WorldWideScience

Sample records for bottom ash evaluation

  1. Leaching from MSWI bottom ash: Evaluation of non-equilibrium in column percolation experiments

    DEFF Research Database (Denmark)

    Hyks, Jiri; Astrup, Thomas; Christensen, Thomas Højlund

    2009-01-01

    Impacts of non-equilibrium on results of percolation experiments on municipal solid waste incineration (MSWI) bottom ash were investigated. Three parallel column experiments were performed: two columns with undisturbed percolation and one column with two sets of 1-month-long flow interruptions...

  2. A method for treating bottom ash

    NARCIS (Netherlands)

    Rem, P.C.; Van Craaikamp, H.; Berkhout, S.P.M.; Sierhuis, W.; Van Kooy, L.A.

    2007-01-01

    A method for treating bottom ash from a waste incineration plant. The invention relates in particular to a method for treating bottom ash from a domestic waste incineration plant. In accordance with the invention bottom ash having a size ranging up to 2 mm is treated by removing a previously determi

  3. Accelerated carbonation using municipal solid waste incinerator bottom ash and cold-rolling wastewater: Performance evaluation and reaction kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Chang, E-E [Department of Biochemistry, Taipei Medical University, 250 Wu-Hsing Street, Taipei City, Taiwan 110, Taiwan, ROC (China); Pan, Shu-Yuan [Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Rd., Taipei City, Taiwan 10673, Taiwan, ROC (China); Yang, Liuhanzi [School of Environment, Tsinghua University, Haidin District, Beijing 100084 (China); Chen, Yi-Hung [Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, 1, Sec. 3, Zhongxiao E. Rd., Taipei City, Taiwan 10608, Taiwan, ROC (China); Kim, Hyunook [Department of Energy and Environmental System Engineering, University of Seoul (Korea, Republic of); Chiang, Pen-Chi, E-mail: pcchiang@ntu.edu.tw [Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Rd., Taipei City, Taiwan 10673, Taiwan, ROC (China)

    2015-09-15

    Highlights: • Carbonation was performed using CO{sub 2}, wastewater and bottom ash in a slurry reactor. • A maximum capture capacity of 102 g CO{sub 2} per kg BA was achieved at mild conditions. • A maximum carbonation conversion of MSWI-BA was predicted to be 95% by RSM. • The CO{sub 2} emission from Bali incinerator could be expected to reduce by 6480 ton/y. • The process energy consumption per ton CO{sub 2} captured was estimated to be 180 kW h. - Abstract: Accelerated carbonation of alkaline wastes including municipal solid waste incinerator bottom ash (MSWI-BA) and the cold-rolling wastewater (CRW) was investigated for carbon dioxide (CO{sub 2}) fixation under different operating conditions, i.e., reaction time, CO{sub 2} concentration, liquid-to-solid ratio, particle size, and CO{sub 2} flow rate. The MSWI-BA before and after carbonation process were analyzed by the thermogravimetry and differential scanning calorimetry, X-ray diffraction, and scanning electron microscopy equipped with energy dispersive X-ray spectroscopy. The MSWI-BA exhibits a high carbonation conversion of 90.7%, corresponding to a CO{sub 2} fixation capacity of 102 g per kg of ash. Meanwhile, the carbonation kinetics was evaluated by the shrinking core model. In addition, the effect of different operating parameters on carbonation conversion of MSWI-BA was statistically evaluated by response surface methodology (RSM) using experimental data to predict the maximum carbonation conversion. Furthermore, the amount of CO{sub 2} reduction and energy consumption for operating the proposed process in refuse incinerator were estimated. Capsule abstract: CO{sub 2} fixation process by alkaline wastes including bottom ash and cold-rolling wastewater was developed, which should be a viable method due to high conversion.

  4. Accelerated carbonation using municipal solid waste incinerator bottom ash and cold-rolling wastewater: Performance evaluation and reaction kinetics.

    Science.gov (United States)

    Chang, E-E; Pan, Shu-Yuan; Yang, Liuhanzi; Chen, Yi-Hung; Kim, Hyunook; Chiang, Pen-Chi

    2015-09-01

    Accelerated carbonation of alkaline wastes including municipal solid waste incinerator bottom ash (MSWI-BA) and the cold-rolling wastewater (CRW) was investigated for carbon dioxide (CO2) fixation under different operating conditions, i.e., reaction time, CO2 concentration, liquid-to-solid ratio, particle size, and CO2 flow rate. The MSWI-BA before and after carbonation process were analyzed by the thermogravimetry and differential scanning calorimetry, X-ray diffraction, and scanning electron microscopy equipped with energy dispersive X-ray spectroscopy. The MSWI-BA exhibits a high carbonation conversion of 90.7%, corresponding to a CO2 fixation capacity of 102g perkg of ash. Meanwhile, the carbonation kinetics was evaluated by the shrinking core model. In addition, the effect of different operating parameters on carbonation conversion of MSWI-BA was statistically evaluated by response surface methodology (RSM) using experimental data to predict the maximum carbonation conversion. Furthermore, the amount of CO2 reduction and energy consumption for operating the proposed process in refuse incinerator were estimated. Capsule abstract: CO2 fixation process by alkaline wastes including bottom ash and cold-rolling wastewater was developed, which should be a viable method due to high conversion.

  5. Wet physical separation of MSWI bottom ash

    NARCIS (Netherlands)

    Muchova, L.

    2010-01-01

    Bottom ash (BA) from municipal solid waste incineration (MSWI) has high potential for the recovery of valuable secondary materials. For example, the MSWI bottom ash produced by the incinerator at Amsterdam contains materials such as non-ferrous metals (2.3%), ferrous metals (8-13%), gold (0.4 ppm),

  6. The weathering of municipal solid waste incineration bottom ash evaluated by some weathering indices for natural rock.

    Science.gov (United States)

    Takahashi, Fumitake; Shimaoka, Takayuki

    2012-12-01

    The weathering of municipal solid waste incineration (MSWI) residues consists of complicated phenomena. This makes it difficult to describe leaching behaviors of major and trace elements in fresh/weathered MSWI bottom ash, which was relevant interactively to pH neutralization and formation of secondary minerals. In this study, mineralogical weathering indices for natural rock profiles were applied to fresh/landfilled MSWI bottom ash to investigate the relation of these weathering indices to landfill time and leaching concentrations of component elements. Tested mineralogical weathering indices were Weathering Potential Index (WPI), Ruxton ratio (R), Weathering Index of Parker (WIP), Vogt's Residual Index (V), Chemical Index of Alternation (CIA), Chemical Index of Weathering (CIW), Plagioclase Index of Alternation (PIA), Silica-Titania Index (STI), Weathering Index of Miura (Wm), and Weatherability index of Hodder (Ks). Welch's t-test accepted at 0.2% of significance level that all weathering indices could distinguish fresh and landfilled MSWI bottom ash. However, R and STI showed contrasted results for landfilled bottom ash to theoretical expectation. WPI, WIP, Wm, and Ks had good linearity with reclamation time of landfilled MSWI bottom ash. Therefore, these four indices might be applicable as an indicator to identify fresh/weathered MSWI bottom ash and to estimate weathering time. Although WPI had weak correlation with leachate pH, other weathering indices had no significant correlation. In addition, all weathering indices could not explain leaching concentration of Al, Ca, Cu, and Zn quantitatively. Large difficulty to modify weathering indices correctly suggests that geochemical simulation including surface sorption, complexation with DOM, and other mechanisms seems to be the only way to describe leaching behaviors of major and trace elements in fresh/weathered MSWI bottom ash.

  7. Formation of Humic Substances in Weathered MSWI Bottom Ash

    Directory of Open Access Journals (Sweden)

    Haixia Zhang

    2013-01-01

    Full Text Available The study aimed at evaluating the humic substances (HSs content from municipal solid waste incinerator (MSWI bottom ash and its variation with time and the effect of temperature on HSs formation. The process suggested by IHSS was applied to extract HSs from two different bottom ash samples, and the extracted efficiency with NaOH and Na4P2O7 was compared. MSWI bottom ash samples were incubated at 37∘C and 50∘C for 1 year. HSs and nonhumic substances were extracted from the bottom ash sample with different incubated period by 0.1 M NaOH/Na4P2O7. Results show that the rate of humic acid formation increased originally with incubation time, reached a maximum at 12th week under 37∘C and at 18th week under 50∘C, and then decreased with time. More humic acid in MSWI bottom ash was formed under 50∘C incubated condition compared with that incubated under 37∘C. Also, the elemental compositions of HSs extracted from bottom ash are reported.

  8. Ash Management Review—Applications of Biomass Bottom Ash

    Directory of Open Access Journals (Sweden)

    Harpuneet S. Ghuman

    2012-10-01

    Full Text Available In industrialized countries, it is expected that the future generation of bioenergy will be from the direct combustion of residues and wastes obtained from biomass. Bioenergy production using woody biomass is a fast developing application since this fuel source is considered to be carbon neutral. The harnessing of bioenergy from these sources produces residue in the form of ash. As the demand for bioenergy production increases, ash and residue volumes will increase. Major challenges will arise relating to the efficient management of these byproducts. The primary concerns for ash are its storage, disposal, use and the presence of unburned carbon. The continual increase in ash volume will result in decreased ash storage facilities (in cases of limited room for landfill expansion, as well as increased handling, transporting and spreading costs. The utilization of ash has been the focus of many studies, hence this review investigates the likely environmental and technological challenges that increased ash generation may cause. The presence of alkali metals, alkaline earth metals, chlorine, sulphur and silicon influences the reactivity and leaching to the inorganic phases which may have significant impacts on soils and the recycling of soil nutrient. Discussed are some of the existing technologies for the processing of ash. Unburned carbon present in ash allows for the exploration of using ash as a fuel. The paper proposes sieve fractionation as a suitable method for the separation of unburnt carbon present in bottom ash obtained from a fixed-bed combustion system, followed by the application of the gasification technology to particle sizes of energy importance. It is hoped that this process will significantly reduce the volume of ash disposed at landfills.

  9. Hyperspectral imaging based procedures applied to bottom ash characterization

    Science.gov (United States)

    Bonifazi, Giuseppe; Serranti, Silvia

    2007-09-01

    Bottom ash from Municipal Solid Waste Incinerators (MSWIs) is mainly land filled or used as material for the foundation of road in European countries. Bottom ash is usually first crushed to below 40 mm and separated magnetically to recover the steel scrap. The remaining material contains predominantly sand, sinters and pieces of stone, glass and ceramics, which could be used as building material if strict technical and environmental requirements are respected. The main problem is the presence of residual organic matter in the ash and the large surface area presented by the fine fraction that creates leaching values, for elements such as copper, that are above the accepted levels for standard building materials. Main aim of the study was to evaluate the possibility offered by hyperspectral imaging to identify organic matter inside the residues in order to develop control/selection strategies to be implemented inside the bottom ash recycling plant. Reflectance spectra of selected bottom ash samples have been acquired in the VIS-NIR field (400- 1000 nm). Results showed as the organic content of the different samples influences the spectral signatures, in particular an inverse correlation between reflectance level and organic matter content was found.

  10. Adsorption of Crystal Violet Dye from Aqueous Solution onto Zeolites from Coal Fly and Bottom Ashes

    OpenAIRE

    Tharcila Colachite Rodrigues Bertolini; Juliana C. Izidoro; Carina P. Magdalena; Denise A. Fungaro

    2013-01-01

    The adsorption of the cationic dye Crystal Violet (CV) over zeolites from coal fly ash (ZFA) and bottom ash (ZBA) was evaluated. The coal fly ash (CFA) and the coal bottom ash (CBA) used in the synthesis of the zeolites by alkaline hydrothermal treatment were collected in Jorge Lacerda coal-fired power plant located at Capivari de Baixo County, in Santa Catarina State, Brazil. The zeolitic materials were characterized predominantly as hydroxy-sodalite and X. The dye adsorption equilibrium was...

  11. Characteristic of elements in coal bottom ash and fly ash by instrumental neutron activation analysis (INAA)

    International Nuclear Information System (INIS)

    Coal-fired power plant and industrial stacks that using coal produce solid waste such as bottom ash and fly ash. Determination of elements in these wastes qualitatively and quantitatively is usually the first step taken for subsequent evaluation of the associated environmental and biological risks. In this study, the determination of trace elements in bottom ash and fly ash by instrumental neutron activation analysis was carried out. The samples were irradiated at rabbit facility in G.A. Siwabessy reactor with neutron flux ~ 1013 n.cm-2.s-1, and then counted by HPGe spectrometer gamma detector. The validation of method was performed by characterization of standard reference material (SRM) 1633b coal fly ash from National Institute of Standards and Technology (NIST). Some elements such as Al, As, Ce, Co, Cr, Cs, Fe, K, La, Mn, Na, Sc, Sm, Ti and V were detected in both samples. The concentration of environmentally toxic elements, As and Cr in bottom ash were 6.24 and 137.4 mg/kg, whereas in fly ash were 6.37 and 39.0 mg/kg respectively. Arsenic concentrations had been over the standard value based on PP no.85/1999. (author)

  12. Evaluation of the genotoxic, mutagenic and oxidant stress potentials of municipal solid waste incinerator bottom ash leachates

    Energy Technology Data Exchange (ETDEWEB)

    Radetski, C.M.; Ferrari, B.; Cotelle, S.; Masfaraud, J.-F.; Ferard, J.F

    2004-10-15

    Triplicate aqueous leachates of a municipal solid waste incineration bottom ash (MSWIBA) were produced according to a European standardised method. Leachates analysis showed relatively low concentrations (less than 1 mg{center_dot}l{sup -1}) for four metals (iron, cadmium, lead and copper). No mutagenic activity was revealed after performing the Salmonella/microsome assay with and without microsomal activation. With the Vicia root tip micronucleus assay, a significant increase in micronucleated cells was observed between 3.4% and 100% leachate concentration. Significant and elevated antioxidant stress enzyme activities, e.g., superoxide dismutase (SOD), catalase (CAT), peroxidase (PER) and glutathione reductase (GR), were detected in Vicia root tissues even at the lowest tested leachate concentration (i.e., 0.3%), whereas this was not always the case in leaf tissues, which showed tissue specificity for the tested enzymes. At the lowest concentration (i.e., 0.3%), a higher increase was observed (respectively 197% and 45% compared to the control) for root glutathione reductase and peroxidase activities over those of other enzymes (superoxide dismutase and catalase). Our results suggest that MSWIBA aqueous leachates need to be formally tested with genotoxic sensitive tests before recycling and support the hypothesis that plant genotoxicity is related to the cellular production of reactive oxygen species (ROS)

  13. Pretreatment and utilization of waste incineration bottom ashes

    DEFF Research Database (Denmark)

    Astrup, Thomas

    2007-01-01

    Within recent years, researchers and authorities have had increasing focus on leaching properties from waste incineration bottom ashes. Researchers have investigated processes such as those related to carbonation, weathering, metal complexation, and leaching control. Most of these investigations......, however, have had a strong emphasis on lab experiments with little focus on full scale bottom ash upgrading methods. The introduction of regulatory limit values restricting leaching from utilized bottom ashes, has created a need for a better understanding of how lab scale experiences can be utilized...... in full scale bottom ash upgrading facilities, and the possibilities for complying with the regulatory limit values. A range of Danish research and development projects have within 1997-2005 investigated important techniques for bottom ash upgrading. The primary focus has been placed on curing...

  14. Investigation on Leaching Behaviour of Fly Ash and Bottom Ash Replacement in Self-Compacting Concrete

    Science.gov (United States)

    Kadir, Aeslina Abdul; Ikhmal Haqeem Hassan, Mohd; Bakri Abdullah, Mohd Mustafa Al

    2016-06-01

    Fly ash and bottom ash are some of the waste generated by coal-fired power plants, which contains large quantities of toxic and heavy metals. In recent years, many researchers have been interested in studying on the properties of self-compacting concrete incorporated with fly ash and bottom ash but there was very limited research from the combination of fly ash and bottom ash towards the environmental needs. Therefore, this research was focused on investigating the leachability of heavy metals of SCC incorporated with fly ash and bottom ash by using Toxicity Characteristic Leaching Procedure, Synthetic Precipitation Leaching Procedure and Static Leaching Test. The samples obtained from the coal-fired power plant located at Peninsula, Malaysia. In this study, the potential heavy metals leached out from SCC that is produced with fly ash as a replacement for Ordinary Portland Cement and bottom ash as a substitute for sand with the ratios from 10% to 30% respectively were designated and cast. There are eight heavy metals of concern such as As, Cr, Pb, Zn, Cu, Ni, Mn and Fe. The results indicated that most of the heavy metals leached below the permissible limits from the United States Environmental Protection Agency and World Health Organization limit for drinking water. As a conclusion, the minimum leaching of the heavy metals from the incorporation of fly ash and bottom ash in self-compacting concrete was found in 20% of fly ash and 20% of bottom ash replacement. The results also indicate that this incorporation could minimize the potential of environmental problems.

  15. Properties and Leachability of Self-Compacting Concrete Incorporated with Fly Ash and Bottom Ash

    Science.gov (United States)

    Kadir, Aeslina Abdul; Ikhmal Haqeem Hassan, Mohd; Jamaluddin, Norwati; Bakri Abdullah, Mohd Mustafa Al

    2016-06-01

    The process of combustion in coal-fired power plant generates ashes, namely fly ash and bottom ash. Besides, coal ash produced from coal combustion contains heavy metals within their compositions. These metals are toxic to the environment as well as to human health. Fortunately, treatment methods are available for these ashes, and the use of fly ash and bottom ash in the concrete mix is one of the few. Therefore, an experimental program was carried out to study the properties and determine the leachability of selfcompacting concrete incorporated with fly ash and bottom ash. For experimental study, self-compacting concrete was produced with fly ash as a replacement for Ordinary Portland Cement and bottom ash as a replacement for sand with the ratios of 10%, 20%, and 30% respectively. The fresh properties tests conducted were slump flow, t500, sieve segregation and J-ring. Meanwhile for the hardened properties, density, compressive strength and water absorption test were performed. The samples were then crushed to be extracted using Toxicity Characteristic Leaching Procedure and heavy metals content within the samples were identified accordingly using Atomic Absorption Spectrometry. The results demonstrated that both fresh and hardened properties were qualified to categorize as self-compacting concrete. Improvements in compressive strength were observed, and densities for all the samples were identified as a normal weight concrete with ranges between 2000 kg/m3 to 2600 kg/m3. Other than that, it was found that incorporation up to 30% of the ashes was safe as the leached heavy metals concentration did not exceed the regulatory levels, except for arsenic. In conclusion, this study will serve as a reference which suggests that fly ash and bottom ash are widely applicable in concrete technology, and its incorporation in self-compacting concrete constitutes a potential means of adding value to appropriate mix and design.

  16. Comparison between laboratory and field leachability of MSWI bottom ash as a road material.

    Science.gov (United States)

    Izquierdo, Maria; Querol, Xavier; Josa, Alejandro; Vazquez, Enric; López-Soler, Angel

    2008-01-15

    The leaching properties of bottom ash from municipal solid waste incineration (MSWI) used as an aggregate substitute in unbound pavement layers are evaluated. The mechanical behaviour of bottom ash is acceptable for this application, but the potential environmental consequences constitute the most important limitation on the use of bottom ash as a road material. The environmental properties of bottom ash are assessed by means of the Dutch availability test NEN 7341 and the single-batch and two-stage batch European EN 12457 laboratory leaching tests. Furthermore, an experimental unbound pavement stretch is constructed to provide information on leaching behaviour under field conditions. In this high infiltration scenario, the results from predicted (based upon laboratory leaching tests) and measured releases (under field conditions) are compared, evidencing that predictions based on compliance leaching tests may be highly realistic. The depletion period of the extractable fraction of a number of elements in these field conditions is also quantified.

  17. A Comparative Study of Fouling and Bottom Ash from Woody Biomass Combustion in a Fixed-Bed Small-Scale Boiler and Evaluation of the Analytical Techniques Used

    Directory of Open Access Journals (Sweden)

    Lara Febrero

    2015-05-01

    Full Text Available In this work, fouling and bottom ash were collected from a low-power boiler after wood pellet combustion and studied using several analytical techniques to characterize and compare samples from different areas and determine the suitability of the analysis techniques employed. TGA results indicated that the fouling contained a high amount of organic matter (70%. The XRF and SEM-EDS measurements revealed that Ca and K are the main inorganic elements and exhibit clear tendency in the content of Cl that is negligible in the bottom ash and increased as it penetrated into the innermost layers of the fouling. Calcite, magnesia and silica appeared as the major crystalline phases in all the samples. However, the bottom ash was primarily comprised of calcium silicates. The KCl behaved identically to the Cl, preferably appeared in the adhered fouling samples. This salt, which has a low melting point, condenses upon contact with the low temperature tube and played a crucial role in the early stages of fouling formation. XRD was the most useful technique applied, which provided a semi-quantitative determination of the crystalline phases. FTIR was proven to be inadequate for this type of sample. The XRF and SEM-EDS, techniques yield similar results despite being entirely different.

  18. Innovative use of recovered municipal solid waste incineration bottom ash as a component in growing media.

    Science.gov (United States)

    Sormunen, Annika; Teo, Kanniainen; Tapio, Salo; Riina, Rantsi

    2016-07-01

    The utilisation of municipal solid waste incineration bottom ash has been extensively studied, for example, in the unbound layers of roads and the products of cement and concrete industry. On the other hand, less attention has been given to other innovative utilisation possibilities, such as using the municipal solid waste incineration bottom ash as a component in growing media of plants. The municipal solid waste incineration bottom ash contains useful substances, such as calcium, that can influence plant growth in a positive manner. Therefore, the utilisation of this waste-derived material in the growing media may substitute the use of commercial fertilisers. Since the municipal solid waste incineration bottom ash also contains hazardous substances that can be toxic to plants, the main aim of this study was to add different amounts of recovered municipal solid waste incineration bottom ash in the growing media and to evaluate the effect of this material on plant growth. Based on the obtained results, the concentration of, for example copper and zinc, increased in test plants; ryegrass and barley, when recovered municipal solid waste incineration bottom ash was added in their growing media. On the other hand, this did not have a significant effect on plant growth, if compared with the growth of plants in commercially produced growing medium. Furthermore, the replacement of natural sand with municipal solid waste incineration bottom ash had a positive liming effect in the growing media. Overall, these findings suggest that the utilisation of recovered municipal solid waste incineration bottom ash as a component in growing media is possible and, thus, may allow more widespread and innovative use of this waste-derived material.

  19. An efficient and not polluting bottom ash extraction system

    International Nuclear Information System (INIS)

    This paper reports that boiler waste water effluent must meet more and more tighter requirements to comply with environmental regulations; sluice water resulting from bottom ash handling is one of the main problems in this context, and many utilities are under effort to maximize the reuse of the sluice water, and, if possible, to meet the aim of zero water discharge from bottom ash handling system. At the same time ash reuse efforts gain strength in order to minimize waste production. One solution to these problems can be found in an innovative Bottom Ash Extraction System (MAC System), marked by the peculiarity to be a continuous dry ash removal; the system has been developed in the last four years by MAGALDI INDUSTRIE SRL in collaboration with ANSALDO Ricerche, the R and D department of ANSALDO, the main Italian Boiler Manufacturer, and is now installed in six ENEL Boilers. The elimination of the water as separation element between the bottom part of the furnace and the outside atmosphere gives advantages mainly from the environmental view point, but a certain improvement in the boiler efficiency has also been demonstrated by the application of the system

  20. Flowable Backfill Materials from Bottom Ash for Underground Pipeline

    Directory of Open Access Journals (Sweden)

    Kyung-Joong Lee

    2014-04-01

    Full Text Available The purpose of this study was to investigate the relationship between strength and strain in manufacturing controlled low strength materials to recycle incineration bottom ash. Laboratory tests for controlled low strength materials with bottom ash and recycled in-situ soil have been carried out. The optimum mixing ratios were 25%–45% of in-situ soil, 30% of bottom ash, 10%–20% of fly ash, 0%–3% of crumb rubber, 3% of cement, and 22% of water. Each mixture satisfied the standard specifications: a minimum 20 cm of flowability and 127 kPa of unconfined compressive strength. The average secant modulus (E50 was (0.07–0.08 qu. The ranges of the internal friction angle and cohesion for mixtures were 36.5°–46.6° and 49.1–180 kPa, respectively. The pH of all of the mixtures was over 12, which is strongly alkaline. Small-scale chamber tests for controlled low strength materials with bottom ash and recycled in-situ soil have been carried out. Vertical deflection of 0.88–2.41 mm and horizontal deflection of 0.83–3.72 mm were measured during backfilling. The vertical and horizontal deflections of controlled low strength materials were smaller than that of sand backfill.

  1. Comparative study on the characteristics of fly ash and bottom ash geopolymers.

    Science.gov (United States)

    Chindaprasirt, Prinya; Jaturapitakkul, Chai; Chalee, Wichian; Rattanasak, Ubolluk

    2009-02-01

    This research was conducted to compare geopolymers made from fly ash and ground bottom ash. Sodium hydroxide (NaOH) and sodium silicate (Na(2)SiO(3)) solutions were used as activators. A mass ratio of 1.5 Na(2)SiO(3)/NaOH and three concentrations of NaOH (5, 10, and 15M) were used; the geopolymers were cured at 65 degrees C for 48 h. A Fourier transform infrared spectrometer (FT-IR), differential scanning calorimeter (DSC), and scanning electron microscope (SEM) were used on the geopolymer pastes. Geopolymer mortars were also prepared in order to investigate compressive strength. The results show that both fly ash and bottom ash can be utilized as source materials for the production of geopolymers. The properties of the geopolymers are dependent on source materials and the NaOH concentration. Fly ash is more reactive and produces a higher degree of geopolymerization in comparison with bottom ash. The moderate NaOH concentration of 10 M is found to be suitable and gives fly ash and bottom ash geopolymer mortars with compressive strengths of 35 and 18 MPa.

  2. Influence of Fly Ash, Bottom Ash, and Light Expanded Clay Aggregate on Concrete

    Directory of Open Access Journals (Sweden)

    S. Sivakumar

    2015-01-01

    Full Text Available Invention of new methods in strengthening concrete is under work for decades. Developing countries like India use the extensive reinforced construction works materials such as fly ash and bottom ash and other ingredients in RCC construction. In the construction industry, major attention has been devoted to the use of fly ash and bottom ash as cement and fine aggregate replacements. In addition, light expanded clay aggregate has been introduced instead of coarse aggregate to make concrete have light weight. This paper presents the results of a real-time work carried out to form light weight concrete made with fly ash, bottom ash, and light expanded clay aggregate as mineral admixtures. Experimental investigation on concrete mix M20 is done by replacement of cement with fly ash, fine aggregate with bottom ash, and coarse aggregate with light expanded clay aggregate at the rates of 5%, 10%, 15%, 20%, 25%, 30%, and 35% in each mix and their compressive strength and split tensile strength of concrete were discussed for 7, 28, and 56 days and flexural strength has been discussed for 7, 28, and 56 days depending on the optimum dosage of replacement in compressive strength and split tensile strength of concrete.

  3. Precious Metals in Municipal Solid Waste Incineration Bottom Ash

    Energy Technology Data Exchange (ETDEWEB)

    Muchova, Lenka; Bakker, Erwin; Rem, Peter [Faculty of Civil Engineering and Geosciences, Materials and Environment, TU Delft (Netherlands)], E-mail: P.C.REM@TUDELFT.NL

    2009-04-15

    Municipal solid waste incineration (MSWI) bottom ash contains economically significant levels of silver and gold. Bottom ashes from incinerators at Amsterdam and Ludwigshafen were sampled, processed, and analyzed to determine the composition, size, and mass distribution of the precious metals. In order to establish accurate statistics of the gold particles, a sample of heavy non-ferrous metals produced from 15 tons of wet processed Amsterdam ash was analyzed by a new technology called magnetic density separation (MDS). Amsterdam's bottom ash contains approximately 10 ppm of silver and 0.4 ppm of gold, which was found in particulate form in all size fractions below 20 mm. The sample from Ludwigshafen was too small to give accurate values on the gold content, but the silver content was found to be identical to the value measured for the Amsterdam ash. Precious metal value in particles smaller than 2 mm seems to derive mainly from waste of electrical and electronic equipment (WEEE), whereas larger precious metal particles are from jewelry and constitute the major part of the economic value. Economical analysis shows that separation of precious metals from the ash may be viable with the presently high prices of non-ferrous metals. In order to recover the precious metals, bottom ash must first be classified into different size fractions. Then, the heavy non-ferrous (HNF) metals should be concentrated by physical separation (eddy current separation, density separation, etc.). Finally, MDS can separate gold from the other HNF metals (copper, zinc). Gold-enriched concentrates can be sold to the precious metal smelter and the copper-zinc fraction to a brass or copper smelter.

  4. Utilization of Meat and Bone Meal Bottom Ash in Ceramics

    Directory of Open Access Journals (Sweden)

    Virginija VALANČIENĖ

    2011-03-01

    Full Text Available During utilization of animal waste meat and bone meal (MBM is received, realization and use of which has been stopped due to risk for the transmission of the bovine spongiform encephalopathy infection. The MBM must be safely stored or treated. Most often meat and bone meal undergoes thermal treatment. During combustion large quantities of residues (ashes are received, the recycled use of which has been given a lot of attention lately. In this work it was investigated the impact of the additive of the bottom ash (BA formed during combustion of the MBM on the properties of forming mass and ceramic body of hydromica clay, and also it was evaluated a possibility to use the MBM BA in manufacturing of building ceramics. After replacing the sand in porous ceramics by this additive the plasticity of the forming mass, drying and firing shrinkage as well as density of ceramic body changed insignificantly whereas the compressive strength increased by 8 % - 22 %. So the MBM BA can be utilized in production of porous ceramics.http://dx.doi.org/10.5755/j01.ms.17.1.256

  5. Workability and strength of lignite bottom ash geopolymer mortar.

    Science.gov (United States)

    Sathonsaowaphak, Apha; Chindaprasirt, Prinya; Pimraksa, Kedsarin

    2009-08-30

    In this paper, the waste lignite bottom ash from power station was used as a source material for making geopolymer. Sodium silicate and sodium hydroxide (NaOH) were used as liquid for the mixture and heat curing was used to activate the geopolymerization. The fineness of bottom ash, the liquid alkaline/ash ratio, the sodium silicate/NaOH ratio and the NaOH concentration were studied. The effects of the additions of water, NaOH and napthalene-based superplasticizer on the workability and strength of the geopolymer mortar were also studied. Relatively high strength geopolymer mortars of 24.0-58.0 MPa were obtained with the use of ground bottom ash with 3% retained on sieve no. 325 and mean particle size of 15.7 microm, using liquid alkaline/ash ratios of 0.429-0.709, the sodium silicate/NaOH ratios of 0.67-1.5 and 7.5-12.5M NaOH. The incorporation of water improved the workability of geopolymer mortar more effectively than the use of napthalene-based superplasticizer with similar slight reduction in strengths. The addition of NaOH solution slightly improves the workability of the mix while maintaining the strength of the geopolymer mortars.

  6. The Use of Coal Bottom Ash In Hot Mix Asphalt

    Directory of Open Access Journals (Sweden)

    Charles Begyina Kodjo Nketsiah

    2015-05-01

    Full Text Available Bottom ash is a waste material from coal burnt to generate electric power. It is incombustible and non-biodegradable; hence, the best way to dispose it is by recycling rather than incineration and land filling. Past research on bottom ash in road building have focused mainly on embankment filling, sub-base and base courses; except boiler slag which has received much attention in Hot Mix Asphalt (HMA. Bottom ash from Tanjung Bin Power Station was thus investigated through laboratory testing to justify its use in HMA construction in Malaysia. This Paper analysed the data with regards to performance in HMA. In the Marshall Mix design, the material largely satisfied the Stability, Flow and Stiffness requirements which were comparable to that of conventional aggregates, although void contents were a bit higher. When blended with granite, all the parameters were met. Contrary to past suggestions that bottom ash in HMA consumes more bitumen, the 6.4% (51.20g Optimum Bitumen Content (OBC achieved in this study does not necessarily translate into high consumption, compared to OBC of 5.3% (59.63g in the case of granite. The HMA also proved to be highly resistant to moisture-induced damage and satisfied the minimum JKR specification for Static Uniaxial Load Strain.

  7. Speciation of Chromium in Bottom Ash Obtained by the Incineration of the Leather Waste Shavings

    Directory of Open Access Journals (Sweden)

    k. louhab

    2006-01-01

    Full Text Available The evolution of bottom ash morphology and chromium metals behavior during incineration of a leather waste shavings at different incineration temperature have been studied. The Cr, Ca, Mg, Cl rates in bottom ashes, flay ashes and emitted gases in different incineration temperature of the tannery wastes are also determined. The morphology of the bottom ashes obtained by incineration at different temperature from the leather waste shavings was examined by MEB. The result show that the temperature and the length of incineration influence on the structure of the bottom ash and on the chromium in the bottom ash.

  8. Utilization options for fly ash, bottom ash, and slag in Eastern Europe

    Energy Technology Data Exchange (ETDEWEB)

    Manz, O.E.

    1995-12-01

    Since 1967, at least six ash utilization symposiums have been held in the United States, with papers presented by several European authors on the utilization of coal by-products in Eastern Europe. There is currently over 80,000 megawatts of installed coal-fired capacity available in that region. Unfortunately, of the 117,778,000 tonnes of fly ash, bottom ash, and slag produced in Eastern Europe in 1989, only 13% was utilized. This paper outlines the research and levels and kinds of coal by-product utilization taking place in Eastern Europe since the late 1960s.

  9. The Laconia, New Hampshire bottom ash paving project: Volume 3, Physical Performance Testing Report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Bottom ash is the principal waste stream from the combustion of municipal solid waste (MSW). It is comprised of grate ash (97%), the slag material discharged at the end of the grate system, and grate sifting (3%), the material that melts or falls through the grate structure. This project was conducted to demonstrate the feasibility of using municipal solid waste grate ash as an aggregate substitute in the construction of a pavement binder course for a portion of Rt. 3 in Laconia, New Hampshire. The research was conducted over a two year period during 1993 and 1994. This study is the culmination of an earlier two year characterization study between 1990 and 1992 that documented the physical and environmental characteristics of the bottom ash as it was produced at the Concord, N.H. waste-to-energy (@) facility and used in an asphaltic binder course. Together, these two studies provide a complete evaluation of the potential for using grate ash or bottom ash in asphalt binder course or as recycled asphalt pavement (RAP) in base courses in pavements.

  10. To fractionate municipal solid waste incineration bottom ash: Key for utilisation?

    Science.gov (United States)

    Sormunen, Laura Annika; Rantsi, Riina

    2015-11-01

    For the past decade, the Finnish waste sector has increasingly moved from the landfilling of municipal solid waste towards waste incineration. New challenges are faced with the growing amounts of municipal solid waste incineration bottom ash, which are mainly landfilled at the moment. Since this is not a sustainable or a profitable solution, finding different utilisation applications for the municipal solid waste incineration bottom ash is crucial. This study reports a comprehensive analysis of bottom ash properties from one waste incineration plant in Finland, which was first treated with a Dutch bottom ash recovery technique called advanced dry recovery. This novel process separates non-ferrous and ferrous metals from bottom ash, generating mineral fractions of different grain sizes (0-2 mm, 2-5 mm, 5-12 mm and 12-50 mm). The main aim of the study was to assess, whether the advanced bottom ash treatment technique, producing mineral fractions of different grain sizes and therefore properties, facilitates the utilisation of municipal solid waste incineration bottom ash in Finland. The results were encouraging; the bottom ash mineral fractions have favourable behaviour against the frost action, which is especially useful in the Finnish conditions. In addition, the leaching of most hazardous substances did not restrict the utilisation of bottom ash, especially for the larger fractions (>5 mm). Overall, this study has shown that the advanced bottom ash recovering technique can be one solution to increase the utilisation of bottom ash and furthermore decrease its landfilling in Finland.

  11. To fractionate municipal solid waste incineration bottom ash: Key for utilisation?

    Science.gov (United States)

    Sormunen, Laura Annika; Rantsi, Riina

    2015-11-01

    For the past decade, the Finnish waste sector has increasingly moved from the landfilling of municipal solid waste towards waste incineration. New challenges are faced with the growing amounts of municipal solid waste incineration bottom ash, which are mainly landfilled at the moment. Since this is not a sustainable or a profitable solution, finding different utilisation applications for the municipal solid waste incineration bottom ash is crucial. This study reports a comprehensive analysis of bottom ash properties from one waste incineration plant in Finland, which was first treated with a Dutch bottom ash recovery technique called advanced dry recovery. This novel process separates non-ferrous and ferrous metals from bottom ash, generating mineral fractions of different grain sizes (0-2 mm, 2-5 mm, 5-12 mm and 12-50 mm). The main aim of the study was to assess, whether the advanced bottom ash treatment technique, producing mineral fractions of different grain sizes and therefore properties, facilitates the utilisation of municipal solid waste incineration bottom ash in Finland. The results were encouraging; the bottom ash mineral fractions have favourable behaviour against the frost action, which is especially useful in the Finnish conditions. In addition, the leaching of most hazardous substances did not restrict the utilisation of bottom ash, especially for the larger fractions (>5 mm). Overall, this study has shown that the advanced bottom ash recovering technique can be one solution to increase the utilisation of bottom ash and furthermore decrease its landfilling in Finland. PMID:26330401

  12. Mechanical and leaching properties of blended systems containing OPC and incinerator bottom ash

    Energy Technology Data Exchange (ETDEWEB)

    Onori, R.; Polettini, A.; Pomi, R. [Rome Univ. (Italy). Dept. of Hydraulics, Transportation and Roads

    2010-07-01

    Chemical and mechanical activation processes were applied to improve the reactivity of incinerator bottom ash in Portland cement mixtures. Sodium hydroxide (NaOH), potassium hydroxide (KOH), calcium chloride (CaCI{sub 2}) and calcium sulfate (CaSO{sub 4}) activators were used in experiments conducted to determine bottom ash content, activator type, and activator dosages for varying amounts of cement and bottom ash. The study evaluated the evolution of mechanical strength and the leaching behaviour of both major and trace elements from the activated bottom ash and Portland cement mixtures. Results of the study showed that the use of CaCI{sub 2} improved the hydration process in the mixtures. A positive effect on mechanical strength was noted when CaSO{sub 4} was used as an activator. Trace metals were efficiently immobilized within the hardened materials for all the tested activators. Geochemical modelling was used to determine the main hydration phases of the leaching solutions. No mineral phases were identified as potential solubility-controlling solids. Results of the study indicated the presence of heavy metals as complex phase assemblages in the hardened materials. 40 refs., 2 tabs., 8 figs.

  13. Stimulation of methane oxidation potential and effects on vegetation growth by bottom ash addition in a landfill final evapotranspiration cover.

    Science.gov (United States)

    Kim, Gil Won; Ho, Adrian; Kim, Pil Joo; Kim, Sang Yoon

    2016-09-01

    The landfilling of municipal solid waste is a significant source of atmospheric methane (CH4), contributing up to 20% of total anthropogenic CH4 emissions. The evapotranspiration (ET) cover system, an alternative final cover system in waste landfills, has been considered to be a promising way to mitigate CH4 emissions, as well as to prevent water infiltration using vegetation on landfill cover soils. In our previous studies, bottom ash from coal-fired power plants was selected among several industrial residues (blast furnace slag, bottom ash, construction waste, steel manufacture slag, stone powder sludge, and waste gypsum) as the best additive for ET cover systems, with the highest mechanical performance achieved for a 35% (wtwt(-1)) bottom ash content in soil. In this study, to evaluate the field applicability of bottom ash mixed soil as ET cover, four sets of lysimeters (height 1.2m×width 2m×length 6m) were constructed in 2007, and four different treatments were installed: (i) soil+bottom ash (35% wtwt(-1)) (SB); (ii) soil+compost (2% wtwt(-1), approximately corresponding to 40Mgha(-1) in arable field scale) (SC); (iii) soil+bottom ash+compost (SBC); and (iv) soil only as the control (S). The effects of bottom ash mixing in ET cover soil on CH4 oxidation potential and vegetation growth were evaluated in a pilot ET cover system in the 5th year after installation by pilot experiments using the treatments. Our results showed that soil properties were significantly improved by bottom ash mixing, resulting in higher plant growth. Bottom ash addition significantly increased the CH4 oxidation potential of the ET cover soil, mainly due to improved organic matter and available copper concentration, enhancing methanotrophic abundances in soil amended with bottom ash. Conclusively, bottom ash could be a good alternative as a soil additive in the ET cover system to improve vegetation growth and mitigate CH4 emission impact in the waste landfill system. PMID:27067424

  14. Effect of ferrous metal presence on lead leaching in municipal waste incineration bottom ashes.

    Science.gov (United States)

    Oehmig, Wesley N; Roessler, Justin G; Zhang, Jianye; Townsend, Timothy G

    2015-01-01

    The recovery of ferrous and non-ferrous metals from waste to energy (WTE) ash continues to advance as the sale of removed metals improves the economics of waste combustion. Published literature suggests that Fe and Fe oxides play a role in suppressing Pb leaching in the Toxicity Characteristic Leaching Procedure (TCLP); further removal of ferrous metals from WTE ashes may facilitate higher Pb leaching under the TCLP. Eight WTE bottom ash size-fractions, from three facilities, were evaluated to assess the effect of metallic Fe addition and ferrous metal removal on TCLP leaching. Metallic Fe addition was demonstrated to reduce Pb leaching; the removal of ferrous metals by magnet resulted in a decrease in total available Pb (mg/kg) in most ash samples, yet Pb leachability increased in 5 of 6 ash samples. The research points to two chemical mechanisms to explain these results: redox interactions between Pb and Fe and the sorption of soluble Pb onto Fe oxide surfaces, as well as the effect of the leachate pH before and after metals recovery. The findings presented here indicate that generators, processors, and regulators of ash should be aware of the impact ferrous metal removal may have on Pb leaching, as a substantial increase in leaching may have significant implications regarding the management of WTE ashes. PMID:25464288

  15. Quality criteria for bottom ashes for civil construction. Part II Technical characteristics of bottom ashes; Kvalitetskriterier foer bottenaskor till vaegoch anlaeggningsbyggnad. Etapp II Bottenaskors tekniska egenskaper

    Energy Technology Data Exchange (ETDEWEB)

    Bahr, Bo von; Loorents, Karl-Johan; Ekvall, Annika; Arvidsson, Haakan [SP Swedish National Testing and Research Inst., Boraas (Sweden)

    2006-01-15

    This report is the presentation of the second of two stages. This stage deals mainly with the testing of three different types of ashes and the evaluation and suitability of the chosen test methods. The project only relates to the technical aspects of ashes. The report is written in such a way that both ash owners (e.g. Energy companies) and those who build roads and constructions will find it meaningful. All test methods that are used for traditional materials (gravel and crushed rock) is not fitting for ashes. New test methods for some properties that will be tested must therefore be presented, tested practically and evaluated. The project encompasses both road and construction building but has a focus on road construction since there the highest and comprising demands are defined. Three bottom ashes of different types have been studied regarding some tenfold mechanical/physical parameters, essential for the functionality of the ash as a construction material. An important conclusion is that ash is from a functionality and characterisation point of view, an undefined concept that encloses materials with widely different properties. Despite that only three ashes have been looked into the range of results are varying large for some properties. This is especially true for the loose bulk density, water absorption and grain size distribution. It is also clear that some of the standard test methods for aggregates need to be exchanged by other methods, which are more adapted to alternative materials. One such example is water absorption, a property that further influences frost resistance, frost heave and such. All the proposed test methods that been used in the project is considered fitting for its purpose. The test methods can be divided into two categories the ones that yield easy assessable results and those that yield results hard to appraise. To the first group belong grain size distribution, loose bulk density, thermal conductivity, permeability and frost heave

  16. Elemental characterization of coal, fly ash, and bottom ash using an energy dispersive X-ray fluorescence technique

    International Nuclear Information System (INIS)

    A total of 18 elements viz. Si, Al, Fe, Ca, Mg, K, Na, Sr, V, Zn, Mn, Cr, Cu, Pb, Ni, Co, As and Cd were analyzed in coal, fly ash and bottom ash samples collected across India using an EDXRF technique. Various indices such as element enrichment ratio, enrichment factor (with respect to crustal average) and mineral composition were calculated. Around 95% of mass was reconstructed using the concentration of elements in this study for fly and bottom ash. - Highlights: • Concentrations of 18 elements were determined in coal and ash samples using EDXRF. • Mineral quantification up to 95% was carried out for fly and bottom ash samples. • Enrichment ratios of elements were calculated in combustion residue with respect to coal. • Enrichment factor with respect to crustal average was estimated for ash samples

  17. Batch and Column Operations for the Removal of Fluoride from Aqueous Solution Using Bottom Ash

    Directory of Open Access Journals (Sweden)

    S.T. Ramesh

    2012-06-01

    Full Text Available Millions of people rely on drinking water that contains excess fluoride. In fluoride endemic areas, especially small communities with staggered habitat, defluoridation of potable water supply is still a problem. In this study, adsorption potential of bottom ash was investigated for defluoridation of drinking water using batch and continuous fixed bed column studies. Batch sorptive defluoridation conducted under experimental conditions such as pH, temperature, particle size, agitation time and dosage. Adsorption isotherms have been modeled by Langmuir and Freundlich isotherms. The fluoride sorption capacity at breakthrough point for bottom ash was greatly influenced by bed depth. The results were then analyzed using the Bed Depth Service Time (BDST Model and various performance parameters like Adsorption Capacity, Critical Bed Depth, and Adsorption Rate Constant were evaluated. With the observed data Thomas model and Yoon Nelson Model fitted well and constants are found.DOI: http://dx.doi.org/10.5755/j01.erem.60.2.1396

  18. Life cycle assessment of resource recovery from municipal solid waste incineration bottom ash

    DEFF Research Database (Denmark)

    Allegrini, Elisa; Vadenbo, Carl; Boldrin, Alessio;

    2015-01-01

    Bottom ash, the main solid output from municipal solid waste incineration (MSWI), has significant potential for the recovery of resources such as scrap metals and aggregates. The utilisation of these resources ideally enables natural resources to be saved. However, the quality of the recovered...... scrap metals may limit recycling potential, and the utilisation of aggregates may cause the release of toxic substances into the natural environment through leaching. A life cycle assessment (LCA) was applied to a full-scale MSWI bottom ash management and recovery system to identify environmental...... routes were compared: landfilling, road sub-base and aggregate in concrete, while specific leaching data were used as the basis for evaluating toxic impacts. The recovery and recycling of aluminium, ferrous, stainless steel and copper scrap were considered, and the importance of aluminium scrap quality...

  19. Synthesis and characterization of geopolymer from bottom ash and rice husk ash

    Science.gov (United States)

    Anggarini, Ufafa; Sukmana, Ndaru C.

    2016-02-01

    All Geopolymer (GP) has been synthesized from bottom ash and rice husk ash. This research aims to determine the effect of Si/Al ratio on geopolymer synthesis. Geopolymer was synthesized with various Si/Al ratio of 2, 3 and 4. The characterization result using XRD and SEM indicated that by using a different ratio of Si/A, it will produce geopolymer with varied structure and morphology. Diffractogram result shows that polymerization has been done for all samples (GP2, GP3, Gp4) with the presence of hump peak at 2θ = 27-35°. In GP4, no peak at 2θ = 18° indicating sodalite phase forming. Besides that, the morphology of geopolymer with a varied ratio of Si/Al shows that higher ratio will produce geopolymer with higher particle size. The highest compressive strength of geopolymer was obtained at a ratio of Si/Al = 4, with a maximum load of 12866 kgf.

  20. Modeling the formation of the quench product in municipal solid waste incineration (MSWI) bottom ash.

    Science.gov (United States)

    Inkaew, Kanawut; Saffarzadeh, Amirhomayoun; Shimaoka, Takayuki

    2016-06-01

    This study investigated changes in bottom ash morphology and mineralogy under lab-scale quenching conditions. The main purpose was to clarify the mechanisms behind the formation of the quench product/layer around bottom ash particles. In the experiments, the unquenched bottom ashes were heated to 300°C for 1h, and were quenched by warm water (65°C) with different simulated conditions. After having filtered and dried, the ashes were analyzed by a combination of methodologies namely, particle size distribution analysis, intact particle and thin-section observation, X-ray diffractometry, and scanning electron microscope with energy dispersive X-ray spectroscopy. The results indicated that after quenching, the morphology and mineralogy of the bottom ash changed significantly. The freshly quenched bottom ash was dominated by a quench product that was characterized by amorphous and microcrystalline calcium-silicate-hydrate (CSH) phases. This product also enclosed tiny minerals, glasses, ceramics, metals, and organic materials. The dominant mineral phases produced by quenching process and detected by XRD were calcite, Friedel's salt, hydrocalumite and portlandite. The formation of quench product was controlled by the fine fraction of the bottom ash (particle size conceptual model of the ash-water reactions and formation of the quench product in the bottom ash was proposed. PMID:27079853

  1. Contribution of natural organic matter to copper leaching from municipal solid waste incinerator bottom ash

    NARCIS (Netherlands)

    Zomeren, van A.; Comans, R.N.J.

    2004-01-01

    The leaching of heavy metals, such as copper, from municipal solid waste incinerator (MSWI) bottom ash is a concern in many countries and may inhibit the beneficial reuse of this secondary material. The enhanced leaching of copper from three MSWI bottom ash samples by dissolved organic carbon (DOC)

  2. Greenlandic Waste Incineration Fly And Bottom Ash As Secondary Resource In Mortar

    DEFF Research Database (Denmark)

    Kirkelund, Gunvor Marie; Ottosen, Lisbeth M.; Jensen, Pernille Erland;

    2016-01-01

    , the effects on compressive strengths of mortars by substituting cement or sand by raw, washed and electrodialytically treated fly ash or bottom ash were investigated. Parts of the experimental fly ash had been pre-treated by either washing with distilled water or electro-dialytically treated to remove salts...

  3. Performance Appraisal of Controlled Low-strength Material Using Sewage Sludge and Refuse Incineration Bottom Ash

    Institute of Scientific and Technical Information of China (English)

    甄广印; 周海燕; 赵天涛; 赵由才

    2012-01-01

    This research evaluated the use of sewage sludge and refuse incineration bottom ash to replace calcium sulfoaluminate cement (CSA) in making controlled low-strength material (CLSM). Various properties of CLSM mixtures were characterized in terms of unconfined compressive strength, microstructure and leachability. It was found that the strength of tested CLSM mixtures ranged from 3.6 to 9.0 MPa, over the upper excavatable limit of 2.1 MPa. The micro-structural analysis revealed that sewage sludge and bottom ash were crystallochemically in- corporated within CLSM system_s by forming the needle-like ettringite (C3A'3CS'_H32) with exiguous tu.bers via the typical Pozzolanic Reaction, leading to a dense and low-porosity microst;'ucture. Furthermore,-the toxicity characteristic leaching procedure evidenced that the cumulative leachable metals in the leachate were much below the regulatory thresholds. The potential for us!ng sewage sludge and bottom ash!n CLSM makin.g was thus confirmed.

