WorldWideScience

Sample records for bottom atomic power

  1. SOARCA Peach Bottom Atomic Power Station Long-Term Station Blackout Uncertainty Analysis: Knowledge Advancement.

    Energy Technology Data Exchange (ETDEWEB)

    Gauntt, Randall O.; Mattie, Patrick D.; Bixler, Nathan E.; Ross, Kyle W.; Cardoni, Jeffrey N; Kalinich, Donald A.; Osborn, Douglas.; Sallaberry, Cedric Jean-Marie; Ghosh, S. Tina

    2014-02-01

    This paper describes the knowledge advancements from the uncertainty analysis for the State-of- the-Art Reactor Consequence Analyses (SOARCA) unmitigated long-term station blackout accident scenario at the Peach Bottom Atomic Power Station. This work assessed key MELCOR and MELCOR Accident Consequence Code System, Version 2 (MACCS2) modeling uncertainties in an integrated fashion to quantify the relative importance of each uncertain input on potential accident progression, radiological releases, and off-site consequences. This quantitative uncertainty analysis provides measures of the effects on consequences, of each of the selected uncertain parameters both individually and in interaction with other parameters. The results measure the model response (e.g., variance in the output) to uncertainty in the selected input. Investigation into the important uncertain parameters in turn yields insights into important phenomena for accident progression and off-site consequences. This uncertainty analysis confirmed the known importance of some parameters, such as failure rate of the Safety Relief Valve in accident progression modeling and the dry deposition velocity in off-site consequence modeling. The analysis also revealed some new insights, such as dependent effect of cesium chemical form for different accident progressions. (auth)

  2. Peach Bottom Atomic Power Station recirc pipe dose rates with zinc injection and condenser replacement

    Energy Technology Data Exchange (ETDEWEB)

    DiCello, D.C.; Odell, A.D.; Jackson, T.J. [PECO Energy Co., Delta, PA (United States)

    1995-03-01

    Peach Bottom Atomic Power Station (PBAPS) is located near the town of Delta, Pennsylvania, on the west bank of the Susquehanna River. It is situated approximately 20 miles south of Lancaster, Pennsylvania. The site contains two boiling water reactors of General Electric design and each rated at 3,293 megawatts thermal. The units are BWR 4s and went commercial in 1977. There is also a decommissioned high temperature gas-cooled reactor on site, Unit 1. PBAPS Unit 2 recirc pipe was replaced in 1985 and Unit 3 recirc pipes replaced in 1988 with 326 NGSS. The Unit 2 replacement pipe was electropolished, and the Unit 3 pipe was electropolished and passivated. The Unit 2 brass condenser was replaced with a Titanium condenser in the first quarter of 1991, and the Unit 3 condenser was replaced in the fourth quarter of 1991. The admiralty brass condensers were the source of natural zinc in both units. Zinc injection was initiated in Unit 2 in May 1991, and in Unit 3 in May 1992. Contact dose rate measurements were made in standard locations on the 28-inch recirc suction and discharge lines to determine the effectiveness of zinc injection and to monitor radiation build-up in the pipe. Additionally, HPGe gamma scans were performed to determine the isotopic composition of the oxide layer inside the pipe. In particular, the specific ({mu}Ci/cm{sup 2}) of Co-60 and Zn-65 were analyzed.

  3. 76 FR 48184 - Exelon Nuclear, Peach Bottom Atomic Power Station, Unit 1; Exemption From Certain Security...

    Science.gov (United States)

    2011-08-08

    ... a permanently shut down nuclear reactor facility. PBAPS Unit 1 was a high-temperature, gas-cooled... nuclear power reactors against radiological sabotage,'' paragraph (b)(1) states, ``The licensee shall... its objective to provide high assurance that activities involving special nuclear material are...

  4. SOARCA Peach Bottom Atomic Power Station Long-Term Station Blackout Uncertainty Analysis: Convergence of the Uncertainty Results

    Energy Technology Data Exchange (ETDEWEB)

    Bixler, Nathan E.; Osborn, Douglas.; Sallaberry, Cedric Jean-Marie; Eckert-Gallup, Aubrey Celia; Mattie, Patrick D.; Ghosh, S. Tina

    2014-02-01

    This paper describes the convergence of MELCOR Accident Consequence Code System, Version 2 (MACCS2) probabilistic results of offsite consequences for the uncertainty analysis of the State-of-the-Art Reactor Consequence Analyses (SOARCA) unmitigated long-term station blackout scenario at the Peach Bottom Atomic Power Station. The consequence metrics evaluated are individual latent-cancer fatality (LCF) risk and individual early fatality risk. Consequence results are presented as conditional risk (i.e., assuming the accident occurs, risk per event) to individuals of the public as a result of the accident. In order to verify convergence for this uncertainty analysis, as recommended by the Nuclear Regulatory Commission’s Advisory Committee on Reactor Safeguards, a ‘high’ source term from the original population of Monte Carlo runs has been selected to be used for: (1) a study of the distribution of consequence results stemming solely from epistemic uncertainty in the MACCS2 parameters (i.e., separating the effect from the source term uncertainty), and (2) a comparison between Simple Random Sampling (SRS) and Latin Hypercube Sampling (LHS) in order to validate the original results obtained with LHS. Three replicates (each using a different random seed) of size 1,000 each using LHS and another set of three replicates of size 1,000 using SRS are analyzed. The results show that the LCF risk results are well converged with either LHS or SRS sampling. The early fatality risk results are less well converged at radial distances beyond 2 miles, and this is expected due to the sparse data (predominance of “zero” results).

  5. Critical evaluation of the nonradiological environmental technical specifications. Volume 3. Peach Bottom Atomic Power Station Units 2 and 3

    Energy Technology Data Exchange (ETDEWEB)

    Adams, S.M.; Cunningham, P.A.; Gray, D.D.; Kumar, K.D.; Witten, A.J.

    1976-08-10

    A comprehensive study of the data collected as part of the environmental Technical Specifications program for Units 2 and 3 of the Peach Bottom Nuclear Power Plant was conducted for the Office of Regulatory Research of the U.S. Nuclear Regulatory Commission. The program included an analysis of both the hydrothermal and ecological monitoring data collected from 1967 through 1976. Specific recommendations are made for improving both the present hydrothermal and ecological monitoring programs. Hydrothermal monitoring would be improved by more complete reporting of in-plant operating parameters. In addition, the present boat surveys could be discontinued, and monitoring efforts could be directed toward expanding the present thermograph network. Ecological monitoring programs were judged to be of high quality because standardized collection techniques, consistent reporting formats, and statistical analyses were performed on all of the data and were presented in an annual report. Sampling for all trophic groups was adequate for the purposes of assessing power plant induced perturbations. Considering the extensive period of preoperational data (six years) and operational data (three years) available for analysis, consideration could be given to reducing monitoring effort after data have been collected for a period when both units are operating at full capacity. In this way, an assessment of the potential ecological impact of the Peach Bottom facility can be made under conditions of maximum plant induced perturbations.

  6. ATOMIZATION CAUSED BY BOTTOM FLOW ENERGY DISSIPATION

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Bottom flow energy dissipation is one of the common energydissipation methods for flood-releasing structures with high water head. Measures of this energy dissipation depend mainly on the turbulent action of hydraulic jump.In this paper, the physical process and the calculating methods of the atomization caused by bottom flow energy dissipation were studied, the computation models of atomization quantity for the self-aerated flow in overflow and hydraulic jump regions are presented, and the main results are of theoretical and practical significance for the hydraulic and electric engineering.

  7. 76 FR 52357 - Exelon Generation Company, LLC; PSEG Nuclear, LLC; Peach Bottom Atomic Power Station, Unit 3...

    Science.gov (United States)

    2011-08-22

    ... Branch 1-2, Division of Operating Reactor Licensing, Office of Nuclear Reactor Regulation, U.S. Nuclear... Power Ratio (SLMCPR) values. The SLMCPR is established to assure that at least 99.9% of the fuel rods in... Reactor Fuel,'' Revision 18. The basis of the SLMCPR calculation is to ensure that during normal...

  8. 76 FR 19476 - Exelon Generation Company, LLC, Peach Bottom Atomic Power Station, Unit Nos. 2 and 3; Exemption

    Science.gov (United States)

    2011-04-07

    ... carts containing new resins in paper or plastic bags. The total weight of the plastic bags is estimated.... Standard-383, ``IEEE Standard For Qualifying Class 1E Electrical Cables And Field Splices for Nuclear Power Generating Stations'' (IEEE 383), or equivalent. Detection, Control, and Extinguishment The licensee...

  9. 78 FR 58571 - Maine Yankee Atomic Power Company, Connecticut Yankee Atomic Power Company, and The Yankee Atomic...

    Science.gov (United States)

    2013-09-24

    ... Atomic Power Company, Connecticut Yankee Atomic Power Company, and The Yankee Atomic Electric Company... Power Company (Maine Yankee), Connecticut Yankee Atomic Power Company (Connecticut Yankee), and the Yankee Atomic Electric Company (Yankee Atomic) (together, ``licensees'' or ``the Yankee Companies'')...

  10. Atomically Precise Bottom-up Fabrication of Graphene Nanoribbons

    Science.gov (United States)

    Cai, Jinming

    2011-03-01

    Graphene nanoribbons (GNRs) -- narrow stripes of graphene -- are predicted to exhibit remarkable properties making them suitable for future electronic applications. Contrary to their two-dimensional (2D) parent material graphene, which exhibits semimetallic behavior, GNRs with widths smaller than 10 nm are predicted to be semiconductors due to quantum confinement and edge effects. Despite significant advances in GNR fabrication using chemical, sonochemical and lithographic methods as well as recent reports on the successful unzipping of carbon nanotubes into GNRs, the production of sub-10 nm GNRs with chemical precision remains a major challenge. In this talk, we will present a simple GNR fabrication method that allows for the production of atomically precise GNRs of different topologies and widths. Our bottom-up approach consists in the surface-assisted coupling of suitably designed molecular precursors into linear polyphenylenes and their subsequent cyclodehydrogenation, and results in GNRs whose topology, width and edge periphery are defined by the precursor monomers. By means of STM and Raman characterization, we demonstrate that this fabrication process allows for the atomically precise fabrication of complex GNR topologies. Furthermore, we have developed a reliable procedure to transfer GNRs fabricated on metal surfaces onto other substrates. It will for example be shown that millimeter sized sheets of crosslinked GNRs can be transferred onto silicon wafers, making them available for further processing, e.g. by lithography, prototype device fabrication and characterization. Coauthors: Pascal Ruffieux, Rached Jaafar, Marco Bieri, Thomas Braun, and Stephan Blankenburg, Empa, Swiss Federal Laboratories for Materials Science and Technology, 3602 Thun and 8600 Dübendorf, Switzerland; Matthias Muoth, ETH Zurich, Department of Mechanical and Process Engineering, 8092 Zurich, Switzerland; Ari P. Seitsonen, University of Zurich, Physical Chemistry Institute, 8057

  11. 78 FR 42556 - Maine Yankee Atomic Power Company; Maine Yankee Atomic Power Plant Issuance of Environmental...

    Science.gov (United States)

    2013-07-16

    ... COMMISSION Maine Yankee Atomic Power Company; Maine Yankee Atomic Power Plant Issuance of Environmental..., 2011, with various implementation dates for each of the rule changes. Maine Yankee Atomic Power Company... ADAMS, which provides text and image files of NRC's public documents. If you do not have access to...

  12. First-principles study on bottom-up fabrication process of atomically precise graphene nanoribbons

    Science.gov (United States)

    Kaneko, Tomoaki; Tajima, Nobuo; Ohno, Takahisa

    2016-06-01

    We investigate the energetics of a polyanthracene formation in the bottom-up fabrication of atomically precise graphene nanoribbons on Au(111) using first-principles calculations based on the density functional theory. We show that the structure of precursor molecules plays a decisive role in the C-C coupling reaction. The reaction energy of the dimerization of anthracene dimers is a larger negative value than that of the dimerization of anthracene monomers, suggesting that the precursor molecule used in experiments has a favorable structure for graphene nanoribbon fabrication.

  13. Toward the atomic structure of the nuclear pore complex: when top down meets bottom up.

    Science.gov (United States)

    Hoelz, André; Glavy, Joseph S; Beck, Martin

    2016-07-01

    Elucidating the structure of the nuclear pore complex (NPC) is a prerequisite for understanding the molecular mechanism of nucleocytoplasmic transport. However, owing to its sheer size and flexibility, the NPC is unapproachable by classical structure determination techniques and requires a joint effort of complementary methods. Whereas bottom-up approaches rely on biochemical interaction studies and crystal-structure determination of NPC components, top-down approaches attempt to determine the structure of the intact NPC in situ. Recently, both approaches have converged, thereby bridging the resolution gap from the higher-order scaffold structure to near-atomic resolution and opening the door for structure-guided experimental interrogations of NPC function.

  14. Atomic power in space: A history

    Energy Technology Data Exchange (ETDEWEB)

    1987-03-01

    ''Atomic Power in Space,'' a history of the Space Isotope Power Program of the United States, covers the period from the program's inception in the mid-1950s through 1982. Written in non-technical language, the history is addressed to both the general public and those more specialized in nuclear and space technologies. 19 figs., 3 tabs.

  15. Atomic Power in Space: A History

    Science.gov (United States)

    1987-03-01

    "Atomic Power in Space," a history of the Space Isotope Power Program of the United States, covers the period from the program's inception in the mid-1950s through 1982. Written in non-technical language, the history is addressed to both the general public and those more specialized in nuclear and space technologies. Interplanetary space exploration successes and achievements have been made possible by this technology, for which there is no known substitue.

  16. Rotary-Atomizer Electric Power Generator

    Science.gov (United States)

    Nguyen, Trieu; Tran, Tuan; de Boer, Hans; van den Berg, Albert; Eijkel, Jan C. T.

    2015-03-01

    We report experimental and theoretical results on a ballistic energy-conversion method based on a rotary atomizer working with a droplet acceleration-deceleration cycle. In a rotary atomizer, liquid is fed onto the center of a rotating flat surface, where it spreads out under the action of the centrifugal force and creates "atomized" droplets at its edge. The advantage of using a rotary atomizer is that the centrifugal force exerted on the fluid on a smooth, large surface is not only a robust form of acceleration, as it avoids clogging, but also easily allows high throughput, and produces high electrical power. We successfully demonstrate an output power of 4.9 mW and a high voltage up to 3120 V. At present, the efficiency of the system is still low (0.14%). However, the conversion mechanism of the system is fully interpreted in this paper, permitting a conceptual understanding of system operation and providing a roadmap for system optimization. This observation will open up a road for building power-generation systems in the near future.

  17. Physical and Chemical Properties of Coal Bottom Ash (CBA) from Tanjung Bin Power Plant

    Science.gov (United States)

    Izzati Raihan Ramzi, Nurul; Shahidan, Shahiron; Zulkhairi Maarof, Mohamad; Ali, Noorwirdawati

    2016-11-01

    The objective of this study is to determine the physical and chemical characteristics of Coal Bottom Ash (CBA) obtained from Tanjung Bin Power Plant Station and compare them with the characteristics of natural river sand (as a replacement of fine aggregates). Bottom ash is the by-product of coal combustion during the electricity generating process. However, excess bottom ash production due to the high production of electricity in Malaysia has caused several environmental problems. Therefore, several tests have been conducted in order to determine the physical and chemical properties of bottom ash such as specific gravity, density, particle size distribution, Scanning Electron Microscopic (SEM) and X- Ray Fluorescence (XRF) in the attempt to produce sustainable material from waste. The results indicated that the natural fine aggregate and coal bottom ash have very different physical and chemical properties. Bottom ash was classified as Class C ash. The porous structure, angular and rough texture of bottom ash affected its specific gravity and particle density. From the tests, it was found that bottom ash is recommended to be used in concrete as a replacement for fine aggregates.

  18. Characterization of bottom ashes from coal pulverized power plants to determine their potential use feasibility

    Energy Technology Data Exchange (ETDEWEB)

    Menendez, E.; Alvaro, A. M.; Argiz, C.; Parra, J. L.; Moragues, A.

    2013-07-01

    The disposal of coal by products represents environmental and economical problems around the world. Therefore, the reuse and valorisation of this waste has become an important issue in the last decades. While high-value construction products containing fly ash were developed and its use is actually totally accepted as an addition to cement, the use of the bottom ash as supplementary cementitious material has not been allow. This paper examines the chemical and physical properties of fly ashes and bottom ashes from two different coal power plants in order to compare them and analyse the potential feasibility of bottom ash as cement replacement. The mechanical properties of cement mortars made with different percentages of both ashes were also study. The results obtained showed similar chemical composition of both kinds of ashes. The compressive strength values of mortars with 10 % and 25 % of cement replacement (at 28 days) were above the limits established in European standards and there were not significant differences between fly ash and bottom ash from both origins. (Author)

  19. Rotary-atomizer electric power generator

    NARCIS (Netherlands)

    Nguyen, Trieu; Tran, Tuan; Boer, de Hans; Berg, van den Albert; Eijkel, Jan C.T.

    2015-01-01

    We report experimental and theoretical results on a ballistic energy-conversion method based on a rotary atomizer working with a droplet acceleration-deceleration cycle. In a rotary atomizer, liquid is fed onto the center of a rotating flat surface, where it spreads out under the action of the centr

  20. Monitoring of the thermoeconomic performance in an actual combined cycle power plant bottoming cycle

    Energy Technology Data Exchange (ETDEWEB)

    Cafaro, S.; Napoli, L.; Traverso, A.; Massardo, A.F. [DIMSET (TPG), University of Genoa, Via Montallegro 1, 16145 Genoa (Italy)

    2010-02-15

    This paper presents a research project carried out by TPG (Thermochemical Power Group) of University of Genoa to develop innovative monitoring and diagnostics procedures and software tools for software-aided maintenance and customer support. This work is concerned with preliminary outcomes regarding the thermoeconomic monitoring of the bottoming cycle of a combined cycle power plant, using real historical data. The software is able to calculate functional exergy flows (y), their related costs (c) (using the plant functional diagram); after that non dimensional parameters for the characteristic exergonomic indexes ({delta}c, {delta}c*, {delta}k*) are determined. Through a plant optimization (not described here) the reference conditions of the plant at each operating condition can be determined. Then, non dimensional indexes related to each thermoeconomic parameter are defined, in order to depict a ''cost degradation'', and thus a significant rise in the production cost of the main products of the bottoming cycle (steam and power). The methodology developed has been successfully applied to historical logged data of an existing 400 MW power plant, showing the capabilities in estimating the ''cost degradation'' of the elements of the BC over the plant life, and trends in the thermoeconomic indexes. (author)

  1. Atomic layer deposition-Sequential self-limiting surface reactions for advanced catalyst "bottom-up" synthesis

    Science.gov (United States)

    Lu, Junling; Elam, Jeffrey W.; Stair, Peter C.

    2016-06-01

    Catalyst synthesis with precise control over the structure of catalytic active sites at the atomic level is of essential importance for the scientific understanding of reaction mechanisms and for rational design of advanced catalysts with high performance. Such precise control is achievable using atomic layer deposition (ALD). ALD is similar to chemical vapor deposition (CVD), except that the deposition is split into a sequence of two self-limiting surface reactions between gaseous precursor molecules and a substrate. The unique self-limiting feature of ALD allows conformal deposition of catalytic materials on a high surface area catalyst support at the atomic level. The deposited catalytic materials can be precisely constructed on the support by varying the number and type of ALD cycles. As an alternative to the wet-chemistry based conventional methods, ALD provides a cycle-by-cycle "bottom-up" approach for nanostructuring supported catalysts with near atomic precision. In this review, we summarize recent attempts to synthesize supported catalysts with ALD. Nucleation and growth of metals by ALD on oxides and carbon materials for precise synthesis of supported monometallic catalyst are reviewed. The capability of achieving precise control over the particle size of monometallic nanoparticles by ALD is emphasized. The resulting metal catalysts with high dispersions and uniformity often show comparable or remarkably higher activity than those prepared by conventional methods. For supported bimetallic catalyst synthesis, we summarize the strategies for controlling the deposition of the secondary metal selectively on the primary metal nanoparticle but not on the support to exclude monometallic formation. As a review of the surface chemistry and growth behavior of metal ALD on metal surfaces, we demonstrate the ways to precisely tune size, composition and structure of bimetallic metal nanoparticles. The cycle-by-cycle "bottom up" construction of bimetallic (or multiple

  2. Bottom-Up Fabrication of Nanopatterned Polymers on DNA Origami by In Situ Atom-Transfer Radical Polymerization.

    Science.gov (United States)

    Tokura, Yu; Jiang, Yanyan; Welle, Alexander; Stenzel, Martina H; Krzemien, Katarzyna M; Michaelis, Jens; Berger, Rüdiger; Barner-Kowollik, Christopher; Wu, Yuzhou; Weil, Tanja

    2016-05-04

    Bottom-up strategies to fabricate patterned polymers at the nanoscale represent an emerging field in the development of advanced nanodevices, such as biosensors, nanofluidics, and nanophotonics. DNA origami techniques provide access to distinct architectures of various sizes and shapes and present manifold opportunities for functionalization at the nanoscale with the highest precision. Herein, we conduct in situ atom-transfer radical polymerization (ATRP) on DNA origami, yielding differently nanopatterned polymers of various heights. After cross-linking, the grafted polymeric nanostructures can even stably exist in solution without the DNA origami template. This straightforward approach allows for the fabrication of patterned polymers with low nanometer resolution, which provides access to unique DNA-based functional hybrid materials.

  3. A low-power current self-adjusted VCO using a bottom PMOS current source

    Science.gov (United States)

    Zhixiong, Sheng; Fengqi, Yu

    2014-09-01

    This paper presents the design and implementation of a current self-adjusted VCO with low power consumption. In the proposed VCO, a bottom PMOS current source instead of a top one is adopted to decrease the tail noise. A current self-adjusted technique without additional external control signals is taken to ensure the VCO starts up in the whole band while keeping the power consumption relatively low. Meanwhile, the phase noise of the VCO at the low frequency (high Cvar) can be reduced by the technique. The circuit is implemented in 0.18 μm CMOS technology. The proposed VCO exhibits low power consumption of < 1.6 mW at a 1.5 V supply voltage and a tuning range from 11.79 to 12.53 GHz. The measured phase noise at 1 MHz offset from the frequency 11.79 GHz is -104.7 dBc/Hz, and the corresponding FOM is -184.2 dBc/Hz.

  4. Driving the atom by atomic fluorescence: Analytic results for the power and noise spectra

    OpenAIRE

    2000-01-01

    We study how the spectral properties of resonance fluorescence propagate through a two-atom system. Within the weak-driving-field approximation we find that, as we go from one atom to the next, the power spectrum exhibits both subnatural linewidth narrowing and large asymmetries while the noise spectrum of the squeezed quadrature narrows but remains otherwise unchanged. Analytical results for the observed spectral features of the fluorescence are provided and their origin is thoroughly discus...

  5. Plutonium and Uranium Atom Ratios and Activity Levels in Cochiti Lake Bottom Sediments Provided by Pueblo de Cochiti

    Energy Technology Data Exchange (ETDEWEB)

    Gallaher, B.M.; Efurd, D.W.; Rokop, D.J.; Benjamin, T.M.

    1999-05-01

    Historical operations at the Los Alamos National Laboratory have contaminated stream sediments with plutonium and other radionuclides. A small portion of these contaminated sediments has been carried by floods into the Rio Grande drainage system, eventually to be trapped by Cochiti Lake located on Pueblo de Cochiti lands approximately 8 km downstream of the Laboratory. In this study, lake bottom sediment samples provided by the Pueblo de Cochiti were analyzed by thermal ionization mass spectrometry to determine plutonium and uranium activity levels and isotopic atom ratios. This specialized analytical method allows us to take isotopic fingerprints of radionuclides found in the sediment and to determine how much plutonium and uranium came from the Laboratory and how much was deposited by worldwide fallout or is natural. Two distinct types of samples were processed: segments of a continuous vertical core of the entire accumulated sediment sequence and other samples from across the lake bottom at the water/sediment interface. Based on measurement of the {sup 240}Pu/{sup 239}Pu atom ratio, Laboratory-derived plutonium is present in eight of nine samples at the core site. On a depth-weighted basis, approximately one-half of the {sup 239}Pu and {sup 240}Pu came from early operations at the Laboratory; the remaining plutonium came from fallout dispersed by above-ground nuclear tests. In contrast to the core site, the samples from the other locations showed little or no evidence of Laboratory-derived plutonium, with more than 90 percent of the plutonium attributable to fallout. The overall amount of plutonium in all the samples is of the same magnitude as other reservoirs in the region. The net increase in plutonium over upstream reservoirs unaffected by Laboratory activities is a maximum of 0.014 pCi/g or 3.5 times. All of the samples reflect natural uranium compositions. Laboratory-derived uranium is not identifiable, presumably because the sediment contains abundant

  6. Properties of Concrete using Tanjung Bin Power Plant Coal Bottom Ash and Fly Ash

    Directory of Open Access Journals (Sweden)

    Abdulhameed Umar Abubakar

    2012-12-01

    Full Text Available Coal combustion by-products (CCPs have been around since man understood that burning coal generates electricity, and its utilization in concrete production for nearly a century. The concept of sustainable development only reawaken our consciousness to the huge amount of CCPs around us and the need for proper reutilization than the current method of disposal which has  severe consequences both to man and the environment. This paper presents the result of utilization of waste from thermal power plants to improve some engineering properties of concrete. Coal bottom ash (CBA and fly ash were utilized in partial replacement for fine aggregates and cement respectively. The results of compressive strength at 7, 28, 56 & 90 days curing are presented because of the pozzolanic reaction. Other properties investigated include physical properties, fresh concrete properties and density. The results showed that for a grade 35 concrete with a combination of CBA and fly ash can produce 28 day strength above 30 MPa.

  7. Potential Use of Malaysian Thermal Power Plants Coal Bottom Ash in Construction

    Directory of Open Access Journals (Sweden)

    Abdulhameed Umar Abubakar

    2012-11-01

    Full Text Available As Malaysia focuses its attention to the call for a “greener” culture, so did the engineers and those in the scientific community especially the construction industry who is a major contributor to the depletion of green house gases. The engineering and construction community has now taken up the challenge for the use of “green and recycled by-products” in construction. One of those by-products is the Coal Bottom Ash (CBA from thermal power plants that faces an increasing production running into hundreds of thousand tonnes in Malaysia alone, and its method of disposal is relegated to landfills alone with no other commercial usage. The construction industry is now forced to rethink on the utilization of the industrial by-products as supplementary materials due to the continuous depletion of natural aggregates in construction. A significant amount of research has been conducted elsewhere on CBA to ascertain its pozzolanic activity, compressive strength in concrete and mortar, durability, water absorption characteristics and density, in order to ensure its usage as a construction material. In this paper, a critical review of the strength characteristics of concrete and mortar as influenced by CBA as partial replacement of fine aggregate is presented based on the available information in the published literatures. Diverse physical and chemical properties of CBA from different power plants in Malaysia are also presented. The influence of different types, amounts and sources of CBA on the strength and bulk density of concrete is discussed. The setting time, workability and consistency as well as the advantages and disadvantages of using CBA in construction materials are also highlighted. An effective utilization of CBA in construction materials will significantly reduce the accumulation of the by-products in landfills and thus reduce environmental pollution.

  8. Behavior study of trace elements in pulverized lignite, bottom ash, and fly ash of Amyntaio power station, Greece.

    Science.gov (United States)

    Megalovasilis, Pavlos; Papastergios, Georgios; Filippidis, Anestis

    2013-07-01

    The Kozani-Ptolemais-Amyntaio basin constitutes the principal coal field of Greece. Approximately 50% of the total power production of Greece is generated by five power stations operating in the area. Lignite samples, together with the corresponding fly ash and bottom ash were collected, over a period of 3 months, from the power plant of Amyntaio and analyzed for their content in 16 trace elements. The results indicate that Y, Nb, U, Rb, Zr, Ni, Pb, Ba, Zn, Sr, Cu, and Th demonstrate an organic affinity during the combustion of lignite, while V has an inorganic affinity. Three elements (Co, Cr, and Sc) show an intermediate affinity.

  9. Trace element geochemistry of feed coal, fly and bottom ashes of Turkish power plants: implications for ash utilisation

    Energy Technology Data Exchange (ETDEWEB)

    Gayer, R.A.; Karayigit, A.I.; Goldsmith, S.; Onacak, T.; Rose, M. [Cardiff University, Cardiff (United Kingdom). Dept of Earth Sciences

    1998-12-31

    Recent environmental concern has led to studies of the fate of environmentally sensitive elements (ESEs) during the combustion of coal in power plants. Of particular interest has been the partioning of potentially hazardous trace elements in coal-combustion waste products (fly ash and bottom ash) and in flue gases. This paper reports on a preliminary investigation into the trace element geochemistry of feed coals, bottom ash and fly ash in thirteen power units in Turkey. It concentrates on sixteen trace elements, five of which are of major environmental concern (Be, As, Mo, Pb, and Tl), two of moderate concern (Cu and Zn), three of minor concern (Mn, Co and Ba). Two of the ESEs are radiogenic (Th and U). Ti, Cs, La, and W, which show interesting distributions, are also considered. The approach has been to analyse the feed coals to highlight any significant element enrichment and to carry out mass balance calculations to determine the partioning of elements between bottom and fly ash. Results indicate that solid residues, particularly fly ash may show unusually high concentrations of moderately volatile ESEs such as As, Pb, Tl, Mo, Be and Zn. The use of such enriched fly ash should be treated with caution. 9 refs., 2 figs., 3 tabs.

  10. Knolls Atomic Power Laboratory environmental monitoring report, calendar year 1999

    Energy Technology Data Exchange (ETDEWEB)

    None

    2000-12-01

    The results of the effluent and environmental monitoring programs at the three Knolls Atomic Power Laboratory (KAPL) Sites are summarized and assessed in this report. Operations at the three KAPL Sites [Knolls Site, Niskayuna, New York; Kesselring Site, West Milton, New York; S1C Site, Windsor, Connecticut] during calendar year 1999 resulted in no significant release of hazardous substances or radioactivity to the environment. The effluent and environmental monitoring programs conducted by KAPL are designed to determine the effectiveness of treatment and control methods, to provide measurement of the concentrations in effluents for comparison with applicable standards, and to assess resultant concentrations in the environment. The monitoring programs include analyses of samples of liquid and gaseous effluents for chemical constituents and radioactivity as well as monitoring of environmental air, water, sediment, and fish. Radiation measurements are also made around the perimeter of each Site and at off-site background locations.

  11. Use of bottom ash from thermal power plant and lime as filler in bituminous mixtures

    Directory of Open Access Journals (Sweden)

    López-López, E.

    2015-06-01

    Full Text Available This study focuses on the characterization of bottom ash (PCC-BA and determining the mechanical characteristics of hot mix asphalt (HMA using PCC-BA and hydrated lime (HL as filler. Physical and chemical characterization of the bottom ash was carried out to evaluate its eventual reutilization as filler substitute. The materials tested in this study were made using 0%, 25%, 50%, 70% and 100% of PCC-BA combined with HL. HMA mixes were evaluated in terms of their engineering properties, namely: air voids in the mixes, water sensitivity, stiffness modulus, performance in wheel tracking test and fatigue resistance. The results obtained indicate that HMA mixes with a filler blend of 70% PCC-BA and 30% HL fulfil European standards and are suitable for light traffic or small infrastructures.Este estudio se centra en la caracterización de las cenizas de fondo (PCC-BA y la determinación de las características mecánicas de mezclas bituminosas en caliente (HMA, utilizando cenizas de fondo y la cal hidratada (HL como filler. Se realizó la caracterización física y química de las cenizas de fondo para evaluar su empleo como sustituto de filler. Las mezclas ensayadas en este estudio se realizaron utilizando 0%, 25%, 50%, 70% y 100% de cenizas de fondo combinadas con cal hidratada. Se evaluaron propiedades ingenieriles de las mezclas bituminosas, tales como los huecos de aire en las mezclas, la sensibilidad al agua, el módulo de rigidez, el ensayo de pista y la resistencia a la fatiga. Los resultados obtenidos indican que las mezclas bituminosas fabricadas con una combinación de filler del 70% de cenizas de fondo y el 30% cal hidratada, cumplen con las normas europeas y son adecuados para su aplicación con tráficos ligeros o en pequeñas infraestructuras.

  12. Distributions of Pu isotopes in seawater and bottom sediments in the coast of the Japanese archipelago before and soon after the Fukushima Dai-ichi Nuclear Power Station accident.

    Science.gov (United States)

    Oikawa, Shinji; Watabe, Teruhisa; Takata, Hyoe

    2015-04-01

    A radioactivity measurement survey was carried out from 24 April 2008 to 3 June 2011 to determine the levels of plutonium isotopes and (240)Pu/(239)Pu atom ratios in the marine environments off the sites of commercial nuclear power stations around the Japanese islands; the sampling period extended to two months after the Fukushima Dai-ichi Nuclear Power Station accident. In our previous study (Oikawa et al., 2015), data on Pu isotopes and (241)Am in sediments have already been reported. In this study, we report those on Pu isotopes in seawater as well as sediments, and the characteristics of sediments in addition (e.g., ignition loss and biogenic opals). Concentrations of (239+240)Pu in seawater and bottom sediments remained nearly constant at all sampling locations during the survey period. In addition, no regional differences were observed in the (239+240)Pu concentrations in surface waters. Higher (239+240)Pu concentrations were found in bottom waters at deeper sampling locations, but the (240)Pu/(239)Pu atom ratios were nearly constant regardless of the water depth. Higher (239+240)Pu concentrations were also found in bottom sediments at deeper sampling locations, but vice versa for (240)Pu/(239)Pu atom ratios as reported in the previous report. The sediments samples from deeper locations showed the higher percentage of ignition loss as well as the higher content of biogenic opal. There was likely to be some driving force participating in the transfer of Pu isotopes associated with biogenic substances to the deeper seabed. The present survey showed that the accident at the Fukushima Dai-ichi Nuclear Power Station did not contribute much to the inventory of Pu isotopes in the adjacent sea area.

  13. Trends of personal dosimetry at atomic power plants

    Energy Technology Data Exchange (ETDEWEB)

    Yamamura, Seini [Fuji Electric Co. Ltd., Tokyo Factory, Radiation Equipment Department, Tokyo (Japan)

    1998-12-31

    The individual dosimetry at the atomic power station is sorted for monthly dosimetry, daily dosimetry and special job dosimetry in high dose circumstance. Film badge (passive dosimeter) can measure gamma dose, beta dose and neutron dose respectively lower than about 0.1 mSv. While workers are in the radiation controlled area, they have to wear the dosimeters and the individual dose is accumulated for every one month. Recently the Silicon semiconductors detecting beta ray and neutron have been developed. With microcircuit technology and these new sensors, new multiple function dosimeter of the card size had been put to practical use. The result of dose measurement obtained by the electronic dosimeter is consistent well with the measurement of usual film badge and new dosimeter can determine the dose as low as 0.01 mSv. The result is stored in the non-volatile memory in the electronic personal dosimeter and held for more than one year without the power supply. The function to read data directly from the memory improves the reliability of the data protection. The realization of the unified radiation control system that uses the electronic personal dosimeter for monthly dosimetry is expected. (J.P.N.)

  14. Growth in NOx emissions from power plants in China: bottom-up estimates and satellite observations

    Directory of Open Access Journals (Sweden)

    Y. Lei

    2012-05-01

    Full Text Available Using OMI (Ozone Monitoring Instrument tropospheric NO2 columns and a nested-grid 3-D global chemical transport model (GEOS-Chem, we investigated the growth in NOx emissions from coal-fired power plants and their contributions to the growth in NO2 columns in 2005–2007 in China. We first developed a unit-based power plant NOx emission inventory for 2005–2007 to support this investigation. The total capacities of coal-fired power generation have increased by 48.8% in 2005–2007, with 92.2% of the total capacity additions coming from generator units with size ≥300 MW. The annual NOx emissions from coal-fired power plants were estimated to be 8.11 Tg NO2 for 2005 and 9.58 Tg NO2 for 2007, respectively. The modeled summer average tropospheric NO2 columns were highly correlated (R2 = 0.79–0.82 with OMI measurements over grids dominated by power plant emissions, with only 7–14% low bias, lending support to the high accuracy of the unit-based power plant NOx emission inventory. The ratios of OMI-derived annual and summer average tropospheric NO2 columns between 2007 and 2005 indicated that most of the grids with significant NO2 increases were related to power plant construction activities. OMI had the capability to trace the changes of NOx emissions from individual large power plants in cases where there is less interference from other NOx sources. Scenario runs from GEOS-Chem model suggested that the new power plants contributed 18.5% and 10% to the annual average NO2 columns in 2007 in Inner Mongolia and North China, respectively. The massive new power plant NOx emissions significantly changed the local NO2 profiles, especially in less polluted areas. A sensitivity study found that changes of NO2 shape factors due to including new power plant emissions increased the summer average OMI tropospheric NO2 columns by 3.8–17.2% for six selected locations, indicating that the updated emission information could help to improve the satellite

  15. Growth in NOx emissions from power plants in China: bottom-up estimates and satellite observations

    Directory of Open Access Journals (Sweden)

    Y. Lei

    2012-01-01

    Full Text Available Using OMI (Ozone Monitoring Instrument tropospheric NO2 columns and a nested-grid 3-D global chemical transport model (GEOS-Chem, we investigated the growth in NOx emissions from coal-fired power plants and their contributions to the growth in NO2 columns in 2005–2007 in China. We first developed a unit-based power plant NOx emission inventory for 2005–2007 to support this investigation. The total capacities of coal-fired power generation have increased by 48.8% in 2005–2007, with 92.2% of the total capacity additions coming from generator units with size ≥300 MW. The annual NOx emissions from coal-fired power plants were estimated to be 8.11 Tg NO2 for 2005 and 9.58 Tg NO2 for 2007, respectively. The modeled summer average tropospheric NO2 columns were highly correlated (R2 = 0.79–0.82 with OMI measurements over grids dominated by power plant emissions, with only 7–14% low bias, lending support to the high accuracy of the unit-based power plant NOx emission inventory. The ratios of OMI-derived annual and summer average tropospheric NO2 columns between 2007 and 2005 indicated that most of the grids with significant NO2 increases were related to power plant construction activities. OMI had the capability to trace the changes of NOx emissions from individual large power plants in cases where there is less interference from other NOx sources. Scenario runs from GEOS-Chem model suggested that the new power plants contributed 18.5% and 10% to the annual average NO2 columns in 2007 in Inner Mongolia and North China, respectively. The massive new power plant NOx emissions significantly changed the local NO2 profiles, especially in less polluted areas. A sensitivity study found that changes of NO2 shape factors due to including new power plant emissions increased the summer average OMI tropospheric NO2 columns by 3.8–17.2% for six selected locations, indicating that the updated emission information could help to improve the satellite

  16. Potential usage of fly and bottom ash from thermal power plant ”Nikola Tesla” landfill, Serbia

    Directory of Open Access Journals (Sweden)

    Čudić Vladica V.

    2012-01-01

    Full Text Available In Serbia, the ash from power plants has long been labelled as hazardous waste. With the adoption of the appropriate legislation this ash became secondary raw material with the potential usage. In this paper an analysis of the fly and bottom ash composition, which are disposed of in the power plant “Nikola Tesla A” landfill, is presented. Thirty samples, divided into three sets, were analyzed for trace elements As, Ba, Be, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Ti, V and Zn. The first and second set of samples were taken at the depth of 0.0-0.6 m, from cassette III, at the place of waste discharge (set I and in the centre of the cassette (set II.The third set of samples was taken from the same cassette spot but at the different depth. The estimated variations in quality within individual sets, as well as the comparison between sets I and II, were done. The repeatability of results by the depth of cassette (set III was also analyzed. The mixture consisting of 79.4% limestone, 17% clay, 0.5% sand, 0.55% iron ore, 0.55% from steel mill waste and 2% ash from the thermal power plant "Nikola Tesla A" was adopted as the reputable mixture for cement making. For concrete making, the same cement mixture was used but with 2.1% of the same ash material added. The results showed possibility of further fly and bottom ash use as the cement and concrete material.

  17. Power Distribution at the Bottom of the Pyramid: Illumination through Affordable and Sustainable Solution of Gram Power

    Science.gov (United States)

    Pandey, Nisha; Sarswat, Prashant

    2016-03-01

    Energy plays a vital role in the socio -economic development, mainly due to the dependency of indispensable amenities on electricity. However, a matter of concern is developing country domestic power needs and inadequate supply. One of the cases is Indian subcontinent, where more than 50,000 villages still not have access to uninterrupted electric power. `Power theft' is a major challenge due to the lack of adequate energy supply and the financial constraints. Long distances, inaccurate and inflated electricity bills are the other issues lead to default on payments. Gram Power, a social enterprise, is providing a smart metering and affordable solution in areas where the extension of existing grid supply is economically not viable. India's first solar powered micro-grid (centralized array of solar panels) in Rajasthan was established by this initiative. The core innovation is a smart distribution technology that consists of smart meters with recharging facility and grid monitoring, to provide on-demand, theft-proof power through centralized servers with a pay-as-you-use schedule. The details of the changes, socio-economic transformation, and operational sustainability of such a community engagement model will be discussed in this study.

  18. Knolls Atomic Power Laboratory environmental monitoring report, calendar year 2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-12-31

    The results of the effluent and environmental monitoring programs at the three Knolls Atomic Power Laboratory (KAPL) Sites are summarized and assessed in this report. Operations at the Knolls and Kesselring Sites and Site closure activities at the S1C Site (also known as the KAPL Windsor Site) continue to have no adverse effect on human health and the quality of the environment. The effluent and environmental monitoring programs conducted by KAPL at the Knolls and Kesselring Sites are designed to determine the effectiveness of treatment and control methods, to provide measurement of the concentrations in effluents for comparison with applicable standards, and to assess resultant concentrations in the environment. The monitoring programs include analyses of samples of liquid and gaseous effluents for chemical constituents and radioactivity as well as environmental monitoring of air, water, sediment, and fish. Radiation measurements are also made around the perimeter of the Knolls and Kesselring Sites and at off-site background locations. The environmental monitoring program for the S1C Site continues to be reduced in scope from previous years due to the completion of Site dismantlement activities during 1999 and a return to green field conditions during 2000.

  19. Knolls Atomic Power Laboratory environmental monitoring report, calendar year 2000

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-12-01

    The results of the effluent and environmental monitoring programs at the three Knolls Atomic Power Laboratory (KAPL) Sites are summarized and assessed in this report. Operations at the Knolls Site, Niskayuna, New York and the Kesselring Site, West Milton, New York and site closure activities at the S1C Site, Windsor, Connecticut, continued to have no adverse effect on human health and the quality of the environment during calendar year 2000. The effluent and environmental monitoring programs conducted by KAPL are designed to determine the effectiveness of treatment and control methods, to provide measurement of the concentrations in effluents for comparison with applicable standards, and to assess resultant concentrations in the environment. The monitoring programs include analyses of samples of liquid and gaseous effluents for chemical constituents and radioactivity as well as monitoring of environmental air, water, sediment, and fish. Radiation measurements are also made around the perimeter of each Site and at off-site background locations. Monitoring programs at the S1C Site were reduced in scope during calendar year 2000 due to completion of site dismantlement activities during 1999.

  20. Knolls Atomic Power Laboratory environmental monitoring report, calendar year 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The results of the effluent and environmental monitoring programs at the three Knolls Atomic Power Laboratory (KAPL) sites are summarized and assessed in this report. The principal function at KAPL sites (Knolls, Kesselring, and Windsor) is research and development in the design and operation of Naval nuclear propulsion plants. The Kesselring Site is also used for the training of personnel in the operation of these plants. The Naval nuclear propulsion plant at the Windsor Site is currently being dismantled. Operations at the three KAPL sites resulted in no significant release of hazardous substances or radioactivity to the environment. The effluent and environmental monitoring programs conducted by KAPL are designed to determine the effectiveness of treatment and control methods, to provide measurement of the concentrations in effluents for comparison with applicable standards, and to assess resultant concentrations in the environment. The monitoring programs include analyses of samples of liquid and gaseous effluents for chemical constituents and radioactivity as well as monitoring of environmental air, water, sediment, and fish. Radiation measurements are also made around the perimeter of each site and at off-site background locations.

  1. Atomic Information Technology Safety and Economy of Nuclear Power Plants

    CERN Document Server

    Woo, Taeho

    2012-01-01

    Atomic Information Technology revaluates current conceptions of the information technology aspects of the nuclear industry. Economic and safety research in the nuclear energy sector are explored, considering statistical methods which incorporate Monte-Carlo simulations for practical applications. Divided into three sections, Atomic Information Technology covers: • Atomic economics and management, • Atomic safety and reliability, and • Atomic safeguarding and security. Either as a standalone volume or as a companion to conventional nuclear safety and reliability books, Atomic Information Technology acts as a concise and thorough reference on statistical assessment technology in the nuclear industry. Students and industry professionals alike will find this a key tool in expanding and updating their understanding of this industry and the applications of information technology within it.

  2. Performance Improvement of Combined Cycle Power Plant Based on the Optimization of the Bottom Cycle and Heat Recuperation

    Institute of Scientific and Technical Information of China (English)

    Wenguo XIANG; Yingying CHEN

    2007-01-01

    Many F class gas turbine combined cycle (GTCC) power plants are built in China at present because of less emission and high efficiency. It is of great interest to investigate the efficiency improvement of GTCC plant. A combined cycle with three-pressure reheat heat recovery steam generator (HRSG) is selected for study in this paper.In order to maximize the GTCC efficiency, the optimization of the HRSG operating parameters is performed. The operating parameters are determined by means of a thermodynamic analysis, i.e. the minimization of exergy losses. The influence of HRSG inlet gas temperature on the steam bottoming cycle efficiency is discussed. The result shows that increasing the HRSG inlet temperature has less improvement to steam cycle efficiency when it is over 590℃. Partial gas to gas recuperation in the topping cycle is studied. Joining HRSG optimization with the use of gas to gas heat recuperation, the combined plant efficiency can rise up to 59.05% at base load. In addition,the part load performance of the GTCC power plant gets much better. The efficiency is increased by 2.11% at 75% load and by 4.17% at 50% load.

  3. 75 FR 33653 - Connecticut Yankee Atomic Power Company; Notice of Consideration of Issuance of Amendment to...

    Science.gov (United States)

    2010-06-14

    ... COMMISSION Connecticut Yankee Atomic Power Company; Notice of Consideration of Issuance of Amendment to Facility Operating License, Proposed No Significant Hazards; Consideration Determination, and Opportunity... hazards consideration. Under the Commission's regulations in Title 10 of the Code of Federal...

  4. Atoms

    Institute of Scientific and Technical Information of China (English)

    刘洪毓

    2007-01-01

    Atoms(原子)are all around us.They are something like the bricks (砖块)of which everything is made. The size of an atom is very,very small.In just one grain of salt are held millions of atoms. Atoms are very important.The way one object acts depends on what

  5. 75 FR 54400 - Florida Power and Light Company; Establishment of Atomic Safety and Licensing Board

    Science.gov (United States)

    2010-09-07

    ... COMMISSION Florida Power and Light Company; Establishment of Atomic Safety and Licensing Board Pursuant to...), and the Commission's regulations, see 10 CFR 2.104, 2.300, 2.303, 2.309, 2.311, 2.318, and 2.321... over the following proceeding: Florida Power & Light Company (Turkey Point Units 6 and 7)...

  6. Influence of electron motion in target atom on stopping power for low-energetic ions

    Directory of Open Access Journals (Sweden)

    Stevanović Nenad

    2012-01-01

    Full Text Available In this paper the stopping power was calculated, representing the electrons of the target atom as an assembly of quantum oscillators. It was considered that the electrons in the atoms have some velocity before interaction with the projectile, which is the main contribution of this paper. The influence of electron velocity on stopping power for different projectiles and targets was investigated. It was found that the velocity of the electron stopping power has the greatest influence at low energies of the projectile.

  7. Simulation of Chromium Atom Deposition Pattern in a Gaussain Laser Standing Wave with Different Laser Power

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wen-Tao; ZHU Bao-Hua

    2009-01-01

    One-dimensional deposition of a neutral chromium atomic beam focused by a near-resonant Gaussian standing-laser field is discussed by using a fourth-order Runge-Kutta type algorithm. The deposition pattern of neutral chromium atoms in a laser standing wave with different laser power is discussed and the simulation result shows that the full width at half maximum (FWHM) of a nanometer stripe is 115nm and the contrast is 2.5:1 with laser power 3.93mW; the FWHM is 0.Snm and the contrast is 27:1 with laser power 16mW, the optimal laser power; but with laser power increasing to 50mW, the nanometer structure forms multi-crests and the quality worsens quickly with increasing laser power.

  8. Different Algorithms for Improving Detection Power of Atomic Fluorescence Spectrometry

    Directory of Open Access Journals (Sweden)

    Jian Cui

    2012-11-01

    Full Text Available The purpose of detecting trace concentrations of analytes often is hindered by occurring noise in the signal curves of analytical methods. This is also a problem when different arsenic species (organic arsenic species such as arsanilic acid, nitarsone and roxarsone are to be determined in animal meat by HPLC-UV-HG-AFS, which is the basis of this work. In order to improve the detection power, methods of signal treatment may be applied. We show a comparison of convolution with Gaussian distribution curves, Fourier transform, and wavelet transform. It is illustrated how to estimate decisive parameters for these techniques. All methods result in improved limits of detection. Furthermore, applying baselines and evaluating peaks thoroughly is facilitated. However, there are differences. Fourier transform may be applied, but convolution with Gaussian distribution curves shows better results of improvement. The best of the three is wavelet transform, whereby the detection power is improved by factors of about 2.4

  9. Observation of a power-law energy distribution in atom-ion hybrid system

    Science.gov (United States)

    Meir, Ziv; Akerman, Nitzan; Sikorsky, Tomas; Ben-Shlomi, Ruti; Dallal, Yehonatan; Ozeri, Roee

    2016-05-01

    Understanding atom-ion collision dynamics is at the heart of the growing field of ultra-cold atom-ion physics. The naive picture of a hot ion sympathetically-cooled by a cold atomic bath doesn't hold due to the time dependent potentials generated by the ion Paul trap. The energy scale of the atom-ion system is determined by a combination of the atomic bath temperature, the ion's excess micromotion (EMM) and the back action of the atom-ion attraction on the ion's position in the trap. However, it is the position dependent ion's inherent micromotion which acts as an amplifier for the ion's energy during random consecutive collisions. Due to this reason, the ion's energy distribution deviates from Maxwell-Boltzmann (MB) characterized by an exponential tail to one with power-law tail described by Tsallis q-exponential function. Here we report on the observation of a strong deviation from MB to Tsallis energy distribution of a trapped ion. In our experiment, a ground-state cooled 88 Sr+ ion is immersed in an ultra-cold cloud of 87 Rb atoms. The energy scale is determined by either EMM or solely due to the back action on the ion position during a collision with an atom in the trap. Energy distributions are obtained using narrow optical clock spectroscopy.

  10. Influence of laser power on deposition of the chromium atomic beam in laser standing wave

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    One-dimensional deposition of collimated Cr atomic beam focused by a near-resonant Gaussian standing-laser field with wavelength of 425.55 nm is examined from particle-optics approach by using an adaptive step size,fourth-order Runge-Kutta type algorithm.The influence of laser power on deposition of atoms in laser standing wave is discussed and the simulative result shows that the FWHM of nanometer stripe is 102 nm and contrast is 2:1 with laser power equal to 3 mW,the FWHM is 1.2 nm and contrast is 32:1 with laser power equal to 16 mW,but with laser power increase,equal to 50 mW,the nonmeter structure forms the multi-crests and exacerbates.

  11. Influence of laser power on deposition of the chromium atomic beam in laser standing wave

    Institute of Scientific and Technical Information of China (English)

    ZHANG WenTao; ZHU BaoHua; ZHANG BaoWu; LI TongBao

    2009-01-01

    One-dimensional deposition of collimated Cr atomic beam focused by a near-resonant Gaussian standing-laser field with wavelength of 425.55 nm is examined from particle-optics approach by using an adaptive step size, fourth-order Runge-Kutta type algorithm. The influence of laser power on depo-sition of atoms in laser standing wave is discussed and the simulative result shows that the FWHM of nanometer stripe is 102 nm and contrast is 2:1 with laser power equal to 3 mW, the FWHM is 1.2 nm and contrast is 32:1 with laser power equal to 16 mW, but with laser power increase, equal to 50 mW, the nonmeter structure forms the multi-crests and exacerbates.

  12. High-performance laser power feedback control system for cold atom physics

    Institute of Scientific and Technical Information of China (English)

    Bo Lu; Thibault Vogt; Xinxing Liu; Xiaoji Zhou; Xuzong Chen

    2011-01-01

    @@ A laser power feedback control system that features fast response,large-scale performance,low noise,and excellent stability is presented.Some essential points used for optimization are described.Primary optical lattice experiments are given as examples to show the performance of this system.With these performance characteristics,the power control system is useful for applications in cold atom physics and precision measurements.%A laser power feedback control system that features fast response, large-scale performance, low noise, and excellent stability is presented. Some essential points used for optimization are described. Primary optical lattice experiments are given as examples to show the performance of this system. With these performance characteristics, the power control system is useful for applications in cold atom physics and precision measurements.

  13. 78 FR 63506 - Exelon Generation Company, LLC; Peach Bottom Atomic Power Station, Units 2 and 3; Proposed...

    Science.gov (United States)

    2013-10-24

    ... during the summer. However, no hibernation or maternity sites occur in the county. The Supplemental... PBAPS, including replacing two electrical transformers on an existing pad. Since no ground...

  14. 76 FR 29277 - Exelon Generation Company, LLC; Peach Bottom Atomic Power Station Unit Nos. 2 and 3...

    Science.gov (United States)

    2011-05-20

    ... waste (LLRW), from Exelon's Limerick Generating Station, Units 1 and 2 (LGS). The LLRW will be stored in..., for its Class B and Class C LLRW generated at LGS since it does not currently have access to a... member of the Atlantic Low-Level Waste Compact. Therefore, LGS and PBAPS do not have access to...

  15. Ground state atomic oxygen in high-power impulse magnetron sputtering: a quantitative study

    Science.gov (United States)

    Britun, Nikolay; Belosludtsev, Alexandr; Silva, Tiago; Snyders, Rony

    2017-02-01

    The ground state density of oxygen atoms in reactive high-power impulse magnetron sputtering discharges has been studied quantitatively. Both time-resolved and space-resolved measurements were conducted. The measurements were performed using two-photon absorption laser-induced fluorescence (TALIF), and calibrated by optical emission actinometry with multiple Ar emission lines. The results clarify the dynamics of the O ground state atoms in the discharge afterglow significantly, including their propagation and fast decay after the plasma pulse, as well as the influence of gas pressure, O2 admixture, etc.

  16. Analysis of 2015 Meteorological Data from the Bettis Atomic Power Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Aluzzi, F. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-02-19

    The Bettis Atomic Power Laboratory (Bettis) in West Miffin, PA is required to estimate the effects of hypothetical emissions of radiological material from its facility by the U.S. Environmental Protection Agency (EPA). An atmospheric dispersion model known as CAP88, which was developed and approved by the EPA for such purposes, is used by Bettis to meet this requirement. CAP88 calculations over a given time period are based on statistical data on the meteorological conditions for that period. The Bettis facility has an on-site meteorological tower which takes atmospheric measurements at a frequency ideal for EPA regulatory model input. However, an independent analysis and processing of the meteorological data from the site tower is required to derive a data set appropriate for use in the CAP88 model. The National Atmospheric Release Advisory Center (NARAC) was contracted by the Bettis Atomic Power Laboratory to process the on-site meteorological data for the calendar year 2015.

