WorldWideScience

Sample records for bouguer gravity anomalies

  1. Interior Alaska Bouguer Gravity Anomaly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A 1 kilometer Complete Bouguer Anomaly gravity grid of interior Alaska. Only those grid cells within 10 kilometers of a gravity data point have gravity values....

  2. Interior Alaska Bouguer Gravity Anomaly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A 1 kilometer Complete Bouguer Anomaly gravity grid of interior Alaska. All grid cells within the rectangular data area (from 61 to 66 degrees North latitude and...

  3. Bouguer Gravity Anomaly Map of Bangladesh (grav8bg)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This coverage includes arcs and arc labels that hold the Bouguer Gravity anomaly value for contours and type contours of the original map of Bangladesh with the same...

  4. SEG US Bouguer Gravity Anomaly Grid

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The SEG gravity data are the product of the ad hoc Gravity Anomaly Map (GAM) Committee, sponsored by the Society of Exploration Geophysicists (SEG) and the U.S....

  5. Maine Onshore Complete Bouguer Gravity Anomaly Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (18,461 records) were compiled by the U. S. Geological Survey. This data base was received on February 23, 1993. Principal gravity...

  6. Optimization schemes for the inversion of Bouguer gravity anomalies

    Science.gov (United States)

    Zamora, Azucena

    associated with structural changes [16]; therefore, it complements those geophysical methods with the same depth resolution that sample a different physical property (e.g. electromagnetic surveys sampling electric conductivity) or even those with different depth resolution sampling an alternative physical property (e.g. large scale seismic reflection surveys imaging the crust and top upper mantle using seismic velocity fields). In order to improve the resolution of Bouguer gravity anomalies, and reduce their ambiguity and uncertainty for the modeling of the shallow crust, we propose the implementation of primal-dual interior point methods for the optimization of density structure models through the introduction of physical constraints for transitional areas obtained from previously acquired geophysical data sets. This dissertation presents in Chapter 2 an initial forward model implementation for the calculation of Bouguer gravity anomalies in the Porphyry Copper-Molybdenum (Cu-Mo) Copper Flat Mine region located in Sierra County, New Mexico. In Chapter 3, we present a constrained optimization framework (using interior-point methods) for the inversion of 2-D models of Earth structures delineating density contrasts of anomalous bodies in uniform regions and/or boundaries between layers in layered environments. We implement the proposed algorithm using three different synthetic gravitational data sets with varying complexity. Specifically, we improve the 2-dimensional density structure models by getting rid of unacceptable solutions (geologically unfeasible models or those not satisfying the required constraints) given the reduction of the solution space. Chapter 4 shows the results from the implementation of our algorithm for the inversion of gravitational data obtained from the area surrounding the Porphyry Cu-Mo Cooper Flat Mine in Sierra County, NM. Information obtained from previous induced polarization surveys and core samples served as physical constraints for the

  7. Bouguer gravity anomaly data grid for the conterminous US

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The grid of gravity anomaly data for the conterminous United States and adjacent marine areas was constructed from National Information Mapping Agency (NIMA) gravity...

  8. Bouguer gravity anomaly data grid for the conterminous US

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The grid of gravity anomaly data for the conterminous United States and adjacent marine areas was constructed from National Information Mapping Agency (NIMA)...

  9. New Bouguer Gravity Maps of Venezuela: Representation and Analysis of Free-Air and Bouguer Anomalies with Emphasis on Spectral Analyses and Elastic Thickness

    Directory of Open Access Journals (Sweden)

    Javier Sanchez-Rojas

    2012-01-01

    Full Text Available A new gravity data compilation for Venezuela was processed and homogenized. Gravity was measured in reference to the International Gravity Standardization Net 1971, and the complete Bouguer anomaly was calculated by using the Geodetic Reference System 1980 and 2.67 Mg/m3. A regional gravity map was computed by removing wavelengths higher than 200 km from the Bouguer anomaly. After the anomaly separation, regional and residual Bouguer gravity fields were then critically discussed in term of the regional tectonic features. Results were compared with the previous geological and tectonic information obtained from former studies. Gravity and topography data in the spectral domain were used to examine the elastic thickness and depths of the structures of the causative measured anomaly. According to the power spectrum analysis results of the gravity data, the averaged Moho depths for the massif, plains, and mountainous areas in Venezuela are 42, 35, and 40 km, respectively. The averaged admittance function computed from the topography and Free-Air anomaly profiles across Mérida Andes showed a good fit for a regional compensation model with an effective elastic thickness of 15 km.

  10. MULTI-SCALE DECOMPOSITION OF BOUGUER GRAVITY ANOMALY AND SEISMIC ACTIVITY IN NORTH CHINA

    Institute of Scientific and Technical Information of China (English)

    FangShengming; ZhangXiankang; JiaShixu; DuanYonghong; YangZhuoxin; QiuShuyan

    2003-01-01

    Bouguer gravity anomaly in North China is decomposed with multi-scale decomposition technique of wavelet transform. Gravity anomalies produced by anomalous density bodies of various scales are revealed from surface to Moho. Characteristics of anomalies of different orders and corresponding structural features are discussed. The result shows that details of wavelet transform of different orders reflect the distribution features of rock density at different depths and in various scales. In most cases, the two sides of a fault-especially a deep and large fault-in North China differ greatly in rock density. This difference records the history of the formation and evolution of the crust. Deep structural setting for the Ms≥7.0 strong earthquakes in this region is also discussed.

  11. World Gravity Map: a set of global complete spherical Bouguer and isostatic anomaly maps and grids

    Science.gov (United States)

    Bonvalot, S.; Balmino, G.; Briais, A.; Kuhn, M.; Peyrefitte, A.; Vales, N.; Biancale, R.; Gabalda, G.; Reinquin, F.

    2012-04-01

    We present here a set of digital maps of the Earth's gravity anomalies (surface free air, Bouguer and isostatic), computed at Bureau Gravimetric International (BGI) as a contribution to the Global Geodetic Observing Systems (GGOS) and to the global geophysical maps published by the Commission for the Geological Map of the World (CGMW) with support of UNESCO and other institutions. The Bouguer anomaly concept is extensively used in geophysical interpretation to investigate the density distributions in the Earth's interior. Complete Bouguer anomalies (including terrain effects) are usually computed at regional scales by integrating the gravity attraction of topography elements over and beyond a given area (under planar or spherical approximations). Here, we developed and applied a worldwide spherical approach aimed to provide a set of homogeneous and high resolution gravity anomaly maps and grids computed at the Earth's surface, taking into account a realistic Earth model and reconciling geophysical and geodetic definitions of gravity anomalies. This first version (1.0) has been computed by spherical harmonics analysis / synthesis of the Earth's topography-bathymetry up to degree 10800. The detailed theory of the spherical harmonics approach is given in Balmino et al., (Journal of Geodesy, 2011). The Bouguer and terrain corrections have thus been computed in spherical geometry at 1'x1' resolution using the ETOPO1 topography/bathymetry, ice surface and bedrock models from the NOAA (National Oceanic and Atmospheric Administration) and taking into account precise characteristics (boundaries and densities) of major lakes, inner seas, polar caps and of land areas below sea level. Isostatic corrections have been computed according to the Airy-Heiskanen model in spherical geometry for a constant depth of compensation of 30km. The gravity information given here is provided by the Earth Geopotential Model (EGM2008), developed at degree 2160 by the National Geospatial

  12. Bolivian Bouguer Anomaly Grid

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A 1 kilometer Bouguer anomaly grid for the country of Bolivia.Number of columns is 550 and number of rows is 900. The order of the data is from the lower left to the...

  13. Minnesota Bouguer Anomaly Grid

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A 1.5 kilometer Bouguer anomaly grid for the state of Minnesota. Number of columns is 404 and number of rows is 463. The order of the data is from the lower left to...

  14. Utah Bouguer Gravity Grid

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A 2.5 kilometer Bouguer anomaly grid for the state of Utah. Number of columns is 196 and number of rows is 245. The order of the data is from the lower left to the...

  15. Ohio Bouguer Gravity Grid

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A 2 kilometer Bouguer anomaly grid for the state of Ohio. Number of columns is 187 and number of rows is 217. The order of the data is from the lower left to the...

  16. Data reduction and tying in regional gravity surveys—results from a new gravity base station network and the Bouguer gravity anomaly map for northeastern Mexico

    Science.gov (United States)

    Hurtado-Cardador, Manuel; Urrutia-Fucugauchi, Jaime

    2006-12-01

    Since 1947 Petroleos Mexicanos (Pemex) has conducted oil exploration projects using potential field methods. Geophysical exploration companies under contracts with Pemex carried out gravity anomaly surveys that were referred to different floating data. Each survey comprises observations of gravity stations along highways, roads and trails at intervals of about 500 m. At present, 265 separate gravimeter surveys that cover 60% of the Mexican territory (mainly in the oil producing regions of Mexico) are available. This gravity database represents the largest, highest spatial resolution information, and consequently has been used in the geophysical data compilations for the Mexico and North America gravity anomaly maps. Regional integration of gravimeter surveys generates gradients and spurious anomalies in the Bouguer anomaly maps at the boundaries of the connected surveys due to the different gravity base stations utilized. The main objective of this study is to refer all gravimeter surveys from Pemex to a single new first-order gravity base station network, in order to eliminate problems of gradients and spurious anomalies. A second objective is to establish a network of permanent gravity base stations (BGP), referred to a single base from the World Gravity System. Four regional loops of BGP covering eight States of Mexico were established to support the tie of local gravity base stations from each of the gravimeter surveys located in the vicinity of these loops. The third objective is to add the gravity constants, measured and calculated, for each of the 265 gravimeter surveys to their corresponding files in the Pemex and Instituto Mexicano del Petroleo database. The gravity base used as the common datum is the station SILAG 9135-49 (Latin American System of Gravity) located in the National Observatory of Tacubaya in Mexico City. We present the results of the installation of a new gravity base network in northeastern Mexico, reference of the 43 gravimeter surveys

  17. DEVELOPMENT OF GRAVITY BOUGUER ANOMALIES OF STATE OF OHIO AND THE ISOSTATIC ANOMALIES IN NORTH ATLANTIC IN FOURIER SERIES

    Science.gov (United States)

    Gravity anomalies were developed in Fourier series in two test areas: 2 x 3 deg area in the State of Ohio, and 10 x 35 deg area in the Atlantic...based only on the original anomaly values and the topography, and the mean gravity anomalies were estimated for the same squares as in the Fourier series method...The result is that this second manual method has smaller standard errors than the Fourier series method, and that this kind of extrapolation

  18. Bouguer Gravity Grid for Idaho

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A 2.5 kilometer Bouguer anomaly grid for the state of Idaho. Number of columns is 215 and number of rows is 320. The order of the data is from the lower left to the...

  19. Bouguer gravity anomaly of the Moon from CE-1 topography data:Implications for the impact basin evolution

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In this study,the terrain correction for lunar free-air gravity anomaly (FAGA) is calculated in spherical coordinates based on the global topography data detected by the laser altimeter on Chang’E-1 (CE-1). The obtained lunar Bouguer gravity anomaly (BGA) reveals density irregularities of the interior mass. BGA is important in characterizing the mascon basins. According to the BGA of the Moon,the South Pole-Aitken (SPA) basin is considered the largest mascon basin on the Moon,and the feature of BGA in the basin implies the impacting direction. Further,the mascon basins seem to be classified into two types,Type Highland and Type Plain. For the mascon basins of Type Highland the dense materials mainly come from the shallow crust,which are associated with the basalt deposits. The other type,Type Plain,includes mascon basins whose major dense materials may be located deep at the litho-sphere,corresponding to the uplifted mantle.

  20. Estimation of Bouguer Density Precision: Development of Method for Analysis of La Soufriere Volcano Gravity Data

    Directory of Open Access Journals (Sweden)

    Hendra Gunawan

    2014-06-01

    Full Text Available http://dx.doi.org/10.17014/ijog.vol3no3.20084The precision of topographic density (Bouguer density estimation by the Nettleton approach is based on a minimum correlation of Bouguer gravity anomaly and topography. The other method, the Parasnis approach, is based on a minimum correlation of Bouguer gravity anomaly and Bouguer correction. The precision of Bouguer density estimates was investigated by both methods on simple 2D syntetic models and under an assumption free-air anomaly consisting of an effect of topography, an effect of intracrustal, and an isostatic compensation. Based on simulation results, Bouguer density estimates were then investigated for a gravity survey of 2005 on La Soufriere Volcano-Guadeloupe area (Antilles Islands. The Bouguer density based on the Parasnis approach is 2.71 g/cm3 for the whole area, except the edifice area where average topography density estimates are 2.21 g/cm3 where Bouguer density estimates from previous gravity survey of 1975 are 2.67 g/cm3. The Bouguer density in La Soufriere Volcano was uncertainly estimated to be 0.1 g/cm3. For the studied area, the density deduced from refraction seismic data is coherent with the recent Bouguer density estimates. New Bouguer anomaly map based on these Bouguer density values allows to a better geological intepretation.    

  1. Estimation of Bouguer Density Precision: Development of Method for Analysis of La Soufriere Volcano Gravity Data

    Directory of Open Access Journals (Sweden)

    Hendra Gunawan

    2014-06-01

    Full Text Available http://dx.doi.org/10.17014/ijog.vol3no3.20084The precision of topographic density (Bouguer density estimation by the Nettleton approach is based on a minimum correlation of Bouguer gravity anomaly and topography. The other method, the Parasnis approach, is based on a minimum correlation of Bouguer gravity anomaly and Bouguer correction. The precision of Bouguer density estimates was investigated by both methods on simple 2D syntetic models and under an assumption free-air anomaly consisting of an effect of topography, an effect of intracrustal, and an isostatic compensation. Based on simulation results, Bouguer density estimates were then investigated for a gravity survey of 2005 on La Soufriere Volcano-Guadeloupe area (Antilles Islands. The Bouguer density based on the Parasnis approach is 2.71 g/cm3 for the whole area, except the edifice area where average topography density estimates are 2.21 g/cm3 where Bouguer density estimates from previous gravity survey of 1975 are 2.67 g/cm3. The Bouguer density in La Soufriere Volcano was uncertainly estimated to be 0.1 g/cm3. For the studied area, the density deduced from refraction seismic data is coherent with the recent Bouguer density estimates. New Bouguer anomaly map based on these Bouguer density values allows to a better geological intepretation.    

  2. Bouguer gravity anomaly and isostatic residual gravity maps of the Tonopah 1 degree by 2 degrees Quadrangle, central Nevada

    Science.gov (United States)

    Plouff, Donald

    1992-01-01

    These gravity maps are part of a folio of maps of the Tonopah 1 degree by 2 degrees quadrangle, Nevada, prepared under the Conterminous United States Mineral Assessment Program. Each product of the folio is designated by a different letter symbol, starting with A, in the MF-1877 folio. The quadrangle encompasses an area of about 19,500 km2  in the west central part of Nevada.

  3. Isostatic residual gravity anomaly data grid for the conterminous US

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The grid of isostatic residual gravity anomaly data was produced from the grid of Bouguer gravity anomaly data (see Bouguer gravity metadata) by using an...

  4. Worldwide complete spherical Bouguer and isostatic anomaly maps

    Science.gov (United States)

    Bonvalot, S.; Balmino, G.; Briais, A.; Peyrefitte, A.; Vales, N.; Biancale, R.; Gabalda, G.; Reinquin, F.

    2011-12-01

    We present here a set of digital maps of the Earth's gravity anomalies (surface "free air", Bouguer and isostatic), computed at Bureau Gravimetric International (BGI) as a contribution to the Global Geodetic Observing Systems (GGOS) and to the global geophysical maps published by the Commission for the Geological Map of the World (CGMW). The free air and Bouguer anomaly concept is extensively used in geophysical interpretation to investigate the density distributions in the Earth's interior. Complete Bouguer anomalies (including terrain effects) are usually computed at regional scales by integrating the gravity attraction of topography elements over and beyond a given area (under planar or spherical approximations). Here, we developed and applied a worldwide spherical approach aimed to provide a set of homogeneous and high resolution gravity anomaly maps and grids computed at the Earth's surface, taking into account a realistic Earth model and reconciling geophysical and geodetic definitions of gravity anomalies. This first version (1.0) has been computed by spherical harmonics analysis / synthesis of the Earth's topography-bathymetry up to degree 10800. The detailed theory of the spherical harmonics approach is given in Balmino et al., (Journal of Geodesy, submitted). The Bouguer and terrain corrections have thus been computed in spherical geometry at 1'x1' resolution using the ETOPO1 topography/bathymetry, ice surface and bedrock models from the NOAA (National Oceanic and Atmospheric Administration) and taking into account precise characteristics (boundaries and densities) of major lakes, inner seas, polar caps and of land areas below sea level. Isostatic corrections have been computed according to the Airy Heiskanen model in spherical geometry for a constant depth of compensation of 30km. The gravity information given here is provided by the Earth Geopotential Model (EGM2008), developed at degree 2160 by the National Geospatial Intelligence Agency (NGA) (Pavlis

  5. Bouguer gravity regional and residual separation application to geology and environment

    CERN Document Server

    Mallick, K; Sharma, KK

    2012-01-01

    Resolving regional and residual components arising out of deeper and shallower sources in observed Bouguer gravity anomalies is an old problem. The technique covered here is an attempt to sort out the difficulties that performs better than existing methods.

  6. Elevation Difference and Bouguer Anomaly Analysis Tool (EDBAAT) User's Guide

    Science.gov (United States)

    Smittle, Aaron M.; Shoberg, Thomas G.

    2017-06-16

    This report describes a software tool that imports gravity anomaly point data from the Gravity Database of the United States (GDUS) of the National Geospatial-Intelligence Agency and University of Texas at El Paso along with elevation data from The National Map (TNM) of the U.S. Geological Survey that lie within a user-specified geographic area of interest. Further, the tool integrates these two sets of data spatially and analyzes the consistency of the elevation of each gravity station from the GDUS with TNM elevation data; it also evaluates the consistency of gravity anomaly data within the GDUS data repository. The tool bins the GDUS data based on user-defined criteria of elevation misfit between the GDUS and TNM elevation data. It also provides users with a list of points from the GDUS data, which have Bouguer anomaly values that are considered outliers (two standard deviations or greater) with respect to other nearby GDUS anomaly data. “Nearby” can be defined by the user at time of execution. These outputs should allow users to quickly and efficiently choose which points from the GDUS would be most useful in reconnaissance studies or in augmenting and extending the range of individual gravity studies.

  7. Bouguer gravity study of middle section of Tanlu fault

    Institute of Scientific and Technical Information of China (English)

    TANG Xin-gong; CHEN Yong-shun; TANG Zhe

    2006-01-01

    Although Tanlu fault is one of the most important tectonic fault zones and active earthquake belts in eastern China,little is known about its deep structure. In this study, we use the existing Bouguer gravity data to study the middle section of the Tanlu fault zone, which is also known as the Yishu fault zone. Our gravity inversion results indicate that the Moho has an abrupt offset in depth at the Tanlu fault zone and it has a relatively smooth variation away from the fault zone. The crustal structures on both sides are different from each other. Sediment is thin on the west side with an average thickness of less than 5 km, while it is as thick as 6 km on the east side. The thinnest sediment (3~4 km) is at the fault zone. Moho depth increases from 33 to 34 km on east side and from 36 to 38 km on west side. Tanlu fault zone is shown as a wide zone of linear gradient in the Bouguer gravity anomaly.

  8. The origin of lunar mascons - Analysis of the Bouguer gravity associated with Grimaldi

    Science.gov (United States)

    Phillips, R. J.; Dvorak, J.

    Grimaldi is a relatively small multi-ringed basin located on the western limb of the moon. Spacecraft free-air gravity data reveal a mascon associated with the inner ring of this structure, and the topographic correction to the local lunar gravity field indicates a maximum Bouguer anomaly of +90 milligals at an altitude of 70 kilometers. Approximately 20% of this positive Bouguer anomaly can be attributed to the mare material lying within the inner ring of this basin. From a consideration of the Bouguer gravity and structure of large lunar craters comparable in size to the central basin of Grimaldi, it is suggested that the remaining positive Bouguer anomaly is due to a centrally uplifted plug of lunar mantle material. The uplift was caused by inward crustal collapse which also resulted in the formation of the concentric outer scarp of Grimaldi. In addition, an annulus of low density material, probably a combination of ejecta and in situ breccia, is required to fully reproduce the Bouguer gravity signature across this basin. It is proposed that Grimaldi supplies a critical test in the theory of mascon formation: crustal collapse by ring faulting and central uplift to depths of the crust-mantle boundary are requisites

  9. Separation of Bouguer anomaly map using cellular neural network

    Science.gov (United States)

    Albora, A. Muhittin; Ucan, Osman N.; Ozmen, Atilla; Ozkan, Tulay

    2001-02-01

    In this paper, a modern image-processing technique, the Cellular Neural Network (CNN) has been firstly applied to Bouguer anomaly map of synthetic examples and then to data from the Sivas-Divrigi Akdag region. CNN is an analog parallel computing paradigm defined in space and characterized by the locality of connections between processing neurons. The behaviour of the CNN is defined by two template matrices and a template vector. We have optimised the weight coefficients of these templates using the Recurrent Perceptron Learning Algorithm (RPLA). After testing CNN performance on synthetic examples, the CNN approach has been applied to the Bouguer anomaly of Sivas-Divrigi Akdag region and the results match drilling logs done by Mineral Research and Exploration (MTA).

  10. INTERPRETATION OF BOUGUER ANOMALY TO DETERMINE FAULT AND SUBSURFACE STRUCTURE AT BLAWAN-IJEN GEOTHERMAL AREA

    Directory of Open Access Journals (Sweden)

    Anjar Pranggawan Azhari

    2016-10-01

    Full Text Available Gravity survey has been acquired by Gravimeter Lacoste & Romberg G-1035 at Blawan-Ijen geothermal area. It was a focusing study from previous research. The residual Bouguer anomaly data was obtain after applying gravity data reduction, reduction to horizontal plane, and upward continuation. Result of Bouguer anomaly interpretation shows occurrence of new faults and their relative movement. Blawan fault (F1, F2, F3, and F6 are normal fault. Blawan fault is main fault controlling hot springs at Blawan-Ijen geothermal area. F4 and F5 are oblique fault and forming a graben at Banyupahit River. F7 is reverse fault. Subsurface model shows that Blawan-Ijen geothermal area was dominated by the Ijen caldera forming ignimbrite (ρ1=2.670 g/cm3, embedded shale and sand (ρ2=2.644 g/cm3 as Blawan lake sediments, magma intrusion (ρ3=2.814 g/cm3 & ρ7=2.821 g/cm3, andesite rock (ρ4=2.448 g/cm3 as geothermal reservoir, pyroclastic air fall deposits (ρ5=2.613 g/cm3 from Mt. Blau, and lava flow (ρ6=2.890 g/cm3.

  11. Spherical harmonic modelling to ultra-high degree of Bouguer and isostatic anomalies

    Science.gov (United States)

    Balmino, G.; Vales, N.; Bonvalot, S.; Briais, A.

    2012-07-01

    The availability of high-resolution global digital elevation data sets has raised a growing interest in the feasibility of obtaining their spherical harmonic representation at matching resolution, and from there in the modelling of induced gravity perturbations. We have therefore estimated spherical Bouguer and Airy isostatic anomalies whose spherical harmonic models are derived from the Earth's topography harmonic expansion. These spherical anomalies differ from the classical planar ones and may be used in the context of new applications. We succeeded in meeting a number of challenges to build spherical harmonic models with no theoretical limitation on the resolution. A specific algorithm was developed to enable the computation of associated Legendre functions to any degree and order. It was successfully tested up to degree 32,400. All analyses and syntheses were performed, in 64 bits arithmetic and with semi-empirical control of the significant terms to prevent from calculus underflows and overflows, according to IEEE limitations, also in preserving the speed of a specific regular grid processing scheme. Finally, the continuation from the reference ellipsoid's surface to the Earth's surface was performed by high-order Taylor expansion with all grids of required partial derivatives being computed in parallel. The main application was the production of a 1' × 1' equiangular global Bouguer anomaly grid which was computed by spherical harmonic analysis of the Earth's topography-bathymetry ETOPO1 data set up to degree and order 10,800, taking into account the precise boundaries and densities of major lakes and inner seas, with their own altitude, polar caps with bedrock information, and land areas below sea level. The harmonic coefficients for each entity were derived by analyzing the corresponding ETOPO1 part, and free surface data when required, at one arc minute resolution. The following approximations were made: the land, ocean and ice cap gravity spherical

  12. Anomalies and gravity

    CERN Document Server

    Mielke, E W

    2006-01-01

    Anomalies in Yang-Mills type gauge theories of gravity are reviewed. Particular attention is paid to the relation between the Dirac spin, the axial current j_5 and the non-covariant gauge spin C. Using diagrammatic techniques, we show that only generalizations of the U(1)- Pontrjagin four--form F^ F= dC arise in the chiral anomaly, even when coupled to gravity. Implications for Ashtekar's canonical approach to quantum gravity are discussed.

  13. Nose Structure Delineation of Bouguer Anomaly as the Interpretation Basis of Probable Hydrocarbon Traps: A Case Study on the Mainland Area of Northwest Java Basin

    Directory of Open Access Journals (Sweden)

    Kamtono Kamtono

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.v7i3.144Two important aspects in the exploration of oil and gas are technology and exploration concepts, but the use of technology is not always suitable for areas with geological conditions covered by young volcanic sediments or limestone. The land of the Northwest Java Basin is mostly covered by young volcanic products, so exploration using seismic methods will produce less clear image resolution. To identify and interpret the subsurface structure and the possibility of hydrocarbon trap, gravity measurements have been carried out. Delineation of nose structures of a Bouguer anomaly map was used to interpret the probability of hydrocarbon traps. The result of the study shows that the gravity anomalies could be categorized into three groups : low anomaly (< 34 mgal, middle anomaly (34 - 50 mgal, and high anomaly (> 50 mgal. The analysis of Bouguer anomaly indicates that the low anomaly is concentrated in Cibarusa area as a southern part of Ciputat Subbasin, and in Cikampek area. The result of delineation of the Bouguer anomaly map shows the nose structures existing on Cibinong-Cileungsi and Pangkalan-Bekasi Highs, while delineation of residual anomaly map shows the nose structures occurs on Cilamaya-Karawang high. Locally, the gas fields of Jatirangon and Cicauh areas exist on the flank of the nose structure of Pangkalan-Bekasi High, while the oil/gas field of Northern Cilamaya is situated on the flank of the nose structure of Cilamaya-Karawang High. The concept of fluid/gas migration concentrated on nose structures which are delineated from gravity data can be applied in the studied area. This concept needs to be tested in other oil and gas field areas.

  14. Processing the Bouguer anomaly map of Biga and the surrounding area by the cellular neural network: application to the southwestern Marmara region

    Science.gov (United States)

    Aydogan, D.

    2007-04-01

    An image processing technique called the cellular neural network (CNN) approach is used in this study to locate geological features giving rise to gravity anomalies such as faults or the boundary of two geologic zones. CNN is a stochastic image processing technique based on template optimization using the neighborhood relationships of cells. These cells can be characterized by a functional block diagram that is typical of neural network theory. The functionality of CNN is described in its entirety by a number of small matrices (A, B and I) called the cloning template. CNN can also be considered to be a nonlinear convolution of these matrices. This template describes the strength of the nearest neighbor interconnections in the network. The recurrent perceptron learning algorithm (RPLA) is used in optimization of cloning template. The CNN and standard Canny algorithms were first tested on two sets of synthetic gravity data with the aim of checking the reliability of the proposed approach. The CNN method was compared with classical derivative techniques by applying the cross-correlation method (CC) to the same anomaly map as this latter approach can detect some features that are difficult to identify on the Bouguer anomaly maps. This approach was then applied to the Bouguer anomaly map of Biga and its surrounding area, in Turkey. Structural features in the area between Bandirma, Biga, Yenice and Gonen in the southwest Marmara region are investigated by applying the CNN and CC to the Bouguer anomaly map. Faults identified by these algorithms are generally in accordance with previously mapped surface faults. These examples show that the geologic boundaries can be detected from Bouguer anomaly maps using the cloning template approach. A visual evaluation of the outputs of the CNN and CC approaches is carried out, and the results are compared with each other. This approach provides quantitative solutions based on just a few assumptions, which makes the method more

  15. Imprint of Southern Red Sea Major Tectonic Zone In A New Bouguer Anomaly Map of Southern Yemen Margin

    Science.gov (United States)

    Blecha, V.

    A new Bouguer anomaly map of western part of southern Yemen margin has been compiled. Densities of rock samples from main geological units (Precambrian base- ment, Mesozoic sediments, Tertiary volcanites) have been measured and used for grav- ity modeling. Regional gravity map indicates decrease of thickness of continental crust from volcanites of the Yemen Trap Series towards the coast of the Gulf of Aden. Most remarkable feature in the map of residual anomalies is a positive anomaly over the Dhala graben. The Dhala graben is a prominent geological structure in the area of study trending parallel to the Red Sea axis. Gravity modeling on a profile across the Dhala graben presumes intrusive plutonic rocks beneath the graben. There are two other areas in the southwestern tip of Arabia, which have essentially the same struc- tural position as the Dhala graben: the Jabal Tirf volcanic rift zone in the southern Saudi Arabia and Jabal Hufash extensional zone in northern Yemen. All three areas extend along the line trending parallel to the Red Sea axis with length of about 500 km. The line coincides with the axis of Afar (Danakil) depression after Arabia is shifted and rotated back to Africa. These facts imply conclusion that the Oligocene - Early Miocene magmatic activity on the Jabal Tirf - Dhala lineament is related to the same original deep tectonic zone, forming present-day Afar depression and still active.

  16. Refining geoid and vertical gradient of gravity anomaly

    Directory of Open Access Journals (Sweden)

    Zhang Chijun

    2011-11-01

    Full Text Available We have derived and tested several relations between geoid (N and quasi-geoid (ζ with model validation. The elevation correction consists of the first-term (Bouguer anomaly and second-term (vertical gradient of gravity anomaly. The vertical gradient was obtained from direct measurement and terrain calculation. The test results demonstrated that the precision of geoid can reach centimeter-level in mountains less than 5000 meters high.

  17. Investigating the effect of different terrain modeling techniques on the computation of local gravity anomalies

    Science.gov (United States)

    Tsoulis, Dimitrios; Patlakis, Konstantinos

    2017-04-01

    Gravity reductions and gravity anomalies express important tools for the analysis and interpretation of real gravity measurements at all spatial scales. Simple geometries of planar or spherical slabs for the topographic masses underlying the computation point down to a reference height surface produce the traditional definition of simple Bouguer anomalies. However, especially for gravity measurements obtained from local gravity surveys stretching up to only a few tens of kilometers, a detailed consideration of the deviations of the surface topographic relief from the ideal slab geometry is required and necessary in order to obtain the so-called refined Bouguer anomalies. The present contribution examines the further refinement of these computations depending on the exact geometric representation of the topographic surface and the corresponding masses defining the terrain correction quantity. Using as input data 328 surface gravity observations and a 20 km x 15 km Digital Terrain Model with a 50 m x 50 m spatial resolution of a steep terrain area in the Bavarian Alps different sets of gravity anomalies were computed from different geometrical and mathematical approximations of the topographic masses and its corresponding gravitational effect. Right rectangular prisms, polyhedrons, bilinear surfaces, mass-line and mass-prism FFT representations of the terrain effect have been implemented for the evaluation of refined Bouguer gravity anomalies over the 20 km x 15 km region and the computed grids have been compared both against each other as well as with respect to the topographic height.

  18. About the link of intraplate earthquakes allocations for South and North America with gravity field anomalies

    Science.gov (United States)

    Ryzhii, B. P.; Nachapkin, N. I.; Milanovsky, S. Yu.

    2003-04-01

    According developed concept the areas heightened intraplate seismicity are connected with the increased silica contents in the rocks, i.e. with patterns of acidic composition and, accordingly, with negative Bouguer gravity anomalies. Done statistical analysis of intraplate allocation of earthquakes on territory of Russia, Africa and Australia has confirmed effect of correlation of their position with areas of negative Bouguer anomalies. In this paper we made pattern analysis of the link of areas heightened intraplate seismicity for South and North America with anomalies of a gravity field - Bouguer and isostatic. If Bouguer anomalies are mainly related to morphology and composition of structural complexes of Earth crust, the isostatic anomalies, as a rule, are connected with acting tectonic forces and characterize a modern stress of Earth crust. For South America we analyzed 139 seismic events, which have occurred in a crust of Brazilian Platform in the period from 1692 to 2002. In regions with negative values of Bouguer anomalies, smaller than its mean for the Platform (-30 mgal), there occur 70% of all earthquakes. The correlation of a magnitude and depth of a hypocenter of earthquake is supervised depending on the value of Bouguer anomalies in its epicenter. In regions with positive values of isostatic anomaly, larger its mean magnitude for the Platform (1 mgal), there occur 77 % of all earthquakes. For North America we analyzed 383 seismic events which have occurred in a crust of North-American Platform in a period with 1929 on 2002. From 383 events 288 (75 %) has taken place in areas with negative values of Bouguer anomalies and 95 (25 %) - with positive values. Thus, the amount of earthquakes recorded in a negative gravitational field, in 4 times exceeds an amount of earthquakes in a positive field. At values of isostatic anomalies close to normal (-10 - 10 mgal) there was 55 % of all earthquakes and 41 % - recorded in ecstatically disturbed regions at values

  19. GRAVITY ANOMALIES OF THE MOON

    Directory of Open Access Journals (Sweden)

    S. G. Pugacheva

    2015-01-01

    Full Text Available The source of gravity anomalies of the Moon are large mascons with a high mass concentration at a depth of volcanic plains and lunar Maria. New data on the gravitational field of the Moon were obtained from two Grail spacecrafts. The article presents the data of physical and mechanical properties of the surface soil layer of the lunar Maria and gives an assessment of the chemical composition of the soil. There have been calculated heterogeneity parameters of the surface macro-relief of the lunar Maria: albedo, soil density, average grain diameter of the particles forming the surface layer and the volume fraction occupied by particles. It can be assumed that mascons include rich KREEP rocks with a high content of thorium and iron oxide. Formation of mascons is connected with intensive development of basaltic volcanism on the Moon in the early periods of its existence.

  20. Complete Bouguer gravity map of the Nevada Test Site and vicinity, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Healey, D.L.; Harris, R.N.; Ponce, D.A.; Oliver, H.W.

    1987-12-31

    About 15,000 gravity stations were used to create the gravity map. Gravity studies at the Nevada Test Site were undertaken to help locate geologically favorable areas for underground nuclear tests and to help characterize potential high-level nuclear waste storage sites. 48 refs. (TEM)

  1. Análisis cortical de la cuenca Golfo de SanJorge utilizando anomalías de Bouguer y ondulaciones delgeoide Crustal analysis of the San Jorge Basin basedon Bouguer anomalies and geoid undulations

    Directory of Open Access Journals (Sweden)

    LauraL. Cornaglia

    2009-11-01

    Full Text Available Con la finalidad de evaluar características tales comotipo de corteza y estado isostático de la cuenca sedimentaria del Golfo de SanJorge, analizamos los valores observados de anomalías de Bouguer y deondulaciones geoidales calculadas desde anomalías de aire libre por el métodode fuentes equivalentes, comparándolos con las respuestas de un modelo decuenca compensado hidrostáticamente determinado a partir de la masa topográficade la zona y el relleno sedimentario de la cuenca. Por ambos caminosencontramos un exceso de masas que interpretamos como significativa antirraízcortical y predice subsidencia para el futuro. Otras alternativas como porejemplo la intrusión de densas masas intracorticales, no alteran lasconclusiones.Toevaluate crustal characteristics such as crust type and isostatic balance ofthe sedimentary San Jorge Gulf Basin, we analyzed observed Bouguer anomaliesand geoid undulations calculated from free-air anomalies and equivalentsources, comparing them with the responses of a hydrostatic compensated basinmodel prepared using the topographic mass of the area and the basin sedimentaryfill. In both cases we found an excess mass that we explained as a significantcrustal anti-root that predicts subsidence in the future. Others alternativesas for example the emplacement of dense intracrustal masses, do not modifiedthe conclusions.

  2. Consistent anomalies of the induced W gravities

    CERN Document Server

    Abud, M; Cappiello, L

    1995-01-01

    The BRST anomaly which may be present in the induced W_n gravity quantized on the light-cone is evaluated in the geometrical framework of Zucchini. The cocycles linked by the cohomology of the BRST operator to the anomaly are straightforwardly calculated thanks to the analogy between this formulation and the Yang-Mills theory. We give also a conformally covariant formulation of these quantities including the anomaly, which is valid on arbitrary Riemann surfaces. The example of the W_3 theory is discussed and a comparison with other candidates for the anomaly available in the literature is presented.

  3. Analyses on Origin of positive gravity anomalies of sedimentary basins of the Ross Sea

    Science.gov (United States)

    Gao, Jinyao; Yang, Chunguo; Ji, Fei; Wang, Wei; Shen, Zhongyan

    2017-04-01

    We have adopted gridded products describing surface elevation, ice-thickness and the sea floor and subglacial bed elevation south of 60◦ S from Bedmap2 and north of 60◦ S from JGP95E to calculate Bouguer and isostatic gravity anomaly of the Ross Sea region based on the DTU10 free-air gravity anomaly.Taking a view of the free-air, Bouguer and isostatic gravity anomalies, it is unusual that high values overlay the Victoria Land Basin, Central Trough, Northern Basin and Northern Central Trough while basement highs are associated with low value. A number of studies have attributed the high gravity anomalies across the depocenters to high-density volcanics deep within the basins or magmatic intrusions within the region of the thinned crust or upper mantle (e. g., Edwards et al., 1987). According to the conclusion from Karner et al. (2005), the anticorrelation of gravity anomalies with sediment basement can be reproduced if the flexural strength of the lithosphere during the late Cretaceous rifting is significantly lower than the flexural strength of the lithosphere at the Oligocene and Neogene time of sedimentation. We note that the isostatic gravity anomalies are higher than the free-air gravity anomalies adjacent to the Transantarctic Mountains, and vice versa away from the Transantarctic Mountains. We may ignore the constraints offered by the tranditional isostasy in the local gravity studies of the Ross Sea basins, especially advancing the concept of high density material in the lower crust or upper mantle. In particular, the modeled gravity does not laterally integrate to zero, due to the existence of unbalanced forces induced by mantle. Along the outer shelf uplift zone surrouding Antarctica, the positive gravity belt has higher values in free-air gravity anomalies than those in isostatic gravity anomalies. Meanwhile, the positive gravity belt of isostatic gravity anomalies almost disappears in the background anomalies of 20 mGal to 10 mGal facing the

  4. Topographic gravity modeling for global Bouguer maps to degree 2160: Validation of spectral and spatial domain forward modeling techniques at the 10 microGal level

    Science.gov (United States)

    Hirt, Christian; Reußner, Elisabeth; Rexer, Moritz; Kuhn, Michael

    2016-09-01

    Over the past years, spectral techniques have become a standard to model Earth's global gravity field to 10 km scales, with the EGM2008 geopotential model being a prominent example. For some geophysical applications of EGM2008, particularly Bouguer gravity computation with spectral techniques, a topographic potential model of adequate resolution is required. However, current topographic potential models have not yet been successfully validated to degree 2160, and notable discrepancies between spectral modeling and Newtonian (numerical) integration well beyond the 10 mGal level have been reported. Here we accurately compute and validate gravity implied by a degree 2160 model of Earth's topographic masses. Our experiments are based on two key strategies, both of which require advanced computational resources. First, we construct a spectrally complete model of the gravity field which is generated by the degree 2160 Earth topography model. This involves expansion of the topographic potential to the 15th integer power of the topography and modeling of short-scale gravity signals to ultrahigh degree of 21,600, translating into unprecedented fine scales of 1 km. Second, we apply Newtonian integration in the space domain with high spatial resolution to reduce discretization errors. Our numerical study demonstrates excellent agreement (8 μGgal RMS) between gravity from both forward modeling techniques and provides insight into the convergence process associated with spectral modeling of gravity signals at very short scales (few km). As key conclusion, our work successfully validates the spectral domain forward modeling technique for degree 2160 topography and increases the confidence in new high-resolution global Bouguer gravity maps.

  5. Geologic Interpretation of Gravity Anomalies

    Science.gov (United States)

    1990-04-19

    the density of the crystalline rocks virtually depends only on their chemical -mineralogical composition and structural special features. 0 DOC...point out that deep analog of gabbro (a-2.9 - 3.1 g/cm3) is eclogite, in essence not differing from it by chemical composition, but which is...qrivity interpretation. Geophys.. vol. X XV, No 3, I II0. If is g hs e s D. The analitic bas’ic of gravity interpirrtation. Geophys., J sin g K

  6. Processing and interpretation of gravity anomaly data in Dagang-west Bohai area

    Energy Technology Data Exchange (ETDEWEB)

    Hualin, Z.; Hua, Y

    1991-01-01

    In the area of Dagang oil field and west Bohai oil field, there exist three major density interfaces: S{sub 1} interface between Cenozoic group and Mesozoic group (or upper Paleozoic group), S{sub 2} interface between Mesozoic-group (or upper Paleozoic group) and lower Paleozoic group, and S{sub 3} interface-Moho (Mohorovicic discontinuity). Gravimetric Bouguer anomaly in this area is actually the sum of the anomalies which result from the three interfaces. The author's objective is to ascertain the depth of S{sub 2} interface (the top of lower Paleozoic group) by separating out S{sub 2} interface anomaly from existing Bouguer anomaly map. This is achieved in the following steps. First gravity values {Beta}g{sub s{sub 1}} and {Beta}g{sub s{sub 3}} which result from S{sub 1} and S{sub 3} interfaces are calculated respectively by making forward modeling with the use of linear element method. Then, gravity value {Beta}g{sub s{sub 2}} corresponding to S{sub 2} interface is obtained by subtracting {Beta}g{sub s{sub 1}} and {Beta}s{sub s{sub 3}} from the total observed gravity value. Finally, the depth of S{sub 2} interface can be ascertained by making inverse modeling of {Beta}g{sub s{sub 2}} with the use of Cordell's method. This calculated depth quite agrees with those which are determined respectively from seismic reflection survey and drilling.

  7. Conformal Anomaly and Counterterms in Designer Gravity

    CERN Document Server

    Anabalon, Andres; Choque, David; Martinez, Cristian

    2015-01-01

    We construct concrete counterterms of the Balasubramanian-Kraus type for Einstein-scalar theories with designer gravity boundary conditions in AdS$_{4}$, so that the total action is finite on-shell and satisfy a well defined variational principle for an arbitrary scalar field potential. We focus on scalar fields with the conformal mass, $m^{2}=-2l^{-2}$, and show that the holographic mass matches the Hamiltonian mass for any boundary conditions. We compute the conformal anomaly of the dual field theory in the generic case, as well as when there exist logarithmic branches of non-linear origin. As expected, the conformal anomaly vanishes for the boundary conditions that are AdS invariant. When the anomaly does not vanish, the dual stress tensor describes a thermal gas with an equation of state related to the boundary conditions of the scalar field. When the anomaly vanishes, we recover the dual theory of a massless thermal gas. As an application of the formalism, we consider a general family of exact hairy blac...

  8. Gravity and geothermal anomalies in Borno Basin, Nigeria ...

    African Journals Online (AJOL)

    PROMOTING ACCESS TO AFRICAN RESEARCH ... This paper briefly attempts the interpretation of the gravity anomalies to ... gravity data to geodynamics in the exploration for geothermal energy as an additional source of energy for Nigeria.

  9. Axial gravity, massless fermions and trace anomalies

    Science.gov (United States)

    Bonora, L.; Cvitan, M.; Prester, P. Dominis; Pereira, A. Duarte; Giaccari, S.; Štemberga, T.

    2017-08-01

    This article deals with two main topics. One is odd parity trace anomalies in Weyl fermion theories in a 4d curved background, the second is the introduction of axial gravity. The motivation for reconsidering the former is to clarify the theoretical background underlying the approach and complete the calculation of the anomaly. The reference is in particular to the difference between Weyl and massless Majorana fermions and to the possible contributions from tadpole and seagull terms in the Feynman diagram approach. A first, basic, result of this paper is that a more thorough treatment, taking account of such additional terms and using dimensional regularization, confirms the earlier result. The introduction of an axial symmetric tensor besides the usual gravitational metric is instrumental to a different derivation of the same result using Dirac fermions, which are coupled not only to the usual metric but also to the additional axial tensor. The action of Majorana and Weyl fermions can be obtained in two different limits of such a general configuration. The results obtained in this way confirm the previously obtained ones.

  10. Preliminary interpretation of satellite gravity and magnetic anomalies in the region of the Philippine Sea Plate

    Science.gov (United States)

    Chen, C.; Hu, Z.; Du, J.; Wang, Q.

    2011-12-01

    The Philippine Sea, situated in the northwestern Pacific, is one of the largest marginal seas on the Earth. Analysis of the Philippine Sea's intraplate fault tectonic systems and lithosphere's density and magnetism structures has a significant contribution to understanding not only the dynamic principles of subduction and convergence zones but also effect of plate subduction on back-arc area. It is also important to have cognizance for structure evolution of the ocean crust, the tension and extending progress of marginal sea basins and the mechanisms of geodynamics. Meanwhile, it can be a significant approach for researching the evolution of the East China Sea and the South China Sea. Using high-precision gravity forwarding method based on spatial domain in spherical coordinate, we have calculated the Bouguer gravity disturbance (BGD) in the Philippine Sea based on the ETOPO1 1 arc-minute topography & bathymetry data and the gravity field model EIGEN-6C. After removing the gravity effect of the sediments and deep abnormal materials, we make spherical cap harmonic analysis of the residual anomaly and obtain the topography of Moho and apparent-density's distribution of our study area by alternate iteration inversion method. Then, we calculate the distributions of the study area's magnetic anomalies based on the Earth magnetic model NGDC720, reduce to the pole of the study area's magnetic anomalies by the equivalent source method based on spherical prism magnetic forwarding, inverse the processed magnetic anomalies with spherical cap harmonic analysis to obtain the topography of Curie surface and the apparent magnetic susceptibility distribution. Finally, we divide the Philippine Sea block into tectonic units and derive the faults distributions through the analysis of gravity magnetic anomalies' linear characteristics. The results show that West Philippine Basin is divided by Central Basin Ridge into two block units, the tectonic trend of the north block is south

  11. Forward Modeling of Gravity, Gravity Gradients,and Magnetic Anomalies due to Complex Bodies

    Institute of Scientific and Technical Information of China (English)

    Luo Yao; Yao Changli

    2007-01-01

    On the basis of the results of improved analytical expression of computation of gravity anomalies due to a homogeneous polyhedral body composed of polygonal facets, and applying the forward theory with the coordinate transformation of vectors and tensors, we deduced both the analytical expressions for gravity gradient tensors and for magnetic anomalies of a polygon, and obtained new analytical expressions for computing vertical gradients of gravity anomalies and vertical component of magnetic anomalies caused by a polyhedral body. And also we developed explicitly the complete unified expressions for the calculation of gravity anomalies, gravity gradient, and magnetic anomalies due to the homogeneous polyhedron. Furthermore, we deduced new analytical expressions for computing vertical gradients of gravity anomalies due to a finite rectangular prism by applying the newly obtained expressions for gravity gradient tensors due to a polyhedral target body. Comparison with forward calculation of models shows the correctness of these new expressions. It will reduce forward calculation time of gravity-magnetic anomalies and improve computational efficiency by applying our unified expressions for joint forward modeling of gravity-magnetic anomalies due to homogeneous polyhedral bodies.

  12. Maine Offshore Free-air Anomaly Gravity

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (5,363 records) were compiled by the U. S. Geological Survey. This data base was received on February 23, 1993. Principal gravity parameters...

  13. The location and nature of the Telemzan High Ghadames basin boundary in southern Tunisia based on gravity and magnetic anomalies

    Science.gov (United States)

    Gabtni, H.; Jallouli, C.; Mickus, K. L.; Zouari, H.; Turki, M. M.

    2006-03-01

    Gravity and magnetic data were analyzed to add constraints on the location and nature of the Telemzan-Ghadames boundary (TGB) and structure of the Ghadames basin in southern Tunisia. TGB is the boundary between the thick sedimentary cover of the intracratonic Ghadames basin to the south and the thin sedimentary cover of the Saharan platform to the north. The upward continuation of the Bouguer gravity anomalies showed that the TGB is a regional geophysical feature that may have controlled the amount of sediment being deposited both north and south of the boundary and the tectonic environment in the region since Paleozoic time. To emphasize the shorter wavelength gravity and magnetic anomalies, a series of gray scale images of the directional horizontal gradients were constructed that determined a series of previously unknown east-west-trending gravity and magnetic anomalies south of 31.6°N that correspond to lineaments seen on a Landsat 7 image and the location of the TGB. Also, an edge-enhancement analysis illustrated the same linear gravity anomalies and showed the subbasins and uplifts within the Ghadames basin had source depths of between 0.5 and 3.4 km. A north-south trending gravity model showed that the TGB is a relatively gradual feature (possibly basement stepped down by relatively low-displacement faulting) controlling the subsidence of the main Ghadames basin and confirms the edge-enhancement analysis that subbasin S3 and uplift U1 are the main structural features within the Ghadames basin. The knowledge of basement architecture of the Ghadames basin is important for future petroleum exploration within this intracratonic basin.

  14. Detailed gravity anomalies from GEOS-3 satellite altimetry data

    Science.gov (United States)

    Gopalapillai, G. S.; Mourad, A. G.

    1978-01-01

    A technique for deriving mean gravity anomalies from dense altimetry data was developed. A combination of both deterministic and statistical techniques was used. The basic mathematical model was based on the Stokes' equation which describes the analytical relationship between mean gravity anomalies and geoid undulations at a point; this undulation is a linear function of the altimetry data at that point. The overdetermined problem resulting from the excessive altimetry data available was solved using Least-Squares principles. These principles enable the simultaneous estimation of the associated standard deviations reflecting the internal consistency based on the accuracy estimates provided for the altimetry data as well as for the terrestrial anomaly data. Several test computations were made of the anomalies and their accuracy estimates using GOES-3 data.

  15. Fluid/Gravity Correspondence, Second Order Transport and Gravitational Anomaly

    CERN Document Server

    Megias, Eugenio

    2013-01-01

    We study the transport properties of a relativistic fluid affected by chiral and gauge-gravitational anomalies. The computation is performed in the framework of the fluid/gravity correspondence for a 5 dim holographic model with Chern-Simons terms in the action. We find new anomalous and non anomalous transport coefficients, as well as new contributions to the existing ones coming from the mixed gauge-gravitational anomaly. Consequences for the shear waves dispersion relation are analyzed.

  16. Transgressions and Holographic Conformal Anomalies for Chern-Simons Gravities

    CERN Document Server

    Mora, Pablo

    2010-01-01

    I present two calculations of the holographic Weyl anomalies induced by Chern-Simons gravity theories alternative to the ones presented in the literature. The calculations presented here rest on the extension from Chern-Simons to Transgression forms as lagrangians, motivated by gauge invariance, which automatically yields the boundary terms suitable to regularize the theory. The procedure followed here sheds light in the structure of Chern-Simons gravities and their regularization.

  17. Gravity Anomaly Assessment Using Ggms and Airborne Gravity Data Towards Bathymetry Estimation

    Science.gov (United States)

    Tugi, A.; Din, A. H. M.; Omar, K. M.; Mardi, A. S.; Som, Z. A. M.; Omar, A. H.; Yahaya, N. A. Z.; Yazid, N.

    2016-09-01

    The Earth's potential information is important for exploration of the Earth's gravity field. The techniques of measuring the Earth's gravity using the terrestrial and ship borne technique are time consuming and have limitation on the vast area. With the space-based measuring technique, these limitations can be overcome. The satellite gravity missions such as Challenging Mini-satellite Payload (CHAMP), Gravity Recovery and Climate Experiment (GRACE), and Gravity-Field and Steady-State Ocean Circulation Explorer Mission (GOCE) has introduced a better way in providing the information on the Earth's gravity field. From these satellite gravity missions, the Global Geopotential Models (GGMs) has been produced from the spherical harmonics coefficient data type. The information of the gravity anomaly can be used to predict the bathymetry because the gravity anomaly and bathymetry have relationships between each other. There are many GGMs that have been published and each of the models gives a different value of the Earth's gravity field information. Therefore, this study is conducted to assess the most reliable GGM for the Malaysian Seas. This study covered the area of the marine area on the South China Sea at Sabah extent. Seven GGMs have been selected from the three satellite gravity missions. The gravity anomalies derived from the GGMs are compared with the airborne gravity anomaly, in order to figure out the correlation (R2) and the root mean square error (RMSE) of the data. From these assessments, the most suitable GGMs for the study area is GOCE model, GO_CONS_GCF_2_TIMR4 with the R2 and RMSE value of 0.7899 and 9.886 mGal, respectively. This selected model will be used in the estimating the bathymetry for Malaysian Seas in future.

  18. GRAVITY ANOMALY ASSESSMENT USING GGMS AND AIRBORNE GRAVITY DATA TOWARDS BATHYMETRY ESTIMATION

    Directory of Open Access Journals (Sweden)

    A. Tugi

    2016-09-01

    Full Text Available The Earth’s potential information is important for exploration of the Earth’s gravity field. The techniques of measuring the Earth’s gravity using the terrestrial and ship borne technique are time consuming and have limitation on the vast area. With the space-based measuring technique, these limitations can be overcome. The satellite gravity missions such as Challenging Mini-satellite Payload (CHAMP, Gravity Recovery and Climate Experiment (GRACE, and Gravity-Field and Steady-State Ocean Circulation Explorer Mission (GOCE has introduced a better way in providing the information on the Earth’s gravity field. From these satellite gravity missions, the Global Geopotential Models (GGMs has been produced from the spherical harmonics coefficient data type. The information of the gravity anomaly can be used to predict the bathymetry because the gravity anomaly and bathymetry have relationships between each other. There are many GGMs that have been published and each of the models gives a different value of the Earth’s gravity field information. Therefore, this study is conducted to assess the most reliable GGM for the Malaysian Seas. This study covered the area of the marine area on the South China Sea at Sabah extent. Seven GGMs have been selected from the three satellite gravity missions. The gravity anomalies derived from the GGMs are compared with the airborne gravity anomaly, in order to figure out the correlation (R2 and the root mean square error (RMSE of the data. From these assessments, the most suitable GGMs for the study area is GOCE model, GO_CONS_GCF_2_TIMR4 with the R2 and RMSE value of 0.7899 and 9.886 mGal, respectively. This selected model will be used in the estimating the bathymetry for Malaysian Seas in future.

  19. Bathymetry Prediction Based on the Admittance Theory of Gravity Anomalies

    Directory of Open Access Journals (Sweden)

    OUYANG Mingda

    2015-10-01

    Full Text Available Based on the admittance theory of gravity anomalies, the method of bathymetry prediction was studied in detail in this paper. In frequency domains, the correlation between gravity anomalies and bathymetry was analyzed, which suggests that the wavelength band correlated strongly was in a range of 20—300 km, this band was appropriated to inverse bathymetry by gravity anomalies. Took the Emperor Chain as an example, the uncompensated admittance model and flexural isostatic admittance model were used for researching, respectively, the included parameter of crust thickness and effective elastic thickness were calculated by the isostatic response function. As the down continuation factor was unstable, a high-cut filter was proposed in the inversion procedure to ensure convergence of series. The results showed that, the admittance theory of gravity anomalies can be used effectively in the bathymetry prediction, the predicted result was real and reliable, the relative precision was approximately 6%, which was equal to ETOPO1 model, and the detailed feature of sea floor which was not showed in ETOPO1 model can also be depicted; the precisions were not so well in areas of ocean mountains intensively distributed because of the complexion of the sea floor.

  20. On the non-uniqueness of local quasi-geoids computed from terrestrial gravity anomalies

    NARCIS (Netherlands)

    Prutkin, I.; Klees, R.

    2007-01-01

    We consider the problem of local (quasi-)geoid modelling from terrestrial gravity anomalies. Whereas this problem is uniquely solvable (up to spherical harmonic degree one) if gravity anomalies are globally available, the problem is non-unique if gravity anomalies are only available within a local a

  1. On the non-uniqueness of local quasi-geoids computed from terrestrial gravity anomalies

    NARCIS (Netherlands)

    Prutkin, I.; Klees, R.

    2007-01-01

    We consider the problem of local (quasi-)geoid modelling from terrestrial gravity anomalies. Whereas this problem is uniquely solvable (up to spherical harmonic degree one) if gravity anomalies are globally available, the problem is non-unique if gravity anomalies are only available within a local

  2. Gravity anomalies without geomagnetic disturbances interfere with pigeon homing--a GPS tracking study.

    Science.gov (United States)

    Blaser, Nicole; Guskov, Sergei I; Entin, Vladimir A; Wolfer, David P; Kanevskyi, Valeryi A; Lipp, Hans-Peter

    2014-11-15

    The gravity vector theory postulates that birds determine their position to set a home course by comparing the memorized gravity vector at the home loft with the local gravity vector at the release site, and that they should adjust their flight course to the gravity anomalies encountered. As gravity anomalies are often intermingled with geomagnetic anomalies, we released experienced pigeons from the center of a strong circular gravity anomaly (25 km diameter) not associated with magnetic anomalies and from a geophysical control site, equidistant from the home loft (91 km). After crossing the border zone of the anomaly--expected to be most critical for pigeon navigation--they dispersed significantly more than control birds, except for those having met a gravity anomaly en route. These data increase the credibility of the gravity vector hypothesis. © 2014. Published by The Company of Biologists Ltd.

  3. Hawking radiation from gravity's rainbow via gravitational anomaly

    Institute of Scientific and Technical Information of China (English)

    Zeng Xiao-Xiong; Yang Shu-Zheng; Chen De-You

    2008-01-01

    Based on the anomaly cancellation method,initiated by Robinson and Wilczek,we investigates Hawking radiation from the modified Schwarzschild black hole from gravity's rainbow from the anomaly point of view.Unlike the general Schwarzschild space-time,the metric of this black hole depends on the energies of probes.The obtained result shows to restore the underlying general covariance at the quantum level in the effective field,the covariant compensating flux of energy-momentum tensor,which is related to the energies of the probes,should precisely equal to that of a (1+1)-dimensional blackbody at the Hawking temperature.

  4. Gravity anomaly during the Mohe total solar eclipse

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    By using a high-precision LaCoste-Romberg (1)-122#) gravimeter, continuous and precise measurements were carried out during the March 9, 1997 total solar eclipse in the Mohe region in Northeast China. The gravity variations were digitally recorded during the total solar eclipse so as to investigate the possible anomaly of the sun and the moon's gravitational fields on the earth. After the careful processing and analysis of the observed data, no significant anomaly during the very solar eclipse has been found. Howmetrical decrease of about 6- 7 μGal at the first contact and the last contact. This is the anomaly phenomenon observed and reported for the first time in the literature. This note presents some analyses and discussions.

  5. New analytic solutions for modeling vertical gravity gradient anomalies

    Science.gov (United States)

    Kim, Seung-Sep; Wessel, Paul

    2016-05-01

    Modern processing of satellite altimetry for use in marine gravimetry involves computing the along-track slopes of observed sea-surface heights, projecting them into east-west and north-south deflection of the vertical grids, and using Laplace's equation to algebraically obtain a grid of the vertical gravity gradient (VGG). The VGG grid is then integrated via overlapping, flat Earth Fourier transforms to yield a free-air anomaly grid. Because of this integration and associated edge effects, the VGG grid retains more short-wavelength information (e.g., fracture zone and seamount signatures) that is of particular importance for plate tectonic investigations. While modeling of gravity anomalies over arbitrary bodies has long been a standard undertaking, similar modeling of VGG anomalies over oceanic features is not commonplace yet. Here we derive analytic solutions for VGG anomalies over simple bodies and arbitrary 2-D and 3-D sources. We demonstrate their usability in determining mass excess and deficiency across the Mendocino fracture zone (a 2-D feature) and find the best bulk density estimate for Jasper seamount (a 3-D feature). The methodologies used herein are implemented in the Generic Mapping Tools, available from gmt.soest.hawaii.edu.

  6. The interpretation of gravity anomaly on lunar Apennines

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The lunar Apennines,located in the southeast of Mare Imbrium,is the largest range on the Moon. The gravity anomalies on profiles across the mountains reveal evidence of a great fault zone characteristic. The deep crustal structures of lunar Apennines are analyzed on the basis of topographic data from Chang’E-1 satellite and gravity data from Lunar Prospector. The inverted crust-mantle models indicate the presence of a lithosphere fault beneath the mountains. Inverted results of gravity and the hypothe-sis of lunar thermal evolution suggest that the lunar lithosphere might be broken ~3.85 Ga ago due to a certain dynamic lateral movement and compression of lunar lithosphere. This event is associated with the history of magma filling and lithosphere deformation in the mountain zone and adjacent area. Moreover,the formation and evolution of Imbrium basin impose this effect on the process.

  7. The interpretation of gravity anomaly on lunar Apennines

    Institute of Scientific and Technical Information of China (English)

    CHEN Chao; CHEN Bo; PING JinSong; LIANG Qing; HUANG Qian; ZHAO WenJin; ZHANG ChangDa

    2009-01-01

    The lunar Apennines, located in the southeast of Mare Imbrium, is the largest range on the Moon. The gravity anomalies on profiles across the mountains reveal evidence of a great fault zone characteristic.The deep crustal structures of lunar Apennines are analyzed on the basis of topographic data from Chang'E-1 satellite and gravity data from Lunar Prospector. The inverted crust-mantle models indicate the presence of a lithosphere fault beneath the mountains. Inverted results of gravity and the hypothesis of lunar thermal evolution suggest that the lunar lithosphere might be broken ~3.85 Ga ago due to a certain dynamic lateral movement and compression of lunar lithosphere. This event is associated with the history of magma filling and lithosphere deformation in the mountain zone and adjacent area. Moreover, the formation and evolution of Imbrium basin impose this effect on the process.

  8. Gravity survey of the southwestern part of the sourthern Utah geothermal belt

    Energy Technology Data Exchange (ETDEWEB)

    Green, R.T.; Cook, K.L.

    1981-03-01

    A gravity survey covering an area of 6200 km/sup 2/ was made over the southwestern part of the southern Utah geothermal belt. The objective of the gravity survey is to delineate the geologic structures and assist in the understanding of the geothermal potential of the area. A total of 726 new gravity stations together with 205 existing gravity stations, are reduced to give: (1) a complete Bouguer gravity anomaly map, and (2) a fourth-order residual gravity anomaly map; both maps have a 2-mgal contour interval. The complete Bouguer gravity anomaly map shows an east-trending regional gravity belt with a total relief of about 70 mgal which crosses the central portion of the survey area. The gravity belt is attributed to a crustal lateral density variation of 0.1 gm/cc from a depth of 5 to 15 km.

  9. The quest for the perfect gravity anomaly: Part 2 - Mass effects and anomaly inversion

    Science.gov (United States)

    Keller, Gordon R.; Hildenbrand, T.G.; Hinze, W. J.; Li, X.; Ravat, D.; Webring, M.

    2006-01-01

    Gravity anomalies have become an important tool for geologic studies since the widespread use of high-precision gravimeters after the Second World War. More recently the development of instrumentation for airborne gravity observations, procedures for acquiring data from satellite platforms, the readily available Global Positioning System for precise vertical and horizontal control, improved global data bases, and enhancement of computational hardware and software have accelerated the use of the gravity method. As a result, efforts are being made to improve the gravity databases that are made available to the geoscience community by broadening their observational holdings and increasing the accuracy and precision of the included data. Currently the North American Gravity Database as well as the individual databases of Canada, Mexico, and the United States of America are being revised using new formats and standards. The objective of this paper is to describe the use of the revised standards for gravity data processing and modeling and there impact on geological interpretations. ?? 2005 Society of Exploration Geophysicists.

  10. Altered orientation and flight paths of pigeons reared on gravity anomalies: a GPS tracking study.

    Science.gov (United States)

    Blaser, Nicole; Guskov, Sergei I; Meskenaite, Virginia; Kanevskyi, Valerii A; Lipp, Hans-Peter

    2013-01-01

    The mechanisms of pigeon homing are still not understood, in particular how they determine their position at unfamiliar locations. The "gravity vector" theory holds that pigeons memorize the gravity vector at their home loft and deduct home direction and distance from the angular difference between memorized and actual gravity vector. However, the gravity vector is tilted by different densities in the earth crust leading to gravity anomalies. We predicted that pigeons reared on different gravity anomalies would show different initial orientation and also show changes in their flight path when crossing a gravity anomaly. We reared one group of pigeons in a strong gravity anomaly with a north-to-south gravity gradient, and the other group of pigeons in a normal area but on a spot with a strong local anomaly with a west-to-east gravity gradient. After training over shorter distances, pigeons were released from a gravitationally and geomagnetically normal site 50 km north in the same direction for both home lofts. As expected by the theory, the two groups of pigeons showed divergent initial orientation. In addition, some of the GPS-tracked pigeons also showed changes in their flight paths when crossing gravity anomalies. We conclude that even small local gravity anomalies at the birth place of pigeons may have the potential to bias the map sense of pigeons, while reactivity to gravity gradients during flight was variable and appeared to depend on individual navigational strategies and frequency of position updates.

