-dimensional fracture system model is developed with density, size, orientation, and location of fractures in an impermeable matrix as random variables. Simulated flow tests through the models measure directional permeability, K/sub g/. Polar coordinate plots of 1/√K/sub g/, which are ellipses for equivalent anistropic homogeneous porous media, are graphed and best fit ellipses are calculated. Fracture length and areal density were varied such that fracture frequency was held constant. The examples showed the permeability increased with fracture length. The modeling techniques were applied to data from the Atomic Energy of Canada Ltd.'s Underground Research Laboratory facility in Manitoba, Canada by assuming the fracture pattern at the surface persists at depth. Well test data were used to estimate the aperture distribution by both correlating and not correlating the aperture with fracture length. The permeability of models with uncorrelated length and aperture were smaller than those for correlated models. A Monte Carlo type study showed that analysis of steady state packer tests consistently underestimate the mean aperture. Finally, a three-dimensional model in which fractures are discs randomly located in space, interactions between the fractures are line segments, and the solution of the steady state flow equations is based on image theory was discussed

  11. A heating experiment in the argillites in the Meuse/Haute-Marne underground research laboratory

    International Nuclear Information System (INIS)

    A heating experiment named TER is being conducted with the objectives to identify the thermal properties, as well as to enhance the knowledge on THM processes in the Callovo-Oxfordian clay at the Meuse/Haute Marne Underground Research Laboratory (France). The in situ experiment has being switched on from early 2006. The heater, 3 m length, is designed to inject the power in the undisturbed zone at 6 m from the gallery wall. A heater packer is inflated in a metallic tubing. During the experiment, numerous sensors are emplaced in the surrounding rock and are experienced to monitor the evolution in temperature, pore-water pressure and deformation. The models and numerical codes applied should be validated by comparing the modeling results with the measurements. In parallel, some lab testing have been achieved in order to compare the results given with two different scales (cm up to meter scale). In this paper, we present a general description of the TER experiment with installation of the heater equipment and the surrounding instrumentation. Details of the in situ measurements of temperature, pore-pressure and strain evolutions are given for the several heating and cooling phases. The thermal conductivity and some predominant parameters in THM processes (as linear thermal expansion coefficient and permeability) will be discussed. (authors)

  12. Synthesis of borehole geophysical data at the Underground Research Laboratory, Manitoba, Canada

    International Nuclear Information System (INIS)

    A suite of borehole-geophysical logs, supported by core data, was used to describe the rock matrix and fractures in a granitic pluton near Lac du Bonnet, Manitoba, Canada. The site is being developed by Atomic Energy of Canada Limited, as an underground research laboratory to conduct geotechnical research and to validate predictive models as part of Canada's nuclear-fuel, waste-management program. However, the site is not planned to be used for waste disposal. Geophysical well logs were used to distinguish and correlate rock types and fractures between drill holes. Two significant fracture zones that are two of the major zones of ground-water movement at the site were identified by acoustic-televiewer logs. A new heat-pulse flowmeter provided repeatable measurements of very low-velocity, vertical flow in drill holes which enabled the identification of specific fractures that were transmitting water. Borehole gamma spectra showed that some fractures are enriched in uranium, and others may be depleted. This study demonstrates some of the advantages of synthesizing available borehole-geophysical logs at a site in fractured plutonic rocks and indicates how this information can contribute to an understanding of the geophysical conditions at the site

  13. Laboratory studies on cavity growth and product gas composition in the context of underground coal gasification

    International Nuclear Information System (INIS)

    Systematic laboratory scale experiments on coal blocks can provide significant insight into the underground coal gasification (UCG) process. Our earlier work has demonstrated the various features of the early UCG cavity shape and rate of growth through lab-scale experiments on coal combustion, wherein the feed gas is oxygen. In this paper, we study the feasibility of in situ gasification of coal in a similar laboratory scale reactor set-up, under conditions relevant for field practice of UCG, using an oxygen-steam mixture as the feed gas. By performing the gasification reaction in a cyclic manner, we have been able to obtain a product gas with hydrogen concentrations as high as 39% and a calorific value of 178 kJ/mol. The effect of various operating parameters such as feed temperature, feed steam to oxygen ratio, initial combustion time and so on, on the product gas composition is studied and the optimum operating conditions in order to achieve desired conversion to syngas, are determined. We also study the effect of various design and operating parameters on the evolution of the gasification cavity. Empirical correlations are proposed for the change in cavity volume and its dimensions in various directions. The results of the previous study on the combustion cavity evolution are compared with this gasification study. -- Research highlights: →Proposed a systematic methodology to mimic the UCG process in the lab-scale. →Identified possible factors that influence thermo-mechanical spalling of coal. →Proposed optimum operating conditions in order to obtain maximum gasification yield. →Captured the shape of cavity and its growth in all directions. →Compared combustion cavity growth with that of gasification.

  14. Factors controlling the population size of microbes in groundwater from AECL's Underground Research Laboratory

    International Nuclear Information System (INIS)

    Microbial populations in groundwaters from AECL's Underground Research Laboratory (URL) range from 103 to 105 cells/mL. Based on the total dissolved organic carbon (DOC), nitrate and phosphate content of these waters, populations of about 105 to 107 cells/mL should be possible. Upon storage of groundwater samples, total cell counts generally increase and viable cell counts always increase. A study was undertaken to determine what controls the in situ microbial population size in groundwater and what causes this population to grow upon sampling. Fresh URL groundwater was filter-sterilized, inoculated with small quantities of the unaltered water and incubated in the absence and presence of added nutrients (nitrate, phosphate and glucose). Unfiltered groundwater and R2A growth medium inoculated with unaltered groundwater, were also incubated. Microbial changes over time were followed by total and viable (on R2A medium) cell counts. Results showed that in the absence of any nutrient addition, populations grew to between 5 x 105 to 4 x 106 cells/mL, regardless of the initial size of the population (∼101 to 104 cells/mL), suggesting that nutrients for growth were available in the unamended groundwater. It was hypothesized that the original groundwater population was in 'equilibrium' with the underground environment, which likely included a large population of sessile cells in biofilms on fracture surfaces. Sampling of the groundwater removed the large demand on nutrient supplies by the sessile population which subsequently allowed the planktonic population to grow to a new 'equilibrium' with the available nutrients in the sample bottles. Addition of single nutrients (C, N or P) did not increase cell numbers, suggesting that more than one nutrient is limiting growth. Glucose was used very efficiently aerobically in the presence of both added N and P, but somewhat less under anaerobic conditions. Similar effects were observed in R2A. This confirms a more efficient use of

  15. Three-dimensional excavation analysis based on crack tensor model at the Mizunami Underground Research Laboratory

    International Nuclear Information System (INIS)

    The Japan Atomic Energy Agency (JAEA) is conducting the Mizunami Underground Research Laboratory (MIU) Project in order to develop comprehensive geological investigation and engineering techniques for deep underground applications. In the rock mechanical investigations, development of the rock mechanical conceptual model and analysis of excavation disturbance were carried out in the surface-based investigation phase (Phase I) and the construction phase (Phase II). In the Phase I, the equivalent continuum model based on crack tensor theory was applied to predict the rock mass behavior including expected excavation disturbance. In the Phase II, excavation analysis is conducted using crack tensor calculated using tunnel wall mapping and rock mechanics test results, and fundamental study to evaluate the scale of the crack tensor is conducted. In this study, three-dimensional excavation analysis is conducted. Crack tensor used in this analysis was measured using the data collected in wall surface observation in study tunnels such as the horizontal tunnels at the depth of 500 m. The results of analysis were compared with existing measurements at the depth of 500 m obtained using in-situ strain meters. The excavation analysis using crack tensor and initial stress obtained from the Phase I and Phase II were carried out to examine the influence of crack tensor and initial stress on the results of analysis. The result showed that mechanical behavior in Phase I at ventilation shaft at the depth of 500 m is influenced by direction of the maximum initial principle stress. On the other hand, mechanical behavior in Phase II is influenced by predominant direction of crack. The maximum displacement in Phase II is larger than that in Phase I. This is attributed to the difference of crack tensor trace F0. The maximum shear stress in Phase I is larger than that in Phase II. This is attributed to the difference of amount of initial stress. At the end of this report, we summarize

  16. Horonobe Underground Research Laboratory project synthesis of phase I investigations 2001 - 2005. Volume 'Geoscientific research'

    International Nuclear Information System (INIS)

    The Horonobe Underground Research Laboratory (URL) Project is being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formations at Horonobe, northern Hokkaido. The project consists of two major research areas, Geoscientific Research' and 'R and D on Geological Disposal', and proceeds in three overlapping phases, 'Phase I: Surface-based investigation', 'Phase II: Construction' and 'Phase III: Operation', over a period of 20 years. The present report summarises the results of the Phase I geoscientific research carried out from March 2001 to March 2005. Integration of work from different disciplines into a 'geosynthesis' ensures that the Phase I goals have been successfully achieved and identifies key issues that need to be addressed in the Phase II/III investigations. More importantly, efforts are made to summarise as many lessons learnt from the Phase I investigations and other technical achievements as possible to form a 'knowledge base' that will reinforce the technical basis for both implementation and the formulation of safety regulations. Based on experiences of selecting the URL Area and the URL Site in Horonobe Town, important factors that should be taken into consideration in such site selection processes and their rationale are demonstrated. In the course of stepwise surface-based investigations, a number of achievements have been made, which can eventually provide examples of integrated methodologies for characterising the sedimentary formations. The relevant surface-based investigation techniques have thus been further developed. The Horonobe URL has been designed based on geoscientific information accumulated during the surface-based investigations and the plans for safe construction and operation of the URL have been defined in as feasible a manner as possible. In addition, a variety of environmental measures

  17. Mechanical response of jointed granite during shaft sinking at the Canadian Underground Research Laboratory

    International Nuclear Information System (INIS)

    As part of the geoscience research within the Canadian Nuclear Fuel Waste Management Program, Atomic Energy of Canada Limited (AECL) is constructing an underground research laboratory (URL) in a previously undisturbed portion of a granitic intrusive, the Lac du Bonnet batholith, approximately 100 km northeast of Winnipeg, Manitoba. The overall geotechnical objectives of the URL are to assess and improve our ability to interpret and predict the geological, geophysical, geochemical, geomechanical and hydrogeological conditions of large bodies of plutonic rock, as well as to assess the accuracy of mathematical models used to predict the near-field mechanical and hydrogeological responses of the rock mass to excavation and thermal loading. Construction will be completed in July, 1986. Large-scale testing will commence soon afterwards and will last until the facility is decommissioned in the year 2000. A rectangular access shaft, 255 m deep x 2.8 m x 4.8 m, was sunk during the period May 1984 to March 1985. Rock displacements and stress changes were monitored as the excavation face (bottom) of the shaft advanced. The major objectives of this monitoring were (a) to evaluate and improve the ability of numerical models in predicting the mechanical response of the rock mass, (b) to back-calculate the rock-mass deformation modulus as a function of depth, (c) to assess the influence of natural fractures on the mechanical response of the granitic rock mass, and (d) to evaluate the quality of the geomechanical instrumentation, to determine instrumentation needs for future field experiments. Analysis of the data from this monitoring will aid the design and modelling of further experiments in the URL. In this paper, the rock displacements measured by an array of extensometers at 15 m below ground surface are presented and compared with predictions by a three-dimensional elastic continuum finite-element model

  18. Horonobe Underground Research Laboratory project. Synthesis of phase I investigation 2001-2005. Volume 'geoscientific research'

    International Nuclear Information System (INIS)

    The Horonobe Underground Research Laboratory (URL) Project is being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formations at Horonobe in Hokkaido, northern Japan. The project consists of two major research areas, 'Geoscientific Research' and 'R and D on Geological Disposal', and proceeds in three overlapping phases, 'Phase I: Surface-based investigation', 'Phase II: Construction' and 'Phase III: Operation', over a period of 20 years. The present report summarises the results of the Phase I geoscientific research carried out from March 2001 to March 2005. Integration of the results from different disciplines ensures that the Phase I goals have been successfully achieved and identifies key issues that need to be addressed in Phases II and III. More importantly, efforts are made to summarise as many lessons learnt from the Phase I investigations and other technical achievements as possible to form a 'knowledge base' that will reinforce the technical basis for both implementation and the formulation of safety regulations. Based on experiences of selecting the URL area and site in Horonobe Town, important factors that should be taken into consideration in such selection processes and their rationale are demonstrated. In the course of stepwise surface-based investigations, a number of achievements have been made, which can eventually provide examples of integrated methodologies for characterising the sedimentary formations. The relevant surface-based investigation techniques have thus been further developed. The Horonobe URL has been designed based on geoscientific information accumulated during the surface-based investigations and the plans for safe construction and operation of the URL have been defined in a feasible manner. In addition, a variety of environmental measures taken during Phase I have proved to be

  19. Laboratory research for a strain measurement probe for use in underground mine safety

    International Nuclear Information System (INIS)

    Special borehole probes, of 40 and 60 mm diameter, were designed to have highly sensitive responses to density variations and were constructed for use in holes of diameter 50 mm and of more than 80 mm, respectively. The probes, equipped with either 137Cs or 60Co primary radiation sources, were then tested in laboratory borehole models of 50 mm and 120 mm in diameter, using measurements based on a spectrometric gamma ray backscatter technique. The density of these models was artificially varied to simulate the delamination processes in the roof and floor structures of mines. The tests in dry models, intersected by holes of diameter 50 mm, showed that the response sensitivity for 137Cs was twice that of the probe equipped with 60Co. The gradient of the sensitivity to density variation was 2.7 and the threshold level of detectable density change was 0.2% of the original density. For the wider probe, which was also equipped with 137Cs, the gradient of this sensitivity was 0.63 when measured in dry models intersected by holes of 120 mm diameter. In this case, the threshold for detectable change in density was 0.26% of the original density, also indicating a satisfactory performance capability. The results of this work show that the prototype strain monitoring techniques tested for both narrow and wide holes have potential practical application for bolt holes and mine development holes, respectively. It is anticipated that the overall sensitivity and accuracy of the techniques are adequate for detecting and monitoring the delamination processes which precede structural failure in underground coal mines. Water saturation of the concrete models produced expected changes in the density responses of the probes and, therefore, changes in the density strain calibration that would require, additionally, free moisture measurements to achieve a universal calibration for both dry and wet conditions. (author). 3 refs, 5 figs, 2 tabs

  20. Small scale model and underground laboratory study of engineered barrier thermal behaviour

    International Nuclear Information System (INIS)

    This is the final report of the contract CCE FI1W/0061, which had the objective of studying the thermal behaviour of the engineered barrier having the selected French clay Fo-Ca (natural calcic smectite) as its major constituent. After being installed this barrier was subjected simultaneously to the heat flux dissipated by the container and to a possible rehydration by contact with the host medium. It consists of three parts. The first part is devoted to R and D studies concerning detectors suitable for the point measurement of the water concentration. Among the techniques that can be envisaged, capacitor methods, which are very temperature sensitive, would require a great deal of effort to be satisfactory. On the other hand, the water concentration can, in principle, be derived from the measurement of the thermal conductivity in the transient regime. Although the carrying out of this measurement is somewhat critical, it can give good results under certain conditions. The second part reports experiments carried out in the laboratory concerning both the study of heat transfer during the so-called dry phase of the disposal (without any water being supplied externally) and the study of the phenomenon of fissuration. Finally, the third part describes the in situ experiment BACCHUS, carried out in the underground test facility at Mol (Belgium), in collaboration with the CEN/SCK. In the course of the five months of the thermal phase of this experiment a large variation in the amplitude of the temperature gradients was recorded, which may be explained, on one hand, by the convergence of the medium and, on the other hand, by a much more rapid rehydration than that predicted

  1. Hydrogeology of the rock mass encountered at the 240 level of Canada's Underground Research Laboratory

    International Nuclear Information System (INIS)

    The rock mass surrounding the 240 level of Canada's Underground Research Laboratory (URL) has been hydrogeologically characterized through observations made in the tunnel and room excavations and from a network of radiating low-dipping boreholes. The 240 level complex sits in a wedge of grey-to-pink granite between two important, low-dipping, hydraulically active fracture zones, known as Fracture Zone 2 (FZ2) and Fracture Zone 2.5 (FZ2.5), a splay of FZ2. There is no apparent seepage into the 240 level room and tunnel network from the surrounding rock mass except from a vertical fracture intersected by the Room 209 tunnel. Extensive hydraulic and geomechanical tests have been conducted in boreholes intersecting the Room 209 vertical fracture, and transmissivities were found to range from 10-10 to 10 -6 m2/s. FZ2 and FZ2.5 occur at the 240 m depth approximately 10 m to the west and 100 m to the south respectively of the 240 level tunnel network. Hydraulic testing within packer-isolated boreholes intersecting these fracture zones showed that transmissivities ranged from 10-7 to 10-5 m2/s in FZ2, and 10-9 to 10-7 m2/s in FZ2.5. No naturally-occurring fractures were encountered east of the 240 level complex up to 300 m away. The rock mass to the north of the 240 level is dominated by the Room 209 vertical fracture, which tends to splay with distance and has been intersected 95 m from the Room 209 tunnel. (Author) (50 figs., 5 tabs., 10 refs.)

  2. Multivariate analysis for hydrochemical changes near the Mizunami Underground Research Laboratory

    International Nuclear Information System (INIS)

    One of the tasks in the program of the Mizunami Underground Research Laboratory is development of methodology for evaluating geochemical effects caused by construction of underground facilities. Using the Multivariate Mixing and Mass balance (M3) analysis tool developed by SKB in Sweden, PHREEQC developed by USGS in USA, and the reactive chemical transport simulator (TOUGHREACT) developed by LBNL in USA, the analyses concerning hydrochemical changes of groundwater at the Mizunami Underground Research Laboratory was conducted to verify their modeling applicability and to construct a hydrochemical model for predicting perturbations caused by the shaft excavation in the next phase. M3 analysis is composed of 1) Principal Component Analysis, 2) mixing calculation from reference waters (end-members) and 3) mass balance calculation. M3 analysis is executed using 180 geochemical data sets, selected from 441 data sets of groundwater, river waters, rain waters, hot springs and drilling waters, based on available components (Na, K, Ca, Mg, Cl, HCO3, SO4 and F) and ion charge balance (within ±5 %). As the result of this analysis, groundwater is characterized by the mixing process of 4 types of reference waters, 'Na-Ca-Cl type water (high salinity)', 'Na-Ca-Cl type water (low salinity)', 'Surface water', and 'Na-(Ca)-HCO3 type water' with water-rock interaction and cation exchange process. PHREEQC inverse modeling is carried out to build the confidence of the M3 model. The PHREEQC inverse model for Na-Ca-Cl type water (low and high salinity) matches well with the M3 model. It is considered that the M3 model is a useful tool for Na-Ca-Cl type water at the Mizunami URL site. On the other hands, the PHREEQC inverse model for Na-(Ca)-HCO3 type water does not match well with the M3 model. It means that chemical reaction model rather than mixing model should be applied for Na-(Ca)-HCO3 type water distributed in the northward of the site. One-dimensional reactive geochemical

  3. Earth Science Research at the Homestake Deep Underground Science and Engineering Laboratory

    Science.gov (United States)

    Roggenthen, W.; Wang, J.

    2004-12-01

    The Homestake Mine in South Dakota ceased gold production in 2002 and was sealed for entry in 2003. The announcement of mine closure triggered the revival of a national initiative to establish a deep underground facility, currently known as the Deep Underground Science and Engineering Laboratory (DUSEL). The National Science Foundation announced that solicitations were to be issued in 2004 and 2005, with the first one (known as S-1) issued in June, 2004. The focus of S-1 is on site non-specific technical requirements to define the scientific program at DUSEL. Earth scientists and physicists participated in an S-1 workshop at Berkeley in August, 2004. This abstract presents the prospects of the Homestake Mine to accommodate the earth science scientific programs defined at the S-1 workshop. The Homestake Mine has hundreds of kilometers of drifts over fifty levels accessible (upon mine reopening) for water evaluation, seepage quantification, seismic monitoring, geophysical imaging, geological mapping, mineral sampling, ecology and geo-microbiology. The extensive network of drifts, ramps, and vertical shafts allows installation of 10-kilometer-scale seismograph and electromagnetic networks. Ramps connecting different levels, typically separated by 150 ft, could be instrumented for flow and transport studies, prior to implementation of coupled thermal-hydro-chemical-mechanical-biological processes testing. Numerous large rooms are available for ecological and introduced-material evaluations. Ideas for installing instruments in cubic kilometers of rock mass can be realized over multiple levels. Environmental assessment, petroleum recovery, carbon sequestration were among the applications discussed in the S-1 workshop. If the Homestake Mine can be expediently reopened, earth scientists are ready to perform important tests with a phased approach. The drifts and ramps directly below the large open pit could be the first area for shallow testing. The 4,850 ft level is the

  4. Multivariate analysis for groundwater chemistry near the Mizunami Underground Research Laboratory

    International Nuclear Information System (INIS)

    One of the tasks in the program of the Mizunami Underground Research Laboratory is development of methodology for evaluating geochemical effects caused by construction of underground facilities. Using the M3 (Multivariate Mixing and Mass balance) analysis tool developed by SKB in Sweden and the reactive chemical transport simulator (TOUGHEREACT) developed by LBNL in USA, the analyses concerning geochemical evolution of groundwater in the Tono area was conducted to verify their modeling applicability and to construct a geochemical model for predicting perturbations caused by the shaft excavation in the next phase. M3 analysis is composed of 1) Principal Component Analysis, 2) mixing calculation from reference waters (end-members) and 3) mass balance calculation. 166 geochemical data are selected from 413 data of groundwaters, river waters, rain waters, hot spring and drilling waters, based on analyzed components and ion charge balance (within ±5%). Eight elements such as Na, K, Ca, Mg, Cl, HCO3, SO4 and F were used for M3 analysis. Compiled waters were classified into some water types. Four reference waters ('Na-Cl type water (high salinity)', 'Na-Cl type water (low salinity)', 'Surface water', 'Na(Ca)-HCO3 type water') were selected and mixing proportions of each reference water and deviations between measured and calculated compositions were estimated for all samples and visualized in the vertical section including the URL site. 'Surface water' (60-100%) is dominated in the NE part of the site including boreholes DH-10, 11 and 13, and 'Na-Cl type water (high salinity)' and 'Na-Cl type water (low salinity)' concentrate in the SW part including boreholes DH-2 and 12 located near the URL site. The overall M3 model uncertainty was ±10.7% for this data set. The mass balance calculation indicated reactions associated with organic decomposition, inorganic redox reactions, dissolution and precipitation of calcite and plagioclase, ion exchange and sulphate reduction

  5. Analysis of tectonic structures and excavation induced fractures in the Opalinus Clay, Mont Terri underground rock laboratory (Switzerland)

    International Nuclear Information System (INIS)

    Excavated in the Opalinus Clay formation, the Mont Terri underground rock laboratory in the Jura Mountains of NW Switzerland is an important international test site for researching argillaceous formations, particularly in the context of deep geological disposal of radioactive waste. The rock laboratory is intersected by naturally formed tectonic structures, as well as artificial fractures primarily formed as a consequence of tunnel excavation and the associated stress redistribution. The description and characterisation of tectonic and artificial structures is, in many cases, of key importance for interpreting the results of the various in situ experiments conducted in the rock laboratory. Systematic small-scale mapping of the tunnel walls and floor, and adjacent niches, provides basic information about the geometry and the kinematics of the geological fractures intersecting the underground laboratory. A compilation of all tectonic structures identified is presented in this paper. The underground laboratory is located in the backlimb of the Mont Terri anticline, a NNW-vergent imbricate fault-bend fold, which is characterised by a pronounced along-strike asymmetry resulting from variously oriented inherited faults. The total shortening accommodated by this structure was estimated by mass (area) balancing to be approximately 2.1 km. The Mont Terri area is significantly affected by N- to NNE-striking normal faults of the Eo-Oligocene Rhine-Bresse transfer zone and by ENE-striking faults of Late Variscan age. Depending on their orientation with respect to the transport direction towards the NNW, these faults served as oblique and frontal ramps during the subsequent Jura thrusting in the Late Miocene. The various fault systems identified in the underground rock laboratory clearly correlate with the regional-scale structures. In addition to classical structural analysis, the anisotropy of magnetic susceptibility was measured to determine the magnetic fabric and strain

  6. Wireless Monitoring Study in the Meuse / Haute-Marne Underground Research Laboratory, France - 12046

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Kei; Eto, Jiro; Tanabe, Hiromi [Radioactive Waste Management Funding and Research Center - RWMC (Japan); Mayer, Stefan; Bertrand, Johan [National Radioactive Waste Management Agency - ANDRA (France); Takamura, Hisashi; Suyama, Yasuhiro [Kajima Corporation (Japan)

    2012-07-01

    Two types of wireless transmission systems using ultra low frequency (8.5 kHz) were developed and used in the Callovo-Oxfordian argillites layer in the Meuse / Haute-Marne Underground Research Laboratory (CMHM URL) in France. Short-range and mid-range transmission antennas received data transmitted from 25 m to 50 m away. From the results of two series of tests, it is clear that transmission is practical when the received voltage is larger than the received noise. However, it is also clear that wireless transmission in the CMHM URL gallery is affected by the electromagnetic noise level and steel components, and the maximum transmission distance depends on the S/N ratio. The mid-range transmission antenna achieved a transmission distance of 240 m in the surface test, where the electromagnetic noise level was small and there was no environmental attenuation. The short-range transmission antenna achieved a transmission distance of 25 m in the surface test and in the CMHM URL gallery. As the clay layer of the CMHM URL had little effect on the attenuation of the electromagnetic field, transmission over 200 m might be possible in the CMHM URL when the electromagnetic noise level is small enough and there are no significant factors enhancing attenuation. But in reality, the possible transmission distance was around 50 m. In order to show the transmitter's ability, it is preferable to keep some distance between steel components and the transmitter. The most effective way to use this transmitter is to put it in a borehole drilled from a gallery to outside of a gallery around 10 m length. In this way, it might be possible to avoid almost of all the influence of steel components. For the position of receiver, the recommendation is the same as for the transmitter. That is, place the receiver where the incoming signal from the transmitter suffers little attenuation from steel components. Therefore, the option of implementing a receiving antenna in a borehole is required

  7. Mizunami Underground Research Laboratory project. Annual report for fiscal year 2009

    International Nuclear Information System (INIS)

    Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). The MIU Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III). The MIU Project has been ongoing the Phase II whose aims are development of geological models, understanding the variation of the geological environments and applicability of technologies and techniques during the shaft and tunnel excavation. A plan of the Phase III also will be established in Phase II. This report introduces the results of the investigations, construction and collaboration studies in fiscal year 2009, as a part of the Phase II based on the MIU Master Plan updated in 2002. Main and Ventilation Shafts of the MIU have been excavated from GL-300.2m to GL-459.6m, GL-331.2m to GL-459.8m respectively in 2009 fiscal year. A horizontal tunnel at the GL-400m level has been connected between Main and Ventilation Shafts. Three new borehole investigations for groundwater pressure and hydrochemical monitoring were carried out at the -300m Stage. The aims of these investigations are summarized as follows; 1) Groundwater pressure monitoring; To understand change of water pressure during shaft construction and to obtain data for updating the hydrogeological model, 2) Hydrochemical monitoring; To understand spatial distribution of groundwater chemistry and hydrochemical changes during shaft construction, 3) Hydrochemical monitoring conducted by JAEA and National institute of Advanced Industrial and Technology(AIST); To understand spatial distribution of groundwater chemistry and hydrochemical changes during shaft construction, development of methodology for characterizing

  8. Wireless Transmission of Monitoring Data out of the HADES Underground Laboratory - 12450

    International Nuclear Information System (INIS)

    As part of the European 7. framework project MoDeRn, Nuclear Research and Consultancy Group (NRG) performed experiments in order to demonstrate the feasibility of wireless data transmission through the subsurface over larger distances by low frequency magnetic fields. The main objective of NRG's contribution is to characterize and optimize the energy use of this technique within the specific context of post-closure monitoring. For this, measurements have been performed in the HADES underground laboratory located at Mol, Belgium, at 225 m depth. The experimental set-up makes use of a loop antenna for the transmitter that has been matched into the existing infrastructure of the HADES. The experimental work of NRG is divided into several stages: in 2010, the necessary hardware has been designed and assembled and tested in the Netherlands. Site-specific magnetic background noise in Mol and frequency-dependent signal attenuation by the geologic medium has been measured. Signal transmission has been demonstrated and several transmission channels around 1 kHz have been identified. In 2011, additional measures and experiments have been performed in order to characterize and test relevant element of the transmission chain and to optimize the energy use of the set-up. A mathematical model description has been developed that includes the most relevant characteristics of the transmitter, receiver and transmission path and was used to analyse possible options to optimize the set-up. In 2012, experiments are planned in order to test several data transmission options. Results so far have shown that signal transmission over larger distances through the subsurface is feasible. However, to make quantitative conclusions on the energy need per bit of transmitted data, additional experiments planned in 2012 are necessary. The experimental and theoretical results gained by NRG, as part of the European 7. framework project MoDeRn, so far demonstrated that signal transmission through 225

  9. Present status and prospects of ultralow level radioactivity measurements (2). Underground laboratory and recent topics emerged from ultralow level radioactivity measurements

    International Nuclear Information System (INIS)

    The present status of ultralow level radioactivity measurements in underground laboratories in Japan and Europe, and some researches using ultralow level radioactivity measurement technologies are stated. The background radiation originating cosmic ray is not excluded on the ground, but it decreased in the underground laboratory. Anticoincidence of underground measurement, countermeasure of radon, shielding materials, background of Ge measurement in Ogoya and other underground laboratories in Japan are reported. There are many underground laboratories for ultralow level radioactivity measurements in Europe, and a group of Collaboration of European Low-level underground LAboRatories (CELLAR) was organized. Some examples of ultralow level background of gamma ray measurements such as 152Eu, atomic bomb induced nuclide, natural induced radioactive nuclide by environmental neutron, measurement of 22Na, 108mAg and 110mAg, new evaluation method using 108mAg, high resolution analysis of change of 7Be and 210Pb in air, and nuclide in meteorite are reported. The sensitivity increasing method of low level radioactivity measurement and radioactive contamination of reagents are described. (S.Y.)

  10. Demonstration of high-level waste disposal technologies in an underground research laboratory

    International Nuclear Information System (INIS)

    A number of nuclear research centres in different countries are investigating the issue of underground disposal of high level waste. The paper proposes that a collaborative programme be launched, under the IAEA auspices, to find solutions to various facets of this issue. (author)

  11. Understanding fast neutrons utilizing a water Cherenkov detector and a gas-filled detector at the soudan underground laboratory

    Science.gov (United States)

    Ghimire, Chiranjibi

    Many experiments are currently searching for Weakly Interactive Massive Particles (WIMPs), a well-motivated class of hypothetical dark matter candidates. These direct dark matter detection experiments are located in deep underground to shield from cosmic-ray muons and the fast neutrons they produce. Fast neutrons are particularly dangerous to WIMP detectors because they can penetrate a WIMP-search experiment's neutron shielding. Once inside, these fast neutrons can interact with high-Z material near the WIMP detector, producing slower neutrons capable of mimicking the expected WIMP signal. My research uses two detectors located in Soudan Underground Laboratory to understand fast neutron production by muons in an underground environment: a water-Cherenkov detector sensitive to fast neutrons; and a gas-filled detector sensitive to charged particles like muons. The different kinds of selection criterion and their efficiencies are reported in this thesis. This thesis estimate the number of high energy neutron-like candidates associated with a nearby muon by using data from both detector systems.

  12. Clay minerals in the Meuse - Haute Marne underground laboratory (France): Possible influence of organic matter on clay mineral evolution.

    OpenAIRE

    Claret, Francis; Sakharov, Boris.A.; Drits, Victor.A.; Velde, Bruce; Meunier, Alain; Griffault, Lise; Lanson, Bruno

    2004-01-01

    A clay-rich Callovo-Oxfordian sedimentary formation was selected in the eastern Paris Basin (MHM site) to host an underground laboratory dedicated to the assessment of nuclear waste disposal feasibility in deep geological formations. As described initially, this formation shows a mineralogical transition from an illite-smectite (I-S) mixed-layered mineral (MLM), which is essentially smectitic and randomly interstratified (R=0) in the top part of the series to a more illitic, ordered (R≥1) I-S...

  13. Pre-excavation grouting design, results and evaluation of a gallery at great depth in Mizunami Underground Research Laboratory

    International Nuclear Information System (INIS)

    Pre-excavation grouting of shafts and galleries has been conducted during the construction of Mizunami Underground Research Laboratory in the aspect of safe works and reducing the discharge treatment of the water inflow. The grouting methodology has been simultaneously studied and developed as there is less experience of grouting in low conductive rock with high water pressure, especially in Japan. Ahead of excavating GL.-500 m gallery on the ventilation shaft side, grouting design was performed based on the estimation of water inflow by the pilot-boring investigations and the design was properly revised during the campaign. The gallery satisfied the inflow requirement with good sealing effect. (author)

  14. Parameters of a simple whole body counter and thyroid monitor established at the Dresden Felsenkeller underground laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Sahre, P. [Rossendorf Nuclear Engineering and Analytics, Inc., Dresden (Germany); Schoenmuth, T. [Rossendorf Nuclear Engineering and Analytics, Inc., Dresden (Germany)

    1997-03-01

    At the Rossendorf Nuclear Engineering and Analytics Inc. a simple whole body counter and an iodine-thyroid monitor are used for measuring the internal contamination of workers. There is no shielding chamber in both cases. By using the chamber at the Dresden Felsenkeller underground laboratory the lower limit of detection could be improved by a factor of about 3 for whole body counting and by a factor of 2,5 for thyroid monitoring (I 131, I 125). Concerning the lower limit of detection the applicability of the German standard DIN 25 482 implemented in the Gamma-Vision software packadge is discussed in the paper. (orig.)

  15. Low-level multicounter {beta}/{gamma} systems with external guards in surface and shallow underground laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Theodorsson, P. [Iceland Univ. (Iceland). Science Inst.

    1997-03-01

    When weak samples are measured it is important that they can be given ample counting time in order to obtain satisfactory accuracy and that the background count rate can be checked well. This calls for a high counting capacity, which multidetectors can bring us. I will discuss development possibilities of low-level {beta}/{gamma} multidetector systems with an external anticosmic shield that will in many cases be operated in underground laboratories. These simple and low-cost system can frequently help us in increasing the number of detectors. Three concepts are combined in these systems: (1) multidetectors, (2) an external anticosmic (or guard) detector arrangement and (3) overburden shielding. (orig.)

  16. Countermeasure for the reduction of groundwater inflow due to the construction of the Mizunami Underground Research Laboratory

    International Nuclear Information System (INIS)

    The Mizunami Underground Research Laboratory (MIU) is currently being constructed. During its construction, water inflow into the shafts of the MIU has been increasing and affecting the project progress. In order to reduce the water inflow into the shafts, pilot borehole investigations and pre-excavation grouting have been conducted. The pilot borehole investigations have been carried out for predicting the inflow points and inflow rate etc. in order to establish the future plan. The pre-excavation grouting has been undertaken at the predicted inflow area with existing method. The results of these investigations show the applicability of several techniques used. (author)

  17. Radon and environmental radioactivity in the Canfranc Underground Laboratory; Radon y radiacion ambiental en el Laboratorio Subterraneo de Canfrac (LSC)

    Energy Technology Data Exchange (ETDEWEB)

    Bandac, I.; Bettini, A.; Borjabad, S.; Nunez-Lagos, R.; Perez, C.; Rodriguez, S.; Sanchez, P.; Villar, J. A.

    2014-02-01

    The results of more than one year of measurements of Radon and environmental radioactivity in the Canfranc Underground Laboratory (LSC) are presented. Radon and atmospheric parameters have registered by an Alpha guard P30 equipment and the environmental radioactivity has been measured by means of UD-802A Panasonic thermoluminescent dosimeters (TLD) processed by an UD716 Panasonic unit. Series of results along with their possible correlations are presented. Both the Radon level and the ambient dose equivalent H (10) are much lower than the allowed ones so no radiological risk exists to persons working in the LSC. Also its excellent environmental radiological quality has been confirmed. (Author)

  18. Low-level multicounter β/γ systems with external guards in surface and shallow underground laboratories

    International Nuclear Information System (INIS)

    When weak samples are measured it is important that they can be given ample counting time in order to obtain satisfactory accuracy and that the background count rate can be checked well. This calls for a high counting capacity, which multidetectors can bring us. I will discuss development possibilities of low-level β/γ multidetector systems with an external anticosmic shield that will in many cases be operated in underground laboratories. These simple and low-cost system can frequently help us in increasing the number of detectors. Three concepts are combined in these systems: (1) multidetectors, (2) an external anticosmic (or guard) detector arrangement and (3) overburden shielding. (orig.)