  17. Stabilization/solidification of fly ashes and concrete production from bottom and circulating ashes produced in a power plant working under mono and co-combustion conditions.

    Science.gov (United States)

    Barbosa, Rui; Lapa, Nuno; Lopes, Helena; Gulyurtlu, Ibrahim; Mendes, Benilde

    2011-01-01

    Two combustion tests were performed in a fluidized bed combustor of a thermo-electric power plant: (1) combustion of coal; (2) co-combustion of coal (68.7% w/w), sewage sludge (9.2% w/w) and meat and bone meal (MBM) (22.1% w/w). Three samples of ashes (bottom, circulating and fly ashes) were collected in each combustion test. The ashes were submitted to the following assays: (a) evaluation of the leaching behaviour; (b) stabilization/solidification of fly ashes and evaluation of the leaching behaviour of the stabilized/solidified (s/s) materials; (c) production of concrete from bottom and circulating ashes. The eluates of all materials were submitted to chemical and ecotoxicological characterizations. The crude ashes have shown similar chemical and ecotoxicological properties. The s/s materials have presented compressive strengths between 25 and 40 MPa, low emission levels of metals through leaching and were classified as non-hazardous materials. The formulations of concrete have presented compressive strengths between 12 and 24 MPa. According to the Dutch Building Materials Decree, some concrete formulations can be used in both scenarios of limited moistening and without insulation, and with permanent moistening and with insulation.

  18. Interaction of antiprotons with Rb atoms and a comparison of antiproton stopping powers of the atoms H, Li, Na, K, and Rb

    DEFF Research Database (Denmark)

    Lühr, Armin Christian; Fischer, Nicolas; Saenz, Alejandro

    2009-01-01

    Ionization and excitation cross sections as well as electron-energy spectra and stopping powers of the alkali metal atoms Li, Na, K, and Rb colliding with antiprotons were calculated using a time-dependent channel-coupling approach. An impact-energy range from 0.25 to 4000 keV was considered....... The target atoms are treated as effective one-electron systems using a model potential. The results are compared with calculated cross sections for antiproton-hydrogen atom collisions....

  19. Bottom production

    Energy Technology Data Exchange (ETDEWEB)

    Baines, J.; Baranov, S.P.; Bartalini, P.; Bay, A.; Bouhova, E.; Cacciari, M.; Caner, A.; Coadou, Y.; Corti, G.; Damet, J.; Dell-Orso, R.; De Mello Neto, J.R.T.; Domenech, J.L.; Drollinger, V.; Eerola, P.; Ellis, N.; Epp, B.; Frixione, S.; Gadomski, S.; Gavrilenko, I.; Gennai, S.; George, S.; Ghete, V.M.; Guy, L.; Hasegawa, Y.; Iengo, P.; Jacholkowska, A.; Jones, R.; Kharchilava, A.; Kneringer, E.; Koppenburg, P.; Korsmo, H.; Kramer, M.; Labanca, N.; Lehto, M.; Maltoni, F.; Mangano, M.L.; Mele, S.; Nairz, A.M.; Nakada, T.; Nikitin, N.; Nisati, A.; Norrbin, E.; Palla, F.; Rizatdinova, F.; Robins, S.; Rousseau, D.; Sanchis-Lozano, M.A.; Shapiro, M.; Sherwood, P.; Smirnova, L.; Smizanska, M.; Starodumov, A.; Stepanov, N.; Vogt, R.

    2000-03-15

    In the context of the LHC experiments, the physics of bottom flavoured hadrons enters in different contexts. It can be used for QCD tests, it affects the possibilities of B decays studies, and it is an important source of background for several processes of interest. The physics of b production at hadron colliders has a rather long story, dating back to its first observation in the UA1 experiment. Subsequently, b production has been studied at the Tevatron. Besides the transverse momentum spectrum of a single b, it has also become possible, in recent time, to study correlations in the production characteristics of the b and the b. At the LHC new opportunities will be offered by the high statistics and the high energy reach. One expects to be able to study the transverse momentum spectrum at higher transverse momenta, and also to exploit the large statistics to perform more accurate studies of correlations.

  20. Bottom Production

    CERN Document Server

    Nason, P; Schneider, O; Tartarelli, F; Vikas, P; Baines, J T M; Baranov, S P; Bartalini, P; Bay, A; Bouhova-Thacker, E; Cacciari, M; Caner, A; Coadou, Y; Corti, G; Damet, J; Dell'Orso, R; De Mello-Neto, J R T; Domenech, J L; Drollinger, V; Eerola, Paule Anna Mari; Ellis, Nick; Epp, B; Frixione, Stefano; Gadomski, S; Gavrilenko, I; Gennai, Simone; George, S; Ghete, V M; Guy, L P; Hasegawa, Y; Iengo, R; Jacholkowska, A; Jones, R; Kharchilava, A I; Kneringer, E; Koppenburg, P; Korsmo, M; Krämer, M; Labanca, N; Lehto, M H; Maltoni, F; Mangano, Michelangelo L; Mele, S; Nairz, A; Nakada, Tatsuya; Nikitin, N V; Nisati, A; Norrbin, E; Palla, Fabrizio; Rizatdinova, F K; Robins, S A; Rousseau, D; Sanchis-Lozano, M A; Shapiro, M; Sherwood, P; Smirnova, L; Smizanska, M; Starodumov, Andrei; Stepanov, N; Voft, R

    2000-01-01

    We review the prospects for bottom production physics at the LHC. Members of the working group who has contributed to this document are: J. Baines, S.P. Baranov, P. Bartalini, A. Bay, E. Bouhova, M. Cacciari, A. Caner, Y. Coadou, G. Corti, J. Damet, R. Dell'Orso, J.R.T. De Mello Neto, J.L. Domenech, V. Drollinger, P. Eerola, N. Ellis, B. Epp, S. Frixione, S. Gadomski, I. Gavrilenko, S. Gennai, S. George, V.M. Ghete, L. Guy, Y. Hasegawa, P. Iengo, A. Jacholkowska, R. Jones, A. Kharchilava, E. Kneringer, P. Koppenburg, H. Korsmo, M. Kraemer, N. Labanca, M. Lehto, F. Maltoni, M.L. Mangano, S. Mele, A.M. Nairz, T. Nakada, N. Nikitin, A. Nisati, E. Norrbin, F. Palla, F. Rizatdinova, S. Robins, D. Rousseau, M.A. Sanchis-Lozano, M. Shapiro, P. Sherwood, L. Smirnova, M. Smizanska, A. Starodumov, N. Stepanov, R. Vogt

  1. Generation of neutral atomic beams utilizing photodetachment by high power diode laser stacks

    Science.gov (United States)

    O'Connor, A. P.; Grussie, F.; Bruhns, H.; de Ruette, N.; Koenning, T. P.; Miller, K. A.; Savin, D. W.; Stützel, J.; Urbain, X.; Kreckel, H.

    2015-11-01

    We demonstrate the use of high power diode laser stacks to photodetach fast hydrogen and carbon anions and produce ground term neutral atomic beams. We achieve photodetachment efficiencies of ˜7.4% for H- at a beam energy of 10 keV and ˜3.7% for C- at 28 keV. The diode laser systems used here operate at 975 nm and 808 nm, respectively, and provide high continuous power levels of up to 2 kW, without the need of additional enhancements like optical cavities. The alignment of the beams is straightforward and operation at constant power levels is very stable, while maintenance is minimal. We present a dedicated photodetachment setup that is suitable to efficiently neutralize the majority of stable negative ions in the periodic table.

  2. Tape transfer atomization patterning of liquid alloys for microfluidic stretchable wireless power transfer.

    Science.gov (United States)

    Jeong, Seung Hee; Hjort, Klas; Wu, Zhigang

    2015-02-12

    Stretchable electronics offers unsurpassed mechanical compliance on complex or soft surfaces like the human skin and organs. To fully exploit this great advantage, an autonomous system with a self-powered energy source has been sought for. Here, we present a new technology to pattern liquid alloys on soft substrates, targeting at fabrication of a hybrid-integrated power source in microfluidic stretchable electronics. By atomized spraying of a liquid alloy onto a soft surface with a tape transferred adhesive mask, a universal fabrication process is provided for high quality patterns of liquid conductors in a meter scale. With the developed multilayer fabrication technique, a microfluidic stretchable wireless power transfer device with an integrated LED was demonstrated, which could survive cycling between 0% and 25% strain over 1,000 times.

  3. Generation of neutral atomic beams utilizing photodetachment by high power diode laser stacks

    CERN Document Server

    O'Connor, A P; Grussie, F; Koenning, T P; Miller, K A; de Ruette, N; Stützel, J; Savin, D W; Urbain, X; Kreckel, H

    2015-01-01

    We demonstrate the use of high power diode laser stacks to photodetach fast hydrogen and carbon anions and produce ground term neutral atomic beams. We achieve photodetachment efficiencies of $\\sim$7.4\\% for H$^-$ at a beam energy of 10\\,keV and $\\sim$3.7\\% for C$^-$ at 28\\,keV. The diode laser systems used here operate at 975\\,nm and 808\\,nm, respectively, and provide high continuous power levels of up to 2\\,kW, without the need of additional enhancements like optical cavities. The alignment of the beams is straightforward and operation at constant power levels is very stable, while maintenance is minimal. We present a dedicated photodetachment setup that is suitable to efficiently neutralize the majority of stable negative ions in the periodic table.

  4. Boiling water reactor in a prestressed reinforced concrete vessel for an atomic central heating-and-power plant

    Energy Technology Data Exchange (ETDEWEB)

    Tokarev, Yu.I.; Sokolov, I.N.; Skvortsov, S.A.; Sidorov, A.M.; Krauze, L.V.

    1978-04-01

    The possibility of using a boiling water reactor in a prestressed reinforced concrete vessel for an atomic central heating-and-power plant (CHPP) was considered, with design features of the reactor intended for a two-purpose plant. A prestressed reinforced concrete vessel and integral arrangement of the primary circuit ensured reliability of the atomic CHPP using various CHPP flowsheets.

  5. Allowable Residual Contamination Levels in soil for decommissioning the Shippingport Atomic Power Station site

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, W.E. Jr.; Napier, B.A.; Soldat, J.K.

    1983-09-01

    As part of decommissioning the Shippingport Atomic Power Station, a fundamental concern is the determination of Allowable Residual Contamination Levels (ARCL) for radionuclides in the soil at the site. The ARCL method described in this report is based on a scenario/exposure-pathway analysis and compliance with an annual dose limit for unrestricted use of the land after decommissioning. In addition to naturally occurring radionuclides and fallout from weapons testing, soil contamination could potentially come from five other sources. These include operation of the Shippingport Station as a pressurized water reactor, operations of the Shippingport Station as a light-water breeder, operation of the nearby Beaver Valley reactors, releases during decommissioning, and operation of other nearby industries, including the Bruce-Mansfield coal-fired power plants. ARCL values are presented for 29 individual radionculides and a worksheet is provided so that ARCL values can be determined for any mixture of the individual radionuclides for any annual dose limit selected. In addition, a worksheet is provided for calculating present time soil concentration value that will decay to the ARCL values after any selected period of time, such as would occur during a period of restricted access. The ARCL results are presented for both unconfined (surface) and confined (subsurface) soil contamination. The ARCL method and results described in this report provide a flexible means of determining unrestricted-use site release conditions after decommissioning the Shippingport Atomic Power Station.

  6. Self-Channeling of High-Power Long-Wave Infrared Pulses in Atomic Gases

    Science.gov (United States)

    Schuh, K.; Kolesik, M.; Wright, E. M.; Moloney, J. V.; Koch, S. W.

    2017-02-01

    We simulate and elucidate the self-channeling of high-power 10 μ m infrared pulses in atomic gases. The major new result is that the peak intensity can remain remarkably stable over many Rayleigh ranges. This arises from the balance between the self-focusing, diffraction, and defocusing caused by the excitation induced dephasing due to many-body Coulomb effects that enhance the low-intensity plasma densities. This new paradigm removes the Rayleigh range limit for sources in the 8 - 12 μ m atmospheric transmission window and enables transport of individual multi-TW pulses over multiple kilometer ranges.

  7. Knolls Atomic Power Laboratory annual environmental monitoring report, calendar year 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The results of the effluent and environmental monitoring programs at the three Knolls Atomic Power Laboratory (KAPL) sites are summarized and assessed in this report. The effluent and environmental monitoring programs conducted by KAPL are designed to determine the effectiveness of treatment and control methods, to provide measurement of the concentrations in effluents for comparison with applicable standards, and to assess resultant concentrations in the environment. The monitoring programs include analyses of samples of liquid and gaseous effluents for chemical constituents and radioactivity as well as monitoring of environmental air, water, sediment, and fish. Radiation measurements are also made around the perimeter of each site and at off-site background locations.

  8. "Bottom-up" meets "top-down" : self-assembly to direct manipulation of nanostructures on length scales from atoms to microns.

    Energy Technology Data Exchange (ETDEWEB)

    Swartzentruber, Brian Shoemaker

    2009-04-01

    This document is the final SAND Report for the LDRD Project 102660 - 'Bottomup' meets 'top-down': Self-assembly to direct manipulation of nanostructures on length scales from atoms to microns - funded through the Strategic Partnerships investment area as part of the National Institute for Nano-Engineering (NINE) project.

  9. Tunneling in low-power device-design: A bottom-up view of issues, challenges, and opportunities

    Science.gov (United States)

    Ganapathi, Kartik

    Simulation of electronic transport in nanoscale devices plays a pivotal role in shedding light on underlying physics, and in guiding device-design and optimization. The length scale of the problem and the physical mechanism of device operation guide the choice of formalism. In the sub-20 nanometer regime, semi-classical approaches start breaking down, thus necessitating a quantum-mechanical treatment of the electronic transport problem. Non-equilibrium Green's function (NEGF) is a theoretical framework for investigating quantum-mechanical systems---interacting with surroundings through exchange of quasiparticles---far from equilibrium. Although hugely computation-intensive with a realistic device-representation, it provides a rigorous way to include particle-particle interactions and to model phenomena that are inherently quantum-mechanical. We build the Berkeley Quantum Transport Simulator (BQTS)---a massively parallel, generic, NEGF-based numerical simulator---to explore low-power device-design opportunities. Demonstrating scalability and benchmarking results with experimental tunnel diode data, we set out to understand tunneling in devices and to leverage it for both digital and analog applications. Investigating InAs short-channel band-to-band tunneling transistors (TFETs), we show that direct source-to-drain tunneling sets the leakage-floor in such devices, thereby limiting the minimum subthreshold swing (SS) in spite of excellent electrostatics. A heterojunction TFET with a halo doping in the source-channel overlap region is proposed and is shown to achieve steep SS as well as large ON current. We discover that by band-offset engineering, the steepness therein could be controlled primarily by the modulation of heterojunction-barrier. Subsequently, exploring layered materials for analog applications, we demonstrate that doping the drain underlap region in graphene FETs prolongs the onset of tunneling in their output characteristics, and hence significantly

  10. A Solution to Inductive Power Coupling in a Time-Cycled Atom Trap for Beta Decay

    Science.gov (United States)

    Lawrence, Liam; Behr, John; Anholm, Melissa; McNeil, James

    2016-09-01

    The TRINAT group at TRIUMF uses lasers and magnetic fields to confine, cool, and polarize a cloud of beta-decaying neutral alkali atoms to test weak force asymmetry. To alternate between trapping and polarizing the atoms, the trapping magnetic field must be switched on and off. This time-changing magnetic field, created by a pair of co-axial coils, produces eddy currents-and consequentially resistive heating-in nearby conductors. This heating may cause undesirable effects, including damage to the delicate pellicle mirrors which are to be used in future experiments. Previously, the current waveform in the coils consisted of two periods of a sinusoid during the on time of the trapping field (this reduces leftover field from eddy currents during the polarization time). We have calculated the relative power coupled to the pellicle mirror mount for various waveforms, and determined that using half a period of a lower-frequency sinusoid couples an order of magnitude less power than the original waveform, and approximately 2 times less than a trapezoidal wave. We measured the lifetime of the trap subject to this new waveform and found it is possible to achieve a lifetime comparable to that of a continuous trap, our best result differing by less than 5 percent.

  11. Atomic-powered democracy: Policy against politics in the quest for American nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Williams, R.W.

    1993-01-01

    This dissertation focuses on the relationship of American nuclear energy to democracy. It examines whether the nuclear policy processes have furthered the legitimacy-government accountability and citizen participation-which the democratic institutes are based. Nuclear policy and its institutions have placed severe limitations on democratic practices. Contravened democracy is seen most clearly in the decoupling of policy from politics. Decoupling refers to the weakening of institutional linkages between citizens and government, and to the erosion of the norms that ground liberal democracy. Decoupling is manifested in policy centralization, procedural biases, technical rationality, and the spatial displacement of conflict. Decoupling has normative implications: While federal accountability was limited and citizen participation was shackled, other major groups enjoyed privileged access to policy making. The decoupling of nuclear policy from politics arose within the context of US liberal-democratic capitalism. The federal government pursued its own goals of defense and world leadership. Yet, it was not structurally autonomous from the hegemony of the political-economic context. Economically, the Atomic Energy Act did not permit federal agencies to directly invest in power plant construction, and did not authorize them to commercially generate electricity. Private industry was structurally placed to domesticate the atom. Politically, the liberal-democratic system hampered an unquestioning pursuit of atomic energy. Federal institutions have been forced to heed some of the anti-nuclear concerns. The pervasive influence of the US political economy on nuclear policy has come to transgress democracy. Nuclear power's growth faltered during the 1970s. The political and economic constraints on federal actions have limited the means available to revive a becalmed nuclear industry; this has exerted strong pressure on federal institutions to decouple policy from

  12. VUV absorption spectroscopy measurements of the role of fast neutral atoms in high-power gap breakdown

    Energy Technology Data Exchange (ETDEWEB)

    FILUK,A.B.; BAILEY,JAMES E.; CUNEO,MICHAEL E.; LAKE,PATRICK WAYNE; NASH,THOMAS J.; NOACK,DONALD D.; MARON,Y.

    2000-03-20

    The maximum power achieved in a wide variety of high-power devices, including electron and ion diodes, z pinches, and microwave generators, is presently limited by anode-cathode gap breakdown. A frequently-discussed hypothesis for this effect is ionization of fast neutral atoms injected throughout the anode-cathode gap during the power pulse. The authors describe a newly-developed diagnostic tool that provides the first direct test of this hypothesis. Time-resolved vacuum-ultraviolet absorption spectroscopy is used to directly probe fast neutral atoms with 1 mm spatial resolution in the 10 mm anode-cathode gap of the SABRE 5 MV, 1 TW applied-B ion diode. Absorption spectra collected during Ar RF glow discharges and with CO{sub 2} gas fills confirm the reliability of the diagnostic technique. Throughout the 50--100 ns ion diode pulses no measurable neutral absorption is seen, setting upper limits of 0.12--1.5 x 10{sup 14} cm{sup {minus}3} for ground state fast neutral atom densities of H, C, N, O, F. The absence of molecular absorption bands also sets upper limits of 0.16--1.2 x 10{sup 15} cm{sup {minus}3} for common simple molecules. These limits are low enough to rule out ionization throughout the gap as a breakdown mechanism. This technique can now be applied to quantify the role of neutral atoms in other high-power devices.

  13. Atomic mean excitation energies for stopping powers from local plasma oscillator strengths

    Science.gov (United States)

    Wilson, J. W.; Xu, Y. J.; Chang, C. K.; Kamaratos, E.

    1984-01-01

    The stopping of a charged particle by isolated atoms is investigated theoretically using an 'atomic plasma' model in which atomic oscillator strengths are replaced by the plasma frequency spectrum. The plasma-frequency correction factor for individual electron motion proposed by Pines (1953) is incorporated, and atomic mean excitation energies are calculated for atoms through Sr. The results are compared in a graph with those obtained theoretically by Inokuti et al. (1978, 1981) and Dehmer et al. (1975) and with the experimental values compiled by Seltzer and Berger (1982): good agreement is shown.

  14. Analysis of 2016 Meteorological Data from the Knolls Atomic Power Laboratory and Kesselring Site Operations Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Aluzzi, F. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-03-16

    Both the Knolls Atomic Power Laboratory (KAPL) in Schenectady, N.Y. and the Kesselring Site Operations (KSO) facility near Ballston Spa, N.Y. are required to estimate the effects of hypothetical emissions of radiological material from their respective facilities by the U.S. Environmental Protection Agency (EPA), which regulates both sites. An atmospheric dispersion model known as CAP88, which was developed and approved by the EPA for such purposes, is used by KAPL and KSO to meet this requirement. CAP88 calculations over a given time period are based on statistical data on the meteorological conditions for that period. Both KAPL and KSO have on-site meteorological towers which take atmospheric measurements at a frequency ideal for EPA regulatory model input. However, an independent analysis and processing of the meteorological data from each tower is required to derive a data set appropriate for use in the CAP88 model. The National Atmospheric Release Advisory Center (NARAC) was contracted to process the meteorological tower data for the 2016 calendar year from both on-site meteorological towers.

  15. Analysis of 2015 Meteorological Data from the Knolls Atomic Power Laboratory and Kesselring Site Operations Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Aluzzi, F. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-02-19

    Both the Knolls Atomic Power Laboratory (KAPL) in Schenectady, N.Y. and the Kesselring Site Operations (KSO) facility near Ballston Spa, N.Y. are required to estimate the effects of hypothetical emissions of radiological material from their respective facilities by the U.S. Environmental Protection Agency (EPA), which regulates both sites. An atmospheric dispersion model known as CAP88, which was developed and approved by the EPA for such purposes, is used by KAPL and KSO to meet this requirement. CAP88 calculations over a given time period are based on statistical data on the meteorological conditions for that period. Both KAPL and KSO have on-site meteorological towers which take atmospheric measurements at a frequency ideal for EPA regulatory model input. However, an independent analysis and processing of the meteorological data from each tower is required to derive a data set appropriate for use in the CAP88 model. The National Atmospheric Release Advisory Center (NARAC) was contracted to process the meteorological tower data for the 2015 calendar year from both on-site meteorological towers.

  16. Atomic Bomb Survivors Life-Span Study: Insufficient Statistical Power to Select Radiation Carcinogenesis Model.

    Science.gov (United States)

    Socol, Yehoshua; Dobrzyński, Ludwik

    2015-01-01

    The atomic bomb survivors life-span study (LSS) is often claimed to support the linear no-threshold hypothesis (LNTH) of radiation carcinogenesis. This paper shows that this claim is baseless. The LSS data are equally or better described by an s-shaped dependence on radiation exposure with a threshold of about 0.3 Sievert (Sv) and saturation level at about 1.5 Sv. A Monte-Carlo simulation of possible LSS outcomes demonstrates that, given the weak statistical power, LSS cannot provide support for LNTH. Even if the LNTH is used at low dose and dose rates, its estimation of excess cancer mortality should be communicated as 2.5% per Sv, i.e., an increase of cancer mortality from about 20% spontaneous mortality to about 22.5% per Sv, which is about half of the usually cited value. The impact of the "neutron discrepancy problem" - the apparent difference between the calculated and measured values of neutron flux in Hiroshima - was studied and found to be marginal. Major revision of the radiation risk assessment paradigm is required.

  17. "Bottom-up" transparent electrodes.

    Science.gov (United States)

    Morag, Ahiud; Jelinek, Raz

    2016-11-15

    Transparent electrodes (TEs) have attracted significant scientific, technological, and commercial interest in recent years due to the broad and growing use of such devices in electro-optics, consumer products (touch-screens for example), solar cells, and others. Currently, almost all commercial TEs are fabricated through "top-down" approaches (primarily lithography-based techniques), with indium tin oxide (ITO) as the most common material employed. Several problems are encountered, however, in this field, including the cost and complexity of TE production using top-down technologies, the limited structural flexibility, high-cost of indium, and brittle nature and low transparency in the far-IR spectral region of ITO. Alternative routes based upon bottom-up processes, have recently emerged as viable alternatives for production of TEs. Bottom up technologies are based upon self-assembly of building blocks - atoms, molecules, or nanoparticles - generating thin patterned films that exhibit both electrical conductivity and optical transparency. In this Feature Article we discuss the recent progress in this active and exciting field, including bottom-up TE systems produced from carbon materials (carbon nanotubes, graphene, graphene-oxide), silver, gold, and other metals. The current hurdles encountered for broader use of bottom-up strategies along with their significant potential are analyzed.

  18. Knolls Atomic Power Laboratory annual environmental monitoring report. Calendar Year 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    The results of the effluent and environmental monitoring programs at the three Knolls Atomic Power Laboratory (KAPL) sites are summarized and assessed in this report. Operations at the three KAPL sites resulted in no significant release of hazardous substances or radioactivity to the environment. The effluent and environmental monitoring programs conducted by KAPL are designed to determine the effectiveness of treatment and control methods, to provide measurement of the concentrations in effluents for comparison with applicable standards, and to assess resultant concentrations in the environment. The monitoring programs include analyses of samples of liquid and gaseous effluents for chemical constituents and radioactivity as well as monitoring of environmental air, water, sediment, and fish. Radiation measurements are also made around the perimeter of each site and at off-site background locations. KAPL environmental controls are subject to applicable state and federal regulations governing use, emission, treatment, storage and/or disposal of solid, liquid and gaseous materials. Some non-radiological water and air emissions are generated and treated on-site prior to discharge to the environment. Liquid effluents and air emissions are controlled and monitored in accordance with permits issued by the Connecticut Department of Environmental Protection (CTDEP) for the Windsor Site and by the New York State Department of Environmental Conservation (NYSDEC) for the Knolls and Kesselring Sites. The liquid effluent monitoring data show that KAPL has maintained a high degree of compliance with permit requirements. Where required, radionuclide air emission sources are authorized by the US Environmental Protection Agency (EPA). The non-radiological air emissions, with the exception of opacity for the boilers, are not required to be monitored.

  19. The Definition Method and Optimization of Atomic Strain Tensors for Nuclear Power Engineering Materials

    Directory of Open Access Journals (Sweden)

    Xiangguo Zeng

    2016-01-01

    Full Text Available A common measure of deformation between atomic scale simulations and the continuum framework is provided and the strain tensors for multiscale simulations are defined in this paper. In order to compute the deformation gradient of any atom m, the weight function is proposed to eliminate the different contributions within the neighbor atoms which have different distances to atom m, and the weighted least squares error optimization model is established to seek the optimal coefficients of the weight function and the optimal local deformation gradient of each atom. The optimization model involves more than 9 parameters. To guarantee the reliability of subsequent parameters identification result and lighten the calculation workload of parameters identification, an overall analysis method of parameter sensitivity and an advanced genetic algorithm are also developed.

  20. Optimization and Design of Ecological Bottom Outlet of Lower Reservoir, Cisokon Pumped Storage Power Plant%印尼西索肯抽水蓄能电站下水库生态底孔的优化与设计

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    The lower reservoir of Cisokon Pumped Storage Power Plant consists of RCC gravity dam, overflow surface outlet and bottom outlet.The bottom outlet is to release water downstream for ecology, irrigation and reservoir water reduction when the reservoir impounds and operates normally.In the original design of the bottom outlet, the potential risks of gate plugging not closed tightly may exist.There-fore, the alternative scheme is compared and argued.The design scheme of enlarging the shaft section at inlet and providing gate slot is proposed.Additionally, the bottom outlet and the lower installed capacity station are integrated to fully utilize the ecological flow for more power generation.This optimization results in outstanding economic benefit.%印尼西索肯抽水蓄能电站的下水库由碾压混凝土重力坝、溢流表孔和底孔组成;底孔的功能是在水库蓄水和正常运行时,为下游提供生态供水、灌溉流量和降低库水位。原底孔设计方案存在下闸封堵不落实等问题,故对其进行了替代方案的比较和论证;推荐采用加大进口竖井断面、增设闸门槽的设计方案。另外,为充分利用生态流量多发电,最终将底孔与小电站结合起来,经济效益明显。

  1. ASCERTAINMENT OF ELECTRIC-SUPPLY SCHEMES RELIABILITY FOR THE ATOMIC POWER PLANT AUXILIARIES

    Directory of Open Access Journals (Sweden)

    A. L. Starzhinskij

    2015-01-01

    Full Text Available The paper completes ascertainment of electrical-supply scheme reliability for the auxiliaries of a nuclear power plant. Thereat the author considers the system behavior during the block normal operation, carrying out current maintenance, and capital repairs in combination with initiating events. The initiating events for reactors include complete blackout, i.e. the loss of outside power supply (normal and reserve; emergency switching one of the working turbogenerators; momentary dumping the normal rating to the level of auxiliaries with seating the cutout valve of one turbo-generator. The combination of any initiating event with the repairing mode in case of one of the system elements failure should not lead to blackout occurrence of more than one system of the reliable power supply. This requirement rests content with the help of the reliable power supply system self-dependence (electrical and functional and the emergency power-supply operational autonomy (diesel generator and accumulator batteries.The reliability indicators of the power supply system for the nuclear power plant auxiliaries are the conditional probabilities of conjoined blackout of one, two, and three sections of the reliable power supply conditional upon an initiating event emerging and the blackout of one, two, and three reliable power-supply sections under the normal operational mode. Furthermore, they also are the blackout periodicity of one and conjointly two, three, and four sections of normal operation under the block normal operational mode. It is established that the blackout of one bus section of normal operation and one section of reliable power-supply system of the auxiliaries that does not lead to complete blackout of the plant auxiliaries may occur once in three years. The probability of simultaneous power failure of two or three normal-operation sections and of two reliable power-supply sections during the power plant service life is unlikely.

  2. Use of Atomic Fuels for Rocket-Powered Launch Vehicles Analyzed

    Science.gov (United States)

    Palaszewski, Bryan A.

    1999-01-01

    At the NASA Lewis Research Center, the launch vehicle gross lift-off weight (GLOW) was analyzed for solid particle feed systems that use high-energy density atomic propellants (ref. 1). The analyses covered several propellant combinations, including atoms of aluminum, boron, carbon, and hydrogen stored in a solid cryogenic particle, with a cryogenic liquid as the carrier fluid. Several different weight percents for the liquid carrier were investigated, and the GLOW values of vehicles using the solid particle feed systems were compared with that of a conventional oxygen/hydrogen (O2/H2) propellant vehicle. Atomic propellants, such as boron, carbon, and hydrogen, have an enormous potential for high specific impulse Isp operation, and their pursuit has been a topic of great interest for decades. Recent and continuing advances in the understanding of matter, the development of new technologies for simulating matter at its most basic level, and manipulations of matter through microtechnology and nanotechnology will no doubt create a bright future for atomic propellants and an exciting one for the researchers exploring this technology.

  3. Infrared and thermoelectric power generation in thin atomic layer deposited Nb-doped TiO{sub 2} films

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Harkirat S.; Lang, Brian N.; Schwab, Yosyp; Scarel, Giovanna, E-mail: scarelgx@jmu.edu [Department of Physics and Astronomy, James Madison University, 901 Carrier Drive, Harrisonburg, Virginia 22807 (United States); Niemelä, Janne-Petteri; Karppinen, Maarit [Department of Chemistry, Aalto University, P.O. Box 16100, Aalto, 00076 Finland (Finland)

    2015-01-15

    Infrared radiation is used to radiatively transfer heat to a nanometric power generator (NPG) device with a thermoelectric Nb-doped TiO{sub 2} film deposited by atomic layer deposition (ALD) as the active element, onto a borosilicate glass substrate. The linear rise of the produced voltage with respect to the temperature difference between the “hot” and “cold” junctions, typical of the Seebeck effect, is missing. The discovery of the violation of the Seebeck effect in NPG devices combined with the ability of ALD to tune thermoelectric thin film properties could be exploited to increase the efficiency of these devices for energy harvesting purposes.

  4. Train of high-power femtosecond pulses: Probe wave in a gas of prepared atoms

    Science.gov (United States)

    Muradyan, Gevorg; Muradyan, Atom Zh.

    2009-09-01

    We present a method for generating a regular train of ultrashort optical pulses in a prepared two-level medium. The train develops from incident monochromatic probe radiation traveling in a medium of atoms, which are in a quantum mechanical superposition of dressed internal states. In the frame of linear theory for the probe radiation, the energy of individual pulses is an exponentially growing function of atom density and of interaction cross section. Pulse repetition rate is determined by the pump field’s generalized Rabi frequency and can be around 1 THz and greater. We also show that the terms, extra to the dipole approximation, endow the gas by a new property: nonsaturating dependence of refractive index on dressing monochromatic field intensity. Contribution of these nonsaturating terms can be compatible with the main dipole approximation term contribution in the wavelength region of about ten micrometers (the range of CO2 laser) or larger.

  5. Mapping power-law rheology of living cells using multi-frequency force modulation atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Ryosuke; Okajima, Takaharu, E-mail: okajima@ist.hokudai.ac.jp [Graduate School of Information Science and Technology, Hokkaido University, Kita-ku N14 W9, Sapporo 060-0814 (Japan)

    2015-10-26

    We present multi-frequency force modulation atomic force microscopy (AFM) for mapping the complex shear modulus G* of living cells as a function of frequency over the range of 50–500 Hz in the same measurement time as the single-frequency force modulation measurement. The AFM technique enables us to reconstruct image maps of rheological parameters, which exhibit a frequency-dependent power-law behavior with respect to G{sup *}. These quantitative rheological measurements reveal a large spatial variation in G* in this frequency range for single cells. Moreover, we find that the reconstructed images of the power-law rheological parameters are much different from those obtained in force-curve or single-frequency force modulation measurements. This indicates that the former provide information about intracellular mechanical structures of the cells that are usually not resolved with the conventional force measurement methods.

  6. Spring Bottom Trawl Survey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The standardized NEFSC Spring Bottom Trawl Survey was initiated in 1968 and covered an area from Cape Hatteras, NC, to Nova Scotia, Canada, at depths >27m....

  7. Winter Bottom Trawl Survey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The standardized NEFSC Winter Bottom Trawl Survey was initiated in 1992 and covered offshore areas from the Mid-Atlantic to Georges Bank. Inshore strata were covered...

  8. Fall Bottom Trawl Survey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The standardized NEFSC Fall Bottom Trawl Survey was initiated in 1963 and covered an area from Hudson Canyon, NY to Nova Scotia, Canada. Throughout the years,...

  9. Chemical characterization of bottom ashes generated during combustion of a Colombian mineral coal in a thermal power plant; Caracterizacao quimica das cinzas de fundo originadas pela combustao, em usina termoeletrica, de um carvao mineral do nordeste da Colombia

    Energy Technology Data Exchange (ETDEWEB)

    Pinheiro, H.S.; Nogueira, R.E.F.Q.; Lobo, C.J.S.; Nobre, A.I.S.; Sales, J.C.; Silva, C.J.M., E-mail: hspfisica@hotmail.com [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Centro de Tecnologia. Dept. de Engenharia Metalurgica e de Materiais

    2012-07-01

    Bottom ashes generated during combustion of a mineral coal from Colombia were characterized by X-ray fluorescence spectrometry and X-ray diffraction. The interest in this particular coal is due to the fact that it will be used by a thermal power plant in Ceara, Northeastern Brazil, where it could produce over 900 tons of different residues/combustion products every day. Results from Xray fluorescence allowed identification and quantification of elements present in the sample: silicon (59,17%), aluminum (13,17%), iron (10,74%), potassium (6,11%), titanium (2,91%), calcium (4,97%), sulphur (0,84%) and others (2,09%). The X-ray diffraction revealed patterns from silica, mullite, calcium sulphate and hydrated sodium. Results obtained so far indicate that the material is a potential raw-material for use in the formulation of ceramic components (author)

  10. Pipeline bottoming cycle study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    The technical and economic feasibility of applying bottoming cycles to the prime movers that drive the compressors of natural gas pipelines was studied. These bottoming cycles convert some of the waste heat from the exhaust gas of the prime movers into shaft power and conserve gas. Three typical compressor station sites were selected, each on a different pipeline. Although the prime movers were different, they were similar enough in exhaust gas flow rate and temperature that a single bottoming cycle system could be designed, with some modifications, for all three sites. Preliminary design included selection of the bottoming cycle working fluid, optimization of the cycle, and design of the components, such as turbine, vapor generator and condensers. Installation drawings were made and hardware and installation costs were estimated. The results of the economic assessment of retrofitting bottoming cycle systems on the three selected sites indicated that profitability was strongly dependent upon the site-specific installation costs, how the energy was used and the yearly utilization of the apparatus. The study indicated that the bottoming cycles are a competitive investment alternative for certain applications for the pipeline industry. Bottoming cycles are technically feasible. It was concluded that proper design and operating practices would reduce the environmental and safety hazards to acceptable levels. The amount of gas that could be saved through the year 2000 by the adoption of bottoming cycles for two different supply projections was estimated as from 0.296 trillion ft/sup 3/ for a low supply projection to 0.734 trillion ft/sup 3/ for a high supply projection. The potential market for bottoming cycle equipment for the two supply projections varied from 170 to 500 units of varying size. Finally, a demonstration program plan was developed.

  11. Charmed Bottom Baryon Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Zachary S; Detmold, William; Meinel, Stefan; Orginos, Kostas

    2014-11-01

    The spectrum of doubly and triply heavy baryons remains experimentally unexplored to a large extent. Although the detection of such heavy particle states may lie beyond the reach of exper- iments for some time, it is interesting compute this spectrum from QCD and compare results between lattice calculations and continuum theoretical models. Several lattice calculations ex- ist for both doubly and triply charmed as well as doubly and triply bottom baryons. Here, we present preliminary results from the first lattice calculation of doubly and triply heavy baryons including both charm and bottom quarks. We use domain wall fermions for 2+1 flavors (up down and strange) of sea and valence quarks, a relativistic heavy quark action for the charm quarks, and non-relativistic QCD for the heavier bottom quarks. We present preliminary results for the ground state spectrum.

  12. Multi-V-type and Λ-type electromagnetically induced transparency experiments in rubidium atoms with low-power low-cost free running single mode diode lasers

    Science.gov (United States)

    Lavín Varela, S.; León Suazo, J. A.; Gutierrez González, J.; Vargas Roco, J.; Buberl, T.; Aguirre Gómez, J. G.

    2016-05-01

    In this work we present the experimental realization of electromagnetically induced transparency (EIT) in A-type and multi-V-type configurations in a sample of rubidium atoms inside a vapor cell at room temperature. Typical EIT windows are clearly visible in the Doppler- broadened absorption signal of the weak probe beam. The coherent optical pump and probe fields are produced by two tunable low-cost, low-power, continuous-wave (cw), free-running and single mode operated diode laser systems, temperature stabilized and current controlled, tuned to the D2 line of rubidium atoms at 780.2 nm wavelength. The continuum wave and single mode operation of our laser systems are confirmed by direct and saturated absorption spectroscopy techniques. Among other applications, these simple experiments can be used as a low-cost undergraduate laboratory in atomic physics, laser physics, coherent light-atom interaction, and high resolution atomic spectroscopy.

  13. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 7: Metal vapor Rankine topping-steam bottoming cycles. [energy conversion efficiency in electric power plants

    Science.gov (United States)

    Deegan, P. B.

    1976-01-01

    Adding a metal vapor Rankine topper to a steam cycle was studied as a way to increase the mean temperature at which heat is added to the cycle to raise the efficiency of an electric power plant. Potassium and cesium topping fluids were considered. Pressurized fluidized bed or pressurized (with an integrated low-Btu gasifier) boilers were assumed. Included in the cycles was a pressurizing gas turbine with its associated recuperator, and a gas economizer and feedwater heater. One of the ternary systems studied shows plant efficiency of 42.3% with a plant capitalization of $66.7/kW and a cost of electricity of 8.19 mills/MJ (29.5 mills/kWh).

  14. Evaluation of severe accident risks, Peach Bottom, Unit 2: Main report

    Energy Technology Data Exchange (ETDEWEB)

    Payne, A.C.; Breeding, R.J.; Jow, H.N.; Shiver, A.W. (Sandia National Labs., Albuquerque, NM (USA)); Helton, J.C. (Arizona State Univ., Tempe, AZ (USA)); Smith, L.N. (Science Applications International Corp., Albuquerque, NM (USA))

    1990-12-01

    In support of the Nuclear Regulatory Commission's (NRC's) assessment of the risk from severe accidents at commercial nuclear power plants in the US reported NUREG-1150, the Severe Accident Risk Reduction Program (SARRP) has completed a revised calculation of the risk to the general public from severe accidents at the Peach Bottom Atomic Power Station, Unit 2. This power plant, located in southeastern Pennsylvania, is operated by the Philadelphia Electric Company. The emphasis in this risk analysis was not on determining a so-called'' point estimate of risk. Rather, it was to determine the distribution of risk, and to discover the uncertainties that account for the breadth of this distribution. Off-site risk initiated by events both internal and external to the power station were assessed. 39 refs., 174 figs., 133 tabs.

  15. Cold Matter Assembled Atom-by-Atom

    CERN Document Server

    Endres, Manuel; Keesling, Alexander; Levine, Harry; Anschuetz, Eric R; Krajenbrink, Alexandre; Senko, Crystal; Vuletic, Vladan; Greiner, Markus; Lukin, Mikhail D

    2016-01-01

    The realization of large-scale fully controllable quantum systems is an exciting frontier in modern physical science. We use atom-by-atom assembly to implement a novel platform for the deterministic preparation of regular arrays of individually controlled cold atoms. In our approach, a measurement and feedback procedure eliminates the entropy associated with probabilistic trap occupation and results in defect-free arrays of over 50 atoms in less than 400 ms. The technique is based on fast, real-time control of 100 optical tweezers, which we use to arrange atoms in desired geometric patterns and to maintain these configurations by replacing lost atoms with surplus atoms from a reservoir. This bottom-up approach enables controlled engineering of scalable many-body systems for quantum information processing, quantum simulations, and precision measurements.

  16. Magnetospheric effects of ion and atom injections by the satellite power system

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Y.T.; Luhmann, J.G.; Schulz, M.; Cornwall, J.M.

    1980-07-01

    This is the final report of a two-year assessment of magnetospheric effects of the construction and operation of a satellite power system. This assessment effort is based on application of present scientific knowledge rather than on original scientific research. As such, it appears that mass and energy injections of the system are sufficient to modify the magnetosphere substantially, to the extent of possibly requiring mitigation measures for space systems but not to the extent of causing major redirection of efforts and concepts. The scale of the SPS is so unprecedentedly large, however, that these impressions require verification (or rejection) by in-depth assessment based on original scientific treatment of the principal issues. Indeed, it is perhaps appropriate to state that present ignorance far exceeds present knowledge in regard to SPS magnetospheric effects, even though we only seek to define the approximate limits of magnetospheric modifications here. Modifications of the space radiation environment, of the atmospheric airglow background, of the auroral response to solar activity and of the fluctuations in space plasma density are identified to be the principal impacts.

  17. Measures of nonclassicality for a two-level atom interacting with power-law potential field under decoherence effect

    Science.gov (United States)

    Abdel-Khalek, S.; Berrada, K.; Alkhateeb, Sadah A.

    2016-09-01

    In this paper, we propose a useful quantum system to perform different tasks of quantum information and computational technologies. We explore the required optimal conditions for this system that are feasible with real experimental realization. We present an active way to control the variation of some measures of nonclassicality considering the time-dependent coupling and photon transition effects under a model that closely describes a realistic experimental scenario. We investigate qualitatively the quantum measures for a two-level atom system interacting with a quantum field initially defined in a coherent state in the framework of power-law potentials (PLPCSs). We study the nonlocal correlation in the whole system state using the negativity as a measure of entanglement in terms of the exponent parameter, number of photon transition, and phase damping effect. The influences of the different physical parameters on the statistical properties and purity of the field are also demonstrated during the time evolution. The results indicate that the preservation and enhancement of entanglement greatly benefit from the combination of the choice of the physical parameters. Finally, we explore an interesting relationship between the different quantum measures of non-classicality during the time evolution in the absence and presence of time-dependent coupling effect.

  18. A bottom hole motor

    Energy Technology Data Exchange (ETDEWEB)

    Kibishcher, G.B.; Karpenko, V.K.; Pogorelov, V.P.

    1982-01-01

    A bottom hole motor is proposed which includes a body, a push rod with a piston, a spindle, a mechanism for converting the reciprocal movement of the piston into rotation of the shaft and pump and drain cavities. In order to simplify the design the push rod is made with radial openings above and below the piston, while the shaft is made with two longitudinal channels at the level of the radial openings of the push rod on the diametrically opposite sides. The cavity of one channel is constantly connected with the pump cavity, while the other is permanently connected with the drain cavity.

  19. Atom for peace, code for war. The technology policy of the atomic power solution in Finland between 1955-1970; Rauhan atomi, sodan koodi. Suomalaisen atomivoimaratkaisun teknopolitiikka 1955-1970

    Energy Technology Data Exchange (ETDEWEB)

    Sarkikoski, T.

    2011-07-01

    This dissertation investigates the atomic power solution in Finland between 1955 - 1970. During these years a national arrangement for atomic energy technology evolved. The foundations of the Finnish atomic energy policy; the creation of basic legislation and the first governmental bodies, were laid between 1955 - 1965. In the late 1960's, the necessary technological and political decisions were made in order to purchase the first commercial nuclear reactor. A historical narration of this process is seen in the international context of 'atoms for peace' policies and Cold War history in general. The geopolitical position of Finland made it necessary to become involved in the balanced participation in international scientific-technical exchange and assistive nuclear programs. The Paris Peace Treaty of 1947 categorically denied Finland acquisition of nuclear weapons. Accordingly, from the 'Geneva year' of 1955, the emphasis was placed on peaceful purposes for atomic energy as well as on the education of national professionals in Finland. An initiative for the governmental atomic energy commission came from academia but the ultimate motive behind it was an anticipated structural change in the supply of national energy. Economically exploitable hydro power resources were expected to be built within ten years and atomic power was seen as a promising and complementing new energy technology. While importing fuels like coal was out of the question, because of scarce foreign currency, domestic uranium mineral deposits were considered as a potential source of nuclear fuel. Nevertheless, even then nuclear energy was regarded as just one of the possible future energy options. In the mid-1960 s a bandwagon effect of light water reactor orders was witnessed in the United States and soon elsewhere in the world. In Finland, two separate invitations for bids for nuclear reactors were initiated. This study explores at length both their preceding grounds and

  20. The measurement of 129I for the cement and the paraffin solidified low and intermediate level wastes (LILWs), spent resin or evaporated bottom from the pressurized water reactor (PWR) nuclear power plants.

    Science.gov (United States)

    Park, S D; Kim, J S; Han, S H; Ha, Y K; Song, K S; Jee, K Y

    2009-09-01

    In this paper a relatively simple and low cost analysis procedure to apply to a routine analysis of (129)I in low and intermediate level radioactive wastes (LILWs), cement and paraffin solidified evaporated bottom and spent resin, which are produced from nuclear power plants (NPPs), pressurized water reactors (PWR), is presented. The (129)I is separated from other nuclides in LILWs using an anion exchange adsorption and solvent extraction by controlling the oxidation and reduction state and is then precipitated as silver iodide for counting the beta activity with a low background gas proportional counter (GPC). The counting efficiency of GPC was varied from 4% to 8% and it was reversely proportional to the weight of AgI by a self absorption of the beta activity. Compared to a higher pH, the chemical recovery of iodide as AgI was lowered at pH 4. It was found that the chemical recovery of iodide for the cement powder showed a lower trend by increasing the cement powder weight, but it was not affected for the paraffin sample. In this experiment, the overall chemical recovery yield of the cement and paraffin solidified LILW samples and the average weight of them were 67+/-3% and 5.43+/-0.53 g, 70+/-7% and 10.40+/-1.60 g, respectively. And the minimum detectable activity (MDA) of (129)I for the cement and paraffin solidified LILW samples was calculated as 0.070 and 0.036 Bq/g, respectively. Among the analyzed cement solidified LILW samples, (129)I activity concentration of four samples was slightly higher than the MDA and their ranges were 0.076-0.114 Bq/g. Also of the analyzed paraffin solidified LILW samples, five samples contained a little higher (129)I activity concentration than the MDA and their ranges were 0.036-0.107 Bq/g.

  1. Properties and Leachability of Self-Compacting Concrete Incorporated with Fly Ash and Bottom Ash

    Science.gov (United States)

    Kadir, Aeslina Abdul; Ikhmal Haqeem Hassan, Mohd; Jamaluddin, Norwati; Bakri Abdullah, Mohd Mustafa Al

    2016-06-01

    The process of combustion in coal-fired power plant generates ashes, namely fly ash and bottom ash. Besides, coal ash produced from coal combustion contains heavy metals within their compositions. These metals are toxic to the environment as well as to human health. Fortunately, treatment methods are available for these ashes, and the use of fly ash and bottom ash in the concrete mix is one of the few. Therefore, an experimental program was carried out to study the properties and determine the leachability of selfcompacting concrete incorporated with fly ash and bottom ash. For experimental study, self-compacting concrete was produced with fly ash as a replacement for Ordinary Portland Cement and bottom ash as a replacement for sand with the ratios of 10%, 20%, and 30% respectively. The fresh properties tests conducted were slump flow, t500, sieve segregation and J-ring. Meanwhile for the hardened properties, density, compressive strength and water absorption test were performed. The samples were then crushed to be extracted using Toxicity Characteristic Leaching Procedure and heavy metals content within the samples were identified accordingly using Atomic Absorption Spectrometry. The results demonstrated that both fresh and hardened properties were qualified to categorize as self-compacting concrete. Improvements in compressive strength were observed, and densities for all the samples were identified as a normal weight concrete with ranges between 2000 kg/m3 to 2600 kg/m3. Other than that, it was found that incorporation up to 30% of the ashes was safe as the leached heavy metals concentration did not exceed the regulatory levels, except for arsenic. In conclusion, this study will serve as a reference which suggests that fly ash and bottom ash are widely applicable in concrete technology, and its incorporation in self-compacting concrete constitutes a potential means of adding value to appropriate mix and design.

  2. International Atomic Energy Agency specialists meeting on experience in ageing, maintenance, and modernization of instrumentation and control systems for improving nuclear power plant availability

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    This report presents the proceedings of the Specialist`s Meeting on Experience in Aging, Maintenance and Modernization of Instrumentation and Control Systems for Improving Nuclear Power Plant Availability that was held at the Ramada Inn in Rockville, Maryland on May 5--7, 1993. The Meeting was presented in cooperation with the Electric Power Research Institute, Oak Ridge National Laboratory and the International Atomic Energy Agency. There were approximately 65 participants from 13 countries at the Meeting. Individual reports have been cataloged separately.

  3. Bottom-Up Earley Deduction

    CERN Document Server

    Erbach, G

    1995-01-01

    We propose a bottom-up variant of Earley deduction. Bottom-up deduction is preferable to top-down deduction because it allows incremental processing (even for head-driven grammars), it is data-driven, no subsumption check is needed, and preference values attached to lexical items can be used to guide best-first search. We discuss the scanning step for bottom-up Earley deduction and indexing schemes that help avoid useless deduction steps.

  4. Revised FINAL–REPORT NO. 2: INDEPENDENT CONFIRMATORY SURVEY SUMMARY AND RESULTS FOR THE ENRICO FERMI ATOMIC POWER PLANT, UNIT 1, NEWPORT, MICHIGAN (DOCKET NO. 50 16; RFTA 10-004) 2018-SR-02-1

    Energy Technology Data Exchange (ETDEWEB)

    Erika Bailey

    2011-10-27

    The Enrico Fermi Atomic Power Plant, Unit 1 (Fermi 1) was a fast breeder reactor design that was cooled by sodium and operated at essentially atmospheric pressure. On May 10, 1963, the Atomic Energy Commission (AEC) granted an operating license, DPR-9, to the Power Reactor Development Company (PRDC), a consortium specifically formed to own and operate a nuclear reactor at the Fermi 1 site. The reactor was designed for a maximum capability of 430 megawatts (MW); however, the maximum reactor power with the first core loading (Core A) was 200 MW. The primary system was filled with sodium in December 1960 and criticality was achieved in August 1963. The reactor was tested at low power during the first couple years of operation. Power ascension testing above 1 MW commenced in December 1965 immediately following the receipt of a high-power operating license. In October 1966 during power ascension, zirconium plates at the bottom of the reactor vessel became loose and blocked sodium coolant flow to some fuel subassemblies. Two subassemblies started to melt and the reactor was manually shut down. No abnormal releases to the environment occurred. Forty-two months later after the cause had been determined, cleanup completed, and the fuel replaced, Fermi 1 was restarted. However, in November 1972, PRDC made the decision to decommission Fermi 1 as the core was approaching its burn-up limit. The fuel and blanket subassemblies were shipped off-site in 1973. Following that, the secondary sodium system was drained and sent off-site. The radioactive primary sodium was stored on-site in storage tanks and 55 gallon (gal) drums until it was shipped off-site in 1984. The initial decommissioning of Fermi 1 was completed in 1975. Effective January 23, 1976, DPR-9 was transferred to the Detroit Edison Company (DTE) as a 'possession only' license (DTE 2010a). This report details the confirmatory activities performed during the second Oak Ridge Institute for Science and Education

  5. Unexpected high power performance of atomic layer deposition coated Li[Ni1/3Mn1/3Co1/3]O2 cathodes

    Science.gov (United States)

    Kim, Ji Woo; Travis, Jonathan J.; Hu, Enyuan; Nam, Kyung-Wan; Kim, Seul Cham; Kang, Chan Soon; Woo, Jae-Ha; Yang, Xiao-Qing; George, Steven M.; Oh, Kyu Hwan; Cho, Sung-Jin; Lee, Se-Hee

    2014-05-01

    Electric-powered transportation requires an efficient, low-cost, and safe energy storage system with high energy density and power capability. Despite its high specific capacity, the current commercially available cathode material for today's state-of-art Li-ion batteries, lithium nickel-manganese-cobalt oxide Li[Ni1/3 Mn1/3Co1/3]O2 (NMC), suffers from poor cycle life for high temperature operation and marginal rate capability resulting from irreversible degradation of the cathode material upon cycling. Using an atomic-scale surface engineering, the performance of Li[Ni1/3Mn1/3Co1/3]O2 in terms of rate capability and high temperature cycle-life is significantly improved. The Al2O3 coating deposited by atomic layer deposition (ALD) dramatically reduces the degradation in cell conductivity and reaction kinetics. This durable ultra-thin Al2O3-ALD coating layer also improves stability for the NMC at an elevated temperature (55 °C). The experimental results suggest that a highly durable and safe cathode material enabled by atomic-scale surface modification could meet the demanding performance and safety requirements of next-generation electric vehicles.

  6. Bottom-up Initiatives for Photovoltaic: Incentives and Barriers

    Directory of Open Access Journals (Sweden)

    Kathrin Reinsberger

    2014-06-01

    Full Text Available When facing the challenge of restructuring the energy system, bottom-up initiatives can aid the diffusion of decentralized and clean energy technologies. We focused here on a bottom-up initiative of citizen-funded and citizen-operated photovoltaic power plants. The project follows a case study-based approach and examines two different community initiatives. The aim is to investigate the potential incentives and barriers relating to participation or non-participation in predefined community PV projects. Qualitative, as well as quantitative empirical research was used to examine the key factors in the further development of bottom-up initiatives as contributors to a general energy transition.