  11. Altered orientation and flight paths of pigeons reared on gravity anomalies: a GPS tracking study.

    Directory of Open Access Journals (Sweden)

    Nicole Blaser

    Full Text Available The mechanisms of pigeon homing are still not understood, in particular how they determine their position at unfamiliar locations. The "gravity vector" theory holds that pigeons memorize the gravity vector at their home loft and deduct home direction and distance from the angular difference between memorized and actual gravity vector. However, the gravity vector is tilted by different densities in the earth crust leading to gravity anomalies. We predicted that pigeons reared on different gravity anomalies would show different initial orientation and also show changes in their flight path when crossing a gravity anomaly. We reared one group of pigeons in a strong gravity anomaly with a north-to-south gravity gradient, and the other group of pigeons in a normal area but on a spot with a strong local anomaly with a west-to-east gravity gradient. After training over shorter distances, pigeons were released from a gravitationally and geomagnetically normal site 50 km north in the same direction for both home lofts. As expected by the theory, the two groups of pigeons showed divergent initial orientation. In addition, some of the GPS-tracked pigeons also showed changes in their flight paths when crossing gravity anomalies. We conclude that even small local gravity anomalies at the birth place of pigeons may have the potential to bias the map sense of pigeons, while reactivity to gravity gradients during flight was variable and appeared to depend on individual navigational strategies and frequency of position updates.

  12. Optimal, scalable forward models for computing gravity anomalies

    CERN Document Server

    May, Dave A

    2011-01-01

    We describe three approaches for computing a gravity signal from a density anomaly. The first approach consists of the classical "summation" technique, whilst the remaining two methods solve the Poisson problem for the gravitational potential using either a Finite Element (FE) discretization employing a multilevel preconditioner, or a Green's function evaluated with the Fast Multipole Method (FMM). The methods utilizing the PDE formulation described here differ from previously published approaches used in gravity modeling in that they are optimal, implying that both the memory and computational time required scale linearly with respect to the number of unknowns in the potential field. Additionally, all of the implementations presented here are developed such that the computations can be performed in a massively parallel, distributed memory computing environment. Through numerical experiments, we compare the methods on the basis of their discretization error, CPU time and parallel scalability. We demonstrate t...

  13. Continuity of subsurface fault structure revealed by gravity anomaly: the eastern boundary fault zone of the Niigata plain, central Japan

    Science.gov (United States)

    Wada, Shigeki; Sawada, Akihiro; Hiramatsu, Yoshihiro; Matsumoto, Nayuta; Okada, Shinsuke; Tanaka, Toshiyuki; Honda, Ryo

    2017-01-01

    We have investigated gravity anomalies around the Niigata plain, which is a sedimentary basin in central Japan bounded by mountains, to examine the continuity of subsurface fault structures of a large fault zone—the eastern boundary fault zone of the Niigata plain (EBFZNP). The features of the Bouguer anomaly and its first horizontal and vertical derivatives clearly illustrate the EBFZNP. The steep first horizontal derivative and the zero isoline of the vertical derivative are clearly recognized along the entire EBFZNP over an area that shows no surface topographic features of an active fault. Two-dimensional density structure analyses also confirm a relationship between the two first derivatives and the subsurface fault structure. Therefore, we conclude that the length of the EBFZNP as an active fault extends to 56 km, which is longer than previously estimated. This length leads to an estimation of a moment magnitude of 7.4 of an expected earthquake from the EBFZNP.[Figure not available: see fulltext.

  14. Fluid/Gravity Correspondence, Second Order Transport and Gravitational Anomaly***

    Science.gov (United States)

    Megías, Eugenio; Pena-Benitez, Francisco

    2014-03-01

    We study the transport properties of a relativistic fluid affected by chiral and gauge-gravitational anomalies. The computation is performed in the framework of the fluid/gravity correspondence for a 5 dim holographic model with Chern-Simons terms in the action. We find new anomalous and non anomalous transport coefficients, as well as new contributions to the existing ones coming from the mixed gauge-gravitational anomaly. Consequences for the shear waves dispersion relation are analyzed. Talk given by E. Megías at the International Nuclear Physics Conference INPC 2013, 2-7 June 2013, Firenze, Italy.Supported by Plan Nacional de Altas Energías (FPA2009-07908, FPA2011-25948), Spanish MICINN Consolider-Ingenio 2010 Programme CPAN (CSD2007-00042), Comunidad de Madrid HEP-HACOS S2009/ESP-1473, Spanish MINECO's Centro de Excelencia Severo Ochoa Program (SEV-2012-0234, SEV-2012-0249), and the Juan de la Cierva Program.

  15. Inference of Altimeter Accuracy on Along-track Gravity Anomaly Recovery

    Directory of Open Access Journals (Sweden)

    LI Yang

    2015-04-01

    Full Text Available A correlation model between along-track gravity anomaly accuracy, spatial resolution and altimeter accuracy is proposed. This new model is based on along-track gravity anomaly recovery and resolution estimation. Firstly, an error propagation formula of along-track gravity anomaly is derived from the principle of satellite altimetry. Then the mathematics between the SNR (signal to noise ratio and cross spectral coherence is deduced. The analytical correlation between altimeter accuracy and spatial resolution is finally obtained from the results above. Numerical simulation results show that along-track gravity anomaly accuracy is proportional to altimeter accuracy, while spatial resolution has a power relation with altimeter accuracy. e.g., with altimeter accuracy improving m times, gravity anomaly accuracy improves m times while spatial resolution improves m0.4644 times. This model is verified by real-world data.

  16. The 2017 solar eclipse and Majorana & Allais gravity anomalies

    Science.gov (United States)

    Munera, Hector A.

    2017-01-01

    Two little known anomalies hint to phenomena beyond current theory. Majorana effect: around 1920 in a series of well-designed experiments with a chemical laboratory balance, Quirino Majorana found in Italy that mercury (Hg) and lead (Pb) might shield terrestrial gravity. Majorana experiments were never repeated by the international scientific community. Instead his results were dismissed on theoretical claims: a) unobserved heating of earth by absorption of gravity, and b) unobserved cyclic lunar perturbation of solar gravity at earth’s surface. However, Majorana critics missed the crucial fact that shielding is not mere absorption, but also scattering, and that atomic number Z of matter in the moon is much lower than Z=80 (Hg) and Z=82 (Pb). From the June 30/1954 solar eclipse onwards, high-quality mechanical gravimeters were used to search for Majorana shielding by the moon. Results are positive, provided that shielding is interpreted as scattering rather than absorption of gravity by moon (H. A. Munera, Physics Essays 24, 428-434, 2011). Allais effect: during the same 1954 eclipse (partial in Paris) Maurice Allais had in operation a sensitive paraconical pendulum for a very different purpose. Surprisingly, the pendulum was perturbed by the eclipse, condition repeated once again in a 1959 solar eclipse, also partial in Paris. During the past sixty years, paraconical, torsion and Foucault pendula, and other mechanical devices, have been used to (dis)confirm Allais effect, but the results are not conclusive thus far. A book edited by this author (Should the laws of gravitation be revised? Apeiron 2011) describes some of those observations. Various unexpected effects, some of them torsional, appear both near the optical shadow, and far away. The Sun-Moon-Earth alignment in a solar eclipse allows detection on the terrestrial surface of the dark matter flow scattered on moon’s surface (flow not hitting earth in other geometries). Rotation of moon may induce

  17. Gauge Symmetries and Holographic Anomalies of Chern-Simons and Transgression AdS Gravity

    CERN Document Server

    Mora, Pablo

    2014-01-01

    We review the issue of gauge and gravitational anomalies with backgrounds, maybe offering a new outlook on some aspects of these questions. We compute the holographic anomalies of hypothetical theories dual, in the sense of the AdS-CFT correspondence, to Chern-Simons AdS gravities. Those anomalies are either gauge anomalies associated to the AdS gauge group of the theory or diffeomorphism anomalies, with each kind related to the other. As a result of using suitable action principles por Chern-Simons AdS gravities, coming from Transgression forms, we obtain finite results without the need for further regularization. Our results are of potential interest for Lovelock gravity theories, as it has been shown that the boundary terms dictated by the transgressions for Chern-Simons gravities are also suitable to regularize Lovelock theories. The Wess-Zumino consistency condition ensures that anomalies of the generic form computed here should appear for these and other theories.

  18. Calculating the Marine Gravity Anomaly of the South China Sea based on the Inverse Stokes Formula

    Science.gov (United States)

    Liu, Liang; Jiang, Xiaoguang; Liu, Shanwei; Zheng, Lei; Zang, Jinxia; Zhang, Xuehua; Liu, Longfei

    2016-11-01

    Marine gravity field information has a great significance for the resource, environment and military affairs. As a new way to get marine gravity data, the satellite altimetry technique makes up for what ship measuring means lack. The paper carries out the researches on how altimeter data applied for calculating marine gravity anomaly based on inverse Stokes formula. In the article, the editing of 14-track Jason-1 data over South China Sea for 7 years is for collinear processing and cross-point adjustment. The inverse Stokes formula and fast Flourier transform technique are applied to calculate marine gravity anomaly of the region (0°∼23°N, 103°∼120°E), and to draw gravity anomaly map. Compared with the gravity anomaly by ship observation, RMS is 12.6mGal, and single altimetry satellite has a good precision.

  19. Relation between Gravity Field Feature and Tectonics and Earthquakes in Taiwan and Its Adjacent Seas

    Institute of Scientific and Technical Information of China (English)

    张赤军; 方剑

    2001-01-01

    Short wave gravity anomaly is correlated to sea floor topography in the gravity field of Taiwan and its adjacent seas. Gravity values of 200 × 10-5ms-2 at Yushang and -160 × 10-5ms-2 at Liuqiu sea trench are respectively the maximum and minimum gravity values in this area.Bouguer gravity anomaly reflects not only Moho interface undulation, but also fault distribution.The inflexion of gradient belt of Bouguer gravity anomaly is a spot liable to earthquakes. Middlelong wave geoid is the best data to invert crustal thickness. We calculate crustal thickness by using geoid data, and the maximum value is 38km; the minimum value is 12km in Taiwan and its adjacent seas.

  20. Gravity anomalies over the Central Indian Ridge between 3∘S and 11∘S, Indian Ocean: Segmentation and crustal structure

    Science.gov (United States)

    Samudrala, Kiranmai; Kamesh Raju, K. A.; Rao, P. Rama

    2016-12-01

    High-resolution shipboard geophysical investigations along the Indian Ocean ridge system are sparse especially over the Carlsberg and Central Indian ridges. In the present study, the shipboard gravity and multibeam bathymetry data acquired over a 750 km long section of the Central Indian Ridge between 3 ∘S and 11 ∘S have been analysed to understand the crustal structure and the ridge segmentation pattern. The mantle Bouguer anomalies (MBA) and the residual mantle Bouguer anomalies (RMBA) computed in the study area have shown significant variations along the ridge segments that are separated by transform and non-transform discontinuities. The MBA lows observed over the linear ridge segments bounded by well-defined transform faults are attributed to the thickening of the crust at the middle portions of the ridge segments. The estimates of crustal thickness from the RMBA shows an average of 5.2 km thick crust in the axial part of the ridge segments. The MBA and relative RMBA highs along the two non-transform discontinuities suggests a thinner crust of up to 4.0 km. The most significant MBA and RMBA highs were observed over the Vema transform fault suggesting thin crust of 4 km in the deepest part of the transform fault where bathymetry is more than 6000 m. The identified megamullion structures have relative MBA highs suggesting thinner crust. Besides MBA lows along the ridge axis, significant off-axis MBA lows have been noticed, suggesting off-axis mantle upwelling zones indicative of thickening of the crust. The rift valley morphology varies from the typical V-shaped valley to the shallow valley floor with undulations on the inner valley floor. Segments with shallow rift valley floor have depicted well-defined circular MBA lows with persistent RMBA low, suggesting modulation of the valley floor morphology due to the variations in crustal thickness and the mantle temperature. These are supported by thicker crust and weaker lithospheric mantle.

  1. Gravity anomalies over the Central Indian Ridge between 3°S and 11°S, Indian Ocean: Segmentation and crustal structure

    Indian Academy of Sciences (India)

    Kiranmai Samudrala; K A Kamesh Raju; P Rama Rao

    2016-12-01

    High-resolution shipboard geophysical investigations along the Indian Ocean ridge system are sparse especially over the Carlsberg and Central Indian ridges. In the present study, the shipboard gravity and multibeam bathymetry data acquired over a 750 km long section of the Central Indian Ridge between 3°S and 11°S have been analysed to understand the crustal structure and the ridge segmentation pattern. The mantle Bouguer anomalies (MBA) and the residual mantle Bouguer anomalies (RMBA) computed in the study area have shown significant variations along the ridge segments that are separated by transform and non-transform discontinuities. The MBA lows observed over the linear ridge segments bounded by well-defined transform faults are attributed to the thickening of the crust at the middle portions of the ridge segments. The estimates of crustal thickness from the RMBA shows an average of 5.2 km thick crust in the axial part of the ridge segments. The MBA and relative RMBA highs along the two nontransform discontinuities suggests a thinner crust of up to 4.0 km. The most significant MBA and RMBA highs were observed over the Vema transform fault suggesting thin crust of 4 km in the deepest part of the transform fault where bathymetry is more than 6000 m. The identified megamullion structures have relative MBA highs suggesting thinner crust. Besides MBA lows along the ridge axis, significant off-axis MBA lows have been noticed, suggesting off-axis mantle upwelling zones indicative of thickening of the crust. The rift valley morphology varies from the typical V-shaped valley to the shallow valley floor with undulations on the inner valley floor. Segments with shallow rift valley floor have depicted well-defined circular MBA lows with persistent RMBA low, suggesting modulation of the valley floor morphology due to the variations in crustal thickness and the mantle temperature. These are supported by thicker crust and weaker lithospheric mantle.

  2. Gravity modelling of the lower crust in Sardinia (Italy

    Directory of Open Access Journals (Sweden)

    T. Quarta

    1997-06-01

    Full Text Available In this paper an example is given of an application of statistical techniques to the Bouguer anomalies analysis in order to design a simple crustal model using few a priori assumptions. All gravity measurements carried out in Sardinia have been collected and processed. The Bouguer anomalies have been calculated according to local density estimates. Spectral analysis of the Bouguer anomalies has been carried out along selected profiles in order to estimate the mean depth of the Moho discontinuity and that of an infracrustal discontinuity. The use of this technique inferred the presence of a discontinuity at a mean depth of ~ 28 km, interpreted as Moho and the likely presence of an infracrustal discontinuity at a mean depth of ~18 km, interpreted as the upper-lower crust transition. In order to roughly reconstruct the shape of these interfaces, 2D inversion techniques were applied to the large wavelength components of the Bouguer anomalies, relative to profiles oriented along the E-W direction, extracted from low-pass filtered Bouguer anomaly maps. The density model obtained is compatible with some velocity models achieved from the interpretation of the seismic refraction profiles carried out within the European Geotraverse project.

  3. Gravity anomalies and crustal structure of the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Subrahmanyam, V; Krishna, K.S.; Murthy, I.V; Sarma, K.V.L; Desa, M.; Ramana, M.V; KameshRaju, K.A.

    The Bengal Fan is covered afresh by systematic geological and geophysical investigations by National Institute of Oceanography (NIO), India and a detailed free-air gravity map of the fan is prepared. The map shows two strong gravity lows - one...

  4. Revised estimation of 550-km times 550-km mean gravity anomalies

    Science.gov (United States)

    Williamson, M. R.

    1977-01-01

    The calculation of 550-km x 550-km mean gravity anomalies from 1 degree x 1 degree mean free-air gravimetry data is discussed. The block estimate procedure developed by Kaula is used to obtain 1,504 of the 1,654 possible mean block anomalies. The estimated block anomalies calculated from 1 deg x 1 deg mean anomalies referred to the reference ellipsoid and from 1 degree x 1 degree mean anomalies referred to a 24th-degree-and-order field are compared.

  5. Gravity anomalies, plate tectonics and the lateral growth of Precambrian North America

    Science.gov (United States)

    Thomas, M. D.; Grieve, R. A. F.; Sharpton, V. L.

    1988-01-01

    The widespread gravity coverage of North America provides a picture of the gross structural fabric of the continent via the trends of gravity anomalies. The structural picture so obtained reveals a mosaic of gravity trend domains, many of which correlate closely with structural provinces and orogenic terranes. The gravity trend map, interpreted in the light of plate-tectonic theory, thus provides a new perspective for examining the mode of assembly and growth of North America. Suture zones, palaeosubduction directions, and perhaps, contrasting tectonic histories may be identified using gravity patterns.

  6. Gravity anomalies, plate tectonics and the lateral growth of Precambrian North America

    Science.gov (United States)

    Thomas, M. D.; Grieve, R. A. F.; Sharpton, V. L.

    1988-01-01

    The widespread gravity coverage of North America provides a picture of the gross structural fabric of the continent via the trends of gravity anomalies. The structural picture so obtained reveals a mosaic of gravity trend domains, many of which correlate closely with structural provinces and orogenic terranes. The gravity trend map, interpreted in the light of plate-tectonic theory, thus provides a new perspective for examining the mode of assembly and growth of North America. Suture zones, palaeosubduction directions, and perhaps, contrasting tectonic histories may be identified using gravity patterns.

  7. Anomalías del campo gravitatorio y magnético terrestre en la sierra de Socoscora, provincia de San Luis Earth gravity and magnetic field anomalies in the Sierra of Socoscora, San Luis province

    Directory of Open Access Journals (Sweden)

    J Kostadinoff

    2003-12-01

    Full Text Available La sierra de Socoscora se ubica en forma meridiana y se manifiesta como un escalón al noroeste de la Sierra Grande de San Luis. En la sierra de Socoscora las rocas del basamento están representadas por metamorfitas de alto grado con escasos afloramientos de metabasitas. Las mediciones del campo gravitatorio y magnético indican la presencia de un volumen mayor de estas rocas en su subsuelo. Los excesos de masa en esta sierra se hallan definidas por anomalías gravimétricas de Bouguer (residuales positivas similares a las encontradas en la Sierra Grande de San Luis. La magnetometría indica, a partir de las respuestas positivas, la existencia de rocas máficas con concentraciones anómalas de minerales magnéticos.The Sierra de Socoscora is a north - south trending mountain range, located nortwest of the Sierra Grande of San Luis. The basament is constituted by high grade metamorphic rocks with few associated metabasites. Earth gravity and magnetic field measurements are indicative of the presence of bigger volumes of mafic rocks below the surface, which carry anomalous concentrations of ferromagnetic and/or paramagnetic minerals (magnetite and/or sulfides. An excess of mass below this Sierra is shown by Bouguer gravimetric anomalies with magnitudes similar to those measured in the Sierra Grande de San Luis. Positive magnetic anomalies are indicative of the presence of mafic rocks with anomalous concentrations of magnetic minerals.

  8. Gravity data from the San Pedro River Basin, Cochise County, Arizona

    Science.gov (United States)

    Kennedy, Jeffrey R.; Winester, Daniel

    2011-01-01

    The U.S. Geological Survey, Arizona Water Science Center in cooperation with the National Oceanic and Atmospheric Administration, National Geodetic Survey has collected relative and absolute gravity data at 321 stations in the San Pedro River Basin of southeastern Arizona since 2000. Data are of three types: observed gravity values and associated free-air, simple Bouguer, and complete Bouguer anomaly values, useful for subsurface-density modeling; high-precision relative-gravity surveys repeated over time, useful for aquifer-storage-change monitoring; and absolute-gravity values, useful as base stations for relative-gravity surveys and for monitoring gravity change over time. The data are compiled, without interpretation, in three spreadsheet files. Gravity values, GPS locations, and driving directions for absolute-gravity base stations are presented as National Geodetic Survey site descriptions.

  9. Gravity anomalies and basement structure in Osaka plain; Osaka heiya no juryoku ijo to kiban kozo

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, N.; Nakagawa, K. [Osaka City University, Osaka (Japan). Faculty of Science; Ryoki, K. [Osaka Polytechnical College, Osaka (Japan)

    1998-02-01

    Many kinds of new information about the underground structure are necessary for elucidating problems on the distribution characteristics of the structural damage and the ground failure due to the 1995 Hyogo-ken Nanbu Earthquake. The gravity anomalies in and around the Osaka sedimentary basin, which is mainly composed of Mesozoic granitic basement and post Tertiary sedimentary layers covering the basement, has been compiled with the data additional gravity measurements in the Hanshin-Osaka area. Basement configuration plays the important role in concentration or dispersion of seismic waves. In general, trends of the gravity anomalies should be removed from obtained gravity anomalies in order to estimate the sub-surface structures. The local free-air anomalies, which are residual anomalies obtained by applying regression technique to regional trends, exhibit linear relationship with the depth to the basement surface. In this study, therefore, the underground structure of the Osaka basin was estimated from the local free-air anomalies. First approximate model of basement surface was constructed by means of the method mentioned above, based upon the two layer (basement rock and the sedimentary cover) model. Further three dimensional model was developed based on the characteristic distribution of density inferred from seismic exploration analysis. 19 refs., 21 figs., 1 tab.

  10. South China Sea crustal thickness and lithosphere thinning from satellite gravity inversion incorporating a lithospheric thermal gravity anomaly correction

    Science.gov (United States)

    Kusznir, Nick; Gozzard, Simon; Alvey, Andy

    2016-04-01

    The distribution of ocean crust and lithosphere within the South China Sea (SCS) are controversial. Sea-floor spreading re-orientation and ridge jumps during the Oligocene-Miocene formation of the South China Sea led to the present complex distribution of oceanic crust, thinned continental crust, micro-continents and volcanic ridges. We determine Moho depth, crustal thickness and continental lithosphere thinning (1- 1/beta) for the South China Sea using a gravity inversion method which incorporates a lithosphere thermal gravity anomaly correction (Chappell & Kusznir, 2008). The gravity inversion method provides a prediction of ocean-continent transition structure and continent-ocean boundary location which is independent of ocean isochron information. A correction is required for the lithosphere thermal gravity anomaly in order to determine Moho depth accurately from gravity inversion; the elevated lithosphere geotherm of the young oceanic and rifted continental margin lithosphere of the South China Sea produces a large lithosphere thermal gravity anomaly which in places exceeds -150 mGal. The gravity anomaly inversion is carried out in the 3D spectral domain (using Parker 1972) to determine 3D Moho geometry and invokes Smith's uniqueness theorem. The gravity anomaly contribution from sediments assumes a compaction controlled sediment density increase with depth. The gravity inversion includes a parameterization of the decompression melting model of White & McKenzie (1999) to predict volcanic addition generated during continental breakup lithosphere thinning and seafloor spreading. Public domain free air gravity anomaly, bathymetry and sediment thickness data are used in this gravity inversion. Using crustal thickness and continental lithosphere thinning factor maps with superimposed shaded-relief free-air gravity anomaly, we improve the determination of pre-breakup rifted margin conjugacy, rift orientation and sea-floor spreading trajectory. SCS conjugate margins

  11. GRAIL Gravity Observations of the Transition from Complex Crater to Peak-Ring Basin on the Moon: Implications for Crustal Structure and Impact Basin Formation

    Science.gov (United States)

    Baker, David M. H.; Head, James W.; Phillips, Roger J.; Neumann, Gregory A.; Bierson, Carver J.; Smith, David E.; Zuber, Maria T.

    2017-01-01

    High-resolution gravity data from the Gravity Recovery and Interior Laboratory (GRAIL) mission provide the opportunity to analyze the detailed gravity and crustal structure of impact features in the morphological transition from complex craters to peak-ring basins on the Moon. We calculate average radial profiles for free-air anomalies and Bouguer anomalies for peak-ring basins, proto-basins, and the largest complex craters. Complex craters and proto-basins have free-air anomalies that are positively correlated with surface topography, unlike the prominent lunar mascons (positive free-air anomalies in areas of low elevation) associated with large basins. The Bouguer gravity anomaly profiles of complex craters are highly irregular, with central positive anomalies that are generally absent or not clearly tied to interior morphology. In contrast, gravity profiles for peak-ring basins (approx. 200 km to 580 km) are much more regular and are highly correlated with surface morphology. A central positive Bouguer anomaly is confined within the peak ring and a negative Bouguer anomaly annulus extends from the edge of the positive anomaly outward to about the rim crest. A number of degraded basins lacking interior peak rings have diameters and gravity patterns similar to those of well-preserved peak-ring basins. If these structures represent degraded peak-ring basins, the number of peak-ring basins on the Moon would increase by more than a factor of two to 34. The gravity anomalies within basins are interpreted to be due to uplift of the mantle confined within the peak ring and an annulus of thickened crust between the peak ring and rim crest. We hypothesize that mantle uplift is influenced by interaction between the transient cavity and the mantle. Further, mascon formation is generally disconnected from the number of basin rings formed and occurs over a wide range of basin sizes. These observations have important implications for models of basin and mascon formation on the

  12. GRAIL gravity observations of the transition from complex crater to peak-ring basin on the Moon: Implications for crustal structure and impact basin formation

    Science.gov (United States)

    Baker, David M. H.; Head, James W.; Phillips, Roger J.; Neumann, Gregory A.; Bierson, Carver J.; Smith, David E.; Zuber, Maria T.

    2017-08-01

    High-resolution gravity data from the Gravity Recovery and Interior Laboratory (GRAIL) mission provide the opportunity to analyze the detailed gravity and crustal structure of impact features in the morphological transition from complex craters to peak-ring basins on the Moon. We calculate average radial profiles of free-air anomalies and Bouguer anomalies for peak-ring basins, protobasins, and the largest complex craters. Complex craters and protobasins have free-air anomalies that are positively correlated with surface topography, unlike the prominent lunar mascons (positive free-air anomalies in areas of low elevation) associated with large basins. The Bouguer gravity anomaly profiles of complex craters are highly irregular, with central positive anomalies that are generally absent or not clearly tied to interior morphology. In contrast, gravity profiles for peak-ring basins (∼200 km to 580 km) are much more regular and are highly correlated with surface morphology. A central positive Bouguer anomaly is confined within the peak ring and a negative Bouguer anomaly annulus extends from the edge of the positive anomaly outward to about the rim crest. A number of degraded basins lacking interior peak rings have diameters and gravity patterns similar to those of well-preserved peak-ring basins. If these structures represent degraded peak-ring basins, the number of peak-ring basins on the Moon would increase by more than a factor of two to 34. The gravity anomalies within basins are interpreted to be due to uplift of the mantle confined within the peak ring and an annulus of thickened crust between the peak ring and rim crest. We hypothesize that mantle uplift is influenced by interaction between the transient cavity and the mantle. Further, mascon formation is generally disconnected from the number of basin rings formed and occurs over a wide range of basin sizes. These observations have important implications for models of basin and mascon formation on the Moon

  13. Conformal anomaly and off-shell extensions of gravity

    Science.gov (United States)

    Meissner, Krzysztof A.; Nicolai, Hermann

    2017-08-01

    The gauge dependence of the conformal anomaly for spin-3/2 and spin-2 fields in nonconformal supergravities has been a long standing puzzle. In this paper we argue that the "correct" gauge choice is the one that follows from requiring all terms that would imply a violation of the Wess-Zumino consistency condition to be absent in the counterterm, because otherwise the usual link between the anomaly and the one-loop divergence becomes invalid. Remarkably, the "good" choice of gauge is the one that confirms our previous result [K. A. Meissner and H. Nicolai, Phys. Lett. B 772, 169 (2017)., 10.1016/j.physletb.2017.06.031] that a complete cancellation of conformal anomalies in D =4 can only be achieved for N -extended (Poincaré) supergravities with N ≥5 .

  14. On the recovery of gravity anomalies from high precision altimeter data

    Science.gov (United States)

    Lelgemann, D.

    1976-01-01

    A model for the recovery of gravity anomalies from high precision altimeter data is derived which consists of small correction terms to the inverse Stokes' formula. The influence of unknown sea surface topography in the case of meandering currents such as the Gulf Stream is discussed. A formula was derived in order to estimate the accuracy of the gravity anomalies from the known accuracy of the altimeter data. It is shown that for the case of known harmonic coefficients of lower order the range of integration in Stokes inverse formula can be reduced very much.

  15. Phenomenology of Quantum Gravity and its Possible Role in Neutrino Anomalies

    CERN Document Server

    Acero, Mario A

    2012-01-01

    New phenomenological models of Quantum Gravity have suggested that a Lorentz-Invariant discrete spacetime structure may become manifest through a nonstandard coupling of matter fields and spacetime curvature. On the other hand, there is strong experimental evidence suggesting that neutrino oscillations cannot be described by simply considering neutrinos as massive particles. In this manuscript we motivate and construct one particular phenomenological model of Quantum Gravity that could account for the so-called neutrino anomalies.

  16. Detailed Gravity and Magnetic Survey of the Taylorsville Triassic Basin

    Energy Technology Data Exchange (ETDEWEB)

    Leftwich, John; Nowroozi, Ali, A.

    1999-10-01

    This work reports the progress on collecting existing gravity data in a rectangular area covering the Richmond and Taylorsville Basins and its vicinity. The area covers one-degree latitude and one degree longitude, starting at 37 North, 77 West and ending at 38 North, 78 West. Dr. David Daniels of the United State Geological Survey supplied us with more than 4900 Bouguer gravity anomalies in this area. The purpose of this report is to present the data in form of several maps and discuss its relation to the geology of the Triassic Basins and its vicinity. Johnson and others (1985) also presented a map of the Bouguer gravity anomaly of this area. However, their map covers a smaller area, and it is based on smaller number of observations.

  17. An analysis of the gravity field and tectonic evaluation of the northwestern part of Bangladesh

    Science.gov (United States)

    Khan, A. A.; Rahman, T.

    1992-06-01

    The total Bouguer anomaly values of the northwestern part of Bangladesh have been analysed on the basis of the trend, shape and magnitude of the anomaly values. Residual gravity and the second vertical derivatives of gravity show only two near-surface features, viz. the Nilphamari and Rangpur highs. Geological models of the two highs have been constructed on the basis of gravity modelling. Gravity data, in conjunction with aeromagnetic and bore hole data, enable us to propose four tectonic elements of the northwestern part of Bangladesh: the Northern Slope of the Platform, the Stable Platform, the Nawabganj-Gaibandha Intracratonic High and the Southern Part of the Platform.

  18. Spherical earth gravity and magnetic anomaly analysis by equivalent point source inversion

    Science.gov (United States)

    Von Frese, R. R. B.; Hinze, W. J.; Braile, L. W.

    1981-01-01

    To facilitate geologic interpretation of satellite elevation potential field data, analysis techniques are developed and verified in the spherical domain that are commensurate with conventional flat earth methods of potential field interpretation. A powerful approach to the spherical earth problem relates potential field anomalies to a distribution of equivalent point sources by least squares matrix inversion. Linear transformations of the equivalent source field lead to corresponding geoidal anomalies, pseudo-anomalies, vector anomaly components, spatial derivatives, continuations, and differential magnetic pole reductions. A number of examples using 1 deg-averaged surface free-air gravity anomalies of POGO satellite magnetometer data for the United States, Mexico, and Central America illustrate the capabilities of the method.

  19. A Study on the Compatibility of 3-D Seismic Velocity Structures with Gravity Data of Taiwan

    Directory of Open Access Journals (Sweden)

    Horng-Yuan Yen and Hsien-Hsiang Hsieh

    2010-01-01

    Full Text Available The Bouguer anomaly of Taiwan has been revised in this study based on more accurate terrain data provided by the Taiwanese Digital Terrain Model compiled by the Taiwan Forestry Bureau. Three seismic velocity models, those determined by Rau and Wu (1995, Kim et al. (2005, and Wu et al. (2007 respectively, were selected for our study. We converted their velocity models to density models using the relationship between P-wave velocity and rock density proposed by Ludwig et al. (1970 and Barton (1986, and then calculated their corresponding gravity anomalies. According to the correlation coefficient between the Bouguer anomalies calculated from the velocity models and the revised Bouguer anomalies, the Kim et al. model was more compatible with gravity data than the other two velocity models. The differences between the revised gravity anomaly and the calculated gravity anomalies trend toward positive values at elevations higher than 2000 m. This indicates that the velocities at the shallower depths beneath the mountainous area of the three models are overdetermined, i.e., higher than the real velocities. This ratiocination implies that the crustal thickness beneath the Central Range is less than 55 km which was obtained from the velocity models.

  20. Gravity and geoid anomalies of the Philippine Sea: Evidence on the depth of compensation for the negative residual water depth anomaly

    Science.gov (United States)

    Bowin, C.

    1982-01-01

    A negative free-air gravity anomaly which occurs in the central part of the Philippine Sea was examined to determine the distribution and nature of possible regional mass excesses or deficiencies. Geoid anomalies from GEOS-3 observation were positive. A negative residual geoid anomaly consistent with the area of negative free-air gravity anomalies were found. Theoretical gravity-topography and geoid-topography admittance functions indicated that high density mantle at about 60 km dept could account for the magnitudes of the gravity and residual geoid anomaly and the 1 km residual water depth anomaly in the Philippine Sea. The negative residual depth anomaly may be compensated for by excess density in the uppermost mantle, but the residual geoid and regional free-air gravity anomalies and a slow surface wave velocity structure might result from low-density warm upper mantle material lying beneath the zone of high-density uppermost mantle. From a horizontal disk approximation, the depth of the low-density warm mantle was estimated to be on the order of 200 km.

  1. The estimation of 550 km x 550 km mean gravity anomalies. [from free atmosphere gravimetry data

    Science.gov (United States)

    Williamson, M. R.; Gaposchkin, E. M.

    1975-01-01

    The calculation of 550 km X 550 km mean gravity anomalies from 1 degree X 1 degree mean free-air gravimetry data is discussed. The block estimate procedure developed by Kaula was used, and estimates for 1452 of the 1654 blocks were obtained.

  2. Using Grail Data to Assess the Effect of Porosity and Dilatancy on the Gravity Signature of Impact Craters on the Moon

    Science.gov (United States)

    Milbury, C.; Johnson, B. C.; Melosh, J., IV; Collins, G. S.; Blair, D. M.; Soderblom, J. M.; Zuber, M. T.

    2014-12-01

    NASA's dual Gravity Recovery and Interior Laboratory (GRAIL) spacecraft have globally mapped the lunar gravity field at unprecedented resolution; this has enabled the study of craters of all sizes and ages. Soderblom et al. [2014, LPSC abstract #1777] calculated the residual Bouguer anomalies for ~2700 craters 27-184 km in diameter (D). They found that the residual Bouguer anomaly over craters smaller than D~100 km is essentially 0±50 mGal, there is a transition for D~100-150 km, and craters larger than 184 km have a positive residual Bouguer anomaly that increases with increasing crater size. We use the iSALE shock physics hydrocode to model crater formation, including the effect of porosity and dilatancy (shear bulking). We use strength parameters of gabbroic anorthosite for the crust and dunite for the mantle. Our impactor sizes range from 6-30 km, which produce craters between 86-450 km in diameter for pre-impact target porosities of 0, 6.8, and 13.6%. We calculate the free-air and Bouguer gravity anomalies from our models and compare them to gravity data from GRAIL. We find that target porosity has the greatest effect on the gravity signature of lunar craters and can explain the observed ±50 mGal scatter in the residual Bouguer anomaly. We investigate variations of impact velocity, crustal thickness, and dilatancy angle; we find that these parameters do not affect the gravity as significantly as target porosity does. We find that the crater diameter at which mantle uplift dominates the crater gravity is dependent on target porosity, and that it occurs at a crater diameter that is close to the complex crater to peak-ring basin transition.

  3. Gradients from GOCE reveal gravity changes before Pisagua Mw=8.2 and Iquique Mw=7.7 large megathrust earthquakes

    OpenAIRE

    Alvarez, O; Nacif, S.; S. Spagnotto; A. Folguera; Gimenez, M.; Chlieh, Mohamed; C. Braitenberg

    2015-01-01

    Considerable improvements in the measurement of the Earth gravity field from GOCE satellite mission have provided global gravity field models with homogeneous coverage, high precision and good spatial resolution. In particular, the vertical gravity gradient (Tzz), in comparison to the classic Bouguer anomaly, defines more accurately superficial mass heterogeneities. Moreover, the correction of these satellite-derived data from the effect of Earth topographic masses by means of new techniques ...

  4. Gravity Analysis of the Jeffera Basin, Tunisia

    Science.gov (United States)

    Mickus, K.; Gabtni, H.; Jallouli, C.

    2004-12-01

    Southern Tunisia consists of two main tectonic provinces: 1) the Saharan Platform and 2) the folded Atlasic domain, separated by the North Saharan Flexure. The Saharan Platform, which contains the Ghadames Basin and the Telemzane Arch, consists of gently dipping Paleozoic strata overlain by Triassic to Cretaceous sediments. The Atlasic domain consists of a thicker sequence of mainly Mesozoic and younger rock with less complete sequences of Paleozoic strata. Within the Atlasic domain are the still actively subsiding Chotts and Jeffera basins. The Jeffera basin, which occurs to the east of the Telemzane Arch contains at least eight kilometers of Paleozoic and younger sediment that were formed during numerous subsidence episodes since Carboniferous time. The Jeffera basin is dominated by tilted fault blocks that were formed during numerous tectonic episodes. Several unpublished seismic reflection profiles and well data exist for the Jeffera basin, however a deep structural analysis of the basin has not been published. We examined the existing gravity data in conjunction with available well and geologic data to determine structural features within the basin. The Bouguer gravity anomaly map shows that the Jeffera basin is dominated by a narrow northwest-trending gravity minimum. However, a more detailed analysis consisting of wavelength filtering and edge enhancements indicate that the structure of the basin is more complicated than indicated by the Bouguer gravity anomaly map. A residual gravity anomaly map indicates that the Jeffera basin consists of at least three and maybe four subbasins. Additionally, the Jeffera Fault marks the boundary between northwest-trending gravity anomalies to its northeast and east-trending anomalies over the Saharan Platform. The above observation is amplified by the construction of the enhanced horizontal derivatives (EHG) of both the complete Bouguer gravity and the residual gravity anomaly maps. The EHG maps highlight the lateral

  5. Gravity Anomalies of Arbitrary 3D Polyhedral Bodies with Horizontal and Vertical Mass Contrasts

    Science.gov (United States)

    Ren, Zhengyong; Chen, Chaojian; Pan, Kejia; Kalscheuer, Thomas; Maurer, Hansruedi; Tang, Jingtian

    2017-03-01

    During the last 15 years, more attention has been paid to derive analytic formulae for the gravitational potential and field of polyhedral mass bodies with complicated polynomial density contrasts, because such formulae can be more suitable to approximate the true mass density variations of the earth (e.g., sedimentary basins and bedrock topography) than methods that use finer volume discretization and constant density contrasts. In this study, we derive analytic formulae for gravity anomalies of arbitrary polyhedral bodies with complicated polynomial density contrasts in 3D space. The anomalous mass density is allowed to vary in both horizontal and vertical directions in a polynomial form of λ =ax^m+by^n+cz^t, where m, n, t are nonnegative integers and a, b, c are coefficients of mass density. First, the singular volume integrals of the gravity anomalies are transformed to regular or weakly singular surface integrals over each polygon of the polyhedral body. Then, in terms of the derived singularity-free analytic formulae of these surface integrals, singularity-free analytic formulae for gravity anomalies of arbitrary polyhedral bodies with horizontal and vertical polynomial density contrasts are obtained. For an arbitrary polyhedron, we successfully derived analytic formulae of the gravity potential and the gravity field in the case of m≤ 1, n≤ 1, t≤ 1, and an analytic formula of the gravity potential in the case of m=n=t=2. For a rectangular prism, we derive an analytic formula of the gravity potential for m≤ 3, n≤ 3 and t≤ 3 and closed forms of the gravity field are presented for m≤ 1, n≤ 1 and t≤ 4. Besides generalizing previously published closed-form solutions for cases of constant and linear mass density contrasts to higher polynomial order, to our best knowledge, this is the first time that closed-form solutions are presented for the gravitational potential of a general polyhedral body with quadratic density contrast in all spatial

  6. Structure of La Primavera caldera, Jalisco, Mexico, deduced from gravity anomalies and drilling results

    Science.gov (United States)

    Yokoyama, I.; Mena, M.

    1991-07-01

    Previous studies of La Primavera caldera have mostly been based on surface geology and topography. Since 1980, many wells, exploring for geothermal energy, have reached depths of about 2 to 3 km at the center of the caldera. The results of the drillings, together with those of the gravity surveys, provide information about the subsurface structure of the caldera, and shed light on its formation. The drilling results and gravity anomalies at La Primavera caldera and San Marcos, located at about 40 km distance from the caldera, suggest that regional gravity anomalies can be interpreted in terms of depths of the granitic basements: the basement beneath La Primavera caldera is about 3 km deep and consists of roughly the same horizon as that beneath San Marcos. The drilling results within the caldera reveal that the depth of the caldera fills ranges from 0.3 to 1 km at the drilling sites. The andesite basement, about 1 km deep, remains approximately horizontal, and the granitic basement has a depth of about 3 km. The surface topographies, such as the postcaldera domes, scarcely disturb the subsurface strata. The local gravity anomalies show two lows within the caldera reflecting the configuration of caldera bottom, two funnel-shaped depressions, one of which corresponds to a vent of the Tala tuff deduced from geological observations. The mass deficiency within the caldera estimated from the gravity anomaly, satisfies the general relationship that the mass deficiency is proportional to the caldera diameter cubed. This means that caldera structure is three-dimensional: the larger the diameter, the deeper the funnel-shape. At present this argument may be limited to funnel-shaped calderas.

  7. Preparation of Residual Gravity Maps for the Southern Cascade Mountains, Washington Using Fourier Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Dishberger, Debra McLean

    1983-04-01

    This report represents a continuation of gravity work in the Cascade Mountains of Washington supported by the Division of Geology and Earth Resources since 1974. The purpose of this research has been collection of baseline gravity data for use in geothermal resource evaluation. Results of the Division's gravity studies to date are given in Danes and Phillips (1983a, 1983b). One of the problems encountered when analyzing gravity data is distinguishing between those parts of the data that represent geologic structures of interest, and those that do not. In many cases, the features of interest are relatively small, near-surface features, such as those sought in mineral, petroleum, or geothermal exploration. Gravity anomalies caused by such structures may be distorted or masked by anomalies caused by larger, deeper geologic structures. Gravity anomalies caused by relatively shallow, small geologic structures are termed residual anomalies. Those due to broad, deep-seated features can be described as regional anomalies. The purpose of this report is to describe a Fourier analysis method for separating residual and regional gravity anomalies from a complete Bouguer gravity anomaly field. The technique has been applied to gravity data from the Southern Cascade Mountains, Washington. Residual gravity anomaly maps at a scale of 1:250,000 are presented for various regional wavelength filters, and a power spectrum of the frequency components in the South Cascade gravity data is displayed. No attempt is made to interpret the results of this study in terms of geologic structures.

  8. Anomalies and Hawking fluxes from the black holes of topologically massive gravity

    CERN Document Server

    Porfyriadis, Achilleas P

    2009-01-01

    The anomaly cancelation method proposed by Wilczek et al. is applied to the black holes of topologically massive gravity (TMG) and topologically massive gravito-electrodynamics (TMGE). Thus the Hawking temperature and fluxes of the ACL and ACGL black holes are found. The Hawking temperatures obtained agree with the surface gravity formula. Both black holes are rotating and this gives rise to appropriate terms in the effective U(1) gauge field of the reduced (1+1)-dimensional theory. It is found that the terms in this U(1) gauge field correspond exactly to the correct angular velocities on the horizon of both black holes as well as the correct electrostatic potential of the ACGL black hole. So the results for the Hawking fluxes derived here from the anomaly cancelation method, are in complete agreement with the ones obtained from integrating the Planck distribution.

  9. Sensitivity analysis of crustal correction and its error propagation to upper mantle residual gravity and density anomalies

    DEFF Research Database (Denmark)

    Herceg, Matija; Artemieva, Irina; Thybo, Hans

    2013-01-01

    We investigate the effect of the crustal structure heterogeneity and uncertainty in its determination on stripped gravity field. The analysis is based on interpretation of residual upper mantle gravity anomalies which are calculated by subtracting (stripping) the gravitational effect of the crust...... (including topography) from the observed satellite gravity field data (GOCE Direct release 3). We apply our analysis to Siberia for which a new regional crustal model has recently become available. Uncertainties in the residual upper (lithospheric) mantle gravity anomalies result from several sources: (i...

  10. Joint Interpretation of Bathymetric and Gravity Anomaly Maps Using Cross and Dot-Products.

    Science.gov (United States)

    Jilinski, Pavel; Fontes, Sergio Luiz

    2010-05-01

    0.1 Summary We present the results of joint map interpretation technique based on cross and dot-products applied to bathymetric and gravity anomaly gradients maps. According to the theory (Gallardo, Meju, 2004) joint interpretation of different gradient characteristics help to localize and empathize patterns unseen on one image interpretation and gives information about the correlation of different spatial data. Values of angles between gradients and their cross and dot-product were used. This technique helps to map unseen relations between bathymetric and gravity anomaly maps if they are analyzed separately. According to the method applied for the southern segment of Eastern-Brazilian coast bathymetrical and gravity anomaly gradients indicates a strong source-effect relation between them. The details of the method and the obtained results are discussed. 0.2 Introduction We applied this method to investigate the correlation between bathymetric and gravity anomalies at the southern segment of the Eastern-Brazilian coast. Gridded satellite global marine gravity data and bathymetrical data were used. The studied area is located at the Eastern- Brazilian coast between the 20° W and 30° W meridians and 15° S and 25° S parallels. The volcanic events responsible for the uncommon width of the continental shelf at the Abrolhos bank also were responsible for the formation of the Abrolhos islands and seamounts including the major Vitoria-Trindade chain. According to the literature this volcanic structures are expected to have a corresponding gravity anomaly (McKenzie, 1976, Zembruscki, S.G. 1979). The main objective of this study is to develop and test joint image interpretation method to compare spatial data and analyze its relations. 0.3 Theory and Method 0.3.1 Data sources The bathymetrical satellite data were derived bathymetry 2-minute grid of the ETOPO2v2 obtained from NOAA's National Geophysical Data Center (http://www.ngdc.noaa.gov). The satellite marine gravity 1

  11. Application of 3D variation-density interface inversion of gravity anomalies in South China Sea

    Science.gov (United States)

    Li, Shuling; Meng, Xiaohong

    2017-04-01

    The South China Sea (SCS) is a marginal basin with extremely complicated crustal structure and whose evolutional history is associated with continental rifting and seafloor spreading. The gravity data are among the most important data sets for studying deep crustal structures and the tectonic evolution. Density interface inversion by gravity anomalies can effectively estimate the depth of Moho interface. However, the Moho interface inversion in SCS are facing challenges due to the density contract of crust-mantle vary in three dimensions, which are associated with the complicated crustal structure (co-existing oceanic crust, continental crust and transitional crust). The regular inversion methods always assume the density contract on both sides of the interface would be constant, which is quite unrealistic since actual strata densities vary both vertically and laterally. To meet the challenges of 3D variation of density in SCS, we present an improved 3D variation-density interface inversion of gravity anomalies based on Parker-Oldenburg method. We first construct two variation density models with exponential density-depth relationships, which expressed the variation of stratum density depending on the depth in oceanic and continental crust respectively. Meanwhile, to minimize multiple solutions for potential field inversion, we collect deep seismic sounding data and employ the gravity inversion by joint using seismic data to be constraint for depth of Moho. Finally, we have estimated the depth of Moho interface which infers the tectonic significance in SCS. The inversion results agree well with seismic data in SCS show this approach is more effective and precise to quantitative estimate the depth of interface. Keywords: South China Sea; Gravity anomalies; Density interface inversion;

  12. Vertical and Horizontal Analysis of Crustal Structure of Southeastern Mediterranean and the Egyptian Coastal Zone, from Bouguer and Satellite Mission Data

    Science.gov (United States)

    Saleh, Salah

    2016-07-01

    The present Tectonic system of Southeastern Mediterranean is driven by the collision of the African and Eurasian plates, the Arabian Eurasian convergence and the displacement of the Anatolian Aegean microplate, which generally represents the characteristic of lithospheric structure of the region. In the scope of this study, Bouguer and the satellite gravity (satellite altimetry) anomalies of southeastern Mediterranean and North Eastern part of Egypt were used for investigating the lithospheric structures. Second order trend analyses were applied firstly to Bouguer and satellite altimetry data for examining the characteristic of the anomaly. Later, the vertical and horizontal derivatives applications were applied to the same data. Generally, the purpose of the applying derivative methods is determining the vertical and horizontal borders of the structure. According to the results of derivatives maps, the study area could mainly divided into important four tectonic subzones depending on basement and Moho depth maps. These subzones are distributed from south to the north as: Nile delta-northern Sinai zone, north Egyptian coastal zone, Levantine basin zone and northern thrusting (Cyprus and its surroundings) zone. These zones are separated from each other by horizontal tectonic boundaries and/or near-vertical faults that display the block-faulting tectonic style of this belt. Finally, the gravity studies were evaluated together with the seismic activity of the region. Consequently, the geodynamical structure of the region is examined with the previous studies done in the region. Thus, the current study indicates that satellite gravity mission data is a valuable source of data in understanding the tectonic boundary behavior of the studied region and that satellite gravity data is an important modern source of data in the geodynamical studies.

  13. The New Gravity System: Changes in International Gravity Base Values and Anomaly Values

    Science.gov (United States)

    1980-10-01

    Johannesburg and Capetown , and that the apparent resulting slope defined is fortuitously reinforced by a poor gravity connection between Khartoum and...is indicated by the data for the West African series. This series (Section C) indicates that all values from Madrid through to Capetown except that...mrea) is much the same as that for the northern sector of the mid-continent East Africa series (14.75 mgal) , and since the Capetown value would only

  14. Basement depth estimation from gravity anomalies: two 2.5D approaches coupled with the exponential density contrast model

    Science.gov (United States)

    Chakravarthi, V.; Mallesh, K.; Ramamma, B.

    2017-03-01

    We develop two automatic techniques in the spatial domain using the exponential density contrast model (EDCM) to trace the bottom surface of a 2.5D sedimentary basin from the observed gravity anomalies. The interface between the sediments and basement is described with a finite strike polygonal source, whose depth ordinates become the unknown parameters to be estimated. The proposed automatic modeling technique makes use of the forward difference approximation and the inversion solves a system of normal equations using the ridge regression to estimate the unknown parameters. Furthermore, the proposed inversion technique simultaneously estimates the regional gravity background that is associated with the residual gravity anomaly. In either case, forward modeling is realized in the spatial domain through a method that combines both analytical and numerical approaches. The utility of each algorithm was successfully tested on a theoretically produced noisy residual gravity dataset. The validity of the inversion technique is also exemplified with the noisy gravity anomalies attributable to a synthetic structure in the presence of regional gravity background. We demonstrate that the magnitude of gravity anomaly is offset dependent and that it would influence the modeling result. Additionally, some applications with real gravity datasets from the Gediz and Büyük Menderes grabens in western Turkey using the derived EDCMs have produced geologically reasonable results which are in close agreement with those reported previously.

  15. Gravity anomalies over a segment of Pratap ridge and adjoining shelf margin basin, western continental margin of India

    Digital Repository Service at National Institute of Oceanography (India)

    Subrahmanyam, V.; Rao, D.G.; Ramprasad, T.; KameshRaju, K.A.; Rao, M.G.

    Bathymetric and gravity data totalling 2000 line km on the continental margin off Goa and Mulki, west of India have been studied. The free-air gravity anomalies vary between -60 to 25 mgals with prominent NNW-SSE trends in the outer shelf region...

  16. Geological Mapping of Sabah, Malaysia, Using Airborne Gravity Survey

    DEFF Research Database (Denmark)

    Fauzi Nordin, Ahmad; Jamil, Hassan; Noor Isa, Mohd;

    2016-01-01

    using airborne gravity surveys. Airborne gravity data over land areas of Sabah has been combined with the marine airborne gravity data to provide a seamless land-to-sea gravity field coverage in order to produce the geological mapping. Free-air and Bouguer anomaly maps (density 2.67 g/cm3) have been......Airborne gravimetry is an effective tool for mapping local gravity fields using a combination of airborne sensors, aircraft and positioning systems. It is suitable for gravity surveys over difficult terrains and areas mixed with land and ocean. This paper describes the geological mapping of Sabah...... gravity data were 5-6 km. The airborne gravity survey database for landand marine areas has been compiled using ArcGIS geodatabase format in order to produce the update geological map of Sabah....

  17. Gravity survey in the San Luis Valley area, Colorado

    Science.gov (United States)

    Gaca, J. Robert; Karig, Daniel E.

    1965-01-01

    During the summers of 1963 and 1964, a regional gravity survey covering 6,000 square miles of the San Luis Valley and surrounding areas was made to determine subsurface basement configurations and to guide future crustal studies. The San Luis Valley, a large intermontane basin, is a segment of the Rio Grande trough, a reef system characterized by volcanism, normal faulting, and tilted fault blocks. The gravity data, accurate to about 0.5 mgal, were reduced to complete-Bouguer anomaly values. The Bouguer-anomaly gravity map delineates a series of en-echelon gravity highs in the central and western San Luis Valley. These gravity highs are interpreted as horsts of Precambrian rock buried by basin fill. A series of en-echelon gravity lows along the eastern edge of the Valley is interpreted as a graben filled with sedimentary and igneous rock estimated to be up to 30,000 ft thick. The relatively high regional gravity over the Sangre de Cristo Mountains suggests that these mountains are locally uncompensated. A subcircular gravity low in the Bonanza area is interpreted as an indication of low-density volcanic rocks within a caldera structure.

  18. Massive torsion modes, chiral gravity and the Adler–Bell–Jackiw anomaly

    CERN Document Server

    Chang, L N; Chang, Lay Nam; Soo, Chopin

    2003-01-01

    Regularization of quantum field theories introduces a mass scale which breaks axial rotational and scaling invariances. We demonstrate from first principles that axial torsion and torsion trace modes have non-tranverse vacuum polarization tensors, and become massive as a result of the Adler-Bell-Jackiw (ABJ) and scaling anomalies. Since these are the only torsion components that can couple minimally to spin 1/2 particles, the anomalous generation of masses for these modes, naturally of the order of the regulator scale, may help to explain why torsion and its associated effects, including CPT violation in chiral gravity, have so far escaped detection. As a simpler manifestation of the ABJ anomaly than triangle diagrams, the vacuum polarization demonstration is also pedagogically useful.

  19. Massive torsion modes, chiral gravity, and the Adler-Bell-Jackiw anomaly

    CERN Document Server

    Chang, L N; Chang, Lay Nam; Soo, Chopin

    2003-01-01

    Regularization of quantum field theories introduces a mass scale which breaks axial rotational and scaling invariances. We demonstrate from first principles that axial torsion and torsion trace modes have non-transverse vacuum polarization tensors, and become massive as a result. The underlying reasons are similar to those responsible for the Adler-Bell-Jackiw (ABJ) and scaling anomalies. Since these are the only torsion components that can couple minimally to spin 1/2 particles, the anomalous generation of masses for these modes, naturally of the order of the regulator scale, may help to explain why torsion and its associated effects, including CPT violation in chiral gravity, have so far escaped detection. As a simpler manifestation of the reasons underpinning the ABJ anomaly than triangle diagrams, the vacuum polarization demonstration is also pedagogically useful. In addition it is shown that the teleparallel limit of a Weyl fermion theory coupled only to the left-handed spin connection leads to a counter...

  20. Finite-time singularities in f(R, T) gravity and the effect of conformal anomaly

    CERN Document Server

    Houndjo, M J S; Campos, J P; Piattella, O F

    2012-01-01

    We investigate $f(R,T)$ gravity models ($R$ is the curvature scalar and $T$ is the trace of the stress-energy tensor of ordinary matter) that are able to reproduce the four known types of future finite-time singularities. We choose a suitable expression for the Hubble parameter in order to realise the cosmic acceleration and we introduce two parameters, $\\alpha$ and $H_s$, which characterise each type of singularity. We address conformal anomaly and we observe that it cannot remove the sudden singularity or the type IV one, but, for some values of $\\alpha$, the big rip and the type III singularity may be avoided. We also find that, even without taking into account conformal anomaly, the big rip and the type III singularity may be removed thanks to the presence of the $T$ contribution of the $f(R,T)$ theory.

  1. Higgs Mass and Muon $g-2$ Anomaly in MSSM with Gauge-Gravity hybrid Mediation

    CERN Document Server

    Zhu, Bin; Li, Tianjun

    2016-01-01

    We propose a gauge mediation model with split messengers to explain the muon $g-2$ anomaly in consistent with $125$ GeV higgs mass requirement. The special properties is that all of color sparticles masses fall into several TeV region due to the large messenger splitting which are well beyond the scope of current LHC Run II limits. Meanwhile, sleptons and electroweakinos are light enough to retain advantages of electroweak supersymmetry. This type of spectrum can be realized by introducing hybrid model which combines gauge and gravity mediation. In addition, this mechanism is also responsible for solving tachyonic problem of slepton sector.

  2. The gravity signature of mantle uplift from impact modeling craters on the Moon

    Science.gov (United States)

    Milbury, Colleen; Johnson, Brandon C.; Melosh, H. Jay; Collins, Gareth S.; Blair, David M.; Soderblom, Jason M.; Zuber, Maria T.

    2014-11-01

    NASA’s dual Gravity Recovery and Interior Laboratory (GRAIL) spacecraft have globally mapped the lunar gravity field at unprecedented resolution; this has enabled the study of lunar impact craters of all sizes and ages. Soderblom et al. [2014, LPSC abstract #1777] calculated the residual Bouguer anomalies for ~2700 craters 27-184 km in diameter (D). They found that the residual central Bouguer anomaly of craters smaller than 100 km is essentially zero, that there is a transition for 100-150 km, and that craters larger than 184 km have a positive residual Bouguer anomaly that increases with increasing crater size. We use the iSALE shock physics hydrocode to model crater formation, including the effects of porosity and dilatancy (shear bulking). We use strength parameters of gabbroic anorthosite for a 35-km-thick crust, and dunite for the mantle. Our dunite impactors range in size from 6-30 km, which produce craters 86-450 km in diameter. We calculate the Bouguer gravity anomaly due solely to mantle uplift. We eliminate the effects of pressure and temperature on density by setting the output densities from the simulations to 2550 kg/m^3 if they are below the cutoff value of 3000 kg/m^3, and 3220 kg/m^3 if they are above. We compare our modeling results to gravity data from GRAIL. We find that the crater size at which mantle uplift dominates the crater gravity occurs at a crater diameter that is close to the complex crater to peak-ring basin transition. This is in agreement with the observed trend reported by Soderblom et al. [2014, LPSC abstract #1777].

  3. Genesis of the largest Amazonian wetland in northern Brazil inferred by morphology and gravity anomalies

    Science.gov (United States)

    Rossetti, Dilce de Fátima; Cassola Molina, Eder; Cremon, Édipo Henrique

    2016-08-01

    The Pantanal Setentrional (PS) is the second largest wetland in Brazil, occurring in a region of northern Amazonia previously regarded as part of the intracratonic Solimões Basin. However, while Paleozoic to Neogene strata are recorded in this basin, the PS constitutes a broad region with an expressive record of only Late Pleistocene and Holocene deposits. The hypothesis investigated in the present work is if these younger deposits were formed within a sedimentary basin having a geological history separated from the Solimões Basin. Due to the location in a remote region of low accessibility, the sedimentary fill of the PS wetland remains largely unknown in subsurface. In the present work, we combine geomorphological and gravity data acquired on a global basis by several satellite gravity missions to approach the geological context of this region. The results revealed a wetland characterized in surface by a low-lying terrain with wedge shape and concave-up geometry that is in sharp contact with highland areas of Precambrian rocks of the Guiana Shield. Such contact is defined by a series of mainly NE- or NW-trending straight lineaments that eventually extend into both the Guiana Shield and the PS wetland. Also of relevance is that a great part of the PS wetland sedimentary cover consists of dominantly sandy deposits preserved as residual paleo-landforms with triangular shapes previously related to megafan depositional systems. These are distributed radially at the northern margin of the PS, with axis toward basement rocks and fringes toward the wetland's center, the latter containing the largest megafan landform. The analysis of gravity anomaly data revealed a main NNE-trending chain ∼500 km in length defined by high gravity values (i.e., up to 60 mGal); these are bounded by negative anomalies as low as -90 mGal. The chain with positive gravity anomaly marks the center of a subsiding area having a geological evolution that differs from the adjacent intracratonic

  4. Subsurface structure of Teboursouk and El Krib plains (dome zone, northern Tunisia) by gravity analysis

    Science.gov (United States)

    Hadhemi, Balti; Fatma, Hachani; Ali, Kadri; Mohamed, Gasmi

    2016-07-01

    Gravity data was used to investigate sub-surface structure of the Teboursouk and El Krib plains belonging to the dome zone in the Northwest of Tunisia. Analysis of the gravity data included the computation of the Bouguer anomaly, the horizontal and vertical gravity gradients, the upward continuations, Euler deconvolution and analytic signal of high-resolution. The Bouguer anomaly map (d = 2.4 g cm-3) has provided information on the variation of the underground density and shown contrasting anomalous zones. The treatments applied to the Bouguer anomaly map have detected new deep faults and provided details on their dips and depths (exceeding 1500 m per places). Statistical analysis of the gravity data filtering shows that the study area is divided by four major faults with NW-SE, NE-SW, E-W and N-S trends. These faults have contributed to the structuring of the area. The results provide confirmation of some faults already recognized or inferred from the previous structural studies, and specify their depths and dips. While large number of new faults that remained undetected until now, have been highlighted.

  5. Sedimentary basin analysis using airborne gravity data: a case study from the Bohai Bay Basin, China

    Science.gov (United States)

    Li, Wenyong; Liu, Yanxu; Zhou, Jianxin; Zhou, Xihua; Li, Bing

    2016-11-01

    In this paper, we discuss the application of an airborne gravity survey to sedimentary basin analysis. Using high-precision airborne gravity data constrained by drilling and seismic data from the Bohai Bay Basin in eastern China, we interpreted faults, structural elements, sedimentary thickness, structural styles and local structures (belts) in the central area of the Basin by the wavelet transform method. Subsequently, these data were subtracted from the Bouguer gravity to calculate the residual gravity anomalies. On this basis, the faults were interpreted mainly by linear zones of high gravity gradients and contour distortion, while the sedimentary thicknesses were computed by the Euler deconvolution. The structural styles were identified by the combination of gravity anomalies and the local structures interpreted by the first vertical derivative of the residual gravity. The results showed evidence for seven faults, one sag and ten new local structure belts.

  6. Pre-impact crustal porosity and its effect on the gravity signature of lunar craters

    Science.gov (United States)

    Milbury, Colleen; Johnson, Brandon C.; Melosh, H. Jay; Collins, Gareth C.; Blair, David M.; Soderblom, Jason M.; Zuber, Maria T.

    2015-04-01

    NASA's dual Gravity Recovery and Interior Laboratory (GRAIL) spacecraft have globally mapped the lunar gravity field at unprecedented resolution. Soderblom et al. [2015] made a comprehensive analysis of the residual and central uplift Bouguer gravity anomalies associated with more than 5200 lunar craters. There were two main observations that are related to the work presented here: 1) craters less than ~150 km in diameter (D) have a residual Bouguer anomaly (BA) that is near zero on average (although a negative trend is observed), but have both positive and negative anomalies that vary by approximately ±25 mGal about the mean, and, 2) there is a transition at which the central uplift BA becomes positive and increases with D. Craters that are located in the maria and South Pole-Aitken (SPA) basin were excluded from the analysis because they tend to have more negative signatures than highlands craters. These gravitational signatures contrast with the invariably negative gravity anomalies associated with terrestrial craters. In this study, we investigate pre-impact porosity by modeling crater formation using the iSALE hydrocode, including a new approach to include dilatancy, to determine their effects on the gravity signature of craters. We calculated the BA for the simulations, but due to mantle uplift alone. We find that the magnitude of the BA increases with increasing porosity, and that variable initial porosity of the lunar crust can explain why craters on the Moon exhibit both positive and negative Bouguer anomalies. This can also explain the observed negative residual BA associated with craters formed in the lunar maria and SPA (and associated melt sheet) because they are typically less porous than the highlands crust. Gravity anomalies due to mantle uplift reproduce the observed transition from zero to a positive central uplift BA, which coincides with the morphological transition from complex craters to peak-ring basins.

  7. Anomalies.

    Science.gov (United States)

    Online-Offline, 1999

    1999-01-01

    This theme issue on anomalies includes Web sites, CD-ROMs and software, videos, books, and additional resources for elementary and junior high school students. Pertinent activities are suggested, and sidebars discuss UFOs, animal anomalies, and anomalies from nature; and resources covering unexplained phenonmenas like crop circles, Easter Island,…

  8. Massive torsion modes, chiral gravity and the Adler-Bell-Jackiw anomaly

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Lay Nam [Department of Physics, Virginia Tech., Blacksburg, VA 24061-0435 (United States); Soo Chopin [Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan (China)

    2003-04-07

    Regularization of quantum field theories introduces a mass scale which breaks axial rotational and scaling invariances. We demonstrate from first principles that axial torsion and torsion trace modes have non-transverse vacuum polarization tensors, and become massive as a result. The underlying reasons are similar to those responsible for the Adler-Bell-Jackiw (ABJ) and scaling anomalies. Since these are the only torsion components that can couple minimally to spin-1/2 particles, the anomalous generation of masses for these modes, naturally of the order of the regulator scale, may help to explain why torsion and its associated effects, including CPT violation in chiral gravity, have so far escaped detection. As a simpler manifestation of the reasons underpinning the ABJ anomaly than triangle diagrams, the vacuum polarization demonstration is also pedagogically useful. In addition, it is shown that the teleparallel limit of a Weyl fermion theory coupled only to the left-handed spin connection leads to a counter term which is the Samuel-Jacobson-Smolin action of chiral gravity in four dimensions.