  19. Low background germanium detectors: From environmental laboratory to underground counting facility

    Energy Technology Data Exchange (ETDEWEB)

    Ceuppens, M. [Canberra Semiconductor N.V., Geel (Belgium)]|[Canberra Industries, Inc., Meriden (United States); Verplancke, J. [Canberra Semiconductor N.V., Geel (Belgium)]|[Canberra Industries, Inc., Meriden (United States); Tench, O. [Canberra Semiconductor N.V., Geel (Belgium)]|[Canberra Industries, Inc., Meriden (United States)

    1997-03-01

    Presentation and overview of different Low Level measuring systems ranging from the environmental lab to low-background detection systems and to the deep underground counting facility. Examples and performances for each of these will be given. Attention will be given to the standardised ultra low-background detectors and shields which provide excellent performance without the high cost in time and money associated with custom designed systems. (orig./DG)

  20. In situ stress measurements in siliceous mudstones at Horonobe Underground Research Laboratory, Japan

    International Nuclear Information System (INIS)

    The stress measurement methods implemented during the surface-based investigations and during construction of the underground facilities in the Horonobe mudstones, as well as information on the initial stress state around the Horonobe URL, are described in this paper. During the surface-based investigations, determination of deep in situ stress was conducted using RF, BB information in deep boreholes and core-based methods such as AE and DSCA. During construction of the underground facilities, subsurface investigations utilizing CCBO, HTPF and the monitoring of spelling around the shafts were conducted in order to verify results from initial stress measurements in the surface-based investigations. HF results indicate that magnitude of the horizontal maximum and minimum principal stresses increases linearly with depth. The maximum principal stress estimated from the HF and borehole breakout data is almost E-W. This is similar to the tectonic movement direction in the vicinity of the Horonobe URL. Due to tectonic movement, horizontal maximum stress is almost 1.5 time larger than the horizontal maximum stress. The minimum horizontal principle stress is almost equivalent to overburden pressure. Stress condition determined from HTPF in the investigations during construction of the underground facilities in almost equal to the results during surface-based investigations. (author)

  1. Turning Points in Containment of Lawrence Livermore National Laboratory Underground Nuclear Tests

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, B C; Rambo, J T; Pawloski, G A; Burkhard, N R

    2006-11-21

    Sometime in 1987 Billy Hudson, a long-time LLNL Containment Scientist and the Task Leader for Containment Diagnostics, put together a presentation entitled ''Turning Points in Containment''. This presentation identifies challenges, lessons learned, and changes made in containment practice over a 20-year period, from 1967-1987. Besides providing a significant historical summary, the presentation is valuable as we maintain a position of readiness 14 years after the last underground nuclear detonation. It is particularly valuable to personnel who are new to the program and have no first-hand experience in implementing underground nuclear test containment for actual tests. We now view this material as a unique containment summary with timeless importance. We envision this report to be particularly useful to new Containment Program members and anyone interested in the history of underground nuclear test containment practices. We believe that the Barnwell test, detonated in 1989, would have been added to this summary if Billy Hudson had the opportunity to update the presentation. We have chosen to add a few slides to the end of the original presentation to describe the issues and lessons learned from Barnwell.

  2. Identifying underground coal mine displacement through field and laboratory laser scanning

    Science.gov (United States)

    Slaker, Brent; Westman, Erik

    2014-01-01

    The ability to identify ground movements in the unique environment of an underground coalmine is explored through the use of laser scanning. Time-lapse scans were performed in an underground coal mine to detect rib surface change after different volumes of coal were removed from the mine ribs. Surface changes in the rib as small as 57 cm3 were detected through analysis of surface differences between triangulated surfaces created from point clouds. Results suggest that the uneven geometry, coal reflectance, and small movements of objects and references in the scene due to ventilation air do not significantly influence monitoring ability. Time-lapse scans were also performed on an artificial coal rib constructed to allow the researchers to control deformation and error precisely. A test of displacement measurement precision showed relative standard deviations of 3200 pts/m2. Changing the distance and angle of incidence of the artificial coal rib to the scanner had little impact on the accuracy of results beyond the expected reduction due to a smaller point density of the target area. The results collected in this study suggest that laser scanning can be a useful, comprehensive tool for measuring ground change in an underground coal mining environment.

  3. Hydrogeological characterization on surface-based investigation phase in the Mizunami underground research laboratory project, in Japan

    International Nuclear Information System (INIS)

    The Mizunami Underground Research Laboratory (MIU) project is being carried out by Japan Atomic Energy Agency in the Cretaceous Toki granite in the Tono area, central Japan. The MIU project is a purpose-built generic underground research laboratory project that is planned for a broad scientific study of the deep geological environment as a basis of research and development for geological disposal of nuclear wastes. One of the main goals of the MIU project is to establish comprehensive techniques for investigation, analysis, and assessment of the deep geological environment. The MIU project has three overlapping phases: Surface-based Investigation (Phase I), Construction (Phase II) and Operation (Phase III). Hydrogeological investigations using a stepwise process in Phase I have been carried out in order to obtain information on important properties such as, location of water conducting features, hydraulic conductivity and so on. Hydrogeological modeling and groundwater flow simulations in Phase I have been carried out in order to synthesize these investigation results, to evaluate the uncertainty of the hydrogeological model and to identify the main issues for further investigations. Using the stepwise hydrogeological characterization approach and combining the investigation with modeling and simulation, understanding of the hydrogeological environment has been progressively improved. (authors)

  4. Final report on the surface-based investigation phase (phase 1) at the Mizunami Underground Research Laboratory project

    International Nuclear Information System (INIS)

    The Mizunami Underground Research Laboratory (MIU) Project is a comprehensive research project investigating the deep underground environment within crystalline rock being conducted by Japan Atomic Energy Agency at Mizunami City in Gifu Prefecture, central Japan and its role is defined in 'Framework for Nuclear Energy Policy' by Japan Atomic Energy Commission. The MIU Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III), with a total duration of 20 years. The overall project goals of the MIU Project from Phase I through to Phase III are: 1) to establish techniques for investigation, analysis and assessment of the deep geological environment, and 2) to develop a range of engineering for deep underground application. During Phase I, the overall project goals were supported by Phase I goals. For the overall project goals 1), the Phase I goals were set to construct models of the geological environment from all surface-based investigation results that describe the geological environment prior to excavation and predict excavation response. For the overall project goals 2), the Phase I goals were set to formulate detailed design concepts and a construction plan for the underground facilities. This report summarizes the Phase I investigation which was completed in March 2005. The authors believe this report will make an important milestone, since this report clarifies how the Phase I goals are achieved and evaluate the future issues thereby direct the research which will be conducted during Phase II. With regard to the overall project goals 1), 'To establish techniques for investigation, analysis and assessment of the deep geological environment,' a step-wise investigation was conducted by iterating investigation, interpretation, and assessment, thereby understanding of geologic environment was progressively and effectively improved with progress of investigation. An optimal

  5. Wireless Transmission of Monitoring Data out of an Underground Repository: Results of Field Demonstrations Performed at the HADES Underground Laboratory - 13589

    International Nuclear Information System (INIS)

    As part of the European 7. framework project MoDeRn, Nuclear Research and Consultancy Group (NRG) performed experiments in order to demonstrate the feasibility of wireless data transmission through the subsurface over large distances by low frequency magnetic fields in the framework of the geological disposal of radioactive waste. The main objective of NRG's contribution is to characterize and optimize the energy use of this technique within the specific context of post-closure monitoring of a repository. For that, measurements have been performed in the HADES Underground Research Laboratory (URL) located at Mol, Belgium, at 225 m depth. The experimental set-up utilizes a loop antenna for the transmitter that has been matched to the existing infrastructure of the HADES. Between 2010 and 2012 NRG carried out several experiments at the HADES URL in order to test the technical set-up and to characterize the propagation behavior of the geological medium and the local background noise pattern. Transmission channels have been identified and data transmission has been demonstrated at several frequencies, with data rates up to 10 bit/s and bit error rates <1%. A mathematical model description that includes the most relevant characteristics of the transmitter, transmission path, and receiver has been developed and applied to analyze possible options to optimize the set-up. With respect to the energy-efficiency, results so far have shown that data transmission over larger distances through the subsurface is a feasible option. To support the conclusions on the energy need per bit of transmitted data, additional experiments are foreseen. (authors)

  6. Some rock mechanics laboratory testing related to the construction and operation of AECL's Underground Research Laboratory (URL)

    International Nuclear Information System (INIS)

    In preparation for and in support of the geomechanical investigations during the Construction and Operating Phases of the URL, considerable rock mechanics laboratory testing work has been conducted over a range of conditions. The main objectives of the laboratory testing programs are twofold: (1) to provide a rock properties database for the URL rock mass for input into numerical models and the design of in situ experiments; (ii) to study the behaviours of the rocks under the repository conditions when they are subjected to changes in stress, temperature, humidity and other time-dependent factors. This paper discusses some testing programs undertaken in the Mining, Laboratories - Nepean (formerly known as Mining Research Laboratories, CANMET) of Natural Resources Canada. Particular emphasis is placed on relating the laboratory-scale behaviour of the rock samples to the in situ behaviour of the rock mass. (author)

  7. Applicability of initial stress measurement methods to Horonobe Siliceous rocks and initial stress state around Horonobe Underground Research Laboratory

    International Nuclear Information System (INIS)

    Understanding initial stress condition in deep underground is important for such construction as rock cavern for geological disposal of HLW and underground power plant. Neogene sedimentary rock is widely distributed in Japan. There are only a few studies of initial stress measurement in Neogene sedimentary rock mass in Japan due to difficulty of measurement. Evaluation of initial stress condition around Horonobe Underground Research Laboratory Project was carried out in order to understand initial stress condition and applicability of AE, DSCA and hydraulic fracturing (HF) methods to Neogene sedimentary rock. Initial stress values obtained from AE method is smaller than overburden pressure due to time dependency of Kaizer effect. It would be difficult to use AE method as initial stress measurement method for Horonobe Siliceous rocks. Principal stress values by DSCA are similar to those by HF tests. Directions of maximum horizontal principal stresses are approximately in E-W and corresponded to HF results. In HF, rod type and wire-line type systems were compared. Workability of rod type was much better than wire-line type. However, re-opening pressure were not able to be precisely measured in case of rod type system due to the large compliance of the packers and rods. Horizontal maximum and minimum principal stresses increase linearly in HF results. Deviatoric stress is acting at shallow depth. Initial stress condition approaches hydrostatic condition with depth. Direction of maximum horizontal principal stress was in E-W direction which was similar to tectonic movement around Horonobe URL by triangular surveying. (author)

  8. Study on geology on the Mizunami Underground Research Laboratory project. Geology and geological structure at the -500m stage

    International Nuclear Information System (INIS)

    Japan Atomic Energy Agency (JAEA) is performing the Mizunami Underground Research Laboratory (MIU) Project, which is a scientific study of the deep geological environment as a basis of research and development for geological disposal of high level radioactive wastes (HLW), in order to establish comprehensive techniques for the investigation, analysis and assessment of the deep geological environment in the crystalline rock. The MIU Project has three overlapping phases, Surface-based investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III). The goals of the MIU Project from the Phase I to the Phase III are to establish techniques for investigation, analysis and assessment of the deep geological environment, and to develop a range of engineering techniques for deep underground application. One of the Phase II goals is set up to develop and revise models of the geological environment using the investigation results obtained during excavation, and to determine and assess changes in the geological environment in response to excavation. This report aims at compiling results of study on geology and geological structure at the -500m Stage in the MIU construction site, investigated in the Phase II and provides the fundamental information on the geology and geological structure for future study and modeling of geological environment. (author)

  9. Horonobe Underground Research Laboratory project synthesis of phase I investigation 2001-2005. Volume 'Geological disposal research'

    International Nuclear Information System (INIS)

    This report summarizes the progress of research and development on geological disposal during the surface-based investigation phase (2001-2005) in the Horonobe Underground Research Laboratory project (HOR), of which aims are to apply the design methods of geological disposal and mass transport analysis to actual geological conditions obtained from the surface-based investigations in HOR as an example of actual geological environment. For the first aim, the design methods for the geological disposal facility proposed in 'H12 report (the second progress report)' was reviewed and then improved based on the recent knowledge. The applicability of design for engineered barrier system, backfill of disposal tunnel, underground facility was illustrated. For the second aim, the conceptual structure from site investigation and evaluation to mass transport analysis was developed as a work flow at first. Then following this work flow a series of procedures for mass transport analysis was applied to the actual geological conditions to illustrate the practical workability of the work flow and the applicability of this methodology. Consequently, based on the results, future subjects were derived. (author)

  10. Data of long term hydro-pressure monitoring on Mizunami Underground Research Laboratory project for fiscal year 2012

    International Nuclear Information System (INIS)

    Japan Atomic Energy Agency (JAEA) has been conducting Mizunami Underground Research Laboratory (MIU) Project, which is a broad scientific study of the deep geological environment as a basis of research and development for geological disposal of high-level radioactive waste, in order to establish comprehensive techniques for the investigation, analysis and assessment of the deep geological environment in crystalline rock. The MIU Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III), with a total duration of over 20 years. The main goals of the MIU Project from Phase I through to Phase III are: to establish techniques for investigation, analysis and assessment of the deep geological environment, and to develop a range of engineering for deep underground application. Currently, the project is being carried out under the Phase II and III. One of the Phase II goals is set to develop and revise models of the geological environment using the investigation results obtained during excavation, and to determine and assess the changes in the geological environment in response to excavation. The long term hydro-pressure monitoring has been continued to achieve the Phase II goals. This report describes the results of the long term hydro-pressure monitoring from April 2012 to March 2013. A CD-ROM is attached as an appendix. (J.P.N.)

  11. On area-specific underground research laboratory for geological disposal of high-level radioactive waste in China

    Directory of Open Access Journals (Sweden)

    Ju Wang

    2014-04-01

    Full Text Available Underground research laboratories (URLs, including “generic URLs” and “site-specific URLs”, are underground facilities in which characterisation, testing, technology development, and/or demonstration activities are carried out in support of the development of geological repositories for high-level radioactive waste (HLW disposal. In addition to the generic URL and site-specific URL, a concept of “area-specific URL”, or the third type of URL, is proposed in this paper. It is referred to as the facility that is built at a site within an area that is considered as a potential area for HLW repository or built at a place near the future repository site, and may be regarded as a precursor to the development of a repository at the site. It acts as a “generic URL”, but also acts as a “site-specific URL” to some extent. Considering the current situation in China, the most suitable option is to build an “area-specific URL” in Beishan area, the first priority region for China's high-level waste repository. With this strategy, the goal to build China's URL by 2020 may be achieved, but the time left is limited.

  12. On area-specific underground research laboratory for geological disposal of high-level radioactive waste in China

    Institute of Scientific and Technical Information of China (English)

    Ju Wang

    2014-01-01

    Underground research laboratories (URLs), including “generic URLs” and “site-specific URLs”, are un-derground facilities in which characterisation, testing, technology development, and/or demonstration activities are carried out in support of the development of geological repositories for high-level radio-active waste (HLW) disposal. In addition to the generic URL and site-specific URL, a concept of “area-specific URL”, or the third type of URL, is proposed in this paper. It is referred to as the facility that is built at a site within an area that is considered as a potential area for HLW repository or built at a place near the future repository site, and may be regarded as a precursor to the development of a repository at the site. It acts as a “generic URL”, but also acts as a “site-specific URL” to some extent. Considering the current situation in China, the most suitable option is to build an“area-specific URL”in Beishan area, the first priority region for China’s high-level waste repository. With this strategy, the goal to build China’s URL by 2020 may be achieved, but the time left is limited.

  13. Horonobe Underground Research Laboratory project. Synthesis of phase 1 investigation 2001-2005, Volume 'geological disposal research'

    International Nuclear Information System (INIS)

    This report summarizes the progress of research and development on geological disposal during the surface-based investigation phase (2001-2005) in the Horonobe Underground Research Laboratory project, of which aims are to apply the design methods of geological disposal and mass transport analysis to actual geological conditions obtained from the project as an example of actual geological environment. For the first aim, the design methods for the geological disposal facility proposed in 'H12 report (the second progress report)' was reviewed and then improved based on the recent knowledge. The applicability of design for engineered barrier system, backfill of disposal tunnel, underground facility was illustrated. For the second aim, the conceptual structure from site investigation and evaluation to mass transport analysis was developed as a work flow at first. Then following this work flow a series of procedures for mass transport analysis was applied to the actual geological conditions to illustrate the practical workability of the work flow and the applicability of this methodology. Consequently, based on the results, future subjects were derived. (author)

  14. Cigeo. The French deep geological repository for radioactive waste. Excavation techniques and technologies tested in underground laboratory and forecasted for the future construction of the project

    International Nuclear Information System (INIS)

    Cigeo is the French project for the repository of the high activity and intermediate long-lived radioactive waste. It will be situated at a depth of 500 m, In a clayish rock formation. An underground laboratory was built in the year 2000 and numerous tests are performed since 15 years, in order to know in detail the behavior of the rock and its ability to confine radioactive elements. In addition, this underground laboratory has brought and will continue to bring many lessons on the excavation methods to be chosen for the construction of Cigeo.

  15. The use of scientific and technical results from underground research laboratory investigations for the geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    The objective of the report is to provide information on the use of results obtained from underground research laboratory investigations for the development of a deep geological repository system for long lived and/or high level radioactive waste including spent fuel. Specifically, it should provide Member States that intend to start development of a geological disposal system with an overview of existing facilities and of the sorts and quality of results that have already been acquired. The report is structured into six main themes: rock characterization methodologies and testing; assessment of the geological barrier; assessment of the engineered barrier system; respository construction techniques; demonstration of repository operations; confidence building and international co-operation

  16. Toward a depth of 1,000 m from the ground surface. Construction scheme of Mizunami Underground Research Laboratory

    International Nuclear Information System (INIS)

    One thousand meter-deep shafts and several level drifts will be excavated in the Mizunami Underground Research Laboratory (MIU) Project. Design and layout of the shafts and drifts are determined considering the limiting condition, schedule, and investigation plan for characterization of the geological environment and engineering technology. This paper describes the limiting condition, layout and design of the shafts and drifts of the MIU, and results of mechanical stability, ventilation and earthquake-proof analysis. Details of the design of shafts and drifts are determined, and safety of the design and execution of construction of the MIU are confirmed based on the results of these analyses. Countermeasures and safety are also described in this paper. (author)

  17. Residual strain, scale effects, and time-dependent behaviour at the 240-m level of the underground research laboratory

    International Nuclear Information System (INIS)

    Two subhorizontal, orthogonal boreholes were monitored continuously during concentric overcoring at the 240-m level of the Underground Research Laboratory (URL). The magnitude and orientation of principal residual strain components in the near-field stress regime were determined assuming linear elastic behaviour of the rock mass and isotropic conditions. In terms of magnitude, results compared favourably with those from previous tests at the 240-m level. However, orientation results were inconclusive. The effects of scale and borehole orientation relative to the principal stress direction on the results from a modified CSIR triaxial cell overcore test were also investigated; no scale effects were apparent in the experiment, but borehole orientation did affect results. Finally, time-dependent behaviour was detected in the Lac du Bonnet granite, and was monitored between successive overcore tests in one of the boreholes. Results on residual strain, scale effects, and time-dependent behaviour are presented, along with limitations and possible modifications to the testing procedure

  18. Evaluating the potential for large-scale fracturing at a disposal vault: an example using the underground research laboratory

    International Nuclear Information System (INIS)

    The potential for large-scale fracturing (> 10 m2) around a nuclear fuel waste disposal vault is investigated in this report. The disposal vault is assumed to be located at a depth of 500 m in the plutonic rocks of the Canadian Shield. The rock mass surrounding the disposal vault is considered to have similar mechanical properties and in situ stress conditions to that found at a depth of 420 m at the Underground Research Laboratory. Theoretical, experimental and field evidence shows that Mode I fractures propagate in a plane perpendicular to σ3 and only if the tensile stress at the tip of the advancing crack is sufficient to overcome the tensile strength of the rock. Because the stress state at a depth of 500 m or more is compressive, and will very probably stay so during the 10,000 year life of the disposal vault, there does not appear to be any mechanism which could propagate large-scale Mode I fracturing in the rock mass surrounding the vault. In addition because σ3 is near vertical any Mode I fracture propagation that might occur would be in a horizontal plane. The development of either Mode I or large-scale shear fractures would require a drastic change in the compressive in situ stress state at the depth of the disposal vault. The stresses developed as a result of both thermal and glacial loading do not appear sufficient to cause new fracturing. Glacial loading would reduce the shear stresses in the rock mass and hence improve the stability of the rock mass surrounding the vault. Thus, it is not feasible that large-scale fracturing would occur over the 10,000 year life of a disposal vault in the Canadian Shield, at depths of 500 m or greater, where the compressive stress state is similar to that found at the Underground Research Laboratory. 107 refs., 44 figs

  19. The LAGUNA design study towards giant liquid based underground detectors for neutrino physics and astrophysics and proton decay searches

    CERN Document Server

    Angus, D; Autiero, D; Apostu, A; Badertscher, A; Bennet, T; Bertola, G; Bertola, P F; Besida, O; Bettini, A; Booth, C; Borne, J L; Brancus, I; Bujakowsky, W; Campagne, J E; Danil, G Cata; Chipesiu, F; Chorowski, M; Cripps, J; Curioni, A; Davidson, S; Declais, Y; Drost, U; Duliu, O; Dumarchez, J; Enqvist, T; Ereditato, A; von Feilitzsch, F; Fynbo, H; Gamble, T; Galvanin, G; Gendotti, A; Gizicki, W; Goger-Neff, M; Grasslin, U; Gurney, D; Hakala, M; Hannestad, S; Haworth, M; Horikawa, S; Jipa, A; Juget, F; Kalliokoski, T; Katsanevas, S; Keen, M; Kisiel, J; Kreslo, I; Kudryastev, V; Kuusiniemi, P; Labarga, L; Lachenmaier, T; Lanfranchi, J C; Lazanu, I; Lewke, T; Loo, K; Lightfoot, P; Lindner, M; Longhin, A; Maalampi, J; Marafini, M; Marchionni, A; Margineanu, R M; Markiewicz, A; Marrodan-Undagoita, T; Marteau, J E; Matikainen, R; Meindl, Q; Messina, M; Mietelski, J W; Mitrica, B; Mordasini, A; Mosca, L; Moser, U; Nuijten, G; Oberauer, L; Oprina, A; Paling, S; Pascoli, S; Patzak, T; Pectu, M; Pilecki, Z; Piquemal, F; Potzel, W; Pytel, W; Raczynski, M; Rafflet, G; Ristaino, G; Robinson, M; Rogers, R; Roinisto, J; Romana, M; Rondio, E; Rossi, B; Rubbia, A; Sadecki, Z; Saenz, C; Saftoiu, A; Salmelainen, J; Sima, O; Slizowski, J; Slizowski, K; Sobczyk, J; Spooner, N; Stoica, S; Suhonen, J; Sulej, R; Szarska, M; Szeglowski, T; Temussi, M; Thompson, J; Thompson, L; Trzaska, W H; Tippmann, M; Tonazzo, A; Urbanczyk, K; Vasseur, G; Williams, A; Winter, J; Wojutszewska, K; Wurm, M; Zalewska, A; Zampaolo, M; Zito, M

    2010-01-01

    The feasibility of a next generation neutrino observatory in Europe is being considered within the LAGUNA design study. To accommodate giant neutrino detectors and shield them from cosmic rays, a new very large underground infrastructure is required. Seven potential candidate sites in different parts of Europe and at several distances from CERN are being studied: Boulby (UK), Canfranc (Spain), Fr\\'ejus (France/Italy), Pyh\\"asalmi (Finland), Polkowice-Sieroszowice (Poland), Slanic (Romania) and Umbria (Italy). The design study aims at the comprehensive and coordinated technical assessment of each site, at a coherent cost estimation, and at a prioritization of the sites within the summer 2010.

  20. Evaluation of Cavity Collapse and Surface Crater Formation for Selected Lawrence Livermore National Laboratory Underground Nuclear Tests - 2011, Part 2

    Energy Technology Data Exchange (ETDEWEB)

    Pawloski, G A

    2012-01-30

    This report evaluates collapse evolution for selected Lawrence Livermore National Laboratory (LLNL) underground nuclear tests at the Nevada National Security Site (NNSS, formerly called the Nevada Test Site). The work is being done to support several different programs that desire access to the ground surface above expended underground nuclear tests. The programs include: the Borehole Management Program, the Environmental Restoration Program, and the National Center for Nuclear Security Gas-Migration Experiment. Safety decisions must be made before a crater area, or potential crater area, can be reentered for any work. Evaluation of cavity collapse and crater formation is input into the safety decisions. Subject matter experts from the LLNL Containment Program who participated in weapons testing activities perform these evaluations. Information used included drilling and hole construction, emplacement and stemming, timing and sequence of the selected test and nearby tests, geology, yield, depth of burial, collapse times, surface crater sizes, cavity and crater volume estimations, ground motion, and radiological release information. Both classified and unclassified data were reviewed. The evaluations do not include the effects of erosion that may modify the collapse craters over time. They also do not address possible radiation dangers that may be present. Various amounts of information are available for these tests, depending on their age and other associated activities. Lack of data can hamper evaluations and introduce uncertainty. We make no attempt to quantify this uncertainty. Evaluation of Cavity Collapse and Surface Crater Formation for Selected Lawrence Livermore National Laboratory Underground Nuclear Tests - 2011 was published on March 2, 2011. This report, considered Part 2 of work undertaken in calendar year 2011, compiles evaluations requested after the March report. The following unclassified summary statements describe collapse evolution and crater

  1. Search for double beta decay with HPGe detectors at the Gran Sasso underground laboratory

    CERN Document Server

    Chkvorets, Oleg

    2008-01-01

    Neutrinoless double-beta decay is practically the only way to establish the Majorana nature of the neutrino mass and its decay rate provides a probe of an effective neutrino mass. Double beta experiments are long-running underground experiments with specific challenges concerning the background reduction and the long term stability. These problems are addressed in this work for the Heidelberg-Moscow (HdM), GENIUS Test Facility (TF) and GERDA experiments. The HdM experiment collected data with enriched 76Ge high purity (HPGe) detectors from 1990 to 2003. An improved analysis of HdM data is presented, exploiting new calibration and spectral shape measurements with the HdM detectors. GENIUS-TF was a test-facility that verified the feasibility of using bare germanium detectors in liquid nitrogen. The first year results of this experiment are discussed. The GERDA experiment has been designed to further increase the sensitivity by operating bare germanium detectors in a high purity cryogenic liquid, which simultane...

  2. Use of the low-background underground laboratory in activation analysis of pure substances and low-activity radiometry of naturally radioactive elements

    International Nuclear Information System (INIS)

    This paper is the result of joint investigations by Russian and German scientists. It is devoted to questions of lowering the detection limits of some elements in neutron-activation analysis of pure substances (for example, silicon) in the low-background underground laboratory. The authors also consider the prospects for radiometry of some naturally radioactive elements under the same conditions of activity measurements

  3. Comparison of time-dependent strains measured at the Canadian Underground Research Laboratory (URL) with those calculated from the model MCDIRC

    International Nuclear Information System (INIS)

    A model MCDIRC has been developed to estimate creep strain, due to microcracking, around an opening in intact rock. Measured creep rates, around a shaft at the Canadian Underground Research Laboratory, are compared to those predicted by the model. The predictions are in reasonable agreement with the experimental observations

  4. Measurement of low radioactivity in underground laboratories by means of many-dimensional spectrometry; Messung geringer Radioaktivitaet in Untertagelaboratorien mit Hilfe mehrdimensionaler Spektrometrie

    Energy Technology Data Exchange (ETDEWEB)

    Niese, Siegfried

    2008-01-15

    In this contribution beside the possibilities for the measurements in underground laboratories also the application of the many-dimensional spectrometry is considered, under which coincidence, anticoincidence, and time-resolving spectrometric are to be understood. Very extensively the interaction of cosmic radiation with matter is considered.

  5. Low-level measuring techniques for neutrons: High accuracy neutron source strength determination and fluence rate measurement at an underground laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Zimbal, Andreas; Reginatto, Marcel; Schuhmacher, Helmut; Wiegel, Burkhard [Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig (Germany); Degering, Detlev [Verein für Kernverfahrenstechnik und Analytik Rossendorf e. V. (VKTA), D-01314 Dresden (Germany); Zuber, Kai [Technische Universität Dresden, D-01069 Dresden (Germany)

    2013-08-08

    We report on measuring techniques for neutrons that have been developed at the Physikalisch-Technische Bundesanstalt (PTB), the German National Metrology Institute. PTB has characterized radioactive sources used in the BOREXINO and XENON100 experiments. For the BOREXINO experiment, a {sup 228}Th gamma radiation source was required which would not emit more than 10 neutrons per second. The determination of the neutron emission rate of this specially designed {sup 228}Th source was challenging due to the low neutron emission rate and because the ratio of neutron to gamma radiation was expected to be extremely low, of the order of 10{sup −6}. For the XENON100 detector, PTB carried out a high accuracy measurement of the neutron emission rate of an AmBe source. PTB has also done measurements in underground laboratories. A two month measurement campaign with a set of {sup 3}He-filled proportional counters was carried out in PTB's former UDO underground laboratory at the Asse salt mine. The aim of the campaign was to determine the intrinsic background of detectors, which is needed for the analysis of data taken in lowintensity neutron fields. At a later time, PTB did a preliminary measurement of the neutron fluence rate at the underground laboratory Felsenkeller operated by VKTA. By taking into account data from UDO, Felsenkeller, and detector calibrations made at the PTB facility, it was possible to estimate the neutron fluence rate at the Felsenkeller underground laboratory.

  6. Simultaneous seismic and magnetic measurements in the Low-Noise Underground Laboratory (LSBB) of Rustrel, France, during the 2001 January 26 Indian earthquake

    Science.gov (United States)

    Gaffet, S.; Guglielmi, Y.; Virieux, J.; Waysand, G.; Chwala, A.; Stolz, R.; Emblanch, C.; Auguste, M.; Boyer, D.; Cavaillou, A.

    2003-12-01

    Since the decommission of the underground launching control room of the ground-based component of the French nuclear missile system, the whole installation has been turned into a cross-disciplinary underground laboratory. The LSBB is a unique low-noise underground laboratory because of its initial military conception and its location in the regional park of Luberon far from large cities, industry and heavy traffic. The deepest point is 500 m below the surface. At this depth a huge and non-conventional shielded cylindrical capsule is installed with no μ-metal, 1268 m3 in volume, with a residual electromagnetic noise lower than 2 fT Hz-1/2 above 10 Hz. As a result, fluctuations of the Earth's magnetic field under 10 Hz can be recorded at a very low-noise level with a low-Tc SQUID 3-D magnetometer. Taking advantage of the main gallery topology, a broad-band underground seismic array has been deployed since 2001. An analysis of data recorded simultaneously by the seismic underground array and by the magnetometer sensors during the Indian earthquake of 2001 January 26 is presented. Evidence of a magnetic field perturbation induced by the seismic waves at teleseismic distance (6250 km) is supported by a polarization analysis of seismic and magnetic signals. Spectral analysis shows specific frequency bands of perturbation related to physical processes such as ground water flow acceleration within the mountain structure.

  7. Survey of in situ testing at underground laboratories with application to geologic disposal of spent fuel waste in crystalline rock

    International Nuclear Information System (INIS)

    This report is intended for use in designing testing programs, or as backup material for the review of 'R and D 92' which will be the next three-year plan for spent fuel repository siting and characterization activities in Sweden. There are eight major topics, each of which is addressed in a chapter of around 2000 to 10000 words. The major topics are defined to capture the reasons for testing, in a way that limits overlap between chapters. Other goals of this report are to provide current information on recent or ongoing tests in crystalline rock, and to describe insights which are important but not obvious from the literature. No data are presented, but the conclusions of testing programs are summarized. The principal sources were reports (in English) produced by the laboratory projects particularly the Stripa Project (SKB), the Underground Research Laboratory in Canada (AECL), and the Grimsel Test Site in Switzerland (Nagra). Articles from refereed journals have been used in lieu of project literature where possible and appropriate. (au)

  8. Exploratory simulations of multiphase effects in gas injection and ventilation tests in an underground rock laboratory

    International Nuclear Information System (INIS)

    This report is one of a series documenting the results of the Nagra-DOE Cooperative (NDC-I) research program in which the cooperating scientists explore the geological, geophysical, hydrological, geochemical, and structural effects was sponsored by the US Department of Energy (DOE) through the Lawrence Berkeley Laboratory (LBL) and the Swiss Nationale Genossenschaft fuer die Lagerung radioaktiver Abfaella (Nagra) and concluded in September 1989. 16 refs., 29 figs., 4 tabs

  9. Principal provisions of engineering and geological survey methodology in designing and construction of underground laboratory as a part of facility of RW underground isolation

    International Nuclear Information System (INIS)

    The most critical moment is the choice of a site for radioactive waste geological repository. Here the role of engineering and geological prospecting as a basis for the construction of a facility for underground isolation appears especially important; it is followed by finding a suitable area and subsequent allocation of the site and facility construction sites. The decision on the selection of construction site for the underground repository is taken by the principle 'descent from the general to the particular', which is a continuous process with the observance of stages in research for the design and exploration work. Each stage of research is typified by specific scale and methods of geological and geophysical studies and scientific research to be fulfilled in scopes sufficient for solution of basic problems for the designing. (author)

  10. Estimation of crack tensor for evaluating excavation disturbance of research gallery at the Mizunami Underground Research Laboratory

    International Nuclear Information System (INIS)

    Japan Atomic Energy Agency has been implementing the Mizunami Underground Research Laboratory (MIU) Project in order to develop the comprehensive investigation techniques for the geological environment and the engineering techniques to construct a deep underground laboratory in crystalline rock. In the rock mechanical study in the MIU Project, the development of the evaluation method for the excavation disturbed zone due to excavation of shafts and research galleries is one of the important issues. Therefore, the equivalent continuum model base on crack tensor theory applied to predict the rock mass behavior including excavation disturbance in FY2004. The parameters for the analysis were determined based on the results of deep borehole investigations from surface. In this study, crack tensor based on the geological observation in the MIU was calculated and the numerical simulation was done to compare the measured displacement in the MIU. Then, calculated crack tensor based on the geological observation compared with it in FY2004 work's and estimated from pilot borehole investigation. Moreover, the crack tensor at 500m in depth was re-estimated from these result and numerical simulation was carried out to understand realistic rock mass behavior due to excavation. The results are as follows: 1) For the ventilation shaft at GL-350m, the crack tensor deformation analysis based on FY2004 work's results showed that the calculated displacement was smaller than the measured displacement. Geometrical parameters of fractures in FY2004 work's result were different from one based on geological observation in the shaft. Therefore, the crack tensor of FY2004 work's results seems to be underestimated. 2) Large discontinuities with NE strike and high dipping observed in the ventilation shaft were major reason for the difference of crack tensors determined by borehole investigation from surface and geological observations in the ventilation shaft. Therefore, the crack tensor the

  11. Initial status of the environment. Environmental marks of the Meuse-Haute Marne underground research laboratory

    International Nuclear Information System (INIS)

    On August 3, 1999, the French government gave the permission to the national agency of radioactive wastes (ANDRA) to build up a research laboratory devoted to the feasibility study of a facility for the reversible disposal of high level and long living radioactive wastes in deep geologic beds. The site retained is located at Bure, at the boundary of the Meuse and Haute-Marne departements. Before starting the construction of this research facility, the ANDRA has carried out a careful survey of the initial environmental status of the site which will serve as a reference. This brochure presents the results of this survey: geo-morphology, agriculture, natural ecosystems, radioecology, sound levels, air quality, surface and groundwater quality. The ANDRA has implemented an environmental monitoring plan for each phase of the development of the project. (J.S.)

  12. The characteristics of a low background germanium gamma ray spectrometer at China JinPing underground laboratory

    International Nuclear Information System (INIS)

    A low background germanium gamma ray spectrometer, GeTHU, has been installed at China JinPing Underground Laboratory (CJPL). The integral background count rate of the spectrometer was 0.629 cpm between 40 and 2700 keV, the origins of which were studied by Monte Carlo simulation. Detection limits and efficiencies were calculated for selected gamma peaks. Some samples of rare event experiments were measured and 137Cs contamination was found in boric acid. GeTHU will be mainly used to measure environmental samples and screen materials in dark matter and double beta decay experiments. - Highlights: • The first low background gamma ray spectrometer (GeTHU) was developed at CJPL. • It has a large inner chamber which can host large samples for different purposes. • The background characteristics are presented and the origin is studied. • Detection limits are given for selected radionuclides and efficies are calculated. • Some samples were measured and 137Cs contamination was found in boric acid

  13. The Meuse-Haute Marne underground research laboratory. A scientific research tool for the study of deep geologic disposal of radioactive wastes

    International Nuclear Information System (INIS)

    The Meuse-Haute Marne underground research laboratory, is an essential scientific tool for the achievement of one of the ANDRA's mission defined in the framework of the law from December 30, 1991 about the long-term management of high-level and long-living radioactive wastes. This document presents this laboratory: site characterization, characteristics of the Callovo-Oxfordian clay, and laboratory creation, coordinated experiments carried out at the surface and in depth, and the results obtained (published in an exhaustive way in the 'Clay 2005' dossier). (J.S.)

  14. Evaluation of Cavity Collapse and Surface Crater Formation for Selected Lawrence Livermore National Laboratory Underground Nuclear Tests - 2006

    Energy Technology Data Exchange (ETDEWEB)

    Pawloski, G A; Raschke, K

    2006-03-16

    This report describes evaluation of collapse evolution for selected LLNL underground nuclear tests at the Nevada Test Site (NTS). The work is being done at the request of Bechtel Nevada and supports the Department of Energy National Nuclear Security Association Nevada Site Office Borehole Management Program (BMP). The primary objective of this program is to close (plug) weapons program legacy boreholes that are deemed no longer useful. Safety decisions must be made before a crater area, or potential crater area, can be reentered for any work. Our statements on cavity collapse and crater formation are input into their safety decisions. The BMP is an on-going program to address hundreds of boreholes at the NTS. Each year Bechtel Nevada establishes a list of holes to be addressed. They request the assistance of the Lawrence Livermore National Laboratory and Los Alamos National Laboratory Containment Programs to provide information related to the evolution of collapse history and make statements on completeness of collapse as relates to surface crater stability. These statements do not include the effects of erosion that may modify the collapse craters over time. They also do not address possible radiation dangers that may be present. Subject matter experts from the LLNL Containment Program and the Chemistry Biology and Nuclear Sciences Division who had been active in weapons testing activities performed these evaluations. Information used included drilling and hole construction, emplacement and stemming, timing and sequence of the selected test and nearby tests, geology, yield, depth of burial, collapse times, surface crater sizes, cavity and crater volume estimations, and ground motion. Both classified and unclassified data were reviewed. Various amounts of information are available for these tests, depending on their age and other associated activities. Lack of data can hamper evaluations and introduce uncertainty. We make no attempt to quantify this uncertainty.