  4. Comparison of various bioassays for dioxins measurements in fuel gas, fly ash and bottom ash

    Energy Technology Data Exchange (ETDEWEB)

    Ota, S.; Kin-ichi, S. [Ministry of the Environment, Tokyo (Japan); Masatoshi, M.; Shin-ichi, S. [National Institute for Environmental Studies, Tsukuba (Japan)

    2004-09-15

    In Japan, the control standards for dioxins (PCDDs, PCDFs and Co-PCBs) in the emission gas, fly and bottom ashes from waste incinerators have been defined in the Law Concerning Special Measures against Dioxins (Dioxins Law). Based on the Dioxins law, an installation personnel of waste incinerators of specified facilities shall measure dioxins in the emission gas and fly and bottom ashes more than once every year followed by reporting the results to their prefectural governor. The present regulating procedure has been set to use high-resolution gas chromatography/ high-resolution mass spectrometry (HRGC/HRMS, hereafter GC/MS) systems to determine dioxin-concentrations. However, the GC/MS measurements are often money- and timeconsuming, since they need complicated steps for sample preparation, expensive equipments and highly skilled technicians. Therefore, it is of high priority to develop rapid and economical alternative methods to measure dioxins. Recently, various assays using biological reactions have drawn a high degree of attention as a candidate for alternative measurement methods of dioxins. During the past decade several studies demonstrated the utility of a chemical (GC/MS) and biological (bioassays/biomarkers) control of waste thermal recycling processes like pyrolysis or incineration treatment. In this paper, we report the results of our recent examinations on the possibility to apply various bioassays to supplementary methods for the present procedure.

  5. Properties of Concrete using Tanjung Bin Power Plant Coal Bottom Ash and Fly Ash

    Directory of Open Access Journals (Sweden)

    Abdulhameed Umar Abubakar

    2012-12-01

    Full Text Available Coal combustion by-products (CCPs have been around since man understood that burning coal generates electricity, and its utilization in concrete production for nearly a century. The concept of sustainable development only reawaken our consciousness to the huge amount of CCPs around us and the need for proper reutilization than the current method of disposal which has  severe consequences both to man and the environment. This paper presents the result of utilization of waste from thermal power plants to improve some engineering properties of concrete. Coal bottom ash (CBA and fly ash were utilized in partial replacement for fine aggregates and cement respectively. The results of compressive strength at 7, 28, 56 & 90 days curing are presented because of the pozzolanic reaction. Other properties investigated include physical properties, fresh concrete properties and density. The results showed that for a grade 35 concrete with a combination of CBA and fly ash can produce 28 day strength above 30 MPa.

  6. Optimizing and Characterizing Geopolymers from Ternary Blend of Philippine Coal Fly Ash, Coal Bottom Ash and Rice Hull Ash

    Directory of Open Access Journals (Sweden)

    Martin Ernesto Kalaw

    2016-07-01

    Full Text Available Geopolymers are inorganic polymers formed from the alkaline activation of amorphous alumino-silicate materials resulting in a three-dimensional polymeric network. As a class of materials, it is seen to have the potential of replacing ordinary Portland cement (OPC, which for more than a hundred years has been the binder of choice for structural and building applications. Geopolymers have emerged as a sustainable option vis-à-vis OPC for three reasons: (1 their technical properties are comparable if not better; (2 they can be produced from industrial wastes; and (3 within reasonable constraints, their production requires less energy and emits significantly less CO2. In the Philippines, the use of coal ash, as the alumina- and silica- rich geopolymer precursor, is being considered as one of the options for sustainable management of coal ash generation from coal-fired power plants. However, most geopolymer mixes (and the prevalent blended OPC use only coal fly ash. The coal bottom ash, having very few applications, remains relegated to dumpsites. Rice hull ash, from biomass-fired plants, is another silica-rich geopolymer precursor material from another significantly produced waste in the country with only minimal utilization. In this study, geopolymer samples were formed from the mixture of coal ash, using both coal fly ash (CFA and coal bottom ash (CBA, and rice hull ash (RHA. The raw materials used for the geopolymerization process were characterized using X-ray fluorescence spectroscopy (XRF for elemental and X-ray diffraction (XRD for mineralogical composition. The raw materials’ thermal stability and loss on ignition (LOI were determined using thermogravimetric analysis (TGA and reactivity via dissolution tests and inductively-coupled plasma mass spectrometry (ICP analysis. The mechanical, thermal and microstructural properties of the geopolymers formed were analyzed using compression tests, Fourier transform infra-red spectroscopy (FTIR

  7. Eco-friendly porous concrete using bottom ash aggregate for marine ranch application.

    Science.gov (United States)

    Lee, Byung Jae; Prabhu, G Ganesh; Lee, Bong Chun; Kim, Yun Yong

    2016-03-01

    This article presents the test results of an investigation carried out on the reuse of coal bottom ash aggregate as a substitute material for coarse aggregate in porous concrete production for marine ranch applications. The experimental parameters were the rate of bottom ash aggregate substitution (30%, 50% and 100%) and the target void ratio (15%, 20% and 25%). The cement-coated granular fertiliser was substituted into a bottom ash aggregate concrete mixture to improve marine ranch applications. The results of leaching tests revealed that the bottom ash aggregate has only a negligible amount of the ten deleterious substances specified in the Ministry of Environment - Enforcement Regulation of the Waste Management Act of Republic Korea. The large amount of bubbles/air gaps in the bottom ash aggregate increased the voids of the concrete mixtures in all target void ratios, and decreased the compressive strength of the porous concrete mixture; however, the mixture substituted with 30% and 10% of bottom ash aggregate and granular fertiliser, respectively, showed an equal strength to the control mixture. The sea water resistibility of the bottom ash aggregate substituted mixture was relatively equal to that of the control mixture, and also showed a great deal of improvement in the degree of marine organism adhesion compared with the control mixture. No fatality of fish was observed in the fish toxicity test, which suggested that bottom ash aggregate was a harmless material and that the combination of bottom ash aggregate and granular fertiliser with substitution rates of 30% and 10%, respectively, can be effectively used in porous concrete production for marine ranch application. PMID:26687102

  8. Eco-friendly porous concrete using bottom ash aggregate for marine ranch application.

    Science.gov (United States)

    Lee, Byung Jae; Prabhu, G Ganesh; Lee, Bong Chun; Kim, Yun Yong

    2016-03-01

    This article presents the test results of an investigation carried out on the reuse of coal bottom ash aggregate as a substitute material for coarse aggregate in porous concrete production for marine ranch applications. The experimental parameters were the rate of bottom ash aggregate substitution (30%, 50% and 100%) and the target void ratio (15%, 20% and 25%). The cement-coated granular fertiliser was substituted into a bottom ash aggregate concrete mixture to improve marine ranch applications. The results of leaching tests revealed that the bottom ash aggregate has only a negligible amount of the ten deleterious substances specified in the Ministry of Environment - Enforcement Regulation of the Waste Management Act of Republic Korea. The large amount of bubbles/air gaps in the bottom ash aggregate increased the voids of the concrete mixtures in all target void ratios, and decreased the compressive strength of the porous concrete mixture; however, the mixture substituted with 30% and 10% of bottom ash aggregate and granular fertiliser, respectively, showed an equal strength to the control mixture. The sea water resistibility of the bottom ash aggregate substituted mixture was relatively equal to that of the control mixture, and also showed a great deal of improvement in the degree of marine organism adhesion compared with the control mixture. No fatality of fish was observed in the fish toxicity test, which suggested that bottom ash aggregate was a harmless material and that the combination of bottom ash aggregate and granular fertiliser with substitution rates of 30% and 10%, respectively, can be effectively used in porous concrete production for marine ranch application.

  9. Stabilization/solidification of fly ashes and concrete production from bottom and circulating ashes produced in a power plant working under mono and co-combustion conditions.

    Science.gov (United States)

    Barbosa, Rui; Lapa, Nuno; Lopes, Helena; Gulyurtlu, Ibrahim; Mendes, Benilde

    2011-01-01

    Two combustion tests were performed in a fluidized bed combustor of a thermo-electric power plant: (1) combustion of coal; (2) co-combustion of coal (68.7% w/w), sewage sludge (9.2% w/w) and meat and bone meal (MBM) (22.1% w/w). Three samples of ashes (bottom, circulating and fly ashes) were collected in each combustion test. The ashes were submitted to the following assays: (a) evaluation of the leaching behaviour; (b) stabilization/solidification of fly ashes and evaluation of the leaching behaviour of the stabilized/solidified (s/s) materials; (c) production of concrete from bottom and circulating ashes. The eluates of all materials were submitted to chemical and ecotoxicological characterizations. The crude ashes have shown similar chemical and ecotoxicological properties. The s/s materials have presented compressive strengths between 25 and 40 MPa, low emission levels of metals through leaching and were classified as non-hazardous materials. The formulations of concrete have presented compressive strengths between 12 and 24 MPa. According to the Dutch Building Materials Decree, some concrete formulations can be used in both scenarios of limited moistening and without insulation, and with permanent moistening and with insulation.

  10. Co-sintering of treated APC-residues with bottom ash

    DEFF Research Database (Denmark)

    Bergfeldt, B.; Jensen, Dorthe Lærke; Vehlow, J.;

    2001-01-01

    the influence of co-sintering of Ferrox products with bottom ashes on the quality of the residues and the effects on the combustion process. Only few elements showed higher concentrations in the bottom ashes of these co-combustion tests compared to reference tests. No significant effect on the leaching...... behaviour of the bottom ashes could be found. During the co-combustion process an increase in SO2 concentrations in the raw gas and slightly lower temperatures in the fuel bed could be observed....

  11. Mechanisms contributing to the thermal analysis of waste incineration bottom ash and quantification of idfferent carbon species

    NARCIS (Netherlands)

    Rocca, S.; Zomeren, van A.; Costa, G.; Dijkstra, J.J.; Comans, R.N.J.; Lombardi, F.

    2013-01-01

    The focus of this study was to identify the main compounds affecting the weight changes of bottom ash (BA) in conventional loss on ignition (LOI) tests and to obtain a better understanding of the individual processes in heterogeneous (waste) materials such as BA. Evaluations were performed on BA sam

  12. Characterization of bottom ashes from coal pulverized power plants to determine their potential use feasibility

    Energy Technology Data Exchange (ETDEWEB)

    Menendez, E.; Alvaro, A. M.; Argiz, C.; Parra, J. L.; Moragues, A.

    2013-07-01

    The disposal of coal by products represents environmental and economical problems around the world. Therefore, the reuse and valorisation of this waste has become an important issue in the last decades. While high-value construction products containing fly ash were developed and its use is actually totally accepted as an addition to cement, the use of the bottom ash as supplementary cementitious material has not been allow. This paper examines the chemical and physical properties of fly ashes and bottom ashes from two different coal power plants in order to compare them and analyse the potential feasibility of bottom ash as cement replacement. The mechanical properties of cement mortars made with different percentages of both ashes were also study. The results obtained showed similar chemical composition of both kinds of ashes. The compressive strength values of mortars with 10 % and 25 % of cement replacement (at 28 days) were above the limits established in European standards and there were not significant differences between fly ash and bottom ash from both origins. (Author)

  13. Copper speciation in municipal solid waste incinerator bottom ash leachates; Kopparformer i lakvatten fraan energiaskor

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, Susanna; Gustafsson, Jon Petter [Royal Inst. of Tech., Stockholm (Sweden); Schaik, Joris van; Berggren Kleja, Dan [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden); Hees, Patrick van [Oerebro Univ. (Sweden)

    2006-03-15

    The formation of copper (Cu) complexes with dissolved organic carbon (DOC) in bottom ash from municipal solid waste incineration (MSWI) may increase the total amount of Cu released but at the same time reduce its toxicity. In this study, DOC in a MSWI bottom ash leachate was characterized and the Cu-binding properties of different DOC fractions in the ash leachate and in a soil solution were studied. This knowledge may be used for improved environmental assessment of MSWI bottom ash in engineering applications. The Cu{sup 2+} activity at different pH values was measured potentiometrically using a Cu-ion selective electrode (Cu-ISE). Experimental copper complexation results were compared to speciation calculations made in Visual MINTEQ with the NICA-Donnan model and the Stockholm Humic Model (SHM). The MSWI bottom ash leachate contained a larger proportion of hydrophilic organic carbon than the investigated soil solution and other natural waters. The hydrophilic fraction of both samples showed Cu{sup 2+} binding properties similar to that of the bulk, cation-exchanged, leachate. For the ash leachate, the pH dependence of the Cu activity was not correctly captured by neither the SHM nor the NICA-Donnan model, but for the soil solution the model predictions of Cu speciation were in good agreement with the obtained results. The complex formation properties of the ash DOC appears to be less pH-dependent than what is assumed for DOC in natural waters. Hence, models calibrated for natural DOC may give inconsistent simulations of Cu-DOC complexation in MSWI bottom ash leachate. A Biotic Ligand Model for Daphnia Magna was used to provide an estimate of the copper concentrations at LC50 for a simulated bottom ash leachate. It was concluded that the Cu concentrations in certain bottom ash leachates are high enough to pose an ecotoxicological risk; however, after dilution and soil sorption, the risks for neighboring water bodies are most likely negligible. Three processes were

  14. Treated bottom ash medium and method of arsenic removal from drinking water

    Energy Technology Data Exchange (ETDEWEB)

    Gadgil, Ashok (El Cerrito, CA)

    2009-06-09

    A method for low-cost arsenic removal from drinking water using chemically prepared bottom ash pre-treated with ferrous sulfate and then sodium hydroxide. Deposits on the surface of particles of bottom ash form of activated iron adsorbent with a high affinity for arsenic. In laboratory tests, a miniscule 5 grams of pre-treated bottom ash was sufficient to remove the arsenic from 2 liters of 2400 ppb (parts per billion) arsenic-laden water to a level below 50 ppb (the present United States Environmental Protection Agency limit). By increasing the amount of pre-treated bottom ash, even lower levels of post-treatment arsenic are expected. It is further expected that this invention supplies a very low-cost solution to arsenic poisoning for large population segments.

  15. Characteristics of fly ash and bottom ash from the municipal solid waste incineration plant in Shanghai

    International Nuclear Information System (INIS)

    Background: Incineration is an attractive method of energy production and waste reduction for the treatment of municipal solid waste (MSW). However, the secondary pollutants followed such as fly ash (FA), bottom ash (BA) from the waste incineration are always a concern. Yet few articles provide detailed information about the physical and chemical characteristics of trace elements in ash at the molecular level. Purpose: The elemental concentrations and microstructure characteristics of ash were investigated to understand the distribution and migration of the elements in MSW incineration process. Methods: The study of the characteristics of FA and BA from Shanghai MSW incineration plant was based on the concentrations of elements, water-soluble salts, microstructure, section-distribution of the elements in single particle, isotope ratio and chemical species of Pb, which were studied respectively by using synchrotron radiation X-ray fluorescence (SR-XRF), Ion Chromatography (IC), Scanning electron microscopy (SEM), X-ray energy dispersive microanalysis (EDX), Synchrotron radiation micro-beam X-ray fluorescence (μ-XRF), Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and X-ray absorption near-edge structure (XANES) spectra. Results: Mass concentrations of most metal elements in FA were higher than those in BA, especially Pb and Cd, which had been obviously enriched. FA particles were of relatively smaller size and rougher surface than those of BA, which brought easier adsorption of heavy metals in FA. The large enrichment factors of Pb, Cd, Cu and Zn indicated these elements were in extreme pollution state. Water-soluble salts in FA and BA mainly existed as chloride and sulfate of Ca, Na and K. The ion concentrations in FA were generally higher than those in BA. Results of μ-XRF suggested that Pb, Zn, Cu, Cr, Fe and Mn had nonuniform distributions and highly localized to some small regions in FA and BA. Isotope ratio of Pb in FA and BA was similar. Chemical

  16. Use of Coal Bottom Ash as Mechanical Stabiliser in Subgrade Soil

    OpenAIRE

    Abdus Salaam Cadersa; Akshay Kumar Seeborun; Andre Chan Chim Yuk

    2014-01-01

    This paper presents the laboratory investigation work which forms part of a full scale research road project in Mauritius where coal bottom ash is used as mechanical stabiliser in a saprolitic subgrade soil. Three mixtures of subgrade soil and CBA were investigated in the laboratory, each containing varying percentages of coal bottom ash by weight (15%, 30%, and 40%, resp.). The laboratory research indicated that the mechanical properties of the subgrade soil are improved with the addition of...

  17. Use of Coal Bottom Ash as Mechanical Stabiliser in Subgrade Soil

    Directory of Open Access Journals (Sweden)

    Abdus Salaam Cadersa

    2014-01-01

    Full Text Available This paper presents the laboratory investigation work which forms part of a full scale research road project in Mauritius where coal bottom ash is used as mechanical stabiliser in a saprolitic subgrade soil. Three mixtures of subgrade soil and CBA were investigated in the laboratory, each containing varying percentages of coal bottom ash by weight (15%, 30%, and 40%, resp.. The laboratory research indicated that the mechanical properties of the subgrade soil are improved with the addition of bottom ash. Highest values for soaked and unsoaked CBR values were obtained for the mixture containing 30% by weight of bottom ash, which were 145% and 95%, respectively, as compared to 40% and 55% for the subgrade soil alone. Upon addition of coal bottom ash, a considerable decrease in swelling potential during soaking was observed for the mixture containing 40% by weight of CBA. The swell decreased from 0.17% for the subgrade soil alone to 0.04% for the mixture containing 40% by weight of CBA. Moreover, a CBA content of 30% resulted in a mix of intermediate plasticity as compared to the subgrade soil which is highly plastic. It is concluded that coal bottom ash can be used successfully as a mechanical stabilizer in the experimental subgrade soil by addition of 30 to 40% of CBA.

  18. Effect of accelerated carbonation and zero valent iron on metal leaching from bottom ash.

    Science.gov (United States)

    Nilsson, M; Andreas, L; Lagerkvist, A

    2016-05-01

    About 85% of the ashes produced in Sweden originated from the incineration of municipal solid waste and biofuel. The rest comes from the thermal treatment of recycled wood, peat, charcoal and others. About 68% of all ashes annually produced in Sweden are used for constructions on landfills, mainly slopes, roads and embankments, and only 3% for construction of roads and working surfaces outside the landfills (SCB, 2013). Since waste bottom ash (BA) often has similar properties to crushed bedrock or gravel, it could be used for road constructions to a larger extent. However, the leaching of e.g. Cr, Cu, Mo, Pb and Zn can cause a threat to the surrounding environment if the material is used as it is. Carbonation is a commonly used pre-treatment method, yet it is not always sufficient. As leaching from aged ash is often controlled by adsorption to iron oxides, increasing the number of Fe oxide sorption sites can be a way to control the leaching of several critical elements. The importance of iron oxides as sorption sites for metals is known from both mineralogical studies of bottom ash and from the remediation of contaminated soil, where iron is used as an amendment. In this study, zero valent iron (Fe(0)) was added prior to accelerated carbonation in order to increase the number of adsorption sites for metals and thereby reduce leaching. Batch, column and pHstat leaching tests were performed and the leaching behaviour was evaluated with multivariate data analysis. It showed that leaching changed distinctly after the tested treatments, in particular after the combined treatment. Especially, the leaching of Cr and Cu clearly decreased as a result of accelerated carbonation. The combination of accelerated carbonation with Fe(0) addition reduced the leaching of Cr and Cu even further and reduced also the leaching of Mo, Zn, Pb and Cd compared to untreated BA. Compared with only accelerated carbonation, the Fe(0) addition significantly reduced the leaching of Cr, Cu and Mo

  19. Wood pellet fly ash and bottom ash as an effective liming agent and nutrient source for rye grass (Lolium perenne L.) and oats (Avena sativa).

    Science.gov (United States)

    Park, Nathan D; Michael Rutherford, P; Thring, Ronald W; Helle, Steve S

    2012-01-01

    Fly ash (FA) and bottom ash (BA) from a softwood pellet boiler were characterized and evaluated as soil amendments. In a greenhouse study, two plant species (rye grass, Lolium perenne L. and oats, Avena sativa) were grown in three different treatments (1% FA, 1% BA, non-amended control) of a silty loam soil. Total concentrations of plant nutrients Ca, K, Mg, P and Zn in both ashes were elevated compared to conventional wood ash. Concentrations of Cd, Cr, Pb, Se and Zn were found to be elevated in the FA relative to BA and the non-amended soil. At 28 d, oat above-ground biomass was found to be significantly greater in soil amended with FA. Potassium and Mo plant tissue concentrations were significantly increased by addition of either ash, and FA significantly increased Zn tissue concentrations. Cadmium and Hg tissue concentrations were elevated in some cases. As soil amendments, either pellet ash is an effective liming agent and nutrient source, but high concentrations of Cd and Zn in FA may preclude its use as an agricultural soil amendment in some jurisdictions. Lower ash application rates than those used in this study (i.e. <1%) may still provide sufficient nutrients and effective neutralization of soil acidity.

  20. Influence of Bottom Ash Replacements as Fine Aggregate on the Property of Cellular Concrete with Various Foam Contents

    Directory of Open Access Journals (Sweden)

    Patchara Onprom

    2015-01-01

    Full Text Available This research focuses on evaluating the feasibility of utilizing bottom ash from coal burning power plants as a fine aggregate in cellular concrete with various foam contents. Flows of all mixtures were controlled within 45 ± 5% and used foam content at 30%, 40%, 50%, 60%, and 70% by volume of mixture. Bottom ash from Mae Moh power plant in Thailand was used to replace river sand at the rates of 0%, 25%, 50%, 75%, and 100% by volume of sand. Compressive strength, water absorption, and density of cellular concretes were determined at the ages of 7, 14, and 28 days. Nonlinear regression technique was developed to construct the mathematical models for predicting the compressive strength, water absorption, and density of cellular concrete. The results revealed that the density of cellular concrete decreased while the water absorption increased with an increase in replacement level of bottom ash. From the experimental results, it can be concluded that bottom ash can be used as fine aggregate in the cellular concrete. In addition, the nonlinear regression models give very high degree of accuracy (R2>0.99.

  1. Full Scale Tests of Short-Term Municipal Solid Waste Incineration Bottom Ash Weathering Before Landfill Disposal

    Directory of Open Access Journals (Sweden)

    Franco Marchese

    2009-01-01

    Full Text Available Problem statement: Natural weathering is the most economic method of treatment in order to reduce the release of heavy metals present in the residue. Approach: The aim of the study was to optimize the minimum weathering times that were useful to reduce the lead release to within the Italian limits for landfill disposal. The mechanism of short-term weathering of MSWI bottom ash had been studied and its effect on the leaching of lead had been evaluated. Two bottom ash heaps had been realized for the experimental assessment: In one case an open-air situation was used, in the other, a heap placed under shelter was not exposed to rain. Results: The weathering course was monitored through the results of a leaching test that was carried out at different ageing times (EN 12457-2:2002. The total carbonates were also measured, at the same time, on the fine fraction of the weathered bottom ash (2 was fixed by air. The pH value was controlled by Portlandite dissolution only at the beginning, after the pH control seems to be due to aluminum hydroxides. Conclusion: The most significant changes in the bottom ash were found to occur in the first 60 days. It had been possible to verify the limited influence of washing phenomena while it was confirmed that carbonation was the most important process in short-term weathering and that it had an important rule on limiting lead release.

  2. Heavy Metal Contamination of Soils around a Hospital Waste Incinerator Bottom Ash Dumps Site

    Directory of Open Access Journals (Sweden)

    M. Adama

    2016-01-01

    Full Text Available Waste incineration is the main waste management strategy used in treating hospital waste in many developing countries. However, the release of dioxins, POPs, and heavy metals in fly and bottom ash poses environmental and public health concerns. To determine heavy metal (Hg, Pb, Cd, Cr, and Ag in levels in incinerator bottom ash and soils 100 m around the incinerator bottom ash dump site, ash samples and surrounding soil samples were collected at 20 m, 40 m, 60 m, 80 m, 100 m, and 1,200 m from incinerator. These were analyzed using the absorption spectrophotometer method. The geoaccumulation (Igeo and pollution load indices (PLI were used to assess the level of heavy metal contamination of surrounding soils. The study revealed high concentrations in mg/kg for, Zn (16417.69, Pb (143.80, Cr (99.30, and Cd (7.54 in bottom ash and these were above allowable limits for disposal in landfill. The study also found soils within 60 m radius of the incinerator to be polluted with the metals. It is recommended that health care waste managers be educated on the implication of improper management of incinerator bottom ash and regulators monitor hospital waste incinerator sites.

  3. Residual organic matter and microbial respiration in bottom ash: Effects on metal leaching and eco-toxicity.

    Science.gov (United States)

    Ilyas, A; Persson, K M; Persson, M

    2015-09-01

    A common assumption regarding the residual organic matter, in bottom ash, is that it does not represent a significant pool of organic carbon and, beyond metal-ion complexation process, it is of little consequence to evolution of ash/leachate chemistry. This article evaluates the effect of residual organic matter and associated microbial respiratory processes on leaching of toxic metals (i.e. arsenic, copper, chromium, molybdenum, nickel, lead, antimony and zinc), eco-toxicity of ash leachates. Microbial respiration was quantified with help of a respirometric test equipment OXITOP control system. The effect of microbial respiration on metal/residual organic matter leaching and eco-toxicity was quantified with the help of batch leaching tests and an eco-toxicity assay - Daphnia magna. In general, the microbial respiration process decreased the leachate pH and eco-toxicity, indicating modification of bioavailability of metal species. Furthermore, the leaching of critical metals, such as copper and chromium, decreased after the respiration in both ash types (fresh and weathered). It was concluded that microbial respiration, if harnessed properly, could enhance the stability of fresh bottom ash and may promote its reuse. PMID:25999368

  4. Quality assurance of MSWI bottom ash. Environmental properties; Kvalitetssaekring av slaggrus. Miljoemaessiga egenskaper

    Energy Technology Data Exchange (ETDEWEB)

    Flyhammar, Peter [Lund Univ. (Sweden). Engineering Geology

    2006-04-15

    In Sweden, several hundred tonnes of MSWI bottom ash are generated annually at 29 incineration plants for municipal solid waste. So far bottom ash has mainly been disposed in to landfills or used as cover material in landfills or in other construction works at landfills. A few applications of bottom ash in construction works outside landfills have been reported. A large problem for the market of bottom ash and other secondary materials outside Swedish waste treatment plants is the lack of roles and regulations for a non-polluting use. During 2002 Hartlen and Groenholm presented a proposal to a system to assure the quality of bottom ash after homogenization and stabilization. They notice that the leaching of salts and metals to ground water constitutes the largest risk for the environment during use of bottom ash. Therefore, a quality assurance of environmental properties should be based on leaching tests. The aim of this project was to study how the control of environmental properties of bottom ash (at first hand leaching properties) earlier described in e.g. a product information sheet should be worked out. The starting-point has been a control system for bottom ash developed by Sysav. Different leaching tests illustrate however different aspects of the environmental properties, e.g. short-term and long-term leaching. Limit and target values for different variables could affect both the possibilities to use bottom ash as well as the sampling from storage heaps. We have chosen to investigate pH, availability and leached amount and the connection between these variables. the possibilities to use pH or the availability to assess both short-term and longterm leaching properties. how the number of subsamples that should be collected from a storage heap is affected by different control variables and quality requirements. how bottom ash is stabilized by today's storage technology and how the technology could be improved. Our sample test of bottom ash from Swedish

  5. Quality assurance of MSWI bottom ash. Environmental properties; Kvalitetssaekring av slaggrus. Miljoemaessiga egenskaper

    Energy Technology Data Exchange (ETDEWEB)

    Flyhammar, Peter [Lund Univ. (Sweden). Dept. of Engineering Geology

    2006-04-15

    In Sweden several hundred tonnes of MSWI bottom ash are generated annually at 29 incineration plants for municipal solid waste. So far bottom ash has mainly been disposed in to landfills or used as cover material in landfills or in other construction works at landfills. A few applications of bottom ash in construction works outside landfills have been reported. A large problem for the market of bottom ash and other secondary materials outside Swedish waste treatment plants is the lack of roles and regulations for a non-polluting use. During 2002 Hartlen and Groenholm (HG) presented a proposal to a system to assure the quality of bottom ash after homogenization and stabilization. A quality assurance of environmental properties should be based on leaching tests. The aim of this project was to study how the control of environmental properties of bottom ash earlier described in e.g. a product information sheet should be worked out. The starting-point has been a control system for bottom ash developed by the Sysav company. Different leaching tests illustrate however different aspects of the environmental properties, e.g. short-term and long-term leaching. Limit and target values for different variables could affect both the possibilities to use bottom ash as well as the sampling from storage heaps. We have chosen to investigate: pH, availability and leached amount and the connection between these variables; the possibilities to use pH or the availability to assess both short-term and long term leaching properties; how the number of subsamples that should be collected from a storage heap is affected by different control variables and quality requirements; how bottom ash is stabilized by today's storage technology and how the technology could be improved. Our sample test of bottom ash from Swedish incineration plants indicates that the availability of elements such as Cd, Cu, Cr, Ni, Pb and Zn in bottom ash usually is below Sysav's target values. Extreme values

  6. Characterisation of MSWI bottom ash for potential use as subbase in Greenlandic road construction

    DEFF Research Database (Denmark)

    Kirkelund, Gunvor Marie; Jørgensen, Anders Stuhr; Ingeman-Nielsen, Thomas;

    2012-01-01

    of infrastructure due to increased oil and mineral exploitation. Thus, in this study MSWI bottom ash from a Greenlandic incinerator was tested for possible reuse as subbase in road construction. The mechanical properties (grain size distribution, wear resistance and bearing capacity) showed that the bottom ash...... was acceptable for reuse after some small adjustments in the grain size distribution to prevent frost sensitivity. Results obtained from heavy metal content and heavy metal leaching complied with the Danish guideline values for reuse of waste materials in construction. Leaching of Cu and Cr was high from small...

  7. Use of bottom ash from thermal power plant and lime as filler in bituminous mixtures

    Directory of Open Access Journals (Sweden)

    López-López, E.

    2015-06-01

    Full Text Available This study focuses on the characterization of bottom ash (PCC-BA and determining the mechanical characteristics of hot mix asphalt (HMA using PCC-BA and hydrated lime (HL as filler. Physical and chemical characterization of the bottom ash was carried out to evaluate its eventual reutilization as filler substitute. The materials tested in this study were made using 0%, 25%, 50%, 70% and 100% of PCC-BA combined with HL. HMA mixes were evaluated in terms of their engineering properties, namely: air voids in the mixes, water sensitivity, stiffness modulus, performance in wheel tracking test and fatigue resistance. The results obtained indicate that HMA mixes with a filler blend of 70% PCC-BA and 30% HL fulfil European standards and are suitable for light traffic or small infrastructures.Este estudio se centra en la caracterización de las cenizas de fondo (PCC-BA y la determinación de las características mecánicas de mezclas bituminosas en caliente (HMA, utilizando cenizas de fondo y la cal hidratada (HL como filler. Se realizó la caracterización física y química de las cenizas de fondo para evaluar su empleo como sustituto de filler. Las mezclas ensayadas en este estudio se realizaron utilizando 0%, 25%, 50%, 70% y 100% de cenizas de fondo combinadas con cal hidratada. Se evaluaron propiedades ingenieriles de las mezclas bituminosas, tales como los huecos de aire en las mezclas, la sensibilidad al agua, el módulo de rigidez, el ensayo de pista y la resistencia a la fatiga. Los resultados obtenidos indican que las mezclas bituminosas fabricadas con una combinación de filler del 70% de cenizas de fondo y el 30% cal hidratada, cumplen con las normas europeas y son adecuados para su aplicación con tráficos ligeros o en pequeñas infraestructuras.

  8. Effect of mixes made of coal bottom ash and fly ash on the mechanical strength and porosity of Portland cement

    Directory of Open Access Journals (Sweden)

    Argiz, C.

    2013-03-01

    Full Text Available New additions to the cement are needed to achieve a more sustainable and durable construction material. Within this context, bottom ashes can be used as a main constituent of Portland cements when it is mixed in an optimized proportion with fly ashes. The mechanical characteristics of standarized mortars made of mixes of pulverized coal combustion bottom and fly ashes are studied. The mortars were made of ordinary Portland cement (CEM I 42.5 N and mixes of bottom ashes with fly ashes in similar proportions to those of CEM II/A-V, CEM II/B-V and CEM IV/A (V. Summing up, it can be said that the utilization of bottom ashes mixed with fly ashes in replacement levels from 0% to 100% do not affect significantively on the mechanical caracteristics of the mortars considered in the present study which had an addition maximum content of 35%.

    La utilización de nuevas adiciones en el cemento es necesaria con el fin de obtener un material más sostenible y durable. En este sentido, las cenizas de fondo o cenicero de las centrales termoeléctricas de carbón se podrían reciclar siendo empleadas como un componente principal de los cementos Portland. Se han estudiado las propiedades mecánicas de unos morteros normalizados elaborados con mezclas de cenizas volantes con cenizas de fondo fabricados con unos porcentajes similares a los correspondientes de los CEM II/A-V, CEM II/B-V y CEM IV/A (V. En conclusión, la utilización de mezclas de cenizas de fondo o cenicero con cenizas volantes sustituyendo a éstas últimas entre el 0% y el 100%, no influye significativamente en el comportamiento mecánico de los morteros estudiados en los que el contenido máximo de adición ha sido del 35%, si bien afecta a determinados aspectos microestructurales, como la cantidad y distribución de poros capilares.

  9. Improved electrical efficiency and bottom ash quality on waste combustion plants. Appendix A4 to A6

    Energy Technology Data Exchange (ETDEWEB)

    Kloeft, H.; Jensen, Peter A.; Nesterov, I.; Hyks, J.; Astrup, T. (Technical Univ. of Denmark, Kgs. Lyngby (Denmark)); Mogensen, Erhardt (Babcock and Wilcox Voelund A/S, Glostrup (Denmark))

    2010-07-01

    Investigations making it possible to evaluate and further develop concepts to improve electrical efficiency in a waste combustion plant were performed. Furthermore, one objective of the study was to investigate the possibilities of improving waste bottom ash leaching properties by use of a rotary kiln treatment. The project work included construction of a bench-scale rotary kiln, performing ash rotary kiln treatment experiments, conducting gas suction probe measurements on a waste incineration plant and making some concept evaluations. The influence of the rotary kiln thermal treatment on the leaching of Ca, Al, Si, Mg, Ba, Sr, Cl, Cu, Pb, Zn, Cr, Mo, sulfate, DOC and carbonate was determined. As a result of these tests, the rotary kiln thermal treatment of bottom ashes can be recommended for reducing the leaching of Cu, Pb, Cl, Zn and DOC; however, an increased leaching of Cr and Mo should be expected. The combustion conditions above the grate of a waste incineration plant were investigated and the release and concentration of volatile ash species in the flue gas such as Cl, Na, K, Ca, Pb, Zn and S were measured. The conducted measurements show that flue gas from grate sections 3 and 4 can produce a sufficiently hot flue gas that contains only low concentrations of corrosive species, and therefore can be used to increase superheater temperatures. Implementation of the so-called flue gas split concept together with other steam circle modifications on a waste combustion plant, and using a reasonable increase in final steam temperature from 400 to 500 deg. C, have the potential to increase electrical efficiency from 24 to 30% (with respect to lower fuel heating value) in a waste combustion plant. The appendices deal with collection of slags for the rotary kiln experiments; overview of the thermal treatment experiments - phase 1; a journal paper with the title ''Quantification of leaching from waste incineration bottom ash treated in a rotary kiln

  10. Improved electrical efficiency and bottom ash quality on waste combustion plants. Appendix A7 to A10

    Energy Technology Data Exchange (ETDEWEB)

    Hyks, J.; Astrup, T.; Jensen, Peter A.; Nesterov, I.; Boejer, M.; Frandsen, F.; Dam-Johansen, K.; Hedegaard Madsen, O.; Lundtorp, K. (Technical Univ. of Denmark, Kgs. Lyngby (Denmark)); Mogensen, Erhardt (Babcock and Wilcox Voelund A/S, Glostrup (Denmark))

    2010-07-01

    Investigations making it possible to evaluate and further develop concepts to improve electrical efficiency in a waste combustion plant were performed. Furthermore, one objective of the study was to investigate the possibilities of improving waste bottom ash leaching properties by use of a rotary kiln treatment. The project work included construction of a bench-scale rotary kiln, performing ash rotary kiln treatment experiments, conducting gas suction probe measurements on a waste incineration plant and making some concept evaluations. The influence of the rotary kiln thermal treatment on the leaching of Ca, Al, Si, Mg, Ba, Sr, Cl, Cu, Pb, Zn, Cr, Mo, sulfate, DOC and carbonate was determined. As a result of these tests, the rotary kiln thermal treatment of bottom ashes can be recommended for reducing the leaching of Cu, Pb, Cl, Zn and DOC; however, an increased leaching of Cr and Mo should be expected. The combustion conditions above the grate of a waste incineration plant were investigated and the release and concentration of volatile ash species in the flue gas such as Cl, Na, K, Ca, Pb, Zn and S were measured. The conducted measurements show that flue gas from grate sections 3 and 4 can produce a sufficiently hot flue gas that contains only low concentrations of corrosive species, and therefore can be used to increase superheater temperatures. Implementation of the so-called flue gas split concept together with other steam circle modifications on a waste combustion plant, and using a reasonable increase in final steam temperature from 400 to 500 deg. C, have the potential to increase electrical efficiency from 24 to 30% (with respect to lower fuel heating value) in a waste combustion plant. The appendices deal with the influence of kiln treatment on incineration bottom ash leaching; the influence of kiln treatment on corrosive species in deposits; operational strategy for rotary kiln; alkali/chloride release during refuse incineration on a grate. (Author)

  11. Improved electrical efficiency and bottom ash quality on waste combustion plants. Appendix A1 to A3

    Energy Technology Data Exchange (ETDEWEB)

    Nesterov, I.; Jensen, Peter A.; Dam-Johansen, K.; Kloeft, H.; Boejer, M. (Technical Univ. of Denmark, Kgs. Lyngby (Denmark)); Mogensen, Erhardt (Babcock and Wilcox Voelund A/S, Esbjerg (Denmark))

    2010-07-01

    Investigations making it possible to evaluate and further develop concepts to improve electrical efficiency in a waste combustion plant were performed. Furthermore, one objective of the study was to investigate the possibilities of improving waste bottom ash leaching properties by use of a rotary kiln treatment. The project work included construction of a bench-scale rotary kiln, performing ash rotary kiln treatment experiments, conducting gas suction probe measurements on a waste incineration plant and making some concept evaluations. The influence of the rotary kiln thermal treatment on the leaching of Ca, Al, Si, Mg, Ba, Sr, Cl, Cu, Pb, Zn, Cr, Mo, sulfate, DOC and carbonate was determined. As a result of these tests, the rotary kiln thermal treatment of bottom ashes can be recommended for reducing the leaching of Cu, Pb, Cl, Zn and DOC; however, an increased leaching of Cr and Mo should be expected. The combustion conditions above the grate of a waste incineration plant were investigated and the release and concentration of volatile ash species in the flue gas such as Cl, Na, K, Ca, Pb, Zn and S were measured. The conducted measurements show that flue gas from grate sections 3 and 4 can produce a sufficiently hot flue gas that contains only low concentrations of corrosive species, and therefore can be used to increase superheater temperatures. Implementation of the so-called flue gas split concept together with other steam circle modifications on a waste combustion plant, and using a reasonable increase in final steam temperature from 400 to 500 deg. C, have the potential to increase electrical efficiency from 24 to 30% (with respect to lower fuel heating value) in a waste combustion plant. The appendices deal with incineration bottom ash leaching properties; design and construction of rotary kiln facility; manual to rotary kiln experiments. (Author)

  12. Life cycle assessment of resource recovery from municipal solid waste incineration bottom ash.

    Science.gov (United States)

    Allegrini, Elisa; Vadenbo, Carl; Boldrin, Alessio; Astrup, Thomas Fruergaard

    2015-03-15

    Bottom ash, the main solid output from municipal solid waste incineration (MSWI), has significant potential for the recovery of resources such as scrap metals and aggregates. The utilisation of these resources ideally enables natural resources to be saved. However, the quality of the recovered scrap metals may limit recycling potential, and the utilisation of aggregates may cause the release of toxic substances into the natural environment through leaching. A life cycle assessment (LCA) was applied to a full-scale MSWI bottom ash management and recovery system to identify environmental breakeven points beyond which the burdens of the recovery processes outweigh the environmental benefits from valorising metals and mineral aggregates. Experimental data for the quantity and quality of individual material fractions were used as a basis for LCA modelling. For the aggregates, three disposal routes were compared: landfilling, road sub-base and aggregate in concrete, while specific leaching data were used as the basis for evaluating toxic impacts. The recovery and recycling of aluminium, ferrous, stainless steel and copper scrap were considered, and the importance of aluminium scrap quality, choice of marginal energy technologies and substitution rates between primary and secondary aluminium, stainless steel and ferrous products, were assessed and discussed. The modelling resulted in burdens to toxic impacts associated with metal recycling and leaching from aggregates during utilisation, while large savings were obtained in terms of non-toxic impacts. However, by varying the substitution rate for aluminium recycling between 0.35 and 0.05 (on the basis of aluminium scrap and secondary aluminium alloy market value), it was found that the current recovery system might reach a breakeven point between the benefits of recycling and energy expended on sorting and upgrading the scrap. PMID:25555136

  13. The Properties of Special Concrete Using Washed Bottom Ash (WBA as Partial Sand Replacement

    Directory of Open Access Journals (Sweden)

    Mohd Syahrul Hisyam Mohd Sani

    2011-07-01

    Full Text Available This paper presents the use of Washed Bottom Ash (WBA as fine aggregate in special concrete. The WBA is a waste material that is taken from electric power plant and the source material is called as bottom ash. To substitute the amount of carbon usage in concrete the bottom ash was utilized and fully submerged in water for 3 days to produce as WBA with low carbon composition. The aim of the study is to investigate the feasibility and potential use of washed bottom ash in concreting and concrete applications. The results of the physical and chemical properties of WBA were discussed. Different concrete mixes with constant water to cement ratio of 0.55 were prepared with WBA in different proportions as well as one control mixed proportion. The mechanical properties of special concrete with 30% WBA replacement by weight of natural sand is found to be an optimum usage in concrete in order to get a favourable strength and good strength development pattern over the increment ages.

  14. Effect of accelerated aging of MSWI bottom ash on the leaching mechanisms of copper and molybdenum

    NARCIS (Netherlands)

    Dijkstra, J.J.; Zomeren, van A.; Meeussen, J.C.L.; Comans, R.N.J.

    2006-01-01

    The effect of accelerated aging of Municipal Solid Waste Incinerator (MSWI) bottom ash on the leaching of Cu and Mo was studied using a "multisurface" modeling approach, based on surface complexation to iron/aluminum (hydr) oxides, mineral dissolution/precipitation, and metal complexation by humic s

  15. Adsorption and desorption characteristics of crystal violet in bottom ash column

    Directory of Open Access Journals (Sweden)

    Puthiya Veetil Nidheesh

    2012-06-01

    Full Text Available This study described adsorption of Crystal Violet (CV by bottom ash in fixed-bed column mode. Equilibrium of adsorption was studied in batch mode for finding adsorption capacity of bottom ash. In fixed bed column adsorption, the effects of bed height, feed flow rate, and initial concentration were studied by assessing breakthrough curve. The slope of the breakthrough curve decreased with increasing bed height. The breakthrough time and exhaustion time were decreased with increasing influent CV concentration and flow rates. The effect of bed depth, flow rate and CV concentration on the adsorption column design parameters were analyzed. Bed depth service time (BDST model was applied for analysis of crystal violet adsorption in the column. The adsorption capacity of bottom ash was calculated at 10% breakthrough point for different flow rates and concentrations. Desorption studies reveals that recovery of CV from bottom ash was effective by using CH3COOH than H2SO4, NaOH, HCl and NaCl solutions.

  16. ADSORPTION AND DESORPTION CHARACTERISTICS OF CRYSTAL VIOLET IN BOTTOM ASH COLUMN

    Directory of Open Access Journals (Sweden)

    Puthiya Veetil Nidheesh

    2012-01-01

    Full Text Available This study described adsorption of Crystal Violet (CV by bottom ash in fixed-bed column mode. Equilibrium of adsorption was studied in batch mode for finding adsorption capacity of bottom ash. In fixed bed column adsorption, the effects of bed height, feed flow rate, and initial concentration were studied by assessing breakthrough curve. The slope of the breakthrough curve decreased with increasing bed height. The breakthrough time and exhaustion time were decreased with increasing influent CV concentration and flow rates. The effect of bed depth, flow rate and CV concentration on the adsorption column design parameters were analyzed. Bed depth service time (BDST model was applied for analysis of crystal violet adsorption in the column. The adsorption capacity of bottom ash was calculated at 10% breakthrough point for different flow rates and concentrations. Desorption studies reveals that recovery of CV from bottom ash was effective by using CH3COOH than H2SO4, NaOH, HCl and NaCl solutions.

  17. Carbon speciation in municipal solid waste incinerator (MSWI) bottom ash in relation to facilitated metal leaching

    NARCIS (Netherlands)

    Zomeren, van A.; Comans, R.N.J.

    2009-01-01

    The release of inorganic and organic contaminants from municipal solid waste incinerator (MSWI) bottom ash is controlled to a large extent by the release of dissolved organic carbon (DOC), and in particular by the reactive humic (HA) and fulvic acids (FA) subfractions of DOC. The properties of organ

  18. Process identification and model development of contaminant transport in MSWI bottom ash

    NARCIS (Netherlands)

    Dijkstra, J.J.; Sloot, van der H.A.; Comans, R.N.J.

    2002-01-01

    In this work we investigate to what extent we are able to predict experimental data on column leaching of heavy metals from municipal solid waste incinerator (MSWI) bottom ash, using the current knowledge on processes controlling aqueous heavy metal concentrations in combination with a multicomponen

  19. Leaching kinetics of bottom ash waste as a source of calcium ions.

    Science.gov (United States)

    Koech, Lawrence; Everson, Ray; Neomagus, Hein; Rutto, Hilary

    2015-02-01

    Bottom ash is a waste material from coal-fired power plants, and it is known to contain elements that are potentially toxic at high concentration levels when disposed in landfills. This study investigates the use of bottom ash as a partial substitute sorbent for wet flue gas desulfurization (FGD) processes by focusing on its leaching kinetics in adipic acid. This was studied basing on the shrinking core model that was applied to the experimental data obtained by the authors presented at the International Conference on Industrial, Manufacturing, Automation and Mechanical Engineering, Johannesburg, South Africa, November 27-28, 2013) on dissolution of bottom ash. The leaching rate constant was obtained from different reaction variables, namely, temperature, pH, acid concentration, and solid-to-liquid ratio, that could affect the leaching process. The solid sample of bottom ash was characterized at different leaching periods using X-ray diffraction (XRD) and scanning electron microscopy (SEM). It was found that solid-to-liquid ratio had a significant effect on the leaching rate constant when compared with other variables. The leaching kinetics showed that diffusion through the product layer was the rate-controlling step during leaching, and the activation energy for the process was found to be 18.92 kJ/mol.

  20. Mechanisms contributing to the thermal analysis of waste incineration bottom ash and quantification of different carbon species

    Energy Technology Data Exchange (ETDEWEB)

    Rocca, S.; Costa, G.; Lombardi, F. [University of Rome ' Tor Vergata' , Department of Civil Engineering and Computer Science Engineering, Via del Politecnico 1, 00133 Rome (Italy); Van Zomeren, A.; Dijkstra, J.J. [Energy research Centre of the Netherlands ECN, Department of Environmental Assessment, P.O. Box 1, 1755 ZG Petten (Netherlands); Comans, R.N.J. [Wageningen University, Department of Soil Quality, P.O. Box 47, 6700 AA Wageningen (Netherlands)

    2013-02-15

    The focus of this study was to identify the main compounds affecting the weight changes of bottom ash (BA) in conventional loss on ignition (LOI) tests and to obtain a better understanding of the individual processes in heterogeneous (waste) materials such as BA. Evaluations were performed on BA samples from a refuse derived fuel incineration (RDF-I) plant and a hospital waste incineration (HW-I) plant using thermogravimetric analysis and subsequent mass spectrometry (TG-MS) analysis of the gaseous thermal decomposition products. Results of TG-MS analysis on RDF-I BA indicated that the LOI measured at 550C was due to moisture evaporation and dehydration of Ca(OH)2 and hydrocalumite. Results for the HW-I BA showed that LOI at 550C was predominantly related to the elemental carbon (EC) content of the sample. Decomposition of CaCO3 around 700C was identified in both materials. In addition, we have identified reaction mechanisms that underestimate the EC and overestimate the CaCO3 contents of the HW-I BA during TG-MS analyses. These types of artefacts are expected to occur also when conventional LOI methods are adopted, in particular for materials that contain CaO/Ca(OH)2 in combination with EC and/or organic carbon, such as e.g. municipal solid waste incineration (MSWI) bottom and fly ashes. We suggest that the same mechanisms that we have found (i.e. in situ carbonation) can also occur during combustion of the waste in the incinerator (between 450 and 650C) demonstrating that the presence of carbonate in bottom ash is not necessarily indicative for weathering. These results may also give direction to further optimization of waste incineration technologies with regard to stimulating in situ carbonation during incineration and subsequent potential improvement of the leaching behavior of bottom ash.

  1. Environmental assessment of the reuse of municipal solid waste incineration bottom ash in quarry backfilling; Evaluation environnementale de la valorisation de machefers d'incineration d'ordures menageres en remplissage de carriere

    Energy Technology Data Exchange (ETDEWEB)

    Brons-Laot, G.

    2002-10-15

    The leaching behaviour of three different MSWI bottom ashes-based materials containing hydraulic binders is assessed in the conditions specified by the quarry backfilling application. An adapted approach methodology is applied: - physical, mineralogical and chemical characterizations of materials, - use of parametric tests to determine the effect of main scenarios factors on the release, - chemical modelling based on mineralogical and experimental leaching data with geochemical calculation codes, - chemical reaction / transport coupled modelling. The main results demonstrate that: - the batch and dynamic tests allow to obtain enough data to model and to predict the long term behaviour, - the chemical modelling of the solid / liquid equilibrium permits the determination of the chemical reactions involved and the prediction of pollutants solubilization in different chemical contexts, - the new materials (source term) present a low environmental impact in the conditions specified by the considered scenarios. (author)

  2. Characteristics of residual organics in municipal solid waste incinerator bottom ash.

    Science.gov (United States)

    Lin, Yen-Ching; Yen, Jui-Hung; Lateef, Shaik Khaja; Hong, Pui-Kwan Andy; Lin, Cheng-Fang

    2010-10-15

    Although heavy metals in bottom ash have been a primary issue in resource recovery of municipal solid waste incinerator residues in past decades, less studied are potentially toxic and odorous organic fractions that exist as they have not been completely oxidized during the mass burn process. Using supercritical fluid extraction (SFE) and soxtec extraction (SE) techniques, this study investigated the characteristics of un-oxidized organic residues contained in bottom ash from three municipal solid waste incinerators in Taiwan during 2008-2009. All together 99 organics were identified in bottom ash samples using gas chromatography-mass spectrometry (GC-MS). Among the identified organics, aromatic compounds were most frequently detected. No polycyclic aromatic hydrocarbons were extracted by SFE or SE. Several phthalates (e.g., phthalic acid isobutyl tridec-2-yn-1-yl ester, dibutyl phthalate and 2-butoxyethyl butyl benzene-1,2-dicarboxylate), organic phosphates (e.g., octicizer and phosphoric acid isodecyl diphenyl ester), and aromatics and amines including pyridine, quinoline derivatives, chloro- and cyano-organics were successfully extracted. Aromatic amines (e.g., 1-nitro-9,10-dioxo-9,10-dihydro-anthracene-2-carboxylic acid diethylamide and 3-bromo-N-(4-bromo-2-chlorophenyl)-propanamide) and aromatic compounds (other than amines) (e.g., 7-chloro-4-methoxy-3-methylquinoline and 2,3-dihydro-N-hydroxy-4-methoxy-3,3-dimethyl indole-2-one) are probably the major odorous compounds in bottom ash. This work identifies organic pollutants in incinerated bottom ash that have received far less attention than their heavy metals counterpart.