  7. Autler-Townes splitting via frequency upconversion at ultra-low power levels in cold $^{87}$Rb atoms using an optical nanofiber

    CERN Document Server

    Kumar, Ravi; Deasy, Kieran; Chormaic, Síle Nic

    2015-01-01

    The tight confinement of the evanescent light field around the waist of an optical nanofiber makes it a suitable tool for studying nonlinear optics in atomic media. Here, we use an optical nanofiber embedded in a cloud of laser-cooled 87Rb for near-infrared frequency upconversion via a resonant two-photon process. Sub-nW powers of the two-photon beams, at 780 nm and 776 nm, co-propagate through the optical nanofiber and generation of 420 nm photons is observed. A measurement of the Autler-Townes splitting provides a direct measurement of the Rabi frequency of the 780 nm transition. Through this method, dephasings of the system can be studied. In this work, the optical nanofiber is used as an excitation and detection tool simultaneously, and it highlights some of the advantages of using fully fibered systems for nonlinear optics with atoms.

  8. Autler-Townes splitting via frequency up-conversion at ultralow-power levels in cold 87Rb atoms using an optical nanofiber

    Science.gov (United States)

    Kumar, Ravi; Gokhroo, Vandna; Deasy, Kieran; Chormaic, Síle Nic

    2015-05-01

    The tight confinement of the evanescent light field around the waist of an optical nanofiber makes it a suitable tool for studying nonlinear optics in atomic media. Here, we use an optical nanofiber embedded in a cloud of laser-cooled 87Rb for near-infrared frequency up-conversion via a resonant two-photon process. Sub-nW powers of the two-photon radiation, at 780 and 776 nm, copropagate through the optical nanofiber and the generation of 420 nm photons is observed. A measurement of the Autler-Townes splitting provides a direct measurement of the Rabi frequency of the 780 nm transition. Through this method, dephasings of the system can be studied. In this work, the optical nanofiber is used as an excitation and detection tool simultaneously, and it highlights some of the advantages of using fully fibered systems for nonlinear optics with atoms.

  9. Visit of Mr. Susumu Yoda, Japanese Atomic Energy Commission, Mr. Nobuo Natsume, Vice-President, Central Research Institute of Electric Power Industry, Japan (CRIEPI), Mr. Nobuya Yoshiki, CRIEPI, Mrs. Seiko Ichikawa, Interpreter, with Mr. Taylor of CERN, visiting SM18

    CERN Multimedia

    Laurent Guiraud

    2000-01-01

    Visit of Mr. Susumu Yoda, Japanese Atomic Energy Commission, Mr. Nobuo Natsume, Vice-President, Central Research Institute of Electric Power Industry, Japan (CRIEPI), Mr. Nobuya Yoshiki, CRIEPI, Mrs. Seiko Ichikawa, Interpreter, with Mr. Taylor of CERN, visiting SM18

  10. CHARACTERISTICS OF SLUDGE BOTTOM MESH

    Directory of Open Access Journals (Sweden)

    Kamil Szydłowski

    2016-05-01

    Full Text Available The main aim of the study was to assess the selected heavy metals pollution of bottom sediments of small water bodies of different catchment management. Two ponds located in Mostkowo village were chosen for investigation. The first small water reservoir is surrounded by the cereal fields, cultivated without the use of organic and mineral fertilizers (NPK. The second reservoir is located in a park near rural buildings. Sediment samples were collected by the usage of KC Denmark sediments core probe. Samples were taken from 4 layers of sediment, from depth: 0–5, 5–10, 10–20 and 20–30 cm. Sampling was made once during the winter period (2014 year when ice occurred on the surface of small water bodies, from three points. The material was prepared for further analysis according to procedures used in soil science. The content of heavy metals (Cd, Cr, Cu, Ni, Pb and Zn were determined by atomic absorption spectrometry by usage of ASA ICE 3000 Thermo Scientific after prior digestion in the mixture (5: 1 of concentrated acids (HNO3 and HClO4. Higher pH values ​​were characteristic for sediments of pond located in a park than in pond located within the agricultural fields. In both small water bodies the highest heavy metal concentrations occurred in the deepest points of the research. In the sediments of the pond located within crop fields the highest concentration of cadmium, copper, lead and zinc were observed in a layer of 0–5 cm, wherein the nickel and chromium in a layer of 20–30 cm. In the sediments of the pond, located in the park the highest values ​​occurred at the deepest sampling point in the layer taken form 10–20 cm. Sediments from second reservoir were characterized by the largest average concentrations of heavy metals, except the lead content in sediment form the layer of 10–20 cm. According to the geochemical evaluation of sediments proposed by Bojakowska and Sokołowska [1998], the majority of samples belongs to Ist

  11. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    2000-01-01

    This fifth volume of the successful series Advances in Atomic Spectroscopy continues to discuss and investigate the area of atomic spectroscopy.It begins with a description of the use of various atomic spectroscopic methods and applications of speciation studies in atomic spectroscopy. The emphasis is on combining atomic spectroscopy with gas and liquid chromatography. In chapter two the authors describe new developments in tunable lasers and the impact they will have on atomic spectroscopy. The traditional methods of detection, such as photography and the photomultiplier, and how they are being replaced by new detectors is discussed in chapter three. The very active area of glow discharge atomic spectrometry is presented in chapter four where, after a brief introduction and historical review, the use of glow discharge lamps for atomic spectroscopy and mass spectrometry are discussed. Included in this discussion is geometry and radiofrequency power. The future of this source in atomic spectroscopy is also dis...

  12. Power spectrum analysis with least-squares fitting: Amplitude bias and its elimination, with application to optical tweezers and atomic force microscope cantilevers

    DEFF Research Database (Denmark)

    Nørlykke, Simon F.; Flyvbjerg, Henrik

    2010-01-01

    Optical tweezers and atomic force microscope (AFM) cantilevers are often calibrated by fitting their experimental power spectra of Brownian motion. We demonstrate here that if this is done with typical weighted least-squares methods, the result is a bias of relative size between -2/n and + 1/n...... on the value of the fitted diffusion coefficient. Here, n is the number of power spectra averaged over, so typical calibrations contain 10%-20% bias. Both the sign and the size of the bias depend on the weighting scheme applied. Hence, so do length-scale calibrations based on the diffusion coefficient....... The fitted value for the characteristic frequency is not affected by this bias. For the AFM then, force measurements are not affected provided an independent length-scale calibration is available. For optical tweezers there is no such luck, since the spring constant is found as the ratio...

  13. 干式排渣在大型电站锅炉上的运行特性分析%Operating Characteristic Analysis of Dry Bottom Ash Handling System on Power Station Boiler

    Institute of Scientific and Technical Information of China (English)

    董信光; 李洪涛; 冷成岗; 李德功

    2012-01-01

    Comparing to the discharging slag by water, the dry bottom ash handling system has many advantages such as simple structure, water conserving, more useful. When the bottom ash system has been changed from water mode to dry mode, the operating characteristics of boiler will be varied, which is analyzed and optimized in detailed. Positive and negative impacts are found, which can be referred when the bottom ash system revised and boiler operating.%和水力除渣方式相比,干式排渣有结构简单、节水、干渣经济价值高等优点。将原水力除渣改为干式排渣后,锅炉的运行特性会发生变化,通过对干式排渣运行特性的全面分析和优化,找出积极因素和负面影响,为除渣系统的改造和运行提供参考。

  14. Power

    DEFF Research Database (Denmark)

    Elmholdt, Claus Westergård; Fogsgaard, Morten

    2016-01-01

    In this chapter, we will explore the dynamics of power in processes of creativity, and show its paradoxical nature as both a bridge and a barrier to creativity in organisations. Recent social psychological experimental research (Slighte, de Dreu & Nijstad, 2011) on the relation between power...... and creativity suggests that when managers give people the opportunity to gain power and explicate that there is reason to be more creative, people will show a boost in creative behaviour. Moreover, this process works best in unstable power hierarchies, which implies that power is treated as a negotiable...... and floating source for empowering people in the organisation. We will explore and discuss here the potentials, challenges and pitfalls of power in relation to creativity in the life of organisations today. The aim is to demonstrate that power struggles may be utilised as constructive sources of creativity...

  15. FINAL–REPORT NO. 2: INDEPENDENT CONFIRMATORY SURVEY SUMMARY AND RESULTS FOR THE ENRICO FERMI ATOMIC POWER PLANT, UNIT 1, NEWPORT, MICHIGAN (DOCKET NO. 50 16; RFTA 10-004)

    Energy Technology Data Exchange (ETDEWEB)

    Erika Bailey

    2011-07-07

    The Enrico Fermi Atomic Power Plant, Unit 1 (Fermi 1) was a fast breeder reactor design that was cooled by sodium and operated at essentially atmospheric pressure. On May 10, 1963, the Atomic Energy Commission (AEC) granted an operating license, DPR-9, to the Power Reactor Development Company (PRDC), a consortium specifically formed to own and operate a nuclear reactor at the Fermi 1 site. The reactor was designed for a maximum capability of 430 megawatts (MW); however, the maximum reactor power with the first core loading (Core A) was 200 MW. The primary system was filled with sodium in December 1960 and criticality was achieved in August 1963.

  16. Severe accident source term characteristics for selected Peach Bottom sequences predicted by the MELCOR Code

    Energy Technology Data Exchange (ETDEWEB)

    Carbajo, J.J. [Oak Ridge National Lab., TN (United States)

    1993-09-01

    The purpose of this report is to compare in-containment source terms developed for NUREG-1159, which used the Source Term Code Package (STCP), with those generated by MELCOR to identify significant differences. For this comparison, two short-term depressurized station blackout sequences (with a dry cavity and with a flooded cavity) and a Loss-of-Coolant Accident (LOCA) concurrent with complete loss of the Emergency Core Cooling System (ECCS) were analyzed for the Peach Bottom Atomic Power Station (a BWR-4 with a Mark I containment). The results indicate that for the sequences analyzed, the two codes predict similar total in-containment release fractions for each of the element groups. However, the MELCOR/CORBH Package predicts significantly longer times for vessel failure and reduced energy of the released material for the station blackout sequences (when compared to the STCP results). MELCOR also calculated smaller releases into the environment than STCP for the station blackout sequences.

  17. 75 FR 63867 - DTE Energy; Enrico Fermi Atomic Power Plant Unit 1, Exemption From Certain Security Requirements

    Science.gov (United States)

    2010-10-18

    .... Nuclear Regulatory Commission (NRC or the Commission) now or hereafter in effect. Fermi 1 was a fast breeder reactor power plant cooled by sodium and operated at essentially atmospheric pressure. In November... in Monroe County, Michigan. Fermi 1 is a permanently shutdown nuclear reactor facility. The...

  18. On the transferability of atomic contributions to the optical rotatory power of hydrogen peroxide, methyl hydroperoxide and dimethyl peroxide

    DEFF Research Database (Denmark)

    Sánchez, Marina; Alkorta, Ibon; Elguero, José

    2014-01-01

    The chirality of molecules expresses itself, for example, in the fact that a solution of a chiral molecule rotates the plane of linear polarised light. The underlying molecular property is the optical rotatory power (ORP) tensor, which according to time-dependent perturbation theory can be calcul...

  19. Culture from the Bottom Up

    Science.gov (United States)

    Atkinson, Dwight; Sohn, Jija

    2013-01-01

    The culture concept has been severely criticized for its top-down nature in TESOL, leading arguably to its falling out of favor in the field. But what of the fact that people do "live culturally" (Ingold, 1994)? This article describes a case study of culture from the bottom up--culture as understood and enacted by its individual users.…

  20. Building from the Bottom Up

    Science.gov (United States)

    2003-05-01

    through billions of years of prebiotic and molecular selection and evolution, there are bio-organic by Shuguang Zhang Building from the bottom up... Health , Du Pont-MIT Alliance, and the Whitaker Foundation. I also gratefully acknowledge Intel Corporation Academic Program for the generous donation

  1. Bottom-up assembly of metallic germanium.

    Science.gov (United States)

    Scappucci, Giordano; Klesse, Wolfgang M; Yeoh, LaReine A; Carter, Damien J; Warschkow, Oliver; Marks, Nigel A; Jaeger, David L; Capellini, Giovanni; Simmons, Michelle Y; Hamilton, Alexander R

    2015-08-10

    Extending chip performance beyond current limits of miniaturisation requires new materials and functionalities that integrate well with the silicon platform. Germanium fits these requirements and has been proposed as a high-mobility channel material, a light emitting medium in silicon-integrated lasers, and a plasmonic conductor for bio-sensing. Common to these diverse applications is the need for homogeneous, high electron densities in three-dimensions (3D). Here we use a bottom-up approach to demonstrate the 3D assembly of atomically sharp doping profiles in germanium by a repeated stacking of two-dimensional (2D) high-density phosphorus layers. This produces high-density (10(19) to 10(20) cm(-3)) low-resistivity (10(-4)Ω · cm) metallic germanium of precisely defined thickness, beyond the capabilities of diffusion-based doping technologies. We demonstrate that free electrons from distinct 2D dopant layers coalesce into a homogeneous 3D conductor using anisotropic quantum interference measurements, atom probe tomography, and density functional theory.

  2. FINAL REPORT – CHARACTERIZATION SURVEY OF THE SPRU LOWER LEVEL HILLSIDE AREA AT THE KNOLLS ATOMIC POWER LABORATORY, NISKAYUNA, NEW YORK DCN 5146-SR-01-0

    Energy Technology Data Exchange (ETDEWEB)

    Evan Harpenau

    2011-08-29

    The Separations Process Research Unit (SPRU) is located within the boundary of Knolls Atomic Power Laboratory (KAPL) at 2425 River Road, Niskayuna, Schenectady County, New York (Figure A-1). SPRU was designed and developed to research an efficient process to chemically separate plutonium and uranium from processed fuel. Buildings H2 and G2 were the primary research and process facilities. SPRU operated between February 1950 and October 1953 at which time the research was successful in developing useable reduction oxidation and plutonium uranium extraction processes. These processes were subsequently moved to the Hanford and the Savannah River sites for full-scale operations. Building H2 was used by KAPL after the SPRU process ceased until the late 1990s for radioactive wastewater processing and Building G2 was utilized for offices. Process areas and equipment were maintained in a safe condition under a surveillance and maintenance program.

  3. Application of inductively coupled plasma atomic emission spectroscopy analysis with a polychromator/monochromator combination the byproducts of coal-fired power stations

    Science.gov (United States)

    Weers, C. A.

    The by-products of coal-fired power plants may be hazardous for the environment. Good analysis methods are therefore required in order to establish either a possible usage of the by-products or their possible storage. Preliminary experiments performed with inductively coupled plasma atomic emission spectroscopy have proven very successful. Moreover, the method is cost-effective. A short description is given of the optimized system for routine analysis. The system consists of a 2- and a 15-channel polychromator in combination with a monochromator. The opportunities is provides are also described. Use of the monochromator to analyze coal and run-off water from the flue-gases desulphurization, and of the polychromators to analyze coal fly-ash is described separately.

  4. Atom-by-atom assembly of defect-free one-dimensional cold atom arrays

    Science.gov (United States)

    Endres, Manuel; Bernien, Hannes; Keesling, Alexander; Levine, Harry; Anschuetz, Eric R.; Krajenbrink, Alexandre; Senko, Crystal; Vuletic, Vladan; Greiner, Markus; Lukin, Mikhail D.

    2016-11-01

    The realization of large-scale fully controllable quantum systems is an exciting frontier in modern physical science. We use atom-by-atom assembly to implement a platform for the deterministic preparation of regular one-dimensional arrays of individually controlled cold atoms. In our approach, a measurement and feedback procedure eliminates the entropy associated with probabilistic trap occupation and results in defect-free arrays of more than 50 atoms in less than 400 milliseconds. The technique is based on fast, real-time control of 100 optical tweezers, which we use to arrange atoms in desired geometric patterns and to maintain these configurations by replacing lost atoms with surplus atoms from a reservoir. This bottom-up approach may enable controlled engineering of scalable many-body systems for quantum information processing, quantum simulations, and precision measurements.

  5. Bottom Slamming on Heaving Point Absorber Wave Energy Devices

    DEFF Research Database (Denmark)

    De Backer, Griet; Vantorre, Marc; Frigaard, Peter;

    2010-01-01

    Oscillating point absorber buoys may rise out of the water and be subjected to bottom slamming upon re-entering the water. Numerical simulations are performed to estimate the power absorption, the impact velocities and the corresponding slamming forces for various slamming constraints. Three buoy...

  6. Single Atom Plasmonic Switch

    CERN Document Server

    Emboras, Alexandros; Ma, Ping; Haffner, Christian; Luisier, Mathieu; Hafner, Christian; Schimmel, Thomas; Leuthold, Juerg

    2015-01-01

    The atom sets an ultimate scaling limit to Moores law in the electronics industry. And while electronics research already explores atomic scales devices, photonics research still deals with devices at the micrometer scale. Here we demonstrate that photonic scaling-similar to electronics-is only limited by the atom. More precisely, we introduce an electrically controlled single atom plasmonic switch. The switch allows for fast and reproducible switching by means of the relocation of an individual or at most - a few atoms in a plasmonic cavity. Depending on the location of the atom either of two distinct plasmonic cavity resonance states are supported. Experimental results show reversible digital optical switching with an extinction ration of 10 dB and operation at room temperature with femtojoule (fJ) power consumption for a single switch operation. This demonstration of a CMOS compatible, integrated quantum device allowing to control photons at the single-atom level opens intriguing perspectives for a fully i...

  7. Slamming Testing of Facetted Bottom

    Science.gov (United States)

    2013-11-26

    Technical Report DATES COVERED (From - To) 01 May 2010-31 Aug2013 4. TITLE AND SUBTITLE Slamming Testing of Facetted Bottom 5a. CONTRACT NUMBER...of fast craft are due to slamming , or hydrodynamic impact. A 9 meter long steel / composite hybrid slamming load test facility has been employed for...the purpose of furthering understanding of the slamming phenomenon. This craft is heavily instrumented with strain gages, accelerometers, cameras, an

  8. On the universal sl_2 invariant of Brunnian bottom tangles

    CERN Document Server

    Suzuki, Sakie

    2011-01-01

    A link L is called Brunnian if every proper sublink of L is trivial. Similarly, a bottom tangle T is called Brunnian if every proper subtangle of T is trivial. In this paper, we give a small subalgebra of the n-fold completed tensor power of U_h(sl_2) in which the universal sl_2 invariant of n-component Brunnian bottom tangles takes values. As an application, we give a divisibility property of the colored Jones polynomial of Brunnian links.

  9. On the universal sl_2 invariant of boundary bottom tangles

    CERN Document Server

    Suzuki, Sakie

    2011-01-01

    The universal sl_2 invariant of bottom tangles has a universality property for the colored Jones polynomial of links. Habiro conjectured that the universal sl_2 invariant of boundary bottom tangles takes values in certain subalgebras of the completed tensor powers of the quantized enveloping algebra U_h(sl_2) of the Lie algebra sl_2. In the present paper, we prove an improved version of Habiro's conjecture. As an application, we prove a divisibility property of the colored Jones polynomial of boundary links.

  10. Mapping of sea bottom topography

    Science.gov (United States)

    Calkoen, C. J.; Wensink, G. J.; Hesselmans, G. H. F. M.

    1992-01-01

    Under suitable conditions the bottom topography of shallow seas is visible in remote sensing radar imagery. Two experiments were performed to establish which remote sensing technique or combination yields optimal imaging of bottom topography and which hydro-meteorological conditions are favorable. A further goal is to gain experience with these techniques. Two experiments were performed over an area in the North Sea near the measuring platform Meetpost Noordwijk (MPN). The bottom topography in the test area is dominated by sand waves. The crests of the sand waves are perpendicular to the coast line and the dominating (tidal-)current direction. A 4x4 sq km wide section of the test area was studied in more detail. The first experiment was undertaken on 16 Aug. 1989. During the experiment the following remote sensing instruments were used: Landsat-Thematic Mapper, and NASA/JPL Airborne Imaging Radar (AIR). The hydro-meteorological conditions; current, wind, wave, and air and water temperature were monitored by MPN, a ship of Rijkswaterstaat (the OCTANS), and a pitch-and-roll WAVEC-buoy. The second experiment took place on 12 July 1992. During this experiment data were collected with the NASA/JPL polarimetric synthetic aperture radar (SAR), and a five-band helicopter-borne scatterometer. Again the hydro-meteorological conditions were monitored at MPN and the OCTANS. Furthermore, interferometric radar data were collected.

  11. A study of the influence of noise from offshore wind power plants on the marine bottom fauna; En studie om hur bottenlevande fauna paaverkas av ljud fraan vindkraftverk till havs

    Energy Technology Data Exchange (ETDEWEB)

    Wikstroem, Andreas; Granmo, Aake

    2009-09-15

    The aim of this study was to examine changes of behaviour and activity patterns in marine soft bottom fauna under the influence of low frequent noise. Controlled experiments were performed at Kristineberg Marine Research Station in Fiskebaeckskil. The experiments were performed utilizing generator and vibrator techniques producing frequencies of 61, 178 and 721 Hz with an average sound pressure around 99 dB re 1 muPa. The selection of frequencies was based upon the sound profile measured at Utgrunden offshore wind farm in Kalmarsund (Ingemansson Technology, 2003) with the aim of recreating natural conditions. In order to quantify the sound exposure, measurements on both sound pressure and water particle acceleration in the test tanks were performed. In total four different marine soft bottom species were studied: a common little white mussel (Abra nitida), brittle star (Amphiura filiformis), brown shrimp (Crangon crangon) and juvenile plaice (Pleuronectes platessa). For the white mussel its burrowing ability was studied. First the speeds of burrowing down into the sediment and thereafter, the burrowing activity in the surface layer of the sediment for the duration of 96 hours were registered. During the experiments with the brittle star Amphiura filiformis the number of arms active in gathering food were observed shortly after the sound had started and for a period of 72 hours. When the brown shrimp was exposed for sound the number of prey items consumed during one day and after 4 days were observed. The study on juvenile plaice was only a shorter pilot study where the fish were exposed for sound during 15 minutes. During this restricted time swimming activity and burrowing activity were observed and after the initial 15 minutes also the respiration frequency during measurement for one minute were documented. The study showed that the burrowing activity increased for the white mussel compared to the controls during exposure of frequencies around 178 Hz after 24

  12. Peach Bottom test element program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Saurwein, J.J.; Holzgraf, J.F.; MIller, C.M.; Myers, B.F.; Wallroth, C.F.

    1982-11-01

    Thirty-three test elements were irradiated in the Peach Bottom high-temperature gas-cooled reactor (HTGR) as part of the testing program for advanced HTGRs. Extensive postirradiation examinations and evaluations of 21 of these irradiation experiments were performed. The test element irradiations were simulated using HTGR design codes and data. Calculated fuel burnups, power profiles, fast neutron fluences, and temperatures were verified via destructive burnup measurements, gamma scanning, and in-pile thermocouple readings corrected for decalibration effects. Analytical techniques were developed to improve the quality of temperature predictions through feedback of nuclear measurements into thermal calculations. Dimensional measurements, pressure burst tests, diametral compression tests, ring-cutting tests, strip-cutting tests, and four-point bend tests were performed to measure residual stress, strain, and strength distributions in H-327 graphite structures irradiated in the test elements.

  13. Physisorbed-precursor-assisted atomic layer deposition of reliable ultrathin dielectric films on inert graphene surfaces for low-power electronics

    Science.gov (United States)

    Jeong, Seong-Jun; Kim, Hyo Won; Heo, Jinseong; Lee, Min-Hyun; Song, Hyun Jae; Ku, JiYeon; Lee, Yunseong; Cho, Yeonchoo; Jeon, Woojin; Suh, Hwansoo; Hwang, Sungwoo; Park, Seongjun

    2016-09-01

    Among the most fundamental challenges encountered in the successful incorporation of graphene in silicon-based electronics is the conformal growth of ultrathin dielectric films, especially those with thicknesses lower than 5 nm, on chemically inert graphene surfaces. Here, we present physisorbed-precursor-assisted atomic layer deposition (pALD) as an extremely robust method for fabricating such films. Using atomic-scale characterisation, it is confirmed that conformal and intact ultrathin Al2O3 films can be synthesised on graphene by pALD. The mechanism underlying the pALD process is identified through first-principles calculations based on density functional theory. Further, this novel deposition technique is used to fabricate two types of wafer-scale devices. It is found that the incorporation of a 5 nm-thick pALD Al2O3 gate dielectric film improves the performance of metal-oxide-graphene field-effect transistors to a greater extent than does the incorporation of a conventional ALD Al2O3 film. We also employ a 5 nm-thick pALD HfO2 film as a highly scalable dielectric layer with a capacitance equivalent oxide thickness of 1 nm in graphene-based tunnelling field-effect transistors fabricated on a glass wafer and achieve a subthreshold swing of 30 mV/dec. This significant improvement in switching allows for the low-voltage operation of an inverter within 0.5 V of both the drain and the gate voltages, thus paving the way for low-power electronics.

  14. Development of Bottom Oil Recovery Systems. Revised

    Science.gov (United States)

    2014-02-01

    Athos I), open-ocean (T/V Prestige), and oil-field deep ocean drilling (Deepwater Horizon) related spills, the problems associated with tracking... mud . Probably the least sensitive bottom types are sand and mud bottoms in areas that already suffer from pollution such as industrial areas. Note...Capping Coral Reef Sea Grass Beds Kelp Forest Rocky Bottom Sand Mud Recommended Provisional Not Recommended Development of Bottom Oil Recovery Systems

  15. A method for treating bottom ash

    NARCIS (Netherlands)

    Rem, P.C.; Van Craaikamp, H.; Berkhout, S.P.M.; Sierhuis, W.; Van Kooy, L.A.

    2007-01-01

    A method for treating bottom ash from a waste incineration plant. The invention relates in particular to a method for treating bottom ash from a domestic waste incineration plant. In accordance with the invention bottom ash having a size ranging up to 2 mm is treated by removing a previously determi

  16. Tachibana Bay Electric Power Plant. Design and construction of pipe-laying works on the sea bottom for the industrial water; Tachibanawan hatsudensho. Kogyo yosui kaitei haikan koji no sekkei to seko

    Energy Technology Data Exchange (ETDEWEB)

    Shiono, A.; Tanaka, K. [Shikoku Electric Power Co., Inc., Takamatsu (Japan)

    1997-09-01

    At Kokatsu Island in the Bay of Tachibana, Anan City, Tokushima Prefecture, Tachibana Bay coal burning thermal electric power plants are now under construction. This is a joint venture of Shikoku electric Power Company and Dengen-kaihatsu (Power Resources Development Co.) with the objective of securing power supply in and after the year of 2000. The former plans one 700,000kW generator and the latter plans two 1.05 million kW generators totalling 2.8 million kW in terms of plant capacity. As for the above plants, the industrial water of 14,000m{sup 3} per day is required for various equipment including exhaust gas desulfurizers, etc. and the receiving and sending point of this industrial water is located at Ohgata Area, the northern opposite coast of this island. It is necessary to lay water pipes in the sea area from the above point up to Kokatsu Island, but this sea area lies within the important harbor designated for lanes and anchorages of vessels, hence traffic of vessels is heavy and restrictive conditions are many. Having studied various construction methods, the chain cutter simultaneous laying and burying method has been adopted. Three large calibre submarine water conveyance pipes, each of which is 250mm in inner diameter and about 2km long, have been built and the works have been completed at the end of June, 1997. 12 figs., 3 tabs.

  17. The Use of Coal Bottom Ash In Hot Mix Asphalt

    Directory of Open Access Journals (Sweden)

    Charles Begyina Kodjo Nketsiah

    2015-05-01

    Full Text Available Bottom ash is a waste material from coal burnt to generate electric power. It is incombustible and non-biodegradable; hence, the best way to dispose it is by recycling rather than incineration and land filling. Past research on bottom ash in road building have focused mainly on embankment filling, sub-base and base courses; except boiler slag which has received much attention in Hot Mix Asphalt (HMA. Bottom ash from Tanjung Bin Power Station was thus investigated through laboratory testing to justify its use in HMA construction in Malaysia. This Paper analysed the data with regards to performance in HMA. In the Marshall Mix design, the material largely satisfied the Stability, Flow and Stiffness requirements which were comparable to that of conventional aggregates, although void contents were a bit higher. When blended with granite, all the parameters were met. Contrary to past suggestions that bottom ash in HMA consumes more bitumen, the 6.4% (51.20g Optimum Bitumen Content (OBC achieved in this study does not necessarily translate into high consumption, compared to OBC of 5.3% (59.63g in the case of granite. The HMA also proved to be highly resistant to moisture-induced damage and satisfied the minimum JKR specification for Static Uniaxial Load Strain.

  18. Simple and robust method for lithium traces determination in drinking water by atomic emission using low-power capacitively coupled plasma microtorch and microspectrometer.

    Science.gov (United States)

    Zsigmond, Andreea R; Frentiu, Tiberiu; Ponta, Michaela; Frentiu, Maria; Petreus, Dorin

    2013-12-15

    A method for Li determination in drinking water using atomic emission spectrometry in a new low-power Ar capacitively coupled plasma microtorch (15 W, 0.6 L min(-1)) with a detection limit of 0.013 μg L(-1) was developed. The method is based on external calibration in the presence of a buffering solution containing 5 mg L(-1) Na, K, Ca, Mg added both to calibration standards and water samples. The statistical validation on 31 bottled drinking water samples (0.4-2140 μg L(-1) Li) using the Bland and Altman test and regression analysis has shown results similar to those obtained by the standard additions method. The buffering solution approach is simpler than the standard additions and has demonstrated good intra- and interday precision, accuracy and robustness. It was successfully applied over a wide concentration range of Li and multimineral matrix with a pooled precision of 2.5-3.5% and 99±9% accuracy.

  19. 135Cs activity and 135Cs/137Cs atom ratio in environmental samples before and after the Fukushima Daiichi Nuclear Power Plant accident

    Science.gov (United States)

    Yang, Guosheng; Tazoe, Hirofumi; Yamada, Masatoshi

    2016-04-01

    135Cs/137Cs is a potential tracer for radiocesium source identification. However, due to the challenge to measure 135Cs, there were no 135Cs data available for Japanese environmental samples before the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident. It was only 3 years after the accident that limited 135Cs values could be measured in heavily contaminated environmental samples. In the present study, activities of 134Cs, 135Cs, and 137Cs, along with their ratios in 67 soil and plant samples heavily and lightly contaminated by the FDNPP accident were measured by combining γ spectrometry with ICP-MS/MS. The arithmetic means of the 134Cs/137Cs activity ratio (1.033 ± 0.006) and 135Cs/137Cs atom ratio (0.334 ± 0.005) (decay corrected to March 11, 2011), from old leaves of plants collected immediately after the FDNPP accident, were confirmed to represent the FDNPP derived radiocesium signature. Subsequently, for the first time, trace 135Cs amounts before the FDNPP accident were deduced according to the contribution of global and FDNPP accident-derived fallout. Apart from two soil samples with a tiny global fallout contribution, contributions of global fallout radiocesium in other soil samples were observed to be 0.338%–52.6%. The obtained 135Cs/137Cs database will be useful for its application as a geochemical tracer in the future.

  20. Extrapolation of the Bethe equation for electron stopping powers to intermediate and low electron energies by empirical simulation of target effective mean excitation energy and atomic number

    Energy Technology Data Exchange (ETDEWEB)

    Maglevanny, I.I., E-mail: sianko@list.ru [Volgograd State Social Pedagogical University, 27 Lenin Avenue, Volgograd 400131 (Russian Federation); Smolar, V.A.; Nguyen, H.T.T. [Volgograd State Technical University, 28 Lenin Avenue, Volgograd 400131 (Russian Federation)

    2013-12-01

    A series of simple stopping power (SP) formulas, modified from the relativistic Bethe equation, is presented that is based on the concepts of target effective atomic number and mean excitation energy (MEE). The analytical model function is constructed to approximate experimental or calculated SPs at low electron energies and tend asymptotically to the relativistic Bethe function at high energies. The energy dependencies of our effective values, in contrast with theoretical approaches, are defined empirically by parametrization with tuning parameters. A least-squares fitting routine based on the Levenberg–Marquardt algorithm was developed. We utilize the material parameters and numerical calculations of SPs from optical data using the full Penn-algorithm. Our formula is thought to be applicable for energies above 60 eV. Our simulations of SPs for 41 elemental solids are found to be in good agreement with published numerical results. The flexibility of a general empirical formula is shown. Shortened formulas were developed that are applicable for particular energy ranges, and effective MEEs are proposed that differ from previously recommended values. The presented formulas may be used for analytical calculation of SPs over a broad projectile energy region.

  1. Surface Roughness and Critical Exponent Analyses of Boron-Doped Diamond Films Using Atomic Force Microscopy Imaging: Application of Autocorrelation and Power Spectral Density Functions

    Science.gov (United States)

    Gupta, S.; Vierkant, G. P.

    2014-09-01

    The evolution of the surface roughness of growing metal or semiconductor thin films provides much needed information about their growth kinetics and corresponding mechanism. While some systems show stages of nucleation, coalescence, and growth, others exhibit varying microstructures for different process conditions. In view of these classifications, we report herein detailed analyses based on atomic force microscopy (AFM) characterization to extract the surface roughness and growth kinetics exponents of relatively low boron-doped diamond (BDD) films by utilizing the analytical power spectral density (PSD) and autocorrelation function (ACF) as mathematical tools. The machining industry has applied PSD for a number of years for tool design and analysis of wear and machined surface quality. Herein, we present similar analyses at the mesoscale to study the surface morphology as well as quality of BDD films grown using the microwave plasma-assisted chemical vapor deposition technique. PSD spectra as a function of boron concentration (in gaseous phase) are compared with those for samples grown without boron. We find that relatively higher boron concentration yields higher amplitudes of the longer-wavelength power spectral lines, with amplitudes decreasing in an exponential or power-law fashion towards shorter wavelengths, determining the roughness exponent ( α ≈ 0.16 ± 0.03) and growth exponent ( β ≈ 0.54), albeit indirectly. A unique application of the ACF, which is widely used in signal processing, was also applied to one-dimensional or line analyses (i.e., along the x- and y-axes) of AFM images, revealing surface topology datasets with varying boron concentration. Here, the ACF was used to cancel random surface "noise" and identify any spatial periodicity via repetitive ACF peaks or spatially correlated noise. Periodicity at shorter spatial wavelengths was observed for no doping and low doping levels, while smaller correlations were observed for relatively

  2. Bottom-up metamaterials with an isotropic magnetic response in the visible

    Science.gov (United States)

    Mühlig, Stefan; Dintinger, José; Cunningham, Alastair; Scharf, Toralf; Bürgi, Thomas; Rockstuhl, Carsten; Lederer, Falk

    A theoretical framework to analyze the optical properties of amorphous metamaterials made from meta-atoms which are amenable for a fabrication with bottom-up technologies is introduced. The achievement of an isotropic magnetic resonance in the visible is investigated by suggesting suitable designs for the meta-atoms. Furthermore, two meta-atoms are discussed in detail that were fabricated by self-assembling plasmonic nanoparticles using techniques from the field of colloidal nanochemistry. The metamaterials are experimentally characterized by spectroscopic means and the excitation of the magnetic dipole moment is clearly revealed. Advantages and disadvantages of metamaterials made from such meta-atoms are discussed.

  3. Atom chips

    CERN Document Server

    Reichel, Jakob

    2010-01-01

    This book provides a stimulating and multifaceted picture of a rapidly developing field. The first part reviews fundamentals of atom chip research in tutorial style, while subsequent parts focus on the topics of atom-surface interaction, coherence on atom chips, and possible future directions of atom chip research. The articles are written by leading researchers in the field in their characteristic and individual styles.

  4. Atomic energy

    CERN Multimedia

    1996-01-01

    Interviews following the 1991 co-operation Agreement between the Department of Atomic Energy (DAE) of the Government of India and the European Organization for Nuclear Research (CERN) concerning the participation in the Large Hadron Collider Project (LHC) . With Chidambaram, R, Chairman, Atomic Energy Commission and Secretary, Department of Atomic Energy, Department of Atomic Energy (DAE) of the Government of India and Professor Llewellyn-Smith, Christopher H, Director-General, CERN.

  5. Nanoarchitectonic atomic switch networks for unconventional computing

    Science.gov (United States)

    Demis, Eleanor C.; Aguilera, Renato; Scharnhorst, Kelsey; Aono, Masakazu; Stieg, Adam Z.; Gimzewski, James K.

    2016-11-01

    Developments in computing hardware are constrained by the operating principles of complementary metal oxide semiconductor (CMOS) technology, fabrication limits of nanometer scaled features, and difficulties in effective utilization of high density interconnects. This set of obstacles has promulgated a search for alternative, energy efficient approaches to computing inspired by natural systems including the mammalian brain. Atomic switch network (ASN) devices are a unique platform specifically developed to overcome these current barriers to realize adaptive neuromorphic technology. ASNs are composed of a massively interconnected network of atomic switches with a density of ∼109 units/cm2 and are structurally reminiscent of the neocortex of the brain. ASNs possess both the intrinsic capabilities of individual memristive switches, such as memory capacity and multi-state switching, and the characteristics of large-scale complex systems, such as power-law dynamics and non-linear transformations of input signals. Here we describe the successful nanoarchitectonic fabrication of next-generation ASN devices using combined top-down and bottom-up processing and experimentally demonstrate their utility as reservoir computing hardware. Leveraging their intrinsic dynamics and transformative input/output (I/O) behavior enabled waveform regression of periodic signals in the absence of embedded algorithms, further supporting the potential utility of ASN technology as a platform for unconventional approaches to computing.

  6. Perceptual learning: top to bottom.

    Science.gov (United States)

    Amitay, Sygal; Zhang, Yu-Xuan; Jones, Pete R; Moore, David R

    2014-06-01

    Perceptual learning has traditionally been portrayed as a bottom-up phenomenon that improves encoding or decoding of the trained stimulus. Cognitive skills such as attention and memory are thought to drive, guide and modulate learning but are, with notable exceptions, not generally considered to undergo changes themselves as a result of training with simple perceptual tasks. Moreover, shifts in threshold are interpreted as shifts in perceptual sensitivity, with no consideration for non-sensory factors (such as response bias) that may contribute to these changes. Accumulating evidence from our own research and others shows that perceptual learning is a conglomeration of effects, with training-induced changes ranging from the lowest (noise reduction in the phase locking of auditory signals) to the highest (working memory capacity) level of processing, and includes contributions from non-sensory factors that affect decision making even on a "simple" auditory task such as frequency discrimination. We discuss our emerging view of learning as a process that increases the signal-to-noise ratio associated with perceptual tasks by tackling noise sources and inefficiencies that cause performance bottlenecks, and present some implications for training populations other than young, smart, attentive and highly-motivated college students.

  7. Atomic Scale Plasmonic Switch.

    Science.gov (United States)

    Emboras, Alexandros; Niegemann, Jens; Ma, Ping; Haffner, Christian; Pedersen, Andreas; Luisier, Mathieu; Hafner, Christian; Schimmel, Thomas; Leuthold, Juerg

    2016-01-13

    The atom sets an ultimate scaling limit to Moore's law in the electronics industry. While electronics research already explores atomic scales devices, photonics research still deals with devices at the micrometer scale. Here we demonstrate that photonic scaling, similar to electronics, is only limited by the atom. More precisely, we introduce an electrically controlled plasmonic switch operating at the atomic scale. The switch allows for fast and reproducible switching by means of the relocation of an individual or, at most, a few atoms in a plasmonic cavity. Depending on the location of the atom either of two distinct plasmonic cavity resonance states are supported. Experimental results show reversible digital optical switching with an extinction ratio of 9.2 dB and operation at room temperature up to MHz with femtojoule (fJ) power consumption for a single switch operation. This demonstration of an integrated quantum device allowing to control photons at the atomic level opens intriguing perspectives for a fully integrated and highly scalable chip platform, a platform where optics, electronics, and memory may be controlled at the single-atom level.

  8. Surface engineering of nanoporous substrate for solid oxide fuel cells with atomic layer-deposited electrolyte

    Directory of Open Access Journals (Sweden)

    Sanghoon Ji

    2015-08-01

    Full Text Available Solid oxide fuel cells with atomic layer-deposited thin film electrolytes supported on anodic aluminum oxide (AAO are electrochemically characterized with varying thickness of bottom electrode catalyst (BEC; BECs which are 0.5 and 4 times thicker than the size of AAO pores are tested. The thicker BEC ensures far more active mass transport on the BEC side and resultantly the thicker BEC cell generates ≈11 times higher peak power density than the thinner BEC cell at 500 °C.

  9. Atomic polarizabilities

    Energy Technology Data Exchange (ETDEWEB)

    Safronova, M. S. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Mitroy, J. [School of Engineering, Charles Darwin University, Darwin NT 0909 (Australia); Clark, Charles W. [Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, Gaithersburg, Maryland 20899-8410 (United States); Kozlov, M. G. [Petersburg Nuclear Physics Institute, Gatchina 188300 (Russian Federation)

    2015-01-22

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed.

  10. Wet physical separation of MSWI bottom ash

    NARCIS (Netherlands)

    Muchova, L.

    2010-01-01

    Bottom ash (BA) from municipal solid waste incineration (MSWI) has high potential for the recovery of valuable secondary materials. For example, the MSWI bottom ash produced by the incinerator at Amsterdam contains materials such as non-ferrous metals (2.3%), ferrous metals (8-13%), gold (0.4 ppm),

  11. Development of Castables for Gass Tank Bottom

    Institute of Scientific and Technical Information of China (English)

    YUANLin; CHENShengling

    1998-01-01

    The production and use of zircon corundum refractory castables were analyzed.The superior properties and applied effect of castables for glass tank bottom were demonstrated.The results show that those castables have excellent molten glass corrosion resistance (MGCR) and enable glass tank bot-tom to form a seal mass.

  12. Development of Crashworthy Bottom and Side Structures

    DEFF Research Database (Denmark)

    Naar, H.; Kujala, P.; Simonsen, Bo Cerup;

    2002-01-01

    structures. The first structure is a conventional double bottom. In the second structure (presently protected through a patent) the bottom plating is stiffened with hat-profiles instead of bulb profiles. In the third structure the outer shell is an all-steel sandwich panel. In the fourth structure the bottom......The purpose of this work is to compare the resistance to damage of various types of double bottom structures in a stranding event. The results can also be interpreted as the crashworthiness of side structures penetrated by a striking vessel in a collision event. The comparative analyses are made...... by use of a commercial, explicit finite element program. The ship bottom is loaded with a conical indenter with a rounded tip, which is forced laterally into the structures in different positions. The aim is to compare resistance forces, energy absorption and penetration to fracture for four different...

  13. The oscillations of ship lock bottom

    Directory of Open Access Journals (Sweden)

    N.Yu. Kuzmin

    2012-06-01

    Full Text Available The article deals with the dynamic characteristics of the ship lock. The accurate design relations intended to study the natural and forced vibrations of the bottom of the ship lock are provided. The degree of filling of the lock, as well as the added mass of water is considered. The various coupling conditions of the bottom and walls of buildings are taken into account. A concrete example of the calculation is given.An exact, in the framework of the adopted design scheme, solution of the problem of the own and forced vibrations of the bottom of the ship lock is found. The frequency of the first five tones of vibrations and the associated mass of liquid according to thickness of the structure and coupling conditions of the bottom and sides of the lock are analyzed. A significant effect of liquids on low-frequency part of the spectrum and the dynamic response of the bottom is determined.

  14. Importance of Non-Perturbative QCD Parameters for Bottom Mesons

    CERN Document Server

    Upadhyay, A

    2015-01-01

    The importance of non-perturbative Quantum Chromodynamics [QCD] parameters is discussed in context to the predicting power for bottom meson masses and isospin splitting. In the framework of heavy quark effective theory, the work presented here focuses on the different allowed values of the two non perturbative QCD parameters used in heavy quark effective theory formula and using the best fitted parameter, masses of the excited bottom meson states in JP=(1/2)+ doublet in strange as well as non-strange sector are calculated here. The calculated masses are found to be matching well with experiments and other phenomenological models. The mass and hyperfine splitting has also been analyzed for both strange and non-strange heavy mesons with respect to spin and flavor symmetries.

  15. Importance of Nonperturbative QCD Parameters for Bottom Mesons

    Directory of Open Access Journals (Sweden)

    A. Upadhyay

    2014-01-01

    Full Text Available The importance of nonperturbative quantum chromodynamics (QCD parameters is discussed in context to the predicting power for bottom meson masses and isospin splitting. In the framework of heavy quark effective theory, the work presented here focuses on the different allowed values of the two nonperturbative QCD parameters used in heavy quark effective theory formula, and using the best fitted parameter, masses of the excited bottom meson states in jp=1/2+ doublet in strange and nonstrange sectors are calculated here. The calculated masses are found to be matching well with experiments and other phenomenological models. The mass splitting and hyperfine splitting have also been analyzed for both strange and nonstrange heavy mesons with respect to spin and flavor symmetries.

  16. Adsorption of organic pollutants from coking and papermaking wastewaters by bottom ash

    Energy Technology Data Exchange (ETDEWEB)

    Sun Weiling [Department of Environmental Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871 (China)], E-mail: sunweiling@iee.pku.edu.cn; Qu Yanzhi; Yu Qing; Ni Jinren [Department of Environmental Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871 (China)

    2008-06-15

    Bottom ash, a power plant waste, was used to remove the organic pollutants in coking wastewater and papermaking wastewater. Particular attention was paid on the effect of bottom ash particle size and dosage on the removal of chemical oxygen demand (COD). UV-vis spectra, fluorescence excitation-emission matrix (FEEM) spectra, Fourier transform infrared (FTIR) spectra, and scanning electron microscopic (SEM) photographs were investigated to characterize the wastewaters and bottom ash. The results show that the COD removal efficiencies increase with decreasing particle sizes of bottom ash, and the COD removal efficiency for coking wastewater is much higher than that for papermaking wastewater due to its high percentage of particle organic carbon (POC). Different trends of COD removal efficiency with bottom ash dosage are also observed for coking and papermaking wastewaters because of their various POC concentrations. Significant variations are observed in the FEEM spectra of wastewaters after treatment by bottom ash. New excitation-emission peaks are found in FEEM spectra, and the fluorescence intensities of the peaks decrease. A new transmittance band in the region of 1400-1420 cm{sup -1} is observed in FTIR spectra of bottom ash after adsorption. The SEM photographs reveal that the surface of bottom ash particles varies evidently after adsorption.

  17. Design and optimization of air bottoming cycles for waste heat recovery in off-shore platforms

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Haglind, Fredrik

    2014-01-01

    -objective optimization approach is employed to maximize the economic revenue, the compactness and the power production of the air bottoming cycle. The system compactness is assessed by introducing a detailed model of the shell and tube recuperator and including geometric quantities in the set of optimization variables......This paper aims at comparing two methodologies to design an air bottoming cycle recovering the waste heat from the power generation system on the Draugen off-shore oil and gas platform. Firstly, the design is determined using the theory of the power maximization. Subsequently, the multi...

  18. Biphase turbine bottoming cycle for a diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, S.; Hays, L.

    1977-02-15

    Application of a two-phase turbine system to waste heat recovery was examined. Bottoming cycle efficiencies ranging from 15 to 30% were calculated for a 720/sup 0/F diesel exhaust temperature. A single stage demonstration unit, designed for non-toxic fluids (water and DowTherm A) and for atmospheric seals and bearings, had a cycle efficiency of 23%. The net output power was 276 hp at 8,100 rpm, increasing the total shaft power from 1,800 hp for the diesel alone, to 2,076 hp for the combined system. A four stage organic turbine, for the same application, had a rotational speed of 14,700 rpm while a four stage steam turbine had 26,000 rpm. Fabrication drawings were prepared for the turbine and nozzle. The major improvement leading to higher cycle efficiency and lower turbine rpm was found to be the use of a liquid component with lower sensible heat. A reduction in capital cost was found to result from the use of a contact heat exchanger instead of tube-fin construction. The cost for a contact heat exchanger was only $35-52/kWe compared to $98/kWe for a tube-fin heat exchanger. Design drawings and materials list were prepared. A program resulting in the demonstration of a two-phase bottoming system was planned and the required cost estimated. The program would result in a feasibility test of the nozzle and turbine at the end of the first year, a laboratory performance test of the bottoming system by the end of the second year and a field demonstration test and laboratory endurance test of the bottoming system during the third year. The blowdown test rig for the first year's program and test turbine were designed.

  19. Tsunami Energy, Ocean-Bottom Pressure, and Hydrodynamic Force from Stochastic Bottom Displacement

    Science.gov (United States)

    Ramadan, Khaled T.; Omar, M. A.; Allam, Allam A.

    2017-03-01

    Tsunami generation and propagation due to a randomly fluctuating of submarine earthquake modeled by vertical time-dependent of a stochastic bottom displacement are investigated. The increase in oscillations and amplitude in the free surface elevation are controlled by the noise intensity parameter of the stochastic bottom displacement. Evolution of kinetic and potential energy of the resulting waves by the stochastic bottom displacement is examined. Exchange between potential and kinetic energy was achieved in the propagation process. The dynamic ocean-bottom pressure during tsunami generation is investigated. As the vertical displacement of the stochastic bottom increases, the peak amplitude of the ocean-bottom pressure increases through the dynamic effect. Time series of the maximum tsunami wave amplitude, kinetic and potential energy, wave and ocean-bottom pressure gauges and the hydrodynamic force caused by the stochastic source model under the effect of the water depth of the ocean are investigated.

  20. Atomic and Molecular Processes

    Science.gov (United States)

    1980-06-25

    The topics investigated experimentally and theoretically by the Pittsburgh Atomic Sciences Institute with applications to high power laser development and atmospheric IR backgrounds are enumerated. Reports containing the detailed scientific progress in these studies are cited. Finally, a list of the journal articles describing the results of the programs, with full references, is given.

  1. Top Down Chemistry Versus Bottom up Chemistry

    Science.gov (United States)

    Oka, Takeshi; Witt, Adolf N.

    2016-06-01

    The idea of interstellar top down chemistry (TDC), in which molecules are produced from decomposition of larger molecules and dust in contrast to ordinary bottom up chemistry (BUC) in which molecules are produced synthetically from smaller molecules and atoms in the ISM, has been proposed in the chemistry of PAH and carbon chain molecules both for diffusea,c and dense cloudsb,d. A simple and natural idea, it must have occurred to many people and has been in the air for sometime. The validity of this hypothesis is apparent for diffuse clouds in view of the observed low abundance of small molecules and its rapid decrease with molecular size on the one hand and the high column densities of large carbon molecules demonstrated by the many intense diffuse interstellar bands (DIBs) on the other. Recent identification of C60^+ as the carrier of 5 near infrared DIBs with a high column density of 2×1013 cm-2 by Maier and others confirms the TDC. This means that the large molecules and dust produced in the high density high temperature environment of circumstellar envelopes are sufficiently stable to survive decompositions due to stellar UV radiaiton, cosmic rays, C-shocks etc. for a long time (≥ 10^7 year) of their migration to diffuse clouds and seems to disagree with the consensus in the field of interstellar grains. The stability of molecules and aggregates in the diffuse interstellar medium will be discussed. Duley, W. W. 2006, Faraday Discuss. 133, 415 Zhen,J., Castellanos, P., Paardekooper, D. M., Linnartz, H., Tielens, A. G. G. M. 2014, ApJL, 797, L30 Huang, J., Oka, T. 2015, Mol. Phys. 113, 2159 Guzmán, V. V., Pety, J., Goicoechea, J. R., Gerin, M., Roueff, E., Gratier, P., Öberg, K. I. 2015, ApJL, 800, L33 L. Ziurys has sent us many papers beginning Ziurys, L. M. 2006, PNAS 103, 12274 indicating she had long been a proponent of the idea. Campbell, E. K., Holz, M., Maier, J. P., Gerlich, D., Walker, G. A. H., Bohlender, D, 2016, ApJ, in press Draine, B. T. 2003

  2. Landfilling: Bottom Lining and Leachate Collection

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Manfredi, Simone; Kjeldsen, Peter

    2011-01-01

    , whether composed of soils or geosynthetic barriers, are able to prevent leachate emission to the environment for a relatively long time (50 years or longer), it should be realized that no liner is 100% efficient. However, modern lining systems, which include composite liners and multiple (double, or even......The critical element of a landfill, which is essential for the protection of the environment in general, and prevention of contamination of the underlying soils and groundwater in particular, is the bottom lining system. The major focus of the bottom lining system development is to prevent leachate......, as well as the migration of landfill gas, preventing contact between gas and groundwater. The bottom lining system is composed of a relatively impermeable liner or lining system. This very low hydraulic conductivity system controls the movement of the leachate out of the landfill. The bottom lining system...

  3. Atomic physics

    CERN Document Server

    Born, Max

    1989-01-01

    The Nobel Laureate's brilliant exposition of the kinetic theory of gases, elementary particles, the nuclear atom, wave-corpuscles, atomic structure and spectral lines, electron spin and Pauli's principle, quantum statistics, molecular structure and nuclear physics. Over 40 appendices, a bibliography, numerous figures and graphs.

  4. Numerical tsunami modeling and the bottom relief

    Science.gov (United States)

    Kulikov, E. A.; Gusiakov, V. K.; Ivanova, A. A.; Baranov, B. V.

    2016-11-01

    The effect of the quality of bathymetric data on the accuracy of tsunami-wave field calculation is considered. A review of the history of the numerical tsunami modeling development is presented. Particular emphasis is made on the World Ocean bottom models. It is shown that the modern digital bathymetry maps, for example, GEBCO, do not adequately simulate the sea bottom in numerical models of wave propagation, leading to considerable errors in estimating the maximum tsunami run-ups on the coast.

  5. Bottom Interaction in Ocean Acoustic Propagation

    Science.gov (United States)

    2015-09-30

    to thousands of kilometers in the deep ocean where the sound channel is not bottom limited. The specific goal is to study the role of bottom...They are barely observable when the ambient noise and PE predicted arrivals are loud (such as in the sound 2 channel), but become the dominant...obvious seafloor feature. Figures 2 to 5 show maps of the transmission locations that excite BDSRs. Essentially no BDSR arrivals are observed on the

  6. Workability and strength of lignite bottom ash geopolymer mortar.

    Science.gov (United States)

    Sathonsaowaphak, Apha; Chindaprasirt, Prinya; Pimraksa, Kedsarin

    2009-08-30

    In this paper, the waste lignite bottom ash from power station was used as a source material for making geopolymer. Sodium silicate and sodium hydroxide (NaOH) were used as liquid for the mixture and heat curing was used to activate the geopolymerization. The fineness of bottom ash, the liquid alkaline/ash ratio, the sodium silicate/NaOH ratio and the NaOH concentration were studied. The effects of the additions of water, NaOH and napthalene-based superplasticizer on the workability and strength of the geopolymer mortar were also studied. Relatively high strength geopolymer mortars of 24.0-58.0 MPa were obtained with the use of ground bottom ash with 3% retained on sieve no. 325 and mean particle size of 15.7 microm, using liquid alkaline/ash ratios of 0.429-0.709, the sodium silicate/NaOH ratios of 0.67-1.5 and 7.5-12.5M NaOH. The incorporation of water improved the workability of geopolymer mortar more effectively than the use of napthalene-based superplasticizer with similar slight reduction in strengths. The addition of NaOH solution slightly improves the workability of the mix while maintaining the strength of the geopolymer mortars.