  9. Moho Depth Derived from Gravity Data in the Taiwan Strait Area

    Directory of Open Access Journals (Sweden)

    Hsien-Hsiang Hsieh

    2010-01-01

    Full Text Available We have constructed are gional Bouguer gravity anomaly map using marine and land data from Tai wan and the Chinese province of Fuchien, as well as SEASAT altimetry-de rived gravity data for the Tai wan Strait and its surrounding area. The map shows isogals trending generally in a NE-SW direction, conforming with the over all shallower geo logical strike of the strait. Removing gravity effects generated by the water layer and seafloor to pography, the regional Bouguer gravity anomaly is obtained, reflecting the subsurface structure. Moho depth is then computed by the Parker-Oldenburg iterative method from the regional Bouguer gravity data set. Over the strait area, the geometry of the Moho relief is smooth with an average depth of about 30 km, except for the Penghu up lift. Moho depth is shallower in the Taiwan Strait and thickens to ward both sides of the strait. The relatively shallower Moho depth, reaching up to 28 km, is convex up ward underneath the Penghu uplift.

  10. Moho Depth Derived from Gravity Data in the Taiwan Strait Area

    Directory of Open Access Journals (Sweden)

    Hsien-Hsiang Hsieh

    2010-01-01

    Full Text Available We have constructed are gional Bouguer gravity anomaly map using marine and land data from Tai wan and the Chinese province of Fuchien, as well as SEASAT altimetry-de rived gravity data for the Tai wan Strait and its surrounding area. The map shows isogals trending generally in a NE-SW direction, conforming with the over all shallower geo logical strike of the strait. Removing gravity effects generated by the water layer and seafloor to pography, the regional Bouguer gravity anomaly is obtained, reflecting the subsurface structure. Moho depth is then computed by the Parker-Oldenburg iterative method from the regional Bouguer gravity data set. Over the strait area, the geometry of the Moho relief is smooth with an average depth of about 30 km, except for the Penghu up lift. Moho depth is shallower in the Taiwan Strait and thickens to ward both sides of the strait. The relatively shallower Moho depth, reaching up to 28 km, is convex up ward underneath the Penghu uplift.

  11. Inversion of marine gravity anomalies over southeastern China seas from multi-satellite altimeter vertical deflections

    Science.gov (United States)

    Zhang, Shengjun; Sandwell, David T.; Jin, Taoyong; Li, Dawei

    2017-02-01

    The accuracy and resolution of marine gravity field derived from satellite altimetry mainly depends on the range precision and dense spatial distribution. This paper aims at modeling a regional marine gravity field with improved accuracy and higher resolution (1‧ × 1‧) over Southeastern China Seas using additional data from CryoSat-2 as well as new data from AltiKa. Three approaches are used to enhance the precision level of satellite-derived gravity anomalies. Firstly we evaluate a suite of published retracking algorithms and find the two-step retracker is optimal for open ocean waveforms. Secondly, we evaluate the filtering and resampling procedure used to reduce the full 20 or 40 Hz data to a lower rate having lower noise. We adopt a uniform low-pass filter for all altimeter missions and resample at 5 Hz and then perform a second editing based on sea surface slope estimates from previous models. Thirdly, we selected WHU12 model to update the corrections provided in geophysical data record. We finally calculated the 1‧ × 1‧ marine gravity field model by using EGM2008 model as reference field during the remove/restore procedure. The root mean squares of the discrepancies between the new result and DTU10, DTU13, V23.1, EGM2008 are within the range of 1.8- 3.9 mGal, while the verification with respect to shipboard gravity data shows that the accuracy of the new result reached a comparable level with DTU13 and was slightly superior to V23.1, DTU10 and EGM2008 models. Moreover, the new result has a 2 mGal better accuracy over open seas than coastal areas with shallow water depth.

  12. Long wavelength gravity anomalies over India: Crustal and lithospheric structures and its flexure

    Science.gov (United States)

    Tiwari, V. M.; Ravi Kumar, M.; Mishra, D. C.

    2013-07-01

    Long wavelength gravity anomalies over India were obtained from terrestrial gravity data through two independent methods: (i) wavelength filtering and (ii) removing crustal effects. The gravity fields due to the lithospheric mantle obtained from two methods were quite comparable. The long wavelength gravity anomalies were interpreted in terms of variations in the depth of the lithosphere-asthenosphere boundary (LAB) and the Moho with appropriate densities, that are constrained from seismic results at certain points. Modeling of the long wavelength gravity anomaly along a N-S profile (77°E) suggest that the thickness of the lithosphere for a density contrast of 0.05 g/cm3 with the asthenosphere is maximum of ˜190 km along the Himalayan front that reduces to ˜155 km under the southern part of the Ganga and the Vindhyan basins increasing to ˜175 km south of the Satpura Mobile belt, reducing to ˜155-140 km under the Eastern Dharwar craton (EDC) and from there consistently decreasing south wards to ˜120 km under the southernmost part of India, known as Southern Granulite Terrain (SGT). The crustal model clearly shows three distinct terrains of different bulk densities, and thicknesses, north of the SMB under the Ganga and the Vindhyan basins, and south of it the Eastern Dharwar Craton (EDC) and the Southern Granulite Terrain (SGT) of bulk densities 2.87, 2.90 and 2.96 g/cm3, respectively. It is confirmed from the exposed rock types as the SGT is composed of high bulk density lower crustal rocks and mafic/ultramafic intrusives while the EDC represent typical granite/gneisses rocks and the basement under the Vindhyan and Ganga basins towards the north are composed of Bundelkhand granite massif of the lower density. The crustal thickness along this profile varies from ˜37-38 km under the EDC, increasing to ˜40-45 km under the SGT and ˜40-42 km under the northern part of the Ganga basin with a bulge up to ˜36 km under its southern part. Reduced lithospheric and

  13. Seismic and gravity anomaly evidence of large-scale compressional deformation off SW Portugal

    Science.gov (United States)

    Cunha, T. A.; Watts, A. B.; Pinheiro, L. M.; Myklebust, R.

    2010-04-01

    Multi-channel seismic and gravity anomaly data have been used to determine the extent of compressional deformation along the SW Portugal rifted continental margin and place constraints on the long-term (> 1 M.a.) strength of the lithosphere. The seismic sections suggest that the region of compressional deformation is broad (˜ 100 km) and has been active since the Miocene. Integration with recently compiled high-resolution bathymetric data shows that the main thrust front is located along the base of the continental slope, between north of the Gorringe Bank and the Setúbal Canyon. Gravity data show that the thrust front is associated with a narrow isostatic anomaly 'high' of up to 70 mGal that is flanked on its NW edge by a broad 'low' of up to 20 mGal. This high-low 'couple' can be explained by compressional loading of extended continental lithosphere that increased its flexural strength (or equivalent elastic thickness, Te) since rifting. Based on combined 2-D backstripping and gravity modelling techniques we estimate a Te of ˜ 10 km during the main stretching episode, in the Late Jurassic (maybe earliest Cretaceous?), and of 35-50 km during the Miocene to Recent compression. The existence of a broad region of deformation off SW Portugal together with a strong lithosphere have implications for the rupture models of large earthquakes in the region, such as the 1755 Great Lisbon earthquake, particularly when accounting for a complex, multiple rupture in faults which cut through lithosphere of distinct nature and origin, as appears to be required by modellers to explain the historical observational data.

  14. 3D free-air gravity anomaly modeling for the Southeast Indian Ridge

    Science.gov (United States)

    Girolami, Chiara; Heyde, Ingo; Rinaldo Barchi, Massimiliano; Pauselli, Cristina

    2016-04-01

    In this study we analyzed the free-air gravity anomalies measured on the northwestern part of the Southeast Indian Ridge (hereafter SEIR) during the BGR cruise INDEX2012 with RV FUGRO GAUSS. The survey area covered the ridge from the Rodriguez Triple Junction along about 500 km towards the SSE direction. Gravity and magnetic data were measured along 65 profiles with a mean length of 60 km running approximately perpendicular to the ridge axis. The final gravity data were evaluated every 20 seconds along each profile. This results in a sampling interval of about 100 m. The mean spacing of the profiles is about 7 km. Together with the geophysical data also the bathymetry was measured along all profiles with a Kongsberg Simrad EM122 multibeam echosounder system. Previous studies reveal that the part of the ridge covered by the high resolution profiles is characterized by young geologic events (the oldest one dates back to 1 Ma) and that the SEIR is an intermediate spreading ridge. We extended the length of each profile to the area outside the ridge, integrating INDEX2012 high resolution gravity and bathymetric data with low resolution data derived from satellite radar altimeter measurements. The 3D forward gravity modeling made it possible to reconstruct a rough crustal density model for an extended area (about 250000 km2) of the SEIR. We analyzed the gravity signal along those 2D sections which cross particular geological features (uplifted areas, accommodation zones, hydrothermal fields and areas with hints for extensional processes e.g. OCCs) in order to establish a correlation between the gravity anomaly signal and the surface geology. We started with a simple "layer-cake" geologic model consisting of four density bodies which represent the sea, upper oceanic crust, lower oceanic crust and the upper mantle. Considering that in the study area the oceanic crust is young, we did not include the sediment layer. We assumed the density values of these bodies considering

  15. Bayesian signal processing techniques for the detection of highly localised gravity anomalies using quantum interferometry technology

    Science.gov (United States)

    Brown, Gareth; Ridley, Kevin; Rodgers, Anthony; de Villiers, Geoffrey

    2016-10-01

    Recent advances in the field of quantum technology offer the exciting possibility of gravimeters and gravity gradiometers capable of performing rapid surveys with unprecedented precision and accuracy. Measurements with sub nano-g (a billionth of the acceleration due to gravity) precision should enable the resolution of underground structures on metre length scales. However, deducing the exact dimensions of the structure producing the measured gravity anomaly is known to be an ill-posed inversion problem. Furthermore, the measurement process will be affected by multiple sources of uncertainty that increase the range of plausible solutions that fit the measured data. Bayesian inference is the natural framework for accommodating these uncertainties and providing a fully probabilistic assessment of possible structures producing inhomogeneities in the gravitational field. Previous work introduced the probability of excavation map as a means to convert the high-dimensional space belonging to the posterior distribution to an easily interpretable map. We now report on the development of the inference model to account for spatial correlations in the gravitational field induced by variations in soil density.

  16. A multi-subwaveform parametric retracker of the radar satellite altimetric waveform and recovery of gravity anomalies over coastal oceans

    Institute of Scientific and Technical Information of China (English)

    HWANG; CheinWay

    2010-01-01

    The quality of satellite radar altimetric data is very important in studies of geodesy,geophysics,and oceanography.Over coastal oceans,altimeter waveforms are contaminated by the terrain and physical environments so that the accuracy of altimeter data is lower than that over open oceans.Here we develop a new multi-subwaveform parametric retracker(MSPR) to improve the quality of altimeter data for the recovery of gravity anomaly in coastal oceans.The least squares collocation method is used to recover the residual gravity anomaly over the coastal water from altimetric data.The waveform data records from Geosat/GM around Taiwan Island are practically retracked with MSPR.When compared with the Taiwan geoid height,the results retracked by MSPR are more accurate than those retracked by the well-known β-5-parmeter method and from the geophysical data records(GDRs).The gravity anomalies over Taiwan coastal waters are calculated from the retracked altimeter data with the least squares collocation.When we compared gravity anomalies computed using altimeter GDRs with the ship-borne gravity data over Taiwan coastal ocean,we found that the results from retracked data are more accurate than those from GDRs.

  17. Comparison of different gravity field implied density models of the topography

    Science.gov (United States)

    Sedighi, Morteza; Tabatabaee, Seied; Najafi-Alamdari, Mehdi

    2009-06-01

    Density within the Earth crust varies between 1.0 and 3.0 g/cm3. The Bouguer gravity field measured in south Iran is analyzed using four different regional-residual separation techniques to obtain a residual map of the gravity field suitable for density modeling of topography. A density model of topography with radial and lateral distribution of density is required for an accurate determination of the geoid, e.g., in the Stokes-Helmert approach. The apparent density mapping technique is used to convert the four residual Bouguer anomaly fields into the corresponding four gravity im-plied subsurface density (GRADEN) models. Although all four density models showed good correlation with the geological density (GEODEN) model of the region, the GRADEN models obtained by high-pass filter-ing and GGM high-pass filtering show better numerical correlation with GEODEN model than the other models.

  18. Gravity anomalies, flexure and mantle rheology seaward of circum-Pacific trenches

    Science.gov (United States)

    Hunter, J.; Watts, A. B.

    2016-10-01

    We have used ensemble averages of satellite-derived free-air gravity anomaly data, together with inverse modelling techniques, to determine the effective elastic thickness, Te, of circum-Pacific subducting oceanic lithosphere and its relationship to plate age. Synthetic modelling tests show that Te can be recovered best using gravity anomaly, rather than bathymetry, data and profiles that are at least 750 km long. Inverse modelling based on a uniform Te elastic plate suggests that Te increases with age of the subducting oceanic lithosphere and is given approximately by the depth to the 390 ± 10 °C oceanic isotherm based on a cooling plate model. Misfits between the observed and calculated gravity anomalies are significantly improved if a mechanically weak zone is included between the trench axis and the outer rise. This weak zone is coincident with observations of bend-faulting and seismicity. Inverse modelling shows that Te landward of the outer rise is generally 40-65 per cent less than the Te seaward of the outer rise. Both landward and seaward Te increases with age of the lithosphere and are given by the depth to the 342-349 °C and 671-714 °C oceanic isotherm, respectively. A dependence of Te on age is consistent with models for the cooling of oceanic lithosphere as it moves away from a mid-ocean ridge and the temperature-dependent ductile creep of oceanic lithospheric minerals such as olivine. By comparing the observed Te to the predicted Te based on laboratory-derived yield strength envelopes and an assumption of elastic-perfectly plastic deformation, we have attempted to constrain the rheology of oceanic lithosphere. Regardless of the assumed friction coefficient, the dry-olivine low-temperature plasticity flow laws of Goetze, Evans & Goetze, Raterron et al. and Mei et al. all provide quite a good fit to the observed Te at circum-Pacific subduction zones. This result contrasts with the Hawaiian Islands, where these flow laws are generally too strong to

  19. Gravity anomalies, flexure and mantle rheology seaward of Circum-Pacific trenches

    Science.gov (United States)

    Hunter, J.; Watts, A. B.

    2016-07-01

    We have used ensemble averages of satellite-derived free-air gravity anomaly data, together with inverse modelling techniques, to determine the effective elastic thickness, Te, of circum-Pacific subducting oceanic lithosphere and its relationship to plate age. Synthetic modelling tests show that Te can be recovered best using gravity anomaly, rather than bathymetry, data and profiles that are at least 750 km long. Inverse modeling based on a uniform Te elastic plate suggests that Te increases with age of the subducting oceanic lithosphere and is given approximately by the depth to the 390 ± 10°C oceanic isotherm based on a cooling plate model. Misfits between the observed and calculated gravity anomalies are significantly improved if a mechanically weak zone is included between the trench axis and the outer rise. This weak zone is coincident with observations of bend-faulting and seismicity. Inverse modelling shows that Te landward of the outer rise is generally 40-65% less than the Te seaward of the outer rise. Both landward and seaward Te increases with age of the lithosphere and are given by the depth to the 342-349°C and 671-714°C oceanic isotherm respectively. A dependence of Te on age is consistent with models for the cooling of oceanic lithosphere as it moves away from a mid-ocean ridge and the temperature-dependent ductile creep of oceanic lithospheric minerals such as olivine. By comparing the observed Te to the predicted Te based on laboratory-derived yield strength envelopes and an assumption of elastic-perfectly plastic deformation, we have attempted to constrain the rheology of oceanic lithosphere. Regardless of the assumed friction coefficient, the dry-olivine low-temperature plasticity flow laws of Goetze (1978), Evans & Goetze (1979), Raterron et al. (2004) and Mei et al. (2010) all provide quite a good fit to the observed Te at circum-Pacific subduction zones. This result contrasts with the Hawaiian Islands, where these flow laws are generally

  20. Satellite traces, range spread-F occurrence, and gravity wave propagation at the southern anomaly crest

    Energy Technology Data Exchange (ETDEWEB)

    Cabrera, M.A. [Universidad Tecnologica Nacional, Tucuman (Argentina). CIASUR, Facultad Regional Tucuman; Universidad Nacional de Tucuman (Argentina). Lab. de Ionosfera; Pezzopane, M.; Zuccheretti, E. [Istituto Nazionale di Geofisica e Vulcanologia, Rome (Italy); Ezquer, R.G. [Universidad Tecnologica Nacional, Tucuman (Argentina). CIASUR, Facultad Regional Tucuman; Universidad Nacional de Tucuman (Argentina). Lab. de Ionosfera; Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires (Argentina)

    2010-07-01

    Range spread-F (RSF) and occurrence of ''satellite'' traces prior to RSF onset were studied at the southern peak of the ionospheric equatorial anomaly (EA). Ionograms recorded in September 2007 at the new ionospheric station of Tucuman, Argentina (26.9 S, 294.6 E, dip latitude 15.5 S), by the Advanced Ionospheric Sounder (AIS) developed at the Istituto Nazionale di Geofisica e Vulcanologia (INGV), were considered. Satellite traces (STs) are confirmed to be a necessary precursor to the appearance of an RSF trace on the ionograms. Moreover, an analysis of isoheight contours of electron density seems to suggest a relationship between RSF occurrence and gravity wave (GW) propagation. (orig.)

  1. Holonomies, anomalies and the Fefferman-Graham ambiguity in AdS{sub 3} gravity

    Energy Technology Data Exchange (ETDEWEB)

    Rooman, M. E-mail: mrooman@ulb.ac.be; Spindel, Ph. E-mail: spindel@umh.ac.be

    2001-01-29

    Using the Chern-Simons formulation of (2+1)-gravity, we derive, for the general asymptotic metrics given by the Fefferman-Graham-Lee theorems, the emergence of the Liouville mode associated to the boundary degrees of freedom of (2+1)-dimensional anti-de-Sitter geometries. Holonomies are described through multi-valued gauge and Liouville fields and are found to algebraically couple the fields defined on the disconnected components of spatial infinity. In the case of flat boundary metrics, explicit expressions are obtained for the fields and holonomies. We also show the link between the variation under diffeomorphisms of the Einstein theory of gravitation and the Weyl anomaly of the conformal theory at infinity.

  2. Modelling the gravity and magnetic field anomalies of the Chicxulub crater

    Science.gov (United States)

    Aleman, C. Ortiz; Pilkington, M.; Hildebrand, A. R.; Roest, W. R.; Grieve, R. A. F.; Keating, P.

    1993-01-01

    The approximately 180-km-diameter Chicxulub crater lies buried by approximately 1 km of sediment on the northwestern corner of the Yucatan Peninsula, Mexico. Geophysical, stratigraphic and petrologic evidence support an impact origin for the structure and biostratigraphy suggests that a K/T age is possible for the impact. The crater's location is in agreement with constraints derived from proximal K/T impact-wave and ejecta deposits and its melt-rock is similar in composition to the K/T tektites. Radiometric dating of the melt rock reveals an age identical to that of the K/T tektites. The impact which produced the Chicxulub crater probably produced the K/T extinctions and understanding the now-buried crater will provide constraints on the impact's lethal effects. The outstanding preservation of the crater, the availability of detailed gravity and magnetic data sets, and the two-component target of carbonate/evaporites overlying silicate basement allow application of geophysical modeling techniques to explore the crater under most favorable circumstances. We have found that the main features of the gravity and magnetic field anomalies may be produced by the crater lithologies.

  3. Modelling the gravity and magnetic field anomalies of the Chicxulub crater

    Science.gov (United States)

    Aleman, C. Ortiz; Pilkington, M.; Hildebrand, A. R.; Roest, W. R.; Grieve, R. A. F.; Keating, P.

    1993-01-01

    The approximately 180-km-diameter Chicxulub crater lies buried by approximately 1 km of sediment on the northwestern corner of the Yucatan Peninsula, Mexico. Geophysical, stratigraphic and petrologic evidence support an impact origin for the structure and biostratigraphy suggests that a K/T age is possible for the impact. The crater's location is in agreement with constraints derived from proximal K/T impact-wave and ejecta deposits and its melt-rock is similar in composition to the K/T tektites. Radiometric dating of the melt rock reveals an age identical to that of the K/T tektites. The impact which produced the Chicxulub crater probably produced the K/T extinctions and understanding the now-buried crater will provide constraints on the impact's lethal effects. The outstanding preservation of the crater, the availability of detailed gravity and magnetic data sets, and the two-component target of carbonate/evaporites overlying silicate basement allow application of geophysical modeling techniques to explore the crater under most favorable circumstances. We have found that the main features of the gravity and magnetic field anomalies may be produced by the crater lithologies.

  4. Structural model of the Northern Latium volcanic area constrained by MT, gravity and aeromagnetic data

    Directory of Open Access Journals (Sweden)

    P. Gasparini

    1997-06-01

    Full Text Available The results of about 120 magnetotelluric soundings carried out in the Vulsini, Vico and Sabatini volcanic areas were modeled along with Bouguer and aeromagnetic anomalies to reconstruct a model of the structure of the shallow (less than 5 km of depth crust. The interpretations were constrained by the information gathered from the deep boreholes drilled for geothermal exploration. MT and aeromagnetic anomalies allow the depth to the top of the sedimentary basement and the thickness of the volcanic layer to be inferred. Gravity anomalies are strongly affected by the variations of morphology of the top of the sedimentary basement, consisting of a Tertiary flysch, and of the interface with the underlying Mesozoic carbonates. Gravity data have also been used to extrapolate the thickness of the neogenic unit indicated by some boreholes. There is no evidence for other important density and susceptibility heterogeneities and deeper sources of magnetic and/or gravity anomalies in all the surveyed area.

  5. A FORTRAN program to implement the method of finite elements to compute regional and residual anomalies from gravity data

    Science.gov (United States)

    Agarwal, B. N. P.; Srivastava, Shalivahan

    2010-07-01

    In view of the several publications on the application of the Finite Element Method (FEM) to compute regional gravity anomaly involving only 8 nodes on the periphery of a rectangular map, we present an interactive FORTRAN program, FEAODD.FOR, for wider applicability of the technique. A brief description of the theory of FEM is presented for the sake of completeness. The efficacy of the program has been demonstrated by analyzing the gravity anomaly over Salt dome, South Houston, USA using two differently oriented rectangular blocks and over chromite deposits, Camaguey, Cuba. The analyses over two sets of data reveal that the outline of the ore body/structure matches well with the maxima of the residuals. Further, the data analyses over South Houston, USA, have revealed that though the broad regional trend remains the same for both the blocks, the magnitudes of the residual anomalies differ approximately by 25% of the magnitude as obtained from previous studies.

  6. Development of the negative gravity anomaly of the 85 degrees E Ridge, northeastern Indian Ocean – A process oriented modelling approach

    Digital Repository Service at National Institute of Oceanography (India)

    Sreejith, K.M.; Radhakrishna, M.; Krishna, K.S.; Majumdar, T.J.

    The 85 degrees E Ridge is associated with two contrasting gravity anomalies: negative anomaly over the north part (up to 5 degrees N latitude), where the ridge structure is buried under thick Bengal Fan sediments and positive anomaly over the south...

  7. A continuing discussion about the correlation of tidal gravity anomalies and heat flow densities

    Science.gov (United States)

    Melchior, P.

    1995-04-01

    to take into account the role of fluids (lubrication and stress corrosion owing to deep-seated saline waters or fluids) in crustal processes such as tidal deformations, such small tidal gravity anomalies cannot be correctly calculated. The use of a correlation technique therefore remains the only way to treat unexplained residues, even if this does not constitute an unequivocal proof. Other arguments have to be found to deny the existence of this correlation.

  8. Estimation of regional mass anomalies from Gravity Recovery and Climate Experiment (GRACE) over Himalayan region

    Science.gov (United States)

    Agrawal, R.; Singh, S. K.; Rajawat, A. S.; Ajai

    2014-11-01

    Time-variable gravity changes are caused by a combination of postglacial rebound, redistribution of water and snow/ice on land and as well as in the ocean. The Gravity Recovery and Climate Experiment (GRACE) satellite mission, launched in 2002, provides monthly average of the spherical harmonic co-efficient. These spherical harmonic co-efficient describe earth's gravity field with a resolution of few hundred kilometers. Time-variability of gravity field represents the change in mass over regional level with accuracies in cm in terms of Water Equivalent Height (WEH). The WEH reflects the changes in the integrated vertically store water including snow cover, surface water, ground water and soil moisture at regional scale. GRACE data are also sensitive towards interior strain variation, surface uplift and surface subsidence cover over a large area. GRACE data was extracted over the three major Indian River basins, Indus, Ganga and Brahmaputra, in the Himalayas which are perennial source of fresh water throughout the year in Northern Indian Plain. Time series analysis of the GRACE data was carried out from 2003-2012 over the study area. Trends and amplitudes of the regional mass anomalies in the region were estimated using level 3 GRACE data product with a spatial resolution at 10 by 10 grid provided by Center for Space Research (CSR), University of Texas at Austin. Indus basin has shown a subtle decreasing trend from 2003-2012 however it was observed to be statistically insignificant at 95 % confidence level. Ganga and Brahmaputra basins have shown a clear decreasing trend in WEH which was also observed to be statistically significant. The trend analysis over Ganga and Brahamputra basins have shown an average annual change of -1.28 cm and -1.06 cm in terms of WEH whereas Indus basin has shown a slight annual change of -0.07 cm. This analysis will be helpful to understand the loss of mass in terms of WEH over Indian Himalayas and will be crucial for hydrological and

  9. One-loop anomaly mediated scalar masses and (g - 2){sub μ} in pure gravity mediation

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Jason L.; Olive, Keith A. [University of Minnesota, School of Physics and Astronomy, William I. Fine Theoretical Physics Institute, Minneapolis, MN (United States); Ibe, Masahiro [ICRR, University of Tokyo, Kashiwa (Japan); University of Tokyo, Kavli IPMU (WPI), TODIAS, Kashiwa (Japan); Yanagida, Tsutomu T. [University of Tokyo, Kavli IPMU (WPI), TODIAS, Kashiwa (Japan)

    2014-02-15

    We consider the effects of non-universalities among sfermion generations in models of PureGravity Mediation (PGM). In PGM models and in many models with strongly stabilized moduli, the gravitino mass may be O(100) TeV, whereas gaugino masses, generated through anomalies at one loop, remain relatively light O(1) TeV. In models with scalar mass universality, input scalar masses are generally very heavy (m{sub 0} ≅ m{sub 3/2}), resulting in a mass spectrum resembling that in split supersymmetry. However, if one adopts a no-scale or partial no-scale structure for theKahler manifold, sfermion masses may vanish at the tree level. It is usually assumed that the leading order anomaly mediated contribution to scalar masses appears at two loops. However, there are at least two possible sources for one-loop scalar masses. These may arise if Pauli.Villars fields are introduced as messengers of supersymmetry breaking. We consider the consequences of a spectrum in which the scalar masses associated with the third generation are heavy (order m{sub 3/2}) with one-loop scalar masses for the first two generations. A similar spectrum is expected to arise in GUT models based on E{sub 7}/SO(10) where the first two generations of scalars act as pseudo-Nambu-Goldstone bosons. Explicit breaking of this symmetry by the gauge couplings then generates one-loop masses for the first two generations. In particular, we show that it may be possible to reconcile the g{sub μ} - 2 discrepancy with potentially observable scalars and gauginos at the LHC. (orig.)

  10. Bathymetry Prediction in Shallow Water by the Satellite Altimetry-Derived Gravity Anomalies

    Science.gov (United States)

    Kim, Kwang Bae; Yun, Hong Sik

    2017-04-01

    The satellite altimetry-derived free-air gravity anomalies (SAFAGAs) are correlated with undulations of crustal density variations under the seafloor. In this study, shipborne bathymetry from the Korea Rural Community Corporation (KRC) and the SAFAGAs from Scripps Institution of Oceanography were combined to predict bathymetry in shallow water. Density contrast of 5.0 g/cm3 estimated by the check points method of the gravity-geologic method (GGM) between seawater and the seafloor topographic mass was applied to predict bathymetry in shallow water areas outside of the Saemangeum Seawall located on the southwest coast of the Korean peninsula. Bathymetry predicted by the GGM was compared with depth measurements on the shipborne locations to analyze the bathymetry accuracy. The root mean square error (RMSE) of the differences of bathymetry between GGM and KRC on the KRC shipborne tracks in shallow water around the Saemangeum Seawall is 0.55 m. The topographic effects in off-tracks extracted from SAFAGAs in the GGM can be effectively utilized to predict bathymetry by combining with shipborne depth data in shallow water where shipborne depth data are limited. In addition, bathymetry and the SAFAGAs have a linear correlation in the 20 160 km wavelength. The coherency analysis was performed by computing the cross-spectral coherence between satellite altimetry derived bathymetry and the SAFAGAs. Acknowledgement This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2016R1A6A3A11931032).

  11. Determining the COB location along the Iberian margin and Galicia Bank from gravity anomaly inversion, residual depth anomaly and subsidence analysis

    Science.gov (United States)

    Cowie, Leanne; Kusznir, Nick; Manatschal, Gianreto

    2015-11-01

    Knowledge and understanding of the ocean-continent transition (OCT) structure, continent-ocean boundary (COB) location and crustal type are of critical importance in evaluating rifted continental margin formation and evolution. OCT structure, COB location and magmatic type also have important implications for the understanding of the geodynamics of continental breakup and in the evaluation of petroleum systems in deep-water frontier oil and gas exploration at rifted continental margins. Mapping the distribution of thinned continental crust and lithosphere, its distal extent and the start of unequivocal oceanic crust and hence determining the OCT structure and COB location at rifted continental margins is therefore a generic global problem. In order to assist in the determination of the OCT structure and COB location, we present methodologies using gravity anomaly inversion, residual depth anomaly (RDA) analysis and subsidence analysis, which we apply to the west Iberian rifted continental margin. The west Iberian margin has one of the most complete data sets available for deep magma-poor rifted margins, so there is abundant data to which the results can be calibrated. Gravity anomaly inversion has been used to determine Moho depth, crustal basement thickness and continental lithosphere thinning; subsidence analysis has been used to determine the distribution of continental lithosphere thinning; and RDAs have been used to investigate the OCT bathymetric anomalies with respect to expected oceanic bathymetries at rifted continental margins. These quantitative analytical techniques have been applied to the west Iberian rifted continental margin along profiles IAM9, Lusigal 12 (with the TGS-extension) and ISE-01. Our predictions of OCT structure, COB location and magmatic type (i.e. the volume of magmatic addition, whether the margin is `normal' magmatic, magma-starved or magma-rich) have been tested and validated using ODP wells (Legs 103, 149 and 173), which provide

  12. High-resolution residual geoid and gravity anomaly data of the northern Indian Ocean - An input to geological understanding

    Science.gov (United States)

    Sreejith, K. M.; Rajesh, S.; Majumdar, T. J.; Srinivasa Rao, G.; Radhakrishna, M.; Krishna, K. S.; Rajawat, A. S.

    2013-01-01

    Geoid data are more sensitive to density distributions deep within the Earth, thus the data are useful for studying the internal processes of the Earth leading to formation of geological structures. In this paper, we present much improved version of high resolution (1' × 1') geoid anomaly map of the northern Indian Ocean generated from the altimeter data obtained from Geodetic Missions of GEOSAT and ERS-1 along with ERS-2, TOPEX/POSIDEON and JASON satellites. The geoid map of the Indian Ocean is dominated by a significant low of -106 m south of Sri Lanka, named as the Indian Ocean Geoid Low (IOGL), whose origin is not clearly known yet. The residual geoid data are retrieved from the geoid data by removing the long-wavelength core-mantle density effects using recent spherical harmonic coefficients of Earth Gravity Model 2008 (EGM2008) up to degree and order 50 from the observed geoid data. The coefficients are smoothly rolled off between degrees 30-70 in order to avoid artifacts related to the sharp truncation at degree 50. With this process we observed significant improvement in the residual geoid data when compared to the previous low-spatial resolution maps. The previous version was superposed by systematic broad regional highs and lows (like checker board) with amplitude up to ±12 m, though the trends of geoid in general match in both versions. These methodical artifacts in the previous version may have arisen due to the use of old Rapp's geo-potential model coefficients, as well as sharp truncation of reference model at degree and order 50. Geoid anomalies are converted to free-air gravity anomalies and validated with cross-over corrected ship-borne gravity data of the Arabian Sea and Bay of Bengal. The present satellite derived gravity data matches well with the ship-borne data with Root Mean Square Error (RMSE) of 5.1-7.8 mGal, and this is found to be within the error limits when compared with other globally available satellite data. Spectral analysis of

  13. Development of the negative gravity anomaly of the 85°E Ridge, northeastern Indian Ocean – A process oriented modelling approach

    Indian Academy of Sciences (India)

    K M Sreejith; M Radhakrishna; K S Krishna; T J Majumdar

    2011-08-01

    The 85°E Ridge extends from the Mahanadi Basin, off northeastern margin of India to the Afanasy Nikitin Seamount in the Central Indian Basin. The ridge is associated with two contrasting gravity anomalies: negative anomaly over the north part (up to 5°N latitude), where the ridge structure is buried under thick Bengal Fan sediments and positive anomaly over the south part, where the structure is intermittently exposed above the seafloor. Ship-borne gravity and seismic reflection data are modelled using process oriented method and this suggest that the 85°E Ridge was emplaced on approximately 10–15 km thick elastic plate (Te) and in an off-ridge tectonic setting. We simulated gravity anomalies for different crust-sediment structural configurations of the ridge that were existing at three geological ages, such as Late Cretaceous, Early Miocene and Present. The study shows that the gravity anomaly of the ridge in the north has changed through time from its inception to present. During the Late Cretaceous the ridge was associated with a significant positive anomaly with a compensation generated by a broad flexure of the Moho boundary. By Early Miocene the ridge was approximately covered by the postcollision sediments and led to alteration of the initial gravity anomaly to a small positive anomaly. At present, the ridge is buried by approximately 3 km thick Bengal Fan sediments on its crestal region and about 8 km thick pre- and post-collision sediments on the flanks. This geological setting had changed physical properties of the sediments and led to alter the minor positive gravity anomaly of Early Miocene to the distinct negative gravity anomaly.

  14. Development of the negative gravity anomaly of the 85°E Ridge, northeastern Indian Ocean - A process oriented modelling approach

    Science.gov (United States)

    Sreejith, K. M.; Radhakrishna, M.; Krishna, K. S.; Majumdar, T. J.

    2011-08-01

    The 85°E Ridge extends from the Mahanadi Basin, off northeastern margin of India to the Afanasy Nikitin Seamount in the Central Indian Basin. The ridge is associated with two contrasting gravity anomalies: negative anomaly over the north part (up to 5°N latitude), where the ridge structure is buried under thick Bengal Fan sediments and positive anomaly over the south part, where the structure is intermittently exposed above the seafloor. Ship-borne gravity and seismic reflection data are modelled using process oriented method and this suggest that the 85°E Ridge was emplaced on approximately 10-15 km thick elastic plate ( Te) and in an off-ridge tectonic setting. We simulated gravity anomalies for different crust-sediment structural configurations of the ridge that were existing at three geological ages, such as Late Cretaceous, Early Miocene and Present. The study shows that the gravity anomaly of the ridge in the north has changed through time from its inception to present. During the Late Cretaceous the ridge was associated with a significant positive anomaly with a compensation generated by a broad flexure of the Moho boundary. By Early Miocene the ridge was approximately covered by the post-collision sediments and led to alteration of the initial gravity anomaly to a small positive anomaly. At present, the ridge is buried by approximately 3 km thick Bengal Fan sediments on its crestal region and about 8 km thick pre- and post-collision sediments on the flanks. This geological setting had changed physical properties of the sediments and led to alter the minor positive gravity anomaly of Early Miocene to the distinct negative gravity anomaly.

  15. Mean Gravity Anomaly Prediction Techniques with a Comparative Analysis of the Accuracy and Economy of Selected Methods.

    Science.gov (United States)

    1982-03-01

    mean gravity anomaly. To do this, it is necessary to apply a data averaging integral of the form ( Heiskanen and Moritz, 1967): -- I a b Ag f b Ag(x,y...Rapp for practical applica- tion on digital computers. Details can be found in Heiskanen and Moritz (1967), and Rapp (1964). Although least squares...methods: Institute for Physicalische Geodasie, Technische Hochschule, Darmstadt, Federal Republic of Germany. Heiskanen , W., and Moritz, H., 1967, Physical

  16. Constraints on timing and magnitude of early global expansion of the Moon from topographic features in linear gravity anomaly areas

    Science.gov (United States)

    Sawada, Natsuki; Morota, Tomokatsu; Kato, Shinsuke; Ishihara, Yoshiaki; Hiramatsu, Yoshihiro

    2016-05-01

    Gravity data obtained from the Gravity Recovery and Interior Laboratory have revealed linear gravity anomalies (LGAs) formed by the early global expansion of the Moon and subsequent magma intrusion. In this study, using Lunar Orbiter Laser Altimeter topographic data, we investigated topographic profiles across LGAs to verify that they were formed by extensional tectonics. We found that 17 of the 20 LGAs investigated exhibited a valley structure, suggesting that they were formed by tensile stress. Assuming that these topographic depressions accompanied graben formation, the increase in the lunar radius is estimated to be on the order of several tens of meters. On the other hand, assuming that these topographic depressions accompanied flexure of elastic lithosphere due to the LGA load, the elastic thickness during the LGA formation is estimated as ~10 km. The crater frequencies in the vicinity of LGAs indicate that the peak tectonic activity occurred before the basin-forming epoch.

  17. Spherically symmetric sector of self dual Ashtekar gravity coupled to matter: Anomaly-free algebra of constraints with holonomy corrections

    CERN Document Server

    Achour, Jibril Ben; Marciano, Antonino

    2016-01-01

    Using self dual Ashtekar variables, we investigate (at the effective level) the spherically symmetry reduced model of loop quantum gravity, both in vacuum and when coupled to a scalar field. Within the real Ashtekar-Barbero formulation, the system scalar field coupled to spherically symmetric gravity is known to possess a non closed (quantum) algebra of constraints once the holonomy corrections are introduced, which forbids the loop quantization of the model. Moreover, the vacuum case, while not anomalous, introduces modifications which are usually interpreted as a signature change of the metric in the deep quantum region. We show in this paper that both those difficulties disappear when working with self dual Ashtekar variables, both in the vacuum case and in the case of gravity minimally coupled to a scalar field. In this framework, the algebra of the holonomy corrected constraints is anomaly free and reproduces the classical hypersurface deformation algebra without any deformations. A possible path towards...

  18. Evaluation of low-temperature geothermal potential in Utah and Goshen Valleys and adjacent areas, Utah. Part I. Gravity survey

    Energy Technology Data Exchange (ETDEWEB)

    Davis, D.A.; Cook, K.L.

    1983-04-01

    During 1980 and 1981 a total of 569 new gravity stations were taken in Utah and Goshen Valleys and adjacent areas, Utah. The new stations were combined with 530 other gravity stations taken in previous surveys which resulted in a compilation of 1099 stations which were used in this study. The additional surveys were undertaken to assist in the evaluation of the area for the possible development of geothermal resources by providing an interpreted structural framework by delineating faults, structural trends, intrusions, thickness of valley fill, and increased density of host rock. The gravity data are presented as (1) a complete Bouguer gravity anomaly map with a 2 mgal contour interval on a scale of 1:100,000 and (2) five generally east-trending gravity profiles. A geologic interpretation of the study area was made from the gravity map and from the interpretive geologic cross sections which were modeled along the gravity profiles.

  19. Expansion of the South China Sea basin: Constraints from magnetic anomaly stripes, sea floor topography, satellite gravity and submarine geothermics

    Directory of Open Access Journals (Sweden)

    Xuezhong Yu

    2017-01-01

    Full Text Available The widely distributed E–W-trending magnetic anomaly stripes in the central basin and the N–E-trending magnetic anomaly stripes in the southwest sub-basin provide the most important evidence for Neogene expansion of the South China Sea. The expansion mechanism remains, however, controversial because of the lack of direct drilling data, non-systematic marine magnetic survey data, and irregular magnetic anomaly stripes with two obvious directions. For example, researchers have inferred different ages and episodes of expansion for the central basin and southwest sub-basin. Major controversy centers on the order of basinal expansion and the mechanism of expansion for the entire South China Sea basin. This study attempts to constrain these problems from a comprehensive analysis of the seafloor topography, magnetic anomaly stripes, regional aeromagnetic data, satellite gravity, and submarine geothermics. The mapped seafloor terrain shows that the central basin is a north-south rectangle that is relatively shallow with many seamounts, whereas the southwest sub-basin is wide in northeast, gradually narrows to the southwest, and is relatively deeper with fewer seamounts. Many magnetic anomaly stripes are present in the central basin with variable dimensions and directions that are dominantly EW-trending, followed by the NE-, NW- and NS-trending. Conversely such stripes are few in the southwest sub-basin and mainly NE-trending. Regional magnetic data suggest that the NW-trending Ailaoshan-Red River fault extends into the South China Sea, links with the central fault zone in the South China Sea, which extends further southward to Reed Tablemount. Satellite gravity data show that both the central basin and southwest sub-basin are composed of oceanic crust. The Changlong seamount is particularly visible in the southwest sub-basin and extends eastward to the Zhenbei seamount. Also a low gravity anomaly zone coincides with the central fault zone in the sub

  20. Gravity anomalies and lithospheric flexure around the Longmen Shan deduced from combinations of in situ observations and EGM2008 data

    Science.gov (United States)

    She, Yawen; Fu, Guangyu; Wang, Zhuohua; Liu, Tai; Xu, Changyi; Jin, Honglin

    2016-10-01

    The current work describes the combined data of three field campaigns, spanning 2009-2013. Their joint gravity and GPS observations thoroughly cover the sites of lithospheric flexure between the Sichuan Basin and the Eastern Tibetan Plateau. The study area's free-air gravity anomalies (FGAs) are updated by using a remove-and-restore algorithm which merges EGM2008 data with in situ observations. These new FGAs show pairs of positive and negative anomalies along the eastern edges of the Tibetan Plateau. The FGAs are used to calculate effective elastic thickness ( T e) and load ratios ( F) of the lithosphere. Admittance analysis indicates the T e of Longmen Shan (LMS) to be 6 km, and profile analysis indicates that the T e of the Sichuan Basin excesses 30 km. The load ratio ( F 1 = 1) confirms that the lithospheric flexure of the LMS area can be attributed solely to the surface load of the crust. [Figure not available: see fulltext. Caption: The current work describes the combined data of three field campaigns, spanning 2009-2013. Their joint gravity and GPS observations thoroughly cover the sites of lithospheric flexure between the Sichuan Basin and the Eastern Tibetan Plateau. The study area's free-air gravity anomalies (FGAs) are updated by using a remove-and-restore algorithm which merges EGM2008 data with in situ observations. With the new FGAs data, the lithospheric strength of the study area is studied by the authors, and they also give a combined model to illustrate the uplift mechanism of this area.

  1. Integrating stations from the North America Gravity Database into a local GPS-based land gravity survey

    Science.gov (United States)

    Shoberg, Thomas G.; Stoddard, Paul R.

    2013-01-01

    The ability to augment local gravity surveys with additional gravity stations from easily accessible national databases can greatly increase the areal coverage and spatial resolution of a survey. It is, however, necessary to integrate such data seamlessly with the local survey. One challenge to overcome in integrating data from national databases is that these data are typically of unknown quality. This study presents a procedure for the evaluation and seamless integration of gravity data of unknown quality from a national database with data from a local Global Positioning System (GPS)-based survey. The starting components include the latitude, longitude, elevation and observed gravity at each station location. Interpolated surfaces of the complete Bouguer anomaly are used as a means of quality control and comparison. The result is an integrated dataset of varying quality with many stations having GPS accuracy and other reliable stations of unknown origin, yielding a wider coverage and greater spatial resolution than either survey alone.

  2. The use of kriging in gravity-surveys

    Directory of Open Access Journals (Sweden)

    G. J. van Tonder

    1985-03-01

    Full Text Available The present investigation is mostly concerned with the contribution that kriging can make towards reducing the number of observed gravity measurements necessary for a reliable estimate of the volume weathered dolomite in the dolomitic areas of South Africa. After a brief introduction, the method is applied to the Bouguer anomaly values of a part of the Zuurbekom Compartment. It is shown that by using kriging, the number of measuring stations can be reduced by op to 90 percent without affecting the accuracy of the calculation of the estimated volume of the weathered dolomite adversely.

  3. Three-dimensional lithospheric deformation and gravity anomalies associated with oblique continental collision in South Island, New Zealand

    Science.gov (United States)

    Scherwath, Martin; Stern, Tim; Davey, Fred; Davies, Rob

    2006-11-01

    Isostatic considerations exhibit differences between the northern, central and southern parts of the Pacific-Australian plate collision in South Island, New Zealand. In the northern part mean elevations are moderate and the gravity low is small; the central part contains the highest elevations, and gravity and elevations correspond to each other relatively well; and in the southern part the gravity low is strongest whereas the mean elevations are moderate again. These differences indicate changes in the character of the isostatic compensation and are explained by increased thickening and widening of the crustal root from north to south, and also by the long wavelength gravity response to a mantle density anomaly that increases towards the south. A simple 3-D gravity model is derived that includes the detailed crustal structures from the South Island GeopHysical Transect (SIGHT) experiment as well as a high-density anomaly in the mantle inferred from teleseismic data. The model indicates that cold and, therefore, dense upper mantle material penetrates the asthenosphere to a greater extent in the south, similar to the behaviour of an apparently highly ductile lower crust. As plate reconstruction suggests more lithospheric shortening in the north, our model corresponds to lithospheric material escaping laterally to the south, almost perpendicular to the compression caused by lithospheric shortening of the mantle. Therefore, in addition to the prevailing mantle shear in New Zealand, there may also be a component of extrusional mantle creep beneath the Southern Alps orogen, which could have caused some of the observed large seismic anisotropy in this region. We may have also found evidence for submerged Eocene-Miocene oceanic lithosphere beneath the southeastern part of South Island that has been unaccounted for after plate reconstruction.

  4. Model parameter estimations from residual gravity anomalies due to simple-shaped sources using Differential Evolution Algorithm

    Science.gov (United States)

    Ekinci, Yunus Levent; Balkaya, Çağlayan; Göktürkler, Gökhan; Turan, Seçil

    2016-06-01

    An efficient approach to estimate model parameters from residual gravity data based on differential evolution (DE), a stochastic vector-based metaheuristic algorithm, has been presented. We have showed the applicability and effectiveness of this algorithm on both synthetic and field anomalies. According to our knowledge, this is a first attempt of applying DE for the parameter estimations of residual gravity anomalies due to isolated causative sources embedded in the subsurface. The model parameters dealt with here are the amplitude coefficient (A), the depth and exact origin of causative source (zo and xo, respectively) and the shape factors (q and ƞ). The error energy maps generated for some parameter pairs have successfully revealed the nature of the parameter estimation problem under consideration. Noise-free and noisy synthetic single gravity anomalies have been evaluated with success via DE/best/1/bin, which is a widely used strategy in DE. Additionally some complicated gravity anomalies caused by multiple source bodies have been considered, and the results obtained have showed the efficiency of the algorithm. Then using the strategy applied in synthetic examples some field anomalies observed for various mineral explorations such as a chromite deposit (Camaguey district, Cuba), a manganese deposit (Nagpur, India) and a base metal sulphide deposit (Quebec, Canada) have been considered to estimate the model parameters of the ore bodies. Applications have exhibited that the obtained results such as the depths and shapes of the ore bodies are quite consistent with those published in the literature. Uncertainty in the solutions obtained from DE algorithm has been also investigated by Metropolis-Hastings (M-H) sampling algorithm based on simulated annealing without cooling schedule. Based on the resulting histogram reconstructions of both synthetic and field data examples the algorithm has provided reliable parameter estimations being within the sampling limits of

  5. Fuerte anomalía gravimétrica residual positiva en el Sistema de Famatina y su relación con paleosuturas: Explicaciones alternativas Strong positive residual gravity anomaly in the Famatina system and its relationship with ancient sutures: alternative explanations

    Directory of Open Access Journals (Sweden)

    M.P. Martínez

    2003-06-01

    Full Text Available En este trabajo se presenta un perfil gravimétrico ubicado en la provincia de La Rioja (Argentina a la latitud aproximada de 29° Sur. Se aplican métodos gravimétricos de máxima profundidad, encontrándose que bajo la sierra de Famatina la anomalía de masa se ubica en corteza inferior. Mientras que para la sierra de Velasco las máximas profundidades de las masas anómalas se indican para la corteza superior, en total coherencia con resultados anteriores. Se analiza la significativa correspondencia entre las estructuras geológicas y el campo potencial gravimétrico. La señal gravimétrica revela sin duda la zona de sutura existente entre la Precordillera y la sierra de Famatina, como así también la zona de cizalla entre la sierra de Famatina y la sierra de Velasco. Basándose en los resultados geofísicos y en las últimas investigaciones geológicas, se propone un modelo colisional (Modelo Cortical II que describe la relación entre los terrenos Chilenia, Cuyania, Famatina y Pampia. Este modelo responde coherentemente a la anomalía de Bouguer observada.A gravity profile located in La Rioja province (Argentina at an approximate latitude of 29° S. was analysed. Application of gravimetric methods of maximum depth shows that, under the Famatina Range, the anomaly of mass is located in lower crust. By contrast, in the Velasco Range, the maximum depths of the anomalous masses are within the upper crust, a result in total agreement with previous results. The significant correspondence between the geological structures and the gravity field was alalysed. The gravity signal reveals clearly the zone of the suture present between the Precordillera and the Sierra of Famatina, as well as the shears zone between the Famatina and Velasco ranges. Using our geophysical results and previous geological investigations, we propose a collision model (II Cortical Model that describes the relationship between the Chilenia, Cuyania, Famatina and Pampia

  6. Inversion of gravity and topography data for the crust thickness of China and its adjacent region

    Institute of Scientific and Technical Information of China (English)

    HUANG Jian-ping; FU Rong-shan; XU Ping; HUANG Jian-hua; ZHENG Yong

    2006-01-01

    The data of Bouguer gravity and topography are inverted to obtain the crust thickness of China. In order to reduce the effect of regional non-isostasy we corrected the reference Moho depth in the inversion with regional topography relief, and performed multiple iterations to make the result more reliable. The obtained crust thickness of China is plotted on a map in cells of 1°×1°. Then we analyzed the correlation between the Bouguer gravity anomaly and fluctuation of the Moho depth. A good linear correlation is found, with a correlation coefficient of -0.993.Different correlation coefficients, 0.96 and 0.91, are found for the data in land and ocean region, respectively. The correlation result also shows that the boundary between land and ocean is generally along the bathymetric line of -800 m. In order to examine the influence of the Earth's curvature on the calculated result, we tried two inversion models: the inversion for the whole region and the inversion for 4 sub-regions. The difference in the crust thickness deduced from the two models is less than 5 km. Possible explanation for the difference is discussed. After comparing our result with that of other studies, we suggest that with our method the Bouguer gravity and the topography data can be independently inverted to obtain the crust thickness of China and its adjacency.

  7. The determination of gravity anomalies from geoid heights using the inverse Stokes' formula, Fourier transforms, and least squares collocation

    Science.gov (United States)

    Rummel, R.; Sjoeberg, L.; Rapp, R. H.

    1978-01-01

    A numerical method for the determination of gravity anomalies from geoid heights is described using the inverse Stokes formula. This discrete form of the inverse Stokes formula applies a numerical integration over the azimuth and an integration over a cubic interpolatory spline function which approximates the step function obtained from the numerical integration. The main disadvantage of the procedure is the lack of a reliable error measure. The method was applied on geoid heights derived from GEOS-3 altimeter measurements in the calibration area of the GEOS-3 satellite.

  8. Investigation on pre-seismic equatorial ionospheric anomaly and its possible association with the gravity wave using satellite measurements

    Science.gov (United States)

    Ryu, K.; Oyama, K. I.; Sun, Y. Y.; Liu, T. J. Y.

    2016-12-01

    Some examples of the equatorial plasma density measured by DEMETER (Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions) increased before some large earthquakes are introduced. Previous examples of the pre-seismic equatorial ionization anomalies (EIA) associated with the northern Sumatra earthquake of 2005, Wenchuan earthquake of 2008, Pisco earthquake of 2007, and Kuril Island earthquake of 2007, commonly accompanied conspicuous precursory EIA enhancements distinct from the longitudinal asymmetric variation which is known as a result of ionospheric interaction with the thermospheric tidal modulation generating wave structure in the global ionospheric density profile in the dayside local time. The physical mechanisms of the seismo-ionospheric coupling manifested as the enhanced EIA intensity can be ascribed either to the gravity wave or static electric field generated by the lithosphere-atmosphere-ionosphere coupling, which is still in debate because of lack in confident observational evidences. Molucca sea earthquake of 2007 which accompanied dominant-ever precursory EIA enhancement was selected as a case study to investigate whether the seismo-ionospheric coupling was originated from the gravity wave propagating from the mesosphere to the thermosphere using the SABER satellite data. The gravity wave intensity according to the frequency was derived by applying the s-transform to the atmospheric neutral temperature profile measured by SABER limb-scanning method. The initial analysis results of the ionospheric plasma condition and thermospheric gravity wave derived from DEMETER, CHAMP, and SABER are introduced and the possible association between the physical conditions are discussed.

  9. Integrated Analysis on Gravity and Magnetic Fields of the Hailar Basin, NE China: Implications for Basement Structure and Deep Tectonics

    Science.gov (United States)

    Sun, B.; Wang, L.; Dong, P.; Scientific Team Of Applied Geophysics

    2010-12-01

    The Hailar Basin is one of the most representative basins among the Northeast China Basin Group, which is situated in the east of East Asia Orogene between the Siberia Plate and the North China Plate. Based on the detailed analysis of the Bouguer gravity anomaly, aeromagnetic anomaly as well as petrophysical data, we studied the features of gravity-magnetic fields in the basin and its neighboring areas. A combined approach of Wavelet Multi-scale Decomposition and Power Spectrum Analysis was adopted to quantitatively grade the gravity and magnetic anomalies into four levels. Accordingly, the apparent depths of the source fields can be assessed. The results reveal the crustal density and magnetic structures of the Hailar Basin. Low-order wavelet details of gravity-magnetic anomalies were carried out on studying basin basement structure. Seven major basement faults of the basin were identified, and the basement lithology was discussed and predicted. Three major uplifts and 14 depressions were delineated according to basement depth inversion by the Park method. High-order wavelet approximations of gravity-magnetic anomalies were carried out on studying deep tectonics of the basin. The average Moho depth of the study area is about 40 km, with a mantle uplift located in the northeast of the basin. The average depth of the Curie interface is about 19 km, while the uplift of the Curie interface is in the basin center and its east and west sides are depressions. Finally, inversion of Bouguer gravity anomalies was conducted on an across-basin GGT profile using the Wavelet Multi-scale Decomposition. The inversion results are consistent with those of GGT seismic inversion, suggesting that the Wavelet Multi-scale Decomposition can be applied to distinguish major crustal density interfaces.

  10. Slow-light enhancement of Beer-Lambert-Bouguer absorption

    DEFF Research Database (Denmark)

    Mortensen, Asger; Xiao, Sanshui

    2007-01-01

    We theoretically show how slow light in an optofluidic environment facilitates enhanced light-matter interactions, by orders of magnitude. The proposed concept provides strong opportunities for improving existing miniaturized chemical absorbance cells for Beer-Lambert-Bouguer absorption measureme......We theoretically show how slow light in an optofluidic environment facilitates enhanced light-matter interactions, by orders of magnitude. The proposed concept provides strong opportunities for improving existing miniaturized chemical absorbance cells for Beer-Lambert-Bouguer absorption...

  11. The Wallula fault and tectonic framework of south-central Washington, as interpreted from magnetic and gravity anomalies

    Science.gov (United States)

    Blakely, Richard J.; Sherrod, Brian L.; Weaver, Craig S.; Wells, Ray E.; Rohay, Alan C.

    2014-06-01

    The Yakima fold and thrust belt (YFTB) in central Washington has accommodated regional, mostly north-directed, deformation of the Cascadia backarc since prior to emplacement of Miocene flood basalt of the Columbia River Basalt Group (CRBG). The YFTB consists of two structural domains. Northern folds of the YFTB strike eastward and terminate at the western margin of a 20-mGal negative gravity anomaly, the Pasco gravity low, straddling the North American continental margin. Southern folds of the YFTB strike southeastward, form part of the Olympic-Wallowa lineament (OWL), and pass south of the Pasco gravity low as the Wallula fault zone. An upper crustal model based on gravity and magnetic anomalies suggests that the Pasco gravity low is caused in part by an 8-km-deep Tertiary basin, the Pasco sub-basin, abutting the continental margin and concealed beneath CRBG. The Pasco sub-basin is crossed by north-northwest-striking magnetic anomalies caused by dikes of the 8.5 Ma Ice Harbor Member of the CRBG. At their northern end, dikes connect with the eastern terminus of the Saddle Mountains thrust of the YFTB. At their southern end, dikes are disrupted by the Wallula fault zone. The episode of NE-SW extension that promoted Ice Harbor dike injection apparently involved strike-slip displacement on the Saddle Mountains and Wallula faults. The amount of lateral shear on the OWL impacts the level of seismic hazard in the Cascadia region. Ice Harbor dikes, as mapped with aeromagnetic data, are dextrally offset by the Wallula fault zone a total of 6.9 km. Assuming that dike offsets are tectonic in origin, the Wallula fault zone has experienced an average dextral shear of 0.8 mm/y since dike emplacement 8.5 Ma, consistent with right-lateral stream offsets observed at other locations along the OWL. Southeastward, the Wallula fault transfers strain to the north-striking Hite fault, the possible location of the M 5.7 Milton-Freewater earthquake in 1936.

  12. Geoid undulations and gravity anomalies over the Aral Sea, the Black Sea and the Caspian Sea from a combined GEOS-3/SEASAT/GEOSAT altimeter data set

    Science.gov (United States)

    Au, Andrew Y.; Brown, Richard D.; Welker, Jean E.

    1991-01-01

    Satellite-based altimetric data taken by GOES-3, SEASAT, and GEOSAT over the Aral Sea, the Black Sea, and the Caspian Sea are analyzed and a least squares collocation technique is used to predict the geoid undulations on a 0.25x0.25 deg. grid and to transform these geoid undulations to free air gravity anomalies. Rapp's 180x180 geopotential model is used as the reference surface for the collocation procedure. The result of geoid to gravity transformation is, however, sensitive to the information content of the reference geopotential model used. For example, considerable detailed surface gravity data were incorporated into the reference model over the Black Sea, resulting in a reference model with significant information content at short wavelengths. Thus, estimation of short wavelength gravity anomalies from gridded geoid heights is generally reliable over regions such as the Black Sea, using the conventional collocation technique with local empirical covariance functions. Over regions such as the Caspian Sea, where detailed surface data are generally not incorporated into the reference model, unconventional techniques are needed to obtain reliable gravity anomalies. Based on the predicted gravity anomalies over these inland seas, speculative tectonic structures are identified and geophysical processes are inferred.

  13. Principal facts for gravity stations in Dixie; Fairview, and Stingaree valleys, Churchill and Pershing counties, Nevada

    Science.gov (United States)

    Schaefer, D.H.; Thomas, J.M.; Duffrin, B.G.

    1984-01-01

    During March through July 1979, gravity measurements were made at 300 stations in Dixie Valley, Nevada. In December 1981, 45 additional stations were added--7 in Dixie Valley, 23 in Fairview Valley, and 15 in Stingaree Valley. Most altitudes were determined by using altimeters or topographic maps. The gravity observations were made with a Worden temperature-controlled gravimeter with an initial scale factor of 0.0965 milliGal/scale division. Principal facts for each of the 345 stations are tabulated; they consist of latitude, longitude, altitude, observed gravity, free-air anomaly, terrain correction, and Bouguer anomaly values at a bedrock density of 2.67 grams/cu cm. (Lantz-PTT)

  14. Gravity inferred subsurface structure of Gadwal Schist belt, Andhra Pradesh

    Indian Academy of Sciences (India)

    G Ramadass; I B Ramaprasada Rao; N Srinivasulu

    2001-03-01

    Detailed gravity data collected across the Gadwal schist belt in the state of Andhra Pradesh show an 8.4 mgal residual gravity anomaly associated with meta-sediments/volcanics of the linear NNW-SSE trending schist belt that shows metamorphism from green schist to amphibolite facies. This schist belt is flanked on either side by the peninsular gneissic complex. The elevation and slab Bouguer corrected residual gravity profile data were interpreted using 2-D prism models. The results indicate a synformal structure having a width of 1.8 km at the surface, tapering at a depth of about 2.6 km with a positive density contrast of 0.15 gm/cc with respect to the surrounding peninsular gneissic complex.

  15. Gravity anomalies, crustal structure and rift tectonics at the Konkan and Kerala basins, western continental margin of India

    Indian Academy of Sciences (India)

    Sheena V Dev; M Radhakrishna; Shyam Chand; C Subrahmanyam

    2012-06-01

    Litho-stratigraphic variation of sedimentary units constructed from seismic sections and gravity anomaly in the Konkan and Kerala basins of the western continental margin of India (WCMI) have been used to model processes such as lithospheric rifting mechanism, its strength, and evolution of flank uplift topography that led to the present-day Western Ghats escarpment. Based on the process-oriented approach, two lithospheric models (necking and magmatic underplating) of evolution of the margin were tested. Both, necking and underplating models suggest an effective elastic thickness (Te) of 5 km and 10 km along Konkan and Kerala basins, respectively and a deep level of necking at 20 km at both basins. Model study suggests that the necking model better explains the observed gravity anomalies in the southern part of the WCMI. A synthesis of these results along with the previously published elastic thickness estimates along the WCMI suggests that a low-to-intermediate strength lithosphere and a deeper level of necking explains the observed flank-uplift opography of the Western Ghats. Process-oriented gravity modeling further suggests that the lateral variations in the lithospheric strength, though not very significant, exist from north to south within a distance of 600 km in the Konkan and Kerala basins along the WCMI at the time of rifting. A comparison with previous Te estimates from coherence analysis along the WCMI indicates that the lithospheric strength did not change appreciably since the time of rifting and it is low both onshore and offshore having a range of 5–15 km.

  16. Far-zone contributions of airborne gravity anomalies' upward/downward continuation

    Directory of Open Access Journals (Sweden)

    Boyang Zhou

    2016-11-01

    Full Text Available Airborne gravimetry has become a vital technique in local gravity field approximation, and upward/downward continuation of gravity data is a key process of airborne gravimetry. In these procedures, the integral domain is divided into two parts, namely the near-zone and the far-zone. The far-zone contributions are approximated by the truncation coefficients and a global geo-potential model, and their values are controlled by several issues. This paper investigates the effects of flight height, the size of near-zone cap, and Remove-Compute-Restore (RCR technique upon far-zone contributions. Results show that at mountainous area the far-zone contributions can be ignored when EIGEN-6C of 360 degree is removed from the gravity data, together with a near-zone cap of 1° and a flight height less than 10 km, while at flat area EIGEN-6C of 180 degree is feasible.

  17. Application of natural generalised inverse technique in reconstruction of gravity anomalies due to a fault

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, M.M.M.; Murty, T.V.R.; Murthy, K.S.R.; Vasudeva, R.Y.

    have been carried out in the present work to estimate accurate model parameters by inverting the observed anomaly using GI approach via SVD. While solving the inverse problem, data kernel has been generated through the model. Using this data kernel, SVD...

  18. Use of gravity potential field methods for defining a shallow magmatic intrusion: the Mt. Amiata case history (Tuscany, Central Italy)

    Science.gov (United States)

    Girolami, Chiara; Rinaldo Barchi, Massimiliano; Pauselli, Cristina; Heyde, Ingo

    2016-04-01

    We analyzed the Bouguer gravity anomaly signal beneath the Mt. Amiata area in order to reconstruct the subsurface setting. The study area is characterized by a pronounced gravity minimum, possibly correlated with the observed anomalous heat flow and hydrothermal activity. Using different approaches, previous authors defined a low density body (generally interpreted as a magmatic intrusion) beneath this area, which could explain the observed gravity anomaly minimum. However the proposed geologic models show different geometries and densities for the batholith. The gravity data used in this study (kindly provided by eni) were acquired from different institutions (eni, OGS, USDMA and Servizio Geologico d'Italia) and collected in a unique dataset, consisting of about 50000 stations, randomly distributed, which cover Central Italy, with a spacing of less than 1 km. For each station the elevation and the Bouguer gravity anomaly data are given. From this dataset, we created two maps of the Bouguer gravity anomaly and the topography, using the Minimum Curvature gridding method considering a grid cell size of 500m x 500m. The Bouguer gravity anomaly has been computed using a density of 2.67 g/cm3. From these maps we extracted a window of about 240 km2 (12x20 km) for the study area, which includes the Mt. Amiata region and the adjacent Radicofani sedimentary basin. The first part of this study was focused on calculating the first order vertical derivative and the power spectra analysis of the Bouguer gravity anomaly to enhance the effect of shallow bodies and estimating the source depth respectively. The second part of this study was focused on constructing a 3D geological density model of the subsurface setting of the studied area, implementing a forward modelling approach. The stratigraphy of the study area's upper crust schematically consists of six litho-mechanical units, whose density was derived from velocity data collected by active seismic surveys. A preliminary

  19. Identification of active fault using analysis of derivatives with vertical second based on gravity anomaly data (Case study: Seulimeum fault in Sumatera fault system)

    Science.gov (United States)

    Hududillah, Teuku Hafid; Simanjuntak, Andrean V. H.; Husni, Muhammad

    2017-07-01

    Gravity is a non-destructive geophysical technique that has numerous application in engineering and environmental field like locating a fault zone. The purpose of this study is to spot the Seulimeum fault system in Iejue, Aceh Besar (Indonesia) by using a gravity technique and correlate the result with geologic map and conjointly to grasp a trend pattern of fault system. An estimation of subsurface geological structure of Seulimeum fault has been done by using gravity field anomaly data. Gravity anomaly data which used in this study is from Topex that is processed up to Free Air Correction. The step in the Next data processing is applying Bouger correction and Terrin Correction to obtain complete Bouger anomaly that is topographically dependent. Subsurface modeling is done using the Gav2DC for windows software. The result showed a low residual gravity value at a north half compared to south a part of study space that indicated a pattern of fault zone. Gravity residual was successfully correlate with the geologic map that show the existence of the Seulimeum fault in this study space. The study of earthquake records can be used for differentiating the active and non active fault elements, this gives an indication that the delineated fault elements are active.