  15. Evaluation of Cavity Collapse and Surface Crater Formation for Selected Lawrence Livermore National Laboratory Underground Nuclear Tests - 2007

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, S K; Pawloski, G A; Raschke, K

    2007-04-26

    This report describes evaluation of collapse evolution for selected LLNL underground nuclear tests at the Nevada Test Site (NTS). The work is being done at the request of NSTec and supports the Department of Energy National Nuclear Security Association Nevada Site Office Borehole Management Program (BMP). The primary objective of this program is to close (plug) weapons program legacy boreholes that are deemed no longer useful. Safety decisions must be made before a crater area, or potential crater area, can be reentered for any work. Our statements on cavity collapse and crater formation are input into their safety decisions. The BMP is an on-going program to address hundreds of boreholes at the NTS. Each year NSTec establishes a list of holes to be addressed. They request the assistance of the Lawrence Livermore National Laboratory and Los Alamos National Laboratory Containment Programs to provide information related to the evolution of collapse history and make statements on completeness of collapse as relates to surface crater stability. These statements do not include the effects of erosion that may modify the collapse craters over time. They also do not address possible radiation dangers that may be present. Subject matter experts from the LLNL Containment Program and the Chemical Sciences Division who had been active in weapons testing activities performed these evaluations. Information used included drilling and hole construction, emplacement and stemming, timing and sequence of the selected test and nearby tests, geology, yield, depth of burial, collapse times, surface crater sizes, cavity and crater volume estimations, and ground motion. Both classified and unclassified data were reviewed. Various amounts of information are available for these tests, depending on their age and other associated activities. Lack of data can hamper evaluations and introduce uncertainty. We make no attempt to quantify this uncertainty. The following unclassified summary

  16. Diffusion and retention experiment at the Mont Terri underground rock laboratory in St. Ursanne

    International Nuclear Information System (INIS)

    Document available in extended abstract form only. Because of their favourable hydraulic and retention properties that limit the migration of radionuclides, indurated clays are being considered as potential host rocks for radioactive waste disposal. Migration of radionuclides by diffusion and retention is thereby one of the main concerns for safety assessment and therefore carefully investigated at different scales. The transfer from dispersed sorption batch and diffusion data from lab experiments to field scale is however not always straightforward. Thus, combined sorption and diffusion experiments at both lab and field scale are instrumental for a critical verification of the applicability of such sorption and diffusion data. The present migration field experiment 'DR' (Diffusion and Retention experiment) at the Mont Terri Rock Laboratory (Switzerland) is the continuation of a series of successful diffusion experiments. The design is based on these previous diffusion experiments and has been extended to two diffusion chambers in a single borehole drilled perpendicular to the bedding plane. The radionuclides were injected as a pulse in both upper and lower loops where artificial pore water is circulating. The injected tracers were tritium, iodide, bromide, sodium-22, strontium-85, caesium (stable) for the lower diffusion chamber and deuterium caesium-137, barium-133, cobalt-60, europium-152, selenium (stable) and selenium-75 for the lower diffusion chamber. Their decrease in the circulation fluid - as they diffuse into the clay - is continuously monitored by online?-detection and regular sampling. The goals are fourfold (i) obtain diffusion and retention data for moderately to strongly sorbing tracers and to verify the corresponding data obtained on small-scale lab samples, (ii) improve diffusion data for the rock anisotropy, (iii) quantify effects of the borehole-disturbed zone for non-reactive tracers and (iv) improve data for long term diffusion. The

  17. Mr. Lorenzo Dellai, presidente della provincia Autonoma di Trento and Professor Andrea Zanotti, president dell'Instituto Trentino di Cultura, visit ALICE experiment underground area and Pixel Silicon Laboratory

    CERN Multimedia

    Claudia Marcelloni

    2006-01-01

    Mr. Lorenzo Dellai, presidente della provincia Autonoma di Trento and Professor Andrea Zanotti, president dell'Instituto Trentino di Cultura, visit ALICE experiment underground area and Pixel Silicon Laboratory

  18. Petrological and mineralogical data collected from the Mizunami Underground Research Laboratory construction site. Bulk chemical composition, Mineral occurrence and mineral composition

    International Nuclear Information System (INIS)

    Tono Geoscientific Research Unit of Japan Atomic Energy Agency (JAEA) is carrying out the Underground Research Laboratory Project, which is a scientific study revealing the deep geological environment as a basis of research and development for geological disposal of high level radioactive wastes. The aim of the project is to establish comprehensive techniques for the investigation, analysis and assessment of the deep geological environment in fractured crystalline rock, and to develop a range of engineering techniques for deep underground application. This project has three overlapping phases: Surface-based investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III), with a total duration of about 20 years. Nowadays, the project is under the Phase II. Phase I and II conducted the following kinds of analyses for rock samples, which was collected from the Mizunami Underground Research Laboratory Construction Site. Bulk chemical composition analyses (major and minor elements). X-ray diffraction analyses. Mineral composition analyses. Petrological and mineralogical data is a basic information for the planning of mass transfer study in Phase III investigation. Thus, this paper compiled the results of these analyses. (author)

  19. An outline of 1994-1996 geological studies for underground laboratory siting in the Charroux-Civray sediment-capped granitic massif-(southern Vienne-Poitou-France)

    Energy Technology Data Exchange (ETDEWEB)

    Virlogeux, D. [ANDRA, Chatenay-Malabry (France)

    1998-09-01

    Following the selection of four potentially favourable districts, ANDRA carried out a comprehensive geological investigation in the cantons of Charroux and Civray in order to assess the suitability of a large volume of granitic rocks to host an underground laboratory according to safety regulations. Surface mapping, regional aeromagnetic and gravimetric surveys, seismic reflection lines and 16 cored boreholes led to the selection of a tonalitic unit near La Chapelle-Baton as the target formation to be proposed for detailed study. This volume extends over an area of more than 3x4 km at the surface and at least 800m vertically. There appears to be no prohibitive factors to installation of an underground laboratory for further exploration, particularly from the hydrogeological standpoint. Magmatic joint-type small fracturing shows no variation with depth and polyphasic hydrothermal history has led to plugging the fractures with clays and carbonates. Alkaline fluids crystallising Adular (-126 My) has led to a strong reduction in the initial permeability of basement paleo-weathering zone. The horizontal and relatively fault-free sedimentary cover reveals a simple tectonic history during the last 200 My. One of the objectives of the laboratory study program will be to confirm the conceptual model of slow, shallow circulation in depth, based on the following data: Low frequency water inflows, obtained in the boreholes by pumping and testing, show the very low permeability of (pluri)hectometric blocks delineated by conducting faults. Low hydraulic gradients recorded in the boreholes are consistent with regional topography, and hydraulic heads in the granite similar or lower than those recorded in the overlying sedimentary aquifers. The chemical composition of granitic waters exhibits significant salinity at depth, and is different from the Lias and Dogger aquifer waters, indicating limited hydraulic relationships. The origin and age of the salinity is still under debate

  20. An outline of 1994-1996 geological studies for underground laboratory siting in the Charroux-Civray sediment-capped granitic massif-(southern Vienne-Poitou-France)

    International Nuclear Information System (INIS)

    Following the selection of four potentially favourable districts, ANDRA carried out a comprehensive geological investigation in the cantons of Charroux and Civray in order to assess the suitability of a large volume of granitic rocks to host an underground laboratory according to safety regulations. Surface mapping, regional aeromagnetic and gravimetric surveys, seismic reflection lines and 16 cored boreholes led to the selection of a tonalitic unit near La Chapelle-Baton as the target formation to be proposed for detailed study. This volume extends over an area of more than 3x4 km at the surface and at least 800m vertically. There appears to be no prohibitive factors to installation of an underground laboratory for further exploration, particularly from the hydrogeological standpoint. Magmatic joint-type small fracturing shows no variation with depth and polyphasic hydrothermal history has led to plugging the fractures with clays and carbonates. Alkaline fluids crystallising Adular (-126 My) has led to a strong reduction in the initial permeability of basement paleo-weathering zone. The horizontal and relatively fault-free sedimentary cover reveals a simple tectonic history during the last 200 My. One of the objectives of the laboratory study program will be to confirm the conceptual model of slow, shallow circulation in depth, based on the following data: Low frequency water inflows, obtained in the boreholes by pumping and testing, show the very low permeability of (pluri)hectometric blocks delineated by conducting faults. Low hydraulic gradients recorded in the boreholes are consistent with regional topography, and hydraulic heads in the granite similar or lower than those recorded in the overlying sedimentary aquifers. The chemical composition of granitic waters exhibits significant salinity at depth, and is different from the Lias and Dogger aquifer waters, indicating limited hydraulic relationships. The origin and age of the salinity is still under debate

  1. Stepwise hydrogeological characterisation utilising a geo-synthesis methodology - A case study from the Mizunami Underground Research Laboratory Project

    International Nuclear Information System (INIS)

    The Mizunami Underground Research Laboratory (MIU) is now under construction by Japan Atomic Energy Agency (JAEA) in the Cretaceous Toki granite in the Tono area of central Japan. One of the main goals of the MIU project, which is a broad scientific study of the deep geological environment as a basis of research and development for geological disposal of nuclear wastes, is to establish comprehensive techniques for the investigation, analysis and assessment of the deep geological environment in fractured crystalline rock. For this purpose, a geo-synthesis methodology has been developed and will be tested in a dry run to determine if it produces the data required for repository design and associated integrated safety assessment modelling. Surface-based hydrogeological characterisation, intended to develop conceptual models of the deep geological environment based on an understanding of the undisturbed conditions before excavation of this URL, was carried out in a stepwise manner. This allows field investigations, construction of geological and hydrogeological models and interpretation of resultant groundwater flow simulations to develop in an iterative manner. Investigations have the goal of obtaining information on factors relevant to repository design, associated construction, operational and postclosure safety assessment, evaluation of the practicality of implementation and environmental impact assessment. Such factors include bulk hydraulic conductivity, the locations and properties of water conducting features, direct and indirect indicators of regional and local flow (e.g. based on chemistry or isotopes), etc. Following evaluation of pre-existing site information, field investigations began with fault mapping. This was followed by reflection seismic and vertical seismic profile surveys. In addition, a large programme of investigations was carried out in boreholes, including cross-hole tomography and hydraulic tests. Such input is utilised for the construction

  2. Undergrounding issues

    International Nuclear Information System (INIS)

    As part of a general review of British Columbia Hydro's rights-of-way policies, a task group was formed to explore and assess the technical, social, environmental, and economic issues related to the provision of suitable underground rights-of-way for distribution and transmission lines. Issues considered were: evaluations of undergrounding; designation of service areas as underground areas; the BC Hydro fund to assist municipalities in beautifying selected areas by placing existing overhead lines underground; community funding of undergrounding; underground options to transmission and distribution requirements; and long-range underground row planning. Key findings are as follows. Undergrounding is technically feasible and available for all BC Hydro operating voltages, but initial construction costs of undergrounding continue to exceed equivalent overhead by a significant margin. Undergrounding can contribute to the optimization of existing rights-of-way. Public safety is improved with undergrounding and long-term benefits to BC Hydro and society are provided by undergrounding, compared to overhead options. Customers have shown some willingness to contribute to the cost of undergrounding, and it is generally agreed that those communities that want undergrounding should pay for it. Policy recommendations are made under each of the issue areas, and justifications for the recommendations are given along with implementation costs and alternative options

  3. Ogoya underground laboratory for the measurement of extremely low levels of environmental radioactivity: review of recent projects carried out at OUL.

    Science.gov (United States)

    Komura, Kazuhisa; Hamajima, Yasunori

    2004-01-01

    Recent topical measurements performed in the Ogoya Underground Laboratory are briefly summarized. The paper deals mainly with the following topics: measurements of variations of airborne 222Rn, 210Pb, 210Po and 7Be with high temporal resolution; the depth profile of 137Cs in Pacific water collected in 1957; cosmic-ray-induced 22Na in surface air, rain, river and lake waters; 152Eu in granite exposed to the Atomic Bomb in Hiroshima in 1945; and depleted uranium used in the Iraq War 2003. PMID:15177342

  4. Ogoya underground laboratory for the measurement of extremely low levels of environmental radioactivity: review of recent projects carried out at OUL

    International Nuclear Information System (INIS)

    Recent topical measurements performed in the Ogoya Underground Laboratory are briefly summarized. The paper deals mainly with the following topics: measurements of variations of airborne 222Rn, 210Pb, 210Po and 7Be with high temporal resolution; the depth profile of 137Cs in Pacific water collected in 1957; cosmic-ray-induced 22Na in surface air, rain, river and lake waters; 152Eu in granite exposed to the Atomic Bomb in Hiroshima in 1945; and depleted uranium used in the Iraq War 2003

  5. Use of low-Background underground laboratory in activation analysis of pure substances and low-activity radiometry of naturally radioactive elements

    International Nuclear Information System (INIS)

    The use of the low-background underground laboratory, the high-flux nuclear reactor, and modern gamma-spectrometric equipment made it possible to lower the detection limits of impurities in high-pure silicon and to increase both the efficiency of the analytical control and the expediency of subsequent technological developments. We included some corrections in the conditions of analysis for lengthy (longer than 5-10 h) measurements of low activities. The problems of the reference experiment correction and the completeness of surface contamination removal remain topical for a large group of elements in the case of detection limits of 10-13 - 10-10 wt%. After these questions are solved, work on further reducing the detector background is advised. Nonetheless, in the subterranian laboratory, we are already able to estimate ultralow gamma-activities (10-4 decay's) and to realize the direct radiometric determination o uranium and thorium at a level of 10-5 wt%

  6. Technical know-how of selection process for the Horonobe underground research laboratory area and site - 59088

    International Nuclear Information System (INIS)

    This study demonstrates the selection process for the Horonobe URL based on surveys of existing information and geophysical surveys on a regional scale. In addition, preliminary requirements on the geological environment, safety (during construction of the underground facility) and social and environmental constraints were taken into consideration. The technical know-how utilised through the experiences for the site selection is described here. The proposed Horonobe URL site required the existence of argillaceous sedimentary formations and associated groundwater. Further fundamental requirements were appropriate rock mechanical properties and low gas content in the host rock to meet safe underground construction and operation regulations. This led to a stepwise narrowing down from several potential URL areas located completely within the Horonobe District to one candidate URL area and, finally, to a specific URL site. In the URL investigation area (ca. 3 km x 3 km) the main surface-based investigations were conducted as the first step to choosing the actual URL site. This was selected based on establishing fundamental factors related to the geological environment, safety and societal issues. This paper provides an outline of the process utilised in selecting the URL site by taking into consideration technical and social requirements. Thus stepwise approach and experience in selecting the URL site will be applicable when NUMO needs to select a site through literature surveys, and preliminary and detailed investigations in the future. (authors)

  7. A pumping test at the shaft scale: Groundwater level recovery and pump-down at the Mizunami Underground Research Laboratory, Japan

    Science.gov (United States)

    Salden, W.; Takeuchi, S.; Takeuchi, R.; Saegusa, H.

    2006-12-01

    An Underground Research Laboratory (URL) is currently under construction near Mizunami city in central Japan, consisting of two vertical shafts, one 6.5m and the other 4.5m in diameter. By late October 2005 the two shafts had reached depths of 173m and 191m below ground level, respectively. The water inflow at that time was about 150 m3/day into the Main shaft (6.5m) and about 400 m3/day into the Ventilation shaft (4.5m). On October 27 the pumping of discharge water was halted to allow modifications to be made to the water treatment facility. This resulted in the recovery of the groundwater levels and filling of the underground workings to a level of approximately 50m below ground level. Beginning in February 2006 pumping was resumed and the underground workings were re-occupied. Monitoring of physico-chemical parameters continued at the site throughout the pumping hiatus. The continuous reading groundwater pressure monitoring instrumentation, consisting of an array of approximately 56 pressure monitoring zones in five monitoring wells in the site, and two monitoring wells around the site, recorded the pressure buildup and subsequent drawdown. The significant differences in inflow rates to the two shafts and variations in pressure recovery and subsequent drawdown recorded in the vicinity of the URL highlighted the complexity of the hydrogeological structures in the site and provided an opportunity to verify groundwater flow models. This study provides observations and preliminary analysis of the groundwater response and concludes by confirming the effectiveness of the multi-phase, multi-step site characterization methodology used by Japan Atomic Energy Agency.

  8. Mizunami Underground Research Laboratory project. Rock mechanical investigations in situ stress measurements using core-based methods on the -300 m stage

    International Nuclear Information System (INIS)

    The Mizunami Underground Research Laboratory (MIU) Project has been implemented to establish techniques for investigation, analysis and assessment of the deep geological environment and to develop a range of engineering techniques for application deep underground. In this report, results of Differential Strain Curve Analysis (DSCA) and elastic wave measurements using polyhedral specimens from the 08MI13 and 09MI20 boreholes on -300 m Stage at the MIU are described. The objectives of this work are to understand in situ stress condition around -300 m Stage and confirm validity of in situ stress measurements during the surface-based investigation phase. The results are summarized as follows; (1) The maximum principal stress is distributed in a NW-SE direction in the 08MI13 borehole. This result corresponds with in situ stress measurement results obtained during the surface-based investigation and construction phases. However the maximum principal stresses determined in the 09MI20 borehole have such a wide range that a consistent interpretation is difficult. (2) The ranges and averages of the principal stress ratios are almost equivalent and show less than two in the 08MI13 and 09MI20 boreholes. (3) Principal values from the DSCA and elastic wave measurements using polyhedral specimens from the 08MI13 and 09MI20 boreholes are compared. Although consistency of principal value for 08MI13 borehole isn't observed, results for 09MI20 come out the opposite of 08MI13. (author)

  9. Molecular characterisation of dissolved organic matter (DOM) in groundwaters from the Aespoe Underground Research Laboratory (Sweden)): A novel 'finger printing' tool for palaeo-hydrological assessment

    International Nuclear Information System (INIS)

    The molecular signature of dissolved organic matter (DOM) in groundwaters can be used as a tool when investigating the palaeo-hydrological response of groundwater systems in relation to changes in recharge environment, and also for examining groundwater compartmentalisation, mixing and transport at underground repositories for radioactive waste. The DOM in groundwaters from two compartmentalised bodies of groundwater of distinctly different origin within the Aespoe Underground Research Laboratory (URL) (Sweden)) and in Baltic seawater has been isolated using tangential flow ultrafiltration (TUF) and dia-filtration. Recoveries of DOM ranged from 34.7 to 0.1 mg/L with substantial differences in the concentrations of the groundwaters collected only 120 m apart. Analysis by infrared spectroscopy (IR) and pyrolysis gas chromatography-mass spectrometry (Py-GC-MS) of the isolated DOM revealed that the groundwaters contained abundant alkylphenols which may represent heavily decomposed proteins or lignins originating from biopolymers contained within soils. The difference in the distribution and relative abundance of major pyrolysis products groups such as alkylphenols confirmed that the groundwater and Baltic seawater DOM samples were chemically distinct indicating minimal infiltration of marine groundwater derived by recharge from the Baltic or earlier Littorina Sea within the two compartmentalised groundwater bodies. (authors)

  10. Work plan and health and safety plan for Building 3019B underground storage tank at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Burman, S.N.; Brown, K.S.; Landguth, D.C.

    1992-08-01

    As part of the Underground Storage Tank Program at the Department of Energy's Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, this Health and Safety Plan has been developed for removal of the 110-gal leaded fuel underground storage tank (UST) located in the Building 3019B area at ORNL This Health and Safety Plan was developed by the Measurement Applications and Development Group of the Health and Safety Research Division at ORNL The major components of the plan follow: (1) A project description that gives the scope and objectives of the 110-gal tank removal project and assigns responsibilities, in addition to providing emergency information for situations occurring during field operations; (2) a health and safety plan in Sect. 15 for the Building 3019B UST activities, which describes general site hazards and particular hazards associated with specific tasks, personnel protection requirements and mandatory safety procedures; and (3) discussion of the proper form completion and reporting requirements during removal of the UST. This document addresses Occupational Safety and Health Administration (OSHA) requirements in 29 CFR 1910.120 with respect to all aspects of health and safety involved in a UST removal. In addition, the plan follows the Environmental Protection Agency (EPA) QAMS 005/80 (1980) format with the inclusion of the health and safety section (Sect. 15).

  11. Work plan and health and safety plan for Building 3019B underground storage tank at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Burman, S.N.; Brown, K.S.; Landguth, D.C.

    1992-08-01

    As part of the Underground Storage Tank Program at the Department of Energy`s Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, this Health and Safety Plan has been developed for removal of the 110-gal leaded fuel underground storage tank (UST) located in the Building 3019B area at ORNL This Health and Safety Plan was developed by the Measurement Applications and Development Group of the Health and Safety Research Division at ORNL The major components of the plan follow: (1) A project description that gives the scope and objectives of the 110-gal tank removal project and assigns responsibilities, in addition to providing emergency information for situations occurring during field operations; (2) a health and safety plan in Sect. 15 for the Building 3019B UST activities, which describes general site hazards and particular hazards associated with specific tasks, personnel protection requirements and mandatory safety procedures; and (3) discussion of the proper form completion and reporting requirements during removal of the UST. This document addresses Occupational Safety and Health Administration (OSHA) requirements in 29 CFR 1910.120 with respect to all aspects of health and safety involved in a UST removal. In addition, the plan follows the Environmental Protection Agency (EPA) QAMS 005/80 (1980) format with the inclusion of the health and safety section (Sect. 15).

  12. The Gunite Tanks Remediation Project at Oak Ridge National Laboratory; Successful Integration & Deployment of Technologies Results in Remediated Underground Storage Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Billingsley, K.; Bolling, D.

    2002-02-27

    This paper presents an overview of the underground technologies deployed during the cleanup of nine large underground storage tanks (USTs) that contained residual radioactive sludge, liquid low-level waste (LLLW), and other debris. The Gunite Tanks Remediation Project at Oak Ridge National Laboratory (ORNL) was successfully completed in 2001, ending with the stabilization of the USTs and the cleanup of the South Tank Farm. This U.S. Department of Energy (DOE) project was the first of its kind completed in the United States of America. The Project integrated robotic and remotely operated technologies into an effective tank waste retrieval system that safely retrieved more than 348 m3 (92,000 gal) of radioactive sludge and 3.15E+15 Bq (85,000 Ci) of radioactive contamination from the tanks. The Project successfully transferred over 2,385 m3 (630,000 gal) of waste slurry to ORNL's active tank waste management system. The project team avoided over $120 Million in costs and shortened the original baseline schedule by over 10 years. Completing the Gunite Tanks Remediation Project eliminated the risks posed by the aging USTs and the waste they contained, and avoid the $400,000 annual costs associated with maintaining and monitoring the tanks.

  13. The data of the long term hydro-pressure monitoring on Mizunami Underground Research Laboratory project from fiscal year 2005 to fiscal year 2008

    International Nuclear Information System (INIS)

    Tono Geoscience Center (TGC), Japan Atomic Energy Agency (JAEA) is being performed Mizunami Underground Research Laboratory (MIU) Project, which is a broad scientific study of the deep geological environment as a basis of research and development for geological disposal of nuclear wastes, in order to establish comprehensive techniques for the investigation, analysis and assessment of the deep geological environment in fractured crystalline rock. The MIU Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III), with a total duration of 20 years. The main goals of the MIU Project from Phase I through to Phase III are: to establish techniques for investigation, analysis and assessment of the deep geological environment, and to develop a range of engineering for deep underground application. Currently, the project is being carried out under the Phase II. One of the Phase II goals is set to develop and revise models of the geological environment using the investigation results obtained during excavation, and determine and assess the changes in the geological environment in response to excavation. The long term hydro-pressure monitoring has been continued to achieve the Phase II goals. This paper describes the results of the long term hydro-pressure monitoring from April, 2005 to March, 2008. And the data is attached on DVD-ROM. A DVD-ROM is attached as an appendix. (J.P.N.)

  14. Hydro-mechanical modelling of an excavation in an underground research laboratory with an elasto-viscoplastic behaviour law and regularization by second gradient of dilation

    International Nuclear Information System (INIS)

    In the context of nuclear waste disposals, this paper deals with hydro-mechanical modelling in saturated conditions in deep geological formation, using a specific elasto-viscoplastic model hereafter called the L and K model. While classical Biot's framework is followed for the hydro-mechanical coupling, the mechanical L and K model offers a coupling between instantaneous and delayed behaviour and a variation of dilation of ten related to softening. These volumetric strains are especially highlighted in coupled hydro-mechanical conditions. In order to avoid mesh dependency and numerical localized solutions, this type of modelling needs the use of a regularization method which is here referred to as the second gradient dilation model. After describing the numeric tools, we use them for simulating a gallery of the underground research laboratory of Bure. The approach is validated by the good general agreement found between numeric results and in situ measures for both hydraulic pressure and displacement. (authors)

  15. Application of virtual reality technology to activities for offering information to the general public in the Mizunami Underground Research Laboratory Project

    International Nuclear Information System (INIS)

    The Tono Geoscience Center is carrying out the Mizunami Underground Research Laboratory Project (MIU Project), as part of its scientific research program, in Mizunami City, Gifu Prefecture. We believe that the public and especially the local residents should have a precise understanding of the MIU project. Therefore, to provide information we have used virtual reality (VR) technology in the project since 1996. Software to introduce both the MIU Project and the geology of the Tono district has been completed. The Tono district is characterized by uranium ore deposits, and by clay deposits which are used by the pottery industry. Software with some amusement value, such as hot spring drilling, has also been completed. We plan further software development of VR technology to increase the feeling of realism. (author)

  16. The role and limitation of underground research laboratories to foster development of expertise, information exchange, transfer of knowledge, and confidence building through international co-operation

    International Nuclear Information System (INIS)

    The rationale for constructing and operating underground rock laboratories (URL) is basically the need for carrying out Research and Technical Development (RTD) work under realistic conditions in realistic environments. Full scale experiments and tests are possible. Because of the limited number of existing URLs in each type of considered repository host rock, see Figure 1, and the high costs for large scale experiments international co-operation and networking have become a fruitful as well as traditional way of conducting the work in the URLs. This co-operation and networking have progressively developed into other areas than pure RTD work, and show that added value may be achieved in URLs in also many other areas. The paper gives examples of good experience and points out future ways of enhancing this kind of added. value within four areas: development of expertise; information exchange; transfer of knowledge, and confidence building. (author)

  17. Hydraulic characterization of the boom clay formation from the HADES underground laboratory in Mol: evolution and assessment of the piezometric techniques

    International Nuclear Information System (INIS)

    The network of piezometers installed in the Boom clay formation from the HADES Underground laboratory (-223 m) at Mol is an invaluable tool for the measurement and physical understanding of the groundwater flow towards a non closes deep repository system in an argillaceous formation. The hydraulic testing, test interpretation and groundwater sampling methodologies in a plastic clay (19 - 26 % H2O) at medium depth are presented. The results obtained from in situ tests (metric to local scale, 1 to 30 m) and from laboratory experiments on vertical and horizontal clay plugs (centimetric scale, 3 - 7 cm) have put into evidence the anisotropy of the Boom clay. The horizontal hydraulic conductivity is approximately 2.4 times higher than the vertical one. Laboratory and in situ results are discussed. Their comparison gives coherent hydraulic and transport parameters supporting the model used to describe quantitatively the migration of radionuclides through the clay. Meanwhile, concerning the hydraulic conductivity, a large discrepancy still subsists with the regional model (kilometric scale, 40 km x 80 km) which is presently being revisited (i.a. boundary conditions and refinement of the mesh, from 5 to 0.5 km) and with the regional observations often too scarce (water level measurements in the sandy aquifers surrounding the Boom clay formation). (authors). 8 refs., 2 figs., 1 tab

  18. Initial laboratory studies into the chemical and radiological aging of organic materials in underground storage tanks at the Hanford Complex

    International Nuclear Information System (INIS)

    The underground storage tanks at the Hanford Complex contain wastes generated over many years from plutonium production and recovery processes, and mixed wastes from radiological degradation processes. The chemical changes of the organic materials used in the extraction processes have a direct bearing on several specific safety issues, including potential energy releases from these tanks. The major portion of organic materials that have been added to the tanks consists of tributyl phosphate, dibutyl phosphate, butyl alcohol, hexone (methyl isobutyl ketone), normal paraffin hydrocarbons (NPH), ethylenediaminetetraacetic acid (EDTA), hydroxyethylethylenediaminetriadetic acid (HEDTA), other complexants, and lesser quantities of ion exchange polymers and minor organic compounds. A study of how thermal and radiological processes that may have changed the composition of organic tanks constituents has been initiated after a review of the open literature revealed little information was available about the rates and products of these processes under basic pH conditions. This paper will detail the initial findings as they relate to gas generation, e.g. H2, CO, NH3, CH4, and to changes in the composition of the organic and inorganic components brought about by ''Aging'' processes

  19. Arrival directions of underground muons

    International Nuclear Information System (INIS)

    A geiger counter cosmic ray telescope has been constructed in the Holborn Underground Laboratory, London, to study the arrival directions of cosmic ray muons in the zenith angle range 70 - 900. The apparatus is described and some preliminary results presented

  20. The use of HANDIDET reg-sign non-electric detonator assemblies to reduce blast-induced overpressure at AECL's Underground Research Laboratory

    International Nuclear Information System (INIS)

    A number of aspects of the Canadian concept for nuclear fuel waste disposal are being assessed by Atomic Energy of Canada Limited (AECL) in a series of experiments at its Underground Research Laboratory (URL) near Lac du Bonnet, Manitoba, Canada. One of the major objectives of the work being carried out at the URL is to develop and evaluate the methods and technology to ensure safe, permanent disposal of Canada's nuclear fuel waste. In 1994, AECL excavated access tunnels and a laboratory room for the Quarried Block Fracture Migration Experiment (QBFME) at the 240 Level of the URL. This facility will be used to study the transport of radionuclides in natural fractures in quarried blocks of granite under in-situ groundwater conditions. The experiment is being carried out under a cooperative agreement with the Japan Atomic Energy Research Institute. The excavation of the QBFME access tunnels and laboratory was carried out using controlled blasting techniques that minimized blast-induced overpressure which could have damaged or interrupted other ongoing experiments in the vicinity. The majority of the blasts used conventional long delay non-electric detonators but a number of blasts were carried out using HANDIDET 250/6000 non-electric long delay detonator assemblies and HTD reg-sign non-electric short delay trunkline detonator assemblies. The tunnel and laboratory excavation was monitored to determine the levels of blast-induced overpressure. This paper describes the blasting and monitoring results of the blasts using HANDIDET non-electric detonator assemblies and the effectiveness of these detonators in reducing blast-induced overpressure

  1. A study on the method of an equivalent continuous body modelling using crack tensor theory in the Mizunami Underground Research Laboratory project

    International Nuclear Information System (INIS)

    Japan Atomic Energy Agency has been implementing the Mizunami Underground Research Laboratory (MIU) Project in order to develop comprehensive investigation techniques for the geological environment and engineering techniques to construct deep underground structures in crystalline rock. In the rock mechanical study in the MIU Project, the development of the evaluation method for the excavation damaged zone due to excavation of shafts and research galleries is one of the important issues. In this report, crack tensor was calculated using the tunnel wall mapping and rock mechanical test results in the shaft and research galleries in the MIU in order to consider the method of an equivalent continuous modelling. Two dimension excavation analysis was conducted at the Ventilation Shaft and GL-500 m Sub Stage using the calculated crack tensor at GL-500 m. Based on calculated crack tensor at GL-170 m to -500 m (granite area) and GL-500 m Sub stage, the validity of the crack tensor at GL-500 m estimated during Phase I was verified. Relative error of crack tensor was calculated in order to examine variation of relative error to the scale of observation areas. Excavation analysis results using crack tensor at GL-500 m showed rock mass behaviour reflecting in situ stress and fracture distributions. Since the trace of crack tensor calculated at GL-500 m based on Phase I investigation results was smaller than the trace obtained by tunnel wall mapping results, applicability for excavation prediction could be little. Relative error of crack tensor in the Ventilation Shaft showed small variation of relative error under long observation areas. (author)

  2. Experiments in the Underground Laboratory for Dosimetry and Spectrometry (UDO) of the PTB in the Asse II salt mine - summary highlighting work performed and outlook

    CERN Document Server

    Neumaier, S; Zwiener, R

    2003-01-01

    Due to its extremely low area dose rate, the Underground Laboratory for Dosimetry and Spectrometry (UDO) of the PTB at the 925 m level of the Asse II Salt Mine offers unique possibilities for the investigation and calibration of dosimetry systems of high sensitivity as are used, for example, in environmental monitoring. Due to its low area dose rate, this laboratory has an outstanding position worldwide. The low ambient dose equivalent rate in the UDO of approx. 1 nSv/h, that means of only approx. 1 percent of the ambient dose rate typically encountered at the Earth's surface, is mainly due to the following reasons: - At the depth at which the UDO is situated, the penetrating muon component of cosmic radiation which considerably contributes to the environmental equivalent dose rate at the Earth's surface (in Braunschweig, for example, approx. one third) is already attenuated by more than five orders of magnitude and is therefore completely negligible for dosimetric investigations; - The activity concentration...

  3. Geoscience, Engineering, and Physics Opportunities at the China JinPing Underground Laboratory, its Extension, and at Other Sites > 2000 m

    Science.gov (United States)

    Wang, J. S.; Li, S.; Feng, X.

    2013-12-01

    The expansion of the China JinPing Laboratory (CJPL) is planned along a main branch of a bypass tunnel in the JinPing tunnel complex during 2013 -2015. This second phase of CJPL (CJPL-2) will have laboratory space increased from existing volume of nearly 2,000 m3 to approximately 80,000m3. In this presentation, we first review the geophysical and engineering findings during the originally tunnel excavations of the JingPing tunnel complexes which are substantially under overburdens from 2,000 to 2,500 m. Acoustic emissions associated with excavation disturbed zones and fracture openings in the excavation damaged zones were monitored before some sudden rock bust events were observed. The CJPL-2 offers opportunities to validate the rock burst modeling and prediction capabilities for other deep excavation studies. We also discuss the possibilities of other local, regional, and global monitoring of seismic-induced radon emission and electromagnetic monitoring studies, coupled process in situ measurements, and other experiments from the prospective of geoscience studies at depths over 2000 m. Geophysical and engineering opportunities were evaluated together with the physics experiments requirements in a 2015 town meeting associated with the 13th International Conference on Topics in Astroparticle and Underground Physics (TAUP). The main objective of CJPL-2 is to provide amber spaces needed worldwide for physics rare event detections that can be benefited to locate at CJPL-2, the currently deepest physics laboratory. Discussions the TAUP town meeting included one-ton expansions of current CJPL setups of Germanium detector in the China Darkmatter EXperiment (CDEX), two-phase Xenon detector of the PandiX experiment, other cryogenic dark matter detectors, superheated liquid detectors, scintillation solar neutrino detectors, neutrino-less double beta decay detectors, nuclear astrophysics synthesis accelerators, and other experimental and detector ideas.

  4. LSBB: a Low Noise Laboratory for Inter--Disciplinary Underground Science and Technology in Rustrel--Pays d'Apt, Vaucluse, France

    Science.gov (United States)

    Gaffet, S.

    2008-12-01

    Located in the Provence-Alpes--Côte d'Azur region (Southern France), LSBB is an underground facility that is dedicated since 10 years ago, to interdisciplinary fundamental and applied R&D activities in a low level anthropogenic area that secures the site with one of the lowest environmental noise in the world. LSBB is both a host-laboratory for private and academic experiments and a unique access-laboratory to study near- surface multi-physics environmental processes. This site offers operational facilities characterized by a fully connected fiber-optics network managed by a team of 3 permanent engineers and the collaboration with more than 30 research units in Europe. Initially designed for the French nuclear defence and converted in 1997 into an academic laboratory, LSBB is a hardened facility made of 3.7~km of horizontal galleries and vaults buried 500~m deep within the unsaturated zone of a carbonate platform which is a typical analogue of the currently exploited water and oil reservoirs of the Middle--East. Another major attraction of the LSBB is that it hosts a unique--in--the--world broad low-pass filter magnetic shielded zone (1500~m3 with electromagnetic noise level below 2~fT/√Hz for frequencies above 50~Hz). Thanks to such an exceptional environmental and technological context, LSBB provides one of the best european opportunities for the development of research projects related to near-surface imaging and multiscale and multiphysics coupled processes in natural porous media; magnetic field perturbations coupled to seismic wave excitations; thermo--hydromechanical and chemical fluid--rock interaction in heterogeneous carbonates; dark matter research; reliability and sensitivity to the natural radioactive environment of nano-- electronic and nano--structures. Projects interact through co--sharing of the multi--parametric and at--the-- leading--edge measurements and results, that are centralised in a dedicated internet plateform.