  7. Inventing a co-axial atomic resolution patch clamp to study a single resonating protein complex and ultra-low power communication deep inside a living neuron cell.

    Science.gov (United States)

    Ghosh, Subrata; Sahu, Satyajit; Agrawal, Lokesh; Shiga, Takashi; Bandyopadhyay, Anirban

    2016-12-01

    To read the signals of single molecules in vitro on a surface, or inside a living cell or organ, we introduce a coaxial atom tip (coat) and a coaxial atomic patch clamp (COAPAP). The metal-insulator-metal cavity of these probes extends to the atomic scale (0.1[Formula: see text]nm), it eliminates the cellular or environmental noise with a S/N ratio 10(5). Five ac signals are simultaneously applied during a measurement by COAT and COAPAP to shield a true signal under environmental noise in five unique ways. The electromagnetic drive in the triaxial atomic tips is specifically designed to sense anharmonic vibrational and transmission signals for any system between 0.1[Formula: see text]nm and 50[Formula: see text]nm where the smallest nanopatch clamp cannot reach. COAT and COAPAP reliably pick up the atomic scale vibrations under the extreme noise of a living cell. Each protein's distinct electromagnetic, mechanical, electrical and ionic vibrational signature studied in vitro in a protected environment is found to match with the ones studied inside a live neuron. Thus, we could confirm that by using our probe blindly we could hold on to a single molecule or its complex in the invisible domain of a living cell. Our decade long investigations on perfecting the tools to measure bio-resonance of all forms and simultaneously in all frequency domains are summarized. It shows that the ratio of emission to absorption resonance frequencies of a biomaterial is around [Formula: see text], only a few in the entire em spectrum are active that regulates all other resonances, like mechanical, ionic, etc.

  8. Air bottoming cycle, an alternative to combined cycles. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kaikko, J. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Energy Technology

    2002-02-01

    In this work, the idea of Air Bottoming Cycle (ABC) has been studied. The objectives for the work have been to establish an understanding of the concept for power and heat generation as well as to find - if possible - feasible concepts for future use in the Swedish energy system. Combined cycle in power generation is an established technology. In the conventional combined cycle, a gas turbine works as a topping cycle together with the steam (Rankine) bottoming cycle. In the ABC the steam bottoming cycle is replaced with a gas turbine (Brayton) bottoming cycle having air as a working fluid. The two gas turbines are thermally connected over a gas-to-gas heat exchanger. This concept promises savings in weight and cost, as well as operating benefits, compared to the Rankine bottoming technology. The ABC has been modelled using a heat balance program, and a parametric study for the concept optimisation as well as for off-design analysis has been performed. Performance of the ABC has been compared to other, established technologies. A preliminary economic evaluation has been made. As a result of the study, it is clarified that the Rankine bottoming cycle with steam remains superior to the ABC as regards electrical efficiency in the medium and large power scale. For small-scale applications (<10 MW{sub e}) where the thermodynamic advantage of the Rankine cycle is not dominating any longer and its economy is burdened by the heavy investment structure, the ABC becomes the better alternative for energy utilisation. A preliminary economic evaluation shows that (at energy prices autumn 2000) the ABC is at the same level as the comparable small-scale cogeneration installations. Due to high power-to-heat ratio however, higher electricity prices will favour the ABC. One interesting feature of the ABC is that about 50% of the dissipated low-value heat from the cycle is carried by clean (sterile) air at the temperature around 200 deg C. This air can be utilised for space heating or

  9. Air bottoming cycle, an alternative to combined cycles. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kaikko, J. [Royal Inst. of Techn., Stockholm (Sweden). Dept. of Energy Technology

    2001-10-01

    In this work, the idea of Air Bottoming Cycle (ABC) has been studied. The objectives for the work have been to establish an understanding of the concept for power and heat generation as well as to find - if possible - feasible concepts for future use in the Swedish energy system. Combined cycle in power generation is an established technology. In the conventional combined cycle, a gas turbine works as a topping cycle together with the steam (Rankine) bottoming cycle. In the ABC the steam bottoming cycle is replaced with a gas turbine (Brayton) bottoming cycle having air as a working fluid. The two gas turbines are thermally connected over a gas-to-gas heat exchanger. This concept promises savings in weight and cost, as well as operating benefits, compared to the Rankine bottoming technology. The ABC has been modelled using a heat balance program, and a parametric study for the concept optimisation as well as for off-design analysis has been performed. Performance of the ABC has been compared to other, established technologies. A preliminary economic evaluation has been made. As a result of the study, it is clarified that the Rankine bottoming cycle with steam remains superior to the ABC as regards electrical efficiency in the medium and large power scale. For small-scale applications (<10 MW{sub e}) where the thermodynamic advantage of the Rankine cycle is not dominating any longer and its economy is burdened by the heavy investment structure, the ABC becomes the better alternative for energy utilisation. A preliminary economic evaluation shows that (at energy prices autumn 2000) the ABC is at the same level as the comparable small-scale cogeneration installations. Due to high power-to-heat ratio however, higher electricity prices will favour the ABC. One interesting feature of the ABC is that about 50% of the dissipated low-value heat from the cycle is carried by clean (sterile) air at the temperature around 200 deg C. This air can be utilised for space heating or

  10. Dixie Valley Bottoming Binary Unit

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, Dale [Terra-Gen Sierra Holdings, LLC, Reno, NV (United States)

    2014-12-21

    This binary plant is the first air cooled, high-output refrigeration based waste heat recovery cycle in the industry. Its working fluid is environmentally friendly and as such, the permits that would be required with a hydrocarbon based cycle are not necessary. The unit is largely modularized, meaning that the unit’s individual skids were assembled in another location and were shipped via truck to the plant site. The Air Cooled Condensers (ACC), equipment piping, and Balance of Plant (BOP) piping were constructed at site. This project further demonstrates the technical feasibility of using low temperature brine for geothermal power utilization. The development of the unit led to the realization of low temperature, high output, and environmentally friendly heat recovery systems through domestic research and engineering. The project generates additional renewable energy, resulting in cleaner air and reduced carbon dioxide emissions. Royalty and tax payments to governmental agencies will increase, resulting in reduced financial pressure on local entities. The major components of the unit were sourced from American companies, resulting in increased economic activity throughout the country.

  11. Analysis of All-Carbon Brick Bottom and Ceramic Cup Synthetic Hearth Bottom

    Institute of Scientific and Technical Information of China (English)

    ZHAO Hong-bo; CHENG Shu-sen; ZHAO Min-ge

    2007-01-01

    One of the bottlenecks of the blast furnace (BF) campaign is the life length of hearth bottom. The basic reason for the erosion of hearth bottom is its direct contact with hot metal. According to the theory of heat transfer, models of BF hearth bottom are built based on the actual examples using software and VC language, and the calculated results are in good agreement with the data of BF dissection after blowing out. The temperature distribution and the capability of the resistance to erosion for different structures of hearth bottom are analyzed, especially the two prevalent kinds of hearth bottom arrangements called "the method of heat transfer" for all-carbon brick bottom and "the method of heat isolation" for ceramic synthetic hearth bottom. Features of the two kinds of hearth bottoms are analyzed. Also the different ways of protecting the hearth bottom are clarified, according to some actual examples. After that, the same essence of prolonging life, and the fact that the existence of a "protective skull" with low thermal conductivity between the hot metal and brick layers is of utmost importance are shown.

  12. Self-assembled nanostructured resistive switching memory devices fabricated by templated bottom-up growth.

    Science.gov (United States)

    Song, Ji-Min; Lee, Jang-Sik

    2016-01-07

    Metal-oxide-based resistive switching memory device has been studied intensively due to its potential to satisfy the requirements of next-generation memory devices. Active research has been done on the materials and device structures of resistive switching memory devices that meet the requirements of high density, fast switching speed, and reliable data storage. In this study, resistive switching memory devices were fabricated with nano-template-assisted bottom up growth. The electrochemical deposition was adopted to achieve the bottom-up growth of nickel nanodot electrodes. Nickel oxide layer was formed by oxygen plasma treatment of nickel nanodots at low temperature. The structures of fabricated nanoscale memory devices were analyzed with scanning electron microscope and atomic force microscope (AFM). The electrical characteristics of the devices were directly measured using conductive AFM. This work demonstrates the fabrication of resistive switching memory devices using self-assembled nanoscale masks and nanomateirals growth from bottom-up electrochemical deposition.

  13. Processing NPP Bottoms by Ferrocyanide Precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Savkin, A. E.; Slastennikov Y. T.; Sinyakin O. G.

    2002-02-25

    The purpose of work is a laboratory test of a technological scheme for cleaning bottoms from radionuclides by use of ozonization, ferrocyanide precipitation, filtration and selective sorption. At carrying out the ferrocyanide precipitation after ozonization, the specific activity of bottoms by Cs{sup 137} is reduced in 100-500 times. It has been demonstrated that the efficiency of ferrocyanide precipitation depends on the quality of consequent filtration. Pore sizes of a filter has been determined to be less than 0.2 {micro}m for complete separation of ferrocyanide residue. The comparison of two technological schemes for cleaning bottoms from radionuclides, characterized by presence of the ferrocyanide precipitation stage has been performed. Application of the proposed schemes allows reducing volumes of radioactive waste in many times.

  14. 24 CFR 3285.804 - Bottom board repair.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Bottom board repair. 3285.804....804 Bottom board repair. (a) The bottom board covering must be inspected for any loosening or areas... to be replaced prior to closure and repair of the bottom board. (b) Any splits or tears in the...

  15. Atom-by-Atom Construction of a Quantum Device.

    Science.gov (United States)

    Petta, Jason R

    2017-03-28

    Scanning tunneling microscopes (STMs) are conventionally used to probe surfaces with atomic resolution. Recent advances in STM include tunneling from spin-polarized and superconducting tips, time-domain spectroscopy, and the fabrication of atomically precise Si nanoelectronics. In this issue of ACS Nano, Tettamanzi et al. probe a single-atom transistor in silicon, fabricated using the precision of a STM, at microwave frequencies. While previous studies have probed such devices in the MHz regime, Tettamanzi et al. probe a STM-fabricated device at GHz frequencies, which enables excited-state spectroscopy and measurements of the excited-state lifetime. The success of this experiment will enable future work on quantum control, where the wave function must be controlled on a time scale that is much shorter than the decoherence time. We review two major approaches that are being pursued to develop spin-based quantum computers and highlight some recent progress in the atom-by-atom fabrication of donor-based devices in silicon. Recent advances in STM lithography may enable practical bottom-up construction of large-scale quantum devices.

  16. XRF SR technique in the investigations of elements content in aquatic vascular plants and bottom sediments

    Science.gov (United States)

    Kipriyanova, L. M.; Dvurechenskaya, S. Ya.; Sokolovskaya, I. P.; Trunova, V. A.; Anoshin, G. N.

    2001-09-01

    The contents of some elements (mainly heavy metals) in macrophytes and bottom sediments of Novosibirsk Reservoir were determined using X-ray fluorescence analysis with the synchrotron radiation excitation (XRF SR) and atomic absorption spectroscopy (AAS) techniques. The possibility of using of the XRF SR technique along with traditional analytical methods for environmental investigations, especially for complex study of ecosystem of natural and artificial water reservoirs, was considered.

  17. Fabrication of nanochannels with ladder nanostructure at the bottom using AFM nanoscratching method

    OpenAIRE

    2014-01-01

    This letter presents a novel atomic force microscopy (AFM)-based nanomanufacturing method combining the tip scanning with the high-precision stage movement to fabricate nanochannels with ladder nanostructure at the bottom by continuous scanning with a fixed scan size. Different structures can be obtained according to the matching relation of the tip feeding velocity and the precision stage moving velocity. This relationship was first studied in detail to achieve nanochannels with different la...

  18. Thermo-economic comparative analysis of gas turbine GT10 integrated with air and steam bottoming cycle

    Science.gov (United States)

    Czaja, Daniel; Chmielnak, Tadeusz; Lepszy, Sebastian

    2014-12-01

    A thermodynamic and economic analysis of a GT10 gas turbine integrated with the air bottoming cycle is presented. The results are compared to commercially available combined cycle power plants based on the same gas turbine. The systems under analysis have a better chance of competing with steam bottoming cycle configurations in a small range of the power output capacity. The aim of the calculations is to determine the final cost of electricity generated by the gas turbine air bottoming cycle based on a 25 MW GT10 gas turbine with the exhaust gas mass flow rate of about 80 kg/s. The article shows the results of thermodynamic optimization of the selection of the technological structure of gas turbine air bottoming cycle and of a comparative economic analysis. Quantities are determined that have a decisive impact on the considered units profitability and competitiveness compared to the popular technology based on the steam bottoming cycle. The ultimate quantity that can be compared in the calculations is the cost of 1 MWh of electricity. It should be noted that the systems analyzed herein are power plants where electricity is the only generated product. The performed calculations do not take account of any other (potential) revenues from the sale of energy origin certificates. Keywords: Gas turbine air bottoming cycle, Air bottoming cycle, Gas turbine, GT10

  19. Atomic theories

    CERN Document Server

    Loring, FH

    2014-01-01

    Summarising the most novel facts and theories which were coming into prominence at the time, particularly those which had not yet been incorporated into standard textbooks, this important work was first published in 1921. The subjects treated cover a wide range of research that was being conducted into the atom, and include Quantum Theory, the Bohr Theory, the Sommerfield extension of Bohr's work, the Octet Theory and Isotopes, as well as Ionisation Potentials and Solar Phenomena. Because much of the material of Atomic Theories lies on the boundary between experimentally verified fact and spec

  20. Coil in bottom part of splitter magnet

    CERN Multimedia

    1976-01-01

    Radiation-resistant coil being bedded into the bottom part of a splitter magnet. This very particular magnet split the beam into 3 branches, for 3 target stations in the West-Area. See Annual Report 1975, p.176, Figs.14 and 15.

  1. CEOs: Gulf crisis hits hospitals' bottom line.

    Science.gov (United States)

    Johnsson, J

    1990-12-01

    Hospital CEOs say the Persian Gulf crisis could hit them hard where it counts. In fact, hospitals are already seeing some adverse impact from events in the Middle East. From fundraising to plant management to strategic planning, the confrontations in the Gulf are having an impact on the hospital's bottom line.

  2. Control Properties of Bottom Fired Marine Boilers

    DEFF Research Database (Denmark)

    Solberg, Brian; Andersen, Palle; Karstensen, Claus M. S.

    2007-01-01

    This paper focuses on model analysis of a dynamic model of a bottom fired one-pass smoke tube boiler. Linearized versions of the model are analyzed and show large variations in system gains at steady state as function of load whereas gain variations near the desired bandwidth are small. An analysis...

  3. Bottom-up organic integrated circuits

    NARCIS (Netherlands)

    Smits, Edsger C. P.; Mathijssen, Simon G. J.; van Hal, Paul A.; Setayesh, Sepas; Geuns, Thomas C. T.; Mutsaers, Kees A. H. A.; Cantatore, Eugenio; Wondergem, Harry J.; Werzer, Oliver; Resel, Roland; Kemerink, Martijn; Kirchmeyer, Stephan; Muzafarov, Aziz M.; Ponomarenko, Sergei A.; de Boer, Bert; Blom, Paul W. M.; de Leeuw, Dago M.

    2008-01-01

    Self- assembly - the autonomous organization of components into patterns and structures(1) - is a promising technology for the mass production of organic electronics. Making integrated circuits using a bottom- up approach involving self- assembling molecules was proposed(2) in the 1970s. The basic b

  4. Bottomonia: open bottom strong decays and spectrum

    Directory of Open Access Journals (Sweden)

    Santopinto E.

    2014-05-01

    Full Text Available We present our results for the bottomonium spectrum with self energy corrections. The bare masses used in the calculation are computed within Godfrey and Isgur’s relativized quark model. We also discuss our results for the open bottom strong decay widths of higher bottomonia in the 3P0 pair-creation model.

  5. ZINC AND LEAD IN BOTTOM SEDIMENTS AND AQUATIC PLANTS IN RIVER NAREW

    Directory of Open Access Journals (Sweden)

    Elżbieta Skorbiłowicz

    2014-12-01

    Full Text Available Aquatic ecosystems are a valuable part of natural environment. The increasing level of pollution in waters transforming biocoenoses and other adverse effects of the impact of toxic substances have contributed to the development of biological monitoring. The aim of the study was to determine the changes in contents of zinc and lead in bottom sediments and roots of aquatic plants: Phragmites australis and Acorus calamus in the river Narew. There were 14 points on the river, from where samples of bottom sediments and plant material were collected. The contents of lead and zinc were determined by means of flame atomic absorption spectrophotometry using Varian device. It was proven that bottom sediments were characterized by low contents of zinc and lead except from two sampling points: in Bondary and Narew. Achieved results of analyzes of plant material showed a slight exceeding in the case of lead. Spatial distribution of zinc and lead contents in examined roots of plants coincided with their contents in bottom sediments, which was also confirmed by statistical analysis. It was proven that aquatic plants had greater tendency for accumulation of metals than bottom sediments.

  6. Design of laser frequency and power control system in atom interferometer%原子干涉仪中激光频率和光强控制系统的设计

    Institute of Scientific and Technical Information of China (English)

    胡朝晖; 杨婷; 亓鲁

    2014-01-01

    为了对铯原子外态干涉仪的激光束精密控制,设计了一套适用于多种需求的激光频率和光强控制系统。该系统基于声光调制器,并集成了激光移频、光强稳定和光强调制等功能。首先,根据原子干涉仪的原理,提出对激光的要求和指标。接着,按照提出的要求设计了集成锁相频率合成器等硬件电路系统和LabVIEW软件控制系统。最后,对所开发的系统进行了实验测试。实验结果表明:系统的移频范围可控制在100~200 MHz;光强稳定性好,采用稳光系统后输出光强的波动减小为2%。设计的这套系统功能齐全,可靠有效,实现预期目标,满足原子干涉仪对光学系统的要求。另外此系统还可以应用到其他需要系统中,比如原子钟、原子干涉重力梯度仪等。%In order to control laser beams precisely in a caesium atom interferometer,a laser frequency and power con-trol system which is suitable for various demands is designed. Based on an acousto-optical modulator,the system in-tegrates the functions of frequency shift,power stabilization and modulation. Firstly,based on the principle of the at-om interferometer,the requirement of the optical part in the system is proposed. Secondly,the hardware circuit sys-tem including a phase-locked loop frequency synthesizer and the LabVIEW software control system are designed. Fi-nally,the developed system is tested. The experimental results show that the frequency shift range of the laser beam through the acousto-optical modulator is 100~200MHz;and the power fluctuation of the laser decrease to 2% using the power stabilization system. The designed system has multi-functions,achieves the desired aims and satisfies the requirements of atom transition,matter wave interference and other processes to laser beams. In addition,the de-signed system could be applied to other systems which need to adjust and control laser beam precisely,such as

  7. Cathodic protection for the bottoms of above ground storage tanks

    Energy Technology Data Exchange (ETDEWEB)

    Mohr, John P. [Tyco Adhesives, Norwood, MA (United States)

    2004-07-01

    Impressed Current Cathodic Protection has been used for many years to protect the external bottoms of above ground storage tanks. The use of a vertical deep ground bed often treated several bare steel tank bottoms by broadcasting current over a wide area. Environmental concerns and, in some countries, government regulations, have introduced the use of dielectric secondary containment liners. The dielectric liner does not allow the protective cathodic protection current to pass and causes corrosion to continue on the newly placed tank bottom. In existing tank bottoms where inadequate protection has been provided, leaks can develop. In one method of remediation, an old bottom is covered with sand and a double bottom is welded above the leaking bottom. The new bottom is welded very close to the old bottom, thus shielding the traditional cathodic protection from protecting the new bottom. These double bottoms often employ the use of dielectric liner as well. Both the liner and the double bottom often minimize the distance from the external tank bottom. The minimized space between the liner, or double bottom, and the bottom to be protected places a challenge in providing current distribution in cathodic protection systems. This study examines the practical concerns for application of impressed current cathodic protection and the types of anode materials used in these specific applications. One unique approach for an economical treatment using a conductive polymer cathodic protection method is presented. (author)

  8. Excited State Mass spectra and Regge trajectories of Bottom Baryons in Hypercentral quark Model

    CERN Document Server

    Thakkar, Kaushal; Rai, Ajay Kumar; Vinodkumar, P C

    2016-01-01

    We present the mass spectra of excited states of singly heavy baryons consist of a bottom quark and light quarks (u, d and s). The QCD motivated hypercentral quark model is employed for the three body description of baryons. The form of confinement potential is hyper coloumb plus power potential with potential index $\

  9. Extremely deep profiling analysis of the atomic composition of thick (>100 μm) GaAs layers within power PIN diodes by secondary ion mass spectrometry

    Science.gov (United States)

    Drozdov, M. N.; Drozdov, Yu. N.; Yunin, P. A.; Folomin, P. I.; Gritsenko, A. B.; Kryukov, V. L.; Kryukov, E. V.

    2016-08-01

    A new opportunity to analyze the atomic composition of thick (>100 μm) epitaxial GaAs layers by SIMS with lateral imaging of the cross section of a structure is demonstrated. The standard geometry of ldepth analysis turns out to be less informative owing to material redeposition from the walls of a crater to its floor occurring when the crater depth reaches several micrometers. The profiles of concentration of doping impurities Te and Zn and concentrations of Al and major impurities in PIN diode layers are determined down to a depth of 130 μm. The element sensitivity is at the level of 1016 at/cm3 (typical for depth analysis at a TOF.SIMS-5 setup), and the resolution is twice the diameter of the probing beam of Bi ions. The possibility of enhancing the depth resolution and the element sensitivity of the proposed analysis method is discussed.

  10. Ocean Bottom Seismometers technology: current state and future outlook

    Science.gov (United States)

    Ilinskiy, Dmitry; Ganzha, Oleg

    2016-04-01

    The beginning of 2000s was marked by a significant progress in the development and use of self-pop-up sea-bottom seismic recorders (Ocean Bottom Seismometers). In Russia it was a novel solution developed by the Russian Academy of Sciences Experimental Design Bureau of Oceanological Engineering. This recorder and its clones have been widely used not only for the Earth crust studies, but also for investigations of sub-basalt structures and gas hydrate exploration. And what has happened over the last 10 years? Let us look closely at the second generation of ocean bottom stations developed by Geonodal Solutions (GNS) as an illustration of the next step forward in the sea-bottom acquisition technology. First of all, hardware components have changed dramatically. The electronic components became much smaller, accordingly, the power consumption and electronic self-noise were dropped down significantly. This enabled development of compact station 330 mm in diameter instead of previous 450mm. The weight fell by half, while the autonomy increased up to 90 days due to both decreased energy consumption and increased capacity of the batteries. The dynamic range of recorded seismic data has expended as a result of decreased set noise and the application of 24-bit A/D converters. The instruments dimensions have been reduced, power consumption decreased, clock accuracy was significantly improved. At the same time, development of advanced time reference algorithms enabled to retain instrument accuracy around 1 ms during all the autonomous recording period. The high-speed wireless data transfer technology offered a chance to develop "maintenance-free" station throughout its operation time. The station can be re-used at the different sea bottom locations without unsealing of the deep-water container for data download, battery re-charge, clock synchronization. This noticeably reduces the labor efforts of the personnel working with the stations. This is critically important in field

  11. Nuclear Power Plants. Revised.

    Science.gov (United States)

    Lyerly, Ray L.; Mitchell, Walter, III

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Among the topics discussed are: Why Use Nuclear Power?; From Atoms to Electricity; Reactor Types; Typical Plant Design Features; The Cost of Nuclear Power; Plants in the United States; Developments in Foreign…

  12. Investigation on Leaching Behaviour of Fly Ash and Bottom Ash Replacement in Self-Compacting Concrete

    Science.gov (United States)

    Kadir, Aeslina Abdul; Ikhmal Haqeem Hassan, Mohd; Bakri Abdullah, Mohd Mustafa Al

    2016-06-01

    Fly ash and bottom ash are some of the waste generated by coal-fired power plants, which contains large quantities of toxic and heavy metals. In recent years, many researchers have been interested in studying on the properties of self-compacting concrete incorporated with fly ash and bottom ash but there was very limited research from the combination of fly ash and bottom ash towards the environmental needs. Therefore, this research was focused on investigating the leachability of heavy metals of SCC incorporated with fly ash and bottom ash by using Toxicity Characteristic Leaching Procedure, Synthetic Precipitation Leaching Procedure and Static Leaching Test. The samples obtained from the coal-fired power plant located at Peninsula, Malaysia. In this study, the potential heavy metals leached out from SCC that is produced with fly ash as a replacement for Ordinary Portland Cement and bottom ash as a substitute for sand with the ratios from 10% to 30% respectively were designated and cast. There are eight heavy metals of concern such as As, Cr, Pb, Zn, Cu, Ni, Mn and Fe. The results indicated that most of the heavy metals leached below the permissible limits from the United States Environmental Protection Agency and World Health Organization limit for drinking water. As a conclusion, the minimum leaching of the heavy metals from the incorporation of fly ash and bottom ash in self-compacting concrete was found in 20% of fly ash and 20% of bottom ash replacement. The results also indicate that this incorporation could minimize the potential of environmental problems.

  13. Excited bottom and bottom-strange mesons in the quark model

    Science.gov (United States)

    Lü, Qi-Fang; Pan, Ting-Ting; Wang, Yan-Yan; Wang, En; Li, De-Min

    2016-10-01

    In order to understand the possible q q ¯ quark-model assignments of the BJ(5840 ) and BJ(5960 ) recently reported by the LHCb Collaboration, we evaluate mass spectra, strong decays, and radiative decays of bottom and bottom-strange mesons in a nonrelativistic quark model. Comparing these predictions with the relevant experimental results, we suggest that the BJ(5840 ) and BJ(5960 ) can be identified as the B (2 1S0) and B (1 3D3) , respectively, and the B (5970 ) reported by the CDF Collaboration can be interpreted as the B (2 3S1) or B (1 3D3) . Further precise measurements of the width, spin and decay modes of the B (5970 ) are needed to distinguish these two assignments. These predictions of bottom and bottom-strange mesons can provide useful information to further experimental investigations.

  14. Excited bottom and bottom-strange mesons in the quark model

    CERN Document Server

    Lü, Qi-Fang; Wang, Yan-Yan; Wang, En; Li, De-Min

    2016-01-01

    In order to understand the possible $q\\bar{q}$ quark-model assignments of the $B_J(5840)$ and $B_J(5960)$ recently reported by the LHCb Collaboration, we evaluate mass spectra, strong decays, and radiative decays of bottom and bottom-strange mesons in a nonrelativistic quark model. Comparing these predictions with the relevant experimental results, we suggest that the $B_J(5840)$ and $B_J(5960)$ can be identified as $B(2^1S_0)$ and $B(1^3D_3)$, respectively, and the $B(5970)$ reported by the CDF Collaboration can be interpreted as $B(2^3S_1)$ or $B(1^3D_3)$. Further precise measurements of the width, spin and decay modes of the $B(5970)$ are needed to distinguish these two assignments. These predictions of bottom and bottom-strange mesons can provide useful information to further experimental investigations.

  15. Stimulation of methane oxidation potential and effects on vegetation growth by bottom ash addition in a landfill final evapotranspiration cover.

    Science.gov (United States)

    Kim, Gil Won; Ho, Adrian; Kim, Pil Joo; Kim, Sang Yoon

    2016-09-01

    The landfilling of municipal solid waste is a significant source of atmospheric methane (CH4), contributing up to 20% of total anthropogenic CH4 emissions. The evapotranspiration (ET) cover system, an alternative final cover system in waste landfills, has been considered to be a promising way to mitigate CH4 emissions, as well as to prevent water infiltration using vegetation on landfill cover soils. In our previous studies, bottom ash from coal-fired power plants was selected among several industrial residues (blast furnace slag, bottom ash, construction waste, steel manufacture slag, stone powder sludge, and waste gypsum) as the best additive for ET cover systems, with the highest mechanical performance achieved for a 35% (wtwt(-1)) bottom ash content in soil. In this study, to evaluate the field applicability of bottom ash mixed soil as ET cover, four sets of lysimeters (height 1.2m×width 2m×length 6m) were constructed in 2007, and four different treatments were installed: (i) soil+bottom ash (35% wtwt(-1)) (SB); (ii) soil+compost (2% wtwt(-1), approximately corresponding to 40Mgha(-1) in arable field scale) (SC); (iii) soil+bottom ash+compost (SBC); and (iv) soil only as the control (S). The effects of bottom ash mixing in ET cover soil on CH4 oxidation potential and vegetation growth were evaluated in a pilot ET cover system in the 5th year after installation by pilot experiments using the treatments. Our results showed that soil properties were significantly improved by bottom ash mixing, resulting in higher plant growth. Bottom ash addition significantly increased the CH4 oxidation potential of the ET cover soil, mainly due to improved organic matter and available copper concentration, enhancing methanotrophic abundances in soil amended with bottom ash. Conclusively, bottom ash could be a good alternative as a soil additive in the ET cover system to improve vegetation growth and mitigate CH4 emission impact in the waste landfill system.

  16. Atomic physics

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, A.E.; Kukla, K.; Cheng, S. [Univ. of Toledo, OH (United States)] [and others

    1995-08-01

    In a collaboration with the Atomic Physics group at Argonne and the University of Toledo, the Atomic Physics group at the University of Notre Dame is measuring the fine structure transition energies in highly-charged lithium-like and helium-like ions using beam-foil spectroscopy. Precise measurements of 2s-2p transition energies in simple (few-electron) atomic systems provide stringent tests of several classes of current atomic- structure calculations. Analyses of measurements in helium-like Ar{sup 16+} have been completed, and the results submitted for publication. A current goal is to measure the 1s2s{sup 3}S{sub 1} - 1s2p{sup 3}P{sub 0} transition wavelength in helium-like Ni{sup 26+}. Measurements of the 1s2s{sup 2}S{sub 1/2} - 1s2p{sup 2}P{sub 1/2,3/2} transition wavelengths in lithium-like Kr{sup 33+} is planned. Wavelength and lifetime measurements in copper-like U{sup 63+} are also expected to be initiated. The group is also participating in measurements of forbidden transitions in helium-like ions. A measurement of the lifetime of the 1s2s{sup 3}S{sub 1} state in Kr{sup 34+} was published recently. In a collaboration including P. Mokler of GSI, Darmstadt, measurements have been made of the spectral distribution of the 2E1 decay continuum in helium-like Kr{sup 34+}. Initial results have been reported and further measurements are planned.

  17. Stabilization of bottom sediments from Rzeszowski Reservoir

    Directory of Open Access Journals (Sweden)

    Koś Karolina

    2015-06-01

    Full Text Available The paper presents results of stabilization of bottom sediments from Rzeszowski Reservoir. Based on the geotechnical characteristics of the tested sediments it was stated they do not fulfill all the criteria set for soils in earth embankments. Therefore, an attempt to improve their parameters was made by using two additives – cement and lime. An unconfined compressive strength, shear strength, bearing ratio and pH reaction were determined on samples after different time of curing. Based on the carried out tests it was stated that the obtained values of unconfined compressive strength of sediments stabilized with cement were relatively low and they did not fulfill the requirements set by the Polish standard, which concerns materials in road engineering. In case of lime stabilization it was stated that the tested sediments with 6% addition of the additive can be used for the bottom layers of the improved road base.

  18. Constructing bottom barriers with met grouting

    Energy Technology Data Exchange (ETDEWEB)

    Shibazaki, M.; Yoshida, H. [Chemical Grouting Company, Tokyo (Japan)

    1997-12-31

    Installing a bottom barrier using conventional high pressure jetting technology and ensuring barrier continuity is challenging. This paper describes technology that has been developed and demonstrated for the emplacement of bottom barriers using pressures and flow rates above the conventional high pressure jetting parameters. The innovation capable of creating an improved body exceeding 5 meters in diameter has resulted in the satisfying connection and adherence between the treated columns. Besides, the interfaces among the improved bodies obtain the same strength and permeability lower than 1 x 10{sup -7} cm/sec as body itself. A wide variety of the thickness and the diameter of the improved mass optimizes the application, and the method is nearing completion. The paper explains an aspect and briefs case histories.

  19. Chiral atomically thin films

    Science.gov (United States)

    Kim, Cheol-Joo; Sánchez-Castillo, A.; Ziegler, Zack; Ogawa, Yui; Noguez, Cecilia; Park, Jiwoong

    2016-06-01

    Chiral materials possess left- and right-handed counterparts linked by mirror symmetry. These materials are useful for advanced applications in polarization optics, stereochemistry and spintronics. In particular, the realization of spatially uniform chiral films with atomic-scale control of their handedness could provide a powerful means for developing nanodevices with novel chiral properties. However, previous approaches based on natural or grown films, or arrays of fabricated building blocks, could not offer a direct means to program intrinsic chiral properties of the film on the atomic scale. Here, we report a chiral stacking approach, where two-dimensional materials are positioned layer-by-layer with precise control of the interlayer rotation (θ) and polarity, resulting in tunable chiral properties of the final stack. Using this method, we produce left- and right-handed bilayer graphene, that is, a two-atom-thick chiral film. The film displays one of the highest intrinsic ellipticity values (6.5 deg μm-1) ever reported, and a remarkably strong circular dichroism (CD) with the peak energy and sign tuned by θ and polarity. We show that these chiral properties originate from the large in-plane magnetic moment associated with the interlayer optical transition. Furthermore, we show that we can program the chiral properties of atomically thin films layer-by-layer by producing three-layer graphene films with structurally controlled CD spectra.

  20. Bottoming out-Sign of Stabilization

    Institute of Scientific and Technical Information of China (English)

    Dennis K. Zhao

    2009-01-01

    @@ Production Rose from its Nadir Apart from individual data report.CNTAC was a lot more focused on an overall review of textile industry as a whole to illustrate economic behavior for the first five months."sign of stabilization,bottoming out"are the key words emphatically voiced as a token of encou ragement,for the important economic indexes are indeed encouraging as compa red with this fi rst quarter.

  1. PARKA II-A Bottom Loss Measurements

    Science.gov (United States)

    1970-06-29

    obvious %ngle dependance between 15 to 85 degraes and, appear to be only slightly dependent of frequency; showing an approximate 2 db difference in mean... dependance . between 15 to 85 degrees and indicates a slight frequency dependance of 2 db over the frequency rang3e. The major reflected energy is from the...the low CONFIDENTIAL 10 NUSL Tech Memo 2211-023-70 CONFIDENTIAL sound v Locity sediment, resulting in significant angular dependance of bottom Loss at

  2. Density dependent catchability in bottom trawl surveys

    OpenAIRE

    Aglen, Asgeir; Engås, Arill; Godø, Olav Rune; McCallum, Barry R.; Stansbury, Don; Walsh, Stephen J.

    1997-01-01

    Fish form schools, layer or patches in which the individual fish's behaviour is not independent of its neighbours movements. On the other hand, at low densities fish may have the freedom to act as single individuals independently of what other fish are doing. Potentially, if these contrasts occur in nature, they may give rise to behavioural differences of fish in front of the trawl at high and low densities with successive effects on catchability and bottom trawl indices of stock ...

  3. Optimal Design of Round Bottomed Triangle Channels

    Directory of Open Access Journals (Sweden)

    Ayman T. Hameed

    2013-05-01

    Full Text Available     In optimal design concept, the geometric dimensions of a channel cross-section are determined in a manner to minimize the total construction costs. The Direct search optimization method by using MATALAB is used to solve the resulting channel optimization models for a specified flow rate, roughness coefficient and longitudinal slope. The developed optimization models are applied to design the round bottomed triangle channel and trapezoidal channels to convey a given design flow considering various design scenarios However, it also can be extended to other shapes of channels. This method optimizes the total construction cost by minimizing the cross-sectional area and wetted perimeter per unit length of the channel. In the present study, it is shown that for all values of side slope, the total construction cost in the round bottomed triangle cross-section are less than those of trapezoidal cross-section for the same values of discharge. This indicates that less excavation and a lining are involved and therefore implies that the round bottomed triangle cross-section is more economical than trapezoidal cross-section.

  4. Power and polarization dependences of ultra-narrow electromagnetically induced absorption (EIA) spectra of 85 Rb atoms in degenerate two-level system

    Science.gov (United States)

    Qureshi, Muhammad Mohsin; Rehman, Hafeez Ur; Noh, Heung-Ryoul; Kim, Jin-Tae

    2016-05-01

    We have investigated ultra-narrow EIA spectral features with respect to variations of polarizations and powers of pump laser beam in a degenerate two-level system of the transition of 85 Rb D2 transition line. Polarizations of the probe laser beam in two separate experiments were fixed at right circular and horizontal linear polarizations, respectively while the polarizations of the pump lasers were varied from initial polarizations same as the probe laser beams to orthogonal to probe polarizations. One homemade laser combined with AOMs was used to the pump and probe laser beams instead of two different lasers to overcome broad linewidths of the homemade lasers. Theoretically, probe absorption coefficients have been calculated from optical Bloch equations of the degenerate two level system prepared by a pump laser beam. In the case of the circular polarization, EIA signal was obtained as expected theoretically although both pump and probe beams have same polarization. The EIA signal become smaller as power increases and polarizations of the pump and probe beams were same. When the polarization of the pump beam was linear polarization, maximum EIA signal was obtained theoretically and experimentally. Experimental EIA spectral shapes with respect to variations of the pump beam polarization shows similar trends as the theoretical results.

  5. Gamma spectroscopic examination of Peach Bottom HTGR core components

    Energy Technology Data Exchange (ETDEWEB)

    Holzgraf, J.F.; McCord, F.; Wallroth, C.F.

    1978-04-01

    During discharge of Core 2 from the Peach Bottom High-Temperature Gas-Cooled Reactor (HTGR), 55 driver elements, 21 test elements, three reflector elements, and one control rod with sleeve were axially gamma scanned with a high-resolution Ge(Li) detector. The purpose of the exercise was to determine fission product distributions for use in burnup calculations, power profile determinations, and fission product release and redistribution studies. The results showed that the predicted and measured burnups had a +-7 percent root mean square deviation on an element-to-element basis and were within +-0.7 percent (1 sigma) on a core average basis. The element-to-element variation of +-7 percent is within the generally stated +-3 percent to 8 percent accuracy for nuclear predictions.

  6. Pu-239 and Pu-240 inventories and Pu-240/ Pu-239 atom ratios in the water column off Sanriku, Japan.

    Science.gov (United States)

    Yamada, Masatoshi; Zheng, Jian; Aono, Tatsuo

    2013-04-01

    A magnitude 9.0 earthquake and subsequent tsunami occurred in the Pacific Ocean off northern Honshu, Japan, on 11 March 2011 which caused severe damage to the Fukushima Dai-ichi Nuclear Power Plant. This accident has resulted in a substantial release of radioactive materials to the atmosphere and ocean, and has caused extensive contamination of the environment. However, no information is available on the amounts of radionuclides such as Pu isotopes released into the ocean at this time. Investigating the background baseline concentration and atom ratio of Pu isotopes in seawater is important for assessment of the possible contamination in the marine environment. Pu-239 (half-life: 24,100 years), Pu-240 (half-life: 6,560 years) and Pu-241 (half-life: 14.325 years) mainly have been released into the environment as the result of atmospheric nuclear weapons testing. The atom ratio of Pu-240/Pu-239 is a powerful fingerprint to identify the sources of Pu in the ocean. The Pu-239 and Pu-240 inventories and Pu-240/Pu-239 atom ratios in seawater samples collected in the western North Pacific off Sanriku before the accident at Fukushima Dai-ichi Nuclear Power Plant will provide useful background baseline data for understanding the process controlling Pu transport and for distinguishing additional Pu sources. Seawater samples were collected with acoustically triggered quadruple PVC sampling bottles during the KH-98-3 cruise of the R/V Hakuho-Maru. The Pu-240/Pu-239 atom ratios were measured with a double-focusing SF-ICP-MS, which was equipped with a guard electrode to eliminate secondary discharge in the plasma and to enhance overall sensitivity. The Pu-239 and Pu-240 concentrations were 2.07 and 1.67 mBq/m3 in the surface water, respectively, and increased with depth; a subsurface maximum was identified at 750 m depth, and the concentrations decreased with depth, then increased at the bottom layer. The total Pu-239+240 inventory in the entire water column (depth interval 0

  7. The Atomic orbitals of the topological atom

    OpenAIRE

    Ramos-Cordoba, Eloy; Salvador Sedano, Pedro

    2013-01-01

    The effective atomic orbitals have been realized in the framework of Bader's atoms in molecules theory for a general wavefunction. This formalism can be used to retrieve from any type of calculation a proper set of orthonormalized numerical atomic orbitals, with occupation numbers that sum up to the respective Quantum Theory of Atoms in Molecules (QTAIM) atomic populations. Experience shows that only a limited number of effective atomic orbitals exhibit significant occupation numbers. These c...

  8. Tunable axial potentials for atom chip waveguides

    CERN Document Server

    Stickney, James A; Imhof, Eric; Kroese, Bethany R; Crow, Jonathon A R; Olson, Spencer E; Squires, Matthew B

    2014-01-01

    We present a method for generating algebraically precise magnetic potentials along the axis of a cold atom waveguide near the surface of an atom chip. With a single chip design consisting of several wire pairs, various axial potentials can be created, including double wells, triple wells, and pure harmonic traps with suppression of higher order terms. We characterize the error along a harmonic trap between the expected algebraic form and magnetic field simulations and find excel- lent agreement, particularly at small displacements from the trap center. Finally, we demonstrate experimental control over the bottom fields of an asymmetric double well potential.

  9. Bottom Trawl Survey Protocol Development (HB0706, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Cruise objectives include: 1) Investigate performance characteristics of new research bottom trawl; 2) Develop standard operating procedures for the NEFSC Bottom...

  10. Atomic-Level Sculpting of Crystalline Oxides: Toward Bulk Nanofabrication with Single Atomic Plane Precision.

    Science.gov (United States)

    Jesse, Stephen; He, Qian; Lupini, Andrew R; Leonard, Donovan N; Oxley, Mark P; Ovchinnikov, Oleg; Unocic, Raymond R; Tselev, Alexander; Fuentes-Cabrera, Miguel; Sumpter, Bobby G; Pennycook, Stephen J; Kalinin, Sergei V; Borisevich, Albina Y

    2015-11-25

    The atomic-level sculpting of 3D crystalline oxide nanostructures from metastable amorphous films in a scanning transmission electron microscope (STEM) is demonstrated. Strontium titanate nanostructures grow epitaxially from the crystalline substrate following the beam path. This method can be used for fabricating crystalline structures as small as 1-2 nm and the process can be observed in situ with atomic resolution. The fabrication of arbitrary shape structures via control of the position and scan speed of the electron beam is further demonstrated. Combined with broad availability of the atomic resolved electron microscopy platforms, these observations suggest the feasibility of large scale implementation of bulk atomic-level fabrication as a new enabling tool of nanoscience and technology, providing a bottom-up, atomic-level complement to 3D printing.

  11. Mechanism of Off—Bottom Suspension of Solid Particles in a Mechanical Stirred Tank

    Institute of Scientific and Technical Information of China (English)

    BAOYuyun; HUANGXiongbin; 等

    2002-01-01

    The minimum fluid velocity to maintain particles just suspended was deduced,and the theoretical analysis shows that the minimum velocity is influenced by the properties of the solid and liquid,not by the operational conditions. For justification,the local minimum velocity at the bottom of the tank was measured by a bi-electrode conductivity probe,in a square-sectioned stirred tank (0.75m×0.75m×1.0m) with the glass beads-water system. The experiments showed that the fluid velocities for the same suspension state were identical despite that the power dissipated per unit mass was not the same under different configuration and operation.Both theoretical analysis and experimental results indicate that the off-bottom suspension is controlled by the local fluid flow over the bottom of the stirred tank.

  12. 46 CFR 171.106 - Wells in double bottoms.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Wells in double bottoms. 171.106 Section 171.106... PERTAINING TO VESSELS CARRYING PASSENGERS Additional Subdivision Requirements § 171.106 Wells in double bottoms. (a) This section applies to each vessel that has a well installed in a double bottom required...

  13. Atom Skimmers and Atom Lasers Utilizing Them

    Science.gov (United States)

    Hulet, Randall; Tollett, Jeff; Franke, Kurt; Moss, Steve; Sackett, Charles; Gerton, Jordan; Ghaffari, Bita; McAlexander, W.; Strecker, K.; Homan, D.

    2005-01-01

    Atom skimmers are devices that act as low-pass velocity filters for atoms in thermal atomic beams. An atom skimmer operating in conjunction with a suitable thermal atomic-beam source (e.g., an oven in which cesium is heated) can serve as a source of slow atoms for a magneto-optical trap or other apparatus in an atomic-physics experiment. Phenomena that are studied in such apparatuses include Bose-Einstein condensation of atomic gases, spectra of trapped atoms, and collisions of slowly moving atoms. An atom skimmer includes a curved, low-thermal-conduction tube that leads from the outlet of a thermal atomic-beam source to the inlet of a magneto-optical trap or other device in which the selected low-velocity atoms are to be used. Permanent rare-earth magnets are placed around the tube in a yoke of high-magnetic-permeability material to establish a quadrupole or octupole magnetic field leading from the source to the trap. The atoms are attracted to the locus of minimum magnetic-field intensity in the middle of the tube, and the gradient of the magnetic field provides centripetal force that guides the atoms around the curve along the axis of the tube. The threshold velocity for guiding is dictated by the gradient of the magnetic field and the radius of curvature of the tube. Atoms moving at lesser velocities are successfully guided; faster atoms strike the tube wall and are lost from the beam.

  14. Transfer-Free Growth of Atomically Thin Transition Metal Disulfides Using a Solution Precursor by a Laser Irradiation Process and Their Application in Low-Power Photodetectors.

    Science.gov (United States)

    Huang, Chi-Chih; Medina, Henry; Chen, Yu-Ze; Su, Teng-Yu; Li, Jian-Guang; Chen, Chia-Wei; Yen, Yu-Ting; Wang, Zhiming M; Chueh, Yu-Lun

    2016-04-13

    Although chemical vapor deposition is the most common method to synthesize transition metal dichalcogenides (TMDs), several obstacles, such as the high annealing temperature restricting the substrates used in the process and the required transfer causing the formation of wrinkles and defects, must be resolved. Here, we present a novel method to grow patternable two-dimensional (2D) transition metal disulfides (MS2) directly underneath a protective coating layer by spin-coating a liquid chalcogen precursor onto the transition metal oxide layer, followed by a laser irradiation annealing process. Two metal sulfides, molybdenum disulfide (MoS2) and tungsten disulfide (WS2), are investigated in this work. Material characterization reveals the diffusion of sulfur into the oxide layer prior to the formation of the MS2. By controlling the sulfur diffusion, we are able to synthesize continuous MS2 layers beneath the top oxide layer, creating a protective coating layer for the newly formed TMD. Air-stable and low-power photosensing devices fabricated on the synthesized 2D WS2 without the need for a further transfer process demonstrate the potential applicability of TMDs generated via a laser irradiation process.

  15. Atomic Beam Merging and Suppression of Alkali Contaminants in Multi Body High Power Targets: Design and Test of Target and Ion Source Prototypes at ISOLDE

    CERN Document Server

    Bouquerel, Elian J A; Lettry, J; Stora, T

    2009-01-01

    The next generation of high power ISOL-facilities will deliver intense and pure radioactive ion beams. Two key issues of developments mandatory for the forthcoming generation of ISOL target-ion source units are assessed and demonstrated in this thesis. The design and production of target and ion-source prototypes is described and dedicated measurements at ISOLDE-CERN of their radioisotope yields are analyzed. The purity of short lived or rare radioisotopes suffer from isobaric contaminants, notably alkalis which are highly volatile and easily ionized elements. Therefore, relying on their chemical nature, temperature controlled transfer lines were equipped with a tube of quartz that aimed at trapping these unwanted elements before they reached the ion source. The successful application yields high alkali-suppression factors for several elements (ie: 80, 82mRb, 126, 142Cs, 8Li, 46K, 25Na, 114In, 77Ga, 95, 96Sr) for quartz temperatures between 300ºC and 1100ºC. The enthalpies of adsorption on quartz were measu...

  16. Atomic horror deal; Atom-Deal des Grauens

    Energy Technology Data Exchange (ETDEWEB)

    May, Hanne

    2010-10-15

    The German government is opting out of the decided nuclear phaseout and will ensure good profits for operators of nuclear power plants. Complex contracts and the disregard of safety regulations will result in a continued atomic energy policy, even beyond the next elections and in disrespect of democratic procedures and bodies. (orig.)

  17. The Atom and the Ocean, Understanding the Atom Series.

    Science.gov (United States)

    Hull, E. W. Seabrook

    Included is a brief description of the characteristics of the ocean, its role as a resource for food and minerals, its composition and its interactions with land and air. The role of atomic physics in oceanographic exploration is illustrated by the use of nuclear reactors to power surface and submarine research vessels and the design and use of…

  18. Designing the organisational chart from the bottom

    DEFF Research Database (Denmark)

    Giangreco, Antonio; Carugati, Andrea

    and control. Marco had been called in because of his reputation for being an effective innovator with unconventional ideas for the public sector. Previously, during his long career in the civil service, Marco proved to be an effective leader and negotiator who was open to other people's view points. He would...... share any significant and final decisions with his employees, rather than merely imposing his own personal choice. After spending some time in the organisation, he put into action a bottom up method to redesign the structure of the HR department. He decided to temporarily suspend the existing internal...

  19. Control Properties of Bottom Fired Marine Boilers

    DEFF Research Database (Denmark)

    Solberg, Brian; Andersen, Palle; Karstensen, Claus M. S.

    2005-01-01

    This paper focuses on model analysis of a dynamic model of a bottom fired one-pass smoke tube boiler. Linearised versions of the model are analysed to determine how gain, time constants and right half plane zeros (caused by the shrink-and-swell phenomenon) depend on the steam flow load. Furthermore...... the interactions in the system are inspected to analyse potential benefit from using a multivariable control strategy in favour of the current strategy based on single loop theory. An analysis of the nonlinear model is carried out to further determine the nonlinear characteristics of the boiler system...

  20. Rankine bottoming cycle safety analysis. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lewandowski, G.A.

    1980-02-01

    Vector Engineering Inc. conducted a safety and hazards analysis of three Rankine Bottoming Cycle Systems in public utility applications: a Thermo Electron system using Fluorinal-85 (a mixture of 85 mole % trifluoroethanol and 15 mole % water) as the working fluid; a Sundstrand system using toluene as the working fluid; and a Mechanical Technology system using steam and Freon-II as the working fluids. The properties of the working fluids considered are flammability, toxicity, and degradation, and the risks to both plant workers and the community at large are analyzed.

  1. The Future of Atomic Energy

    Science.gov (United States)

    Fermi, E.

    1946-05-27

    There is definitely a technical possibility that atomic power may gradually develop into one of the principal sources of useful power. If this expectation will prove correct, great advantages can be expected to come from the fact that the weight of the fuel is almost negligible. This feature may be particularly valuable for making power available to regions of difficult access and far from deposits of coal. It also may prove a great asset in mobile power units for example in a power plant for ship propulsion. On the negative side there are some technical limitations to be applicability of atomic power of which perhaps the most serious is the impossibility of constructing light power units; also there will be some peculiar difficulties in operating atomic plants, as for example the necessity of handling highly radioactive substances which will necessitate, at least for some considerable period, the use of specially skilled personnel for the operation. But the chief obstacle in the way of developing atomic power will be the difficulty of organizing a large scale industrial development in an internationally safe way. This presents actually problems much more difficult to solve than any of the technical developments that are necessary, It will require an unusual amount of statesmanship to balance properly the necessity of allaying the international suspicion that arises from withholding technical secrets against the obvious danger of dumping the details of the procedures for an extremely dangerous new method of warfare on a world that may not yet be prepared to renounce war. Furthermore, the proper balance should be found in the relatively short time that will elapse before the 'secrets' will naturally become open knowledge by rediscovery on part of the scientists and engineers of other countries.

  2. High-energy atomic physics

    CERN Document Server

    Drukarev, Evgeny G

    2016-01-01

    This self-contained text introduces readers to the field of high-energy atomic physics - a new regime of photon-atom interactions in which the photon energies significantly exceed the atomic or molecular binding energies, and which opened up with the recent advent of new synchrotron sources. From a theoretical point of view, a small-parameter characteristic of the bound system emerged, making it possible to perform analytic perturbative calculations that can in turn serve as benchmarks for more powerful numerical computations. The first part of the book introduces readers to the foundations of this new regime and its theoretical treatment. In particular, the validity of the small-parameter perturbation expansion and of the lowest-order approximation is critically reviewed. The following chapters then apply these insights to various atomic processes, such as photoionization as a many-body problem, dominant mechanisms for the production of ions at higher energies, Compton scattering and ionization accompanied b...

  3. $T^3$-interferometer for atoms

    CERN Document Server

    Zimmermann, M; Roura, A; Schleich, W P; DeSavage, S A; Davis, J P; Srinivasan, A; Narducci, F A; Werner, S A; Rasel, E M

    2016-01-01

    The quantum mechanical propagator of a massive particle in a linear gravitational potential derived already in 1927 by Earle H. Kennard \\cite{Kennard,Kennard2} contains a phase that scales with the third power of the time $T$ during which the particle experiences the corresponding force. Since in conventional atom interferometers the internal atomic states are all exposed to the same acceleration $a$, this $T^3$-phase cancels out and the interferometer phase scales as $T^2$. In contrast, by applying an external magnetic field we prepare two different accelerations $a_1$ and $a_2$ for two internal states of the atom, which translate themselves into two different cubic phases and the resulting interferometer phase scales as $T^3$. We present the theoretical background for, and summarize our progress towards experimentally realizing such a novel atom interferometer.

  4. Atomic magnetometer

    Science.gov (United States)

    Schwindt, Peter [Albuquerque, NM; Johnson, Cort N [Albuquerque, NM

    2012-07-03

    An atomic magnetometer is disclosed which uses a pump light beam at a D1 or D2 transition of an alkali metal vapor to magnetically polarize the vapor in a heated cell, and a probe light beam at a different D2 or D1 transition to sense the magnetic field via a polarization rotation of the probe light beam. The pump and probe light beams are both directed along substantially the same optical path through an optical waveplate and through the heated cell to an optical filter which blocks the pump light beam while transmitting the probe light beam to one or more photodetectors which generate electrical signals to sense the magnetic field. The optical waveplate functions as a quarter waveplate to circularly polarize the pump light beam, and as a half waveplate to maintain the probe light beam linearly polarized.

  5. 碱锰电池用大功率无汞锌粉的雾化装置%Atomization device of high power mercury-free zinc powder for alkaline Zn/MnO2 battery

    Institute of Scientific and Technical Information of China (English)

    张健; 张杰

    2011-01-01

    设计了自由降落式喷嘴雾化装置,采用六孔啧料架,通过改进喷射孔间距、喷射角,降低雾化能耗,增加锌粉比表面积,提高碱锰电池的大功率性能.在0.8 MPa的气压下,获得粒径小于150μm的锌粉超过80%;不规则形态的锌粉比表面积达0.013 m2/g,体积平均粒径达141 μm.用该锌粉制备的LR6电池的1 500 mW、650 mW脉冲放电次数达130次.%A free fall nozzle atomization was designed. The device had a six hole ejection mechanism, by improving the ejection hole spacing and the ejection angle, the device decreased the atomization energy consumption,increased the specific surface area of the obtained zinc powder,which led to the improving of high power performance of the alkaline Zn/MnO2 battery.Over 80% of the zinc powder obtained at the pressure of 0.8 Mpa had a particle size less than 150 μm.The specific surface area of the zinc powder of irregular morphology reached to 0.013 m /g with an volume average particle size distribution of 141 μm.When pulse discharged with 1 500 mW,650 mW,the discharge times of LR6 battery produced by this zinc powder reached to 130.