  20. Gravity gradient for Greenland and its tectonic interpretation

    Science.gov (United States)

    Grushinsky, Andrew N.

    2013-04-01

    Gravity gradient is the indicator of the stress conditions in the lithosphere. The axis of gradient signs changing indicates the boundary of blocks exposed to different tensions. The lines of maxima and minima of gravity gradient correspondingly marked the boundary of zones of compression and expansion. Four various types of the gravity anomalies was calculated: in free air, Bouguer's, Glennie's and isostatic. And then was calculated their gradients. The preliminary analysis of gradients shows, that its qualitative behavior for all types of gravity anomalies is very closely and, therefore, conclusions about the stress conditions in the lithosphere of the considering region are definite. Range of the changing for gradients of gravity in free air anomalies - from -96.1 to 135.8 eötvös, and for gradients of gravity Bouguer's anomalies - from -122.6 to 141.9 eötvös. Range of the changing for gradients of gravity Glennie's and isostatic anomalies are substantially smaller, for gradients of gravity Glennie's anomalies - from -27.6 to 25.5 eötvös, and for gradients of gravity isostatic anomalies - from -19.2 to 21.2 eötvös. This difference in the gradient values, evidently, connects with the difference in the thoroughness and the degree of averaging of the anomalies. Analysis of gravity gradient shown the following: 1. In the western part of the researching region are distinguished three linear structures (two maxima and one minimum), which marked rift zone of the Baffin Bay and Davis Strait. This disappeared rift characterized by depressed zone, lengthened from Nares strait along the west sea coast of Greenland. In the south part of this zone localized deep fault, which northward become lesser expressed. To the north and north-east from the Nares strait lengthened to the North Pole zone of compression, blocked up existing previously rift, by which the rotation of the Greenland part of Canadian shield from its cardinal part happened. Center of this rotation

  1. Detailed gravity and aeromagnetic surveys in the Black Rock Desert Area, Utah. Topical report

    Energy Technology Data Exchange (ETDEWEB)

    Serpa, L.F.; Cook, K.L.

    1980-01-01

    Aeromagnetic and gravity surveys were conducted during 1978 in the Black Rock Desert, Utah over an area of about 2400 km/sup 2/ between the north-trending Pavant and Cricket Mountains. The surveys assisted in evaluating the geothermal resources in the Meadow-Hatton Known Geothermal Resource Area (KGRA) and vicinity by delineating geophysical characteristics of the subsurface. The gravity measurements from approximately 700 new stations were reduced to complete Bouguer gravity anomaly values with the aid of a computerized terrain-correction program and contoured at an interval of 1 milligal. The aeromagnetic survey was drape flown at an altitude of 305 m (1000 ft) and a total intensity residual aeromagnetic map with a contour interval of 20 gammas was produced. Two gravity and aeromagnetic east-west profiles and one north-south profile were modeled using a simultaneous 2 1/2-dimensional modeling technique to provide a single model satisfying both types of geophysical data.

  2. Tectonic history of the north portion of the San Andreas fault system, California, inferred from gravity and magnetic anomalies

    Science.gov (United States)

    Griscom, A.; Jachens, R.C.

    1989-01-01

    Geologic and geophysical data for the San Andreas fault system north of San Francisco suggest that the eastern boundary of the Pacific plate migrated eastward from its presumed original position at the base of the continental slope to its present position along the San Andreas transform fault by means of a series of eastward jumps of the Mendocino triple junction. These eastward jumps total a distance of about 150 km since 29 Ma. Correlation of right-laterally displaced gravity and magnetic anomalies that now have components at San Francisco and on the shelf north of Point Arena indicates that the presently active strand of the San Andreas fault north of the San Francisco peninsula formed recently at about 5 Ma when the triple junction jumped eastward a minimum of 100 km to its present location at the north end of the San Andreas fault. -from Authors

  3. A Constrained 3D Density Model of the Upper Crust from Gravity Data Interpretation for Central Costa Rica

    Directory of Open Access Journals (Sweden)

    Oscar H. Lücke

    2010-01-01

    Full Text Available The map of complete Bouguer anomaly of Costa Rica shows an elongated NW-SE trending gravity low in the central region. This gravity low coincides with the geographical region known as the Cordillera Volcánica Central. It is built by geologic and morpho-tectonic units which consist of Quaternary volcanic edifices. For quantitative interpretation of the sources of the anomaly and the characterization of fluid pathways and reservoirs of arc magmatism, a constrained 3D density model of the upper crust was designed by means of forward modeling. The density model is constrained by simplified surface geology, previously published seismic tomography and P-wave velocity models, which stem from wide-angle refraction seismic, as well as results from methods of direct interpretation of the gravity field obtained for this work. The model takes into account the effects and influence of subduction-related Neogene through Quaternary arc magmatism on the upper crust.

  4. Sea bottom gravity survey of Osaka bay and its study; Osakawan kaitei juryoku chosa to sono kosatsu

    Energy Technology Data Exchange (ETDEWEB)

    Komazawa, M. [Geological Survey of Japan, Tsukuba (Japan); Ota, Y.; Shibuya, S.; Kumai, M.; Murakami, M. [Japex Geoscience Institute, Inc., Tokyo (Japan)

    1996-05-01

    This paper reports a sea bottom gravity survey conducted with an objective to identify deep underground structure in the vicinity of the epicenter of the Hyogoken-Nanbu Earthquake. The surveyed areas are the whole Osaka Bay area north of the north latitude of 34 degrees and 20 minutes, and the eastern part of the Sea of Harima east of the east longitude of 134 degrees and 40 minutes, excluding the areas difficult of performing measurements. A square lattice with sides each about 2 km was arranged with 408 measurement points. The measurement was carried out by using an observation vessel mounted with a sea bottom gravimeter made by LaCoste and Romberg Corporation, which was lowered down to the sea bottom at the measurement points. Errors in positions and water depths at the gravity measuring points were suppressed to less than 0.002 minutes and 0.1 m, respectively. The measurement data were given necessary corrections by using a unified method applicable also to land areas, and a Bouguer anomaly chart was prepared. Based on the chart, this paper summarizes features in the Bouguer anomaly in the surveyed areas (such as the low-gravity anomaly band extending the central part of the Osaka bay from north-east to south-west, and the gradient structure existing on the Awaji island side). 6 refs., 1 fig.

  5. Sedimentary Basins in the Western White Nile, Sudan, as Indicated by a Gravity Survey

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    An academic geophysical research as a regional gravity survey was made during 1994 in the Western White Nile to infer the shallow crustal structures in the area. The result of the survey was compiled as a Bouguer anomaly map with a contour interval of 2 ×10-5m/s2. It is found that the negative residual anomalies are related to the Upper Cretaceous sediments (Nubian Sandstone Formation) filling all depressions in the Basement complex surface while the positive residual anomalies are attributed to the relatively shallow or outcropping Basement rocks and the steep gravity gradients are resulting from the sharp contacts between the sedimentary infill and the Basement rocks. To define the geological structures in the area, 9 profiles were studied. For each of the profiles, measured and computed Bouguer gravity anomalies, crustal density model, subsurface geology evaluation were performed. A G-model computer program was applied in the gravity modeling, which is based on the line-integral method of gravity computation. A geological/structural map was proposed showing inferred sedimentary basins, faulting troughs and uplifted Basement block and tectonic trends. The basins are believed to be fault-controlled which developed by extensional tectonics (pull-apart mechanism). As for the mechanism and cause of faulting, the area is considered as a part of the Central Sudan rift system which had been subjected to several tectonic events since Early Cambrian to Tertiary times which resulted in the formation of several fracture systems associated with block subsidence, rifting and basin formation.

  6. Gorringe Ridge gravity and magnetic anomalies are compatible with thrusting at a crustal scale

    Science.gov (United States)

    Galindo-Zaldívar, J.; Maldonado, A.; Schreider, A. A.

    2003-06-01

    The main features of the deep structure of the Gorringe Ridge are analysed on the basis of gravity and magnetic measurements, as well as seismic profiles, drill holes, rock dredges, submersible observations and seismicity data. The gravity and magnetic models of the Gettysburg and Ormonde seamounts, which form the Gorringe Ridge, suggest that the Moho is approximately flat and the upper part of the ridge corresponds to a northwestwards vergent fold. This structure is the result of a northwestward vergent thrust that deformed the oceanic crust, with a minimum slip of approximately 20 km. The activity of the thrust probably started 20 Myr, and produced the recent stages of seamount uplift. The seamount is mainly composed of gabbros of the oceanic crust, serpentinized rocks and alkaline basalts. The large antiform, located in the hangingwall of the thrust, is probably deformed by minor faults. This oceanic ridge is a consequence of the oblique convergence between the African Plate and the overlapping Eurasian Plate.

  7. Gravity modelling of the Ramadas Caldera (Argentinean Puna, central Andes)

    Energy Technology Data Exchange (ETDEWEB)

    Casas, A. [Barcelona Univ. (Spain). Facultad de Geologia; Hernandez, E.; Marti, J. [Consejo Superior de Investigaciones Cientificas, Barcelona (Spain). Inst. de Ciencias de la Terra Jaume Almera; Petrinovic, I. [Universidad Nacional de Salta (Argentina)

    1995-12-31

    In order to identify and characterize the event area of abundant Upper Miocene proximal rhyolitic pyroclastic deposits and extrusive domes which concentrate in the Ramadas area, near Sant`Antonio de los Cobres (Salta) at the Puna Altiplano (Central Andes), a detailed gravity survey has been carried out. Regional Bouguer gravity data were augmented with new 173 gravity observations measured sufficiently close-spaced to resolve the short wavelength produced by the structure of interest. Besides, the geophysical survey was done in conjunction with geologic and geochemical studies which were critically important to our interpretation. After the separation of the regional trend, the residual anomaly map displays a circular gravity low reaching-80 m Gal centered over scarce outcrops of rhyolitic and pyroclastic. This gravity low is interpreted as produced by block subsidence along ring fractures during eruption and/or deflation of the chamber. As the accumulation of thick, low density rock types in the zone of collapse is responsible of the prominent negative gravity anomalies, them has been used to estimated the thickness of caldera infill. (author). 8 refs., 4 figs

  8. Connected magma plumbing system between Cerro Negro and El Hoyo Complex, Nicaragua revealed by gravity survey

    Science.gov (United States)

    MacQueen, Patricia; Zurek, Jeffrey; Williams-Jones, Glyn

    2016-11-01

    Cerro Negro, near León, Nicaragua is a young, relatively small basaltic cinder cone volcano that has been unusually active during its short lifespan. Multiple explosive eruptions have deposited significant amounts of ash on León and the surrounding rural communities. While a number of studies investigate the geochemistry and stress regime of the volcano, subsurface structures have only been studied by diffuse soil gas surveys. These studies have raised several questions as to the proper classification of Cerro Negro and its relation to neighboring volcanic features. To address these questions, we collected 119 gravity measurements around Cerro Negro volcano in an attempt to delineate deep structures at the volcano. The resulting complete Bouguer anomaly map revealed local positive gravity anomalies (wavelength 0.5 to 2 km, magnitude +4 mGal) and regional positive (10 km wavelength, magnitudes +10 and +8 mGal) and negative (12 and 6 km wavelength, magnitudes -18 and -13 mGal) Bouguer anomalies. Further analysis of these gravity data through inversion has revealed both local and regional density anomalies that we interpret as intrusive complexes at Cerro Negro and in the Nicaraguan Volcanic Arc. The local density anomalies at Cerro Negro have a density of 2700 kg m-3 (basalt) and are located between -250 and -2000 m above sea level. The distribution of recovered density anomalies suggests that eruptions at Cerro Negro may be tapping an interconnected magma plumbing system beneath El Hoyo, Cerro La Mula, and Cerro Negro, and more than seven other proximal volcanic features, implying that Cerro Negro should be considered the newest cone of a Cerro Negro-El Hoyo volcanic complex.

  9. Sensitivity analysis of crustal correction and its error propagation to upper mantle residual gravity and density anomalies

    DEFF Research Database (Denmark)

    Herceg, Matija; Artemieva, Irina; Thybo, Hans

    2013-01-01

    We investigate the effect of the crustal structure heterogeneity and uncertainty in its determination on stripped gravity field. The analysis is based on interpretation of residual upper mantle gravity anomalies which are calculated by subtracting (stripping) the gravitational effect of the crust...... a relatively small range of expected density variations in the lithospheric mantle, knowledge on the uncertainties associated with incomplete knowledge of density structure of the crust is of utmost importance for further progress in such studies......) uncertainties in the velocity-density conversion and (ii) uncertainties in knowledge of the crustal structure (thickness and average Vp velocities of individual crustal layers, including the sedimentary cover). In this study, we address both sources of possible uncertainties by applying different conversions...... from velocity to density and by introducing variations into the crustal structure which corresponds to the uncertainty of its resolution by high-quality and low-quality seismic models. We examine the propagation of these uncertainties into determinations of lithospheric mantle density. The residual...

  10. Disturbance Vector in Space from Surface Gravity Anomalies Using Complementary Models.

    Science.gov (United States)

    1985-08-01

    sphere. For the dense 5’x5" data used in our New Mexico tests, however, the Dirac results were superior to those of the l.s.c. because of the ill...Lelgemann, D., "Spherical Approximation and the Combination of Gravimetric and Satellite Data," Bolletino di Geodesia e Scienze Affini, vol. 32, No. 4... Geodesia e Scienze Affini, vol. 41, No. 1, pp. 89-103, 1982. Rapp, R.H., "A FORTRAN Program for the Computation of the Normal Gravity and Gravitational

  11. Looking inside the Panarea Island (Aeolian Archipelago, Italy by gravity and magnetic data

    Directory of Open Access Journals (Sweden)

    F. Greco

    2008-06-01

    Full Text Available In this paper we show and discuss the results of gravity and magnetic surveys of Panarea Island and its archipelago. The most recent volcanic manifestation occurred in November 2002 with a shallow submarine gas eruption between the islets of Dattilo, Panarelli, Lisca Bianca, Bottaro and Lisca Nera. Currently, the activity of Panarea is monitored through a multidisciplinary study under the umbrella of the Italian Department of Civil Protection with the goal of defining the hazard of this area. With this aim, in May 2006 the first gravity and magnetic surveys of Panarea Island and its archipelago were performed. The offshore magnetic data were obtained using a marine magnetometer, a Geometrics G880, from the Istituto Idrografico dell Marina (IIM. Onshore and offshore magnetic data were integrated into an unique dataset for complete magnetic coverage of the study area. By using two micro-gravimeters (LaCoste & Romberg, gravity data were collected along tracks every 250 meters. The gravity dataset was processed using the standard method. A Bouguer reduction was applied to the free-air gravity dataset using a detailed digital elevation model of the island and the neighbouring sea after evaluation of the optimal Bouguer density to reduce the topographic effect. The result is a Bouguer anomaly map that shows lateral variations in density distribution and the relationships between the shallow volcanic/crustal features and tectonic lineaments. This evidence is also highlighted by the magnetic pattern, which suggests the importance of the youngest volcanic deposits with respect to the magnetic features of the island.

  12. Analysis of gravity data beneath Endut geothermal prospect using horizontal gradient and Euler deconvolution

    Science.gov (United States)

    Supriyanto, Noor, T.; Suhanto, E.

    2017-07-01

    The Endut geothermal prospect is located in Banten Province, Indonesia. The geological setting of the area is dominated by quaternary volcanic, tertiary sediments and tertiary rock intrusion. This area has been in the preliminary study phase of geology, geochemistry, and geophysics. As one of the geophysical study, the gravity data measurement has been carried out and analyzed in order to understand geological condition especially subsurface fault structure that control the geothermal system in Endut area. After precondition applied to gravity data, the complete Bouguer anomaly have been analyzed using advanced derivatives method such as Horizontal Gradient (HG) and Euler Deconvolution (ED) to clarify the existance of fault structures. These techniques detected boundaries of body anomalies and faults structure that were compared with the lithologies in the geology map. The analysis result will be useful in making a further realistic conceptual model of the Endut geothermal area.

  13. The Crustal Thickness of the Philippine Sea Plate Derived from Gravity Data

    Directory of Open Access Journals (Sweden)

    Horng-Yuan Yen

    2015-01-01

    Full Text Available We constructed a new free-air gravity anomaly map of the Philippine Sea Plate (PSP using ship-tracked gravity data from the National Geophysical Data Center (NGDC. Our results show that the isogals trend correlates well with the tectonic structures in the PSP. After removing the gravity induced by sea water from the free-air gravity data, we obtained the regional Bouguer gravity anomaly, which is later used to compute the Moho geometry in the PSP by applying the Parker-Oldenburg iterative method. Our results indicate that in the southern part of the West Philippine Basin (WPB the crustal thickness is nearly homogeneous with a value of about 5 km, which implies that the WPB is quite stable. The low-amplitude and near-zero free-air gravity anomalies clearly indicate that the whole WPB, except at trenches and island arcs, is nearly in a state of isostatic equilibrium. The average crustal thickness of the Palau Kyushu Ridge (PKR is more than 10 km. In the eastern PSP the crustal thickness gradually increases eastward. Our results also imply that a relatively thin and low density mantle exists beneath the Parece Vela Basin (PVB as a consequence of back-arc spreading and serpentinized upwells of the thin crustal thickness.

  14. GOCE and Future Gravity Missions for Geothermal Energy Exploitation

    Science.gov (United States)

    Pastorutti, Alberto; Braitenberg, Carla; Pivetta, Tommaso; Mariani, Patrizia

    2016-08-01

    Geothermal energy is a valuable renewable energy source the exploitation of which contributes to the worldwide reduction of consumption of fossil fuels oil and gas. The exploitation of geothermal energy is facilitated where the thermal gradient is higher than average leading to increased surface heat flow. Apart from the hydrologic circulation properties which depend on rock fractures and are important due to the heat transportation from the hotter layers to the surface, essential properties that increase the thermal gradient are crustal thinning and radiogenic heat producing rocks. Crustal thickness and rock composition form the link to the exploration with the satellite derived gravity field, because both induce subsurface mass changes that generate observable gravity anomalies. The recognition of gravity as a useful investigation tool for geothermal energy lead to a cooperation with ESA and the International Renewable Energy Agency (IRENA) that included the GOCE derived gravity field in the online geothermal energy investigation tool of the IRENA database. The relation between the gravity field products as the free air gravity anomaly, the Bouguer and isostatic anomalies and the heat flow values is though not straightforward and has not a unique relationship. It is complicated by the fact that it depends on the geodynamical context, on the geologic context and the age of the crustal rocks. Globally the geological context and geodynamical history of an area is known close to everywhere, so that a specific known relationship between gravity and geothermal potential can be applied. In this study we show the results of a systematic analysis of the problem, including some simulations of the key factors. The study relies on the data of GOCE and the resolution and accuracy of this satellite. We also give conclusions on the improved exploration power of a gravity mission with higher spatial resolution and reduced data error, as could be achieved in principle by flying

  15. Singular value decomposition (SVD for extraction of gravity anomaly associated with gold mineralization in Tongshi gold field, Western Shandong Uplifted Block, Eastern China

    Directory of Open Access Journals (Sweden)

    B. B. Zhao

    2011-02-01

    Full Text Available A singular value decomposition (SVD program on MATLAB platform was effectively used to handle gravity signals for the Tongshi gold field. Firstly, the gravity signals were decomposed into different eigenimages with the help of singular value decomposition method (SVD. Secondly, the thresholds between the eigenvalues reflecting different layers of ore-controlling factors were established by multi-fractal method. Finally images reflecting different layers of ore-controlling factors were rebuilt. This yielded two layers of two-dimensional singular value images that depict regional and local ore-controlling factors, respectively.

    1. The regional ore-controlling factor is a saddle valley with the gravity anomaly values varying from −55 to 51 μm s−2 on the NW trending swell with the gravity anomaly values varying from −55 to 567 μm s−2 on the SW side of the Mesozoic volcanic sedimentary basin with the gravity anomaly values varying from −56 to −974 μm s−2. The saddle valley might be tectonically an extensional area where the Tongshi complex pluton and all gold deposits are located and thus this area is favorable for gold deposits.


    2. The local ore-controlling factor is the Tongshi complex pluton with a negative circular gravity anomaly varying from −339 to −11 μm s−2 and the ring contact metasomatic mineralization zone around the Tongshi complex with the positive gravity anomaly varying from 37 to 345 μm s−2. The skarn and porphyry types of gold deposits are located within the complex pluton and the Carlin and cryptobreccia types of gold deposits are located within the contact metasomatic mineralization zone. Thus both of them are potential areas for gold deposits.


    3. The Tongshi gold field exhibits a typical complexity with multi-layers of ore-controlling factors.

  16. Structural features of the Middle Tirso Valley (Central Sardinia - Italy from geoelectrical and gravity data

    Directory of Open Access Journals (Sweden)

    A. Tramacere

    2001-06-01

    Full Text Available The Middle Tirso Valley is located in Central Sardinia and lies between two structural highs, the Marghine-Goceano chain and the Barbagia Paleozoic horst. The geological structures of the area, potentially interesting for its geothermal resources, are rather complex and dominated by two regional faults – the Marghine fault and the Nuoro fault – which affect the Palaeozoic basement and the Tertiary volcano-sedimentary deposits. Combined modelling of gravity and geoelectrical data defines the shape and extent of this Tertiary basin. The Bouguer anomaly is mainly characterized by a three-dimensional gravity low which has been named «Bolotana-Sedilo gravity low», corresponding to a structure generated by collapses attributable to transcurrent and extensional tectonic events. The down faulted zone is filled with a Tertiary low density volcano-sedimentary sequence extending southwards and overlain by Pliocene-Quaternary basalts. Another regional structure named «Tirso Fault» is proposed

  17. MODTOHAFSD — A GUI based JAVA code for gravity analysis of strike limited sedimentary basins by means of growing bodies with exponential density contrast-depth variation: A space domain approach

    Science.gov (United States)

    Chakravarthi, V.; Sastry, S. Rajeswara; Ramamma, B.

    2013-07-01

    Based on the principles of modeling and inversion, two interpretation methods are developed in the space domain along with a GUI based JAVA code, MODTOHAFSD, to analyze the gravity anomalies of strike limited sedimentary basins using a prescribed exponential density contrast-depth function. A stack of vertical prisms all having equal widths, but each one possesses its own limited strike length and thickness, describes the structure of a sedimentary basin above the basement complex. The thicknesses of prisms represent the depths to the basement and are the unknown parameters to be estimated from the observed gravity anomalies. Forward modeling is realized in the space domain using a combination of analytical and numerical approaches. The algorithm estimates the initial depths of a sedimentary basin and improves them, iteratively, based on the differences between the observed and modeled gravity anomalies within the specified convergence criteria. The present code, works on Model-View-Controller (MVC) pattern, reads the Bouguer gravity anomalies, constructs/modifies regional gravity background in an interactive approach, estimates residual gravity anomalies and performs automatic modeling or inversion based on user specification for basement topography. Besides generating output in both ASCII and graphical forms, the code displays (i) the changes in the depth structure, (ii) nature of fit between the observed and modeled gravity anomalies, (iii) changes in misfit, and (iv) variation of density contrast with iteration in animated forms. The code is used to analyze both synthetic and real field gravity anomalies. The proposed technique yielded information that is consistent with the assumed parameters in case of synthetic structure and with available drilling depths in case of field example. The advantage of the code is that it can be used to analyze the gravity anomalies of sedimentary basins even when the profile along which the interpretation is intended fails to

  18. Magnetic investigation and 2½ D gravity profile modelling across the Beattie magnetic anomaly in the southeastern Karoo Basin, South Africa

    Science.gov (United States)

    Baiyegunhi, Christopher; Gwavava, Oswald

    2017-03-01

    The southeastern Karoo Basin is considered to be one of the most prospective areas for shale gas exploration in South Africa. An interesting magnetic anomaly, the Beattie magnetic anomaly (BMA), and geologic intrusions are seen on the magnetic map. To date, the source of the BMA and interconnectivity of the igneous intrusions are not well understood. In this study, we investigate the interconnectivity of the igneous intrusions and possible location of the source of the BMA using gravity and magnetic methods. The gravity model results showed that igneous intrusions are interconnected at depth, which probably pose threat by increasing the risk of fracking the Karoo for shale gas exploration. The magnetic results revealed that the BMA becomes stronger with depth. The average depths to the top of the shallow and deep magnetic sources were estimated to be approximately 0.6 and 15 km, respectively.

  19. Deep structure study of the salt body of Jbel Rheouis (central tunisia) from geological and gravity data

    Science.gov (United States)

    Bouzid, Wajih; Abbes, Chedly; Gabtni, Hakim; Hassine, Mouna

    2016-04-01

    Jbel Rheouis situated in south west of Sidi Bouzid, central Tunisia, is a complex structure located at a tectonic node between N-S, NE-SW and NW-SE corridors. It was considered as a diapir containing the most complete series of The Upper Triassic formation in Central Tunisia. The good quality of preserved fossils markers especially at the limestone levels made it possible for Burollet (1952) to propose a lithostratigraphic description of the Rheouis Formation. This stratigraphy was clarified by Soussi and Abbes (2004) basing on new paleontological, palynological and outcrops detailed mapping data. Thus, they assigned the base of this outcrops series to Carnian and its top to Rhaetian. Using these geological and lithostratigraphic data we suspects that the base of the Rheouis formation formed by black limestone can be correlated to the Rehach limestone in the South of Tunisia where this level is laying on a clayey sandstones level identified as the Lower Triassic outcrops. In this concept, this study intend to investigate the Rheouis structure and to identify it's nature basing on the intra salt structures identification and the nature of the Lower Triassic sediments buried beneath the Black limestones, using a combination of geological, lithostratigraphic and geophysical (gravity) data. The gravity data used in this work were obtained from the ONM with a mesh of 1Km /1Km. All the data were merged and reduced using the 1967 International gravity formula. Free air and Bouguer gravity correction were made using sea level as a datum and 2.4 g/cm³ as a reduction density. The Bouguer anomaly map shows a variation in anomaly values range from -12.5 mGal to -4.5 mGal with a contrasted anomaly distribution. This map present 5 gravity maxima and 4 gravity minima where the major direction of those maxima and minima are N-S, NE-SW and NW-SE. The presence of a relative positive anomaly concentrated J.Rheouis can be explained by a mass excess probably due to the uplift of the

  20. Using gravity data to estimate the density of surface rocks of Taiwan region

    Science.gov (United States)

    Lo, Y. T.; Horng-Yen, Y.

    2016-12-01

    Surface rock density within terrain correction step is one of the important parameters for obtaining Bouguer anomaly map. In the past study, we obtain the Bouguer anomaly map considering the average density correction of a wide range of the study area. In this study, we will be the better estimate for the correction of the density of each observation point. A correction density that coincides with surface geology is in order to improve the accuracy of the cloth cover anomaly map. The main idea of estimating correction of the density using gravity data statistics are two method, g-H relationship and Nettleton density profile method, respectively. The common advantages of these methods are in the following: First, density estimating is calculated using existing gravity observations data, it may be avoided the trouble of directly measure the rock density. Second, after the establishment the measuring point s of absolute gravity value, latitude, longitude and elevation into the database, you can always apply its database of information and terrain data with the value to calculate the average rock density on any range. In addition, each measuring point and numerical data of each terrain mesh are independent, if found to be more accurate gravity or terrain data, simply update a document data alone, without having to rebuild the entire database. According the results of estimating density distribution map, the trends are broadly distributed close to Taiwan Geology Division. The average density of the backbone mountain region is about 2.5 to 2.6 g/cm^3, the average density of east Central Mountain Range and Hsuehshan Range are about 2.3 to 2.5 g/cm^3, compared with the western foothills of 2.1-2.3 g/cm^3, the western plains is from 1.8 to 2.0 g/cm^3.

  1. Gravity field over the Sea of Galilee: Evidence for a composite basin along a transform fault

    Science.gov (United States)

    Ben-Avraham, Zvi; ten Brink, Uri; Bell, Robin; Reznikov, Margaret

    1996-01-01

    The Sea of Galilee (Lake Kinneret) is located at the northern portion of the Kinneret-Bet Shean basin, in the northern Dead Sea transform. Three hundred kilometers of continuous marine gravity data were collected in the lake and integrated with land gravity data to a distance of more than 20 km around the lake. Analyses of the gravity data resulted in a free-air anomaly map, a variable density Bouguer anomaly map, and a horizontal first derivative map of the Bouguer anomaly. These maps, together with gravity models of profiles across the lake and the area south of it, were used to infer the geometry of the basins in this region and the main faults of the transform system. The Sea of Galilee can be divided into two units. The southern half is a pull-apart that extends to the Kinarot Valley, south of the lake, whereas the northern half was formed by rotational opening and transverse normal faults. The deepest part of the basinal area is located well south of the deepest bathymetric depression. This implies that the northeastern part of the lake, where the bathymetry is the deepest, is a young feature that is actively subsiding now. The pull-apart basin is almost symmetrical in the southern part of the lake and in the Kinarot Valley south of the lake. This suggests that the basin here is bounded by strike-slip faults on both sides. The eastern boundary fault extends to the northern part of the lake, while the western fault does not cross the northern part. The main factor controlling the structural complexity of this area is the interaction of the Dead Sea transform with a subperpendicular fault system and rotated blocks.

  2. OCT structure, COB location and magmatic type of the S Angolan & SE Brazilian margins from integrated quantitative analysis of deep seismic reflection and gravity anomaly data

    Science.gov (United States)

    Cowie, Leanne; Kusznir, Nick; Horn, Brian

    2014-05-01

    Integrated quantitative analysis using deep seismic reflection data and gravity inversion have been applied to the S Angolan and SE Brazilian margins to determine OCT structure, COB location and magmatic type. Knowledge of these margin parameters are of critical importance for understanding rifted continental margin formation processes and in evaluating petroleum systems in deep-water frontier oil and gas exploration. The OCT structure, COB location and magmatic type of the S Angolan and SE Brazilian rifted continental margins are much debated; exhumed and serpentinised mantle have been reported at these margins. Gravity anomaly inversion, incorporating a lithosphere thermal gravity anomaly correction, has been used to determine Moho depth, crustal basement thickness and continental lithosphere thinning. Residual Depth Anomaly (RDA) analysis has been used to investigate OCT bathymetric anomalies with respect to expected oceanic bathymetries and subsidence analysis has been used to determine the distribution of continental lithosphere thinning. These techniques have been validated for profiles Lusigal 12 and ISE-01 on the Iberian margin. In addition a joint inversion technique using deep seismic reflection and gravity anomaly data has been applied to the ION-GXT BS1-575 SE Brazil and ION-GXT CS1-2400 S Angola deep seismic reflection lines. The joint inversion method solves for coincident seismic and gravity Moho in the time domain and calculates the lateral variations in crustal basement densities and velocities along the seismic profiles. Gravity inversion, RDA and subsidence analysis along the ION-GXT BS1-575 profile, which crosses the Sao Paulo Plateau and Florianopolis Ridge of the SE Brazilian margin, predict the COB to be located SE of the Florianopolis Ridge. Integrated quantitative analysis shows no evidence for exhumed mantle on this margin profile. The joint inversion technique predicts oceanic crustal thicknesses of between 7 and 8 km thickness with

  3. Gravity

    CERN Document Server

    Gamow, George

    2003-01-01

    A distinguished physicist and teacher, George Gamow also possessed a special gift for making the intricacies of science accessible to a wide audience. In Gravity, he takes an enlightening look at three of the towering figures of science who unlocked many of the mysteries behind the laws of physics: Galileo, the first to take a close look at the process of free and restricted fall; Newton, originator of the concept of gravity as a universal force; and Einstein, who proposed that gravity is no more than the curvature of the four-dimensional space-time continuum.Graced with the author's own draw

  4. Indications of correlation between gravity measurements and isoseismal maps. A case study of Athens basin (Greece)

    Science.gov (United States)

    Dilalos, S.; Alexopoulos, J. D.

    2017-05-01

    In this paper, we discuss the correlation between isoseismal contour maps and gravity residual anomaly maps and how it might contribute to the characterization of vulnerable areas to earthquake damage, especially in urban areas, where the geophysical data collection is difficult. More specifically, we compare a couple of isoseismal maps that have been produced and published after the catastrophic earthquake of 7th September 1999 (5.9R) in Athens, the metropolis of Greece, with the residual map produced from the processing and data reduction of a gravity survey that has been carried out in the Athens basin recently. The geologic and tectonic regime of the Athens basin is quite complicated and it is still being updated with new elements. Basically it is comprised of four different geotectonic units, one of them considered as the autochthon. During the gravity investigation, 807 gravity stations were collected, based on a grid plan with spacing almost 1 km, covering the entire basin and supported by a newly established gravity base network comprised by thirteen bases. Differential DGPS technique was used for the accurate measurement of all the gravity stations and bases coordinates. After the appropriate data reduction and the construction of the Complete Bouguer Anomaly map, we applied FFT filtering in order to remove the regional component and produce the Residual Anomaly Map. The comparison of the Residual Anomaly Map with the isoseismal contours revealed that the areas with the most damage because of the earthquake were located in the areas with the minimum values of the Residual Anomaly Map.

  5. 3-D inversion of gravity data in spherical coordinates with application to the GRAIL data

    Science.gov (United States)

    Liang, Qing; Chen, Chao; Li, Yaoguo

    2014-06-01

    Three-dimensional (3-D) inversion of gravity data has been widely used to reconstruct the density distributions of ore bodies, basins, crust, lithosphere, and upper mantle. For global model of 3-D density structures of planetary interior, such as the Earth, the Moon, or Mars, it is necessary to use an inversion algorithm that operates in the spherical coordinates. We develop a 3-D inversion algorithm formulated with specially designed model objective function and radial weighting function in the spherical coordinates. We present regional and global synthetic examples to illustrate the capability of the algorithm. The inverted results show density distribution features consistent with the true models. We also apply the algorithm to a set of lunar Bouguer gravity anomaly derived from the Gravity Recovery and Interior Laboratory (GRAIL) gravity field and obtain a lunar 3-D density distribution. High-density anomalies are clearly identified underlying lunar basins, a wide region of the lateral density heterogeneities that exist beneath the South Pole-Aitken basin are found, and low-density anomalies are distributed beneath the Feldspathic Highlands Terrane on the lunar far-side. The consistency of these results with those obtained independently from other existing methods verifies the newly developed algorithm.

  6. Analysis of gravity data in Central Valleys, Oaxaca, southern, Mexico

    Science.gov (United States)

    Gonzalez, T.; Ferrusquia, I.

    2015-12-01

    The region known as Central Valleys is located in the state of Oaxaca, southern, Mexico (16.3o- 17.7 o N Lat. and 96 o - 97 o W Long.) In its central portion is settled the capital of the state. There are very few published detailed geological studies.. Geomorphological and geological features, indicates that Central Valleys and surrounding mountains conform a graben structure. Its shape is an inverted Y, centred on Oaxaca City. The study area was covered by a detailed gravity survey with a homogenous distribution of stations. The Bouguer gravity map is dominated by a large gravity low, oriented NW-SE. In order to know the characteristics of anomalies observed gravity, data transformations were used. The use of spectral methods has increased in recent years, especially for the estimation of the depth of the source. Analysis of the gravity data sheds light on the regional depth of the Graben basement and the spatial distribution of the volcanic rocks

  7. The structural setting of the Ischia Island Caldera (Italy): first evidence from seismic and gravity data

    Science.gov (United States)

    Capuano, Paolo; De Matteis, Raffaella; Russo, Guido

    2015-09-01

    Ischia Island is one of the active volcanoes of the Neapolitan area (Italy). Hazard assessment of active, densely populated volcano is primarily based on knowledge of the volcano's past behaviour and of its present state. As a contribution to the definition of the present structural setting of Ischia Island, we constructed a new model of the shallow crust using geophysical data: seismic wave travel times and Bouguer anomaly data. We analysed these data sets through seismic tomography and gravity data inversion. The main results inferable from the 3D seismic and gravity images are the definition of the caldera rim along the perimeter of the island, as hypothesized by many authors, and the presence of a high velocity and density area inside the caldera consistent with extension of the resurgent block that characterizes the recent deformation of the island.

  8. Wavelet analysis and interpretation of gravity data in Sichuan-Yunnan region, China

    Institute of Scientific and Technical Information of China (English)

    LOU Hai; WANG Chun-yong

    2005-01-01

    The Bouguer gravity anomaly data of Sichuan-Yunnan region and its vicinity were analyzed with wavelet transformation method. In the process, complete orthogonal wavelet function system with good symmetry and higher vanishing moment was selected to decompose the gravity anomaly into two parts. With the power spectral analysis on the decomposed anomalies, we interpreted that the two parts of anomalies represent the density variation in upper and middle crust, and in deep crust and uppermost mantle, respectively. The two parts of anomalies indicate the difference between shallow and deep tectonics. The results of shallow-layer apparent density mapping reveal that: a) the crustal density in Sichuan basin is higher than that in Songpan-Garze orogenic zone; b) the density of Kangdian rhombic block is heterogeneous; c) the boundary faults of Kangdian block are of different density features, suggesting different tectonic signification. The results of deep-layer apparent density mapping show a similar,but not the same, density distribution pattern as the shallow results, and indicate that the tectonics of shallow and deep crust are different, they may be in a status of incomplete coupling. Our results also show that the earthquakes in this area are controlled not only by the fracture zones but also by the deep density distribution.

  9. Geomodel constructs of the Earth's crust for water continuation of the Korotaikha depression from gravity and magnetic data for revealing promising areas of oil and gas accumulation

    Science.gov (United States)

    Litvinova, Tamara; Kudryavtsev, Ivan

    2016-04-01

    The paper considers the results of re-interpretation of geophysical data within the water continuation of the Korotaikha depression. To solve the issue of identifying promising areas of oil and gas accumulation in the region, magnetic and gravity materials were reprocessed: digital maps of potential fields at 1: 500 000 scale were compiled on a frame network of seismic lines (3 lines on land and 3 lines in water area) made by reflection-CDP, density models to a depth of 20 km by solving the direct problem of gravity prospecting in GM-SYS module (Geosoft) in 2D formulation were constructed. Deep reflection-CDP seismic sections specified according to the deep wells were used as starting models. Correctness of the selected density models was controlled by comparing the theoretical curve with the values interpolated on the profile line from the digital model of gravity anomaly (Bouguer, density of the intermediate layer of 2.67 g/cm3). Magnetic modeling was performed using geometry of blocks from the obtained density models to a depth of 20 km and is based on selection of local anomaly sources in the upper section (in the Triassic strata). Blocks of the Precambrian basement were used as sources of regional magnetic anomalies in the considered models. Modeling constructs show the defining role of the topography of terrigenous and carbonate complex boundary within the Paleozoic section as a source of gravity anomalies for the region under study. These findings are confirmed by comparison of gravity and seismic data (maps of local gravity anomalies and structural maps of reflecting horizons) and additionally substantiated by analysis of the nature of local magnetic anomalies distribution. The latter are associated with the Triassic basalt horizons at the top of the terrigenous complex and thus also reflect structures of the sedimentary cover, which are registered independently by gravity data.

  10. Joint inversion of gravity and seismic data along a profile across the seismogenic fault of 2010 Yushu Ms7.1 earthquake

    Directory of Open Access Journals (Sweden)

    Yang Guangliang

    2011-11-01

    Full Text Available Yushu Ms7.1 earthquake occurred on the Ganzi-Yushu fault zone, across which we carried out a joint relative-gravity and seismic-reflection survey, and then performed a gravity inversion constrained by the seismic-reflection result. Based on the data of complete Bouguer gravity anomaly and seismic reflection, we obtained a layered interface structure in deep crust down to Moho. Our study showed that the inversion could reveal the interfaces of strata along the survey profile and the directions of regional faults in two-dimension. From the characteristics of the observed topography of the Moho basement, we tentatively confirmed that the uplift of eastern edge of Qinghai-Tibet plateau was caused by the subduction of the Indian plate.

  11. Submarine structure of Reunion Island (Indian Ocean) inferred from gravity

    Science.gov (United States)

    Gailler, L.; Lénat, J.

    2008-12-01

    La Reunion is a large (diameter: 220 km; height: 7 km), mostly immerged (97%) oceanic volcanic system. New land and marine gravity data are used to study the structure of its submarine part. The gravity models are interpreted jointly with the published geology interpretations and compared with magnetic models. This allows us to derive a new model of the shallow and internal structure of the submarine flanks. Recent cruises have collected high quality gravity, magnetic and multi-beam swath bathymetry data over the submarine flanks of La Réunion and the surrounding oceanic plate. A new Bouguer anomaly map has been computed for a reduction density of 2.67.103 kg m-3. A magnetic anomalies map covering the same area has been also built. Studies based on bathymetric and acoustic data have previously shown the presence of different types of submarine features: a coastal shelf, huge bulges built by debris avalanches and sediment deposits, erosion canyons, volcanic constructions near the coast, isolated seamounts offshore, and elongate volcanic ridges on the Mascarene plate. On the new Bouguer anomaly map, all these features are associated with negative anomalies. They have been modeled using 2 3/4 D modeling techniques. The short wavelength anomalies over the coastal shelf area can be explained by piles of low density layers. This suggests that they are mostly built by hyaloclastites which are generally characterized by lower densities than lava flows. The voluminous debris avalanche deposits which formed the huge Submarine Bulges to the east, north, west, and south of the island have also been modeled as low density formations. Each bulge is modeled with an overall density less than 2.67.103 kg m-3, in order to account for its long wavelength anomaly. Some shorter wavelength features are superimposed on these long wavelength negative anomalies. They probably represent heterogeneities within the bulges. Some shallow ones can be associated with observed surface geological

  12. Spherically symmetric sector of self-dual Ashtekar gravity coupled to matter: Anomaly-free algebra of constraints with holonomy corrections

    Science.gov (United States)

    Ben Achour, Jibril; Brahma, Suddhasattwa; Marcianò, Antonino

    2017-07-01

    Using self-dual Ashtekar variables, we investigate (at the effective level) the spherically symmetry reduced model of loop quantum gravity, both in vacuum and when coupled to a scalar field. Within the real Ashtekar-Barbero formulation, the system scalar field coupled to spherically symmetric gravity is known to possess a non closed (quantum) algebra of constraints once local (pointwise) holonomy corrections are introduced, which leads to several obstructions in the loop quantization of the model. Moreover, the vacuum case, while not anomalous, introduces modifications which have been suggested to be an effective signature change of the metric in the deep quantum region. We show in this paper that both those complications disappear when working with self-dual Ashtekar variables, both in the vacuum case and in the case of gravity minimally coupled to a scalar field. In this framework, the algebra of the holonomy corrected constraints is anomaly free and reproduces the classical hypersurface deformation algebra without any deformations. A possible path towards quantization of this model is briefly discussed.

  13. Gravity survey of the Escalante Desert and vicinity, in Iron and Washington Counties, Utah

    Energy Technology Data Exchange (ETDEWEB)

    Pe, W.; Cook, K.L.

    1980-08-01

    During the summers of 1978 and 1979, a total of 436 new gravity stations were taken in the southern part of the Escalante Desert and vicinity in Iron and Washington counties, Utah. The new stations were combined with 917 other stations taken in previous surveys, and a total of 1353 stations were used in this study, covering an area of about 2700 mi/sup 2/ (7000 km/sup 2/). The purpose of the study was to help evaluate the potential of geothermal resources within the survey area, which includes the Newcastle and Lund KGRA's. All the gravity data were terrain corrected out to a radial distance of 166.7 km from each station, using a computer terrain-correction program. The data were compiled and presented as a complete Bouguer gravity anomaly map with a 2-mgal contour interval. A geologic interpretation of the gravity data was made qualitatively from the gravity map and also quantitatively from four easterly trending gravity profiles taken across the area.

  14. Fast inversion of gravity data using the symmetric successive over-relaxation (SSOR) preconditioned conjugate gradient algorithm

    Science.gov (United States)

    Meng, Zhaohai; Li, Fengting; Xu, Xuechun; Huang, Danian; Zhang, Dailei

    2017-02-01

    The subsurface three-dimensional (3D) model of density distribution is obtained by solving an under-determined linear equation that is established by gravity data. Here, we describe a new fast gravity inversion method to recover a 3D density model from gravity data. The subsurface will be divided into a large number of rectangular blocks, each with an unknown constant density. The gravity inversion method introduces a stabiliser model norm with a depth weighting function to produce smooth models. The depth weighting function is combined with the model norm to counteract the skin effect of the gravity potential field. As the numbers of density model parameters is NZ (the number of layers in the vertical subsurface domain) times greater than the observed gravity data parameters, the inverse density parameter is larger than the observed gravity data parameters. Solving the full set of gravity inversion equations is very time-consuming, and applying a new algorithm to estimate gravity inversion can significantly reduce the number of iterations and the computational time. In this paper, a new symmetric successive over-relaxation (SSOR) iterative conjugate gradient (CG) method is shown to be an appropriate algorithm to solve this Tikhonov cost function (gravity inversion equation). The new, faster method is applied on Gaussian noise-contaminated synthetic data to demonstrate its suitability for 3D gravity inversion. To demonstrate the performance of the new algorithm on actual gravity data, we provide a case study that includes ground-based measurement of residual Bouguer gravity anomalies over the Humble salt dome near Houston, Gulf Coast Basin, off the shore of Louisiana. A 3D distribution of salt rock concentration is used to evaluate the inversion results recovered by the new SSOR iterative method. In the test model, the density values in the constructed model coincide with the known location and depth of the salt dome.

  15. Integration of magnetic, gravity, and well data in imaging subsurface geology in the Ksar Hirane region (Laghouat, Algeria)

    Science.gov (United States)

    Farhi, Walid; Boudella, Ammar; Saibi, Hakim; Bounif, Mohand Ou Abdallah

    2016-12-01

    Gravity and magnetic surveys, comprised of data from 985 gravity stations and 1373 magnetic stations, were recorded in the Ksar Hirane region in Laghouat, Algeria from May-August 2011 to study the poorly understood thickness of the sedimentary rocks and the structure of the basement rocks. The Bouguer anomalies vary from -48 mGal (northwest) to -58 mGal (southeast) and the magnetic intensities from 42,094 nT (northwest) to 42,344 nT (southeast). The constrained two-dimensional (2-D) forward modeling, three-dimensional (3-D) inversion of measured gravity and magnetic datasets helped us highlight the structure of the basement rocks at Ksar Hirane and determine the thickness of the sedimentary cover. Prominent NE-SW-trending geophysical anomalies that affect the study area were revealed by potential field gradient methods and were in agreement with the geological structure trends. The 3-D constrained inversion of magnetic data showed magnetized Precambrian metamorphic basement rock at shallow depths (approximately 3 km) in the southeast region and deeper (>10 km) in the northwestern part of the region, presenting similar results to that of the 2-D forward modeling of gravity and magnetic data. The inverted gravity data explain the structural architecture of the Ksar Hirane area, dissected by NE-SW sub-vertical faults.

  16. High-resolution residual geoid and gravity anomaly data of the northern Indian Ocean - An input to geological understanding

    Digital Repository Service at National Institute of Oceanography (India)

    Sreejith, K.M.; Rajesh, S.; Majumdar, T.J.; Rao, G.S.; Radhakrishna, M.; Krishna, K.S.; Rajawat, A.S.

    spherical harmonic coefficients of Earth Gravity Model 2008 (EGM2008) up to degree and order 50 from the observed geoid data. The coefficients are smoothly rolled off between degrees 30-70 in order to avoid artifacts related to the sharp truncation at degree...

  17. The Wallula fault and tectonic framework of south-central Washington, as interpreted from magnetic and gravity anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Blakely, Richard J. [U.S. Geological Survey, Menlo Park, CA (United States); Sherrod, Brian [U.S. Geological Survey, Seattle, WA (United States); Weaver, Craig [U.S. Geological Survey, Seattle, WA (United States); Wells, Ray E. [U.S. Geological Survey, Menlo Park, CA (United States); Rohay, Alan C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-11-13

    Magnetic and gravity data, collected in south-central Washington near the Yakima Fold and Thrust Belt (YFTB) are used to model upper crustal structure, the extent of the late Columbia River Basalt flow named the Ice Harbor member, the vertical conduits (dikes) that the Ice Harbor erupted from, and whether the dikes are offset or affected by faulting on the Wallula Fault zone.

  18. Explaining the thick crust in Paraná basin, Brazil, with satellite GOCE gravity observations

    Science.gov (United States)

    Mariani, Patrizia; Braitenberg, Carla; Ussami, Naomi

    2013-08-01

    Seismologic observations in the last decades have shown that the crustal thickness in Paraná basin locally is over 40 km thick, which is a greater value than expected by the simple isostatic model considering the topographic load. The goal of this work is to explain this apparent discrepancy by modeling the internal crustal density anomalies through the gravity field. We use the latest Earth Gravity Model derived from the observations of the GOCE satellite mission, to retrieve the gravity anomaly and correct it for topographic effects, thus obtaining the Bouguer field. We then model the gravity effect of known stratigraphic units and of the seismological crustal thickness. The large Paraná basin comprises over 3500 m of Paleozoic sedimentary sequence with density between 2400 and 2600 kg/m3. During the Early Cretaceous the same basin was affected by a large amount of igneous activity with a volume of over 0.1 Mkm3. The flood basalt volcanism is known as the Serra Geral Formation, and has a maximum thickness of 1500 m. The stratigraphic units of the basin are topped by post-volcanic deposits of the Bauru Group, of about 300 m thickness, located in the northern part of the basin. The density and thickness of the sedimentary sequence are constrained by sonic logs of drill-holes and exploration seismic. We use the crustal thickness estimated from the newest seismological results for South America to calculate its gravity effect. Further we model the isostatic crustal thickness variation, allowing the comparison between a seismological Moho, an isostatic Moho, and a gravity-based Moho. We find that there is a clear positive Bouguer residual anomaly located in the northern and southern part of the Paraná basin, indicating the presence of a hidden mass, not considered up to now. We propose a model that explains this mass as magmatic rock, probably gabbro in lower crust, with density contrast of 200 kg/m3 and thickness of more than 10 km, thus demonstrating that the

  19. Polyhedral shape model for terrain correction of gravity and gravity gradient data based on an adaptive mesh

    Science.gov (United States)

    Guo, Zhikui; Chen, Chao; Tao, Chunhui

    2016-04-01

    Since 2007, there are four China Da yang cruises (CDCs), which have been carried out to investigate polymetallic sulfides in the southwest Indian ridge (SWIR) and have acquired both gravity data and bathymetry data on the corresponding survey lines(Tao et al., 2014). Sandwell et al. (2014) published a new global marine gravity model including the free air gravity data and its first order vertical gradient (Vzz). Gravity data and its gradient can be used to extract unknown density structure information(e.g. crust thickness) under surface of the earth, but they contain all the mass effect under the observation point. Therefore, how to get accurate gravity and its gradient effect of the existing density structure (e.g. terrain) has been a key issue. Using the bathymetry data or ETOPO1 (http://www.ngdc.noaa.gov/mgg/global/global.html) model at a full resolution to calculate the terrain effect could spend too much computation time. We expect to develop an effective method that takes less time but can still yield the desired accuracy. In this study, a constant-density polyhedral model is used to calculate the gravity field and its vertical gradient, which is based on the work of Tsoulis (2012). According to gravity field attenuation with distance and variance of bathymetry, we present an adaptive mesh refinement and coarsening strategies to merge both global topography data and multi-beam bathymetry data. The local coarsening or size of mesh depends on user-defined accuracy and terrain variation (Davis et al., 2011). To depict terrain better, triangular surface element and rectangular surface element are used in fine and coarse mesh respectively. This strategy can also be applied to spherical coordinate in large region and global scale. Finally, we applied this method to calculate Bouguer gravity anomaly (BGA), mantle Bouguer anomaly(MBA) and their vertical gradient in SWIR. Further, we compared the result with previous results in the literature. Both synthetic model

  20. The contribution of gravity method in geothermal exploration of southern part of the Gulf of Suez-Sinai region, Egypt

    Science.gov (United States)

    Atef, H.; Abd El-Gawad, A. M. S.; Abdel Zaher, M.; Farag, K. S. I.

    2016-06-01

    The Gulf of Suez region represents the most promising area in Egypt for geothermal exploration which is characterized by superficial thermal manifestations represented by a cluster of hot springs with varying temperatures from 35 to 72 °C. The main purpose of the present study was to shed the light on the integration between gravity work and geothermal data in detecting the main subsurface structures in addition to expecting the geothermal sources in the area under consideration. Correction was applied on the bottom hole temperature data to obtain the true formation equilibrium temperatures that can provide useful information about the subsurface thermal regime. Based on these logging data, temperature gradient and heat flow values were computed at each well, and it is found that the mean geothermal gradient of the study area is 32 °C/km; nevertheless, some local geothermal potential fields were located with more than 40 °C/km. Also, heat flow values are ranging from 45 to 115 mW/m2. The Bouguer anomaly map of the study area was used for delineating the subsurface structures and tectonic trends that have resulted in a potential heat source. The gravity inversion revealed a good correlation between areas of high temperature gradients, high heat flow and positive gravity anomalies. The high temperature gradient and heat flow values suggested being associated with a noticeable hydrothermal source of heat anomaly located at relatively shallow depths which is expected to be due to the uplift of the basement in the area.

  1. Software Analysis of New Space Gravity Data for Geophysics and Climate Research

    Science.gov (United States)

    Deese, Rupert; Ivins, Erik R.; Fielding, Eric J.

    2012-01-01

    Both the Gravity Recovery and Climate Experiment (GRACE) and Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellites are returning rich data for the study of the solid earth, the oceans, and the climate. Current software analysis tools do not provide researchers with the ease and flexibility required to make full use of this data. We evaluate the capabilities and shortcomings of existing software tools including Mathematica, the GOCE User Toolbox, the ICGEM's (International Center for Global Earth Models) web server, and Tesseroids. Using existing tools as necessary, we design and implement software with the capability to produce gridded data and publication quality renderings from raw gravity data. The straight forward software interface marks an improvement over previously existing tools and makes new space gravity data more useful to researchers. Using the software we calculate Bouguer anomalies of the gravity tensor's vertical component in the Gulf of Mexico, Antarctica, and the 2010 Maule earthquake region. These maps identify promising areas of future research.

  2. DNAG Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Decade of North American Geology (DNAG) gravity grid values, spaced at 6 km, were used to produce the Gravity Anomaly Map of North America (1987; scale...

  3. Internal architecture of the Tuxtla volcanic field, Veracruz, Mexico, inferred from gravity and magnetic data

    Science.gov (United States)

    Espindola, Juan Manuel; Lopez-Loera, Hector; Mena, Manuel; Zamora-Camacho, Araceli

    2016-09-01

    The Tuxtla Volcanic Field (TVF) is a basaltic volcanic field emerging from the plains of the western margin of the Gulf of Mexico in the Mexican State of Veracruz. Separated by hundreds of kilometers from the Trans-Mexican Volcanic Belt to the NW and the Chiapanecan Volcanic Arc to the SE, it stands detached not only in location but also in the composition of its rocks, which are predominantly alkaline. These characteristics make its origin somewhat puzzling. Furthermore, one of the large volcanoes of the field, San Martin Tuxtla, underwent an eruptive period in historical times (CE 1793). Such volcanic activity conveys particular importance to the study of the TVF from the perspective of volcanology and hazard assessment. Despite the above circumstances, few investigations about its internal structure have been reported. In this work, we present analyses of gravity and aeromagnetic data obtained from different sources. We present the complete Bouguer anomaly of the area and its separation into regional and residual components. The aeromagnetic data were processed to yield the reduction to the pole, the analytic signal, and the upward continuation to complete the interpretation of the gravity analyses. Three-dimensional density models of the regional and residual anomalies were obtained by inversion of the gravity signal adding the response of rectangular prisms at the nodes of a regular grid. We obtained a body with a somewhat flattened top at 16 km below sea level from the inversion of the regional. Three separate slender bodies with tops 6 km deep were obtained from the inversion of the residual. The gravity and magnetic anomalies, as well as the inferred source bodies that produce those geophysical anomalies, lie between the Sontecomapan and Catemaco faults, which are proposed as flower structures associated with an inferred deep-seated fault termed the Veracruz Fault. These fault systems along with magma intrusion at the lower crust are necessary features to

  4. Structure and Evolution of the Lunar Procellarum Region as Revealed by GRAIL Gravity Data

    Science.gov (United States)

    Andrews-Hanna, Jeffrey C.; Besserer, Jonathan; Head, James W., III; Howett, Carly J. A.; Kiefer, Walter S.; Lucey, Paul J.; McGovern, Patrick J.; Melosh, H. Jay; Neumann, Gregory A.; Phillips, Roger J.; Schenk, Paul M.; Smith, David E.; Solomon, Sean C.; Zuber, Maria T.

    2014-01-01

    The Procellarum region is a broad area on the nearside of the Moon that is characterized by low elevations, thin crust, and high surface concentrations of the heat-producing elements uranium, thorium, and potassium. The Procellarum region has been interpreted as an ancient impact basin approximately 3200 km in diameter, though supporting evidence at the surface would have been largely obscured as a result of the great antiquity and poor preservation of any diagnostic features. Here we use data from the Gravity Recovery and Interior Laboratory (GRAIL) mission to examine the subsurface structure of Procellarum. The Bouguer gravity anomalies and gravity gradients reveal a pattern of narrow linear anomalies that border the Procellarum region and are interpreted to be the frozen remnants of lava-filled rifts and the underlying feeder dikes that served as the magma plumbing system for much of the nearside mare volcanism. The discontinuous surface structures that were earlier interpreted as remnants of an impact basin rim are shown in GRAIL data to be a part of this continuous set of quasi-rectangular border structures with angular intersections, contrary to the expected circular or elliptical shape of an impact basin. The spatial pattern of magmatic-tectonic structures bounding Procellarum is consistent with their formation in response to thermal stresses produced by the differential cooling of the province relative to its surroundings, coupled with magmatic activity driven by the elevated heat flux in the region.

  5. Timing, mantle source and origin of mafic dykes within the gravity anomaly belt of the Taihang-Da Hinggan gravity lineament, central North China Craton

    Science.gov (United States)

    Liu, Shen; Feng, Caixia; Feng, Guangying; Xu, Mengjing; Coulson, Ian M.; Guo, Xiaolei; Guo, Zhuang; Peng, Hao; Feng, Qiang

    2017-09-01

    Six mafic dyke swarms crop out in Hebei Province within the Taihang-Da Hinggan gravity lineament magmatic belt, China, and were sampled. Here, we present new zircon laser ablation-inductively coupled plasma-mass spectrometry U-Pb age, whole rock geochemical, and Sr-Nd-Pb-Hf isotopic data for the six areas where these mafic dykes occur. The mafic (dolerite) dykes formed between 131.6 ± 1.6 and 121.6 ± 1.1 Ma, and are enriched in the light rare earth elements (LREE), some of the large ion lithophile elements (LILE; e.g., Rb, Ba, and Sr) and Pb, and are depleted in Th, U, Nb and Ta; some samples are also depleted in Eu. The dykes have high initial 87Sr/86Sr ratios (0.7055-0.7057), negative εNd (t) values (-12.5 to -11.9), relatively constant Pb isotopic ratios ((206Pb/204Pb)i = 16.45-16.51, (207Pb/204Pb)i = 15.44-15.51, (208Pb/204Pb)i = 36.49-36.53), negative εHf (t) values (-18.2 to -15.1), and old Nd (TNdDM2; 2.17-2.47 Ga) and Hf (THfDM2; 2.28-2.33 Ga) model ages. These geochronological, geochemical, and isotopic data indicate that the dykes were derived from magmas generated by low to moderate degree partial melting (1.0%-10%) of an EM1-like garnet lherzolite mantle source; these magmas fractionated olivine, clinopyroxene, and hornblende prior to emplacement, and assimilated minimal amounts of crustal material. Several possible models have previously been proposed to explain the origin of Mesozoic magmatism in this region. However, here we propose a foundering model for these studied mafic dykes, involving the foundering of eclogite from thickened lower crust due to the collision between the Siberian Craton and the North China Craon.

  6. Analysis of gravity anomalies in the Ulleung Basin (East Sea/Sea of Japan) and its implications for the architecture of rift-dominated back-arc basin

    Science.gov (United States)

    Kim, Y. M.; Lee, S. M.

    2016-12-01

    Marginal basins located between the continent and arc islands often exhibit diverse style of opening, from regions that appear to have formed by well-defined and localized spreading center to those with less obvious zones of extension and a broad magmatic emplacement in the lower crust. The difference in the mode of back-arc opening may lead to a marked difference in crustal structure including its overall thickness and mechanical strength. The Ulleung Basin (UB) in the East Sea/Sea of Japan is considered to represent a continental rifting end-member of back-arc opening. However, compared to nearby Yamato Basin (YB) and Japan Basin (JB) in the NE corner of the sea, its structure and crustal characteristics are less well understood. This study examines the marine gravity anomalies of the UB in order to delineate the variations in crustal structure. Our analysis shows that the Moho depth from the sea surface varies from 16 km at the basin center to 22 km at the margins. However, within the basin center, the inferred thickness of the crust not including sediment is more or less the same (10-12 km), by varying only about 10-20% of the total thickness, contrary to the previous suggestions. The revelation that the UB has a thick but uniform thickness crust is consistent with previous observations using ocean bottom seismometers and is similar recent findings from the nearby YB. Another important feature is that small residual mantle gravity anomaly highs (40 mGal) exist in the northern part of the basin. These small highs trend in the NNE-SSW direction and thus corresponding to the orientation of the major tectonic structures on the Korean Peninsula, raising the possibility that they are the result of localized extension and extra crustal thinning at the time of basin formation. Alternatively, the presence of small magmatic underplating at the base of the crust, perhaps similar to high velocity region in the lower crust of YB, was also considered. According to our study

  7. Interpretation of Source Parameters from Total Gradient of Gravity and Magnetic Anomalies Caused by Thin Dyke using Nonlinear Global Optimization Technique

    Science.gov (United States)

    Biswas, A.

    2016-12-01

    A proficient way to deal with appraisal model parameters from total gradient of gravity and magnetic data in light of Very Fast Simulated Annealing (VFSA) has been exhibited. This is the first run through of applying VFSA in deciphering total gradient of potential field information with another detailing estimation brought on because of detached causative sources installed in the subsurface. The model parameters translated here are the amplitude coefficient (k), accurate origin of causative source (x0) depth (z0) and the shape factor (q). The outcome of VFSA improvement demonstrates that it can exceptionally decide all the model parameters when shape variable is fixed. The model parameters assessed by the present strategy, for the most part the shape and depth of the covered structures was observed to be in astounding concurrence with the genuine parameters. The technique has likewise the capability of dodging very uproarious information focuses and enhances the understanding results. Investigation of Histogram and cross-plot examination likewise proposes the translation inside the assessed ambiguity. Inversion of noise-free and noisy synthetic data information for single structures and field information shows the viability of the methodology. The procedure has been carefully and adequately connected to genuine field cases (Leona Anomaly, Senegal for gravity and Pima copper deposit, USA for magnetic) with the nearness of mineral bodies. The present technique can be to a great degree material for mineral investigation or ore bodies of dyke-like structure rooted in the shallow and more deep subsurface. The calculation time for the entire procedure is short.

  8. 叙利亚A低阻灰岩油藏束缚水饱和度特征与电阻率的关系%Distribution characteristics of gravity Held and Cretaceous in Putumayo Basin of Colombia

    Institute of Scientific and Technical Information of China (English)

    夏冬冬; 张庆红; 司马立强; 解丽慧

    2013-01-01

    中东叙利亚A油田J组是世界罕见的低阻灰岩油藏,其油层电阻率仅为0.5~5.0 Ω·m,束缚水饱和度高达70%以上.研究了低阻油层高束缚水饱和度的成因,以及高束缚水饱和度对油层电阻率的影响.电阻率数值模拟结果表明,地层电阻率随着束缚水饱和度的增高而降低,与实测曲线非常吻合.说明高束缚水饱和度是导致A油田J组形成低阻油层的主要因素之一.%Cretaceous marine shale is the main hydrocarbon source rock in Putumayo Basin. In order to study the distribution characteristics of the Cretaceous in the basin, the gravity data is analyzed, and it is interpreted based on the geologic data and drilling data. According to the study on Bouguer gravity anomaly, residual gravity anomaly and the vertical second derivative of gravity anomaly in the basin and the quantitative fitting sections, it is found that the Bouguer gravity anomaly contour lines are macroscopically in NNE, NE direction. There are four gravity steps in the basin from west to east, and they divide the basin into 2 high gravity zones and 3 low gravity zones which alternatively distribute. Therefore a tectonic pattern of two-uplifts and three sags is formed in the basin. The main tectonics in the basin is in NE direction. The bases of the uplifts in the west and the east of the basin are shallow,and therefore their overlying strata are thin. The bases of the sags in the west, the central and the east of the basin are deep, and their overlying strata are of great density and thickness. Cretaceous developed in the western sags and in the middle and the north of the central sags,and therefore these zones are the favorable areas for further exploration.

  9. Review of Electrical and Gravity Methods of Near-Surface Exploration for Groundwater

    Directory of Open Access Journals (Sweden)

    W. O. Raji

    2014-12-01

    Full Text Available The theory and practice of electrical and gravity methods of geophysics for groundwater exploration was reviewed with illustrations and data examples. With the goal of reducing cases of borehole/water-well failure attributed to the lack of the knowledge of the methods of geophysics for groundwater exploration and development, the paper reviews the basic concepts, field procedures for data acquisition, data processing, and interpretation as applied to the subject matter. Given a case study of groundwater exploration in University of Ilorin Campus, the three important techniques of electrical method of groundwater exploration are explained and illustrated using field data obtained in a previous study. Interpretation of resistivity data shows that an area measuring low resistivity (high conductivity, having thick pile of unconsolidated rock, and underlained by fracture crystalline is a ‘bright spot’ for citing borehole for groundwater abstraction in a basement complex area. Further to this, gravity method of groundwater exploration was discussed with field data from Wokbedilo community in Ethopia. Bouguer and reduced gravity anomaly results were presented as maps and contours to demonstrate how gravity data can be inverted to map groundwater aquifers and subsurface geological structures during groundwater exploration.