  3. Foamed bitumen stabilization of MSWI bottom ash; Skumbitumenstabilisering av bottenaska fraan avfallsfoerbraenning

    Energy Technology Data Exchange (ETDEWEB)

    Bendz, David [Swedish Geotechnical Inst., Linkoeping (Sweden); Jacobsson, Torbjoern [Swedish National Road and Transport Research Inst., Linkoeping (Sweden); Svensson, Mikael; Flyhammar, Peter [Lund Inst. of Technology (Sweden). Dept. of Water Resources Engineering

    2006-04-15

    Foamed bitumen is a mixture of bitumen, water and air. Bitumen that is heated to 175 deg C expands about 10-30 times compared to its original volume when injecting small amounts of water and air under high pressure. By exposing a granulate material to foamed bitumen the particles will be covered with a bitumen film. This will give the particles hydrophobic properties, as well as a smaller specific surface. At the same time the mechanical properties of the material are expected to improve due to the cohesive properties of the bitumen covered particles. The treatment can be made both offsite and in situ. The objective of this project was to investigate the possibility to treat municipal solid waste bottom ash with foamed bitumen to achieve improved leaching and mechanical properties. The following leaching tests have been performed on the original bottom ash and two foamed bitumen treated ashes with 2 and 4.5 % bitumen, respectively: one-stage batch test (EN 12457-4), pH-static test (prEN 14997), column test (prEN 14405) and monolithic leaching test (NEN 7345). In addition, the specific surface and intra-particle porosity were determined by BET N2 adsorption experiments on selected fractions of bottom ash. The results showed that the specific surface decreased with more than 50 % and manifested itself in a lower buffer capacity at both low and high pH. For most elements no significant difference in leaching behavior where found when comparing the results from the leaching tests for the three materials at their own pH. This is thought to be due to that sufficient specific area available for leaching exists to reach equilibrium despite the foam bitumen treatment. The results from the one-stage batch test show a minor reduction in leaching for Cl{sup -}, S, SO{sub 4}{sup -2}, NO{sub 3}{sup -}, Sb, and Ca for the foamed bitumen treated ashes. The results from the column test of the foamed bitumen stabilized ashes showed an increased leaching of some elements, especially

  4. Modelling of landfill gas adsorption with bottom ash for utilization of renewable energy

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Chen

    2011-10-06

    Energy crisis, environment pollution and climate change are the serious challenges to people worldwide. In the 21st century, human being is trend to research new technology of renewable energy, so as to slow down global warming and develop society in an environmentally sustainable method. Landfill gas, produced by biodegradable municipal solid waste in landfill, is a renewable energy source. In this work, landfill gas utilization for energy generation is introduced. Landfill gas is able to produce hydrogen by steam reforming reactions. There is a steam reformer equipment in the fuel cells system. A sewage plant of Cologne in Germany has run the Phosphoric Acid Fuel Cells power station with biogas for more than 50,000 hours successfully. Landfill gas thus may be used as fuel for electricity generation via fuel cells system. For the purpose of explaining the possibility of landfill gas utilization via fuel cells, the thermodynamics of landfill gas steam reforming are discussed by simulations. In practice, the methane-riched gas can be obtained by landfill gas purification and upgrading. This work investigate a new method for upgrading-landfill gas adsorption with bottom ash experimentally. Bottom ash is a by-product of municipal solid waste incineration, some of its physical and chemical properties are analysed in this work. The landfill gas adsorption experimental data show bottom ash can be used as a potential adsorbent for landfill gas adsorption to remove CO{sub 2}. In addition, the alkalinity of bottom ash eluate can be reduced in these adsorption processes. Therefore, the interactions between landfill gas and bottom ash can be explained by series reactions accordingly. Furthermore, a conceptual model involving landfill gas adsorption with bottom ash is developed. In this thesis, the parameters of landfill gas adsorption equilibrium equations can be obtained by fitting experimental data. On the other hand, these functions can be deduced with theoretical approach

  5. Preliminary Examination of the System Fly Ash-Bottom Ash-Flue Gas Desulphurization Gypsum-Portland Cement-Water for Road Construction

    Directory of Open Access Journals (Sweden)

    R. Tokalic

    2013-01-01

    Full Text Available This paper describes an investigation into the use of three power plant wastes: fly ash, flue gas desulphurization gypsum, and bottom ash for subbase layers in road construction. Two kinds of mixtures of these wastes with Portland cement and water were made: first with fly ash consisting of coarser particles (<1.651 mm and second with fly ash consisting of smaller particles (<0.42 mm. The mass ratio of fly ash-Portland cement-flue gas desulphurization gypsum-bottom ash was the same (3 : 1 : 1 : 5 in both mixtures. For both mixtures, the compressive strength, the mineralogical composition, and the leaching characteristics were determined at different times, 7 and 28 days, after preparation. The obtained results showed that both mixtures could find a potential use for subbase layers in road construction.

  6. Phosphorus Treated Coal Combustion Products (CCP-bottom ash) as an Agricultural Source of Phosphorus

    Science.gov (United States)

    Junfeng, Shen; Powell, M. A.; Hayden, D. B.

    Coal combustion products (CCP or "ash") have been seen to be beneficial for improving soil quality and increasing vegetative yields. Owing to their structure with more holes, they are also potential carriers of plant nutrients. The bottom ash from the Lambton Generating Station, Sarnia, Ontario, Canada was treated for 66 hours in 0.10 mol/L P solutions prepared from NaH 2PO 4, which resulted in the ash adsorbing 784 µg/g of phosphorus. The ash was mixed with quartz sand and/or non P-loaded ash from the same source to provide a set of growth media that contained 10%, 25%, 50%, 75%, and 100% of the recommended dose of P (50 µg/g) for maize. Biomass yields at 26, 34, and 46 days after planting were compared with control (non-doped ash) and fertilized with 0-20-0 fertilizer. In general, growth media containing between 25% and 100% of the recommended P dose performed as well or better than the fertilized trials. 46 days after planting, the shoot fresh weight for the 50%, 75%, and 100% doped media were 39.46%, 42.73%, and 46.13%, respectively, greater compared to fertilized trials. The shoot dry weight increased by 29.71%, 13.39%, and 28.87%, respectively. Also, root fresh and dry weight increased averagely by 16.62% and 14.03%. These results implied that coal ashes are a better carrier for P uptaking, and P-loaded ash can be a good additive for sand soil improvement.

  7. Analysis of Composition of Bottom Ash from Municipal Solid Waste Incineration Plants.

    OpenAIRE

    Krausová, A.; Šyc, M. (Michal); Kameníková, P. (Petra); Zach, B. (Boleslav); Pohořelý, M. (Michael); Svoboda, K; Punčochář, M.

    2015-01-01

    Bottom ash (BA) from municipal solid waste incineration (MSWI) contains valuable components that can be recycled such as ferrous and non-ferrous metals. Metal-free mineral fraction can be used in building industry. We analysed BA samples from two MSWI plants with the aim of characterising their composition. The BA samples were sieved into eight size fractions. With the exception of the smallest fraction (under 2 mm), the size fractions were sorted using magnetic separation, manual separation ...

  8. Sensor-based control in eddy current separation of incinerator bottom ash.

    Science.gov (United States)

    Rahman, Md Abdur; Bakker, M C M

    2013-06-01

    A sensor unit was placed online in the particle stream produced by an eddy current separator (ECS) to investigate its functionality in non-ferrous metals recovery. The targeted feed was the 1-6mm size fraction bottom ash from a municipal waste incinerator. The sensor unit was attached to the ECS splitter, where it counted in real-time metal and mineral particles and accurately measured the grade of the stream in the metals product. Influence of segregation (e.g. due to particle size or density) on the metals concentrate were detected and studied using the sensor data collected at different splitter distances. Tests were performed in the laboratory and in a bottom ash processing plant with two different types of ECS and two sources of bottom ash with different moisture content. The measured metal grades matched the manual analyses with errors 0%, 1.5% and 3.1% for moist, dry and very wet feed, respectively. For very wet feed the ECS metals recovery dropped, which was observed from the strongly reduced particle counts and the large changes in cumulative particle properties. The measured sample proved representative for the whole metals concentrate if it is collected at a representative position within the metals particle trajectory fan produced by the ECS. ECS-performance proved sensitively dependent on splitter distance, since a 10mm shift may result in 10% change in metal recovery and 18% change in grade. The main functionalities of the sensor unit are determined as online quality control and facilitation of automatic control over the ECS splitter distance. These functionalities translate in significant improvements in ECS metals recovery which in turn is linked to economic benefits, increased recycling rate of scrap metals and a further reduction of the ecological drawbacks of incinerator bottom ash. PMID:23490354

  9. The impact of thermal treatment and cooling methods on municipal solid waste incineration bottom ash with an emphasis on Cl.

    Science.gov (United States)

    Yang, Shuo; Saffarzadeh, Amirhomayoun; Shimaoka, Takayuki; Kawano, Takashi; Kakuta, Yoshitada

    2016-10-01

    Municipal solid waste incineration (MSWI) bottom-ash products possess qualifications to be utilized in cement production. However, the instant use of bottom ash is inhibited by a number of factors, among which the chlorine (Cl) content is always strictly restricted. In this paper, the unquenched MSWI bottom ash was used as the experimental substance, and the influences of thermal treatment and cooling methods on the content and existence of Cl in the ash residues were investigated. The characterization of the MSWI bottom-ash samples examined by utilizing X-ray diffraction, optical microscopy, scanning electron microscopy/energy dispersive X-ray spectroscopy. The experimental results show that as a function of thermal treatment, the reduction rate of Cl is slight below 15.0%, which is relatively low compared with water washing process. Different cooling methods had impacts on the existing forms of Cl. It was understood that most of Cl existed in the glass phase if the bottom ash was air cooled. Contrarily in case of water-quenched bottom ash, Cl could also be accumulated in the newly-formed quench products as chloride salts or hydrate substances such as Friedel's salt.

  10. The impact of thermal treatment and cooling methods on municipal solid waste incineration bottom ash with an emphasis on Cl.

    Science.gov (United States)

    Yang, Shuo; Saffarzadeh, Amirhomayoun; Shimaoka, Takayuki; Kawano, Takashi; Kakuta, Yoshitada

    2016-10-01

    Municipal solid waste incineration (MSWI) bottom-ash products possess qualifications to be utilized in cement production. However, the instant use of bottom ash is inhibited by a number of factors, among which the chlorine (Cl) content is always strictly restricted. In this paper, the unquenched MSWI bottom ash was used as the experimental substance, and the influences of thermal treatment and cooling methods on the content and existence of Cl in the ash residues were investigated. The characterization of the MSWI bottom-ash samples examined by utilizing X-ray diffraction, optical microscopy, scanning electron microscopy/energy dispersive X-ray spectroscopy. The experimental results show that as a function of thermal treatment, the reduction rate of Cl is slight below 15.0%, which is relatively low compared with water washing process. Different cooling methods had impacts on the existing forms of Cl. It was understood that most of Cl existed in the glass phase if the bottom ash was air cooled. Contrarily in case of water-quenched bottom ash, Cl could also be accumulated in the newly-formed quench products as chloride salts or hydrate substances such as Friedel's salt. PMID:26895375

  11. Properties of ceramics prepared using dry discharged waste to energy bottom ash dust.

    Science.gov (United States)

    Bourtsalas, Athanasios; Vandeperre, Luc; Grimes, Sue; Themelis, Nicolas; Koralewska, Ralf; Cheeseman, Chris

    2015-09-01

    The fine dust of incinerator bottom ash generated from dry discharge systems can be transformed into an inert material suitable for the production of hard, dense ceramics. Processing involves the addition of glass, ball milling and calcining to remove volatile components from the incinerator bottom ash. This transforms the major crystalline phases present in fine incinerator bottom ash dust from quartz (SiO(2)), calcite (CaCO(3)), gehlenite (Ca(2)Al(2)SiO(7)) and hematite (Fe(2)O(3)), to the pyroxene group minerals diopside (CaMgSi(2)O(6)), clinoenstatite (MgSi(2)O(6)), wollastonite (CaSiO(3)) together with some albite (NaAlSi(3)O(8)) and andradite (Ca(3)Fe(2)Si(3)O(12)). Processed powders show minimal leaching and can be pressed and sintered to form dense (>2.5 g cm(-3)), hard ceramics that exhibit low firing shrinkage (ceramic tiles that have potential for use in a range of industrial applications.

  12. Improved electrical efficiency and bottom ash quality on waste combustion plants. Appendix A11 to A14

    Energy Technology Data Exchange (ETDEWEB)

    Hedegaard Madsen, O.; Boejer, M.; Jensen, Peter A.; Dam-Johansen, K.; Lundtorp, K. (Technical Univ. of Denmark, Kgs. Lyngby (Denmark)); Mogensen, Erhardt (Babcock and Wilcox Voelund A/S, Glostrup (Denmark))

    2010-07-01

    Investigations making it possible to evaluate and further develop concepts to improve electrical efficiency in a waste combustion plant were performed. Furthermore, one objective of the study was to investigate the possibilities of improving waste bottom ash leaching properties by use of a rotary kiln treatment. The project work included construction of a bench-scale rotary kiln, performing ash rotary kiln treatment experiments, conducting gas suction probe measurements on a waste incineration plant and making some concept evaluations. The influence of the rotary kiln thermal treatment on the leaching of Ca, Al, Si, Mg, Ba, Sr, Cl, Cu, Pb, Zn, Cr, Mo, sulfate, DOC and carbonate was determined. As a result of these tests, the rotary kiln thermal treatment of bottom ashes can be recommended for reducing the leaching of Cu, Pb, Cl, Zn and DOC; however, an increased leaching of Cr and Mo should be expected. The combustion conditions above the grate of a waste incineration plant were investigated and the release and concentration of volatile ash species in the flue gas such as Cl, Na, K, Ca, Pb, Zn and S were measured. The conducted measurements show that flue gas from grate sections 3 and 4 can produce a sufficiently hot flue gas that contains only low concentrations of corrosive species, and therefore can be used to increase superheater temperatures. Implementation of the so-called flue gas split concept together with other steam circle modifications on a waste combustion plant, and using a reasonable increase in final steam temperature from 400 to 500 deg. C, have the potential to increase electrical efficiency from 24 to 30% (with respect to lower fuel heating value) in a waste combustion plant. The appendices deal with electrical efficiency by dividing the combustion products; release of potentially corrosive constituents from the grate; CFD modeling of grate with and without vertical divider. (Author)

  13. Leaching behaviour of bottom ash from RDF high-temperature gasification plants

    International Nuclear Information System (INIS)

    This study investigated the physical properties, the chemical composition and the leaching behaviour of two bottom ash (BA) samples from two different refuse derived fuel high-temperature gasification plants, as a function of particle size. The X-ray diffraction patterns showed that the materials contained large amounts of glass. This aspect was also confirmed by the results of availability and ANC leaching tests. Chemical composition indicated that Fe, Mn, Cu and Cr were the most abundant metals, with a slight enrichment in the finest fractions. Suitability of samples for inert waste landfilling and reuse was evaluated through the leaching test EN 12457-2. In one sample the concentration of all metals was below the limit set by law, while limits were exceeded for Cu, Cr and Ni in the other sample, where the finest fraction showed to give the main contribution to leaching of Cu and Ni. Preliminary results of physical and geotechnical characterisation indicated the suitability of vitrified BA for reuse in the field of civil engineering. The possible application of a size separation pre-treatment in order to improve the chemical characteristics of the materials was also discussed.

  14. Removal of boron from ceramic industry wastewater by adsorption-flocculation mechanism using palm oil mill boiler (POMB) bottom ash and polymer.

    Science.gov (United States)

    Chong, Mei Fong; Lee, Kah Peng; Chieng, Hui Jiun; Syazwani Binti Ramli, Ili Izyan

    2009-07-01

    Boron is extensively used in the ceramic industry for enhancing mechanical strength of the tiles. The discharge of boron containing wastewater to the environment causes severe pollution problems. Boron is also dangerous for human consumption and causes organisms' reproductive impediments if the safe intake level is exceeded. Current methods to remove boron include ion-exchange, membrane filtration, precipitation-coagulation, biological and chemical treatment. These methods are costly to remove boron from the wastewater and hence infeasible for industrial wastewater treatment. In the present research, adsorption-flocculation mechanism is proposed for boron removal from ceramic wastewater by using Palm Oil Mill Boiler (POMB) bottom ash and long chain polymer or flocculant. Ceramic wastewater is turbid and milky in color which contains 15 mg/L of boron and 2000 mg/L of suspended solids. The optimum operating conditions for boron adsorption on POMB bottom ash and flocculation using polymer were investigated in the present research. Adsorption isotherm of boron on bottom ash was also investigated to evaluate the adsorption capacity. Adsorption isotherm modeling was conducted based on Langmuir and Freundlich isotherms. The results show that coarse POMB bottom ash with particle size larger than 2 mm is a suitable adsorbent where boron is removed up to 80% under the optimum conditions (pH=8.0, dosage=40 g bottom ash/300 ml wastewater, residence time=1h). The results also show that KP 1200 B cationic polymer is effective in flocculating the suspended solids while AP 120 C anionic polymer is effective in flocculating the bottom ash. The combined cationic and anionic polymers are able to clarify the ceramic wastewater under the optimum conditions (dosage of KP 1200 B cationic polymer=100 mg/L, dosage of AP 120 C anionic polymer=50 mg/L, mixing speed=200 rpm). Under the optimum operating conditions, the boron and suspended solids concentration of the treated wastewater were

  15. Removal of boron from ceramic industry wastewater by adsorption-flocculation mechanism using palm oil mill boiler (POMB) bottom ash and polymer.

    Science.gov (United States)

    Chong, Mei Fong; Lee, Kah Peng; Chieng, Hui Jiun; Syazwani Binti Ramli, Ili Izyan

    2009-07-01

    Boron is extensively used in the ceramic industry for enhancing mechanical strength of the tiles. The discharge of boron containing wastewater to the environment causes severe pollution problems. Boron is also dangerous for human consumption and causes organisms' reproductive impediments if the safe intake level is exceeded. Current methods to remove boron include ion-exchange, membrane filtration, precipitation-coagulation, biological and chemical treatment. These methods are costly to remove boron from the wastewater and hence infeasible for industrial wastewater treatment. In the present research, adsorption-flocculation mechanism is proposed for boron removal from ceramic wastewater by using Palm Oil Mill Boiler (POMB) bottom ash and long chain polymer or flocculant. Ceramic wastewater is turbid and milky in color which contains 15 mg/L of boron and 2000 mg/L of suspended solids. The optimum operating conditions for boron adsorption on POMB bottom ash and flocculation using polymer were investigated in the present research. Adsorption isotherm of boron on bottom ash was also investigated to evaluate the adsorption capacity. Adsorption isotherm modeling was conducted based on Langmuir and Freundlich isotherms. The results show that coarse POMB bottom ash with particle size larger than 2 mm is a suitable adsorbent where boron is removed up to 80% under the optimum conditions (pH=8.0, dosage=40 g bottom ash/300 ml wastewater, residence time=1h). The results also show that KP 1200 B cationic polymer is effective in flocculating the suspended solids while AP 120 C anionic polymer is effective in flocculating the bottom ash. The combined cationic and anionic polymers are able to clarify the ceramic wastewater under the optimum conditions (dosage of KP 1200 B cationic polymer=100 mg/L, dosage of AP 120 C anionic polymer=50 mg/L, mixing speed=200 rpm). Under the optimum operating conditions, the boron and suspended solids concentration of the treated wastewater were

  16. Long-term Performance of MSWI Bottom Ash in a Test Road Construction

    Directory of Open Access Journals (Sweden)

    Paul Christian Frogner-Kockum

    2016-02-01

    Full Text Available The study focuses on long-term performances of MSWI bottom ash used as a reinforcement layer in a 8 years old road-construction. Long term properties may change under the combined effects of loading, climate- and chemical conditions. Characterization of the chemical changes in aged MSWI bottom ash is thus of prime interest as secondary alteration is a key process for the ageing of these kind of materials. The MSWI bottom ash in this study comprises a 60 meter-long segment of a test road, which was sampled eight years after construction. The objective of the sampling was to obtain a very low degree of disturbance to the application’s in-situ properties. Access to the sub-base was achieved by removing the surface course and unbound base course, leaving the top surface of the unbound sub-base reachable.  Epoxy impregnated slabs were also used for a micro textural and chemical characterization by SEM/EDS of the bottom ash sub-base layer. No cracks that imply movements or rotation of particles in the road construction or other disturbances as due to the sampling process were found. This undisturbed material made it possible to study chemical processes and structural changes that have been ongoing in the test road since it was constructed. The SEM/EDS analysis showed that most particles had reacted to some extent and that reaction-products surrounding aluminum particles were undisturbed. Partly decomposed particles indicate that the reaction (that has been ongoing since the road was constructed has been slow and incomplete because of the coexistence of metallic aluminum and aluminum hydroxide. It also shows that the material not has been subjected to any physical influence during these 8 years that otherwise would have moved the reaction products from the particles that originally have reacted. Clay mineralization that indicates long-term ageing of the ash material was also detected by XRPD. The pH of the material was lower than 8.5, indicating a

  17. New methodology for assessing the environmental burden of cement mortars with partial replacement of coal bottom ash and fly ash.

    Science.gov (United States)

    Menéndez, E; Álvaro, A M; Hernández, M T; Parra, J L

    2014-01-15

    This paper assess the mechanical an environmental behaviour of cement mortars manufactured with addition of fly ash (FA) and bottom ash (BA), as partial cement replacement (10%, 25% and 35%). The environmental behaviour was studied by leaching tests, which were performed under several temperature (23 °C and 60 °C) and pH (5 and 10) conditions, and ages (1, 2, 4 and 7 days). Then, the accumulated amount of the different constituents leached was analysed. In order to obtain an environmental burden (EB) value of each cement mixture, a new methodology was developed. The EB value obtained is related to the amount leached and the hazardous level of each constituent. Finally, the integral study of compressive strength and EB values of cement mixtures allowed their classification. The results showed that mortars manufactured with ordinary Portland cement (OPC) and with coal BA had similar or even better environmental and mechanical behaviour than mortars with FA. Therefore, the partial replacement of cement by BA might be as suitable or even better as the replacement by FA.

  18. Influence of natural pozzolan, colemanite ore waste, bottom ash, and fly ash on the properties of Portland cement

    Energy Technology Data Exchange (ETDEWEB)

    Targan, S.; Olgun, A.; Erdogan, Y.; Sevinc, V. [Dumlupinar University, Kutahya (Turkey). Dept. of Chemistry

    2003-08-01

    The effect of natural pozzolan (NP), colemanite ore waste (CW), coal fly ash (FA), and coal bottom ash (BA) on the properties of cement and concrete was examined. The parameters studied included compressive strength, bending strength, volume expansion, and setting time. A number of cements were prepared (in the presence of fixed quantity of 10% FA, 10% BA, and 4% CW) by the replacement of Portland cement (PC) with NP in range of 5 - 30%. The results showed that the final setting time of cement pastes were generally accelerated when the NP replaced part of the cement. However, NP exhibited a significant retarding effect when used in combination with CW. The results also showed that the inclusion of NP at replacement levels of 5% resulted in an increase in compressive strength of the specimens compared with that of the control concrete. The replacement of PC by 10 - 15% of NP in the presence of fixed quantity of CW improves the bending strength of the specimens compared with control specimens after 60 days of curing age.

  19. Evaluation of Pollutant Leaching Potential of Coal Ashes for Recycling

    Science.gov (United States)

    Park, D.; Woo, N. C.; Kim, H.; Yoon, H.; Chung, D.

    2011-12-01

    By 2009, coal ashes produced from coal-based power plants in Korea have been reused as cement supplement materials; however, the rest is mostly disposed in landfills inside the plant properties. Continuous production of coal ashes and limited landfill sites require more recycles of coal ashes as base materials, specifically in constructions of roads and of huge industrial complex. Previous researches showed that coal ashes could contain various metals such as arsenic(As), chromium(Cr), lead(Pb), nickel(Ni), selenium(Se), etc. In this study, we collected four types of bottom ashes and two of fly ashes from four coal-based power plants. These ash samples were tested with distilled water through the column leaching process in oxidized conditions. The column test results were compared with those of total digestion, sequential extraction processes and TCLP. Concentrations of metals in outflows from columns are generally greater in fly ashes than in bottom ashes, specifically for As, Se, B, Sr and SO4. Only one fly ash (J2-F) shows high concentrations of arsenic and selenium in leachate. Sequential extraction results indicate that these metals are in readily soluble forms, such as adsorbed, carbonated, and reducible forms. Results of TCLP analysis indicate no potential contaminants leached from the ashes. In conclusion, recycling of coal combustion ashes could be encouraged with proper tests such as sequential and leaching experiments.

  20. Feasibility of manufacturing geopolymer bricks using circulating fluidized bed combustion bottom ash.

    Science.gov (United States)

    Chen, Chen; Li, Qin; Shen, Lifeng; Zhai, Jianping

    2012-06-01

    This paper presents a study on geopolymer bricks manufactured using bottom ash from circulating fluidized bed combustion (CFBC). The alkali activators used for synthesis were sodium silicate, sodium hydroxide, and potassium hydroxide and lithium hydroxide solutions. The study included the impact of alkali activator on compressive strength. The reaction products were analysed by XRD, FT-IR and SEM/EDS. The compressive strength of bricks was dependent on the modulus of the sodium silicate activator and the type and concentration of alkali activator. The highest compressive strength could be gained when the modulus was 1.5, and the value could reach 16.1 MPa (7 d after manufacture) and 21.9 MPa (28 d after manufacture). Under pure alkaline systems, the compressive strength was in the order of 10 M KOH > 10 M NaOH > 5 M LiOH > 5 M KOH > 5 M NaOH. Quartz was the only crystalline phase in the original bottom ash, and no new crystalline phase was found after the reaction. The main product of reaction was amorphous alkali aluminosilicate gel and a small amount of crystalline phase was also found by SEM.

  1. Feasibility of manufacturing geopolymer bricks using circulating fluidized bed combustion bottom ash.

    Science.gov (United States)

    Chen, Chen; Li, Qin; Shen, Lifeng; Zhai, Jianping

    2012-06-01

    This paper presents a study on geopolymer bricks manufactured using bottom ash from circulating fluidized bed combustion (CFBC). The alkali activators used for synthesis were sodium silicate, sodium hydroxide, and potassium hydroxide and lithium hydroxide solutions. The study included the impact of alkali activator on compressive strength. The reaction products were analysed by XRD, FT-IR and SEM/EDS. The compressive strength of bricks was dependent on the modulus of the sodium silicate activator and the type and concentration of alkali activator. The highest compressive strength could be gained when the modulus was 1.5, and the value could reach 16.1 MPa (7 d after manufacture) and 21.9 MPa (28 d after manufacture). Under pure alkaline systems, the compressive strength was in the order of 10 M KOH > 10 M NaOH > 5 M LiOH > 5 M KOH > 5 M NaOH. Quartz was the only crystalline phase in the original bottom ash, and no new crystalline phase was found after the reaction. The main product of reaction was amorphous alkali aluminosilicate gel and a small amount of crystalline phase was also found by SEM. PMID:22856304

  2. High performance of treated and washed MSWI bottom ash granulates as natural aggregate replacement within earth-moist concrete.

    Science.gov (United States)

    Keulen, A; van Zomeren, A; Harpe, P; Aarnink, W; Simons, H A E; Brouwers, H J H

    2016-03-01

    Municipal solid waste incineration bottom ash was treated with specially designed dry and wet treatment processes, obtaining high quality bottom ash granulate fractions (BGF) suitable for up to 100% replacement of natural gravel in concrete. The wet treatment (using only water for separating and washing) significantly lowers the leaching of e.g. chloride and sulfate, heavy metals (antimony, molybdenum and copper) and dissolved organic carbon (DOC). Two potential bottom ash granulate fractions, both in compliance with the standard EN 12620 (aggregates for concrete), were added into earth-moist concrete mixtures. The fresh and hardened concrete physical performances (e.g. workability, strength and freeze-thaw) of high strength concrete mixtures were maintained or improved compared with the reference mixtures, even after replacing up to 100% of the initial natural gravel. Final element leaching of monolithic and crushed granular state BGF containing concretes, showed no differences with the gravel references. Leaching of all mixtures did not exceed the limit values set by the Dutch Soil Quality Degree. In addition, multiple-life-phase emission (pH static test) for the critical elements of input bottom ash, bottom ash granulate (BGF) and crushed BGF containing concrete were assessed. Simulation pH lowering or potential carbonation processes indicated that metal (antimony, barium, chrome and copper) and sulfate element leaching behavior are mainly pH dominated and controlled, although differ in mechanism and related mineral abundance.

  3. High performance of treated and washed MSWI bottom ash granulates as natural aggregate replacement within earth-moist concrete.

    Science.gov (United States)

    Keulen, A; van Zomeren, A; Harpe, P; Aarnink, W; Simons, H A E; Brouwers, H J H

    2016-03-01

    Municipal solid waste incineration bottom ash was treated with specially designed dry and wet treatment processes, obtaining high quality bottom ash granulate fractions (BGF) suitable for up to 100% replacement of natural gravel in concrete. The wet treatment (using only water for separating and washing) significantly lowers the leaching of e.g. chloride and sulfate, heavy metals (antimony, molybdenum and copper) and dissolved organic carbon (DOC). Two potential bottom ash granulate fractions, both in compliance with the standard EN 12620 (aggregates for concrete), were added into earth-moist concrete mixtures. The fresh and hardened concrete physical performances (e.g. workability, strength and freeze-thaw) of high strength concrete mixtures were maintained or improved compared with the reference mixtures, even after replacing up to 100% of the initial natural gravel. Final element leaching of monolithic and crushed granular state BGF containing concretes, showed no differences with the gravel references. Leaching of all mixtures did not exceed the limit values set by the Dutch Soil Quality Degree. In addition, multiple-life-phase emission (pH static test) for the critical elements of input bottom ash, bottom ash granulate (BGF) and crushed BGF containing concrete were assessed. Simulation pH lowering or potential carbonation processes indicated that metal (antimony, barium, chrome and copper) and sulfate element leaching behavior are mainly pH dominated and controlled, although differ in mechanism and related mineral abundance. PMID:26856445

  4. Assessment of Pb-slag, MSWI bottom ash and boiler and fly ash for using as a fine aggregate in cement mortar.

    Science.gov (United States)

    Saikia, Nabajyoti; Cornelis, Geert; Mertens, Gilles; Elsen, Jan; Van Balen, Koenraad; Van Gerven, Tom; Vandecasteele, Carlo

    2008-06-15

    Three types of wastes, metallurgical slag from Pb production (SLG), the sand-sized (0.1-2 mm) fraction of MSWI bottom ash from a grate furnace (SF), and boiler and fly ash from a fluidised bed incinerator (BFA), were characterized and used to replace the fine aggregate during preparation of cement mortar. The chemical and mineralogical behaviour of these wastes along with the reactivities of the wastes with lime and the hydration behaviour of ordinary Portland cement paste with and without these wastes added were evaluated by various chemical and instrumental techniques. The compressive strengths of the cement mortars containing waste as a partial substitution of fine aggregates were also assessed. Finally, leaching studies of the wastes and waste containing cement mortars were conducted. SLG addition does not show any adverse affect during the hydration of cement, or on the compressive strengths behaviours of mortars. Formation of expansive products like ettringite, aluminium hydroxide and H2 gas due to the reaction of some constituents of BFA and SF with alkali creates some cracks in the paste as well as in the cement mortars, which lower the compressive strength of the cement mortars. However, utilization of all materials in cement-based application significantly improves the leaching behaviour of the majority of the toxic elements compared to the waste as such.

  5. Removal of vertigo blue dyes from Batik textile wastewater by adsorption onto activated carbon and coal bottom ash

    Science.gov (United States)

    Kusmiyati, L., Puspita Adi; Deni, V.; Robi Indra, S.; Islamica, Dlia; Fuadi, M.

    2016-04-01

    Removal of vertigo blue dye from batik textile wastewater was studied by adsorptionprocess onto activated carbon (AC) and coal bottom ash (CBA).The influence of experimental conditions (pH solution, dye concentration, and contact time) were studied on the both adsorbents. At equilibrium conditions, the data were fitted to Langmuir and Freundlich adsorption models. The maximum adsorption capacity calculated from the Langmuir model for carbon active was 6.29mg/g at pH that found to be considerably higher than that obtained for coal bottom ash 3.72mg/g pH 9. From Freundlich model, the maximum adsorption capacity is less for coal bottom ash (pH 9) than that for carbon active (pH4).

  6. The Characteristics of Asphalt Concrete Binder Course (AC-BC Mixture with Bottom Ash as Aggregate Substitute

    Directory of Open Access Journals (Sweden)

    Sugiyanto G.

    2015-01-01

    Full Text Available Highways serve nearly 80-90% of the population mobility and flow of goods. Utilization of bottom ash, a waste from coal combustion, in highway construction is one of the alternatives to reduce environmental pollution and support Clean Development Mechanism Program of Kyoto Protocol. The aim of this study is to analyze the characteristics of AC-BC mixture that uses bottom ash as partial substitute of fine aggregate and comparing with a standard mixture. Laboratory tests are performed on two different types of mixtures. The tests show that optimum asphalt content for AC-BCStandard mixture is 5.20% while AC-BCBottom Ash mixture is 5.25%. Bottom ash has higher porosity along with a little break field and has round shape so that the asphalt absorption is bigger than the crushed stone. Bottom ash can be used as an alternative aggregate to increase the value of flow of the AC-BC mixture, thus converting waste to valuable material.

  7. The use of the bottom ashes and of the steelmaking slags in the manufacturing technologies of the building materials

    Directory of Open Access Journals (Sweden)

    L. G. Popescu

    2016-07-01

    Full Text Available The energetic and metallurgy industries of Romania represent the main waste sources significant from the point of quantitative view: the bottom ashes and the blast furnace and secondary metallurgical slags. Starting from the knowledge of the main chemical-physical properties of these two types of industrial wastes, there were inquired the exploitation possibilities in the technological practice, by using in the manufacturing of some building materials, for which these wastes represent the exclusive raw material source. The experiments considered the granular aggregate properties of the bottom ash and of the blast furnace slag, completed by the hydraulic binder of the secondary metallurgical slag, after the fine crushing.

  8. Potential usage of fly and bottom ash from thermal power plant ”Nikola Tesla” landfill, Serbia

    OpenAIRE

    Čudić Vladica V.; Stojiljković Dragoslava D.; Jovović Aleksandar M.; Životić Miodrag M.

    2012-01-01

    In Serbia, the ash from power plants has long been labelled as hazardous waste. With the adoption of the appropriate legislation this ash became secondary raw material with the potential usage. In this paper an analysis of the fly and bottom ash composition, which are disposed of in the power plant “Nikola Tesla A” landfill, is presented. Thirty samples, divided into three sets, were analyzed for trace elements As, Ba, Be, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Ti, V and Zn. The first and seco...

  9. Comparison of activated carbon and bottom ash removal of reactive dye from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Dincer, A.R.; Gunes, Y.; Karakaya, N.; Gunes, E. [Trakya University, Tekirdag (Turkey). Dept. of Environmental Engineering

    2007-03-15

    The adsorption of reactive dye from synthetic aqueous solution onto granular activated carbon (GAC) and coal-based bottom ash (CBBA) were studied under the same experimental conditions. As an alternative to GAC CBBA was used as adsorbent for dye removal from aqueous solution. The amount of Vertigo Navy Marine (VNM) adsorbed onto CBBA was lower compared with GAC at equilibrium and dye adsorption capacity increased from 0.71 to 3.82 mg g{sup -1}, and 0.73 to 6.35 mg g{sup -1} with the initial concentration of dye from 25 to 300 mg l{sup -1} respectively. The initial dye uptake of CBBA was not so rapid as in the case of GAC and the dye uptake was slow and gradually attained equilibrium.

  10. Hazard remediation and recycling of tea industry and paper mill bottom ash through vermiconversion.

    Science.gov (United States)

    Goswami, Linee; Patel, Arbind Kumar; Dutta, Ganesh; Bhattacharyya, Pradip; Gogoi, Nirmali; Bhattacharya, Satya Sundar

    2013-07-01

    Considerable amount of bottom ash (BA) is produced by tea and paper factories in Northeast India. This significantly deteriorates soil and surface water quality through rapid acidification, releasing sulfur compounds and heavy metals. The present investigation endeavoured to convert this waste to organic manure through vermicomposting by Eisenia fetida. Substantial increment in bioavailability of N, P, K, Fe, Mn and Zn along with remarkable decline in toxic metal like Cr due to vermicomposting was noteworthy. Furthermore, vermicomposted mixtures of Tea Factory BA (TFBA) or Paper Mill BA (PMBA) with organic matter (OM) attributed profuse pod yield of French Bean (Phaseolus vulgaris L.). Hence, bioconversion of TFBA and PMBA is highly feasible through vermicomposting and the converted materials can be utilized as potential organic fertilizer.

  11. Hazard remediation and recycling of tea industry and paper mill bottom ash through vermiconversion.

    Science.gov (United States)

    Goswami, Linee; Patel, Arbind Kumar; Dutta, Ganesh; Bhattacharyya, Pradip; Gogoi, Nirmali; Bhattacharya, Satya Sundar

    2013-07-01

    Considerable amount of bottom ash (BA) is produced by tea and paper factories in Northeast India. This significantly deteriorates soil and surface water quality through rapid acidification, releasing sulfur compounds and heavy metals. The present investigation endeavoured to convert this waste to organic manure through vermicomposting by Eisenia fetida. Substantial increment in bioavailability of N, P, K, Fe, Mn and Zn along with remarkable decline in toxic metal like Cr due to vermicomposting was noteworthy. Furthermore, vermicomposted mixtures of Tea Factory BA (TFBA) or Paper Mill BA (PMBA) with organic matter (OM) attributed profuse pod yield of French Bean (Phaseolus vulgaris L.). Hence, bioconversion of TFBA and PMBA is highly feasible through vermicomposting and the converted materials can be utilized as potential organic fertilizer. PMID:23706375

  12. Synthesis of thermostable geopolymer from circulating fluidized bed combustion (CFBC) bottom ashes.

    Science.gov (United States)

    Xu, Hui; Li, Qin; Shen, Lifeng; Wang, Wei; Zhai, Jianping

    2010-03-15

    Circulating fluidized bed combustion (CFBC) bottom ashes (CBAs) are a class of calcined aluminosilicate wastes with a unique thermal history. While landfill disposal of hazardous element-containing CBAs poses serious challenge, these wastes have long been neglected as source materials for geopolymer production. In this paper, geopolymerization of ground CBAs was investigated. Reactivity of the CBAs was analyzed by respective dissolution of the ashes in 2, 5, and 10N NaOH and KOH solutions. Geopolymer pastes were prepared by activating the CBAs by a series of alkalis hydroxides and/or sodium silicate solutions. Samples were cured at 40 degrees C for 168 h, giving a highest compressive strength of 52.9 MPa. Of the optimal specimen, characterization was conducted by TG-DTA, SEM, XRD, as well as FTIR analyses, and thermal stability was determined in terms of compressive strength evolution via exposure to 800 or 1050 degrees C followed by three cooling regimes, i.e. cooling in air, cooling in the furnace, and immerging in water. The results show that CBAs could serve as favorable source materials for thermostable geopolymers, which hold a promise to replace ordinary Portland cement (OPC) and organic polymers in a variety of applications, especially where fire hazards are of great concern.

  13. Geochemical modelling and identification of leaching processes in MSWI bottom ash : implications for the short-term and long-term release of contaminants

    NARCIS (Netherlands)

    Meima, J.A.

    1997-01-01

    Municipal Solid Waste Incinerator (MSWI) bottom ash is the major residue that remains after the incineration of Municipal Solid Waste. The slag-like material is produced world-wide in very large and everincreasing quantities. In the past the bottom ash was usually disposed, nowadays it is increasing

  14. Vitrified bottom ash slag from municipal solid waste incinerators - Phase relations of CaO-SiO2-Na20 oxide system

    NARCIS (Netherlands)

    Zhang, Z.; Xiao, Y.; Yang, Y.; Boom, R.; Voncken, J.H.L.

    2009-01-01

    Vitrification is considered to be an attractive technology for bottom ash treatment because it destroys the hazardous organics, contributes to immobilization of the heavy metals, and additionally it reduces drastically the volume. The main components of the vitrified bottom ash slag are SiO2 , CaO,

  15. The leaching of trace elements from municipal solid waste incinerator bottom ash at different stages of weathering

    NARCIS (Netherlands)

    Meima, J.A.; Comans, R.N.J.

    1999-01-01

    For a proper assessment of the environmental impact of the utilisation and disposal of Municipal Solid Waste Incinerator (MSWI) bottom ash it is necessary to understand weathering processes and their effects on (trace) element leaching. The authors have investigated the processes that control the le

  16. The leaching of major and trace elements from MSWI bottom ash as a function of pH and time

    NARCIS (Netherlands)

    Dijkstra, J.J.; Sloot, van der H.A.; Comans, R.N.J.

    2006-01-01

    In this paper, the leaching behaviour of major components (Al, Ca, SO4, Mg, Si, Fe, Na and DOC) and trace elements (Ni, Zn, Cd, Cu, Pb, Mo and Sb) from MSWI bottom ash is studied as a function of time over a wide range of pH, under pH-controlled conditions. Equilibrium geochemical modelling using th

  17. Preparation of Active Absorbent for Flue Gas Desulfurization From Coal Bottom Ash: Effect of Absorbent Preparation Variables

    Directory of Open Access Journals (Sweden)

    Chang Chin Li, Lee Keat Teong, Subhash Bhatia and Abdul Rahman Mohamed

    2012-08-01

    Full Text Available An active absorbent for flue gas desulfurization was prepared from coal bottom ash, calcium oxide (CaO and calcium sulfate by hydro-thermal process. The absorbent was examined for its micro-structural properties. The experiments conducted were based on Design Of Experiments (DOE according to 23 factorial design. The effect of various absorbent preparation variables such as ratio of CaO to bottom ash (A, hydration temperature (B and hydration period (C towards the BET (Brunauer-Emmett-Teller specific surface area of the absorbent were studied. At a CaO to bottom ash ratio = 2, hydration temperature = 200 ?C and hydration period = 10 hrs, absorbent with a surface area of 90.1 m2/g was obtained. Based on the analysis of the factorial design, it was concluded that factor A and C as well as the interaction of factors ABC and BC are the significant factors that effect the BET surface area of the absorbent. A linear mathematical model that describes the relation between the independent variables and interaction between variables towards the BET specific surface area of the absorbent was also developed. Analysis of variance (ANOVA showed that the model was significant at 1% level.Key Words: Absorbent, Bottom Ash, Design Of Experiments, Desulfurization, Surface Area.

  18. M(o)ssbauer spectroscopic studies the characterization of three China coal and the corresponding fly-ashes and bottom ashes

    Institute of Scientific and Technical Information of China (English)

    YAO Duo-xi; ZHI Xia-chen

    2006-01-01

    Three fresh China coals (lignitie, bituminite and anthracite) from different geological origin and the corresponding fly and bottom ashes were studied by room temperature(RT) M(o)ssbauer spectroscopy(MS). The iron-bearing minerals were characterized to was found in bituminite and anthracite coal.The M(o)ssbauer spectra of the fly and bottom ashes as a result of pulverised coal combustion(PCC) in Xiaolongtan,Shuicheng and Luohuang Power Plants are comprised of superimposed sextets and doulets of oxides includes maghemite(γ-Fe2O3), magnitite(Fe3O4), haematite(α-Fe2O3), magnesioferite (MgFe2O4), Fe3+/Fe2+-mullite, Fe3+-glass silicate andmetallic iron. The studies also show that iron-bearing minerals in coals are largely dependant on geological regions and coal rank, the composition of the corresponding fly and bottom ashes will not only depend on the type and mineralogy of the feed coal but also on the local nature of combustion.

  19. Development of a sintering process for recycling oil shale fly ash and municipal solid waste incineration bottom ash into glass ceramic composite

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhikun; Zhang, Lei; Li, Aimin, E-mail: leeam@dlut.edu.cn

    2015-04-15

    Highlights: • Glass ceramic composite is prepared from oil shale fly ash and MSWI bottom ash. • A novel method for the production of glass ceramic composite is presented. • It provides simple route and lower energy consumption in terms of recycling waste. • The vitrified slag can promote the sintering densification process of glass ceramic. • The performances of products decrease with the increase of oil shale fly ash content. - Abstract: Oil shale fly ash and municipal solid waste incineration bottom ash are industrial and municipal by-products that require further treatment before disposal to avoid polluting the environment. In the study, they were mixed and vitrified into the slag by the melt-quench process. The obtained vitrified slag was then mixed with various percentages of oil shale fly ash and converted into glass ceramic composites by the subsequent sintering process. Differential thermal analysis was used to study the thermal characteristics and determine the sintering temperatures. X-ray diffraction analysis was used to analyze the crystalline phase compositions. Sintering shrinkage, weight loss on ignition, density and compressive strength were tested to determine the optimum preparation condition and study the co-sintering mechanism of vitrified amorphous slag and oil shale fly ash. The results showed the product performances increased with the increase of sintering temperatures and the proportion of vitrified slag to oil shale fly ash. Glass ceramic composite (vitrified slag content of 80%, oil shale fly ash content of 20%, sintering temperature of 1000 °C and sintering time of 2 h) showed the properties of density of 1.92 ± 0.05 g/cm{sup 3}, weight loss on ignition of 6.14 ± 0.18%, sintering shrinkage of 22.06 ± 0.6% and compressive strength of 67 ± 14 MPa. The results indicated that it was a comparable waste-based material compared to previous researches. In particular, the energy consumption in the production process was reduced

  20. Development of a sintering process for recycling oil shale fly ash and municipal solid waste incineration bottom ash into glass ceramic composite

    International Nuclear Information System (INIS)

    Highlights: • Glass ceramic composite is prepared from oil shale fly ash and MSWI bottom ash. • A novel method for the production of glass ceramic composite is presented. • It provides simple route and lower energy consumption in terms of recycling waste. • The vitrified slag can promote the sintering densification process of glass ceramic. • The performances of products decrease with the increase of oil shale fly ash content. - Abstract: Oil shale fly ash and municipal solid waste incineration bottom ash are industrial and municipal by-products that require further treatment before disposal to avoid polluting the environment. In the study, they were mixed and vitrified into the slag by the melt-quench process. The obtained vitrified slag was then mixed with various percentages of oil shale fly ash and converted into glass ceramic composites by the subsequent sintering process. Differential thermal analysis was used to study the thermal characteristics and determine the sintering temperatures. X-ray diffraction analysis was used to analyze the crystalline phase compositions. Sintering shrinkage, weight loss on ignition, density and compressive strength were tested to determine the optimum preparation condition and study the co-sintering mechanism of vitrified amorphous slag and oil shale fly ash. The results showed the product performances increased with the increase of sintering temperatures and the proportion of vitrified slag to oil shale fly ash. Glass ceramic composite (vitrified slag content of 80%, oil shale fly ash content of 20%, sintering temperature of 1000 °C and sintering time of 2 h) showed the properties of density of 1.92 ± 0.05 g/cm3, weight loss on ignition of 6.14 ± 0.18%, sintering shrinkage of 22.06 ± 0.6% and compressive strength of 67 ± 14 MPa. The results indicated that it was a comparable waste-based material compared to previous researches. In particular, the energy consumption in the production process was reduced compared

  1. Arsenic remediation of drinking water using iron-oxide coated coal bottom ash

    Energy Technology Data Exchange (ETDEWEB)

    MATHIEU, JOHANNA L.; GADGIL, ASHOK J.; ADDY, SUSAN E.A.; KOWOLIK, KRISTIN

    2010-06-01

    We describe laboratory and field results of a novel arsenic removal adsorbent called 'Arsenic Removal Using Bottom Ash' (ARUBA). ARUBA is prepared by coating particles of coal bottom ash, a waste material from coal fired power plants, with iron (hydr)oxide. The coating process is simple and conducted at room temperature and atmospheric pressure. Material costs for ARUBA are estimated to be low (~;;$0.08 per kg) and arsenic remediation with ARUBA has the potential to be affordable to resource-constrained communities. ARUBA is used for removing arsenic via a dispersal-and-removal process, and we envision that ARUBA would be used in community-scale water treatment centers. We show that ARUBA is able to reduce arsenic concentrations in contaminated Bangladesh groundwater to below the Bangladesh standard of 50 ppb. Using the Langmuir isotherm (R2 = 0.77) ARUBA's adsorption capacity in treating real groundwater is 2.6x10-6 mol/g (0.20 mg/g). Time-to-90percent (defined as the time interval for ARUBA to remove 90percent of the total amount of arsenic that is removed at equilibrium) is less than one hour. Reaction rates (pseudo-second-order kinetic model, R2>_ 0.99) increase from 2.4x105 to 7.2x105 g mol-1 min-1 as the groundwater arsenic concentration decreases from 560 to 170 ppb. We show that ARUBA's arsenic adsorption density (AAD), defined as the milligrams of arsenic removed at equilibrium per gram of ARUBA added, is linearly dependent on the initial arsenic concentration of the groundwater sample, for initial arsenic concentrations of up to 1600 ppb and an ARUBA dose of 4.0 g/L. This makes it easy to determine the amount of ARUBA required to treat a groundwater source when its arsenic concentration is known and less than 1600 ppb. Storing contaminated groundwater for two to three days before treatment is seen to significantly increase ARUBA's AAD. ARUBA can be separated from treated water by coagulation and clarification, which is expected to

  2. Pilot-scale road subbase made with granular material formulated with MSWI bottom ash and stabilized APC fly ash: environmental impact assessment.

    Science.gov (United States)

    del Valle-Zermeño, R; Formosa, J; Prieto, M; Nadal, R; Niubó, M; Chimenos, J M

    2014-02-15

    A granular material (GM) to be used as road sub-base was formulated using 80% of weathered bottom ash (WBA) and 20% of mortar. The mortar was prepared separately and consisted in 50% APC and 50% of Portland cement. A pilot-scale study was carried on by constructing three roads in order to environmentally evaluate the performance of GM in a real scenario. By comparing the field results with those of the column experiments, the overestimations observed at laboratory scale can be explained by the potential mechanisms in which water enters into the road body and the pH of the media. An exception was observed in the case of Cu, whose concentration release at the test road was higher. The long-time of exposure at atmospheric conditions might have favoured oxidation of organic matter and therefore the leaching of this element. The results obtained showed that immobilization of all heavy metals and metalloids from APC is achieved by the pozzolanic effect of the cement mortar. This is, to the knowledge of the authors, the only pilot scale study that is considering reutilization of APC as a safe way to disposal.

  3. Geopolymers with a high percentage of bottom ash for solidification/immobilization of different toxic metals.

    Science.gov (United States)

    Boca Santa, Rozineide A Antunes; Soares, Cíntia; Riella, Humberto Gracher

    2016-11-15

    Geopolymers are produced using alkali-activated aluminosilicates, either as waste or natural material obtained from various sources. This study synthesized geopolymers from bottom ash and metakaolin (BA/M) in a 2:1wt ratio to test the solidification/immobilization (S/I) properties of heavy metals in geopolymer matrices, since there is very little research using BA in this type of matrices. Therefore, a decision was made to use more than 65% of BA in geopolymer synthesis with and without the addition of heavy metals. The S/I tests with metals used 10, 15 and 30ml of a waste solution after pickling of printed circuit boards containing metals, including Pb, Cr, Cu, Fe, Sn, As and Ni, in different proportions. As alkali activator, the NaOH and KOH were used in the concentrations of 8 and 12M in the composition of Na2SiO3 in 1:2vol ratios. To test S/I efficiency, tests were conducted to obtain the leached and solubilized extract. The analysis was carried out through X-Ray Fluorescence (XRF), X-Ray Diffraction (XRD), Inductively Coupled Plasma Mass Spectrometry (ICP-MS), Scanning Electron Microscope (SEM), Energy-Dispersive X-Ray Spectroscopy (EDS) and compressive strength tests. The geopolymer showed a high degree of S/I of the metals; in some samples, the results reached nearly 100%.