  5. PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 3 TRENCH 5, BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK

    International Nuclear Information System (INIS)

    The Oak Ridge Institute for Science and Education (ORISE) has reviewed the project documentation and data for the High Flux Beam Reactor (HFBR) Underground Utilities removal Phase 3; Trench 5 at Brookhaven National Laboratory (BNL) in Upton, New York. The Brookhaven Survey Group (BSG) has completed removal and performed Final Status Survey (FSS) of the concrete duct from Trench 5 from Building 801 to the Stack. Sample results have been submitted as required to demonstrate that the cleanup goal of (le)15 mrem/yr above background to a resident in 50 years has been met. Four rounds of sampling, from pre-excavation to FSS, were performed as specified in the Field Sampling Plan (FSP) (BNL 2010a). It is the policy of the U.S. Department of Energy (DOE) to perform independent verifications of decontamination and decommissioning activities conducted at DOE facilities. ORISE has been designated as the organization responsible for this task for the HFBR Underground Utilities. ORISE, together with DOE, determined that a Type A verification of Trench 5 was appropriate based on recent verification results from Trenches 2, 3, and 4, and the minimal potential for residual radioactivity in the area. The removal of underground utilities is being performed in three stages to decommission the HFBR facility and support structures. Phase 3 of this project included the removal of at least 200 feet of 36-inch to 42-inch pipe from the west side to the south side of Building 801, and the 14-inch diameter Acid Waste Line that spanned from 801 to the Stack within Trench 5. Based on the pre-excavation sample results of the soil overburden the potential for contamination of the soil surrounding the pipe is minimal (BNL 2010a). ORISE reviewed the BNL FSP and identified comments for consideration (ORISE 2010). BNL prepared a revised FSP that resolved each ORISE comment adequately (BNL 2010a). ORISE referred to the revised HFBR Underground Utilities FSP FSS data to conduct the Type A verification

  6. Risk-based prioritization for the interim remediation of inactive low-level liquid radioactive waste underground storage tanks at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    The paper presents a risk-based approach for rapid prioritization of low-level liquid radioactive waste underground storage tanks (LLLW USTs), for possible interim corrective measures and/or ultimate closure. The ranking of LLLW USTs is needed to ensure that tanks with the greatest potential for adverse impact on the environment and human health receive top priority for further evaluation and remediation. Wastes from the LLLW USTs at Oak Ridge National Laboratory were pumped out when the tanks were removed from service. The residual liquids and sludge contain a mixture of radionuclides and chemicals. Contaminants of concern that were identified in the liquid phase of the inactive LLLW USTs include the radionuclides 90Sr, 137Cs, and 233U and the chemicals carbon tetrachloride, trichloroethane, tetrachloroethene, methyl ethyl ketone, mercury, lead, and chromium. The risk-based approach for prioritization of the LLLW USTs is based upon three major criteria: (1) leaking characteristics of the tank, (2) location of the tanks, and (3) toxic potential of the tank contents. Leaking characteristics of LLLW USTs will aid in establishing the potential for the release of contaminants to environmental media. In this study, only the liquid phase was assumed to be released to the environment. Scoring criteria for release potential of LLLW USTs was determined after consideration of the magnitude of any known leaks and the tank type for those that are not known to leak

  7. In situ stress measurement at the 250 m niche off the west shaft No.1 in the Horonobe Underground Research Laboratory

    International Nuclear Information System (INIS)

    The objective of this report is to investigate the three dimensional stress state in the 250 m Niche off the West Shaft No.1 at the Horonobe Underground Research Laboratory. For the measurement, three 20.0 m long boreholes were drilled. Hydraulic fracturing was applied as a stress measurement method. For the analysis, shut-in pressure of transverse fractures, reopening pressure of longitudinal fractures and stress condition causing borehole breakouts were integrated into the equation; then stress state was calculated by inversion technique. As a result of the in situ stress state measurement around the experimental area, the orientation of the maximum principal stress was estimated to be about 70° west from the north, dipping 70° from the vertical axis. The orientation of the minimum principal stress was about 20° west from the south, dipping 60° from vertical axis. The orientation of the principal stresses is almost coincided with the direction of borehole breakouts and longitudinal crack induced in the boreholes. The values of the maximum and minimum principal stresses were 2.6 MPa and 2.1 MPa, respectively. A CD-ROM is attached as an appendix. (J.P.N)

  8. In situ stress measurement at the 250 m niche off the south shaft No.1 in the Horonobe Underground Research Laboratory

    International Nuclear Information System (INIS)

    The objective of this report is to investigate the three dimensional stress state in the 250 m Niche off the South Shaft No.1 at the Horonobe Underground Research Laboratory. For the measurement, three 20.0 m long boreholes were drilled. Hydraulic fracturing was applied as a stress measurement method. For the analysis, shut-in pressure of a transverse fractures, reopening pressure of longitudinal fractures and stress condition causing borehole breakouts were integrated into the equation; then stress state was calculated by inversion technique. As a result of the in situ stress state measurement around the experimental area, the orientation of the maximum principal stress is estimated to be between E-W and ENE-WSW, dipping almost horizontal direction. This result agrees well with the estimated orientation of the main principal stress, the location of the borehole wall breakouts in 10-E250-M01 and the orientation of the generated crack in 10-E250-M03. The value of the maximum principal stress was 3.97 MPa. A CD-ROM is attached as an appendix. (J.P.N)

  9. Rock mechanics stability analysis of the shafts and research galleries at the Mizunami Underground Research Laboratory. Japanese Fiscal Year, 2004 (Contract research)

    International Nuclear Information System (INIS)

    Design of the shafts and tunnels of the Mizunami Underground Research Laboratory and preliminary analysis focuses at the depth of 300m were respectively carried out in FY2002, and FY2003 based on the geological survey results obtained up to that point. We have recently completed the MIZ-1 borehole investigation and obtained the geological data down to the depth of 1,000m. Based on the data, the geological model, rock property, initial stress and other geological characters were reviewed and corrective analysis (two-dimensional) was performed. Also three-dimensional analysis was performed at the connection part of the shaft and sub-stage (horizontal tunnel) located at the depth of 100m and 300m, where the maximum stress is expected. From those analyses, we evaluated the validity of the design. Outlines and the results are as follows: 1) Based on the location of fault predicted from MIZ-1 borehole investigation, the geological structure at the site was revised and then rock classification was established. Also rock properties and initial stress condition for numerical analysis were revised. 2) Corrective analysis at the selected sections which were estimated from the previous analysis was reviewed. As a result, validity of design for shafts and sub-stages (horizontal tunnels) were confirmed. 3) Using three-dimensional elasto-plastic analysis, the stability of support around connection part of shafts and sub-stages (horizontal tunnels) under construction was confirmed. (author)

  10. Background characteristics of the underground laboratory of the Hydrogeology and Engineering-Geology Section of the Academy of Sciences of the Georgian SSR

    International Nuclear Information System (INIS)

    A low-background underground laboratory outfitted with equipment for determining ultra-small amounts of radionuclides in rock and water samples and in the structural materials of nuclear-radiation detectors has been built in the Hydrogeology and Engineering-Geology Section (SGIG) of the Academy of Sciences of the Georgian SSR. A detector based on a NaI(T1) crystal 100 mm in diameter and 100 mm long with a well 33 mm in diameter and 60 mm long was used to measure the background gamma radiation. The crystal was connected to an FEU-100 photomultiplier through a quartz optical waveguide. The body of the scintillation unit was made of grade M1 copper, which was then chrome plated. The energy resolution of the detector is 9.5 ± 0.1% for the 137Cs peak. Primary measurements were made with an AI-1024 analyzer. The measurement time for multiple exposures was 1000 sec outside passive shielding, while the measurement time in the shielding was 7 h of operating time daily for half a year. The results of the measurements were compared with data obtained from a similar detector in one of the low-background facilities of the Baksan Neutrino Observatory (BNO) of the Academy of Sciences of the USSR. The content of natural radionuclides in samples taken from the rocks surrounding the low-background loaboratories BNO and SGIG is shown in a table

  11. Study on engineering technologies in the Mizunami Underground Research Laboratory. (FY 2013) - Development of recovery and mitigation technology on excavation damage - (Contract research)

    International Nuclear Information System (INIS)

    The researches on engineering technology in the Mizunami Underground Research Laboratory (MIU) project consist of (1) development of design and construction planning technologies, (2) development of construction technology, (3) development of countermeasure technology, (4) development of technology for security and (5) development of technologies for restoration and/or reduction of the excavation damage. The researches on engineering technology such as verification of the initial design were being conducted by using data measured during construction as a part of the second phase of the MIU project. Examination of the plug used for the groundwater recovery experiment in the GL-500m Access/Research Gallery-North was conducted as a part of the development of technologies for restoration and/or reduction of excavation damage. Specifically, literature survey on the plug, was performed. Based on the literature survey result, examination of the design conditions, also assessment of design of the plug and rock stability by using numerical simulation were carried out, and the grouting plan for water inflow between rock and plug, including select of material used for major parts, was made. (author)

  12. PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 3 TRENCH 1, BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK

    International Nuclear Information System (INIS)

    The Oak Ridge Institute for Science and Education (ORISE) has reviewed the project documentation and data for the High Flux Beam Reactor (HFBR) Underground Utilities removal Phase 3; Trench 1 at Brookhaven National Laboratory (BNL) in Upton, New York. The Brookhaven Survey Group (BSG) has completed removal and performed Final Status Survey (FSS) of the 42-inch duct and 14-inch line in Trench 1 from Building 801 to the Stack. Sample results have been submitted as required to demonstrate that the cleanup goal of (le)15 mrem/yr above background to a resident in 50 years has been met. Four rounds of sampling, from pre-excavation to FSS, were performed as specified in the Field Sampling Plan (FSP) (BNL 2010a). It is the policy of the U.S. Department of Energy (DOE) to perform independent verifications of decontamination and decommissioning activities conducted at DOE facilities. ORISE has been designated as the organization responsible for this task for the HFBR Underground Utilities. ORISE, together with DOE, determined that a Type A verification of Trench 1 was appropriate based on recent verification results from Trenches 2, 3, 4, and 5, and the minimal potential for residual radioactivity in the area. The removal of underground utilities has been performed in three stages to decommission the HFBR facility and support structures. Phase 3 of this project included the removal of at least 200 feet of 36-inch to 42-inch duct from the west side to the south side of Building 801, and the 14-inch diameter Acid Waste Line that spanned from 801 to the Stack within Trench 1. Based on the pre-excavation sample results of the soil overburden, the potential for contamination of the soil surrounding the pipe is minimal (BNL 2010a). ORISE reviewed the gamma spectroscopy results for 14 FSS soil samples, four core samples, and one duplicate sample collected from Trench 1. Sample results for the radionuclides of concern were below the established cleanup goals. However, in sample PH-3

  13. Development of a tomographic method using cosmic ray muons: application to the Mont Terri underground laboratory and la Soufriere de Guadeloupe

    International Nuclear Information System (INIS)

    Cosmic muons are produced in cascade processes following the interactions of cosmic rays with the atmosphere. Muons are fundamental particles with a mass 200 times higher than electrons. Their low interaction probability with matter allows them to cross the atmosphere and even the first kilometers of the Earth crust. The muons flux is attenuated through a media as function of the quantity of matter crossed. The study of the muon flux attenuation allows then to obtain a direct measurement of the rock opacity. This opacity corresponds to the media density, integrated along the muon path through rock. Muons' trajectory is indeed considered to be straight when crossing rock. It is then possible to realise geophysical tomographies by setting a sensor network around geological objects in order to determine the internal structures geometry inside these objects. An underground muon flux model is developed herein from flux models estimated at surface and a model of muon flux attenuation through rock. A feasibility equation of the muon tomography is then established in order to determine the minimum time of data acquisition to distinguish heterogeneities. Four muons telescopes have been built during this thesis and conditioned to bear field installation, notably in tropical media. These telescopes are made by two or three matrices of detection constituted of scintillating bars linked to photomultipliers. The modeling of the telescopes detection capacity and angular resolution is realised as function of their geometrical configuration. A calibration method is also established in order to correct the signal from any distortion. Moreover, arrangements to reduce the backward noise produced by low energy particles are set up and evaluated. The development of this new tomographic method is then illustrated by two geophysical applications. The measurements realised in the Mont Terri underground laboratory (Switzerland) allowed us to benefit from stable acquisition conditions to

  14. Boffins go underground searching for Wimps

    CERN Multimedia

    2003-01-01

    In a bid to identify the prime suspect for Dark Matter known as Weakly Interacting Massive Particles, or Wimps, British scientists have installed detectors 1100m down a salt mine at Boulby on the North Yorkshire moors (1/2 page).

  15. Underground Mathematics

    Science.gov (United States)

    Hadlock, Charles R

    2013-01-01

    The movement of groundwater in underground aquifers is an ideal physical example of many important themes in mathematical modeling, ranging from general principles (like Occam's Razor) to specific techniques (such as geometry, linear equations, and the calculus). This article gives a self-contained introduction to groundwater modeling with…

  16. LUNA: Nuclear Astrophysics Deep Underground

    OpenAIRE

    Broggini, Carlo; Bemmerer, Daniel; Guglielmetti, Alessandra; Menegazzo, Roberto

    2010-01-01

    Nuclear astrophysics strives for a comprehensive picture of the nuclear reactions responsible for synthesizing the chemical elements and for powering the stellar evolution engine. Deep underground in the Gran Sasso laboratory the cross sections of the key reactions of the proton-proton chain and of the Carbon-Nitrogen-Oxygen (CNO) cycle have been measured right down to the energies of astrophysical interest. The salient features of underground nuclear astrophysics are summarized here. The mai...

  17. Los Alamos National Laboratory environmental restoration program group audit report for underground storage tank removal: Audit ER-92- 04, July 22--August 11, 1992

    International Nuclear Information System (INIS)

    Audit ER-92-04 was conducted on activities being performed by Waste Management (EM-7), Environmental Protection (EM-8), and Environmental Restoration (EM-13) groups for the LANL's underground storage tank removal program. Scope of the audit was limited to an evaluation of the implementation of the State of New Mexico requirements for underground storage-tank removal. Activities were evaluated using requirements specified in the State of New Mexico Environmental Improvement Board Underground Storage Tank Regulations, EIB/USTR. Two recommendations are made: (1) that a single organization be given the responsibility and authority for the implementation of the program, and (2) that the requirements of the NM State environmental improvement board underground storage tank regulations be reviewed and a Los Alamos procedure written to address requirements and interfaces not contained in SOP-EM7-D ampersand D-001

  18. Microbes in geological disposal system of high-level radioactive waste in Japan. Studies of microbial influence for safety assessment in Underground Research Laboratories

    International Nuclear Information System (INIS)

    The current concept for the functioning of high-level radioactive waste repositories assumes that redox conditions will remain reducing even after repository closure. Oxidizing conditions may, however, develop in and around the waste cavern due to inorganic and/or organic redox reaction during the construction and the operational phase. Within the redox reaction, several kinds of oxides and hydroxides are inevitably formed and believed to have a strong influence on elemental migration and retardation through adsorption and/or co-precipitation in the near-field (NF) environment, where their formation is certainly influenced by microbial activity. Such oxidized zones can be formed at the interface between the engineered barrier system and surrounding host rock and will affect the efficiency of the safety barrier after closure of the repository. The influence of the interaction between microbes, water and rock around waste caverns is therefore important in understanding long-term chemical stability, elemental migration, and hence the safety of proposed sites for deep geological isolation of radioactive waste. However, the complex reaction among groundwater, rock/minerals including synthetic materials and microbes under deep geological environments is not well understood and is thus not sufficiently taken into account in present safety case development. Here, we therefore try to describe the role of microbes in the repository system in our geological regime and deep geological environment for both cases of sedimentary and crystalline rocks. This kind of discussion can also be used for the planning of Underground Research Laboratory's (URL) study relevant to microbial influence in NF environment for the development of realistic long-term safety of radioactive waste repositories in Japan. (author)

  19. Underground Physics in Spain; La Fisica subterranea en Espana

    Energy Technology Data Exchange (ETDEWEB)

    Puimedon Santolaria, J.

    2005-07-01

    Underground laboratories provide the low background environment necessary to the search for extremely rare phenomena like neutrino oscillations, double deta decay or dark matter. There are only four underground infrastructures available in the Europe Union, one of them is in Spain: the Canfranc Underground Laboratory. (Author)

  20. Molecular characterisation of dissolved organic matter (DOM) in ground waters from the Aspo underground research laboratory, Sweden : a novel "finger printing" tool for palaeohydrological assessment

    OpenAIRE

    Vane, Christopher Howard; Kim, Alexander; Milodowski, Antoni; Smellie, J.; Tullborg, E.L.; West, Julia

    2008-01-01

    The molecular signature of dissolved organic matter (DOM) in groundwaters can be used as a tool when investigating the palaeohydrological response of groundwater systems in relation to changes in recharge environment, and also for examining groundwater compartmentalisation, mixing and transport at underground repositories for radioactive waste. The DOM in groundwaters from two compartmentalised bodies of groundwater of distinctly different origin within the Äspö Underground Res...

  1. Rokibaar Underground = Rock bar Underground

    Index Scriptorium Estoniae

    2008-01-01

    Rokibaari Underground (Küütri 7, Tartu) sisekujundus, mis pälvis Eesti Sisearhitektide Liidu 2007. a. eripreemia. Sisearhitekt: Margus Mänd (Tammat OÜ). Margus Männist, tema tähtsamad tööd. Plaan, 5 värv. vaadet, foto M. Männist

  2. Engineered Natural Systems Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — With its pressure vessels that simulate the pressures and temperatures found deep underground, NETL’s Engineered Natural Systems Laboratory in Pittsburgh, PA, gives...

  3. LUNA: Nuclear astrophysics underground

    International Nuclear Information System (INIS)

    Underground nuclear astrophysics with LUNA at the Laboratori Nazionali del Gran Sasso spans a history of 20 years. By using the rock overburden of the Gran Sasso mountain chain as a natural cosmic-ray shield very low signal rates compared to an experiment on the surface can be tolerated. The cross sectons of important astrophysical reactions directly in the stellar energy range have been successfully measured. In this proceeding we give an overview over the key accomplishments of the experiment and an outlook on its future with the expected addition of an additional accelerator to the underground facilities, enabling the coverage of a wider energy range and the measurement of previously inaccessible reactions

  4. Water uptake by a clay bulkhead installed in the tunnel sealing experiment at Atomic Energy of Canada's underground research laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, D.A.; Martino, J.B.; Chandler, N.A. [Atomic Energy of Canada Ltd., AECL, Pinawa, MB (Canada); Sugita, Y. [Japan Nuclear Cycle, Development Institute, JNC, Tokai (Japan); Vignal, B. [Agence Nationale pour la Gestion des Dechets Radioactifs (ANDRA), 92 - Chatenay Malabry (France)

    2003-07-01

    A major international experiment, demonstrating technologies for tunnel sealing at full-scale, is being conducted at Canada's Underground Research Laboratory (URL) with participation by organizations from Canada, Japan, France and the U.S.A. Two bulkheads, one composed of high performance concrete and the other of highly compacted sand-bentonite material, have been constructed in a tunnel in unfractured granitic rock at the URL. The results from the Tunnel Sealing Experiment (TSX) are being used to characterize the performance of the two bulkheads under applied hydraulic pressures. The chamber between the two bulkheads has been pressurized to 4 MPa, a value representative of the natural hydrostatic heads at the 420 m depth below the ground surface. Instrumentation has been installed throughout the clay bulkhead to monitor stress development, bulkhead strain, moisture conditions, temperature, and water transport through this clay-based barrier. Construction was completed in 1998 October, and the sand-filled chamber between the clay and concrete bulkheads was filled and pressurized with water. Full pressure of 4 MPa was achieved in 2001 September and by 2002 June nearly complete saturation of the clay bulkhead was indicated. The rapid rate of saturation of the bulkhead (<5 years) is attributed initial large-flow events that caused a full perimeter water supply and allowed input of a considerable volume of water into the core of the bulkhead. Seepage through the clay bulkhead has been measured to be approximately 1.1 L/day under a 4 MPa pressure gradient across the 3.5 x 4.4 x 2.7 m length bulkhead. The majority of the seepage appears to be via the lower density outer perimeter of the bulkhead. Tracer tests have been completed which allow for assessment of flow times and pathways within the clay bulkhead. On achieving essentially full saturation, Phase 1 of the TSX was completed. A second phase of this experiment has recently (2002 June) begun with the

  5. Study on applicability of low alkaline cement in Horonobe Underground Research Laboratory project. In-situ experiment at 140m gallery

    International Nuclear Information System (INIS)

    In Japan, any high-level radioactive waste repository is to be constructed at over 300m depth below surface. Tunnel support is used for safety during the construction and operation, and shotcrete and concrete lining are used as the tunnel support. Concrete is a composite material comprised of aggregate, cement and various additives. Low alkaline cement has been developed for the long term stability of the barrier systems whose performance could be negatively affected by highly alkaline conditions arising due to cement used in a repository. Japan Atomic Energy Agency (JAEA) has developed a low alkaline cement, named as HFSC (Highly fly-ash contained silicafume cement), containing over 60wt% of silica-fume (SF) and coal ash (FA). JAEA is presently constructing an underground research laboratory (URL) at Horonobe for research and development in the geosciences and repository engineering technology. HFSC was used experimentally as the shotcrete material in construction of part of the 140m deep gallery in Horonobe URL. The objective of this experiment was to assess the performance of HFSC shotcrete in terms of mechanics, workability, durability, and so on. HFSC used in this experiment is composed of 40wt% OPC (Ordinary Portland Cement), 20wt% SF, and 40wt% FA. This composition was determined based on mechanical testing of various mixes of the above components. Because of the low OPC content, the strength of HFSC tends to be lower than that of OPC in normal concrete. The total length of tunnel constructed using HFSC shotcrete is about 73m and about 500m3 of HFSC was used. The workability of HFSC shotcrete was confirmed by this experimental construction. Although several in-situ experiments using low alkaline cement as shotcrete have been performed at a small scale, this application of HFSC at the Horonobe URL is the first full scale application of low alkaline cement in the construction of a URL in the world. In this report, we present detailed results of the in

  6. The use of novel DNA nanotracers to determine groundwater flow paths - a test study at the Grimsel Deep Underground Geothermal (DUG) Laboratory in Switzerland

    Science.gov (United States)

    Kittilä, Anniina; Evans, Keith; Puddu, Michela; Mikutis, Gediminas; Grass, Robert N.; Deuber, Claudia; Saar, Martin O.

    2016-04-01

    earlier test. In this study, we present the results of tests of applying novel DNA nanotracers to characterize groundwater flow properties and the flow pathways in a fracture-dominated reservoir in the Deep Underground Geothermal (DUG) Laboratory at the Grimsel Test Site in the Swiss Alps. This study is motivated by subsequent comparisons of similar characterizations of fractured rock masses after hydraulic stimulation. These will take place at the DUG Lab at the end of 2016. The results of the flow-path characterization are also compared with those obtained from classical solute tracer tests.

  7. Characterisation and monitoring of the Excavation Disturbed Zone (EDZ) in fractured gneisses of the Roselend underground laboratory: permeability measurements, transport property changes and related radon bursts

    Science.gov (United States)

    Wassermann, Jérôme; Sabroux, Jean-Christophe; Richon, Patrick; Pontreau, Sébastien; Guillon, Sophie; Pili, Eric

    2010-05-01

    The Roselend tunnel was drilled in the fifties by blasting in the micashists, granites and gneisses of the Méraillet massif (French Alps). It is situated on the shore of the Roselend reservoir Lake near its dam. Several tectonic shear fractures related to the Alpine orogeny intersect the dead end tunnel (with length of 128 m and section about 2 m), indeed the fracture density varies from 0.45 to 1 fracture per meter along the tunnel (Dezayes and Villemin 2002). Some fractures are partially or totally filled with secondary minerals. The flow rates of percolating water through the fractured medium are seasonal dependent. Large fractures drain a large fluid volume unlike small ones that drain limited fluid volume (Patriarche et al. 2007). The Roselend underground laboratory allows the study of the geochemical and geophysical responses of a fractured rock mass to periodic sollicitations due to water level variations of the nearby Roselend reservoir Lake. The tunnel was instrumented in the nineties to understand the relationship between radon (Rn-222) concentration and water level variations of the Roselend reservoir Lake (Trique et al. 1999). In order to characterize the geometry and the extent of the EDZ, core drilling and permeability measurements through pneumatic testing are performed along the Roselend tunnel. Drilled core analysis consists of direct observations at a macroscopic scale of fractures (density of fractures from EDZ) and also at a microscopic scale via thin sections. Method of pressure build-up in wells (Jakubick and Franz 1993, Bossart et al. 2002) is used to determine permeability profile along each borehole and hence to precise the extent and geometry of the EDZ. A strong correlation is observed between permeability profiles and the density of fractures estimated from core analysis. The extent of the EDZ appears to be about one tunnel radius i.e. one meter around the tunnel corridor. Another experiment consisting of continuous differential

  8. Biogeochemical processes in a clay formation in situ experiment: Part E - Equilibrium controls on chemistry of pore water from the Opalinus Clay, Mont Terri Underground Research Laboratory, Switzerland

    International Nuclear Information System (INIS)

    Highlights: → Equilibrium models of water-rock reactions in clay rocks are reviewed. → Analyses of pore waters of the Opalinus Clay from boreholes in the Mont Terri URL, Switzerland, are tabulated. → Results of modelling with various mineral controls are compared with the analyses. → Best agreement results with calcite, dolomite and siderite or daphnite saturation, Na-K-Ca-Mg exchange and/or kaolinite, illite, quartz and celestite saturation. → This approach allows calculation of the chemistry of pore water in clays too impermeable to yield water samples. - Abstract: The chemistry of pore water (particularly pH and ionic strength) is an important property of clay rocks being considered as host rocks for long-term storage of radioactive waste. Pore waters in clay-rich rocks generally cannot be sampled directly. Instead, their chemistry must be found using laboratory-measured properties of core samples and geochemical modelling. Many such measurements have been made on samples from the Opalinus Clay from the Mont Terri Underground Research Laboratory (URL). Several boreholes in that URL yielded water samples against which pore water models have been calibrated. Following a first synthesis report published in 2003, this paper presents the evolution of the modelling approaches developed within Mont Terri URL scientific programs through the last decade (1997-2009). Models are compared to the composition of waters sampled during dedicated borehole experiments. Reanalysis of the models, parameters and database enabled the principal shortcomings of the previous modelling efforts to be overcome. The inability to model the K concentrations correctly with the measured cation exchange properties was found to be due to the use of an inappropriate selectivity coefficient for Na-K exchange; the inability to reproduce the measured carbonate chemistry and pH of the pore waters using mineral-water reactions alone was corrected by considering clay mineral equilibria. Re

  9. Development of thermally induced stress inside the Praclay lining of the in-situ experiment constructed at the Josef underground laboratory

    International Nuclear Information System (INIS)

    Document available in extended abstract form only. The tunnel lining forms an essential element of deep repository construction in the so-called Belgian concept which envisages repositories located in Boom clay formations. In 2008, an original PRACLAY lining was used for the construction of a full-scale in-situ experiment at the Josef underground laboratory in the Czech Republic; the laboratory complex is operated by the Czech Technical University, Prague. The overall objective of the experiment was to study the influence of thermal impact on the stability of the lining. A total of four rings each consisting of 8 segments were used in the construction of the experiment resulting in a total length of 2 m; each ring was fitted with a key segment at its crown. The diameter of the outer ring was 2.5 m and the thickness of the lining 0.3 m. The host rock environment was made up of very hard tuffitic rocks with a uni-axial compressive strength of 220 - 240 MPa. The lining rested on a bed of concrete. Compacted concrete was also used for filling the free space between the lining vault and the rock massif thus providing a very stiff lining environment which led to the effect of thermal loading by means of induced stress levels. The model was equipped with a heating system (which allowed for heating up to 95 C), thermal insulation and a comprehensive monitoring system. The major monitored parameters consisted of temperature, strain inside the lining and stress on contact between the concrete filling and the rock. Eight of the segments in two of the rings were equipped for strain monitoring (using vibrating strain gauges). These two rings were assembled from 'B-type' segments (according to the nomenclature in PRACLAY project) made of concrete with a uni-axial cylindrical compressive strength of 80 MPa (C80/95) and fitted with two compressible structural inserts (Inox foam panels; 50 mm thick). The insertion of the compressible materials was aimed at allowing the release of

  10. Biogeochemical processes in a clay formation in situ experiment: Part E - Equilibrium controls on chemistry of pore water from the Opalinus Clay, Mont Terri Underground Research Laboratory, Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, F.J., E-mail: fjpearson@gmail.com [Ground-Water Geochemistry, 5108 Trent Woods Dr., New Bern, NC 28562 (United States); Tournassat, Christophe; Gaucher, Eric C. [BRGM, B.P. 36009, 45060 Orleans Cedex 2 (France)

    2011-06-15

    Highlights: > Equilibrium models of water-rock reactions in clay rocks are reviewed. > Analyses of pore waters of the Opalinus Clay from boreholes in the Mont Terri URL, Switzerland, are tabulated. > Results of modelling with various mineral controls are compared with the analyses. > Best agreement results with calcite, dolomite and siderite or daphnite saturation, Na-K-Ca-Mg exchange and/or kaolinite, illite, quartz and celestite saturation. > This approach allows calculation of the chemistry of pore water in clays too impermeable to yield water samples. - Abstract: The chemistry of pore water (particularly pH and ionic strength) is an important property of clay rocks being considered as host rocks for long-term storage of radioactive waste. Pore waters in clay-rich rocks generally cannot be sampled directly. Instead, their chemistry must be found using laboratory-measured properties of core samples and geochemical modelling. Many such measurements have been made on samples from the Opalinus Clay from the Mont Terri Underground Research Laboratory (URL). Several boreholes in that URL yielded water samples against which pore water models have been calibrated. Following a first synthesis report published in 2003, this paper presents the evolution of the modelling approaches developed within Mont Terri URL scientific programs through the last decade (1997-2009). Models are compared to the composition of waters sampled during dedicated borehole experiments. Reanalysis of the models, parameters and database enabled the principal shortcomings of the previous modelling efforts to be overcome. The inability to model the K concentrations correctly with the measured cation exchange properties was found to be due to the use of an inappropriate selectivity coefficient for Na-K exchange; the inability to reproduce the measured carbonate chemistry and pH of the pore waters using mineral-water reactions alone was corrected by considering clay mineral equilibria. Re

  11. Groundwater recovery experiment in Mizunami Underground Research Laboratory. Numerical simulation of H-M coupled behavior of rock and backfill materials to evaluate the influence on the surrounding rock

    International Nuclear Information System (INIS)

    In the Mizunami Underground Research Laboratory, groundwater recovery experiment is being conducted to develop the method to understand the transition of geological environment due to groundwater recovery at the -500 m access and research gallery-north. As a part of this experiment, backfill test is planned using drilling pits filled with artificial materials (clay and concrete) to evaluate the influence on the surrounding rock mass due to the interaction of rock and artificial materials. In this study, numerical simulation of the backfill test has been carried out to predict the qualitative hydro-mechanical behavior. (author)

  12. Underground logistics

    CERN Document Server

    Foraz, K; CERN. Geneva. TS Department

    2005-01-01

    More than 80’000 tons of materials have to be transported and installed down into the LHC tunnel. The magnet assemblies which represent about 50’000 tons, will be transported according to the master schedule between March 2005 and November 2006. Considering that these about 1’800 cryo-magnets will be transported at a maximum speed of 3 km/h in a narrow tube (where installation works and hardware commissioning activities are ongoing) this duration of 21 months is a real challenge. This paper aims at describing: - the information flows between the different people involved in the logistics attached to the cryo-magnets, - the organization chosen within the Installation Coordination group, - the problems encountered so far and the solutions adopted. The coordination process with other underground transport and activities, mainly for the QRL will also be presented.

  13. What can we learn from existing in situ cement based materials/Callovo-Oxfordian argillite interface sampled in the ANDRA underground research laboratory?

    International Nuclear Information System (INIS)

    Document available in extended abstract form only. Within the French concepts, concrete will be used to build access structures, galleries as well as vaults and waste packages for Intermediate Level Wastes (ILW). The assemblage of natural (host rock) and engineered barriers (bentonite and cement materials) used in storage cells (eg. plugs for sealing, support materials for the access gallery), provides numerous interfaces with contrasting geochemical conditions. The main goals of this study are linked to the knowledge of the chemical and physical evolution with time at the clay/cement based materials interface, in order to assess: (1) the kinetic and the extension of the degradation of the Callovo-Oxfordian argillite under the influence of alkaline plume. These interactions could modify the mineralogy and the transport properties of the rock (eg. porosity clogging induced by secondary minerals formation); (2) the concrete chemical degradation under the influence of the clay pore water. (concrete carbonation, hydrolysis with physical consequences especially with regards to transfer properties). To tackle this issue, two existing contacts between Callovo-Oxfordian argillite and cement based materials were sampled in the ANDRA (French Radioactive Waste Management Agency) Underground Research Laboratory (Meuse/Haute Marne, France) in order to describe in situ alkaline degradations in terms of mineralogy, chemistry, physical and textural parameters. (1) The first contact (A) concerns short-crested concrete in the access gallery. These samples which experienced 4 to 5 years of contact were drilled from the wall of the gallery. They offer the opportunity to describe on both sides (i) the alteration of the concrete link to the ventilation of the access gallery (atmosphere/concrete interface) and (ii) the concrete/clay interfaces. (2) The second one (B) deals with a bore hole fulfilled with a cement which also experienced 4 to 5 years of contact with the argillaceous media

  14. Monte Carlo simulation of muon-induced background of an anti-Compton gamma-ray spectrometer placed in a surface and underground laboratory

    CERN Document Server

    Vojtyla, P

    2005-01-01

    Simulations of cosmic ray muon induced background of an HPGe detector placed inside an anti-Compton shield on the surface and in shallow underground is described. Investigation of several model set-ups revealed some trends useful for design of low-level gamma-ray spectrometers. It has been found that background spectrum of an HPGe detector can be scaled down with the shielding depth. No important difference is observed when the same set-up of the anti-Compton spectrometer is positioned horizontally or vertically. A cosmic-muon rejection factor of at least 40 (at around 1 MeV) can be reached when the anti-Compton suppression is operational. The cosmicmuon background can be reduced to such a level that other background components prevail, like those from the residual contamination of the detector and shield materials and/or from radon, especially for the underground facilities.

  15. Overview of the European Underground Facilities

    CERN Document Server

    Pandola, L

    2011-01-01

    Deep underground laboratories are the only places where the extremely low background radiation level required for most experiments looking for rare events in physics and astroparticle physics can be achieved. Underground sites are also the most suitable location for very low background gamma-ray spectrometers, able to assay trace radioactive contaminants. Many operational infrastructures are already available worldwide for science, differing for depth, dimension and rock characteristics. Other underground sites are emerging as potential new laboratories. In this paper the European underground sites are reviewed, giving a particular emphasis on their relative strength and complementarity. A coordination and integration effort among the European Union underground infrastructures was initiated by the EU-funded ILIAS project and proved to be very effective.

  16. Water underground

    Science.gov (United States)

    de Graaf, Inge

    2015-04-01

    The world's largest assessable source of freshwater is hidden underground, but we do not know what is happening to it yet. In many places of the world groundwater is abstracted at unsustainable rates: more water is used than being recharged, leading to decreasing river discharges and declining groundwater levels. It is predicted that for many regions of the world unsustainable water use will increase, due to increasing human water use under changing climate. It would not be long before shortage causes widespread droughts and the first water war begins. Improving our knowledge about our hidden water is the first step to stop this. The world largest aquifers are mapped, but these maps do not mention how much water they contain or how fast water levels decline. If we can add a third dimension to the aquifer maps, so a thickness, and add geohydrological information we can estimate how much water is stored. Also data on groundwater age and how fast it is refilled is needed to predict the impact of human water use and climate change on the groundwater resource.

  17. Laboratory study on streaming potential for exploring underground water flow; Shitsunai jikken ni yoru ryudo den`i wo mochiita mizu michi tansa no kanosei no kento

    Energy Technology Data Exchange (ETDEWEB)

    Sato, H.; Shima, H. [Oyo Corp., Tokyo (Japan)

    1997-05-27

    To investigate a possibility of exploration of underground water flow as well as to grasp the underground fluid flow by measuring streaming potential at the ground surface, some experiments were conducted using a model unit by considering the difference of permeability. For this experimental unit, water is driven by adding head difference between the polyethylene vessel filled with water and the experimental water tank. The size of water tank is 350{times}160 mm with a height of 160 mm. Twenty platinum electrodes are set on the cover of water tank. Toyoura standard sand and Kanto loam were used for the experiments. For the experiments, fluid was injected in various combined models by considering the permeability, to measure the streaming potential. As a result, it was explained by the streaming potential that the fluid flows in a form of laminar flow in the experimental water tank, and that the movement of fluid in the Kanto loam is quite slow. It was also confirmed that the streaming potential method is an effective technique for grasping the movement of fluid. 3 refs., 8 figs.

  18. Underground nuclear waste containments

    International Nuclear Information System (INIS)

    In the United States, about a hundred million gallons of high-level nuclear waste are stored in underground containments. Basically, these containments are of two different designs: single-shell and double-shell structures. The single-shell structures consist of reinforced concrete cylindrical walls seated on circular mats and enclosed on top with torispherical domes or circular flat roofs. The walls and the basemats are lined with carbon steel. The double-shell structures provide another layer of protection and constitute a completely enclosed steel containment within the single-shell structure leaving an annular space between the two walls. Single-shell containments are of earlier vintage and were built in the period 1945-1965. Double-shell structures were built through the 1960s and 1970s. Experience gained in building and operating the single-shell containments was used in enhancing the design and construction of the double-shell structures. Currently, there are about 250 underground single-shell and double-shell structures containing the high-level waste with an inventory of about 800 million curies. During their service lives, especially in early stages, these structures were subjected to thermal excursions of varying extents; also, they have aged in the chemical environment. Furthermore, in their remaining service lives, the structures may be subjected to loads for which they were not designed, such as larger earthquakes or chemical explosions. As a result, the demonstration of safety of these underground nuclear containments poses a challenge to structural engineers, which increases with time. Regardless of current plans for gradual retrieval of the waste and subsequent solidification for disposal, many of these structures are expected to continue to contain the waste through the next 20-40 years. In order to verify their structural capabilities in fulfilling this mission, several studies were recently performed at Brookhaven National Laboratory

  19. Going Underground in Singapore

    CERN Multimedia

    John Osborne (GS/SEM)

    2010-01-01

    Singapore has plans to build a massive Underground Science City (USC) housing R&D laboratories and IT data centres. A delegation involved in the planning to build the subterranean complex visited CERN on 18 October 2010 to learn from civil engineers and safety experts about how CERN plans and constructs its underground facilities.   The delegation from Singapore. The various bodies and corporations working on the USC project are currently studying the feasibility of constructing up to 40 caverns (60 m below ground) similar in size to an LHC experiment hall, in a similar type of rock. Civil engineering and geotechnical experts are calculating the maximum size of the cavern complex that can be safely built. The complex could one day accommodate between 3000 and 5000 workers on a daily basis, so typical issues of size and number of access shafts need to be carefully studied. At first glance, you might not think the LHC has much in common with the USC project; as Rolf Heuer pointed out: &ldq...