  10. Three-dimensional density structures of Taiwan and tectonic implications based on the analysis of gravity data

    Science.gov (United States)

    Hsieh, Hsien-Hsiang; Yen, Horng-Yuan

    2016-07-01

    Taiwan is located in a collision and subduction area and has a complex tectonic history. To better understand the complicated structure beneath Taiwan, gravity studies, in addition to seismic and geological studies, provide useful geophysical information for studying shallow depths. Previous gravity studies of Taiwan in the last 30 years focused on local regionalized explanations and 2-D profile modeling. This study is the first to complete a 3-D gravity inversion of Taiwan, and it provides a more comprehensive and large-scale tectonic analysis. Following 3-D gravity inversion using the least squares method, we sliced horizontal and vertical profiles from the 3-D density model to visualize tectonic changes. The low Bouguer anomaly was caused by thick sediment and crust layers. The high-density layers are located in special tectonic areas such as the Peikang and Kuanying basement highs. The deepest Moho depth beneath the middle of the Central Range is 45-50 km. The high gradient changes of the eastern section of the Moho relief are shown by the complex mechanism of plate collision. The geometry of plate subduction is apparent in northeastern Taiwan, and the oceanic crust is observable under eastern Taiwan, showing arc-collision boundaries. Our 3-D density model, when combined with updated gravity data and seismic tomography, offers better resolution for deep structures than the previous 2-D forward results and serves as a physical property reference to better understand the tectonic structure beneath Taiwan.

  11. Analysis of Marine Gravity Anomalies in the Ulleung Basin (East Sea/Sea of Japan) and Its Implications for the Architecture of Rift-Dominated Backarc Basin

    Science.gov (United States)

    Lee, Sang-Mook; Kim, Yoon-Mi

    2016-04-01

    Marginal basins locate between the continent and arc islands often exhibit diverse style of opening, from regions that appear to have formed by well-defined and localized spreading center (manifested by the presence of distinct seafloor magnetic anomaly patterns) to those with less obvious zones of extension and a broad magmatic emplacement most likely in the lower crust. Such difference in the style of back-arc basin formation may lead to marked difference in crustal structure in terms of its overall thickness and spatial variations. The Ulleung Basin, one of three major basins in the East Sea/Sea of Japan, is considered to represent a continental rifting end-member of back-arc opening. Although a great deal of work has been conducted on the sedimentary sections in the last several decades, the deep crustal sections have not been systematically investigated for long time, and thus the structure and characteristics of the crust remain poorly understood. This study examines the marine gravity anomalies of the Ulleung Basin in order to understand the crustal structure using crucial sediment-thickness information. Our analysis shows that the Moho depth in general varies from 16 km at the basin center to 22 km at the margins. However, within the basin center, the inferred thickness of the crust is more or less the same (10-12 km), thus by varying only about 10-20% of the total thickness, contrary to the previous impression. The almost-uniformly-thick crust that is thicker than a normal oceanic crust (~ 7 km) is consistent with previous observations using ocean bottom seismometers and recent deep seismic results from the nearby Yamato Basin. Another important finding is that small residual mantle gravity anomaly highs exist in the northern part of the basin. These highs are aligned in the NNE-SSW direction which correspond to the orientation of the major tectonic structures on the Korean Peninsula, raising the possibility that, though by a small degree, they are a

  12. Interpretation of free-air gravity anomaly data for determining the crustal structure across the continental margins and aseismic ridges: Some examples from Indian continental margins and deep-sea basins

    Digital Repository Service at National Institute of Oceanography (India)

    Ramana, M.V.

    of Alaska and Japan trench, east of the Japanese Islands. Gravity anomalies across continental margins Continental margins are at or near to the transition zone between continental and oceanic crusts. Passive margins are commonly in isostatic.... Generalized bathymetry map of the Indian continental margins After Mishra et al., (2004) The western and eastern margins of India are classified under passive/Atlantic type continental margins, and the structural architecture is similar to any...

  13. Gravity Data Analysis and Modelling for Basin Sedimen of Eastern Java Blocks

    Science.gov (United States)

    Khoirunnia, Luthfia

    2016-11-01

    The study of Eastern Java Basin was conducted by 3D modelling subsurface structure using gravity anomaly. The aims of this research are to describe and 3D modelling basin sedimentary system of Eastern Java Blocks based on gravity anomaly. The modelling construction was performed by inversion technique applying Singular Value Decomposition (SVD) method and Occam optimization. This projection method used equivalent central mass of Dampney with height 5.5 km and error data 1,84 × 10-17. Separation of residual anomaly from the complete Bouguer anomaly on a flat plane was done using the upward continuation. This process uses the principle of low pass filter which passes low frequency. Sedimentary basin appears at a depth of 0.2 km to 1.4 km, is shown by their low anomaly in the area, as well as the visible appearance of basin in 3D modeling shown in figure. The result of inversion with Occam h has an error of 1,2% and the SVD has an error of 11%. Sedimentary basin was dominant in Probolinggo, partially in Besuki and Lumajang. The formation occurs due to tectonic processes where the tectonic evolution of the material without significant lateral shift is called as the otokton models, and accompanied by the formation of the basin that follows the development of the subduction system, which is semi-concentric pattern. Sediments are dominated by volcanic sediment, the result of sedimentation because of volcanism events and types of volcanic sediments pyroclasts generally occur in a process or event explosive volcanic magma degassing

  14. Modelling airborne gravity data by means of adapted Space-Wise approach

    Science.gov (United States)

    Sampietro, Daniele; Capponi, Martina; Hamdi Mansi, Ahmed; Gatti, Andrea

    2017-04-01

    Regional gravity field modelling by means of remove - restore procedure is nowadays widely applied to predict grids of gravity anomalies (Bouguer, free-air, isostatic, etc.) in gravimetric geoid determination as well as in exploration geophysics. Considering this last application, due to the required accuracy and resolution, airborne gravity observations are generally adopted. However due to the relatively high acquisition velocity, presence of atmospheric turbulence, aircraft vibration, instrumental drift, etc. airborne data are contaminated by a very high observation error. For this reason, a proper procedure to filter the raw observations both in the low and high frequency should be applied to recover valuable information. In this work, a procedure to predict a grid or a set of filtered along track gravity anomalies, by merging GGM and airborne dataset, is presented. The proposed algorithm, like the Space-Wise approach developed by Politecnico di Milano in the framework of GOCE data analysis, is based on a combination of along track Wiener filter and Least Squares Collocation adjustment and properly considers the different altitudes of the gravity observations. Among the main differences with respect to the satellite application of the Space-Wise approach there is the fact that, while in processing GOCE data the stochastic characteristics of the observation error can be considered a-priori well known, in airborne gravimetry, due to the complex environment in which the observations are acquired, these characteristics are unknown and should be retrieved from the dataset itself. Some innovative theoretical aspects focusing in particular on the theoretical covariance modelling are presented too. In the end, the goodness of the procedure is evaluated by means of a test on real data recovering the gravitational signal with a predicted accuracy of about 0.25 mGal.

  15. Terrane Boundary Geophysical Signatures in Northwest Panay, Philippines: Results from Gravity, Seismic Refraction and Electrical Resistivity Investigations

    Directory of Open Access Journals (Sweden)

    Jillian Aira S. Gabo

    2015-01-01

    Full Text Available Northwest Panay consists of two terranes that form part of the Central Philippine collision zone: Buruanga Peninsula and Antique Range. The Buruanga Peninsula consists of a Jurassic chert-clastic-limestone sequence, typical of oceanic plate stratigraphy of the Palawan Micro-continental Block. The Antique Range is characterized by Antique Ophiolite Complex peridotites and Miocene volcanic and clastic rocks, representing obducted oceanic crust that serves as the oceanic leading edge of the collision with the Philippine Mobile Belt. The Nabas Fault is identified as the boundary between the two terranes. This study employed the gravity method to characterize the Northwest Panay subsurface structure. Results indicate higher Bouguer anomaly values for Buruanga Peninsula than those for Antique Range, separated by a sudden decrease in gravity values toward the east-southeast (ESE direction. Forward gravity data modeling indicates the presence of an underlying basaltic subducted slab in the Buruanga Peninsula. Furthermore, the Nabas Fault is characterized as an east-dipping thrust structure formed by Buruanga Peninsula basement leading edge subduction beneath Antique Range. Additional geophysical constraints were provided by shallow seismic refraction and electrical resistivity surveys. Results from both methods delineated the shallow subsurface signature of the Nabas Fault buried beneath alluvium deposits. The gravity, seismic refraction and electrical resistivity methods were consistent in identifying the Nabas Fault as the terrane boundary between the Buruanga Peninsula and the Antique Range. The three geophysical methods helped constrain the subsurface configuration in Northwest Panay.

  16. A gravity study along a profile across the Sichuan Basin, the Qinling Mountains and the Ordos Basin (central China): Density, isostasy and dynamics

    Science.gov (United States)

    Zhang, Yongqian; Teng, Jiwen; Wang, Qianshen; Lü, Qingtian; Si, Xiang; Xu, Tao; Badal, José; Yan, Jiayong; Hao, Zhaobing

    2017-10-01

    In order to investigate the structure of the crust beneath the Middle Qinling Mountains (MQL) and neighboring areas in the North China Block and South China Block, a north-south gravity profile from Yuquan in the Sichuan Basin to Yulin in the Ordos Basin was conducted in 2011. The Bouguer gravity anomaly is determined from a high-quality gravity dataset collected between 31°N and 36°N of latitude, and varies between -200 and -110 mGal in the study region. Using accredited velocity density relationships, an initial crust-mantle density model is constructed for MQL and adjacent areas, which is later refined interactively to simulate the observed gravity anomaly. The present study reveals the features of the density and Bouguer gravity with respect to the tectonic units sampled by the profile. The lithosphere density model shows typical density values that depict a layered structure and allow differentiate the blocks that extend along the reference profile. The gravity field calculated by forward modeling from the final density distribution model correlates well with the measured gravity field within a standard deviation of 1.26 mGal. The density in the crystalline crust increases with depth from 2.65 g/cm3 up to the highest value of 2.95 g/cm3 near the bottom of the crust. The Conrad interface is identified as a density jump of about 0.05 g/cm3. The average density of the crust in MQL is clearly lower than the density in the formations on both sides. Starting from a combined Airy-Pratt isostatic compensation model, a partly compensated crust is found below MQL, suggesting future growth of the crust, unlike the Ordos and Sichuan basins that will remain stable. On the basis of the density and isostatic state of the crust and additional seismological research, such as the P-wave velocity model and Poisson's ratio, it is concluded that the lower crust delamination is a reasonable interpretation for the geophysical characteristics below the Qinling Orogen.

  17. Gravity Station Data for Portugal

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data total 3064 records. This data base was received in April 1997. Principal gravity parameters include Free-air Anomalies which have been...

  18. Interior Alaska Gravity Station Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data total 9416 records. This data base was received in March 1997. Principal gravity parameters include Free-air Anomalies which have been...

  19. Gravity Station Data for Spain

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data total 28493 records. This data base was received in April 1997. Principal gravity parameters include Free-air Anomalies which have been...

  20. Vertical density contrast and mapping of basement, Conrad and Moho morphologies through 2D spectral analysis of gravity data in and around Odisha, India

    Science.gov (United States)

    Kumar, Arbind; S. Roy, P. N.; Das, L. K.

    2016-07-01

    Power spectrum analysis of Complete Bouguer Anomaly (CBA) map of Eastern Ghat Mobile Belt (EGMB) and its surroundings in India through Two Dimensional (2D) spectral analysis has provided estimates of the ensemble average depths for the density discontinuities which represent crustal inhomogeneities. The spectral analysis method has helped to estimate the depths of a perturbing body sources which are obtained from the negative slopes of the linear relationship between the logarithmic power spectrum and the wave-numbers of the gravity field. The detailed analysis reveals three horizontal discontinuities (i) Phanerozoic sediment thickness (ii) Basement depth and (iii) Conrad discontinuity. The average thickness of Phanerozoic sediments is estimated to be 3 km whereas depth of basement and Conrad discontinuity are at 7 km and 14.5 km respectively. Additionally Mohorovicic discontinuity also estimated at a depth of 32.8 km in the study region.

  1. A METHOD FOR ESTABLISHING MEAN FREE-AIR GRAVITY ANOMALY BASED ON ISOSTATIC THEORY%基于均衡理论构建区域平均空间重力异常方法研究

    Institute of Scientific and Technical Information of China (English)

    王伟; 李姗姗; 马彪; 高新兵

    2013-01-01

    The method of establishing the mean free-air gravity anomaly reference field with rare gravity data has been studied based on the Airy and Heiskanen isostatic theory.The numerical model of the mean free-air gravity anomalies has been established using the regional high-resolution topographic data; then for the problem that the systematic errors existed in the computational area,a few of gravimetric points have been chosen as constraint points in order to eliminate errors.Finally,the comparisons have been made among the gravity field model of EGM2008 and interpolation using separate points.As a result,the method could get better precision than two other methods as well as could reduce workloads in gravity measurement in the fields,the method is suitable for establishing the mean free-air gravity anomalies in difficult conditions.%研究基于Airy-Heiskanen均衡理论构建重力控制点稀少区域平均空间重力异常参考场的方法.利用区域高分辨率地形数据构建平均空间重力异常数值模型;针对均衡理论构建重力异常存在系统性误差的问题,研究了布设少量重力观测点作为约束,对所构建的平均空间重力异常数值模型的系统性误差进行修正,并与基于EGM2008重力场模型以及基于少量离散点直接内插推估构建区域平均空间重力异常的方法进行对比.结果表明,该方法得到的计算值精度明显优于后两者,同时能大大减少重力测量的工作量,且适宜于困难地区平均空间重力异常的填补.

  2. Investigation of the geologic and tectonic structures of Bafa Lake and Akbuk Gulf (terrestrial and marine areas) by means of gravity and magnetic methods

    Science.gov (United States)

    Edremit, Şüheda; Özel, Erdeniz

    2016-04-01

    Geologic units of Bafa Lake and Akbuk Gulf, which have very importance in point of geologic and tectonic structure, are generally are classified by high-grade metamorphic units of the Menderes Core Complex, Cycladic Complex (schist, marble, eclogite), Afyon zone meta sedimentary and Pan-African basement rocks, Neogene volcanic-sedimentary rocks and alluvium. As for tectonic structures of study areas are; Izmir-Balikesir Transfer Zone also affected the Buyuk Menderes Graben, Bornova Flysch Zone, Menderes Massif and Lycian Nappes. Regional researches were studied to reveal using Turkey Bouguer Anomaly and Turkey Aeromagnetic regional map with gravity method used for geologic structures analysis and magnetic method used to explain main structure, tectonic conditions of underground. General geologic structure and tectonic lineaments of region were examined and interpretated compatibility with gravity and magnetic values. When the geologic and tectonic structures on the terrestrial areas are generally investigated, graben systems and linearities are clearly seen on the Bouguer Anomaly map. Positive values are seen in the Bornova Flysch Zone and Menderes Massif areas at the north of study areas arising from high-density ophiolitic and metamorphic units. Graben areas in the Menderes Massif are observed negative gravity values on the low-density young alluviums. Positive gravity values are increased up to 50-60 mgal on the metamorphic rocks that are named Cycladic Complex located southwest of study areas. At the aeromagnetic regional magnetic map, gamma values about -100 observed on the Menderes Massif region are indicated metagranite rocks that are Paleozoic crystalline structure. Gamma values, which are changed between -100 and +100 at the transition areas granite with schists, are obviously revealed this transition region. Located northwest of study areas Upper Miocene-Pliocene aged from sedimentary rocks on the terrestrial carbonates and nonsegregated terrestrial

  3. Interpreting subsurface volcanic structures using geologically constrained 3-D gravity inversions: Examples of maar-diatremes, Newer Volcanics Province, southeastern Australia

    Science.gov (United States)

    Blaikie, T. N.; Ailleres, L.; Betts, P. G.; Cas, R. A. F.

    2014-04-01

    We present results and a method to geophysically image the subsurface structures of maar volcanoes to better understand eruption mechanisms and risks associated with maar-forming eruptions. High-resolution ground gravity and magnetic data were acquired across several maar volcanoes within the Newer Volcanics Province of southeastern Australia, including the Ecklin maar, Red Rock Volcanic Complex, and Mount Leura Volcanic Complex. The depth and geometry of subsurface volcanic structures were determined by interpretation of gridded geophysical data and constrained 2.5-D forward and 3-D inverse modeling techniques. Bouguer gravity lows identified across the volcanic craters reflect lower density lake sediments and pyroclastic debris infilling the underlying maar-diatremes. These anomalies were reproduced during modeling by shallow coalesced diatremes. Short-wavelength positive gravity and magnetic anomalies identified within the center of the craters suggest complex internal structures. Modeling identified feeder vents, consisting of higher proportions of volcanic debris, intrusive dikes, and ponded magma. Because potential field models are nonunique, sensitivity analyses were undertaken to understand where uncertainty lies in the interpretations, and how the models may vary between the bounds of the constraints. Rather than producing a single "ideal" model, multiple models consistent with available geologic information are created using different inversion techniques. The modeling technique we present focuses on maar volcanoes, but there are wider implications for imaging the subsurface of other volcanic systems such as kimberlite pipes, scoria cones, tuff rings, and calderas.

  4. Lunar Crustal Properties: Insights from the GRAIL Gravity Signatures of Lunar Impact Craters

    Science.gov (United States)

    Soderblom, J. M.; Andrews-Hanna, J. C.; Evans, A. J.; Johnson, B. C.; Melosh, J., IV; Milbury, C.; Miljkovic, K.; Nimmo, F.; Phillips, R. J.; Smith, D. E.; Solomon, S. C.; Wieczorek, M. A.; Zuber, M. T.

    2014-12-01

    Impact cratering is a violent process, shattering and melting rock and excavating deep-seated material. The resulting scars are apparent on every planetary surface across our Solar System. Subsurface density variations associated with the resulting impact structures contain clues to aid in unlocking the details of this process. High-resolution gravity fields, such as those derived from the Gravity Recovery and Interior Laboratory (GRAIL) mission, are ideal for investigating these density variations. With gravity measurements from GRAIL and topography from the Lunar Orbiter Laser Altimeter (LOLA), we derived high-resolution Bouguer gravity fields (i.e., the gravity field after the contribution from topography is removed) that we correlated with craters mapped from LOLA data. We found that the mass deficit beneath lunar impact craters relates directly to crater size, up to diameter ~130 km, whereas craters larger than this diameter display no further systematic change. This observation, coupled with the greater depth of impact damage expected beneath larger craters, indicates that some process is affecting the production and/or preservation of porosity at depth or otherwise altering the mean density beneath the larger craters (note, measurable mantle uplift is observed for craters larger than ~184-km diameter). The observed crater gravity anomalies, however, exhibit considerable variation about these mean trends, suggesting that other factors are also important in determining the bulk density of impact crater structures. Milbury et al. (this conference) have demonstrated that pre-impact crustal porosity strongly influences the resulting density contrast between the impact damage zone beneath a crater and its surroundings. Herein, we extend these studies using the same GRAIL- and LOLA-derived maps to further investigate the effects that crustal properties have on the bulk density of the rock beneath lunar impact features. We focus, in particular, on the processes that

  5. The Effect of Different Terrain Reductions On Gravity Interpolation and On Helmert Geoid Determination

    Science.gov (United States)

    Bajracharya, S.; Sideris, M. G.

    The use of (i) a proper gravimetric terrain reduction scheme for the interpolation of free-air (FA) gravity anomalies, (ii) actual Earth crust density information, and (iii) a high-resolution digital terrain model (DTM) for gravimetric terrain reduction are three important aspects in precise geoid computation using Helmert's second method of condensation, especially in areas of rugged topography. First, this paper illus- trates via a numerical test in the Canadian Rockies the effect different gravity reduc- tion schemes have on gravity interpolation and on Helmert geoid determination. The Bouguer and residual terrain modelling (RTM) topographic reductions, the Rudzki inversion scheme, and the topographic-isostatic reductions of Pratt-Hayford (PH) and Airy-Heiskanen (AH) are used to remove terrain effects before gridding FA anomalies, and then their corresponding topographic or topographic-isostatic effects are restored to produce FA anomalies. Our results show that the difference between FA anomalies interpolated directly and after applying topographic reductions can reach maximum values of 200 mGal, altering the geoid undulations by nearly 7 m maximum. The Helmert geoid undulations using Pratt-Hayford and RTM reductions in gravity inter- polation exhibit the best fit with GPS-levelling derived undulations in the test area, with the standard deviations of 28 cm for both of these techniques. Second, this paper shows the importance of using actual crust density information on Helmert geoid de- termination. This information, which is available as a two-dimensional digital density model (DDM) in the test area, is incorporated in all steps of the geoid computational process. The Faye anomalies, the absolute geoid undulation, and the indirect effect on geoid using constant crust density of 2.67 g/cm3 are compared with those using lateral density variation. Finally, the effect of using different DTM grid resolutions of 6", 15", 30", 45", 1' and 2' for Faye anomalies

  6. Effective photons in weakly absorptive dielectric media and the Beer-Lambert-Bouguer law

    CERN Document Server

    Judge, A C; Bhat, N A R; Sipe, J E; Steel, M J; de Sterke, C Martijn

    2013-01-01

    We derive effective photon modes that facilitate an intuitive and convenient picture of photon dynamics in a structured Kramers-Kronig dielectric in the limit of weak absorption. Each mode is associated with an effective line-width which determines the temporal decay rate of the photon. These results are then applied to obtain an expression for the Beer-Lambert-Bouguer law absorption coefficient for unidirectional propagation in structured media consisting of dispersive, weakly absorptive dielectric materials.

  7. Incipient mantle delamination, active tectonics and crustal thickening in Northern Morocco: Insights from gravity data and numerical modeling

    Science.gov (United States)

    Baratin, Laura-May; Mazzotti, Stéphane; Chéry, Jean; Vernant, Philippe; Tahayt, Abdelilah; Mourabit, Taoufik

    2016-11-01

    The Betic-Rif orocline surrounding the Alboran Sea, the westernmost tip of the Mediterranean Sea, accommodates the NW-SE convergence between the Nubia and Eurasia plates. Recent GPS observations indicate a ∼4 mm/yr SW motion of the Rif Mountains, relative to stable Nubia, incompatible with a simple two-plate model. New gravity data acquired in this study define a pronounced negative Bouguer anomaly south of the Rif, interpreted as a ∼40 km-thick crust in a state of non-isostatic equilibrium. We study the correlation between these present-day kinematic and geodynamic processes using a finite-element code to model in 2-D the first-order behavior of a lithosphere affected by a downward normal traction (representing the pull of a high-density body in the upper mantle). We show that intermediate viscosities for the lower crust and uppermost mantle (1021-1022Pas) allow an efficient coupling between the mantle and the base of the brittle crust, thus enabling (1) the conversion of vertical movement, resulting from the downward traction, to horizontal movement and (2) shortening in the brittle upper crust. Our results show that incipient delamination of the Nubian continental lithosphere, linked to slab pull, can explain the present-day abnormal tectonics, contribute to the gravity anomaly observed in northern Morocco, and give insight into recent tectonics in the Western Mediterranean region.

  8. Gravity constraints on the geometry of the Big Bend of the San Andreas Fault in the southern Carrizo Plains and Pine Mountain egion

    Science.gov (United States)

    Altintas, Ali Can

    The goal of this project is to combine gravity measurements with geologic observations to better understand the "Big Bend" of the San Andreas Fault (SAF) and its role in producing hydrocarbon-bearing structures in the southern Central Valley of California. The SAF is the main plate boundary structure between the Pacific and North American plates and accommodates ?35 mm/yr of dextral motion. The SAF can be divided into three main parts: the northern, central and southern segments. The boundary between the central and southern segments is the "Big Bend", which is characterized by an ≈30°, eastward bend. This fault curvature led to the creation of a series of roughly east-west thrust faults and the transverse mountain ranges. Four high-resolution gravity transects were conducted across locations on either side of the bend. A total of 166 new gravity measurements were collected. Previous studies suggest significantly inclined dip angle for the San Andreas Fault in the Big Bend area. Yet, our models indicate that the San Andreas Fault is near vertical in the Big Bend area. Also gravity cross-section models suggest that flower structures occur on either side of the bend. These structures are dominated by sedimentary rocks in the north and igneous rocks in the south. The two northern transects in the Carrizo plains have an ≈-70 mgal Bouguer anomaly. The SAF has a strike of ≈315° near these transects. The northern transects are characterized by multiple fault strands which cut marine and terrestrial Miocene sedimentary rocks as well as Quaternary alluvial valley deposits. These fault strands are characterized by ?6 mgal short wavelength variations in the Bouguer gravity anomaly, which correspond to low density fault gouge and fault splays that juxtapose rocks of varying densities. The southern transects cross part of the SAF with a strike of 285°, have a Bouguer anomaly of ≈-50 mgal and are characterized by a broad 15 mgal high. At this location the rocks on

  9. Gravity and Magnetic Survey of the Oaxaca-Juarez Terrane Boundary (Oaxaca Fault), Southern Mexico: Evidence for three Half Grabens

    Science.gov (United States)

    Campos-Enriquez, J. O.; Belmonte-Jimenez, S. I.; Ortega-Gutierrez, F.; Keppie-Moorhouse, J. D.; Martinez-Silva, J.; Martinez-Serrano, R.

    2007-05-01

    A geophysical survey of the Oaxaca Fault boundary between the Oaxaca (Oaxaquia) (Zapoteco) and Juarez (Cuicateco) terranes along the Etla and Zaachila valleys area, southern Mexico shows a series of NW-SE Bouguer and magnetic anomalies with stronger gradients towards the east. The basement from the Oaxaca terrane has a high density (2.8 gr/cm3 ) and magnetic susceptibility of up to 0.0051 cgs units, which contrast with the Juarez basement that has a lower density (2.67 gr/cm3) and a higher magnetic susceptibility (values ranging between 0.0025 to 0.0045 cgs units). The magnetic susceptibility is similar south of the Donaji fault. Interpretation of six combined gravity and magnetic NE-SW profiles perpendicular to the valleys indicates the presence of a composite depression comprising three N-S sub-basins with the Etla and Zachila sub-basins located at the northern and southern portions, respectively, separated by a third sub-basin relatively displaced westwards. They are bounded on the east by the steeply W-dipping Oaxaca master fault, and on the west by the gently E-dipping Huitzo-Zimatlan fault. Two interpretations are suggested for the southward continuation of the Oaxaca Fault: 1) it continues southwards at depth with the same strike. Together the Bouguer and total field magnetic anomalies suggest that the Oaxaca fault is continuous from Etla via Oaxaca City and Ocotlán de Morelos probably to Miahuatlán de Porfirio Díaz, and 2) it continues with the same strike but is displaced eastwards ~20 km along a sinistral transfer fault, which forms the northern boundary of the Zaachila sub-basin.

  10. Gravity Survey of the Rye Patch KGRA, Rye Patch, Nevada

    Science.gov (United States)

    Mcdonald, M. R.; Gosnold, W. D.

    2011-12-01

    The Rye Patch Known Geothermal Resource Area (KGRA) is located in Pershing County Nevada on the west side of the Humboldt Range and east of the Rye Patch Reservoir approximately 200 km northeast of Reno, Nevada. Previous studies include an earlier gravity survey, 3-D seismic reflection, vertical seismic profiling (VSP) on a single well, 3-D seismic imaging, and a report of the integrated seismic studies. Recently, Presco Energy conducted an aeromagnetic survey and is currently in the process of applying 2-D VSP methods to target exploration and production wells at the site. These studies have indicated that geothermal fluid flow primarily occurs along faults and fractures and that two potential aquifers include a sandstone/siltstone member of the Triassic Natchez Pass Formation and a karst zone that occurs at the interface between Mesozoic limestone and Tertiary volcanics. We hypothesized that addition of a high-resolution gravity survey would better define the locations, trends, lengths, and dip angles of faults and possible solution cavity features. The gravity survey encompassed an area of approximately 78 km2 (30 mi2) within the boundary of the KGRA along with portions of 8 sections directly to the west and 8 sections directly to the east. The survey included 203 stations that were spaced at 400 m intervals. The simple Bouguer anomaly patterns were coincident with elevation, and those patterns remained after terrain corrections were performed. To remove this signal, the data were further processed using wave-length (bandpass) filtering techniques. The results of the filtering and comparison with the recent aeromagnetic survey indicate that the location and trend of major fault systems can be identified using this technique. Dip angles can be inferred by the anomaly contour gradients. By further reductions in the bandpass window, other features such as possible karst solution channels may also be recognizable. Drilling or other geophysical methods such as a

  11. Haxby Worldwide Gravity Grid

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In 1985, Dr. William F. Haxby of the Lamont-Doherty Geological Observatory of Columbia University prepared this data base of free-air gravity anomalies, based on the...

  12. Gravity anomalies over the central Indian ridge between 3 degree S and 11 degree S, Indian Ocean: Segmentation and crustal structure

    Digital Repository Service at National Institute of Oceanography (India)

    Samudrala, K.; KameshRaju, K.A; RamaRao, P.

    High-resolution shipboard geophysical investigations along the Indian Ocean ridge system are sparse especially over the Carlsberg and Central Indian ridges. In the present study, the shipboard gravity and multibeam bathymetry data acquired over a...

  13. Structure of the Hat Creek graben region: Implications for the structure of the Hat Creek graben and transfer of right-lateral shear from the Walker Lane north of Lassen Peak, northern California, from gravity and magnetic anomalies

    Science.gov (United States)

    Langenheim, Victoria; Jachens, Robert C.; Clynne, Michael A.; Muffler, L. J. Patrick

    2016-01-01

    Interpretation of magnetic and new gravity data provides constraints on the geometry of the Hat Creek Fault, the amount of right-lateral offset in the area between Mt. Shasta and Lassen Peak, and confirmation of the influence of pre-existing structure on Quaternary faulting. Neogene volcanic rocks coincide with short-wavelength magnetic anomalies of both normal and reversed polarity, whereas a markedly smoother magnetic field occurs over the Klamath Mountains and its Paleogene cover. Although the magnetic field over the Neogene volcanic rocks is complex, the Hat Creek Fault, which is one of the most prominent normal faults in the region and forms the eastern margin of the Hat Creek Valley, is marked by the eastern edge of a north-trending magnetic and gravity high 20-30 km long. Modeling of these anomalies indicates that the fault is a steeply dipping (~75-85°) structure. The spatial relationship of the fault as modeled by the potential-field data, the youngest strand of the fault, and relocated seismicity suggests that deformation continues to step westward across the valley, consistent with a component of right-lateral slip in an extensional environment. Filtered aeromagnetic data highlight a concealed magnetic body of Mesozoic or older age north of Hat Creek Valley. The body’s northwest margin strikes northeast and is linear over a distance of ~40 km. Within the resolution of the aeromagnetic data (1-2 km), we discern no right-lateral offset of this body. Furthermore, Quaternary faults change strike or appear to end, as if to avoid this concealed magnetic body and to pass along its southeast edge, suggesting that pre-existing crustal structure influenced younger faulting, as previously proposed based on gravity data.

  14. High-Precise Gravity Observations at Archaeological Sites: How We Can Improve the Interpretation Effectiveness and Reliability?

    Science.gov (United States)

    Eppelbaum, Lev

    2015-04-01

    the Lesser Caucasus (western Azerbaijan) under conditions of rugged relief and complex geology. This deposit is well investigated by mining and drilling operations and therefore was used as a reference field polygon for testing this approach. A special scheme for obtaining the Bouguer anomalies has been employed to suppress the terrain relief effects dampening the anomaly effects from the objects of prospecting. The scheme is based on calculating the difference between the free-air anomaly and the gravity field determined from a 3D model of a uniform medium with a real topography. 3-D terrain relief model with an interval of its description of 80 km (the investigated 6 profiles of 800 m length are in the center of this interval) was employed to compute (by the use of GSFC software (Khesin et al., 1996)) the gravitational effect of the medium (σ = 2670 kg/m3). With applying such a scheme the Bouguer anomalies were obtained with accuracy in two times higher than that of TC received by the conventional methods. As a result, on the basis of the improved Bouguer gravity with the precise TC data, the geological structure of the deposit was defined (Khesin et al., 1996). Second approach Second approach was employed at the complex Katekh pyrite-polymetallic deposit, which is located at the southern slope of the Greater Caucasus (northern Azerbaijan). The main peculiarities of this area are very rugged topography of SW-NE trend, complex geology and severe tectonics. Despite the availability of conventional ΔgB (TC far zones were computed up to 200 km), for the enhanced calculation of surrounding terrain topography a digital terrain relief model was created (Eppelbaum and Khesin, 2004). The SW-NE regional topography trend in the area of the Katekh deposit occurrence was computed as a rectangular digital terrain relief model (DTRM) of 20 km long and 600 m wide (our interpretation profile with a length of 800 m was located in the geometrical center of the DTRM). As a whole

  15. Strength anisotropy in Southern Africa from gravity-topography coherence studies: Implications for continental deformation

    Science.gov (United States)

    Watson, J.; Simons, F. J.

    2006-12-01

    The relationship between gravity anomalies and topography, diagnostic of the elastic strength of the lithosphere and expressed in the wavelength domain by means of the coherence function, has been found to be directionally dependent in various portions of the North American, Australian, and Indian (sub)continents. While various mechanisms have been proposed as to the origin of azimuthal variations in the degree and mechanism of isostatic compensation per se, a fruitful way of interpreting this information has been to construe the orientations of mechanical weakness as indicators of fossil strain and compare them to the fast axes of seismic anisotropy, which are themselves an independent measure of strain, and to which they should be orthogonal under certain simplifying assumptions. Seen in this light, the study of mechanical anisotropy via gravity-topography coherence functions is a useful way to define the very essence of the mechanical lithosphere, as that portion which relates consistently to its seismic anisotropy, delineating a stable regime that has been coherently deformed by the action of orogenic processes over time (in the sense of Silver) and separating it from the actively deforming asthenosphere (in the sense of Vinnik) below it. In this study we present evidence for the mechanically anisotropic nature of the Southern African continent from a multitaper spectral analysis of two-dimensional coherence functions relating high-resolution Bouguer gravity anomalies and topography. Of the thirteen 750×750 km2 areas surveyed within the continental confines, five fall within an area for which seismic anisotropy has been measured by means of shear-wave splitting analysis, and 80%, or four of those, corroborate Silver's hypothesis of vertically coherent deformation in that the directions of mechanical weakness are perpendicular to the fast axis of seismic wave propagation. We discuss the limitations of our evidence and present it with a view to further work.

  16. Basin-fill Aquifer Modeling with Terrestrial Gravity: Assessing Static Offsets in Bulk Datasets using MATLAB; Case Study of Bridgeport, CA

    Science.gov (United States)

    Mlawsky, E. T.; Louie, J. N.; Pohll, G.; Carlson, C. W.; Blakely, R. J.

    2015-12-01

    Understanding the potential availability of water resources in Eastern California aquifers is of critical importance to making water management policy decisions and determining best-use practices for California, as well as for downstream use in Nevada. Hydrologic well log data can provide valuable information on aquifer capacity, but is often proprietarily inaccessible or economically unfeasible to obtain in sufficient quantity. In the case of basin-fill aquifers, it is possible to make estimates of aquifer geometry and volume using geophysical surveys of gravity, constrained by additional geophysical and geological observations. We use terrestrial gravity data to model depth-to-basement about the Bridgeport, CA basin for application in preserving the Walker Lake biome. In constructing the model, we assess several hundred gravity observations, existing and newly collected. We regard these datasets as "bulk," as the data are compiled from multiple sources. Inconsistencies among datasets can result in "static offsets," or artificial bull's-eye contours, within the gradient. Amending suspect offsets requires the attention of the modeler; picking these offsets by hand can be a time-consuming process when modeling large-scale basin features. We develop a MATLAB script for interpolating the residual Bouguer anomaly about the basin using sparse observation points, and leveling offset points with a user-defined sensitivity. The script is also capable of plotting gravity profiles between any two endpoints within the map extent. The resulting anomaly map provides an efficient means of locating and removing static offsets in the data, while also providing a fast visual representation of a bulk dataset. Additionally, we obtain gridded basin gravity models with an open-source alternative to proprietary modeling tools.

  17. World gravity standards

    Science.gov (United States)

    Uotila, U. A.

    1978-01-01

    In order to use gravity anomalies in geodetic computations and geophysical interpretations, the observed gravity values from which anomalies are derived should be referred to one consistent world wide system. The International Gravity Standardization Net 1971 was adapted by the International Union of Geodesy and Geophysics at Moscow in 1971, the network was result of extensive cooperation by many organizations and individuals around the world. The network contains more than 1800 stations around the world. The data used in the adjustment included more than 25,000 gravimetry, pendulum and absolute measurements.

  18. The earth's shape and gravity

    CERN Document Server

    Garland, G D; Wilson, J T

    2013-01-01

    The Earth's Shape and Gravity focuses on the progress of the use of geophysical methods in investigating the interior of the earth and its shape. The publication first offers information on gravity, geophysics, geodesy, and geology and gravity measurements. Discussions focus on gravity measurements and reductions, potential and equipotential surfaces, absolute and relative measurements, and gravity networks. The text then elaborates on the shape of the sea-level surface and reduction of gravity observations. The text takes a look at gravity anomalies and structures in the earth's crust; interp

  19. Lithospheric stretching and the long wavelength free-air gravity anomaly of the Eastern Continental margin of India and the 85 degree E Ridge, Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Rajesh, S.; Majumdar, T.J.; Krishna, K.S.

    Among the submarine ridge systems in the northern Indian Ocean, the 85 degree E Ridge in the Bay of Bengal is more enigmatic owing to its peculiar anomalous negative free-air gravity. In general, this has been attributed to the isostatic...

  20. Thermo Hot Springs: MT and Gravity observations of a producing geothermal field in Utah, USA

    Science.gov (United States)

    Hardwick, C.; Chapman, D. S.; Gettings, P.

    2012-12-01

    Thermo Hot Springs, an existing 10 MW geothermal resource in southern Utah, is poorly understood with little constraint on subsurface extent and capacity. In an effort to expand geothermal production, the subsurface extent of the system is being explored by gravity and magnetotelluric (MT) surveys. Since summer of 2010 we have added 108 gravity stations and 90 MT stations in the study area. Complete Bouguer anomaly shows a prominent north-south regional trend of 10 to 15 mGal amplitude which is interpreted as a large Basin-and-Range normal fault. Northeast of the hot springs there is an east-west trending gravity low of 4 mGal amplitude which is interpreted as a fault with down throw to the north. These two trends intersect adjacent to the hot spring, and are interpreted to be the structural control of the fluid flow. Preliminary results from 2-dimensional inversion models of gravity and MT profiles provide depth-to-basement values as shallow as 200 m near the hot spring and as deep as 2 km in the southwest of the study area. We believe that the low resistivities observed in the southwest indicate the existence of hot fluids and/or clay rich sediments at a thickness of more than 1.5 km overlying hot, saturated basement rock. A deep, stratigraphically hosted geothermal system could be present in the southwest and may be connected to the hot springs through a north trending, deeply penetrating fracture zone. With the addition of regional borehole data, thermal gradient wells and water chemistry we aim to constrain the extent of the geothermal system, identify its source and quantify its total production potential.

  1. Prediction of Gravity Anomalies Over the South China and Philippine Seas from Multi-satellite Altimeter Sea Surface Heights%根据多卫星高度计海面高数据推算南中国海及菲律宾海域重力异常

    Institute of Scientific and Technical Information of China (English)

    Isaac Dadzie; 李建成; 褚永海

    2008-01-01

    Gravity anomalies on a 2.5×2.5 arc-minute grid in a non-tidal system were derived over the South China and Philippine Seas from multi-satellite altimetry data. North and east components of deflections of the vertical were computed from altimeter-derived sea surface heights at crossover locations, and gridded onto a 2.5×2.5 arc-minute resolution grid. EGM96-derived components of deflections of the vertical and gravity anomalies gridded into 2.5×2.5 arc-minute resolutions were then used as reference global geopotential model quantities in a remove-restore procedure to implement the Inverse Vening Meinesz formula via the 1D-FFT technique to predict the gravity anomalies over the South China and Philippine Seas from the gridded altimeter-derived Components of deflections of the vertical. Statistical comparisons between the altime-ter-derived and the shipboard gravity anomalies showed that there is a root-mean-square agreement of 5.7 mgals between them.

  2. Hawaiian Islands Terrain Corrected Free Air Anomalies (96)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' gravity anomaly grid for the Principal Hawaiian Islands is NOT the input data set used in development of the GEOID96 model. This gravity grid models the...

  3. PR/VI Terrain Corrected Free Air Anomalies (96)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' gravity anomaly grid for the Puerto Rico and the Virgin Islands is NOT the input data set used in development of the GEOID96 model. This gravity grid models...

  4. To discriminate the gravity anomaly by the subtle gravity observation of the total solar eclipse in 2009%利用2009年日全食的精细重力观测探寻“引力异常”

    Institute of Scientific and Technical Information of China (English)

    文武; 汤克云; 王谦身; 高玉文; 华昌才

    2013-01-01

    It is a vital problem about the nature of gravity and also a realistic scientific issue whether a gravity anomaly exists during the total solar eclipse. For a century, predecessors did a lot of observations and experiments to research gravity anomalies during the solar eclipses. Nonetheless, a clear result has not been found due to the limitation of the condition and the instruments. On the basis of previous work, this paper studies the gravity data of seven LaCoste-Romberg gravimeters and one SG-053 superconducting gravimeter during the total solar eclipse on July 22, 2009. The study utilized the perfect environment and the delicate instrument. It could to be the best research activity both in the experiment scale and in the observation quality in the past century. Based on the research in this paper, we hold the opinion that the supposed gravity anomaly during the total solar eclipse cannot be detected at present with actual observation conditions and instrument performance. And the previous anomaly was very likely created by the drastic changes in the weather. Moreover, the least square cubic-polynomial fitting method which is used to remove the theoretical earthtide from the observed gravity data makes a more simple calculation and a more reliable conclusion.%日全食期间在是否存在“引力异常”现象是一个关系到引力本质的重大问题,也是一个十分具有现实意义的科学问题.近一个世纪来,许多科学工作者作了大量的观测和实验,研究日全食期间的“引力异常”现象.肯定的、否定的结果并存,更多的是难以确定的结果.在学习、总结和发展了前人工作的基础之上,本文利用7台LaCoste-Romberg重力仪和1台SG-053超导重力仪,对2009年7月22日日全食期间的重力变化进行了精细的观测.研究利用了目前最好的观测环境和观测仪器,无论观测规模还是观测质量在近百年来日全食的重力观测研究中都是首屈一指的.在经过

  5. The "Parity" Anomaly On An Unorientable Manifold

    CERN Document Server

    Witten, Edward

    2016-01-01

    The "parity" anomaly -- more accurately described as an anomaly in time-reversal or reflection symmetry -- arises in certain theories of fermions coupled to gauge fields and/or gravity in a spacetime of odd dimension. The "parity" anomaly has traditionally been studied on orientable manifolds only, but recent developments involving topological superconductors have made it clear that one can get more information by asking what happens on an unorientable manifold. In this paper, we analyze the "parity" anomaly for fermions coupled to gauge fields and gravity in $2+1$ dimensions. We consider applications to gapped boundary states of a topological superconductor and to M2-branes in string/M-theory.

  6. The subsurface three-dimensional modeling of volcano arc of Flores island based on gravity data analysis

    Science.gov (United States)

    Titi, Yopiter Lukas Alexander; Minarto, Eko

    2017-01-01

    The interpretation and three-dimensional modeling of the subsurface structure of the volcano arc of the Flores island based on the gravity data analysis have been done. This research is aimed for modeling subsurface structure utilized a secondary data of complete Bouguer anomaly gravity data obtained from Bureau Gravimetric International (BGI) using Grablox and Bloxer software. The modeling construction was performed by inversion technique applying the method of Singular Value Decomposition (SVD) and Occam inversion. The result indicates that Subsurface structure of the volcano area of the Flores island consists of sandstone, breccia and andesite have density value ranging from 2,42 g/cm3 to 2,62 g/cm3 and basaltic and lava have density values ranging from 2,65 g/cm3 to 3,24 g/cm3. The most dominating rocks in the study area are basaltic rocks have 2.73 g/cm3 point of average density. The existence of magma chamber in the volcanic arc of Flores island was estimated at a depth of 6 km.

  7. Mexico Terrain Corrected Free Air Anomalies (97)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' gravity anomaly grid for Mexico, North-Central America and the Western Caribbean Sea is NOT the input data set used in the development of the MEXICO97 model....

  8. Gravity Terrain Effect of the Seafloor Topography in Taiwan

    Directory of Open Access Journals (Sweden)

    Lun-Tao Tong Tai-Rong Guo

    2007-01-01

    Full Text Available Gravity terrain correction is used to compensate for the gravitational effects of the topography residual to the Bouguer plate. The seafloor topography off the eastern offshore of Taiwan is extremely rugged, and the depth of the sea bottom could be greater than 5000 m. In order to evaluate the terrain effect caused by the seafloor topography, a modern computer algorithm is used to calculate the terrain correction based on the digital elevation model (DEM.

  9. Space-Wise approach for airborne gravity data modelling

    Science.gov (United States)

    Sampietro, D.; Capponi, M.; Mansi, A. H.; Gatti, A.; Marchetti, P.; Sansò, F.

    2017-05-01

    Regional gravity field modelling by means of remove-compute-restore procedure is nowadays widely applied in different contexts: it is the most used technique for regional gravimetric geoid determination, and it is also used in exploration geophysics to predict grids of gravity anomalies (Bouguer, free-air, isostatic, etc.), which are useful to understand and map geological structures in a specific region. Considering this last application, due to the required accuracy and resolution, airborne gravity observations are usually adopted. However, due to the relatively high acquisition velocity, presence of atmospheric turbulence, aircraft vibration, instrumental drift, etc., airborne data are usually contaminated by a very high observation error. For this reason, a proper procedure to filter the raw observations in both the low and high frequencies should be applied to recover valuable information. In this work, a software to filter and grid raw airborne observations is presented: the proposed solution consists in a combination of an along-track Wiener filter and a classical Least Squares Collocation technique. Basically, the proposed procedure is an adaptation to airborne gravimetry of the Space-Wise approach, developed by Politecnico di Milano to process data coming from the ESA satellite mission GOCE. Among the main differences with respect to the satellite application of this approach, there is the fact that, while in processing GOCE data the stochastic characteristics of the observation error can be considered a-priori well known, in airborne gravimetry, due to the complex environment in which the observations are acquired, these characteristics are unknown and should be retrieved from the dataset itself. The presented solution is suited for airborne data analysis in order to be able to quickly filter and grid gravity observations in an easy way. Some innovative theoretical aspects focusing in particular on the theoretical covariance modelling are presented too

  10. Space-Wise approach for airborne gravity data modelling

    Science.gov (United States)

    Sampietro, D.; Capponi, M.; Mansi, A. H.; Gatti, A.; Marchetti, P.; Sansò, F.

    2016-12-01

    Regional gravity field modelling by means of remove-compute-restore procedure is nowadays widely applied in different contexts: it is the most used technique for regional gravimetric geoid determination, and it is also used in exploration geophysics to predict grids of gravity anomalies (Bouguer, free-air, isostatic, etc.), which are useful to understand and map geological structures in a specific region. Considering this last application, due to the required accuracy and resolution, airborne gravity observations are usually adopted. However, due to the relatively high acquisition velocity, presence of atmospheric turbulence, aircraft vibration, instrumental drift, etc., airborne data are usually contaminated by a very high observation error. For this reason, a proper procedure to filter the raw observations in both the low and high frequencies should be applied to recover valuable information. In this work, a software to filter and grid raw airborne observations is presented: the proposed solution consists in a combination of an along-track Wiener filter and a classical Least Squares Collocation technique. Basically, the proposed procedure is an adaptation to airborne gravimetry of the Space-Wise approach, developed by Politecnico di Milano to process data coming from the ESA satellite mission GOCE. Among the main differences with respect to the satellite application of this approach, there is the fact that, while in processing GOCE data the stochastic characteristics of the observation error can be considered a-priori well known, in airborne gravimetry, due to the complex environment in which the observations are acquired, these characteristics are unknown and should be retrieved from the dataset itself. The presented solution is suited for airborne data analysis in order to be able to quickly filter and grid gravity observations in an easy way. Some innovative theoretical aspects focusing in particular on the theoretical covariance modelling are presented too

  11. Comparison and Analysis of Air Gravity Anomaly's Representative Error in Space and Spectral Domain%空中重力异常代表误差在空域和频域的比较分析

    Institute of Scientific and Technical Information of China (English)

    翟振和; 孙中苗; 任红飞; 杨坤

    2012-01-01

    在空域,利用严密的向上延拓公式将地面重力数据上延至空中不同高度,而后与相应的地面重力数据比较从而得到不同高度的代表误差.在频域,构建了新的代表误差模型,计算了不同高度、不同分辨率下的代表误差.实际算例表明,在空域,对于地形平坦区域,在1 km高度以下,5'空中重力数据直接代表地面重力数据的误差小于1×10-5 m/s2.对于地形复杂区域;当空中测量高度大于1 km时,空中重力数据的代表误差大于3.3×10-5 m/s2,因此必须考虑向下延拓的问题.在频域,当高度小于7 km时,代表误差与高度及分辨率之间不再是简单的线性关系;当高度大于7 km时,代表误差随着分辨率的减小而减小,随着高度的增加而增加.%In space domain, air gravity data can be acquired by upward continuation of land gravity data based on the rigorous integral formula. Then the representative error can be obtained through the comparison between the air gravity data and corresponding land gravity data. The actual computation results show that the representative error of 5' air gravity data is about 1 × 10-5 m/s2 m flat area under the 1 km height. For the area yf complex terrain, the representative error is about 3. 3× 10-5 m/V when the surveying height is more than 1 km, so the downward continuation must be considered in the use of airborne gravimetry data. In frequency domain, the new gravity anomaly degree variance model is constructed based on EGM2008 model. Then the representative error of different height and different resolution are computed in frequency domain. The results show that the relationship between representative error and height is not simply the linear relation when the height is smaller than 7 km, and the representative error is becoming smaller with the resolution reducing.

  12. Relationship between surface and subsurface structures of the northern Atlas foreland of Tunisia deduced from regional gravity analysis

    Science.gov (United States)

    Frifita, N.; Arfaoui, M. S.; Zargouni, F.

    2016-08-01

    Gravity data were analyzed in the northern Atlas of Tunisia in order to identify the deep structures of the region and their relationship to the geological outcrop. The analysis based on the Bouguer gravity maps related to upward continuation at 1, 2, 4, 6, 10 and 12 km. The lineaments obtained by the horizontal gradient method were interpreted as deep faults with two global directions NE-SW and NW-SE related to major tectonic corridors. These lineaments were confirmed by the automatic estimation of depth solutions using the Euler deconvolution technique. By separation between the gravity anomaly bodies in different levels, it shows that almost all of the lineaments are oriented in NE-SW and NW-SE directions. The NW-SE-trending lineaments are related to deep faults and the NE-SW-oriented lineaments define the global direction of the surface, and they are related to shallow structures. 2.5D gravity modeling was used to improve the results obtained by the Maxima and the Euler deconvolution techniques. The 2.5D model points out the variation of depths of the NE-SW-trending major faults. In this study, we demonstrate the relationship between the NE-SW and the NW-SE directions. These two major sets of faults have been determined by the statistical study of the lineaments. This study confirms some faults already recognized or supposed by the classical geological studies, and it also detects a new deep fault masked in the surface, and gives information about major fault depths and the relation between different structures.

  13. Alaska Terrain Corrected Free Air Anomalies (96)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' x 4' gravity anomaly grid for Alaska is NOT the input data set used in development of the GEOID96 model. This gravity grid models the 1.1 million terrestrial...

  14. Curie Point Depth, Geothermal Gradient and Heat-Flow Estimation and Geothermal Anomaly Exploration from Integrated Analysis of Aeromagnetic and Gravity Data on the Sabalan Area, NW Iran

    Science.gov (United States)

    Afshar, A.; Norouzi, G. H.; Moradzadeh, A.; Riahi, M. A.; Porkhial, S.

    2017-03-01

    Prospecting the geothermal resources in northwest of Iran, conducted in 1975, revealed several promising areas and introduced the Sabalan geothermal field as a priority for further studies. The Sabalan Mt., representing the Sabalan geothermal field, is a large stratovolcano which consists of an extensive central edifice built on a probable tectonic horst of underlying intrusive and effusive volcanic rocks. In this study, Curie point depth (CPD), geothermal gradient and heat-flow map were constituted from spectral analysis of the aeromagnetic data for the NW of Iran. The top of the geothermal resource (i.e., the thickness of the overburden) was evaluated by applying the Euler deconvolution method on the residual gravity data. The thickness of the geothermal resource was calculated by subtracting the Euler depths obtained from the CPDs in the geothermal anomalous region. The geothermal anomalous region was defined by the heat-flow value greater than 150 mW/m2. CPDs in the investigated area are found between 8.8 km in the Sabalan geothermal field and 14.1 in the northeast. The results showed that the geothermal gradient is higher than 62 °C/km and the heat-flow is higher than 152 mW/m2 for the geothermal manifestation region; the thickness of the geothermal resource was also estimated to vary between 5.4 and 9.1 km. These results are consistent with the drilling and other geological information. Findings indicate that the CDPs agree with earthquake distribution and the type of thermal spring is related to the depth of the top of the geothermal resource.

  15. Curie Point Depth, Geothermal Gradient and Heat-Flow Estimation and Geothermal Anomaly Exploration from Integrated Analysis of Aeromagnetic and Gravity Data on the Sabalan Area, NW Iran

    Science.gov (United States)

    Afshar, A.; Norouzi, G. H.; Moradzadeh, A.; Riahi, M. A.; Porkhial, S.

    2016-12-01

    Prospecting the geothermal resources in northwest of Iran, conducted in 1975, revealed several promising areas and introduced the Sabalan geothermal field as a priority for further studies. The Sabalan Mt., representing the Sabalan geothermal field, is a large stratovolcano which consists of an extensive central edifice built on a probable tectonic horst of underlying intrusive and effusive volcanic rocks. In this study, Curie point depth (CPD), geothermal gradient and heat-flow map were constituted from spectral analysis of the aeromagnetic data for the NW of Iran. The top of the geothermal resource (i.e., the thickness of the overburden) was evaluated by applying the Euler deconvolution method on the residual gravity data. The thickness of the geothermal resource was calculated by subtracting the Euler depths obtained from the CPDs in the geothermal anomalous region. The geothermal anomalous region was defined by the heat-flow value greater than 150 mW/m2. CPDs in the investigated area are found between 8.8 km in the Sabalan geothermal field and 14.1 in the northeast. The results showed that the geothermal gradient is higher than 62 °C/km and the heat-flow is higher than 152 mW/m2 for the geothermal manifestation region; the thickness of the geothermal resource was also estimated to vary between 5.4 and 9.1 km. These results are consistent with the drilling and other geological information. Findings indicate that the CDPs agree with earthquake distribution and the type of thermal spring is related to the depth of the top of the geothermal resource.

  16. Gradients from GOCE reveal gravity changes before Pisagua Mw = 8.2 and Iquique Mw = 7.7 large megathrust earthquakes

    Science.gov (United States)

    Álvarez, Orlando; Nacif, Silvina; Spagnotto, Silvana; Folguera, Andres; Gimenez, Mario; Chlieh, Mohamed; Braitenberg, Carla

    2015-12-01

    Considerable improvements in the measurement of the Earth gravity field from GOCE satellite mission have provided global gravity field models with homogeneous coverage, high precision and good spatial resolution. In particular, the vertical gravity gradient (Tzz), in comparison to the classic Bouguer anomaly, defines more accurately superficial mass heterogeneities. Moreover, the correction of these satellite-derived data from the effect of Earth topographic masses by means of new techniques taking into account the Earth curvature, improves results in regional analyses. In a recent work we found a correlation between Tzz and slip distribution for the 2010 Maule Mw = 8.8 earthquake. In the present work, we derive the vertical gravity gradient from the last GOCE only model, corrected by the topographic effect and also by the sediments on depocenters of the offshore region at the Peru-Chile margin, in order to study a spatial relationship between different lobes of the gravity derived signal and the seismic sources of large megathrust earthquakes. In particular, we analyze this relation for the slip models of the 1996 Mw = 7.7 Nazca, 2001 Mw = 8.4 Arequipa, 2007 Mw = 8.0 Pisco events and for the slip models of the 2014 Mw = 8.2 Pisagua and Mw = 7.7 Iquique earthquakes from Schurr et al. (2014), including the previously analyzed 2010 Mw = 8.8 Maule event. Then we find a good correlation between vertical gravity gradients and main rupture zones, correlation that becomes even stronger as the event magnitude increases. Besides this, a gravity fall in the gravity gradient was noticed over the area of the main slip patches at least for the two years before 2014 Mw = 8.2 Pisagua and Mw = 7.7 Iquique earthquakes. Additionally, we found temporal variations of the gravity field after 2010 Mw = 8.8 Maule event, related to the main patches of the slip distribution, and coseismic deformation. Therefore, we analyzed vertical gravity gradient field variations as an indirect measure

  17. Convergence of the Bouguer-Beer law for radiation extinction in particulate media

    Science.gov (United States)

    Frankel, A.; Iaccarino, G.; Mani, A.

    2016-10-01

    Radiation transport in particulate media is a common physical phenomenon in natural and industrial processes. Developing predictive models of these processes requires a detailed model of the interaction between the radiation and the particles. Resolving the interaction between the radiation and the individual particles in a very large system is impractical, whereas continuum-based representations of the particle field lend themselves to efficient numerical techniques based on the solution of the radiative transfer equation. We investigate radiation transport through discrete and continuum-based representations of a particle field. Exact solutions for radiation extinction are developed using a Monte Carlo model in different particle distributions. The particle distributions are then projected onto a concentration field with varying grid sizes, and the Bouguer-Beer law is applied by marching across the grid. We show that the continuum-based solution approaches the Monte Carlo solution under grid refinement, but quickly diverges as the grid size approaches the particle diameter. This divergence is attributed to the homogenization error of an individual particle across a whole grid cell. We remark that the concentration energy spectrum of a point-particle field does not approach zero, and thus the concentration variance must also diverge under infinite grid refinement, meaning that no grid-converged solution of the radiation transport is possible.

  18. Principal facts for about 16,000 gravity stations in the Nevada test site and vicinity

    Science.gov (United States)

    Harris, R. N.; Ponce, D. A.; Oliver, H. W.; Healey, D. L.

    The Nevada Test Site (NTS) and vicinity includes portions of the Goldfield, Caliente, Death Valley, and Las Vegas. This report documents and consolidates previously published and recently compiled gravity data to establish a gravity data base of about 16,000 stations for the NTS and vicinity. While compiling data sets, redundant stations and stations having doubtful locations or gravity values were excluded. Details of compiling the gravity data sets are discussed in later sections. Where feasible, an accuracy code has been assigned to each station so that the accuracy or reliability of each station can be evaluated. This data base was used in preparing complete Bouguer and isostatic gravity maps of the NTS and vicinity. Since publication of the complete Bouguer gravity map, additional data were incorporated into the isostatic gravity map. Gravity data were compiled from five sources: 14,183 stations from the U.S. Geological Survey (USGS), 326 stations from Exploration Data Consultants (EDCON) of Denver, Colorado, 906 stations from the Los Alamos National Laboratory (LANL), 212 stations from the University of Texas at Dallas (UTD), and 48 stations from the Defense Mapping Agency (DMA). This investigation is an effort to study several areas for potential storage of high-level radioactive waste. Gravity stations established under YMP are shown. The objective of this gravity survey was to explore for the presence of plutons.

  19. Anomaly holography

    Energy Technology Data Exchange (ETDEWEB)

    Gripaios, Ben [Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Rd., Oxford OX1 3NP (United Kingdom); Merton College, Oxford OX1 4JD (United Kingdom)], E-mail: b.gripaios1@physics.ox.ac.uk; West, Stephen M. [Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Rd., Oxford OX1 3NP (United Kingdom)], E-mail: s.west1@physics.ox.ac.uk

    2008-01-21

    We consider, in the effective field theory context, anomalies of gauge field theories on a slice of a five-dimensional, anti-de Sitter geometry and their four-dimensional, holographic duals. A consistent effective field theory description can always be found, notwithstanding the presence of the anomalies and without modifying the degrees of freedom of the theory. If anomalies do not vanish, the d=4 theory contains additional pseudoscalar states, which are either present in the low-energy theory as physical, light states, or are eaten by (would-be massless) gauge bosons. We show that the pseudoscalars ensure that global anomalies of the four-dimensional dual satisfy the 't Hooft matching condition and comment on the relevance for warped models of electroweak symmetry breaking.

  20. Dating of the 85 degrees E Ridge (northeastern Indian Ocean) using marine magnetic anomalies

    Digital Repository Service at National Institute of Oceanography (India)

    Michael, L.; Krishna, K.S.

    anomalies: the north part (up to 5°N latitude) is associated with negative gravity anomaly, whereas the south part coin- cides with positive gravity anomaly. In contrast to this, the ridge consists of alternate streaks of positive and negative magnetic...

  1. Structure of the lithosphere below the southern margin of the East European Craton (Ukraine and Russia) from gravity and seismic data

    Science.gov (United States)

    Yegorova, T. P.; Stephenson, R. A.; Kostyuchenko, S. L.; Baranova, E. P.; Starostenko, V. I.; Popolitov, K. E.

    2004-03-01

    The present study was undertaken with the objective of deriving constraints from available geological and geophysical data for understanding the tectonic setting and processes controlling the evolution of the southern margin of the East European Craton (EEC). The study area includes the inverted southernmost part of the intracratonic Dnieper-Donets Basin (DDB)-Donbas Foldbelt (DF), its southeastern prolongation along the margin of the EEC-the sedimentary succession of the Karpinsky Swell (KS), the southwestern part of the Peri-Caspian Basin (PCB), and the Scythian Plate (SP). These structures are adjacent to a zone, along which the crust was reworked and/or accreted to the EEC since the late Palaeozoic. In the Bouguer gravity field, the southern margin of the EEC is marked by an arc of gravity highs, correlating with uplifted Palaeozoic rocks covered by thin Mesozoic and younger sediments. A three-dimensional (3D) gravity analysis has been carried out to investigate further the crustal structure of this area. The sedimentary succession has been modelled as two heterogeneous layers—Mesozoic-Cenozoic and Palaeozoic—in the analysis. The base of the sedimentary succession (top of the crystalline Precambrian basement) lies at a depth up to 22 km in the PCB and DF-KS areas. The residual gravity field, obtained by subtracting the gravitational effect of the sedimentary succession from the observed gravity field, reveals a distinct elongate zone of positive anomalies along the axis of the DF-KS with amplitudes of 100-140 mGal and an anomaly of 180 mGal in the PCB. These anomalies are interpreted to reflect a heterogeneous lithosphere structure below the supracrustal, sedimentary layers: i.e., Moho topography and/or the existence of high-density material in the crystalline crust and uppermost mantle. Previously published data support the existence of a high-density body in the crystalline crust along the DDB axis, including the DF, caused by an intrusion of mafic and

  2. Mapping of Basement Faults with Gravity and Magnetic Data at NE Mexico

    Science.gov (United States)

    Yutsis, V.; Krivosheya, K.; Tamez Ponce, A.

    2012-04-01

    Northeast Mexico is essentially the juncture of two distinctly different tectono-stratigraphic provinces, the eastern Gulf of Mexico (Coastal Plane, Sierra Madre Oriental) province and the western Pacific Mexico (Rivera plate, Meso-American trench, Sierra Madre Occidental) province (Goldhammer & Johnson, 2001). Tectonic evolution in northeast Mexico is dominated by divergent-margin development associated with the opening of the Gulf of Mexico and overprinted by non-igneous Laramide orogenic effects (Pindell et al., 1988). The structural grain of northeast Mexico consists of Triassic to Liassic fault-controlled basement blocks, the development of which reflects in part late Paleozoic orogenic patterns of metamorphism and igneous intrusion (Wilson, 1990). There are different tectonic provinces which are recognized interpreting the basement and sediment cover of this area: Coahuila block, La Popa sub-basin, Sabinas basin, Burgos basin, Sierra Madre Oriental (Monterrey trough), and Parras basin. Mojave-Sonora megashear and San Marcos fault (Chavez-Cabello et al., 2007) are two principal fault zones crossing the northeast Mexico in NW-SE direction. This paper is presented the integral analysis of the gravity and magnetic data in the northeast Mexico. Complementing with a Digital Model of Elevations (DME) that combined with the review of previous geological studies it serves to compare the surface structures and blocks of basement in this area. Also the separation of the most important tectonic blocks was done, and 2.5D geological-geophysical model was finally developed. This model represents in a general way the principal structural characteristics of northeast Mexico. Gravity and magnetic data analysis was used with purpose to study the structure of the substrata in order to allow modeling of the basement structure and its relation with the sedimentary cover features. The Bouguer gravity and the total field aeromagnetic data were supplied by Geological Survey of Mexico

  3. Regional Geothermal Characterisation of East Anatolia from Aeromagnetic, Heat Flow and Gravity Data

    Science.gov (United States)

    Bektaş, Özcan; Ravat, Dhananjay; Büyüksaraç, Aydin; Bilim, Funda; Ateş, Abdullah

    2007-05-01

    East Anatolia is a region of high topography made up of a 2-km high plateau and Neogene and Quaternary volcanics overlying the subduction-accretion complex formed by the process of collision. The aeromagnetic and gravity data surveyed by the Mineral Research and Exploration (MTA) of Turkey have been used to interpret qualitatively the characteristics of the near-surface geology of the region. The residual aeromagnetic data were low-pass filtered and analyzed to produce the estimates of magnetic bottom using the centroid method and by forward modelling of spectra to evaluate the uncertainties in such estimates. The magnetic bottom estimates can be indicative of temperatures in the crust because magnetic minerals lose their spontaneous magnetization at the Curie temperature of the dominant magnetic minerals in the rocks and, thus, also are called Curie point depths (CPDs). The Curie point depths over the region of Eastern Anatolia vary from 12.9 to 22.6 km. Depths computed from forward modelling of spectra with 200 600 km window sizes suggest that the bottom depths from East Anatolia from the magnetic data may have errors exceeding 5 km; however, most of the obtained depths appear to lie in the above range and indicate that the lower crust is either demagnetized or non-magnetic. In the interpretation of the magnetic map, we also used reduction-to-pole (RTP) and amplitude of total gradient of high-pass filtered anomalies, which reduced dipolar orientation effects of induced aeromagnetic anomalies. However, the features of the RTP and the total gradient of the high-pass filtered aeromagnetic anomalies are not highly correlated to the hot spring water locations. On the other hand, many high-amplitude features seen on the total gradient map can be correlated with the ophiolitic rocks observed on the surface. This interpretation is supported by Bouguer gravity data. In this paper, we recommend that the sources of the widespread thermal activity seen in East Anatolia must

  4. Observational constraints on the identification of shallow lunar magmatism: Insights from floor-fractured craters

    Science.gov (United States)

    Jozwiak, L. M.; Head, J. W., III; Neumann, G. A.; Wilson, L.