  4. Sintered glass ceramic composites from vitrified municipal solid waste bottom ashes.

    Science.gov (United States)

    Aloisi, Mirko; Karamanov, Alexander; Taglieri, Giuliana; Ferrante, Fabiola; Pelino, Mario

    2006-09-01

    A glass ceramic composite was obtained by sinter-crystallisation of vitrified municipal solid waste bottom ashes with the addition of various percentages of alumina waste. The sintering was investigated by differential dilatometry and the crystallisation of the glass particles by differential thermal analysis. The crystalline phases produced by the thermal treatment were identified by X-ray diffraction analysis. The sintering process was found to be affected by the alumina addition and inhibited by the beginning of the crystal-phase precipitation. Scanning electron microscopy was performed on the fractured sintered samples to observe the effect of the sintering. Young's modulus and the mechanical strength of the sintered glass ceramic and composites were determined at different heating rates. The application of high heating rate and the addition of alumina powder improved the mechanical properties. Compared to the sintered glass ceramic without additives, the bending strength and the Young's modulus obtained at 20 degrees C/min, increased by about 20% and 30%, respectively. PMID:16730889

  5. Sintered glass ceramic composites from vitrified municipal solid waste bottom ashes

    Energy Technology Data Exchange (ETDEWEB)

    Aloisi, Mirko [Department of Chemistry, Chemical Engineering and Materials, University of L' Aquila, Monteluco di Roio 67040 (Italy); Karamanov, Alexander [Department of Chemistry, Chemical Engineering and Materials, University of L' Aquila, Monteluco di Roio 67040 (Italy)]. E-mail: karama@ing.univaq.it; Taglieri, Giuliana [Department of Chemistry, Chemical Engineering and Materials, University of L' Aquila, Monteluco di Roio 67040 (Italy); Ferrante, Fabiola [Department of Chemistry, Chemical Engineering and Materials, University of L' Aquila, Monteluco di Roio 67040 (Italy); Pelino, Mario [Department of Chemistry, Chemical Engineering and Materials, University of L' Aquila, Monteluco di Roio 67040 (Italy)]. E-mail: pelino@ing.univaq.it

    2006-09-01

    A glass ceramic composite was obtained by sinter-crystallisation of vitrified municipal solid waste bottom ashes with the addition of various percentages of alumina waste. The sintering was investigated by differential dilatometry and the crystallisation of the glass particles by differential thermal analysis. The crystalline phases produced by the thermal treatment were identified by X-ray diffraction analysis. The sintering process was found to be affected by the alumina addition and inhibited by the beginning of the crystal-phase precipitation. Scanning electron microscopy was performed on the fractured sintered samples to observe the effect of the sintering. Young's modulus and the mechanical strength of the sintered glass ceramic and composites were determined at different heating rates. The application of high heating rate and the addition of alumina powder improved the mechanical properties. Compared to the sintered glass ceramic without additives, the bending strength and the Young's modulus obtained at 20 deg. C/min, increased by about 20% and 30%, respectively.

  6. Impact of MSWI Bottom Ash Codisposed with MSW on Landfill Stabilization with Different Operational Modes

    Directory of Open Access Journals (Sweden)

    Wen-Bing Li

    2014-01-01

    Full Text Available The aim of the study was to investigate the impact of municipal solid waste incinerator (MSWI bottom ash (BA codisposed with municipal solid waste (MSW on landfill stabilization according to the leachate quality in terms of organic matter and nitrogen contents. Six simulated landfills, that is, three conventional and three recirculated, were employed with different ratios of MSWI BA to MSW. The results depicted that, after 275-day operation, the ratio of MSWI BA to fresh refuse of 1 : 10 (V : V in the landfill was still not enough to provide sufficient acid-neutralizing capacity for a high organic matter composition of MSW over 45.5% (w/w, while the ratio of MSWI BA to fresh refuse of 1 : 5 (V : V could act on it. Among the six experimental landfills, leachate quality only was improved in the landfill operated with the BA addition (the ratio of MSWI BA to fresh refuse of 1 : 5 (V : V and leachate recirculation.

  7. Leaching of valuable elements from thermal power plant bottom ash using a thermo-hydrometallurgical process.

    Science.gov (United States)

    Bojinova, Darinka; Teodosieva, Ralitsa

    2016-06-01

    The solid industrial wastes generated from thermal power plants (TPPs) can be considered as renewable secondary sources for recovery of valuable metals. This study presents the results from investigations that integrated a thermo-hydro-metallurgical method for treatment of bottom ash obtained from the Enel Maritsa East 3 TPP in Bulgaria. Leaching was performed with 20, 30 and 40 wt% sulphuric acid, respectively, in an autoclave at 100(o)C, 120(o)C and 140(o)C for 120, 240, 360 and 480 min, at a constant value of the liquid/solid ratio. After autoclaving, the samples (suspensions) were diluted with a constant value of water and stirring at 50(o)C for 60 min. On the basis of the experimental data the leaching efficiency (α) of the elements in the liquid phase after filtration was estimated. The leaching of aluminium increases significantly with increasing of the temperature, reaching the maximum value of 70 wt%. The highest leaching efficiency values for the other elements are as follows: Fe (86.4%), Ca (86.6%), Na (86.6%), Ni (83.3%) and Zn (83.3%). The maximum value of leaching for Mg, K, Mn, Cu and Cr is in the interval of 46-70%. PMID:26951342

  8. Production of pyroxene ceramics from the fine fraction of incinerator bottom ash.

    Science.gov (United States)

    Bourtsalas, A; Vandeperre, L J; Grimes, S M; Themelis, N; Cheeseman, C R

    2015-11-01

    Incinerator bottom ash (IBA) is normally processed to extract metals and the coarse mineral fraction is used as secondary aggregate. This leaves significant quantities of fine material, typically less than 4mm, that is problematic as reuse options are limited. This work demonstrates that fine IBA can be mixed with glass and transformed by milling, calcining, pressing and sintering into high density ceramics. The addition of glass aids liquid phase sintering, milling increases sintering reactivity and calcining reduces volatile loss during firing. Calcining also changes the crystalline phases present from quartz (SiO2), calcite (CaCO3), gehlenite (Ca2Al2SiO7) and hematite (Fe2O3) to diopside (CaMgSi2O6), clinoenstatite (MgSiO3) and andradite (Ca3Fe2Si3O12). Calcined powders fired at 1080°C have high green density, low shrinkage (ceramics that have negligible water absorption. The transformation of the problematic fraction of IBA into a raw material suitable for the manufacture of ceramic tiles for use in urban paving and other applications is demonstrated.

  9. Geopolymers with a high percentage of bottom ash for solidification/immobilization of different toxic metals.

    Science.gov (United States)

    Boca Santa, Rozineide A Antunes; Soares, Cíntia; Riella, Humberto Gracher

    2016-11-15

    Geopolymers are produced using alkali-activated aluminosilicates, either as waste or natural material obtained from various sources. This study synthesized geopolymers from bottom ash and metakaolin (BA/M) in a 2:1wt ratio to test the solidification/immobilization (S/I) properties of heavy metals in geopolymer matrices, since there is very little research using BA in this type of matrices. Therefore, a decision was made to use more than 65% of BA in geopolymer synthesis with and without the addition of heavy metals. The S/I tests with metals used 10, 15 and 30ml of a waste solution after pickling of printed circuit boards containing metals, including Pb, Cr, Cu, Fe, Sn, As and Ni, in different proportions. As alkali activator, the NaOH and KOH were used in the concentrations of 8 and 12M in the composition of Na2SiO3 in 1:2vol ratios. To test S/I efficiency, tests were conducted to obtain the leached and solubilized extract. The analysis was carried out through X-Ray Fluorescence (XRF), X-Ray Diffraction (XRD), Inductively Coupled Plasma Mass Spectrometry (ICP-MS), Scanning Electron Microscope (SEM), Energy-Dispersive X-Ray Spectroscopy (EDS) and compressive strength tests. The geopolymer showed a high degree of S/I of the metals; in some samples, the results reached nearly 100%. PMID:27420386

  10. Review on Current Research Status on Bottom Ash: An Indian Prospective

    Science.gov (United States)

    Mandal, A. K.; Sinha, O. P.

    2014-12-01

    India focuses on attention towards "greener and cleaner" environment surrounding us. For that, the engineers and scientists have joined hands together to accept the challenges for recycling wastes from industries. The generation of Bottom Ash (BA) from thermal power plants which are being increased day by day and facing disposal and environmental problems. In spite of that, it is being used as landfills which has no commercial value, but now needs to think on its utilization as useable supplementary materials. But from the literature survey, it was found that a little amount of research have been carried out on BA in the area based on its adsorption capability of dyes; pelletization efficiency of cold bonded aggregate; compressive strength, durability, water absorption characteristics and density variation in concrete and mortar; in order to ensure its usage as adsorption as well as construction material. The present paper deals with a critical review on BA as an adsorbent, light weight aggregate as well as partial replacement of fine aggregate in concrete. In addition, physical and chemical properties, transportation and disposal mechanism and environmental effects are also discussed.

  11. Geotechnical properties of MSW-incinerated bottom ash%垃圾焚烧炉渣的土工特性

    Institute of Scientific and Technical Information of China (English)

    许四法; 杨杨; 王哲

    2011-01-01

    To solve the problem of incinerator residue disposal and recycle, the changes of geotechnical properties of the bottom ash with time were investigated by indoor physical tests and SEM.The results show that the initial particle size is large when its diameter increases and the maximum dry density decreases with the time; that the bottom ash is in high initial void ratio and compressibility, but because of the adsorption and the hydrated reaction, the void ratio deceases with the time; and that the compressive strength increases and the deformation decreases with the time.Finally, the causes of the change on the geotechnical characteristics of the bottom ash with the time were analyzed by the electron microscopy,which provids a reference for efficacious utilization of bottom ash.%为了有效处理和利用炉渣,以炉渣为研究对象,采用室内物理试验和扫描电镜,探讨炉渣的性质随时间变化的特性.试验结果表明:随着放置时间的增加、粗颗粒变多以及最大干密度变小,炉渣的初始孔隙比较大,属于中高压缩性土,但由于吸附和水化反应,孔隙比随时间减小;同样,无侧限抗压强度随时间增加,变形下降.最后,通过电子显微镜分析了炉渣的土工特性随时间变化的原因,为炉渣的有效利用提供参考.

  12. COMPARATIVE STUDY OF HEAVY METALS IN BOTTOM ASH FROM INCINERATORS AND OPEN PIT FROM HEALTHCARE FACILITIES IN GHANA

    Directory of Open Access Journals (Sweden)

    Richard Amfo-Otua

    2015-03-01

    Full Text Available Treatment of healthcare waste either by incinerating or open burning in a pit produces bottom ashes which contains heavy metals and other chemicals which are toxic, persistent and accumulate in the food chain resulting in adverse health effects in human and the environment. The study investigated the level of heavy metals in the ashes of thermally treated medical waste from four health care facilities in Ghana. Two batch of the ash samples were collected from two hospital incinerators and the other two from medical waste burnt in an open-pit. The samples were collected on different days but within the same month, stored and transported to Water Research Institute laboratory for heavy metals analysis. The concentrations of Pb, Cd, Cr and Hg were assessed using Atomic Absorption Spectrophotometry (AAS. The results proved that the concentrations of heavy metals were higher for the waste treated in the incinerator than those burnt in the open pit. The average concentration of the metals in the ashes were in the following decreasing order Pb>Cr>Hg>Cd. The mean concentration of Pb from the incinerated bottom ash was 147.5mg/kg and Cd was 2.5mg/kg whilst the open pit was (69.67mg/kg and (1.34mg/kg respectively. All the metals investigated exceeded the Dutch and Danish limit values for maximum permissible levels of heavy metals in good soil quality and therefore classified as harmful and toxic and therefore proper attention should be given to the ash disposal at the landfill sites.

  13. Potential usage of fly and bottom ash from thermal power plant ”Nikola Tesla” landfill, Serbia

    Directory of Open Access Journals (Sweden)

    Čudić Vladica V.

    2012-01-01

    Full Text Available In Serbia, the ash from power plants has long been labelled as hazardous waste. With the adoption of the appropriate legislation this ash became secondary raw material with the potential usage. In this paper an analysis of the fly and bottom ash composition, which are disposed of in the power plant “Nikola Tesla A” landfill, is presented. Thirty samples, divided into three sets, were analyzed for trace elements As, Ba, Be, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Ti, V and Zn. The first and second set of samples were taken at the depth of 0.0-0.6 m, from cassette III, at the place of waste discharge (set I and in the centre of the cassette (set II.The third set of samples was taken from the same cassette spot but at the different depth. The estimated variations in quality within individual sets, as well as the comparison between sets I and II, were done. The repeatability of results by the depth of cassette (set III was also analyzed. The mixture consisting of 79.4% limestone, 17% clay, 0.5% sand, 0.55% iron ore, 0.55% from steel mill waste and 2% ash from the thermal power plant "Nikola Tesla A" was adopted as the reputable mixture for cement making. For concrete making, the same cement mixture was used but with 2.1% of the same ash material added. The results showed possibility of further fly and bottom ash use as the cement and concrete material.

  14. Development of a sintering process for recycling oil shale fly ash and municipal solid waste incineration bottom ash into glass ceramic composite.

    Science.gov (United States)

    Zhang, Zhikun; Zhang, Lei; Li, Aimin

    2015-04-01

    Oil shale fly ash and municipal solid waste incineration bottom ash are industrial and municipal by-products that require further treatment before disposal to avoid polluting the environment. In the study, they were mixed and vitrified into the slag by the melt-quench process. The obtained vitrified slag was then mixed with various percentages of oil shale fly ash and converted into glass ceramic composites by the subsequent sintering process. Differential thermal analysis was used to study the thermal characteristics and determine the sintering temperatures. X-ray diffraction analysis was used to analyze the crystalline phase compositions. Sintering shrinkage, weight loss on ignition, density and compressive strength were tested to determine the optimum preparation condition and study the co-sintering mechanism of vitrified amorphous slag and oil shale fly ash. The results showed the product performances increased with the increase of sintering temperatures and the proportion of vitrified slag to oil shale fly ash. Glass ceramic composite (vitrified slag content of 80%, oil shale fly ash content of 20%, sintering temperature of 1000 °C and sintering time of 2h) showed the properties of density of 1.92 ± 0.05 g/cm(3), weight loss on ignition of 6.14 ± 0.18%, sintering shrinkage of 22.06 ± 0.6% and compressive strength of 67 ± 14 MPa. The results indicated that it was a comparable waste-based material compared to previous researches. In particular, the energy consumption in the production process was reduced compared to conventional vitrification and sintering method. Chemical resistance and heavy metals leaching results of glass ceramic composites further confirmed the possibility of its engineering applications. PMID:25649918

  15. Development of a sintering process for recycling oil shale fly ash and municipal solid waste incineration bottom ash into glass ceramic composite.

    Science.gov (United States)

    Zhang, Zhikun; Zhang, Lei; Li, Aimin

    2015-04-01

    Oil shale fly ash and municipal solid waste incineration bottom ash are industrial and municipal by-products that require further treatment before disposal to avoid polluting the environment. In the study, they were mixed and vitrified into the slag by the melt-quench process. The obtained vitrified slag was then mixed with various percentages of oil shale fly ash and converted into glass ceramic composites by the subsequent sintering process. Differential thermal analysis was used to study the thermal characteristics and determine the sintering temperatures. X-ray diffraction analysis was used to analyze the crystalline phase compositions. Sintering shrinkage, weight loss on ignition, density and compressive strength were tested to determine the optimum preparation condition and study the co-sintering mechanism of vitrified amorphous slag and oil shale fly ash. The results showed the product performances increased with the increase of sintering temperatures and the proportion of vitrified slag to oil shale fly ash. Glass ceramic composite (vitrified slag content of 80%, oil shale fly ash content of 20%, sintering temperature of 1000 °C and sintering time of 2h) showed the properties of density of 1.92 ± 0.05 g/cm(3), weight loss on ignition of 6.14 ± 0.18%, sintering shrinkage of 22.06 ± 0.6% and compressive strength of 67 ± 14 MPa. The results indicated that it was a comparable waste-based material compared to previous researches. In particular, the energy consumption in the production process was reduced compared to conventional vitrification and sintering method. Chemical resistance and heavy metals leaching results of glass ceramic composites further confirmed the possibility of its engineering applications.

  16. Measurement of uranium and thorium in coal fly ash and bottom ash samples from a thermal power plant by using a high resolution semiconductor detector

    International Nuclear Information System (INIS)

    A low background γ-ray detection system has been constructed for measuring the natural radioactivity in coal samples. It is based on a high-purity Ge detector mounted within a massive lead shield which reduces the normal background level by a factor of about 20. This makes it possible to measure the low intensity γ-rays from the natural radioactivity present in the samples. Using this equipment uranium and thorium concentrations in coal fly ash and bottom ash samples from a coal fired power plant located at Bathinda, India have been measured. The uranium activity found in the samples is within the range of concentrations observed in other countries while the thorium activity is found to be somewhat higher. (Author)

  17. Potential Use of Malaysian Thermal Power Plants Coal Bottom Ash in Construction

    Directory of Open Access Journals (Sweden)

    Abdulhameed Umar Abubakar

    2012-11-01

    Full Text Available As Malaysia focuses its attention to the call for a “greener” culture, so did the engineers and those in the scientific community especially the construction industry who is a major contributor to the depletion of green house gases. The engineering and construction community has now taken up the challenge for the use of “green and recycled by-products” in construction. One of those by-products is the Coal Bottom Ash (CBA from thermal power plants that faces an increasing production running into hundreds of thousand tonnes in Malaysia alone, and its method of disposal is relegated to landfills alone with no other commercial usage. The construction industry is now forced to rethink on the utilization of the industrial by-products as supplementary materials due to the continuous depletion of natural aggregates in construction. A significant amount of research has been conducted elsewhere on CBA to ascertain its pozzolanic activity, compressive strength in concrete and mortar, durability, water absorption characteristics and density, in order to ensure its usage as a construction material. In this paper, a critical review of the strength characteristics of concrete and mortar as influenced by CBA as partial replacement of fine aggregate is presented based on the available information in the published literatures. Diverse physical and chemical properties of CBA from different power plants in Malaysia are also presented. The influence of different types, amounts and sources of CBA on the strength and bulk density of concrete is discussed. The setting time, workability and consistency as well as the advantages and disadvantages of using CBA in construction materials are also highlighted. An effective utilization of CBA in construction materials will significantly reduce the accumulation of the by-products in landfills and thus reduce environmental pollution.

  18. The Utilization of Bottom Ash Coal for Briquette Products by Adding Teak Leaves Charcoal, Coconut Shell Charcoal, and Rice Husk Charcoal

    Directory of Open Access Journals (Sweden)

    Syafrudin Syafrudin

    2015-01-01

    Full Text Available The limitations of the availability of energy sources especially fuel oil has become a serious threat for the society. The use of coal for energy source as the replacement of fuel oil, in one hand, is very profitable, but on the other hand, will cause problem which is the coal ash residue. This coal ash is a by-product of coal combustion. This coal ash contains bottom ash. Through this observation, the bottom ash can be processed to be charcoal if added by teak leaves, coconut shell, and rice husk. Also, this observation needs to add binder materials for further processing in order to form briquette. It can be used as alternative fuel, the utilization of bottom ash and biomass will give positive impact to the environment. This observation was conducted by using compositions such as bottom ash, teak leaves, coconut shell, and rice husk. The treatment was using comparison 100%:0% ; 80%:20% ; 60%:40% ; 50%:50% ; 40%:60% ; 20%:80% ; 0%:100%. The result that the best briquette was on the composition of 20% bottom ash : 80% coconut shell. The characteristic values from that composition were moisture content of 3.45%, ash content of 17,32%, calorific value of 7.945,72 Cal/gr, compressive strength of 2,18 kg/cm2, level of CO of 105 mg/m3, and heavy metals Cu of 29,83 µg/g and  Zn 32,99 µg/g. The characteristic value from each briquette composition treatment showed that the increasing usage proportion of biomass as added material for briquette was able to increase its moisture content and calorific value. Besides, it is also able to decrease its ash content and compressive strength

  19. Use of leaching tests to quantify trace element release from waste to energy bottom ash amended pavements.

    Science.gov (United States)

    Roessler, Justin G; Townsend, Timothy G; Ferraro, Christopher C

    2015-12-30

    A series of roadway tests strips were paved on-site at a landfill in Florida, U.S. Waste to energy (WTE) bottom ash was used as a partial course aggregate replacement in a hot mix asphalt (HMA) and a Portland cement concrete (PCC) pavement, along with control HMA and PCC sections. This allowed for a comparison of the relative degree of leaching between both materials (HMA and PCC) as well as between the ash-amended and control pavements. Batch and monolithic tank leaching tests were conducted on the pavements. Testing of the PCC samples demonstrated that Mo and Al were elevated above regulatory thresholds for both the control and ash amended samples. Further leach testing demonstrated that the release of Mo was likely from the PCC and not a result of the inclusion of the BA into pavement. Batch leach testing of ash-amended HMA samples revealed Sb as a constituent of potential concern. The results of the monolith leaching test displayed leaching of Sb within the same order of magnitude as the regulatory threshold. Calculation of the leachability index (LI) for Sb found that it would have limited mobility when incorporated in the HMA matrix. PMID:26340550

  20. The effect of oxygen plasma ashing on the resistance of TiN bottom electrode for phase change memory

    International Nuclear Information System (INIS)

    Phase change memory (PCM) has been regarded as a promising candidate for the next generation of nonvolatile memory. To decrease the power required to reset the PCM cell, titanium nitride (TiN) is preferred to be used as the bottom electrode of PCM due to its low thermal and suitable electrical conductivity. However, during the manufacture of PCM cell in 40 nm process node, abnormally high and discrete distribution of the resistance of TiN bottom electrode was found, which might be induced by the surface oxidation of TiN bottom electrode during the photoresist ashing process by oxygen plasma. In this work, we have studied the oxidation of TiN and found that with the increasing oxygen plasma ashing time, the thickness of the TiO2 layer became thicker and the state of the TiO2 layer changed from amorphous to crystalline, respectively. The resistance of TiN electrode contact chain with 4-5 nm TiO2 layer was confirmed to be almost three-orders of magnitude higher than that of pure TiN electrode, which led to the failure issue of PCM cell. We efficiently removed the oxidation TiO2 layer by a chemical mechanical polishing (CMP) process, and we eventually recovered the resistance of TiN bottom electrode from 1 × 105 Ω/via back to 6 × 102 Ω/via and successfully achieved a uniform resistance distribution of the TiN bottom electrode. (paper)

  1. PERBANDINGAN NILAI KALOR BIOBRIKET YANG TERBUAT DARI BOTTOM ASH LIMBAH PLTU DAN BIOMASSA CANGKANG KOPI DENGAN VARIASI KOMPOSISI DAN JENIS PENGIKAT YANG BERBEDA

    Directory of Open Access Journals (Sweden)

    Budi Gunawan

    2015-12-01

    Full Text Available Tujuan dari penelitian ini adalah membuat biobriket dari bahan bottom ash limbah Pembangkit Listrik Tenaga Uap (PLTU dengan biomassa cangkang kopi dengan zat pengikat tetes tebu serta menguji nilai kalor yang dihasilkan. Metode yang digunakan dalam penelitian ini adalah; pembuatan biobriket dengan memvariasi komposisi antara bottom ash dengan biomassanya serta zat pengikat yang berbeda. Variasi komposisi antara biomassa cangkang kopi dengan bootom ash yang digunakan adalah 60% : 40% dan 70% : 30%, sedangkan bahan perekatnya menggunakan tetes tebu dan tepung kanji. Pengujian yang dilakukan adalah menguji nilai kalor dari biobriket yang dihasilkan menggunakan alat uji calloriboom. Dari hasil pengujian didapatkan biobriket dengan komposisi 70% biomassa cangkang kopi dan 30% bottom ash dengan pengikat tetes tebu mempunyai nilai kalor yang paling tinggi dibandingkan dengan komposisi dan pengikat yang lain dengan nilai kalor yang dihasilkan yaitu 2496,18 kal/gr. Nilai kalor ini dipengaruhi oleh kandungan karbon aktif yang terdapat pada arang cangkang kopi dan besar kecilnya kandungan carbon, oxygen dan ash yang dimiliki, semakin tinggi kandungan carbon dan oxygen maka makin tinggi pula nilai kalor yang kandungan kalor yang terdapat pada jenis perekat tetes tebu lebih tinggi dari pada tepung kanji. [Title: Comparison of Calorific Value of Biobriket Made of Bottom Ash Waste and Biomass Plant Shell Coffee by Varying Composition and Types of Binder] This study is aimed to make biobriket of bottom ash material waste biomass power plant and different binder of coffee shell (molasses as well as measuring the calorific value. The method in this study are by manufacturing biobricket by varying the composition of bottom ash with biomass and different binder. Biomass composition variation of the shell coffee and bottom ash are 60%:40% and 70%:30%. The binder used are molasses and starch. This experiment was carry out by measuring the calorific value of produced

  2. Process development for the removal and recovery of hazardous dye erythrosine from wastewater by waste materials-Bottom Ash and De-Oiled Soya as adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Alok [Department of Applied Chemistry, Maulana Azad National Institute of Technology, Bhopal 462007 (India)]. E-mail: aljymittal@yahoo.co.in; Mittal, Jyoti [Department of Applied Chemistry, Maulana Azad National Institute of Technology, Bhopal 462007 (India); Kurup, Lisha [Department of Applied Chemistry, Maulana Azad National Institute of Technology, Bhopal 462007 (India); Singh, A.K. [Department of Applied Chemistry, University Institute of Technology, RGPV, Bhopal 462036 (India)

    2006-11-02

    Erythrosine is a water-soluble xanthene class of dye. It is widely used as colorant in foods, textiles, drugs and cosmetics. It is highly toxic, causes various types of allergies, thyroid activities, carcinogenicity, DNA damage behaviour, neurotoxicity and xenoestrogen nature in the humans and animals. The photochemical and biochemical degradation of the erythrosine is not recommended due to formation of toxic by-products. The present paper is an attempt to remove erythrosine from wastewater using adsorption over Bottom Ash-a power plant waste and De-Oiled Soya-an agricultural waste. Under the batch studies, effect of concentration of dye, temperature, pH of the solution, dosage of adsorbents, sieve size of adsorbents, etc., have been studied for the uptake of the dye over both adsorbents. The adsorption process verifies Langmuir and Freundlich adsorption isotherms in both the cases and based on the data different thermodynamic parameters have been evaluated. Batch studies also include kinetic measurements, rate constant study, mass transfer behaviour and establishment of mechanistic pathway for both the cases. For the bulk removal of the dye column operations have been carried out and breakthrough capacities of the Bottom Ash and De-Oiled Soya columns have been calculated. Attempts have also been made for the recovery of the adsorbed dye from exhausted columns by eluting dilute NaOH and more than 90% of the dye was recovered.

  3. Process development for the removal and recovery of hazardous dye erythrosine from wastewater by waste materials-Bottom Ash and De-Oiled Soya as adsorbents

    International Nuclear Information System (INIS)

    Erythrosine is a water-soluble xanthene class of dye. It is widely used as colorant in foods, textiles, drugs and cosmetics. It is highly toxic, causes various types of allergies, thyroid activities, carcinogenicity, DNA damage behaviour, neurotoxicity and xenoestrogen nature in the humans and animals. The photochemical and biochemical degradation of the erythrosine is not recommended due to formation of toxic by-products. The present paper is an attempt to remove erythrosine from wastewater using adsorption over Bottom Ash-a power plant waste and De-Oiled Soya-an agricultural waste. Under the batch studies, effect of concentration of dye, temperature, pH of the solution, dosage of adsorbents, sieve size of adsorbents, etc., have been studied for the uptake of the dye over both adsorbents. The adsorption process verifies Langmuir and Freundlich adsorption isotherms in both the cases and based on the data different thermodynamic parameters have been evaluated. Batch studies also include kinetic measurements, rate constant study, mass transfer behaviour and establishment of mechanistic pathway for both the cases. For the bulk removal of the dye column operations have been carried out and breakthrough capacities of the Bottom Ash and De-Oiled Soya columns have been calculated. Attempts have also been made for the recovery of the adsorbed dye from exhausted columns by eluting dilute NaOH and more than 90% of the dye was recovered

  4. Variation of the phytotoxicity of municipal solid waste incinerator bottom ash on wheat (Triticum aestivum L.) seed germination with leaching conditions.

    Science.gov (United States)

    Phoungthong, Khamphe; Zhang, Hua; Shao, Li-Ming; He, Pin-Jing

    2016-03-01

    Municipal solid waste incinerator bottom ash (MSWIBA) has long been regarded as an alternative building material in the construction industry. However, the pollutants contained in the bottom ash could potentially leach out and contaminate the local environment, which presents an obstacle to the reuse of the materials. To evaluate the environmental feasibility of using MSWIBA as a recycled material in construction, the leaching derived ecotoxicity was assessed. The leaching behavior of MSWIBA under various conditions, including the extractant type, leaching time, liquid-to-solid (L/S) ratio, and leachate pH were investigated, and the phytotoxicity of these leachates on wheat (Triticum aestivum L.) seed germination was determined. Moreover, the correlation between the germination index and the concentrations of various chemical constituents in the MSWIBA leachates was assessed using multivariate statistics with principal component analysis and Pearson's correlation analysis. It was found that, heavy metal concentrations in the leachate were pH and L/S ratio dependent, but were less affected by leaching time. Heavy metals were the main pollutants present in wheat seeds. Heavy metals (especially Ba, Cr, Cu and Pb) had a substantial inhibitory effect on wheat seed germination and root elongation. To safely use MSWIBA in construction, the potential risk and ecotoxicity of leached materials must be addressed.

  5. Fly and bottom ashes from biomass combustion as cement replacing components in mortars production: rheological behaviour of the pastes and materials compression strength.

    Science.gov (United States)

    Maschio, Stefano; Tonello, Gabriele; Piani, Luciano; Furlani, Erika

    2011-10-01

    In the present research mortar pastes obtained by replacing a commercial cement with the equivalent mass of 5, 10, 20 and 30 wt.% of fly ash or bottom ash from fir chips combustion, were prepared and rheologically characterized. It was observed that the presence of ash modifies their rheological behaviour with respect to the reference blend due to the presence, in the ashes, of KCl and K2SO4 which cause precipitation of gypsum and portlandite during the first hydration stages of the pastes. Hydrated materials containing 5 wt.% of ash display compression strength and absorption at 28 d of same magnitude as the reference composition; conversely, progressive increase of ash cause a continuous decline of materials performances. Conversely, samples tested after 180 d display a marked decline of compression strength, as a consequence of potassium elution and consequent alkali-silica reaction against materials under curing.

  6. Experience of the environmental impact in the use of MSWI bottom ash as subbase layer; Erfarenheter av miljoepaaverkan vid anvaendning av slaggrus som foerstaerkningslager

    Energy Technology Data Exchange (ETDEWEB)

    Flyhammar, Peter

    2008-12-15

    This report presents an evaluation of the environmental impact that the use of MSWI bottom ash as a subbase layer in asphalt parking spaces and drives can cause. The focus has been on the migration of mobile ions such as salts (chloride and sulfate), because these substances can be used as early indicators of the migration of contaminants. The results can be seen as a conservative assessment of other types of substances which are less soluble and mobile. The background of the project was that the Malmoe City Environmental Department wanted an evaluation of the environmental impact caused by the use of bottom ash in the area of Svaagertorp, just south of Malmoe urban area, because elevated levels of chloride and sulfate in water samples from several ground water pipes were found. In response to this request, Sysav Utveckling initiated a project to assess the environmental impact of the current object. At Svaagertorp, bottom ash has been used to build a number of parking spaces and drives. A relatively large amount of bottom ash (approximately 40 000 tons) have been used. The aim of the project was to investigate the environmental impacts of the use of bottom ash in construction projects. To achieve this objective, the project should describe and evaluate the importance of various sources of pollution (the source term) describe the mechanisms that control the migration of contaminants in the area describe the local environmental impact. The evaluation of the environmental consequences was based on a synthesis of several different field studies and analysis; resistivity soundings with cpt-probe, surface resistivity measurements with a measuring system of the type ABDEM Lund Imaging System, analysis of surface and ground water samples and analysis of soil samples and soil profiles. Numerical modeling of two simplified scenarios was used to support the interpretations of the results from field surveys. Environmental impacts at Svaagertorp The overall assessment within

  7. The effect of oxygen plasma ashing on the resistance of TiN bottom electrode for phase change memory

    Science.gov (United States)

    Dan, Gao; Bo, Liu; Ying, Li; Zhitang, Song; Wanchun, Ren; Juntao, Li; Zhen, Xu; Shilong, Lü; Nanfei, Zhu; Jiadong, Ren; Yipeng, Zhan; Hanming, Wu; Songlin, Feng

    2015-05-01

    Phase change memory (PCM) has been regarded as a promising candidate for the next generation of nonvolatile memory. To decrease the power required to reset the PCM cell, titanium nitride (TiN) is preferred to be used as the bottom electrode of PCM due to its low thermal and suitable electrical conductivity. However, during the manufacture of PCM cell in 40 nm process node, abnormally high and discrete distribution of the resistance of TiN bottom electrode was found, which might be induced by the surface oxidation of TiN bottom electrode during the photoresist ashing process by oxygen plasma. In this work, we have studied the oxidation of TiN and found that with the increasing oxygen plasma ashing time, the thickness of the TiO2 layer became thicker and the state of the TiO2 layer changed from amorphous to crystalline, respectively. The resistance of TiN electrode contact chain with 4-5 nm TiO2 layer was confirmed to be almost three-orders of magnitude higher than that of pure TiN electrode, which led to the failure issue of PCM cell. We efficiently removed the oxidation TiO2 layer by a chemical mechanical polishing (CMP) process, and we eventually recovered the resistance of TiN bottom electrode from 1 × 105 Ω/via back to 6 × 102 Ω/via and successfully achieved a uniform resistance distribution of the TiN bottom electrode. Project supported by the National Key Basic Research Program of China (Nos. 2010CB934300, 2013CBA01900, 2011CBA00607, 2011CB932804), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA09020402), the National Integrate Circuit Research Program of China (No. 2009ZX02023-003), the National Natural Science Foundation of China (Nos. 61176122, 61106001, 61261160500, 61376006), and the Science and Technology Council of Shanghai (Nos. 12nm0503701, 13DZ2295700, 12QA1403900, 13ZR1447200).

  8. Evaluation of Vitrification Processing Step for Rocky Flats Incinerator Ash

    Energy Technology Data Exchange (ETDEWEB)

    Wigent, W.L.; Luey, J.K.; Scheele, R.D.; Li, H.

    1999-04-08

    In 1997, Pacific Northwest National Laboratory (PNNL) staff developed a processing option for incinerator ash at the Rocky Flats Environmental Technology Sites (RFETS). This work was performed with support from Los Alamos National Laboratory (LANL) and Safe Sites of Colorado (SSOC). A description of the remediation needs for the RFETS incinerator ash is provided in a report summarizing the recommended processing option for treatment of the ash (Lucy et al. 1998). The recommended process flowsheet involves a calcination pretreatment step to remove carbonaceous material followed by a vitrification processing step for a mixture of glass tit and calcined incinerator ash. Using the calcination pretreatment step to remove carbonaceous material reduced process upsets for the vitrification step, allowed for increased waste loading in the final product, and improved the quality of the final product. Figure 1.1 illustrates the flow sheet for the recommended processing option for treatment of RFETS incinerator ash. In 1998, work at PNNL further developed the recommended flow sheet through a series of studies to better define the vitrification operating parameters and to address secondary processing issues (such as characterizing the offgas species from the calcination process). Because a prototypical rotary calciner was not available for use, studies to evaluate the offgas from the calcination process were performed using a benchtop rotary calciner and laboratory-scale equipment (Lucy et al. 1998). This report focuses on the vitrification process step after ash has been calcined. Testing with full-scale containers was performed using ash surrogates and a muffle furnace similar to that planned for use at RFETS. Small-scale testing was performed using plutonium-bearing incinerator ash to verify performance of the waste form. Ash was not obtained from RFETS because of transportation requirements to calcine the incinerator ash prior to shipment of the material. Because part of

  9. Corrosivity and leaching behavior of controlled low-strength material (CLSM) made using bottom ash and quarry dust.

    Science.gov (United States)

    Naganathan, Sivakumar; Razak, Hashim Abdul; Hamid, Siti Nadzriah Abdul

    2013-10-15

    This paper reports the corrosivity and leaching behavior of CLSM made using two different industrial wastes i.e. bottom ash from an incineration facility and quarry dust. The leachate samples were derived from fresh and hardened CLSM mixtures, and studied for leaching and electrical resistivity. The release of various contaminants and the consequent environmental impact caused by the contaminants were studied by the measurement of contaminants in the bleed, in the leachate at 28 days, and on the leachate derived from crushed block and whole block leaching done over a period of 126 days. Results indicated that the CLSM mixtures are non corrosive; diffusion was the leaching mechanism; and the contaminants were found to be moderate to low mobility.

  10. Metals accumulations during thermal processing of sewage sludge - characterization of bottom ash and air pollution control (APC) residues

    Science.gov (United States)

    Kasina, Monika; Kowalski, Piotr R.; Michalik, Marek

    2016-04-01

    Due to increasing mass of sewage sludge, problems in its management have appeared. Over years sewage sludge was landfilled, however due to EU directives concerning environmental issues this option is no longer possible. This type of material is considered hazardous due to highly concentrated metals and harmful elements, toxic organic substances and biological components (e.g. parasites, microbes). Currently in Europe, incineration is considered to be the most reasonable method for sewage sludge treatment. As a result of sludge incineration significant amount of energy is recovered due to high calorific value of sewage sludge but bottom ash and APC residues are being produced. In this study we show the preliminary results of chemical and mineral analyses of both bottom ash and APC residues produced in fluidized bed boiler in sewage sludge incineration plant in Poland, with a special emphasis on metals which, as a part of incombustible fraction can accumulate in the residual materials after thermal processing. The bottom ash was a SiO2-P2O5-Fe2O3-CaO-Al2O3 dominated material. Main mineral phases identified in X-ray diffraction patterns were: quartz, feldspar, hematite, and phosphates (apatite and scholzite). The bottom ash was characterized by high content of Zn - 4472 mg kg‑1, Cu - 665.5 mg kg‑1, Pb - 138 mg kg‑1, Ni - 119.5 mg kg‑1, and interestingly high content of Au - 0.858 mg kg‑1 The APC residues composition was dominated by soluble phases which represent more than 90% of the material. The XRD patterns indicated thenardite, halite, anhydrite, calcite and apatite as main mineral phases. The removal of soluble phases by dissolution in deionised water caused a significant mass reduction (ca. 3% of material remained on the filters). Calcite, apatite and quartz were main identified phases. The content of metals in insoluble material is relatively high: Zn - 6326 mg kg‑1, Pb - 514.3 mg kg‑1, Cu - 476.6 mg kg‑1, Ni - 43.3 mg kg‑1. The content of Cd

  11. Chemical characterization of bottom ashes generated during combustion of a Colombian mineral coal in a thermal power plant

    International Nuclear Information System (INIS)

    Bottom ashes generated during combustion of a mineral coal from Colombia were characterized by X-ray fluorescence spectrometry and X-ray diffraction. The interest in this particular coal is due to the fact that it will be used by a thermal power plant in Ceara, Northeastern Brazil, where it could produce over 900 tons of different residues/combustion products every day. Results from Xray fluorescence allowed identification and quantification of elements present in the sample: silicon (59,17%), aluminum (13,17%), iron (10,74%), potassium (6,11%), titanium (2,91%), calcium (4,97%), sulphur (0,84%) and others (2,09%). The X-ray diffraction revealed patterns from silica, mullite, calcium sulphate and hydrated sodium. Results obtained so far indicate that the material is a potential raw-material for use in the formulation of ceramic components (author)

  12. Development of Ecoefficient Engineered Cementitious Composites Using Supplementary Cementitious Materials as a Binder and Bottom Ash Aggregate as Fine Aggregate

    Directory of Open Access Journals (Sweden)

    Jin Wook Bang

    2015-01-01

    Full Text Available The purpose of this study is to develop ecoefficient engineered cementitious composites (ECC using supplementary cementitious materials (SCMs, including fly ash (FA and blast furnace slag (SL as a binder material. The cement content of the ECC mixtures was replaced by FA and SL with a replacement rate of 25%. In addition, the fine aggregate of the ECC was replaced by bottom ash aggregate (BA with a substitution rate of 10%, 20%, and 30%. The influences of ecofriendly aggregates on fresh concrete properties and on mechanical properties were experimentally investigated. The test results revealed that the substitution of SCMs has an advantageous effect on fresh concrete’s properties; however, the increased water absorption and the irregular shape of the BA can potentially affect the fresh concrete’s properties. The substitution of FA and SL in ECC led to an increase in frictional bond at the interface between PVA fibers and matrix, improved the fiber dispersion, and showed a tensile strain capacity ranging from 3.3% to 3.5%. It is suggested that the combination of SCMs (12.5% FA and 12.5% SL and the BA aggregate with the substitution rate of 10% can be effectively used in ECC preparation.

  13. ENVIRONMENTAL EVALUATION FOR UTILIZATION OF ASH IN SOIL STABILIZATION

    Energy Technology Data Exchange (ETDEWEB)

    David J. Hassett; Loreal V. Heebink

    2001-08-01

    The Minnesota Pollution Control Agency (MPCA) approved the use of coal ash in soil stabilization, indicating that environmental data needed to be generated. The overall project goal is to evaluate the potential for release of constituents into the environment from ash used in soil stabilization projects. Supporting objectives are: (1) To ensure sample integrity through implementation of a sample collection, preservation, and storage protocol to avoid analyte concentration or loss. (2) To evaluate the potential of each component (ash, soil, water) of the stabilized soil to contribute to environmental release of analytes of interest. (3) To use laboratory leaching methods to evaluate the potential for release of constituents to the environment. (4) To facilitate collection of and to evaluate samples from a field runoff demonstration effort. The results of this study indicated limited mobility of the coal combustion fly ash constituents in laboratory tests and the field runoff samples. The results presented support previous work showing little to negligible impact on water quality. This and past work indicates that soil stabilization is an environmentally beneficial CCB utilization application as encouraged by the U.S. Environmental Protection Agency. This project addressed the regulatory-driven environmental aspect of fly ash use for soil stabilization, but the demonstrated engineering performance and economic advantages also indicate that the use of CCBs in soil stabilization can and should become an accepted engineering option.

  14. 城市生活垃圾焚烧炉渣中铅的溶出特性研究%Leaching Characteristic of Pb from MSWI Bottom Ash

    Institute of Scientific and Technical Information of China (English)

    孔庆娜; 姚俊

    2013-01-01

    The leaching characteristic of Pb from two types of municipal solid waste incinerator (MSWI) bottom ash,namely grate furnace MSWI bottom ash and fluidized bed MSWI bottom ash,was studied with batch titration procedure and Visual MINTEQ.The results showed the leaching of Pb depended on the pH.Furthermore,the leaching of Pb was controlled by the equilibrium of PbMoO4 for the two types of MSWI bottom ash.%利用浸出试验和Visual MINTEQ模型,对2种不同炉型的城市生活垃圾焚烧炉渣中铅的溶出特性进行了研究.结果表明,无论是炉排炉型生活垃圾焚烧炉渣还是流化床型生活垃圾焚烧炉渣,其铅的溶出行为均受pH的影响,并且受到PbMoO4溶解平衡的控制.

  15. Ash from cereal and rape straw used for heat production: liming effect and contents of plant nutrients and heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Sander, M.-L.; Andren, O. [Swedish University of Agricultural Sciences, Uppsala (Sweden). Dept. of Ecology and Environmental Research

    1997-01-01

    The composition of 79 samples of straw ash from seven heating plants in Sweden was analysed with the aim of evaluating straw ash as a fertilizer and liming agent. The variation in ash composition was explained mainly by ash fraction (bottom ash vs. fly ash) and straw type (wheat, barley, rye, rape) but also by heating plant. Compared with concentrations of Zn, Pb and Cd in bottom ash; levels in fly ash were 10-90 times higher. Fly ash also contained more Cu and K compared with bottom ash. The Cd/P ratio was 0.03 in bottom ash and 0.6 g Cd/kg P in fly ash. Ash from rape straw had a higher Ca content and liming effect compared with ash from cereal straw; e.g. the liming effect of rape ash was more than three times higher than that of wheat ash. The liming effect varied between 3.5 and 44% CaO and depended mainly on the Ca content. The average P content was 1.7% (0.2-4.4%) with slightly higher concentration in rape ash than in wheat ash. The potential for using straw ash as a fertilizer and liming agent is discussed. Compared with commercial fertilizers the use of bottom ash as a P fertilizer results in a lower addition of Cd. However, the total heavy metal content of straw ash poses a potential problem. 24 refs., 2 figs., 5 tabs.

  16. Assessing the effects of municipal solid waste incinerator bottom ash on the decomposition of biodegradable waste using a completely mixed anaerobic reactor.

    Science.gov (United States)

    Banks, Charles J; Lo, Huang-Mu

    2003-06-01

    Experimental lab scale anaerobic reactors were used to assess the effect of municipal solid waste incinerator (MSWI) bottom ash on the process of biodegradation of organic materials typical of those found in municipal solid waste (MSW). Three reactors were used in the trial and each of these received the same daily organic load of simulated MSW but varying loads of MSWI bottom ash. The reactors were monitored over a period of 200 days for pH, alkalinity, volatile acids, total organic carbon (TOC), biogas production, gas composition and heavy metals. The addition of ash appeared to have beneficial effects on the degradation process as there was an increase in gas production, alkalinity, and pH, coupled with a decrease in the TOC concentration of leachate when compared with a control reactor without MSWI ash addition. After 200 days operation, the alkalinity and gas production in the anaerobic reactor receiving 6g ash per day was twice that of the reactor receiving 3g of ash per day and four times that of the control reactor. A number of tests were carried out on the ash sample to investigate the possible reasons for enhancement of the biodegradative process. These included a shake flask batch leaching test using distilled water, determination of the acid neutralising capacity by titration curve, and the quantification of six heavy metals and four light metals. In the reactors receiving ash the concentrations of Ca, Na, K, Mg ions were found to be significantly higher and these may provide a higher alkalinity which could promote the digestion process. Soluble concentrations of Cd, Cr, Cu, Ni, Pb, and Zn were in the range of 0.02-0.2, 0.01-2.5, 0.01-0.3, 0.01-1, 0.01-1.2, and 0.01-1 mgl(-1) respectively and at these concentrations it is unlikely that they would prove inhibitory to the digestion process. PMID:12870642

  17. Immobilization of antimony in waste-to-energy bottom ash by addition of calcium and iron containing additives.

    Science.gov (United States)

    Van Caneghem, Jo; Verbinnen, Bram; Cornelis, Geert; de Wijs, Joost; Mulder, Rob; Billen, Pieter; Vandecasteele, Carlo

    2016-08-01

    The leaching of Sb from waste-to-energy (WtE) bottom ash (BA) often exceeds the Dutch limit value of 0.32mgkg(-1) for recycling of BA in open construction applications. From the immobilization mechanisms described in the literature, it could be concluded that both Ca and Fe play an important role in the immobilization of Sb in WtE BA. Therefore, Ca and Fe containing compounds were added to the samples of the sand fraction of WtE BA, which in contrast to the granulate fraction is not recyclable to date, and the effect on the Sb leaching was studied by means of batch leaching tests. Results showed that addition of 0.5 and 2.5% CaO, 5% CaCl2, 2.5% Fe2(SO4)3 and 1% FeCl3 decreased the Sb leaching from 0.62±0.02mgkgDM(-1) to 0.20±0.02, 0.083±0.044, 0.25±0.01, 0.27±0.002 and 0.29±0.02mgkgDM(-1), respectively. Due to the increase in pH from 11.41 to 12.53 when 2.5% CaO was added, Pb and Zn leaching increased and exceeded the respective leaching limits. Addition of 5% CaCO3 had almost no effect on the Sb leaching, as evidenced by the resulting 0.53mgkgDM(-1) leaching concentration. This paper shows a complementary enhancement of the effect of Ca and Fe, by comparing the aforementioned Sb leaching results with those of WtE BA with combined addition of 2.5% CaO or 5% CaCl2 with 2.5% Fe2(SO4)3 or 1% FeCl3. These lab scale results suggest that formation of romeites with a high Ca content and formation of iron antimonate (tripuhyite) with a very low solubility are the main immobilization mechanisms of Sb in WtE BA. Besides the pure compounds and their mixtures, also addition of 10% of two Ca and Fe containing residues of the steel industry, hereafter referred to as R1 and R2, was effective in decreasing the Sb leaching from WtE BA below the Dutch limit value for reuse in open construction applications. To evaluate the long term effect of the additives, pilot plots of WtE BA with 10% of R1 and 5% and 10% of R2 were built and samples were submitted to leaching tests at

  18. Preservation of natural aquatic ecosystems by application of bottom coal ash based bioreactor for in situ treatment of anthropogenic effluents

    Science.gov (United States)

    Anker, Y.; Nisnevitch, M.; Tal, M.; Cahan, R.; Michael, E.

    2012-12-01

    One consequence of global climate change is recharge decrease at sub tropical and Mediterranean regions to both the surface and the ground fresh water resources. As a general rule, when water source quantity is reduced, the level of salination, as well as chemical and biological pollutants, tends to increase. The situation is more severe whenever the drainage basin is (a) heavily populated from urban, industrial and agricultural areas, (b) has wide areas of thin or non soil cover and (c) has a karstic structure and morphology. These latter conditions are typical to many regions around the Middle East; whereas pollution hazard to Mid Eastern streams is greater than to those in more humid regions owing to their relative small size and poor dilution capacity. The consequence of this ongoing and increasing anthropogenic pollution is endangerment of natural aquatic habitats and due to decrease in fresh water supply availability also to human sustainability. The ecological impact may involve transition of ephemeral (Wadi) streams into intermittent ones with the accompanied biodiversity change or extinction once the pollution is extreme. The impact on indigenous human communities might be as severe owing to drinking water quality decrease and the consequent decrease id quantity as well as damage to dryland farming. In setting of operations applied to the Yarkon Taninim watershed (central Israel) management, a pilot biofilter facility for sustainable preservation and rehabilitation of natural fluvial ecosystems was tested. This biofilter is planned to operate through low impact concept assimilating natural treatment processes occurring during runoff recharge through a porous flow media. The facility is constructed out of several grain sizes of bottom coal ash aggregate, which was found to be a better microbial mats growing stratum, compared to common natural aggregates such as tuff and lime pebbles (and also has an EPA directive for wastewater treatment). The biofilter is

  19. Spatial evaluation of volcanic ash forecasts using satellite observations

    Directory of Open Access Journals (Sweden)

    N. J. Harvey

    2015-09-01

    Full Text Available The decision to close airspace in the event of a volcanic eruption is based on hazard maps of predicted ash extent. These are produced using output from volcanic ash transport and dispersion (VATD models. In this paper an objective metric to evaluate the spatial accuracy of VATD simulations relative to satellite retrievals of volcanic ash is presented. The metric is based on the fractions skill score (FSS. This measure of skill provides more information than traditional point-by-point metrics, such as success index and Pearson correlation coefficient, as it takes into the account spatial scale over which skill is being assessed. The FSS determines the scale over which a simulation has skill and can differentiate between a "near miss" and a forecast that is badly misplaced. The idealised scenarios presented show that even simulations with considerable displacement errors have useful skill when evaluated over neighbourhood scales of 200–700 km2. This method could be used to compare forecasts produced by different VATDs or using different model parameters, assess the impact of assimilating satellite retrieved ash data and evaluate VATD forecasts over a long time period.