  20. Cigeo. The French deep geological repository for radioactive waste. Excavation techniques and technologies tested in underground laboratory and forecasted for the future construction of the project; Cigeo. Das franzoesische Tiefenlager fuer radioaktive Abfaelle. Im Untertagelabor getestete und fuer den kuenftigen Bau des Projekts vorgesehene Vortriebstechniken und -technologien

    Energy Technology Data Exchange (ETDEWEB)

    Chauvet, Francois [Agence Nationale pour la Gestion des Dechets Radioactifs (ANDRA), Chatenay-Malabry (France). Infrastructure Engineering Dept.; Bosgiraud, Jean-Michel [Agence Nationale pour la Gestion des Dechets Radioactifs (ANDRA), Chatenay-Malabry (France). Technological Development Program

    2015-07-01

    Cigeo is the French project for the repository of the high activity and intermediate long-lived radioactive waste. It will be situated at a depth of 500 m, In a clayish rock formation. An underground laboratory was built in the year 2000 and numerous tests are performed since 15 years, in order to know in detail the behavior of the rock and its ability to confine radioactive elements. In addition, this underground laboratory has brought and will continue to bring many lessons on the excavation methods to be chosen for the construction of Cigeo.

  1. First characterization of the ultra-shielded chamber in the low-noise underground laboratory (LSBB) of Rustrel-Pays d'Apt

    International Nuclear Information System (INIS)

    In compliance with international agreements on nuclear weapons limitation, the French ground-based nuclear arsenal has been decommissioned in its totality. One of its former underground missile control centers, located in Rustrel, 60 km east of Avignon (Provence) has been converted into the 'Laboratoire Souterrain a Bas Bruit de Rustrel-Pays d'Apt' (LSBB). The deepest experimental hall (500 m of calcite rock overburden) includes a 100 m2 area of sturdy flooring suspended by and resting on shock absorbers, entirely enclosed in a 28 m long, 8 m diameter, 1 cm thick steel capsule. This results in an unparalleled combination of shielding against cosmic rays, acoustic, seismic and electromagnetic noise, which can be exploited for rare event searches using ultra low-temperature and superconducting detectors. The first characterization measurements in this unique civilian site are reported

  2. A delegation from Singapore came to CERN on 18 October. The visitors are involved in planning a vast Underground Science City housing R&D laboratories and IT data centres.

    CERN Multimedia

    Hoch, Michael

    2010-01-01

    They came to learn from civil engineers and safety experts about how CERN plans and constructs its underground facilities. They visited the CMS site at Cessy, including the above-ground control room and the Underground Service Cavern.

  3. Underground pipeline corrosion

    CERN Document Server

    Orazem, Mark

    2014-01-01

    Underground pipelines transporting liquid petroleum products and natural gas are critical components of civil infrastructure, making corrosion prevention an essential part of asset-protection strategy. Underground Pipeline Corrosion provides a basic understanding of the problems associated with corrosion detection and mitigation, and of the state of the art in corrosion prevention. The topics covered in part one include: basic principles for corrosion in underground pipelines, AC-induced corrosion of underground pipelines, significance of corrosion in onshore oil and gas pipelines, n

  4. Overview of the European Underground Facilities

    OpenAIRE

    Pandola, L.

    2011-01-01

    Deep underground laboratories are the only places where the extremely low background radiation level required for most experiments looking for rare events in physics and astroparticle physics can be achieved. Underground sites are also the most suitable location for very low background gamma-ray spectrometers, able to assay trace radioactive contaminants. Many operational infrastructures are already available worldwide for science, differing for depth, dimension and rock characteristics. Othe...

  5. Fiberglass underground petroleum storage systems

    International Nuclear Information System (INIS)

    Fiberglass Reinforced Plastic (FRP) products have been in use for many years in a wide variety of products and markets. The automotive, marine, military, chemical, and petroleum markets have made extensive use of FRP. Today, over 300,000 FRP tanks and over 40,000,000 feet of FRP pipe are in service in petroleum marketing as well as industrial and commercial storage applications. In the early 1960's the American Petroleum Institute invited the FRP industry to design FRP underground tanks to solve their corrosion caused underground leaker problems. The challenge was accepted and in 1965 FRP tanks were introduced to the petroleum storage marketplace. FRP pipe, specifically designed for underground petroleum use, was Underwriter's Laboratories tested and listed and introduced in 1968. These fiberglass tanks and pipe have a 25 year perfect record against both internal and external corrosion. The FRP tank and pipe performance record has been outstanding. Less than 1/2 of 1% have ever been involved in an in-ground failure. When first introduced, FRP tanks carried an initial cost premium of 50 to 100% over unprotected steel. Since all Underground Storage Tank (UST) systems must be corrosion protected, initial FRP costs are now competitive with corrosion protected steel

  6. Intercomparison of radon and decay product measurements in an underground mine and EPA radon laboratory: A study organized by the IAEA International Radon Metrology Programme

    International Nuclear Information System (INIS)

    The International Atomic Energy Agency (IAEA) in Vienna and the European Union (EU) in Bruxelles formed the International Radon Metrology Programme. The IRMP is designed to assess and foster the improvement of radon and decay product measurements that are made around the world. Within the framework of the IRMP, the U.S. Environmental Protection Agency Radiation and Indoor Environments National Laboratory (EPA) in Las Vegas, Nevada, organized jointly with the U.S. Bureau of Mines an international intercomparison exercise at a former uranium mine (Twilight Mine, Colorado) and the EPA Radon Laboratory. The main objective of this exercise was to compare radon and radon decay product instruments under both well-controlled as well as widely fluctuating exposure conditions. The laboratory exposures occurred under relatively steady radon and decay product conditions, with a moderate equilibrium ratio, while the conditions in the mine fluctuated greatly and the equilibrium ratio was low. An additional purpose of the exercise was to provide a forum for manufacturers and measurement organizations worldwise to exchange information and plan improvements in their operations and calibration programs. Altogether 19 organizations from seven countries intercomparing 32 different radon and radon decay product instruments participated in this exercise. This paper summarizes the results from the analysis of the experimental data obtained in the Bureau of Mines Twilight Mine in July of 1994, as well as the results from the EPA Radon laboratory in August of 1994

  7. Field and laboratory investigations of coring-induced damage in core recovered from Marker Bed 139 at the waste isolation pilot plant underground facility

    International Nuclear Information System (INIS)

    A combined laboratory and field investigation was carried out to determine the extent of coring-induced damage done to samples cored from Marker Bed 139 at the WIPP site. Coring-induced damage, if present, has the potential to significantly change the properties of the material used for laboratory testing relative to the in situ material properties, resulting in misleading conclusions. In particular, connected, crack-like damage could make the permeability of cored samples orders of magnitude greater than the in situ permeabilities. Our approach compared in situ velocity and resistivity measurements with laboratory measurements of the same properties. Differences between in situ and laboratory results could be attributed to differences in the porosity due to cracks. The question of the origin of the changes could not be answered directly from the results of the measurements. Pre-existing cracks, held closed by the in situ stress, could open when the core was cut free, or new cracks could be generated by coring-induced damage. We used core from closely spaced boreholes at three orientations (0 degree, ±45 degrees relative to vertical) to address the origin of cracks. The absolute orientation of pre-existing cracks would be constant, independent of the borehole orientation. In contrast, cracks induced by coring were expected to show an orientation dependent on that of the source borehole

  8. Blasting in underground mining

    OpenAIRE

    Doneva, Nikolinka; Despodov, Zoran; Mirakovski, Dejan; Hadzi-Nikolova, Marija; Mijalkovski, Stojance

    2015-01-01

    The long history of underground facilities gives us a lot of cognitions that we use in the choice of appropriate drilling and blasting parameters to obtain satisfactory results in underground facility constructions. In this paper are represent parts of those cognitions. Selection of an appropriate blast hole pattern, hole cut type, total quantity of explosives, initiation sequence and to the amount of explosive detonated per delay are crucial for successfully blasting in underground facilitie...

  9. The underground storage

    International Nuclear Information System (INIS)

    In this work are given summaries of the addresses presented at the conference on the underground storage of June 2008. The topics described are: 1)sites and legislation of the underground storage in France (Carole Mercier) 2)oil and gas underground storage in salt cavities (Patrick Renoux) 3) geothermal storages (Herve Lesueur) 4)CO2 geological storage in aquifers and exploited oil deposits (Etienne Brosse). (O.M.)

  10. Talk of Francois Loos, delegate minister of industry, at the Meuse prefecture (Bar-le-Duc). Visit of the underground laboratory of research on the geologic disposal of radioactive wastes, Bure (Meuse)

    International Nuclear Information System (INIS)

    In this talk, the French minister of industry recalls, first, the context of the management of radioactive wastes and the research programs launched in the framework of the 'Bataille' law from December 30, 1991. Then, he stresses on the importance of the work carried out so far in the three ways of research on radioactive wastes: separation/transmutation, deep underground disposal and long duration surface storage. He introduces the government will of organizing a public debate about the management of radioactive wastes before the preparation of the law project for the implementation of the technological and scientifical choices (the 'road-map') of France in the domain of radioactive wastes management. He stresses also on the importance of the financing warranties of this management and of the public information in this domain. He concludes on the economical support of the government in consideration of the regions that have accepted or would accept the setting up of waste management research laboratories and industrial facilities. (J.S.)

  11. HAWAII UNDERGROUND STORAGE TANKS

    Science.gov (United States)

    This is a point coverage of underground storage tanks(UST) for the state of Hawaii. The original database was developed and is maintained by the State of Hawaii, Dept. of Health. The point locations represent facilities where one or more underground storage tanks occur. Each fa...

  12. Progress Toward a Thermal-Hydrological-Mechanical-Chemical-Biological (THMCB) Experiment in the Homestake Mine Deep Underground Science and Engineering Laboratory

    Science.gov (United States)

    Sonnenthal, E. L.; Maher, K.; Elsworth, D.; Lowell, R. P.; Uzunlar, N.; Mailloux, B. J.; Conrad, M. E.; Olsen, N. J.; Jones, T. L.; Cruz, M. F.; Torchinsky, A.

    2011-12-01

    The purpose of performing a long-term hydrothermal experiment in a deep mine is to gain a scientific understanding of the coupled physical, chemical, and biological processes taking place in fractured rock under the influence of mechanical stress, thermal effects, and fluid flow. Only in a controlled experiment in a well-characterized rock mass, can a fractured rock be probed in 3-D through geophysical imaging, in situ measurements, geochemical/biological sampling, and numerical modeling. Our project is focused on the feasibility of a THMCB experiment in the Homestake Mine, South Dakota to study the long-term evolution (10+ years) of a perturbed heterogeneous rock mass. In addition to the experiment as a laboratory for studying crustal processes, it has direct application to Enhanced Geothermal Systems, carbon sequestration, and contaminant transport. Field activities have focused on fracture and feature mapping, flux measurements from flowing fractures, and collection of water and rock samples for geochemical, biological, and isotopic analyses. Fracture mapping and seepage measurements are being used to develop estimates of permeability and fluxes at different length scales and design the location and orientation of the heater array. Fluxes measured up to several liters/minute indicate localized regions of very high fracture permeability, likely in excess of 10-10 m2. Isotopic measurements indicate heterogeneity in the fracture network on the scale of tens of meters in addition to the large-scale geochemical heterogeneity observed in the mine. New methods for sampling and filtering water samples were developed and tested with the goal of performing radiocarbon analyses in DNA and phospholipid fatty acids. Analytical and numerical models of the thermal perturbation have been used to design the heater orientation and spacing. Reaction path and THC simulations were performed to assess geochemical and porosity/permeability changes as a function of the heat input

  13. The Meuse-Haute Marne underground research laboratory. A scientific research tool for the study of deep geologic disposal of radioactive wastes; Le Laboratoire de Recherche souterrain de Meuse/Haute-Marne. Un outil de recherche scientifique pour etudier le stockage geologique profond de dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The Meuse-Haute Marne underground research laboratory, is an essential scientific tool for the achievement of one of the ANDRA's mission defined in the framework of the law from December 30, 1991 about the long-term management of high-level and long-living radioactive wastes. This document presents this laboratory: site characterization, characteristics of the Callovo-Oxfordian clay, and laboratory creation, coordinated experiments carried out at the surface and in depth, and the results obtained (published in an exhaustive way in the 'Clay 2005' dossier). (J.S.)

  14. PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 2 D/F WASTE LINE REMOVAL, BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK

    International Nuclear Information System (INIS)

    Oak Ridge Institute for Science and Education (ORISE) has reviewed the project documentation and data for the High Flux Beam Reactor (HFBR) Underground Utilities removal Phase 2; the D/F Waste Line removal at Brookhaven National Laboratory (BNL) in Upton, New York. The Brookhaven Survey Group (BSG) has completed removal and performed the final status survey (FSS) of the D/F Waste Line that provided the conduit for pumping waste from Building 750 to Building 801. Sample results have been submitted as required to demonstrate that the cleanup goals of 15 mrem/yr above background to a resident in 50 years have been met. Four rounds of sampling, from pre-excavation to final status survey (FSS), were performed as specified in the Field Sampling Plan (FSP) (BNL 2010a). It is the policy of the US Departmental of Energy (DOE) to perform independent verifications of decontamination and decomissioning activities conducted at DOE facilities. ORISE has been designated as the organization responsible for this task at the HFBR. ORISE together with DOE determined that a Type A verification of the D/F Waste Line was appropriate based on its method of construction and upon the minimal potential for residual radioactivity in the area. The removal of underground utilities is being performed in three stages in the process to decommission the HFBR facility and support structures. Phase 2 of this project included the grouting and removal of 1100 feet of 2-inch pipe and 640 feet of 4-inch pipe that served as the D/F Waste Line. Based on the pre-excavation sample results of the soil overburden, the potential for contamination of the soil surrounding the pipe is minimal (BNL 2010a). ORISE reviewed the BNL FSP and identified comments for consideration (ORISE 2010). BNL prepared a revised FSP that addressed each ORISE comment adequately (BNL 2010a). ORISE referred to the revised Phase 2 D/F Waste Line removal FSP FSS data to conduct the Type A verification and determine whether the intent odf

  15. Proposal for a national underground science facility

    International Nuclear Information System (INIS)

    The idea is explored of establishing a laboratory complex shielded from the cosmic ray flux at the earth's surface for the purpose of housing and providing technical support for experiments in particle physics, astrophysics, and other scientific disciplines. The scientific motivation for such an underground science facility is described, and the questions of location and desired properties of the facility are discussed

  16. Muon simulation codes MUSIC and MUSUN for underground physics

    CERN Document Server

    Kudryavtsev, V A

    2008-01-01

    The paper describes two Monte Carlo codes dedicated to muon simulations: MUSIC (MUon SImulation Code) and MUSUN (MUon Simulations UNderground). MUSIC is a package for muon transport through matter. It is particularly useful for propagating muons through large thickness of rock or water, for instance from the surface down to underground/underwater laboratory. MUSUN is designed to use the results of muon transport through rock/water to generate muons in or around underground laboratory taking into account their energy spectrum and angular distribution.

  17. The underground macroeconomics

    Directory of Open Access Journals (Sweden)

    Marin Dinu

    2013-01-01

    Full Text Available Like Physics, which cannot yet explain 96% of the substance in the Universe, so is Economics, unprepared to understand and to offer a rational explicative model to the underground economy.

  18. In situ and laboratory investigation of the alteration of Boom Clay (Oligocene) at the air–geological barrier interface within the Mol underground facility (Belgium): Consequences on kerogen and bitumen compositions

    International Nuclear Information System (INIS)

    The Boom Clay formation (Oligocene) is studied as a reference host rock for methodological studies on deep geological disposal of radioactive waste. During excavation of galleries within the Clay formation (HADES underground research facility, Mol, Belgium), the physico-chemical conditions are significantly modified as an air–clay interface is created. In order to study the long-term impact of the air–clay contact on the organic matter contained in the Boom Clay, two types of samples were studied: (1) a reference series of clay samples having been in contact with the atmosphere of the HADES gallery for increasing times up to several years and (2) unaltered clay samples submitted to artificial oxidation in a ventilated oven at 80 °C. The evolution of geochemical data of the two series was compared using Rock-Eval pyrolysis, GC–MS and size exclusion chromatography. The organic matter of the unaltered clays sampled in the HADES galleries is dominated by type III kerogen (terrestrial) with some contribution of type II (marine) and is thermally immature. The evolution of geochemical parameters during air alteration for the two series are very similar. They show progressive oxidation of kerogen accompanied by the release of bitumen enriched in low molecular weight constituents. Molecular analysis evidences the presence of a complex mixture of aliphatic and aromatic O-bearing compounds, inherited from the degradation of kerogen as well as from the clay catalyzed oxidation of the bitumen. These results show that (1) air oxidation is a major process in the in situ alteration of the organic matter of Boom Clay within the HADES galleries, (2) laboratory oxidation experiments at 80 °C yield similar results as in situ air alteration of Boom Clay and (3) artificial air oxidation may be used to assess the long term exposure of the organic matter to air.

  19. Orpheus in the Underground

    Directory of Open Access Journals (Sweden)

    Puskás Dániel

    2015-12-01

    Full Text Available In my study I deal with descents to the underworld and hell in literature in the 20th century and in contemporary literature. I will focus on modem literary reinterpretations of the myth of Orpheus, starting with Rilke’s Orpheus. Eurydice. Hermes. In Seamus Heaney’s The Underground. in the Hungarian Istvan Baka’s Descending to the Underground of Moscow and in Czesław Miłosz’s Orpheus and Eurydice underworld appears as underground, similarly to the contemporary Hungarian János Térey’s play entitled Jeramiah. where underground will also be a metaphorical underworld which is populated with the ghosts of the famous deceased people of Debrecen, and finally, in Péter Kárpáti’s Everywoman the grave of the final scene of the medieval Everyman will be replaced with a contemporary underground station. I analyse how an underground station could be parallel with the underworld and I deal with the role of musicality and sounds in the literary works based on the myth of Orpheus.

  20. Underground nuclear astrophysics studies with CASPAR

    Science.gov (United States)

    Robertson, Daniel; Couder, Manoel; Greife, Uwe; Strieder, Frank; Wiescher, Michael

    2016-02-01

    The drive of low-energy nuclear astrophysics laboratories is to study the reactions of importance to stellar burning processes and elemental production through stellar nucleosynthesis, over the energy range of astrophysical interest. As laboratory measurements approach the stellar burning window, the rapid drop off of cross-sections is a significant barrier and drives the need to lower background interference. The natural background suppression of underground accelerator facilities enables the extension of current experimental data to lower energies. An example of such reactions of interest are those thought to be sources of neutrons for the s-process, the major production mechanism for elements above the iron peak. The reactions 13C(α,n)16O and 22Ne(α,n)25Mg are the proposed initial focus of the new nuclear astrophysics accelerator laboratory (CASPAR) currently under construction at the Sanford Underground Research Facility, Lead, South Dakota

  1. Diffuse supernova neutrinos at underground laboratories

    Science.gov (United States)

    Lunardini, Cecilia

    2016-06-01

    I review the physics of the Diffuse Supernova Neutrino flux (or Background, DSNB), in the context of future searches at the next generation of neutrino observatories. The theory of the DSNB is discussed in its fundamental elements, namely the cosmological rate of supernovae, neutrino production inside a core collapse supernova, redshift, and flavor oscillation effects. The current upper limits are also reviewed, and results are shown for the rates and energy distributions of the events expected at future liquid argon and liquid scintillator detectors of O(10) kt mass, and water Cherenkov detectors up to a 0.5 Mt mass. Perspectives are given on the significance of future observations of the DSNB, both at the discovery and precision phases, for the investigation of the physics of supernovae and of the properties of the neutrino.

  2. IRMM low level underground laboratory in HADES

    Energy Technology Data Exchange (ETDEWEB)

    Mouchel, D. [CEC-JRC, Inst. for Reference Materials and Measurements (IRMM), Geel (Belgium); Wordel, R. [CEC-JRC, Inst. for Reference Materials and Measurements (IRMM), Geel (Belgium)

    1997-03-01

    The operation of low background HPGe detectors at a depth of 225 m, reduced the background by two orders of magnitude; a large amount of the remaining background is still attributable to the cosmic rays. The selection of radiopure materials, the characterization of reference matrices and the measurements of low radioactivities in environmental samples are performed. Coupling the low level spectrometry with additional techniques, e.g. neutron activation, will allow to measure extremely low radioactivities. (orig.)

  3. The ICARUS Expriment at LNGS Underground Laboratory

    Directory of Open Access Journals (Sweden)

    Cancia Nicola

    2014-04-01

    The recent measurement of the velocity of neutrinos with short bunched CNGS beam, consistent with the speed of light, and the search for the analogue to Cherenkov radiation effect for superluminal neutrinos are presented.

  4. Underground physics with DUNE

    Science.gov (United States)

    Kudryavtsev, Vitaly A.; DUNE Collaboration

    2016-05-01

    The Deep Underground Neutrino Experiment (DUNE) is a project to design, construct and operate a next-generation long-baseline neutrino detector with a liquid argon (LAr) target capable also of searching for proton decay and supernova neutrinos. It is a merger of previous efforts of the LBNE and LBNO collaborations, as well as other interested parties to pursue a broad programme with a staged 40-kt LAr detector at the Sanford Underground Research Facility (SURF) 1300 km from Fermilab. This programme includes studies of neutrino oscillations with a powerful neutrino beam from Fermilab, as well as proton decay and supernova neutrino burst searches. In this paper we will focus on the underground physics with DUNE.

  5. Underground mineral extraction

    Science.gov (United States)

    Miller, C. G.; Stephens, J. B.

    1980-01-01

    A method was developed for extracting underground minerals such as coal, which avoids the need for sending personnel underground and which enables the mining of steeply pitched seams of the mineral. The method includes the use of a narrow vehicle which moves underground along the mineral seam and which is connected by pipes or hoses to water pumps at the surface of the Earth. The vehicle hydraulically drills pilot holes during its entrances into the seam, and then directs sideward jets at the seam during its withdrawal from each pilot hole to comminute the mineral surrounding the pilot hole and combine it with water into a slurry, so that the slurried mineral can flow to a location where a pump raises the slurry to the surface.

  6. Underground physics with DUNE

    CERN Document Server

    Kudryavtsev, Vitaly A

    2016-01-01

    The Deep Underground Neutrino Experiment (DUNE) is a project to design, construct and operate a next-generation long-baseline neutrino detector with a liquid argon (LAr) target capable also of searching for proton decay and supernova neutrinos. It is a merger of previous efforts of the LBNE and LBNO collaborations, as well as other interested parties to pursue a broad programme with a staged 40 kt LAr detector at the Sanford Underground Research Facility (SURF) 1300 km from Fermilab. This programme includes studies of neutrino oscillations with a powerful neutrino beam from Fermilab, as well as proton decay and supernova neutrino burst searches. In this paper we will focus on the underground physics with DUNE.

  7. Underground Physics with DUNE

    Energy Technology Data Exchange (ETDEWEB)

    Kudryavtsev, Vitaly A. [Sheffield U.

    2016-01-14

    The Deep Underground Neutrino Experiment (DUNE) is a project to design, construct and operate a next-generation long-baseline neutrino detector with a liquid argon (LAr) target capable also of searching for proton decay and supernova neutrinos. It is a merger of previous efforts of the LBNE and LBNO collaborations, as well as other interested parties to pursue a broad programme with a staged 40 kt LAr detector at the Sanford Underground Research Facility (SURF) 1300 km from Fermilab. This programme includes studies of neutrino oscillations with a powerful neutrino beam from Fermilab, as well as proton decay and supernova neutrino burst searches. In this paper we will focus on the underground physics with DUNE.

  8. Dynamic Underground Stripping Project

    International Nuclear Information System (INIS)

    LLNL is collaborating with the UC Berkeley College of Engineering to develop and demonstrate a system of thermal remediation and underground imaging techniques for use in rapid cleanup of localized underground spills. Called ''Dynamic Stripping'' to reflect the rapid and controllable nature of the process, it will combine steam injection, direct electrical heating, and tomographic geophysical imaging in a cleanup of the LLNL gasoline spill. In the first 8 months of the project, a Clean Site engineering test was conducted to prove the field application of the techniques before moving the contaminated site in FY 92

  9. Laboratory and Field Studies Related to Radionuclide Migration at the Nevada Test Site in Support of the Underground Test Area Project and the Hydrologic Resources Management Program, October 1, 2002 - September 30, 2003

    International Nuclear Information System (INIS)

    This report details the work of Chemistry Division personnel from Los Alamos National Laboratory in FY 2003 for the U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) under its Defense Programs and Environmental Restoration divisions. Los Alamos is one of a number of agencies collaborating in an effort to describe the present and future movement of radionuclides in the underground environment of the Nevada Test Site. This fiscal year we collected and analyzed water samples from a number of expended test locations at the Nevada Test Site. We give the results of these analyses and summarize the information gained over the quarter century that we have been studying several of these sites. We find that by far most of the radioactive residues from a nuclear test are contained in the melt glass in the cavity. Those radionuclides that are mobile in water can be transported if the groundwater is moving due to hydraulic or thermal gradients. The extent to which they move is a function of their chemical speciation, with neutral or anionic materials traveling freely relative to cationic materials that tend to sorb on rock surfaces. However, radionuclides sorbed on colloids may be transported if the colloids are moving. Local conditions strongly influence the distribution and movement of radionuclides, and we continue to study sites such as Cheshire, RNM-2s, Camembert and Almendro where radionuclides have been measured in the past. We collected samples from monitoring wells in Yucca Flat (ER-12-2, ER-6-1 No.2 and ER-7-1) and Frenchman Flat (ER-5-4 No.2) to obtain baseline radiochemistry data in those areas. We, in collaboration with LLNL, assembled all of the hot well data that have been collected over the past 30 years and submitted the data to Shaw for future inclusion in the geochemistry database. We have again used a field probe that allows us to measure important groundwater properties in situ. We begin the report with a

  10. SUMMARY AND RESULTS LETTER REPORT - INDEPENDENT VERIFICATION OF THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PROJECT, PHASE 3: TRENCHES 2, 3, AND 4 BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK

    International Nuclear Information System (INIS)

    Oak Ridge Institute for Science and Education (ORISE) personnel visited the Brookhaven National Laboratory (BNL) on September 7 through September 10, 2010, and September 20 through Seeptember 24, 2010. ORISE performed visual inspections, conducted independent measurement, and sampling of Trenches 2, 3, and 4, which are part of Phase 3 for the High Flux Beam Reactor (HFBR) Underground Utilities Removal Project. Trenches 2 and 3 were addressed during the first visit and Trench 4 during the second visit to BNL. Spatial orientation to Building 801 and minimal survey area inside Trenches 2 and 3 limited satellite reception and the ability to utilize a global positioning system (GPS) as real-time data capture for the gamma scan surveys in these trenches. However, Trench 4 provided suitable conditions in which gamma scan data could be collected using the GPS. ORISE performed high-density gamma scans of accessible surface areas using shielded sodium iodide detectors coupled to ratemeter-scalers with audible output. Scans for Trench 2 ranged from 4,000 to 22,000 gross counts per minute (cpm); Trench 3 from 3,000 to 5,000 gross cpm and Trench 4 from 2,600 to 9,500 gross cpm. ORISE personnel flagged the area where the elevated counts were observed in Trench 2 for further investigation. Additional scane valuations were performed on remaining pipes and associated end-caps in the trenches with no elevated activity detected. Eleven judgemental soil samples (5098M0041 through 5098M0051) were obtained throughout Trenches 2, 3, and 4. The sample locations were selected based on count rates observed during the scan survey or because of contamination potential from pipeline removal activities. ORISE personnel judgmentally selected the location for sample M0043 in response to the 22,000 cpm observed during the scan survey, and to ascertain whether the elevataed counts were a result of soil contamination or radioactive shine from the trench's spatial orientation to the Target Room in

  11. Underground nuclear astrophysics: Why and how

    Science.gov (United States)

    Best, A.; Caciolli, A.; Fülöp, Zs.; Gyürky, Gy.; Laubenstein, M.; Napolitani, E.; Rigato, V.; Roca, V.; Szücs, T.

    2016-04-01

    The goal of nuclear astrophysics is to measure cross-sections of nuclear physics reactions of interest in astrophysics. At stars temperatures, these cross-sections are very low due to the suppression of the Coulomb barrier. Cosmic-ray-induced background can seriously limit the determination of reaction cross-sections at energies relevant to astrophysical processes and experimental setups should be arranged in order to improve the signal-to-noise ratio. Placing experiments in underground sites, however, reduces this background opening the way towards ultra low cross-section determination. LUNA (Laboratory for Underground Nuclear Astrophysics) was pioneer in this sense. Two accelerators were mounted at the INFN National Laboratories of Gran Sasso (LNGS) allowing to study nuclear reactions close to stellar energies. A summary of the relevant technology used, including accelerators, target production and characterisation, and background treatment is given.

  12. Underground nuclear astrophysics: why and how

    CERN Document Server

    Best, A; Fülöp, Zs; Gyürky, Gy; Laubenstein, M; Napolitani, E; Rigato, V; Roca, V; Szücs, T

    2016-01-01

    The goal of nuclear astrophysics is to measure cross sections of nuclear physics reactions of interest in astrophysics. At stars temperatures, these cross sections are very low due to the suppression of the Coulomb barrier. Cosmic ray induced background can seriously limit the determination of reaction cross sections at energies relevant to astrophysical processes and experimental setups should be arranged in order to improve the signal-to-noise ratio. Placing experiments in underground sites, however, reduces this background opening the way towards ultra low cross section determination. LUNA (Laboratory for Underground Nuclear Astrophysics) was pioneer in this sense. Two accelerators were mounted at the INFN National Laboratories of Gran Sasso (LNGS) allowing to study nuclear reactions close to stellar energies. A summary of the relevant technology used, including accelerators, target production and characterisation, and background treatment is given.

  13. Underground Storage Tanks in Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Underground storage tank (UST) sites which store petroleum in Iowa. Includes sites which have been reported to DNR, and have active or removed underground storage...

  14. Inflation and the underground economy

    OpenAIRE

    Ahiabu, Stephen

    2006-01-01

    This paper studies the optimal rate of seigniorage in an economy characterized by decentralized trade and a tax-evading underground sector. The economy has buyers, some of whom visit the formal market, while others visit the underground market. I find that the optimal rate of inflation depends on which of the two sectors, formal or underground, is more crowded/congested with buyers. If the underground sector is more crowded, the optimal inflation rate is as high as 42% per a...

  15. Underground Economy in Croatia

    Directory of Open Access Journals (Sweden)

    Marija Švec

    2009-12-01

    Full Text Available The subject of this paper is to estimate the size of underground economy in the period 2001-2007 using labour approach. Two types of data are used: administrative and survey. The main questions are: How did the activity rates move? What is the relationship between activity rates and the size of shadow economy? Is there correlation between official employment, official unemployment and unofficial employment (shadow economy and what is it like? What is the position of Croatia considering the members of the European Union? It is presumed that the increase of activity rates causes decrease of underground economy. However, this assumption is valid only for administrative data. Correlation analysis is based on regression models and given results are quite logical. If Croatian and European underground economy is compared, it can be confirmed that the position of Croatia is extremely poor. Given results are approximative and show the level of Croatian underground economy which is presumably underestimated. These phenomena occur because of available statistics and method limitations

  16. Systematic Selection and Application of Backfill in Underground Mines

    OpenAIRE

    Masniyom, Manoon

    2009-01-01

    The use of backfill in underground mining is increasing due to need for systematic backfilling of mine openings and workings to avoid surface damage, increase safety and contribution to sustainable mining. This study is to investigate backfill materials and new methods suited for systematic selection and application of backfill in underground mines. Laboratory tests were carried out on physical, chemical and mechanical properties of different backfill materials and mixtures thereof. Special a...

  17. Jiangmen Underground Neutrino Observatory

    CERN Document Server

    He, Miao

    2014-01-01

    The Jiangmen Underground Neutrino Observatory (JUNO) is a multipurpose neutrino-oscillation experiment designed to determine the neutrino mass hierarchy and to precisely measure oscillation parameters by detecting reactor antineutrinos, observe supernova neutrinos, study the atmospheric, solar neutrinos and geo-neutrinos, and perform exotic searches, with a 20 kiloton liquid scintillator detector of unprecedented $3\\%$ energy resolution (at 1 MeV) at 700-meter deep underground and to have other rich scientific possibilities. Currently MC study shows a sensitivity of the mass hierarchy to be $\\overline{\\Delta\\chi^2}\\sim 11$ and $\\overline{\\Delta\\chi^2}\\sim 16$ in a relative and an absolute measurement, respectively. JUNO has been approved by Chinese Academy of Sciences in 2013, and an international collaboration was established in 2014. The civil construction is in preparation and the R$\\&$D of the detectors are ongoing. A new offline software framework was developed for the detector simulation, the event ...

  18. Underground Economy in Croatia

    OpenAIRE

    Marija Švec

    2009-01-01

    The subject of this paper is to estimate the size of underground economy in the period 2001-2007 using labour approach. Two types of data are used: administrative and survey. The main questions are: How did the activity rates move? What is the relationship between activity rates and the size of shadow economy? Is there correlation between official employment, official unemployment and unofficial employment (shadow economy) and what is it like? What is the position of Croatia considering the m...

  19. Nuclear plant undergrounding

    International Nuclear Information System (INIS)

    Under Section 25524.3 of the Public Resources Code, the California Energy Resources Conservation and Development Commission (CERCDC) was directed to study ''the necessity for '' and the effectiveness and economic feasibility of undergrounding and berm containment of nuclear reactors. The author discusses the basis for the study, the Sargent and Lundy (S and L) involvement in the study, and the final conclusions reached by S and L

  20. Monitoring underground movements

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    On 16 September 2015 at 22:54:33 (UTC), an 8.3-magnitude earthquake struck off the coast of Chile. 11,650 km away, at CERN, a new-generation instrument – the Precision Laser Inclinometer (PLI) – recorded the extreme event. The PLI is being tested by a JINR/CERN/ATLAS team to measure the movements of underground structures and detectors.   The Precision Laser Inclinometer during assembly. The instrument has proven very accurate when taking measurements of the movements of underground structures at CERN.    The Precision Laser Inclinometer is an extremely sensitive device capable of monitoring ground angular oscillations in a frequency range of 0.001-1 Hz with a precision of 10-10 rad/Hz1/2. The instrument is currently installed in one of the old ISR transfer tunnels (TT1) built in 1970. However, its final destination could be the ATLAS cavern, where it would measure and monitor the fine movements of the underground structures, which can affect the precise posi...

  1. Closure report for underground storage tank 161-R1U1 and its associated underground piping

    International Nuclear Information System (INIS)

    Underground storage tank (UST) 161-31 R at the Lawrence Livermore National Laboratory (LLNL) was registered with the State Water Resources Control Board on June 27, 1984. UST 161-31R was subsequently renamed UST 161-R1U1 (Fig. A-1, Appendix A). UST 161-R1U1 was installed in 1976, and had a capacity of 383 gallons. This tank system consisted of a fiberglass reinforced plastic tank, approximately 320 feet of polyvinyl chloride (PVC) underground piping from Building 161, and approximately 40 feet of PVC underground piping from Building 160. The underground piping connected laboratory drains and sinks inside Buildings 160 and 161 to UST 161-R1U1. The wastewater collected in UST 161-R1U1, contained organic solvents, metals, inorganic acids, and radionuclides, most of which was produced within Building 161. On June 28, 1989, the UST 161-R1U1 piping system.around the perimeter of Building 161 failed a precision test performed by Gary Peters Enterprises (Appendix B). The 161-R1U1 tank system was removed from service after the precision test. In July 1989, additional hydrostatic tests and helium leak detection tests were performed (Appendix B) to determine the locations of the piping failures in the Building 161 piping system. The locations of the piping system failures are shown in Figure A-2 (Appendix A). On July 11, 1989, LLNL submitted an Unauthorized Release Report to Alameda County Department of Environmental Health (ACDEH), Appendix C

  2. Environment Of Underground Water And Pollution

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jeong Sang

    1998-02-15

    This book deals with environment of underground water and pollution, which introduces the role of underground water in hydrology, definition of related study of under water, the history of hydro-geology, basic conception of underground water such as origin of water, and hydrogeologic characteristic of aquifers, movement of underground water, hydrography of underground water and aquifer test analysis, change of an underground water level, and water balance analysis and development of underground water.

  3. Environment Of Underground Water And Pollution

    International Nuclear Information System (INIS)

    This book deals with environment of underground water and pollution, which introduces the role of underground water in hydrology, definition of related study of under water, the history of hydro-geology, basic conception of underground water such as origin of water, and hydrogeologic characteristic of aquifers, movement of underground water, hydrography of underground water and aquifer test analysis, change of an underground water level, and water balance analysis and development of underground water.

  4. The Sanford Underground Research Facility at Homestake

    CERN Document Server

    Heise, J

    2014-01-01

    The former Homestake gold mine in Lead, South Dakota is being transformed into a dedicated laboratory to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines such as biology, geology and engineering. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e) and currently hosts three projects: the LUX dark matter experiment, the MAJORANA DEMONSTRATOR neutrinoless double-beta decay experiment and the CUBED low-background counter. Plans for possible future experiments at SURF are well underway and include long baseline neutrino oscillation experiments, future dark matter experiments as well as nuclear astrophysics accelerators. Facility upgrades to accommodate some of these future projects have already started. SURF is a dedicated facility with significant expansion capability.