    2017-02-01

    Floor-fractured craters are a class of lunar crater hypothesized to form in response to the emplacement of a shallow magmatic intrusion beneath the crater floor. The emplacement of a shallow magmatic body should result in a positive Bouguer anomaly relative to unaltered complex craters, a signal which is observed for the average Bouguer anomaly interior to the crater walls. We observe the Bouguer anomaly of floor-fractured craters on an individual basis using the unfiltered Bouguer gravity solution from GRAIL and also a degree 100-600 band-filtered Bouguer gravity solution. The low-magnitude of anomalies arising from shallow magmatic intrusions makes identification using unfiltered Bouguer gravity solutions inconclusive. The observed anomalies in the degree 100-600 Bouguer gravity solution are spatially heterogeneous, although there is spatial correlation between volcanic surface morphologies and positive Bouguer anomalies. We interpret these observations to mean that the spatial heterogeneity observed in the Bouguer signal is the result of variable degrees of magmatic degassing within the intrusions.

  5. Phenomenological Quantum Gravity

    CERN Document Server

    Kimberly, D; Kimberly, Dagny; Magueijo, Joao

    2005-01-01

    These notes summarize a set of lectures on phenomenological quantum gravity which one of us delivered and the other attended with great diligence. They cover an assortment of topics on the border between theoretical quantum gravity and observational anomalies. Specifically, we review non-linear relativity in its relation to loop quantum gravity and high energy cosmic rays. Although we follow a pedagogic approach we include an open section on unsolved problems, presented as exercises for the student. We also review varying constant models: the Brans-Dicke theory, the Bekenstein varying $\\alpha$ model, and several more radical ideas. We show how they make contact with strange high-redshift data, and perhaps other cosmological puzzles. We conclude with a few remaining observational puzzles which have failed to make contact with quantum gravity, but who knows... We would like to thank Mario Novello for organizing an excellent school in Mangaratiba, in direct competition with a very fine beach indeed.

  6. Global Gravity Grids, Geoid Height and Gravity Anomaly Profiles

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The entire collection of GEOSAT ERM (Nov.'86 - Dec. '89) data over land and ice regions is held at the National Geophysical Data Center (NGDC). These data will yield...

  7. Titan's gravity: An update

    Science.gov (United States)

    Durante, D.; Iess, L.; Racioppa, P.; Armstrong, J. W.; Lunine, J. I.; Stevenson, D. J.; Tortora, P.

    2016-12-01

    Since its arrival at Saturn in 2004, Cassini performed nine flybys devoted to the determination of Titan's gravity field and its tidal variations. The last gravity flyby of the mission (T122) took place on Aug. 10, 2016. We will present an updated gravity solution, based on all available data. These include also an additional flyby (T110, March 2015, primarily devoted to the imaging Titan's north polar lakes) carried out with the low gain antenna. This flyby was particularly valuable because closest approach occurred at high latitude (75°N), over an area not previously sampled. Published gravity results (Iess et al., 2012) indicated that Titan is subject to large eccentricity tides in response to Saturn's time varying forcing field. The magnitude of the response quadrupole field, controlled by the Love number k2, was used to infer the existence of an internal ocean. The new gravity field determination provides a better estimate of k2, to a level of a few percent. In addition to a full 3x3 field, the new solution includes also higher degree and order harmonic coefficients (such as J4) and offers an improved map of gravity anomalies. The updated geoid and its associated uncertainty could be used to refine the gravity-altimetry correlative analysis and for improved interpretation of radar altimetric data.

  8. Modeling of Earth's Gravity Fields Visualization Based on Quad Tree

    Institute of Scientific and Technical Information of China (English)

    LUO Zhicai; LI Zhenhai; ZHONG Bo

    2010-01-01

    The problems of the earth's gravity fields' visualization are both focus and puzzle currently. Aiming at multiresolution rendering, modeling of the Earth's gravity fields' data is discussed in the paper by using LOD algorithm based on Quad Tree. First,this paper employed the method of LOD based on Quad Tree to divide up the regional gravity anomaly data, introduced the combined node evaluation system that was composed of viewpoint related and roughness related systems, and then eliminated the T-cracks that appeared among the gravity anomaly data grids with different resolutions. The test results demonstrated that the gravity anomaly data grids' rendering effects were living, and the computational power was low. Therefore, the proposed algorithm was a suitable method for modeling the gravity anomaly data and has potential applications in visualization of the earth's gravity fields.

  9. Position from gravity

    Science.gov (United States)

    Mather, R. S.

    1973-01-01

    Procedures for obtaining position from surface gravity observations are reviewed and their relevance assessed in the context of the application of modern geodetic techniques to programs of Earth and ocean physics. Solutions based on the use of surface layer techniques, the discrete value approach, and the development from Green's theorem are stated in summary, the latter being extended to order e cubed in the height anomaly. The representation of the surface gravity field which is required in order that this accuracy may be achieved is discussed. Interim techniques which could be used in the absence of such a representation are also outlined.

  10. The deep crustal structure of the mafic-ultramafic Seiland Igneous Province of Norway from 3-D gravity modelling and geological implications

    Science.gov (United States)

    Pastore, Zeudia; Fichler, Christine; McEnroe, Suzanne A.

    2016-12-01

    The Seiland Igneous Province (SIP) is the largest complex of mafic and ultramafic intrusions in northern Fennoscandia intruded at ca. 580-560 Ma. The depth extent and the deep structure of the SIP are mainly unknown apart from three profiles modelled by gravity and refraction seismic data. Utilizing 3-D gravity modelling, a complex model of the deep subsurface structure of the SIP has been developed. The structure is presented in a multiprofile model ranging from the surface to the Moho. The mafic/ultramafic rocks of the SIP are modelled with densities of 3100 and 3300 kg m-3, the surrounding rocks by densities of 2700 and 2900 kg m-3 for upper and lower crust, respectively. This density model explains the pronounced positive Bouguer gravity anomaly of up to 100 mGal above background. Its minimum volume is estimated from the subsurface model to 17 000 km3 and as such we revise downwards the earlier estimations of 25 000 km3. The new subsurface model suggests that most of the SIP has a thickness between 2 and 4 km. An area with roots in an annular pattern is found and two deep-reaching roots have been identified located below the islands of Seiland and Sørøy. The depth of these roots is estimated to approximatively 9 km. The SIP is presently interpreted to be in the Caledonian Kalak Nappe Complex and the roots depth constrains its minimum thickness which is larger than earlier estimated. Furthermore, the rather undisturbed shape of the annular root pattern indicates that the SIP has not been subjected to strong tectonic reworking during the Caledonian orogeny.

  11. New insight on the recent tectonic evolution and uplift of the southern Ecuadorian Andes from gravity and structural analysis of the Neogene-Quaternary intramontane basins

    Science.gov (United States)

    Tamay, J.; Galindo-Zaldívar, J.; Ruano, P.; Soto, J.; Lamas, F.; Azañón, J. M.

    2016-10-01

    The sedimentary basins of Loja, Malacatos-Vilcabamba and Catamayo belong to the Neogene-Quaternary synorogenic intramontane basins of South Ecuador. They were formed during uplift of the Andes since Middle-Late Miocene as a result of the Nazca plate subduction beneath the South American continental margin. This E-W compressional tectonic event allowed for the development of NNE-SSW oriented folds and faults, determining the pattern and thickness of sedimentary infill. New gravity measurements in the sedimentary basins indicate negative Bouguer anomalies reaching up to -292 mGal related to thick continental crust and sedimentary infill. 2D gravity models along profiles orthogonal to N-S elongated basins determine their deep structure. Loja Basin is asymmetrical, with a thickness of sedimentary infill reaching more than 1200 m in the eastern part, which coincides with a zone of most intense compressive deformation. The tectonic structures include N-S, NW-SE and NE-SW oriented folds and associated east-facing reverse faults. The presence of liquefaction structures strongly suggests the occurrence of large earthquakes just after the sedimentation. The basin of Malacatos-Vilcabamba has some folds with N-S orientation. However, both Catamayo and Malacatos-Vilcabamba basins are essentially dominated by N-S to NW-SE normal faults, producing a strong asymmetry in the Catamayo Basin area. The initial stages of compression developed folds, reverse faults and the relief uplift determining the high altitude of the Loja Basin. As a consequence of the crustal thickening and in association with the dismantling of the top of the Andes Cordillera, extensional events favored the development of normal faults that mainly affect the basins of Catamayo and Malacatos-Vilcabamba. Gravity research helps to constrain the geometry of the Neogene-Quaternary sedimentary infill, shedding some light on its relationship with tectonic events and geodynamic processes during intramontane basin

  12. First Gravity Traverse on the Martian Surface from the Curiosity Rover

    Science.gov (United States)

    Lewis, K. W.; Peters, S. F.; Gonter, K. A.; Vasavada, A. R.

    2016-12-01

    Orbital gravity surveys have been a key tool in understanding planetary interiors and shallow crustal structure, exemplified by recent missions such as GRAIL and Juno. However, due to the loss of spatial resolution with altitude, airborne and ground-based survey methods are typically employed on the Earth. Previously, the Lunar Traverse Gravimeter experiment on the Apollo 17 mission has been the only attempt to collect surface gravity measurements on another planetary body. We will describe the results of the first gravity survey on the Martian surface, using data from the Curiosity rover over its >10 km traverse across the floor of Gale crater and lower slopes of Mount Sharp. These results enable us to estimate bulk rock density, and to search for potential subsurface density anomalies. To measure local gravitational acceleration, we use one of the two onboard Rover Inertial Measurement Units (RIMU-A), designed for rover position and fine attitude determination. The IMU contains three-axis micro-electromechanical (MEMS) accelerometers and fiber-optic gyros, and is used for gyrocompassing by integrating data for several minutes on sols with no drive or arm motions (roughly 50% of sols to date). Raw acceleration data are calibrated for biases induced by temperature effects and rover orientation, along with rover elevation over the course of the mission using multiple regression. We use the best fit linear relationship between topographic height and gravitational acceleration to estimate a Bouguer correction for the observed change in magnitude over the mission as the rover has ascended over 100 meters up the lower slopes of Mount Sharp. We find a relatively low best-fit density of 1600 +/- 500 kg/m^3 for the rocks of Mount Sharp, consistent with rover-based measurements of thermal inertial, and potentially indicating pervasive fracturing, high porosity and/or low compaction within the original sediments at least to depths of order 100 meters. Future measurements

  13. Former Soviet Union (FSU) Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded gravity anomaly data for the Former Soviet Union (FSU) and Eastern Europe has been received by the National Geophysical Data Center(NGDC). The data file...

  14. Environmental applications of gravity surveying

    Energy Technology Data Exchange (ETDEWEB)

    Barrows, L.J. (Illinois State Univ., Normal, IL (United States)); Nesbit, L.C. (KEMRON Environmental Services, Novi, MI (United States)); Khan, W.A. (Environmental Science Engineering, Phoenix, AZ (United States))

    1994-04-01

    The Allis Park Sanitary Landfill Company developed a new landfill near Onway, Michigan in an area which has glacial alluvium and glacial till overlying limestone. There are several solution karst features in the region and some critics had maintained that a new karst collapse could rupture the liner system and allow escape of leachate into the groundwater. The gravity survey was conducted to determine the extent of any karst development at the site. The first portion of the survey was two profiles over some karst features located about five miles southeast of the proposed landfill. These showed negative gravity anomalies. The survey of the proposed landfill site resulted in a 50 microGal contour map of the area and also showed a negative anomaly. This could be due to either elevation variations on the till to limestone bedrock surface or to karst development within the limestone. Because there was no evidence of historic development of new karst features in the region, the gravity anomaly was not further investigated. In another gravity survey, a large retail department store had been remodeled and extended over an area previously occupied by an auto service center. The removal of a waste oil storage tank (UST) had not been documented and the environmental consultant (KEMRON, Inc.) proposed that a gravity survey be used to find the tank location. This proposal was based on calculations of the gravity effects of a UST. The survey resulted in a four-microGal contour map which showed a couple of anomalies which could be due to a tank or a backfilled tank excavation. During the survey, a store employee identified the previous location of the tank and explained that she had personally witnessed its removal. Based on the employee's eye-witness account of the tank removal and the coincidence of her indicated tank location with one of the gravity anomalies the authors recommended the site be granted clean closure.

  15. A data-driven approach to local gravity field modelling using spherical radial basis functions

    NARCIS (Netherlands)

    Klees, R.; Tenzer, R.; Prutkin, I.; Wittwer, T.

    2008-01-01

    We propose a methodology for local gravity field modelling from gravity data using spherical radial basis functions. The methodology comprises two steps: in step 1, gravity data (gravity anomalies and/or gravity disturbances) are used to estimate the disturbing potential using least-squares techniqu

  16. It's All Gravity

    Science.gov (United States)

    Murad, P. A.

    2003-01-01

    Newtonian gravitation adequately predicts planet and satellite motion. Gravitational anomalies and the wish to travel at relativistic speeds, however, imply that gravity should be integrated within a unification framework that may include electricity and magnetism. Thus, new theories are needed that predict currently accepted phenomenon as well as anomalies to prepare the necessary groundwork for experimental validation needed for advanced technology propulsion schemes and far-term missions. A primary deficiency is that we are obviously limited within the confines of our own solar system and a different gravity model may be applicable elsewhere in the cosmos. The model proposed here follows previous ideas proposed by Murad, Dyatlov, and Jefimenko for a universal gravitation model with an intrinsic radial force term coupled with angular momentum. Including angular momentum may explain several spin symmetries seen in some anomalous gyroscopic experiments and throughout the universe regarding planets that orbit around the sun: moons that orbit larger planetary bodies: and the rotation about each planetary axis.

  17. Noncommutative Topological Theories of Gravity

    CERN Document Server

    García-Compéan, H; Ramírez, C; Sabido, M

    2003-01-01

    The possibility of noncommutative gravity arising in the same manner as Yang-Mills theory is explored. Using the Seiberg-Witten map we give a noncommutative version of topological gravity, from which the Euler characteristic and the signature are obtained, in both cases up to third order in the noncommutativity parameter. Finally, we discuss possible ways towards obtaining noncommutative gravitational instantons and to detect local and global gravitational anomalies within this context.

  18. Simple recipe for holographic Weyl anomaly

    CERN Document Server

    Bugini, F

    2016-01-01

    We propose a recipe - arguably the simplest - to compute the holographic type-B Weyl anomaly for general higher-derivative gravity in asymptotically AdS spacetimes. In 5 and 7 dimensions we identify a suitable basis of curvature invariants that allows to read off easily, without any further computation, the Weyl anomaly coefficients of the dual CFT. We tabulate the contributions from quadratic, cubic and quartic purely algebraic curvature invariants and also from terms involving derivatives of the curvature. We provide few examples, where the anomaly coefficients have been obtained by other means, to illustrate the effectiveness of our prescription.

  19. The combination of satellite and topographic/isostatic potential models for mean anomaly determinations

    Science.gov (United States)

    Rapp, Richard H.; Pavlis, Nikolaos

    A method is presented for the estimation of a global gravity anomaly field using the combination of satellite-derived potential coefficient models and the coefficients implied by the Airy-Heiskanen topographic/isostatic potential (Rummel et al., 1988) from topographic models with a 30-km depth of compensation. Gravity anomalies calculated with this method are compared with a terrestrial 1 x 1 degree anomaly file where the anomaly standard deviations were less than 10 mgals. Using the GEM T1 model (Marsh et al., 1988) to degree 36, the rms anomaly discrepency was + or - 19 mgals, while the rms values for the terrestrial anomalies was + or - 28 mgals.

  20. Regional magnetic anomaly constraints on continental rifting

    Science.gov (United States)

    Vonfrese, R. R. B.; Hinze, W. J.; Olivier, R.; Bentley, C. R.

    1985-01-01

    Radially polarized MAGSAT anomalies of North and South America, Europe, Africa, India, Australia and Antarctica demonstrate remarkably detailed correlation of regional magnetic lithospheric sources across rifted margins when plotted on a reconstruction of Pangea. These major magnetic features apparently preserve their integrity until a superimposed metamorphoric event alters the magnitude and pattern of the anomalies. The longevity of continental scale magnetic anomalies contrasts markedly with that of regional gravity anomalies which tend to reflect predominantly isostatic adjustments associated with neo-tectonism. First observed as a result of NASA's magnetic satellite programs, these anomalies provide new and fundamental constraints on the geologic evolution and dynamics of the continents and oceans. Accordingly, satellite magnetic observations provide a further tool for investigating continental drift to compliment other lines of evidence in paleoclimatology, paleontology, paleomagnetism, and studies of the radiometric ages and geometric fit of the continents.

  1. Unveiling subglacial geology and crustal architecture in the Recovery frontier of East Antarctica with recent aeromagnetic and airborne gravity imaging

    Science.gov (United States)

    Ferraccioli, F.; Forsberg, R.; Jordan, T. A.; Matsuoka, K.; Olsen, A.; King, O.; Ghidella, M.

    2014-12-01

    East Antarctica is the least known continent, despite being a keystone in the Gondwana, Rodinia and Columbia supercontinents. Significant progress has been made in recent years in exploring East Antarctica using aeromagnetic and airborne gravity together with radar. Major aerogeophysical campaigns over the Wilkes Subglacial Basin (Ferraccioli et al., 2009 Tectonophysics), the Aurora Subglacial Basin (Aitken et al., 2014 GRL) and the Gamburtsev Subglacial Mountains (Ferraccioli et al., 2011, Nature) provide new glimpses into the crustal architecture of East Antarctica. However, a major sector of the continent that includes key piercing points for reconstructing linkages between East Antarctica and Laurentia within Rodinia, and also the inferred remnants of a major suture zone active during Gondwana amalgamation in Pan-African times (ca 500 Ma), has remained largely terra incognita. Here we present the results of a major aerogeophysical survey flown over this sector of East Antarctica, named the Recovery Frontier, from the major ice stream flowing in the region. The survey was flown during the IceGRAV 2012-13 field season, as part of a Danish-Norwegian-UK and Argentine collaboration and led to the collection of 29,000 line km of radar, laser altimetry, gravity and magnetic data. We present the new aeromagnetic anomaly, Bouguer and residual and enhanced anomaly maps for the region. Using these images we trace the extent of major subglacial faults and interpret these to delineate the tectonic boundaries separating the Coast block, the Shackleton Range and the Dronning Maud Land crustal provinces. Forward magnetic and gravity modelling enables us to examine the inferred Pan-African age suture zone in the Shackleton Range and address its tectonic relationships with older terranes of the Mawson Craton and Grenvillian-age terranes of Dronning Maud Land and interior East Antarctica. Finally, we present new models to test our hypothesis that Paleozoic to Mesozoic rift basins

  2. Holographic entanglement entropy in Lovelock gravities

    NARCIS (Netherlands)

    de Boer, J.; Kulaxizi, M.; Parnachev, A.

    2011-01-01

    We study entanglement entropies of simply connected surfaces in field theories dual to Lovelock gravities. We consider Gauss-Bonnet and cubic Lovelock gravities in detail. In the conformal case the logarithmic terms in the entanglement entropy are governed by the conformal anomalies of the CFT; we v

  3. Geoid anomalies over Gorringe Ridge, North Atlantic Ocean

    Science.gov (United States)

    Souriau, A.

    1984-04-01

    The geoid anomalies over Gorringe Ridge, a very prominent high in the topography north of the Azores-Gibraltar plate boundary, have been deduced from Seasat alimetric data, and an interpretation of these anomalies together with the gravity anomalies is attempted. The geoid anomalies generated by the topographic high alone with the serpentinite density nearly fit the observed geoid anomalies, so that the structure must be either out of isostatic equilibrium or compensated at great depth. It is shown that a model in isostatic equilibrium with a small negative density contrast extending to 60 km depth or more explains both the gravity and geoid anomalies and is compatible with the deep seismicity north of Gorringe Ridge. Previous nonisostatic models, one involving an uplift of the upper mantle beneath the ridge, one describing a nascent subduction zone, and another involving flexure of the elastic part of the lithosphere due to the ridge loading, are discussed.

  4. Geopotential field anomalies and regional tectonic features

    Science.gov (United States)

    Mandea, Mioara; Korte, Monika

    2016-07-01

    Maps of both gravity and magnetic field anomalies offer crucial information about physical properties of the Earth's crust and upper mantle, required in understanding geological settings and tectonic structures. Density and magnetization represent independent rock properties and thus provide complementary information on compositional and structural changes. Two regions are considered: southern Africa (encompassing South Africa, Namibia and Botswana) and Germany. This twofold choice is motivated firstly by the fact that these regions represent rather diverse geological and geophysical conditions (old Archean crust with strong magnetic anomalies in southern Africa, and much younger, weakly magnetized crust in central Europe) and secondly by our intimate knowledge of the magnetic vector ground data from these two regions. We take also advantage of the recently developed satellite potential field models and compare magnetic and gravity gradient anomalies of some 200 km resolution. Comparing short and long wavelength anomalies and the correlation of rather large scale magnetic and gravity anomalies, and relating them to known lithospheric structures, we generally find a better agreement over the southern African region than the German territory. This probably indicates a stronger concordance between near-surface and deeper structures in the former area, which can be perceived to agree with a thicker lithosphere.

  5. Initial stages of oceanic spreading in the Bransfield Rift from magnetic and gravity data analysis

    Science.gov (United States)

    Catalán, Manuel; Galindo-Zaldivar, Jesús; Davila, José Martín; Martos, Yasmina M.; Maldonado, Andrés; Gambôa, Luiz; Schreider, Anatoly A.

    2013-02-01

    Bransfield Basin, a 500-km-long and 100-km-wide extensional structure with a well-marked NE-SW orientation, is considered a back-arc basin developed since the Pliocene and associated with subduction of the former Phoenix Plate below the South Shetland Islands Block. Extension also occurs in this area as a consequence of the end of the sinistral fault zone that deforms the South Scotia Ridge. On the basis of potential field data from marine cruises, we provide new magnetic and Bouguer gravity maps of the area at sea level. We have characterized the central magnetic anomaly by using Euler deconvolution method, spectral analysis and forward modeling obtaining a thin (1.5 km) and shallow (4 km b.s.l.) layer, and a low total magnetization (2.6 A/m). The forward modeling was constrained on basis of previous seismic refraction studies. Our models show two situations. The first presents a uniform density values along the entire crust in the basin. This would be compatible with rifting in a more advanced stage, or even an oceanic crust in its earliest stages, while the second would support the existence of a stretched, thinned and altered crust through the injection of volcanic material. In the light of these models, analysis of the new potential field maps presented in this work and information from previous studies we consider that the Central Bransfield Basin is in a rifting in its latest stages or presents an incipient oceanic crust formed by recent oceanic spreading.

  6. U.S. Terrain Corrected Free Air Anomalies (96)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' gravity anomaly grid for the conterminous United States is NOT the input data set used in development of the GEOID96 model. This gravity grid models the 1.7...

  7. Anomaly Structure of Supergravity and Anomaly Cancellation

    CERN Document Server

    Butter, Daniel

    2009-01-01

    We display the full anomaly structure of supergravity, including new D-term contributions to the conformal anomaly. This expression has the super-Weyl and chiral U(1)_K transformation properties that are required for implementation of the Green-Schwarz mechanism for anomaly cancellation. We outline the procedure for full anomaly cancellation. Our results have implications for effective supergravity theories from the weakly coupled heterotic string theory.

  8. Lithospheric analysis of satellite geopotential anomalies of East Asia

    Science.gov (United States)

    Tan, Li

    Satellite gravity and magnetic anomalies are used to study the lithosphere of East Asia. Free-air gravity anomalies are decomposed into terrain-correlated, mantle/core and intracrustal components by spectral correlation analysis of the free-air gravity anomalies and terrain gravity effects. Compensated terrain gravity anomalies are obtained by removing the terrain-correlated free-air gravity anomalies. They are used to estimate the Moho undulation and crustal thickness by Gauss-Legendre quadrature (GLQ) inversion techniques assuming a Airy-Heiskanen model of crustal compensation. These results are used to develop enhanced reduction procedures to generate an improved Magsat magnetic anomaly map for East Asia. A degree 12 core field is removed from the data that are updated for the crustal components in the core field differences between degree 14 and 12. These components are estimated by using spectral correlation analysis to compare the Magsat anomalies to the magnetic effect of the crust that is available from the first vertical derivative of the terrain-correlated free-air gravity anomalies via Poisson's theorem. External field effects are separated using pass-by-pass correlation analysis of the dusk and dawn data sets and their spectral reconstruction. Coherent components in the dusk and dawn maps are combined to estimate the magnetic anomalies of the lithosphere. Long wavelength magnetic features related to lower crustal thickness variations are converted into effective magnetization contrasts by a new GLQ inversion technique. Effective magnetization contrasts of the lower crust range over ±4 A/m in accordance petrological studies. Finally, a new GLQ integration formula for triangular wedge sources is derived for modeling of satellite-altitude geopotential field anomalies from arbitrarily shaped sources. Detailed magnetization and density contrasts for central India, the Tibetan Plateau, and the Bengal Gulf region are modeled by this new formula. Positive

  9. Chiral Anomaly in Contorted Spacetimes

    CERN Document Server

    Mielke, E W

    1999-01-01

    The Dirac equation in Riemann-Cartan spacetimes with torsion is reconsidered. As is well-known, only the axial covector torsion $A$, a one-form, couples to massive Dirac fields. Using diagrammatic techniques, we show that besides the familiar Riemannian term only the Pontrjagin type four-form $dA\\wedge dA$ does arise additionally in the chiral anomaly, but not the Nieh-Yan term $d ^* A$, as has been claimed recently. Implications for cosmic strings in Einstein-Cartan theory as well as for Ashtekar's canonical approach to quantum gravity are discussed.

  10. The Effect of Pre-Impact Porosity and Vertical Density Gradients on the Gravity Signature of Lunar Craters

    Science.gov (United States)

    Milbury, Colleen; Johnson, Brandon C.; Melosh, H. Jay; Collins, Gareth S.; Blair, David M.; Soderblom, Jason M.; Nimmo, Francis; Phillips, Roger J.; Bierson, Carver J.; Zuber, Maria T.

    2015-11-01

    As a result of NASA’s dual spacecraft Gravity Recovery And Interior Laboratory (GRAIL) mission [Zuber et al., 2013; doi:10.1126/science.1231507], we now know that the lunar crust is highly porous and that the porosity varies laterally [Wieczorek et al., 2013; doi:10.1126/science.1231530] and vertically [Besserer et al., 2014; doi:10.1002/2014GL060240]. Analysis of complex craters located within the lunar highlands reveals that: 1) craters larger than diameter D~210 have positive Bouguer Anomalies (BAs), 2) craters with D ≲ 100 km have both positive and negative BAs that vary about the (near 0) mean by approximately ± 25 mGal, and, 3) D and BA are anticorrelated for craters with D ≲ 100 km [Soderblom et al., 2015; doi:10.1002/2015GL065022]. Numerical modeling by Milbury et al. [2015, LPSC] shows that pre-impact porosity is the dominant influence on the gravity signature of complex craters with D ≲ 100 km, and mantle uplift dominates the gravity for those with D > 140 km. Phillips et al. [2015, LPSC] showed that complex craters located in the South Pole-Aitken (SPA) basin tend to have more-negative BAs than similar craters in the highlands. We use the iSALE hydrocode including pore space compaction [Wünnemann et al., 2006; doi:10.1016/j.icarus.2005.10.013] and dilatant bulking [Collins, 2014; doi:10.1002/2014JE004708] to understand how the gravity signature of impact craters develop. In this study we vary crustal porosity with depth. We find that simulations that have constant porosity with depth have a lower BA for a given crater diameter than those with the same mean porosity, but that vary with depth. We used two different mean porosities (7% and 14%) and found that the BA increases with increasing porosity, similar to simulations with constant porosity. We reproduce the observed anticorrelation between BA and D for D ≲ 100 km only for simulations where the pre-impact porosity is zero or low. Our results support the observation that SPA has lower

  11. Massive Gravity

    National Research Council Canada - National Science Library

    de Rham, Claudia

    2014-01-01

    We review recent progress in massive gravity. We start by showing how different theories of massive gravity emerge from a higher-dimensional theory of general relativity, leading to the Dvali–Gabadadze–Porrati model (DGP...

  12. How to make old and dense gravity data consistent with the latest gravity data? -Example in Japan-

    Science.gov (United States)

    Miyazaki, T.

    2016-12-01

    Generally, old gravity data aren't consistent with newer data even if there markers remain intact. Such discrepancy often reaches more than 100 micro Gal, which is much larger than measurement errors. Therefore, to make use of the historic gravity data together with current gravity data for various uses e.g. geoid construction, estimation of subsurface structure, precise land gravity survey etc., the adjustment of old data to the latest gravity value. Here, we developed such a conversion method. Simple interpolation method isn't useful for this purpose because raw gravity difference data include local contribution that reduce spatial coherence of gravity data. So we must correct the local tectonic effect assimilating other geodetic observations. We assume that differences between new and old gravity data are composed of contribution of crustal deformation effect and that of data processing method/reference system. Moreover, crustal deformation effect is decomposed into height variation and density variation of crust caused by earthquakes. First, we estimated effect of height variation at a marker between the observations. We use continuous GNSS observation data to estimate contribution after 2003, and spirit leveling data before 2003. These data are interpolated in space and time. The gravity change by height variation was calculated using a bouguer gravity gradient depending old observation period of each marker. Second, effect of density variation is estimated by a rectangle fault model using half-space elastic dislocation theory. Then we assumed that residuals represent systematic offset caused by the difference of data processing method/reference system. Now the offset distribution may be evaluated by spatial interpolation thanks to the enhanced spatial coherence of residuals after correcting for local tectonic effect. Consequently, we got a gravity difference distribution which can make old gravity data consistent with new one within 45 micro Gal in precision.

  13. Massive gravity

    OpenAIRE

    Claudia de Rham

    2016-01-01

    We review recent progress in massive gravity. We start by showing how different theories of massive gravity emerge from a higher-dimensional theory of general relativity, leading to the Dvali-Gabadadze-Porrati model (DGP), cascading gravity, and ghost-free massive gravity. We then explore their theoretical and phenomenological consistency, proving the absence of Boulware-Deser ghosts and reviewing the Vainshtein mechanism and the cosmological solutions in these models. Finally, we present alt...

  14. Massive Gravity

    OpenAIRE

    de Rham, Claudia

    2014-01-01

    We review recent progress in massive gravity. We start by showing how different theories of massive gravity emerge from a higher-dimensional theory of general relativity, leading to the Dvali-Gabadadze-Porrati model (DGP), cascading gravity, and ghost-free massive gravity. We then explore their theoretical and phenomenological consistency, proving the absence of Boulware-Deser ghosts and reviewing the Vainshtein mechanism and the cosmological solutions in these models. Finally, we present alt...

  15. Massive Gravity

    OpenAIRE

    2014-01-01

    We review recent progress in massive gravity. We start by showing how different theories of massive gravity emerge from a higher-dimensional theory of general relativity, leading to the Dvali–Gabadadze–Porrati model (DGP), cascading gravity, and ghost-free massive gravity. We then explore their theoretical and phenomenological consistency, proving the absence of Boulware–Deser ghosts and reviewing the Vainshtein mechanism and the cosmological solutions in these models. Finally, we present alt...

  16. Spinfoam Gravity

    Science.gov (United States)

    Bianchi, Eugenio

    The following sections are included: * Introduction * Topological Field Theory and Gravity * Classical Spinfoam Gravity: Degrees of Freedom and Foams * Unitary Representations of the Rotation and the Lorentz Group * Boundary Variables and the Loop Quantum Gravity Hilbert Space * Spinfoam Partition Function and the Vertex Amplitude * Cellular Quantum Geometry: A Single Atom of Space * Cellular Quantum Geometry: Coherent Spin-networks * Vertex-amplitude Asymptotics and Regge Gravity * Reconstructing a Semiclassical Spacetime * Conclusions * References

  17. Gravity evolution and earthquake activities of the northeastern edge of Qinghai-Xizang block

    Institute of Scientific and Technical Information of China (English)

    祝意青; 李辉; 朱桂芝; 徐云马

    2004-01-01

    The relationship between temporal-spatial evolution of gravity and earthquake activity during 1992~2001 has beenanalyzed systematically byintegrally adjusting the gravity observation data of the northeastern edge of Qinghai-Xizang (Qingzang) block. The result shows that the gravity observation data of the northeastern edge of Qingzangblock obtained by using the uniform starting datum can completely reflect the precursory gravity informationappearing during the seismogenic process. In the genesis stage of an earthquake, regional gravity anomaly appearsin a large area, resulting in related local gravity anomaly. The dynamic image of gravity field can clearly reflect theorderly evolution and earthquake activity.

  18. 2653-IJBCS-Article-Oumarou F Nkouandou

    African Journals Online (AJOL)

    hp

    équipes de recherche n° 51110SU201' for supplement analyses. ABSTRACT ... Central Africa Shear Zone (Figure 1) which extends from the Atlantic ... low as deduced from gravity (negative. Bouguer anomalies, Nnange et al., 2001) and.

  19. Chiral anomalies and differential geometry

    Energy Technology Data Exchange (ETDEWEB)

    Zumino, B.

    1983-10-01

    Some properties of chiral anomalies are described from a geometric point of view. Topics include chiral anomalies and differential forms, transformation properties of the anomalies, identification and use of the anomalies, and normalization of the anomalies. 22 references. (WHK)

  20. Three-Dimensional Gravity Model Applied to Underwater Navigation

    Institute of Scientific and Technical Information of China (English)

    YAN Lei; FENG Hao; DENG Zhongliang; GAO Zhengbing

    2004-01-01

    At present, new integrated navigation, which usesthe location function of reference gravity anomaly map to control the errors of the inertial navigation system (INS), has been developed in marine navigation. It is named the gravityaided INS. Both the INS and real-time computation of gravity anomalies need a 3-D marine normal gravity model.Conventionally, a reduction method applied in geophysical survey is directly introduced to observed data processing. This reduction does not separate anomaly from normal gravity in the observed data, so errors cannot be avoided. The 3-D marine normal gravity model was derived from the J2 gravity model, and is suitable for the region whose depth is less than 1000 m.

  1. On the trace anomaly of a Weyl fermion

    CERN Document Server

    Bastianelli, Fiorenzo

    2016-01-01

    We calculate the trace anomaly of a Weyl fermion coupled to gravity by using Fujikawa's method supplemented by a consistent regulator. The latter is constructed out of Pauli-Villars regulating fields. The motivation for presenting such a calculation stems from recent studies that suggest that the trace anomaly of chiral fermions in four dimensions might contain an imaginary part proportional to the Pontryagin density. We find that the trace anomaly of a Weyl fermion is given by half the trace anomaly of a Dirac fermion, so that no imaginary part proportional to the Pontryagin density is seen to arise.

  2. Processing Marine Gravity Data Around Korea

    Science.gov (United States)

    Lee, Y.; Choi, K.; Kim, Y.; Ahn, Y.; Chang, M.

    2008-12-01

    In Korea currently 4 research ships are under operating in Korea, after the first research vessel equipped shipborne gravity meter was introduced in 1990s. These are Onnuri(launch 1991) of KORDI(Korea Ocean Research & Development Institute), Haeyang2000(launch 1996), Badaro1(launch 2002) of NORI(National Oceanographic Research Institute) and Tamhae2(launch 1997) of KIGAM(Korea Institute of Geoscience and Mineral Resources). Those of research vessel, Haeyang2000 have observed marine gravity data over 150,000 points each year from year 1996 to year 2003. Haeyang2000, about 2,500 tons, is unable to operate onshore so NORI has constructed another 600 tons research ship Badaro1 that has observed marine gravity data onshore since year 2002. Haeyang2000 finished observing marine gravity data offshore within Korean territorial waters until year 2003. Currently Badaro1 is observing marine gravity data onshore. These shipborne gravity data will be very useful and important on geodesy and geophysics research also those data can make a contribution to developing these studies. In this study NORI's shipbrne gravity data from 1996 to 2007 has been processed for fundamental data to compute Korean precise geoid. Marine gravity processing steps as followed. 1. Check the time sequence, latitude and longitude position, etc. of shipborne gravity data 2. Arrangement of the tide level below the pier and meter drift correction of each cruise. 3. Elimination of turning points. 4. The time lag correction. 5. Computation of RV's velocities, Heading angles and the Eötvös correction. 6. Kalman filtering of GPS navigation data using cross-over points. 7. Cross-over correction using least square adjustment. About 2,058,000 points have been processed with NORI's marine gravity data from 1996 to 2007 in this study. The distribution of free-air anomalies was -41.0 mgal to 136.0 mgal(mean 8.90mgal) within Korean territorial waters. The free-air anomalies processed with the marine gravity data are

  3. Anomaly mediation in superstring theory

    Energy Technology Data Exchange (ETDEWEB)

    Conlon, J.P. [Rudolf Peierls Center for Theoretical Physics, 1 Keble Road, Oxford, OX1 3NP (United Kingdom); Balliol College, Oxford, OX1 3BJ (United Kingdom); Kavli Institute of Theoretical Physics, Kohn Hall, University of California, Santa Barbara CA 93106-4030 (United States); Goodsell, M. [Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22603 Hamburg (Germany); Palti, E. [Centre de Physique Theorique, Ecole Polytechnique, CNRS, 91128 Palaiseau (France)

    2011-01-15

    We study anomaly mediated supersymmetry breaking in type IIB string theory and use our results to test the supergravity formula for anomaly mediated gaugino masses. We compute 1-loop gaugino masses for models of D3-branes on orbifold singularities with 3-form fluxes by calculating the annulus correlator of 3-form flux and two gauginos in the zero momentum limit. Consistent with supergravity expectations we find both anomalous and running contributions to 1-loop gaugino masses. For background Neveu-Schwarz H-flux we find an exact match with the supergravity formula. For Ramond-Ramond flux there is an off-shell ambiguity that precludes a full matching. The anomaly mediated gaugino masses, while determined by the infrared spectrum, arise from an explicit sum over UV open string winding modes. We also calculate brane-to-brane tree-level gravity mediated gaugino masses and show that there are two contributions coming from the dilaton and from the twisted modes, which are suppressed by the full T{sup 6} volume and the untwisted T{sup 2} volume respectively. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Anomaly mediation in superstring theory

    Energy Technology Data Exchange (ETDEWEB)

    Conlon, Joseph P. [Rudolf Peierls Center for Theoretical Physics, Oxford (United Kingdom); Balliol College, Oxford (United Kingdom); Goodsell, Mark [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Palti, Eran [Centre de Physique Theoretique, Ecole Polytechnique, CNRS, Palaiseau (France)

    2010-08-15

    We study anomaly mediated supersymmetry breaking in type IIB string theory and use our results to test the supergravity formula for anomaly mediated gaugino masses. We compute 1-loop gaugino masses for models of D3-branes on orbifold singularities with 3-form fluxes by calculating the annulus correlator of 3-form flux and two gauginos in the zero momentum limit. Consistent with supergravity expectations we find both anomalous and running contributions to 1-loop gaugino masses. For background Neveu-Schwarz H-flux we find an exact match with the supergravity formula. For Ramond-Ramond flux there is an off-shell ambiguity that precludes a full matching. The anomaly mediated gaugino masses, while determined by the infrared spectrum, arise from an explicit sum over UV open string winding modes. We also calculate brane-to-brane tree-level gravity mediated gaugino masses and show that there are two contributions coming from the dilaton and from the twisted modes, which are suppressed by the full T{sup 6} volume and the untwisted T{sup 2} volume respectively. (orig.)

  5. Antarctic marine gravity field from high-density satellite altimetry

    Science.gov (United States)

    Sandwell, David T.

    1992-01-01

    High-density (about 2-km profile spacing) Geosat/GM altimetry profiles were obtained for Antarctic waters (6-deg S to 72 deg S) and converted to vertical gravity gradient, using Laplace's equation to directly calculate gravity gradient from vertical deflection grids and Fourier analysis to construct gravity anomalies from two vertical deflection grids. The resultant gravity grids have resolution and accuracy comparable to shipboard gravity profiles. The obtained gravity maps display many interesting and previously uncharted features, such as a propagating rift wake and a large 'leaky transform' along the Pacific-Antarctic Rise.

  6. Gravity Aided Navigation Precise Algorithm with Gauss Spline Interpolation

    Directory of Open Access Journals (Sweden)

    WEN Chaobin

    2015-01-01

    Full Text Available The gravity compensation of error equation thoroughly should be solved before the study on gravity aided navigation with high precision. A gravity aided navigation model construction algorithm based on research the algorithm to approximate local grid gravity anomaly filed with the 2D Gauss spline interpolation is proposed. Gravity disturbance vector, standard gravity value error and Eotvos effect are all compensated in this precision model. The experiment result shows that positioning accuracy is raised by 1 times, the attitude and velocity accuracy is raised by 1~2 times and the positional error is maintained from 100~200 m.

  7. Empirical Foundations of Relativistic Gravity

    CERN Document Server

    Ni, W T

    2005-01-01

    In 1859, Le Verrier discovered the mercury perihelion advance anomaly. This anomaly turned out to be the first relativistic-gravity effect observed. During the 141 years to 2000, the precisions of laboratory and space experiments, and astrophysical and cosmological observations on relativistic gravity have been improved by 3 orders of magnitude. In 1999, we envisaged a 3-6 order improvement in the next 30 years in all directions of tests of relativistic gravity. In 2000, the interferometric gravitational wave detectors began their runs to accumulate data. In 2003, the measurement of relativistic Shapiro time-delay of the Cassini spacecraft determined the relativistic-gravity parameter gammaγ with a 1.5-order improvement. In October 2004, Ciufolini and Pavlis reported a measurement of the Lense-Thirring effect on the LAGEOS and LAGEOS2 satellites to 10 percent of the value predicted by general relativity. In April 2004, Gravity Probe B was launched and has been accumulating science data for more than ...

  8. A combined magnetometry and gravity study across Zagros orogeny in Iran

    Science.gov (United States)

    Abedi, Maysam; Oskooi, Behrooz

    2015-11-01

    the Urumieh-Dokhtar Magmatic Assemblage (UDMA). The UDMA zone increases the magnetic and the Bouguer anomalies by intruding into the CD zone as well.

  9. Gravity Effects of Solar Eclipse and Inducted Gravitational Field

    Science.gov (United States)

    Tang, K.; Wang, Q.; Zhang, H.; Hua, C.; Peng, F.; Hu, K.

    2003-12-01

    During solar eclipses in recent decades, gravity anomalies were observed and difficult to be explained by Newton's gravitational theory. During the solar eclipse of 1995, India scientists Mishra et al. recorded a gravity valley in amplitude of 12 μ Gal; they interpreted that qualitatively as atmospheric effects. During the total solar eclipse of March 1997, we conducted a comprehensive geophysical observation at Mohe geophysical observatory of China (with latitude of 53.490 N and longitude of 122.340 E. From the data we recorded, we found two valleys about 5 to 7 μ Gal. Unnikrishnan et al. inferred this gravity anomaly was caused by the environment changes. We know that the observation had been conducting in a room inside a small building with a stable coal heating system; the temperature variation inside the experimental room was less 10C during the eclipse. Moreover, the measured atmospheric pressure change was less 1hPa during the eclipse. It is reasonable to believe that surrounding environment of the observatory excluded the significant gravity variations caused by temperature, pressure variation and local moving of persons and vehicles. To further study the gravity effects related to solar eclipses, our scientific team took more observations during Zambia total solar eclipse of June 2001 and Australia total solar eclipse of December 2002. After data corrections, we found respectively two gravity anomalies, with 3 to 4μ Gal for Zambia eclipse and 1.5μ Gal for Australia eclipse. As many scientists have pointed out that pressure-gravity factor is lower than 0.3μ Gal/hPa, it means that any gravity anomaly great than 0.5μ Gal could not be inferred as the results of atmospheric pressure change. The two more gravity anomalies recorded during the solar eclipses provided us strong evidences that some gravity anomalies could not simply be inferred as atmospheric pressure change. We have tried to explain those anomalies by the induced gravitational field.

  10. 3D gravity imaging of deep geological structure of Huangling Anticline in Three Gorges area, China

    Science.gov (United States)

    Zhang, Y.; Chen, C.

    2010-12-01

    Three Gorges Dam is the largest hydraulic project in the world. Previous studies showed that Huangling Anticline is one of the main geological units in this area and has great influence on the safety of the dam, so it is important to investigate deep geological structure and evaluate stability of Huangling Anticline. Huangling Anticline locates in northern margin of Yangtze Block. It is surrounded by a few faults, and two of them are Xiannushan Fault and Yuan’an Fault, with NNW direction. There are also two main faults named Xinhua Fault and Yuyangguan-Tumen Fault with NNE and NE direction. These faults are regional faults with different sizes and cutting depth, and take charge of the development of geological structures in Three Gorges area with a long time. Two main arguments about the ability of inducing earthquakes of these faults were presented. One of the arguments suggested that these faults has weak or no enough activity to induce strong earthquakes, their key evidence is the thermoluminescence (TL) dating with some geological characteristics; the other was just opposite, in their opinion, Xiannushan Fault and Yuan’an Fault has deep cutting depth with great activity to induce strong earthquakes. However, they can not provide the evidences of deep geological structures and cutting depth of these faults. In our paper, 3D density structure of upper and middle crust beneath Three Gorges Dam and its adjacent regions is reconstructed by gravity imaging, using the Bouguer gravity anomaly and surface density constraints. Results of gravity imaging indicate that Huangling Anticline is a relatively high density zone. (1) Horizontally, Huangling Anticline is a huge U-shaped crystal rock controlled by Xiannushan Fault and Yuan’an Fault along NNW direction. In the southeast, Yuyangguan-Tumen Fault becomes the boundary of the anticline, and in the west, Xinhua Fault and Xiannushan Fault separate Huangling Anticline from Zigui basin; (2) From vertical profiles of

  11. Detailed petrophysical characterization enhances geological mapping of a buried substratum using aeromagnetic and gravity data; application to the southwestern Paris basin

    Science.gov (United States)

    Baptiste, Julien; Martelet, Guillaume; Faure, Michel; Beccaletto, Laurent; Chen, Yan; Reninger, Pierre-Alexandre

    2016-04-01

    Mapping the geometries (structure and lithology) of a buried basement is a key for targeting resources and for improving the regional geological knowledge. The Paris basin is a Mesozoic to Cenozoic intraplate basin set up on a Variscan substratum, which crops out in the surrounding massifs. We focus our study on the southwestern part of the Paris basin at its junction with the Aquitaine basin. This Mezo-Cenozoic cover separates the Armorican Massif and the Massif Central which compose of several litho-tectonic units bounded by crustal-scale shear zones. In spite of several lithological and structural correlations between various domains of the two massifs, their geological connection, hidden below the Paris basin sedimentary cover, is still largely debated. Potential field geophysics have proven effective for mapping buried basin/basement interfaces. In order to enhance the cartographic interpretation of these data, we have set up a detailed petrophysical library (field magnetic susceptibility data and density measurements on rock samples) of the Paleozoic rocks outcropping in the Variscan massifs. The combination of aeromagnetic and gravity data supported by the petrophysical signatures and field/borehole geological information, is carried out to propose a new map of the architecture of the Variscan substratum. The new synthetic map of geophysical signature of the Paris basin basement combines: i) the magnetic anomaly reduced to the pole, ii) the vertical gradient of the Bouguer anomaly and iii) the tilt derivative of the magnetic anomaly reduced to the pole. Based on this information, the Eastern extension of the major shear zones below the sedimentary cover is assessed. The petrophysical signatures were classified in three classes of magnetic susceptibility and density: low, intermediate and high. Basic rocks have high magnetization and density values whereas granite, migmatite and orthogneiss show low magnetization and density values, Proterozoic and Paleozoic

  12. Tracheobronchial Branching Anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Min Ji; Kim, Young Tong; Jou, Sung Shick [Soonchunhyang University, Cheonan Hospital, Cheonan (Korea, Republic of); Park, A Young [Soonchunhyang University College of Medicine, Asan (Korea, Republic of)

    2010-04-15

    There are various congenital anomalies with respect to the number, length, diameter, and location of tracheobronchial branching patterns. The tracheobronchial anomalies are classified into two groups. The first one, anomalies of division, includes tracheal bronchus, cardiac bronchus, tracheal diverticulum, pulmonary isomerism, and minor variations. The second one, dysmorphic lung, includes lung agenesis-hypoplasia complex and lobar agenesis-aplasia complex

  13. Gravity investigations

    Energy Technology Data Exchange (ETDEWEB)

    Healey, D.L. [Geological Survey, Denver, CO (USA)

    1983-12-31

    A large density contrast exists between the Paleozoic rocks (including the rocks of Climax stock) and less dense, Tertiary volcanic rocks and alluvium. This density contrast ranges widely, and herein for interpretive purposes, is assumed to average 0.85 Mg/m{sup 3} (megagrams per cubic meter). The large density contrast makes the gravity method a useful tool with which to study the interface between these rock types. However, little or no density contrast is discernible between the sedimentary Paleozoic rocks that surround the Climax stock and the intrusive rocks of the stock itself. Therefore the gravity method can not be used to define the configuration of the stock. Gravity highs coincide with outcrops of the dense Paleozoic rocks, and gravity lows overlie less-dense Tertiary volcanic rocks and Quaternary alluvium. The positions of three major faults (Boundary, Yucca, and Butte faults) are defined by steep gravity gradients. West of the Climax stock, the Tippinip fault has juxtaposed Paleozoic rocks of similar density, and consequently, has no expression in the gravity data in that area. The gravity station spacing, across Oak Spring Butte, is not sufficient to adequately define any gravity expression of the Tippinip fault. 18 refs., 5 figs.

  14. The Effect of Pre-Impact Porosity and Vertical Density Gradients on the Gravity Signature of Lunar Craters as Seen by GRAIL

    Science.gov (United States)

    Milbury, C.; Johnson, B. C.; Melosh, H., IV; Collins, G. S.; Blair, D. M.; Soderblom, J. M.; Nimmo, F.; Bierson, C. J.; Phillips, R. J.; Zuber, M. T.

    2015-12-01

    As a result of NASA's dual spacecraft Gravity Recovery And Interior Laboratory (GRAIL) mission [Zuber et al., 2013; doi:10.1126/science.1231507], we now know that the lunar crust is highly porous and that the porosity varies laterally [Wieczorek et al., 2013; doi:10.1126/science.1231530] and vertically [Besserer et al., 2014; doi:10.1002/2014GL060240]. Analysis of complex craters located within the lunar highlands reveals that: 1) craters larger than diameter D~210 have positive Bouguer Anomalies (BAs), 2) craters with D ≲ 100 km have both positive and negative BAs that vary about the (near 0) mean by approximately ± 25 mGal, and, 3) D and BA are anticorrelated for craters with D ≲ 100 km [Soderblom et al., 2015; submitted]. Numerical modeling by Milbury et al. [2015, LPSC] shows that pre-impact porosity is the dominant influence on the gravity signature of complex craters with D ≲ 100 km, and mantle uplift dominates the gravity for those with D > 140 km. Phillips et al. [2015, LPSC] showed that complex craters located in the South Pole-Aitken (SPA) basin tend to have more-negative BAs than similar craters in the highlands. By including (pre-impact) vertical porosity/density gradients in our impact simulations, we reproduce the observed anticorrelation between BA and D for D ≲ 100 km, and the observed difference between the BAs of SPA and highland craters. We use the iSALE hydrocode including pore space compaction [Wünnemann et al., 2006; doi:10.1016/j.icarus.2005.10.013] and dilatant bulking [Collins, 2014; doi:10.1002/2014JE004708] to understand how the gravity signature of impact craters develop. In this study we vary density/porosity with depth. We find that simulations that have constant porosity with depth have a lower BA for a given crater diameter than those with varying porosity. We used two different mean porosities (7% and 14%) and found that the BA increases with increasing porosity, similar to simulations with constant porosity. Larger

  15. Nonlocal gravity

    CERN Document Server

    Mashhoon, Bahram

    2017-01-01

    Relativity theory is based on a postulate of locality, which means that the past history of the observer is not directly taken into account. This book argues that the past history should be taken into account. In this way, nonlocality---in the sense of history dependence---is introduced into relativity theory. The deep connection between inertia and gravitation suggests that gravity could be nonlocal, and in nonlocal gravity the fading gravitational memory of past events must then be taken into account. Along this line of thought, a classical nonlocal generalization of Einstein's theory of gravitation has recently been developed. A significant consequence of this theory is that the nonlocal aspect of gravity appears to simulate dark matter. According to nonlocal gravity theory, what astronomers attribute to dark matter should instead be due to the nonlocality of gravitation. Nonlocality dominates on the scale of galaxies and beyond. Memory fades with time; therefore, the nonlocal aspect of gravity becomes wea...

  16. GEOSAT44: High-Accuracy, High-Resolution Gravity

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This satellite altimeter data base contains precise geoid and gravity anomaly profiles which were constructed from the average of 44 repeat cycles of Geosat. The...

  17. GEOSAT 44: High-Accuracy, High-Resolution Gravity

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This satellite altimeter data base contains precise geoid and gravity anomaly profiles which were constructed from the average of 44 repeat cycles of Geosat. The...

  18. Weyl Anomaly and Initial Singularity Crossing

    CERN Document Server

    Awad, Adel

    2015-01-01

    We consider the role of quantum effects, mainly, Weyl anomaly in modifying FLRW model singular behavior at early times. Weyl anomaly corrections to FLRW models have been considered in the past, here we reconsider this model and show the following: The singularity of this model is weak according to Tipler and Krolak, therefore, the spacetime might admit a geodesic extension. Weyl anomaly corrections changes the nature of the initial singularity from a big bang singularity to a sudden singularity. The two branches of solutions consistent with the semiclassical treatment form a disconnected manifold. Joining these two parts at the singularity provides us with a $C^1$ extension to nonspacelike geodesics and leaves the spacetime geodesically complete. Using Gauss-Codazzi equations one can derive generalized junction conditions for this higher-derivative gravity. The extended spacetime obeys Friedmann and Raychaudhuri equations and the junction conditions. The junction does not generate Dirac delta functions in mat...

  19. Determination of Antarctic geoid by using global gravity field

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    With Chinese latest global gravity field model WDM94, the authors providethe geoid height and mean free-air gravity anomaly of Antarctica (The range of latitude is from—60° to—90°). In order to conclude and analyze the characters of Antarctic geoid roundly, the authors collect the latest oversea global gravity field model OSU91 (to degree and order 360) and JGMOSU (to degree and order 360), get the corresponding geoid height and mean free-air gravity anomaly. The results arecompared with the results got from WDM94, thus we get the difference. The standard deviation of geoid height between WDM94 and OSU91 is ± 1.90 re;the deviation of geoid between WDM9 and JGMOSU is ± 2.09 m. The standard deviation of mean gravity anomaly are±8.97 mGal and ± 9.32 mGal respectively.

  20. Gravity, geoid and the oceanic lithosphere

    Science.gov (United States)

    Watts, A. B.

    1985-01-01

    Plate tectonics and its contribution to progress in studies of the Earth's gravitational field is discussed. In acquisition, the development of forced feedback accelerometers, satellite navigation, and satellite radar altimetry significantly improved the accuracy and coverage of gravity data over the oceans. In interpretation, gravity and geoid anomalies are used to determine information on the thermal and mechanical properties of the oceanic lithosphere and the forces that drive plate motions.

  1. Testing the Flyby Anomaly with the GNSS Constellation

    CERN Document Server

    Bertolami, O; Gil, P J S; Páramos, J

    2012-01-01

    We propose the concept of a space mission to probe the so called flyby anomaly, an unexpected velocity change experienced by some deep-space probes using earth gravity assists. The key feature of this proposal is the use of GNSS systems to obtain an increased accuracy in the tracking of the approaching spacecraft, mainly near the perigee. Two low-cost options are also discussed to further test this anomaly: an add-on to an existing spacecraft and a dedicated mission.

  2. Artificial Gravity

    CERN Document Server

    Clément, Gilles

    2007-01-01

    Protecting the health, safety, and performance of exploration-class mission crews against the physiological deconditioning resulting from long-term weightlessness during transit and long-term reduced gravity during surface operations will require effective, multi-system countermeasures. Artificial gravity, which would replace terrestrial gravity with inertial forces generated by rotating the transit vehicle or by short-radius human centrifuge devices within the transit vehicle or surface habitat, has long been considered a potential solution. However, despite its attractiveness as an efficient

  3. Gravity brake

    Science.gov (United States)

    Lujan, Richard E.

    2001-01-01

    A mechanical gravity brake that prevents hoisted loads within a shaft from free-falling when a loss of hoisting force occurs. A loss of hoist lifting force may occur in a number of situations, for example if a hoist cable were to break, the brakes were to fail on a winch, or the hoist mechanism itself were to fail. Under normal hoisting conditions, the gravity brake of the invention is subject to an upward lifting force from the hoist and a downward pulling force from a suspended load. If the lifting force should suddenly cease, the loss of differential forces on the gravity brake in free-fall is translated to extend a set of brakes against the walls of the shaft to stop the free fall descent of the gravity brake and attached load.

  4. Chicxulub impact basin: Gravity characteristics and implications for basin morphology and deep structure

    Science.gov (United States)

    Sharpton, Virgil L.; Burke, Kevin; Hall, Stuart A.; Lee, Scott; Marin, Luis E.; Suarez, Gerardo; Quezada-Muneton, Juan Manuel; Urrutia-Fucugauchi, Jaime

    1993-01-01

    The K-T-aged Chicxulub Impact Structure is buried beneath the Tertiary carbonate rocks of the Northern Yucatan Platform. Consequently its morphology and structure are poorly understood. Reprocessed Bouguer (onshore) and Free Air (offshore) gravity data over Northern Yucatan reveal that Chicxulub may be a 200-km-diameter multi-ring impact basin with at least three concentric basin rings. The positions of these rings follow the square root of 2 spacing rule derived empirically from analysis of multi-ring basins on other planets indicating that these rings probably correspond to now-buried topographic basin rings. A forward model of the gravity data along a radial transect from the southwest margin of the structure indicates that the Chicxulub gravity signature is compatible with this interpretation. We estimate the basin rim diameter to be 204 +/- 16 km and the central peak ring diameter (D) is 104 +/- 6 km.

  5. Gravity waves

    Science.gov (United States)

    Fritts, David

    1987-02-01

    Gravity waves contributed to the establishment of the thermal structure, small scale (80 to 100 km) fluctuations in velocity (50 to 80 m/sec) and density (20 to 30%, 0 to peak). Dominant gravity wave spectrum in the middle atmosphere: x-scale, less than 100 km; z-scale, greater than 10 km; t-scale, less than 2 hr. Theorists are beginning to understand middle atmosphere motions. There are two classes: Planetary waves and equatorial motions, gravity waves and tidal motions. The former give rise to variability at large scales, which may alter apparent mean structure. Effects include density and velocity fluctuations, induced mean motions, and stratospheric warmings which lead to the breakup of the polar vortex and cooling of the mesosphere. On this scale are also equatorial quasi-biennial and semi-annual oscillations. Gravity wave and tidal motions produce large rms fluctuations in density and velocity. The magnitude of the density fluctuations compared to the mean density is of the order of the vertical wavelength, which grows with height. Relative density fluctuations are less than, or of the order of 30% below the mesopause. Such motions may cause significant and variable convection, and wind shear. There is a strong seasonal variation in gravity wave amplitude. Additional observations are needed to address and quantify mean and fluctuation statistics of both density and mean velocity, variability of the mean and fluctuations, and to identify dominant gravity wave scales and sources as well as causes of variability, both temporal and geographic.

  6. 1-deg x 1-deg Terrestrial Mean Free-Air Anomalies

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 1x1 degree Terrestrial Mean Free-Air Gravity Anomaly and Geoid Undulations Data Base was compiled and developed by the Ohio State University. This data base was...

  7. 30-min x 30-min Terrestrial Mean Free-Air Anomalies

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 30-min x 30-min Terrestrial Mean Free-Air Gravity Anomaly and Geoid Undulations Data Base was compiled and developed by the Ohio State University. This data base...

  8. Accuracy Analysis for SST Gravity Field Model in China

    Institute of Scientific and Technical Information of China (English)

    LUO Jia; LUO Zhicai; ZOU Xiancai; WANG Haihong

    2006-01-01

    Taking China as the region for test, the potential of the new satellite gravity technique, satellite-to-satellite tracking for improving the accuracy of regional gravity field model is studied. With WDM94 as reference, the gravity anomaly residuals of three models, the latest two GRACE global gravity field model (EIGEN_GRACE02S, GGM02S) and EGM96, are computed and compared. The causes for the differences among the residuals of the three models are discussed. The comparison between the residuals shows that in the selected region, EIGEN_GRACE02S or GGM02S is better than EGM96 in lower degree part (less than 110 degree). Additionally, through the analysis of the model gravity anomaly residuals, it is found that some systematic errors with periodical properties exist in the higher degree part of EIGEN and GGM models, the results can also be taken as references in the validation of the SST gravity data.

  9. Gravity and magnetic survey of the Oaxaca city region: Cenozoic horst-and-graben structure superimposed on the Oaxaca-Juarez terrane boundary, southern Mexico

    Science.gov (United States)

    Campos-Enríquez, J. O.; Belmonte-Jiménez, S. I.; Keppie, J. D.; Ortega-Gutiérrez, F.; Arzate, J. A.; Martínez-Silva, J.; Martínez-Serrano, R. G.

    2010-04-01

    A geophysical survey of the Oaxaca Fault along the north-trending Etla and Zaachila valleys area, southern Mexico, shows a series of NNW-SSE Bouguer and magnetic anomalies with steeper gradients towards the east. The Oaxaca Fault represents Tertiary extensional reactivation of the Juarez shear zone that constitutes the boundary between the Oaxaca and Juárez terranes. Cooperative interpretation of six combined gravity and magnetic NE-SW profiles perpendicular to the valleys indicates the presence of a composite depression comprising three N-S sub-basins: the northern Etla and southern Zaachila sub-basins separated by the Atzompa sub-basin. The Etla sub-basin is bounded by the moderately E-dipping, Etla Fault and the more steeply W-dipping Oaxaca Fault, which together constitute a graben that continues southwards into the Atzompa graben. The deeper Zaachila sub-basin, south of Oaxaca city, is a wide V-shaped graben with a horst in the middle. The new geophysical data suggest that the Oaxaca-Juarez terrane boundary is displaced sinistrally ca. 20 km along the E-W Donají Fault, which defines the northern boundary of the Zaachila sub-basin. On the other hand, the Oaxaca Fault may either continue unbroken southwards along the western margin of the horst in the Zaachila sub-basin or be offset along with the terrane boundary. The sinistral movement may have taken place either during the Late Mesozoic-Early Cenozoic, Laramide Orogeny as a lateral ramp in the thrust plane or under Miocene-Pliocene, NE-SW extension. The former suggests that the Donají Fault is a transcurrent fault, whereas the latter implies that it is a transfer fault. The models imply that originally the suture was continuous south of the Donaji Fault and provide a constraint for the accretion of the Oaxaca and Juarez terranes.

  10. Crustal influx, indentation, ductile thinning and gravity redistribution in a continental wedge: Building a Moldanubian mantled gneiss dome with underthrust Saxothuringian material (European Variscan belt)

    Science.gov (United States)

    Chopin, F.; Schulmann, K.; Skrzypek, E.; Lehmann, J.; Dujardin, J. R.; Martelat, J. E.; Lexa, O.; Corsini, M.; Edel, J. B.; Å TíPská, P.; Pitra, P.