  20. Spatial evaluation of volcanic ash forecasts using satellite observations

    Science.gov (United States)

    Harvey, N. J.; Dacre, H. F.

    2016-01-01

    The decision to close airspace in the event of a volcanic eruption is based on hazard maps of predicted ash extent. These are produced using output from volcanic ash transport and dispersion (VATD) models. In this paper the fractions skill score has been used for the first time to evaluate the spatial accuracy of VATD simulations relative to satellite retrievals of volcanic ash. This objective measure of skill provides more information than traditional point-by-point metrics, such as success index and Pearson correlation coefficient, as it takes into the account spatial scale over which skill is being assessed. The FSS determines the scale over which a simulation has skill and can differentiate between a "near miss" and a forecast that is badly misplaced. The idealized scenarios presented show that even simulations with considerable displacement errors have useful skill when evaluated over neighbourhood scales of 200-700 (km)2. This method could be used to compare forecasts produced by different VATDs or using different model parameters, assess the impact of assimilating satellite-retrieved ash data and evaluate VATD forecasts over a long time period.

  1. Mechanical Properties of High Strength Concrete Containing Coal Bottom Ash and Oil-Palm Boiler Clinker as Fine Aggregates

    Directory of Open Access Journals (Sweden)

    Soofinajafi Mahmood

    2016-01-01

    Full Text Available This research aims to utilize Coal Furnace Bottom ash (CBA and Oil-Palm Boiler Clinker (OPBC as fine aggregate in concrete mix proportions. They are solid wastes from power plant and Oil Palm industry, respectively. Since these by-products do not have any primary use and are pure waste, an opportunity to use them as aggregate in concrete industry not only is economical but also will be an environmental friendly opportunity leading towards a more sustainable production chain. CBA and OPBC sands had similar grading to normal sand but have lower density and higher water absorption. In a high strength concrete, normal sand was replaced up to 25% with either CBA or OPBC. Test results showed that although water absorption of these wastes was more than normal sand but the slump value of concrete containing each of these wastes showed that these concretes had good workability. All mixes containing these wastes had slightly lower compressive strength at early ages and equivalent or higher compressive strength at later ages compared to control mix. The 28-day compressive strength of these concretes was in the range of 69–76 MPa which can be categorized as high strength concrete. In general, the performance of OPBC was better than CBA at 25% replacement level. However, it is recommended that at least 12.5% of total volume of fine aggregate in a high strength concrete is used of CBA or OPBC.

  2. Application of paste technology to mitigate the dust emissions from handling of fly and bottom ash at coal fired power plant : CGTEE in Candiota, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Silva Marques, M.E. [Golder Associates Peru, Lima (Peru); Lima, H. [Golder Associates Brazil, Sao Paulo (Brazil); Mandl, B.; Francoeur, R.; Palkovits, F. [Golder Paste Technology Ltd., Mississauga, ON (Canada); Blois, R. [Companhia de Geracao Termica de Energia Electrica, Porto Alegre (Brazil)

    2010-07-01

    This paper discussed a method developed to reduce dust emissions generated in a fly ash handling procedure used at a thermal power plant located in the south of Brazil. The fly ash is collected in dry form at several locations in the plant and pneumatically conveyed to storage silos, where it is moistened with water in a mixer, loaded into dump trucks and deposited in a disposal area near a surface coal mine. The new solution created low density fly ash slurry in localized mixing tanks within the power plant. The low density slurry is pumped to an ash conditioning plant where the slurry is then mixed with the bottom ash, dewatered, and densified. The densified slurry is then pumped to an adjacent coal mine disposal site in order to be used as backfill in mined areas. The proposed method will significantly reduce dust emissions both inside and outside the plant, and will substantially reduce truck traffic at the mine. The method will reduce the environmental impacts associated with fly ash dust emissions in the region. 8 figs.

  3. Potential for leaching of heavy metals in open-burning bottom ash and soil from a non-engineered solid waste landfill.

    Science.gov (United States)

    Gwenzi, Willis; Gora, Dorcas; Chaukura, Nhamo; Tauro, Tonny

    2016-03-01

    Bottom ash from open-burning of municipal waste practised in developing countries poses a risk of heavy metal leaching into groundwater. Compared to incineration ash, there is limited information on heavy metal leaching from open-burning ash and soil from non-engineered landfills. Batch and column experiments were conducted to address three specific objectives; (1) to determine aqua regia extractable concentrations of heavy metals in fresh ash, old ash and soil from beneath the landfill, (2) to determine the relationship between heavy metal leaching, initial and final pH of leaching solution, and aqua regia extractable concentrations, and (3) to determine the breakthrough curves of heavy metals in ashes and soil. Aqua regia extractable concentrations of Cd, Zn, Mn, Cu, Ni and Pb were significantly higher (p heavy metals were not correlated with aqua regia extractable concentrations. Final pH of leachate rebounded to close to original pH of the material, suggesting a putative high buffering capacity for all materials. Both batch and column leaching showed that concentrations of leached heavy metals were disproportionately lower (heavy metals was further evidenced by sigmoidal breakthrough curves. Heavy metal retention was attributed to precipitation, pH-dependent adsorption and formation of insoluble organo-metallic complexes at near-neutral to alkaline pH. Overall, the risk of heavy metal leaching from ash and soil from the waste dump into groundwater was low. The high pH and the presence of Zn, Fe, Mn and Cu make ash an ideal low-cost liming material and source of micronutrients particularly on acidic soils prevalent in sub-Saharan Africa.

  4. Influence of Bed Ash and Fly Ash Replacement in Mortars

    Directory of Open Access Journals (Sweden)

    S. L. Summoogum-Utchanah

    2015-03-01

    Full Text Available The study evaluates the influence of fly ash and bottom ash as partial cement substitutes in mortars by studying the particle size distribution, consistency, flow, fresh density, air content, compressive strength and flexural strength characteristics. The results revealed that fly ash and cement had relatively the same particle size distribution unlike bottom ash. In the fresh state, as the amount of pozzolans increased in the mixtures, the mortars showed an enhancement in workability, were susceptible to water loss by bleeding, and exhibited a decline in fresh density. The early strength gains of the fly ash samples were low but reached higher than the control after 28 days of curing. The flexural strength increased as the fly ash content rose to reach a maximum at 20 % replacement. However, the 2-day compressive strength of bottom ash samples was higher than the control but decreased after 28 days of curing while the flexural strength declined with addition of bottom ash except at 5 % substitution.

  5. Comparative study of ageing, heat treatment and accelerated carbonation for stabilization of municipal solid waste incineration bottom ash in view of reducing regulated heavy metal/metalloid leaching

    OpenAIRE

    Santos, Rafael; Mertens, Gilles; Salman, Muhammad; Cizer, Özlem; Gerven, Tom Van

    2013-01-01

    This study compared the performance of four different approaches for stabilization of regulated heavy metal and metalloid leaching from municipal solid waste incineration bottom ash (MSWI-BA): (i) short term (three months) heap ageing, (ii) heat treatment, (iii) accelerated moist carbonation, and (iv) accelerated pressurized slurry carbonation. Two distinct types of MSWI-BA were tested in this study: one originating from a moving-grate furnace incineration operation treating exclusively house...

  6. LCA of management strategies for RDF incineration and gasification bottom ash based on experimental leaching data

    DEFF Research Database (Denmark)

    Gianfilippo, Martina Di; Costa, Giulia; Pantini, Sara;

    2016-01-01

    Fuel (RDF): landfilling and recycling as a filler for road sub bases. Two types of thermal treatment were considered: incineration and gasification. Potential environmental impacts were evaluated by life-cycle assessment (LCA) using the EASETECH model. Both non-toxicity related impact categories (i.......e. global warming and mineral abiotic resource depletion) and toxic impact categories (i.e. human toxicity and ecotoxicity) were assessed. The system boundaries included BA transport from the incineration/gasification plants to the landfills and road construction sites, leaching of potentially toxic metals...... from the BA, the avoided extraction, crushing, transport and leaching of virgin raw materials for the road scenarios, and material and energy consumption for the construction of the landfills. To provide a quantitative assessment of the leaching properties of the two types of BA, experimental leaching...

  7. Bottom ash from fluidising bed boilers as filler material in district heating pipe culverts. Chemical and geotechnical characterisation; Pannsand som kringfyllnadsmaterial foer fjaerrvaermeroergravar. Kemisk och geoteknisk karaktaerisering av fluidbaeddsand

    Energy Technology Data Exchange (ETDEWEB)

    Pettersson, Roger; Rogbeck, Jan; Suer, Pascal

    2004-01-01

    Bottom ashes from fluid bed boilers have been characterised, both geotechnically and chemically, in order to investigate the possibility to use them as filler material in district heating pipe culverts. Bottom ashes from both biofuel boilers and waste boilers are represented in this project. The companies which ashes have been characterised are Sundsvall Energi AB, Sydkraft OestVaerme AB, Sydkraft MaelarVaerme AB, Eskilstuna Miljoe och Energi, Stora Enso Fors, Soederenergi and Fortum Vaerme. A total of ten ashes have been analysed where three ashes originates from Sundsvall Energi AB, two from Sydkraft OestVaerme AB and one from the each of the remaining companies. The chemical analyses have been performed both on fresh ashes and on ashes aged for three months. The geotechnical analyses performed are grain size distribution, packing abilities and permeability. Chemical analyses performed are total content, available content, leaching tests (leaching both by shaking method and column procedure) and organic analyses (PAH, EOX, TOC, dioxin and fenol). The geotechnical analyses show that the ashes fulfils the demands that are put on the filler material used in district heating pipe culverts. When using the ashes in applications, light compaction should be performed due to the risk of crushing the material which may cause an increased amount of fine material. The leachability of fine material is larger than for coarse material. The ashes are relatively insensitive to precipitation. Bio fuel based bottom ashes have a lower content of environmental affecting substances than waste fuel based ashes. This is also shown in the leaching analyses. The leaching water from fresh ashes contains a higher concentration of leachable components than aged ashes. When aged the pH in the ashes decreases due to carbon uptake and hydration and this makes metals as Pb, Cu, Cr and Zn less mobile. On the other hand, an increase in leachability of Sb, Mo and SO{sub 4} is shown when the ashes

  8. 城市生活垃圾焚烧底灰的水热固化研究%Hydrothermal solidification of municipal solid waste incineration bottom ash

    Institute of Scientific and Technical Information of China (English)

    单成冲; 潘莉莉; 吴科; 潘晓辉; 景镇子

    2011-01-01

    利用水热技术对城市生活垃圾底灰进行资源化利用研究,将其固化为一种强度高、重金属溶出少的建筑材料.主要研究了添加消石灰固化生活垃圾底灰的硬化机理,并且为了100%利用垃圾焚烧灰,也研究了添加垃圾飞灰固化底灰的方法.同时还进行了重金属浸出试验,测试固化体中重金属溶出量.研究结果表明,托勃莫来石晶体的生成是影响固化体强度的主要原因,而且托勃莫来石的生成量越多,样品的强度越高.飞灰也可以作为一种固化添加剂对底灰进行水热固化,且添加飞灰的硬化机理和消石灰相同.经过水热固化,固化体的重金属溶出量可大大降低.水热技术有望成为一种城市生活垃圾底灰资源化利用的有效方法.%Solidification of municipal solid waste incineration (MSWI) bottom ash into a building material with high strength and less heavy metal dissolution has been carried out using a hydrothermal processing method. The hardening mechanism of hydrothermal solidification of MSWI bottom ash by adding slaked lime was investigated in this study. Moreover,leaching tests were also conducted to determine the amount of heavy metals dissolved from the solidified specimens. The experimental results showed that the strength development of the solidified specimens with slaked lime addition was due primarily to the tobermorite formation and the more the tobermorite formed,the higher the strength was. MSWI fly ash also could be used as an additive to solidify bottom ash,and the hardening effect of solidification was favored to be similar to that with slaked lime addition. Under the hydrothermal processing,the amount of heavy metals dissolved from the solidified specimens was reduced greatly. As such,the hydrothermal processing may have a high potential for recycling MSWI bottom ash.

  9. Pressure drop evaluation in fuel assembly bottom nozzles

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Sydney da Silva; Brittes, Luiz Henrique A. [Industrias Nucleares do Brasil S.A. (INB), Resende, RJ (Brazil)]. E-mails: sydney@inb.gov.br; brittes@inb.gov.br; Navarro, Moyses A. [Centro de Desenvolvimento de Energia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)]. E-mail: navarro@cdtn.br

    2007-07-01

    Experiments were conducted in order to assess the pressure drop through an anti-debris bottom nozzle relatively to a standard bottom nozzle of a nuclear fuel assembly. Two kinds of experiments have been performed: one using bottom nozzles connected with the lower part of a Fuel Assembly (containing two spacer grids) and another one using the bottom nozzle alone. Reynolds numbers ranging from 10500 . 95000 have been employed, temperatures ranging from 40 . 55 deg C and pressures up to 4 bar. Results have shown that the pressure drop coefficients of the anti-debris nozzle referring to the whole lower region of the Fuel Assembly were {approx} 13% (for Re {approx_equal} 95000) till {approx} 17% (for Re {approx_equal} 10500) higher than the coefficients for standard bottom nozzle. This difference increases up to 118% when the pressure drop coefficients of the bottom nozzle alone are considered. (author)

  10. Adsorption isotherms, kinetics and column operations for the removal of hazardous dye, Tartrazine from aqueous solutions using waste materials-Bottom Ash and De-Oiled Soya, as adsorbents

    International Nuclear Information System (INIS)

    Adsorbents, Bottom Ash (a power plant waste) and De-Oiled Soya (an agricultural waste) exhibit good efficacy to adsorb a highly toxic dye, Tartrazine. Through the batch technique equilibrium uptake of the dye is observed at different concentrations, pH of the solution, dosage of adsorbents and sieve size of adsorbents. Langmuir and Freundlich adsorption isotherms are successfully employed on both the adsorbents and on the basis of these models the thermodynamic parameters are evaluated. Kinetic investigations reveal that more than 50% adsorption of dye is achieved in about 1 h in both the cases, whereas, equilibrium establishment takes about 3-4 h. The linear plots obtained in rate constant and mass transfer studies further confirm the applicability of first order rate expression and mass transfer model, respectively. The kinetic data treated to identify rate controlling step of the ongoing adsorption processes indicate that for both the systems, particle diffusion process is predominant at higher concentrations, while film diffusion takes place at lower concentrations. The column studies reveal that about 96% saturation of both the columns is attained during their exhaustion, while about 88 and 84% of the dye material is recovered by eluting dilute NaOH solution through exhausted Bottom Ash and De-Oiled Soya columns, respectively

  11. Characterisation of major component leaching and buffering capacity of RDF incineration and gasification bottom ash in relation to reuse or disposal scenarios.

    Science.gov (United States)

    Rocca, Stefania; van Zomeren, André; Costa, Giulia; Dijkstra, Joris J; Comans, Rob N J; Lombardi, Francesco

    2012-04-01

    Thermal treatment of refuse derived fuel (RDF) in waste-to-energy (WtE) plants is considered a promising solution to reduce waste volumes for disposal, while improving material and energy recovery from waste. Incineration is commonly applied for the energetic valorisation of RDF, although RDF gasification has also gained acceptance in recent years. In this study we focused on the environmental properties of bottom ash (BA) from an RDF incineration (RDF-I, operating temperature 850-1000°C) and a RDF gasification plant (RDF-G, operating temperature 1200-1400°C), by evaluating the total composition, mineralogy, buffering capacity, leaching behaviour (both at the material's own pH and as a function of pH) of both types of slag. In addition, buffering capacity results and pH-dependence leaching concentrations of major components obtained for both types of BA were analysed by geochemical modelling. Experimental results showed that the total content of major components for the two types of BA was fairly similar and possibly related to the characteristics of the RDF feedstock. However, significant differences in the contents of trace metals and salts were observed for the two BA samples as a result of the different operating conditions (i.e. temperature) adopted by the two RDF thermal treatment plants. Mineralogy analysis showed in fact that the RDF-I slag consisted of an assemblage of several crystalline phases while the RDF-G slag was mainly made up by amorphous glassy phases. The leached concentrations of major components (e.g. Ca, Si) at the natural pH of each type of slag did not reflect their total contents as a result of the partial solubility of the minerals in which these components were chemically bound. In addition, comparison of total contents with leached concentrations of minor elements (e.g. Pb, Cu) showed no obvious relationship for the two types of BA. According to the compliance leaching test results, the RDF-G BA would meet the limits of the Italian

  12. Use of waste materials--Bottom Ash and De-Oiled Soya, as potential adsorbents for the removal of Amaranth from aqueous solutions.

    Science.gov (United States)

    Mittal, Alok; Kurup Krishnan, Lisha; Gupta, Vinod K

    2005-01-31

    Bottom Ash, a power plan t waste material and De-Oiled Soya, an agriculture waste product were successfully utilized in removing trisodium 2-hydroxy-1-(4-sulphonato-1-naphthylazo)naphthalene-3,6-disulphonate--a water-soluble hazardous azo dye (Amaranth). The paper incorporates thermodynamic and kinetic studies for the adsorption of the dye on these two waste materials as adsorbents. Characterization of each adsorbent was carried out by I.R. and D.T.A. curves. Batch adsorption studies were made by measuring effects of pH, adsorbate concentration, sieve size, adsorbent dosage, contact time, temperature etc. Specific rate constants for the processes were calculated by kinetic measurements and a first order adsorption kinetics was observed in each case. Langmuir and Freundlich adsorption isotherms were applied to calculate thermodynamic parameters. The adsorption on Bottom Ash takes place via film diffusion process at lower concentrations and via particle diffusion process at higher concentrations, while in the case of De-Oiled Soya process only particle diffusion takes place in the entire concentration range.

  13. Separation Process of Municipal Solid Waste Incineration Bottom Ash%生活垃圾焚烧炉渣分选处理工艺研究

    Institute of Scientific and Technical Information of China (English)

    黄炳辉

    2013-01-01

      通过一个实例,分析介绍了生活垃圾焚烧炉渣分选处理的一种工艺。实践证明:综合利用破碎、筛分、磁力分选、跳汰分选、摇床分选等固废处理技术,对炉渣进行分选预处理,可有效回收利用Fe、Cu、Al等废旧金属,有效分离收集未燃尽的剩余垃圾,并妥善处理,从而使炉渣的性质满足资源化利用的技术要求,变废为宝。%This article takes an example to introduce a separation process of municipal solid waste incineration bottom ash .It has proven that sScrap metal like iron ,copper and aluminum can be recycled and fully used by using the combination technology such as crushing ,screening ,Magnetic ,jigging ,oscillating ,etc .This method is also very efficient for unburnt residual waste's separation and treatment ,so as to make sure that bottom ash can be utilized completely .

  14. Removal of uranium and gross radioactivity from coal bottom ash by CaCl2 roasting followed by HNO3 leaching

    International Nuclear Information System (INIS)

    Highlight: • Roasting the ash with CaCl2 enhanced the removal of uranium and gross radioactivity. • 87.3% of the total uranium was removed via the optimized roast-leach process. • Nearly 90% of gross α and β radioactivity was removed via the roast-leach process. • Molten CaCl2 promoted the incorporation of Ca and Al into Si-O matrices in ash. • Radionuclides were removed by the acid decomposition of newly formed silicates. - Abstract: A roast-leach method using CaCl2 and HNO3 to remove uranium and gross radioactivity in coal bottom ash was investigated. Heat treatment of the ash with 100% CaCl2 (900 °C, 2 h) significantly enhanced uranium leachability (>95%) compared with direct acid-leaching (22.6–25.5%). The removal efficiency of uranium and gross radioactivity increased steeply with increasing CaCl2 content, from 10% to 50%, and a HNO3 leaching time from 5 min to 1 h, but remained nearly constant or decreased slightly with increasing CaCl2 dosage >50% or acid-leaching time >1 h. The majority of the uranium (87.3%), gross α (92.9%) and gross β (84.9%) were removed under the optimized roast-leach conditions (50% CaCl2, 1 M HNO3 leaching for 1 h). The mineralogical characteristics of roasted clinker indicated that molten CaCl2 promoted the incorporation of Ca into silica and silicates and resulted in its progressive susceptibility to acid attack. Uranium and other radionuclides, most likely present in the form of silicates or in association with miscellaneous silicates in the highest density fraction (>2.5 g mL−1), were probably leached out as the result of the acid decomposition of newly formed “gelatinizing silicates”

  15. Evaluation of aseismic integrity in HTTR core-bottom structure. Pt. 1. Aseismic test for core-bottom structure

    International Nuclear Information System (INIS)

    The aseismic tests were carried out using (1)/(5)-scale and (1)/(3)-scale models of the core-bottom structure of the HTTR to quantitatively evaluate the response of acceleration, strain, impact load etc. The following conclusions are obtained. (i) The frequency response of the keyway strain is correlative with that of the impact acceleration on the hot plenum block. (ii) It was confirmed through (1)/(5)-scale and (1)/(3)-scale model tests that the applied similarity law is valid to evaluate the seismic response characteristics of the core-bottom structure. (ii) The stress of graphite components estimated from the scale model test using S2-earthquake excitation was sufficiently lower than the allowable stress used as the design criterion. ((orig.))

  16. Evaluation of quantitative satellite-based retrievals of volcanic ash clouds

    Science.gov (United States)

    Schneider, D. J.; Pavolonis, M. J.; Bojinski, S.; Siddans, R.; Thomas, G.

    2015-12-01

    Volcanic ash clouds are a serious hazard to aviation, and mitigation requires a robust system of volcano monitoring, eruption detection, characterization of cloud properties, forecast of cloud movement, and communication of warnings. Several research groups have developed quantitative satellite-based volcanic ash products and some of these are in operational use by Volcanic Ash Advisory Centers around the world to aid in characterizing cloud properties and forecasting regions of ash hazard. The algorithms applied to the satellite data utilize a variety of techniques, and thus produce results that differ. The World Meteorological Organization has recently sponsored an intercomparison study of satellite-based retrievals with four goals: 1) to establish a validation protocol for satellite-based volcanic ash products, 2) to quantify and understand differences in products, 3) to develop best practices, and 4) to standardize volcanic cloud geophysical parameters. Six volcanic eruption cases were considered in the intercomparison: Eyjafallajökull, Grimsvötn, Kelut, Kirishimayama, Puyehue-Cordón Caulle, and Sarychev Peak. Twenty-four algorithms were utilized, which retrieved parameters including: ash cloud top height, ash column mass loading, ash effective radius, and ash optical depth at visible and thermal-infrared wavelengths. Results were compared to space-based, airborne, and ground-based lidars; complementary satellite retrievals; and manual "expert evaluation" of ash extent. The intercomparison results will feed into the International Civil Aviation Organization "Roadmap for International Airways Volcano Watch", which integrates volcanic meteorological information into decision support systems for aircraft operations.

  17. Evaluation of an accelerated mineralization process for ashes - feasibility study; Evaluering av jordmaansbildande askbehandlingsprocess (EJA) - foerstudie

    Energy Technology Data Exchange (ETDEWEB)

    Ecke, Holger; Bjurstroem, Henrik

    2005-03-01

    In Japan, expenses for landfilling yield about 400 USD per ton of ash, which gives an incentive to reduce the amount of landfilled ash. At NIES (National Institute for Environmental Studies) in Tsukuba, Japan, the AMT process (Accelerated Mineralization Technology) was developed aiming at the treatment of ashes and production of soil-like material for reuse. The objective of the project EJA was to evaluate the AMT process on the basis of available information and the possibilities the process could offer with respect to the conditions present in Sweden. With support of researchers at NIES, available literature including unpublished manuscripts on the AMT process was compiled, translated and evaluated. During treatment, the ashes are washed, aged and mixed with up to 5 % by weight of biodegradable organic matter. The material is stabilized at landfill. During up to several decades, metals are demobilized through a combination of three mechanisms, viz. carbonation, clay formation, and humification. Also persistent organic pollutants (POP) are demobilized due to humification products or they are degraded anaerobically. When the treatment is completed, the reuse of the material is envisaged. Due to the long treatment period, the AMT method might not be favored by ash producers in Sweden. In the future, landfill companies could be interested in the technology, since they are experienced to handle waste at long sight. This, however, requires that the legislation does not pose any hindrance for the implementation of the method, e.g. regarding the requirement to add organic matter to the ash. Above all, it remains several years of research on the AMT process to fully understand and evaluate the underlying biological and chemical processes as well as their interaction.

  18. Study on the feasibility of municipal solid waste incineration bottom ash reutilization%城市垃圾焚烧底灰资源化处理的可行性研究

    Institute of Scientific and Technical Information of China (English)

    胡艳军; 李国建; 宁方勇; 任建莉

    2011-01-01

    对天津某城市垃圾焚烧发电厂的垃圾焚烧底灰进行采样,测试评价了不同粒径焚烧底灰的工程特性及环境风险,并以焚烧底灰为骨料制备混凝土平板试件,分析了焚烧底灰中杂质组分对再生建筑材料的工程特性影响.研究发现,焚烧底灰的颗粒级配分布、主要元素成分及含量、砂当量、压实强度与天然建筑骨料相似,且不同粒径的焚烧底灰在使用过程中无毒性重金属浸出危害.但焚烧底灰作为建筑材料使用过程中,易出现裂缝等质量损伤状况,从焚烧底灰自身特性和其中的杂质组分在碱性环境下变化规律着手,分析了再生建筑材料产生损伤的可能原因,提出改善焚烧底灰工程性能的措施.%The municipal solid waste incineration (MSWI) bottom ash was sampled in Tianjin MSW incineration power plant to investigate the engineering and environmental properties of different sized bottom ash. The MSWI bottom ash was applied as aggregate to prepare construction stick specimen, and possible influences of the special components contained in bottom ash on engineering properties of the recycled construction material were analyzed. The results showed that MSWI bottom ash had similar properties to natural construction aggregates, such as particle size distribution, major elements and theirconcentrations, sand equivalent, compaction density. Meanwhile, reutilization of the bottom ash was friendly to environment. However, a few cracks in the construction stick specimen were found during testing period. The factors influencing the cracks in the stick was analyzed in terms of the specific components of the bottom ash and other physical properties. Finally, method and technology of improving the properties of the recycled bottom ash aggregate were proposed.

  19. Heavy metal leaching from aerobic and anaerobic landfill bioreactors of co-disposed municipal solid waste incineration bottom ash and shredded low-organic residues

    International Nuclear Information System (INIS)

    In this study, heavy metal leaching from aerobic and anaerobic landfill bioreactor test cells for co-disposed municipal solid waste incineration (MSWI) bottom ash and shredded low-organic residues has been investigated. Test cells were operated for 1 year. Heavy metals which were comparatively higher in leachate of aerobic cell were copper (Cu), lead (Pb), boron (B), zinc (Zn), manganese (Mn) and iron (Fe), and those apparently lower were aluminum (Al), arsenic (As), molybdenum (Mo), and vanadium (V). However, no significant release of heavy metals under aerobic conditions was observed compared to anaerobic and control cells. Furthermore, there was no meaningful correlation between oxidation-reduction potential (ORP) and heavy metal concentrations in the leachates although some researchers speculate that aeration may result in excessive heavy metal leaching. No meaningful correlation between dissolved organic carbon (DOC) and leaching of Cu and Pb was another interesting observation. The only heavy metal that exceeded the state discharge limits (10 mg/l, to be enforced after April 2005) in the aerobic cell leachate samples was boron and there was no correlation between boron leaching and ORP. Higher B levels in aerobic cell should be due to comparatively lower pH values in this cell. However, it is anticipated that this slightly increased concentrations of B (maximum 25 mg/l) will not create a risk for bioreactor operation; rather it should be beneficial for long-term stability of the landfill through faster washout. It was concluded that aerobization of landfills of heavy metal rich MSWI bottom ash and shredded residues is possible with no dramatic increase in heavy metals in the leachate

  20. Evaluating the Effects of the Kingston Fly Ash Release on Fish Reproduction: Spring 2009 - 2010 Studies

    Energy Technology Data Exchange (ETDEWEB)

    Greeley Jr, Mark Stephen [ORNL; Adams, Marshall [ORNL; McCracken, Kitty [ORNL

    2012-05-01

    On December 22, 2008, a dike containing fly ash and bottom ash at the Tennessee Valley Authority's (TVA) Kingston Fossil Plant in East Tennessee failed and released a large quantity of ash into the adjacent Emory River. Ash deposits from the spill extended 4 miles upstream of the facility to Emory River mile 6 and downstream to Tennessee River mile 564 ({approx}8.5 miles downstream of the confluence of the Emory River with the Clinch River, and {approx}4 miles downstream of the confluence of the Clinch River with the Tennessee River). A byproduct of coal combustion, fly ash contains a variety of metals and other elements which, at sufficient concentrations and in specific forms, can be harmful to biological systems. The ecological effects of fly ash contamination on exposed fish populations depend on the magnitude and duration of exposure, with the most significant risk considered to come from elevated levels of certain metals in the ash, particularly selenium, on fish reproduction and fish early life stages (Lemly 1993; Besser and others 1996). The ovaries of adult female fish in a lake contaminated by coal ash were reported to have an increased frequency of atretic oocytes (dead or damaged immature eggs) and reductions in the overall numbers of developing oocytes (Sorensen 1988) associated with elevated body burdens of selenium. Larval fish exposed to selenium through maternal transfer of contaminants to developing eggs in either contaminated bodies of water (Lemly 1999) or in experimental laboratory exposures (Woock and others 1987, Jezierska and others 2009) have significantly increased incidences of developmental abnormalities. Contact of fertilized eggs and developing embryos to ash in water and sediments may also pose an additional risk to the early life stages of exposed fish populations through direct uptake of metals and other ash constituents (Jezierska and others 2009). The establishment and maintenance of fish populations is intimately associated

  1. Evaluation and Treatment of Coal Fly Ash for Adsorption Application

    Directory of Open Access Journals (Sweden)

    Samson Oluwaseyi BADA

    Full Text Available Many researchers had investigated fly ash as an adsorbent for the uptake of organic compounds from petrochemical waste effluents. The availability, inexpensive and its adsorption characteristic had made it an alternative media for the removal of organic compounds from aqueous solution. The physical property of South African Coal Fly Ash (SACFA was investigated to determine its adsorption capability and how it can be improved. Chemical treatment using 1M HCl solution in the ratio of (1 g fly ash to (2 ml of acid was used and compared with untreated heat-treated samples. The chemically treated fly ash has a higher specific surface area of 5.4116 m2/g than the heat-treated fly ash with 2.9969 m2/g. More attention had to be given to the utilization of SACFA for the treatment of wastewaters containing organic compounds through the application of Liquid phase adsorption process that was considered as an inexpensive and environmentally friendly technology.

  2. Evaluation of Changes in Index Properties of Lateritic Soil Stabilized with Fly Ash

    Directory of Open Access Journals (Sweden)

    Agapitus AMADI

    2010-12-01

    Full Text Available For soils to be suitable in civil engineering projects, they must meet existing local requirements for index properties in addition to certain strength criteria. Typically, specifications limit these properties to some threshold values which in most cases are project specific. Some lateritic soils in their natural state need some treatment/modification to meet these specification requirements. The objective of this study was to evaluate changes in the index properties (i.e., particle size distribution, Atterberg limits and compaction characteristics of a residually derived lateritic soil following fly ash application. Lateritic soil – fly ash mixtures with up to 20% fly ash by dry weight of soil were tested and specimens for compaction characteristics were prepared at different compaction states (optimum, dry and wet of optimum moisture content and compacted using British Standard Light (BSL compactive effort. While soil – fly ash mixtures containing up to 15% fly ash classify as CL according to USCS classification system and plotted above A-line in the plasticity chart, it was observed that changes in the gradation characteristics of soil sample treated with 20% fly ash resulted in the alteration of its classification to ML as well as the crossing of the A- line to the silty region. The liquid limit (LL varied from 42.2 to 29.53% representing 70% reduction while the plasticity index (PI of specimen treated with 20% fly ash was 16% lower than that of natural soil. The optimum moisture content (OMC ranged from 17.36% for the natural soil to 18.34% for soil mixtures containing 20% fly ash which yielded dry unit weight of 17.2kN/m3 for the natural soil and 16.1kN/m3 for samples treated with 20% fly ash. From the study, useful data were obtained showing substantial and desirable changes in the properties of lateritic soil as a civil engineering material on application of fly ash.

  3. Evaluation of Cast Al-Si-Fe alloy/Coconut Shell Ash Particulate Composites

    OpenAIRE

    S.Y. Aku; D.S. Yawas; ADOKMA, Apasi

    2013-01-01

    Al-7wt%Si-2wt%Fe alloy/Coconut shell ash(CSAp) composites having 3-15wt%coconut shell ash were fabricated by double stir-casting method.  The microstructure, hardness values and density of the composites were evaluated. The density of the composites decreased as the percentage of coconut shell ash increases in the aluminum alloy. This means that composites of lower weight component can be produced by adding CSAp.  Microstructural analysis showed fairy distribution of coconut shell a...

  4. Environmental impact of manganese due to its leaching from coal fly ash.

    Science.gov (United States)

    Prasad, Bably; Mondal, Kajal K R

    2009-01-01

    In India, so far not much efforts have been made to use coal ash as backfill material in underground/ open cast mines and to predict its subsequent effect on ground water quality. One of the main problems in disposing of big quantities of coal ash is the possible leaching of different pollutants, including manganese. A thorough investigation regarding leaching of manganese from different fly ashes is required to know the impact of manganese due to its leaching from fly ash to ground water as well as surface water. In the present study, short term and long term leaching studies have been carried out on fly ash, bottom ash, pond ash and weathered ash of Chandrapura thermal power plant, Bokaro, Jharkhand and Ramagundam thermal power plant, Ramagundam, Andhra Pradesh. The amount of manganese released in different experiments has been evaluated. The leachate of Chandrapura fly ash has more manganese concentration (0.2001 mg/L) than the leachate of bottom ash, pond ash and weathered ash. A field investigation at Damoda abandoned open cast mine, filled with pond ash of Chandrapura thermal power plant revealed that concentration of manganese in ground water beneath the ash filled mine has been found very high (maximum up to 6.0 mg/L). But its migration to a long distance has not been seen. Remedial measures for coal ash disposal have also been formulated.

  5. Experimental Studies and Application of a Composite Fluidized Bed Bottom Ash Cooler%复合式流化床冷渣器的试验研究及工业应用

    Institute of Scientific and Technical Information of China (English)

    曾兵; 卢啸风; 赵鹏; 甘露; 舒茂龙

    2011-01-01

    A novel fluidized bed bottom ash cooler and the main technical characteristics are introduced. Experiments about gas-solid flow characteristics were conducted in a cold test bed. The experiment results show that the separation chamber has a good separation effect on the boiler bottom ash, and the ash flow characteristic is also good. The separation effect has a direct influence on the operation results of the new ash cooler and can be regulated by adjusting the operation and structure parameters. According to the experiment results, the composite fluidized bed bottom ash cooler (CFBAC) has been industrially applied in a 300MW circulating fluidized bed (CFB) unitl The application results show that the CFBAC has a good cooling effect of bottom ash, a well separation effect, an excellent adaptability on particle size and a large discharge capacity over 30 t/h. The CFBAC could be one direction of the future CFB boiler bottom ash cooler.%提出一种新型流化床冷渣器,介绍了其主要技术特点,并对其气固流动特性进行冷态试验研究。试验结果表明,分选仓喷动床结构对锅炉底渣的粗细颗粒分选作用相当明显,灰渣颗粒整体呈“溢流一底流一溢流”方式有较好的流动特性。分选仓分选效果直接决定着该冷渣器的运行效果,可以通过调节运行参数和结构参数来控制。根据试验结果设计的复合式流化床冷渣器已成功应用于某300Mw循环流化床机组冷渣器改造中。工业应用结果表明,该冷渣器具有较好的底渣冷却效果和粗细颗粒分选效果,底渣粒度适应性强,最大出力超过30讹。复合式流化床冷渣器可作为未来大型循环流化床锅炉冷渣器的发展方向之一。

  6. 垃圾焚烧炉渣活性激发及对水泥性能的影响%Stimulation of MSWI Bottom Ash Activity and Effects on Cement Performance

    Institute of Scientific and Technical Information of China (English)

    李相国; 宋留庆; 马保国; 方晨炜; 汪杰

    2012-01-01

    The author studied properties of cement that partially replaced by MWIS bottom ash as a cement admixture, and investigated slag cement' s activity of stimulating and environmental safety. The results show that: MWIS bottom ash is of weak activity, with bottom ash replaces cement increases, water for cement standard consistency slowly increased, setting time slightly extended, but has little effect on cement strength reduced. The dosage of MWIS bottom ash in PO 42.5 cement even reached 25 %. PO 32. 5 cement production requirements can be satisfied. In the aspects of stimulating the activity, the added of Ca-based activators into cement can improve the early and late strength (CaCl2 will result in late strength's retraction), Conversely, Na-based activators will reduce the intensity. MWIS bottom ash as cement admixture reduces the shrinkage of cement paste. MWIS bottom ash dosage of 35%, the mortar test block dissolution of heavy metal content is much lower than the limit of maximum allowable concentration of national standard and will not bring secondary pollution to the environment%通过外掺法研究了城市生活垃圾焚烧炉渣用作水泥混合材对水泥性能的影响,同时考察了炉渣活性激发和炉渣水泥的环境安全性.实验结果表明:炉渣具有较弱的火山灰活性,随着其掺入量的增加,水泥标准稠度用水量增加,凝结时间延长,水泥强度下降,当PO 42.5水泥中炉渣掺量达到25%时仍能达到PO 32.5水泥生产要求.在炉渣活性激发方面,钙系列激发剂能够提高炉渣水泥的早期和后期强度(CaCl2会使后期强度倒缩),钠系列激发剂均会降低其强度.炉渣的掺入能够降低水泥净浆化学收缩率.在炉渣掺量35%时,砂浆试块的重金属极限溶出含量远低于国家标准最高允许浓度,不会对环境带来二次污染.

  7. 垃圾焚烧底渣中重金属的研究%Study on heavy metals in solid waste incineration bottom ash

    Institute of Scientific and Technical Information of China (English)

    徐朝友; 梅凡民; 刘翠

    2011-01-01

    采用Tessier四步分级提取法对垃圾焚烧飞灰中的4种重金属(锌、镍、铜、镉)的化学形态进行了研究.结果表明,金属Cd主要以底渣态的形式存在(占总镉质量的61.22%~62.41%),Ni,Zn以底渣态和铁锰氧化态为主,Cu主要以有机结合态为主(占总铜质量的60.97%~62.29 %).同时4种金属的生物有效性由高到低顺序依次为Ni,Cd,Zn,Cu.%The 4 heavy metals (Zn, Ni, Cu, Cd) in solid waste incineration bottom ash are studied by Four-step sequential chemical extraction method of Tessier. The results show that metal Cd mainly exists in residual fraction (account for 61.22% to 62.41 % of the total mass of cadmium), metal Ni and Zn mainly exists in residual fraction and Fe-Mn oxide fraction, metal Cu mainly exists in organic fraction (account for 60. 97% to 62.29% of the total mass of copper). The bioavailability of four heavy metals from high to low is Ni, Cd, Zn, Cu.

  8. Sustainable High Quality Recycling of Aggregates from Waste-to-Energy, Treated in a Wet Bottom Ash Processing Installation, for Use in Concrete Products

    Directory of Open Access Journals (Sweden)

    Philip Van den Heede

    2015-12-01

    Full Text Available Nowadays, more efforts towards sustainability are required from the concrete industry. Replacing traditional aggregates by recycled bottom ash (BA from municipal solid waste incineration can contribute to this goal. Until now, only partial replacement has been considered to keep the concrete workability, strength and durability under control. In this research, the feasibility of a full aggregate replacement was investigated for producing prefabricated Lego bricks. It was found that the required compressive strength class for this purpose (C20/25 could be achieved. Nevertheless, a thorough understanding of the BA properties is needed to overcome other issues. As BA is highly absorptive, the concrete’s water demand is high. This workability issue can be dealt with by subjecting the fine BA fraction to a crushing operation to eliminate the porous elements and by pre-wetting the fine and coarse BA fractions in a controlled manner. In addition, a reactive NaOH washing is needed to avoid formation of longitudinal voids and the resulting expansion due to the metallic aluminum present in the BA. Regarding the long-term behavior, heavy metal leaching and freeze-thaw exposure are not problematic, though there is susceptibility to acetic and lactic acid attack and maybe increased sensitivity to alkali-silica reaction.

  9. Analysis and Improvement of Problems in Operation of Bottom Ash Cooler of Wind and Water Union%风水联合冷渣器在运行中的问题分析及改进

    Institute of Scientific and Technical Information of China (English)

    王凯; 胡娜娜

    2013-01-01

      风水联合冷渣器广泛应用于大型循环流化床锅炉,但在运行中出现了诸多问题。针对某电厂风水联合冷渣器在运行中出现的问题,提出了改进措施与建议。%Bottom ash cooler of wind and water union was widely used in large-scale circulating fluidized bed boiler. Howev-er, there were many problems in operation. Aiming at problems in operation of bottom ash cooler of wind and water union, the paper was put forward improving measures and suggestions.

  10. Characteristics of fly ash and bottom ash from the municipal solid waste incineration plant in Shanghai%上海地区生活垃圾焚烧灰渣元素组成及微观特征研究

    Institute of Scientific and Technical Information of China (English)

    曹玲玲; 刘可; 曾建荣; 龙时磊; 包良满; 马陈燕; 李燕

    2014-01-01

    利用同步辐射X射线荧光法(Synchrotron radiation X-ray fluorescence,SR-XRF)、离子色谱(Ion Chromatography,IC)、扫描电镜及其能谱分析(Scanning electron microscopy and X-ray energy dispersive microanalysis,SEM-EDX)、同步辐射微束X射线荧光法(Synchrotron radiation micro-beam X-ray fluorescence,μ-XRF)等手段研究上海某垃圾焚烧厂生活垃圾焚烧产物飞灰(Fly ash,FA)、炉渣(Bottom ash,BA)的元素浓度、离子组成、微观形貌、元素面分布,采用电感耦合等离子体质谱(Inductively Coupled Plasma Mass Spectrometry,ICP-MS)和X射线吸收精细结构谱(X-ray absorption near-edge structure,XANES)研究灰渣中Pb的同位素比值和化学种态.研究发现,飞灰中多数金属元素浓度高于炉渣中的,Pb、Cd明显富集于飞灰中,元素的富集因子显示Pb、Cd、Cu、Zn等呈极度污染状态.灰渣中水溶性成分主要为Ca、Na、K的氯化盐和硫酸盐,飞灰中离子浓度普遍高于炉渣中的.飞灰颗粒相对于炉渣颗粒粒径小、表面粗糙,更易于重金属的吸附.灰渣颗粒物的元素Pb、Zn、Cu、Cr、Fe、Mn等并不是均匀分布的,而是呈现局部明显富集.飞灰和炉渣Pb的来源相似,化学种态相似,主要为PbCl2、PbS和PbO.生活垃圾在焚烧过程中元素的迁移分布与元素本身的特性、焚烧环境相关,上海地区生活垃圾焚烧飞灰是危险废弃物,需稳定化处理后才能填埋,炉渣的资源化利用必需经过预处理.

  11. EXPERIMENTAL EVALUATION OF LOW CALCIUM FLY ASH BASED GEOPOLYMER CONCRETE

    Directory of Open Access Journals (Sweden)

    NIRAGI DAVE

    2012-12-01

    Full Text Available There are many ways to reduce environmental pollution that causes by production of Portland cement and cause by the increasing of waste material. Geopolymer concrete results from the reaction of a source material that is rich in silica and alumina with alkaline liquid. In this experiment low calcium (ASTM Class F fly ash based Geopolymer is used as the binder, in the replacement of portland cement to produce Geopolymer concrete. The alkaline liquid that been used in geopolymerisation is the combination of sodium hydroxide (NaOH and sodium metasilicate (Na2Sio2. Fly ash has been collected from Badarpur NTPC plant, New Delhi. In the present study, three (3 series of geopolymer concrete specimens composing molar of sodium hydroxide (NaOH which is 8M was adopted. There are 9 cube specimens at size 150mm x 150mm x 150mm were prepared. The test specimenswere cured at 60 degree in an oven and at ambient condition. The curing time varied from 24 hour to 168 hours (7 days. The result shows that the strength of geopolymer concrete after 24 hour is not superior and after 7 day the compressive strength of Geopolymer concrete is moderate. Therefore further curing period and temperatureshould be improved.

  12. 干式排渣在大型电站锅炉上的运行特性分析%Operating Characteristic Analysis of Dry Bottom Ash Handling System on Power Station Boiler

    Institute of Scientific and Technical Information of China (English)

    董信光; 李洪涛; 冷成岗; 李德功

    2012-01-01

    Comparing to the discharging slag by water, the dry bottom ash handling system has many advantages such as simple structure, water conserving, more useful. When the bottom ash system has been changed from water mode to dry mode, the operating characteristics of boiler will be varied, which is analyzed and optimized in detailed. Positive and negative impacts are found, which can be referred when the bottom ash system revised and boiler operating.%和水力除渣方式相比,干式排渣有结构简单、节水、干渣经济价值高等优点。将原水力除渣改为干式排渣后,锅炉的运行特性会发生变化,通过对干式排渣运行特性的全面分析和优化,找出积极因素和负面影响,为除渣系统的改造和运行提供参考。

  13. Influence of bacteria on lanthanide and actinide transfer from specific soil components (humus, soil minerals and vitrified municipal solid waste incinerator bottom ash) to corn plants: Sr-Nd isotope evidence

    International Nuclear Information System (INIS)

    Experiments have been performed to test the stability of vitrified municipal solid waste (MSW) incinerator bottom ash under the presence of bacteria (Pseudomonas aeruginosa) and plants (corn). The substratum used for the plant growth was a humus-rich soil mixed with vitrified waste. For the first time, information on the stability of waste glasses in the presence of bacteria and plants is given. Results show that inoculated plant samples contained always about two times higher lanthanide and actinide element concentrations. Bacteria support the element transfer since plants growing in inoculated environment developed a smaller root system but have higher trace element concentrations. Compared with the substratum, plants are light rare earth element (LREE) enriched. The vitrified bottom ash has to some extent been corroded by bacteria and plant activities as indicated by the presence of Nd (REE) and Sr from the vitrified waste in the plants. 87Sr/86Sr and 143Nd/144Nd isotope ratios of plants and soil components allow the identification of the corroded soil components and confirm that bacteria accelerate the assimilation of elements from the vitrified bottom ash. These findings are of importance for landfill disposal scenarios, and similar experiments should be performed in order to better constrain the processes of microbially mediated alteration of the MSW glasses in the biosphere

  14. Influence of bacteria on lanthanide and actinide transfer from specific soil components (humus, soil minerals and vitrified municipal solid waste incinerator bottom ash) to corn plants: Sr-Nd isotope evidence

    Energy Technology Data Exchange (ETDEWEB)

    Aouad, Georges [Ecole et Observatoire des Sciences de la Terre, Centre de Geochimie de la Surface/CNRS UMR 7517, 1 rue Blessig, 67084 Strasbourg Cedex (France); Stille, Peter [Ecole et Observatoire des Sciences de la Terre, Centre de Geochimie de la Surface/CNRS UMR 7517, 1 rue Blessig, 67084 Strasbourg Cedex (France)]. E-mail: pstille@illite.u-strasbg.fr; Crovisier, Jean-Louis [Ecole et Observatoire des Sciences de la Terre, Centre de Geochimie de la Surface/CNRS UMR 7517, 1 rue Blessig, 67084 Strasbourg Cedex (France); Geoffroy, Valerie A. [UMR 7156 Universite Louis-Pasteur/CNRS, Genetique Moleculaire, Genomique Microbiologie, Departement Micro-organisme, Genomes, Environnement, 28 rue Goethe, 67083 Strasbourg Cedex (France); Meyer, Jean-Marie [UMR 7156 Universite Louis-Pasteur/CNRS, Genetique Moleculaire, Genomique Microbiologie, Departement Micro-organisme, Genomes, Environnement, 28 rue Goethe, 67083 Strasbourg Cedex (France); Lahd-Geagea, Majdi [Ecole et Observatoire des Sciences de la Terre, Centre de Geochimie de la Surface/CNRS UMR 7517, 1 rue Blessig, 67084 Strasbourg Cedex (France)

    2006-11-01

    Experiments have been performed to test the stability of vitrified municipal solid waste (MSW) incinerator bottom ash under the presence of bacteria (Pseudomonas aeruginosa) and plants (corn). The substratum used for the plant growth was a humus-rich soil mixed with vitrified waste. For the first time, information on the stability of waste glasses in the presence of bacteria and plants is given. Results show that inoculated plant samples contained always about two times higher lanthanide and actinide element concentrations. Bacteria support the element transfer since plants growing in inoculated environment developed a smaller root system but have higher trace element concentrations. Compared with the substratum, plants are light rare earth element (LREE) enriched. The vitrified bottom ash has to some extent been corroded by bacteria and plant activities as indicated by the presence of Nd (REE) and Sr from the vitrified waste in the plants. {sup 87}Sr/{sup 86}Sr and {sup 143}Nd/{sup 144}Nd isotope ratios of plants and soil components allow the identification of the corroded soil components and confirm that bacteria accelerate the assimilation of elements from the vitrified bottom ash. These findings are of importance for landfill disposal scenarios, and similar experiments should be performed in order to better constrain the processes of microbially mediated alteration of the MSW glasses in the biosphere.

  15. Rapid toxicity screening of gasification ashes.

    Science.gov (United States)

    Zhen, Xu; Rong, Le; Ng, Wei Cheng; Ong, Cynthia; Baeg, Gyeong Hun; Zhang, Wenlin; Lee, Si Ni; Li, Sam Fong Yau; Dai, Yanjun; Tong, Yen Wah; Neoh, Koon Gee; Wang, Chi-Hwa

    2016-04-01

    The solid residues including bottom ashes and fly ashes produced by waste gasification technology could be reused as secondary raw materials. However, the applications and utilizations of these ashes are very often restricted by their toxicity. Therefore, toxicity screening of ash is the primary condition for reusing the ash. In this manuscript, we establish a standard for rapid screening of gasification ashes on the basis of in vitro and in vivo testing, and henceforth guide the proper disposal of the ashes. We used three different test models comprising human cell lines (liver and lung cells), Drosophila melanogaster and Daphnia magna to examine the toxicity of six different types of ashes. For each ash, different leachate concentrations were used to examine the toxicity, with C0 being the original extracted leachate concentration, while C/C0 being subsequent diluted concentrations. The IC50 for each leachate was also quantified for use as an index to classify toxicity levels. The results demonstrated that the toxicity evaluation of different types of ashes using different models is consistent with each other. As the different models show consistent qualitative results, we chose one or two of the models (liver cells or lung cells models) as the standard for rapid toxicity screening of gasification ashes. We may classify the gasification ashes into three categories according to the IC50, 24h value on liver cells or lung cells models, namely "toxic level I" (IC50, 24h>C/C0=0.5), "toxic level II" (C/C0=0.05types of ashes generated in gasification plants every day. Subsequently, appropriate disposal methods can be recommended for each toxicity category. PMID:26923299

  16. The Vaendoera test road, Sweden: A case study of long-term properties of roads constructed with MSWI bottom ash; Projekt Vaendoera: En studie av laangtidsegenskaper hos vaegar anlagda med bottenaska fraan avfallsfoerbraenning

    Energy Technology Data Exchange (ETDEWEB)

    Bendz, David; Arm, Maria; Westberg, Gunnar; Sjoestrand, Karin; Lyth, Martin; Wik, Ola [Swedish Geotechnical Inst., Linkoeping (Sweden); Flyhammar, Peter [Lund Inst. of Technology (Sweden). Dept. of Water Resources Engineering

    2006-03-15

    The accumulated effects of leaching and aging in a subbase layer of bottom ash were investigated in this study. The paved test road were constructed in 1987 in Linkoeping, Sweden, and has been used until the start of this study. The objective of this study was to investigate: (i) the accumulated effects of leaching and aging (ii) the accumulated effects of load and aging on the geotechnical properties (iii) the prerequisites for separate excavation of the bottom ash for possible reuse. The study started in September 2003 and included tests with falling weight deflectometer, triax testing on undisturbed core samples of bottom ash, sampling for chemical analysis. Three trenches were excavated in the test road, samples of the subbase layer and the subgrade were taken in the shaft walls and brought to the laboratory for leaching tests (EN 12457-2) and extraction, respectively. The extraction procedure was used to estimate extractable and chemically available fractions. It was found that the steady increase of stiffness which had been detected by falling weight deflectometer during the first years after construction had ceased. The undisturbed samples showed stiffness comparable with recently produced bottom ash from the same incineration plant, but lower stiffness if compared with the reference material of crushed rock. The permanent deformation was significantly larger for the samples compared with the crushed rock and recent (1999-2001) bottom ash from other incineration plants. The spatial distribution patterns of leachable easily soluble constituents reveal the existence of horizontal gradients, directed from the center of the road towards the shoulders of the road. This implies that horizontal transport by diffusion is the rate limiting leaching process for all easily soluble constituents underneath the pavement in a road. The bottom ash that was used in the sub-base layer was fresh at the time of the construction of the test road with a pH of about 11. Measured p

  17. Interim structural evaluation of pool swell loads on suppression chamber of Peach Bottom Plant

    International Nuclear Information System (INIS)

    An interim structural evaluation has been conducted to establish the effects of pool swell loads on the suppression chamber system of a typical Mark I plant. The plant selected for the analyses was the Peach Bottom Atomic Power Station, Unit 3. In order to provide results in a timely manner, the geometry was adopted from an existing finite element model of a suppression chamber such that the model closely represented, though not identically, the Peach Bottom Plant. A brief summary of the results obtained from the various analyses is presented for the three main structural components of the suppression chamber, i.e., the support columns, the reinforcing ring, and the cylindrical shell

  18. Interim structural evaluation of pool swell loads on suppression chamber of Peach Bottom Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kontoudakis, J.; Higginbotham, A.B.