  5. The underground economy in Romania

    OpenAIRE

    Eugenia Ramona MARA

    2011-01-01

    The actual economic crisis has a major impact on the underground economy because of tax burden increase especially. This study realizes an analysis of the major implications of the economic crises on the size and the consequences of the underground activities. Also we try to reveal the correlation between the underground economy and the official one. The conclusion of this study is that the shadow activities have grown since the financial crisis began.

  6. Underground economy and aggregate fluctuations

    OpenAIRE

    Juan Carlos Conesa Roca; Carlos Díaz Moreno; José Enrique Galdón Sánchez

    2001-01-01

    This paper explores the role of underground economic activities as an explanation of differences in registered aggregate fluctuations. In order to do so, we introduce an underground economy sector in an otherwise standard Real Business Cycle model and calibrate it to the USA economy. We find that, at low frequencies, Europe fluctuates more than the USA, while its participation rate is smaller. The existence of underground activities rationalizes the negative relationship between participation...

  7. Underground space planning in Helsinki

    OpenAIRE

    Ilkka Vähäaho

    2014-01-01

    This paper gives insight into the use of underground space in Helsinki, Finland. The city has an underground master plan (UMP) for its whole municipal area, not only for certain parts of the city. Further, the decision-making history of the UMP is described step-by-step. Some examples of underground space use in other cities are also given. The focus of this paper is on the sustainability issues related to urban underground space use, including its contribution to an environmentally sustainab...

  8. Regulated underground storage tanks

    International Nuclear Information System (INIS)

    This guidance package is designed to assist DOE Field operations by providing thorough guidance on the underground storage tank (UST) regulations. [40 CFR 280]. The guidance uses tables, flowcharts, and checklists to provide a ''roadmap'' for DOE staff who are responsible for supervising UST operations. This package is tailored to address the issues facing DOE facilities. DOE staff should use this guidance as: An overview of the regulations for UST installation and operation; a comprehensive step-by-step guidance for the process of owning and operating an UST, from installation to closure; and a quick, ready-reference guide for any specific topic concerning UST ownership or operation

  9. Dossier: underground storage

    International Nuclear Information System (INIS)

    This dossier reviews the main concepts of storage in geologic formations: shape of artificial cavities; natural reservoirs: natural gas storage in aquifers, heat storage, karsts and caves; artificial reservoirs: salt dissolution cavities, salt mines, enlargement of cavities, storage of metal wastes; reservoirs in mining cavities: hydrocarbons storage (tightness, steel coated cavities), cryogenic storage; use of ancient infrastructures (mines, quarries, galleries): hydrocarbons storage, toxic wastes storage, radioactive wastes disposal, reversible radioactive wastes storage, solar neutrons trapping in underground galleries, storage of film archives etc.. (J.S.)

  10. Underground engineering applications

    International Nuclear Information System (INIS)

    Developments of any underground engineering application utilizing nuclear explosives involve answering the same questions one encounters in any new area of technology: What are the characteristics of the new tool? How is it applicable to the job to be done? Is it safe to use? and, most importantly, is its use economically acceptable? The many facets of the answers to these questions will be explored. The general types of application presently under consideration will also be reviewed, with particular emphasis on those specific projects actively being worked on by commercial interests and by the U.S. Atomic Energy Commission. (author)

  11. 30 CFR 75.343 - Underground shops.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground shops. 75.343 Section 75.343... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.343 Underground shops. (a) Underground...-3 through § 75.1107-16, or be enclosed in a noncombustible structure or area. (b) Underground...

  12. Radiometric surveys in underground environment

    Science.gov (United States)

    Bochiolo, Massimo; Chiozzi, Paolo; Verdoya, Massimo; Pasquale, Vincenzo

    2010-05-01

    Due to their ability to travel through the air for several metres, gamma-rays emitted from natural radioactive elements can be successfully used in surveys carried out both with airborne and ground equipments. Besides the concentration of the radio-elements contained in rocks and soils and the intrinsic characteristics of the gamma-ray detector, the detected count rate depends on the solid angle around the spectrometer. On a flat outcrop, ground spectrometry detects the radiation ideally produced by a cylindrical mass of rock of about two metres in diameter and thickness of about half a meter. Under these geometrical conditions, the natural radioactivity can be easily evaluated. With operating conditions different from the standard ones, such as at the edge of an escarpment, the count rate halves because of the missing material, whereas in the vicinity of a rock wall the count rate will increase. In underground environment, the recorded count rate may even double and the in situ assessment of the concentration of radio-elements may be rather difficult, even if the ratios between the different radio-elements may not be affected. We tested the applicability of gamma-ray spectrometry for rapid assessment of the potential hazard levels related to radon and radiation dose rate in underground environment. A mine shaft, located in a zone of uranium enrichment in Liguria (Italy), has been investigated. A preliminary ground radiometric survey was carried out to define the extent of the ore deposit. Then, the radiometric investigation was focussed on the mine shaft. Due to rock mass above the shaft vault, the background gamma radiation can be considered of negligible influence on measurements. In underground surveys, besides deviations from a flat geometry, factors controlling radon exhalation, emanation and stagnation, such as fractures, water leakage and the presence of ventilation, should be carefully examined. We attempted to evaluate these control factors and collected

  13. Multinational underground nuclear parks

    International Nuclear Information System (INIS)

    Newcomer countries expected to develop new nuclear power programs by 2030 are being encouraged by the International Atomic Energy Agency to explore the use of shared facilities for spent fuel storage and geologic disposal. Multinational underground nuclear parks (M-UNPs) are an option for sharing such facilities. Newcomer countries with suitable bedrock conditions could volunteer to host M-UNPs. M-UNPs would include back-end fuel cycle facilities, in open or closed fuel cycle configurations, with sufficient capacity to enable M-UNP host countries to provide for-fee waste management services to partner countries, and to manage waste from the M-UNP power reactors. M-UNP potential advantages include: the option for decades of spent fuel storage; fuel-cycle policy flexibility; increased proliferation resistance; high margin of physical security against attack; and high margin of containment capability in the event of beyond-design-basis accidents, thereby reducing the risk of Fukushima-like radiological contamination of surface lands. A hypothetical M-UNP in crystalline rock with facilities for small modular reactors, spent fuel storage, reprocessing, and geologic disposal is described using a room-and-pillar reference-design cavern. Underground construction cost is judged tractable through use of modern excavation technology and careful site selection. (authors)

  14. RP delves underground

    CERN Multimedia

    Anaïs Schaeffer

    2011-01-01

    The LHC’s winter technical stop is rapidly approaching. As in past years, technical staff in their thousands will be flocking to the underground areas of the LHC and the Linac2, Booster, PS and SPS injectors. To make sure they are protected from ionising radiation, members of the Radiation Protection Group will perform an assessment of the levels of radioactivity in the tunnels as soon as the beams have stopped.   Members of the Radiation Protection Group with their precision instruments that measure radioactivity. At 7-00 a.m. on 8 December the LHC and all of the upstream accelerators will begin their technical stop. At 7-30 a.m., members of the Radiation Protection Group will enter the tunnel to perform a radiation mapping, necessary so that the numerous teams can do their work in complete safety. “Before we proceed underground, we always check first to make sure that the readings from the induced radioactivity monitors installed in the tunnels are all normal,&rdqu...

  15. Multinational underground nuclear parks

    Energy Technology Data Exchange (ETDEWEB)

    Myers, C.W. [Nuclear Engineering and Nonproliferation Division, Los Alamos National Laboratory, MS F650, Los Alamos, NM 87544 (United States); Giraud, K.M. [Wolf Creek Nuclear Operating Corporation, 1550 Oxen Lane NE, P.O. Box 411, Burlington, KS 66839-0411 (United States)

    2013-07-01

    Newcomer countries expected to develop new nuclear power programs by 2030 are being encouraged by the International Atomic Energy Agency to explore the use of shared facilities for spent fuel storage and geologic disposal. Multinational underground nuclear parks (M-UNPs) are an option for sharing such facilities. Newcomer countries with suitable bedrock conditions could volunteer to host M-UNPs. M-UNPs would include back-end fuel cycle facilities, in open or closed fuel cycle configurations, with sufficient capacity to enable M-UNP host countries to provide for-fee waste management services to partner countries, and to manage waste from the M-UNP power reactors. M-UNP potential advantages include: the option for decades of spent fuel storage; fuel-cycle policy flexibility; increased proliferation resistance; high margin of physical security against attack; and high margin of containment capability in the event of beyond-design-basis accidents, thereby reducing the risk of Fukushima-like radiological contamination of surface lands. A hypothetical M-UNP in crystalline rock with facilities for small modular reactors, spent fuel storage, reprocessing, and geologic disposal is described using a room-and-pillar reference-design cavern. Underground construction cost is judged tractable through use of modern excavation technology and careful site selection. (authors)

  16. Hydrologic resources management program and underground test area operable unit fy 1997

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D. F., LLNL

    1998-05-01

    This report present the results of FY 1997 technical studies conducted by the Lawrence Livermore National Laboratory (LLNL) as part of the Hydrology and Radionuclide Migration Program (HRMP) and Underground Test Area Operable Unit (UGTA). The HRMP is sponsored by the US Department of Energy to assess the environmental (radiochemical and hydrologic) consequences of underground nuclear weapons testing at the Nevada Test Site.

  17. Nucleation in an ultra low ionisation environment

    DEFF Research Database (Denmark)

    Enghoff, Martin Andreas Bødker

    In this work we have studied aerosol formation at ultra-low ionisation levels, using the existing deep underground science facility at Boulby mine, UK. At 1100 m depth, with a corresponding factor 106 reduction in cosmic ray muon flux, the Boulby facility is an ideal place to study the role of ions...

  18. Modern geodesy approach in underground mining

    OpenAIRE

    Mijalkovski, Stojance; Despodov, Zoran; Gorgievski, Cvetan; Bogdanovski, Goran; Mirakovski, Dejan; Hadzi-Nikolova, Marija; Doneva, Nikolinka

    2013-01-01

    This paper presents overview of the development of modern geodesy approach in underground mining. Correct surveying measurements have great importance in mining, especially underground mining as well as a major impact on safety in the development of underground mining facilities.

  19. New Projects in Underground Physics

    OpenAIRE

    Goodman, Maury

    2003-01-01

    A large fraction of neutrino research is taking place in facilities underground. In this paper, I review the underground facilities for neutrino research. I discuss ideas for future reactor experiments being considered to measure theta_13 and the UNO proton decay project.

  20. HAWAII LEAKING UNDERGROUND STORAGE TANKS

    Science.gov (United States)

    Point coverage of leaking underground storage tanks(LUST) for the state of Hawaii. The original database was developed and is maintained by the State of Hawaii, Dept. of Health. The point locations represent facilities where one or more leaking underground storage tank exists. ...

  1. The Sanford Underground Research Facility at Homestake

    International Nuclear Information System (INIS)

    The former Homestake gold mine in Lead, South Dakota, has been transformed into a dedicated facility to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines such as biology, geology and engineering. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e.) and currently hosts two main physics projects: the LUX dark matter experiment and the MAJORANA DEMONSTRATOR neutrinoless double-beta decay experiment. In addition, two low-background counters currently operate at the Davis Campus in support of current and future experiments. Expansion of the underground laboratory space is underway at the 4850L Ross Campus in order to maintain and enhance low-background assay capabilities as well as to host a unique nuclear astrophysics accelerator facility. Plans to accommodate other future experiments at SURF are also underway and include the next generation of direct-search dark matter experiments and the Fermilab-led international long-baseline neutrino program. Planning to understand the infrastructure developments necessary to accommodate these future projects is well advanced and in some cases have already started. SURF is a dedicated research facility with significant expansion capability

  2. The Sanford Underground Research Facility at Homestake

    Science.gov (United States)

    Heise, J.

    2015-08-01

    The former Homestake gold mine in Lead, South Dakota, has been transformed into a dedicated facility to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines such as biology, geology and engineering. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e.) and currently hosts two main physics projects: the LUX dark matter experiment and the MAJORANA DEMONSTRATOR neutrinoless double-beta decay experiment. In addition, two low-background counters currently operate at the Davis Campus in support of current and future experiments. Expansion of the underground laboratory space is underway at the 4850L Ross Campus in order to maintain and enhance low-background assay capabilities as well as to host a unique nuclear astrophysics accelerator facility. Plans to accommodate other future experiments at SURF are also underway and include the next generation of direct-search dark matter experiments and the Fermilab-led international long-baseline neutrino program. Planning to understand the infrastructure developments necessary to accommodate these future projects is well advanced and in some cases have already started. SURF is a dedicated research facility with significant expansion capability.

  3. The Sanford Underground Research Facility at Homestake

    CERN Document Server

    Heise, Jaret

    2015-01-01

    The former Homestake gold mine in Lead, South Dakota has been transformed into a dedicated facility to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines such as biology, geology and engineering. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e.) and currently hosts two main physics projects: the LUX dark matter experiment and the MAJORANA DEMONSTRATOR neutrinoless double-beta decay experiment. In addition, two low-background counters currently operate at the Davis Campus in support of current and future experiments. Expansion of the underground laboratory space is underway at the 4850L Ross Campus in order to maintain and enhance low-background assay capabilities as well as to host a unique nuclear astrophysics accelerator facility. Plans to accommodate other future experiments at SURF are also underway and include the next generation of direct-sea...

  4. Critical examination of the ANDRA program on researches performed in Bure underground laboratory and on the transposition zone to define a ZIRA; Examen Critique du Programme de l'Andra sur les Recherches Effectuees dans le Laboratoire Souterrain de Bure et sur la Zone de Transposition Pour Definir une ZIRA. Rapport final

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    After an introductive chapter which notably presents the definition criteria for a ZIRA (area of interest for extended reconnaissance), an area chosen to study its potential use as intermediate and high level long life radioactive waste deep storage. The second chapter reports the collection of seismic data, investigations, researches and analyses for the selection of a ZIRA, a deeper investigation on earthquakes (seismic risk, seismic history, maximum possible earthquake, site response to earthquakes). The third chapter reports the characterization and properties of the concerned geological formations which may influence contaminant transportation in geological media and long term storage performance. The fourth chapter reports a rock mechanics analysis: possible non-homogeneities of mechanical properties, comparison of in situ stress with interstitial pressure parameters between the ZIRA and the underground laboratory, and so on. The fifth chapter addresses thermal aspects: thermal response of the host formation, rock thermal properties, and review of thermal models and of thermal effects. The last chapter compares six programs of underground researches aimed at the selection of ZIRA

  5. Underground space planning in Helsinki

    Directory of Open Access Journals (Sweden)

    Ilkka Vähäaho

    2014-10-01

    Full Text Available This paper gives insight into the use of underground space in Helsinki, Finland. The city has an underground master plan (UMP for its whole municipal area, not only for certain parts of the city. Further, the decision-making history of the UMP is described step-by-step. Some examples of underground space use in other cities are also given. The focus of this paper is on the sustainability issues related to urban underground space use, including its contribution to an environmentally sustainable and aesthetically acceptable landscape, anticipated structural longevity and maintaining the opportunity for urban development by future generations. Underground planning enhances overall safety and economy efficiency. The need for underground space use in city areas has grown rapidly since the 21st century; at the same time, the necessity to control construction work has also increased. The UMP of Helsinki reserves designated space for public and private utilities in various underground areas of bedrock over the long term. The plan also provides the framework for managing and controlling the city's underground construction work and allows suitable locations to be allocated for underground facilities. Tampere, the third most populated city in Finland and the biggest inland city in the Nordic countries, is also a good example of a city that is taking steps to utilise underground resources. Oulu, the capital city of northern Finland, has also started to ‘go underground’. An example of the possibility to combine two cities by an 80-km subsea tunnel is also discussed. A new fixed link would generate huge potential for the capital areas of Finland and Estonia to become a real Helsinki-Tallinn twin city.

  6. Underground space planning in Helsinki

    Institute of Scientific and Technical Information of China (English)

    Ilkka Vhaho

    2014-01-01

    This paper gives insight into the use of underground space in Helsinki, Finland. The city has an under-ground master plan (UMP) for its whole municipal area, not only for certain parts of the city. Further, the decision-making history of the UMP is described step-by-step. Some examples of underground space use in other cities are also given. The focus of this paper is on the sustainability issues related to urban underground space use, including its contribution to an environmentally sustainable and aesthetically acceptable landscape, anticipated structural longevity and maintaining the opportunity for urban development by future generations. Underground planning enhances overall safety and economy effi-ciency. The need for underground space use in city areas has grown rapidly since the 21st century;at the same time, the necessity to control construction work has also increased. The UMP of Helsinki reserves designated space for public and private utilities in various underground areas of bedrock over the long term. The plan also provides the framework for managing and controlling the city’s underground con-struction work and allows suitable locations to be allocated for underground facilities. Tampere, the third most populated city in Finland and the biggest inland city in the Nordic countries, is also a good example of a city that is taking steps to utilise underground resources. Oulu, the capital city of northern Finland, has also started to‘go underground’. An example of the possibility to combine two cities by an 80-km subsea tunnel is also discussed. A new fixed link would generate huge potential for the capital areas of Finland and Estonia to become a real Helsinki-Tallinn twin city.

  7. Stability analysis of underground openings for extraction of natural stone

    Directory of Open Access Journals (Sweden)

    Karmen Fifer Bizjak

    2003-06-01

    Full Text Available Extraction of natural stone is usually carried out in surface quarries. Underground excavation is not a frequently used method. Due to the restrictive environmental legislature and limited stores of natural stone, underground extraction has become quite an interestingalternative. Dimensions of underground openings are determined with stability analyses.Prior to starting a numerical analysis of a large underground opening it is very important to determine the mechanism of failure and set up a proper numerical model. The continuum method is usually used in rock mechanics. A disadvantage of this calculation is that it cannotbe applied to a large number of joints. Other methods are preferred, such as the numerical discrete method, which allows joint systems to be involved into calculations. The most probable failure of rock with several joint systems is block sliding. In the example of themarble of Hotavlje both methods were used. It was established that the continuum method is convenient for the global stability prediction of the underground opening. Further discretemethod enable the block stability calculation. The analytical block analysis is still accurate for the a stability calculation of single block. The prerequisite for a good numerical analysis is sufficient quality data on geomechanical properties of rock. In-situ tests, laboratory tests and geotechnical measurements on the site are therefore necessary. Optimum dimensions of underground chambers in the Quarry of Hotavlje were calculated by using several numericalmodels, and the maximum chamber width of 12 m was obtained.

  8. Underground layout tradeoff study

    International Nuclear Information System (INIS)

    This report presents the results of a technical and economic comparative study of four alternative underground layouts for a nuclear waste geologic repository in salt. The four alternatives considered in this study are (1) separate areas for spent fuel (SF) and commercial high-level waste (CHLW); (2) panel alternation, in which SF and CHLW are emplaced in adjacent panels of rooms; (3) room alternation, in which SF and CHLW are emplaced in adjacent rooms within each panel; and (4) intimate mixture, in which SF and CHLW are emplaced in random order within each storage room. The study concludes that (1) cost is not an important factor; (2) the separate-areas and intimate-mixture alternatives appear, technically, to be more desirable than the other alternatives; and (3) the selection between the separate-areas and intimate mixture alternatives depends upon future resolution of site-specific and reprocessing questions. 5 refs., 6 figs., 12 tabs

  9. Biofuel goes underground

    Energy Technology Data Exchange (ETDEWEB)

    Tollinsky, Norm

    2011-09-15

    Kirkland Lake Gold, a gold producer, is switching to a blend of biofuel to power the mine's underground equipment. Kirkland Lake Gold is using a soy-based product which has several advantages: less expensive: for example, the soybean-based biofuel used by Kirkland Lake Gold is 10 cents a liter less expensive than diesel; cleaner: biofuel can reduce emissions by up to 80 per cent compared to conventional diesel; and safer: biofuel is safer than miner's diesel because it has a much higher flash point. Testing with soybean-based biofuel began in the early 90s but its price was too high at that time. The federal government's regulation of renewable fuel quotas has led to the better availability of biofuel now. The supply should be doubled to meet government quotas.

  10. Simulations of background characteristics of HPGe detectors operating in shallow underground using the Monte Carlo method

    International Nuclear Information System (INIS)

    Monte Carlo codes GEANT 4 and MUSIC have been used to calculate background components of low-level HPGe gamma-ray spectrometers operating in a shallow underground laboratory. The simulated background gamma-ray spectra have been comparable with spectra measured at the Ogoya underground laboratory operating at the depth of 270 m w.e. (water equivalent). The Monte Carlo simulations have proved to be useful approach in estimation of background characteristics of HPGe spectrometers before their construction. (author)

  11. 29 CFR 1926.956 - Underground lines.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Underground lines. 1926.956 Section 1926.956 Labor... Underground lines. (a) Guarding and ventilating street opening used for access to underground lines or... underground facilities, efforts shall be made to determine the location of such facilities and work...

  12. Environmental benefits of underground coal gasification.

    Science.gov (United States)

    Liu, Shu-qin; Liu, Jun-hua; Yu, Li

    2002-04-01

    Environmental benefits of underground coal gasification are evaluated. The results showed that through underground coal gasification, gangue discharge is eliminated, sulfur emission is reduced, and the amount of ash, mercury, and tar discharge are decreased. Moreover, effect of underground gasification on underground water is analyzed and CO2 disposal method is put forward. PMID:12046301

  13. Underground storage of radioactive wastes

    International Nuclear Information System (INIS)

    An introductory survey of the underground disposal of radioactive wastes is given. Attention is paid to various types of radioactive wastes varying from low to highly active materials, as well as mining techniques and salt deposits

  14. Studies on muon showers underground

    International Nuclear Information System (INIS)

    The 4 m2 spark chamber telescope array of the Mt. Cappuccini Laboratory, Torino, At 40 m w.e. underground was operated for about 830 h recording muon showers. The data were analysed with respect to the multiplicity distribution of the shower particles, adn to local interactions initiated in the chamber absorbers. Regarding the multiplicity analysis a semi-empirical expression for the likely shower size dependence of a structure function of the analytical form proposed by Vernov et al., was derived and applied with systematically varied parameters. The comparison of the observed rates of multiples with those calculated with a variety of parameters showed that a satisfactory agreement can be attained only if one admits a variation with the shower size of the parameters, and an enhanced muon/electron ratio at the lower primary energies, possibly indicative of an increased abundance of primary heavy nuclei. This would conform with the idea of a two-component primary composition in which a pulsar-produced fraction, enriched in heavy nuclei, dominated only at medium energies. The records on multiplicative interactions, and on large-angle scattering, were analysed by comparing their rates observed for shower particles with those found in single-muon check runs. The results are consistent with the assumption that all shower particle interactions are electromagnetic in nature, and that nonconventional components like mandelas are absent. Only making extreme allowances for statistical fluctuations the data can be made compatible with a mandela flux as large as that suggested by Baruch et al., provided that the mandela attenuation length is less than 1 500g/cm2 of rock

  15. ATLAS solenoid operates underground

    CERN Multimedia

    2006-01-01

    A new phase for the ATLAS collaboration started with the first operation of a completed sub-system: the Central Solenoid. Teams monitoring the cooling and powering of the ATLAS solenoid in the control room. The solenoid was cooled down to 4.5 K from 17 to 23 May. The first current was established the same evening that the solenoid became cold and superconductive. 'This makes the ATLAS Central Solenoid the very first cold and superconducting magnet to be operated in the LHC underground areas!', said Takahiko Kondo, professor at KEK. Though the current was limited to 1 kA, the cool-down and powering of the solenoid was a major milestone for all of the control, cryogenic, power and vacuum systems-a milestone reached by the hard work and many long evenings invested by various teams from ATLAS, all of CERN's departments and several large and small companies. Since the Central Solenoid and the barrel liquid argon (LAr) calorimeter share the same cryostat vacuum vessel, this achievement was only possible in perfe...

  16. Underground pumped hydroelectric storage

    Energy Technology Data Exchange (ETDEWEB)

    Allen, R.D.; Doherty, T.J.; Kannberg, L.D.

    1984-07-01

    Underground pumped hydroelectric energy storage was conceived as a modification of surface pumped storage to eliminate dependence upon fortuitous topography, provide higher hydraulic heads, and reduce environmental concerns. A UPHS plant offers substantial savings in investment cost over coal-fired cycling plants and savings in system production costs over gas turbines. Potential location near load centers lowers transmission costs and line losses. Environmental impact is less than that for a coal-fired cycling plant. The inherent benefits include those of all pumped storage (i.e., rapid load response, emergency capacity, improvement in efficiency as pumps improve, and capacity for voltage regulation). A UPHS plant would be powered by either a coal-fired or nuclear baseload plant. The economic capacity of a UPHS plant would be in the range of 1000 to 3000 MW. This storage level is compatible with the load-leveling requirements of a greater metropolitan area with population of 1 million or more. The technical feasibility of UPHS depends upon excavation of a subterranean powerhouse cavern and reservoir caverns within a competent, impervious rock formation, and upon selection of reliable and efficient turbomachinery - pump-turbines and motor-generators - all remotely operable.

  17. Sanford Underground Research Facility - The United State's Deep Underground Research Facility

    Science.gov (United States)

    Vardiman, D.

    2012-12-01

    The 2.5 km deep Sanford Underground Research Facility (SURF) is managed by the South Dakota Science and Technology Authority (SDSTA) at the former Homestake Mine site in Lead, South Dakota. The US Department of Energy currently supports the development of the facility using a phased approach for underground deployment of experiments as they obtain an advanced design stage. The geology of the Sanford Laboratory site has been studied during the 125 years of operations at the Homestake Mine and more recently as part of the preliminary geotechnical site investigations for the NSF's Deep Underground Science and Engineering Laboratory project. The overall geology at DUSEL is a well-defined stratigraphic sequence of schist and phyllites. The three major Proterozoic units encountered in the underground consist of interbedded schist, metasediments, and amphibolite schist which are crosscut by Tertiary rhyolite dikes. Preliminary geotechnical site investigations included drift mapping, borehole drilling, borehole televiewing, in-situ stress analysis, laboratory analysis of core, mapping and laser scanning of new excavations, modeling and analysis of all geotechnical information. The investigation was focused upon the determination if the proposed site rock mass could support the world's largest (66 meter diameter) deep underground excavation. While the DUSEL project has subsequently been significantly modified, these data are still available to provide a baseline of the ground conditions which may be judiciously extrapolated throughout the entire Proterozoic rock assemblage for future excavations. Recommendations for facility instrumentation and monitoring were included in the preliminary design of the DUSEL project design and include; single and multiple point extensometers, tape extensometers and convergence measurements (pins), load cells and pressure cells, smart cables, inclinometers/Tiltmeters, Piezometers, thermistors, seismographs and accelerometers, scanners (laser

  18. Sustainable underground space development in Hong Kong

    OpenAIRE

    Xu, Xiaoxiao; 徐笑晓

    2014-01-01

    Underground space development is regarded as an effective approach to promote a quality living environment in compact city. In Hong Kong, urban underground space developed by private sectors seems not well organized. Besides, underground use in HK can be multifunctional. Thirdly, inner design in some underground spaces is not desirable and lacks vibrancy. Fourthly, underground space development in HK lacks governmental incentives. Last but not least, the regulations and legal loophole on prop...

  19. Measurements of very low radioactivities in environmental samples: Ge HP detectors installed in Modane underground laboratory; Mesures de tres faibles radioactivites dans des echantillons de l`environnement au moyen des detecteurs Ge HP installes dans le laboratoire souterrain de Modane

    Energy Technology Data Exchange (ETDEWEB)

    Millies-Lacroix, J.C.; Bourlat, Y.; Abt, D. [Service Mixte de Securite Radiologique, 91 - Montlhery (France)

    1994-05-01

    Environmental survey of French Polynesia, including the nuclear experiments sites, is monitored by the SMSR (Service Mixte de Securite Radiologique). Three low background noise high-purity germanium detector systems, installed in the Modane underground laboratory, are used to permit investigating the lowest possible concentration levels relating to the artificial radionuclides which may be present, at trace level, in the environment. This laboratory, located near the mid-point of the Frejus road tunnel, is shielded from cosmic radiation by 1,700 meters of rock, thus cutting significantly the background level compared with the operating conditions of an equivalent system located in a building at ground level. Three examples of use for the detection of very low traces in environment samples are given: measurement of atmospheric {sup 134}Cs and {sup 137}Cs, {sup 137}Cs profile in ocean and measurement of oceanic plankton. The new facility has made it possible to detect with good accuracy the {sup 137}Cs activity of aerosol particles in the atmosphere at Mururoa and Tahiti, i.e, 1.6.10{sup -7} Bq/m{sup 3} in 1992 as compared with 6.7.10{sup -7} Bq/m{sup 3} measured in the atmosphere at Montlhery, near Paris. Approximately 55% of the latter figure is thought to be due to the Chernobyl fallout (an estimate based on the {sup 134}Cs measurement). (authors). 8 figs., 6 tabs., 10 refs.

  20. Underground disposal of radioactive wastes

    International Nuclear Information System (INIS)

    This report is an overview document for the series of IAEA reports dealing with underground waste disposal to be prepared in the next few years. It provides an introduction to the general considerations involved in implementing underground disposal of radioactive wastes. It suggests factors to be taken into account for developing and assessing waste disposal concepts, including the conditioned waste form, the geological containment and possible additional engineered barriers. These guidelines are general so as to cover a broad range of conditions. They are generally applicable to all types of underground disposal, but the emphasis is on disposal in deep geological formations. Some information presented here may require slight modifications when applied to shallow ground disposal or other types of underground disposal. Modifications may also be needed to reflect local conditions. In some specific cases it may be that not all the considerations dealt with in this book are necessary; on the other hand, while most major considerations are believed to be included, they are not meant to be all-inclusive. The book primarily concerns only underground disposal of the wastes from nuclear fuel cycle operations and those which arise from the use of isotopes for medical and research activities

  1. Earthquake observation at underground cavern

    International Nuclear Information System (INIS)

    The earthquake observation has been examined at a cylindrical type cavern hydroelectric power station of 15 m in diameter, 22 m in depth in rock mass in purpose of evaluating the earthquake resistance of semi-underground nuclear power plants. The behavior of the cylindrical cavern has been analysed by fourty-three observed seismic waves. And following results were obtained. (1) Ratios of cavern buttom maximum accelerations to cavern top maximum accelerations are concentrated in the range from 1/2 to 1. This shows that the accelerations are declined at underground. (2) The decline ratios of on-ground spectrum amplitude to the underground at the earthquakes of less than 100 km epicentral distance with shorter predominant periods are generally larger than these at the earthquakes of more than 100 km epicentral distance with longer predominant periods. (3) The peak periods of normalized response spectrum at underground tend to be longer as the epicentral distances are longer. This phenominons of underground are similar to the on-ground. (author)

  2. Dynamic Underground Stripping Demonstration Project

    International Nuclear Information System (INIS)

    LLNL is collaborating with the UC Berkeley College of Engineering to develop and demonstrate a system of thermal remediation and underground imaging techniques for use in rapid cleanup of localized underground spills. Called ''Dynamic Stripping'' to reflect the rapid and controllable nature of the process, it will combine steam injection, direct electrical heating, and tomographic geophysical imaging in a cleanup of the LLNL gasoline spill. In the first 8 months of the project, a Clean Site engineering test was conducted to prove the field application of the techniques before moving to the contaminated site in FY 92

  3. Initial status of the environment. Environmental marks of the Meuse-Haute Marne underground research laboratory; L'etat initial de l'environnement. Reperes environnementaux du Laboratoire de Recherche souterrain de Meuse/Haute-Marne

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    On August 3, 1999, the French government gave the permission to the national agency of radioactive wastes (ANDRA) to build up a research laboratory devoted to the feasibility study of a facility for the reversible disposal of high level and long living radioactive wastes in deep geologic beds. The site retained is located at Bure, at the boundary of the Meuse and Haute-Marne departements. Before starting the construction of this research facility, the ANDRA has carried out a careful survey of the initial environmental status of the site which will serve as a reference. This brochure presents the results of this survey: geo-morphology, agriculture, natural ecosystems, radioecology, sound levels, air quality, surface and groundwater quality. The ANDRA has implemented an environmental monitoring plan for each phase of the development of the project. (J.S.)

  4. High Temperature Superconducting Underground Cable

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, Roger, A.

    2010-02-28

    The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the world’s first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

  5. Underground nuclear explosions and earthquakes

    International Nuclear Information System (INIS)

    The stages that have marked the ways towards the interdiction of nuclear tests are reviewed. Although seismographic equipments have been greatly improved, it is shown that a separate detection of underground nuclear explosions from natural seismic vibrations is still quite uneasy. The use of nuclear loads for civil engineering still makes it more complicate to apply a treatee of interdiction of nuclear tests

  6. High Temperature Superconducting Underground Cable

    International Nuclear Information System (INIS)

    The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the worlds first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

  7. 30 CFR 72.630 - Drill dust control at underground areas of underground mines.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drill dust control at underground areas of underground mines. 72.630 Section 72.630 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT... dust control at underground areas of underground mines. (a) Dust resulting from drilling in rock...

  8. Numerical modeling of underground openings behavior with a viscoplastic approach

    International Nuclear Information System (INIS)

    Nature is complex and must be approached in total modesty by engineers seeking to predict the behavior of underground openings. The engineering of industrial projects in underground situations, with high economic and social stakes (Alpine mountain crossings, nuclear waste repository), mean striving to gain better understanding of the behavioral mechanisms of the openings to be designed. This improvement necessarily involves better physical representativeness of macroscopic mechanisms and the provision of prediction tools suited to the expectations and needs of the engineers. The calculation tools developed in this work is in step with this concern for satisfying industrial needs and developing knowledge related to the rheology of geo-materials. These developments led to the proposing of a mechanical constitutive model, suited to lightly fissured rocks, comparable to continuous media, while integrating more particularly the effect of time. Thread of this study, the problematics ensued from the subject of the thesis is precisely about the rock mass delayed behavior in numerical modeling and its consequences on underground openings design. Based on physical concepts of reference, defined in several scales (macro/meso/micro), the developed constitutive model is translated in a mathematical formalism in order to be numerically implemented. Numerical applications presented as illustrations fall mainly within the framework of nuclear waste repository problems. They concern two very different configurations of underground openings: the AECL's underground canadian laboratory, excavated in the Lac du Bonnet granite, and the GMR gallery of Bure's laboratory (Meuse/Haute-Marne), dug in argillaceous rock. In this two cases, this constitutive model use highlights the gains to be obtained from allowing for delayed behavior regarding the accuracy of numerical tunnel behavior predictions in the short, medium and long terms. (author)

  9. Construction experiences from underground works at Oskarshamn. Compilation report

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, Anders (Vattenfall Power Consultant AB, Stockholm (SE)); Christiansson, Rolf (Swedish Nuclear Fuel and Waste Management Co., Stockholm (SE))

    2007-12-15

    The main objective with this report is to compile experiences from the underground works carried out at Oskarshamn, primarily construction experiences from the tunnelling of the cooling water tunnels of the Oskarshamn nuclear power units 1,2 and 3, from the underground excavations of Clab 1 and 2 (Central Interim Storage Facility for Spent Nuclear Fuel), and Aespoe Hard Rock Laboratory. In addition, an account is given of the operational experience of Clab 1 and 2 and of the Aespoe HRL on primarily scaling and rock support solutions. This report, as being a compilation report, is in its substance based on earlier published material as presented in the list of references. Approximately 8,000 m of tunnels including three major rock caverns with a total volume of about 550,000 m3 have been excavated. The excavation works of the various tunnels and rock caverns were carried out during the period of 1966-2000. In addition, minor excavation works were carried out at the Aespoe HRL in 2003. The depth location of the underground structures varies from near surface down to 450 m. As an overall conclusion it may be said that the rock mass conditions in the area are well suited for underground construction. This conclusion is supported by the experiences from the rock excavation works in the Simpevarp and Aespoe area. These works have shown that no major problems occurred during the excavation works; nor have any stability or other rock engineering problems of significance been identified after the commissioning of the Oskarshamn nuclear power units O1, O2 and O3, BFA, Clab 1 and 2, and Aespoe Hard Rock Laboratory. The underground structures of these facilities were built according to plan, and since than been operated as planned. Thus, the quality of the rock mass within the construction area is such that it lends itself to excavation of large rock caverns with a minimum of rock support

  10. Construction experiences from underground works at Oskarshamn. Compilation report

    International Nuclear Information System (INIS)

    The main objective with this report is to compile experiences from the underground works carried out at Oskarshamn, primarily construction experiences from the tunnelling of the cooling water tunnels of the Oskarshamn nuclear power units 1,2 and 3, from the underground excavations of Clab 1 and 2 (Central Interim Storage Facility for Spent Nuclear Fuel), and Aespoe Hard Rock Laboratory. In addition, an account is given of the operational experience of Clab 1 and 2 and of the Aespoe HRL on primarily scaling and rock support solutions. This report, as being a compilation report, is in its substance based on earlier published material as presented in the list of references. Approximately 8,000 m of tunnels including three major rock caverns with a total volume of about 550,000 m3 have been excavated. The excavation works of the various tunnels and rock caverns were carried out during the period of 1966-2000. In addition, minor excavation works were carried out at the Aespoe HRL in 2003. The depth location of the underground structures varies from near surface down to 450 m. As an overall conclusion it may be said that the rock mass conditions in the area are well suited for underground construction. This conclusion is supported by the experiences from the rock excavation works in the Simpevarp and Aespoe area. These works have shown that no major problems occurred during the excavation works; nor have any stability or other rock engineering problems of significance been identified after the commissioning of the Oskarshamn nuclear power units O1, O2 and O3, BFA, Clab 1 and 2, and Aespoe Hard Rock Laboratory. The underground structures of these facilities were built according to plan, and since than been operated as planned. Thus, the quality of the rock mass within the construction area is such that it lends itself to excavation of large rock caverns with a minimum of rock support

  11. Urban underground resources management for sustainable development

    OpenAIRE

    Li, Huanqing

    2010-01-01

    Urban problems such as congestions, land scarcity, pollutions, could be alleviated by underground solutions, which are critical underground infrastructues and buildings adaptable to subsurface. An integrated approach of urban underground management is put forward, aiming to research on the feasability of developing valuable subsurface, and to promote the sustainability of resources' multi-usage exploitation.