    2012-02-01

    The contribution of lateral forces, vertical load, gravity redistribution and erosion to the origin of mantled gneiss domes in internal zones of orogens remains debated. In the Orlica-Śnieżnik dome (Moldanubian zone, European Variscan belt), the polyphase tectono-metamorphic history is initially characterized by the development of subhorizontal fabrics associated with medium- to high-grade metamorphic conditions in different levels of the crust. It reflects the eastward influx of a Saxothuringian-type passive margin sequence below a Teplá-Barrandian upper plate. The ongoing influx of continental crust creates a thick felsic orogenic root with HP rocks and migmatitic orthogneiss. The orogenic wedge is subsequently indented by the eastern Brunia microcontinent producing a multiscale folding of the orogenic infrastructure. The resulting kilometre-scale folding is associated with the variable burial of the middle crust in synforms and the exhumation of the lower crust in antiforms. These localized vertical exchanges of material and heat are coeval with a larger crustal-scale folding of the whole infrastructure generating a general uplift of the dome. It is exemplified by increasing metamorphic conditions and younging of 40Ar/39Ar cooling ages toward the extruded migmatitic subdomes cored by HP rocks. The vertical growth of the dome induces exhumation by pure shear-dominated ductile thinning laterally evolving to non-coaxial detachment faulting, while erosion feeds the surrounding sedimentary basins. Modeling of the Bouguer anomaly grid is compatible with crustal-scale mass transfers between a dense superstructure and a lighter infrastructure. The model implies that the Moldanubian Orlica-Śnieżnik mantled gneiss dome derives from polyphase recycling of Saxothuringian material.

  11. Merging of airborne gravity and gravity derived from satellite altimetry: Test cases along the coast of greenland

    DEFF Research Database (Denmark)

    Olesen, Arne Vestergaard; Andersen, Ole Baltazar; Tscherning, C.C.

    2002-01-01

    The National Survey and Cadastre - Denmark (KMS) has for several years produced gravity anomaly maps over the oceans derived from satellite altimetry. During the last four years, KMS has also conducted airborne gravity surveys along the coast of Greenland dedicated to complement the existing onsh...

  12. Updated Hungarian Gravity Field Solution Based on Fifth Generation GOCE Gravity Field Models

    Science.gov (United States)

    Toth, Gyula; Foldvary, Lorant

    2015-03-01

    With the completion of the ESA's GOCE satellite's mission fifth generation gravity field models are available from the ESA's GOCE High Processing Facility. Our contribution is an updated gravity field solution for Hungary using the latest DIR R05 GOCE gravity field model. The solution methodology is least squares gravity field parameter estimation using Spherical Radial Base Functions (SRBF). Regional datasets include deflections of the vertical (DOV), gravity anomalies and quasigeoid heights by GPS/levelling. The GOCE DIR R05 model has been combined with the EGM20008 model and has been evaluated in comparison with the EGM2008 and EIGEN-6C3stat models to assess the performance of our regional gravity field solution.

  13. Comparison of Present SST Gravity Field Models

    Institute of Scientific and Technical Information of China (English)

    LUO Jia; SHI Chuang; ZOU Xiancai; WANG Haihong

    2006-01-01

    Taking the main land of Europe as the region to be studied, the potential of the new satellite gravity technique: satellite-to-satellite tracking (SST) and improving the accuracy of regional gravity field model with the SST models are investigated. The drawbacks of these models are discussed. With GPM98C as the reference, the gravity anomaly residuals of several other models, the latest SST global gravity field models (EIGEN series and GGM series), were computed and compared. The results of the comparison show that in the selected region, some systematic errors with periodical properties exist in the EIGEN and GGM's S series models in the high degree and order. Some information that was not shown in the classic gravity models is detected in the low and middle degree and order of EIGEN and GGM's S series models. At last, the effective maximum degrees and orders of SST models are suggested.

  14. Gravity field determination and error assessment techniques

    Science.gov (United States)

    Yuan, D. N.; Shum, C. K.; Tapley, B. D.

    1989-01-01

    Linear estimation theory, along with a new technique to compute relative data weights, was applied to the determination of the Earth's geopotential field and other geophysical model parameters using a combination of satellite ground-based tracking data, satellite altimetry data, and the surface gravimetry data. The relative data weights for the inhomogeneous data sets are estimated simultaneously with the gravity field and other geophysical and orbit parameters in a least squares approach to produce the University of Texas gravity field models. New techniques to perform calibration of the formal covariance matrix for the geopotential solution were developed to obtain a reliable gravity field error estimate. Different techniques, which include orbit residual analysis, surface gravity anomaly residual analysis, subset gravity solution comparisons and consider covariance analysis, were applied to investigate the reliability of the calibration.

  15. Quantisation deforms w∞ to W∞ gravity

    NARCIS (Netherlands)

    Bergshoeff, E.; Howe, P.S.; Pope, C.N.; Sezgin, E.; Shen, X.; Stelle, K.S.

    1991-01-01

    Quantising a classical theory of w∞ gravity requires the introduction of an infinite number of counterterms in order to remove matter-dependent anomalies. We show that these counterterms correspond precisely to a renormalisation of the classical w∞ currents to quantum W∞ currents.

  16. Un successeur de Bouguer : \\'Etienne B\\'ezout (1730 ? 1783) commissaire pour la marine \\`a l'Acad\\'emie royale des sciences

    CERN Document Server

    Alfonsi, Liliane

    2009-01-01

    \\'Etienne B\\'ezout, member of the Acad\\'emie Royale des Sciences, have to study some works and books sended at the Acad\\'emy. In this article, we will look at this responsibility for Navy, before and after 1764, which is the year of B\\'ezout's nomination at the charge of Examinateur des Gardes du Pavillon et de la Marine. Each year he must go to Brest, Rochefort and Toulon harbours to examine the Gardes de la Marine. This give to him titles and qualifications as expert in sailing. We will see his participation at an Academy polemic : Blondeau versus Bouguer/Lacaille on a navigation book. Almost in the same time, \\'Etienne B\\'ezout will be member of the Acad\\'emie de Marine de Brest in 1769. We will see his work in this last Academy. At last, we will study his Trait\\'e de navigation, written in 1769 and we will compare to Bouguer's Navigation book.

  17. Gravity Investigation in Area East of River Nile (Khartoum State)

    Institute of Scientific and Technical Information of China (English)

    Eldawi M G; Farwa A G

    2003-01-01

    The purpose of the study is to investigate the subsurface geology of the area. For quantitative interpretation of the resulting Bouguer anomalies, borehole data are explored. This is done along several profiles obtained from software program G. model C version 2. 2 No. 175. This program is based on two -dimensional mass distribution. The interpretation reveals two basinal features filling depressions in the basement complex named as Abu Harira basin and Kabbashi basin. They are structurally related to Khartoum basin. As a result, a geological/structural map of the area in east of the Nile is produced. The basinal features in the study area are considered as parts of the central Sudan (Khartoum basin) that had been subjected to several tectonic events that resulted in the formation of several fracture systems associated with block subsidence and formation of these basins.

  18. Competing Orders and Anomalies

    Science.gov (United States)

    Moon, Eun-Gook

    2016-08-01

    A conservation law is one of the most fundamental properties in nature, but a certain class of conservation “laws” could be spoiled by intrinsic quantum mechanical effects, so-called quantum anomalies. Profound properties of the anomalies have deepened our understanding in quantum many body systems. Here, we investigate quantum anomaly effects in quantum phase transitions between competing orders and striking consequences of their presence. We explicitly calculate topological nature of anomalies of non-linear sigma models (NLSMs) with the Wess-Zumino-Witten (WZW) terms. The non-perturbative nature is directly related with the ’t Hooft anomaly matching condition: anomalies are conserved in renormalization group flow. By applying the matching condition, we show massless excitations are enforced by the anomalies in a whole phase diagram in sharp contrast to the case of the Landau-Ginzburg-Wilson theory which only has massive excitations in symmetric phases. Furthermore, we find non-perturbative criteria to characterize quantum phase transitions between competing orders. For example, in 4D, we show the two competing order parameter theories, CP(1) and the NLSM with WZW, describe different universality class. Physical realizations and experimental implication of the anomalies are also discussed.

  19. Anomaly-induced baryogenesis

    CERN Document Server

    Kobakhidze, A

    2004-01-01

    We propose a new mechanism for dynamical generation of the observed baryon asymmetry within the minimal Standard model extended by massive Majorana neutrinos and non-vanishing electroweak Chern-Simons term. We show that electroweak Chern-Simons number is produced in the expanding universe due to the conformal anomaly and subsequently converted into baryon number through the triangle anomaly.

  20. Competing Orders and Anomalies.

    Science.gov (United States)

    Moon, Eun-Gook

    2016-08-08

    A conservation law is one of the most fundamental properties in nature, but a certain class of conservation "laws" could be spoiled by intrinsic quantum mechanical effects, so-called quantum anomalies. Profound properties of the anomalies have deepened our understanding in quantum many body systems. Here, we investigate quantum anomaly effects in quantum phase transitions between competing orders and striking consequences of their presence. We explicitly calculate topological nature of anomalies of non-linear sigma models (NLSMs) with the Wess-Zumino-Witten (WZW) terms. The non-perturbative nature is directly related with the 't Hooft anomaly matching condition: anomalies are conserved in renormalization group flow. By applying the matching condition, we show massless excitations are enforced by the anomalies in a whole phase diagram in sharp contrast to the case of the Landau-Ginzburg-Wilson theory which only has massive excitations in symmetric phases. Furthermore, we find non-perturbative criteria to characterize quantum phase transitions between competing orders. For example, in 4D, we show the two competing order parameter theories, CP(1) and the NLSM with WZW, describe different universality class. Physical realizations and experimental implication of the anomalies are also discussed.

  1. $BF$ gravity

    CERN Document Server

    Celada, Mariano; Montesinos, Merced

    2016-01-01

    $BF$ gravity comprises all the formulations of gravity that are based on deformations of $BF$ theory. Such deformations consist of either constraints or potential terms added to the topological $BF$ action that turn some of the gauge degrees of freedom into physical ones, particularly giving rise to general relativity. The $BF$ formulations have provided new and deep insights into many classical and quantum aspects of the gravitational field, setting the foundations for the approach to quantum gravity known as spinfoam models. In this review, we present a self-contained and unified treatment of the $BF$ formulations of $D$-dimensional general relativity and other related models, focusing on the classical aspects of them and including some new results.

  2. Quantum gravity

    CERN Document Server

    Kiefer, Claus

    2012-01-01

    The search for a quantum theory of the gravitational field is one of the great open problems in theoretical physics. This book presents a self-contained discussion of the concepts, methods and applications that can be expected in such a theory. The two main approaches to its construction - the direct quantisation of Einstein's general theory of relativity and string theory - are covered. Whereas the first attempts to construct a viable theory for the gravitational field alone, string theory assumes that a quantum theory of gravity will be achieved only through a unification of all the interactions. However, both employ the general method of quantization of constrained systems, which is described together with illustrative examples relevant for quantum gravity. There is a detailed presentation of the main approaches employed in quantum general relativity: path-integral quantization, the background-field method and canonical quantum gravity in the metric, connection and loop formulations. The discussion of stri...

  3. BF gravity

    Science.gov (United States)

    Celada, Mariano; González, Diego; Montesinos, Merced

    2016-11-01

    BF gravity comprises all the formulations of gravity that are based on deformations of BF theory. Such deformations consist of either constraints or potential terms added to the topological BF action that turn some of the gauge degrees of freedom into physical ones, particularly giving rise to general relativity. The BF formulations have provided new and deep insights into many classical and quantum aspects of the gravitational field, setting the foundations for the approach to quantum gravity known as spinfoam models. In this review, we present a self-contained and unified treatment of the BF formulations of D-dimensional general relativity and other related models, focusing on the classical aspects of them and including some new results.

  4. Deep crustal structure of the northeastern margin of the Arabian plate from seismic and gravity data

    Science.gov (United States)

    Pilia, Simone; Ali, Mohammed; Watts, Anthony; Keats, Brook; Searle, Mike

    2017-04-01

    of the refraction profile shows a thick sequence (up to about 10 km) of seaward dipping sediments that are offset by a number of listric (normal) faults, some of which intersect the seabed and so reflect recent tectonic activity. The trend of the Bouguer anomaly provides further constraints on the deeper structure of the margin and appears to confirm the presence of a stretched crust.

  5. Simulating Gravity

    Science.gov (United States)

    Pipinos, Savas

    2010-01-01

    This article describes one classroom activity in which the author simulates the Newtonian gravity, and employs the Euclidean Geometry with the use of new technologies (NT). The prerequisites for this activity were some knowledge of the formulae for a particle free fall in Physics and most certainly, a good understanding of the notion of similarity…

  6. Simulating Gravity

    Science.gov (United States)

    Pipinos, Savas

    2010-01-01

    This article describes one classroom activity in which the author simulates the Newtonian gravity, and employs the Euclidean Geometry with the use of new technologies (NT). The prerequisites for this activity were some knowledge of the formulae for a particle free fall in Physics and most certainly, a good understanding of the notion of similarity…

  7. Antarctic Crustal Thickness from Gravity Inversion

    Science.gov (United States)

    Vaughan, A. P.; Kusznir, N. J.; Ferraccioli, F.; Jordan, T. A.

    2013-12-01

    Using gravity anomaly inversion, we have produced the first comprehensive regional maps of crustal thickness and oceanic lithosphere distribution for Antarctica and the Southern Ocean. We determine Moho depth, crustal basement thickness, continental lithosphere thinning (1-1/β) and ocean-continent transition location using a 3D spectral domain gravity inversion method, which incorporates a lithosphere thermal gravity anomaly correction. The continental lithosphere thinning distribution, used to define the initial thermal model temperature perturbation is derived from the gravity inversion and uses no a priori isochron information; as a consequence the gravity inversion method provides a prediction of ocean-continent transition location, which is independent of ocean isochron information. The gravity anomaly contribution from ice thickness is included in the gravity inversion, as is the contribution from sediments which assumes a compaction controlled sediment density increase with depth. Data used in the gravity inversion are elevation and bathymetry, free-air gravity anomaly, the most recent Bedmap2 ice thickness and bedrock topography compilation south of 60 degrees south (Fretwell et al., 2013) and relatively sparse constraints on sediment thickness. Our gravity inversion study predicts thick crust (> 45 km) under interior East Antarctica penetrated by narrow continental rifts that feature relatively thinner crust. The East Antarctic Rift System (EARS) is a major Permian to Cretaceous age rift system that appears to extend from the continental margin at the Lambert Rift to the South Pole region, a distance of 2500 km. This is comparable in scale to the well-studied East African rift system. Intermediate crustal thickness with an inferred linear rift fabric is predicted under Coates Land. An extensive region of either thick oceanic crust or highly thinned continental crust is predicted offshore Oates Land and north Victoria Land, and also off West Antarctica

  8. Anomalies on orbifolds

    Energy Technology Data Exchange (ETDEWEB)

    Arkani-Hamed, Nima; Cohen, Andrew G.; Georgi, Howard

    2001-03-16

    We discuss the form of the chiral anomaly on an S1/Z2 orbifold with chiral boundary conditions. We find that the 4-divergence of the higher-dimensional current evaluated at a given point in the extra dimension is proportional to the probability of finding the chiral zero mode there. Nevertheless the anomaly, appropriately defined as the five dimensional divergence of the current, lives entirely on the orbifold fixed planes and is independent of the shape of the zero mode. Therefore long distance four dimensional anomaly cancellation ensures the consistency of the higher dimensional orbifold theory.

  9. Signature change in loop quantum gravity: General midisuperspace models and dilaton gravity

    CERN Document Server

    Bojowald, Martin

    2016-01-01

    Models of loop quantum gravity based on real connections have a deformed notion of general covariance, which leads to the phenomenon of signature change. This result is confirmed here in a general analysis of all midisuperspace models without local degrees of freedom. As a subclass of models, 2-dimensional theories of dilaton gravity appear, but a larger set of examples is possible based only on the condition of anomaly freedom. While the classical dilaton gravity models are the only such systems without deformed covariance, they do give rise to signature change when holonomy modifications are included.

  10. Theoretically Optimal Distributed Anomaly Detection

    Data.gov (United States)

    National Aeronautics and Space Administration — A novel general framework for distributed anomaly detection with theoretical performance guarantees is proposed. Our algorithmic approach combines existing anomaly...

  11. Stochastic gravity: beyond semiclassical gravity

    Energy Technology Data Exchange (ETDEWEB)

    Verdaguer, E [Departament de Fisica Fonamental and CER en Astrofisica, Fisica de Particules i Cosmologia, Universitat de Barcelona, Av. Diagonal 647, 08028 Barcelona (Spain)

    2007-05-15

    The back-reaction of a classical gravitational field interacting with quantum matter fields is described by the semiclassical Einstein equation, which has the expectation value of the quantum matter fields stress tensor as a source. The semiclassical theory may be obtained from the quantum field theory of gravity interacting with N matter fields in the large N limit. This theory breaks down when the fields quantum fluctuations are important. Stochastic gravity goes beyond the semiclassical limit and allows for a systematic and self-consistent description of the metric fluctuations induced by these quantum fluctuations. The correlation functions of the metric fluctuations obtained in stochastic gravity reproduce the correlation functions in the quantum theory to leading order in an 1/N expansion. Two main applications of stochastic gravity are discussed. The first, in cosmology, to obtain the spectrum of primordial metric perturbations induced by the inflaton fluctuations, even beyond the linear approximation. The second, in black hole physics, to study the fluctuations of the horizon of an evaporating black hole.

  12. Anomaly Detection in Sequences

    Data.gov (United States)

    National Aeronautics and Space Administration — We present a set of novel algorithms which we call sequenceMiner, that detect and characterize anomalies in large sets of high-dimensional symbol sequences that...

  13. Neutrino anomalies without oscillations

    Indian Academy of Sciences (India)

    Sandip Pakvasa

    2000-01-01

    I review explanations for the three neutrino anomalies (solar, atmospheric and LSND) which go beyond the `conventional' neutrino oscillations induced by mass-mixing. Several of these require non-zero neutrino masses as well.

  14. Scattering anomaly in optics

    CERN Document Server

    Silveirinha, Mario G

    2016-01-01

    In time-reversal invariant electronic systems the scattering matrix is anti-symmetric. This property enables an effect, designated here as "scattering anomaly", such that the electron transport does not suffer from back reflections, independent of the specific geometry of the propagation path or the presence of time-reversal invariant defects. In contrast, for a generic time-reversal invariant photonic system the scattering matrix is symmetric and there is no similar anomaly. Here, it is theoretically proven that despite these fundamental differences there is a wide class of photonic platforms - in some cases formed only by time-reversal invariant media - in which the scattering anomaly can occur. It is shown that an optical system invariant under the action of the composition of the time-reversal, parity and duality operators is characterized by an anti-symmetric scattering matrix. Specific examples of photonic platforms wherein the scattering anomaly occurs are given, and it is demonstrated with full wave n...

  15. Global gravity field recovery from the ARISTOTELES satellite mission

    Science.gov (United States)

    Visser, P. N. A. M.; Wakker, K. F.; Ambrosius, B. A. C.

    1994-02-01

    One of the primary objectives of the future ARISTOTELES satellite mission is to map Earth's gravity field with high resolution and accuracy. In order to achieve this objective, the ARISTOTELES satellite will be equipped with a gravity gradiometer and a Global Positioning System (GPS) receiver. Global gravity field error analyses have been performed for several combinations of gradiometer and GPS observations. These analyses indicated that the bandwidth limitation of the gradiometer prevents a stable high-accuracy, high-resolution gravity solution if no additional information is available. However, with the addition of high-accuracy GPS observations, a stable gravity field solution can be obtained. A combination of the measurements acquired by the high-quality GPS receiver and the bandwidth-limited gradiometer on board ARISTOTELES will yield a global gravity field model with a resolution of less than 100 km and with an accuracy of better than 5 mGal for gravity anomalies and 10 cm for geoid undulations.

  16. The Pioneer Anomaly

    CERN Document Server

    de Diego, Jose A

    2008-01-01

    Analysis of the radio-metric data from Pioneer 10 and 11 spacecrafts has indicated the presence of an unmodeled acceleration starting at 20 AU, which has become known as the Pioneer anomaly. The nature of this acceleration is uncertain. In this paper we give a description of the effect and review some relevant mechanisms proposed to explain the observed anomaly. We also discuss on some future projects to investigate this phenomenon.

  17. DREDed Anomaly Mediation

    CERN Document Server

    Boyda, E; Pierce, A T; Boyda, Ed; Murayama, Hitoshi; Pierce, Aaron

    2002-01-01

    We offer a guide to dimensional reduction (DRED) in theories with anomaly mediated supersymmetry breaking. Evanescent operators proportional to epsilon arise in the bare Lagrangian when it is reduced from d=4 to d= (4-2 epsilon) dimensions. In the course of a detailed diagrammatic calculation, we show that inclusion of these operators is crucial. The evanescent operators conspire to drive the supersymmetry-breaking parameters along anomaly-mediation trajectories across heavy particle thresholds, guaranteeing the ultraviolet insensitivity.

  18. Magnetic anomalies of offshore Krishna-Godavari Basin, eastern continental margin of India

    Indian Academy of Sciences (India)

    K V Swamy; I V Radhakrishna Murthy; K S Krishna; K S R Murthy; A S Subrahmanyam; M M Malleswara Rao

    2009-08-01

    The marine magnetic data acquired from offshore Krishna–Godavari (K–G) basin, eastern continental margin of India (ECMI), brought out a prominent NE–SW trending feature, which could be explained by a buried structural high formed by volcanic activity. The magnetic anomaly feature is also associated with a distinct negative gravity anomaly similar to the one associated with 85°E Ridge. The gravity low could be attributed to a flexure at the Moho boundary, which could in turn be filled with the volcanic material. Inversion of the magnetic and gravity anomalies was also carried out to establish the similarity of anomalies of the two geological features (structural high on the margin and the 85°E Ridge) and their interpretations. In both cases, the magnetic anomalies were caused dominantly by the magnetization contrast between the volcanic material and the surrounding oceanic crust, whereas the low gravity anomalies are by the flexures of the order of 3–4 km at Moho boundary beneath them. The analysis suggests that both structural high present in offshore Krishna–Godavari basin and the 85°E Ridge have been emplaced on relatively older oceanic crust by a common volcanic process, but at discrete times, and that several of the gravity lows in the Bay of Bengal can be attributed to flexures on the Moho, each created due to the load of volcanic material.

  19. SADM potentiometer anomaly investigations

    Science.gov (United States)

    Wood, Brian; Mussett, David; Cattaldo, Olivier; Rohr, Thomas

    2005-07-01

    During the last 3 years Contraves Space have been developing a Low Power (1-2kW) Solar Array Drive Mechanism (SADM) aimed at small series production. The mechanism was subjected to two test programmes in order to qualify the SADM to acceptable levels. During the two test programmes, anomalies were experienced with the Potentiometers provided by Eurofarad SA and joint investigations were undertaken to resolve why these anomalies had occurred. This paper deals with the lessons learnt from the failure investigation on the two Eurofarad (rotary) Potentiometer anomaly. The Rotary Potentiometers that were used were fully redundant; using two back to back mounted "plastic tracks". It is a pancake configuration mounted directly to the shaft of the Slip Ring Assembly at the extreme in-board end of the SADM. It has no internal bearings. The anomaly initially manifested itself as a loss of performance in terms of linearity, which was first detected during Thermal Vacuum testing. A subsequent anomaly manifested itself by the complete failure of the redundant potentiometer again during thermal vacuum testing. This paper will follow and detail the chain of events following this anomaly and identifies corrective measures to be applied to the potentiometer design and assembly process.

  20. Global detailed gravimetric geoid. [based on gravity model derived from satellite tracking and surface gravity data

    Science.gov (United States)

    Vincent, S.; Marsh, J. G.

    1973-01-01

    A global detailed gravimetric geoid has been computed by combining the Goddard Space Flight Center GEM-4 gravity model derived from satellite and surface gravity data and surface 1 deg-by-1 deg mean free air gravity anomaly data. The accuracy of the geoid is + or - 2 meters on continents, 5 to 7 meters in areas where surface gravity data are sparse, and 10 to 15 meters in areas where no surface gravity data are available. Comparisons have been made with the astrogeodetic data provided by Rice (United States), Bomford (Europe), and Mather (Australia). Comparisons have also been carried out with geoid heights derived from satellite solutions for geocentric station coordinates in North America, the Caribbean, Europe, and Australia.

  1. Análisis cortical de la cuenca Golfo de SanJorge utilizando anomalías de Bouguer y ondulaciones delgeoide

    Directory of Open Access Journals (Sweden)

    LauraL. Cornaglia

    2009-11-01

    Full Text Available Con la finalidad de evaluar características tales comotipo de corteza y estado isostático de la cuenca sedimentaria del Golfo de SanJorge, analizamos los valores observados de anomalías de Bouguer y deondulaciones geoidales calculadas desde anomalías de aire libre por el métodode fuentes equivalentes, comparándolos con las respuestas de un modelo decuenca compensado hidrostáticamente determinado a partir de la masa topográficade la zona y el relleno sedimentario de la cuenca. Por ambos caminosencontramos un exceso de masas que interpretamos como significativa antirraízcortical y predice subsidencia para el futuro. Otras alternativas como porejemplo la intrusión de densas masas intracorticales, no alteran lasconclusiones.

  2. The Interpretation of Enceladus Gravity (Invited)

    Science.gov (United States)

    Stevenson, D. J.; Iess, L.; Parisi, M.; Ducci, M.; Asmar, S. W.

    2013-12-01

    The determination of the gravity field by Cassini is challenging because of the small mass and short duration of the gravitational interaction, even with data from three encounters. E19 data have been successfully integrated into the multiarc analysis, providing a stable and consistent gravity field. This required inclusion of the effect of atmospheric drag due to Enceladus' plumes. This presentation will deal only with the interpretation of these data. The dominant features of the non-central gravity are large values for the harmonic coefficients J2 and C22 and a much smaller but statistically significant negative J3. The value of J2/C22=3.55×0.05 is moderately in excess of the value of 10/3 that applies to a synchronously rotating body with no lateral variation in material properties. Given the obvious latitudinal variation of Enceladus' physical characteristics, primarily expressed by the activity centered on the South Pole, it is plausible that the deviation from 10/3 arises primarily because of a positive anomaly in J2 rather than any anomaly in C22. However, applying Radau-Darwin to the value of C22/q (where q is the usual dimensionless measure of the centrifugal effect on gravity) implies that the moment of inertia is about 0.34MR^2. The high heat output and indirect inference for liquid water suggests a fully differentiated Enceladus. For the known mean density and any plausible mantle density, this would require an unreasonably low core density of 2.5 g/cc or less. A more realistic interpretation is that both J2 and C22 are modestly non-hydrostatic, but that J2 is affected more because of a negative mass anomaly in the Southern hemisphere, consistent with the observed negative J3. One non-unique way to reconcile the observed gravity with a realistic MOI of 0.32 to 0.33MR^2 is to assume that the rocky core of Enceladus has retained some memory of a previous faster rotational state. Even if the ice shell is perfectly relaxed, this reconciles the data for a

  3. Mariana Arc structure inferred from gravity and seismic data

    Science.gov (United States)

    Sager, W. W.

    1980-10-01

    A two-dimensional gravity model of the lithosphere was constructed along a seismic refraction line near 18°N latitude. Included in the model are crustal layers constrained by seismic refraction results, an estimate of the gravity anomaly caused by the subducting slab, and a model of the low-density mantle beneath the Mariana Trough. With a reasonable anomaly assumed for the slab it is shown that the gravity anomaly caused by the low-density mantle is greatest over the axial bathymetric high and tapers off to the sides. With the bottom of the low-density mantle set at 200 km the density contrast is -0.033 g/cm3. Other depths and densities are tried as well. Several notable anomalies are found on the crustal layers. East of the trench, the crust has been thinned slightly to account for an outer gravity high. Behind the landward wall of the trench, a small, low-density body is modeled to explain a slight offset of the minimum of the free air anomaly from the trench axis. A 50-mGal jump on the observed gravity over the volcanic line is explained by an unusual configuration of the frontal arc Moho.

  4. Silkeborg gravity high revisited: Horizontal extension of the source and its uniqueness

    DEFF Research Database (Denmark)

    Strykowski, Gabriel

    2000-01-01

    Silkeborg Gravity High is a dominant positive gravity anomaly in Denmark. It is associated with an igneous intrusion within the crust. A deep refraction seismic profile locates the top of the intrusion in depths between 11 km and 25 Inn. The present contribution should be read together with two...... of the refraction seismic profile. The present paper is an attempt to extend this result to the rest of the sedimentary basin. Of particular interest is another positive gravity anomaly (another intrusion?) located to the north-west of the studied anomaly. A "final model" obtained here estimates the depth...

  5. Galathea-3: A global marine gravity profile

    DEFF Research Database (Denmark)

    Strykowski, Gabriel; Cordua, Knud Skou; Forsberg, René

    2012-01-01

    topography. This paper reports on the second experiment in which a continuous marine gravity profile along the ship’s route was measured. The focus of the paper is on the practical aspects of such large scale world wide operation and on the challenges of the data processing. Furthermore, the processed free......-air gravity values are compared to 3 global models: EGM96, EGM08 and DNSC08. Even though the along-track resolution of marine data is higher than the resolution in any global gravity model (which influences the direct comparison of the collected marine data to the model) the statistics for the residual free......-air gravity anomalies show, that EGM08 and DNSC08 are better models than EGM96 for all Galathea-3 legs. Some areas along the ships route are quite challenging for modellers....

  6. Galathea-3: A global marine gravity profile

    DEFF Research Database (Denmark)

    Strykowski, Gabriel; Cordua, Knud Skou; Forsberg, René

    2012-01-01

    -air gravity values are compared to 3 global models: EGM96, EGM08 and DNSC08. Even though the along-track resolution of marine data is higher than the resolution in any global gravity model (which influences the direct comparison of the collected marine data to the model) the statistics for the residual free......-air gravity anomalies show, that EGM08 and DNSC08 are better models than EGM96 for all Galathea-3 legs. Some areas along the ships route are quite challenging for modellers....... topography. This paper reports on the second experiment in which a continuous marine gravity profile along the ship’s route was measured. The focus of the paper is on the practical aspects of such large scale world wide operation and on the challenges of the data processing. Furthermore, the processed free...

  7. Major results of gravity and magnetic studies at Yucca Mountain, Nevada

    Science.gov (United States)

    Oliver, H.W.; Ponce, D.A.; Sikora, R.F.; ,

    1991-01-01

    About 4,000 gravity stations have been obtained at Yucca Mountain and vicinity since the beginning of radioactive-waste studies there in 1978. These data have been integrated with data from about 29,000 stations previously obtained in the surrounding region to produce a series of Bouguer and isostatic-residual-gravity maps of the Nevada Test Site and southeastern Nevada. Yucca Mountain is characterized by a WNW-dipping gravity gradient whereby residual values of -10 mGal along the east edge of Yucca Mountain decrease to about -38 mGal over Crater Flat. Using these gravity data, two-dimensional modeling predicted the depth to pre-Cenozoic rocks near the proposed repository to be about 1,220??150 m, an estimate that was subsequently confirmed by drilling to be 1,244 m. Three-dimensional modeling of the gravity low over Crater Flat indicates the thickness of Cenozoic volcanic rocks and alluvial cover to be about 3,000 m. Gravity interpretations also identified the Silent Canyon caldera before geologic mapping of Pahute Mesa and provided an estimate of the thickness of the volcanic section there of nearly 5 km.

  8. Gravity changes in mid-west Greenland from GOCE gravity model and gradient data using ground and airborne gravity

    DEFF Research Database (Denmark)

    Tscherning, Carl Christian; Herceg, Matija; Fredenslund Levinsen, Joanna

    GOCE TRF (terrestrial reference frame) vertical anomalous gradients (Tzz) from two periods have been used to determine gravity anomalies changes in mid-west Greenland, where a large mass-loss has been detected using GRACE (Fig. 1). As additional data were used the GOCE DIR-3 model and ground...... gravity at the coast on solid rock, where no mass loss is expected. The methods of Least-Squares Collocation (LSC) and the Reduced Point Mass (RPM) methods have been used, however only LSC included the ground data....

  9. Identification of Baribis fault - West Java using second vertical derivative method of gravity

    Science.gov (United States)

    Sari, Endah Puspita; Subakti, Hendri

    2015-04-01

    Baribis fault is one of West Java fault zones which is an active fault. In modern era, the existence of fault zone can be observed by gravity anomaly. Baribis fault zone has not yet been measured by gravity directly. Based on this reason, satellite data supported this research. Data used on this research are GPS satellite data downloaded from TOPEX. The purpose of this research is to determine the type and strike of Baribis fault. The scope of this research is Baribis fault zone which lies on 6.50o - 7.50o S and 107.50o - 108.80o E. It consists of 5146 points which one point to another is separated by 1 minute meridian. The method used in this research is the Second Vertical Derivative (SVD) of gravity anomaly. The Second Vertical Derivative of gravity anomaly show as the amplitude of gravity anomaly caused by fault structure which appears as residual anomaly. The zero value of residual gravity anomaly indicates that the contact boundary of fault plane. Second Vertical Derivative method of gravity was applied for identifying Baribis fault. The result of this research shows that Baribis fault has a thrust mechanism. It has a lineament strike varies from 107o to 127o. This result agrees with focal mechanism data of earthquakes occurring on this region based on Global CMT catalogue.

  10. Anomalies without Massless Particles

    CERN Document Server

    Gurlanik, Z

    1994-01-01

    Baryon and lepton number in the standard model are violated by anomalies, even though the fermions are massive. This problem is studied in the context of a two dimensional model. In a uniform background field, fermion production arise from non-adiabatic behavior that compensates for the absence of massless modes. On the other hand, for localized instanton-like configurations, there is an adiabatic limit. In this case, the anomaly is produced by bound states which travel across the mass gap. The sphaleron corresponds to a bound state at the halfway point.

  11. Classical Trace Anomaly

    OpenAIRE

    Farhoudi, M.

    1995-01-01

    We seek an analogy of the mathematical form of the alternative form of Einstein's field equations for Lovelock's field equations. We find that the price for this analogy is to accept the existence of the trace anomaly of the energy-momentum tensor even in classical treatments. As an example, we take this analogy to any generic second order Lagrangian and exactly derive the trace anomaly relation suggested by Duff. This indicates that an intrinsic reason for the existence of such a relation sh...

  12. Congenital laryngeal anomalies,

    Directory of Open Access Journals (Sweden)

    Michael J. Rutter

    2014-12-01

    Full Text Available Introduction: It is essential for clinicians to understand issues relevant to the airway management of infants and to be cognizant of the fact that infants with congenital laryngeal anomalies are at particular risk for an unstable airway. Objectives: To familiarize clinicians with issues relevant to the airway management of infants and to present a succinct description of the diagnosis and management of an array of congenital laryngeal anomalies. Methods: Revision article, in which the main aspects concerning airway management of infants will be analyzed. Conclusions: It is critical for clinicians to understand issues relevant to the airway management of infants.

  13. Cosmological Evidence for Modified Gravity (MOG)

    CERN Document Server

    Moffat, J W

    2015-01-01

    Deviations from the standard $\\Lambda$CDM model motivate an interpretation of early universe cosmology using the Scalar-Tensor-Vector-Gravity (STVG) theory. A constraint analysis carried out by Valentino, Melchiorri and Silk, revealed deviations from the growth of structure predicted by General Relativity, and a lensing anomaly in the angular CMB power spectrum data with a $95\\%$ c.l. The modified gravity (MOG) theory resolves the lensing deviation from the standard model and provides an explanation of the CMB and structure growth data.

  14. Southern Africa Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data base (14,559 records) was received in January 1986. Principal gravity parameters include elevation and observed gravity. The observed gravity values are...

  15. NGS Absolute Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NGS Absolute Gravity data (78 stations) was received in July 1993. Principal gravity parameters include Gravity Value, Uncertainty, and Vertical Gradient. The...

  16. Gravity Anomalies and Estimated Topography Derived from Satellite Altimetry

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In many areas of the global ocean, the depth of the seafloor is not well known because survey lines by ships are hundreds of kilometers apart. Satellites carrying...

  17. Recovery of Gravity Anomalies from Gridded Geoid Height Data.

    Science.gov (United States)

    1976-07-01

    Heiskanen and • Mori tz [5] , - ~2(N) = ~~~ - - ~ Q2 C,~ (28)“ n=K+l n 5 5 where = f S(4’)P~(cos 4’)sin~ d4’, (29) S S C~ is the degree var i ance... Heiskanen , W.A. and H. Moritz; Physical Geodesy; W.H. Freeman and Co.; San Francisco, Cal ifornia; 1967. - - - 6. Moritz, H.; Advanced Least—Squares Methods

  18. The reactor antineutrino anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Haser, Julia; Buck, Christian; Lindner, Manfred [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)

    2016-07-01

    Major discoveries were made in the past few years in the field of neutrino flavour oscillation. Nuclear reactors produce a clean and intense flux of electron antineutrinos and are thus an essential neutrino source for the determination of oscillation parameters. Most currently the reactor antineutrino experiments Double Chooz, Daya Bay and RENO have accomplished to measure θ{sub 13}, the smallest of the three-flavour mixing angles. In the course of these experiments two anomalies emerged: (1) the reanalysis of the reactor predictions revealed a deficit in experimentally observed antineutrino flux, known as the ''reactor antineutrino anomaly''. (2) The high precision of the latest generation of neutrino experiments resolved a spectral shape distortion relative to the expected energy spectra. Both puzzles are yet to be solved and triggered new experimental as well as theoretical studies, with the search for light sterile neutrinos as most popular explanation for the flux anomaly. This talk outlines the two reactor antineutrino anomalies. Discussing possible explanations for their occurrence, recent and upcoming efforts to solve the reactor puzzles are highlighted.

  19. Astrometric solar system anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Nieto, Michael Martin [Los Alamos National Laboratory; Anderson, John D [PROPULSION LABORATORY

    2009-01-01

    There are at least four unexplained anomalies connected with astrometric data. perhaps the most disturbing is the fact that when a spacecraft on a flyby trajectory approaches the Earth within 2000 km or less, it often experiences a change in total orbital energy per unit mass. next, a secular change in the astronomical unit AU is definitely a concern. It is increasing by about 15 cm yr{sup -1}. The other two anomalies are perhaps less disturbing because of known sources of nongravitational acceleration. The first is an apparent slowing of the two Pioneer spacecraft as they exit the solar system in opposite directions. Some astronomers and physicists are convinced this effect is of concern, but many others are convinced it is produced by a nearly identical thermal emission from both spacecraft, in a direction away from the Sun, thereby producing acceleration toward the Sun. The fourth anomaly is a measured increase in the eccentricity of the Moon's orbit. Here again, an increase is expected from tidal friction in both the Earth and Moon. However, there is a reported unexplained increase that is significant at the three-sigma level. It is produent to suspect that all four anomalies have mundane explanations, or that one or more anomalies are a result of systematic error. Yet they might eventually be explained by new physics. For example, a slightly modified theory of gravitation is not ruled out, perhaps analogous to Einstein's 1916 explanation for the excess precession of Mercury's perihelion.

  20. The Pioneer Anomaly

    Directory of Open Access Journals (Sweden)

    Viktor T. Toth

    2010-09-01

    Full Text Available Radio-metric Doppler tracking data received from the Pioneer 10 and 11 spacecraft from heliocentric distances of 20-70 AU has consistently indicated the presence of a small, anomalous, blue-shifted frequency drift uniformly changing with a rate of ~6 × 10–9 Hz/s. Ultimately, the drift was interpreted as a constant sunward deceleration of each particular spacecraft at the level of aP = (8.74 ± 1.33 × 10–10 m/s2. This apparent violation of the Newton's gravitational inverse square law has become known as the Pioneer anomaly; the nature of this anomaly remains unexplained. In this review, we summarize the current knowledge of the physical properties of the anomaly and the conditions that led to its detection and characterization. We review various mechanisms proposed to explain the anomaly and discuss the current state of efforts to determine its nature. A comprehensive new investigation of the anomalous behavior of the two Pioneers has begun recently. The new efforts rely on the much-extended set of radio-metric Doppler data for both spacecraft in conjunction with the newly available complete record of their telemetry files and a large archive of original project documentation. As the new study is yet to report its findings, this review provides the necessary background for the new results to appear in the near future. In particular, we provide a significant amount of information on the design, operations and behavior of the two Pioneers during their entire missions, including descriptions of various data formats and techniques used for their navigation and radio-science data analysis. As most of this information was recovered relatively recently, it was not used in the previous studies of the Pioneer anomaly, but it is critical for the new investigation.

  1. Gravity Variation in Siberia: GRACE Observation and Possible Causes

    Directory of Open Access Journals (Sweden)

    Benjamin Fong Chao

    2011-01-01

    Full Text Available We report the finding, from the GRACE observation, of an increasing trend in the gravity anomaly in Siberia at the rate of up to 0.5 ugal yr-1 during 2003/1 - 2009/12, in the backdrop of a negative anomaly of magnitude on the order of ~-10 mgal. In consideration of the non-uniqueness of the gravitational inverse problem, we examine in some detail the various possible geophysical causes to explain the increasing gravity signal. We find two geophysical mechanisms being the most plausible, namely the melting of permafrost and the GIA post-glacial rebound. We conclude that these two mechanisms cannot be ruled out as causes for the regional gravity increase in Siberia, based on gravity data and in want of ancillary geophysical data in the region. More definitive identification of the contributions of the various causes awaits further studies.

  2. Solar-system tests of the relativistic gravity

    CERN Document Server

    Ni, Wei-Tou

    2016-01-01

    In 1859, Le Verrier discovered the Mercury perihelion advance anomaly. This anomaly turned out to be the first relativistic-gravity effect observed. During the 156 years to 2016, the precisions and accuracies of laboratory and space experiments, and of astrophysical and cosmological observations on relativistic gravity have been improved by 3-4 orders of magnitude. The improvements have been mainly from optical observations at first followed by radio observations. The achievements for the past 50 years are from radio Doppler tracking and radio ranging together with lunar laser ranging. At the present, the radio observations and lunar laser ranging experiments are similar in the accuracy of testing relativistic gravity. We review and summarize the present status of solar-system tests of relativistic gravity. With planetary laser ranging, spacecraft laser ranging and interferometric laser ranging (laser Doppler ranging) together with the development of drag-free technology, the optical observations will improve...

  3. Digital Isostatic Gravity Map of the Nevada Test Site and Vicinity, Nye, Lincoln, and Clark Counties, Nevada, and Inyo County, California

    Science.gov (United States)

    Ponce, David A.; Mankinen, E.A.; Davidson, J.G.; Morin, R.L.; Blakely, R.J.

    2000-01-01

    An isostatic gravity map of the Nevada Test Site area was prepared from publicly available gravity data (Ponce, 1997) and from gravity data recently collected by the U.S. Geological Survey (Mankinen and others, 1999; Morin and Blakely, 1999). Gravity data were processed using standard gravity data reduction techniques. Southwest Nevada is characterized by gravity anomalies that reflect the distribution of pre-Cenozoic carbonate rocks, thick sequences of volcanic rocks, and thick alluvial basins. In addition, regional gravity data reveal the presence of linear features that reflect large-scale faults whereas detailed gravity data can indicate the presence of smaller-scale faults.

  4. Second Gravity

    CERN Document Server

    Nash, Patrick Lee

    2010-01-01

    A theory of a new gravitational interaction is described. This theory follows naturally from a new Lagrangian formulation of Maxwell's theory for photons and electrons (and positrons) whose associated Euler Lagrange equations imply the conventional Maxwell equations, but which possesses new \\textbf{\\emph{bosonic}} spinor degrees of freedom that may be associated with a new type of fundamental gravitational interaction. The precise character of this gravitational interaction with a photon vector potential is explicitly defined in terms of a local U(1)-invariant Lagrangian in Eq.[\\ref{Lagrangian3}]. However in Section \\ref{ssec:Simple-Cosmolo-Model}, in order to parallel the well known Friedmann model in cosmology, a phenomenological description of the new gravitational interaction coupled to Newton-Einstein gravity that is sourced by an ideal fluid is discussed. % % To lay the foundation for a description of the new gravitational interaction our new formulation of Maxwell's theory must first be described. It i...

  5. Gravity's Rainbow

    CERN Document Server

    Magueijo, J; Magueijo, Joao; Smolin, Lee

    2004-01-01

    Non-linear special relativity (or doubly special relativity) is a simple framework for encoding properties of flat quantum space-time. In this paper we show how this formalism may be generalized to incorporate curvature (leading to what might be called ``doubly general relativity''). We first propose a dual to non-linear realizations of relativity in momentum space, and show that for such a dual the space-time invariant is an energy-dependent metric. This leads to an energy-dependent connection and curvature, and a simple modification to Einstein's equations. We then examine solutions to these equations. We find the counterpart to the cosmological metric, and show how cosmologies based upon our theory of gravity may solve the ``horizon problem''. We discuss the Schwarzchild solution, examining the conditions for which the horizon is energy dependent. We finally find the weak field limit.

  6. Network Gravity

    CERN Document Server

    Lombard, John

    2016-01-01

    We introduce the construction of a new framework for probing discrete emergent geometry and boundary-boundary observables based on a fundamentally a-dimensional underlying network structure. Using a gravitationally motivated action with Forman weighted combinatorial curvatures and simplicial volumes relying on a decomposition of an abstract simplicial complex into realized embeddings of proper skeletons, we demonstrate properties such as a minimal volume-scale cutoff, the necessity of a positive-definite cosmological constant as a regulator for non-degenerate geometries, and naturally emergent simplicial structures from Metropolis network evolution simulations with no restrictions on attachment rules or regular building blocks. We see emergent properties which echo results from both the spinfoam formalism and causal dynamical triangulations in quantum gravity, and provide analytical and numerical results to support the analogy. We conclude with a summary of open questions and intent for future work in develop...

  7. Models for Near-Ridge Seamounts Constrained by Gravity Observations

    Science.gov (United States)

    Kostlan, M.; McClain, J. S.

    2009-12-01

    In an analysis of the seamount chain centered at 105°20’W, 9°05’N, west of the East Pacific Rise and south of the Clipperton transform fault, we compared measured free air gravity anomaly values with modeled gravity anomaly values. The seamount chain contains approximately ten seamounts trending roughly east-west, perpendicular to the mid-ocean ridge axis. They lie on lithosphere between 1.5 and 2.7 Ma in age. Based on its position and age, the seamount chain appears to be associated with the 9°03’N overlapping spreading center (OSC). This OSC includes several associated seamount chains, aligned generally east-west, and of varying ages. The observed data include both free air gravity anomalies and bathymetry of the seamount chain, provided by the National Geophysical Data Center (NGDC), and was selected because the gravity measurements are relatively well covered. We used a series of different structural models of the oceanic crust and mantle to generate gravity anomalies associated with the sea mounts. The models utilize Parker’s algorithm to generate these free air gravity anomalies. We compute a gravity residual by subtracting the calculated anomalies from the observed anomalies. The models include one with a crust of a constant thickness (6 km), while another introduces a constant-thickness Layer 2A. In contrast, a third model included a variable thickness crust, where the thickness is governed by Airy compensation. The calculations show that the seamounts must be partly compensated, because the constant-thickness models predict a high negative residual (or they produce an anomaly which is too high). In contrast, the Airy compensation model produces an anomaly that is too low at the longer wavelengths, indicating that the lithosphere must have some strength, and that flexure must be supporting part of the load of the seamount chain. This contrasts with earlier studies that indicate young, near-ridge seamounts do not result in flexure of the thin

  8. Mars gravity - High-resolution results from Viking Orbiter 2

    Science.gov (United States)

    Sjogren, W. L.

    1979-01-01

    Doppler radio-tracking data have provided detailed measurements for a Martian gravity map extending from 30 deg S to 65 deg N in latitude and through 360 deg of longitude. The feature resolution is approximately 500 km, revealing a huge anomaly associated with Olympus Mons, a mascon in Isidis Planitia, and other anomalies correlated with volcanic structure. Olympus Mons has been modeled with a 600 km surface disk having a mass of 8.7 times 10 to the 21st grams.

  9. Newtonian gravity in loop quantum gravity

    OpenAIRE

    Smolin, Lee

    2010-01-01

    We apply a recent argument of Verlinde to loop quantum gravity, to conclude that Newton's law of gravity emerges in an appropriate limit and setting. This is possible because the relationship between area and entropy is realized in loop quantum gravity when boundaries are imposed on a quantum spacetime.

  10. Newtonian gravity in loop quantum gravity

    OpenAIRE

    Smolin, Lee

    2010-01-01

    We apply a recent argument of Verlinde to loop quantum gravity, to conclude that Newton's law of gravity emerges in an appropriate limit and setting. This is possible because the relationship between area and entropy is realized in loop quantum gravity when boundaries are imposed on a quantum spacetime.

  11. Waste Isolation Pilot Plant (WIPP) site gravity survey and interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Barrows, L.J.; Fett, J.D.

    1983-04-01

    A portion of the WIPP site has been extensively surveyed with high-precision gravity. The main survey (in T22S, R31E) covered a rectangular area 2 by 4-1/3 mi encompassing all of WIPP site Zone II and part of the disturbed zone to the north of the site. Stations were at 293-ft intervals along 13 north-south lines 880 ft apart. The data are considered accurate to within a few hundredths of a milligal. Long-wavelength gravity anomalies correlate well with seismic time structures on horizons below the Castile Formation. Both the gravity anomalies and the seismic time structures are interpreted as resulting from related density and velocity variations within the Ochoan Series. Shorter wavelength negative gravity anomalies are interpreted as resulting from bulk density alteration in the vicinity of karst conduits. The WIPP gravity survey was unable to resolve low-amplitude, long-wavelength anomalies that should result from the geologic structures within the disturbed zone. It did indicate the degree and character of karst development within the surveyed area.

  12. Density heterogeneity of the North American upper mantle from satellite gravity and a regional crustal model

    DEFF Research Database (Denmark)

    Herceg, Matija; Artemieva, Irina; Thybo, Hans

    2014-01-01

    and by introducing variations into the crustal structure which corresponds to the uncertainty of its resolution by highquality and low-quality seismic models. We examine the propagation of these uncertainties into determinations of lithospheric mantle density. Given a relatively small range of expected density......We present a regional model for the density structure of the North American upper mantle. The residual mantle gravity anomalies are based on gravity data derived from the GOCE geopotential models with crustal correction to the gravity field being calculated from a regional crustal model. We analyze...... how uncertainties and errors in the crustal model propagate from crustal densities to mantle residual gravity anomalies and the density model of the upper mantle. Uncertainties in the residual upper (lithospheric) mantle gravity anomalies result from several sources: (i) uncertainties in the velocity-density...

  13. The Impact of Geological Structures On The Gravity Field

    Science.gov (United States)

    Marti, U.

    In general, a uniform standard density value is used for the calculation of topographic effects for gravity field modelling in Switzerland. Only a limited number of promi- nent mass anomalies is treated with an individual density. In some regions this causes problems in predicting the surface gravity or the deflections of the vertical. An actual example is the construction of a new 57 km railway tunnel, where accurate deflec- tions of the vertical are needed for the orientation of gyroscope measurements. It was rather doubtful if our standard national gravity field model would fulfil the accuracy demands. Therefore, a refinement of the gravity field model was performed by digi- tising all the relevant geological structures in the vicinity of the planned tunnel. This lead to a 3D density model of irregularly shaped polyhedrons. Their influence on the gravity field (potential, gravity, deflections of the vertical and their first derivatives) are calculated rigorously. First results of this study are now available and reveal that the influences of the geological structures on the deflections of the vertical and on gravity are rather small (1 - 2 arcsec, 3 - 5 mgal) in the investigated region and they are at the limit of significance for the technical applications of levelling or gyroscope mea- surements. The largest effects are caused by quaternary sediments with a large density contrast and by some gneiss structures, which show only a small density contrast but their total mass can cause considerable anomalies in the gravity field.

  14. Toward Joint Inversion of Gravity and Dyanamics

    Science.gov (United States)

    Jacoby, W. R.

    To better understand geodynamic processes as seafloor spreading, plumes, subduction, and isostatic adjustment, gravity is inverted with "a prioriinformation from topography/bathymetry, seismic structure and dynamic models. Examples are subduction of the Juan de Fuca plate below Vancouver Island, the passive Black Sea­Turkey margin and Iceland ridge-plume interaction. Gravity and other data are averaged 50 km wide strips. Mass balances are estimated (showing also that the free air anomaly is misleading for narrow structures). The mass balances represent plate forces and plate bending, affecting the gravity signals and the isostatic state of continental margins and ridge-plume effects, which are highly correlated in space and cannot be separated without a priori information from modelling. The examples from widely different tectonic situations demonstrate that the art of regional-scale gravity inversion requires extensive background knowledge and inclusion of dynamic processes. It is difficult to conceive any formal, globally applicable procedure taking care of this; it is even a question, what is data, what a priori information? They are not distinguishable if all are included as foreward routines. The "accuracy" of models cannot be perfectly determined, if the "real" mass distribution is not known ­ if known, gravity inversion would be unnecessary. In reality only guesses are possible on the basis of observations and physical laws governing geodynamics. A priori information and gravity data limit the resolution of gravity inversion. Different model types are indistinguishable because adjustments within their parameter uncertainties permit a good fit. But gravity excludes wrong models (Karl Popper: science evolves by falsification of wrong models), and precise gravity guides and defines aims, targets and strategies for new observations.

  15. XYY chromosome anomaly and schizophrenia.

    Science.gov (United States)

    Rajagopalan, M; MacBeth, R; Varma, S L

    1998-02-07

    Sex chromosome anomalies have been associated with psychoses, and most of the evidence is linked to the presence of an additional X chromosome. We report a patient with XYY chromosome anomaly who developed schizophrenia.

  16. 6D SCFTs and gravity

    Energy Technology Data Exchange (ETDEWEB)

    Zotto, Michele Del [Jefferson Physical Laboratory, Harvard University, Cambridge, MA 02138 (United States); Heckman, Jonathan J. [Department of Physics, University of North Carolina, Chapel Hill, NC 27599 (United States); Morrison, David R. [Departments of Mathematics and Physics, University of California, Santa Barbara, Santa Barbara, CA 93106 (United States); Park, Daniel S. [Simons Center for Geometry and Physics, Stony Brook University, Stony Brook, NY 11794-3636 (United States)

    2015-06-23

    We study how to couple a 6D superconformal field theory (SCFT) to gravity. In F-theory, the models in question are obtained working on the supersymmetric background ℝ{sup 5,1}×B where B is the base of a compact elliptically fibered Calabi-Yau threefold in which two-cycles have contracted to zero size. When the base has orbifold singularities, we find that the anomaly polynomial of the 6D SCFTs can be understood purely in terms of the intersection theory of fractional divisors: the anomaly coefficient vectors are identified with elements of the orbifold homology. This also explains why in certain cases, the SCFT can appear to contribute a “fraction of a hypermultiplet” to the anomaly polynomial. Quantization of the lattice of string charges also predicts the existence of additional light states beyond those captured by such fractional divisors. This amounts to a refinement to the lattice of divisors in the resolved geometry. We illustrate these general considerations with explicit examples, focusing on the case of F-theory on an elliptic Calabi-Yau threefold with base ℙ{sup 2}/ℤ{sub 3}.

  17. 6D SCFTs and Gravity

    CERN Document Server

    Del Zotto, Michele; Morrison, David R; Park, Daniel S

    2014-01-01

    We study how to couple a 6D superconformal field theory (SCFT) to gravity. In F-theory, the models in question are obtained working on the supersymmetric background R^{5,1} x B where B is the base of a compact elliptically fibered Calabi-Yau threefold in which two-cycles have contracted to zero size. When the base has orbifold singularities, we find that the anomaly polynomial of the 6D SCFTs can be understood purely in terms of the intersection theory of fractional divisors: the anomaly coefficient vectors are identified with elements of the orbifold homology. This also explains why in certain cases, the SCFT can appear to contribute a "fraction of a hypermultiplet" to the anomaly polynomial. Quantization of the lattice of string charges also predicts the existence of additional light states beyond those captured by such fractional divisors. This amounts to a refinement to the lattice of divisors in the resolved geometry. We illustrate these general considerations with explicit examples, focusing on the case...

  18. 6D SCFTs and gravity

    Science.gov (United States)

    Del Zotto, Michele; Heckman, Jonathan J.; Morrison, David R.; Park, Daniel S.

    2015-06-01

    We study how to couple a 6D superconformal field theory (SCFT) to gravity. In F-theory, the models in question are obtained working on the supersymmetric background 5,1 × B where B is the base of a compact elliptically fibered Calabi-Yau threefold in which two-cycles have contracted to zero size. When the base has orbifold singularities, we find that the anomaly polynomial of the 6D SCFTs can be understood purely in terms of the intersection theory of fractional divisors: the anomaly coefficient vectors are identified with elements of the orbifold homology. This also explains why in certain cases, the SCFT can appear to contribute a "fraction of a hypermultiplet" to the anomaly polynomial. Quantization of the lattice of string charges also predicts the existence of additional light states beyond those captured by such fractional divisors. This amounts to a refinement to the lattice of divisors in the resolved geometry. We illustrate these general considerations with explicit examples, focusing on the case of F-theory on an elliptic Calabi-Yau threefold with base.

  19. Discrete R Symmetries and Anomalies

    OpenAIRE

    Michael Dine(Santa Cruz Institute for Particle Physics and Department of Physics, Santa Cruz CA 95064, U.S.A.); Angelo Monteux(Santa Cruz Institute for Particle Physics, University of California Santa Cruz, 1156 High Street, Santa Cruz, U.S.A.)

    2012-01-01

    We comment on aspects of discrete anomaly conditions focussing particularly on $R$ symmetries. We review the Green-Schwarz cancellation of discrete anomalies, providing a heuristic explanation why, in the heterotic string, only the "model-independent dilaton" transforms non-linearly under discrete symmetries; this argument suggests that, in other theories, multiple fields might play a role in anomaly cancellations, further weakening any anomaly constraints at low energies. We provide examples...

  20. Cosmological Hints of Modified Gravity ?

    CERN Document Server

    Di Valentino, Eleonora; Silk, Joseph

    2016-01-01

    The recent measurements of Cosmic Microwave Background temperature and polarization anisotropies made by the Planck satellite have provided impressive confirmation of the $\\Lambda$CDM cosmological model. However interesting hints of slight deviations from $\\Lambda$CDM have been found, including a $95 \\%$ c.l. preference for a "modified gravity" structure formation scenario. In this paper we confirm the preference for a modified gravity scenario from Planck 2015 data, find that modified gravity solves the so-called $A_{lens}$ anomaly in the CMB angular spectrum, and constrains the amplitude of matter density fluctuations to $\\sigma_8=0.815_{-0.048}^{+0.032}$, in better agreement with weak lensing constraints. Moreover, we find a lower value for the reionization optical depth of $\\tau=0.059\\pm0.020$ (to be compared with the value of $\\tau= 0.079 \\pm 0.017$ obtained in the standard scenario), more consistent with recent optical and UV data. We check the stability of this result by considering possible degeneraci...

  1. Induced gravity II: grand unification

    Science.gov (United States)

    Einhorn, Martin B.; Jones, D. R. Timothy

    2016-05-01

    As an illustration of a renormalizable, asymptotically-free model of induced gravity, we consider an SO(10) gauge theory interacting with a real scalar multiplet in the adjoint representation. We show that dimensional transmutation can occur, spontaneously breaking SO(10) to SU(5)⊗U(1), while inducing the Planck mass and a positive cosmological constant, all proportional to the same scale v. All mass ratios are functions of the values of coupling constants at that scale. Below this scale (at which the Big Bang may occur), the model takes the usual form of Einstein-Hilbert gravity in de Sitter space plus calculable corrections. We show that there exist regions of parameter space in which the breaking results in a local minimum of the effective action giving a positive dilaton (mass)2 from two-loop corrections associated with the conformal anomaly. Furthermore, unlike the singlet case we considered previously, some minima lie within the basin of attraction of the ultraviolet fixed point. Moreover, the asymptotic behavior of the coupling constants also lie within the range of convergence of the Euclidean path integral, so there is hope that there will be candidates for sensible vacua. Although open questions remain concerning unitarity of all such renormalizable models of gravity, it is not obvious that, in curved backgrounds such as those considered here, unitarity is violated. In any case, any violation that may remain will be suppressed by inverse powers of the reduced Planck mass.

  2. Lineal gravity from planar gravity

    CERN Document Server

    Achúcarro, A

    1993-01-01

    We show how to obtain the two-dimensional black hole action by dimensional reduction of the three-dimensional Einstein action with a non-zero cosmological constant. Starting from the Chern-Simons formulation of 2+1 gravity, we obtain the 1+1 dimensional gauge formulation given by Verlinde. Remarkably, the proposed reduction shares the relevant features of the formulation of Cangemi and Jackiw, without the need for a central charge in the algebra. We show how the Lagrange multipliersin these formulations appear naturally as the remnants of the three dimensional connection associated to symmetries that have been lostin the dimensional reduction. The proposed dimensional reduction involves a shift in the three dimensional connection whose effect is to make the length of the extra dimension infinite.

  3. Anomaly-safe discrete groups

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Mu-Chun, E-mail: muchunc@uci.edu [Department of Physics and Astronomy, University of California, Irvine, CA 92697-4575 (United States); Fallbacher, Maximilian, E-mail: m.fallbacher@tum.de [Physik–Department T30, Technische Universität München, James–Franck–Straße 1, 85748 Garching (Germany); Ratz, Michael, E-mail: michael.ratz@tum.de [Physik–Department T30, Technische Universität München, James–Franck–Straße 1, 85748 Garching (Germany); Trautner, Andreas, E-mail: andreas.trautner@tum.de [Physik–Department T30, Technische Universität München, James–Franck–Straße 1, 85748 Garching (Germany); Excellence Cluster Universe, Boltzmannstraße 2, 85748 Garching (Germany); Vaudrevange, Patrick K.S., E-mail: patrick.vaudrevange@tum.de [Excellence Cluster Universe, Boltzmannstraße 2, 85748 Garching (Germany); TUM Institute for Advanced Study, Lichtenbergstraße 2a, 85748 Garching (Germany); Arnold Sommerfeld Center for Theoretical Physics, Ludwig–Maximilians–Universität München, Theresienstraße 37, 80333 München (Germany)

    2015-07-30

    We show that there is a class of finite groups, the so-called perfect groups, which cannot exhibit anomalies. This implies that all non-Abelian finite simple groups are anomaly-free. On the other hand, non-perfect groups generically suffer from anomalies. We present two different ways that allow one to understand these statements.

  4. Anomaly-safe discrete groups

    Directory of Open Access Journals (Sweden)

    Mu-Chun Chen

    2015-07-01

    Full Text Available We show that there is a class of finite groups, the so-called perfect groups, which cannot exhibit anomalies. This implies that all non-Abelian finite simple groups are anomaly-free. On the other hand, non-perfect groups generically suffer from anomalies. We present two different ways that allow one to understand these statements.

  5. Earthquake prediction from China's mobile gravity data

    Directory of Open Access Journals (Sweden)

    Yiqing Zhu

    2015-03-01

    Full Text Available The relation between plate tectonics and earthquake evolution is analyzed systematically on the basis of 1998–2010 absolute and relative gravity data from the Crustal Movement Observation Network of China. Most earthquakes originated in the plate boundary or within the fault zone. Tectonic deformation was most intense and exhibited discontinuity within the tectonically active fault zone because of the differential movement; the stress accumulation produced an abrupt gravity change, which was further enhanced by the earthquake. The gravity data from mainland China since 2000 obviously reflected five major earthquakes (Ms > 7, all of which were better reflected than before 2000. Regional gravity anomalies and a gravity gradient change were observed in the area around the epicenter about 2 or 3 years before the earthquake occurred, suggesting that gravity change may be a seismic precursor. Furthermore, in this study, the medium-term predictions of the Ms7.3 Yutian, Ms8.0 Wenchuan, and Ms7.0 Lushan earthquakes are analytically presented and evaluated, especially to estimate location of earthquake.

  6. Craniofacial anomalies in twins.

    Science.gov (United States)

    Keusch, C F; Mulliken, J B; Kaplan, L C

    1991-01-01

    Studies of twins provide insight into the relative contribution of genetic and environmental factors in the causality of structural anomalies. Thirty-five affected twin pairs were identified from a group of 1114 patients with congenital craniofacial deformities evaluated from 1972 to 1989. Forty-three of these 70 twins exhibited one or more craniofacial anomalies; these were analyzed for dysmorphic characteristics, zygosity, concordance, and family history. The anomalies were categorized into two groups: malformations and deformations. The malformations (n = 36) included hemifacial microsomia (n = 10), cleft lip and palate (n = 8), cleft palate (n = 4), rare facial cleft (n = 2), craniosynostosis (n = 2), Binder syndrome (n = 2), Treacher Collins syndrome (n = 2), craniopagus (n = 2), CHARGE association (n = 1), frontonasal dysplasia (n = 2), and constricted ears (n = 1). The deformations (n = 7) included plagiocephaly (n = 5), hemifacial hypoplasia (n = 1), and micrognathia (n = 1). Twenty-one monozygotic and 14 dizygotic twin pairs were identified. The concordance rate was 33 percent for monozygotic twins and 7 percent for dizygotic twins.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Dimensionally reduced gravity theories are asymptotically safe

    Energy Technology Data Exchange (ETDEWEB)

    Niedermaier, Max E-mail: max@phys.univ-tours.fr

    2003-11-24

    4D Einstein gravity coupled to scalars and abelian gauge fields in its 2-Killing vector reduction is shown to be quasi-renormalizable to all loop orders at the expense of introducing infinitely many essential couplings. The latter can be combined into one or two functions of the 'area radius' associated with the two Killing vectors. The renormalization flow of these couplings is governed by beta functionals expressible in closed form in terms of the (one coupling) beta function of a symmetric space sigma-model. Generically the matter coupled systems are asymptotically safe, that is the flow possesses a non-trivial UV stable fixed point at which the trace anomaly vanishes. The main exception is a minimal coupling of 4D Einstein gravity to massless free scalars, in which case the scalars decouple from gravity at the fixed point.