    1976-04-01

    An interim structural evaluation has been conducted to establish the effects of pool swell loads on the suppression chamber system of a typical Mark I plant. The plant selected for the analyses was the Peach Bottom Atomic Power Station, Unit 3. In order to provide results in a timely manner, the geometry was adopted from an existing finite element model of a suppression chamber such that the model closely represented, though not identically, the Peach Bottom Plant. A brief summary of the results obtained from the various analyses is presented for the three main structural components of the suppression chamber, i.e., the support columns, the reinforcing ring, and the cylindrical shell.

  19. Evaluation of heat treatment schedules for emerald ash borer (Coleoptera: Buprestidae).

    Science.gov (United States)

    Myers, Scott W; Fraser, Ivich; Mastro, Victor C

    2009-12-01

    The thermotolerance of the emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), was evaluated by subjecting larvae and prepupae to a number of time-temperature regimes. Three independent experiments were conducted during 2006 and 2007 by heating emerald ash borer infested firewood in laboratory ovens. Heat treatments were established based on the internal wood temperature. Treatments ranged from 45 to 65 degrees C for 30 and 60 min, and the ability of larvae to pupate and emerge as adults was used to evaluate the success of each treatment. A fourth experiment was conducted to examine heat treatments on exposed prepupae removed from logs and subjected to ambient temperatures of 50, 55, and 60 degrees C for 15, 30, 45, and 60 min. Results from the firewood experiments were consistent in the first experiment. Emergence data showed emerald ash borer larvae were capable of surviving a temperatures-time combination up to 60 degrees C for 30 min in wood. The 65 degrees C for 30 min treatment was, however, effective in preventing emerald ash borer emergence on both dates. Conversely, in the second experiment using saturated steam heat, complete mortality was achieved at 50 and 55 degrees C for both 30 and 60 min. Results from the prepupae experiment showed emerald ash borer survivorship in temperature-time combinations up to 55 degrees C for 30 min, and at 50 degrees C for 60 min; 60 degrees C for 15 min and longer was effective in preventing pupation in exposed prepupae. Overall results suggest that emerald ash borer survival is variable depending on heating conditions, and an internal wood temperature of 60 degrees C for 60 min should be considered the minimum for safe treatment for firewood.

  20. Evaluating short term simulations of a forest stand invaded by emerald ash borer

    Directory of Open Access Journals (Sweden)

    Levin-Nielsen A

    2015-02-01

    Full Text Available The invasive emerald ash borer (Agrilus planipennis - EAB is causing rapid and widespread ash (Fraxinus spp. mortality in eastern North America, has established populations near Moscow, Russia, and is threatening ash resources in Europe. Given the prevalence of susceptible hosts these post-invasion forests will clearly differ from their pre-invasion counterparts. Understanding these changes is key to mitigating the impacts of invasion and developing sound management strategies. We evaluated short term changes in a forest stand invaded by EAB, and examined if the southern variant of the Forest Vegetation Simulator (FVS could accurately predict those changes. Through simulation, managers can gain a clearer understanding of how pest invasions impact and alter future forest dynamics. However, many simulators are designed to achieve long-term predictions and thus do not align with the short term changes associated with rapid EAB-induced ash mortality. Woody vegetation was surveyed in 2010 and used to project impacts of EAB invasion into 2012 by simulating a 50% ash mortality rate. The same plots were then re-surveyed in 2012, allowing us to evaluate: (1 changes in actual forest composition and structure; and (2 simulation accuracy. Within our forest stand, FVS accurately estimated short term changes in stem density and basal area parameters, thus demonstrating its value as a short-term simulator for EAB-induced changes within the southern region of the United States. EAB-induced ash mortality is quickly changing these forests and will ultimately alter how stakeholders manage their lands. We discuss the potential usefulness of FVS as a tool for aiding management decisions in response to EAB invasion.

  1. Evaluation of radiation dose due to the use of fly ash from Thermal Power Plants as building material

    International Nuclear Information System (INIS)

    The fly ash from coal fired thermal power plants has cementitious properties. Use of the same in construction is growing recently. It also is well known that the fly ash contains elevated levels of naturally occurring radionuclides. The use of fly ash in building material thus exposes the occupants to radiation doses from these radionuclides. An attempt was made to evaluate the radiation doses arising from a dwelling built using fly ash as one of the components of the concrete at different proportions. The radioactivity concentrations were determined gamma spectrometrically. The doses were calculated assuming different scenarios of construction. (author)

  2. Application of the electrical characterization to the study of the hydrated phases of the cement with coal bottom ash; Aplicacion de la caracterizacion electrica al estudio de las fases hidratadas de cemento con adicion de escorias de centrales termicas

    Energy Technology Data Exchange (ETDEWEB)

    Menendez, E.; Frutos, J. de; Alvaro, A. M.

    2014-02-01

    The present paper investigates the influence of using Bottom and Fly Ash as partial replacement of cement in the hydration process. Through measurements of electrical impedance spectroscopy (EIS) and X -ray diffraction (XRD), we analyze from the early stages to the hydration process to the end. Values of EIS, XRD and its relation, are used to determine transformation of hydrated phases, and for each of the substitutions, is indicated as modified the hydrated phase as a function of time and compared it with the reference material. It also proves the relevance of using EIS measures in real time, and as non destructive testing to characterize the hydration process of these materials. (Author)

  3. Physicochemical Properties and Recycling Technology of Bottom Ash of Sewage Sludge Incineration%污泥焚烧底灰的理化性质及再利用技术

    Institute of Scientific and Technical Information of China (English)

    王少波; 贾廷纲; 缪幸福; 米琼; 刘大江; 赵由才

    2014-01-01

    The problem of disposal and utilization of bottom ash of sewage sludge incineration in sludge incineration process must be solved. In this paper,the physicochemical properties in terms of particle size,shear,compression consolidation,permeability,heavy metals content of two different kinds of bottom ash of sewage sludge incineration were studied and compared with the original sewage sludge properties to analyze the effect of incineration on sewage sludge treatment. The reuse technology of bottom ash of sewage sludge incineration was also explored based on its physicochemical properties. The results show that bottom ash of sewage sludge incineration belongs to sandy soil,and the shear strength significantly increases after the incineration,which can reach 76. 23 ~80. 03 kPa;the heavy metal content is over standard,while the heavy metal leaching amount is less than the corresponding standard limit. It can be used in subgrade materials,CO2 capture and sea reclamation.%污泥焚烧底灰的处理处置与资源化利用是污泥焚烧过程中必须解决的难题。该文通过对两种不同的污泥焚烧底灰的粒径、抗剪、压缩固结性、渗透性以及重金属含量等理化性质进行了研究,并将其与原生污泥性质进行对比,分析焚烧处理对污泥理化性质的影响,并进一步根据焚烧底灰性质,探索其再利用途径。结果表明污泥焚烧底灰属于砂土,且抗剪强度较污泥焚烧前有明显增大,可达76.23~80.03 kPa;重金属含量有所超标,但重金属浸出量均小于相应标准限定值,可进行路基材料、CO2捕集、填海造陆等再利用。

  4. Evaluation of thermal sprayed coating using ultrasonic inspection by means of bottom echo back reflection

    Institute of Scientific and Technical Information of China (English)

    Toshifumi KUBOHORI; Toru ITO; Wahidullah WAHI; Yasuyuki INUI; Toshiro IKUTA

    2009-01-01

    Thermal spraying technique is widely used in various mechanical parts as a surface reforming technique. However, as demand to maintain superior mechanical performance in harsh operating environment increases, the need for non-destructive evaluation method for thermal spray coating becomes more important. For this purpose, we thinned the thickness of the thermal sprayed coating by abrasion with blasting and used ultrasonic inspection by means of bottom echo reflection for effective measurement of abrasion quantity in thermal sprayed coating. The results obtained are summarized as follows. When the thickness of thermal sprayed coating becomes thin, the echo height increases. This is because thermal sprayed coatings absorb ultrasonic energy. Ultrasonic energy absorbed by Al2O3 is smaller compared with Fe-13Cr coating. Thermal sprayed coatings submerged in water have a lower echo height compared with air. As mentioned above, the thermal sprayed coating thickness can be estimated using ultrasonic inspection by means of bottom echo back reflection.

  5. Monitoring of test roads with MSWI bottom ash in the sub-base. Measurements with falling weight deflectometer on test structures in Malmoe and Umeaa; Uppfoeljning av befintliga slaggrusprovvaegar. Fallviktsmaetning paa provstraeckor paa Toerringevaegen i Malmoe och Daavamyran i Umeaa

    Energy Technology Data Exchange (ETDEWEB)

    Arm, Maria [Swedish Geotechnical Inst., Linkoeping (Sweden)

    2005-03-01

    There are a number of Swedish test roads and test areas with processed municipal solid waste incinerator bottom ash, here called MSWI gravel. It is used in different road layers and for different purposes. Many of these have been monitored through falling weight deflectometer (FWD) measurements. The main purpose of this project is to increase the knowledge of the long-term strength of MSWI gravel, when it is used as a road material. Another purpose is to take advantage of the existing test roads. FWD measurements have been performed on two of the existing test roads with MSWI gravel in the sub-base. One road was constructed in 2001 and is situated in Umeaa, close to the Daava power station of Umeaa Energi. The other test road was constructed in 1998 in Toerringe, outside Malmoe. In both cases a test structure as well as a reference structure has been measured. Both test roads have been measured before and the data from this project have been evaluated in the same way as earlier (layer moduli for different layers and surface modulus for the whole road structure respectively). The result is presented and compared with the earlier data. The values obtained for the MSWI gravel have also been related to the corresponding values for the crushed rock material in the reference structures. The result shows that in Toerringe, the stiffness of the MSWI gravel has not changed compared with the results from earlier measurements. However, in Daava the stiffness of the test structure was lower in 2004 than in 2002. In both test roads, the test structure had lower stiffness than the reference structure. In Toerringe, the ratio between the stiffness of the test structure and the stiffness of the reference structure was unchanged. In Daava, however, the stiffness ratio had increased. The stiffness increase that has been observed on an older test road in Linkoeping has not been observed on these roads with MSWI gravel of more 'modern' type. It is maybe due to the longer

  6. BoB: Best of Both in Compiler Construction Bottom-up Parsing with Top-down Semantic Evaluation

    Directory of Open Access Journals (Sweden)

    Wolfgang Dichler

    Full Text Available Compilers typically use either a top-down or a bottom-up strategy for parsing as well as semantic evaluation. Both strategies have advantages and disadvantages: bottom-up parsing supports LR(k grammars but is limited to S- or LR-attribution while top-dow ...

  7. 生物质电厂飞灰用作肥料的可行性评价%Feasibility evaluation of biomass fly ashes from power station using as fertilizer

    Institute of Scientific and Technical Information of China (English)

    张振; 韩宗娜; 盛昌栋

    2016-01-01

    为了研究炉排燃烧生物质电厂飞灰在农林方面的应用价值和可能产生的环境影响,根据欧盟相关标准分析了2种飞灰(A、B)的基础特性(水分、灰分、总有机碳含量、pH值和电导率),并利用电感耦合等离子体光谱仪、质谱仪分析了飞灰中营养元素和有害元素的含量;参考中国固体废物浸出毒性浸出方法标准研究了营养元素和有害元素的浸出特性。结果表明,2种飞灰pH值均大于12,呈较强的碱性;并且二者不仅含有较高浓度的有机碳(A:18.39%;B:7.79%),还富含K、Ca、Mg、P等营养元素,其他主要有害元素的含量低于欧盟一些国家生物质灰农、林用和中国粉煤灰农用标准所规定上限值,这使得它们可以作为土壤改良剂或者辅料应用的农林方面。此外,除A飞灰中Cr的浸出率为1.274%外,其他有害元素的浸出率远小于1%,因而当它们应用在农林土壤时不至于造成污染。%The installed capacity of power plants directly firing agricultural and forestry biomass is increasing rapidly in China. As a consequence, the annual production of biomass ash, as a by-product, from the power plants increases greatly. Ash management and utilization is becoming an important issue to consider in daily operation of power plants. Biomass ash from grate-fired power plants includes bottom ash and fly ash. In comparison to bottom ash, fly ash may have higher contents of hazardous and toxic heavy metal elements enriched during biomass combustion process. The potential impact of heavy metals on the environment may limit its applications for agricultural and forestry purposes. It therefore necessitates comprehensively characterizing the properties and evaluating the potential environmental impact of fly ash before its utilizations. In this work, we aimed to investigate the utilization of biomass fly ashes from grate-fired power plants for agricultural and forest

  8. Feasibility evaluation of biomass fly ashes from power station using as fertilizer%生物质电厂飞灰用作肥料的可行性评价

    Institute of Scientific and Technical Information of China (English)

    张振; 韩宗娜; 盛昌栋

    2016-01-01

    The installed capacity of power plants directly firing agricultural and forestry biomass is increasing rapidly in China. As a consequence, the annual production of biomass ash, as a by-product, from the power plants increases greatly. Ash management and utilization is becoming an important issue to consider in daily operation of power plants. Biomass ash from grate-fired power plants includes bottom ash and fly ash. In comparison to bottom ash, fly ash may have higher contents of hazardous and toxic heavy metal elements enriched during biomass combustion process. The potential impact of heavy metals on the environment may limit its applications for agricultural and forestry purposes. It therefore necessitates comprehensively characterizing the properties and evaluating the potential environmental impact of fly ash before its utilizations. In this work, we aimed to investigate the utilization of biomass fly ashes from grate-fired power plants for agricultural and forest purposes and their environmental impact. Two fly ashes (A and B) were respectively collected from two grate-fired power plants, both burning mixed fuels of crop straws and wood barks.The ashes were characterized systematically with various methods. Based on the analysis results, their applications on agricultural and forest soils and corresponding environmental impact were evaluated based on the relevant standards. Following standard methods, the basic properties of the two fly ashes including the contents of moisture, content of ash and total organic carbon, the pH value, electrical conductivity and their size cuts were measured. The contents of nutrient and heavy metal elements were determined with inductively coupled plasma-optical emission spectroscopy and inductively coupled plasma-mass spectroscopy, respectively. For evaluating the environmental impact, the leaching behavior of the fly ashes was also analyzed following the national standard of solid waste-extraction procedure for leaching

  9. EVALUATING THE EFFECTS OF FLY ASH EXPOSURE ON FISH EARLY LIFE STAGES: FATHEAD MINNOW EMBRYO-LARVAL TESTS

    Energy Technology Data Exchange (ETDEWEB)

    Greeley Jr, Mark Stephen [ORNL; Elmore, Logan R [ORNL; McCracken, Kitty [ORNL

    2012-05-01

    On December 22, 2008, a dike containing fly ash and bottom ash in an 84-acre complex of the Tennessee Valley Authority's (TVA) Kingston Steam Plant in East Tennessee failed and released a large quantity of ash into the adjacent Emory River. Ash deposits extended as far as 4 miles upstream (Emory River mile 6) of the Plant, and some ash was carried as far downstream as Tennessee River mile 564 ({approx}4 miles downstream of the Tennessee River confluence with the Clinch River). A byproduct of coal burning power plants, fly ash contains a variety of metals and other elements which, at sufficient concentrations and in specific forms, can be toxic to biological systems. The effects of fly ash contamination on exposed fish populations depend on the magnitude and duration of exposure, with the most significant risk considered to be the effects of specific ash constituents, especially selenium, on fish early life stages. Uptake by adult female fish of fly ash constituents through the food chain and subsequent maternal transfer of contaminants to the developing eggs is thought to be the primary route of selenium exposure to larval fish (Woock and others 1987, Coyle and others 1993, Lemly 1999, Moscatello and others 2006), but direct contact of the fertilized eggs and developing embryos to ash constituents in river water and sediments is also a potential risk factor (Woock and others 1987, Coyle and others 1993, Jezierska and others 2009). To address the risk of fly ash from the Kingston spill to the reproductive health of downstream fish populations, ORNL has undertaken a series of studies in collaboration with TVA including: (1) a field study of the bioaccumulation of fly ash constituents in fish ovaries and the reproductive condition of sentinel fish species in reaches of the Emory and Clinch Rivers affected by the fly ash spill; (2) laboratory tests of the potential toxicity of fly ash from the spill area on fish embryonic and larval development (reported in the

  10. 干式排渣系统网条生产设备的研制%Development of Steel Net Strip Producing Equipment in Dry Bottom Ash Handling System

    Institute of Scientific and Technical Information of China (English)

    张培林

    2015-01-01

    Stainless steel net strip is the key components of dry bottom ash handling system,usually be cold manufactured by the stainless steel wire of the greater tensile strength,the process is complex,the forming is difficult and in the same time,there is not the professional production equipment interiorly for manufacturing such products.We developed the net strip winding machine for the engineering demand of dry bottom ash handling system.The net strip product,manufactured through this equipment,has been well validated in engineering practice,this equipment fill a domestic gap in the field,with the great value of development and application.%网条是干式排渣系统的关键零部件,通常采用抗拉强度较大的不锈钢丝冷加工而成,其加工工艺复杂,成形难度大,而目前国内尚无此类产品的专业生产设备.针对干式排渣系统的工程需求,研制了网条绕制机.该设备绕制的网条产品在工程实践中得到了很好的验证,填补了该领域的国内空白,具有广泛的应用与开发价值.

  11. Evaluation of the mechanical properties and corrosion behaviour of coconut shell ash reinforced aluminium (6063) alloy composites

    OpenAIRE

    Oluyemi O. DARAMOLA; Adeolu A.ADEDIRAN; Ayodele T. FADUMIYE

    2015-01-01

    Aluminium 6063/Coconut shell ash (CSAp) composites having 3-12 weight percent (wt%) coconut shell ash were fabricated by double stir-casting method. The microstructure, ultimate tensile strength, hardness values, density and corrosion behaviour in 0.3M H2SO4 and 3.5wt% NaCl solution of the composites were evaluated. The density of the composites exhibit a linear and proportional decreased as the percentage of coconut shell ash increases in the aluminium alloy. It implies tha...

  12. A Study on the Evaluation of Field Application of High-Fluidity Concrete Containing High Volume Fly Ash

    Directory of Open Access Journals (Sweden)

    Yun-Wang Choi

    2015-01-01

    Full Text Available In the recent concrete industry, high-fluidity concrete is being widely used for the pouring of dense reinforced concrete. Normally, in the case of high-fluidity concrete, it includes high binder contents, so it is necessary to replace part of the cement through admixtures such as fly ash to procure economic feasibility and durability. This study shows the mechanical properties and field applicability of high-fluidity concrete using mass of fly ash as alternative materials of cement. The high-fluidity concrete mixed with 50% fly ash was measured to manufacture concrete that applies low water/binder ratio to measure the mechanical characteristics as compressive strength and elastic modulus. Also, in order to evaluate the field applicability, high-fluidity concrete containing high volume fly ash was evaluated for fluidity, compressive strength, heat of hydration, and drying shrinkage of concrete.

  13. Evaluation of the Performance and Microstructure of Ecofriendly Construction Bricks Made with Fly Ash and Residual Rice Husk Ash

    Directory of Open Access Journals (Sweden)

    Chao-Lung Hwang

    2015-01-01

    Full Text Available This research presents the engineering performance and the microstructural characterization of ecofriendly construction bricks that were produced using a binder material made from a mixture of class-F fly ash (FA and residual rice husk ash (RHA. Unground rice husk ash (URHA was used as a partial fine aggregate substitute (0–40%. The solid bricks of 220 × 105 × 60 mm in size were prepared by mixing FA and RHA with an alkaline solution and fine aggregates, formed by compressing the mixture in a steel mold under 35 MPa of forming pressure, and then cured at 35°C and 50% relative humidity until the required testing ages. The tests of compressive strength, water absorption, and bulk density were conducted in accordance with relevant Vietnamese standards in order to estimate the effect of the URHA content on the engineering performance of the hardened bricks. Scanning electron microscopy (SEM, X-ray diffraction (XRD, and Fourier transform infrared spectroscopy (FTIR were performed to determine the microstructure and the phase composition of the brick samples. The results show that properties of these bricks conformed to relevant Vietnamese standards. Therefore, FA and RHA are potential candidate materials for producing ecofriendly construction bricks using geopolymerization technology.

  14. 干、湿式除渣系统对锅炉效率影响的研究%Study on the Impact of Dry and Wet Bottom Ash Handling Systems on Boiler Efficiency

    Institute of Scientific and Technical Information of China (English)

    许华; 张华伦; 王仕能; 党楠

    2013-01-01

    So far the impacts of air-cooling dry-type bottom ash handling system on boiler efficiency are still controversial and very few authoritative conclusions have been drawn.After three years' research on the system,the mathematical models including boiler efficiency and cooling air volume are established.Combining with the tests conducted in two 1 000-MW boilers of one power plant,it is concluded that the dry-type bottom ash handling system does have impacts on boiler combustion and lower the boiler efficiency under most circumstances.In addition,the impacts of the dry-type bottom ash handling system are greater than those of the wet-type system.The easy-cooking coal is not a suitable choice for the boilers with dry-type system.If the coal quality of the power plant fluctuates drastically,it is critical to choose the dry-type system meticulously.%风冷干式除渣系统对锅炉效率的影响目前尚存争议,缺少权威定论.通过为期3年的对干式除渣系统的研究,建立了锅炉效率、炉渣冷却风量等参数的数学模型,坐合对某电厂1000MW锅炉干式除渣系统的运行测试,得出干式除渣系统在多数情况下影响锅炉燃烧、降低锅炉效率;干式除渣系统比湿式除渣系统对锅炉燃烧及效率的影响更大;易结焦煤不宜采用干式除渣系统;当电厂燃煤煤质变化较大时,应慎重采用干式除渣系统等结论.

  15. Estudo do efeito da quantidade de óxido de ferro em cinzas pesadas de carvão mineral na obtenção de vitrocerâmicos Study of iron oxide quantity on bottom ashes from mineral coal to glass ceramic production

    Directory of Open Access Journals (Sweden)

    Cláudia Terezinha Kniess

    2002-11-01

    Full Text Available Bottom ash has been used as raw material to glass and glass ceramic production because it is a source of SiO2 and Al2O3. However, the high concentration of iron (about 10% wt. difficulty the control of the nucleation and the crystallization processes. The iron content was reduced by magnetic process, where the magnetite phase was mainly removed. In order to compare glass ceramics obtained from original and low iron bottom ashes, microstructural and dilatometric characterizations were performed.

  16. Bottom-up communication. Identifying opportunities and limitations through an exploratory field-based evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, C.; Irvine, K.N. [Institute of Energy and Sustainable Development, De Montfort University, Leicester, LE1 9BH (United Kingdom)

    2013-02-15

    Communication to promote behaviours like energy saving can use significant resources. What is less clear is the comparative value of different approaches available to communicators. While it is generally agreed that 'bottom-up' approaches, where individuals are actively involved rather than passive, are preferable to 'top-down' authority-led projects, there is a dearth of evidence that verifies why this should be. Additionally, while the literature has examined the mechanics of the different approaches, there has been less attention paid to the associated psychological implications. This paper reports on an exploratory comparative study that examined the effects of six distinct communication activities. The activities used different communication approaches, some participative and others more top-down informational. Two theories, from behavioural studies and communication, were used to identify key variables for consideration in this field-based evaluation. The evaluation aimed to assess not just which activity might be most successful, as this has limited generalisability, but to also gain insight into what psychological impacts might contribute to success. Analysis found support for the general hypothesis that bottom-up approaches have more impact on behaviour change than top-down. The study also identified that, in this instance, the difference in reported behaviour across the activities related partly to the extent to which intentions to change behaviour were implemented. One possible explanation for the difference in reported behaviour change across the activities is that a bottom-up approach may offer a supportive environment where participants can discuss progress with like-minded individuals. A further possible explanation is that despite controlling for intention at an individual level, the pre-existence of strong intentions may have an effect on group success. These suggestive findings point toward the critical need for additional and larger-scale studies

  17. Habitat Evaluation Procedures (HEP) Report; Burlington Bottoms, Technical Report 1993-2003.

    Energy Technology Data Exchange (ETDEWEB)

    Beilke, Susan

    1993-08-01

    Burlington Bottoms, consisting of approximately 417 acres of riparian and wetland habitat, was purchased by the Bonneville Power Administration in November 1991. The site is located approximately 1/2 mile north of the Sauvie Island Bridge (T2N R1W Sections 20, 21), and is bound on the east side by Multnomah Channel and on the west side by the Burlington Northern Railroad right-of-way and U.S. Highway 30 (Figures 1 and 2). Wildlife habitat values resulting from the purchase of this site will contribute toward the goal of mitigating for habitat lost as outlined in the Columbia and Willamette River Basin's Fish and Wildlife Program and Amendments. Under this Program, mitigation goals were developed as a result of the loss of wildlife habitat due to the development and operation of Federal hydro-electric facilities in the Columbia and Willamette River Basins. In 1993, an interdisciplinary team was formed to develop and implement quantitative Habitat Evaluation Procedures (HEP) to document the value of various habitats at Burlington Bottoms. Results of the HEP will be used to: (1) determine the current status and habitat enhancement potential of the site consistent with wildlife mitigation goals and objectives; and (2) develop a management plan for the area. HEP participants included; Charlie Craig, BPA; Pat Wright, Larry Rasmussen, and Ron Garst, U. S. Fish and Wildlife Service; John Christy, The Nature Conservancy; and Doug Cottam, Sue Beilke, and Brad Rawls, Oregon Department of Fish and Wildlife.

  18. Chemical characterization of bottom ashes generated during combustion of a Colombian mineral coal in a thermal power plant; Caracterizacao quimica das cinzas de fundo originadas pela combustao, em usina termoeletrica, de um carvao mineral do nordeste da Colombia

    Energy Technology Data Exchange (ETDEWEB)

    Pinheiro, H.S.; Nogueira, R.E.F.Q.; Lobo, C.J.S.; Nobre, A.I.S.; Sales, J.C.; Silva, C.J.M., E-mail: hspfisica@hotmail.com [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Centro de Tecnologia. Dept. de Engenharia Metalurgica e de Materiais

    2012-07-01

    Bottom ashes generated during combustion of a mineral coal from Colombia were characterized by X-ray fluorescence spectrometry and X-ray diffraction. The interest in this particular coal is due to the fact that it will be used by a thermal power plant in Ceara, Northeastern Brazil, where it could produce over 900 tons of different residues/combustion products every day. Results from Xray fluorescence allowed identification and quantification of elements present in the sample: silicon (59,17%), aluminum (13,17%), iron (10,74%), potassium (6,11%), titanium (2,91%), calcium (4,97%), sulphur (0,84%) and others (2,09%). The X-ray diffraction revealed patterns from silica, mullite, calcium sulphate and hydrated sodium. Results obtained so far indicate that the material is a potential raw-material for use in the formulation of ceramic components (author)

  19. A Cold Model Experimental Study on the Flow Characterisitcs of Bed Baterial in A Fluidized ed Bottom Ash Cooler in a CFB Boiler

    Institute of Scientific and Technical Information of China (English)

    LuXiaofeng; LiYourong

    2000-01-01

    A cold model experimental study on the flowing characteristics of bed meterial between a fluidized bed ash cooler and a furnace of CFB boiler were discussed in this paper.The research results showed that flowing status of the bed material in a bubbling bed,which was run with a circulating fluidized bed together in parallel operation,was influenced by the pressure difference between the CFB and the bubbling bed,the switch status of unlocking air ,and the structure of the exit of the bubbling bed.There was a circulating flow of bed material between CFB and bubbling bed.

  20. Full-scale ash deposition measurements at Avedøre Power Plant unit 2 during suspension-firing of wood with and without coal ash addition

    DEFF Research Database (Denmark)

    Wu, Hao; Shafique Bashir, Muhammad; Jensen, Peter Arendt

    along with the fly ash and bottom ash from the plant were characterized extensively by SEM-EDS, ICP-OES/IC and XRD. Based on the results from the present work, the deposit formation and shedding mechanisms under different operational conditions were proposed and discussed. The influence of coal ash......The formation of deposits during suspension-firing of wood at Avedøre Power Plant unit 2 (AVV2) was studied by using an advanced deposit probe system. The tests were conducted both with and without coal ash addition, and at two different locations with flue gas temperatures of 1250-1300 oC and 750...... addition on deposit formation during wood suspension-firing at AVV2 was evaluated. It was revealed that the addition of coal fly ash could significantly influence the ash deposition/shedding behaviors and the deposit properties. The effect was evident at both measurement locations. At the location...

  1. Flue gas desulfurization gypsum and fly ash

    International Nuclear Information System (INIS)

    The Cumberland Fossil Plant (CUF) is located in Stewart County, Tennessee, and began commercial operation in 1972. This is the Tennessee Valley Authority's newest fossil (coal-burning) steam electric generating plant. Under current operating conditions, the plant burns approximately seven million tons of coal annually. By-products from the combustion of coal are fly ash, approximately 428,000 tons annually, and bottom ash, approximately 115,000 tons annually. Based on historical load and projected ash production rates, a study was initially undertaken to identify feasible alternatives for marketing, utilization and disposal of ash by-products. The preferred alternative to ensure that facilities are planned for all by-products which will potentially be generated at CUF is to plan facilities to handle wet FGD gypsum and dry fly ash. A number of different sites were evaluated for their suitability for development as FGD gypsum and ash storage facilities. LAW Engineering was contracted to conduct onsite explorations of sites to develop information on the general mature of subsurface soil, rock and groundwater conditions in the site areas. Surveys were also conducted on each site to assess the presence of endangered and threatened species, wetlands and floodplains, archaeological and cultural resources, prime farmland and other site characteristics which must be considered from an environmental perspective

  2. Sulfate resistance evaluation of the cement with fly ash (using the Koch & Steinegger method

    Directory of Open Access Journals (Sweden)

    Irassar, Edgardo F.

    1988-12-01

    Full Text Available The increase of active mineral admixtures consumption in contemporaneous cementiceous materials has stablished revision of some test methods. In the evaluation of blended cement durability, many accelerated tests of large application in portland cements become unvalid, because they don't allow to value the improvements produced by pozzolan materials. Koch-Steinegger Method appears as the most appropiate to evaluate sulfate resistance of cement with active mineral admixtures. In this paper are presented the results obtained with this test in the evaluation of an ordinary portland cement (CPN and one resisting sulfates (CPARS, with low calcium fly ash addition. Fly ash is incorporated with three fineness (280, 420 and 480 m2/Kg Blaine. The results show that this addition improves sulfate resistance of CPN and in minor way of ARS cement. Fly ash influences evolution of mechanical strength in water and chemical resistance at first ages.

    El aumento del consumo de las adiciones minerales activas en los materiales cementíceos contemporáneos ha determinado la revisión de algunos métodos de ensayo utilizados para determinar sus propiedades. En la evaluación de la durabilidad de los cementos compuestos, muchos ensayos de corta duración (de gran aplicación en cementos portland dejan de tener validez, pues no permiten evaluar las mejoras que producen los materiales puzolánicos. El método propuesto por KOCH & STEINEGGER (1960 aparece como uno de los más apropiados para determinar el comportamiento de cementos con adiciones minerales activas frente al ataque de sulfatos. En este trabajo se presentan los resultados alcanzados con ente ensayo en la determinación del comportamiento de un cemento portland normal (CRN y uno resistente a los sulfatos (CPARS, adicionados con ceniza volante de bajo contenido en óxido de calcio. La ceniza se incorpora con tres finuras (280, 420 y 480 m2/kg —Blaine—. Estos

  3. Evaluation of Multi-Resolution Satellite Sensors for Assessing Water Quality and Bottom Depth of Lake Garda

    Directory of Open Access Journals (Sweden)

    Claudia Giardino

    2014-12-01

    Full Text Available In this study we evaluate the capabilities of three satellite sensors for assessing water composition and bottom depth in Lake Garda, Italy. A consistent physics-based processing chain was applied to Moderate Resolution Imaging Spectroradiometer (MODIS, Landsat-8 Operational Land Imager (OLI and RapidEye. Images gathered on 10 June 2014 were corrected for the atmospheric effects with the 6SV code. The computed remote sensing reflectance (Rrs from MODIS and OLI were converted into water quality parameters by adopting a spectral inversion procedure based on a bio-optical model calibrated with optical properties of the lake. The same spectral inversion procedure was applied to RapidEye and to OLI data to map bottom depth. In situ measurements of Rrs and of concentrations of water quality parameters collected in five locations were used to evaluate the models. The bottom depth maps from OLI and RapidEye showed similar gradients up to 7 m (r = 0.72. The results indicate that: (1 the spatial and radiometric resolutions of OLI enabled mapping water constituents and bottom properties; (2 MODIS was appropriate for assessing water quality in the pelagic areas at a coarser spatial resolution; and (3 RapidEye had the capability to retrieve bottom depth at high spatial resolution. Future work should evaluate the performance of the three sensors in different bio-optical conditions.

  4. Evaluation of multi-resolution satellite sensors for assessing water quality and bottom depth of Lake Garda.

    Science.gov (United States)

    Giardino, Claudia; Bresciani, Mariano; Cazzaniga, Ilaria; Schenk, Karin; Rieger, Patrizia; Braga, Federica; Matta, Erica; Brando, Vittorio E

    2014-01-01

    In this study we evaluate the capabilities of three satellite sensors for assessing water composition and bottom depth in Lake Garda, Italy. A consistent physics-based processing chain was applied to Moderate Resolution Imaging Spectroradiometer (MODIS), Landsat-8 Operational Land Imager (OLI) and RapidEye. Images gathered on 10 June 2014 were corrected for the atmospheric effects with the 6SV code. The computed remote sensing reflectance (Rrs) from MODIS and OLI were converted into water quality parameters by adopting a spectral inversion procedure based on a bio-optical model calibrated with optical properties of the lake. The same spectral inversion procedure was applied to RapidEye and to OLI data to map bottom depth. In situ measurements of Rrs and of concentrations of water quality parameters collected in five locations were used to evaluate the models. The bottom depth maps from OLI and RapidEye showed similar gradients up to 7 m (r = 0.72). The results indicate that: (1) the spatial and radiometric resolutions of OLI enabled mapping water constituents and bottom properties; (2) MODIS was appropriate for assessing water quality in the pelagic areas at a coarser spatial resolution; and (3) RapidEye had the capability to retrieve bottom depth at high spatial resolution. Future work should evaluate the performance of the three sensors in different bio-optical conditions.

  5. Development of an Evaluation Methodology for Triple Bottom Line Reports Using International Standards on Reporting

    Science.gov (United States)

    Skouloudis, Antonis; Evangelinos, Konstantinos; Kourmousis, Fotis

    2009-08-01

    The purpose of this article is twofold. First, evaluation scoring systems for triple bottom line (TBL) reports to date are examined and potential methodological weaknesses and problems are highlighted. In this context, a new assessment methodology is presented based explicitly on the most widely acknowledged standard on non-financial reporting worldwide, the Global Reporting Initiative (GRI) guidelines. The set of GRI topics and performance indicators was converted into scoring criteria while the generic scoring devise was set from 0 to 4 points. Secondly, the proposed benchmark tool was applied to the TBL reports published by Greek companies. Results reveal major gaps in reporting practices, stressing the need for the further development of internal systems and processes in order to collect essential non-financial performance data. A critical overview of the structure and rationale of the evaluation tool in conjunction with the Greek case study is discussed while recommendations for future research on the field of this relatively new form of reporting are suggested.

  6. Re-burning of ash in grate boilers; Omfoerbraenning av askor i rosterpannor

    Energy Technology Data Exchange (ETDEWEB)

    Bergqvist, Kristina; Myringer, Aase; Nordgren, Daniel; Rydberg, Stina [Vattenfall Utveckling AB, Aelvkarleby (Sweden)

    2005-03-01

    High contents of unburnt carbon in ashes that are dumped or recycled, is questionable from both an economical and an environmental point of view. The content of unburnt carbon in bottom and fly ash from grate boilers varies greatly between different plants but can sometimes exceed 50 %. Re-burning of ash that is separated before a final dust separation, is a relatively cheep and simple method for reducing the content of unburnt carbon in ash, which both reduces the fuel cost and the deposit cost, i.e. the cost of landfilling or recycling. As from 2005 it is prohibited to deposit ash with a too high content of unburnt organic material; the content is limited to 18 weight % of unburnt carbon. The study was carried out in two phases. The aim of the first phase was to map the different techniques used for re-burning ash that are used in grate boilers today. The mapping was done through telephone interviews and comprises technical descriptions of the systems, gathering of operational know-how, installations costs and the effect of the systems on the amount of ash generated at the plants and the content of unburnt carbon in the ash. In order to accomplish a deeper technical and economical evaluation of ash re-burning systems, the second phase involved field studies at two plants. In addition screening tests were done to investigate the connection between the content of unburnt carbon and particle size. The potential of reducing the amount of circulated inorganic material by sieving the ash before bringing it back to the furnace could thereby be determined. 13 plants that utilize re-burning of ash were identified, of which two plants re-burn the bottom ash that floats up to the surface in the wet ash removal system. The remaining 11 plants re-burn fly ash. At three plants the fly ash is first separated in a mesh sieve or similar equipment and only the coarser fly ash is re-burnt. As the amount of bottom ash that surfaces in the wet ash-removal is relatively small

  7. Evaluation of the heat flux on the bottom boundary in shallow waters

    Science.gov (United States)

    Debolskaya, Elena; Ivanov, Alexandre

    2014-05-01

    create a substantial heat content and heat flux across the boundary "bottom- water". For seasonally fluctuations estimate yields H = 2.3 m. At the same time, however, it should be noted that the effect of wind on the heat transfer is not available throughout the year, and during periods of its absence (e.g. during freezing) we obtain an estimate 0.1 of the temperature amplitude at a depth of 0.38 m, i.e. in this case condition of absence of the source at the bottom also applies. These evaluations have been tested using the field observations.

  8. Thermal treatment of ashes[Fly Ash from Municipal Waste Incineration]; Termisk rening av askor

    Energy Technology Data Exchange (ETDEWEB)

    Wikman, Karin; Berg, Magnus; Bjurstroem, Henrik [AaF-Energi och Miljoe AB, Stockholm (Sweden); Nordin, Anders [Umeaa Univ. (Sweden). Dept. of Applied Physics and Electronics

    2003-04-01

    In this project descriptions of different processes for thermal treatment of ashes have been compiled. A technical and economic evaluation of the processes has been done to identify possibilities and problems. The focus in the project lays on treatment of fly ash from municipal waste incineration but the processes can also be used to treat other ashes. When the ash is heated in the thermal treatment reactor, with or without additives, the material is sintered or vitrified and at the same time volatile substances (Zn, Pb, Cd, Hg etc.) are separated. In general the separation is more effective in processes with reducing conditions compared to oxidizing conditions. Oxidizing processes have both worse separation capacity and require more energy. The oxidizing processes are mainly used to stabilize the ash through vitrification and they are in some cases developed for management of municipal sewage sludge and bottom ash. However, these processes are often not as complex as for example an electric arc melting furnace with reducing conditions. The research today aim to develop more effective electrical melting systems with reducing conditions such as plasma melting furnaces, electric resistance melting furnaces and low frequency induction furnaces. A central question in the evaluation of different thermal treatment processes for ash is how the residues from the treatment can be used. It is not certain that the vitrified material is stable enough to get a high economic value, but it can probably be used as construction material. How the remaining metals in the ash are bound is very important in a long-time perspective. Further studies with leaching tests are necessary to clarify this issue. The heavy metal concentrate from the processes contains impurities, such as chlorine, which makes it unprofitable to obtain the metals. Instead the heavy metal concentrate has to be land filled. However, the amount of material for land filling will be much smaller if only the heavy

  9. Evaluation of the mechanical properties and corrosion behaviour of coconut shell ash reinforced aluminium (6063 alloy composites

    Directory of Open Access Journals (Sweden)

    Oluyemi O. DARAMOLA

    2015-12-01

    Full Text Available Aluminium 6063/Coconut shell ash (CSAp composites having 3-12 weight percent (wt% coconut shell ash were fabricated by double stir-casting method. The microstructure, ultimate tensile strength, hardness values, density and corrosion behaviour in 0.3M H2SO4 and 3.5wt% NaCl solution of the composites were evaluated. The density of the composites exhibit a linear and proportional decreased as the percentage of coconut shell ash increases in the aluminium alloy. It implies that composites with lower weight component can be produced by adding CSAp. The microstructural analysis showed uniform distribution of coconut shell ash particles in the aluminium alloy matrix. Significant improvement in hardness and ultimate tensile strength values was noticeable as the wt% of the coconut shell ash increased in the alloy, although this occur at the expense of ductility of the composites as the modulus of elasticity of the composites decreases as the percentage of CSAp increases. Hence, this work has established that incorporation of coconut shell particles in aluminum matrix can lead to the production of low cost aluminum composites with improved hardness and tensile strength values.

  10. Evaluation of heavy metal leaching from coal ash-versus conventional concrete monoliths and debris.

    Science.gov (United States)

    Gwenzi, Willis; Mupatsi, Nyarai M

    2016-03-01

    Application of coal ash in construction materials is constrained by the potential risk of heavy metal leaching. Limited information is available on the comparative heavy metal leaching from coal ash-versus conventional concrete. The current study compared total and leached heavy metal concentrations in unbound coal ash, cement and sand; and investigated the effect of initial leachant pH on heavy metal leaching from coal-ash versus conventional concrete monoliths and their debris. Total Pb, Mn and Zn in coal ash were lower than or similar to that of other materials, while Cu and Fe showed the opposite trend. Leached concentrations of Zn, Pb, Mn, Cu and Fe in unbound coal ash, its concrete and debris were comparable and in some cases even lower than that for conventional concrete. In all cases, leached concentrations accounted for just concrete was minimal and comparable to that of conventional concrete, a finding in contrast to widely held public perceptions and earlier results reported in other regions such as India. In the current study the coal ash, and its concrete and debris had highly alkaline pH indicative of high acid neutralizing and pH buffering capacity, which account for the stabilization of Zn, Pb, Mn, Cu and Fe. Based on the low risk of Zn, Pb, Mn, Cu and Fe leaching from the coal ash imply that such coal ash can be incorporated in construction materials such as concrete without adverse impacts on public and environmental health from these constituents.

  11. MAT 221 ASH Course Tutorial / Tutorialoutlet

    OpenAIRE

    mirat

    2015-01-01

    For more course tutorials visit www.tutorialoutlet.com   MAT 221 Week 1 Assignment 1 Simplifying Expressions (Ash) MAT 221 Week 1 DQ 1 Evaluating Algebraic Expressions (Ash) MAT 221 Week 2 Assignment 2 Inequalities (Ash) MAT 221 Week 2 DQ 1 Formulas (Ash) MAT 221 Week 3 Assignment 3 Two-Variable Inequality (Ash) MAT 221 Week 3 DQ 1 Parallel and Perpendicular (Ash) MAT 221 Week 4 Assignment 4 Financial Polynomials (Ash) MAT 221 Week 4 DQ 1 Initial Investme...

  12. Critical aspects of biomass ashes utilization in soils: Composition, leachability, PAH and PCDD/F.

    Science.gov (United States)

    Freire, Márcia; Lopes, Helena; Tarelho, Luís A C

    2015-12-01

    Bottom and fly ashes streams collected along a year in several biomass thermal plants were studied. The bulk composition of ashes and other chemical characteristics that may impact soil application showed a high variability depending on the ash stream, combustion technology and ash management practice at the power plants. The acid neutralization capacity (ANC) and metal's availability for leaching at fixed pH 7 and 4 was performed according with EA NEN 7371, as a quick evaluation method to provide information on the long-term behavior of ashes, regarding heavy metals and also plant nutrients release. Also the pH dependence leachability study was performed according to CEN/TS 14429 for predicting the leaching behavior under different scenarios. Leachability profiles were established between pH 3 and 12, allowing to distinguish different solubility control phenomena of toxic heavy metals (Cu, Cr, Mn, Ni, Zn, Pb) as well as other salts (Ca, K, Mg, Na, Cl). The ANC of fly ashes at pH 4 (3.6-9.6 molH(+)/kg) were higher than that observed for the bottom ashes (1.2-2.1 molH(+)/kg). Ashes were also characterized for persistent organic pollutants (POP), such as polycyclic aromatic hydrocarbons (PAH) and paradibenzodioxines and furanes (PCDD/F). Contents were found to be much higher in fly ash than in bottom ash streams. None of the PAH levels did reach the current national limit value of sewage sludge application in soils or the guide value for ash in north European countries. However, PCDD/F contents, which are not regulated, varied from non-detectable levels to high amounts, regardless the level of loss on ignition (LOI) or unburned carbon content in fly ashes. Given the current ash management practices and possible use of blends of bottom and fly ash streams as soil conditioners resembles clear the urgent need to regulate ash utilization in soils, incorporating limit values both for heavy metals, PAH and PCDD/F.

  13. Evaluation of the Chemical and Mechanical Properties of Hardening High-Calcium Fly Ash Blended Concrete

    Directory of Open Access Journals (Sweden)

    Wei-Jie Fan

    2015-09-01

    Full Text Available High-calcium fly ash (FH is the combustion residue from electric power plants burning lignite or sub-bituminous coal. As a mineral admixture, FH can be used to produce high-strength concrete and high-performance concrete. The development of chemical and mechanical properties is a crucial factor for appropriately using FH in the concrete industry. To achieve sustainable development in the concrete industry, this paper presents a theoretical model to systematically evaluate the property developments of FH blended concrete. The proposed model analyzes the cement hydration, the reaction of free CaO in FH, and the reaction of phases in FH other than free CaO. The mutual interactions among cement hydration, the reaction of free CaO in FH, and the reaction of other phases in FH are also considered through the calcium hydroxide contents and the capillary water contents. Using the hydration degree of cement, the reaction degree of free CaO in FH, and the reaction degree of other phases in FH, the proposed model evaluates the calcium hydroxide contents, the reaction degree of FH, chemically bound water, porosity, and the compressive strength of hardening concrete with different water to binder ratios and FH replacement ratios. The evaluated results are compared to experimental results, and good consistencies are found.

  14. Effects of chemical composition of fly ash on efficiency of metal separation in ash-melting of municipal solid waste

    International Nuclear Information System (INIS)

    Highlights: ► Separation of Pb and Zn from Fe and Cu in ash-melting of municipal solid waste. ► Molar ratio of Cl to Na and K in fly ash affected the metal-separation efficiency. ► The low molar ratio and a non-oxidative atmosphere were better for the separation. - Abstract: In the process of metal separation by ash-melting, Fe and Cu in the incineration residue remain in the melting furnace as molten metal, whereas Pb and Zn in the residue are volatilized. This study investigated the effects of the chemical composition of incineration fly ash on the metal-separation efficiency of the ash-melting process. Incineration fly ash with different chemical compositions was melted with bottom ash in a lab-scale reactor, and the efficiency with which Pb and Zn were volatilized preventing the volatilization of Fe and Cu was evaluated. In addition, the behavior of these metals was simulated by thermodynamic equilibrium calculations. Depending on the exhaust gas treatment system used in the incinerator, the relationships among Na, K, and Cl concentrations in the incineration fly ash differed, which affected the efficiency of the metal separation. The amounts of Fe and Cu volatilized decreased by the decrease in the molar ratio of Cl to Na and K in the ash, promoting metal separation. The thermodynamic simulation predicted that the chlorination volatilization of Fe and Cu was prevented by the decrease in the molar ratio, as mentioned before. By melting incineration fly ash with the low molar ratio in a non-oxidative atmosphere, most of the Pb and Zn in the ash were volatilized leaving behind Fe and Cu

  15. Dyes removal of textile wastewater onto surfactant modified zeolite from coal ash and evaluation of the toxic effects

    International Nuclear Information System (INIS)

    Zeolites synthesized from fly and bottom ashes and modified with hexadecyltrimethylammonium (HDTMA) were used as adsorbent to remove dyes - Solophenyl Navy (SN) and Solophenyl Turquoise (ST) and their hydrolysed forms Solophenyl Navy Hydrolysed (SNH) and Solophenyl Turquoise Hydrolysed (STH), from simulated textile wastewater. The HDTMA-modified fly zeolite (ZMF) and HDTMA-modified bottom zeolite (ZMB) were characterized by different techniques, as X-ray fluorescence spectrometry, X-ray diffraction and scanning electron microscopy, etc. The ZMF and ZMB presented negative charge probably due to the formation of a partial bilayer of HDTMA on exchangeable active sites on the external surface of unmodified zeolite. Initial dye concentration, contact time and equilibrium adsorption were evaluated. The adsorption kinetic for SN, ST, SNH and STH onto the zeolites followed the pseudo second-order model. The equilibrium time was 20 min for SN and ST and 30 min for SNH and STH, respectively. Langmuir, Freundlich and Temkin models were applied to describe the adsorption isotherms. Adsorption of the dyes were best described by the Langmuir model, with exception to SN/ZPM, SNH/ZPM and SNH/ZLM systems that followed Freundlich model. The maximum adsorption capacities were 3,64; 3,57; 2,91 e 4,93 for SN, ST, SNH e STH by ZLM, respectively and 0,235; 0,492; 1,26 e 1,86 by ZPM, in this order. The best performance for hydrolyzed dyes has been attributed to reduction of the size of dyes molecules during the hydrolysis process. Acute toxicity of the dyes to a different organism were evaluated by different test-organisms. Waterflea, Ceriodaphnia dubia showed EC50 value of 1,25; 54,5; 0,78 and 2,56 mgL-1 for SN, ST, SNH and STH, respectively. The plant Lemna minor showed EC50 values of 18,9; 69,4; 10,9 and 70,9 mgL-1 for SN, ST, SNH and STH, respectively. Midges larvae of Chironomus tepperi showed EC50 values of 119 and 440 mgL-1 for SN and ST, respectively. Regarding the adsorption

  16. The Laconia, New Hampshire Bottom, Ashi Paving Project. Volume 1: Environmental testing report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Bottom ash is the principal waste stream fro m the combustion of municipal solid waste (MSW). It is comprised of grate ash (97%), the slag material discharged at the end of the grate system and grate sffting (3%), the material that melts or falls through the grate structure. This project was conducted to demonstrate the feasibility of using municipal solid waste grate ash as an aggregate substitute in the construction of a pavement binder course for a portion of Rt. 3 in Laconia, New Hampshire. The research was conducted over a two year period during 1993 and 1994. This study is the culmination of an earlier two year characterization study between 1990 and 1992 that documented the physical and environmental characteristics of the bottom ash as it was produced at the Concord, N.H. waste-to-energy (WTE) facility and used in an asphaltic binder course. Together, these two studies provide a complete evaluation of the potential for using grate ash or bottom ash in asphalt binder course or as recycled asphalt pavement (RAP) in base courses in pavements.