  12. 49 CFR 192.325 - Underground clearance.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Underground clearance. 192.325 Section 192.325... Lines and Mains § 192.325 Underground clearance. (a) Each transmission line must be installed with at least 12 inches (305 millimeters) of clearance from any other underground structure not associated...

  13. 47 CFR 32.2422 - Underground cable.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Underground cable. 32.2422 Section 32.2422... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2422 Underground cable. (a) This account shall include the original cost of underground cable installed in conduit and...

  14. Deep underground intensities of high energy muons

    International Nuclear Information System (INIS)

    The experiment of the deep underground emulsion chamber has been started in order to measure the energy spectra of muons deep underground at high energies. Preliminary results based on the emulsion chamber with 0.9 ton of lead are presented. This test exposure has been performed at the vertical depth of 850 hg/cm2 underground in the road tunnel. (orig.)

  15. Corrosion monitoring of carbon steel in the bentonite in deep underground

    International Nuclear Information System (INIS)

    In previous study, a corrosion sensor has been developed and its applicability to monitoring of the corrosion behavior of carbon steel overpack has been confirmed. In this study, a simulated overpack was placed with buffer material composed mainly of bentonite in test tunnel of 350 m deep underground constructed at Horonobe underground research laboratory. The corrosion monitoring was performed by AC impedance method using the corrosion sensors embeded in the buffer material. (author)

  16. Background intercomparison with escape-suppressed germanium detectors in underground mines

    International Nuclear Information System (INIS)

    A key requirement for underground nuclear astrophysics experiments is the very low background level in germanium detectors underground. The reference for these purposes is the world's so far only underground accelerator laboratory for nuclear astrophysics, LUNA. LUNA is located deep underground in the Gran Sasso laboratory in Italy, shielded from cosmic rays by 1400 m of rock. The background at LUNA was studied in detail using an escape-suppressed Clover-type HPGe detector. Exactly the same detector was subsequently transported to the Felsenkeller underground laboratory in Dresden, shielded by 45 m of rock, and the background was shown to be only a factor of three higher than at LUNA when comparing the escape-suppressed spectra, with interesting consequences for underground nuclear astrophysics. As the next step of a systematic study of the effects of a combination of active and passive shielding on the cosmic ray induced background, this detector is now being brought to the ''Reiche Zeche'' mine in Freiberg/Sachsen, shielded by 150 m of rock. The data from the Freiberg measurement are shown and discussed.

  17. Underground tank vitrification: Field-scale experiments and computational analysis

    International Nuclear Information System (INIS)

    In situ vitrification (ISV) is a thermal waste remediation process developed by researchers at Pacific Northwest Laboratory for stabilization and treatment of soils contaminated with hazardous, radioactive, or mixed wastes. Many underground tanks containing radioactive and hazardous chemical wastes at U.S. Department of Energy sites will soon require remediation. Recent development activities have been pursued to determine if the ISV process is applicable to underground storage tanks. As envisioned, ISV will convert the tank, tank contents, and associated contaminated soil to a glass and crystalline block. Development activities include testing and demonstration on three scales and computational modeling and evaluation. In this paper, the authors describe engineering solutions implemented on the field scale to mitigate unique problems posed by ISV of a confined underground structure along with the associated computational analysis. The ISV process, as applied to underground storage tanks, is depicted. The process is similar to ISV of contaminated soils except the tank also melts and forms a metal ingot at the bottom of the melt

  18. Roof Rockmass Characterization in an Illinois Underground Coal Mine

    Science.gov (United States)

    Osouli, Abdolreza; Shafii, Iman

    2016-08-01

    Among all United States underground coal fields, those in Illinois have the highest rate of roof fall events due to their weak and severely moisture sensitive roof rock units. Rockmass characterization is the key initial step in designing safe and economical roof control measures in underground coal mines. In this study, a performance-based roof rockmass characterization is investigated. The geologic conditions as well as underground mine geographic specifications, roof fall analysis, mining method, utilized supplemental roof control measures, and geotechnical properties of roof rock units were considered to link the roof performance to rockmass characterization. The coal mine roof rating (CMRR) rockmass characterization method was used to evaluate the roof conditions and roof support design for an underground coal mine located in the Illinois Coal Basin. The results of several mine visit mappings, laboratory test results, and geotechnical issues and concerns are presented and discussed. The roof support designs are analyzed based on the rockmass characterization and are compared with the observed performance. This study shows that (1) CMRR index is a reasonable method for characterizing roof rockmass; (2) moisture sensitivity and bedding strengths in the horizontal direction are essential parameters for roof support design in mines with weak roof conditions; and (3) the applicability of the analysis of roof bolt system for roof support design of the studied mine is questionable.

  19. Possibility of high level waste underground disposal

    International Nuclear Information System (INIS)

    The possibility that the high level wastes disposed underground return to the biosphere again is the dissolution and transport of radioactive nuclides by underground water. As the strata suitable to underground disposal, rock salt strata without underground water, and granite or shale strata in which the movement of underground water is slight are enumerated as the candidates. Wastes are formed into solidified bodies like glass, moreover the technical measures such as canisters and overpacks are applied, therefore even if underground water intrudes into the places of disposal, radioactive nuclides can be contained for considerable time. At the time of selecting the most suitable stratum and designing and evaluating the place of disposal to construct the underground disposal system with high potential for high level wastes, it is necessary to predict the movement of radioactive nuclides from the dissolution into underground water to the return to the biosphere. The potential danger of high level wastes, the danger of high level wastes disposed underground, the effect of isolation distance (the thickness of strata), and the comparison of the danger due to uranium ore and slag and the places of underground disposal are explained. The danger due to uranium ore and slag occurs early and lasts long, and is 1000 times as dangerous as the high level wastes disposed underground. (Kako, I.)

  20. Closure report for underground storage tank 141-R3U1 and its associated underground piping

    International Nuclear Information System (INIS)

    Underground storage tank UST 141-R3U1 at Lawrence Livermore National Laboratory (LLNL), was registered with the State Water Resources Control Board on June 27, 1984. This tank system consisted of a concrete tank, lined with polyvinyl chloride, and approximately 100 feet of PVC underground piping. UST 141-R3U1 had a capacity of 450 gallons. The underground piping connected three floor drains and one sink inside Building 141 to UST 141-R3U1. The wastewater collected in UST 141-R3U1 contained organic solvents, metals, and inorganic acids. On November 30, 1987, the 141-R3U1 tank system failed a precision tank test. The 141-R3U1 tank system was subsequently emptied and removed from service pending further precision tests to determine the location of the leak within the tank system. A precision tank test on February 5, 1988, was performed to confirm the November 30, 1987 test. Four additional precision tests were performed on this tank system between February 25, 1988, and March 6, 1988. The leak was located where the inlet piping from Building 141 penetrates the concrete side of UST 141-R3U1. The volume of wastewater that entered the backfill and soil around and/or beneath UST 141-R3U1 is unknown. On December 13, 1989, the LLNL Environmental Restoration Division submitted a plan to close UST 141-R3U1 and its associated piping to the Alameda County Department of Environmental Health. UST 141-R3U1 was closed as an UST, and shall be used instead as additional secondary containment for two aboveground storage tanks

  1. Underground spaces/cybernetic spaces

    Directory of Open Access Journals (Sweden)

    Tomaž Novljan

    2000-01-01

    Full Text Available A modern city space is a space where in the vertical and horizontal direction dynamic, non-linear processes exist, similar as in nature. Alongside the “common” city surface, cities have underground spaces as well that are increasingly affecting the functioning of the former. It is the space of material and cybernetic communication/transport. The psychophysical specifics of using underground places have an important role in their conceptualisation. The most evident facts being their limited volume and often limited connections to the surface and increased level of potential dangers of all kinds. An efficient mode for alleviating the effects of these specific features are artistic interventions, such as: shape, colour, lighting, all applications of the basic principles of fractal theory.

  2. Underground leaching of uranium ores

    International Nuclear Information System (INIS)

    Large amounts of low-grade U ore, not worth processing by conventional methods, are to be found at many sites in mine pillars, walls, and backfilling. Many proven deposits are not being mined because the geological conditions are difficult or the U ore is of relatively low grade. Factors such as radioactive emission, radon emanation, and the formation of radioactive dust give rise to health hazards. When U ores are treated above ground, enormous quantities of solid and liquid radioactive waste and mining spoil accumulate. The underground leaching of U is a fundamentally different kind of process. It is based on the selective dissolving of U at the place where it occurs by a chemical reagent; all that reaches the ground surface is a solution containing U, and after extraction of the U by sorption the reagent is used again. The main difficult and dangerous operations associated with conventional methods (excavation; extraction and crushing of the ore; storage of wastes) are avoided. Before underground leaching the ore formation has to be fractured and large ore bodies broken down into blocks by shrinkage stopping. These operations are carried out by advanced machinery and require the presence underground of only a few workers. If the ore is in seams, the only mining operation is the drilling of boreholes. The chemical reagent is introduced under pressure through one set of boreholes, while the U bearing solution is pumped out from another set. The process is monitored with the help of control boreholes. After extraction of the U by sorption, the reagent is ready to be used again. Very few operations are involved and insignificant amounts of dissolved U escape into the surrounding rock formations. Experience has shown that underground leaching reduces the final cost of the U metal, increases productivity, reduces capital expenditure, and radically improves working conditions

  3. Double wall underground storage tank

    Energy Technology Data Exchange (ETDEWEB)

    Canaan, E.B. Jr.; Wiegand, J.R.; Bartlow, D.H.

    1993-07-06

    A double wall underground storage tank is described comprising: (a) a cylindrical inner wall, (b) a cylindrical outer wall comprising plastic resin and reinforcement fibers, and (c) a layer of spacer filaments wound around the inner wall, the spacer filaments separating the inner and outer walls, and the spacer filaments being at least partially surrounded by voids to enable liquids to flow along the filaments.

  4. Biogeochemical processes in a clay formation in situ experiment: Part A - Overview, experimental design and water data of an experiment in the Opalinus Clay at the Mont Terri Underground Research Laboratory, Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Wersin, P., E-mail: paul.wersin@gruner.ch [NAGRA, Hardstrasse 73, 5430 Wettingen (Switzerland)] [Gruner Ltd., Gellertstrasse 55, 4020 Basel (Switzerland); Leupin, O.X. [NAGRA, Hardstrasse 73, 5430 Wettingen (Switzerland); Mettler, S. [NAGRA, Hardstrasse 73, 5430 Wettingen (Switzerland)] [Solexperts Ltd., Mettlenbachstrasse 25, 8617 Moenchaltorf (Switzerland); Gaucher, E.C. [BRGM, 3 avenue Claude Guillemin, B.P. 36009, 45060 Orleans Cedex 2 (France); Maeder, U. [University of Bern, Institute of Geological Sciences, Baltzerstrasse 3, CH-3012 Bern (Switzerland); De Canniere, P. [SCK.CEN, Waste and Disposal Project, Boeretang 200, 2400 Mol (Belgium); Vinsot, A. [ANDRA, Laboratoire de Recherche Souterrain de Meuse/Haute-Marne, RD960 BP9, 55290 Bure (France); Gaebler, H.E. [BGR, Stilleweg 2, 30655 Hannover (Germany); Kunimaro, T. [JAEA, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Kiho, K. [CRIEPI, 1646 Abiko, Abiko-city Chiba 270-1194 (Japan); Eichinger, L. [Hydroisotop, 85301 Schweitenkirchen (Germany)

    2011-06-15

    Highlights: > The composition was affected by the complex interplay of diffusion, mineral and surface reactions. > The {sup 13}C signals for carbon species showed significant variations which could only be partly explained. > The main cations remained remarkably constant during the experiment. > This underlines the strong buffering via cation exchange and carbonate dissolution/precipitation. - Abstract: An in situ test in the Opalinus Clay formation, termed porewater chemistry (PC) experiment, was carried out for a period of 5 years. It was based on the concept of diffusive equilibration whereby a traced water with a composition close to that expected in the formation was continuously circulated and monitored in a packed-off borehole. The main original focus was to obtain reliable data on the pH/pCO{sub 2} conditions of the porewater, but because of unexpected microbiologically-induced redox reactions, the objective was extended to elucidate the biogeochemical processes occurring in the borehole and to understand their impact on pH/pCO{sub 2} and porewater chemistry in the low permeability clay formation. The behaviour of the conservative tracers {sup 2}H and Br{sup -} could be explained by diffusive dilution in the clay and moreover the results showed that diffusive equilibration between the borehole water and the formation occurred within about 3 year's time. However, the composition and pH/pCO{sub 2} conditions differed considerably from those of the in situ porewater. Thus, pH was lower and pCO{sub 2} was higher than indicated by complementary laboratory investigations. The noted differences are explained by microbiologically-induced redox reactions occurring in the borehole and in the interfacial wall area which were caused by an organic source released from the equipment material. The degradation of this source was accompanied by sulfate reduction and - to a lesser extent - by methane generation, which induced a high rate of acetogenic reactions

  5. Underground storage of carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Shoichi [Univ. of Tokyo, Hongo, Bunkyo-ku (Japan)

    1993-12-31

    Desk studies on underground storage of CO{sub 2} were carried out from 1990 to 1991 fiscal years by two organizations under contract with New Energy and Indestrial Technology Development Organization (NEDO). One group put emphasis on application of CO{sub 2} EOR (enhanced oil recovery), and the other covered various aspects of underground storage system. CO{sub 2} EOR is a popular EOR method in U.S. and some oil countries. At present, CO{sub 2} is supplied from natural CO{sub 2} reservoirs. Possible use of CO{sub 2} derived from fixed sources of industries is a main target of the study in order to increase oil recovery and storage CO{sub 2} under ground. The feasibility study of the total system estimates capacity of storage of CO{sub 2} as around 60 Gton CO{sub 2}, if worldwide application are realized. There exist huge volumes of underground aquifers which are not utilized usually because of high salinity. The deep aquifers can contain large amount of CO{sub 2} in form of compressed state, liquefied state or solution to aquifer. A preliminary technical and economical survey on the system suggests favorable results of 320 Gton CO{sub 2} potential. Technical problems are discussed through these studies, and economical aspects are also evaluated.

  6. The stress and underground environment

    Science.gov (United States)

    Chama, A.

    2009-04-01

    Currently,the program of prevention in occupational health needs mainly to identify occupational hazards and strategy of their prevention.Among these risks,the stress represents an important psycho-social hazard in mental health,which unfortunately does not spare no occupation.My Paper attempts to highlight and to develop this hazard in its different aspects even its regulatory side in underground environment as occupational environment.In the interest of better prevention ,we consider "the information" about the impact of stress as the second prevention efficient and no expensive to speleologists,hygienists and workers in the underground areas. In this occasion of this event in Vienna,we also highlight the scientific works on the stress of the famous viennese physician and endocrinologist Doctor Hans Selye (1907-1982),nicknamed "the father of stress" and note on relation between biological rhythms in this underground area and psychological troubles (temporal isolation) (Jurgen Aschoff’s works and experiences out-of time).

  7. First ATLAS Events Recorded Underground

    CERN Multimedia

    Teuscher, R

    As reported in the CERN Bulletin, Issue No.30-31, 25 July 2005 The ATLAS barrel Tile calorimeter has recorded its first events underground using a cosmic ray trigger, as part of the detector commissioning programme. This is not a simulation! A cosmic ray muon recorded by the barrel Tile calorimeter of ATLAS on 21 June 2005 at 18:30. The calorimeter has three layers and a pointing geometry. The light trapezoids represent the energy deposited in the tiles of the calorimeter depicted as a thick disk. On the evening of June 21, the ATLAS detector, now being installed in the underground experimental hall UX15, reached an important psychological milestone: the barrel Tile calorimeter recorded the first cosmic ray events in the underground cavern. An estimated million cosmic muons enter the ATLAS cavern every 3 minutes, and the ATLAS team decided to make good use of some of them for the commissioning of the detector. Although only 8 of the 128 calorimeter slices ('superdrawers') were included in the trigg...

  8. Surface effects of underground nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Allen, B.M.; Drellack, S.L. Jr.; Townsend, M.J.

    1997-06-01

    The effects of nuclear explosions have been observed and studied since the first nuclear test (code named Trinity) on July 16, 1945. Since that first detonation, 1,053 nuclear tests have been conducted by the US, most of which were sited underground at the Nevada Test Site (NTS). The effects of underground nuclear explosions (UNEs) on their surroundings have long been the object of much interest and study, especially for containment, engineering, and treaty verification purposes. One aspect of these explosion-induced phenomena is the disruption or alteration of the near-surface environment, also known as surface effects. This report was prepared at the request of the Los Alamos National Laboratory (LANL), to bring together, correlate, and preserve information and techniques used in the recognition and documentation of surface effects of UNEs. This report has several main sections, including pertinent background information (Section 2.0), descriptions of the different types of surface effects (Section 3.0), discussion of their application and limitations (Section 4.0), an extensive bibliography and glossary (Section 6.0 and Appendix A), and procedures used to document geologic surface effects at the NTS (Appendix C). Because a majority of US surface-effects experience is from the NTS, an overview of pertinent NTS-specific information also is provided in Appendix B. It is not within the scope of this report to explore new relationships among test parameters, physiographic setting, and the types or degree of manifestation of surface effects, but rather to compile, summarize, and capture surface-effects observations and interpretations, as well as documentation procedures and the rationale behind them.

  9. Acoustic imaging of underground storage tank wastes

    International Nuclear Information System (INIS)

    Acoustics is a potential tool to determine the properties of high level wastes stored in Underground Storage Tanks. Some acoustic properties were successfully measured by a limited demonstration conducted in 114-TX. This accomplishment provides the basis for expanded efforts to qualify techniques which depend on the acoustic properties of tank wastes. This work is being sponsored by the Department of Energy under the Office of Science and Technology. In FY-1994, limited Tank Waste Remediation Systems EM-30 support was available at Hanford and Los Alamos National Laboratory. The Massachusetts Institute of Technology (MIT) and Earth Resources Laboratory (ERL) were engaged for analysis support, and Elohi Geophysics, Inc. for seismic testing services. Westinghouse-Hanford Company provided the testing and training, supplied the special engineering and safety analysis equipment and procedures, and provided the trained operators for the actual tank operations. On 11/9/94, limited in-tank tests were successfully conducted in tank 114-TX. This stabilized Single Shell Tank was reported as containing 16.8 feet of waste, the lower 6.28 feet of which contained interstitial liquid. Testing was conducted over the lower 12 feet, between two Liquid Observation Wells thirty feet apart. The ''quick-look'' data was reviewed on-site by MIT and Elohi

  10. Influence of Radon Radionuclide for the Development of an Ultra-Low Background Gamma Spectrometer in an Underground Research Tunnel

    International Nuclear Information System (INIS)

    Installation in an underground level is very good to reduce the background induced by cosmic rays. A system in a surface laboratory is difficult to achieve enough reduction of the background, and an underground system has one main disadvantage in that researchers or workers are inconvenienced in accessing from office to laboratory, even though the background reduction is enough. KAERI (Korea Atomic Energy Research Institute) has performed ultra low-level background spectrometry using an active and passive shield at a surface laboratory. Based on our research experience of ultra-low level background system at a surface laboratory for many years, an underground gamma-ray spectrometry system is more effective for background reduction, but convenient access to an underground laboratory should be considered. The KAERI Underground Research Tunnel (KURT) is an infrastructure for a validation of the high-level waste disposal technology, which is located at a small mountain of KAERI. The geology of this mountain is composed primarily of granite. The ultra-low background system with passive and active shielding at KURT is developed, which is located underground with 156 m of water-equivalent below a surface level. Here, the influence of radon radionuclide is studied to test the performance of the developed system. Firstly, the background increase by radon radionuclide is examined, and secondly, a radiological dose assessment via radon radionuclides is evaluated. Underground radon concentration of day time with ventilation is similar with that of a ground laboratory. Therefore the background increase by radon will be solved using ventilation. Extra dose exposure by radon can be negligible in the day but time without ventilation has some problems. So the ventilation system for the experiment period in underground laboratory should be operated in order to protect extra dose exposure

  11. UNDERGROUND-1: ICARUS prepares to fly; UNDERGROUND-2: New Soudan detector nears completion

    International Nuclear Information System (INIS)

    Operating at CERN since 1991 is a 3-tonne liquid argon time projection chamber, a detector breakthrough which combines the visual advantages of bubble chamber tracks with the flexibility of fully electronic data acquisition. The 3-tonne chamber is a prototype for a much larger configuration for the ICARUS* solar neutrino and proton decay detector to be installed in the Italian Gran Sasso underground laboratory. ICARUS (Imaging Cosmic And Rare Underground Signals) is built around the cryogenic imaging chamber idea initially proposed by Carlo Rubbia in 1977. With electrons drifting for a relatively long time (several milliseconds) and with sensitive amplifiers picking up the ionization from just a few millimetres of track, events can be imaged inside the cryogenic volume. A special arrangement of readout wires provides drift time measurements and ensures simultaneous imaging in several different views. The prototype has shown that the challenges of obtaining ultra-pure argon and operating readout techniques for large sensitive volumes have been met. The full ICARUS detector (with three liquid argon modules each containing 5,000 tonnes) will be able to detect low energy electrons (down to a few MeV) emerging from solar neutrino interactions, proton decays, or other rare events over a large volume

  12. Monitoring geomagnetic signals of groundwater movement using multiple underground SQUID magnetometers

    Directory of Open Access Journals (Sweden)

    Henry S.

    2014-01-01

    Full Text Available Groundwater can influence the geomagnetic field measured underground in at least two key ways. The water levels in rock will determine its electrical conductivity, and thus change the magnitude of the telluric currents induced in the rock by changing magnetic fields generated in the ionosphere. This can be studied by using multiple magnetometers at different underground locations. Secondly the flow of water through rock will generate a small magnetic signal, of unknown magnitude, through the electrokinetic effect. SQUID magnetometry has the potential to allow passive studies of groundwater changes in complex systems such as karst. We have monitored geomagnetic signals using two SQUID magnetometers at the LSBB underground laboratory, and set an initial limit on the magnitude of the electrokinetic signal. We now plan to carry out a longer term measurement using three SQUID systems as well as fluxgate sensors to track changes in the gradient of the magnetic field across the underground complex.

  13. Underground siting is a nuclear option

    International Nuclear Information System (INIS)

    Underground siting of nuclear power plants is a concept that can be both technologically feasible and economically attractive. To meet both these criteria, however, each underground nuclear plant must be adapted to take full advantage of its location. It cannot be a unit that was designed for the surface and is then buried. Seeking to develop potential commercial programs, Underground Design Consultants (UDC)--a joint venture of Parsons, Brinckerhoff, Quade and Douglas, New York City, Vattenbyggnadsbyran (VBB), Stockholm, Sweden, and Foundation Sciences, Inc., Portland, Oregon--has been studying the siting of nuclear plants underground. UDC has made a presentation to EPRI on the potential for underground siting in the U.S. The summary presented here is based on the experiences of underground nuclear power plants in Halden, Norway; Agesta, Sweden; Chooz, France; and Lucens, Switzerland. Data from another plant in the design phase in Sweden and UDC's own considered judgment were also used

  14. Underground design Laxemar, Layout D2

    Energy Technology Data Exchange (ETDEWEB)

    2009-11-15

    Laxemar candidate area is located in the province of Smaaland, some 320 km south of Stockholm. The area is located close to the shoreline of the Baltic Sea and is within the municipality of Oskarshamn, and immediately west of the Oskarshamn nuclear power plant and the Central interim storage facility for spent fuel (Clab). The easternmost part (Simpevarp subarea) includes the Simpevarp peninsula, which hosts the power plants and the Clab facility. The island of Aespoe, containing the Aespoe Hard Rock Laboratory is located some three kilometres northeast of the central parts of Laxemar. The Laxemar subarea covers some 12.5 km2, compared with the Simepvarp subarea, which is approximately 6.6 km2. The Laxemar candidate area has been investigated in stages, referred to as the initial site investigations (ISI) and the complete site investigations (CSI). These investigations commenced in 2002 and were completed in 2008. During the site investigations, several studies and design steps (D0, D1 and D2) were carried out to ensure that sufficient space was available for the 6,000-canister layout within the target volume at a depth of approximately 500 m. The findings from design Step D2 for the underground facilities including the access ramp, shafts, rock caverns in a Central Area, transport tunnels, and deposition tunnels and deposition holes are contained in this report. The layout for these underground excavations at the deposition horizon requires an area of 5.7 km2, and the total rock volume to be excavated is 3,008 x 103 m3 using a total tunnel length of approximately 115 km. The behaviour of the underground openings associated with this layout is expected to be similar to the behaviour of other underground openings in the Scandinavian shield at similar depths. The dominant mode of instability is expected to be structurally controlled wedge failure. Stability of the openings will be achieved with traditional underground rock support and by orienting the openings

  15. Underground design Laxemar, Layout D2

    International Nuclear Information System (INIS)

    Laxemar candidate area is located in the province of Smaaland, some 320 km south of Stockholm. The area is located close to the shoreline of the Baltic Sea and is within the municipality of Oskarshamn, and immediately west of the Oskarshamn nuclear power plant and the Central interim storage facility for spent fuel (Clab). The easternmost part (Simpevarp subarea) includes the Simpevarp peninsula, which hosts the power plants and the Clab facility. The island of Aespoe, containing the Aespoe Hard Rock Laboratory is located some three kilometres northeast of the central parts of Laxemar. The Laxemar subarea covers some 12.5 km2, compared with the Simepvarp subarea, which is approximately 6.6 km2. The Laxemar candidate area has been investigated in stages, referred to as the initial site investigations (ISI) and the complete site investigations (CSI). These investigations commenced in 2002 and were completed in 2008. During the site investigations, several studies and design steps (D0, D1 and D2) were carried out to ensure that sufficient space was available for the 6,000-canister layout within the target volume at a depth of approximately 500 m. The findings from design Step D2 for the underground facilities including the access ramp, shafts, rock caverns in a Central Area, transport tunnels, and deposition tunnels and deposition holes are contained in this report. The layout for these underground excavations at the deposition horizon requires an area of 5.7 km2, and the total rock volume to be excavated is 3,008 x 103 m3 using a total tunnel length of approximately 115 km. The behaviour of the underground openings associated with this layout is expected to be similar to the behaviour of other underground openings in the Scandinavian shield at similar depths. The dominant mode of instability is expected to be structurally controlled wedge failure. Stability of the openings will be achieved with traditional underground rock support and by orienting the openings

  16. Causes and consequences of underground economy

    OpenAIRE

    Mara, Eugenia-Ramona

    2011-01-01

    In this endeavor an attempt has been made to investigate the major causes and factors of influence of the underground economy. Our analysis is based on the study of tax payer behavior and taxation system pattern. The paper examines how social institutions and government policies affect underground economy. All these factors have an important impact on the level and size of underground economy and determine the consequences of this phenomenon.

  17. UNDERGROUND ECONOMY, GDP AND STOCK MARKET

    OpenAIRE

    Caus Vasile Aurel

    2012-01-01

    Economic growth is affected by the size and dynamics of underground economy. Determining this size is a subject of research for many authors. In this paper we present the relationship between underground economy dynamics and the dynamics of stock markets. The observations are based on regression used by Tanzi (1983) and the relationship between GDP and stock market presented in Tudor (2008). The conclusion of this paper is that the dynamics of underground economy is influenced by dynamic of f...

  18. Transport Model of Underground Sediment in Soils

    OpenAIRE

    Sun Jichao; Wang Guangqian

    2013-01-01

    Studies about sediment erosion were mainly concentrated on the river channel sediment, the terrestrial sediment, and the underground sediment. The transport process of underground sediment is studied in the paper. The concept of the flush potential sediment is founded. The transport equation with stable saturated seepage is set up, and the relations between the flush potential sediment and water sediment are discussed. Flushing of underground sediment begins with small particles, and large pa...

  19. Shallow-underground accelerator sites for nuclear astrophysics: Is the background low enough?

    Energy Technology Data Exchange (ETDEWEB)

    Szuecs, Tamas [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); Institute of Nuclear Research of the Hungarian Academy of Sciences (ATOMKI), Debrecen (Hungary); Bemmerer, Daniel; Junghans, Arnd; Marta, Michele; Schwengner, Ronald; Wagner, Andreas [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); Cowan, Thomas [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); Technische Universitaet Dresden, Dresden (Germany); Degering, Detlev; Koehler, Matthias [Verein fuer Kernverfahrenstechnik und Analytik Rossendorf (VKTA), Dresden (Germany); Elekes, Zoltan [Institute of Nuclear Research of the Hungarian Academy of Sciences (ATOMKI), Debrecen (Hungary); Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); Fueloep, Zsolt; Gyuerky, Gyoergy [Institute of Nuclear Research of the Hungarian Academy of Sciences (ATOMKI), Debrecen (Hungary); Zuber, Kai [Technische Universitaet Dresden, Dresden (Germany)

    2012-01-15

    In order to reliably estimate the rate of a charged particle induced nuclear reaction in a non-explosive astrophysical scenario, its cross-section must be measured far below the Coulomb barrier. However, at the corresponding energies the cross-section values are very low, so that the experimental counting rate is dominated by cosmic-ray induced background, even if a suitable anticoincidence shield is applied. This problem can be overcome by performing an accelerator-based experiment in a deep underground site, as has been done with great success at the LUNA 0.4MV accelerator in Gran Sasso, Italy. Several underground accelerators with higher beam energy are in the planning phase worldwide. All of them are shielded by over 1000m of rock, a depth at which cosmic-ray effects are negligible for the purposes of nuclear astrophysics experiments. It is shown here that a combined approach, using a shallow-underground laboratory below 47m of rock and an active shield to veto surviving muons in simple detectors, results in a background level that is not far from that of deep underground sites. Data have been obtained using two ''traveling'' {gamma}-detectors. They have been transported both shallow underground, to the Dresden Felsenkeller in Germany, and deep underground, to the Gran Sasso laboratory in Italy. As shallow-underground facilities are more easily accessible than deep-underground ones, the present finding holds the promise of greatly accelerated progress in the field of cross-section measurements for nuclear astrophysics. (orig.)

  20. Third symposium on underground mining

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-01-01

    The Third Symposium on Underground Mining was held at the Kentucky Fair and Exposition Center, Louisville, KY, October 18--20, 1977. Thirty-one papers have been entered individually into EDB and ERA. The topics covered include mining system (longwall, shortwall, room and pillar, etc.), mining equipment (continuous miners, longwall equipment, supports, roof bolters, shaft excavation equipment, monitoring and control systems. Maintenance and rebuilding facilities, lighting systems, etc.), ventilation, noise abatement, economics, accidents (cost), dust control and on-line computer systems. (LTN)

  1. Underground Shocks Ground Zero Responses

    OpenAIRE

    Maurizio Bovi

    2004-01-01

    The aim of this paper is twofold. First, new annual data on Italian irregular sector for the period 1980-1991 are reconstructed. These data are compatible with the available 1992-2001 official data. Second, based on this self-consistent “long” sample a time series analysis of the two sides – the underground and the regular - of the Italian GDP is performed. Results from univariate and VAR models seem to suggest that there are no connections (causal relationship, feedbacks, contemporaneous cyc...

  2. 30 CFR 75.804 - Underground high-voltage cables.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground high-voltage cables. 75.804 Section... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution § 75.804 Underground high-voltage cables. (a) Underground high-voltage cables used in...

  3. 30 CFR 57.8519 - Underground main fan controls.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground main fan controls. 57.8519 Section... NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Ventilation Surface and Underground § 57.8519 Underground main fan controls. All underground main fans...

  4. Felsenkeller shallow-underground accelerator laboratory for nuclear astrophysics

    Directory of Open Access Journals (Sweden)

    Bemmerer D.

    2015-01-01

    Based on this finding, a used 5 MV pelletron tandem with 250 μA upcharge current and external sputter ion source has been obtained and transported to Dresden. Work on an additional radio-frequency ion source on the high voltage terminal is underway. The project is now fully funded. The installation of the accelerator in the Felsenkeller is expected for the near future. The status of the project and the planned access possibilities for external users will be reported.

  5. Ultra low radioactivity measurements at Modane underground Laboratory

    International Nuclear Information System (INIS)

    We present in this paper the activities of the Laboratoire Souterrain de Modane, LSM, and in particular the activity related to Single-Event Rate Errors in semiconductors. The LSM is located in the middle of the Frejus tunnel under 1 800 m of rock. The rock coverage suppress the cosmic ray flux by about 2 millions with respect to the surface, thus, the LSM offers an excellent site for rare-event searches which would, if located on the surface, be overwhelmed by the cosmic-ray background. As semiconductor devices continue to be scaled down, the integrated circuits are sensitive to interactions with cosmic-ray particles on the surface (primarily atmospheric neutrons) or to interactions with alpha-particles produced in on-chip radioactive impurities disintegrations. The ultra-low background environment at LSM allows the measurement of extremely low radioactivity levels. The aim of the work presented in this paper is to assess the feasibility of the alpha-emission measurement in materials commonly used in integrated circuits, by means of ultra-low level gamma-spectrometry. An epoxy slab has been measured and the surface α-emission has been deduced from the radioactive impurities level. The result is compared to the value obtained with an a- gas proportional counter. (authors)

  6. Underground repository for radioactive wastes

    International Nuclear Information System (INIS)

    In the feasibility study for an underground repository in Argentina, the conceptual basis for the final disposal of high activity nuclear waste was set, as well as the biosphere isolation, according to the multiple barrier concept or to the engineering barrier system. As design limit, the container shall act as an engineering barrier, granting the isolation of the radionuclides for approximately 1000 years. The container for reprocessed and vitrified wastes shall have three metallic layers: a stainless steel inner layer, an external one of a metal to be selected and a thick intermediate lead layer preselected due to its good radiological protection and corrosion resistance. Therefore, the study of the lead corrosion behaviour in simulated media of an underground repository becomes necessary. Relevant parameters of the repository system such as temperature, pressure, water flux, variation in salt concentrations and oxidants supply shall be considered. At the same time, a study is necessary on the galvanic effect of lead coupled with different candidate metals for external layer of the container in the same experimental conditions. Also temporal evaluation about the engineering barrier system efficiency is presented in this thesis. It was considered the extrapolated results of corrosion rates and literature data about the other engineering barriers. Taking into account that corrosion is of a generalized type, the integrity of the lead shall be maintained for more than 1000 years and according to temporal evaluation, the multiple barrier concept shall retard the radionuclide dispersion to the biosphere for a period of time between 104 and 106 years. (Author)

  7. Underground storage tank management plan

    International Nuclear Information System (INIS)

    The Underground Storage Tank (UST) Management Program at the Oak Ridge Y-12 Plant was established to locate UST systems in operation at the facility, to ensure that all operating UST systems are free of leaks, and to establish a program for the removal of unnecessary UST systems and upgrade of UST systems that continue to be needed. The program implements an integrated approach to the management of UST systems, with each system evaluated against the same requirements and regulations. A common approach is employed, in accordance with Tennessee Department of Environment and Conservation (TDEC) regulations and guidance, when corrective action is mandated. This Management Plan outlines the compliance issues that must be addressed by the UST Management Program, reviews the current UST inventory and compliance approach, and presents the status and planned activities associated with each UST system. The UST Management Plan provides guidance for implementing TDEC regulations and guidelines for petroleum UST systems. (There are no underground radioactive waste UST systems located at Y-12.) The plan is divided into four major sections: (1) regulatory requirements, (2) implementation requirements, (3) Y-12 Plant UST Program inventory sites, and (4) UST waste management practices. These sections describe in detail the applicable regulatory drivers, the UST sites addressed under the Management Program, and the procedures and guidance used for compliance with applicable regulations

  8. Earthquake damage to underground facilities

    International Nuclear Information System (INIS)

    The potential seismic risk for an underground nuclear waste repository will be one of the considerations in evaluating its ultimate location. However, the risk to subsurface facilities cannot be judged by applying intensity ratings derived from the surface effects of an earthquake. A literature review and analysis were performed to document the damage and non-damage due to earthquakes to underground facilities. Damage from earthquakes to tunnels, s, and wells and damage (rock bursts) from mining operations were investigated. Damage from documented nuclear events was also included in the study where applicable. There are very few data on damage in the subsurface due to earthquakes. This fact itself attests to the lessened effect of earthquakes in the subsurface because mines exist in areas where strong earthquakes have done extensive surface damage. More damage is reported in shallow tunnels near the surface than in deep mines. In mines and tunnels, large displacements occur primarily along pre-existing faults and fractures or at the surface entrance to these facilities.Data indicate vertical structures such as wells and shafts are less susceptible to damage than surface facilities. More analysis is required before seismic criteria can be formulated for the siting of a nuclear waste repository

  9. Underground storage tank management plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-09-01

    The Underground Storage Tank (UST) Management Program at the Oak Ridge Y-12 Plant was established to locate UST systems in operation at the facility, to ensure that all operating UST systems are free of leaks, and to establish a program for the removal of unnecessary UST systems and upgrade of UST systems that continue to be needed. The program implements an integrated approach to the management of UST systems, with each system evaluated against the same requirements and regulations. A common approach is employed, in accordance with Tennessee Department of Environment and Conservation (TDEC) regulations and guidance, when corrective action is mandated. This Management Plan outlines the compliance issues that must be addressed by the UST Management Program, reviews the current UST inventory and compliance approach, and presents the status and planned activities associated with each UST system. The UST Management Plan provides guidance for implementing TDEC regulations and guidelines for petroleum UST systems. (There are no underground radioactive waste UST systems located at Y-12.) The plan is divided into four major sections: (1) regulatory requirements, (2) implementation requirements, (3) Y-12 Plant UST Program inventory sites, and (4) UST waste management practices. These sections describe in detail the applicable regulatory drivers, the UST sites addressed under the Management Program, and the procedures and guidance used for compliance with applicable regulations.