  8. Geoid of Nepal from airborne gravity survey

    DEFF Research Database (Denmark)

    Forsberg, René; Olesen, Arne Vestergaard; Einarsson, Indriði

    2011-01-01

    An airborne gravity survey of Nepal was carried out December 2010 in a cooperation between DTU-Space, Nepal Survey Department, and NGA, USA. The entire country was flown with survey lines spaced 6 nm with a King Air aircraft, with a varying flight altitude from 4 to 10 km. The survey operations...... were a major challenge due to excessive jet streams at altitude as well as occasional excessive mountain waves. Despite the large 400 mGal+ range of gravity anomaly changes from the Indian plains to the Tibetan Plateau, results appear accurate to a few mGal, with proper evaluation from cross...... as well as recent GPS-heights of Mt. Everest. The new airborne data also provide an independent validation of GOCE gravity field results at the local ~100 km resolution scale....

  9. Loop quantum gravity as an effective theory

    CERN Document Server

    Bojowald, Martin

    2012-01-01

    As a canonical and generally covariant gauge theory, loop quantum gravity requires special techniques to derive effective actions or equations. If the proper constructions are taken into account, the theory, in spite of considerable ambiguities at the dynamical level, allows for a meaningful phenomenology to be developed, by which it becomes falsifiable. The tradiational problems plaguing canonical quantum-gravity theories, such as the anomaly issue or the problem of time, can be overcome or are irrelevant at the effective level, resulting in consistent means of physical evaluations. This contribution presents aspects of canonical equations and related notions of (deformed) space-time structures and discusses implications in loop quantum gravity, such as signature change at high density from holonomy corrections, and falsifiability thanks to inverse-triad corrections.

  10. E-gravity theory

    OpenAIRE

    Linker, Patrick

    2016-01-01

    A couple of quantum gravity theories were proposed to make theoretical predictions about the behavior of gravity. The most recent approach to quantum gravity, called E-theory, is proposed mathematical, but there is not formulated much about what dynamics of gravity this theory proposes. This research paper treats the main results of the application of E-theory to General relativity involving conservation laws and scattering of particles in presence of gravity. Also the low-energy limit of thi...

  11. Assessment of EGM2008 using GPS/levelling and free-air gravity ...

    African Journals Online (AJOL)

    ge

    This paper carries out an initial assessment of EGM2008 over Nairobi County and its evirons using observed free-air gravity anomalies and GPS/levelling geoid undulations. ... Surveys, United Nations Geothermal Project, British Petroleum, Burmah Oil ... research. A compilation of such gravity data sets would improve geoid ...

  12. Geoid Model and Altitude at Mount Aconcagua Region (Argentina) from Airborne Gravity Survey

    DEFF Research Database (Denmark)

    Cristina Pacino, M.; Jaeger, Eric; Forsberg, René

    2014-01-01

    08 model. A geoid model was computed from those airborne gravity anomalies and land gravimetry data. A remove-restore method was used for terrain and global spherical harmonic reference models, with the residual gravity field signal downward continued by least-squares collocation, and the geoid...

  13. Estimation of local planetary gravity fields using line of sight gravity data and an integral operator

    Science.gov (United States)

    Barriot, J. P.; Balmino, G.

    1992-09-01

    A novel method is presented for mapping line-of-sight gravity data (LOSGD) joining planetary probes and observers during Doppler tracking operations, with a view to geodetic and geophysical applications. LOSGD are in this case mapped as gravity anomalies along a radial direction, at constant altitude, using an inversion procedure in conjunction with a Tikhonov-Arsenine regularization method. The application of different regularization-parameter choices to a synthetic case is followed by application to the real case of Pioneer-Venus orbiter data for Venus' Gula Mons.

  14. Gravity Fields and Interiors of the Saturnian Satellites

    Science.gov (United States)

    Rappaport, N. J.; Armstrong, J. W.; Asmar, Sami W.; Iess, L.; Tortora, P.; Somenzi, L.; Zingoni, F.

    2006-01-01

    This viewgraph presentation reviews the Gravity Science Objectives and accomplishments of the Cassini Radio Science Team: (1) Mass and density of icy satellites (2) Quadrupole field of Titan and Rhea (3) Dynamic Love number of Titan (4) Moment of inertia of Titan (in collaboration with the Radar Team) (5) Gravity field of Saturn. The proposed measurements for the extended tour are: (1) Quadrupole field of Enceladus (2) More accurate measurement of Titan k2 (3) Local gravity/topography correlations for Iapetus (4) Verification/disproof of "Pioneer anomaly".

  15. Gravity and geoid model for South America

    Science.gov (United States)

    Blitzkow, Denizar; Oliveira Cancoro de Matos, Ana Cristina; do Nascimento Guimarães, Gabriel; Pacino, María Cristina; Andrés Lauría, Eduardo; Nunes, Marcelo; Castro Junior, Carlos Alberto Correia e.; Flores, Fredy; Orihuela Guevara, Nuris; Alvarez, Ruber; Napoleon Hernandez, José

    2016-04-01

    In the last 20 years, South America Gravity Studies (SAGS) project has undertaken an ongoing effort in establishing the fundamental gravity network (FGN); terrestrial, river and airborne relative gravity densifications; absolute gravity surveys and geoid (quasi-geoid) model computation for South America. The old FGN is being replaced progressively by new absolute measurements in different countries. In recent years, Argentina, Bolivia, Brazil, Ecuador, Paraguay and Venezuela organizations participated with relative gravity surveys. Taking advantage of the large amount of data available, GEOID2015 model was developed for 15°N and 57°S latitude and 30 ° W and 95°W longitude based on EIGEN-6C4 until degree and order 200 as a reference field. The ocean area was completed with mean free air gravity anomalies derived from DTU10 model. The short wavelength component was estimated using FFT. The global gravity field models EIGEN-6C4, DIR_R5 were used for comparison with the new model. The new geoid model has been evaluated against 1,319 GPS/BM, in which 592 are located in Brazil and the reminder in other countries. The preliminary RMS difference between GPS/BM and GEOID2015 throughout South America and in Brazil is 46 cm and 17 cm, respectively. New activities are carrying out with the support of the IGC (Geographic and Cartographic Institute) under the coordination of EPUSP/LTG and CENEGEO (Centro de Estudos de Geodesia). The new project aims to establish new gravity points with the A-10 absolute gravimeter in South America. Recent such surveys occurred in São Paulo state, Argentina and Venezuela.

  16. Chameleon effect and the Pioneer anomaly

    CERN Document Server

    Anderson, John D

    2012-01-01

    The possibility that the apparent anomalous acceleration of the Pioneer 10 and 11 spacecraft may be due, at least in part, to a chameleon field effect is examined. A small spacecraft, with no thin shell, can have a more pronounced anomalous acceleration than a large compact body, such as a planet, having a thin shell. The chameleon effect seems to present a natural way to explain the differences seen in deviations from pure Newtonian gravity for a spacecraft and for a planet, and appears to be compatible with the basic features of the Pioneer anomaly, including the appearance of a jerk term. However, estimates of the size of the chameleon effect indicate that its contribution to the anomalous acceleration is negligible. We conclude that any inverse-square component in the anomalous acceleration is more likely caused by an unmodelled reaction force from solar-radiation pressure, rather than a chameleon field effect.

  17. Improving compact gravity inversion using new weighting functions

    Science.gov (United States)

    Ghalehnoee, Mohammad Hossein; Ansari, Abdolhamid; Ghorbani, Ahmad

    2017-01-01

    We have developed a method to estimate the geometry, location and densities of anomalies coming from 2-D gravity data based on compact gravity inversion technique. Compact gravity inversion is simple, fast and user friendly but severely depends on the number of model parameters, that is, by increasing the model parameters, the anomalies tend to concentrate near the surface. To overcome this ambiguity new weighting functions based on density contrast, depth, and compactness models have been introduced. Variable compactness factors have been defined here to get either a sharp or a smooth model based on the depth of the source or existence of prior information. Depth weighting derived from one station of gravity data whereas the effect of gravity data is 2-D and 3-D. To compensate this limitation an innovating weighting function namely kernel function has been introduced which multiplies with weight and compactness matrixes to yield a general model weighting function. The method is tested using three different sets of synthetic examples: a body at various depths (20, 40, 80 and 140 m), two bodies at the same depth but various distances to estimate lateral resolution and three bodies with negative and positive density contrast in different depths. The method is also applied to three real gravity data of Woodlawn massive sulphide body, sulphides mineralization of British Colombia and iron ore body of Missouri. The method produces solutions consistent with the known geologic attributes of the gravity sources, illustrating its potential practicality.

  18. Improving compact gravity inversion based on new weighting functions

    Science.gov (United States)

    Ghalehnoee, Mohammad Hossein; Ansari, Abdolhamid; Ghorbani, Ahmad

    2016-11-01

    We have developed a method to estimate the geometry, location and densities of anomalies coming from two-dimensional gravity data based on compact gravity inversion technique. Compact gravity inversion is simple, fast and user friendly but severely depends on the number of model parameters, i.e. by increasing the model parameters, the anomalies tend to concentrate near the surface. To overcome this ambiguity new weighting functions based on density contrast, depth, and compactness models have been introduced. Variable compactness factors have been defined here to get either a sharp or a smooth model based on the depth of the source or existence of prior information. Depth weighting derived from one station of gravity data whereas the effect of gravity data is two- and three-dimensional. To compensate this limitation an innovating weighting function namely kernel function has been introduced which multiplies with weight and compactness matrixes to yield a general model weighting function. The method is tested using three different sets of synthetic examples: a body at various depths (20, 40, 80 and 140 m), two bodies at the same depth but various distances to estimate lateral resolution and three bodies with negative and positive density contrast in different depths. The method is also applied to three real gravity data of Woodlawn massive sulfide body, sulfides mineralization of British Colombia and iron ore body of Missouri. The method produces solutions consistent with the known geologic attributes of the gravity sources, illustrating its potential practicality.

  19. Detecting Patterns of Anomalies

    Science.gov (United States)

    2009-03-01

    detect anomalies in the dataset is used in [Leung and Leckie, 2005] and [Eskin et al., 2002]. One-class SVMs [Li et al., 2003, Heller et al., 2003] and...IEE Proceedings F, 140(2): 107–113, 1993. J.D.F. Habbema, J. Hermans , and K. Vandenbroek. A stepwise discriminant analysis pro- gram using density...Technometrics, 29(4):409–412, 1987. K.A. Heller , K.M. Svore, A. Keromytis, and S.J. Stolfo. One class support vector machines for detecting anomalous

  20. Chiral supergravity and anomalies

    CERN Document Server

    Mielke, E W; Macias, Alfredo; Mielke, Eckehard W.

    1999-01-01

    Similarily as in the Ashtekar approach, the translational Chern-Simons term is, as a generating function, instrumental for a chiral reformulation of simple (N=1) supergravity. After applying the algebraic Cartan relation between spin and torsion, the resulting canonical transformation induces not only decomposition of the gravitational fields into selfdual and antiselfdual modes, but also a splitting of the Rarita-Schwinger fields into their chiral parts in a natural way. In some detail, we also analyze the consequences for axial and chiral anomalies.

  1. Low Risk Anomalies?

    DEFF Research Database (Denmark)

    Schneider, Paul; Wagner, Christian; Zechner, Josef

    This paper shows theoretically and empirically that beta- and volatility-based low risk anomalies are driven by return skewness. The empirical patterns concisely match the predictions of our model that endogenizes the role of skewness for stock returns through default risk. With increasing downside...... of betting against beta/volatility among low skew firms compared to high skew firms is economically large. Our results suggest that the returns to betting against beta or volatility do not necessarily pose asset pricing puzzles but rather that such strategies collect premia that compensate for skew risk...

  2. Detecting Biosphere anomalies hotspots

    Science.gov (United States)

    Guanche-Garcia, Yanira; Mahecha, Miguel; Flach, Milan; Denzler, Joachim

    2017-04-01

    The current amount of satellite remote sensing measurements available allow for applying data-driven methods to investigate environmental processes. The detection of anomalies or abnormal events is crucial to monitor the Earth system and to analyze their impacts on ecosystems and society. By means of a combination of statistical methods, this study proposes an intuitive and efficient methodology to detect those areas that present hotspots of anomalies, i.e. higher levels of abnormal or extreme events or more severe phases during our historical records. Biosphere variables from a preliminary version of the Earth System Data Cube developed within the CAB-LAB project (http://earthsystemdatacube.net/) have been used in this study. This database comprises several atmosphere and biosphere variables expanding 11 years (2001-2011) with 8-day of temporal resolution and 0.25° of global spatial resolution. In this study, we have used 10 variables that measure the biosphere. The methodology applied to detect abnormal events follows the intuitive idea that anomalies are assumed to be time steps that are not well represented by a previously estimated statistical model [1].We combine the use of Autoregressive Moving Average (ARMA) models with a distance metric like Mahalanobis distance to detect abnormal events in multiple biosphere variables. In a first step we pre-treat the variables by removing the seasonality and normalizing them locally (μ=0,σ=1). Additionally we have regionalized the area of study into subregions of similar climate conditions, by using the Köppen climate classification. For each climate region and variable we have selected the best ARMA parameters by means of a Bayesian Criteria. Then we have obtained the residuals by comparing the fitted models with the original data. To detect the extreme residuals from the 10 variables, we have computed the Mahalanobis distance to the data's mean (Hotelling's T^2), which considers the covariance matrix of the joint

  3. When do anomalies begin?

    Science.gov (United States)

    Lightman, Alan; Gingerich, Owen

    1992-02-01

    The present historical and methodological consideration of scientific anomalies notes that some of these are recognized as such, after long neglect, only after the emergence of compelling explanations for their presence in the given theory in view of an alternative conceptual framework. These cases of 'retrorecognition' are indicative not merely of a significant characteristic of the process of conceptual development and scientific discovery, but of the bases for such process in human psychology. Attention is given to the illustrative cases of the 'flatness problem' in big bang theory, the perigee-opposition problem in Ptolemaic astronomy, the continental-fit problem in geology, and the equality of inertial and gravitational mass.

  4. The diphoton anomaly

    Science.gov (United States)

    Nardecchia, M.

    2017-07-01

    In December 2015, the ATLAS and CMS Collaborations presented results from data taken at the LHC with pp collisions at the center-of-mass energy of √{s} = 13{ TeV} . In the search for resonances decaying into two photons, both experiments observed a tantalising excess of events at an invariant mass of the photon pair of 750GeV. In this contribution, I will summarise some of the main phenomenological and theoretical aspects of this anomaly in terms of New Physics.

  5. Urinary System anomalies at birth

    Directory of Open Access Journals (Sweden)

    Sharada B. Menasinkai

    2015-06-01

    Full Text Available Background: Congenital anomalies of urinary system are common and are found in 3-4% of population, and lethal urinary anomalies account for 10% of termination of pregnancy. Methods: A study was done to know the incidence of congenital anomalies at birth for the period of 4 months from May 99 - Sept 99 at Cheluvamba hospital attached to Mysore medical college. Congenital anomalies in the still births, live births and aborted fetuses >20 weeks were studied along with the case history and ultrasound reports. Aborted fetuses and still born babies were collected for autopsy after the consent of parents. These babies were fixed in 10% formalin and autopsy was done after fixing, and anomalies were noted. Results: Total births during study period were 3000. There were 61 babies with congenital anomalies and 6 babies had anomalies of urinary system. Among the urinary system anomalies 1 baby had bilateral renal agenesis, 1 baby had unilateral renal agenesis with anophthalmia (Fraser syndrome, 2 babies had Multicystic dysplastic kidney disease (MCDK and 1 live baby had hydronephrosis due to obstruction at pelvi ureteric junction, and 1 live female baby had polycystic kidneys. Conclusion: Incidence of urinary system anomalies in the present study was 2 per 1000 births. U/S detection of urinary anomalies varies with period of gestation, amniotic fluid volume and visualisation of urinary bladder. Autopsy helps to detect renal agenesis. [Int J Res Med Sci 2015; 3(3.000: 743-748

  6. Effect of External Disturbing Gravity Field on Spacecraft Guidance and Surveying Line Layout for Marine Gravity Survey

    Directory of Open Access Journals (Sweden)

    HUANG Motao

    2016-11-01

    Full Text Available Centred on the support requirement of flying track control for a long range spacecraft, a detail research is made on the computation of external disturbing gravity field, the survey accuracy of gravity anomaly on the earth' surface and the program of surveying line layout for marine gravity survey. Firstly, the solution expression of navigation error for a long range spacecraft is analyzed and modified, and the influence of the earth's gravity field on flying track of spacecraft is evaluated. Then with a given limited quota of biased error of spacecraft drop point, the accuracy requirement for calculating the external disturbing gravity field is discussed and researched. Secondly, the data truncation error and the propagated data error are studied and estimated, and the quotas of survey resolution and computation accuracy for gravity anomaly on the earth' surface are determined. Finally, based on the above quotas, a corresponding program of surveying line layout for marine gravity survey is proposed. A numerical test has been made to prove the reasonableness and validity of the suggested program.

  7. Glacial isostatic adjustment in the static gravity field of Fennoscandia

    NARCIS (Netherlands)

    Root, B.C.; Van der Wal, W.; Novak, P.; Ebbing, J.; Vermeersen, L.L.A.

    2015-01-01

    In the central part of Fennoscandia, the crust is currently rising, because of the delayed response of the viscous mantle to melting of the Late Pleistocene ice sheet. This process, called Glacial Isostatic Adjustment (GIA), causes a negative anomaly in the present-day static gravity field as isosta

  8. QUANTIZATION DEFORMS W-INFINITY TO W-INFINITY GRAVITY

    NARCIS (Netherlands)

    BERGSHOEFF, E; HOWE, PS; POPE, CN; SEZGIN, E; SHEN, [No Value; STELLE, KS

    1991-01-01

    Quantising a classical theory of w infinity gravity requires the introduction of an infinite number of counterterms in order to remove matter-dependent anomalies. We show that these counterterms correspond precisely to a renormalisation of the classical w infinity currents to quantum W(x) currents.

  9. Gravity Disturbances at Altitude and at the Surface

    Science.gov (United States)

    Damiani, T.

    2013-12-01

    The U.S. National Geodetic Survey (NGS) is committed to redefining the nation's vertical datum by 2022. In support of the new vertical datum, NGS is collecting high-altitude airborne gravity data across the United States through the Gravity for the Redefinition of the American Vertical Datum (GRAV-D) project. GRAV-D (as of August 2013) has publicly released full-field gravity products from these high-altitude flights for >15% of the country. The full-field gravity (FFG) at altitude product is versatile because it allows the user to calculate any disturbance or anomaly that is appropriate for their application- based on any datum and height above the datum desired. However, conventional geophysical methods for calculating gravity disturbances assume very low altitudes above the ellipsoid. This presentation addresses the differences between several conventional and non-conventional methods for calculating gravity disturbances, from the perspective of altitudes as high as 40,000 ft. The methods for calculating a disturbance at altitude apply different corrections to the FFG for: 1. Normal gravity at the surface of the ellipsoid and the free-air reduction (1st order, 2nd order, and higher order approximations); 2. Normal gravity at the surface of the ellipsoid, upward continued to flight height; 3. Normal gravity at flight altitude above the ellipsoid from Heiskanen and Moritz (1967)'s closed equations; 4. Normal gravity at flight altitude above the ellipsoid from spherical and ellipsoidal harmonic coefficients of the ellipsoid. Initial results indicate that these methods produce gravity disturbances that are 10s of mGals different at altitude. This presentation will also investigate disturbances calculated at the surface of the ellipsoid, by downward continuing the results of the above methods. Gravity disturbances continued from airborne flight heights down to the surface are desired for comparison to terrestrial and marine gravity data.

  10. Subsurface images of the Eastern Rift, Africa, from the joint inversion of body waves, surface waves and gravity: investigating the role of fluids in early-stage continental rifting

    Science.gov (United States)

    Roecker, S.; Ebinger, C.; Tiberi, C.; Mulibo, G.; Ferdinand-Wambura, R.; Mtelela, K.; Kianji, G.; Muzuka, A.; Gautier, S.; Albaric, J.; Peyrat, S.

    2017-08-01

    The Eastern Rift System (ERS) of northern Tanzania and southern Kenya, where a cratonic lithosphere is in the early stages of rifting, offers an ideal venue for investigating the roles of magma and other fluids in such an environment. To illuminate these roles, we jointly invert arrival times of locally recorded P and S body waves, phase delays of ambient noise generated Rayleigh waves and Bouguer anomalies from gravity observations to generate a 3-D image of P and S wave speeds in the upper 25 km of the crust. While joint inversion of gravity and arrival times requires a relationship between density and wave speeds, the improvement in resolution obtained by the combination of these disparate data sets serves to further constrain models, and reduce uncertainties. The most significant features in the 3-D model are (1) P and S wave speeds that are 10-15 per cent lower beneath the rift zone than in the surrounding regions, (2) a relatively high wave speed tabular feature located along the western edge of the Natron and Manyara rifts, and (3) low (˜1.71) values of Vp/Vs throughout the upper crust, with the lowest ratios along the boundaries of the rift zones. The low P and S wave speeds at mid-crustal levels beneath the rift valley are an expected consequence of active volcanism, and the tabular, high-wave speed feature is interpreted to be an uplifted footwall at the western edge of the rift. Given the high levels of CO2 outgassing observed at the surface along border fault zones, and the sensitivity of Vp/Vs to pore-fluid compressibility, we infer that the low Vp/Vs values in and around the rift zone are caused by the volcanic plumbing in the upper crust being suffused by a gaseous CO2 froth on top of a deeper, crystalline mush. The repository for molten rock is likely located in the lower crust and upper mantle, where the Vp/Vs ratios are significantly higher.

  11. Decomposition of gravity field and grade separation structure in Qinling-Dabie area

    Institute of Scientific and Technical Information of China (English)

    袁惟正; 刘寿彭; 袁学诚

    1996-01-01

    The regional gravity field and residual gravity anomaly in the Qinling-Dabie area were separated for the first time, which might be produced by the relief of the Moho and the inhomogeneity of crust, separately. The residual anomalies show that there are two Mesozoic subducting magmatic rocks belts. The northern belt includes West Qinling magmatic rock belt and East Qinling magmatic rock belt and extends through Nanyang Basin and dies out to the west of Fuyang. The southern belt coincides with Tongbai-Dabie area. To the west of East Qinling there is also a residual gravity low which might coincide with early Paleozoic depression.

  12. The Voyager Anomaly and the GEM Theory

    Science.gov (United States)

    Brandenburg, J. E.

    For over a decade, the Pioneer Anomaly (PA) was an object of study and remains unresolved. Basically it is a sunward constant acceleration of the spacecraft that appeared unambiguously after the satellites passage beyond Saturn. It now appears possible the PA acceleration is the appearance of second, string-like, solution to the Einstein Equations first discussed in the context of charged finite mass charged particle potentials as part of the GEM theory. The exact solution to the metric equations is similar in form to the Schwartzchild Solution but with a positive sign: grr = (1 + rG/r)-1 where rG is a characteristic radius corresponding to the Schwartzchild radius. Adopting the approximation that for weak fields the metric becomes a Newtonian gravity potential: grr ≅-2ϕ, a string potential form is obtained in the limit grr ≅1-2ϕ, for r acceleration a ≅ c/TH = 8 x 10-10 m/sec2 in agreement with observations. The "turn on" for this potential apparently occurs with the encounter with Jupiter, which raised the spacecraft to above escape velocity. The possible physical meaning of this second metric appearance is found to be a gravitational form of Lenz's law, where objects departing from gravity potentials experience a resistance that keeps them bound at long distances.

  13. Newtonian gravity on quantum spacetime

    Directory of Open Access Journals (Sweden)

    Majid Shahn

    2014-04-01

    Full Text Available The bicrossproduct model λ-Minkowski (or ‘κ-Minkowski’ quantum space-time has an anomaly for the action of the Poincaré quantum group which was resolved by an extra cotangent direction θ’ not visible classically. We show that gauging a coefficient of θ′ introduces gravity into the model. We solve and analyse the model nonrelativisticaly in a 1/r potential, finding an induced constant term in the effective potential energy and a weakening and separation of the effective gravitational and inertial masses as the test particle Klein-Gordon mass increases. The present work is intended as a proof of concept but the approach could be relevant to an understanding of dark energy and possibly to macroscopic quantum systems.

  14. Satellite Elevation Magnetic and Gravity Models of Major South American Plate Tectonic Features

    Science.gov (United States)

    Vonfrese, R. R. B.; Hinze, W. J.; Braile, L. W.; Lidiak, E. G.; Keller, G. R. (Principal Investigator); Longacre, M. B.

    1984-01-01

    Some MAGSAT scalar and vector magnetic anomaly data together with regional gravity anomaly data are being used to investigate the regional tectonic features of the South American Plate. An initial step in this analysis is three dimensional modeling of magnetic and gravity anomalies of major structures such as the Andean subduction zone and the Amazon River Aulacogen at satellite elevations over an appropriate range of physical properties using Gaus-Legendre quadrature integration method. In addition, one degree average free-air gravity anomalies of South America and adjacent marine areas are projected to satellite elevations assuming a spherical Earth and available MAGSAT data are processed to obtain compatible data sets for correlation. Correlation of these data sets is enhanced by reduction of the MAGSAT data to radial polarization because of the profound effect of the variation of the magnetic inclination over South America.

  15. Satellite Elevation Magnetic and Gravity Models of Major South American Plate Tectonic Features

    Science.gov (United States)

    Vonfrese, R. R. B.; Hinze, W. J.; Braile, L. W.; Lidiak, E. G.; Keller, G. R. (Principal Investigator); Longacre, M. B.

    1984-01-01

    Some MAGSAT scalar and vector magnetic anomaly data together with regional gravity anomaly data are being used to investigate the regional tectonic features of the South American Plate. An initial step in this analysis is three dimensional modeling of magnetic and gravity anomalies of major structures such as the Andean subduction zone and the Amazon River Aulacogen at satellite elevations over an appropriate range of physical properties using Gaus-Legendre quadrature integration method. In addition, one degree average free-air gravity anomalies of South America and adjacent marine areas are projected to satellite elevations assuming a spherical Earth and available MAGSAT data are processed to obtain compatible data sets for correlation. Correlation of these data sets is enhanced by reduction of the MAGSAT data to radial polarization because of the profound effect of the variation of the magnetic inclination over South America.

  16. Urine specific gravity test

    Science.gov (United States)

    ... medlineplus.gov/ency/article/003587.htm Urine specific gravity test To use the sharing features on this page, please enable JavaScript. Urine specific gravity is a laboratory test that shows the concentration ...

  17. Idaho State Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (24,284 records) were compiled by the U. S. Geological Survey. This data base was received on February 23, 1993. Principal gravity...

  18. Northern Oklahoma Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (710 records) were compiled by Professor Ahern. This data base was received in June 1992. Principal gravity parameters include latitude,...

  19. Andes 1997 Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Central Andes gravity data (6,151 records) were compiled by Professor Gotze and the MIGRA Group. This data base was received in April, 1997. Principal gravity...

  20. Cadiz, California Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (32 records) were gathered by Mr. Seth I. Gutman for AridTech Inc., Denver, Colorado using a Worden Prospector gravity meter. This data base...

  1. Classical Weyl Transverse Gravity

    CERN Document Server

    Oda, Ichiro

    2016-01-01

    We study various classical aspects of the Weyl transverse (WTDiff) gravity in a general space-time dimension. First of all, we clarify a classical equivalence among three kinds of gravitational theories, those are, the conformally-invariant scalar tensor gravity, Einstein's general relativity and the WTDiff gravity via the gauge fixing procedure. Secondly, we show that in the WTDiff gravity the cosmological constant is a mere integration constant as in unimodular gravity, but it does not receive any radiative corrections unlike the unimodular gravity. A key point in this proof is to construct a covariantly conserved energy-momentum tensor, which is achieved on the basis of this equivalence relation. Thirdly, we demonstrate that the Noether current for the Weyl transformation is identically vanishing, thereby implying that the Weyl symmetry existing in both the conformally-invariant scalar tensor gravity and the WTDiff gravity is a "fake" symmetry. We find it possible to extend this proof to all matter fields,...

  2. The inverse gravimetric problem in gravity modelling

    Science.gov (United States)

    Sanso, F.; Tscherning, C. C.

    1989-01-01

    One of the main purposes of geodesy is to determine the gravity field of the Earth in the space outside its physical surface. This purpose can be pursued without any particular knowledge of the internal density even if the exact shape of the physical surface of the Earth is not known, though this seems to entangle the two domains, as it was in the old Stoke's theory before the appearance of Molodensky's approach. Nevertheless, even when large, dense and homogeneous data sets are available, it was always recognized that subtracting from the gravity field the effect of the outer layer of the masses (topographic effect) yields a much smoother field. This is obviously more important when a sparse data set is bad so that any smoothing of the gravity field helps in interpolating between the data without raising the modeling error, this approach is generally followed because it has become very cheap in terms of computing time since the appearance of spectral techniques. The mathematical description of the Inverse Gravimetric Problem (IGP) is dominated mainly by two principles, which in loose terms can be formulated as follows: the knowledge of the external gravity field determines mainly the lateral variations of the density; and the deeper the density anomaly giving rise to a gravity anomaly, the more improperly posed is the problem of recovering the former from the latter. The statistical relation between rho and n (and its inverse) is also investigated in its general form, proving that degree cross-covariances have to be introduced to describe the behavior of rho. The problem of the simultaneous estimate of a spherical anomalous potential and of the external, topographic masses is addressed criticizing the choice of the mixed collection approach.

  3. Quivers via anomaly chains

    Energy Technology Data Exchange (ETDEWEB)

    Casero, Roberto [Dipartimento di Fisica, Universita di Milano-Bicocca, Piazza della Scienza, 3, 20126 Milan (Italy)]. E-mail: roberto.casero@mib.infn.it; Trincherini, Enrico [Dipartimento di Fisica, Universita di Milano-Bicocca, Piazza della Scienza, 3, 20126 Milan (Italy)

    2003-09-01

    We study quivers in the context of matrix models. We introduce chains of generalized Konishi anomalies to write the quadratic and cubic equations that constrain the resolvents of general affine A-circumflex{sub n-1} and non-affine A{sub n} quiver gauge theories, and give a procedure to calculate all higher-order relations. For these theories we also evaluate, as functions of the resolvents, VEV's of chiral operators with two and four bi-fundamental insertions. As an example of the general procedure we explicitly consider the two simplest quivers A{sub 2} and A-circumflex{sub 1}, obtaining in the first case a cubic algebraic curve, and for the affine theory the same equation as that of U(N) theories with adjoint matter, successfully reproducing the RG cascade result. (author)

  4. Quivers via anomaly chains

    CERN Document Server

    Casero, R; Casero, Roberto; Trincherini, Enrico

    2003-01-01

    We study quivers in the context of matrix models. We introduce chains of generalized Konishi anomalies to write the quadratic and cubic equations that constrain the resolvents of general affine and non-affine quiver gauge theories, and give a procedure to calculate all higher-order relations. For these theories we also evaluate, as functions of the resolvents, VEV's of chiral operators with two and four bifundamental insertions. As an example of the general procedure we explicitly consider the two simplest quivers A2 and A1(affine), obtaining in the first case a cubic algebraic curve, and for the affine theory the same equation as that of U(N) theories with adjoint matter, successfully reproducing the RG cascade result.

  5. Low Risk Anomalies?

    DEFF Research Database (Denmark)

    Schneider, Paul; Wagner, Christian; Zechner, Josef

    risk, the standard capital asset pricing model (CAPM) increasingly overestimates expected equity returns relative to firms' true (skew-adjusted) market risk. Empirically, the profitability of betting against beta/volatility increases with firms' downside risk, and the risk-adjusted return differential...... of betting against beta/volatility among low skew firms compared to high skew firms is economically large. Our results suggest that the returns to betting against beta or volatility do not necessarily pose asset pricing puzzles but rather that such strategies collect premia that compensate for skew risk......This paper shows theoretically and empirically that beta- and volatility-based low risk anomalies are driven by return skewness. The empirical patterns concisely match the predictions of our model that endogenizes the role of skewness for stock returns through default risk. With increasing downside...

  6. Cubic anomalies in WMAP

    CERN Document Server

    Land, K; Land, Kate; Magueijo, Joao

    2004-01-01

    We perform a frequentist analysis of the bispectrum of WMAP first year data. We find clear signal domination up to l=200, with overall consistency with Gaussianity except for the following features. There is a flat patch (i.e. a low chi-squared region) in the same-l components of the bispectrum spanning the range l=32-62; this may be interpreted as ruling out Gaussianity at the 99.6% confidence level. There is also an asymmetry between the North and South inter-l bispectrum components at the 99% confidence level. The preferred asymmetry axis correlates well with the (l,b)=(57,10) direction quoted in the literature for asymmetries in the power spectrum and three-point correlation function. However our analysis of the quadrupole (its bispectrum and principal axes) fail to make contact with previously claimed anomalies.

  7. Physics of Artificial Gravity

    Science.gov (United States)

    Bukley, Angie; Paloski, William; Clement, Gilles

    2006-01-01

    This chapter discusses potential technologies for achieving artificial gravity in a space vehicle. We begin with a series of definitions and a general description of the rotational dynamics behind the forces ultimately exerted on the human body during centrifugation, such as gravity level, gravity gradient, and Coriolis force. Human factors considerations and comfort limits associated with a rotating environment are then discussed. Finally, engineering options for designing space vehicles with artificial gravity are presented.

  8. Terrestrial Gravity Fluctuations

    Science.gov (United States)

    Harms, Jan

    2015-12-01

    Different forms of fluctuations of the terrestrial gravity field are observed by gravity experiments. For example, atmospheric pressure fluctuations generate a gravity-noise foreground in measurements with super-conducting gravimeters. Gravity changes caused by high-magnitude earthquakes have been detected with the satellite gravity experiment GRACE, and we expect high-frequency terrestrial gravity fluctuations produced by ambient seismic fields to limit the sensitivity of ground-based gravitational-wave (GW) detectors. Accordingly, terrestrial gravity fluctuations are considered noise and signal depending on the experiment. Here, we will focus on ground-based gravimetry. This field is rapidly progressing through the development of GW detectors. The technology is pushed to its current limits in the advanced generation of the LIGO and Virgo detectors, targeting gravity strain sensitivities better than 10-23 Hz-1/2 above a few tens of a Hz. Alternative designs for GW detectors evolving from traditional gravity gradiometers such as torsion bars, atom interferometers, and superconducting gradiometers are currently being developed to extend the detection band to frequencies below 1 Hz. The goal of this article is to provide the analytical framework to describe terrestrial gravity perturbations in these experiments. Models of terrestrial gravity perturbations related to seismic fields, atmospheric disturbances, and vibrating, rotating or moving objects, are derived and analyzed. The models are then used to evaluate passive and active gravity noise mitigation strategies in GW detectors, or alternatively, to describe their potential use in geophysics. The article reviews the current state of the field, and also presents new analyses especially with respect to the impact of seismic scattering on gravity perturbations, active gravity noise cancellation, and time-domain models of gravity perturbations from atmospheric and seismic point sources. Our understanding of

  9. Terrestrial Gravity Fluctuations.

    Science.gov (United States)

    Harms, Jan

    2015-01-01

    Different forms of fluctuations of the terrestrial gravity field are observed by gravity experiments. For example, atmospheric pressure fluctuations generate a gravity-noise foreground in measurements with super-conducting gravimeters. Gravity changes caused by high-magnitude earthquakes have been detected with the satellite gravity experiment GRACE, and we expect high-frequency terrestrial gravity fluctuations produced by ambient seismic fields to limit the sensitivity of ground-based gravitational-wave (GW) detectors. Accordingly, terrestrial gravity fluctuations are considered noise and signal depending on the experiment. Here, we will focus on ground-based gravimetry. This field is rapidly progressing through the development of GW detectors. The technology is pushed to its current limits in the advanced generation of the LIGO and Virgo detectors, targeting gravity strain sensitivities better than 10(-23) Hz(-1/2) above a few tens of a Hz. Alternative designs for GW detectors evolving from traditional gravity gradiometers such as torsion bars, atom interferometers, and superconducting gradiometers are currently being developed to extend the detection band to frequencies below 1 Hz. The goal of this article is to provide the analytical framework to describe terrestrial gravity perturbations in these experiments. Models of terrestrial gravity perturbations related to seismic fields, atmospheric disturbances, and vibrating, rotating or moving objects, are derived and analyzed. The models are then used to evaluate passive and active gravity noise mitigation strategies in GW detectors, or alternatively, to describe their potential use in geophysics. The article reviews the current state of the field, and also presents new analyses especially with respect to the impact of seismic scattering on gravity perturbations, active gravity noise cancellation, and time-domain models of gravity perturbations from atmospheric and seismic point sources. Our understanding of

  10. Terrestrial Gravity Fluctuations

    Directory of Open Access Journals (Sweden)

    Jan Harms

    2015-12-01

    Full Text Available Different forms of fluctuations of the terrestrial gravity field are observed by gravity experiments. For example, atmospheric pressure fluctuations generate a gravity-noise foreground in measurements with super-conducting gravimeters. Gravity changes caused by high-magnitude earthquakes have been detected with the satellite gravity experiment GRACE, and we expect high-frequency terrestrial gravity fluctuations produced by ambient seismic fields to limit the sensitivity of ground-based gravitational-wave (GW detectors. Accordingly, terrestrial gravity fluctuations are considered noise and signal depending on the experiment. Here, we will focus on ground-based gravimetry. This field is rapidly progressing through the development of GW detectors. The technology is pushed to its current limits in the advanced generation of the LIGO and Virgo detectors, targeting gravity strain sensitivities better than 10^–23 Hz^–1/2 above a few tens of a Hz. Alternative designs for GW detectors evolving from traditional gravity gradiometers such as torsion bars, atom interferometers, and superconducting gradiometers are currently being developed to extend the detection band to frequencies below 1 Hz. The goal of this article is to provide the analytical framework to describe terrestrial gravity perturbations in these experiments. Models of terrestrial gravity perturbations related to seismic fields, atmospheric disturbances, and vibrating, rotating or moving objects, are derived and analyzed. The models are then used to evaluate passive and active gravity noise mitigation strategies in GW detectors, or alternatively, to describe their potential use in geophysics. The article reviews the current state of the field, and also presents new analyses especially with respect to the impact of seismic scattering on gravity perturbations, active gravity noise cancellation, and time-domain models of gravity perturbations from atmospheric and seismic point sources. Our

  11. Terrestrial Gravity Fluctuations

    CERN Document Server

    Harms, Jan

    2015-01-01

    The article reviews the current state of the field, and also presents new analyses especially with respect to the impact of seismic scattering on gravity perturbations, active gravity noise cancellation, and time-domain models of gravity perturbations from atmospheric and seismic point sources. Our understanding of terrestrial gravity fluctuations will have great impact on the future development of GW detectors and high-precision gravimetry in general, and many open questions need to be answered still as emphasized in this article.

  12. Investigating Magmatic Processes on San Cristóbal, Galápagos Through Analysis and Modeling of Newly Acquired Gravity Measurements

    Science.gov (United States)

    Cleary, Z.; Harpp, K. S.; Mittelstaedt, E. L.; Bercovici, H.; Mahr, J.; Pimentel, R.; Córdova Aguilar, M. D.

    2016-12-01

    San Cristóbal, in the eastern Galápagos, is one of the oldest islands formed by the same magmatic system currently responsible for volcanic activity in the western archipelago. Unlike the younger western islands, San Cristóbal lacks any morphological evidence of a caldera, which is a characteristic feature of the western Galápagos shield volcanoes. Instead, San Cristóbal consists of two shield complexes dominated by eruptive cones aligned along presumed fissure systems. The island thus provides an opportunity to investigate whether the dichotomy between the morphology of the western and eastern Galápagos volcanoes is a result of evolving magmatic systems or a fundamentally different set of formation processes. We are reporting the results of a recent gravitational survey on San Cristóbal's southwestern shield, which consists of 186 measurements at 500 m spacing along all passable roads. Our results indicate that the Bouguer Anomaly (BA) on the southwest shield of San Cristóbal has a range of 8 mGals. The BA has a relative low along the western part of the shield complex and a relative high in the central and eastern sections. Within the central complex, there is a prominent BA low, which corresponds to a large cone. These results contrast with previous studies performed on the western volcanoes of Fernandina and Sierra Negra (Case et al., 1974; Vigouroux et al., 2008), which exhibit a 30 mGal BA high centered over each caldera. On these volcanoes, the BA high was interpreted as a dense plug of cumulates in the magmatic system beneath the volcano's caldera. Though our results differ from those obtained in the western Galápagos, a study by Schwartz et al.(2014) on the eastern island of Santa Cruz also fails to identify a prominent gravity high. Schwartz et al. concluded that a low magma supply to older islands cannot support the caldera formation process that characterizes the western islands, which are believed to form by evacuation of shallow magma sills

  13. Covariant w∞ gravity

    NARCIS (Netherlands)

    Bergshoeff, E.; Pope, C.N.; Stelle, K.S.

    1990-01-01

    We discuss the notion of higher-spin covariance in w∞ gravity. We show how a recently proposed covariant w∞ gravity action can be obtained from non-chiral w∞ gravity by making field redefinitions that introduce new gauge-field components with corresponding new gauge transformations.

  14. The standard model with gravity couplings

    CERN Document Server

    Chang, L N; Lay Nam Chang; Chopin Soo

    1996-01-01

    ABSTRACT-The Standard Model with Gravity Couplings-Lay Nam Chang(Virginia Tech) & Chopin Soo(Penn State)--- It has been shown by Ashtekar, and many others after him, that classical gravity in four dimensions can be described equally well by (anti)self-dual variables instead of the conventional variables. In this paper, we examine the coupling of matter fields to gravity from this perspective, and show that the known quark and lepton multiplets in the Standard Model of particle physics can be introduced into the theory in a manner which ensures the cancellation of perturbative chiral gauge anomalies, despite the fact that the the Ashtekar-Sen connection allows for couplings only to left-handed Weyl fermions. We also explore a global anomaly associated with the theory, and argue that its removal requires that the number of fundamental fermions in the theory must be multiples of 16. In addition, we investigate the behavior of the theory under discrete transformations P, C and T, and discuss possible violatio...

  15. Induced Gravity II: Grand Unification

    CERN Document Server

    Einhorn, Martin B

    2016-01-01

    As an illustration of a renormalizable, asymptotically-free model of induced gravity, we consider an $SO(10)$ gauge theory interacting with a real scalar multiplet in the adjoint representation. We show that dimensional transmutation can occur, spontaneously breaking $SO(10)$ to $SU(5){\\otimes}U(1),$ while inducing the Planck mass and a positive cosmological constant, all proportional to the same scale $v$. All mass ratios are functions of the values of coupling constants at that scale. Below this scale (at which the Big Bang may occur), the model takes the usual form of Einstein-Hilbert gravity in de Sitter space plus calculable corrections. We show that there exist regions of parameter space in which the breaking results in a local minimum of the effective action, and a {\\bf positive} dilaton $(\\hbox{mass})^2$ from two-loop corrections associated with the conformal anomaly. Furthermore, unlike the singlet case we considered previously, some minima lie within the basin of attraction of the ultraviolet fixed ...

  16. ANALISA ANOMALI GAYABERAT TERHADAP KONDISI TATANAN TEKTONIK ZONA SUBDUKSI SUNDA MEGATHRUST DI SEBELAH BARAT PULAU SUMATERA

    Directory of Open Access Journals (Sweden)

    Anita Thea Saraswati

    2015-02-01

    Full Text Available Aktivitas tektonik yang terjadi di bumi merupakan hal yang masih terus diteliti sampai sekarang. Sumatera yang terletak pada area Sunda Megathrust, yang merupakan zona subduksi Lempeng Indo-Australia dan Lempeng Eurasia, mengakibatkan daerah ini rentan dengan aktivitas seismogenic. Salah satu akibat dari adanya pergerakan kedua lempeng ini adalah terbentuknya tatanan tektonik di wilayah Sumatera. GOCE (Gravity field and steady-state Ocean Circulation Explorer menawarkan metode yang cepat dengan cakupan global untuk mendapatkan data gayaberat bumi. Dengan memanfaatkan hitungan dari spherical harmonic coeffisien (SHC serta dilengkapi dengan data Digital Elevation Model (DEM, dapat diketahui nilai anomali gayaberat pada suatu wilayah. Distribusi anomali gayaberat mampu mencerminkan kondisi tektonik di suatu area. Variasi spasial dari anomali gayaberat menunjukkan bahwa pada palung yang terbentuk akibat subduksi kedua lempeng memiliki nilai anomali gayaberat negatif dengan nilai rata-rata sebesar -42.8729 mgal. Forearc ridge yang terbentuk akibat konvergensi lempeng memiliki nilai anomali gayaberat positif, sedangkan forearc basin yang merupakan cekungan diantara backarc dan forearc ridge, memiliki nilai anomali gayaberat negatif yang lebih kuat daripada yang terdapat pada Sunda Megathrust. Variasi temporal yang teramati menunjukkan bahwa distribusi anomali gayaberat positif yang terdapat pada prisma akresi di kedua tepian palung bergerak semakin mendekati Sunda Megathrust pada tiap seri pengamatannya, sedangkan distribusi anomali gayaberat negatif pada palung laut dan forearc basin membentuk suatu  pola distribusi yang semakin menyempit sehingga menyebabkan semakin curamnya gradient anomali gayaberat pada area di sekitarnya.

  17. Algebraic study of chiral anomalies

    Indian Academy of Sciences (India)

    Juan Mañes; Raymond Stora; Bruno Zumino

    2012-06-01

    The algebraic structure of chiral anomalies is made globally valid on non-trivial bundles by the introduction of a fixed background connection. Some of the techniques used in the study of the anomaly are improved or generalized, including a systematic way of generating towers of ‘descent equations’.

  18. Anomaly mediation deformed by axion

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, Kazunori, E-mail: kazunori@hep-th.phys.s.u-tokyo.ac.jp [Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa 277-8583 (Japan); Yanagida, Tsutomu T. [Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa 277-8583 (Japan)

    2013-05-13

    We show that in supersymmetric axion models the axion supermultiplet obtains a sizable F-term due to a non-supersymmetric dynamics and it generally gives the gaugino masses comparable to the anomaly mediation contribution. Thus the gaugino mass relation predicted by the anomaly mediation effect can be significantly modified in the presence of axion to solve the strong CP problem.

  19. What is a Timing Anomaly?

    DEFF Research Database (Denmark)

    Cassez, Franck; Hansen, Rene Rydhof; Olesen, Mads Chr.

    2012-01-01

    Timing anomalies make worst-case execution time analysis much harder, because the analysis will have to consider all local choices. It has been widely recognised that certain hardware features are timing anomalous, while others are not. However, defining formally what a timing anomaly is, has bee...

  20. Seismic data fusion anomaly detection

    Science.gov (United States)

    Harrity, Kyle; Blasch, Erik; Alford, Mark; Ezekiel, Soundararajan; Ferris, David

    2014-06-01

    Detecting anomalies in non-stationary signals has valuable applications in many fields including medicine and meteorology. These include uses such as identifying possible heart conditions from an Electrocardiography (ECG) signals or predicting earthquakes via seismographic data. Over the many choices of anomaly detection algorithms, it is important to compare possible methods. In this paper, we examine and compare two approaches to anomaly detection and see how data fusion methods may improve performance. The first approach involves using an artificial neural network (ANN) to detect anomalies in a wavelet de-noised signal. The other method uses a perspective neural network (PNN) to analyze an arbitrary number of "perspectives" or transformations of the observed signal for anomalies. Possible perspectives may include wavelet de-noising, Fourier transform, peak-filtering, etc.. In order to evaluate these techniques via signal fusion metrics, we must apply signal preprocessing techniques such as de-noising methods to the original signal and then use a neural network to find anomalies in the generated signal. From this secondary result it is possible to use data fusion techniques that can be evaluated via existing data fusion metrics for single and multiple perspectives. The result will show which anomaly detection method, according to the metrics, is better suited overall for anomaly detection applications. The method used in this study could be applied to compare other signal processing algorithms.

  1. The characteristics of gravity and magnetic fields and the distribution of tight sandstone gas in the eastern Ordos Basin, China

    Science.gov (United States)

    Yuan, Bingqiang; Zhang, Huaan; Zhang, Chunguan; Xu, Haihong; Yan, Yunkui

    2016-04-01

    In order to perform gas exploration and determine the distribution pattern of gas in the Yanchang Oil Field in the eastern part of the North Shaanxi Slope, Ordos Basin, China, gravity and magnetic survey data were systemically collated, processed and interpreted in combination with the drilling data and recent seismic data. The genesis of gravity and magnetic anomalies and the relationship between the characteristics of the gravity and magnetic fields and known gas distribution were explored in order to predict the favourable exploration targets for gas. Gravity anomalies resulted both from the lateral variation in density of the basement rock and lateral lithologic transformation in the sedimentary cover. The regional magnetic anomalies were mainly caused by the basement metamorphic rocks and the residual magnetic anomalies may reflect the amount and general location of the volcanic materials in the overlying strata. The residual gravity and magnetic anomalies generated by high-density sandstone and high content of volcanics in the gas reservoir of the upper Paleozoic distorted and deformed the anomaly curves when they were stacked onto the primary background anomaly. The gas wells were generally found to be located in the anomaly gradient zones, or the distorted part of contour lines, and the flanks of high and low anomalies, or the transitional zones between anomaly highs and lows. The characteristics of gravity and magnetic fields provide significant information that can be used for guidance when exploring the distribution of gas. Based on these characteristics, five favourable areas for gas exploration were identified; these are quasi-equally spaced like a strip extending from the southeast to the northwest.

  2. Regional Gravity Field Modeling with Abel-Poisson Radial Basis Functions

    Directory of Open Access Journals (Sweden)

    MA Zhiwei

    2016-09-01

    Full Text Available With the increasing number of various types of high-resolution gravity observations, earth gravity models can be regionally refined. We use Abel-Poisson kernel to represent the gravity as the linear summation of finite radial basis functions and combine the multiple gravity data to build a regional gravity model with high resolution. The minimum root mean square criterion based on the data adaptive algorithm is proposed to calculate the base function, which promote the speed of computation significantly. Taking the central South China Sea as an example, two different types of gravity data, namely geoid undulations with resolution of 6'×6' and gravity anomaly with resolution of 2'×2', are used to construct the high-resolution regional gravity model. The model has a resolution of 2'×2', and has a great agreement with original gravity anomaly, reaching to ±0.8×10-5m/s2.Our results show that using radial basis functions to construct the regional gravity field can avoid the problem of slow convergence of spherical harmonic functions, and can improve the resolution remarkably.

  3. Geophysical Analysis of Major Geothermal Anomalies in Romania

    Science.gov (United States)

    Panea, Ionelia; Mocanu, Victor

    2017-07-01

    The Romanian segment of the Eastern Pannonian Basin and the Moesian Platform are known for their geothermal and hydrocarbon-bearing structures. We used seismic, gravity, and geothermal data to analyze the geothermal behavior in the Oradea and Timisoara areas, from the Romanian segment of Eastern Pannonian Basin, and the Craiova-Bals-Optasi area, from the Moesian Platform. We processed 22 seismic reflection data sets recorded in the Oradea and Timisoara areas to obtain P-wave velocity distributions and time seismic sections. The P-wave velocity distributions correlate well with the structural trends observed along the seismic lines. We observed a good correlation between the high areas of crystalline basement seen on the time seismic sections and the high heat flow and gravity-anomaly values. For the Craiova-Bals-Optasi area, we computed a three-dimensional (3D) temperature model using calculated and measured temperature and geothermal gradient values in wells with an irregular distribution on the territory. The high temperatures from the Craiova-Bals-Optasi area correlate very well with the uplifted basement blocks seen on the time seismic sections and high gravity-anomaly values.

  4. Gravity combined with laser-scan in Grotta Gigante: a benchmark cave for gravity studies

    Science.gov (United States)

    Pivetta, Tommaso; Braitenberg, Carla

    2014-05-01

    Laser scanning has become one of the most important topographic techniques in the last decades, due to its ability to reconstruct complex surfaces with high resolution and precision and due to its fast acquisition time. Recently a laser-scan survey has been acquired (Fingolo et al., 2011) in the "Grotta Gigante" cave near Trieste, Italy, the biggest cave worldwide according to the Guinness Awards. In this paper this survey is used to obtain a 3D discretization of the cave with prisms. Then through this new model, with the densities derived from campaign measurements, the exact gravimetric effect of the structure was computed (Nagy et al., 2000) and compared with the gravity observation at the surface. The transition from the cloud of laser-scan points to the prism model was carried out by different computer elaborations; first of all the reduction of the data density through an averaging process that allows to pass from over 10000 points/m2 to less than 10points/m2. Then the whole dataset was filtered from the outliers by the means of a simple quadratic surface that fit the data (Turner, 1999). The reduced data points should be divided into the 2 surfaces of top and bottom, that are used to define the prisms. This step was performed using the local regression method (Loess) to calculate a surface located halfway between top and bottom points. Once the top and bottom interfaces were obtained it was possible to get the final prism representation and calculate the gravity signal. The observed Bouguer field is explained very well by our model and the residuals are used to evaluate possible secondary caves. The final prism model together with the gravity database on surface and inside the cave form a perfect benchmark to test forward and inverse potential field algorithms. References Fingolo M., Facco L., Ceccato A., Breganze C., Paganini P., Cezza M., Grotta Gigante di Trieste. Tra realtà virtuale e rilievi 3D ad alta risoluzione, Veneto Geologi, 75, pp.21-25, 2011

  5. Establishment of National Gravity Base Network of Iran

    Science.gov (United States)

    Hatam Chavari, Y.; Bayer, R.; Hinderer, J.; Ghazavi, K.; Sedighi, M.; Luck, B.; Djamour, Y.; Le Moign, N.; Saadat, R.; Cheraghi, H.

    2009-04-01

    upward movement of lava. g. Producing precise mean gravity anomaly for precise geoid determination. Replacing precise spirit leveling by the GPS leveling using precise geoid model is one of the forth coming application of the precise geoid. A gravity base network of 28 stations established over Iran. The stations were built mainly at bedrocks. All stations were measured by an FG5 absolute gravimeter, at least 12 hours at each station, to obtain an accuracy of a few micro gals. Several stations were repeated several times during recent years to estimate the gravity changes.

  6. Quantization of Emergent Gravity

    CERN Document Server

    Yang, Hyun Seok

    2013-01-01

    Emergent gravity is based on a novel form of the equivalence principle known as the Darboux theorem or the Moser lemma in symplectic geometry stating that the electromagnetic force can always be eliminated by a local coordinate transformation as far as spacetime admits a symplectic structure, in other words, a microscopic spacetime becomes noncommutative (NC). If gravity emerges from U(1) gauge theory on NC spacetime, this picture of emergent gravity suggests a completely new quantization scheme where quantum gravity is defined by quantizing spacetime itself, leading to a dynamical NC spacetime. Therefore the quantization of emergent gravity is radically different from the conventional approach trying to quantize a phase space of metric fields. This approach for quantum gravity allows a background independent formulation where spacetime as well as matter fields is equally emergent from a universal vacuum of quantum gravity.

  7. Quantization of emergent gravity

    Science.gov (United States)

    Yang, Hyun Seok

    2015-02-01

    Emergent gravity is based on a novel form of the equivalence principle known as the Darboux theorem or the Moser lemma in symplectic geometry stating that the electromagnetic force can always be eliminated by a local coordinate transformation as far as space-time admits a symplectic structure, in other words, a microscopic space-time becomes noncommutative (NC). If gravity emerges from U(1) gauge theory on NC space-time, this picture of emergent gravity suggests a completely new quantization scheme where quantum gravity is defined by quantizing space-time itself, leading to a dynamical NC space-time. Therefore the quantization of emergent gravity is radically different from the conventional approach trying to quantize a phase space of metric fields. This approach for quantum gravity allows a background-independent formulation where space-time and matter fields are equally emergent from a universal vacuum of quantum gravity.

  8. Anomaly Mediation and Cosmology

    CERN Document Server

    Basboll, A; Jones, D R T

    2011-01-01

    We consider an extension of the MSSM wherein anomaly mediation is the source of supersymmetry-breaking, and the tachyonic slepton problem is solved by a Fayet-Iliopoulos (FI) $D$-term associated with an additional $U(1)$ symmetry, which also facilitates the see-saw mechanism for neutrino masses and a natural source for the Higgs $\\mu$-term. We explore the cosmological consequences of the model, showing that the model naturally produces a period of hybrid inflation, terminating in the production of cosmic strings. In spite of the presence of a $U(1)$ with an FI term, inflation is effected by the $F$-term, with a $D$-flat tree potential (the FI term being cancelled by non-zero squark and slepton fields). Calculating the 1-loop corrections to the inflaton potential, we estimate the constraints on the parameters of the model from Cosmic Microwave Background data. We briefly discuss the mechanisms for baryogenesis via conventional leptogenesis, the out-of-equilibrium production of neutrinos from the cosmic strings...

  9. Detection of groundwater conduits in limestones with gravity surveys: data from the area of the Chicxulub Impact crater, Yucatan Peninsula, Mexico.

    Science.gov (United States)

    Kinsland, G L; Hurtado, M; Pope, K O

    2000-04-15

    Small negative gravity anomalies are found in gravity data from along the northwestern shoreline of the Yucatan Peninsula. These anomalies are shown to be due to elongate, shallow anomalous porosity zones in the Tertiary carbonates. These zones are caused primarily by groundwater solution and are presently active conduits for groundwater flow. The association of these small gravity anomalies with known topographic and structural features of the area, which partially overlies the Chicxulub Impact crater, indicates their development was influenced by structures, faults and/or fractures, within the Tertiary and pre-Tertiary carbonates.

  10. Detection of groundwater conduits in limestones with gravity surveys: data from the area of the Chicxulub Impact crater, Yucatan Peninsula, Mexico

    Science.gov (United States)

    Kinsland, G. L.; Hurtado, M.; Pope, K. O.; Ocampo, A. C. (Principal Investigator)

    2000-01-01

    Small negative gravity anomalies are found in gravity data from along the northwestern shoreline of the Yucatan Peninsula. These anomalies are shown to be due to elongate, shallow anomalous porosity zones in the Tertiary carbonates. These zones are caused primarily by groundwater solution and are presently active conduits for groundwater flow. The association of these small gravity anomalies with known topographic and structural features of the area, which partially overlies the Chicxulub Impact crater, indicates their development was influenced by structures, faults and/or fractures, within the Tertiary and pre-Tertiary carbonates.

  11. Subduction zones seen by GOCE gravity gradients

    DEFF Research Database (Denmark)

    Švarc, Mario; Herceg, Matija; Cammarano, Fabio

    and used as starting point for analysis based on image processing. On obtained maps, locations of known subduction zones were represented with characteristic elongated patterns and cross-sections. Cross sections of well-known subduction zones were used as input patterns for pattern recognition method....... Few pattern recognition methods were tested on all 6 gravity gradient tensor components represented as global scale maps with resolution of 100km (corresponds to the resolution of the GOCE satellite data). By adjusting pattern recognition methods’ features and optimizing various input patterns......, the best method was applied. That is a combination of methods based on SURF (Speeded Up Robust Features) and MSER (Maximally Stable Extremal Regions) algorithms provided in MATLAB’s Computer Vision System Toolbox. Based on 6 gravity gradient components, the global gradient anomaly maps were produced...

  12. The GRADIO spaceborne gravity gradiometer: Development and accommodation

    Science.gov (United States)

    Bernard, A.

    1989-06-01

    The European ARISTOTELES mission aims at the determination of the Earth's gravity field at short wavelength with a global coverage. Gravity gradient measurements will be achieved during six months by the GRADIO instrument onboard a dedicated satellite in a near dawn-dusk sun-synchronous orbit at an altitude of 200 km. The objective is an accuracy of better than 5 mgals for gravity anomalies, at ground level for blocks of 1 x 1 deg. According to present knowledge of the potential, the recovery of higher spherical harmonics (degree and order greater than 30) is of main importance. This leads to focus on the variations of the measured components T(sub ij) of the gravity gradient tensor, at frequencies greater than 5 x 10(exp -3) Hz. The resolution, required for the gradiometer is 10(exp -2) Eotvos (i.e., 10(exp -11)/s squared) with an averaging time of 4 s.

  13. Symplectic Structure of Intrinsic Time Gravity

    Directory of Open Access Journals (Sweden)

    Eyo Eyo Ita

    2016-08-01

    Full Text Available The Poisson structure of intrinsic time gravity is analysed. With the starting point comprising a unimodular three-metric with traceless momentum, a trace-induced anomaly results upon quantization. This leads to a revision of the choice of momentum variable to the (mixed index traceless momentric. This latter choice unitarily implements the fundamental commutation relations, which now take on the form of an affine algebra with SU(3 Lie algebra amongst the momentric variables. The resulting relations unitarily implement tracelessness upon quantization. The associated Poisson brackets and Hamiltonian dynamics are studied.

  14. Invariant regularization of anomaly-free chiral theories

    CERN Document Server

    Chang, L N; Chang, Lay Nam; Soo, Chopin

    1997-01-01

    We present a generalization of the Frolov-Slavnov invariant regularization scheme for chiral fermion theories in curved spacetimes. The Lagrangian level regularization is explicitly invariant under all the local gauge symmetries of the theory, including local Lorentz invariance. The perturbative scheme works for {\\it arbitrary} representations which satisfy the chiral gauge anomaly and mixed Lorentz-gauge anomaly cancellation conditions. Anomalous theories on the other hand manifest themselves by having divergent fermion loops which remain unregularized by the scheme. Since the invariant scheme is promoted to also include local Lorentz invariance, spectator fields which do not couple to gravity cannot be, and are not, introduced. Furthermore, the scheme is truly Weyl(chiral) in that {\\it all} fields, including the regulators, are left-handed; and {\\it only the left-handed spin connection} is needed. The scheme is therefore well-suited for the perturbative study of all four known forces in a completely chiral ...

  15. The flyby anomaly: A case for strong gravitomagnetism ?

    CERN Document Server

    Acedo, L

    2015-01-01

    In the last two decades an anomalous variation in the asymptotic velocity of spacecraft performing a flyby manoeuvre around Earth has been discovered through careful Doppler tracking and orbital analysis. No viable hypothesis for a conventional explanation of this effect has been proposed and its origin remains unexplained. In this paper we discuss a strong transversal component of the gravitomagnetic field as a possible source of the flyby anomaly. We show that the perturbations induced by such a field could fit the anomalies both in sign and order of magnitude. But, although the secular contributions to the Gravity Probe B experimental results and the Lense-Thirring effect in geodynamics satellites can be made null, the detailed orbital evolution is easily in conflict with such an enhanced gravitomagnetic effect.

  16. Anomaly induced transport coefficients, from weak to strong coupling

    CERN Document Server

    Pena-Benitez, Francisco

    2013-01-01

    The existence of new transport phenomena associated to the presence of quantum anomalies has atracted very recently the attention of theorist. These transport coefficient have very interesting properties, for example, they do not renormalize. The most famous case of anomaly induced transport phenomena is the Chiral Magnetic Effect, in which an electric current is produced by a magnetic field if the system has a different number of right handed fermions respect the left handed one. In this thesis we have studied those transport coefficients from Kubo formulas at weak and strong coupling. To finish a fluid/gravity approach is used to compute all the second order anomalous coefficients in an anomalous conformal fluid.

  17. Processing MAGSAT data for comparison with geoid anomalies

    Science.gov (United States)

    Bowin, C. O. (Principal Investigator)

    1982-01-01

    A digital data library of MAGSAT data consisting of 1,615,636 measurements from the quiet data set, is geographically sorted, and allows rapid analysis and processing of all the quiet magnetic data about any selected location. Because this library of MAGSAT data is compatible with existing gravity and geoid data library processing and display system software, correlations between MAGSAT, surface gravity, GEOS-3 radar altimeter geoid and bathymetric data sets can be conveniently detected and analyzed. Polynomial trends from each half-orbit were removed as an effective way of estimating and removing ring current effects following estimation of the core field contribution. It was found that a third order polynomial is the lowest polynomial order that appears to provide the best consistency of residual anomalies between coincident orbits.

  18. The cosmological constant as a manifestation of the conformal anomaly?

    CERN Document Server

    Thomas, Evan C; Zhitnitsky, Ariel R

    2009-01-01

    We propose that the solution to the cosmological vacuum energy puzzle may come from the infrared sector of the effective theory of gravity, where the impact of the trace anomaly is of upmost relevance. We proceed by introducing two auxiliary fields, which are capable of describing a diversity of quantum states via specification of their macroscopic (IR) boundary conditions, in contrast to ultraviolet quantum effects. Our investigation aims at finding a realistic cosmological solution which interprets the observed cosmological constant as a well defined deficit in the zero point energy density of the Universe. The energy density arises from a phase transition, which alters the properties of the quantum ground state. We explicitly formulate low energy gravity as an effective field theory with a precise definition of the "point of normalization" as the point at which the "renormalized cosmological constant" is set to zero in the Minkowski vacuum, in which the Einstein equations are automatically satisfied as the...

  19. ALP hints from cooling anomalies

    CERN Document Server

    Giannotti, Maurizio

    2015-01-01

    We review the current status of the anomalies in stellar cooling and argue that, among the new physics candidates, an axion-like particle would represent the best option to account for the hinted additional cooling.

  20. Notes on Anomaly Induced Transport

    CERN Document Server

    Landsteiner, Karl

    2016-01-01

    Chiral anomalies give rise to dissipationless transport phenomena such as the chiral magnetic and vortical effects. In these notes I review the theory from a quantum field theoretic, hydrodynamic and holographic perspective. A physical interpretation of the otherwise somewhat obscure concepts of consistent and covariant anomalies will be given. Vanishing of the CME in strict equilibrium will be connected to the boundary conditions in momentum space imposed by the regularization. The role of the gravitational anomaly will be explained. That it contributes to transport in an unexpectedly low order in the derivative expansion can be easiest understood via holography. Anomalous transport is supposed to play also a key role in understanding the electronics of advanced materials, the Dirac- and Weyl (semi)metals. Anomaly related phenomena such as negative magnetoresistivity, anomalous Hall effect, thermal anomalous Hall effect and Fermi arcs can be understood via anomalous transport. Finally I briefly review a holo...