  17. Evaluation of extraction methods for hexavalent chromium determination in dusts, ashes, and soils

    Science.gov (United States)

    Wolf, Ruth E.; Wilson, Stephen A.

    2010-01-01

    One of the difficulties in performing speciation analyses on solid samples is finding a suitable extraction method. Traditional methods for extraction of hexavalent chromium, Cr(VI), in soils, such as SW846 Method 3060A, can be tedious and are not always compatible with some determination methods. For example, the phosphate and high levels of carbonate and magnesium present in the U.S. Environmental Protection Agency (USEPA) Method 3060A digestion for Cr(VI) were found to be incompatible with the High Performance Liquid Chromatography-Inductively Coupled Plasma-Mass Spectrometry (HPLC-ICP-MS) detection method used by our laboratory. Modification of Method 3060A by eliminating the use of the phosphate buffer provided improved performance with the detection method, however dilutions are still necessary to achieve good chromatographic separation and detection of Cr(VI). An ultrasonic extraction method using a 1 mM Na2CO3 - 9 mM NaHCO3 buffer solution, adapted from Occupational Safety and Health Administration (OSHA) Method ID215, has been used with good results for the determination of Cr(VI) in air filters. The average recovery obtained for BCR-545 - Welding Dust Loaded on Filter (IRMM, Belgium) using this method was 99 percent (1.2 percent relative standard deviation) with no conversion of Cr(VI) to Cr(III) during the extraction process. This ultrasonic method has the potential for use with other sample matrices, such as ashes and soils. Preliminary investigations using NIST 2701 (Hexavalent Chromium in Contaminated Soil) loaded onto quartz filters showed promising results with approximately 90 percent recovery of the certified Cr(VI) value. Additional testing has been done using NIST 2701 and NIST 2700 using different presentation methods. Extraction efficiency of bulk presentation, where small portions of the sample are added to the bottom of the extraction vessel, will be compared with supported presentation, where small portions of the sample are loaded onto a

  18. Melting and Sintering of Ashes

    DEFF Research Database (Denmark)

    Hansen, Lone Aslaug

    1997-01-01

    in the ashes lead to increased melt fractions in the temperature range 600-750°C.b) Bottom ashes from straw combustion consist purely of silicates, with varying ratios of the quite refractory Al-silicates and quartz to the less refractory K- and Ca-silicates. Bottom ashes melt in the temperature range 800......-1300°C, and a trend of higher fusion temperatures with increasing contents of Al-silicates and quartz was found.c) Fly ashes, bottom ashes and deposits from coal/straw co-firing were all found to consist mainly of metal-alumina and alumina-silicates. These ashes all melt in the temperature range 1000......The thesis contains an experimental study of the fusion and sintering of ashes collected during straw and coal/straw co-firing.A laboratory technique for quantitative determination of ash fusion has been developed based on Simultaneous Thermal Analysis (STA). By means of this method the fraction...

  19. Settling characteristics of some Indian fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Jain, M.K.; Sastry, B.S. [Indian Institute of Technology, Kharapur (India). Dept. of Mining Engineering

    2003-07-01

    The paper examines the aspects of the solid liquid separation (settling characteristics) of some of the fly ash obtained from coal-fired power plants in India. The application of a coagulating or flocculating agent (polymer) to improve the two properties as indicated is a typical industrial practice. The sources for this study comprise of fly ash, pond ash, and bottom ash and the settling characteristics are studied in conjunction with the flocculating agent polyacrylamide. 4 refs., 4 figs., 3 tabs.

  20. MGT 401 ASH Course Tutorial / Tutorialoutlet

    OpenAIRE

    kennith

    2015-01-01

    For more course tutorials visit www.tutorialoutlet.com   MGT 401 Week 1 Individual Assignment Strategic Management Process Paper (Ash) MGT 401 Week 1 Class Activity Week 1 (Ash) MGT 401 Week 1 DQ 1 (Ash) MGT 401 Week 1 DQ 2 (Ash) MGT 401 Week 2 Learning Team Business Model Comparison Example (Ash) MGT 401 Week 2 DQ 1 (Ash) MGT 401 Week 2 DQ 2 (Ash) MGT 401 Week 2 Class Activity (Ash) MGT 401 Week 3 Individual Assignment Business Plan Evaluation (Ash) ...

  1. Evaluating Characteristics of Top and Bottom Performance: Online versus In-Class

    Science.gov (United States)

    Fendler, Richard J.; Ruff, Craig; Shrikhande, Milind

    2016-01-01

    This study compared the characteristics of students who excel (those in the top quarter of their class) and students who merely survive (bottom quarter of class) when attending a course either in-class or online. Student characteristics such as personal attributes (learning styles and gender), individual competence (grade point average), and major…

  2. Computational versus psychophysical bottom-up image saliency: A comparative evaluation study

    NARCIS (Netherlands)

    Toet, A.

    2011-01-01

    The predictions of 13 computational bottom-up saliency models and a newly introduced Multiscale Contrast Conspicuity (MCC) metric are compared with human visual conspicuity measurements. The agreement between human visual conspicuity estimates and model saliency predictions is quantified through the

  3. Evaluation of the application of the triple bottom line. case study: caldeirão de SANTA CRUZ community (CEARÁ

    Directory of Open Access Journals (Sweden)

    Artur Gomes de Oliveira

    2016-04-01

    Full Text Available The Triple Bottom Line, composed by the Environmental, Social and Economic dimensions, has been widely accepted since its implementation will involve the maintenance or development of factors that lead to sustainability. When defining this concept, Elkington (2012 quoted the director of the Environmental Management Program at the University of Michigan, Stuart Hart, who said that large corporations would be the only organizations that could achieve sustainability. The aim of this work is to verify if sustainability, at a given site, can be achieved without the aid of large organizations. Specifically, the objective is to check the status of the Caldeirão de Santa Cruz Community, located in the state of Ceará / Brazil, in the period between 1926 and 1937. For this evaluation, it was used the Triple Bottom Line model proposed by Elkington (2012. The results indicated that the concept known as Triple Bottom Line was implied in the Caldeirão de Santa Cruz community’s way of living and that was achieved through the work carried out in the community, without the help of any organization. The results also showed that the behavior and the way of living and working of the community bothered some sectors of society.  Keywords: Sustainability; Triple Bottom Line; Caldeirão de Santa Cruz; Ceará.

  4. Germanium recovery from gasification fly ash: evaluation of end-products obtained by precipitation methods.

    Science.gov (United States)

    Arroyo, Fátima; Font, Oriol; Fernández-Pereira, Constantino; Querol, Xavier; Juan, Roberto; Ruiz, Carmen; Coca, Pilar

    2009-08-15

    In this study the purity of the germanium end-products obtained by two different precipitation methods carried out on germanium-bearing solutions was evaluated as a last step of a hydrometallurgy process for the recovery of this valuable element from the Puertollano Integrated Gasification Combined Cycle (IGCC) fly ash. Since H(2)S is produced as a by-product in the gas cleaning system of the Puertollano IGCC plant, precipitation of germanium as GeS(2) was tested by sulfiding the Ge-bearing solutions. The technological and hazardous issues that surround H(2)S handling conducted to investigate a novel precipitation procedure: precipitation as an organic complex by adding 1,2-dihydroxy benzene pyrocatechol (CAT) and cetyltrimethylammonium bromide (CTAB) to the Ge-bearing solutions. Relatively high purity Ge end-products (90 and 93% hexagonal-GeO(2) purity, respectively) were obtained by precipitating Ge from enriched solutions, as GeS(2) sulfiding the solutions with H(2)S, or as organic complex with CAT/CTAB mixtures and subsequent roasting of the precipitates. Both methods showed high efficiency (>99%) to precipitate selectively Ge using a single precipitation stage from germanium-bearing solutions.

  5. Radiographic Evaluation of Children with Febrile Urinary Tract Infection: Bottom-Up, Top-Down, or None of the Above?

    OpenAIRE

    Prasad, Michaella M.; Cheng, Earl Y.

    2011-01-01

    The proper algorithm for the radiographic evaluation of children with febrile urinary tract infection (FUTI) is hotly debated. Three studies are commonly administered: renal-bladder ultrasound (RUS), voiding cystourethrogram (VCUG), and dimercapto-succinic acid (DMSA) scan. However, the order in which these tests are obtained depends on the methodology followed: bottom-up or top-down. Each strategy carries advantages and disadvantages, and some groups now advocate even less of a workup (no...

  6. Evaluation of Multi-Resolution Satellite Sensors for Assessing Water Quality and Bottom Depth of Lake Garda

    OpenAIRE

    Claudia Giardino; Mariano Bresciani; Ilaria Cazzaniga; Karin Schenk; Patrizia Rieger; Federica Braga; Erica Matta; Vittorio E. Brando

    2014-01-01

    In this study we evaluate the capabilities of three satellite sensors for assessing water composition and bottom depth in Lake Garda, Italy. A consistent physics-based processing chain was applied to Moderate Resolution Imaging Spectroradiometer (MODIS), Landsat-8 Operational Land Imager (OLI) and RapidEye. Images gathered on 10 June 2014 were corrected for the atmospheric effects with the 6SV code. The computed remote sensing reflectance (Rrs ) from MODIS and OLI were converted into water qu...

  7. Evaluation of the program 'Environmentally correct utilization of ashes'; Utvaerdering av programmet 'Miljoeriktig anvaendning av askor'

    Energy Technology Data Exchange (ETDEWEB)

    Herbert, Roger B. (Uppsala Univ., Inst. of Earth Sciences, Uppsala (Sweden))

    2008-04-15

    Vaermeforsk's program Environmentally-correct utilization of ashes ('Ash program') has financed research and development projects since 2002. The overall goal of the program is that knowledge and data for decision-making shall exist so that 90 percent of Swedish ash from energy production is utilized in an environmentally-correct application by the end of 2008. In this report, an evaluation of the Ash program is presented, with an overall goal of determining if the program is proceeding along the correct path to goal fulfillment. The following components of the program have been evaluated: Funded projects during the program period 2002-2008, with focus on project selection, goal fulfillment, and the need for addition studies; Selected projects that have particular significance for goal fulfillment; Communication and dissemination of results; Significance of the Ash program's network. Funded projects within each research area have been reviewed with respect to project prioritization and the relevance of projects for goal fulfillment. The projects have been compared with previously identified research and development needs. The primary emphasis in the areas of Engineering and Landfills lies in projects that, taken together, can lead to an increased confidence in our understanding of the geotechnical and environmental properties of ash. In the area Forest and soil, Vaermeforsk has funded new ash recycling and fertilization experiments and also continuation projects. Such a prioritization is warranted, since long-term experiments are necessary in order to indicate if the addition of ash has an effect. Large ventures within the areas of Engineering, Landfills and Forests arouse the greatest attention; these are the projects that will presumably make the greatest breakthroughs for ash utilization. It is my assessment that the Ash program is proceeding along the correct path toward goal fulfillment, and that the program has contributed to knowledge and

  8. Optimization and evaluation of a bottom substrate denitrification tank for nitrate removal from a recirculating aquaculture system.

    Science.gov (United States)

    Pungrasmi, Wiboonluk; Playchoom, Cholticha; Powtongsook, Sorawit

    2013-08-01

    A bottom substrate denitrification tank for a recirculating aquaculture system was developed. The laboratory scale denitrification tank was an 8 L tank (0.04 m2 tank surface area), packed to a depth of 5 cm with a bottom substrate for natural denitrifying bacteria. An aquarium pump was used for gentle water mixing in the tank; the dissolved oxygen in the water was maintained in aerobic conditions (e.g. > 2 mg/L) while anoxic conditions predominated only at the bottom substrate layer. The results showed that, among the four substrates tested (soil, sand, pumice stone and vermiculite), pumice was the most preferable material. Comparing carbon supplementation using methanol and molasses, methanol was chosen as the carbon source because it provided a higher denitrification rate than molasses. When methanol was applied at the optimal COD:N ratio of 5:1, a nitrate removal rate of 4591 +/- 133 mg-N/m2 tank bottom area/day was achieved. Finally, nitrate removal using an 80 L denitrification tank was evaluated with a 610 L recirculating tilapia culture system. Nitrate treatment was performed by batch transferring high nitrate water from the nitrification tank into the denitrification tank and mixing with methanol at a COD:N ratio of 5:1. The results from five batches of nitrate treatment revealed that nitrate was successfully removed from water without the accumulation of nitrite and ammonia. The average nitrate removal efficiency was 85.17% and the average denitrification rate of the denitrification tank was 6311 +/- 945 mg-N/m2 tank bottom area/day or 126 +/- 18 mg-N/L of pumice packing volume/day. PMID:24520693

  9. Optimization and evaluation of a bottom substrate denitrification tank for nitrate removal from a recirculating aquaculture system

    Institute of Scientific and Technical Information of China (English)

    Wiboonluk Pungrasmi; Cholticha Playchoom; Sorawit Powtongsook

    2013-01-01

    A bottom substrate denitrification tank for a recirculating aquaculture system was developed.The laboratory scale denitrification tank was an 8 L tank (0.04 m2 tank surface area),packed to a depth of 5 cm with a bottom substrate for natural denitrifying bacteria.An aquarium pump was used for gentle water mixing in the tank; the dissolved oxygen in the water was maintained in aerobic conditions (e.g.> 2 mg/L) while anoxic conditions predominated only at the bottom substrate layer.The results showed that,among the four substrates tested (soil,sand,pumice stone and vermiculite),pumice was the most preferable material.Comparing carbon supplementation using methanol and molasses,methanol was chosen as the carbon source because it provided a higher denitrification rate than molasses.When methanol was applied at the optimal COD∶N ratio of 5∶1,a nitrate removal rate of 4591 ± 133 mg-N/m2 tank bottom area/day was achieved.Finally,nitrate removal using an 80 L denitrification tank was evaluated with a 610 L recirculating tilapia culture system.Nitrate treatment was performed by batch transferring high nitrate water from the nitrification tank into the denitrification tank and mixing with methanol at a COD∶N ratio of 5∶1.The results from five batches of nitrate treatment revealed that nitrate was successfully removed from water without the accumulation of nitrite and ammonia.The average nitrate removal efficiency was 85.17% and the average denitrification rate of the denitrification tank was 6311 ± 945 mg-N/m2 tank bottom area/day or 126 ± 18 mg-N/L of pumice packing volume/day.

  10. The effect of polyethylene glycol and wood ash on the detannification of sorghum evaluated by an in vitro gas production profile and organic matter degradation

    International Nuclear Information System (INIS)

    The objective of this work was to evaluate the effect of polyethylene glycol (PEG, MW 4000) and wood ash on the detannification of sorghum grains. In the first experiment, different sorghum genotypes (14) were evaluated using tannin bioassay based on incubation of feeds with and without PEG in a semi-automatic in vitro gas production technique. From this study, genotype 9929030 was selected for detannification because it contained the maximum level of biological active tannins. The results from this experiment indicated the effect of PEG on the reduction of tannin effects; a consequent increase in the volume of gas produced with PEG during the fermentation (Figure 1) indicated reduction of tannin effect by PEG. In addition, the results of the parallelism test demonstrated that the curves were different and not parallel. Organic matter degradability was also higher in presence of PEG (33.4% vs. 24.3%). agent. The wood ash was obtained from the burning of the stems of Eucalyptus sp (T1) and Bauhinia spp (T2), and milled (1 mm). In addition, two methods of adding ash to the substrate (sorghum grain 9929030) were tested. In method one (M1), wood ash was added to milled sorghum grains and placed inside a gas bottle used for the in vitro fermentation. In method two (M2), wood ash was mixed with water and whole grains for 3 h, dried and milled (1 mm). In both methods, three concentrations of wood ash/grain were tested, 0 (C1), 100 (C2) and 200 (C3) mg of wood ash/g of substrate. Fermentation was conducted in a semi-automatic in vitro gas production technique for up to 96 h. The results demonstrated that wood ash increased gas production volume and organic matter degradation and the effect was concentration dependent. Gas production volume and organic matter degradation were also higher when using wood ash obtained from Bauhinia tree. However, these effects were not observed when method 2 was applied. Therefore, the results of this study showed that the use of wood ash

  11. Combining shape and color: a bottom-up approach to evaluate object similarities

    OpenAIRE

    PASCUCCI, ALESSIO

    2011-01-01

    The objective of the present work is to develop a bottom-up approach to estimate the similarity between two unknown objects. Given a set of digital images, we want to identify the main objects and to determine whether they are similar or not. In the last decades many object recognition and classification strategies, driven by higher-level activities, have been successfully developed. The peculiarity of this work, instead, is the attempt to work without any training phase nor a priori knowledg...

  12. Solidification of dewatered sewage sludge using bottom ash of MSWI as skeleton material%以垃圾焚烧底灰为骨料的脱水污泥固化试验

    Institute of Scientific and Technical Information of China (English)

    陈萍; 冯彬; 詹良通

    2014-01-01

    Dehydrate sewage sludge is low in sheared strength, and its landfilling disposal has safety issues. Experimental study on the solidification of dewatered sewage sludge was carried out by using the bottom ash of municipal solid waste incinerator (MSWI) as skeleton material, and using cement, lime, gypsum as solidification materials. Unconfined compressive strength (UCS) tests, water resistance tests, and leaching test were performed to investigate the solidification effect. The experimental results demonstrated that the optimum solidification materials were cement and gypsum, and the optimum adding mixture ratio of dry mass of sewage sludge was 50%. Measured UCS of the solidified sludge met the requirement for safe landfilling. The optimum adding mixture ratio of MSWI bottom ash was 100%, which resulted in the volume change ratio being less than 1.0. The water resistance capacity of the sludge solidified by cement and gypsum was high. The leaching tests showed that gypsum was the optimum solidification material, the measured concentration of Cu, Zn, Pb and COD of the leachate was significantly lower than the untreated sludge. Furthermore, the pH of the leachate was close to 7.0. Leachate was low in toxicity, with minor effect on the environment.%针对机械脱水污泥强度低,难以安全填埋的问题,采用生活垃圾焚烧底灰作为骨架材料和水泥、石灰、石膏作为固化剂,开展污泥固化试验研究,并通过无侧限抗压强度试验、耐水性试验、浸出毒性试验对固化效果进行评价.结果表明,较优的固化剂种类为水泥和石膏,掺入量为污泥干基的50%,无侧限抗压强度可以满足填埋要求.最优垃圾焚烧底灰掺入量为100%,固化污泥增容比小于1.0,能够起到减容作用.水泥、石膏固化污泥耐水性能均较好.浸出毒性试验结果表明,最优固化剂种类为石膏,浸出液Cu、Zn、Pb离子浓度及COD值均较原泥大幅降低,可以起到良好的稳定

  13. Evaluation of zeolites synthesized from fly ash as potential adsorbents for wastewater containing heavy metals

    Institute of Scientific and Technical Information of China (English)

    WANG Chunfeng; LI Jiansheng; WANG Lianjun; SUN Xiuyun

    2009-01-01

    Both pure-form zeolites (zeolites A and X) were synthesized by applying a two-stage method during hydrothermal treatment of fly ash prepared initial gel. The difference of adsorption capacity of both fly ash-synthesized zeolits was assessed under the same adsorption conditions. Copper and zinc were chosen as target heavy metal ions. It was found that adsorption capacity of zeolite A showed much higher value than that of zeolite X. Thus, attention was focused on investigating the removal performance of heavy metal ions in aqueous solution on the synthetic pure-form zeolite A from fly ash, zeolite HS (hydroxyl-solidate) prepared from the residual fly ash (after synthesis of pure-form zeolite A from fly ash) and a commercial grade zeolite A. Batch method was employed to study the influential parameters such as initial pH value, adsorbents dosage and adsorption temperature on the adsorption process. The equilibrium data were well fitted by the Langmuir model and showed the affinity: Cu2+ > Zn2+ (adsorbent FA-ZA). The removal mechanism of metal ions followed adsorption and ion exchange processes. Attempts were also made to recover heavy metal ions and regenerate adsorbents (adsorbent FA-ZA).

  14. Chemical changes in different types of coal ash during prolonged, large scale, contact with seawater

    Energy Technology Data Exchange (ETDEWEB)

    Shoham-Frider, E.; Shelef, G.; Kress, N. [Nationall Institute of Oceanography, Haifa (Israel)

    2003-07-01

    The chemical changes occurring in coal ash exposed to prolonged (300 days), large scale, contact with running seawater were followed. Four major components (Al, Ca, Mg, Fe) and seven minor and trace elements (Cd, Cr, Cu, Mn, Zn, Pb, Hg) were measured in four coal ash types: fly and bottom ash freshly obtained from coal-fired power plant, and old ash (crushed and blocks) recovered from the sea after 3-5 years contact with seawater. Changes occurred in the chemical composition of the coal ash along the experiment: Fe increased in fresh ash, Al increased in old ash and Ca increased in all ash types except old ash blocks. Cu and Hg decreased in fresh fly ash while Cr increased, Cd decreased in all ash types except bottom ash, and Mn decreased in bottom ash. Most of the changes occurred in the fresh fly ash, and not in the old ash, indicating equilibrium after prior exposure to seawater. In addition, more changes occurred in fresh fly ash than in bottom ash, emphasizing the differences between the two ash types. While the changes in the concentrations of the major elements may be an indication of the integrity of the ash matrix, the only elements of environmental significance released to the environment were Hg and Cd. However, calculated seawater concentrations were much lower than seawater quality criteria and therefore the coal ash was considered suitable for marine applications concerning seawater quality.

  15. Health Risk Assessment of Heavy Metal Pollution of Agricultural Use of Municipal Solid Waste Incineration Bottom Ashes%村镇生活垃圾焚烧底渣农用的重金属污染风险评价

    Institute of Scientific and Technical Information of China (English)

    张刚; 王德建; 俞元春; 王灿; 庄锦贵

    2016-01-01

    随着生活垃圾焚烧处理方式的不断推广,生活垃圾焚烧底渣的处置也成为一个日益严峻的问题。为了明确生活垃圾底渣农用的可行性,于2014年在江苏常熟农业生态实验站进行了小白菜(Brassica rapa L. Chinensis Group.)盆栽试验,各施肥处理土壤中分别添加底渣的比例为0%、5%、10%、20%、50%、100%,以不施肥处理和单施底渣(10%)处理为对照。于小白菜收获时,取样分析小白菜产量、品质,以及小白菜和土壤中Cd、Cr、Cu、Ni、Pb、Zn含量,并采用内梅罗综合污染指数法和目标危害系数法评价了底渣农用的重金属污染风险。结果表明,施用适量的底渣可以有效增加小白菜产量,亦增加了小白菜中可溶性糖、维生素 C 和硝酸盐含量,并且硝酸盐含量未超过中国无公害蔬菜安全要求;小白菜地上部重金属含量和土壤重金属含量在不同处理中均随底渣施用比例的增加而增加,且底渣施用量超过12.2%时,土壤内梅罗综合污染指数大于1,土壤呈轻度重金属污染,底渣施用量超过15%时,小白菜地上部重金属Cr含量超过中国食物污染物的限量标准;小白菜单一重金属目标风险系数在不同处理中均小于1,而底渣用量大于或等于10.7%时小白菜重金属复合目标风险系数大于1,存在食用健康风险,健康风险以Pb、Cd为主,并且儿童更易遭受小白菜重金属危害。因此,在保证小白菜产量、品质和土壤安全下,底渣一次性安全施用比例不能超过10%。%As incineration is more widely chosen as one of the major treatments of municipal solid waste in China, the disposal of municipal solid waste incineration bottom ashes (MSWIBA) has become an increasingly serious problem. In order to identify the feasibility of agricultural use of MSWIBA a pot experiment in greenhouse was tested with a local pakchoi as material in Changshu agro

  16. Merging two waste streams, wood ash and biowaste, results in improved composting process and end products.

    Science.gov (United States)

    Fernández-Delgado Juárez, M; Gómez-Brandón, M; Insam, H

    2015-04-01

    A trial was carried out to evaluate the influence of wood ash admixture on biowaste composting. The aim was to find the optimal dosage of ash addition to enhance the composting process without endangering the final compost characteristics and use. Six treatments including an unamended control (K0) and composts with additions of 3% (K3), 6% (K6), 9% (K9), 12% (K12) and 15% (K15) of wood ash (w/w) were studied. The composting process was monitored in situ for 49days, by measuring temperature, CO2, O2, and CH4 in the piles and pH, electric conductivity (EC), and inorganic N in the laboratory. At the end of the process, the products were tested for Reifegrad (maturity), toxicity and quality. The addition of up to 15% of wood ash to biowaste did not negatively affect the composting process, and the initial differences found between both the low and high ash-treated composts were attenuated with the ongoing process development. Nevertheless, and mainly due to Cd level, composts with higher ash amendment did not comply with the highest quality standards established by the Austrian Compost Ordinance. The failure of obtaining class A+ quality after ash amendment emphasizes the need for a rigid quality selection of (bottom) ashes and thus reducing environmental risks related to high pollutant loads originating from the ashes. PMID:25536175

  17. Oil and gas platforms with steam bottoming cycles: System integration and thermoenvironomic evaluation

    DEFF Research Database (Denmark)

    Nguyen, Tuong-Van; Tock, Laurence; Breuhaus, Peter;

    2014-01-01

    cooling utility, and (iv) the weight limitations on the platform are quantitatively assessed. The results illustrate the benefits of converting the gas turbine process into a combined cycle, since the fuel gas consumption and the total CO2-emissions can be reduced by more than 15 %. Using the cooling......The integration of steam bottoming cycles on oil and gas platforms is currently regarded as the most promising option for improving the performance of these energy-intensive systems. In this paper, a North Sea platform is taken as case study, and a systematic analysis of its energy requirements...

  18. Treatment and toxicity evaluation of methylene blue using electrochemical oxidation, fly ash adsorption and combined electrochemical oxidation-fly ash adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Kai-sung Wang; Ming-Chi Wei; Tzu-Huan Peng; Heng-Ching Li; Shu-Ju Chao; Tzu-Fang Hsu; Hong-Shen Lee; Shih-Hsien Chang [Chung-Shan Medical University, Taichung (Taiwan)

    2010-08-15

    Treatment of a basic dye, methylene blue, by electrochemical oxidation, fly ash adsorption, and combined electrochemical oxidation-fly ash adsorption was compared. Methylene blue at 100 mg L{sup -1} was used in this study. The toxicity was also monitored by the Vibrio fischeri light inhibition test. When electrochemical oxidation was used, 99% color and 84% COD were removed from the methylene blue solution in 20 min at a current density of 428 A m{sup -2}, NaCl of 1000 mg L{sup -1}, and pH{sub 0} of 7. However, the decolorized solution showed high toxicity (100% light inhibition). For fly ash adsorption, a high dose of fly ash (>20,000 mg L{sup -1}) was needed to remove methylene blue, and the Freundlich isotherm described the adsorption behavior well. In the combined electrochemical oxidation-fly ash adsorption treatment, the addition of 4000 mg L{sup -1} fly ash effectively reduced intermediate toxicity and decreased the COD of the electrochemical oxidation-treated methylene blue solution. The results indicated that the combined process effectively removed color, COD, and intermediate toxicity of the methylene blue solution.

  19. Evaluation of the suitability for concrete using fly ash in N.P.P. structures

    International Nuclear Information System (INIS)

    The nuclear power plant structures constructed in Korea has been generally used type V cement(sulfate-resisting Portland cement), but according to the study results reported recently, it shows that type V cement is superior the resistance of sulfate attack, but the resistance of salt damage is weaker than type I cement. It is increased the demands on the use of mineral admixtures such as fly ash, ground granulated blast-furnace slag instead of type V cement in order to improve the durability of concrete structures. But the study on concrete mixed with fly ash in Korea has been mainly performed on rheology and strength properties of the concrete. Therefore, this study is to improve the durability of concrete structures of N.P.P. as using fly ash cement instead of type V cement. As a results, the concrete containing fly ash is improved the resistance to salt attack, sulfate attack and freezing-thawing and is deteriorated the carbonation. But if it is used the concrete with high strength or low water-powder ratio, the concrete have not problem on the durability

  20. Laboratory Evaluation of the Toxicity of Systemic Insecticides to Emerald Ash Borer Larvae.

    Science.gov (United States)

    Poland, Therese M; Ciaramitaro, Tina M; McCullough, Deborah G

    2016-04-01

    Emerald ash borer (Agrilus planipennis Fairmaire) (Coleoptera: Buprestidae), an invasive phloem-feeding insect native to Asia, threatens at least 16 North American ash (Fraxinus) species and has killed hundreds of millions of ash trees in landscapes and forests. We conducted laboratory bioassays to assess the relative efficacy of systemic insecticides to control emerald ash borer larvae in winter 2009 and 2010. Second- and third-instar larvae were reared on artificial diet treated with varying doses of emamectin benzoate (TREE-äge, Arborjet, Inc., Woburn, MA), imidacloprid (Imicide, J. J Mauget Co., Arcadia, CA), dinotefuran (Safari, Valent Professional Products, Walnut Creek, CA), and azadirachtin (TreeAzin, BioForest Technologies, Inc., Sault Ste. Marie, Ontario, and Azasol, Arborjet, Inc., Woburn, MA). All of the insecticides were toxic to emerald ash borer larvae, but lethal concentrations needed to kill 50% of the larvae (LC50), standardized by larval weight, varied with insecticide and time. On the earliest date with a significant fit of the probit model, LC50 values were 0.024 ppm/g at day 29 for TREE-äge, 0.015 ppm/g at day 63 for Imicide, 0.030 ppm/g at day 46 for Safari, 0.025 ppm/g at day 24 for TreeAzin, and 0.027 ppm/g at day 27 for Azasol. The median lethal time to kill 50% (LT50) of the tested larvae also varied with insecticide product and dose, and was longer for Imicide and Safari than for TREE-äge or the azadirachtin products. Insecticide efficacy in the field will depend on adult and larval mortality as well as leaf and phloem insecticide residues. PMID:26721288

  1. Evaluation of severe accident risks, Peach Bottom, Unit 2: Main report

    International Nuclear Information System (INIS)

    In support of the Nuclear Regulatory Commission's (NRC's) assessment of the risk from severe accidents at commercial nuclear power plants in the US reported NUREG-1150, the Severe Accident Risk Reduction Program (SARRP) has completed a revised calculation of the risk to the general public from severe accidents at the Peach Bottom Atomic Power Station, Unit 2. This power plant, located in southeastern Pennsylvania, is operated by the Philadelphia Electric Company. The emphasis in this risk analysis was not on determining a ''so-called'' point estimate of risk. Rather, it was to determine the distribution of risk, and to discover the uncertainties that account for the breadth of this distribution. Off-site risk initiated by events both internal and external to the power station were assessed. 39 refs., 174 figs., 133 tabs

  2. Effects of the addition of oil shale ash and coal ash on physic-chemical properties of CPJ45 cement

    Directory of Open Access Journals (Sweden)

    Nabih K.

    2014-04-01

    Full Text Available We focused our research on recycling industrial wastes, fly ash (F.A, bottom ash (B.A and oil shale ash (S.A in cement production. The study concerns physico-chemical characterization of these products and the influence of their addition on the mechanical proprieties of the CPJ45 cement. XRF allowed us to rank the three additives used according to their contents on major oxides. Coal ashes belong to the class F, and thus possess poozzolanic properties and oil shale ash belongs to the class C and possesses hydraulic and poozolanic properties. The crystalline phases constituting each ash were analysed by XRD. We observe in bottom ash the presence of quartz and mullite. The same crystals are found in fly ash with hematite and magnetite. Oil shale ash is composed of quartz, anhydrite, gehlenite, wollastonite and periclase. The microstructures of fly ash and bottom ash were studied using SEM. The bottom ash was composed respectively of fine particles that are generally irregularly shaped, their dimensions are between 5 and 28μm and of big particles(300 μm. The EDX analysis coupled with an electronic microscope provided some information about the major elements that constitute our samples. The dehydrations of anhydrous and three days hydrated cement were examined by DSC. For hydrated cements we noticed endothermic peaks related to the dehydration of CSH, CH and decomposition of carbonates. The study of the mechanical properties of CPJ45 cement by adding different proportions of fly ash, bottom ash and oil shale ash helped clarifying the percentage of ash that leaded to improve the 28 days mechanical strength. The results show that the cements studied have their maximum mechanical resistance with the addition at 7% of fly ash or 10% of oil shale ash.

  3. Utilization of ash fractions from alternative biofuels used in power plants

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaisen, L.; Hinge, J.; Christensen, I. (Danish Technological Inst., Aarhus (Denmark)); Dahl, J. (Force Technology, Broendby (Denmark)); Arendt Jensen, P. (DTU-CHEC, Kgs. Lyngby (Denmark)); Soendergaard Birkmose, T. (Dansk Landbrugsraadgivning, Landscentret, Aarhus (Denmark)); Sander, B. (DONG Energy, Fredericia (Denmark)); Kristensen, O. (Kommunekemi A/S, Nyborg (Denmark))

    2008-07-15

    It is expected, that demand for the traditional biomass resources wood and straw will increase over the next years. In other projects a number of agro industrial waste products has been tested and characterized as fuels for power plants. The annual production in Denmark of these fuels is estimated at roughly 400.000 tons of Dry Matter per year, so the potential is substantial. The agro industrial biomass products include: Grain screening waste, pea shells, soy waste, cocoa waste, sugar beet waste, sunflower waste, shea waste, coffee waste, olive waste, rice shell waste, potato waste, pectin waste, carrageen waste, tobacco waste, rape seed waste and mash from breweries. In the PSO project 5075, 5 different types of fuel pellets was produced, which were rendered suitable for combustion in power plants. In this project, ash is produced from the above mentioned 5 mixtures together with another 2 mixtures produced especially for this project. From the 5 mixtures from PSO 5075, ash is produced at Danish Technological Institute's slag analyzer. These ash products are rendered comparable to ash from grate fired boilers at power plants. The ash/slag from the combustion in the slag analyzer was then grinded - thus resulting in a total of 5 ash products. At DTU CHEC's Entrained Flow Reactor, ash products from the 5+2 mixtures were produced. These ash products are rendered comparable to ash produced form suspension fired boilers at power plants. For each of the 7 mixtures, bottom-, cyclone and filter ash was taken out separately resulting in a total of 21 ash samples. The produced ashes have been evaluated for their properties as directly applied fertilizer. Furthermore, scenarios have been set up to assess the feasibility in producing artificial fertilizer from the ash products, based on known processes. In the main components the content of Na, S, Cl and K is significantly higher in filter ashes, whereas the content of Mg, Al, Si and Ca is significantly lower. The

  4. Evaluation of rainfall infiltration characteristics in a volcanic ash soil by time domain reflectometry method

    Directory of Open Access Journals (Sweden)

    S. Hasegawa

    1997-01-01

    Full Text Available Time domain reflectometry (TDR was used to monitor soil water conditions and to evaluate infiltration characteristics associated with rainfall into a volcanic-ash soil (Hydric Hapludand with a low bulk density. Four 1 m TDR probes were installed vertically along a 6 m line in a bare field. Three 30 cm and one 60 cm probes were installed between the 1 m probes. Soil water content was measured every half or every hour throughout the year. TDR enabled prediction of the soil water content precisely even though the empirical equation developed by Topp et al. (1980 underestimated the water content. Field capacity, defined as the amount of water stored to a depth of 1 m on the day following heavy rainfall, was 640 mm. There was approximately 100 mm difference in the amount of water stored between field capacity and the driest period. Infiltration characteristics of rainfall were investigated for 36 rainfall events exceeding 10 mm with a total amount of rain of 969 mm out of an annual rainfall of 1192 mm. In the case of 25 low intensity rainfall events with less than 10 mm h-1 on to dry soils, the increase in the amount of water stored to a depth of 1 m was equal to the cumulative rainfall. For rain intensity in excess of 10 mm h-1, non-uniform infiltration occurred. The increase in the amount of water stored at lower elevation locations was 1.4 to 1.6 times larger than at higher elevation locations even though the difference in ground height among the 1 m probes was 6 cm. In the two instances when rainfall exceeded 100 mm, including the amount of rain in a previous rainfall event, the increase in the amount of water stored to a depth of 1 m was 65 mm lower than the total quantity of rain on the two occasions (220 mm; this indicated that 65 mm of water or 5.5% of the annual rainfall had flowed away either by surface runoff or bypass flow. Hence, approximately 95% of the annual rainfall was absorbed by the soil matrix but it is not possible to simulate

  5. Evaluation of removal efficiency of 2-chlorophenol in aquatic environments by modified fly ash

    OpenAIRE

    Mohammad Malakootian; Alireza Mesdaghinia; Shima Rezaei

    2015-01-01

    Background: Chlorophenols are classified as priority toxic pollutants. These acidic organic compounds present a serious potential hazard for human health and aquatic life. Chlorophenols accumulate in water, soil and air due to high stability, and impart an unpleasant taste and odor to drinking water and can exert negative effects on different biological processes. Among the different methods of removal, adsorption process by low price adsorbents, such as fly ash (FA) is common. Therefore, in ...

  6. Statistical evaluation of the mechanical properties of high-volume class F fly ash concretes

    KAUST Repository

    Yoon, Seyoon

    2014-03-01

    High-Volume Fly Ash (HVFA) concretes are seen by many as a feasible solution for sustainable, low embodied carbon construction. At the moment, fly ash is classified as a waste by-product, primarily of thermal power stations. In this paper the authors experimentally and statistically investigated the effects of mix-design factors on the mechanical properties of high-volume class F fly ash concretes. A total of 240 and 32 samples were produced and tested in the laboratory to measure compressive strength and Young\\'s modulus respectively. Applicability of the CEB-FIP (Comite Euro-international du Béton - Fédération Internationale de la Précontrainte) and ACI (American Concrete Institute) Building Model Code (Thomas, 2010; ACI Committee 209, 1982) [1,2] to the experimentally-derived mechanical property data for HVFA concretes was established. Furthermore, using multiple linear regression analysis, Mean Squared Residuals (MSRs) were obtained to determine whether a weight- or volume-based mix proportion is better to predict the mechanical properties of HVFA concrete. The significance levels of the design factors, which indicate how significantly the factors affect the HVFA concrete\\'s mechanical properties, were determined using analysis of variance (ANOVA) tests. The results show that a weight-based mix proportion is a slightly better predictor of mechanical properties than volume-based one. The significance level of fly ash substitution rate was higher than that of w/b ratio initially but reduced over time. © 2014 Elsevier Ltd. All rights reserved.

  7. MINTEQ modeling for evaluating the leaching behavior of heavy metals in MSWI fly ash

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yan; JIANG Jianguo; CHEN Maozhe

    2008-01-01

    At present, all kinds of municipal solid waste incineration (MSWI) fly ash stabilization technology has been reported and successfully applied in many countries. However, leaching procedures are very different that the technologies lack uniform standard, and it is even impossible to predict the long-term stabilization. Geochemical model can explain the environmental stabilization based on chemical phase and thermodynamic crystal structure, and it is also able to guide the development of environment-friendly stabilization technology and choosing of chemical agents. Both experiment analysis and geochemical modeling were used to study the correlation between leaching behavior of MSWI fly ash and variation of pH. Dissolution/precipitation mechanism was applied in the simulation. The result indicated that the pH-dependent leaching behavior predicted by Visual MINTEQ is well in agreement with the result of pH-dependent test. pH value of leachate can significantly change the leaching behavior of MSWI fly ash. The leaching behavior of heavy metals for Pb and Cd is controlled by dissolution/precipitation mechanism, whereas for Zn and Ni, it is effected by surface adsorption reaction over a special extent of pH value.

  8. Life cycle adaption of biofuel ashes. Evaluation of new techniques for pelletizing of biofuel ashes, especially regarding operational properties and environmental effects in the forest after ash recycling. Stage 1; Kretsloppsanpassning av bioaskor. Utvaerdering av ny teknik foer pelletering av bioaska med avseende paa dels driftsegenskaper, dels miljoeeffekter i skogen av askaaterfoering

    Energy Technology Data Exchange (ETDEWEB)

    Loevgren, Linnea [Stora Enso Environment, Falun (Sweden); Lundmark, Jan-Erik; Jansson, Charlotta [AssiDomaen AB, Stockholm (Sweden)

    2000-11-01

    The aim of the project 'Adaptation of Wood Ashes to Recycling' is to evaluate a new technique - roll pelleting - for making wood ash suitable for reuse as a fertiliser for woodland. The project is being carried out at the forest product companies AssiDomaen and Stora Enso. The main financier is the Swedish National Energy Administration. Other financiers are AssiDomaen, Stora Enso, The Thermal Engineering Research Institute and The Forestry Research Institute of Sweden. The project has involved the construction of a full-scale roll pelleter in a mobile container and its trial operation at two Swedish pulp and paper mills. The leaching properties of the ash products were studied with a laboratory method. In addition, the effects of ash fertilisation with these products are being studied in a four-year field trial. Effects on soil pH, nutrient supply, soil water chemistry and ground vegetation are being evaluated by The Forestry Research Institute of Sweden and will be reported separately in the year 2003. In a laboratory prestudy, the leaching properties of pellets from twelve different ash products made in a laboratory prototype machine were evaluated. The ash products were made from residues from the AssiDomaen Froevi mill and the Stora Enso Fors mill. Fly ash from Froevi was used alone and mixed with green liquor sludge and lime sludge respectively. Fly ash from Fors was also used alone and mixed with coating colour. The laboratory method used for the evaluation of leaching properties is the method developed by IVL The Swedish Environmental Research Institute Ltd. The results show that the progress of the leaching of roll pelleted ash is significantly slower than for the corresponding crushed product and a reference lime product. The speed of leaching, measured as acid neutralisation capacity, ANC, was significantly lower for the roll pelleted ash compared to self-hardened and crushed ash products. Because of the high content of calcium, lime has on the

  9. Radioactivity of wood ash; Puun tuhkan radioaktiivisuus

    Energy Technology Data Exchange (ETDEWEB)

    Rantavaara, A.; Moring, M

    2000-01-01

    STUK (Finnish Radiation and Nuclear Safety Authority) has investigated natural and artificial radioactivity in wood ash and radiation exposure from radionuclides in ash since 1996. The aim was to consider both handling of ash and different ways of using ash. In all 87 ash samples were collected from 22 plants using entirely or partially wood for their energy production in 1996-1997. The sites studied represented mostly chemical forest industry, sawmills or district heat production. Most plants used fluidised bed combustion technique. Samples of both fly ash and bottom ash were studied. The activity concentrations of radionuclides in samples of, e.g., dried fly ash from fuel containing more than 80% wood were determined. The means ranged from 2000 to less than 50 Bq kg{sup -1}, in decreasing order: {sup 137}Cs, {sup 40}K, {sup 90}Sr, {sup 210}Pb,{sup 226}Ra, {sup 232}Th, {sup 134}Cs, {sup 235}U. In bott radionuclide contents decreased in the same order as in fly ash, but were smaller, and {sup 210}Pb was hardly detectable. The NH{sub 4}Ac extractable fractions of activities for isotopes of alkaline elements (K, Cs) in bottom ash were lower than in fly ash, whereas solubility of heavier isotopes was low. Safety requirements defined by STUK in ST-guide 12.2 for handling of peat ash were fulfilled at each of the sites. Use of ash for land-filling and construction of streets was minimal during the sampling period. Increasing this type of ash use had often needed further investigations, as description of the use of additional materials that attenuate radiation. Fertilisation of forests with wood ash adds slightly to the external irradiation in forests, but will mostly decrease doses received through use of timber, berries, mushrooms and game meat. (orig.)

  10. EDU 623 ASH COURSE Tutorial/UOPHELP

    OpenAIRE

    dgfvbhn

    2015-01-01

    For more course tutorials visit www.uophelp.com   EDU 623 Week 1 No Child Left Behind (Ash Course) EDU 623 Week 1 DQ 1 Skills Needed for Master of Education (Ash Course) EDU 623 Week 1 DQ 2 Effective Teachers (Ash Course) EDU 623 Week 2 Writing and Researching Skills Self-Assessment (Ash Course) EDU 623 Week 2 DQ 1 Evaluating Research (Ash Course) EDU 623 Week 2 DQ 2 Diversity in Schools (Ash Course) EDU 623 Week 3 Lesson Plan Critique (Ash Course) ...

  11. EDU 623 ASH COURSES TUTORIAL/UOPHELP

    OpenAIRE

    ROOSER12

    2015-01-01

    For more course tutorials visit www.uophelp.com   EDU 623 Week 1 No Child Left Behind (Ash Course) EDU 623 Week 1 DQ 1 Skills Needed for Master of Education (Ash Course) EDU 623 Week 1 DQ 2 Effective Teachers (Ash Course) EDU 623 Week 2 Writing and Researching Skills Self-Assessment (Ash Course) EDU 623 Week 2 DQ 1 Evaluating Research (Ash Course) EDU 623 Week 2 DQ 2 Diversity in Schools (Ash Course) EDU 623 Week 3 Lesson Plan Critique (Ash Course) ...

  12. Synthesis of zeolites coal ash in surfactant modified in application and removal of orange 8 acid solution: study in batch, fixed bed column and evaluation ecotoxicological

    International Nuclear Information System (INIS)

    In this study, synthesized zeolitic material from coal ash and modified cationic surfactant was used for removing the acid dye Orange 8 (AL8) by adsorption process using moving bed and fixed-bed column. The raw material and adsorbents were characterized by different techniques, such as X-ray diffraction, X-ray fluorescence spectroscopy, among others. The adsorption of AL8 was performed by moving bed in order to optimize the results when they are launched in a fixed bed. The effects of adsorption on zeolite AL8 were compared: (1) Effect of counterions Br- and Cl- surfactant used in the modification of the zeolite; (2) effect of type of coal ash used as raw material in the synthesis of zeolites (fly and bottom). The following adsorbents were used in the study: fly and bottom zeolite modified by surfactant hexadecyltrimethylammonium bromide (ZLMS-Br-Br and ZPMS-Br) and fly zeolite modified by surfactant hexadecyltrimethylammonium chloride (ZLMS-Cl). The pseudo-second-order kinetic described the adsorption of the dye on all adsorbents. The equilibrium time was reached 40, 60 and 120 min for ZLMS-Br, ZLMS-Cl and ZPMS-Br, respectively. The adsorption equilibrium was analyzed by the equations of the models of linear and nonlinear isotherms of Langmuir, Freundlich, Temkin and Dubinin- Radushkevivh (DR) and the criterion of best fit was evaluated using the error functions.The DR model was adjusted better to the experimental data for the system AL8 / ZLMS-Br, the Freundlich model for AL8 / ZLMS-Cl and Langmuir for AL8 / ZPMS. According to the Langmuir maximum adsorption capacity was 4.67, 1.48 and 1.38 mg g-1 for ZLMS-Br, ZLMS-Cl and ZPMS-Br, in order. In studies employing fixed bed columns, the effects of inlet concentration (20- 30 mg L-1), flow rate (4.0 -5.3 mL min-1) and the bed height (5, 5 - 6.5 cm) above the breakthrough curves characteristics in the adsorption system were determined. The Adams-Bohart, Thomas, Yoon-Nelson models were applied to experimental data to

  13. Radiographic Evaluation of Children with Febrile Urinary Tract Infection: Bottom-Up, Top-Down, or None of the Above?

    Directory of Open Access Journals (Sweden)

    Michaella M. Prasad

    2012-01-01

    Full Text Available The proper algorithm for the radiographic evaluation of children with febrile urinary tract infection (FUTI is hotly debated. Three studies are commonly administered: renal-bladder ultrasound (RUS, voiding cystourethrogram (VCUG, and dimercapto-succinic acid (DMSA scan. However, the order in which these tests are obtained depends on the methodology followed: bottom-up or top-down. Each strategy carries advantages and disadvantages, and some groups now advocate even less of a workup (none of the above due to the current controversies about treatment when abnormalities are diagnosed. New technology is available and still under investigation, but it may help to clarify the interplay between vesicoureteral reflux, renal scarring, and dysfunctional elimination in the future.

  14. Determination of Ash Mixture Properties and Construction of Test Embankment - Part B

    OpenAIRE

    Yoon, Sungmin; Balunaini, Umashankar; Prezzi, Monica; Salgado, Rodrigo; Siddiki, Nayyar Zia

    2006-01-01

    Class F fly ash and bottom ash are solid residue byproducts produced by coal-burning plants. They are usually disposed off with a typical disposal rate of 80 % fly ash and 20 % bottom ash. To maximize the use of the coal ash, and thus significantly reduce the disposal problem that electric utility companies and our society in general face, the direct use of ponded or landfilled ash that is composed of high proportions of fly ash would be desirable. However, a general understanding of the beha...

  15. Determination of Ash Mixture Properties and Construction of Test Embankment - Part A

    OpenAIRE

    Kim, Bumjoo; Yoon, Sungmin; Balunaini, Umashankar; Prezzi, Monica; Salgado, Rodrigo

    2006-01-01

    Class F fly ash and bottom ash are solid residue byproducts produced by coal-burning plants. They are usually disposed off with a typical disposal rate of 80 % fly ash and 20 % bottom ash. To maximize the use of the coal ash, and thus significantly reduce the disposal problem that electric utility companies and our society in general face, the direct use of ponded or landfilled ash that is composed of high proportions of fly ash would be desirable. However, a general understanding of the beha...

  16. Fly ash based geopolymer thin coatings on metal substrates and its thermal evaluation.

    Science.gov (United States)

    Temuujin, Jadambaa; Minjigmaa, Amgalan; Rickard, William; Lee, Melissa; Williams, Iestyn; van Riessen, Arie

    2010-08-15

    Class F fly ash based Na-geopolymer formulations have been applied as fire resistant coatings on steel. The main variables for the coating formulations were Si: Al molar and water: cement weight ratios. We have determined that the adhesive strength of the coatings strongly depend on geopolymer composition. The ease with which geopolymer can be applied onto metal surfaces and the resultant thickness depend on the water content of the formulation. Adhesive strengths of greater than 3.5 MPa have been achieved on mild steel surfaces for compositions with Si:Al of 3.5. Microstructure evolution and thermal properties of the optimised coating formulations show that they have very promising fire resistant characteristics.

  17. Evaluation of Strength Characteristics of Laterized Concrete with Corn Cob Ash (CCA) Blended Cement

    Science.gov (United States)

    Ikponmwosa, E. E.; Salau, M. A.; Kaigama, W. B.