  6. Heavy Exotic Molecules with Charm and Bottom

    CERN Document Server

    Liu, Yizhuang

    2016-01-01

    We revisit the formation of pion-mediated heavy-light exotic molecules with both charm and bottom and their chiral partners under the general strictures of both heavy-quark and chiral symmetry. The chiral exotic partners with good parity formed using the $(0^+, 1^+)$ multiplet are about twice more bound than their primary exotic partners formed using the $(0^-,1^-)$ multiplet. The chiral couplings across the multiplets $(0^\\pm, 1^\\pm)$ cause the chiral exotic partners to unbind, and the primary exotic molecules to be about twice more bound, for $J\\leq 1$. Our multi-channel coupling results show that only the charm isosinglet exotic molecules with $J^{PC}=1^{++}$ binds, which we identify as the reported neutral $X(3872)$. Also, the bottom isotriplet exotic with $J^{PC}=1^{+-}$ binds, which we identify as a mixture of the reported charged exotics $Z^+_b(10610)$ and $Z^+_b(10650)$. The bound isosinglet with $J^{PC}=1^{++}$ is suggested as a possible neutral $X_b(10532)$ not yet reported.

  7. Charmed bottom baryon spectroscopy from lattice QCD

    CERN Document Server

    Brown, Zachary S; Meinel, Stefan; Orginos, Kostas

    2014-01-01

    We calculate the masses of baryons containing one, two, or three heavy quarks using lattice QCD. We consider all possible combinations of charm and bottom quarks, and compute a total of 36 different states with $J^P = \\frac12^+$ and $J^P = \\frac32^+$. We use domain-wall fermions for the up, down, and strange quarks, a relativistic heavy-quark action for the charm quarks, and nonrelativistic QCD for the bottom quarks. Our analysis includes results from two different lattice spacings and seven different pion masses. We perform extrapolations of the baryon masses to the continuum limit and to the physical pion mass using $SU(4|2)$ heavy-hadron chiral perturbation theory including $1/m_Q$ and finite-volume effects. For the 14 singly heavy baryons that have already been observed, our results agree with the experimental values within the uncertainties. We compare our predictions for the hitherto unobserved states with other lattice calculations and quark-model studies.

  8. Long Wave Dynamics along a Convex Bottom

    CERN Document Server

    Didenkulova, Ira; Soomere, Tarmo

    2008-01-01

    Long linear wave transformation in the basin of varying depth is studied for a case of a convex bottom profile in the framework of one-dimensional shallow water equation. The existence of travelling wave solutions in this geometry and the uniqueness of this wave class is established through construction of a 1:1 transformation of the general 1D wave equation to the analogous wave equation with constant coefficients. The general solution of the Cauchy problem consists of two travelling waves propagating in opposite directions. It is found that generally a zone of a weak current is formed between these two waves. Waves are reflected from the coastline so that their profile is inverted with respect to the calm water surface. Long wave runup on a beach with this profile is studied for sine pulse, KdV soliton and N-wave. Shown is that in certain cases the runup height along the convex profile is considerably larger than for beaches with a linear slope. The analysis of wave reflection from the bottom containing a s...

  9. Heavy exotic molecules with charm and bottom

    Science.gov (United States)

    Liu, Yizhuang; Zahed, Ismail

    2016-11-01

    We revisit the formation of pion-mediated heavy-light exotic molecules with both charm and bottom and their chiral partners under the general strictures of both heavy-quark and chiral symmetry. The chiral exotic partners with good parity formed using the (0+ ,1+) multiplet are about twice more bound than their primary exotic partners formed using the (0- ,1-) multiplet. The chiral couplings across the multiplets (0± ,1±) cause the chiral exotic partners to unbind, and the primary exotic molecules to be about twice more bound, for J ≤ 1. Our multi-channel coupling results show that only the charm isosinglet exotic molecules with JPC =1++ bind, which we identify as the reported neutral X (3872). Also, the bottom isotriplet exotic with JPC =1+- binds, which we identify as a mixture of the reported charged exotics Zb+ (10610) and Zb+ (10650). The bound isosinglet with JPC =1++ is suggested as a possible neutral Xb (10532) not yet reported.

  10. Bottom-up holographic approach to QCD

    Energy Technology Data Exchange (ETDEWEB)

    Afonin, S. S. [V. A. Fock Department of Theoretical Physics, Saint Petersburg State University, 1 ul. Ulyanovskaya, 198504 (Russian Federation)

    2016-01-22

    One of the most known result of the string theory consists in the idea that some strongly coupled gauge theories may have a dual description in terms of a higher dimensional weakly coupled gravitational theory — the so-called AdS/CFT correspondence or gauge/gravity correspondence. The attempts to apply this idea to the real QCD are often referred to as “holographic QCD” or “AdS/QCD approach”. One of directions in this field is to start from the real QCD and guess a tentative dual higher dimensional weakly coupled field model following the principles of gauge/gravity correspondence. The ensuing phenomenology can be then developed and compared with experimental data and with various theoretical results. Such a bottom-up holographic approach turned out to be unexpectedly successful in many cases. In the given short review, the technical aspects of the bottom-up holographic approach to QCD are explained placing the main emphasis on the soft wall model.

  11. Bottom-up holographic approach to QCD

    Science.gov (United States)

    Afonin, S. S.

    2016-01-01

    One of the most known result of the string theory consists in the idea that some strongly coupled gauge theories may have a dual description in terms of a higher dimensional weakly coupled gravitational theory — the so-called AdS/CFT correspondence or gauge/gravity correspondence. The attempts to apply this idea to the real QCD are often referred to as "holographic QCD" or "AdS/QCD approach". One of directions in this field is to start from the real QCD and guess a tentative dual higher dimensional weakly coupled field model following the principles of gauge/gravity correspondence. The ensuing phenomenology can be then developed and compared with experimental data and with various theoretical results. Such a bottom-up holographic approach turned out to be unexpectedly successful in many cases. In the given short review, the technical aspects of the bottom-up holographic approach to QCD are explained placing the main emphasis on the soft wall model.

  12. High Atom Number in Microsized Atom Traps

    Science.gov (United States)

    2015-12-14

    Final Performance Report on ONR Grant N00014-12-1-0608 High atom number in microsized atom traps for the period 15 May 2012 through 14 September...TYPE Final Technical Report 3. DATES COVERED (From - To) 05/15/2012-09/14/2012 4. TITLE AND SUBTITLE High atom number in microsized atom traps...forces for implementing a small-footprint, large-number atom -chip instrument. Bichromatic forces rely on absorption and stimulated emission to produce

  13. Impact of tidal mixing with different scales of bottom roughness on the general circulation in the ocean model MPIOM

    Science.gov (United States)

    Exarchou, E.; Von Storch, J.-S.; Jungclaus, J.

    2012-04-01

    We implement a tidal mixing scheme that parameterizes diapycnal diffusivity depending on the location of energy dissipation over rough topography in the ocean general circulation model MPIOM. The tidal mixing scheme requires a bottom roughness map that can be calculated depending on the scales of topographic features one wants to focus on. Here, we examine the sensitivity of the modeled circulations to different spatial scales of the modeled bottom roughness. We compare three simulations that include the tidal mixing scheme using bottom roughness calculated at three different spatial scales, ranging from 15 to 200 km. We find that with decreasing spatial scales at which roughness is calculated, the roughness values increase in the deep ocean and decrease in coastal or shallow regions. The diffusivities produced by the three experiments, therefore, have not only different spatial structures but different vertical structures as well, with stronger bottom diffusivities for smaller scales of roughness. The lower limb of the Atlantic overturning and the bottom water transport in the Pacific Ocean are stronger for stronger bottom diffusivities, suggesting a 1/2 power law scaling between overturning strength and diffusivity. Such a relation does not hold for the upper limb of the Atlantic. All tidal simulations significantly increase the Indo-Pacific bottom water transport, improving the model solution in the Indo-Pacific Ocean.

  14. Ocean Bottom Seismograph Performance during the Cascadia Initiative

    Science.gov (United States)

    Aderhold, K.; Evers, B.

    2015-12-01

    The Ocean Bottom Seismograph Instrument Pool (OBSIP) provides instrumentation and operations support for the Cascadia Initiative community experiment. This experiment investigates geophysical processes across the Cascadia subduction zone through a combination of onshore and offshore seismic data. The recovery of Year 4 instruments in September 2015 marks the conclusion of a multi-year experiment that utilized 60 ocean-bottom seismographs (OBSs) specifically designed for the subduction zone boundary, including shallow/deep water deployments and active fisheries. The new instruments feature trawl-resistant enclosures designed by Lamont-Doherty Earth Observatory (LDEO) and Scripps Institution of Oceanography (SIO) for shallow deployment [water depth ≤ 500 m], as well as new deep-water instruments designed by Woods Hole Oceanographic Institute (WHOI). Existing OBSIP instruments were also deployed along the Blanco Transform Fault and on the Gorda Plate through complementary experiments. Stations include differential pressure gauges (DPG) and absolute pressure gauges (APG). All data collected from the Cascadia, Blanco, and Gorda deployments will be freely available through the Incorporated Research Institutions for Seismology (IRIS) Data Management Center (DMC). The Cascadia Initiative is the largest amphibious seismic experiment undertaken to date and demonstrates an effective structure for community experiments through collaborative efforts from the Cascadia Initiative Expedition Team (CIET), OBSIP (institutional instrument contributors [LDEO, SIO, WHOI] and Management Office [IRIS]), and the IRIS DMC. The successes and lessons from Cascadia are a vital resource for the development of a Subduction Zone Observatory (SZO). To guide future efforts, we investigate the quality of the Cascadia OBS data using basic metrics such as instrument recovery and more advanced metrics such as noise characteristics through power spectral density analysis. We also use this broad and

  15. Giant atom smasher on hunt for "Sparticles"

    CERN Multimedia

    Moskowitz, Clara

    2008-01-01

    "Squarks, photinos, selectrons, neutralinos: these are just a few types of supersymmetrice particles, a special brand of particle that may be created when the world's most powerful atom smasher goes online this spring." (1 page)

  16. Burlington Bottoms Wildlife Mitigation Project. Final Environmental Assessment/Management Plan and Finding of No Significant Impact.

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-01

    Bonneville Power Administration (BPA) proposes to fund wildlife management and enhancement activities for the Burlington bottoms wetlands mitigation site. Acquired by BPA in 1991, wildlife habitat at Burlington bottoms would contribute toward the goal of mitigation for wildlife losses and inundation of wildlife habitat due to the construction of Federal dams in the lower Columbia and Willamette River Basins. Target wildlife species identified for mitigation purposes are yellow warbler, great blue heron, black-capped chickadee, red-tailed hawk, valley quail, spotted sandpiper, wood duck, and beaver. The Draft Management Plan/Environmental Assessment (EA) describes alternatives for managing the Burlington Bottoms area, and evaluates the potential environmental impacts of the alternatives. Included in the Draft Management Plan/EA is an implementation schedule, and a monitoring and evaluation program, both of which are subject to further review pending determination of final ownership of the Burlington Bottoms property.

  17. The effects of 118 years of industrial fishing on UK bottom trawl fisheries.

    Science.gov (United States)

    Thurstan, Ruth H; Brockington, Simon; Roberts, Callum M

    2010-05-04

    In 2009, the European Commission estimated that 88% of monitored marine fish stocks were overfished, on the basis of data that go back 20 to 40 years and depending on the species investigated. However, commercial sea fishing goes back centuries, calling into question the validity of management conclusions drawn from recent data. We compiled statistics of annual demersal fish landings from bottom trawl catches landing in England and Wales dating back to 1889, using previously neglected UK Government data. We then corrected the figures for increases in fishing power over time and a recent shift in the proportion of fish landed abroad to estimate the change in landings per unit of fishing power (LPUP), a measure of the commercial productivity of fisheries. LPUP reduced by 94%-17-fold--over the past 118 years. This implies an extraordinary decline in the availability of bottom-living fish and a profound reorganization of seabed ecosystems since the nineteenth century industrialization of fishing.

  18. Conductivity Probe after Trench-Bottom Placement

    Science.gov (United States)

    2008-01-01

    Needles of the thermal and conductivity probe on NASA's Phoenix Mars Lander were positioned into the bottom of a trench called 'Upper Cupboard' during Sol 86 (Aug. 21, 2008), or 86th Martian day after landing. This image of the conductivity probe after it was raised back out of the trench was taken by Phoenix's Robotic Arm Camera. The conductivity probe is at the wrist of the robotic arm's scoop. The probe measures how fast heat and electricity move from one needle to an adjacent one through the soil or air between the needles. Conductivity readings can be indicators about water vapor, water ice and liquid water. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  19. Bottom-up synthesis of ordered metal/oxide/metal nanodots on substrates for nanoscale resistive switching memory

    Science.gov (United States)

    Han, Un-Bin; Lee, Jang-Sik

    2016-01-01

    The bottom-up approach using self-assembled materials/processes is thought to be a promising solution for next-generation device fabrication, but it is often found to be not feasible for use in real device fabrication. Here, we report a feasible and versatile way to fabricate high-density, nanoscale memory devices by direct bottom-up filling of memory elements. An ordered array of metal/oxide/metal (copper/copper oxide/copper) nanodots was synthesized with a uniform size and thickness defined by self-organized nanotemplate mask by sequential electrochemical deposition (ECD) of each layer. The fabricated memory devices showed bipolar resistive switching behaviors confirmed by conductive atomic force microscopy. This study demonstrates that ECD with bottom-up growth has great potential to fabricate high-density nanoelectronic devices beyond the scaling limit of top-down device fabrication processes. PMID:27157385

  20. The atomic orbitals of the topological atom.

    Science.gov (United States)

    Ramos-Cordoba, Eloy; Salvador, Pedro; Mayer, István

    2013-06-07

    The effective atomic orbitals have been realized in the framework of Bader's atoms in molecules theory for a general wavefunction. This formalism can be used to retrieve from any type of calculation a proper set of orthonormalized numerical atomic orbitals, with occupation numbers that sum up to the respective Quantum Theory of Atoms in Molecules (QTAIM) atomic populations. Experience shows that only a limited number of effective atomic orbitals exhibit significant occupation numbers. These correspond to atomic hybrids that closely resemble the core and valence shells of the atom. The occupation numbers of the remaining effective orbitals are almost negligible, except for atoms with hypervalent character. In addition, the molecular orbitals of a calculation can be exactly expressed as a linear combination of this orthonormalized set of numerical atomic orbitals, and the Mulliken population analysis carried out on this basis set exactly reproduces the original QTAIM atomic populations of the atoms. Approximate expansion of the molecular orbitals over a much reduced set of orthogonal atomic basis functions can also be accomplished to a very good accuracy with a singular value decomposition procedure.

  1. "Bohr's Atomic Model."

    Science.gov (United States)

    Willden, Jeff

    2001-01-01

    "Bohr's Atomic Model" is a small interactive multimedia program that introduces the viewer to a simplified model of the atom. This interactive simulation lets students build an atom using an atomic construction set. The underlying design methodology for "Bohr's Atomic Model" is model-centered instruction, which means the central model of the…

  2. Phase modulated solitary waves controlled by bottom boundary condition

    CERN Document Server

    Mukherjee, Abhik

    2014-01-01

    A forced KdV equation is derived to describe weakly nonlinear, shallow water surface wave propagation over non trivial bottom boundary condition. We show that different functional forms of bottom boundary conditions self-consistently produce different forced kdV equations as the evolution equations for the free surface. Solitary wave solutions have been analytically obtained where phase gets modulated controlled by bottom boundary condition whereas amplitude remains constant.

  3. Elastic Bottom Propagation Mechanisms Investigated by Parabolic Equation Methods

    Science.gov (United States)

    2014-09-30

    environments in the form of scattering at an elastic interface, oceanic T - waves , and Scholte waves . OBJECTIVES To implement explosive and earthquake...of the the deep ocean where there is no significant sloping bottom. It is believed that ocean bottom roughness scatters the elastic waves up into...Scholte interface waves are excited by seismic sources and have been observed by seismometers at the ocean bottom.[12, 13] Energy from interface waves has

  4. Transient Temperature Analysis for Industrial AC Arc Furnace Bottom

    Institute of Scientific and Technical Information of China (English)

    (U)nal (C)amdal1; Murat Tun(c)

    2004-01-01

    Heat losses from the furnaces depend on the design and size. The surface heat loss from the bottom of an industrial AC electric arc furnace (EAF) possesses an important fraction of overall losses. So in this study the transient temperature variation at the bottom of the EAF was investigated. The transient temperature analysis was carried out using MATLAB computer program. T=T(r, t) for different bottom lining layers was depicted.

  5. Method of coupled mode for long-range bottom reverberation

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The theory of coupled mode is used for modeling the long-range bottom reverberation in shallow water caused by bottom roughness. The distant bottom reverberation level and spatial coherence of impulsive source are both derived. The results agree with those from the classical reverberation model, and are compared with the experimental data. The influence of source bandwidth and the distance between sources and receivers on the intensity of bottom reverberation are particularly discussed. The method is shown to be available for both the monoand the bi-static cases.

  6. Plutonium isotopes concentration in seawater and bottom sediment off the Pacific coast of Aomori sea area during 1991-2005.

    Science.gov (United States)

    Oikawa, Shinji; Watabe, Teruhisa; Inatomi, Naohiko; Isoyama, Naohiko; Misonoo, Jun; Suzuki, Chiyoshi; Nakahara, Motokazu; Nakamura, Ryoichi; Morizono, Shigemitsu; Fujii, Seiji; Hara, Takeya; Kido, Katsutoshi

    2011-03-01

    A radioactivity survey was launched in 1991 to determine the background levels of ²³⁹+²⁴⁰Pu in the marine environment off a commercial spent nuclear fuel reprocessing plant before full operation of the facility. Particular attention was focused on the ²⁴⁰Pu/²³⁹Pu atom ratio in seawater and bottom sediment to identify the origins of Pu isotopes. The concentration of ²³⁹+²⁴⁰Pu was almost uniform in surface water, decreasing slowly over time. Conversely, the ²³⁹+²⁴⁰Pu concentration varied markedly in the bottom water and was dependent upon the sampling point, with higher concentrations of ²³⁹+²⁴⁰Pu observed in the bottom water sample at sampling points having greater depth. The ²⁴⁰Pu/²³⁹Pu atom ratio in the seawater and sediment samples was higher than that of global fallout Pu, and comparable with the data in the other sea area around Japan which has likely been affected by close-in fallout Pu originating from the Pacific Proving Grounds. The ²⁴⁰Pu/²³⁹Pu atom ratio in bottom sediment samples decreased with sea depth. The land-originated Pu is not considered as the reason of the increasing ²³⁹+²⁴⁰Pu concentration and also decreasing the ²⁴⁰Pu/²³⁹Pu atom ratio with sea depth, and further study is required to clarify it.

  7. Measurements of direct CP violating asymmetries in charmless decays of strange bottom mesons and bottom baryons.

    Science.gov (United States)

    Aaltonen, T; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Apresyan, A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Auerbach, B; Aurisano, A; Azfar, F; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauce, M; Bauer, G; Bedeschi, F; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Bland, K R; Blumenfeld, B; Bocci, A; Bodek, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Brisuda, A; Bromberg, C; Brucken, E; Bucciantonio, M; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Calancha, C; Camarda, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Chung, W H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A; Compostella, G; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Dagenhart, D; d'Ascenzo, N; Datta, M; de Barbaro, P; De Cecco, S; De Lorenzo, G; Dell'orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; Devoto, F; d'Errico, M; Di Canto, A; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Dorigo, M; Dorigo, T; Ebina, K; Elagin, A; Eppig, A; Erbacher, R; Errede, D; Errede, S; Ershaidat, N; Eusebi, R; Fang, H C; Farrington, S; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Funakoshi, Y; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garfinkel, A F; Garosi, P; Gerberich, H; Gerchtein, E; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Ginsburg, C M; Giokaris, N; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldin, D; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Group, R C; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, S R; Halkiadakis, E; Hamaguchi, A; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harr, R F; Hatakeyama, K; Hays, C; Heck, M; Heinrich, J; Herndon, M; Hewamanage, S; Hidas, D; Hocker, A; Hopkins, W; Horn, D; Hou, S; Hughes, R E; Hurwitz, M; Husemann, U; Hussain, N; Hussein, M; Huston, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kamon, T; Karchin, P E; Kato, Y; Ketchum, W; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, H W; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirby, M; Klimenko, S; Kondo, K; Kong, D J; Konigsberg, J; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kuhr, T; Kurata, M; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, E; Lee, H S; Lee, J S; Lee, S W; Leo, S; Leone, S; Lewis, J D; Lin, C-J; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, Q; Liu, T; Lockwitz, S; Lockyer, N S; Loginov, A; Lucchesi, D; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; Madrak, R; Maeshima, K; Makhoul, K; Maksimovic, P; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Martínez, M; Martínez-Ballarín, R; Mastrandrea, P; Mathis, M; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Mesropian, C; Miao, T; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Mondragon, M N; Moon, C S; Moore, R; Morello, M J; Morlock, J; Movilla Fernandez, P; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakano, I; Napier, A; Nett, J; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Ortolan, L; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Paramonov, A A; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pondrom, L; Potamianos, K; Poukhov, O; Prokoshin, F; Pronko, A; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Renton, P; Rescigno, M; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rubbo, F; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Safonov, A; Sakumoto, W K; Sakurai, Y; Santi, L; Sartori, L; Sato, K; Saveliev, V; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M P; Schmitt, M

    2011-05-06

    We report measurements of direct CP-violating asymmetries in charmless decays of neutral bottom hadrons to pairs of charged hadrons with the upgraded Collider Detector at the Fermilab Tevatron. Using a data sample corresponding to 1 fb(-1) of integrated luminosity, we obtain the first measurements of direct CP violation in bottom strange mesons, A(CP)(B(s)(0)→K(-)π(+))=+0.39±0.15(stat)±0.08(syst), and bottom baryons, A(CP)(Λ(b)(0)→pπ(-))=+0.03±0.17(stat)±0.05(syst) and A(CP)(Λ(b)(0)→pK(-))=+0.37±0.17(stat)±0.03(syst). In addition, we measure CP violation in B(0)→K(+)π(-) decays with 3.5σ significance, A(CP)(B(0)→K(+)π(-))=-0.086±0.023(stat)±0.009(syst), in agreement with the current world average. Measurements of branching fractions of B(s)(0)→K(+)K(-) and B(0)→π(+)π(-) decays are also updated.

  8. The Properties of Special Concrete Using Washed Bottom Ash (WBA as Partial Sand Replacement

    Directory of Open Access Journals (Sweden)

    Mohd Syahrul Hisyam Mohd Sani

    2011-07-01

    Full Text Available This paper presents the use of Washed Bottom Ash (WBA as fine aggregate in special concrete. The WBA is a waste material that is taken from electric power plant and the source material is called as bottom ash. To substitute the amount of carbon usage in concrete the bottom ash was utilized and fully submerged in water for 3 days to produce as WBA with low carbon composition. The aim of the study is to investigate the feasibility and potential use of washed bottom ash in concreting and concrete applications. The results of the physical and chemical properties of WBA were discussed. Different concrete mixes with constant water to cement ratio of 0.55 were prepared with WBA in different proportions as well as one control mixed proportion. The mechanical properties of special concrete with 30% WBA replacement by weight of natural sand is found to be an optimum usage in concrete in order to get a favourable strength and good strength development pattern over the increment ages.

  9. Leaching kinetics of bottom ash waste as a source of calcium ions.

    Science.gov (United States)

    Koech, Lawrence; Everson, Ray; Neomagus, Hein; Rutto, Hilary

    2015-02-01

    Bottom ash is a waste material from coal-fired power plants, and it is known to contain elements that are potentially toxic at high concentration levels when disposed in landfills. This study investigates the use of bottom ash as a partial substitute sorbent for wet flue gas desulfurization (FGD) processes by focusing on its leaching kinetics in adipic acid. This was studied basing on the shrinking core model that was applied to the experimental data obtained by the authors presented at the International Conference on Industrial, Manufacturing, Automation and Mechanical Engineering, Johannesburg, South Africa, November 27-28, 2013) on dissolution of bottom ash. The leaching rate constant was obtained from different reaction variables, namely, temperature, pH, acid concentration, and solid-to-liquid ratio, that could affect the leaching process. The solid sample of bottom ash was characterized at different leaching periods using X-ray diffraction (XRD) and scanning electron microscopy (SEM). It was found that solid-to-liquid ratio had a significant effect on the leaching rate constant when compared with other variables. The leaching kinetics showed that diffusion through the product layer was the rate-controlling step during leaching, and the activation energy for the process was found to be 18.92 kJ/mol.

  10. Atomic phase diagram

    Institute of Scientific and Technical Information of China (English)

    LI Shichun

    2004-01-01

    Based on the Thomas-Fermi-Dirac-Cheng model, atomic phase diagram or electron density versus atomic radius diagram describing the interaction properties of atoms of different kinds in equilibrium state is developed. Atomic phase diagram is established based on the two-atoms model. Besides atomic radius, electron density and continuity condition for electron density on interfaces between atoms, the lever law of atomic phase diagram involving other physical parameters is taken into account, such as the binding energy, for the sake of simplicity.

  11. How Service Innovation Boosts Bottom Lines

    Directory of Open Access Journals (Sweden)

    Claude Legrand

    2013-09-01

    Full Text Available In the national quest for ground-breaking R&D discoveries and inventions, service innovation is frequently ignored at considerable cost to an organization’s bottom line and a nation’s productivity. For the fact is that innovation applied systematically to all activities outside of R&D can make the difference between uninspiring results and substantial growth in every sector. Many countries, in particular in Europe, have recognized the importance of service innovation and are devoting considerable resources to research, the capture of best practices, and the measurement of progress and success. Given the physiognomy of the modern economy, it does not make sense for leaders in the Canadian public sector to devote all available innovation investment dollars to science and technology R&D. This article explores why service innovation is not yet a priority on the innovation agenda in Canada and why we should correct the dangerous misconception that there is just one “innovation gap” that needs to be addressed. It provides practical recommendations that public and private sector leaders can use to take advantage of this under-valued, high-potential innovation opportunity and calls for the creation of a national service innovation resource to support enterprises of all sizes as a means to improve Canadian productivity.

  12. Predictions for masses of bottom baryons

    CERN Document Server

    Karliner, Marek; Lipkin, Harry J; Rosner, Jonathan L

    2007-01-01

    The recent observation of Sigma_b^{+-} (uub and ddb) and Xi_b^- (dsb) baryons at the Tevatron within 2 MeV of our theoretical predictions provides a strong motivation for applying the same theoretical approach, based on modeling the color hyperfine interaction, to predict the masses of other bottom baryons which might be observed in the foreseeable future. For S-wave qqb states we predict M(Omega_b) = 6052.1+-5.6 MeV, M(Omega^*_b) = 6082.8+-5.6 MeV, and M(Xi_b^0) = 5786.7 +- 3.0 MeV. For states with one unit of orbital angular momentum between the b quark and the two light quarks we predict M(Lambda_{b[1/2]}) = 5929+-2 MeV, M(Lambda_{b[3/2]}) = 5940+-2 MeV, M(Xi_{b[1/2]}) = 6106+-4 MeV, and M(Xi_{b[3/2]}) = 6115+-4 MeV.

  13. To the Bottom of the Sbottom

    CERN Document Server

    Han, Tao; Wu, Yongcheng; Zhang, Bin; Zhang, Huanian

    2015-01-01

    In the search for bottom squark (sbottom) in SUSY at the LHC, the common practice has been to assume a $100\\%$ decay branching fraction for a given search channel. In realistic MSSM scenarios, there are often more than one significant decay modes to be present, which significantly weaken the current sbottom search limits at the LHC. On the other hand, the combination of the multiple decay modes offers alternative discovery channels for sbottom searches. In this paper, we present the sbottom decays in a few representative mass parameter scenarios. We then analyze the sbottom signal for the pair production in QCD with one sbottom decaying via $\\tilde{b}\\rightarrow b \\chi_1^0,\\ b \\chi_2^0$, and the other one decaying via $\\tilde{b} \\rightarrow t \\chi_1^\\pm$. With the gaugino subsequent decaying to gauge bosons or a Higgs boson $\\chi_2^0 \\rightarrow Z \\chi_1^0,\\ h \\chi_1^0$ and $\\chi_1^\\pm \\rightarrow W^\\pm \\chi_1^0$, we study the reach of those signals at the 14 TeV LHC with 300 ${\\rm fb^{-1}}$ integrated lumino...

  14. Let us learn nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Wan Sang

    2006-08-15

    This book teach us nuclear power through nine chapters with recommendation and a prolog. The contents of this book are how did Formi become a scientist? what does atom look like? discover of neutron, what is an isotope?, power in the nuclear, various radiation, artificial nuclear transformation, nuclear fission and clinging atomic nucleus. It also has an appendix on SF story ; an atom bomb war. It explains basic nuclear physic in easy way with pictures.

  15. Ex Vacuo Atom Chip Bose-Einstein Condensate (BEC)

    CERN Document Server

    Squires, Matthew B; Kasch, Brian; Stickney, James A; Erickson, Christopher J; Crow, Jonathan A R; Carlson, Evan J; Burke, John H

    2016-01-01

    Ex vacuo atom chips, used in conjunction with a custom thin walled vacuum chamber, have enabled the rapid replacement of atom chips for magnetically trapped cold atom experiments. Atoms were trapped in $>2$ kHz magnetic traps created using high power atom chips. The thin walled vacuum chamber allowed the atoms to be trapped $\\lesssim1$ mm from the atom chip conductors which were located outside of the vacuum system. Placing the atom chip outside of the vacuum simplified the electrical connections and improved thermal management. Using a multi-lead Z-wire chip design, a Bose-Einstein condensate was produced with an external atom chip. Vacuum and optical conditions were maintained while replacing the Z-wire chip with a newly designed cross-wire chip. The atom chips were exchanged and an initial magnetic trap was achieved in less than three hours.

  16. A top-bottom price approach to understanding financial fluctuations

    Science.gov (United States)

    Rivera-Castro, Miguel A.; Miranda, José G. V.; Borges, Ernesto P.; Cajueiro, Daniel O.; Andrade, Roberto F. S.

    2012-02-01

    The presence of sequences of top and bottom (TB) events in financial series is investigated for the purpose of characterizing such switching points. They clearly mark a change in the trend of rising or falling prices of assets to the opposite tendency, are of crucial importance for the players' decision and also for the market stability. Previous attempts to characterize switching points have been based on the behavior of the volatility and on the definition of microtrends. The approach used herein is based on the smoothing of the original data with a Gaussian kernel. The events are identified by the magnitude of the difference of the extreme prices, by the time lag between the corresponding events (waiting time), and by the time interval between events with a minimal magnitude (return time). Results from the analysis of the inter day Dow Jones Industrial Average index (DJIA) from 1928 to 2011 are discussed. q-Gaussian functions with power law tails are found to provide a very accurate description of a class of measures obtained from the series statistics.

  17. Numerical simulation of scouring funnel in front of bottom orifice

    Institute of Scientific and Technical Information of China (English)

    XUE Wan-yun; HUAI Wen-xin; Li Zhi-wei; Zeng Yu-hong; QIAN Zhong-dong; Yang Zhong-hua

    2013-01-01

    The scouring funnel in from of a bottom orifice under the condition of fixed water levels is simulated by using an Eulerian two-phase model,with onsideration of the flow-particle and particle-particle interactions.The predictions of the scouting funnel shape agree well with laboratory measurements.The flow-field characteristics of the two phases and the influences of the hydraulic and geometric parameters on the shape of the scouring funnel are analyzed on the basis of the computation results.It is revealed that the non-dimensional maximum scour hole parameters,the depth dm / do,the length lm / do,and the half-width wm / do,are linear with the densimetric Froude number Fro,the main parameter describing the scour hole,the centerline scour depth Dc and the half-scour width Wr vary according to a power law,and the transverse scour profiles exhibit strong similarities,the velocity distribution of the water is confined within the sink-like area near the orifice,and the mutual impact of the flows at the azimuthal sections and the resistances of the walls and the sand layer produce a vortex in the scour hole,that makes the sand particles to be suspended in the water,the exchanging water in the pore water is the main contributor in forcing the sand to move,and transporting the sand in the same direction as the pore water along azimuthal sections.

  18. Light Quark Mass Effects in Bottom Quark Mass Determinations

    OpenAIRE

    Hoang, A. H.

    2001-01-01

    Recent results for charm quark mass effects in perturbative bottom quark mass determinations from $\\Upsilon$ mesons are reviewed. The connection between the behavior of light quark mass corrections and the infrared sensitivity of some bottom quark mass definitions is examined in some detail.

  19. Internal wave-turbulence pressure above sloping sea bottoms

    NARCIS (Netherlands)

    van Haren, H.

    2011-01-01

    An accurate bottom pressure sensor has been moored at different sites varying from a shallow sea strait via open ocean guyots to a 1900 m deep Gulf of Mexico. All sites show more or less sloping bottom topography. Focusing on frequencies (sigma) higher than tidal, the pressure records are remarkably

  20. Automated Urban Travel Interpretation: A Bottom-up Approach for Trajectory Segmentation.

    Science.gov (United States)

    Das, Rahul Deb; Winter, Stephan

    2016-11-23

    Understanding travel behavior is critical for an effective urban planning as well as for enabling various context-aware service provisions to support mobility as a service (MaaS). Both applications rely on the sensor traces generated by travellers' smartphones. These traces can be used to interpret travel modes, both for generating automated travel diaries as well as for real-time travel mode detection. Current approaches segment a trajectory by certain criteria, e.g., drop in speed. However, these criteria are heuristic, and, thus, existing approaches are subjective and involve significant vagueness and uncertainty in activity transitions in space and time. Also, segmentation approaches are not suited for real time interpretation of open-ended segments, and cannot cope with the frequent gaps in the location traces. In order to address all these challenges a novel, state based bottom-up approach is proposed. This approach assumes a fixed atomic segment of a homogeneous state, instead of an event-based segment, and a progressive iteration until a new state is found. The research investigates how an atomic state-based approach can be developed in such a way that can work in real time, near-real time and offline mode and in different environmental conditions with their varying quality of sensor traces. The results show the proposed bottom-up model outperforms the existing event-based segmentation models in terms of adaptivity, flexibility, accuracy and richness in information delivery pertinent to automated travel behavior interpretation.

  1. Dielectric barrier discharge plasma atomizer for hydride generation atomic absorption spectrometry—Performance evaluation for selenium

    Energy Technology Data Exchange (ETDEWEB)

    Duben, Ondřej [Institute of Analytical Chemistry of the CAS, v.v.i., Veveří 97, CZ-602 00 Brno (Czech Republic); Faculty of Science, Department of Analytical Chemistry, Charles University in Prague, Hlavova 8, Prague, CZ 128 43 Czech Republic (Czech Republic); Boušek, Jaroslav [Faculty of Electrical Engineering and Communications, Brno University of Technology, Technická 1058/10, 61600 Brno (Czech Republic); Dědina, Jiří [Institute of Analytical Chemistry of the CAS, v.v.i., Veveří 97, CZ-602 00 Brno (Czech Republic); Kratzer, Jan, E-mail: jkratzer@biomed.cas.cz [Institute of Analytical Chemistry of the CAS, v.v.i., Veveří 97, CZ-602 00 Brno (Czech Republic)

    2015-09-01

    Atomization of selenium hydride in a quartz dielectric barrier discharge (DBD) atomizer was optimized and its performance was compared to that of the externally heated quartz multiatomizer. Argon was found as the best DBD discharge gas employing a flow rate of 75 ml min{sup −1} Ar while the DBD power was optimized at 14 W. The detection limits reached 0.24 ng ml{sup −1} Se in the DBD and 0.15 ng ml{sup −1} Se in the multiatomizer. The tolerance of DBD to interferences is even better than with the multiatomizer. - Highlights: • SeH{sub 2} atomization in a dielectric barrier discharge (DBD) was optimized for AAS. • Atomizer performance was compared for DBD and externally heated quartz atomizer. • Detection limits were quantified and interferences were studied in both atomizers. • Atomization efficiency in the DBD was estimated.

  2. Renormalization group improved bottom mass from {Upsilon} sum rules at NNLL order

    Energy Technology Data Exchange (ETDEWEB)

    Hoang, Andre H.; Stahlhofen, Maximilian [Wien Univ. (Austria). Fakultaet fuer Physik; Ruiz-Femenia, Pedro [Wien Univ. (Austria). Fakultaet fuer Physik; Valencia Univ. - CSIC (Spain). IFIC

    2012-09-15

    We determine the bottom quark mass from non-relativistic large-n {Upsilon} sum rules with renormalization group improvement at next-to-next-to-leading logarithmic order. We compute the theoretical moments within the vNRQCD formalism and account for the summation of powers of the Coulomb singularities as well as of logarithmic terms proportional to powers of {alpha}{sub s} ln(n). The renormalization group improvement leads to a substantial stabilization of the theoretical moments compared to previous fixed-order analyses, which did not account for the systematic treatment of the logarithmic {alpha}{sub s} ln(n) terms, and allows for reliable single moment fits. For the current world average of the strong coupling ({alpha}{sub s}(M{sub Z})=0.1183{+-}0.0010) we obtain M{sub b}{sup 1S}=4.755{+-}0.057{sub pert} {+-}0.009{sub {alpha}{sub s}}{+-}0.003{sub exp} GeV for the bottom 1S mass and anti m{sub b}(anti m{sub b})=4.235{+-}0.055{sub pert}{+-}0.003{sub exp} GeV for the bottom MS mass, where we have quoted the perturbative error and the uncertainties from the strong coupling and the experimental data.

  3. Bottom-feeding for blockbuster businesses.

    Science.gov (United States)

    Rosenblum, David; Tomlinson, Doug; Scott, Larry

    2003-03-01

    Marketing experts tell companies to analyze their customer portfolios and weed out buyer segments that don't generate attractive returns. Loyalty experts stress the need to aim retention programs at "good" customers--profitable ones- and encourage the "bad" ones to buy from competitors. And customer-relationship-management software provides ever more sophisticated ways to identify and eliminate poorly performing customers. On the surface, the movement to banish unprofitable customers seems reasonable. But writing off a customer relationship simply because it is currently unprofitable is at best rash and at worst counterproductive. Executives shouldn't be asking themselves, How can we shun unprofitable customers? They need to ask, How can we make money off the customers that everyone else is shunning? When you look at apparently unattractive segments through this lens, you often see opportunities to serve those segments in ways that fundamentally change customer economics. Consider Paychex, a payroll-processing company that built a nearly billion-dollar business by serving small companies. Established players had ignored these customers on the assumption that small companies couldn't afford the service. When founder Tom Golisano couldn't convince his bosses at Electronic Accounting Systems that they were missing a major opportunity, he started a company that now serves 390,000 U.S. customers, each employing around 14 people. In this article, the authors look closely at bottom-feeders--companies that assessed the needs of supposedly unattractive customers and redesigned their business models to turn a profit by fulfilling those needs. And they offer lessons other executives can use to do the same.

  4. Efficient transfer of francium atoms

    Science.gov (United States)

    Aubin, Seth; Behr, John; Gorelov, Alexander; Pearson, Matt; Tandecki, Michael; Collister, Robert; Gwinner, Gerald; Shiells, Kyle; Gomez, Eduardo; Orozco, Luis; Zhang, Jiehang; Zhao, Yanting; FrPNC Collaboration

    2016-05-01

    We report on the progress of the FrPNC collaboration towards Parity Non Conservation Measurements (PNC) using francium atoms at the TRIUMF accelerator. We demonstrate efficient transfer (higher than 40%) to the science vacuum chamber where the PNC measurements will be performed. The transfer uses a downward resonant push beam from the high-efficiency capture magneto optical trap (MOT) towards the science chamber where the atoms are recaptured in a second MOT. The transfer is very robust with respect to variations in the parameters (laser power, detuning, alignment, etc.). We accumulate a growing number of atoms at each transfer pulse (limited by the lifetime of the MOT) since the push beam does not eliminate the atoms already trapped in the science MOT. The number of atoms in the science MOT is on track to meet the requirements for competitive PNC measurements when high francium rates (previously demonstrated) are delivered to our apparatus. The catcher/neutralizer for the ion beam has been tested reliably to 100,000 heating/motion cycles. We present initial tests on the direct microwave excitation of the ground hyperfine transition at 45 GHz. Support from NSERC and NRC from Canada, NSF and Fulbright from USA, and CONACYT from Mexico.

  5. Fold optics path: an improvement for an atomic fountain

    Institute of Scientific and Technical Information of China (English)

    Wei Rong; Zhou Zi-Chao; Shi Chun-Yan; Zhao Jian-Bo; Li Tang; Wang Yu-zhu

    2011-01-01

    A fold optical path is utilized to capture and launch atoms in the atomic fountain.This improved technique reduces the laser power needed by 60 percent,facilitates suppression of the laser power fluctuations,and leads to a more simple and stable system.

  6. Coherent Backscattering of Light Off One-Dimensional Atomic Strings

    Science.gov (United States)

    Sørensen, H. L.; Béguin, J.-B.; Kluge, K. W.; Iakoupov, I.; Sørensen, A. S.; Müller, J. H.; Polzik, E. S.; Appel, J.

    2016-09-01

    We present the first experimental realization of coherent Bragg scattering off a one-dimensional system—two strings of atoms strongly coupled to a single photonic mode—realized by trapping atoms in the evanescent field of a tapered optical fiber, which also guides the probe light. We report nearly 12% power reflection from strings containing only about 1000 cesium atoms, an enhancement of 2 orders of magnitude compared to reflection from randomly positioned atoms. This result paves the road towards collective strong coupling in 1D atom-photon systems. Our approach also allows for a straightforward fiber connection between several distant 1D atomic crystals.

  7. Atom Lithography with a Chromium Atomic Beam

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wen-Tao; LI Tong-Bao

    2006-01-01

    @@ Direct write atom lithography is a new technique in which resonant light is used to pattern an atomic beam and the nanostructures are formed when the atoms deposit on the substrate. We design an experiment setup to fabricate chromium nanolines by depositing an atomic beam of 52 Cr through an off-resonant laser standing wave with the wavelength of 425.55 nm onto a silicon substrate. The resulting nanolines exhibit a period of 215 ± 3 nm with height of 1 nm.

  8. The bottom line on hydro development

    Energy Technology Data Exchange (ETDEWEB)

    Sahai, I.M.

    2000-08-01

    The financial investment behind some of India's current hydro projects is summarised. The three institutions financing the Indian hydro sector are: Power Finance Corporation (PFC), Rural Electrification Corporation (REC) and the Indian Renewable Energy Development Agency (IREDA). The terms of reference of each of the organisations, together with the role of the State Bank of India, have recently been rationalised (by the Federal Ministry of Power) and they are discussed. Both the federal and state governments offer the hydro industry support in the form of equity and soft loans. The scope for private participation and equity (available since 1991) are discussed. Although financial consultants have worked at making easier the financing of hydro in India, they have achieved only mixed results.

  9. Ocean bottom seismometer: design and test of a measurement system for marine seismology.

    Science.gov (United States)

    Mànuel, Antoni; Roset, Xavier; Del Rio, Joaquin; Toma, Daniel Mihai; Carreras, Normandino; Panahi, Shahram Shariat; Garcia-Benadí, A; Owen, Tim; Cadena, Javier

    2012-01-01

    The Ocean Bottom Seismometer (OBS) is a key instrument for the geophysical study of sea sub-bottom layers. At present, more reliable autonomous instruments capable of recording underwater for long periods of time and therefore handling large data storage are needed. This paper presents a new Ocean Bottom Seismometer designed to be used in long duration seismic surveys. Power consumption and noise level of the acquisition system are the key points to optimize the autonomy and the data quality. To achieve our goals, a new low power data logger with high resolution and Signal-to-Noise Ratio (SNR) based on Compact Flash memory card is designed to enable continuous data acquisition. The equipment represents the achievement of joint work from different scientific and technological disciplines as electronics, mechanics, acoustics, communications, information technology, marine geophysics, etc. This easy to handle and sophisticated equipment allows the recording of useful controlled source and passive seismic data, as well as other time varying data, with multiple applications in marine environment research. We have been working on a series of prototypes for ten years to improve many of the aspects that make the equipment easy to handle and useful to work in deep-water areas. Ocean Bottom Seismometers (OBS) have received growing attention from the geoscience community during the last forty years. OBS sensors recording motion of the ocean floor hold key information in order to study offshore seismicity and to explore the Earth's crust. In a seismic survey, a series of OBSs are placed on the seabed of the area under study, where they record either natural seismic activity or acoustic signals generated by compressed air-guns on the ocean surface. The resulting data sets are subsequently used to model both the earthquake locations and the crustal structure.

  10. Measurements of Direct CP Violating Asymmetries in Charmless Decays of Strange Bottom Mesons and Bottom Baryons

    Energy Technology Data Exchange (ETDEWEB)

    Aaltonen, T.; Aaltonen, T.; /Helsinki Inst. of Phys.; Alvarez Gonzalez, B.; /Oviedo U. /Cantabria Inst. of Phys.; Amerio, S.; /INFN, Padua; Amidei, D.; /Michigan U.; Anastassov, A.; /Northwestern U.; Annovi, A.; /Frascati; Antos, J.; /Comenius U.; Apollinari, G.; /Fermilab; Appel, J.A.; /Fermilab; Apresyan, A.; /Purdue U. /Waseda U. /Dubna, JINR

    2011-03-01

    We report measurements of direct CP-violating asymmetries in charmless decays of neutral bottom hadrons to pairs of charged hadrons with the upgraded Collider Detector at the Fermilab Tevatron. Using a data sample corresponding to 1 fb{sup -1} of integrated luminosity, we obtain the first measurements of direct CP violation in bottom strange mesons, A{sub CP}(B{sub s}{sup 0} {yields} K{sup -}{pi}{sup +}) = +0.39 {+-} 0.15 (stat) {+-} 0.08 (syst), and botton baryons, A{sub CP}({Lambda}{sub b}{sup 0} {yields} p{pi}{sup -}) = + 0.03 {+-} 0.17 (stat) {+-} 0.05 (syst) and A{sub CP} ({Lambda}{sub b}{sup 0} {yields} pK{sup -}) = +0.37 {+-} 0.17 (stat) {+-} 0.03 (syst). In addition, they measure CP violation in B{sup 0} {yields} K{sup +}{pi}{sup -} decays with 3.5{sigma} significance, A{sub CP} (B{sup 0} {yields} K{sup +}{pi}{sup -}) = -0.086 {+-} 0.023 (stat) {+-} 0.009 (syst), in agreement with the current world average. Measurements of branching fractions of B{sub s}{sup 0} {yields} K{sup +}K{sup -} and B{sup 0} {yields} {pi}{sup +}{pi}{sup -} decays are also updated.

  11. Spectroscopy of singly, doubly, and triply bottom baryons

    CERN Document Server

    Wei, Ke-Wei; Liu, Na; Wang, Qian-Qian; Guo, Xin-Heng

    2016-01-01

    Recently, many singly bottom baryons have been established experimentally, but no doubly or triply bottom baryon has been observed. Under the Regge phenomenology, the mass of a ground state unobserved doubly or triply bottom baryon is expressed as a function of masses of the well established light baryons and singly bottom baryons. (For example, we write the mass of $\\Omega_{bbb}$ as a function of the masses of well established light baryons ($\\Sigma^{*}$, $\\Xi^{*}$, $\\Omega$) and singly bottom baryons ($\\Sigma_b^{*}$, $\\Xi_b^{*}$), and give its value to be 14788$\\pm$80 MeV.) After that, we calculate the values of Regge slopes and Regge intercepts for singly, doubly, and triply bottom baryons. (Regge intercepts and slopes, which are usually regarded as fundamental constants of hadron dynamics, are useful for many spectral and nonspectral purposes.) Then, masses of the orbitally excited singly, doubly, and triply bottom baryons are estimated. The isospin splitting is also determined, $M_{\\Xi_{bb}^{-}}-M_{\\Xi_{...

  12. Atomic and molecular manipulation

    CERN Document Server

    Mayne, Andrew J

    2011-01-01

    Work with individual atoms and molecules aims to demonstrate that miniaturized electronic, optical, magnetic, and mechanical devices can operate ultimately even at the level of a single atom or molecule. As such, atomic and molecular manipulation has played an emblematic role in the development of the field of nanoscience. New methods based on the use of the scanning tunnelling microscope (STM) have been developed to characterize and manipulate all the degrees of freedom of individual atoms and molecules with an unprecedented precision. In the meantime, new concepts have emerged to design molecules and substrates having specific optical, mechanical and electronic functions, thus opening the way to the fabrication of real nano-machines. Manipulation of individual atoms and molecules has also opened up completely new areas of research and knowledge, raising fundamental questions of "Optics at the atomic scale", "Mechanics at the atomic scale", Electronics at the atomic scale", "Quantum physics at the atomic sca...

  13. A Miniature Wide Band Atomic Magnetometer

    Science.gov (United States)

    2011-12-01

    atomic magnetometer CSAC – Chip scale atomic clock DAC – Digital to Analog Converter DARPA – Defense Advanced Research Projects Agency DBR...Finally, the heater frequencies must not beat with the Laser servo’s modulation. Heater amplifiers This circuit is essentially an audio power...amplifier for the heater waveforms. The heater waveforms are made on the DAC board and then amplified in this circuit. The heater PCB consists of 4

  14. Atomic and molecular processes in fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Janev, R.K. [International Atomic Energy Agency, Vienna (Austria)

    1997-01-01

    The role of atomic and molecular processes in achieving and maintaining the conditions for thermonuclear burn in a magnetically confined fusion plasma is described. Emphasis is given to the energy balance and power and particle exhaust issues. The most important atomic and molecular processes which affect the radiation losses and impurity transport in the core plasma, the neutral particle transport in the plasma edge and the radiative cooling of divertor plasmas are discussed in greater detail. (author)

  15. Laser controlled atom source for optical clocks

    Science.gov (United States)

    Kock, Ole; He, Wei; Świerad, Dariusz; Smith, Lyndsie; Hughes, Joshua; Bongs, Kai; Singh, Yeshpal

    2016-11-01

    Precision timekeeping has been a driving force in innovation, from defining agricultural seasons to atomic clocks enabling satellite navigation, broadband communication and high-speed trading. We are on the verge of a revolution in atomic timekeeping, where optical clocks promise an over thousand-fold improvement in stability and accuracy. However, complex setups and sensitivity to thermal radiation pose limitations to progress. Here we report on an atom source for a strontium optical lattice clock which circumvents these limitations. We demonstrate fast (sub 100 ms), cold and controlled emission of strontium atomic vapours from bulk strontium oxide irradiated by a simple low power diode laser. Our results demonstrate that millions of strontium atoms from the vapour can be captured in a magneto-optical trap (MOT). Our method enables over an order of magnitude reduction in scale of the apparatus. Future applications range from satellite clocks testing general relativity to portable clocks for inertial navigation systems and relativistic geodesy.

  16. In situ single-atom array synthesis by dynamic holographic optical tweezers

    CERN Document Server

    Kim, Hyosub; Lee, Han-gyeol; Jo, Hanlae; Song, Yunheung; Ahn, Jaewook

    2016-01-01

    Cooling and trapping of atoms by light has enabled one to build and manipulate quantum systems at the single atom level. Such a bottom-up approach becomes one of the fascinating challenges toward scalable and highly controllable quantum systems, e.g., a large-scale quantum information machine. Their implementation requires crucial pre-requisites: scalablity, site distinguishability, and reliable single-atom loading into sites. The widely adopted methods satisfies the two former conditions relatively well, but the last condition, filling single atoms onto individual sites, relies mostly on the probabilistic loading, implying that loading a pre-defined set of atoms in given positions will be hampered exponentially. Two approaches are readily thinkable to overcome this issue: increasing the single-atom loading efficiency and relocating abundant atoms into unfilled positions. Realizing the relocation is directly related to how many atoms can be transportable in a designer way. Here, we demonstrate a dynamic holog...

  17. The Valley Bottom Extraction Tool (V-BET): A GIS tool for delineating valley bottoms across entire drainage networks

    Science.gov (United States)

    Gilbert, Jordan T.; Macfarlane, William W.; Wheaton, Joseph M.

    2016-12-01

    The shape, size and extent of a valley bottom dictates the form and function of the associated river or stream. Consequently, accurate, watershed-wide delineation of valley bottoms is increasingly recognized as a necessary component of watershed management. While many valley bottom delineation approaches exist, methods that can be effectively applied across entire drainage networks to produce reasonably accurate results are lacking. Most existing tools are designed to work using high resolution topography data (i.e. > 2 m resolution Digital Elevation Model (DEM)) and can only be applied over relatively short reach lengths due to computational or data availability limitations. When these precise mapping approaches are applied throughout drainage networks (i.e. 102-104 km), the computational techniques often either do not scale, or the algorithms perform inconsistently. Other tools that produce outputs at broader scale extents generally utilize coarser input topographic data to produce more poorly resolved valley bottom approximations. To fill this methodology gap and produce relatively accurate valley bottoms over large areas, we developed an algorithm that accepts terrain data from one to 10 m with slope and valley width parameters that scale based on drainage area, allowing for watershed-scale valley bottom delineation. We packaged this algorithm in the Valley Bottom Extraction Tool (V-BET) as an open-source ArcGIS toolbox for ease of use. To illustrate V-BET's scalability and test the tool's robustness across different physiographic settings, we delineated valley bottoms for the entire perennial drainage network of Utah as well as twelve watersheds across the interior Columbia River Basin (totaling 55,400 km) using 10 m DEMs. We found that even when driven with relatively coarse data (10 m DEMs), V-BET produced a relatively accurate approximation of valley bottoms across the entire watersheds of these diverse physiographic regions.

  18. Determination of Fe and Zn in Infant Formula Milk Power by Flame Atomic Absorption Spectrometry%火焰原子吸收光谱法测定婴幼儿奶粉中铁、锌元素含量

    Institute of Scientific and Technical Information of China (English)

    宋龙波; 赵龙刚; 赵延伟; 陈海华

    2012-01-01

    [目的]鉴于婴幼儿食品的特殊性和重要性,对婴幼儿配方奶粉中的铁、锌元素含量进行测定.[方法]采用干法灰化法处理6种婴幼儿配方奶粉,探究适合奶粉灰化的温度,并且用火焰原子吸收光谱法测定奶粉中铁、锌元素的含量.[结果]试验表明,测定铁、锌元素含量时奶粉的灰化温度为450 ~ 500℃;同一厂家生产的同一品牌不同成长阶段的婴幼儿配方奶粉,铁含量存在一定的差异,锌含量存在显著性差异,同一厂家生产的不同品牌的婴儿(较大婴儿)配方奶粉,铁、锌含量均不存在显著性差异,不同品牌幼儿配方奶粉的铁、锌含量存在显著性差异;6种奶粉的铁、锌元素含量均符合国家标准GB/T5413.21-1997.[结论]科学全面地评价婴幼儿配方奶粉中铁和锌元素的含量,对评价奶粉的品质以及正确引导消费者消费具有积极的现实意义.%[Objective] To determine contents of Fe and Zn in infant formula milk power. [ Method ] Amounts of iron and zinc in 6 brands of infant milk powder were determined by flame atomic absorption spectrometry. The samples were treated by ashing and ashing temperature was determined. [Result] The results showed that ashing temperature of 450 -500 twas suitable for determining iron and zinc in infant formula; for various growth stages of infant formula milk powder with same brand for the same manufacturer, iron content exhibited some difference and zinc content showed significant difference; for various brands of baby formula, iron and zinc content had no significant difference; but for children infant formula, amounts of iron and zinc exhibited significant difference. The values determined in 6 brands of infant milk powder were in agreement with the requirements of national standard GB/T5413.21-1997, [Conclusion] Scientifically and comprehensively evaluating Fe, Zn content in infant formula milk power has positive significance on quality assessment

  19. Proximity effects in cold gases of multiply charged atoms (Review)

    Science.gov (United States)

    Chikina, I.; Shikin, V.