  10. Modelling Underground Coal Gasification—A Review

    Directory of Open Access Journals (Sweden)

    Md M. Khan

    2015-11-01

    Full Text Available The technical feasibility of underground coal gasification (UCG has been established through many field trials and laboratory-scale experiments over the past decades. However, the UCG is site specific and the commercialization of UCG is being hindered due to the lack of complete information for a specific site of operation. Since conducting UCG trials and data extraction are costly and difficult, modeling has been an important part of UCG study to predict the effect of various physical and operating parameters on the performance of the process. Over the years, various models have been developed in order to improve the understanding of the UCG process. This article reviews the approaches, key concepts, assumptions, and limitations of various forward gasification UCG models for cavity growth and product gas recovery. However, emphasis is given to the most important models, such as packed bed models, the channel model, and the coal slab model. In addition, because of the integral part of the main models, various sub-models such as drying and pyrolysis are also included in this review. The aim of this study is to provide an overview of the various simulation methodologies and sub-models in order to enhance the understanding of the critical aspects of the UCG process.

  11. Study of the Pasquasia underground cavity

    International Nuclear Information System (INIS)

    The reliability of the geological disposal of radioactive wastes have to be verified both by laboratory and on site research, under both surface and underground conditions. The tests carried out under high lithostatic stress can allow extrapolations to be made having absolute value at the depths planned for the construction of the repository. On the area around the Pasquasia mine, a detailed geological mapping (1: 5000 scale) has been carried out. For the purpose of studying the effects induced by the advancement of the excavation's face into the clayey mass and over the cross section of the transversal tunnel, several measurement stations were installed (multibase straingauges, convergency rods, pressure cells, centering and concrete straingauges). Structural observations were made on both the fronts and the walls of the tunnel for the purpose of characterizing the mechanical behaviour of a clayey mass. The 37 cubic blocks, their sides measuring measurement 30cm, along 72 samples collected during the excavation, have been analyzed from different point of view (sedimentological, mineralogical, geochemical, micropaleontological, interstitial water content, thermal properties, etc). After the excavation of the tunnel and the installation of the geotechnical stations, the measurements have been carried on up to March 1987. At this date the work programme has been unfortunately stopped by local authorities unfoundly suspecting Pasquasia mine would be used as waste repository

  12. Permeability restoration in underground disposal reservoirs

    International Nuclear Information System (INIS)

    The aim of the research performed was to explore methods of permeability restoration in underground disposal reservoirs that may improve the receptive capacity of a well to a level that will allow continued use of the disposal zone without resorting to elevated injection pressures. The laboratory investigation employed a simulated open-hole completion in a disposal well wherein the entire formation face is exposed to the well bore. Cylindrical core samples from representative reservoir rocks through which a central vertical opening or borehole had been drilled were injected with a liquid waste obtained from a chemical manufacturing plant. This particular waste material was found to have a moderate plugging effect when injected into samples of reservoir rocks in a prior study. A review was made of the chemical considerations that might account for the reduction of permeability in waste injection. Purpose of this study was to ascertain the conditions under which the precipitation of certain compounds might occur in the injection of the particular waste liquid employed. A summary of chemical calculations is contained in Appendix B. The data may be useful in the treatment of wastes prior to injection and in the design of restoration procedures where analyses of waste liquids and interstitial materials are available. The results of permeability restoration tests were analyzed mathematically by curve-fitting techniques performed by a digital computer. A summary of the analyses is set forth in the discussion of test results and examples of computer printouts are included in Appendix A

  13. 30 CFR 57.20031 - Blasting underground in hazardous areas.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Blasting underground in hazardous areas. 57... MINES Miscellaneous § 57.20031 Blasting underground in hazardous areas. In underground areas where... removed to safe places before blasting....

  14. Technologies for placing of underground installations

    OpenAIRE

    Doneva, Nikolinka; Despodov, Zoran; Mirakovski, Dejan; Hadzi-Nikolova, Marija

    2014-01-01

    In urban communities often there is a need to change existing underground installations or placing new ones. This paper will discuss two technologies for placing underground installations including: classic and contemporary technology (technology with mechanical excavation). For each of these two technologies will be given advantages and disadvantages, as well as experiences from their application.

  15. UNDERGROUND ECONOMY, INFLUENCES ON NATIONAL ECONOMIES

    OpenAIRE

    CEAUȘESCU IONUT

    2015-01-01

    The purpose of research is to improve the understanding of nature underground economy by rational justification of the right to be enshrined a reality that, at least statistically, can no longer be neglected. So, we propose to find the answer to the question: has underground economy to stand-alone?

  16. Underground location of nuclear power stations

    International Nuclear Information System (INIS)

    In Japan where the population is dense and the land is narrow, the conventional location of nuclear power stations on the ground will become very difficult sooner or later. At this time, it is very important to establish the new location method such as underground location, Quaternary ground location and offshore location as the method of expanding the location for nuclear power stations from the viewpoint of the long term demand and supply of electric power. As for underground location, the technology of constructing an underground cavity has been already fostered basically by the construction of large scale cavities for underground pumping-up power stations in the last 20 years. In France, Norway and Sweden, there are the examples of the construction of underground nuclear power stations. In this way, the opportunity of the underground location and construction of nuclear power stations seems to be sufficiently heightened, and the basic research has been carried out also in the Central Research Institute of Electric Power Industry. In this paper, as to underground nuclear power stations as one of the forms of utilizing underground space, the concept, the advantage in aseismatic capability, the safety at the time of a supposed accident, and the economical efficiency are discussed. (Kako, I.)

  17. UNDERGROUND ECONOMY, INFLUENCES ON NATIONAL ECONOMIES

    Directory of Open Access Journals (Sweden)

    CEAUȘESCU IONUT

    2015-04-01

    Full Text Available The purpose of research is to improve the understanding of nature underground economy by rational justification of the right to be enshrined a reality that, at least statistically, can no longer be neglected. So, we propose to find the answer to the question: has underground economy to stand-alone?

  18. Hydrochemical changes associated with construction of a large underground facility

    International Nuclear Information System (INIS)

    The Japan Atomic Energy Agency (JAEA) is constructing the Mizunami Underground Research Laboratory at Mizunami, Japan to establish general techniques for the assessment of the deep geological environment. The facility including two 1,000 m shafts and sub-stages at 100 m depths between two shafts is currently under construction in the sedimentary rocks. This study aims to evaluate the environmental changes around a large underground facility. To this end, hydrochemical changes in response to shaft excavation are assessed based on the observation of hydraulic head and groundwater chemistry around the facility. The observations indicated that rock formations with low hydraulic conductivity act as barriers to hydraulic disturbances, while higher conductivity zones provide a preferential flow path. Groundwater flow to the drifts creates chemical changes by mixing among chemically different groundwaters in higher conductivity zones. It is therefore meaningful to monitor the water pressure and chemistry at highly conductive rock formations during construction and operation of underground facilities. These investigations will provide the basic information on hydrochemical buffer capacity of the natural environment. Furthermore, observations suggest that grouting of conductive rock formations is important for maintaining the groundwater at near preconstruction levels so as to retain the buffer capacity of the rock formations used for safety assessment. (author)

  19. Heat transfer in underground heating experiments in granite, Stipa, Sweden

    International Nuclear Information System (INIS)

    Electrical heater experiments have been conducted underground in granite at Stripa, Sweden, to investigate the effects of heating associated with nuclear waste storage. Temperature data from these experiments are compared with closed-form and finite-element solutions. Good agreement is found between measured temperatures and both types of models, but especially for a nonlinear finite-element heat conduction model incorporating convective boundary conditions, measured nonuniform initial rock temperature distribution, and temperature-dependent thermal conductivity. In situ thermal properties, determined by least-squares regression, are very close to laboratory values. A limited amount of sensitivity analysis is undertaken

  20. GIS surface effects archive of underground nuclear detonations conducted at Yucca Flat and Pahute Mesa, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    This report presents a new comprehensive, digital archive of more than 40 years of geologic surface effects maps produced at individual detonation sites throughout the Yucca Flat and Pahute Mesa nuclear testing areas of the Nevada Test Site, Nye County, Nevada. The Geographic Information System (GIS) surface effects map archive on CD-ROM (this report) comprehensively documents the surface effects of underground nuclear detonations conducted at two of the most extensively used testing areas of the Nevada Test Site. Between 1951 and 1992, numerous investigators of the U.S. Geological Survey, the Los Alamos National Laboratory, the Lawrence Livermore National Laboratory, and the Defense Threat Reduction Agency meticulously mapped the surface effects caused by underground nuclear testing. Their work documented the effects of more than seventy percent of the underground nuclear detonations conducted at Yucca Flat and all of the underground nuclear detonations conducted at Pahute Mesa

  1. Depleted Argon from Underground Sources

    International Nuclear Information System (INIS)

    Argon is a strong scintillator and an ideal target for Dark Matter detection; however 39Ar contamination in atmospheric argon from cosmic ray interactions limits the size of liquid argon dark matter detectors due to pile-up. Argon from deep underground is depleted in 39Ar due to the cosmic ray shielding of the earth. In Cortez, Colorado, a CO2 well has been discovered to contain approximately 600 ppm of argon as a contamination in the CO2. We first concentrate the argon locally to 3% in an Ar, N2, and He mixture, from the CO2 through chromatographic gas separation, and then the N2 and He will be removed by continuous distillation to purify the argon. We have collected 26 kg of argon from the CO2 facility and a cryogenic distillation column is under construction at Fermilab to further purify the argon.

  2. Radionuclide behavior at underground environment

    International Nuclear Information System (INIS)

    This study of radionuclide behavior at underground environment has been carried out as a part of the study of high-level waste disposal technology development. Therefore, the main objectives of this project are constructing a data-base and producing data for the safety assessment of a high-level radioactive waste, and verification of the objectivity of the assessment through characterization of the geochemical processes and experimental validation of the radionuclide migration. The various results from the this project can be applicable to the preliminary safety and performance assessments of the established disposal concept for a future high-level radioactive waste repository. Providing required data and technical basis for assessment methodologies could be a direct application of the results. In a long-term view, the results can also be utilized as a technical background for the establishment of government policy for high-level radioactive waste disposal

  3. Toxic hazards of underground excavation

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.; Chitnis, V.; Damasian, M.; Lemm, M.; Popplesdorf, N.; Ryan, T.; Saban, C.; Cohen, J.; Smith, C.; Ciminesi, F.

    1982-09-01

    Inadvertent intrusion into natural or man-made toxic or hazardous material deposits as a consequence of activities such as mining, excavation or tunnelling has resulted in numerous deaths and injuries in this country. This study is a preliminary investigation to identify and document instances of such fatal or injurious intrusion. An objective is to provide useful insights and information related to potential hazards due to future intrusion into underground radioactive-waste-disposal facilities. The methodology used in this study includes literature review and correspondence with appropriate government agencies and organizations. Key categories of intrusion hazards are asphyxiation, methane, hydrogen sulfide, silica and asbestos, naturally occurring radionuclides, and various mine or waste dump related hazards.

  4. Toxic hazards of underground excavation

    International Nuclear Information System (INIS)

    Inadvertent intrusion into natural or man-made toxic or hazardous material deposits as a consequence of activities such as mining, excavation or tunnelling has resulted in numerous deaths and injuries in this country. This study is a preliminary investigation to identify and document instances of such fatal or injurious intrusion. An objective is to provide useful insights and information related to potential hazards due to future intrusion into underground radioactive-waste-disposal facilities. The methodology used in this study includes literature review and correspondence with appropriate government agencies and organizations. Key categories of intrusion hazards are asphyxiation, methane, hydrogen sulfide, silica and asbestos, naturally occurring radionuclides, and various mine or waste dump related hazards

  5. Radionuclide behavior at underground environment

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Phil Soo; Park, Chung Kyun; Keum, Dong Kwon; Cho, Young Hwan; Kang, Moon Ja; Baik, Min Hoon; Hahn, Kyung Won; Chun, Kwan Sik; Park, Hyun Soo

    2000-03-01

    This study of radionuclide behavior at underground environment has been carried out as a part of the study of high-level waste disposal technology development. Therefore, the main objectives of this project are constructing a data-base and producing data for the safety assessment of a high-level radioactive waste, and verification of the objectivity of the assessment through characterization of the geochemical processes and experimental validation of the radionuclide migration. The various results from the this project can be applicable to the preliminary safety and performance assessments of the established disposal concept for a future high-level radioactive waste repository. Providing required data and technical basis for assessment methodologies could be a direct application of the results. In a long-term view, the results can also be utilized as a technical background for the establishment of government policy for high-level radioactive waste disposal.

  6. Underground radioactive waste disposal concept

    International Nuclear Information System (INIS)

    The paper presents some solutions for radioactive waste disposal. An underground disposal of radioactive waste is proposed in deep boreholes of greater diameter, fitted with containers. In northern part of Croatia, the geological data are available on numerous boreholes. The boreholes were drilled during investigations and prospecting of petroleum and gas fields. The available data may prove useful in defining safe deep layers suitable for waste repositories. The paper describes a Russian disposal design, execution and verification procedure. The aim of the paper is to discuss some earlier proposed solutions, and present a solution that has not yet been considered - lowering of containers with high level radioactive waste (HLW) to at least 500 m under the ground surface.(author)

  7. The Jiangmen Underground Neutrino Observatory

    CERN Document Server

    Grassi, Marco

    2016-01-01

    The Jiangmen Underground Neutrino Observatory (JUNO) is a large and high precision liquid scintillator detector under construction in the south of China. With its 20 kt target mass, it aims to achieve an unprecedented 3% energy resolution at 1 MeV. Its main goal is to study the disappearance of reactor antineutrino to determine the neutrino mass ordering, and to precisely measure the mixing parameters $\\theta_{12}$, $\\Delta m^2_{12}$, and $\\Delta m ^2_{ee}$. It also aims to detect neutrinos emitted from radioactive processes taking place within the inner layers of the Earth (geonutrinos), as well as neutrinos produced during rare supernova bursts. Neutrinos emitted in solar nuclear reactions could also be observed, if stringent radiopurity requirements on the scintillator are met. This manuscript provides some highlights of JUNO's Physics Programme, and describes the detector design, as well as the ongoing detector R&D.

  8. Waves from an underground explosion

    Science.gov (United States)

    Krymskii, A. V.; Lyakhov, G. M.

    1984-05-01

    The problem of the propagation of a spherical detonation wave in water-saturated soil was solved in [1, 2] by using a model of a liquid porous multicomponent medium with bulk viscosity. Experiments show that soils which are not water saturated are solid porous multicomponent media having a viscosity, nonlinear bulk compression limit diagrams, and irreversible deformations. Taking account of these properties, and using the model in [2], we have solved the problem of the propagation of a spherical detonation wave from an underground explosion. The solution was obtained by computer, using the finite difference method [3]. The basic wave parameters were determined at various distances from the site of the explosion. The values obtained are in good agreement with experiment. Models of soils as viscous media which take account of the dependence of deformations on the rate of loading were proposed in [4 7] also. In [8] a model was proposed corresponding to a liquid multicomponent medium with a variable viscosity.

  9. Seismic effects on underground openings

    International Nuclear Information System (INIS)

    Numerical modeling techniques were used to determine the conditions required for seismic waves generated by an earthquake to cause instability to an underground opening or create fracturing and joint movement that would lead to an increase in the permeability of the rock mass. Three different rock types (salt, granite, and shale) were considered as host media for the repository located at a depth of 600 m. Special material models were developed to account for the nonlinear material behavior of each rock type. The sensitivity analysis included variations in the in situ stress ratio, joint geometry, and pore pressures, and the presence or absence of large fractures. Three different sets of earthquake motions were used to excite the rock mass. The methodology applied was found to be suitable for studying the effects of earthquakes on underground openings. In general, the study showed that moderate earthquakes (up to 0.41 g) did not cause instability of the tunnel or major fracturing of the rock mass; however, a tremor with accelerations up to 0.95 g was amplified around the tunnel, and fracturing occurred as a result of the seismic loading in salt and granite. In situ stress is a critical parameter in determining the subsurface effects of earthquakes but is nonexistent in evaluating the cause for surface damage. In shale with the properties assumed, even the moderate seismic load resulted in tunnel instability. These studies are all generic in nature and do not abrogate the need for site and design studies for specific facilities. 30 references, 14 figures, 8 tables

  10. Noble Gas Migration Experiment to Support the Detection of Underground Nuclear Explosions

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Khris B.; Kirkham, Randy R.; Woods, Vincent T.; Haas, Derek A.; Hayes, James C.; Bowyer, Ted W.; Mendoza, Donaldo P.; Lowrey, Justin D.; Lukins, Craig D.; Suarez, Reynold; Humble, Paul H.; Ellefson, Mark D.; Ripplinger, Mike D.; Zhong, Lirong; Mitroshkov, Alexandre V.; Aalseth, Craig E.; Prinke, Amanda M.; Mace, Emily K.; McIntyre, Justin I.; Stewart, Timothy L.; Mackley, Rob D.; Milbrath, Brian D.; Emer, Dudley; Biegalski, S.

    2016-03-01

    A Noble Gas Migration Experiment (NGME) funded by the National Center for Nuclear Security and conducted at the Nevada National Security Site (NNSS) in collaboration with Lawrence Livermore national Laboratory and National Security Technology provided critical on-site inspection (OSI) information related to the detection of an underground nuclear explosion (UNE) event using noble gas signatures.

  11. Underground Corrosion by Microorganisms Part II : Role of Anaerobic Sulphate Reducing Bacteria-Desulfotomaculum SP

    OpenAIRE

    H. M. Dayal; K. C. Tiwari; Kamlesh Mehta; Chandrashekhar,

    1988-01-01

    During the course of studies on the corrosion causing soil microflora from different geoclimatic regions of India, several strains of anaerobic sulphate reducing bacteria belonging to genus Desulfotomaculum were isolated and characterised. Their corrosive action on mild steel, galvanised iron and structural aluminium, the three main metals of construction of underground structures, have been studied under laboratory conditions.

  12. Underground Corrosion by Microorganisms Part II : Role of Anaerobic Sulphate Reducing Bacteria-Desulfotomaculum SP

    Directory of Open Access Journals (Sweden)

    H. M. Dayal

    1988-04-01

    Full Text Available During the course of studies on the corrosion causing soil microflora from different geoclimatic regions of India, several strains of anaerobic sulphate reducing bacteria belonging to genus Desulfotomaculum were isolated and characterised. Their corrosive action on mild steel, galvanised iron and structural aluminium, the three main metals of construction of underground structures, have been studied under laboratory conditions.

  13. First Results of GINGERino, a deep underground ringlaser

    CERN Document Server

    Belfi, J; Bosi, F; Carelli, G; Cuccato, D; De Luca, G; Di Virgilio, A; Gebauer, A; Maccioni, E; Ortolan, A; Porzio, A; Santagata, R; Simonelli, A; Terreni, G

    2016-01-01

    Large ring-laser gyroscopes are capable of measuring angular rotations with a precision well below fractions of $prad/s$, not far from $10^{-14}$ $rad/s$, the accuracy required for General Relativity tests, this is what the GINGER (Gyroscope-IN-GEneral-Relativity) experiment is aiming for. These features do not guarantee the possibility of measuring the General Relativity Lense--Thirring effect, that manifests itself as a tiny ($\\approx 10^{-9} \\times \\Omega_E$) perturbation of the Earth rotation rate. An underground location being in principle less affected by external local disturbances represents a good candidate for housing such a challenging experiment. GINGERino is a test apparatus to investigate the residual local disturbances in the most inner part of the underground international laboratory of the GranSasso (LNGS). It consists of a square ring laser with a $3.6$ m side. The instrument has been tailored to be the larger allowed by the particular location inside the laboratory. Its main objective is to...

  14. Thermal cleanups using dynamic underground stripping and hydrous pyrolysis oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Aines, R D; Knauss, K; Leif, R; Newmark, R L

    1999-05-01

    In the early 1990s, in collaboration with the School of Engineering at the University of California, Berkeley, Lawrence Livermore National Laboratory developed dynamic underground stripping (DUS), a method for treating subsurface contaminants with heat that is much faster and more effective than traditional treatment methods. more recently, Livermore scientists developed hydrous pyrolysis/oxidation (HPO), which introduces both heat and oxygen to the subsurface to convert contaminants in the ground to such benign products as carbon dioxide, chloride ion, and water. This process has effectively destroyed all contaminants it encountered in laboratory tests. With dynamic underground stripping, the contaminants are vaporized and vacuumed out of the ground, leaving them still to be destroyed elsewhere. Hydrous pyrolysis/oxidation technology takes the cleanup process one step further by eliminating the treatment, handling, and disposal requirements and destroying the contamination in the ground. When used in combination, HPO is especially useful in the final polishing of a site containing significant free-product contaminant, once the majority of the contaminant has been removed.

  15. Migration experiments in the underground facility at Mol to validate safety assessment model

    International Nuclear Information System (INIS)

    To validate predictive calculations for the migration of water (HTO) in a deep clay formation a large scale in-situ migration experiment has been set up in the underground facility installed in the Boom clay at the Mol site. A piezometernest containing several filters at 1 m intervals is emplaced in a single borehole drilled from the gallery of the underground laboratory. Tritiated water is injected through one of the filters and its migration is followed by sampling the porewater in the neighbouring filters. The results obtained since the start of the experiment two years ago are compared with the predicted values. 5 figs., 4 refs

  16. Proceedings of the ninth annual underground coal gasification symposium

    Energy Technology Data Exchange (ETDEWEB)

    Wieber, P.R.; Martin, J.W.; Byrer, C.W. (eds.)

    1983-12-01

    The Ninth Underground Coal Gasification Symposium was held August 7 to 10, 1983 at the Indian Lakes Resort and Conference Center in Bloomingdale, Illinois. Over one-hundred attendees from industry, academia, National Laboratories, State Government, and the US Government participated in the exchange of ideas, results and future research plans. Representatives from six countries including France, Belgium, United Kingdom, The Netherlands, West Germany, and Brazil also participated by presenting papers. Fifty papers were presented and discussed in four formal sessions and two informal poster sessions. The presentations described current and future field testing plans, interpretation of field test data, environmental research, laboratory studies, modeling, and economics. All papers were processed for inclusion in the Energy Data Base.

  17. 30 CFR 57.4462 - Storage of combustible liquids underground.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Storage of combustible liquids underground. 57... AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES... combustible liquids underground. The requirements of this standard apply to underground areas only....

  18. 30 CFR 57.4463 - Liquefied petroleum gas use underground.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Liquefied petroleum gas use underground. 57... AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES... gas use underground. Use of liquefied petroleum gases underground shall be limited to maintenance...

  19. 30 CFR 57.4460 - Storage of flammable liquids underground.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Storage of flammable liquids underground. 57... AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES... liquids underground. (a) Flammable liquids shall not be stored underground, except— (1) Small...

  20. 30 CFR 75.340 - Underground electrical installations.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground electrical installations. 75.340... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.340 Underground electrical installations. (a) Underground transformer stations, battery charging stations,...

  1. 30 CFR 57.4057 - Underground trailing cables.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground trailing cables. 57.4057 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention and Control § 57.4057 Underground trailing cables. Underground trailing cables shall be accepted...

  2. Indian Country Leaking Underground Storage Tanks

    Data.gov (United States)

    U.S. Environmental Protection Agency — In 1986, Congress amended Subtitle I of the Solid Waste Disposal Act, directing EPA to regulate Underground Storage Tanks (USTs). EPA directly implements the UST...

  3. Radioactive waste containing vessel for underground disposal

    International Nuclear Information System (INIS)

    A canister and an over packing vessel for containing the canister are assembled. Preceding to underground disposal, a sealing medium under a pressurized state is sealed to the space in the overpacking vessel. As the sealing medium, non-compressible medium of a liquid or a fluid such as a mineral oil, vegetable oil, cement mortar is used in an ordinary cases. Alternatively, gases such as of nitrogen or argon are applied for the purpose of increasing pressure of the space portion to more than the pressure of underground water and the like. In the state of the underground disposal, difference of pressure between the external pressure such as of underground water and a pressure of the sealed medium is applied to the wall of the over packing vessel. With such a constitution, since the wall of the over packing vessel can be reduced, the weight and the cost can be reduced. (I.N.)

  4. Leaking Underground Storage Tank Sites in Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Leaking Underground Storage Tank (LUST) sites where petroleum contamination has been found. There may be more than one LUST site per UST site.

  5. Radionuclide behavior at underground environment

    International Nuclear Information System (INIS)

    This study of radionuclide behavior at underground environment has been carried out as a part of the study of high-level waste disposal technology development. Therefore, the main objectives of this project are constructing a data-base and producing data for the safety assessment of a high-level radioactive waste, and verification of the objectivity of the assessment through characterization of the geochemical processes and experimental validation of the radionuclide migration. This project is composed of 6 subjects such as data production required for safety assessments, sorption properties and mechanisms, nuclide migration in the fractured rock, colloid formation and migration, nuclide speciation in deep geological environments, and total evaluation of geochemical behaviors considering multi-factors. The various results from the this project can be applicable to the preliminary safety and performance assessments of the established disposal concept for a future high-level radioactive waste repository. Providing required data and technical basis for assessment methodologies could be a direct application of the results. In a long-term view, the results can also be utilized as a technical background for the establishment of government policy for high-level radioactive waste disposal

  6. Dynamic underground stripping demonstration project

    International Nuclear Information System (INIS)

    LLNL is collaborating with the UC Berkeley College of Engineering to develop and demonstrate a system of thermal remediation techniques for rapid cleanup of localized underground spills. Called dynamic stripping to reflect the rapid and controllable nature of the process, it will combine steam injection, direct electrical heating, and tomographic geophysical imaging in a cleanup of the LLNL gasoline spill. In the first eight months of the project, a Clean Site engineering test was conducted to prove the field application of the techniques. Tests then began on the contaminated site in FY 1992. This report describes the work at the Clean Site, including design and performance criteria, test results, interpretations, and conclusions. We fielded 'a wide range of new designs and techniques, some successful and some not. In this document, we focus on results and performance, lessons learned, and design and operational changes recommended for work at the contaminated site. Each section focuses on a different aspect of the work and can be considered a self-contained contribution

  7. Insiders, Outsiders, and the Underground Economy

    OpenAIRE

    Anderberg, Dan

    2003-01-01

    This paper considers whether labour market rigidities lead to more underground economic activities. This is suggested by aggregate cross-country data which show that underground economic activities are more strongly correlated with a commonly used index of employment protection than with effective tax rates. A simple theoretical model is constructed to support this finding. The model, contrary to many models of equilibrium unemployment in the literature, also has the feature that a rise in a ...

  8. Intelligent Scheduling for Underground Mobile Mining Equipment

    OpenAIRE

    Song, Zhen; Schunnesson, Håkan; Rinne, Mikael; Sturgul, John

    2015-01-01

    Many studies have been carried out and many commercial software applications have been developed to improve the performances of surface mining operations, especially for the loader-trucks cycle of surface mining. However, there have been quite few studies aiming to improve the mining process of underground mines. In underground mines, mobile mining equipment is mostly scheduled instinctively, without theoretical support for these decisions. Furthermore, in case of unexpected events, it is har...

  9. Surface underground coincidences at the Soudan mine

    International Nuclear Information System (INIS)

    A 37 m2 surface array which has been operating in coincidence with the Soudan 1 underground experiment is described. A comparison is made between measured and expected underground-surface coincident events. The surface array is used to ''tag'' the energy of the cosmic ray primary. Distributions of event rates and multiple muon rates as a function of energy are shown. Expected rates and plans for an enhanced array and for coincidences with Soudan 2 are also discussed. 1 ref., 6 figs

  10. Underground infrastructure damage for a Chicago scenario

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Thomas N [Los Alamos National Laboratory; Bos, Rabdall J [Los Alamos National Laboratory

    2011-01-25

    Estimating effects due to an urban IND (improvised nuclear device) on underground structures and underground utilities is a challenging task. Nuclear effects tests performed at the Nevada Test Site (NTS) during the era of nuclear weapons testing provides much information on how underground military structures respond. Transferring this knowledge to answer questions about the urban civilian environment is needed to help plan responses to IND scenarios. Explosions just above the ground surface can only couple a small fraction of the blast energy into an underground shock. The various forms of nuclear radiation have limited penetration into the ground. While the shock transmitted into the ground carries only a small fraction of the blast energy, peak stresses are generally higher and peak ground displacement is lower than in the air blast. While underground military structures are often designed to resist stresses substantially higher than due to the overlying rocks and soils (overburden), civilian structures such as subways and tunnels would generally only need to resist overburden conditions with a suitable safety factor. Just as we expect the buildings themselves to channel and shield air blast above ground, basements and other underground openings as well as changes of geology will channel and shield the underground shock wave. While a weaker shock is expected in an urban environment, small displacements on very close-by faults, and more likely, soils being displaced past building foundations where utility lines enter could readily damaged or disable these services. Immediately near an explosion, the blast can 'liquefy' a saturated soil creating a quicksand-like condition for a period of time. We extrapolate the nuclear effects experience to a Chicago-based scenario. We consider the TARP (Tunnel and Reservoir Project) and subway system and the underground lifeline (electric, gas, water, etc) system and provide guidance for planning this scenario.

  11. The Sanford Underground Research Facility at Homestake

    OpenAIRE

    Heise, Jaret

    2015-01-01

    The former Homestake gold mine in Lead, South Dakota has been transformed into a dedicated facility to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines such as biology, geology and engineering. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e.) and currently hosts two main physics projects: the LUX dark matter experiment and the M...

  12. Carbon allocation in underground storage organs

    OpenAIRE

    Turesson, Helle

    2014-01-01

    By increasing knowledge of carbon allocation in underground storage organs and using the knowledge to improve such crops, the competitiveness of these types of storage organs can be strengthened. Starch is the most common storage compound in tubers and roots, but some crops accumulate compounds other than starch. This thesis examined representative underground storage organs accumulating starch, oil and sugars. These were: the oil-accumulating nutsedge (Cyperus esculentus), a half-grass whic...

  13. 40 CFR 280.220 - Ownership of an underground storage tank or underground storage tank system or facility or...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Ownership of an underground storage tank or underground storage tank system or facility or property on which an underground storage tank or underground storage tank system is located. 280.220 Section 280.220 Protection of Environment...

  14. Development of digital photogrammetry for measurements of displacements in underground excavation

    International Nuclear Information System (INIS)

    Because deformations are important indicators of the degree of stability during construction of rock structures, monitoring of deformation is a key element of construction of tunnels and structures for the underground research laboratory. Especially in the construction and maintenance of underground excavation, monitoring of deformations is needed for obtaining useful information to control its stability. We have been developing the application of digital photogrammetry to monitoring techniques in rock structures. Photogrammetric process has undergone a remarkable evolution with its transformation into digital photogrammetry. Photogrammetry has the advantage of measuring deformation of an object by some photos with easy measurements and excellent cost performance. In this paper, we present that the digital photogrammetry can monitor the displacements of the underground excavation accurately along with a capability of real-time measurement. (author)

  15. An approach to underground characterization of a disposal vault in granite

    International Nuclear Information System (INIS)

    The concept of disposing of nuclear fuel waste by sealing it in a disposal vault in the Canadian Shield is being investigated as part of the Canadian Nuclear Fuel Waste Management Program. Engineered and natural barriers would isolate the waste from the biosphere. Underground characterization and testing have been under way since 1983 at the Underground Research Laboratory in support of this program. This report draws on experience gained at the URL to recommend an approach to underground characterization to obtain information to optimize the design of the excavation and the engineered barriers, and to provide a baseline against which to monitor the performance of the facility during and following its operation. (author). 35 refs., 12 tabs., 49 figs

  16. GEOLOGICAL MEDIUM AND UNDERGROUND HYDROSPHERE

    Directory of Open Access Journals (Sweden)

    S. V. Alekseev

    2015-09-01

    Full Text Available  The article informs about the history, the staff, researches and scientific activities of the Laboratory of Hydrogeo­logy and the Laboratory of Engineering Geology and Geoecology of the Institute of the Earth’s Crust, SB RAS. It reviews the major results of scientific research projects implemented from 2009 to 2013, which provided for determination of characteristics of the geological medium and hydrosphere of East Siberia and Mongolia in natural and technogenic conditions and mo­deling of the evolution of natural, natural-technogenic hydrogeological and engineering geological systems in regions with contrasting climate conditions and specific geological settings.  

  17. Underground disposal facility closure design 2012

    International Nuclear Information System (INIS)

    Posiva has developed a detailed design for construction of a KSB-3 type disposal facility for spent nuclear fuel on Olkiluoto Island. The disposal facility design calls for construction of five shafts and an access tunnel that will serve to connect the disposal level to the surface. Routes to the underground disposal facility would be via the underground rock characterisation facility, ONKALO, which is currently under construction. The positioning of the underground disposal facility at Olkiluoto Island has been done by taking into account the main geological structures and available geological information on the site. Conditions actually encountered on reaching the potential disposal level will be assessed and the final layout selected at that time. The closure of the underground facility shall complete the isolation of the spent nuclear fuel and contribute to restoring and maintaining the favourable natural conditions in the bedrock. Beyond the deposition tunnels there remain underground openings associated with central and access tunnels, shafts and technical rooms or other spaces that comprise by definition the closure of the underground disposal facility. The underground disposal facility's general closure design described in this document deals specifically with the backfill and plugs installed in regions beyond the deposition tunnels and how the local geosphere may affect their performance. These tunnels, rooms and shafts represent approximately 60 % of the volume of the underground disposal facility openings and will intersect a variety of geological and hydrogeological features. Hence, backfilling and plugging of the disposal facility excavations in these regions will need to be approached in a flexible manner with the ability to modify the materials used to reflect the properties of the features intersected. Based on relevant available information the basis for flexible and general closure plan has been developed. The general closure plan takes into

  18. Status and Growth of Underground Science at WIPP

    Science.gov (United States)

    Rempe, Norbert T.

    2008-10-01

    The science community is increasingly taking advantage of research opportunities in the government-owned Waste Isolation Pilot Plant (WIPP), 655m underground near Carlsbad, NM. Discoveries so far include viable bacteria, cellulose, and DNA in 250 million-year old salt, preserved in an ultra-low background-radiation setting. Supplementing the overburden's shielding against cosmic radiation, terrestrial background from the host formation is less than five percent that of average crustal rock. In the past, WIPP accommodated development and testing of neutral current detectors for the Sudbury Neutrino Observatory and dark matter research, and it currently hosts two experiments pursuing neutrino-less double-beta decay. That scientists can listen to whispers from the universe in proximity to megacuries of radioactive waste lends, of course, credibility to the argument that WIPP itself is very safe. Almost a century of regional petroleum and potash extraction history and more than three decades of WIPP studies have generated a comprehensive body of knowledge on geology, mining technology, rock mechanics, geochemistry, and other disciplines relevant to underground science. Existing infrastructure is being used and can be expanded to fit experimental needs. WIPP's exemplary safety and regulatory compliance culture, low excavating and operating cost, and the high probability of the repository operating at least another 40 years make its available underground space attractive for future research and development. Recent proposals include low-photon energy counting to study internal dose received decades ago, investigations into ultra-low radiation dose response in cell cultures and laboratory animals (e.g., hormesis vs. linear no-threshold) and detectors for dark matter, solar and supernova neutrinos, and proton decay. Additional proposals compatible with WIPP's primary mission are welcome.

  19. Probing new physics with underground accelerators and radioactive sources

    International Nuclear Information System (INIS)

    New light, weakly coupled particles can be efficiently produced at existing and future high-intensity accelerators and radioactive sources in deep underground laboratories. Once produced, these particles can scatter or decay in large neutrino detectors (e.g. Super-K and Borexino) housed in the same facilities. We discuss the production of weakly coupled scalars ϕ via nuclear de-excitation of an excited element into the ground state in two viable concrete reactions: the decay of the 0+ excited state of 16O populated via a (p,α) reaction on fluorine and from radioactive 144Ce decay where the scalar is produced in the de-excitation of 144Nd⁎, which occurs along the decay chain. Subsequent scattering on electrons, e(ϕ,γ)e, yields a mono-energetic signal that is observable in neutrino detectors. We show that this proposed experimental setup can cover new territory for masses 250 keV≤mϕ≤2me and couplings to protons and electrons, 10−11≤gegp≤10−7. This parameter space is motivated by explanations of the “proton charge radius puzzle”, thus this strategy adds a viable new physics component to the neutrino and nuclear astrophysics programs at underground facilities

  20. Deep underground disposal of radioactive waste in the United Kingdom

    International Nuclear Information System (INIS)

    The UK Government's radioactive waste disposal policy is for intermediate-level waste, and low-level waste as necessary, to be buried in a deep underground repository, and Nirex is the company, owned by the nuclear industry, charged with developing that deep facility. The Company's current focus is on surface-based geological investigations to determine the suitability of a potential repository site near Sellafield, Cumbria, in north-west England. Nirex's next step is to construct a deep underground laboratory (rock characterization facility, or RCF). Subject to a successful outcome from these investigations, Nirex will submit a planning application for the 650m deep repository at the end of this decade; this will be the subject of a further public inquiry. The timetable for the project assumes that a deep repository, capable of taking 400,000m3 of waste, will be available by about 2010. In 1994, the UK Government began reviewing the future of the nuclear power industry and, as a separate exercise, radioactive waste management and disposal policy. Both reviews involved widespread consultations. The radwaste review has concentrated on three aspects: general policies; legal aspects of disposal (including safety requirements); and the principles of site selection and the protection of human health. Preliminary conclusions of the main radwaste review were published in August 1994. These confirmed that government continued to favor disposal rather than extended surface storage of waste. The final outcome of the review, including institutional aspects, is expected in the Spring of 1995