    2016-07-01

    example from work on weak solutions (including charged solutions)—the use of semi-impermeable membranes for studies of osmotic pressure—is highly appropriate for problems involving Eproxi. Here we are speaking of one or more sharp boundaries formed by the ionic component of a many-particle problem. These may be a metal-vacuum boundary in a standard Casimir cell in a study of the vacuum properties in the 2l gap between conducting media of different kinds or different layered systems (quantum wells) in semiconductors, etc. As the mobile part of the equilibrium near a sharp boundary, electrons can (should) escape beyond the confines of the ion core into a gap 2l with a probability that depends, among other factors, on the properties of Eproxi for the electron cloud inside the conducting walls of the Casimir cell (quantum well). The analog of the Casimir sandwich in semiconductors is the widely used multilayer heterostructures referred to as quantum wells of width 2l with sides made of suitable doped materials, which ensure statistical equilibrium exchange of electrons between the layers of the multilayer structure. The thermal component of the proximity effects in semiconducting quantum wells provides an idea of many features of the dissociation process in doped semiconductors. In particular, a positive Eproxi > 0 (relative to the bottom of the conduction band) indicates that TF donors with a finite density nd ≠ 0 form a degenerate, semiconducting state in the semiconductor. At zero temperature, there is a finite density of free carriers which increases with a power-law dependence on T.

  20. Chemical fractionation method for characterization of biomass-based bottom and fly ash fractions from large-sized power plant of an integrated pulp and paper mill complex%化学分离法分析大型纸浆发电厂废渣中生物质底灰和飞灰成分

    Institute of Scientific and Technical Information of China (English)

    Risto PÖYKIÖ; Hannu NURMESNIEMI; Olli DAHL; Mikko MÄKELÄ

    2014-01-01

    The aim of this study was to extract the biomass-based bottom and fly ash fractions by a three-stage fractionation method for water-soluble (H2O), ammonium-acetate (CH3COONH4) and hydrochloric acid (HCl) fractions in order to access the leaching behaviour of these residues. Except for Mo, S, Na and elements whose concentrations were lower than the detection limits, the extractable element concentrations in both ash fractions followed the order H2O

  1. NEFSC 2013 Fall Bottom Trawl Survey (HB1304, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NEFSC bottom trawl survey is a fisheries independent, multi-species survey that provides the primary scientific data for fisheries assessments in the U.S....

  2. NEFSC 2008 Spring Bottom Trawl Survey (AL0801, EK500)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NEFSC bottom trawl survey is a fisheries independent, multi-species survey that provides the primary scientific data for fisheries assessments in the U.S....

  3. sir-06-5129_depth_bottom_trinidad_con

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital geospatial data set consists of contours of lines of equal depth to the bottom of the Trinidad Sandstone, the contact between the Trinidad Sandstone and...

  4. NMFS Bottom Longline Analytical Dataset Provided to NRDA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Southeast Fisheries Science Center Mississippi Laboratories has conducted standardized bottom longline surveys in the Gulf of Mexico and South Atlantic since...

  5. NEFSC 2008 Spring Bottom Trawl Survey (HB0802, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NEFSC bottom trawl survey is a fisheries independent, multi-species survey that provides the primary scientific data for fisheries assessments in the U.S....

  6. NEFSC 2013 Spring Bottom Trawl Survey (HB1301, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NEFSC bottom trawl survey is a fisheries independent, multi-species survey that provides the primary scientific data for fisheries assessments in the U.S....

  7. NEFSC 2007 Bottom Trawl Survey Calibration (HB0710, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NEFSC bottom trawl survey is a fisheries independent, multi-species survey that provides the primary scientific data for fisheries assessments in the U.S....

  8. NEFSC 1998 Fall Bottom Trawl Survey (AL9811, EK500)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NEFSC bottom trawl survey is a fisheries independent, multi-species survey that provides the primary scientific data for fisheries assessments in the U.S....

  9. Modal Wave Number Tomography and Bottom Parameter Dependence

    Institute of Scientific and Technical Information of China (English)

    WANG Ning; LI Peng; SHANG E. C.

    2002-01-01

    A shallow water tomography scheme based on the modal wave number inversion technique is considered in thispaper. The scheme is based on the assumption that modal wave number for trapped modes can be measured in a suitableway. The tomographic inversion is accomplished in two steps: firstly, the bottom parameters are inverted by using the bot-tom reflection phase shift with the known sound speed profile; secondly, the variation of sound speed profile at differenttime is inverted provided the bottom parameters are known. A numerical simulation shows that the proposed scheme workswell, and the sensitivity analysis of sound speed profile inversion is performed for shallow water environmental parameters:sound speed, density and attenuation coefficient of the bottom.

  10. Nanoelectronics: Thermoelectric Phenomena in «Bottom-Up» Approach

    Directory of Open Access Journals (Sweden)

    Yu.A. Kruglyak

    2014-04-01

    Full Text Available Thermoelectric phenomena of Seebeck and Peltier, quality indicators and thermoelectric optimization, ballistic and diffusive phonon heat current are discussed in the frame of the «bottom-up» approach of modern nanoelectronics.

  11. Gear Selectivity of a Longfin Squid Bottom Trawl

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Loligo pealeii (longfin inshore squid) co-occurs with Atlantic butterfish (Peprilus triacanthus) throughout the year and discarding in the L. pealeii bottom trawl...

  12. NEFSC 2005 Spring Bottom Trawl Survey (AL0504, EK500)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NEFSC bottom trawl survey is a fisheries independent, multi-species survey that provides the primary scientific data for fisheries assessments in the U.S....

  13. NEFSC 2007 Bottom Trawl Survey Calibration (HB0711, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NEFSC bottom trawl survey is a fisheries independent, multi-species survey that provides the primary scientific data for fisheries assessments in the U.S....

  14. NEFSC 2004 Winter Bottom Trawl Survey (AL0401, EK500)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NEFSC bottom trawl survey is a fisheries independent, multi-species survey that provides the primary scientific data for fisheries assessments in the U.S....

  15. NEFSC 2004 Spring Bottom Trawl Survey (AL0403, EK500)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NEFSC bottom trawl survey is a fisheries independent, multi-species survey that provides the primary scientific data for fisheries assessments in the U.S....

  16. NEFSC 1999 Fall Bottom Trawl Survey (AL9911, EK500)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NEFSC bottom trawl survey is a fisheries independent, multi-species survey that provides the primary scientific data for fisheries assessments in the U.S....

  17. NEFSC 2005 Fall Bottom Trawl Survey (AL0509, EK500)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NEFSC bottom trawl survey is a fisheries independent, multi-species survey that provides the primary scientific data for fisheries assessments in the U.S....

  18. NEFSC 2004 Fall Bottom Trawl Survey (AL0409, EK500)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NEFSC bottom trawl survey is a fisheries independent, multi-species survey that provides the primary scientific data for fisheries assessments in the U.S....

  19. NEFSC 2015 Spring Bottom Trawl Survey (HB1501, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NEFSC bottom trawl survey is a fisheries independent, multi-species survey that provides the primary scientific data for fisheries assessments in the U.S....

  20. NEFSC 2001 Fall Bottom Trawl Survey (AL0110, EK500)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NEFSC bottom trawl survey is a fisheries independent, multi-species survey that provides the primary scientific data for fisheries assessments in the U.S....

  1. NEFSC 2012 Fall Bottom Trawl Survey (HB1206, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NEFSC bottom trawl survey is a fisheries independent, multi-species survey that provides the primary scientific data for fisheries assessments in the U.S....

  2. NEFSC 2002 Winter Bottom Trawl Survey (AL0203, EK500)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NEFSC bottom trawl survey is a fisheries independent, multi-species survey that provides the primary scientific data for fisheries assessments in the U.S....

  3. NEFSC 2005 Winter Bottom Trawl Survey (AL0502, EK500)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NEFSC bottom trawl survey is a fisheries independent, multi-species survey that provides the primary scientific data for fisheries assessments in the U.S....

  4. NEFSC 2008 Fall Bottom Trawl Survey (AL0803, EK500)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NEFSC bottom trawl survey is a fisheries independent, multi-species survey that provides the primary scientific data for fisheries assessments in the U.S....

  5. NEFSC 2000 Fall Bottom Trawl Survey (AL0007, EK500)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NEFSC bottom trawl survey is a fisheries independent, multi-species survey that provides the primary scientific data for fisheries assessments in the U.S....

  6. NEFSC 2002 Spring Bottom Trawl Survey (AL0204, EK500)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NEFSC bottom trawl survey is a fisheries independent, multi-species survey that provides the primary scientific data for fisheries assessments in the U.S....

  7. NEFSC 2011 Spring Bottom Trawl Survey (HB1102, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NEFSC bottom trawl survey is a fisheries independent, multi-species survey that provides the primary scientific data for fisheries assessments in the U.S....

  8. NEFSC 2011 Fall Bottom Trawl Survey (HB1105, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NEFSC bottom trawl survey is a fisheries independent, multi-species survey that provides the primary scientific data for fisheries assessments in the U.S....

  9. NEFSC 2009 Spring Bottom Trawl Survey (HB0901, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NEFSC bottom trawl survey is a fisheries independent, multi-species survey that provides the primary scientific data for fisheries assessments in the U.S....

  10. NEFSC 2005 Fall Bottom Trawl Survey (AL0508, EK500)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NEFSC bottom trawl survey is a fisheries independent, multi-species survey that provides the primary scientific data for fisheries assessments in the U.S....

  11. NEFSC 2014 Fall Bottom Trawl Survey (HB1405, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NEFSC bottom trawl survey is a fisheries independent, multi-species survey that provides the primary scientific data for fisheries assessments in the U.S....

  12. NEFSC 2008 Fall Bottom Trawl Survey (HB0807, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NEFSC bottom trawl survey is a fisheries independent, multi-species survey that provides the primary scientific data for fisheries assessments in the U.S....

  13. NEFSC 2014 Spring Bottom Trawl Survey (HB1401, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NEFSC bottom trawl survey is a fisheries independent, multi-species survey that provides the primary scientific data for fisheries assessments in the U.S....

  14. Bottom Sediments -- Cape Ann to Casco Bay (FOLGER75 shapefile)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The reconnaissance maps upon which this data set is based show the areal distribution of the major bottom sediment types covering the sea floor off eastern New...

  15. Bottom production mechanism for same-sign dileptons

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, C.E.M.; Martins Simoes, J.A. (Rio de Janeiro Univ. (Brazil). Inst. de Fisica); Garcia Canal, C.A. (La Plata Univ. Nacional (Argentina))

    1983-01-22

    Bottom production is investigated as a possible mechanism for same-sign prompt dileptons in neutrino reactions. A partonlike model is able to account for the CDHS dilepton signal with inputs compatible with other data.

  16. NEFSC 2003 Fall Bottom Trawl Survey (AL0305, EK500)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NEFSC bottom trawl survey is a fisheries independent, multi-species survey that provides the primary scientific data for fisheries assessments in the U.S....

  17. Oil Well Bottom Hole Locations, Published in 2006, Farmer.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Oil Well Bottom Hole Locations dataset as of 2006. Data by this publisher are often provided in Not Sure coordinate system; in a Not Sure projection; The extent...

  18. NEFSC 2012 Spring Bottom Trawl Survey (HB1201, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NEFSC bottom trawl survey is a fisheries independent, multi-species survey that provides the primary scientific data for fisheries assessments in the U.S....

  19. 49 CFR 178.811 - Bottom lift test.

    Science.gov (United States)

    2010-10-01

    ... truck with the forks centrally positioned and spaced at three quarters of the dimension of the side of... bottom lift test. The IBC must be loaded to 1.25 times its maximum permissible gross mass, the load...

  20. NEFSC 2003 Spring Bottom Trawl Survey (DE0303, EK500)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NEFSC bottom trawl survey is a fisheries independent, multi-species survey that provides the primary scientific data for fisheries assessments in the U.S....

  1. NEFSC 2002 Fall Bottom Trawl Survey (AL0210, EK500)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NEFSC bottom trawl survey is a fisheries independent, multi-species survey that provides the primary scientific data for fisheries assessments in the U.S....

  2. Gulf of Maine Cooperative Bottom Longline Survey Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This database is for a bottom longline (fixed gear) survey executed in the western and central Gulf of Maine targeting complex rocky habitats. The survey is operated...

  3. NEFSC 2009 Fall Bottom Trawl Survey (HB0905, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NEFSC bottom trawl survey is a fisheries independent, multi-species survey that provides the primary scientific data for fisheries assessments in the U.S....

  4. NEFSC 2015 Fall Bottom Trawl Survey (HB1506, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NEFSC bottom trawl survey is a fisheries independent, multi-species survey that provides the primary scientific data for fisheries assessments in the U.S....

  5. Base Stress of the Opened Bottom Cylinder Structures

    Institute of Scientific and Technical Information of China (English)

    刘建起; 孟晓娟

    2004-01-01

    The base stress of the opened bottom cylinder structure differs greatly from that of the structure with a closed bottom. By investigating the inner soil pressure on the cylinder wall and the base stress of the cylinder base, which were obtained from the model experiments, the interactions among the filler inside the cylinder,subsoil and cylinder are analyzed. The adjusting mechanism of frictional resistance between the inner filler and the wall of the cylinder during the overturning of the cylinder is discussed. Based on the experimental study, a method for calculating the base stress of the opened bottom cylinder structure is proposed. Meanwhile, the formulas for calculating the effective anti-overturning ratio of the opened bottom cylinder are derived.

  6. NEFSC 2000 Fall Bottom Trawl Survey (Al0006, EK500)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NEFSC bottom trawl survey is a fisheries independent, multi-species survey that provides the primary scientific data for fisheries assessments in the U.S....

  7. NEFSC 2010 Spring Bottom Trawl Survey (HB1002, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NEFSC bottom trawl survey is a fisheries independent, multi-species survey that provides the primary scientific data for fisheries assessments in the U.S....

  8. Content and the forms of heavy metals in bottom sediments in the zone of industrial pollution sources ,

    Directory of Open Access Journals (Sweden)

    Voytyuk Y.Y.

    2014-12-01

    Full Text Available Regularities in the distribution of heavy metals in sediments in the zone of influence of the steel industry in Mariupol are installed. The study results of the forms of occurrence of Zn, Pb, Cu, Cr, Ni are represented. Ecological and geochemical assessment of sediment contamination by heavy metals is performed. The main sources of pollution of bottom sediments are air borne emissions from industrial plants, hydrogenous pollution in industrial sewage entering the water, sewage sludge, ash dumps, slag, ore, sludge, oil spills and salt solutions. Pollution hydrogenous sediments may be significant, contaminated sediments are a source of long-term contamination of water, even after cessation of discharges into rivers untreated wastewater. The environmental condition of bottom sediments in gross content of heavy metals is little information because they do not reflect the transformation and further migration to adjacent environment. The study forms of giving objective information for ecological and geochemical evaluation. The study forms of heavy metals in the sediments carried by successive extracts. Concentrations of heavy metals in the extracts determined by atomic absorption spectrometer analysis CAS-115. It was established that a number of elements typical of exceeding their content in bottom sediments of the background values, due likely to their technogenic origin. Man-made pollution of bottom sediments. Mariupol has disrupted the natural form of the ratio of heavy metals. In the studied sediments form ion exchange increased content of heavy metals, which contributes to their migration in the aquatic environment.

  9. Coherent backscattering of light off one-dimensional atomic strings

    CERN Document Server

    Sørensen, H L; Kluge, K W; Iakoupov, I; Sørensen, A S; Müller, J H; Polzik, E S; Appel, J

    2016-01-01

    Bragg scattering, well known in crystallography, has become a powerful tool for artificial atomic structures such as optical lattices. In an independent development photonic waveguides have been used successfully to boost quantum light-matter coupling. We combine these two lines of research and present the first experimental realisation of coherent Bragg scattering off a one-dimensional (1D) system - two strings of atoms strongly coupled to a single photonic mode - realised by trapping atoms in the evanescent field of a tapered optical fibre (TOF), which also guides the probe light. We report nearly 12% power reflection from strings containing only about one thousand caesium atoms, an enhancement of more than two orders of magnitude compared to reflection from randomly positioned atoms. This result paves the road towards collective strong coupling in 1D atom-photon systems. Our approach also allows for a straightforward fibre connection between several distant 1D atomic crystals.

  10. Controlling near shore nonlinear surging waves through bottom boundary conditions

    CERN Document Server

    Mukherjee, Abhik; Kundu, Anjan

    2016-01-01

    Instead of taking the usual passive view for warning of near shore surging waves including extreme waves like tsunamis, we aim to study the possibility of intervening and controlling nonlinear surface waves through the feedback boundary effect at the bottom. It has been shown through analytic result that the controlled leakage at the bottom may regulate the surface solitary wave amplitude opposing the hazardous variable depth effect. The theoretical results are applied to a real coastal bathymetry in India.

  11. Bottom friction optimization for a better barotropic tide modelling

    Science.gov (United States)

    Boutet, Martial; Lathuilière, Cyril; Son Hoang, Hong; Baraille, Rémy

    2015-04-01

    At a regional scale, barotropic tides are the dominant source of variability of currents and water heights. A precise representation of these processes is essential because of their great impacts on human activities (submersion risks, marine renewable energies, ...). Identified sources of error for tide modelling at a regional scale are the followings: bathymetry, boundary forcing and dissipation due to bottom friction. Nevertheless, bathymetric databases are nowadays known with a good accuracy, especially over shelves, and global tide models performances are better than ever. The most promising improvement is thus the bottom friction representation. The method used to estimate bottom friction is the simultaneous perturbation stochastic approximation (SPSA) which consists in the approximation of the gradient based on a fixed number of cost function measurements, regardless of the dimension of the vector to be estimated. Indeed, each cost function measurement is obtained by randomly perturbing every component of the parameter vector. An important feature of SPSA is its relative ease of implementation. In particular, the method does not require the development of tangent linear and adjoint version of the circulation model. Experiments are carried out to estimate bottom friction with the HYbrid Coordinate Ocean Model (HYCOM) in barotropic mode (one isopycnal layer). The study area is the Northeastern Atlantic margin which is characterized by strong currents and an intense dissipation. Bottom friction is parameterized with a quadratic term and friction coefficient is computed with the water height and the bottom roughness. The latter parameter is the one to be estimated. Assimilated data are the available tide gauge observations. First, the bottom roughness is estimated taking into account bottom sediment natures and bathymetric ranges. Then, it is estimated with geographical degrees of freedom. Finally, the impact of the estimation of a mixed quadratic/linear friction

  12. Presenting the Bohr Atom.

    Science.gov (United States)

    Haendler, Blanca L.

    1982-01-01

    Discusses the importance of teaching the Bohr atom at both freshman and advanced levels. Focuses on the development of Bohr's ideas, derivation of the energies of the stationary states, and the Bohr atom in the chemistry curriculum. (SK)

  13. Investigations into ultrasound induced atomization.

    Science.gov (United States)

    Ramisetty, Kiran A; Pandit, Aniruddha B; Gogate, Parag R

    2013-01-01

    The present work deals with measurements of the droplet size distribution in an ultrasonic atomizer using photographic analysis with an objective of understanding the effect of different equipment parameters such as the operating frequency, power dissipation and the operating parameters such as the flow rate and liquid properties on the droplet size distribution. Mechanistic details about the atomization phenomena have also been established using photographic analysis based on the capture of the growth of the instability and sudden ejection of droplets with high velocity. Velocity of these droplets has been measured by capturing the motion of droplets as streaks. It has been observed that the droplet size decreases with an increase in the frequency of atomizer. Droplet size distribution was found to change from the narrow to wider range with an increase in the intensity of ultrasound. The drop size was found to decrease with an increase in the fluid viscosity. The current work has clearly highlighted the approach for the selection of operating parameters for achieving a desired droplet size distribution using ultrasonic atomization and has also established the controlling mechanisms for the formation of droplet. An empirical correlation for the prediction of the droplet size has been developed based on the liquid and equipment operating properties.

  14. Formation of Humic Substances in Weathered MSWI Bottom Ash

    Directory of Open Access Journals (Sweden)

    Haixia Zhang

    2013-01-01

    Full Text Available The study aimed at evaluating the humic substances (HSs content from municipal solid waste incinerator (MSWI bottom ash and its variation with time and the effect of temperature on HSs formation. The process suggested by IHSS was applied to extract HSs from two different bottom ash samples, and the extracted efficiency with NaOH and Na4P2O7 was compared. MSWI bottom ash samples were incubated at 37∘C and 50∘C for 1 year. HSs and nonhumic substances were extracted from the bottom ash sample with different incubated period by 0.1 M NaOH/Na4P2O7. Results show that the rate of humic acid formation increased originally with incubation time, reached a maximum at 12th week under 37∘C and at 18th week under 50∘C, and then decreased with time. More humic acid in MSWI bottom ash was formed under 50∘C incubated condition compared with that incubated under 37∘C. Also, the elemental compositions of HSs extracted from bottom ash are reported.

  15. Atomic Storage States

    Institute of Scientific and Technical Information of China (English)

    汪凯戈; 朱诗尧

    2002-01-01

    We present a complete description of atomic storage states which may appear in the electromagnetically induced transparency (EIT). The result shows that the spatial coherence has been included in the atomic collective operators and the atomic storage states. In some limits, a set of multimode atomic storage states has been established in correspondence with the multimode Fock states of the electromagnetic field. This gives a better understanding of the fact that, in BIT, the optical coherent information can be preserved and recovered.

  16. Atoms Talking to SQUIDs

    CERN Document Server

    Hoffman, J E; Kim, Z; Wood, A K; Anderson, J R; Dragt, A J; Hafezi, M; Lobb, C J; Orozco, L A; Rolston, S L; Taylor, J M; Vlahacos, C P; Wellstood, F C

    2011-01-01

    We present a scheme to couple trapped $^{87}$Rb atoms to a superconducting flux qubit through a magnetic dipole transition. We plan to trap atoms on the evanescent wave outside an ultrathin fiber to bring the atoms to less than 10 $\\mu$m above the surface of the superconductor. This hybrid setup lends itself to probing sources of decoherence in superconducting qubits. Our current plan has the intermediate goal of coupling the atoms to a superconducting LC resonator.

  17. Single Atom Plasmonic Switch

    OpenAIRE

    Emboras, Alexandros; Niegemann, Jens; Ma, Ping; Haffner, Christian; Luisier, Mathieu; Hafner, Christian; Schimmel, Thomas; Leuthold, Juerg

    2015-01-01

    The atom sets an ultimate scaling limit to Moores law in the electronics industry. And while electronics research already explores atomic scales devices, photonics research still deals with devices at the micrometer scale. Here we demonstrate that photonic scaling-similar to electronics-is only limited by the atom. More precisely, we introduce an electrically controlled single atom plasmonic switch. The switch allows for fast and reproducible switching by means of the relocation of an individ...

  18. Atomic Scale Plasmonic Switch

    OpenAIRE

    Emboras, A.; Niegemann, J.; Ma, P.; Haffner, C; Pedersen, A.; Luisier, M.; Hafner, C.; Schimmel, T.; Leuthold, J.

    2016-01-01

    The atom sets an ultimate scaling limit to Moore’s law in the electronics industry. While electronics research already explores atomic scales devices, photonics research still deals with devices at the micrometer scale. Here we demonstrate that photonic scaling, similar to electronics, is only limited by the atom. More precisely, we introduce an electrically controlled plasmonic switch operating at the atomic scale. The switch allows for fast and reproducible switching by means of the relocat...

  19. Distribution of Bottom Trawling Effort in the Yellow Sea and East China Sea

    Science.gov (United States)

    Zhang, Shengmao; Jin, Shaofei; Zhang, Heng; Fan, Wei; Tang, Fenghua; Yang, Shenglong

    2016-01-01

    Bottom trawling is one of the most efficient fishing activities, but serious and persistent ecological issues have been observed by fishers, scientists and fishery managers. Although China has applied the Beidou fishing vessel position monitoring system (VMS) to manage trawlers since 2006, little is known regarding the impacts of trawling on the sea bottom environments. In this study, continuous VMS data of the 1403 single-rig otter trawlers registered in the Xiangshan Port, 3.9% of the total trawlers in China, were used to map the trawling effort in 2013. We used the accumulated distance (AD), accumulated power distance (APD), and trawling intensity as indexes to express the trawling efforts in the Yellow Sea (YS) and East China Sea (ECS). Our results show that all three indexes had similar patterns in the YS and ECS, and indicated a higher fishing effort of fishing grounds that were near the port. On average, the seabed was trawled 0.73 times in 2013 over the entire fishing region, and 51.38% of the total fishing grounds were with no fishing activities. Because of VMS data from only a small proportion of Chinese trawlers was calculated fishing intensity, more VMS data is required to illustrate the overall trawling effort in China seas. Our results enable fishery managers to identify the distribution of bottom trawling activities in the YS and ECS, and hence to make effective fishery policy. PMID:27855215

  20. Atomic Spectra Database (ASD)

    Science.gov (United States)

    SRD 78 NIST Atomic Spectra Database (ASD) (Web, free access)   This database provides access and search capability for NIST critically evaluated data on atomic energy levels, wavelengths, and transition probabilities that are reasonably up-to-date. The NIST Atomic Spectroscopy Data Center has carried out these critical compilations.

  1. Modelling of landfill gas adsorption with bottom ash for utilization of renewable energy

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Chen

    2011-10-06

    Energy crisis, environment pollution and climate change are the serious challenges to people worldwide. In the 21st century, human being is trend to research new technology of renewable energy, so as to slow down global warming and develop society in an environmentally sustainable method. Landfill gas, produced by biodegradable municipal solid waste in landfill, is a renewable energy source. In this work, landfill gas utilization for energy generation is introduced. Landfill gas is able to produce hydrogen by steam reforming reactions. There is a steam reformer equipment in the fuel cells system. A sewage plant of Cologne in Germany has run the Phosphoric Acid Fuel Cells power station with biogas for more than 50,000 hours successfully. Landfill gas thus may be used as fuel for electricity generation via fuel cells system. For the purpose of explaining the possibility of landfill gas utilization via fuel cells, the thermodynamics of landfill gas steam reforming are discussed by simulations. In practice, the methane-riched gas can be obtained by landfill gas purification and upgrading. This work investigate a new method for upgrading-landfill gas adsorption with bottom ash experimentally. Bottom ash is a by-product of municipal solid waste incineration, some of its physical and chemical properties are analysed in this work. The landfill gas adsorption experimental data show bottom ash can be used as a potential adsorbent for landfill gas adsorption to remove CO{sub 2}. In addition, the alkalinity of bottom ash eluate can be reduced in these adsorption processes. Therefore, the interactions between landfill gas and bottom ash can be explained by series reactions accordingly. Furthermore, a conceptual model involving landfill gas adsorption with bottom ash is developed. In this thesis, the parameters of landfill gas adsorption equilibrium equations can be obtained by fitting experimental data. On the other hand, these functions can be deduced with theoretical approach

  2. Horns Rev offshore wind farm. Introducing hard bottom substrate sea bottom and marine biology. Status report 2001

    Energy Technology Data Exchange (ETDEWEB)

    Leonhard, S.B.; Pedersen, John

    2002-08-15

    A baseline description of the benthos was carried out in spring and autumn 2001 prior to the construction of an offshore wind farm at Horns Rev, situated approximately 15 km off Blaevands Huk, which is Denmark's most westerly point. The surveys have been conducted as part of an environmental monitoring programme for the introduction of hard bottom substrates in the North Sea. The establishment of a monitoring programme is required according to some environmental guidelines set up by the Danish Energy Agency for offshore wind farms. Because no environmental criteria existed for benthic communities in connection with the construction activities, no power analysis was made prior to the design of the monitoring programme. The monitoring programme established for the benthic infauna is thus somewhat limited and only major changes in the community structure are expected to be detectable. The baseline description for the benthic infauna can also be used for comparison of the stomach contents of fish in a comparative programme. A newly defined reference area may be introduced for the fish programme why sampling in this area was carried out in the autumn 2001. Samples were recovered at a total of 18 stations at 6 wind turbine locations in the wind farm area in June 2001 and at a total of 9 stations at 3 wind turbine locations in September 2001. In September additional sampling was carried out at 5 stations in a designated reference area. At the wind turbine locations sampling was carried out at 3 stations located 5, 25 and 100 m from the edge of the planned scour protection. Samples were analysed for sediment characteristics and for benthic infauna. Only the benthos relating to the macrofauna was investigated during the surveys. (au)

  3. Antiprotonic atom formation and spectroscopy-ASACUSA experiment at CERN-AD

    CERN Document Server

    Widmann, E

    1999-01-01

    This talk describes the experiments on atomic spectroscopy and atomic collisions as proposed by the ASACUSA collaboration for the forthcoming AD facility at CERN. They consist of high-precision spectroscopy of antiprotonic atoms, the study of anti-protonic atom formation processes, and stopping power and ionization measurements in low-pressure gases. (18 refs).

  4. Current State and Countermeasures of Social Responsibility Accounting Information Disclosure of Electric Power Enterprises:Based on the Study of the Concept of"Triple Bottom Line"%电力企业社会责任会计信息披露的现状与对策--基于“三重底线”概念的研究

    Institute of Scientific and Technical Information of China (English)

    陈伊暄

    2015-01-01

    近年来,价值链问题已经逐渐成为企业社会责任的一个重要焦点。电力企业除了全面披露企业自身运营管理信息外,还应更多地关注对价值链上各个环节点的责任信息披露。基于全球报告倡议组织(GRI)对电力企业的指导方针和我国电力企业发展的自身特点,我国的电力企业社会责任会计信息披露应兼顾经济、环境、社会等各种因素,更好的履行起积极作用。%In the recent years the issue of chain value has become an important focus of corporate social responsibility. In addition to fully disclosing information of their own operational management,the electric power enterprise should pay more attention to responsibility information on each link point of the value chain.On the basis of global initiative (GRI)guidelines for the electric power enterprises and the characteristics of the China's electric power enterprise de-velopment,the social responsibility accounting information disclosure of the electric power enterprises in this country should also consider the economic,environmental,and social factors so as to induce better performance of the positive role.

  5. An ultrasonic atomizing device using coupled-mode vibration

    Science.gov (United States)

    Toda, Kohji; Akimura, Yoshikazu

    1994-10-01

    A small, compact ultrasonic atomizing device is composed of a rectangular piezoelectric ceramic bar and a metal plate with minute holes. The resonance arising from the coupling between two vibration modes in the ceramic bar is used for the effective device operation. The best atomizing occurs when one of the coupled-mode resonant frequencies of the atomizing device is equal to that of the device without the metal vibrating plate. For an efficient power usage a self-oscillation type circuit, composed of the atomizing device as a resonant element and a power amplification transistor, is utilized.

  6. Influence of Bottom Ash Replacements as Fine Aggregate on the Property of Cellular Concrete with Various Foam Contents

    Directory of Open Access Journals (Sweden)

    Patchara Onprom

    2015-01-01

    Full Text Available This research focuses on evaluating the feasibility of utilizing bottom ash from coal burning power plants as a fine aggregate in cellular concrete with various foam contents. Flows of all mixtures were controlled within 45 ± 5% and used foam content at 30%, 40%, 50%, 60%, and 70% by volume of mixture. Bottom ash from Mae Moh power plant in Thailand was used to replace river sand at the rates of 0%, 25%, 50%, 75%, and 100% by volume of sand. Compressive strength, water absorption, and density of cellular concretes were determined at the ages of 7, 14, and 28 days. Nonlinear regression technique was developed to construct the mathematical models for predicting the compressive strength, water absorption, and density of cellular concrete. The results revealed that the density of cellular concrete decreased while the water absorption increased with an increase in replacement level of bottom ash. From the experimental results, it can be concluded that bottom ash can be used as fine aggregate in the cellular concrete. In addition, the nonlinear regression models give very high degree of accuracy (R2>0.99.

  7. Identifying prognostic features by bottom-up approach and correlating to drug repositioning.

    Directory of Open Access Journals (Sweden)

    Wei Li

    Full Text Available Traditionally top-down method was used to identify prognostic features in cancer research. That is to say, differentially expressed genes usually in cancer versus normal were identified to see if they possess survival prediction power. The problem is that prognostic features identified from one set of patient samples can rarely be transferred to other datasets. We apply bottom-up approach in this study: survival correlated or clinical stage correlated genes were selected first and prioritized by their network topology additionally, then a small set of features can be used as a prognostic signature.Gene expression profiles of a cohort of 221 hepatocellular carcinoma (HCC patients were used as a training set, 'bottom-up' approach was applied to discover gene-expression signatures associated with survival in both tumor and adjacent non-tumor tissues, and compared with 'top-down' approach. The results were validated in a second cohort of 82 patients which was used as a testing set.Two sets of gene signatures separately identified in tumor and adjacent non-tumor tissues by bottom-up approach were developed in the training cohort. These two signatures were associated with overall survival times of HCC patients and the robustness of each was validated in the testing set, and each predictive performance was better than gene expression signatures reported previously. Moreover, genes in these two prognosis signature gave some indications for drug-repositioning on HCC. Some approved drugs targeting these markers have the alternative indications on hepatocellular carcinoma.Using the bottom-up approach, we have developed two prognostic gene signatures with a limited number of genes that associated with overall survival times of patients with HCC. Furthermore, prognostic markers in these two signatures have the potential to be therapeutic targets.

  8. Contacting nanowires and nanotubes with atomic precision for electronic transport

    KAUST Repository

    Qin, Shengyong

    2012-01-01

    Making contacts to nanostructures with atomic precision is an important process in the bottom-up fabrication and characterization of electronic nanodevices. Existing contacting techniques use top-down lithography and chemical etching, but lack atomic precision and introduce the possibility of contamination. Here, we report that a field-induced emission process can be used to make local contacts onto individual nanowires and nanotubes with atomic spatial precision. The gold nano-islands are deposited onto nanostructures precisely by using a scanning tunneling microscope tip, which provides a clean and controllable method to ensure both electrically conductive and mechanically reliable contacts. To demonstrate the wide applicability of the technique, nano-contacts are fabricated on silicide atomic wires, carbon nanotubes, and copper nanowires. The electrical transport measurements are performed in situ by utilizing the nanocontacts to bridge the nanostructures to the transport probes. © 2012 American Institute of Physics.

  9. Efficient Atomization and Combustion of Emulsified Crude Oil

    Science.gov (United States)

    2014-09-18

    data acquisition system. The venturis and regulators are mounted on the side and the peristaltic pump is at the bottom of the rack...liquid flows out of the first orifice , the air cross streams o fragment the liquid surface and then entrain and carry the atomized liquid out of the...been used with jet fuel and crude oil in commercial spray burner applications [3,6], but the pressure drop across the nozzle orifice resulted in an

  10. Design for a compact CW atom laser

    Science.gov (United States)

    Power, Erik; Raithel, Georg

    2011-05-01

    We present a design for a compact continuous-wave atom laser on a chip. A 2D spiral-shaped quadrupole guide is formed by two 0.5 mm × 0.5 mm wires carrying 5 A each embedded in a Si wafer; a 1.5 mm × 0.5 mm wire on the bottom layer carries -10 A, producing a horizontal B-field that pushes the guiding channel center above the chip surface. The center-to-center separation between the top wires is varied from 1.6 mm at the start of the guide to 1 mm at the end, decreasing the guide height from ~ 500 μm to ~ 25 μm above the surface as the atoms travel the 70 cm-long guide. The magnetic gradient of the guiding channel gradually increases from ~ 100 G /cm to ~ 930 G /cm . These features result in continuous surface adsorption evaporative cooling and progressive magnetic compression. Spin flip losses are mitigated by a solenoid sewn around the guide to produce a longitudinal B-field. 87Rb atoms are gravitationally loaded into the guide. A far off-resonant light shift barrier at the end of the guide traps the atoms and allows formation of a BEC. Tuning the barrier height to create a non-zero tunneling rate equal to the loading rate completes the implementation of a CW atom laser. Two options for atom interferometry are implemented on the first-generation chip (matter-wave Fabry-Perot interferometer and guide-based Mach-Zehnder interferometer). Current construction status and challenges will be discussed, along with preliminary results.

  11. Silicon-based thin films as bottom electrodes in chalcogenide nonvolatile memories

    Science.gov (United States)

    Lee, Seung-Yun; Yoon, Sung-Min; Choi, Kyu-Jeong; Lee, Nam-Yeal; Park, Young-Sam; Ryu, Sang-Ouk; Yu, Byoung-Gon; Kim, Sang-Hoon; Lee, Sang-Heung

    2007-10-01

    The effect of the electrical resistivity of a silicon-germanium (SiGe) thin film on the phase transition in a GeSbTe (GST) chalcogenide alloy and the manufacturing aspect of the fabrication process of a chalcogenide memory device employing the SiGe film as bottom electrodes were investigated. While p-type SiGe bottom electrodes were formed using in situ doping techniques, n-type ones could be made in a different manner where phosphorus atoms diffused from highly doped silicon underlayers to undoped SiGe films. The p-n heterojunction did not form between the p-type GST and n-type SiGe layers, and the semiconduction type of the SiGe alloys did not influence the memory device switching. It was confirmed that an optimum resistivity value existed for memory operation in spite of proportionality of Joule heating to electrical resistivity. The very high resistivity of the SiGe film had no effect on the reduction of reset current, which might result from the resistance decrease of the SiGe alloy at high temperatures.

  12. Silicon-based thin films as bottom electrodes in chalcogenide nonvolatile memories

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Yun [IT Convergence and Components Laboratory, Electronics and Telecommunications Research Institute (ETRI), Yuseong-gu, Daejeon 305-350 (Korea, Republic of)], E-mail: seungyun@etri.re.kr; Yoon, Sung-Min; Choi, Kyu-Jeong; Lee, Nam-Yeal; Park, Young-Sam; Ryu, Sang-Ouk; Yu, Byoung-Gon; Kim, Sang-Hoon; Lee, Sang-Heung [IT Convergence and Components Laboratory, Electronics and Telecommunications Research Institute (ETRI), Yuseong-gu, Daejeon 305-350 (Korea, Republic of)

    2007-10-31

    The effect of the electrical resistivity of a silicon-germanium (SiGe) thin film on the phase transition in a GeSbTe (GST) chalcogenide alloy and the manufacturing aspect of the fabrication process of a chalcogenide memory device employing the SiGe film as bottom electrodes were investigated. While p-type SiGe bottom electrodes were formed using in situ doping techniques, n-type ones could be made in a different manner where phosphorus atoms diffused from highly doped silicon underlayers to undoped SiGe films. The p-n heterojunction did not form between the p-type GST and n-type SiGe layers, and the semiconduction type of the SiGe alloys did not influence the memory device switching. It was confirmed that an optimum resistivity value existed for memory operation in spite of proportionality of Joule heating to electrical resistivity. The very high resistivity of the SiGe film had no effect on the reduction of reset current, which might result from the resistance decrease of the SiGe alloy at high temperatures.

  13. Fabrication of nanochannels with ladder nanostructure at the bottom using AFM nanoscratching method

    Science.gov (United States)

    Yan, Yongda; Geng, Yanquan; Hu, Zhenjiang; Zhao, Xuesen; Yu, Bowen; Zhang, Qi

    2014-05-01

    This letter presents a novel atomic force microscopy (AFM)-based nanomanufacturing method combining the tip scanning with the high-precision stage movement to fabricate nanochannels with ladder nanostructure at the bottom by continuous scanning with a fixed scan size. Different structures can be obtained according to the matching relation of the tip feeding velocity and the precision stage moving velocity. This relationship was first studied in detail to achieve nanochannels with different ladder nanostructures at the bottom. Machining experiments were then performed to fabricate nanochannels on an aluminum alloy surface to demonstrate the capability of this AFM-based fabrication method presented in this study. Results show that the feed value and the tip orientation in the removing action play important roles in this method which has a significant effect on the machined surfaces. Finally, the capacity of this method to fabricate a large-scale nanochannel was also demonstrated. This method has the potential to advance the existing AFM tip-based nanomanufacturing technique of the formation these complex structures by increasing the removal speed, simplifying the processing procedure and achieving the large-scale nanofabrication.

  14. A bottom-up approach for the synthesis of highly ordered fullerene-intercalated graphene hybrids

    Directory of Open Access Journals (Sweden)

    Dimitrios eGournis

    2015-02-01

    Full Text Available Much of the research effort on graphene focuses on its use as a building block for the development of new hybrid nanostructures with well-defined dimensions and properties suitable for applications such as gas storage, heterogeneous catalysis, gas/liquid separations, nanosensing and biomedicine. Towards this aim, here we describe a new bottom-up approach, which combines self-assembly with the Langmuir Schaefer deposition technique to synthesize graphene-based layered hybrid materials hosting fullerene molecules within the interlayer space. Our film preparation consists in a bottom-up layer-by-layer process that proceeds via the formation of a hybrid organo-graphene oxide Langmuir film. The structure and composition of these hybrid fullerene-containing thin multilayers deposited on hydrophobic substrates were characterized by a combination of X-ray diffraction, Raman and X-ray photoelectron spectroscopies, atomic force microscopy and conductivity measurements. The latter revealed that the presence of C60 within the interlayer spacing leads to an increase in electrical conductivity of the hybrid material as compared to the organo-graphene matrix alone.

  15. Response of ocean bottom dwellers exposed to underwater shock waves

    Science.gov (United States)

    Hosseini, S. H. R.; Kaiho, Kunio; Takayama, Kazuyoshi

    2016-01-01

    The paper reports results of experiments to estimate the mortality of ocean bottom dwellers, ostracoda, against underwater shock wave exposures. This study is motivated to verify the possible survival of ocean bottom dwellers, foraminifera, from the devastating underwater shock waves induced mass extinction of marine creatures which took place at giant asteroid impact events. Ocean bottom dwellers under study were ostracoda, the replacement of foraminifera, we readily sampled from ocean bottoms. An analogue experiment was performed on a laboratory scale to estimate the domain and boundary of over-pressures at which marine creatures' mortality occurs. Ostracods were exposed to underwater shock waves generated by the explosion of 100mg PETN pellets in a chamber at shock over-pressures ranging up to 44MPa. Pressure histories were measured simultaneously on 113 samples. We found that bottom dwellers were distinctively killed against overpressures of 12MPa and this value is much higher than the usual shock over-pressure threshold value for marine-creatures having lungs and balloons.

  16. An analytical model of capped turbulent oscillatory bottom boundary layers

    Science.gov (United States)

    Shimizu, Kenji

    2010-03-01

    An analytical model of capped turbulent oscillatory bottom boundary layers (BBLs) is proposed using eddy viscosity of a quadratic form. The common definition of friction velocity based on maximum bottom shear stress is found unsatisfactory for BBLs under rotating flows, and a possible extension based on turbulent kinetic energy balance is proposed. The model solutions show that the flow may slip at the top of the boundary layer due to capping by the water surface or stratification, reducing the bottom shear stress, and that the Earth's rotation induces current and bottom shear stress components perpendicular to the interior flow with a phase lag (or lead). Comparisons with field and numerical experiments indicate that the model predicts the essential characteristics of the velocity profiles, although the agreement is rather qualitative due to assumptions of quadratic eddy viscosity with time-independent friction velocity and a well-mixed boundary layer. On the other hand, the predicted linear friction coefficients, phase lead, and veering angle at the bottom agreed with available data with an error of 3%-10%, 5°-10°, and 5°-10°, respectively. As an application of the model, the friction coefficients are used to calculate e-folding decay distances of progressive internal waves with a semidiurnal frequency.

  17. On a Bottom-Up Approach to Scientific Discovery

    Science.gov (United States)

    Huang, Xiang

    2014-03-01

    Two popular models of scientific discovery, abduction and the inference to the best explanation (IBE), presuppose that the reason for accepting a hypothetical explanation A comes from the epistemic and/or explanatory force manifested in the fact that observed fact C is an inferred consequence of A. However, not all discoveries take this top-down procedure from A to C, in which the result of discovery A implies the observed fact C. I contend that discovery can be modeled as a bottom-up procedure based on inductive and analogical rules that lead us to infer from C to A. I take the theory of Dignaga, an Indian medieval logician, as a model of this bottom-up approach. My argument has three panels: 1) this bottom-up approach applies to both commonsense and scientific discovery without the assumption that C has to be an inferred consequence of A; 2) this bottom-up approach helps us get around problems that crop up in applying abduction and/or IBE, which means that scientific discovery need not to be modeled exclusively by top-down approaches; and 3) the existence of the bottom-up approach requires a pluralist attitude towards modeling of scientific discovery.

  18. Scour protection for wind turbine foundations on highly erodible sea bottom

    Energy Technology Data Exchange (ETDEWEB)

    Ottesen Hansen, N.E.

    2002-12-01

    Scour around offshore structures is well known. It is caused by the strong eddy formation at the base of the structures protruding from the sea bottom. The strong vortices result in an amplified effective shear stress working on the sea bottom surface adjacent to the structure. When the surrounding sea bottom is lowered the scour protection will end up being a cap on a small hill and when the slopes are getting too steep the scour protection will roll or slide down the sides. It will loose its cohesion and therefore its integrity. This will take place irrespective of the type of scour protection material and the type of scour protection. This report describes scour protections, which can deal with this particular problem. Such a scour protection must be able to sustain the following loads: Be able to follow the lowering of the seabed on its way down; Be resistant to edge scour (scour around the perimeter of the scour protection). The installation of scour protection is not straightforward because the developed scour hole may be very uneven. It will be highly impractical to survey the hole although it can be done. There will be power cables etc. obstructing for ROV's or instrumented backhoe arms. Therefore the recommended method is to assume that the scour hole is developed and to place the scour protection material evenly around the foundation. In practice this is done by fall pipes positioned from a barge or by an instrumented backhoe. The procedure will be as follows: The outline of the scour hole is surveyed by a ROV (eye ball) and the status of the power cables are investigated; If the tie-in of the power cables are hanging as free spans, material shall be dumped on these spans in order to cover them. This material shall have a size, which will not be harmful to the cable during a dumping; Alternatively the tie-in takes place through an armoured flex-pipe that can sustain the impact from the stone dumping. Hence, in this case the stone dumping can commence

  19. Long range intermolecular forces in triatomic systems: connecting the atom-diatom and atom-atom-atom representations

    OpenAIRE

    2005-01-01

    The long-range forces that act between three atoms are analysed in both atom-diatom and atom-atom-atom representations. Expressions for atom-diatom dispersion coefficients are obtained in terms of 3-body nonadditive coefficients. The anisotropy of atom-diatom C_6 dispersion coefficients arises primarily from nonadditive triple-dipole and quadruple-dipole forces, while pairwise-additive forces and nonadditive triple-dipole and dipole-dipole-quadrupole forces contribute significantly to atom-di...

  20. Numerical Modeling on Hydrodynamic Performance of A Bottom-Hinged Flap Wave Energy Converter

    Institute of Scientific and Technical Information of China (English)

    ZHAO Hai-tao; SUN Zhi-lin; HAO Chun-ling; SHEN Jia-fa

    2013-01-01

    The hydrodynamic performance of a bottom-hinged flap wave energy converter (WEC) is investigated through a frequency domain numerical model.The numerical model is verified through a two-dimensional analytic solution,as well as the qualitative analysis on the dynamic response of avibrating system.The concept of "optimum density" of the bottom-hinged flap is proposed,and its analytic expression is derived as well.The frequency interval in which the optimum density exists is also obtained.The analytic expression of the optimum linear damping coefficient is obtained by a bottom-hinged WEC.Some basic dynamic properties involving natural period,excitation moment,pitch amplitude,and optimum damping coefficient are analyzed and discussed in detail.In addition,this paper highlights the analysis of effects on the conversion performance of the device exerted by some important parameters.The results indicate that "the optimum linear damping period of 5.0 s" is the most ideal option in the short wave sea states with the wave period below 6.0 s.Shallow water depth,large flap thickness and low flap density are advised in the practical design of the device in short wave sea states in order to maximize power capture.In the sea state with water depth of 5.0 m and wave period of 5.0 s,the results of parametric optimization suggest a flap with the width of 8.0 m,thickness of 1.6 m,and with the density as little as possible when the optimum power take-off (PTO) damping coefficient is adopted.

  1. Atomic switch: atom/ion movement controlled devices for beyond von-neumann computers.

    Science.gov (United States)

    Hasegawa, Tsuyoshi; Terabe, Kazuya; Tsuruoka, Tohru; Aono, Masakazu

    2012-01-10

    An atomic switch is a nanoionic device that controls the diffusion of metal ions/atoms and their reduction/oxidation processes in the switching operation to form/annihilate a conductive path. Since metal atoms can provide a highly conductive channel even if their cluster size is in the nanometer scale, atomic switches may enable downscaling to smaller than the 11 nm technology node, which is a great challenge for semiconductor devices. Atomic switches also possess novel characteristics, such as high on/off ratios, very low power consumption and non-volatility. The unique operating mechanisms of these devices have enabled the development of various types of atomic switch, such as gap-type and gapless-type two-terminal atomic switches and three-terminal atomic switches. Novel functions, such as selective volatile/nonvolatile, synaptic, memristive, and photo-assisted operations have been demonstrated. Such atomic switch characteristics can not only improve the performance of present-day electronic systems, but also enable development of new types of electronic systems, such as beyond von- Neumann computers.

  2. A Challenge Beyond Bottom Cells: Top-Illuminated Flexible Organic Solar Cells with Nanostructured Dielectric/Metal/Polymer (DMP) Films.

    Science.gov (United States)

    Ham, Juyoung; Dong, Wan Jae; Park, Jae Yong; Yoo, Chul Jong; Lee, Illhwan; Lee, Jong-Lam

    2015-07-15

    Top-illuminated flexible organic solar cells with a high power conversion efficiency (≈6.75%) are fabricated using a dielectric/metal/polymer (DMP) electrode. Employing a polymer layer (n = 1.49) makes it possible to show the high transmittance, which is insensitive to film thickness, and the excellent haze induced by well-ordered nanopatterns on the DMP electrode, leading to a 28% of enhancement in efficiency compared to bottom cells.

  3. Bottom quark contribution to spin-dependent dark matter detection

    Directory of Open Access Journals (Sweden)

    Jinmian Li

    2016-05-01

    Full Text Available We investigate a previously overlooked bottom quark contribution to the spin-dependent cross section for Dark Matter (DM scattering from the nucleon. While the mechanism is relevant to any supersymmetric extension of the Standard Model, for illustrative purposes we explore the consequences within the framework of the Minimal Supersymmetric Standard Model (MSSM. We study two cases, namely those where the DM is predominantly Gaugino or Higgsino. In both cases, there is a substantial, viable region in parameter space (mb˜−mχ≲O(100 GeV in which the bottom contribution becomes important. We show that a relatively large contribution from the bottom quark is consistent with constraints from spin-independent DM searches, as well as some incidental model dependent constraints.

  4. Perspectives on Geoacoustic Inversion of Ocean Bottom Reflectivity Data

    Directory of Open Access Journals (Sweden)

    N. Ross Chapman

    2016-09-01

    Full Text Available This paper focuses on acoustic reflectivity of the ocean bottom, and describes inversion of reflection data from an experiment designed to study the physical properties and structure of the ocean bottom. The formalism of Bayesian inference is reviewed briefly to establish an understanding of the approach for inversion that is in widespread use. A Bayesian inversion of ocean bottom reflection coefficient versus angle data to estimate geoacoustic model parameters of young oceanic crust is presented. The data were obtained in an experiment to study the variation of sound speed in crustal basalt with age of the crust at deep water sites in the Pacific Ocean where the sediment deposits overlying the basalt are very thin. The inversion results show that sound speed of both compressional and shear waves is increasing with crustal age over the track of the experiment where age increased from 40 to 70 million years.

  5. A plea for Global Health Action bottom-up

    Directory of Open Access Journals (Sweden)

    Ulrich Laaser

    2016-10-01

    Full Text Available This opinion piece focuses on global health action by hands-on bottom-up practice: Initiation of an organizational framework and securing financial efficiency are – however - essential, both clearly a domain of well trained public health professionals. Examples of action are cited in the four main areas of global threats: planetary climate change, global divides and inequity, global insecurity and violent conflicts, global instability and financial crises. In conclusion a stable health systems policy framework would greatly enhance success. However, such organisational framework dries out if not linked to public debates channelling fresh thoughts and controversial proposals: the structural stabilisation is essential but has to serve not to dominate bottom-up activities. In other words a horizontal management is required, a balanced equilibrium between bottom-up initiative and top-down support. Last not least rewarding voluntary and charity work by public acknowledgement is essential.

  6. OIL DECONTAMINATION OF BOTTOM SEDIMENTS EXPERIMENTAL WORK RESULTS

    Directory of Open Access Journals (Sweden)

    Lushnikov Sergey V.

    2006-08-01

    Full Text Available This article presents the results of experimental work during 2004-2005 on oil decontamination of bottom sediments of Lake Schuchye, situated in the Komi Republic (Northern Russia. The cause of thecontamination were huge oil spills occurred after a series of accidental ruptures on the Harjaga-Usinsk and Vozej-Usinsk oil-pipe lines in 1994. Flotation technology was used for the cleaning of bottom sediments.157 tons of crude oil were removed during the course of 2-year experimental work from an area of 4,1 ha.The content of aliphatic and alicyclic oil hydrocarbons was reduced from 53,3 g/kg to 2,2 g/kg, on average.Hydrobiological investigations revealed that bottom sediments started to be inhabited by benthos organisms, dominantly Oligochaeta. Besides Oligochaeta, Chironomidae maggots and Bivalvia were detected. Theappearance of Macrozoobenthos organisms can serve as a bioindicator of water quality.

  7. Analysis of core damage frequency: Peach Bottom, Unit 2 internal events

    Energy Technology Data Exchange (ETDEWEB)

    Kolaczkowski, A.M.; Cramond, W.R.; Sype, T.T.; Maloney, K.J.; Wheeler, T.A.; Daniel, S.L. (Science Applications International Corp., Albuquerque, NM (USA); Sandia National Labs., Albuquerque, NM (USA))

    1989-08-01

    This document contains the appendices for the accident sequence analysis of internally initiated events for the Peach Bottom, Unit 2 Nuclear Power Plant. This is one of the five plant analyses conducted as part of the NUREG-1150 effort for the Nuclear Regulatory Commission. The work performed and described here is an extensive reanalysis of that published in October 1986 as NUREG/CR-4550, Volume 4. It addresses comments from numerous reviewers and significant changes to the plant systems and procedures made since the first report. The uncertainty analysis and presentation of results are also much improved, and considerable effort was expended on an improved analysis of loss of offsite power. The content and detail of this report is directed toward PRA practitioners who need to know how the work was done and the details for use in further studies. 58 refs., 58 figs., 52 tabs.

  8. Thermodynamic Performance Analysis of a Biogas-Fuelled Micro-Gas Turbine with a Bottoming Organic Rankine Cycle for Sewage Sludge and Food Waste Treatment Plants

    Directory of Open Access Journals (Sweden)

    Sunhee Kim

    2017-02-01

    Full Text Available In the Republic of Korea, efficient biogas-fuelled power systems are needed to use the excess biogas that is currently burned due to a lack of suitable power technology. We examined the performance of a biogas-fuelled micro-gas turbine (MGT system and a bottoming organic Rankine cycle (ORC. The MGT provides robust operation with low-grade biogas, and the exhaust can be used for heating the biodigester. Similarly, the bottoming ORC generates additional power output with the exhaust gas. We selected a 1000-kW MGT for four co-digestion plants with 28,000-m3 capacity. A 150-kW ORC system was selected for the MGT exhaust gas. We analysed the effects of the system size, methane concentration, and ORC operating conditions. Based on the system performance, we analysed the annual performance of the MGT with a combined heat and power (CHP system, bottoming ORC, or both a bottoming ORC and CHP system. The annual net power outputs for each system were 7.4, 8.5, and 9.0 MWh per year, respectively.

  9. Atomic homodyne detection of weak atomic transitions.

    Science.gov (United States)

    Gunawardena, Mevan; Elliott, D S

    2007-01-26

    We have developed a two-color, two-pathway coherent control technique to detect and measure weak optical transitions in atoms by coherently beating the transition amplitude for the weak transition with that of a much stronger transition. We demonstrate the technique in atomic cesium, exciting the 6s(2)S(1/2) --> 8s(2)S(1/2) transition via a strong two-photon transition and a weak controllable Stark-induced transition. We discuss the enhancement in the signal-to-noise ratio for this measurement technique over that of direct detection of the weak transition rate, and project future refinements that may further improve its sensitivity and application to the measurement of other weak atomic interactions.

  10. The Software Atom

    CERN Document Server

    Javanainen, Juha

    2016-01-01

    By putting together an abstract view on quantum mechanics and a quantum-optics picture of the interactions of an atom with light, we develop a corresponding set of C++ classes that set up the numerical analysis of an atom with an arbitrary set of angular-momentum degenerate energy levels, arbitrary light fields, and an applied magnetic field. As an example, we develop and implement perturbation theory to compute the polarizability of an atom in an experimentally relevant situation.

  11. The Software Atom

    Science.gov (United States)

    Javanainen, Juha

    2017-03-01

    By putting together an abstract view on quantum mechanics and a quantum-optics picture of the interactions of an atom with light, we develop a corresponding set of C++ classes that set up the numerical analysis of an atom with an arbitrary set of angular-momentum degenerate energy levels, arbitrary light fields, and an applied magnetic field. As an example, we develop and implement perturbation theory to compute the polarizability of an atom in an experimentally relevant situation.

  12. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    1997-01-01

    This series describes selected advances in the area of atomic spectroscopy. It is primarily intended for the reader who has a background in atmoic spectroscopy; suitable to the novice and expert. Although a widely used and accepted method for metal and non-metal analysis in a variety of complex samples, Advances in Atomic Spectroscopy covers a wide range of materials. Each Chapter will completely cover an area of atomic spectroscopy where rapid development has occurred.

  13. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    1995-01-01

    This series describes selected advances in the area of atomic spectroscopy. It is promarily intended for the reader who has a background in atmoic spectroscopy; suitable to the novice and expert. Although a widely used and accepted method for metal and non-metal analysis in a variety of complex samples, Advances in Atomic Spectroscopy covers a wide range of materials. Each Chapter will completely cover an area of atomic spectroscopy where rapid development has occurred.

  14. Atomicity in Electronic Commerce,

    Science.gov (United States)

    1996-01-01

    tremendous demand for the ability to electronically buy and sell goods over networks. Electronic commerce has inspired a large variety of work... commerce . It then briefly surveys some major types of electronic commerce pointing out flaws in atomicity. We pay special attention to the atomicity...problems of proposals for digital cash. The paper presents two examples of highly atomic electronic commerce systems: NetBill and Cryptographic Postage Indicia.

  15. A Compact Microchip-Based Atomic Clock Based on Ultracold Trapped Rb Atoms

    CERN Document Server

    Farkas, Daniel M; Anderson, Dana Z

    2009-01-01

    We propose a compact atomic clock based on ultracold Rb atoms that are magnetically trapped near the surface of an atom microchip. An interrogation scheme that combines electromagnetically-induced transparency (EIT) with Ramsey's method of separated oscillatory fields can achieve atomic shot-noise level performance of 10^{-13}/sqrt(tau) for 10^6 atoms. The EIT signal can be detected with a heterodyne technique that provides noiseless gain; with this technique the optical phase shift of a 100 pW probe beam can be detected at the photon shot-noise level. Numerical calculations of the density matrix equations are used to identify realistic operating parameters at which AC Stark shifts are eliminated. By considering fluctuations in these parameters, we estimate that AC Stark shifts can be canceled to a level better than 2*10^{-14}. An overview of the apparatus is presented with estimates of duty cycle and power consumption.

  16. Field Application of Automated Power Arc Spraying System on Steel Bridge Deck

    Institute of Scientific and Technical Information of China (English)

    YI Chun-long; SUO Shuang-fu; SUN Zhi; PANG Xu-nan

    2004-01-01

    The effective corrosion protection coating and high productive coating equipment for steel bridge deck has been a challenge for bridge engineers for many years. An automated power arc spraying system was first designed and field applied to coating the deck of Wuhan Junshan Yangtze River Bridge in high efficiency. This steel bridge is a continuous orthotropic deck box girder cable-stayed bridge with 962 m in length and 38.8 m in width, whose width is the No. 1 in China. The whole orthotropic deck with over 35,000 m2surface area was arc-sprayed a protective coating of zinc on site, followed by a sealant and SMA paving material. The side face and bottom of box girders were arc-sprayed with aluminum in factory.Field application indicated that the newly designed automated power arc spraying system with fan nozzle and separate primary & secondary atomizing air had some advantages over the conventional arc spraying system, such as automated operation,big arc spray current, high spraying rate, big breadth of each coat, even and small atomized particles, high density and low porosity of sprayed coating, and high adhesive strength to the substrate.Working procedure of surface preparation and automated arc spraying on bridge deck were introduced, and the quality of sprayed coating is controlled strictly. Field tests proved that the application of this automated power arc spraying system is successful and suitable for coating the steel bridge deck.

  17. Development and Application of CDOS Series Catalysts for Bottoms Cracking

    Institute of Scientific and Technical Information of China (English)

    Wang Mingjin; Xu Mingde; Zhu Yuxia

    2013-01-01

    Development of CDOS catalyst for bottoms cracking is based on DOSY zeolite, which is characterized by high metal tolerance. The results of DOSY tests have shown that the catalyst has better activity retention at high metal content in the feed. The performance of catalyst tested in the bench scale was superior over that of the reference catalyst. The results of catalyst application have shown that the CDOS series catalysts have better bottoms cracking activity, high metal tolerance, excellent dry gas selectivity, and enhanced liquid yield.

  18. Pretreatment and utilization of waste incineration bottom ashes

    DEFF Research Database (Denmark)

    Astrup, Thomas

    2007-01-01

    Within recent years, researchers and authorities have had increasing focus on leaching properties from waste incineration bottom ashes. Researchers have investigated processes such as those related to carbonation, weathering, metal complexation, and leaching control. Most of these investigations....../aging, washing with and without additives, organic matter, sampling techniques, utilization options, and assessment tools. This paper provides an overview of these projects. The main results and experiences are discussed and evaluated with respect to bottom ash upgrading and utilization. Based on this discussion......, development needs and potential management strategies are identified....

  19. Discovering the Higgs Bosons of Minimal Supersymmetry with Bottom Quarks

    CERN Document Server

    Kao, Chung; Sayre, Joshua; Wang, Yili

    2009-01-01

    We investigate the prospects for the discovery of a neutral Higgs boson produced with one bottom quark followed by Higgs decay into a pair of bottom quarks at the CERN Large Hadron Collider (LHC) and the Fermilab Tevatron Collider. We work within the framework of the minimal supersymmetric standard model. The dominant physics background is calculated with realistic acceptance cuts and efficiencies including the production of $bb\\bar{b}$, $\\bar{b}b\\bar{b}$, $jb\\bar{b}$ ($j = g, q, \\bar{q}$; $q = u, d, s, c$), $t\\bar{t} \\to b\\bar{b}jj\\ell\

  20. An assembly for the bottom of a drilling column

    Energy Technology Data Exchange (ETDEWEB)

    Gerzhberg, Yu.M.; Akopov, E.A.; Avakyan, T.G.; Gadzhiyev, N.S.; Nikitin, B.A.; Pototskiy, A.I.; Zakharov, B.I.

    1983-01-01

    An assembly is proposed for the bottom of a drill string, which includes a slag trap, an extender, adapters and a bit. It is distinguished by the fact that in order to increase the effectiveness of drilling through improving the wash out of the bottom hole and preventing the formation of stuffing on the bit, it is equipped with a splitter installed between the bit and the slag trap which has an exterior diameter equal to the exterior diameter of the slag trap. The splitter is installed with the capability of interaction with the housing of the slag trap along the faces, where the latter is conical.

  1. Modeling of melt-coolant mixing by bottom injection

    Energy Technology Data Exchange (ETDEWEB)

    Kazachkov, I.V.; Paladino, D.; Sehgal, B.R. [Royal Inst. of Tech., Div. of Nuclear Power Safety, Stockholm (Sweden)

    2001-07-01

    In this paper, the flow characteristics during the coolant injection, with submerged nozzles, at the bottom of a molten pool are studied. The flow pattern developed by the rising coolant is considered for the case of complete coolant vaporization, and the pool-coolant phase distributions are assessed by a modeling approach delivered from literature for a heterogeneous turbulent jet. To calculate the basic characteristics of such flow, integral relationships are proposed for the two-phase boundary layer. The results of numerical computations and approximate solution are compared with the experimental data obtained in the low temperature experiments, conducted in the DECOBI (debris coolability by bottom injection) facility. (authors)

  2. 30 Gbps bottom-emitting 1060 nm VCSEL

    DEFF Research Database (Denmark)

    Tatarczak, Anna; Zheng, Y.; Rodes, G. A.

    2014-01-01

    1060 nm VCSEL-based data transmission over 50 m OM3 MMF at 30 Gbit/s is experimentally demonstrated. A highly-strained bottom-emitting QW VCSEL with p-type modulation doping is used with 3.77 mA bias and 0.55 V data amplitude.......1060 nm VCSEL-based data transmission over 50 m OM3 MMF at 30 Gbit/s is experimentally demonstrated. A highly-strained bottom-emitting QW VCSEL with p-type modulation doping is used with 3.77 mA bias and 0.55 V data amplitude....

  3. Channelized bottom melting and stability of floating ice shelves

    OpenAIRE

    Rignot, E; Steffen, K.

    2008-01-01

    The floating ice shelf in front of Petermann Glacier, in northwest Greenland, experiences massive bottom melting that removes 80% of its ice before calving into the Arctic Ocean. Detailed surveys of the ice shelf reveal the presence of 1-2 km wide, 200-400 in deep, sub-ice shelf channels, aligned with the flow direction and spaced by 5 km. We attribute their formation to the bottom melting of ice from warm ocean waters underneath. Drilling at the center of one of channel, only 8 m above sea l...

  4. Dephasing in an atom

    OpenAIRE

    2011-01-01

    When an atom in vacuum is near a surface of a dielectric the energy of a fluctuating electromagnetic field depends on a distance between them resulting, as known, in the force called van der Waals one. Besides this fluctuation phenomenon there is one associated with formation of a mean electric field which is equivalent to an order parameter. In this case atomic electrons are localized within atomic distances close to the atom and the total ground state energy is larger, compared to the bare ...

  5. Efficiency droop enhancement in AlGaN deep ultraviolet light-emitting diodes by making whole barriers but the bottom Mg doped

    Science.gov (United States)

    Sun, Jie; Sun, Huiqing; Yi, Xinyan; Yang, Xian; Fan, Xuancong; Zhang, Cheng; Zhang, Zhuding; Guo, Zhiyou

    2016-09-01

    Ultra violet light-emitting diodes (UVLEDs) with different types of Mg-doped barriers have been studied. The energy band diagrams, internal quantum efficiency, total output power and radiative recombination rate are investigated by APSYS software. The simulation results show that the UVLED with only a p-doped top barrier get little enhancement comparing to the conventional one, on the contrary the structure with p-doping in all but the bottom barriers has a much better optical and electrical properties due to enhancement of the holes' injection and the electrons' confinement. The efficiency droop is significantly alleviated and the light output power is greatly enhanced. To avoid forming a PN junction by the bottom barrier and the n-AlGaN in the proposed structure, therefore, the bottom barrier isn't p-doped. Then structures with different hole densities in the Mg-doped barriers have been studied numerically and that confirmed the best.

  6. Evanescent Wave Atomic Mirror

    Science.gov (United States)

    Ghezali, S.; Taleb, A.

    2008-09-01

    A research project at the "Laboratoire d'électronique quantique" consists in a theoretical study of the reflection and diffraction phenomena via an atomic mirror. This poster presents the principle of an atomic mirror. Many groups in the world have constructed this type of atom optics experiments such as in Paris-Orsay-Villetaneuse (France), Stanford-Gaithersburg (USA), Munich-Heidelberg (Germany), etc. A laser beam goes into a prism with an incidence bigger than the critical incidence. It undergoes a total reflection on the plane face of the prism and then exits. The transmitted resulting wave out of the prism is evanescent and repulsive as the frequency detuning of the laser beam compared to the atomic transition δ = ωL-ω0 is positive. The cold atomic sample interacts with this evanescent wave and undergoes one or more elastic bounces by passing into backward points in its trajectory because the atoms' kinetic energy (of the order of the μeV) is less than the maximum of the dipolar potential barrier ℏΩ2/Δ where Ω is the Rabi frequency [1]. In fact, the atoms are cooled and captured in a magneto-optical trap placed at a distance of the order of the cm above the prism surface. The dipolar potential with which interact the slow atoms is obtained for a two level atom in a case of a dipolar electric transition (D2 Rubidium transition at a wavelength of 780nm delivered by a Titane-Saphir laser between a fundamental state Jf = l/2 and an excited state Je = 3/2). This potential is corrected by an attractive Van der Waals term which varies as 1/z3 in the Lennard-Jones approximation (typical atomic distance of the order of λ0/2π where λ0 is the laser wavelength) and in 1/z4 if the distance between the atom and its image in the dielectric is big in front of λ0/2π. This last case is obtained in a quantum electrodynamic calculation by taking into account an orthornormal base [2]. We'll examine the role of spontaneous emission for which the rate is inversely

  7. Analysis of core damage frequency: Peach Bottom, Unit 2 internal events appendices

    Energy Technology Data Exchange (ETDEWEB)

    Kolaczkowski, A.M.; Cramond, W.R.; Sype, T.T.; Maloney, K.J.; Wheeler, T.A.; Daniel, S.L. (Science Applications International Corp., Albuquerque, NM (USA); Sandia National Labs., Albuquerque, NM (USA))

    1989-08-01

    This document contains the appendices for the accident sequence analysis of internally initiated events for the Peach Bottom, Unit 2 Nuclear Power Plant. This is one of the five plant analyses conducted as part of the NUREG-1150 effort for the Nuclear Regulatory Commission. The work performed and described here is an extensive reanalysis of that published in October 1986 as NUREG/CR-4550, Volume 4. It addresses comments from numerous reviewers and significant changes to the plant systems and procedures made since the first report. The uncertainty analysis and presentation of results are also much improved, and considerable effort was expended on an improved analysis of loss of offsite power. The content and detail of this report is directed toward PRA practitioners who need to know how the work was done and the details for use in further studies. The mean core damage frequency is 4.5E-6 with 5% and 95% uncertainty bounds of 3.5E-7 and 1.3E-5, respectively. Station blackout type accidents (loss of all ac power) contributed about 46% of the core damage frequency with Anticipated Transient Without Scram (ATWS) accidents contributing another 42%. The numerical results are driven by loss of offsite power, transients with the power conversion system initially available operator errors, and mechanical failure to scram. 13 refs., 345 figs., 171 tabs.

  8. Laser Source for Atomic Gravity Wave Detector Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop an Atom Interferometry-based gravity wave detector (vs Optical Interferometry). Characterize a high power laser. Use Goddard Space Flight Center Mission...

  9. Solar and Geothermal Energy: New Competition for the Atom

    Science.gov (United States)

    Carter, Luther J.

    1974-01-01

    Describes new emphasis on research into solar and geothermal energy resources by governmental action and recent legislation and the decreased emphasis on atomic power in supplementing current energy shortages. (BR)

  10. Damage evaluation in graphene underlying atomic layer deposition dielectrics.

    Science.gov (United States)

    Tang, Xiaohui; Reckinger, Nicolas; Poncelet, Olivier; Louette, Pierre; Ureña, Ferran; Idrissi, Hosni; Turner, Stuart; Cabosart, Damien; Colomer, Jean-François; Raskin, Jean-Pierre; Hackens, Benoit; Francis, Laurent A

    2015-08-27

    Based on micro-Raman spectroscopy (μRS) and X-ray photoelectron spectroscopy (XPS), we study the structural damage incurred in monolayer (1L) and few-layer (FL) graphene subjected to atomic-layer deposition of HfO2 and Al2O3 upon different oxygen plasma power levels. We evaluate the damage level and the influence of the HfO2 thickness on graphene. The results indicate that in the case of Al2O3/graphene, whether 1L or FL graphene is strongly damaged under our process conditions. For the case of HfO2/graphene, μRS analysis clearly shows that FL graphene is less disordered than 1L graphene. In addition, the damage levels in FL graphene decrease with the number of layers. Moreover, the FL graphene damage is inversely proportional to the thickness of HfO2 film. Particularly, the bottom layer of twisted bilayer (t-2L) has the salient features of 1L graphene. Therefore, FL graphene allows for controlling/limiting the degree of defect during the PE-ALD HfO2 of dielectrics and could be a good starting material for building field effect transistors, sensors, touch screens and solar cells. Besides, the formation of Hf-C bonds may favor growing high-quality and uniform-coverage dielectric. HfO2 could be a suitable high-K gate dielectric with a scaling capability down to sub-5-nm for graphene-based transistors.

  11. Power generation plant integrating concentrated solar power receiver and pressurized heat exchanger

    Science.gov (United States)

    Sakadjian, Bartev B; Flynn, Thomas J; Hu, Shengteng; Velazquez-Vargas, Luis G; Maryamchik, Mikhail

    2016-10-04

    A power plant includes a solar receiver heating solid particles, a standpipe receiving solid particles from the solar receiver, a pressurized heat exchanger heating working fluid by heat transfer through direct contact with heated solid particles flowing out of the bottom of the standpipe, and a flow path for solid particles from the bottom of the standpipe into the pressurized heat exchanger that is sealed by a pressure P produced at the bottom of the standpipe by a column of heated solid particles of height H. The flow path may include a silo or surge tank comprising a pressure vessel connected to the bottom of the standpipe, and a non-mechanical valve. The power plant may further include a turbine driven by heated working fluid discharged from the pressurized heat exchanger, and a compressor driven by the turbine.

  12. PENGGUNAAN SANDWICH PLATE SYSTEM (SPS PADA KONSTRUKSI INNER BOTTOM

    Directory of Open Access Journals (Sweden)

    Ahmad Baidowi

    2015-06-01

    Full Text Available Perkembangan teknologi yang semakin maju memberikan alternatif-alternatif dalam memperbaiki berbagai bentuk sistem, termasuk di dalamnya konstruksi struktur kapal. Latar belakang dari penelitian ini adalah pada permasalahan kebutuhan material ringan pada kapal, kecepatan proses produksi, penyederhanaan konstruksi dan biaya perawatan kapal yang rendah. Penggunaan material ringan Sandwich Plate System (SPS menjadi salah satu jawaban dari permasalahan-permasalahan tersebut, penggunaan SPS dapat menyederhanakan bentuk dari konstruksi kapal dengan menghilangkan penegar inner bottom longitudinal dan mampu mengurangi Light Weight Tonnase (LWT. Artikel ini membahas perbandingan pola distribusi tegangan dan deformasi pada konstruksi bottom yang menggunakan SPS dan baja AH36, selain dari itu juga mengetahui seberapa besar pengurangan LWT yang dihasilkan untuk meningkatkan Payload kapal. Analisa dilakukan dengan simulasi numerik berdasarkan FEM pada konstruksi inner bottom dengan pembebanan muatan. Dari hasil simulasi didapatkan besar tegangan maksimal untuk material baja AH36 sebesar 226 Mpa dengan menggunakan penegar, sedangkan konstuksi dengan material SPS tegangan maksimal yang dihasilkan sebesar 221 Mpa tanpa penggunaan penegar, dengan deformasi maksimal untuk AH36 dan SPS yaitu 77 mm yang terjadi pada bagian tengah blok konstruksi inner bottom. Dengan hilangnya penegar berat konstruksi berkurang sebesar 13,05% dari penggunaan material baja AH36 sehingga memberikan peningkatan payload sebesar 13,05%. Simulasi penelitian dilakukan pada kapal Bulk Carrier (BC.

  13. Linear waves in two-layer fluids over periodic bottoms

    NARCIS (Netherlands)

    Yu, J.; Maas, L.R.M.

    2016-01-01

    A new, exact Floquet theory is presented for linear waves in two-layer fluidsover a periodic bottom of arbitrary shape and amplitude. A method of conformaltransformation is adapted. The solutions are given, in essentially analytical form, forthe dispersion relation between wave frequency and general

  14. Linear waves in two-layer fluids over periodic bottoms

    NARCIS (Netherlands)

    Yu, Jie; Maas, L.R.M.

    2016-01-01

    A new, exact Floquet theory is presented for linear waves in two-layer fluids over a periodic bottom of arbitrary shape and amplitude. A method of conformal transformation is adapted. The solutions are given, in essentially analytical form, for the dispersion relation between wave frequency and gene

  15. Flowable Backfill Materials from Bottom Ash for Underground Pipeline

    Directory of Open Access Journals (Sweden)

    Kyung-Joong Lee

    2014-04-01

    Full Text Available The purpose of this study was to investigate the relationship between strength and strain in manufacturing controlled low strength materials to recycle incineration bottom ash. Laboratory tests for controlled low strength materials with bottom ash and recycled in-situ soil have been carried out. The optimum mixing ratios were 25%–45% of in-situ soil, 30% of bottom ash, 10%–20% of fly ash, 0%–3% of crumb rubber, 3% of cement, and 22% of water. Each mixture satisfied the standard specifications: a minimum 20 cm of flowability and 127 kPa of unconfined compressive strength. The average secant modulus (E50 was (0.07–0.08 qu. The ranges of the internal friction angle and cohesion for mixtures were 36.5°–46.6° and 49.1–180 kPa, respectively. The pH of all of the mixtures was over 12, which is strongly alkaline. Small-scale chamber tests for controlled low strength materials with bottom ash and recycled in-situ soil have been carried out. Vertical deflection of 0.88–2.41 mm and horizontal deflection of 0.83–3.72 mm were measured during backfilling. The vertical and horizontal deflections of controlled low strength materials were smaller than that of sand backfill.

  16. Simulation Study on Flat-Bottom Structure Slamming

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhen; XIAO Xi; WANG De-yu

    2005-01-01

    A study is performed about the water entry of a flat-bottom structure by use of the FE software MSC Dytran. The aim of the study is to find out the effect of the air cushion and structural mass on the impact peak pressure and the role of splash in the course of water entry. Some FE models are built up and some cases including the flat-bottom structure with different masses impacting water at some constant or initial velocities are calculated. The calculation shows that air plays an important role in the course of water entry of a flat-bottom structure and the compression of the air captured by the flat-bottom structure produces the first peak pressure. And the mass of the structure has a great effect on the peak value of impact pressure. The structure with different masses will produce different impact pressures even at the same impact velocity. Splash will occur a long time after the impact pressure reaches the peak value. A formula is given for the calculation of the peak value of impact pressure in this paper.

  17. Succeeding at the Bottom-of-the-Pyramid

    DEFF Research Database (Denmark)

    Boxenbaum, Eva; Olsen, Mette

    initiative to build a social impact venture at the interface of a multi-national corporation and a hybrid organization that is operating on the Bottom-of-the-Pyramid market. Our study identifies how corporate social entrepreneurs dynamically use framing and organizational anchoring strategies to build...

  18. Detection of Higgs bosons decaying to bottom quarks

    Energy Technology Data Exchange (ETDEWEB)

    Gilman, F.J.; Price, L.E.

    1986-11-01

    Several developments affecting the possibility of Higgs detection are discussed. These include the level of certainty about the t quark mass, Monte Carlo programs to generate both signal and background events, and separation and/or enhancement of heavy quark jets from jets due to light quarks or gluons, and the possibility that the neutral Higgs decay into bottom quarks might be the decay mode of choice for detecting the intermediate mass Higgs. Possible means of detection of an intermediate mass Higgs at the SSC, particularly if a prominent decay mode is to bottom quarks, are examined, using the PYTHIA Monte Carlo program to generate both signal and background events. For the signal, events were generated in which Higgs bosons are created in proton-proton collisions, with the Higgs decaying into bottom quarks. The presence of W or Z bosons, created in the same proton-proton collision, is used to enhance the likelihood of Higgs production and to reduce the potentially enormous background. It is found that the Higgs decay to bottom quarks, if important, would be more favorable for detection of the Higgs than decay to top quarks was found to be because of the smaller background. 3 refs., 4 figs. (LEW)

  19. Bottom Sediments of Georges Bank (WIGLEY61 shapefile)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data were collected as part of a survey of the bottom sediments of Georges Bank. The purpose of the survey was to provide basic data for use in studying the...

  20. Steam bottoming cycle for an adiabatic diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Poulin, E.; Demler, R.; Krepchin, I.; Walker, D.

    1984-03-01

    A study of steam bottoming cycles using adiabatic diesel engine exhaust heat projected substantial performance and economic benefits for long haul trucks. A parametric analysis of steam cycle and system component variables, system cost, size and performance was conducted. An 811 K/6.90 MPa state-of-the-art reciprocating expander steam system with a monotube boiler and radiator core condenser was selected for preliminary design. When applied to a NASA specified turbo-charged adiabatic diesel the bottoming system increased the diesel output by almost 18%. In a comparison of the costs of the diesel with bottoming system (TC/B) and a NASA specified turbocompound adiabatic diesel with after-cooling with the same total output, the annual fuel savings less the added maintenance cost was determined to cover the increased initial cost of the TC/B system in a payback period of 2.3 years. Also during this program steam bottoming system freeze protection strategies were developed, technological advances required for improved system reliability were considered and the cost and performance of advanced systems were evaluated.

  1. Bottom up approaches to defining future climate mitigation commitments

    NARCIS (Netherlands)

    Elzen MGJ den; Berk MM; KMD

    2005-01-01

    Dit rapport beschrijft de resultaten van een aantal in de literatuur geopperde alternatieve, bottom-up benaderingen om verplichtingen vorm te geven,i.e. technologie en performance standaards, technologie onderzoek en ontwikkelingsafspraken, sectorale verplichtingen, S-CDM (Sectoraal CDM) en SD-P

  2. Bottom up approaches to defining future climate mitigation commitments

    NARCIS (Netherlands)

    Elzen MGJ den; Berk MM; KMD

    2005-01-01

    This report analyses a number of alternative, bottom-up approaches, i.e. technology and performance standards; technology Research and Development agreements, sectoral targets (national /transnational), sector based CDM, and sustainable development policies and measures (SD-PAMs). Included are tech

  3. Charm and bottom quark masses on the lattice

    CERN Document Server

    Lytle, Andrew T

    2015-01-01

    Lattice determinations of quark mass have made significant progress in the last few years. I will review recent advances in calculations of charm and bottom mass, which are near to achieving percent-level precision and with fully controlled systematics. Precise knowledge of these parameters is of particular interest for precision Higgs studies at future accelerators.

  4. C AND M BOTTOM LOADING FURNACE TEST DATA

    Energy Technology Data Exchange (ETDEWEB)

    Lemonds, D

    2005-08-01

    The test was performed to determine the response of the HBL Phase III Glovebox during C&M Bottom Loading Furnace operations. In addition the data maybe used to benchmark a heat transfer model of the HBL Phase III Glovebox and Furnace.

  5. A bottom-up approach to MEDLINE indexing recommendations

    DEFF Research Database (Denmark)

    Jimeno-Yepes, Antonio; Wilkowski, Bartlomiej; Mork, James/G

    2011-01-01

    MEDLINE indexing performed by the US National Library of Medicine staff describes the essence of a biomedical publication in about 14 Medical Subject Headings (MeSH). Since 2002, this task is assisted by the Medical Text Indexer (MTI) program. We present a bottom-up approach to MEDLINE indexing...

  6. Determining Heterogeneous Bottom Friction Distributions using a Numerical Wave Model

    Science.gov (United States)

    2007-08-11

    2) and that of the can recover an unknown bottom roughness distribution. Gulf of Mexico (approximately 6 x 10 4). The computa- Case (I) is a trivial...Gvophrv. P1 Acknowledgments. Thsvork thsspotd yfl ie of R?es, 105, 3497. 3516. NaaI esac thrug this wa C rore r c Ctle bynOamice .nMe Bride , R. A

  7. Bottom-linked innovation: Collaboration between middle managers and employees

    DEFF Research Database (Denmark)

    Kristensen, Catharina Juul

    2017-01-01

    Employee-driven innovation is gaining ground as a strategy for developing sustainable organisations in the public and private sector. This type of innovation is characterised by active employee participation, and the bottom-up perspective is often emphasised. This article explores an issue that has...

  8. Bottom-Up Analysis of Single-Case Research Designs

    Science.gov (United States)

    Parker, Richard I.; Vannest, Kimberly J.

    2012-01-01

    This paper defines and promotes the qualities of a "bottom-up" approach to single-case research (SCR) data analysis. Although "top-down" models, for example, multi-level or hierarchical linear models, are gaining momentum and have much to offer, interventionists should be cautious about analyses that are not easily understood, are not governed by…

  9. Reading Nature from a "Bottom-Up" Perspective

    Science.gov (United States)

    Magntorn, Ola; Hellden, Gustav

    2007-01-01

    This paper reports on a study of ecology teaching and learning in a Swedish primary school class (age 10-11 yrs). A teaching sequence was designed to help students read nature in a river ecosystem. The teaching sequence had a "bottom up" approach, taking as its starting point a common key organism--the freshwater shrimp. From this species and its…

  10. 49 CFR 179.200-17 - Bottom outlets.

    Science.gov (United States)

    2010-10-01

    ... valve due to stresses or shocks incident to transportation. (5) Bottom outlet nozzle of interior valves... the root of the “V” be more than 1/4 inch. The outlet nozzle on interior valves or the valve body on... inside closure seat or plug. In no case may the nozzle wall thickness at the root of the “V” be more...

  11. Greek Atomic Theory.

    Science.gov (United States)

    Roller, Duane H. D.

    1981-01-01

    Focusing on history of physics, which began about 600 B.C. with the Ionian Greeks and reaching full development within three centuries, suggests that the creation of the concept of the atom is understandable within the context of Greek physical theory; so is the rejection of the atomic theory by the Greek physicists. (Author/SK)

  12. Atoms, Molecules, and Compounds

    CERN Document Server

    Manning, Phillip

    2007-01-01

    Explores the atoms that govern chemical processes. This book shows how the interactions between simple substances such as salt and water are crucial to life on Earth and how those interactions are predestined by the atoms that make up the molecules.

  13. When Atoms Want

    Science.gov (United States)

    Talanquer, Vicente

    2013-01-01

    Chemistry students and teachers often explain the chemical reactivity of atoms, molecules, and chemical substances in terms of purposes or needs (e.g., atoms want or need to gain, lose, or share electrons in order to become more stable). These teleological explanations seem to have pedagogical value as they help students understand and use…

  14. Maximally Atomic Languages

    Directory of Open Access Journals (Sweden)

    Janusz Brzozowski

    2014-05-01

    Full Text Available The atoms of a regular language are non-empty intersections of complemented and uncomplemented quotients of the language. Tight upper bounds on the number of atoms of a language and on the quotient complexities of atoms are known. We introduce a new class of regular languages, called the maximally atomic languages, consisting of all languages meeting these bounds. We prove the following result: If L is a regular language of quotient complexity n and G is the subgroup of permutations in the transition semigroup T of the minimal DFA of L, then L is maximally atomic if and only if G is transitive on k-subsets of 1,...,n for 0 <= k <= n and T contains a transformation of rank n-1.

  15. Coaxial airblast atomizers

    Science.gov (United States)

    Hardalupas, Y.; Whitelaw, J. H.

    1993-01-01

    An experimental investigation was performed to quantify the characteristics of the sprays of coaxial injectors with particular emphasis on those aspects relevant to the performance of rocket engines. Measurements for coaxial air blast atomizers were obtained using air to represent the gaseous stream and water to represent the liquid stream. A wide range of flow conditions were examined for sprays with and without swirl for gaseous streams. The parameters varied include Weber number, gas flow rate, liquid flow rate, swirl, and nozzle geometry. Measurements were made with a phase Doppler velocimeter. Major conclusions of the study focused upon droplet size as a function of Weber number, effect of gas flow rate on atomization and spray spread, effect of nozzle geometry on atomization and spread, effect of swirl on atomization, spread, jet recirculation and breakup, and secondary atomization.

  16. Atomic diffusion in stars

    CERN Document Server

    Michaud, Georges; Richer, Jacques

    2015-01-01

    This book gives an overview of atomic diffusion, a fundamental physical process, as applied to all types of stars, from the main sequence to neutron stars. The superficial abundances of stars as well as their evolution can be significantly affected. The authors show where atomic diffusion plays an essential role and how it can be implemented in modelling.  In Part I, the authors describe the tools that are required to include atomic diffusion in models of stellar interiors and atmospheres. An important role is played by the gradient of partial radiative pressure, or radiative acceleration, which is usually neglected in stellar evolution. In Part II, the authors systematically review the contribution of atomic diffusion to each evolutionary step. The dominant effects of atomic diffusion are accompanied by more subtle effects on a large number of structural properties throughout evolution. One of the goals of this book is to provide the means for the astrophysicist or graduate student to evaluate the importanc...

  17. MERCURY CONTENT IN BOTTOM SEDIMENTS OF MID-FIELD PONDS

    Directory of Open Access Journals (Sweden)

    Kamil Szydłowski

    2016-09-01

    Full Text Available Two mid-field ponds located in the agricultural catchment was chosen for the investigations. Total of 24 samples of bottom sediments were collected. The samples were taken from sediment layers: 0–5 (W1, 5–10 (W2, 10–20 (W3 and 20–30 (W4 cm, with three points at once during the 2014 winter period. Mercury content in the samples was determined by analyzer AMA 254. Higher pH (active acidity was recorded in sediments in pond located in a rural park than pond located within agricultural crops. Bottom sediment in mid-field pond (No. 1 had higher values of organic carbon averaging 22.70% than in the pond located in a rural park (No. 2, where organic carbon content averaged 4.59%. The mercury content in bottom sediments ranged from 0.02 to 0.41 mg ⋅ kg-1. The examined sediments were classified (at points P1, P2, P3 and P4 as uncontaminated sediments (Class I and at points S1 and S2 were classified as moderately polluted sediments (Class II. Bottom sediments classified as class I and II can be disposed in the aquatic and terrestrial environments. Mercury concentrations in samples collected from both banks of the pond No. 1 and 2 differ significantly (Tukey test p ≤ 0.05 than those in the samples collected from central part of the ponds. Chemical analysis of the individual layers of bottom sediments in ponds showed that the largest accumulation of mercury occurred in a layer W1 (0–5 cm in pond No. 2 (at point S2.

  18. Bottom temperature and salinity distribution and its variability around Iceland

    Science.gov (United States)

    Jochumsen, Kerstin; Schnurr, Sarah M.; Quadfasel, Detlef

    2016-05-01

    The barrier formed by the Greenland-Scotland-Ridge (GSR) shapes the oceanic conditions in the region around Iceland. Deep water cannot be exchanged across the ridge, and only limited water mass exchange in intermediate layers is possible through deep channels, where the flow is directed southwestward (the Nordic Overflows). As a result, the near-bottom water masses in the deep basins of the northern North Atlantic and the Nordic Seas hold major temperature differences. Here, we use near-bottom measurements of about 88,000 CTD (conductivity-temperature-depth) and bottle profiles, collected in the period 1900-2008, to investigate the distribution of near-bottom properties. Data are gridded into regular boxes of about 11 km size and interpolated following isobaths. We derive average spatial temperature and salinity distributions in the region around Iceland, showing the influence of the GSR on the near-bottom hydrography. The spatial distribution of standard deviation is used to identify local variability, which is enhanced near water mass fronts. Finally, property changes within the period 1975-2008 are presented using time series analysis techniques for a collection of grid boxes with sufficient data resolution. Seasonal variability, as well as long term trends are discussed for different bottom depth classes, representing varying water masses. The seasonal cycle is most pronounced in temperature and decreases with depth (mean amplitudes of 2.2 °C in the near surface layers vs. 0.2 °C at depths > 500 m), while linear trends are evident in both temperature and salinity (maxima in shallow waters of +0.33 °C/decade for temperature and +0.03/decade for salinity).

  19. THz Detection and Imaging using Rydberg Atoms

    Science.gov (United States)

    Wade, Christopher; Sibalic, Nikola; Kondo, Jorge; de Melo, Natalia; Adams, Charles; Weatherill, Kevin

    2016-05-01

    Atoms make excellent electromagnetic field sensors because each atom of the same isotope is identical and has well-studied, permanent properties allowing calibration to SI units. Thus far, atoms have not generally been exploited for terahertz detection because transitions from the atomic ground state are constrained to a limited selection of microwave and optical frequencies. In contrast, highly excited `Rydberg' states allow us access to many strong, electric dipole transitions from the RF to THz regimes. Recent advances in the coherent optical detection of Rydberg atoms have been exploited by a number of groups for precision microwave electrometry Here we report the demonstration of a room-temperature, cesium Rydberg gas as a THz to optical interface. We present two configurations: First, THz-induced fluorescence offers non-destructive and direct imaging of the THz field, providing real-time, single shot images. Second, we convert narrowband terahertz photons to infrared photons with 6% quantum efficiency allowing us to use nano-Watts of THz power to control micro-Watts of laser power on microsecond timescales. Exploiting hysteresis and a room-temperature phase transition in the response of the medium, we demonstrate a latching optical memory for sub pico-Joule THz pulses.

  20. Wire-bottom versus solid-bottom rodent caging issues important to scientists and laboratory animal science specialists.

    Science.gov (United States)

    Stark, D M

    2001-11-01

    Recent emphasis in the National Research Council's Guide for the Care and Use of Laboratory Animals and by the Association for Assessment and Accreditation of Laboratory Animal Care, International, related to the availability of bedding in rodent cages raises regulatory and accreditation issues in the toxicology-laboratory setting. This article reviews the results of a recent survey of 12 United States-based pharmaceutical and contract toxicology laboratories. The perceived benefits and issues related to the use of wire-bottom and bedded caging for rodent studies are presented. The 1999 survey showed that more than 80% of the rodents in surveyed toxicology facilities were housed in wire-bottom cages. Long-term budget expenses related to supplies and waste disposal are assessed. Considerable short-term and long-term costs to programs would be associated with a change from wire-bottom to solid-bottom caging. A review of the past and recent literature related to animal preferences and cage-associated animal lesions is included. The importance of IACUC review of caging chosen by the investigative staff is emphasized.

  1. Linear atomic quantum coupler

    CERN Document Server

    El-Orany, Faisal A A

    2009-01-01

    In this paper, we develop the notion of the linear atomic quantum coupler. This device consists of two modes propagating into two waveguides, each of them includes a localized and/or a trapped atom. These waveguides are placed close enough to allow exchanging energy between them via evanescent waves. Each mode interacts with the atom in the same waveguide in the standard way, i.e. as the Jaynes-Cummings model (JCM), and with the atom-mode in the second waveguide via evanescent wave. We present the Hamiltonian for the system and deduce the exact form for the wavefunction. We investigate the atomic inversions and the second-order correlation function. In contrast to the conventional linear coupler, the atomic quantum coupler is able to generate nonclassical effects. The atomic inversions can exhibit long revival-collapse phenomenon as well as subsidiary revivals based on the competition among the switching mechanisms in the system. Finally, under certain conditions, the system can yield the results of the two-m...

  2. Atomic Structure Theory Lectures on Atomic Physics

    CERN Document Server

    Johnson, Walter R

    2007-01-01

    Atomic Structure Theory is a textbook for students with a background in quantum mechanics. The text is designed to give hands-on experience with atomic structure calculations. Material covered includes angular momentum methods, the central field Schrödinger and Dirac equations, Hartree-Fock and Dirac-Hartree-Fock equations, multiplet structure, hyperfine structure, the isotope shift, dipole and multipole transitions, basic many-body perturbation theory, configuration interaction, and correlation corrections to matrix elements. Numerical methods for solving the Schrödinger and Dirac eigenvalue problems and the (Dirac)-Hartree-Fock equations are given as well. B-spline basis sets are used to carry out sums arising in higher-order many-body calculations. Illustrative problems are provided, together with solutions. FORTRAN programs implementing the numerical methods in the text are included.

  3. Transverse optical and atomic pattern formation

    CERN Document Server

    Schmittberger, Bonnie L

    2016-01-01

    The study of transverse optical pattern formation has been studied extensively in nonlinear optics, with a recent experimental interest in studying the phenomenon using cold atoms, which can undergo real-space self-organization. Here, we describe our experimental observation of pattern formation in cold atoms, which occurs using less than 1 microWatt of applied power. We show that the optical patterns and the self-organized atomic structures undergo continuous symmetry-breaking, which is characteristic of non-equilibrium phenomena in a multimode system. To theoretically describe pattern formation in cold atoms, we present a self-consistent model that allows for tight atomic bunching in the applied optical lattice. We derive the nonlinear refractive index of a gas of multi-level atoms in an optical lattice, and we derive the threshold conditions under which pattern formation occurs. We show that, by using small detunings and sub-Doppler temperatures, one achieves two orders of magnitude reduced intensity thres...

  4. Atomic nanoscale technology in the nuclear industry

    CERN Document Server

    Woo, Taeho

    2011-01-01

    Developments at the nanoscale are leading to new possibilities and challenges for nuclear applications in areas ranging from medicine to international commerce to atomic power production/waste treatment. Progress in nanotech is helping the nuclear industry slash the cost of energy production. It also continues to improve application reliability and safety measures, which remain a critical concern, especially since the reactor disasters in Japan. Exploring the new wide-ranging landscape of nuclear function, Atomic Nanoscale Technology in the Nuclear Industry details the breakthroughs in nanosca

  5. Applied atomic and collision physics special topics

    CERN Document Server

    Massey, H S W; Bederson, Benjamin

    1982-01-01

    Applied Atomic Collision Physics, Volume 5: Special Topics deals with topics on applications of atomic collisions that were not covered in the first four volumes of the treatise. The book opens with a chapter on ultrasensitive chemical detectors. This is followed by separate chapters on lighting, magnetohydrodynamic electrical power generation, gas breakdown and high voltage insulating gases, thermionic energy converters, and charged particle detectors. Subsequent chapters deal with the operation of multiwire drift and proportional chambers and streamer chambers and their use in high energy p

  6. Nuclear power generation modern power station practice

    CERN Document Server

    1971-01-01

    Nuclear Power Generation focuses on the use of nuclear reactors as heat sources for electricity generation. This volume explains how nuclear energy can be harnessed to produce power by discussing the fundamental physical facts and the properties of matter underlying the operation of a reactor. This book is comprised of five chapters and opens with an overview of nuclear physics, first by considering the structure of matter and basic physical concepts such as atomic structure and nuclear reactions. The second chapter deals with the requirements of a reactor as a heat source, along with the diff

  7. Atomic and molecular supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W.

    1997-12-01

    Atomic and molecular physics of supernovae is discussed with an emphasis on the importance of detailed treatments of the critical atomic and molecular processes with the best available atomic and molecular data. The observations of molecules in SN 1987A are interpreted through a combination of spectral and chemical modelings, leading to strong constraints on the mixing and nucleosynthesis of the supernova. The non-equilibrium chemistry is used to argue that carbon dust can form in the oxygen-rich clumps where the efficient molecular cooling makes the nucleation of dust grains possible. For Type Ia supernovae, the analyses of their nebular spectra lead to strong constraints on the supernova explosion models.

  8. Atomic entanglement and decoherence

    Science.gov (United States)

    Genes, Claudiu

    The generation of entanglement in atomic systems plays a central topic in the fields of quantum information storage and processing. Moreover, a special category of entangled states of multi-atom ensembles, spin squeezed states, have been proven to lead to considerable improvement in the sensitivity of precision measurements compared to systems involving uncorrelated atoms. A treatment of entanglement in open systems is, however, incomplete without a precise description of the process of decoherence which necessarily accompanies it. The theory of entanglement and decoherence are the two main topics of this thesis. Methods are described for the generation of strong correlations in large atomic ensembles using either cavity quantum electrodynamics or measurement outcome conditioned quantum dynamics. Moreover, the description of loss of entanglement resulting from the coupling to a noise reservoir (electromagnetic vacuum) is explored. A spin squeezing parameter is used throughout this thesis as both a measure of entanglement strength and as an indication of the sensitivity improvement above the so-called standard quantum limit (sensitivity obtained with uncorrelated particles) in metrology. The first scheme considered consists of a single mode cavity field interacting with a collection of atoms for which spin squeezing is produced in both resonant and off-resonant regimes. In the resonant case, transfer of squeezing from a field state to the atoms is analyzed, while in the off-resonant regime squeezing is produced via an effective nonlinear interaction (one-axis twisting Hamiltonian). A second, more experimentally realistic case, is one involving the interaction of free space atoms with laser pulses; a projective measurement of a source field originating from atomic fluctuations provides a means of preparing atomic collective states such as spin squeezed and Schrodinger cat states. A new "unravelling" is proposed, that employs the detection of photon number in a single

  9. Atom probe tomography today

    Directory of Open Access Journals (Sweden)

    Alfred Cerezo

    2007-12-01

    Full Text Available This review aims to describe and illustrate the advances in the application of atom probe tomography that have been made possible by recent developments, particularly in specimen preparation techniques (using dual-beam focused-ion beam instruments but also of the more routine use of laser pulsing. The combination of these two developments now permits atomic-scale investigation of site-specific regions within engineering alloys (e.g. at grain boundaries and in the vicinity of cracks and also the atomic-level characterization of interfaces in multilayers, oxide films, and semiconductor materials and devices.

  10. Physics of the atom

    CERN Document Server

    Wehr, Russell M; Adair, Thomas W

    1984-01-01

    The fourth edition of Physics of the Atom is designed to meet the modern need for a better understanding of the atomic age. It is an introduction suitable for students with a background in university physics and mathematical competence at the level of calculus. This book is designed to be an extension of the introductory university physics course into the realm of atomic physics. It should give students a proficiency in this field comparable to their proficiency in mechanics, heat, sound, light, and electricity.

  11. Atom trap trace analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Z.-T.; Bailey, K.; Chen, C.-Y.; Du, X.; Li, Y.-M.; O' Connor, T. P.; Young, L.

    2000-05-25

    A new method of ultrasensitive trace-isotope analysis has been developed based upon the technique of laser manipulation of neutral atoms. It has been used to count individual {sup 85}Kr and {sup 81}Kr atoms present in a natural krypton sample with isotopic abundances in the range of 10{sup {minus}11} and 10{sup {minus}13}, respectively. The atom counts are free of contamination from other isotopes, elements,or molecules. The method is applicable to other trace-isotopes that can be efficiently captured with a magneto-optical trap, and has a broad range of potential applications.

  12. Single-atom nanoelectronics

    CERN Document Server

    Prati, Enrico

    2013-01-01

    Single-Atom Nanoelectronics covers the fabrication of single-atom devices and related technology, as well as the relevant electronic equipment and the intriguing new phenomena related to single-atom and single-electron effects in quantum devices. It also covers the alternative approaches related to both silicon- and carbon-based technologies, also from the point of view of large-scale industrial production. The publication provides a comprehensive picture of the state of the art at the cutting edge and constitutes a milestone in the emerging field of beyond-CMOS technology. Although there are

  13. EINSTEIN, SCHROEDINGER, AND ATOM

    Directory of Open Access Journals (Sweden)

    Trunev A. P.

    2014-03-01

    Full Text Available In this paper, we consider gravitation theory in multidimensional space. The model of the metric satisfying the basic requirements of quantum theory is proposed. It is shown that gravitational waves are described by the Liouville equation and the Schrodinger equation as well. The solutions of the Einstein equations describing the stationary states of arbitrary quantum and classical systems with central symmetry have been obtained. Einstein’s atom model has been developed, and proved that atoms and atomic nuclei can be represented as standing gravitational waves

  14. Rydberg atoms in astrophysics

    CERN Document Server

    Gnedin, Yu N; Ignjatovic, Lj M; Sakan, N M; Sreckovic, V A; Zakharov, M Yu; Bezuglov, N N; Klycharev, A N; 10.1016/j.newar.2009.07.003

    2012-01-01

    Elementary processes in astrophysical phenomena traditionally attract researchers attention. At first this can be attributed to a group of hemi-ionization processes in Rydberg atom collisions with ground state parent atoms. This processes might be studied as a prototype of the elementary process of the radiation energy transformation into electrical one. The studies of nonlinear mechanics have shown that so called regime of dynamic chaos should be considered as typical, rather than exceptional situation in Rydberg atoms collision. From comparison of theory with experimental results it follows that a such kind of stochastic dynamic processes, occurred during the single collision, may be observed.

  15. Inside the Hydrogen Atom

    CERN Document Server

    Nowakowski, M; Fierro, D Bedoya; Manjarres, A D Bermudez

    2016-01-01

    We apply the non-linear Euler-Heisenberg theory to calculate the electric field inside the hydrogen atom. We will demonstrate that the electric field calculated in the Euler-Heisenberg theory can be much smaller than the corresponding field emerging from the Maxwellian theory. In the hydrogen atom this happens only at very small distances. This effect reduces the large electric field inside the hydrogen atom calculated from the electromagnetic form-factors via the Maxwell equations. The energy content of the field is below the pair production threshold.

  16. Bottom-up coarse-grained models that accurately describe the structure, pressure, and compressibility of molecular liquids

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Nicholas J. H.; Noid, W. G., E-mail: wnoid@chem.psu.edu [Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2015-12-28

    The present work investigates the capability of bottom-up coarse-graining (CG) methods for accurately modeling both structural and thermodynamic properties of all-atom (AA) models for molecular liquids. In particular, we consider 1, 2, and 3-site CG models for heptane, as well as 1 and 3-site CG models for toluene. For each model, we employ the multiscale coarse-graining method to determine interaction potentials that optimally approximate the configuration dependence of the many-body potential of mean force (PMF). We employ a previously developed “pressure-matching” variational principle to determine a volume-dependent contribution to the potential, U{sub V}(V), that approximates the volume-dependence of the PMF. We demonstrate that the resulting CG models describe AA density fluctuations with qualitative, but not quantitative, accuracy. Accordingly, we develop a self-consistent approach for further optimizing U{sub V}, such that the CG models accurately reproduce the equilibrium density, compressibility, and average pressure of the AA models, although the CG models still significantly underestimate the atomic pressure fluctuations. Additionally, by comparing this array of models that accurately describe the structure and thermodynamic pressure of heptane and toluene at a range of different resolutions, we investigate the impact of bottom-up coarse-graining upon thermodynamic properties. In particular, we demonstrate that U{sub V} accounts for the reduced cohesion in the CG models. Finally, we observe that bottom-up coarse-graining introduces subtle correlations between the resolution, the cohesive energy density, and the “simplicity” of the model.

  17. Bottom-up coarse-grained models that accurately describe the structure, pressure, and compressibility of molecular liquids

    Science.gov (United States)

    Dunn, Nicholas J. H.; Noid, W. G.

    2015-12-01

    The present work investigates the capability of bottom-up coarse-graining (CG) methods for accurately modeling both structural and thermodynamic properties of all-atom (AA) models for molecular liquids. In particular, we consider 1, 2, and 3-site CG models for heptane, as well as 1 and 3-site CG models for toluene. For each model, we employ the multiscale coarse-graining method to determine interaction potentials that optimally approximate the configuration dependence of the many-body potential of mean force (PMF). We employ a previously developed "pressure-matching" variational principle to determine a volume-dependent contribution to the potential, UV(V), that approximates the volume-dependence of the PMF. We demonstrate that the resulting CG models describe AA density fluctuations with qualitative, but not quantitative, accuracy. Accordingly, we develop a self-consistent approach for further optimizing UV, such that the CG models accurately reproduce the equilibrium density, compressibility, and average pressure of the AA models, although the CG models still significantly underestimate the atomic pressure fluctuations. Additionally, by comparing this array of models that accurately describe the structure and thermodynamic pressure of heptane and toluene at a range of different resolutions, we investigate the impact of bottom-up coarse-graining upon thermodynamic properties. In particular, we demonstrate that UV accounts for the reduced cohesion in the CG models. Finally, we observe that bottom-up coarse-graining introduces subtle correlations between the resolution, the cohesive energy density, and the "simplicity" of the model.

  18. The infancy of atomic physics Hercules in his cradle

    CERN Document Server

    Keller, Alex

    2006-01-01

    Atomic physics is a mighty Hercules that dominates modern civilization, promising immense reserves of power but threatening catastrophic war and radioactive pollution. The story of the atom's discovery and the development of techniques to harness its energy offers fascinating insights into the forces behind twenty-first-century technology. This compelling history portrays the human faces and lives behind the beginnings of atomic science.The Infancy of Atomic Physics ranges from experiments in the 1880s by William Crookes and others to the era just after the First World War, when Rutherford's f

  19. Stimulated Emission of an Atom in Circularly Polarized Light

    Institute of Scientific and Technical Information of China (English)

    李锦茴; 曾高坚; 叶永华

    2003-01-01

    We study the stimulated emission of a two-level atom in an electromagnetic wave of circular polarization. The correlation function G(r1t, r2t) = of atom radiation fields at dipole approximation are computed. Under the resonance condition, the atom stimulated emission is influenced by the circularly polarized electromagnetic wave discussed. We have found that the time-averaged value of energy density does not depend on the initial conditions. We have also deduced the relation between the emission power of an atom and the Rabi frequency Ω.

  20. EFFECT OF CONVECTIVE BOUNDARY CONDITIONS AT BOTTOM WALL ON NATURAL CONVECTIONS IN A SQUARE CAVITY

    Directory of Open Access Journals (Sweden)

    ASWATHA

    2013-04-01

    Full Text Available Simulations were carried out for natural convection in a square cavity using finite volume based computational procedure with biased quadratic elements to investigate the influence of convective boundary conditions at bottom wall. Parametric study has been carried out for a wide range of Rayleigh number (Ra (103 ≤ Ra ≤ 108, Prandtl number (Pr (0.7 ≤ Pr ≤ 17 and heat transfer coefficient (h (0.1 ≤ h ≤ 104 W/m2 K. It is observed from the present study that the heat transfer is primarily due to conduction for Rayleigh number up to 104. Convection dominant heat transfer is observed at higher Ra values. The intensity of circulation increases with increase in Ra number. The average heat transfer rate at the bottom wall is found to be invariant for all values of heat transfer coefficient for Ra up to 104. The power law correlations between average Nusselt number and Rayleigh numbers are presented for convection dominated regimes.

  1. Mathematical Modeling of the Pressure Field Generated by Ocean Wave at the Bottom of the Ocean

    Institute of Scientific and Technical Information of China (English)

    龚沈光; 唐劲飞; 颜冰

    2002-01-01

    This paper develops a new method for calculating the pressure-tirme processof the pressure field generated by ocean wave at sea bottom based on the surface wavespectrum of the ocean wave. The basic assumptions of modeling are that the surfaceocean wave pressure equals to the atmospheric pressure and that the viscidity of seawater is neglected. The steps of modeling are described below. First the power spectraldensity of ocean wave is discretized and the amplitude spectra of harmonic ocean waveare obtained. Then the amplitude spectra of harmonic pressure are obtained accordingto the amplitude spectrum of surface wave and the depth of the sea. Finally, based onthe oceanographic theory of representing a fixed wave surface by summing up random-phase sinusoids, the pressure-time process of pressure field at sea bottom is obtained bysumming up the amplitude spectrum of pressure. The paper also develops a method ofdetermining the relationship between mean wave period and wave heights undershallow water condition, thus the pressure-time process of pressure field produced bynon-well-developed ocean wave can be directly calculated once the mean wave heightand period are known.

  2. Bottom-series coupled quadrature VCO using the inductive gate voltage boosting technique

    Science.gov (United States)

    Jang, Sheng-Lyang; Chou, Li-Te

    2013-09-01

    This article presents a new low-voltage bottom-series coupled quadrature voltage-controlled oscillator (QVCO), which consists of two n-core cross-coupled VCOs with the bottom-series coupling transistors. The low-voltage operation is obtained via an inductive gate voltage boosting technique. The proposed CMOS QVCO has been implemented with the TSMC 0.18 µm CMOS technology and the die area is 0.897 × 0.767 mm2. At the supply voltage of 0.7 V, the total power consumption is 1.5 mW. The free-running frequency of the QVCO is tuneable from 3.77 to 4.12 GHz as the tuning voltage is varied from 0.0 to 0.7 V. The measured phase noise at 1 MHz frequency offset is -123.35 dBc/Hz at the oscillation frequency of 4.12 GHz and the figure of merit of the proposed QVCO is -193.5 dBc/Hz.

  3. Adsorption of Crystal Violet Dye from Aqueous Solution onto Zeolites from Coal Fly and Bottom Ashes

    Directory of Open Access Journals (Sweden)

    Tharcila Colachite Rodrigues Bertolini

    2013-11-01

    Full Text Available The adsorption of the cationic dye Crystal Violet (CV over zeolites from coal fly ash (ZFA and bottom ash (ZBA was evaluated. The coal fly ash (CFA and the coal bottom ash (CBA used in the synthesis of the zeolites by alkaline hydrothermal treatment were collected in Jorge Lacerda coal-fired power plant located at Capivari de Baixo County, in Santa Catarina State, Brazil. The zeolitic materials were characterized predominantly as hydroxy-sodalite and X. The dye adsorption equilibrium was reached after 10 min for ZFA and ZBA. The kinetics studies indicated that the adsorption followed the pseudo-second order kinetics and that surface adsorption and intraparticle diffusion were involved in the adsorption mechanism for both the adsorbents. The equilibrium data of ZFA was found to best fit to the Langmuir model, while ZBA was best explained by the Freundlich model. The maximum adsorption capacities were 19.6 mg g-1 for the CV/ZFA and 17.6 mg g-1 for the CV/ZBA.

  4. Habitat Evaluation Procedures (HEP) Report; Burlington Bottoms, Technical Report 1993-2003.

    Energy Technology Data Exchange (ETDEWEB)

    Beilke, Susan

    1993-08-01

    Burlington Bottoms, consisting of approximately 417 acres of riparian and wetland habitat, was purchased by the Bonneville Power Administration in November 1991. The site is located approximately 1/2 mile north of the Sauvie Island Bridge (T2N R1W Sections 20, 21), and is bound on the east side by Multnomah Channel and on the west side by the Burlington Northern Railroad right-of-way and U.S. Highway 30 (Figures 1 and 2). Wildlife habitat values resulting from the purchase of this site will contribute toward the goal of mitigating for habitat lost as outlined in the Columbia and Willamette River Basin's Fish and Wildlife Program and Amendments. Under this Program, mitigation goals were developed as a result of the loss of wildlife habitat due to the development and operation of Federal hydro-electric facilities in the Columbia and Willamette River Basins. In 1993, an interdisciplinary team was formed to develop and implement quantitative Habitat Evaluation Procedures (HEP) to document the value of various habitats at Burlington Bottoms. Results of the HEP will be used to: (1) determine the current status and habitat enhancement potential of the site consistent with wildlife mitigation goals and objectives; and (2) develop a management plan for the area. HEP participants included; Charlie Craig, BPA; Pat Wright, Larry Rasmussen, and Ron Garst, U. S. Fish and Wildlife Service; John Christy, The Nature Conservancy; and Doug Cottam, Sue Beilke, and Brad Rawls, Oregon Department of Fish and Wildlife.

  5. Atom chip gravimeter

    Science.gov (United States)

    Schubert, Christian; Abend, Sven; Gebbe, Martina; Gersemann, Matthias; Ahlers, Holger; Müntinga, Hauke; Matthias, Jonas; Sahelgozin, Maral; Herr, Waldemar; Lämmerzahl, Claus; Ertmer, Wolfgang; Rasel, Ernst

    2016-04-01

    Atom interferometry has developed into a tool for measuring rotations [1], accelerations [2], and testing fundamental physics [3]. Gravimeters based on laser cooled atoms demonstrated residual uncertainties of few microgal [2,4] and were simplified for field applications [5]. Atomic gravimeters rely on the interference of matter waves which are coherently manipulated by laser light fields. The latter can be interpreted as rulers to which the position of the atoms is compared. At three points in time separated by a free evolution, the light fields are pulsed onto the atoms. First, a coherent superposition of two momentum states is produced, then the momentum is inverted, and finally the two trajectories are recombined. Depending on the acceleration the atoms experienced, the number of atoms detected in the output ports will change. Consequently, the acceleration can be determined from the output signal. The laser cooled atoms with microkelvin temperatures used in state-of-the-art gravimeters impose limits on the accuracy [4]. Therefore, ultra-cold atoms generated by Bose-Einstein condensation and delta-kick collimation [6,7] are expected to be the key for further improvements. These sources suffered from a low flux implying an incompatible noise floor, but a competitive performance was demonstrated recently with atom chips [8]. In the compact and robust setup constructed for operation in the drop tower [6] we demonstrated all steps necessary for an atom chip gravimeter with Bose-Einstein condensates in a ground based operation. We will discuss the principle of operation, the current performance, and the perspectives to supersede the state of the art. The authors thank the QUANTUS cooperation for contributions to the drop tower project in the earlier stages. This work is supported by the German Space Agency (DLR) with funds provided by the Federal Ministry for Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under grant numbers DLR 50WM

  6. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    1998-01-01

    This volume continues the series'' cutting-edge reviews on developments in this field. Since its invention in the 1920s, electrostatic precipitation has been extensively used in industrial hygiene to remove dust and particulate matter from gases before entering the atmosphere. This combination of electrostatic precipitation is reported upon in the first chapter. Following this, chapter two reviews recent advances in the area of chemical modification in electrothermal atomization. Chapter three consists of a review which deal with advances and uses of electrothermal atomization atomic absorption spectrometry. Flow injection atomic spectroscopy has developed rapidly in recent years and after a general introduction, various aspects of this technique are looked at in chapter four. Finally, in chapter five the use of various spectrometric techniques for the determination of mercury are described.

  7. Atomic & Molecular Interactions

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-07-12

    The Gordon Research Conference (GRC) on Atomic & Molecular Interactions was held at Roger Williams University, Bristol, RI. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  8. Topics in atomic physics

    CERN Document Server

    Burkhardt, Charles E

    2006-01-01

    The study of atomic physics propelled us into the quantum age in the early twentieth century and carried us into the twenty-first century with a wealth of new and, in some cases, unexplained phenomena. Topics in Atomic Physics provides a foundation for students to begin research in modern atomic physics. It can also serve as a reference because it contains material that is not easily located in other sources. A distinguishing feature is the thorough exposition of the quantum mechanical hydrogen atom using both the traditional formulation and an alternative treatment not usually found in textbooks. The alternative treatment exploits the preeminent nature of the pure Coulomb potential and places the Lenz vector operator on an equal footing with other operators corresponding to classically conserved quantities. A number of difficult to find proofs and derivations are included as is development of operator formalism that permits facile solution of the Stark effect in hydrogen. Discussion of the classical hydrogen...

  9. Atomical Grothendieck categories

    Directory of Open Access Journals (Sweden)

    C. Năstăsescu

    2003-01-01

    Full Text Available Motivated by the study of Gabriel dimension of a Grothendieck category, we introduce the concept of atomical Grothendieck category, which has only two localizing subcategories, and we give a classification of this type of Grothendieck categories.

  10. Atomic Interferometry Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Vertical cavity surface emitting lasers (VCSELs) is a new technology which can be used for developing high performance laser components for atom-based sensors...

  11. An atomic empire a technical history of the rise and fall of the British atomic energy programme

    CERN Document Server

    Hill, C N

    2013-01-01

    Britain was the first country to exploit atomic energy on a large scale, and at its peak in the mid-1960s, it had generated more electricity from nuclear power than the rest of the world combined.The civil atomic energy programme grew out of the military programme which produced plutonium for atomic weapons. In 1956, Calder Hall power station was opened by the Queen. The very next year, one of the early Windscale reactors caught fire and the world's first major nuclear accident occurred.The civil programme ran into further difficulty in the mid-1960s and as a consequence of procrastination in

  12. Research on rotary forming mechanism of cartridge bottom by FEM

    Institute of Scientific and Technical Information of China (English)

    刘钢; 姚雄亮; 黄少东; 唐全波

    2003-01-01

    The rotary forging of a cartridge bottom is simulated by finite element method with DEFORMTM. The analysis of stress and strain rate results indicates that the deformation conditions and the final geometry of a product are not completely axis-symmetrical under the partial loading conditions during the rotary forging operations. It is therefore required to have a few more rotary forging cycles at the end of total feeding to eliminate nonuniformity. The results of simulation show that the optimization of rotary forging process conditions can be achieved to avoid the underfill defect resulting from improper process conditions. This technology can be used to manufacture ring components with thin bottoms by properly controlling the working process and the tooling motion.

  13. Microplastics in Baltic bottom sediments: Quantification procedures and first results.

    Science.gov (United States)

    Zobkov, M; Esiukova, E

    2017-01-30

    Microplastics in the marine environment are known as a global ecological problem but there are still no standardized analysis procedures for their quantification. The first breakthrough in this direction was the NOAA Laboratory Methods for quantifying synthetic particles in water and sediments, but fibers numbers have been found to be underestimated with this approach. We propose modifications for these methods that will allow us to analyze microplastics in bottom sediments, including small fibers. Addition of an internal standard to sediment samples and occasional empty runs are advised for analysis quality control. The microplastics extraction efficiency using the proposed modifications is 92±7%. Distribution of microplastics in bottom sediments of the Russian part of the Baltic Sea is presented. Microplastic particles were found in all of the samples with an average concentration of 34±10 items/kg DW and have the same order of magnitude as neighbor studies reported.

  14. Effect of a sloping bottom on sound propagation

    Science.gov (United States)

    Rutenko, A. N.; Kozitskii, S. B.; Manul'chev, D. S.

    2015-01-01

    The paper presents the results of field measurements of acoustic fields generated in autumn hydrological conditions of the Sea of Japan shelf by a TON-320Hz autonomous signal emitter, moored in the sea at a depth of 34 m, as well as by a low-frequency pulsed pneumoemitter lowered from from a ship to a horizon of 10 m. Reception was via a hydrophone moored at a depth of 41 m from a digital radio-hydroacoustic buoy and the hydrophone of an autonomous acoustic recorder lowered together with an autonomous hydrological sonde from a drifting ship. Sound propagation from these sources was simulated by a wide-angle parabolic equation taking into account the elastic properties of rocks making up the bottom, as well as by a 3-D mode parabolic equation in the adiabatic approximation for a "fluid" bottom.

  15. Masses and decay widths of radially excited Bottom mesons

    CERN Document Server

    Gupta, Pallavi

    2016-01-01

    Inspired from the experimental information coming from LHC [2,3] and Babar [4] for radially higher excited charmed mesons, we predict the masses and decays of the n=2 S-wave and P- wave bottom mesons using the effective lagrangian approach. Using heavy quark effective theory approach, non-perturbative parameters (?, ?1 and ?2) are fitted using the available experimental and theoretical informations on charm masses. Using heavy quark symmetry and the values of these fitted parameters, the masses of radially excited even and odd parity bottom mesons with and without strangness are predicted. These predicted masses led in constraining the decay widths of these 12 states, and also shed light on the unknown values of the higher hadronic coupling constants eeg 2 SH and eeg 2 TH. Studying the properties like masses, decays of 2S and 2P states and some hadronic couplings would help forthcoming experiments to look into these states in future.

  16. Bottom-up effects on attention capture and choice

    DEFF Research Database (Denmark)

    Peschel, Anne; Orquin, Jacob Lund; Mueller Loose, Simone

    Attention processes and decision making are accepted to be closely linked together because only information that is attended to can be incorporated in the decision process. Little is known however, to which extent bottom-up processes of attention affect stimulus selection and therefore...... the information available to form a decision. Does changing one visual cue in the stimulus set affect attention towards this cue and what does that mean for the choice outcome? To address this, we conducted a combined eye tracking and choice experiment in a consumer choice setting with visual shelf simulations...... of different product categories. Surface size and visual saliency of a product label were manipulated to determine bottom-up effects on attention and choice. Results show a strong and significant increase in attention in terms of fixation likelihood towards product labels which are larger and more visually...

  17. Vector-like bottom quarks in composite Higgs models

    DEFF Research Database (Denmark)

    Gillioz, M.; Grober, R.; Kapuvari, A.;

    2014-01-01

    Like many other models, Composite Higgs Models feature the existence of heavy vector-like quarks. Mixing effects between the Standard Model fields and the heavy states, which can be quite large in case of the top quark, imply deviations from the SM. In this work we investigate the possibility...... of heavy bottom partners. We show that they can have a significant impact on electroweak precision observables and the current Higgs results if there is a sizeable mixing with the bottom quark. We explicitly check that the constraints from the measurement of the CKM matrix element V-tb are fulfilled...... be applied to other models with similar particle content. Furthermore, the constraints from direct searches for heavy states at the LHC and from the Higgs search results have been included in our analysis. The best agreement with all the considered constraints is achieved for medium to large compositeness...

  18. Inverse problem of bottom slope design for aerator devices

    Institute of Scientific and Technical Information of China (English)

    吴建华; 樊博; 许唯临

    2013-01-01

    Air entrainment is an effective approach to protect release works from cavitation damage. The traditional method of aera-tor device designs is that, for given flow conditions, the geometries of the aerator device are designed and then the effects are experi-mentally tested for cavitation damage control. The present paper proposes an inverse problem method of determining the bottom slopes in front of and behind an aerator if the requirements of air entrainment, flow conditions and some of aerator geometric para-meters are given. An RBF neural network model is developed and the relevant bottom slopes are calculated in different conditions of flow and geometry on the basis of the data of 19 aerator devices from different discharge tunnels with safe operation. The case study shows that the methodology provides an effective way to design aerator devices under given target conditions.

  19. Large top and bottom Yukawa couplings in minimal supersymmetry

    CERN Document Server

    Floratos, Emmanuel G

    1994-01-01

    ABSTRACT We present analytic expressions for the top and bottom Yukawa couplings in the context of the minimal supersymmetric standard model when both couplings h_{t,0},h_{b,0} are large at the unification scale. For sufficiently large h_{t,0},h_{b,0}, using as input the central value of the bottom mass m_b(m_b)=4.25GeV, we find that the top mass lies in the range m_t \\approx (174-178)GeV, while tan\\beta \\approx (55-58). Implications on the evolution of the scalar masses and the radiative symmetry breaking scenario are discussed.

  20. Electroweak symmetry breaking and bottom-top Yukawa unification

    CERN Document Server

    Carena, M S; Olechowski, M; Wagner, C E M

    1994-01-01

    The condition of unification of gauge couplings in the minimal supersymmetric standard model provides successful predictions for the weak mixing angle as a function of the strong gauge coupling and the supersymmetric threshold scale. In addition, in some scenarios, e.g.\\ in the minimal SO(10) model, the tau lepton and the bottom and top quark Yukawa couplings unify at the grand unification scale. The condition of Yukawa unification leads naturally to large values of $\\tan\\beta$, implying a proper top quark--bottom quark mass hierarchy. In this work, we investigate the feasibility of unification of the Yukawa couplings, in the framework of the minimal supersymmetric standard model with (assumed) universal mass parameters at the unification scale and with radiative breaking of the electroweak symmetry. We show that strong correlations between the parameters $\\mu_0$ and $M_{1/2}$ appear within this scheme. These correlations have relevant implications for the sparticle spectrum, which presents several characteri...

  1. The Effects of Bottom Ash from MSWI Used as Mineral Additions in Concrete

    Directory of Open Access Journals (Sweden)

    Che Amat Roshazita

    2017-01-01

    Full Text Available Municipal solid waste incinerators (MSWI produce by products which can be classified as bottom and fly ashes. The bottom ash accounts for 85–90 % of the solid product resulting from MSW combustion. The aimed of the present work is to study the effect of replacing partial of bottom ash were manufactured. Fresh and hardened properties of the concrete were compared in order to study the suitable cement-bottom ash replacement. Bottom ash was found to have some reactivity, but without greatly affecting the hydration process of OPC at 10 % replacement. However at more than 10 % replacement, the addition of bottom ash greatly affected strength.

  2. Transfer of radionuclides from high polluted bottom sediments to marine organisms through benthic food chain in post Fukushima period

    Science.gov (United States)

    Bezhenar, Roman; Jung, Kyung Tae; Maderich, Vladimir; Willemsen, Stefan; de With, Govert; Qiao, Fangli

    2015-04-01

    A catastrophic earthquake and tsunami occurred on March 11, 2011 and severely damaged the Fukushima Daiichi Nuclear Power Plant (FDNPP) that resulted in an uncontrolled release of radioactivity into air and ocean. Around 80% of the radioactivity released due to the FDNPP accident in March-April 2011 was either directly discharged into the ocean or deposited onto the ocean surface from the atmosphere. A large amount of long-lived radionuclides (mainly Cs-137) were released into the environment. The concentration of radionuclides in the ocean reached a maximum in mid-April of 2011, and then gradually decreased. From 2011 the concentration of Cs-137 in water essentially fell except the area around the FDNPP where leaks of contaminated water are continued. However, in the bottom sediment high concentrations of Cs-137 were found in the first months after the accident and slowly decreased with time. Therefore, it should be expected that a time delay is found of sediment-bound radionuclides in marine organisms. For the modeling of radionuclide transfer from highly polluted bottom sediments to marine organisms the dynamical food chain model BURN-POSEIDON (Heling et al, 2002; Maderich et al., 2014) was extended. In this model marine organisms are grouped into a limited number of classes based on their trophic level and type of species. These include: phytoplankton, zooplankton, fishes (two types: piscivorous and non-piscivorous), crustaceans, and molluscs for pelagic food chain and bottom sediment invertebrates, demersal fishes and bottom predators for benthic food chain and whole water column predators feeding by pelagial and benthic fishes. Bottom invertebrates consume organic parts of bottom sediments with adsorbed radionuclides which then migrate through the food chain. All organisms take radionuclides directly from water as well as via food. In fishes where radioactivity is not homogeneously distributed over all tissues of the organism, it is assumed that radionuclide

  3. Optical atomic magnetometer

    Science.gov (United States)

    Budker, Dmitry; Higbie, James; Corsini, Eric P

    2013-11-19

    An optical atomic magnetometers is provided operating on the principles of nonlinear magneto-optical rotation. An atomic vapor is optically pumped using linearly polarized modulated light. The vapor is then probed using a non-modulated linearly polarized light beam. The resulting modulation in polarization angle of the probe light is detected and used in a feedback loop to induce self-oscillation at the resonant frequency.

  4. Cavity enhanced atomic magnetometry

    OpenAIRE

    Herbert Crepaz; Li Yuan Ley; Rainer Dumke

    2015-01-01

    Atom sensing based on Faraday rotation is an indispensable method for precision measurements, universally suitable for both hot and cold atomic systems. Here we demonstrate an all-optical magnetometer where the optical cell for Faraday rotation spectroscopy is augmented with a low finesse cavity. Unlike in previous experiments, where specifically designed multipass cells had been employed, our scheme allows to use conventional, spherical vapour cells. Spherical shaped cells have the advantage...

  5. Hirshfeld atom refinement.

    Science.gov (United States)

    Capelli, Silvia C; Bürgi, Hans-Beat; Dittrich, Birger; Grabowsky, Simon; Jayatilaka, Dylan

    2014-09-01

    Hirshfeld atom refinement (HAR) is a method which determines structural parameters from single-crystal X-ray diffraction data by using an aspherical atom partitioning of tailor-made ab initio quantum mechanical molecular electron densities without any further approximation. Here the original HAR method is extended by implementing an iterative procedure of successive cycles of electron density calculations, Hirshfeld atom scattering factor calculations and structural least-squares refinements, repeated until convergence. The importance of this iterative procedure is illustrated via the example of crystalline ammonia. The new HAR method is then applied to X-ray diffraction data of the dipeptide Gly-l-Ala measured at 12, 50, 100, 150, 220 and 295 K, using Hartree-Fock and BLYP density functional theory electron densities and three different basis sets. All positions and anisotropic displacement parameters (ADPs) are freely refined without constraints or restraints - even those for hydrogen atoms. The results are systematically compared with those from neutron diffraction experiments at the temperatures 12, 50, 150 and 295 K. Although non-hydrogen-atom ADPs differ by up to three combined standard uncertainties (csu's), all other structural parameters agree within less than 2 csu's. Using our best calculations (BLYP/cc-pVTZ, recommended for organic molecules), the accuracy of determining bond lengths involving hydrogen atoms from HAR is better than 0.009 Å for temperatures of 150 K or below; for hydrogen-atom ADPs it is better than 0.006 Å(2) as judged from the mean absolute X-ray minus neutron differences. These results are among the best ever obtained. Remarkably, the precision of determining bond lengths and ADPs for the hydrogen atoms from the HAR procedure is comparable with that from the neutron measurements - an outcome which is obtained with a routinely achievable resolution of the X-ray data of 0.65 Å.

  6. Atoms, molecules & elements

    CERN Document Server

    Graybill, George

    2007-01-01

    Young scientists will be thrilled to explore the invisible world of atoms, molecules and elements. Our resource provides ready-to-use information and activities for remedial students using simplified language and vocabulary. Students will label each part of the atom, learn what compounds are, and explore the patterns in the periodic table of elements to find calcium (Ca), chlorine (Cl), and helium (He) through hands-on activities.

  7. Sediment transport in the presence of large reef bottom roughness

    Science.gov (United States)

    Pomeroy, Andrew; Lowe, Ryan J.; Ghisalberti, Marco; Storlazzi, Curt; Symonds, Graham; Roelvink, Dano

    2017-01-01

    The presence of large bottom roughness, such as that formed by benthic organisms on coral reef flats, has important implications for the size, concentration, and transport of suspended sediment in coastal environments. A 3 week field study was conducted in approximately 1.5 m water depth on the reef flat at Ningaloo Reef, Western Australia, to quantify the cross-reef hydrodynamics and suspended sediment dynamics over the large bottom roughness (∼20–40 cm) at the site. A logarithmic mean current profile consistently developed above the height of the roughness; however, the flow was substantially reduced below the height of the roughness (canopy region). Shear velocities inferred from the logarithmic profile and Reynolds stresses measured at the top of the roughness, which are traditionally used in predictive sediment transport formulations, were similar but much larger than that required to suspend the relatively coarse sediment present at the bed. Importantly, these stresses did not represent the stresses imparted on the sediment measured in suspension and are therefore not relevant to the description of suspended sediment transport in systems with large bottom roughness. Estimates of the bed shear stresses that accounted for the reduced near-bed flow in the presence of large roughness vastly improved the relationship between the predicted and observed grain sizes that were in suspension. Thus, the impact of roughness, not only on the overlying flow but also on bed stresses, must be accounted for to accurately estimate suspended sediment transport in regions with large bottom roughness, a common feature of many shallow coastal ecosystems.

  8. A review of the open charm and open bottom mesons

    CERN Document Server

    Chen, Hua-Xing; Liu, Xiang; Liu, Yan-Rui; Zhu, Shi-Lin

    2016-01-01

    Since the discovery of the first charmed meson in 1976, many open-charm and open-bottom mesons were observed. In 2003 two narrow charm-strange states $D_{s0}^*(2317)$ and $D_{s1}(2460)$ were discovered by the BaBar and CLEO Collaborations, respectively. After that, more excited heavy mesons were reported. In this work, we review the experimental and theoretical progress in this field.

  9. Precious Metals in Municipal Solid Waste Incineration Bottom Ash

    Energy Technology Data Exchange (ETDEWEB)

    Muchova, Lenka; Bakker, Erwin; Rem, Peter [Faculty of Civil Engineering and Geosciences, Materials and Environment, TU Delft (Netherlands)], E-mail: P.C.REM@TUDELFT.NL

    2009-04-15

    Municipal solid waste incineration (MSWI) bottom ash contains economically significant levels of silver and gold. Bottom ashes from incinerators at Amsterdam and Ludwigshafen were sampled, processed, and analyzed to determine the composition, size, and mass distribution of the precious metals. In order to establish accurate statistics of the gold particles, a sample of heavy non-ferrous metals produced from 15 tons of wet processed Amsterdam ash was analyzed by a new technology called magnetic density separation (MDS). Amsterdam's bottom ash contains approximately 10 ppm of silver and 0.4 ppm of gold, which was found in particulate form in all size fractions below 20 mm. The sample from Ludwigshafen was too small to give accurate values on the gold content, but the silver content was found to be identical to the value measured for the Amsterdam ash. Precious metal value in particles smaller than 2 mm seems to derive mainly from waste of electrical and electronic equipment (WEEE), whereas larger precious metal particles are from jewelry and constitute the major part of the economic value. Economical analysis shows that separation of precious metals from the ash may be viable with the presently high prices of non-ferrous metals. In order to recover the precious metals, bottom ash must first be classified into different size fractions. Then, the heavy non-ferrous (HNF) metals should be concentrated by physical separation (eddy current separation, density separation, etc.). Finally, MDS can separate gold from the other HNF metals (copper, zinc). Gold-enriched concentrates can be sold to the precious metal smelter and the copper-zinc fraction to a brass or copper smelter.

  10. Simulation of Random Waves and Associated Laminar Bottom Shear Stresses

    Institute of Scientific and Technical Information of China (English)

    Mao-Lin SHEN; Ching-Jer HUANG

    2008-01-01

    This work presents a new approach for simulating the random waves in viscous fluids and the associated bottom shear stresses. By generating the incident random waves in a numerical wave flume and solving the unsteady two-dimensional Navier-Stokes equations and the fully nonlinear free surface boundary conditions for the fluid flows in the flume, the viscous flows and laminar bottom shear stresses induced by random waves are determined. The deterministic spectral amplitude method implemented by use of the fast Fourier transform algorithm was adopted to generate the incident random waves. The accuracy of the numerical scheme is confirmed by comparing the predicted wave spectrum with the target spectrum and by comparing the numerical transfer function between the shear stress and the surface elevation with the theoretical transfer function. The maximum bottom shear stress caused by random waves, computed by this wave model, is compared with that obtained by Myrhaug's model (1995). The transfer function method is also employed to determine the maximum shear stress, and is proved accurate.

  11. Momentum balance in the shallow water equations on bottom discontinuities

    Science.gov (United States)

    Valiani, A.; Caleffi, V.

    2017-02-01

    This work investigates the topical problem of balancing the shallow water equations over bottom steps of different heights. The current approaches in the literature are essentially based on mathematical analysis of the hyperbolic system of balance equations and take into account the relevant progresses in treating the non-conservative form of the governing system in the framework of path-conservative schemes. An important problem under debate is the correct position of the momentum balance closure when the bottom elevation is discontinuous. Cases of technical interest are systematically analysed, consisting of backward-facing steps and forward-facing steps, tackled supercritical and subcritical flows; critical (sonic) conditions are also analysed and discussed. The fundamental concept governing the problem and supported by the present computations is that the energy-conserving approach is the only approach that is consistent with the classical shallow water equations formulated with geometrical source terms and that the momentum balance is properly closed if a proper choice of a conventional depth on the bottom step is performed. The depth on the step is shown to be included between the depths just upstream and just downstream of the step. It is also shown that current choices (as given in the literature) of the depth on (or in front of) the step can lead to unphysical configurations, similar to some energy-increasing solutions.

  12. Time variable bottom water outflow in the Northwestern Weddell Sea

    Science.gov (United States)

    Kanzow, Torsten; Rohardt, Gerd

    2015-04-01

    The Antarctic Bottom Water (AABW) has shown widespread warming in recent decades, with implications for sea level rise and global heat uptake. Anomalously warm AABW has recently been reported to have reached the Brazil basin in the South Atlantic, while the warming further south partly seems to have come to a halt. The Weddell Sea represents the primary source of Antarctic Bottom Water (AABW) formation in the Southern Ocean. More than 60% of the AABW are supplied by Weddell Sea Deep Water, of which Weddell Sea Bottom Water (WSBW) is the main source. WSBW descends down the continental slope along the western margin of the Weddell Sea as a northward flowing plume, thereby entraining warmer ambient waters. The plume has been observed using moored current meters and temperature sensors between 1989 and 1998 and between 2005 and 2012 near the tip of the Antarctic Peninsula, complemented by repeated cross-slope CTD sections along the mooring array. In this study we extend the WSBW volume transport and temperature time series of Fahrbach et al. (2001) originally covering the 1989-1998 interval by the more recent period. We will report on both seasonal to inter-annual variability and possible longer-term trends in both volume transport and temperature of WSBW. The results will be discussed in the context of changes in the source areas of WSBW, such as the breakup of parts of the Larsen Ice Shelf on the eastern Arctic Peninsula, possibly fueling the formation dense water on the shelf.

  13. Bottom mass from nonrelativistic sum rules at NNLL

    Energy Technology Data Exchange (ETDEWEB)

    Stahlhofen, Maximilian

    2013-01-15

    We report on a recent determination of the bottom quark mass from nonrelativistic (large-n) {Upsilon} sum rules with renormalization group improvement (RGI) at next-to-next-to-leading logarithmic (NNLL) order. The comparison to previous fixed-order analyses shows that the RGI computed in the vNRQCD framework leads to a substantial stabilization of the theoretical sum rule moments with respect to scale variations. A single moment fit (n=10) to the available experimental data yields M{sub b}{sup 1S}=4.755{+-}0.057{sub pert}{+-}0.009{sub {alpha}{sub s}}{+-}0.003{sub exp} GeV for the bottom 1S mass and anti m{sub b}(anti m{sub b})=4.235{+-}0.055{sub pert}{+-}0.003{sub exp} GeV for the bottom MS mass. The quoted uncertainties refer to the perturbative error and the uncertainties associated with the strong coupling and the experimental input.

  14. Exploring the top and bottom of the quantum control landscape.

    Science.gov (United States)

    Beltrani, Vincent; Dominy, Jason; Ho, Tak-San; Rabitz, Herschel

    2011-05-21

    A controlled quantum system possesses a search landscape defined by the target physical objective as a function of the controls. This paper focuses on the landscape for the transition probability P(i → f) between the states of a finite level quantum system. Traditionally, the controls are applied fields; here, we extend the notion of control to also include the Hamiltonian structure, in the form of time independent matrix elements. Level sets of controls that produce the same transition probability value are shown to exist at the bottom P(i → f)=0.0 and top P(i → f)=1.0 of the landscape with the field and/or Hamiltonian structure as controls. We present an algorithm to continuously explore these level sets starting from an initial point residing at either extreme value of P(i → f). The technique can also identify control solutions that exhibit the desirable properties of (a) robustness at the top and (b) the ability to rapidly rise towards an optimal control from the bottom. Numerical simulations are presented to illustrate the varied control behavior at the top and bottom of the landscape for several simple model systems.

  15. Role of zinc interstitials and oxygen vacancies of ZnO in photocatalysis: a bottom-up approach to control defect density.

    Science.gov (United States)

    Kayaci, Fatma; Vempati, Sesha; Donmez, Inci; Biyikli, Necmi; Uyar, Tamer

    2014-09-07

    Oxygen vacancies (V(O)s) in ZnO are well-known to enhance photocatalytic activity (PCA) despite various other intrinsic crystal defects. In this study, we aim to elucidate the effect of zinc interstitials (Zn(i)) and V(O)s on PCA, which has applied as well as fundamental interest. To achieve this, the major hurdle of fabricating ZnO with controlled defect density requires to be overcome, where it is acknowledged that defect level control in ZnO is significantly difficult. In the present context, we fabricated nanostructures and thoroughly characterized their morphological (SEM, TEM), structural (XRD, TEM), chemical (XPS) and optical (photoluminescence, PL) properties. To fabricate the nanostructures, we adopted atomic layer deposition (ALD), which is a powerful bottom-up approach. However, to control defects, we chose polysulfone electrospun nanofibers as a substrate on which the non-uniform adsorption of ALD precursors is inevitable because of the differences in the hydrophilic nature of the functional groups. For the first 100 cycles, Zn(i)s were predominant in ZnO quantum dots (QDs), while the presence of V(O)s was negligible. As the ALD cycle number increased, V(O)s were introduced, whereas the density of Zn(i) remained unchanged. We employed PL spectra to identify and quantify the density of each defect for all the samples. PCA was performed on all the samples, and the percent change in the decay constant for each sample was juxtaposed with the relative densities of Zn(i)s and V(O)s. A logical comparison of the relative defect densities of Zn(i)s and V(O)s suggested that the former are less efficient than the latter because of the differences in the intrinsic nature and the physical accessibility of the defects. Other reasons for the efficiency differences were elaborated.

  16. The Atomic Simulation Environment - A Python library for working with atoms

    DEFF Research Database (Denmark)

    Larsen, Ask Hjorth; Mortensen, Jens Jørgen; Blomqvist, Jakob

    2017-01-01

    The Atomic Simulation Environment (ASE) is a software package written in the Python programming language with the aim of setting up, steering, and analyzing atomistic simula- tions. In ASE, tasks are fully scripted in Python. The powerful syntax of Python combined with the NumPy array library make...

  17. Tunable laser and photocurrents from linear atomic C chains

    Science.gov (United States)

    Lin, Zheng-Zhe

    2015-07-01

    By a tight-binding model, the interaction between linear atomic C chains (LACCs) and short laser pulses was investigated. LACCs were proposed to be used as a medium of laser whose wavelength can be continuously tuned in a range of 321-785nm. This data should be more accurate than the previous result [Europhys. Lett. 97 (2012) 27006] because pure density functional theory calculation always underestimates the band gap. According to the tight-binding model, the lifetime of conduction band (CB) bottom is about 1.9-2.3ns. The electrons pumped into the CB will quickly fall to the band bottom in a time of ps due to electron-phonon interactions. The above results indicate that LACCs are suitable for laser medium. By ω + 2ω dichromatic laser pulses, photocurrents can be generated in LACCs, which can be applied as light-controlled signals.

  18. Photon Bubble Turbulence in Cold Atomic Gases

    CERN Document Server

    Rodrigues, João D; Ferreira, António V; Terças, Hugo; Kaiser, Robin; Mendonça, José T

    2016-01-01

    Turbulent radiation flow is ubiquitous in many physical systems where light-matter interaction becomes relevant. Photon bubbling, in particular, has been identified as the main source of turbulent radiation transport in many astrophysical objects, such as stars and accretion disks. This mechanism takes place when radiation trapping in optically dense media becomes unstable, leading to the energy dissipation from the larger to the smaller bubbles. Here, we report on the observation of photon bubble turbulence in cold atomic gases in the presence of multiple scattering of light. The instability is theoretically explained by a fluid description for the atom density coupled to a diffusive transport equation for the photons, which is known to be accurate in the multiple scattering regime investigated here. We determine the power spectrum of the atom density fluctuations, which displays an unusual $\\sim k^{-4}$ scaling, and entails a complex underlying turbulent dynamics resulting from the formation of dynamical bu...

  19. Single-molecule spectroscopy for plastic electronics: materials analysis from the bottom-up.

    Science.gov (United States)

    Lupton, John M

    2010-04-18

    pi-conjugated polymers find a range of applications in electronic devices. These materials are generally highly disordered in terms of chain length and chain conformation, besides being influenced by a variety of chemical and physical defects. Although this characteristic can be of benefit in certain device applications, disorder severely complicates materials analysis. Accurate analytical techniques are, however, crucial to optimising synthetic procedures and assessing overall material purity. Fortunately, single-molecule spectroscopic techniques have emerged as an unlikely but uniquely powerful approach to unraveling intrinsic material properties from the bottom up. Building on the success of such techniques in the life sciences, single-molecule spectroscopy is finding increasing applicability in materials science, effectively enabling the dissection of the bulk down to the level of the individual molecular constituent. This article reviews recent progress in single molecule spectroscopy of conjugated polymers as used in organic electronics.

  20. Ion mobility tandem mass spectrometry enhances performance of bottom-up proteomics.

    Science.gov (United States)

    Helm, Dominic; Vissers, Johannes P C; Hughes, Christopher J; Hahne, Hannes; Ruprecht, Benjamin; Pachl, Fiona; Grzyb, Arkadiusz; Richardson, Keith; Wildgoose, Jason; Maier, Stefan K; Marx, Harald; Wilhelm, Mathias; Becher, Isabelle; Lemeer, Simone; Bantscheff, Marcus; Langridge, James I; Kuster, Bernhard

    2014-12-01

    One of the limiting factors in determining the sensitivity of tandem mass spectrometry using hybrid quadrupole orthogonal acceleration time-of-flight instruments is the duty cycle of the orthogonal ion injection system. As a consequence, only a fraction of the generated fragment ion beam is collected by the time-of-flight analyzer. Here we describe a method utilizing postfragmentation ion mobility spectrometry of peptide fragment ions in conjunction with mobility time synchronized orthogonal ion injection leading to a substantially improved duty cycle and a concomitant improvement in sensitivity of up to 10-fold for bottom-up proteomic experiments. This enabled the identification of 7500 human proteins within 1 day and 8600 phosphorylation sites within 5 h of LC-MS/MS time. The method also proved powerful for multiplexed quantification experiments using tandem mass tags exemplified by the chemoproteomic interaction analysis of histone deacetylases with Trichostatin A.

  1. Perceptions of Power and Democracy:

    DEFF Research Database (Denmark)

    Kristensen, Niels Nørgaard

    2010-01-01

    How is political identity and power understood in post modern society? This paper uses a single qualitative interview with a truck driver to investigate the elements that impact the formation of political identity. The paper suggests a qualitative bottom up approach as a method and as a way of in...... of inquiry into understandings of identity and perceptions and discusses the interview against advantages and dilemmas of the design....

  2. Effective potentials for atom-atom interaction at low temperatures

    OpenAIRE

    Gao, Bo

    2002-01-01

    We discuss the concept and design of effective atom-atom potentials that accurately describe any physical processes involving only states around the threshold. The existence of such potentials gives hope to a quantitative, and systematic, understanding of quantum few-atom and quantum many-atom systems at relatively low temperatures.

  3. Dispersion of radiocesium-contaminated bottom sediment caused by heavy rainfall in Joso City, Japan

    Science.gov (United States)

    Inoue, Kazumasa; Arai, Moeko

    2017-01-01

    A large-scale heavy rainfall disaster occurred in Joso City, Japan, in September 2015, and one third of the city area (40 km2) was flooded by the Kinu River. Artificial radionuclides such as 134Cs and 137Cs were known to have accumulated in the river bottom sediment after their release in the 2011 Fukushima Dai-ichi Nuclear Power Plant accident. It was thought that these radionuclides might have been dispersed by the rainfall disaster. A car-borne survey of absorbed dose rate in air had been made by the authors in Joso City in August 2015. Then, the present study made a second car-borne survey in October 2015, to evaluate changes in the rate after the rainfall disaster. The absorbed dose rate in air and the standard deviation (range) measured in the flooded areas of Joso City after the disaster were 68 ± 9 nGy h-1 (39–98 nGy h-1), which was 10% higher than the rate before it. Additionally, higher dose rates (> 60 nGy h-1) were observed for the flooded areas after the disaster; furthermore, up to 886 Bq kg-1 of activity concentration from 134Cs and 137Cs was observed in these flooded areas, and this was 11 times higher than the activity concentration before the disaster. These results suggested the dispersion of artificial radionuclides accumulated in the bottom sediment of the Kinu River after the Fukushima Daiichi Nuclear Power Plant accident occurred by the heavy rainfall disaster. PMID:28234986

  4. Teleportation of Atomic States for Atoms in a Lambda Configuration

    CERN Document Server

    Guerra, E S

    2004-01-01

    In this article we discuss a scheme of teleportation of atomic states making use of three-level lambda atoms. The experimental realization proposed makes use of cavity QED involving the interaction of Rydberg atoms with a micromaser cavity prepared in a coherent state. We start presenting a scheme to prepare atomic EPR states involving two-level atoms via the interaction of these atoms with a cavity. In our scheme the cavity and some atoms play the role of auxiliary systems used to achieve the teleportation.

  5. 2 kHz high power smart transducer for acoustic sub-bottom profiling applications

    Science.gov (United States)

    Sathishkumar, R.

    2013-09-01

    In this study, a 2 kHz Tonpilz projector was designed using a Terfenol-D and modeled in ATILA. For the purpose of modeling studies, it has been determined that a radiating head mass exhibits better transmitting current response (TCR) at 136 mm diameter, where the resonance occurs at 2.4 kHz and the peak value of 118 dB re 1 μPa/A at 1 m occurs at 12 kHz. Also bolt at a 46 mm distance from the center of the head mass offers resonance at 2.4 kHz, and the peak value of 115.3 dB re 1 μPa/A at 1m occurs at 11.5 kHz. This optimized design is fabricated and molded with polyurethane of 3 mm thickness. The prototype was tested at the Acoustic Test Facility (ATF) of National Institute of Ocean Technology (NIOT) for its underwater performances. Based on the result, the fundamental resonance was determined to be 2.18 kHz and the peak value of TCR of 182 dB re 1 μPa/A at 1m occurs at 14 kHz. The maximum value of the RS was found to be -190 dB re 1V/μPa at 1m at a frequency of 2.1 kHz.

  6. Mining information from atom probe data.

    Science.gov (United States)

    Cairney, Julie M; Rajan, Krishna; Haley, Daniel; Gault, Baptiste; Bagot, Paul A J; Choi, Pyuck-Pa; Felfer, Peter J; Ringer, Simon P; Marceau, Ross K W; Moody, Michael P

    2015-12-01

    Whilst atom probe tomography (APT) is a powerful technique with the capacity to gather information containing hundreds of millions of atoms from a single specimen, the ability to effectively use this information creates significant challenges. The main technological bottleneck lies in handling the extremely large amounts of data on spatial-chemical correlations, as well as developing new quantitative computational foundations for image reconstruction that target critical and transformative problems in materials science. The power to explore materials at the atomic scale with the extraordinary level of sensitivity of detection offered by atom probe tomography has not been not fully harnessed due to the challenges of dealing with missing, sparse and often noisy data. Hence there is a profound need to couple the analytical tools to deal with the data challenges with the experimental issues associated with this instrument. In this paper we provide a summary of some key issues associated with the challenges, and solutions to extract or "mine" fundamental materials science information from that data.

  7. A single-atom heat engine

    Science.gov (United States)

    Roßnagel, Johannes; Dawkins, Samuel T.; Tolazzi, Karl N.; Abah, Obinna; Lutz, Eric; Schmidt-Kaler, Ferdinand; Singer, Kilian

    2016-04-01

    Heat engines convert thermal energy into mechanical work and generally involve a large number of particles. We report the experimental realization of a single-atom heat engine. An ion is confined in a linear Paul trap with tapered geometry and driven thermally by coupling it alternately to hot and cold reservoirs. The output power of the engine is used to drive a harmonic oscillation. From direct measurements of the ion dynamics, we were able to determine the thermodynamic cycles for various temperature differences of the reservoirs. We then used these cycles to evaluate the power P and efficiency η of the engine, obtaining values up to P = 3.4 × 10-22 joules per second and η = 0.28%, consistent with analytical estimations. Our results demonstrate that thermal machines can be reduced to the limit of single atoms.

  8. Universal bosonic tetramers of dimer-atom-atom structure

    OpenAIRE

    Deltuva, A.

    2012-01-01

    Unstable four-boson states having an approximate dimer-atom-atom structure are studied using momentum-space integral equations for the four-particle transition operators. For a given Efimov trimer the universal properties of the lowest associated tetramer are determined. The impact of this tetramer on the atom-trimer and dimer-dimer collisions is analyzed. The reliability of the three-body dimer-atom-atom model is studied.

  9. Plasma-Enhanced Atomic Layer Deposition of Silicon Nitride Using a Novel Silylamine Precursor.

    Science.gov (United States)

    Park, Jae-Min; Jang, Se Jin; Yusup, Luchana L; Lee, Won-Jun; Lee, Sang-Ick

    2016-08-17

    We report the plasma-enhanced atomic layer deposition (PEALD) of silicon nitride thin film using a silylamine compound as the silicon precursor. A series of silylamine compounds were designed by replacing SiH3 groups in trisilylamine by dimethylaminomethylsilyl or trimethylsilyl groups to obtain sufficient thermal stability. The silylamine compounds were synthesized through redistribution, amino-substitution, lithiation, and silylation reactions. Among them, bis(dimethylaminomethylsilyl)trimethylsilyl amine (C9H29N3Si3, DTDN2-H2) was selected as the silicon precursor because of the lowest bond dissociation energy and sufficient vapor pressures. The energies for adsorption and reaction of DTDN2-H2 with the silicon nitride surface were also calculated by density functional theory. PEALD silicon nitride thin films were prepared using DTDN2-H2 and N2 plasma. The PEALD process window was between 250 and 400 °C with a growth rate of 0.36 Å/cycle. The best film quality was obtained at 400 °C with a RF power of 100 W. The PEALD film prepared showed good bottom and sidewall coverages of ∼80% and ∼73%, respectively, on a trench-patterned wafer with an aspect ratio of 5.5.

  10. Analysis of the Peach Bottom NPP stability using a core neutronic-thermohydraulic model with RELAP5/PARCS v2.7 connected code; Analisis de estabilidad en C.N. Peach Bottom utilizando un modelo neutronico-termohidraulico de nucleo completo con el codigo acoplado RELAP5

    Energy Technology Data Exchange (ETDEWEB)

    Barrachina, T.; Abarca, A.; Miro, R.; Verdu, G.

    2010-07-01

    The aim of this study is to test the RELAP5/PARCS v2.7 connected code. The results show the pint PT{sub U}PV is an unstable point and the axial obtained power distribution shows a pierced profile in the bottom of the core, typical of unstable cores.

  11. Vertical position of Chinese power words influences power judgments: Evidence from spatial compatibility task and event-related Potentials.

    Science.gov (United States)

    Wu, Xiangci; Jia, Huibin; Wang, Enguo; Du, Chenguang; Wu, Xianghua; Dang, Caiping

    2016-04-01

    The present study used event-related potentials (ERPs) to explore the influence of vertical position on power judgments. Participants were asked to identify whether a Chinese word represented a powerful or powerless group (e.g., "king" or "servant"), which was presented in the top or bottom of the screen. The behavioral analysis showed that judging the power of powerful words were significantly faster when they were presented at the top position, compared with when they were presented at the bottom position. The ERP analysis showed enhanced N1 amplitude for congruent trials (i.e., the powerful words in the top and the powerless words in the bottom of the screen) and larger P300 and LPC amplitude for incongruent trials (i.e., the powerful words in the bottom and the powerless words in the top of the screen). The present findings provide further electrophysiological evidence that thinking about power can automatically activate the underlying spatial up-down (verticality) image schema and that the influence of vertical position on the power judgments not only occurs at the early perceptual stage of power word processing, but also at the higher cognitive stage (i.e., allocation of attention resources, conflict solving and response selection). This study revealed the neural underpinnings of metaphor congruent effect which have great significance to our understanding of the abstract concept power.

  12. Thermally stable perpendicular magnetic anisotropy features of [Co/Pd]{sub m} multilayer matrix integrated with [CoO/Pd]{sub n} bottom layer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, JaBin; An, GwangGuk; Yang, SeungMo; Hong, JinPyo, E-mail: jphong@hanyang.ac.kr [Novel Functional Materials and Device Laboratory, Department of Physics, The Research Institute for Natural Science, Hanyang University, Seoul 133-791 (Korea, Republic of); Chung, WooSeong [Nano Quantum Electronics Laboratory, Department of Electronics and Computer Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2014-01-13

    We evaluated the perpendicular magnetic anisotropy (PMA) features of a hybrid [CoO/Pd]{sub 2}/[Co/Pd]{sub 7} multilayer (ML) matrix under annealing in which the [CoO/Pd]{sub 2} bottom layer was inserted. Annealing allowed for the diffusion of oxygen atoms existing in the inserted [CoO/Pd]{sub 2} layer, leading to an atomic structural reconfiguration event. The hybrid matrix was crucial to result in a higher effective anisotropy energy (3.40 Merg/cc) than an ordinary [Co/Pd]{sub 7} ML matrix (1.25 Merg/cc) under annealing at 450 °C. X-ray photoelectron spectroscopy confirmed the presence of Co-O bonding states and annealing dependent oxygen atom diffusion. The possible nature of the enhanced PMA features is discussed.

  13. Single-atom spintronics

    Institute of Scientific and Technical Information of China (English)

    Susan Z. HUA; Matthew R. SULLIVAN; Jason N. ARMSTRONG

    2006-01-01

    Recent work on magnetic quantum point contacts (QPCs) was discussed. Complete magnetoresistance loops across Co QPCs as small as a single atom was measured. The remarkable feature of these QPCs is the rapid oscillatory decay in magnetoresistance with the increase of contact size. In addition,stepwise or quantum magnetoresistance loops are observed,resulting from varying transmission probability of the available discrete conductance channels because the sample is cycled between the ferromagnetic (F) and antiferromagnetic (AF) aligned states. Quantized conductance combined with spin dependent transmission of electron waves gives rise to a multi-channel system with a quantum domain wall acting as a valve,i.e.,a quantum spin-valve. Behavior of a few-atom QPC is built on the behavior of a single-atom QPC and hence the summarization of results as 'single-atom spintronics'. An evolutionary trace of spin-dependent electron transmission from a single atom to bulk is provided,the requisite hallmarks of artefact-free magnetoresistance is established across a QPC - stepwise or quantum magnetoresistance loops and size dependent oscillatory magnetoresistance.

  14. Experimental Study on the Measurement of Water Bottom Vibration Induced by Underwater Drilling Blasting

    OpenAIRE

    Wenbin, Gu; Jianghai, Chen; Zhenxiong, Wang; Zhihua, Wang; Jianqing, Liu; Ming, Lu

    2015-01-01

    Due to the lack of proper instrumentations and the difficulties in underwater measurements, the studies about water bottom vibration induced by underwater drilling blasting are seldom reported. In order to investigate the propagation and attenuation laws of blasting induced water bottom vibration, a water bottom vibration monitor was developed with consideration of the difficulties in underwater measurements. By means of this equipment, the actual water bottom vibration induced by underwater ...

  15. Quantum magnetism through atomic assembly

    NARCIS (Netherlands)

    Spinelli, A.

    2015-01-01

    This thesis presents an experimental study of magnetic structures, composed of only a few atoms. Those structures are first built atom-by-atom and then locally probed, both with a low-temperature STM. The technique that we use to assemble them is vertical atom manipulation, while to study their phy

  16. AtomDB and PyAtomDB: Atomic Data and Modelling Tools for High Energy and Non-Maxwellian Plasmas

    Science.gov (United States)

    Foster, Adam; Smith, Randall K.; Brickhouse, Nancy S.; Cui, Xiaohong

    2016-04-01

    The release of AtomDB 3 included a large wealth of inner shell ionization and excitation data allowing accurate modeling of non-equilibrium plasmas. We describe the newly calculated data and compare it to published literature data. We apply the new models to existing supernova remnant data such as W49B and N132D. We further outline progress towards AtomDB 3.1, including a new energy-dependent charge exchange cross sections.We present newly developed models for the spectra of electron-electron bremsstrahlung and those due to non-Maxwellian electron distributions.Finally, we present our new atomic database access tools, released as PyAtomDB, allowing powerful use of the underlying fundamental atomic data as well as the spectral emissivities.

  17. Sensitive spectroscopy of an ytterbium atomic beam

    CERN Document Server

    Guttridge, A; Kemp, S L; Boddy, D; Freytag, R; Tarbutt, M R; Hinds, E A; Cornish, S L

    2015-01-01

    Experimental studies of ultracold ytterbium atoms generally involve the frequency stabilisation (locking) of lasers to two transitions at 399 and 556 nm in order to implement laser cooling. Here we present a simple and robust apparatus for generation of suitable, narrow fluorescence signals with a high signal to noise ratio at both wavelengths. The design utilises easily acquired vacuum parts, optics and electronics and requires very little laser power. We demonstrate the stability and precision of the frequency stabilisation at 556 nm by presenting sensitive measurements of the gravitational sag of an ytterbium MOT as a function of laser power.

  18. Why? The nuclear and atomic energy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kwangwoong

    2009-01-15

    This book is a science comic book for students in elementary school, which contains energy and life such as our body and energy, animal and energy, plant and energy, kinetic energy, potential energy and the principle of the conservation of energy in the first part. The second part explains fossil fuel like coal, petroleum and natural gas. Next it deals with electric power, nuclear energy such as atom and molecule, nuclear fusion and energy for future like solar cell and black hole power plant.

  19. Balancing Priorities and Measuring Success: A Triple Bottom Line Framework for International School Leaders

    Science.gov (United States)

    MacDonald, James

    2009-01-01

    Drawing upon a multiple bottom line concept, which was originally developed for the business world, this article proposes a triple bottom line framework for analyzing and assessing the performance of international schools. The author contends that international schools can be broken down into three bottom lines: one "financial," one "academic" and…

  20. Sampling the Hydrogen Atom

    Directory of Open Access Journals (Sweden)

    Graves N.

    2013-01-01

    Full Text Available A model is proposed for the hydrogen atom in which the electron is an objectively real particle orbiting at very near to light speed. The model is based on the postulate that certain velocity terms associated with orbiting bodies can be considered as being af- fected by relativity. This leads to a model for the atom in which the stable electron orbits are associated with orbital velocities where Gamma is n /α , leading to the idea that it is Gamma that is quantized and not angular momentum as in the Bohr and other models. The model provides a mechanism which leads to quantization of energy levels within the atom and also provides a simple mechanical explanation for the Fine Struc- ture Constant. The mechanism is closely associated with the Sampling theorem and the related phenomenon of aliasing developed in the mid-20th century by engineers at Bell labs.