    2015-11-01

    Agricultural wastes are dumped in landfills or left on land in which they constitute nuisance. This study presents the results of investigation of strength characteristics of reinforced laterized concrete beams with cement partially replaced with corn cob (agricultural wastes) ash (CCA). Laterized concrete specimen of 25% laterite and 75% sharp sand were made by blending cement with corn cob ash at 0 to 40% in steps of 10%. A concrete mix ratio of 1:2:4 was used to cast 54 cubes of 150×150×150mm size and 54 beams of dimension 750×150×150mm. The results show that the consistency and setting time of cement increased as the percentage replacement of cement with CCA increased while the workability and density of concrete decreased as the percentage of CCA increased. There was a decrease in compressive strength when laterite was introduced to the concrete from 25.04 to 22.96N/mm2 after 28 days and a continual reduction in strength when CCA was further added from 10% to 40% at steps of 10%. Generally, the beam specimens exhibited majorly shear failure with visible diagonal cracks extending from support points to the load points. The corresponding central deflection in beams, due to two points loading, increased as the laterite was added to the concrete mix but reduced and almost approaching that of the control as 10% CCA was added. The deflection then increased as the CCA content further increased to 20%, 30% and 40% in the mix. It was also noted that the deflection of all percentage replacement including 40% CCA is less than the standard recommended maximum deflection of the beam. The optimal flexural strength occurred with 10% CCA content.

  18. Evaluation of the Addition of Wood Ash to Control the pH of Substrates in Municipal Biowaste Composting

    Directory of Open Access Journals (Sweden)

    Oviedo-Ocaña Edgar Ricardo

    2014-07-01

    Full Text Available This study evaluates the addition of wood ashes (WA for controlling the pH of substrates in municipal biowaste (MBW composting. Three combinations in wet weight percent (w/w of MBW and WA were tested: i BC1: 2% WA and 98% MBW; ii BC2: 4% WA and 96% MBW; and iii BC3: 8% WA and 92% MBW. Each combination was compared with a control (100% MBW called B1, B2 and B3 respectively. The experiment was conducted to pilot scale, with piles of 510 kg. The results indicate that the addition of WA improved the pH level and nutrients for the composting process; however, it had not substantial benefit in the process (start of the thermophilic phase and the behavior of the substrate degradation rate. Furthermore, a higher presence of salts and phytotoxic compounds in the product was observed. This could limit the product use for agricultural activities.

  19. JV Task 5 - Evaluation of Residual Oil Fly Ash As A Mercury Sorbent For Coal Combustion Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Robert Patton

    2006-12-31

    The mercury adsorption capacity of a residual oil fly ash (ROFA) sample collected form Florida Power and Light Company's Port Everglades Power Plant was evaluated using a bituminous coal combustion flue gas simulator and fixed-bed testing protocol. A size-segregated (>38 {micro}g) fraction of ROFA was ground to a fine powder and brominated to potentially enhance mercury capture. The ROFA and brominated-ROFA were ineffective in capturing or oxidizing the Hg{sup 0} present in a simulated bituminous coal combustion flue gas. In contrast, a commercially available DARCO{reg_sign} FGD initially adsorbed Hg{sup 0} for about an hour and then catalyzed Hg{sup 0} oxidation to produce Hg{sup 2+}. Apparently, the unburned carbon in ROFA needs to be more rigorously activated in order for it to effectively capture and/or oxidize Hg{sup 0}.

  20. Sorption of aqueous phosphorus onto bituminous and lignitous coal ashes

    Energy Technology Data Exchange (ETDEWEB)

    Yan Jinying; Kirk, Donald W. [Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5 (Canada); Jia, Charles Q. [Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5 (Canada)], E-mail: cqjia@chem-eng.toronto.edu; Liu Xinan [College of Chemical Engineering, Chongqing University, Chongqing (China)

    2007-09-05

    Aiming at the development of a phosphorus removal technology for waste water, phosphate (PO{sub 4}{sup 3-}) retention behavior of bituminous and lignitous coal ashes was investigated using a batch reactor. Ash samples, including fresh and weathered fly and bottom ashes, were studied for their sorption isotherms and reversibility. Fly ashes had a much higher phosphate retention capacity (4000-30,000 mg P/kg) than bottom ashes (15-600 mg P/kg). Lignitous coal ashes were more capable of retaining phosphate than bituminous coal ashes. The retention process was largely irreversible, and the irreversibility increased with the increase in the retention capacity. Weathering enlarged the retention capacity of the bituminous bottom ash, but substantially lowered that of the fly ash, likely due to the difference in the weather-induced changes between the fly and bottom ashes. Sorption isotherms of fly ashes were found to be adequately represented by the Langmuir model while those of bottom ashes fitted better to the Freundlich model. Concentrations of Ca{sup 2+} and PO{sub 4}{sup 3-} in the aqueous phase were measured at the end of sorption and desorption experiments, and were compared with solubilities of three calcium phosphate minerals. The aqueous solutions were saturated or super-saturated with respect to tricalcium phosphate (Ca{sub 3}(PO{sub 4}){sub 2}) and hydroxyapatite (Ca{sub 5}(PO{sub 4}){sub 3}OH), and slightly under-saturated with respect to amorphous calcium phosphate. It is concluded that precipitation of calcium phosphate is the predominant mechanism for phosphate retention by coal ash under the conditions studied. There is a strong and positive correlation between alkalinity and phosphate sorption capacity. Consequently, acid neutralization capacity (ANC) can be used as an indicator of phosphate sorption capacity of coal ashes.

  1. Characteristics variation of coal combustion residues in an Indian ash pond.

    Science.gov (United States)

    Asokan, Pappu; Saxena, Mohini; Aparna, Asokan; Asolekar, Shyam R; Asoletar, Shyam R

    2004-08-01

    Coal-fired power plants all over the world are cited as one of the major sources that generate huge quantities of coal combustion residues (CCRs) as solid wastes. Most frequently CCRs are collected through electrostatic precipitators, mixed with bottom ash by hydraulic systems and deposited in ash ponds. The quality of the CCRs at different locations in one of the ash ponds in Central India was evaluated to understand the variation in characteristics with a view to effective utilization. Results revealed that the presence of fine particles (distance from the ash slurry inlet zone in the ash pond. Wide variations in the bulk density (800-980 kg m(-3)), porosity (45-57%) and water-holding capacity (57.5-75.7%) of CCRs were recorded. With increasing distance the pH of the CCRs decreased (from 9.0 to 8.2) and electrical conductivity increased (from 0.25 to 0.65 dS m(-3)). The presence of almost all the heavy metals in CCRs exhibited an increase with distance from the ash slurry discharge zone due to the increase in surface area (from 0.1038 to 2.3076 m2 g(-1)) of CCRs particles. The present paper describes the variation of characteristics of CCRs deposited in the ash pond and their potential applications.

  2. Assessing the environmental impact of ashes used in a landfill cover construction.

    Science.gov (United States)

    Travar, I; Lidelöw, S; Andreas, L; Tham, G; Lagerkvist, A

    2009-04-01

    Large amounts of construction materials will be needed in Europe in anticipation for capping landfills that will be closed due to the tightening up of landfill legislation. This study was conducted to assess the potential environmental impacts of using refuse derived fuel (RDF) and municipal solid waste incineration (MSWI) ashes as substitutes for natural materials in landfill cover designs. The leaching of substances from a full-scale landfill cover test area built with different fly and bottom ashes was evaluated based on laboratory tests and field monitoring. The water that drained off above the liner (drainage) and the water that percolated through the liner into the landfill (leachate) were contaminated with Cl(-), nitrogen and several trace elements (e.g., As, Cu, Mo, Ni and Se). The drainage from layers containing ash will probably require pre-treatment before discharge. The leachate quality from the ash cover is expected to have a minor influence on overall landfill leachate quality because the amounts generated from the ash covers were low, modelling indicated that precipitation of clay minerals and other secondary compounds in the ash liner was possible within 3 years after construction, which could contribute to the retention of trace elements in the liner in the long term. Hence, from an environmental view point, the placement of ashes in layers above the liner is more critical than within the liner. PMID:19081235

  3. Performance evaluation and microstructure characterization of metakaolin-based geopolymer containing oil palm ash.

    Science.gov (United States)

    Hawa, Abideng; Tonnayopas, Danupon; Prachasaree, Woraphot

    2013-01-01

    This study reports on the microstructure, compressive strength, and drying shrinkage of metakaolin (MK) based geopolymers produced by partially replacing MK by oil palm ash (OPA). The OPA was used as raw material producing different molar ratios of SiO₂/Al₂O₃ and CaO/SiO₂. The geopolymer samples were cured at 80°C for 1, 2, or 4 hours and kept at ambient temperature until testing. The compressive strength was measured after 2, 6, and 24 hours and 7 and 28 days. The testing results revealed that the geopolymer with 5% OPA (SiO₂  : Al₂O₃ = 2.88 : 1) gave the highest compressive strength. Scanning electron microscopy (SEM) indicated that the 5% OPA sample had a dense-compact matrix and less unreacted raw materials which contributed to the higher compressive strength. In the X-ray diffraction (XRD) patterns, the change of the crystalline phase after heat curing for 4 hours was easily detectable compared to the samples subjected to a shorter period of heat curing.

  4. Performance Evaluation and Microstructure Characterization of Metakaolin-Based Geopolymer Containing Oil Palm Ash

    Directory of Open Access Journals (Sweden)

    Abideng Hawa

    2013-01-01

    Full Text Available This study reports on the microstructure, compressive strength, and drying shrinkage of metakaolin (MK based geopolymers produced by partially replacing MK by oil palm ash (OPA. The OPA was used as raw material producing different molar ratios of SiO2/Al2O3 and CaO/SiO2. The geopolymer samples were cured at 80°C for 1, 2, or 4 hours and kept at ambient temperature until testing. The compressive strength was measured after 2, 6, and 24 hours and 7 and 28 days. The testing results revealed that the geopolymer with 5% OPA (SiO2 : Al2O3 = 2.88 : 1 gave the highest compressive strength. Scanning electron microscopy (SEM indicated that the 5% OPA sample had a dense-compact matrix and less unreacted raw materials which contributed to the higher compressive strength. In the X-ray diffraction (XRD patterns, the change of the crystalline phase after heat curing for 4 hours was easily detectable compared to the samples subjected to a shorter period of heat curing.

  5. EDU 623 ASH course tutorial/tutorialoutlet

    OpenAIRE

    NARESH 34

    2015-01-01

    For more course tutorials visit www.tutorialoutlet.com     EDU 623 Week 1 No Child Left Behind (Ash Course) EDU 623 Week 1 DQ 1 Skills Needed for Master of Education (Ash Course) EDU 623 Week 1 DQ 2 Effective Teachers (Ash Course) EDU 623 Week 2 Writing and Researching Skills Self-Assessment (Ash Course) EDU 623 Week 2 DQ 1 Evaluating Research (Ash Course) EDU 623 Week 2 DQ 2 Diversity in Schools (Ash Course) EDU 623 Week 3 Lesson Plan Critiqu...

  6. Use of ashes and ash-and-slad wastes in construction

    Directory of Open Access Journals (Sweden)

    P. Lahtinen

    2011-06-01

    Full Text Available The use of ash waste saves expenses on main materials without compromising the quality of the product, while solving the problem of disposal of ash materials. The aim of this work is classification of ashes and evaluation its use in construction.Classification of ash-and-slad wastes based on type of burned coal, way of incineration, flame temperature, way of ash disposal is made. The chemical composition and behavior of shale ash, its main deposits, its advantages as a mineral concrete admixture are analysed. Fly ashes are divided into siliceous ashes and basic ashes.Various application areas of ash-and-slad wastes in construction are considered, the examples of its use are given.

  7. Evaluation of removal efficiency of 2-chlorophenol in aquatic environments by modified fly ash

    Directory of Open Access Journals (Sweden)

    Mohammad Malakootian

    2015-12-01

    Full Text Available Background: Chlorophenols are classified as priority toxic pollutants. These acidic organic compounds present a serious potential hazard for human health and aquatic life. Chlorophenols accumulate in water, soil and air due to high stability, and impart an unpleasant taste and odor to drinking water and can exert negative effects on different biological processes. Among the different methods of removal, adsorption process by low price adsorbents, such as fly ash (FA is common. Therefore, in this study, the effects of oxidation of FA as modified adsorbent were investigated when the adsorption of 2-chlorophenol (2-CP was increased. Methods: This experimental study was conducted from March to September of 2013. FA obtained from Zarand power plant (located in Kerman province was oxidized with potassium permanganate. Effective factors on the oxidation of FA, such as temperature, oxidation time and concentrations of oxidizers were optimized. Raw sewage of Zarand coal washing plant was tested under optimal conditions. All tests were carried out according to the standard methods book for the examination of water and wastewater. Results: Optimal condition for the preparation of oxidized FA was obtained at 70°C, 1 hour, and 1 mM of potassium permanganate concentration. The absorber obtained was able to remove 96.22% of 2-CP under optimized conditions (pH=3, 2 hours, adsorbent dose 0.8 g and room temperature. The removal efficiency of the real wastewater under optimal conditions was 82.1%. Conclusion: Oxidized FA can be used for the removal of this pollutant from industry wastewater due to its high efficiency of removal in real wastewater, it is easy and inexpensive to prepare and could modify the sorbent.

  8. Evaluation of sulfate resistance of cement mortars containing black rice husk ash.

    Science.gov (United States)

    Chatveera, B; Lertwattanaruk, P

    2009-03-01

    In this paper, black rice husk ashes (BRHAs), which are agrowastes from an electricity generating power plant and a rice mill, were ground and used as a partial cement replacement. The durability of mortars under sulfate attack including expansion and compressive strength loss were investigated. For parametric study, BRHA were used as a Portland cement Type 1 replacement at the levels of 0%, 10%, 30%, and 50% by weight of binder. The water-to-binder ratios were 0.55 and 0.65. For the durability of mortar exposed to sulfate attack, 5% sodium sulfate (Na2SO4) and magnesium sulfate (MgSO4) solutions were used. As a result, when increasing the percentage replacement of BRHA, the expansion and compressive strength loss of mortar decreased. At the replacement levels of 30% and 50% of BRHA, the expansion of the mortars was less than those mixed with sulfate-resistant cement. However, the expansion of the mortars exposed to Na2SO4 was more than those exposed to MgSO4. Increasing the replacement level of BRHA tends to reduce the compressive strength loss of mortars exposed to Na2SO4 attack. In contrary, under MgSO4 attack, when increasing the replacement level of BRHA, the compressive strength loss increases from 0% to 50% in comparison to Portland cement mortar. Results show that ground BRHA can be applied as a pozzolanic material to concrete and also improve resistance to sodium sulfate attack, but it can impair resistance to magnesium sulfate attack.

  9. Characterization of ashes from biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Frandsen, F.J.; Hansen, L.A. [Technical Univ. of Denmark. Dept. of Chemical Engineering (Denmark); Soerensen, H.S. [Geological Survey of Denmark and Greenland (Denmark); Hjuler, K. [dk-TEKNIK. Energy and Environment (Denmark)

    1998-02-01

    One motivation for initiating the present project was that the international standard method of estimating the deposit propensity of solid fuels, of which a number of variants exist (e.g. ISO, ASTM, SD, DIN), has shown to be unsuitable for biomass ashes. This goal was addressed by the development of two new methods for the detection of ash fusibility behaviour based on Simultaneous Thermal Analysis (STA) and High Temperature Light Microscopy (HTLM), respectively. The methods were developed specifically for ashes from biofuels, but are suitable for coal ashes as well. They have been tested using simple salt mixtures, geological standards and samples from straw CHP and coal-straw PF combustion plants. All samples were run in a nitrogen atmosphere at a heating rate of 10 deg. C/min. In comparison with the standard method, the new methods are objective and have superior repeatability and sensitivity. Furthermore, the two methods enable the melting behavior to be characterized by a continuous measurement of melt fraction versus temperature. Due to this two-dimensional resolution of the results, the STA and HTLM methods provide more information than the standard method. The study of bottom ash and fly ash as well as deposit samples from straw test firings at the Haslev and Slagelse Combined Heat and Power plants resulted in a better understanding of mineral behaviour during straw grate firing. In these tests a number of straws were fired which had been carefully selected for having different qualities with respect to sort and potassium and chlorine contents. By studying bottom ashes from Slagelse it was found that the melting behaviour correlated with the deposition rate on a probe situated at the outlet part of the combustion zone. (EG)

  10. Melting Behavior of Volcanic Ash relevant to Aviation Ash Hazard

    Science.gov (United States)

    Song, W.; Hess, K.; Lavallee, Y.; Cimarelli, C.; Dingwell, D. B.

    2013-12-01

    investigate the sintering process of volcanic ash. In order to analyze the mineral transformation and microstructure evolution, the qualitative as well as quantitative crystalline phase analysis of volcanic ash samples directly taken from furnace by per 100 oC in the range of between 100 and 1400 oC as well as evaluation of microstructure of volcanic ash taken from from furnace by per 20 oC in the range of between 1000 and 1300 oC has been made by X-ray diffraction (XRD) and observed by scanning electron microscopy (SEM). Finally, we obtain the viscosity temperature curve for volcanic ash during melting process on the basis of the characteristic temperature obtained by HSM.

  11. Bottom production

    International Nuclear Information System (INIS)

    In the context of the LHC experiments, the physics of bottom flavoured hadrons enters in different contexts. It can be used for QCD tests, it affects the possibilities of B decays studies, and it is an important source of background for several processes of interest. The physics of b production at hadron colliders has a rather long story, dating back to its first observation in the UA1 experiment. Subsequently, b production has been studied at the Tevatron. Besides the transverse momentum spectrum of a single b, it has also become possible, in recent time, to study correlations in the production characteristics of the b and the b. At the LHC new opportunities will be offered by the high statistics and the high energy reach. One expects to be able to study the transverse momentum spectrum at higher transverse momenta, and also to exploit the large statistics to perform more accurate studies of correlations

  12. Bottom production

    Energy Technology Data Exchange (ETDEWEB)

    Baines, J.; Baranov, S.P.; Bartalini, P.; Bay, A.; Bouhova, E.; Cacciari, M.; Caner, A.; Coadou, Y.; Corti, G.; Damet, J.; Dell-Orso, R.; De Mello Neto, J.R.T.; Domenech, J.L.; Drollinger, V.; Eerola, P.; Ellis, N.; Epp, B.; Frixione, S.; Gadomski, S.; Gavrilenko, I.; Gennai, S.; George, S.; Ghete, V.M.; Guy, L.; Hasegawa, Y.; Iengo, P.; Jacholkowska, A.; Jones, R.; Kharchilava, A.; Kneringer, E.; Koppenburg, P.; Korsmo, H.; Kramer, M.; Labanca, N.; Lehto, M.; Maltoni, F.; Mangano, M.L.; Mele, S.; Nairz, A.M.; Nakada, T.; Nikitin, N.; Nisati, A.; Norrbin, E.; Palla, F.; Rizatdinova, F.; Robins, S.; Rousseau, D.; Sanchis-Lozano, M.A.; Shapiro, M.; Sherwood, P.; Smirnova, L.; Smizanska, M.; Starodumov, A.; Stepanov, N.; Vogt, R.

    2000-03-15

    In the context of the LHC experiments, the physics of bottom flavoured hadrons enters in different contexts. It can be used for QCD tests, it affects the possibilities of B decays studies, and it is an important source of background for several processes of interest. The physics of b production at hadron colliders has a rather long story, dating back to its first observation in the UA1 experiment. Subsequently, b production has been studied at the Tevatron. Besides the transverse momentum spectrum of a single b, it has also become possible, in recent time, to study correlations in the production characteristics of the b and the b. At the LHC new opportunities will be offered by the high statistics and the high energy reach. One expects to be able to study the transverse momentum spectrum at higher transverse momenta, and also to exploit the large statistics to perform more accurate studies of correlations.

  13. Mineralogical analyses and in vitro screening tests for the rapid evaluation of the health hazard of volcanic ash at Rabaul volcano, Papua New Guinea

    Science.gov (United States)

    Le Blond, Jennifer S.; Horwell, Claire J.; Baxter, Peter J.; Michnowicz, Sabina A. K.; Tomatis, Maura; Fubini, Bice; Delmelle, Pierre; Dunster, Christina; Patia, Herman

    2010-11-01

    The continuous ash and gas emissions from the Tavurvur cone in Rabaul caldera, Papua New Guinea, during 2007-08, raised concerns regarding how exposure would affect the respiratory health of nearby populations and impact on the environment. As part of a formal evaluation of the effects of volcanic emissions on public health, we investigated the potential health hazard of the ash using a suite of selected mineralogical analyses and in vitro toxicity screening tests. The trachy -andesitic ash comprised 2.1-6.7 vol.% respirable (sub -4 μm diameter) particles. The crystalline silica content was 1.9-5.0 wt.% cristobalite (in the bulk sample) with trace amounts of quartz and/or tridymite. Scanning electron microscopy showed that the ash particles were angular with sparse, fibre -like particles (˜3-60 μm max. diameter) observed in some samples, which we confirmed to be CaSO4 (gypsum, at asthma or chronic bronchitis, and the potential for chronic exposure leading to silicosis was low.

  14. Sulfate resistance evaluation of the cement with fly ash (using the Koch & Steinegger method)

    OpenAIRE

    Irassar, Edgardo F.; Jorge D Sota; Batic, Oscar R.

    1988-01-01

    The increase of active mineral admixtures consumption in contemporaneous cementiceous materials has stablished revision of some test methods. In the evaluation of blended cement durability, many accelerated tests of large application in portland cements become unvalid, because they don't allow to value the improvements produced by pozzolan materials. Koch-Steinegger Method appears as the most appropiate to evaluate sulfate resistance of cement with active mineral admixtures. ...

  15. Evaluation of Invertebrate Bioaccumulation of Fly Ash Contaminants in the Emory, Clinch, and Tennessee Rivers, 2009 - 2010

    Energy Technology Data Exchange (ETDEWEB)

    Smith, John G [ORNL

    2012-05-01

    This report provides a summary of results from studies on invertebrate bioaccumulation of potential contaminants associated with a major fly ash spill into the Emory River following the failure of a dike at the Tennessee Valley Authority's (TVA) Kingston Fossil Plant (KIF) in Kingston, Tennessee, in late December 2008. Data included in this report cover samples collected in calendar years 2009 and 2010. Samples collected from most sites in 2009 were processed by two different laboratories using different approved U.S. Environmental Protection Agency (EPA) analytical methods: ALS Laboratory Group in Ft. Collins, CO, processed sampling using EPA method 6010 (but method 6020 for uranium and SW7470 for mercury), and PACE Analytical in Minneapolis, MN, used EPA method 6020. A preliminary evaluation of results from both laboratories indicated that some differences exited in measured concentrations of several elements, either because of specific differences of the two methods or inter-laboratory differences. While concentration differences between the laboratories were noted for many elements, spatial trends depicted from the results of both methods appeared to be similar. However, because samples collected in the future will be analyzed by Method 6020, only the results from PACE were included in this report to reduce data variation potentially associated with inter-laboratory and analytical method differences.

  16. Solidification/stabilization of ash from medical waste incineration into geopolymers.

    Science.gov (United States)

    Tzanakos, Konstantinos; Mimilidou, Aliki; Anastasiadou, Kalliopi; Stratakis, Antonis; Gidarakos, Evangelos

    2014-10-01

    In the present work, bottom and fly ash, generated from incinerated medical waste, was used as a raw material for the production of geopolymers. The stabilization (S/S) process studied in this paper has been evaluated by means of the leaching and mechanical properties of the S/S solids obtained. Hospital waste ash, sodium hydroxide, sodium silicate solution and metakaolin were mixed. Geopolymers were cured at 50°C for 24h. After a certain aging time of 7 and 28 days, the strength of the geopolymer specimens, the leachability of heavy metals and the mineralogical phase of the produced geopolymers were studied. The effects of the additions of fly ash and calcium compounds were also investigated. The results showed that hospital waste ash can be utilized as source material for the production of geopolymers. The addition of fly ash and calcium compounds considerably improves the strength of the geopolymer specimens (2-8 MPa). Finally, the solidified matrices indicated that geopolymerization process is able to reduce the amount of the heavy metals found in the leachate of the hospital waste ash.

  17. Can ash clog soil pores?

    Science.gov (United States)

    Stoof, Cathelijne; Stoof, Cathelijne; Gevaert, Anouk; Gevaert, Anouk; Baver, Christine; Baver, Christine; Hassanpour, Bahareh; Hassanpour, Bahareh; Morales, Veronica; Morales, Veronica; Zhang, Wei; Zhang, Wei; Martin, Deborah; Martin, Deborah; Steenhuis, Tammo; Steenhuis, Tammo

    2015-04-01

    evaluated here. Infiltration reductions and increases in runoff in these systems are more likely caused by the hydrologic effects of the textural interface between ash and soil, or by other fire-induced changes such as vegetation removal, decrease in roughness, and changes in soil water repellency. This is important information for determining the desired focus of post-fire management activities.

  18. Associative properties of 137Cs in biofuel ashes

    International Nuclear Information System (INIS)

    The present study aims to reveal how radiocesium is associated to the ash particles derived from biofuel combustion. A sequential extraction procedure was carried out for the characterisation of radiocesium speciation in ash generated by different fuels and burner types. The ash types considered were fly ash and bottom ash collected from Swedish district heating plants using bark wood or peat as fuel. A fraction of the radiocesium in biofuel ash can easily become solubilised and mobilised by water and also, a significant fraction of the radionuclides can be bound to the ash particles in cation-exchangeable forms. Therefore, at using the ash derived from biofuels to recycle mineral nutrients for forestry or short rotation coppicing, radiocesium solubilised and leached from the ash by rains has a potential to rather quickly enter the rooting zone of forest vegetation or energy crops. On the other hand, radiocesium strongly bound to the ash will migrate slowly into the soil column with the successive accumulation of litter and in the process act to maintain the external dose rate at an elevated level for a long time. The results of the sequential extraction procedure and activity determination of the different extracted fractions implies that the bioavailable fraction of radiocesium in ash from bark, wood or peat is in the range between 20-85% of the total ash contents. Peat ash collected from a powder burner strongly retained a large fraction (70-90%) of its radiocesium content while the peat ash from a continuos fluidized bed type burner retained nearly 100% of the radiocesium in the bottom ash and only about 15% in the fly ash

  19. Electrochemical removal of Cd from bioashes in pilot scale and evaluation of possibilities for utilizing treated ashes in concrete; Elektrokemisk fjernelse af Cd fra bioasker i pilotskala og vurdering af mulighederne for nyttiggoerelse af behandlet aske i beton

    Energy Technology Data Exchange (ETDEWEB)

    Juul Pedersen, A.; Ottosen, L.M. [BYG-DTU, Copenhagen (Denmark); Simonsen, P. [Energi E2 A/S, Copenhagen (Denmark); Aune, J. [MT Hoejgaard A/S, Soeborg (Denmark)

    2006-07-01

    Electrochemical removal of cadmium from bio ashes has been demonstrated in pilot scale, and the remediated ashes have been evaluated for possible reuse as either fertilizers, or in concrete products. 5 remediation experiments have been completed, using straw combustion fly ash or fly ash from cocombustion of wood and fuel oil. During these emediation experiments the process has been upscaled stepwise, from an initial distance between the electrodes of 35 cm and a tank volume of 300 L ash suspension, to a final electrode distance of 245 cm, a total tank volume of 2.1 m3, and inclusion of up to 6 'concentration-units'. The ash volumes to be remediated made up to between 8.4 and 82.5 kg dry matter, prior to eventual pre-wash. The first four remediation experiments were made with straw combustion fly ash, the fifth contained both straw combustion fly ash and cocombustion fly ash, in separate compartments. The demonstration experiments have in many ways confirmed the results obtained in smaller scale in the previous project PSO FU 3206. It is demonstrated that electrochemical removal of cadmium from bioashes is possible also in larger scale than laboratory scale and benchscale, as final concentrations of cadmium below the regulatory limits for recycling of straw ashes have been reached. Furthermore, new findings such as the importance of choosing more acid resistant materials for the plant have showed up. The use of concentration units contributed positively to the separation of cadmium from the ash suspension, but when using concentration units the 'natural' acidification of the ash during the remediation process is delayed, and thus it is recommended to add acid to the ash before and eventually during the remediation process to decrease pH more rapidly. The ashes were analyzed before and after remediation for evaluation of the potential of reusing the ashes in concrete products, or recycle them as fertilizers. It was found that the fertilizing

  20. Accumulation of metals in vegetation established in ash constructions; Ackumulering av metaller i vegetation paa geotekniska askkonstruktioner

    Energy Technology Data Exchange (ETDEWEB)

    Hemstroem, Kristian; Wik, Ola (SGI, Statens geotekniska institut (Sweden)); Bramryd, Torleif; Johansson, Michael (Lunds Universitet, Miljoestrategi (Sweden)); Jaegerbrand, Annika (VTI, Statens Vaeg och transportforskningsinstitut (Sweden))

    2012-02-15

    The overall aim of this study was to investigate how the use of ash in a long-term perspective affects the surrounding flora and fauna with regard to the accumulation of metals in the ecosystem through plant uptake and exposure to grazing animals. The study included a field study and a cultivation experiment. In the field study, the accumulation of metals and metalloids in leaves of trees and shrubs that had self established and grown in lysimeters with aged MSWI bottom ash and aged biofuel ash was determined. In the cultivation experiment, the accumulation of metals and metalloids from the studied materials in ryegrass was determined. Reference materials in the cultivation experiment were two conventional geotechnical materials, crushed rock and excavated soil. Leaves from trees and bushes in the vicinity of the ash lysimeters were used as reference materials in the field study. Contamination of plant samples with particles, through splashing during rain, dusting, or in connection with sampling, proved to have had a major impact on the measured metal and metalloid concentrations in several grass samples in the cultivation experiment. The results also indicate that contamination of plant samples with particles occurred in the field study. In this case, probably due to atmospheric deposition. The particle contamination complicated the evaluation of some of the results in the project since the intention was to study accumulation by roots from the studied ash materials, but, on the other hand, the particle contamination showed the importance of taking into account the spreading of contaminants through particles as an exposure route for grazing animals. In the field study, only Cd and Zn in aspen, willow and birch exhibited elevated levels in the leaves due to root uptake from MSWI bottom ash compared to the reference samples. In addition, elevated levels of As was observed in leaves from trees in the biofuel ash. The total content of As was similar in all studied

  1. EDU 626 ASH

    OpenAIRE

    NARESH 40 course tutorial/tutorialoutlet

    2015-01-01

    For more course tutorials visit www.tutorialoutlet.com     Product Description EDU 626 Week 1 Research Topic (Ash) EDU 626 Week 2 Annotated Bibliography (Ash) EDU 626 Week 2 Critical Thinking Questions (Ash) EDU 626 Week 3 Procedures or Methods (Ash) EDU 626 Week 4 Critical Thinking Questions (Ash) EDU 626 Week 5 Critical Thinking Questions (Ash) EDU 626 Week 6 Final Paper (Ash)  

  2. Ash and heavy metals in fluidized bed-combustion; Tuhka ja raskasmetallit puuperaeisen jaetteen kerrosleijupoltossa

    Energy Technology Data Exchange (ETDEWEB)

    Kaessi, T.; Aittoniemi, P. [IVO International, Vantaa (Finland)

    1996-12-01

    Combustion ashes and submicron fly ash particles were characterized in two industrial boilers (bubbling vs. circulating fluidized bed) burning paper mill deinking sludge and bark or wood as support fuel. Bulk samples from fly ash, circulating ash and bottom ash were analyzed. Fine particles in fly ash were monitored and sampled for microscopic studies. The mass size distribution of fly ash was measured and the chemical composition according to particle size was analyzed. The results showed that ash consists of large and friable clusters formed by sintering of small mineral particles originating from paper fillers. Very few ash particles were fused and they were found only among the smallest particles. No agglomerates of fused particles were found. If the residence time in furnace is long enough sintering may proceed further and ash structure grows more dense. No indication of ash vaporization was detected. These results were similar for bubbling and circulating fluidized bed boilers. (author)

  3. Pre-treatment and recirculation of wood ashes; Forbehandling og recirkulering af flisaske

    Energy Technology Data Exchange (ETDEWEB)

    Skov, S.; Ingerslev, M.

    2011-07-01

    Harvest of forest biomass for energy production may lead to a significant export of nutrients from the forest. Ash spreading and recycling of nutrients from wood chip combustion to the forest has come into focus as a means for counteracting the nutrient export. A study was carried out to examine the retention of various elements in the different ash fractions and utilize the nutrient recovery to evaluate the fertilizer quality of the examined ash. The mass and element flux of wood chips, bottom ash, cyclone fly ash and condensation sludge at Ebeltoft central heating plant was studied over a four-day period in spring 2005. Substantial amounts of nutrients were retained in the fly ash (P, Ca, Mg, Mn and Cu have a recovery higher than 60 % and K, S and Fe have a recovery higher than 30 %). The recovery of elements in the bottom ash was smaller. The added recovery of the usable fractions of ashes (both fly ash and bottom ash) exceeded 75 % for the nutrients P, Ca, Mn and Mg. Both these ash fractions should be considered for fertilization. To examine how ash application affects the forest and Christmas tree stand ecosystem and especially the element budget field experiments were established and monitored intensively. Wood ash is alkaline and by spreading ash in the forest ecosystem, the chemistry of soil water and soil is affected. This introduces a risk of scorching the organisms, eg. mosses but also of root damaging and thereby an impaired water and nutrient uptake as a result. The ash contains salts. Some of these salts, especially metal chlorides and metal sulfates can be dissolved quickly and causes a pH decrease in soil water. There may be a risk that the geochemical conditions in the soil changed dramatically within a relatively short period. These changes can affect nutrient concentrations in soil water and mineralization of organic matter in soil. This increases the risk of leaching and permanent loss of nutrients. These adverse effects of wood ash application

  4. Screening coal combustion fly ashes for application in geopolymers

    NARCIS (Netherlands)

    Valcke, S.L.A.; Pipilikaki, P.; Sarabér, A.J.; Fischer, H.R.; Nugteren, H.W.

    2013-01-01

    Driven by cost and sustainability, secondary resource materials such as fly ash, blast furnace slag, and bottom ash are increasingly used for alternative types of concrete binders, such as geopolymers. Because secondary resources may be highly variable from the perspective of geopolymers, it is ofte

  5. The Ash-1, Ash-2 and Trithorax Genes of Drosophila Melanogaster Are Functionally Related

    OpenAIRE

    Shearn, A.

    1989-01-01

    Mutations in the ash-1 and ash-2 genes of Drosophila melanogaster cause a wide variety of homeotic transformations that are similar to the transformations caused by mutations in the trithorax gene. Based on this similar variety of transformations, it was hypothesized that these genes are members of a functionally related set. Three genetic tests were employed here to evaluate that hypothesis. The first test was to examine interactions of ash-1, ash-2 and trithorax mutations with each other. D...

  6. Utilization of blended fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash in geopolymer.

    Science.gov (United States)

    Chindaprasirt, Prinya; Rattanasak, Ubolluk

    2010-04-01

    In this paper, synthesis of geopolymer from fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash was studied in order to effectively utilize both ashes. FBC-fly ash and bottom ash were inter-ground to three different finenesses. The ashes were mixed with as-received PCC-fly ash in various proportions and used as source material for synthesis of geopolymer. Sodium silicate (Na(2)SiO(3)) and 10M sodium hydroxide (NaOH) solutions at mass ratio of Na(2)SiO(3)/NaOH of 1.5 and curing temperature of 65 degrees C for 48h were used for making geopolymer. X-ray diffraction (XRD), scanning electron microscopy (SEM), degree of reaction, and thermal gravimetric analysis (TGA) were performed on the geopolymer pastes. Compressive strength was also tested on geopolymer mortars. The results show that high strength geopolymer mortars of 35.0-44.0MPa can be produced using mixture of ground FBC ash and as-received PCC-fly ash. Fine FBC ash is more reactive and results in higher degree of reaction and higher strength geopolymer as compared to the use of coarser FBC ash. Grinding increases reactivity of ash by means of increasing surface area and the amount of reactive phase of the ash. In addition, the packing effect due to fine particles also contributed to increase in strength of geopolymers.

  7. Oral bioavailability of arsenic, antimony and a selection of metals in ashes; Oral biotillgaenglighet av arsenik, antimon och ett urval av metaller i askor

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, Christel; Bendz, David; Jones, Celia

    2008-06-15

    ); . the method was relatively simple; . the method could include an anaerobic step if needed; the method could include food; knowledge of the method existed in Sweden; and the method had been compared and evaluated in a scientific publication. In the experimental part of the study the bioaccessibility of antimony, arsenic, lead, cadmium, chromium, copper, nickel and zinc in seven different ashes at two different particle size fractions (<63 mum and <2 mm) was investigated. These fractions were chosen to represent voluntary (<2 mm) and involuntary (<63 mum) ingestion of ash. The investigated ashes were produced in different incineration plants and represented different categories, i.e. type of ash (fly ash or bottom ash), fuel and incinerator. In the experimental part the influence of total concentration of the elements on their bioaccessibility was also investigated, as well as the influence of particle size fraction on total content of the elements. The influence of type of ash on both bioaccessibility and total concentration of the specific elements was also investigated. The bioaccessible fraction of antimony, arsenic, cadmium, chromium, copper, lead, nickel and zinc in a selection of ashes showed a higher variation between the different elements than between the different ashes. With the exception of arsenic in two of the investigated ashes, the bioaccessible concentration was substantially less than the total concentration of all elements in all ashes. The bioaccessible fraction of arsenic was high both in fly ashes (>85%) and in bottom ashes (40-85%). The bioaccessible fraction of lead was also relatively high and varied between 14 and 60% in the different ashes. Cadmium also had a high bioaccessible fraction which varied between 50-75% in the investigated ashes. The bioaccessible fraction of chromium was much smaller compared to the bioaccessible fraction of the other elements, and was with two exceptions less than 12%. The bioaccessible fraction of copper was

  8. Municipal solid waste ash as a cement raw material substitute

    OpenAIRE

    Somnuk Tangtermsirikul; Pichaya Rachdawong; Kritsada Sisomphon

    2000-01-01

    An investigation of using municipal solid waste (MSW) ash as a cement raw material substitute was performed to evaluate the potential use of ash in construction. The use of incineratior ash in cement production would not only get rid of the ash, but also alleviate many environmental problems, for example, reducing raw materials required for cement production, reducing CO2 emission into the atmosphere, and reducing landfill space requirement for the residue ash disposal. The metallic oxide con...

  9. Pre-treatment and recirculation of wood ashes; Forbehandling og recirkulering af flisaske

    Energy Technology Data Exchange (ETDEWEB)

    Skov, S.; Ingerslev, M.

    2011-07-01

    Harvest of forest biomass for energy production may lead to a significant export of nutrients from the forest. Ash spreading and recycling of nutrients from wood chip combustion to the forest has come into focus as a means for counteracting the nutrient export. A study was carried out to examine the retention of various elements in the different ash fractions and utilize the nutrient recovery to evaluate the fertilizer quality of the examined ash. The mass and element flux of wood chips, bottom ash, cyclone fly ash and condensation sludge at Ebeltoft central heating plant was studied over a four-day period in spring 2005. Substantial amounts of nutrients were retained in the fly ash (P, Ca, Mg, Mn and Cu have a recovery higher than 60 % and K, S and Fe have a recovery higher than 30 %). The recovery of elements in the bottom ash was smaller. The added recovery of the usable fractions of ashes (both fly ash and bottom ash) exceeded 75 % for the nutrients P, Ca, Mn and Mg. Both these ash fractions should be considered for fertilization. To examine how ash application affects the forest and Christmas tree stand ecosystem and especially the element budget field experiments were established and monitored intensively. Wood ash is alkaline and by spreading ash in the forest ecosystem, the chemistry of soil water and soil is affected. This introduces a risk of scorching the organisms, eg. mosses but also of root damaging and thereby an impaired water and nutrient uptake as a result. The ash contains salts. Some of these salts, especially metal chlorides and metal sulfates can be dissolved quickly and causes a pH decrease in soil water. There may be a risk that the geochemical conditions in the soil changed dramatically within a relatively short period. These changes can affect nutrient concentrations in soil water and mineralization of organic matter in soil. This increases the risk of leaching and permanent loss of nutrients. These adverse effects of wood ash application

  10. Evaluation of cyclonic ash, commercial Na-silicates, lime and phosphoric acid for metal immobilisation purposes in contaminated soils in Flanders (Belgium)

    Energy Technology Data Exchange (ETDEWEB)

    Geebelen, Wouter [Hasselt University, Centre for Environmental Sciences, Environmental Biology, Agoralaan - Gebouw D, B-3590 Diepenbeek (Belgium)]. E-mail: wouter.geebelen@uhasselt.be; Sappin-Didier, Valerie [UMR TCEM, INRA, Centre de recherche Bordeaux - Aquitaine, BP 81, 33883 Villenave d' Ornon cedex (France)]. E-mail: didier@bordeaux.inra.fr; Ruttens, Ann [Hasselt University, Centre for Environmental Sciences, Environmental Biology, Agoralaan - Gebouw D, B-3590 Diepenbeek (Belgium); Carleer, Robert [Hasselt University, Centre for Environmental Sciences, Applied Chemistry, Agoralaan - Gebouw D, B-3590 Diepenbeek (Belgium)]. E-mail: robert.carleer@uhasselt.be; Yperman, Jan [Hasselt University, Centre for Environmental Sciences, Applied Chemistry, Agoralaan - Gebouw D, B-3590 Diepenbeek (Belgium)]. E-mail: jan.yperman@uhasselt.be; Bongue-Boma, Kwele [UMR TCEM, INRA, Centre de recherche Bordeaux - Aquitaine, BP 81, 33883 Villenave d' Ornon cedex (France); Mench, Michel [UMR BIOGECO INRA, Ecology of Communities, Bordeaux 1 University, Bat B8 RdC Est, av. des Facultes, F-33405 Talence (France)]. E-mail: mench@bordeaux.inra.fr; Lelie, Niels van der [Brookhaven National Laboratory, Biology Department, Bldg. 463, New York, NY 11973-5000 (United States)]. E-mail: vdlelied@bnl.gov; Vangronsveld, Jaco [Hasselt University, Centre for Environmental Sciences, Environmental Biology, Agoralaan - Gebouw D, B-3590 Diepenbeek (Belgium)]. E-mail: jaco.vangronsveld@uhasselt.be

    2006-11-15

    In order to reduce the health risks associated with historically enriched metal smelting sites in Flanders (Belgium), the capacities of a non-beringite cyclonic ash and commercial Na-silicates to fix metals and create conditions to restore vegetation cover were evaluated and compared to lime and H{sub 3}PO{sub 4}. All tested amendments reduced Ca(NO{sub 3}){sub 2}-extractable soil metal concentrations and reduced metal uptake in Agrostis capillaris seedlings. Sodium released by Na-silicates was possibly toxic to bean plants while an isotopic dilution technique revealed that metals were only weakly sorbed by silicates (i.e. reversible sorption). Cyclonic ash appeared more efficient than lime in both reducing oxidative stress in beans and Zn, Cu and Pb uptake in grasses. The metal fixing mechanism for both amendments appeared similar (i.e. irreversible fixation at constant pH), in contrast to H{sub 3}PO{sub 4} where at least part of the immobilised Cd was irreversibly fixed across a range of pH. - Metal immobilising capacities of Na-silicates are weak, while the active mechanism of cyclonic ash is the same as lime.

  11. Chemical fractionation method for characterization of biomass-based bottom and fly ash fractions from large-sized power plant of an integrated pulp and paper mill complex%化学分离法分析大型纸浆发电厂废渣中生物质底灰和飞灰成分

    Institute of Scientific and Technical Information of China (English)

    Risto PÖYKIÖ; Hannu NURMESNIEMI; Olli DAHL; Mikko MÄKELÄ

    2014-01-01

    The aim of this study was to extract the biomass-based bottom and fly ash fractions by a three-stage fractionation method for water-soluble (H2O), ammonium-acetate (CH3COONH4) and hydrochloric acid (HCl) fractions in order to access the leaching behaviour of these residues. Except for Mo, S, Na and elements whose concentrations were lower than the detection limits, the extractable element concentrations in both ash fractions followed the order H2O

  12. Critical evaluation of the nonradiological environmental technical specifications. Volume 3. Peach Bottom Atomic Power Station Units 2 and 3

    Energy Technology Data Exchange (ETDEWEB)

    Adams, S.M.; Cunningham, P.A.; Gray, D.D.; Kumar, K.D.; Witten, A.J.

    1976-08-10

    A comprehensive study of the data collected as part of the environmental Technical Specifications program for Units 2 and 3 of the Peach Bottom Nuclear Power Plant was conducted for the Office of Regulatory Research of the U.S. Nuclear Regulatory Commission. The program included an analysis of both the hydrothermal and ecological monitoring data collected from 1967 through 1976. Specific recommendations are made for improving both the present hydrothermal and ecological monitoring programs. Hydrothermal monitoring would be improved by more complete reporting of in-plant operating parameters. In addition, the present boat surveys could be discontinued, and monitoring efforts could be directed toward expanding the present thermograph network. Ecological monitoring programs were judged to be of high quality because standardized collection techniques, consistent reporting formats, and statistical analyses were performed on all of the data and were presented in an annual report. Sampling for all trophic groups was adequate for the purposes of assessing power plant induced perturbations. Considering the extensive period of preoperational data (six years) and operational data (three years) available for analysis, consideration could be given to reducing monitoring effort after data have been collected for a period when both units are operating at full capacity. In this way, an assessment of the potential ecological impact of the Peach Bottom facility can be made under conditions of maximum plant induced perturbations.

  13. Speciation of Zinc in ash investigated by X-ray absorption spectroscopy; Zinks foerekomstformer i aska studerade med en roentgenabsorptionsspektrometrisk metod

    Energy Technology Data Exchange (ETDEWEB)

    Steenari, Britt-Marie; Noren, Katarina

    2008-06-15

    Direct identification of trace metal compounds in solid materials is difficult to achieve due to the detection limits of available analytical methods. Although zinc is the most abundant trace metal in combustion residues, the number of publications dealing with its direct speciation is small. Struis and co-workers have published an investigation where they used Extended X-ray Absorption Fine Structure spectroscopy (EXAFS) measurements to identify zinc compounds in municipal solid waste incineration fly ash. The EXAFS technique has been used more often for speciation of Zn in contaminated soil. EXAFS data for farm soil samples showed that zinc was most commonly sequestered in layer silicates, but soil particles containing zinc sulphide, zinc chromite and zinc phosphate were also found. Generally, published results show that zinc after being mobilised in a soil, has a clear tendency to be sequestered in silicates, as sulphides or, if there is phosphate available, as phosphate. The aim of the work presented in this work was to use the EXAFS method to show how zinc in chemically bound in ash from woody fuels and from municipal solid waste (MSW). The results can be used for evaluations of the possible toxicity of ash and in predictions of the leaching of zinc from ash. The investigation comprised dry ashes from two fluidised bed combustors fired with forestry litter, bark and other wood fuels, moistened and aged wood ashes and dry ashes from three MSW incinerators: one fluidised bed combustor and two stoker fired combustors. The spectroscopic measurements were carried out at the beam line I811 in the Swedish national synchrotron facility Maxlab at Lund University. The results showed that the lowest concentration of Zn in ash for which it is possible to get any information about the nearest neighbour atoms around zinc is about 500 mg Zn per kg dry ash. If the concentration is higher than 1000 mg/ kg it is possible to obtain information, not only about the nearest

  14. Agglomeration in Stripper Ash Coolers and Its Possible Remedial Solutions: a Case Study

    Science.gov (United States)

    Singh, Ravi Inder

    2016-04-01

    The bottom ash of circulating fluidized bed (CFB) boiler contains large amounts of physical heat. When low quality coals are used in these types of boilers, the ash content is normally more than 40 % and the physical heat loss is approximately 3 % if the bottom ash is discharged without cooling. Bottom ash cooler (BAC) is often used to treat the high temperature bottom ash to reclaim heat, and to facilitate the easily handling and transportation of ash. The CFB boiler at BLA Power, Newari, MP (India) is facing problems of clinker formation in strip ash coolers of plant since the installation of unit. These clinkers are basically agglomerates, which leads to defluidization of stripper ash cooler (BAC) units. There are two strip ash coolers in unit. Each strip ash cooler is capable of working independently. The proper functioning of both strip coolers is very important as it is going to increase the combustion efficiency of boiler by stripping of fine unburnt coal particles from ash, which are injected into the furnace. In this paper causes, characterization of agglomerates, thermo gravimetric analysis of fuel used, particular size distribution of coal and sand and possible remedial solution to overcome these agglomerates in strip ash coolers has also been presented. High temperature in compact separators, non uniform supply of coal and not removing small agglomerates from stripper ash cooler are among main causes of agglomeration in stripper ash cooler. Control of compact separator temperature, replacing 10-12 % of bed material and cleaning stripper ash cooler periodically will decrease agglomeration in stripper ash cooler of unit.

  15. Evaluation of severe accident risks and the potential for risk reduction: Peach Bottom, Unit 2. Main report. Draft for comment, February 1987

    International Nuclear Information System (INIS)

    The Severe Accident Risk Reduction Program (SARRP) has completed a rebaselining of the risks to the public from a boiling water reactor with a Mark I containment (Peach Bottom, Unit 2). Emphasis was placed on determining the magnitude and character of the uncertainties, rather than focusing on a point estimate. The risk-reduction potential of a set of proposed safety option backfits was also studied, and their costs and benefits were also evaluated. It was found that the risks from internal events are generally low relative to previous studies; for example, most of the uncertainty range is lower than the point estimate of risk for the Peach Bottom plant in the Reactor Safety Study (RSS). However, certain unresolved issues cause the top of the uncertainty band to appear at a level that is comparable with the RSS point estimate. These issues include the modeling of the common-mode failures for the dc power system, the likelihood of offsite power recovery versus time during a station blackout, the probability of drywell failure resulting from meltthrough of the drywell shell, the magnitude of the fission product releases during core-concrete interactions, and the decontamination effectiveness of the reactor enclosure building. Most of the postulated safety options do not appear to be cost effective, although some based on changes to procedures or inexpensive hardware additions may be marginally cost effective. This draft for comment of the SARRP report for Peach Bottom does not include detailed technical appendices, which are still in preparation. The appendices will be issued under separate cover when completed. This work supports the Nuclear Regulatory Commission's assessment of severe accidents in NUREG-1150. (author)

  16. Bottom-Line Mentality as an Antecedent of Social Undermining and the Moderating Roles of Core Self-Evaluations and Conscientiousness

    Science.gov (United States)

    Greenbaum, Rebecca L.; Mawritz, Mary Bardes; Eissa, Gabi

    2012-01-01

    We propose that an employee's bottom-line mentality may have an important effect on social undermining behavior in organizations. Bottom-line mentality is defined as 1-dimensional thinking that revolves around securing bottom-line outcomes to the neglect of competing priorities. Across a series of studies, we establish an initial nomological…

  17. Application of solid ash based catalysts in heterogeneous catalysis.

    Science.gov (United States)

    Wang, Shaobin

    2008-10-01

    Solid wastes, fly ash, and bottom ash are generated from coal and biomass combustion. Fly ash is mainly composed of various metal oxides and possesses higher thermal stability. Utilization of fly ash for other industrial applications provides a cost-effective and environmentally friendly way of recycling this solid waste, significantly reducing its environmental effects. On the one hand, due to the higher stability of its major component, aluminosilicates, fly ash could be employed as catalyst support by impregnation of other active components for various reactions. On the other hand, other chemical compounds in fly ash such as Fe2O3 could also provide an active component making fly ash a catalyst for some reactions. In this paper, physicochemical properties of fly ash and its applications for heterogeneous catalysis as a catalyst support or catalyst in a variety of catalytic reactions were reviewed. Fly-ash-supported catalysts have shown good catalytic activities for H2 production, deSO(x), deNO(x), hydrocarbon oxidation,and hydrocracking, which are comparable to commercially used catalysts. As a catalyst itself, fly ash can also be effective for gas-phase oxidation of volatile organic compounds, aqueous-phase oxidation of organics, solid plastic pyrolysis, and solvent-free organic synthesis. PMID:18939526

  18. Oral bioavailability of arsenic, antimony and a selection of metals in ashes; Oral biotillgaenglighet av arsenik, antimon och ett urval av metaller i askor

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, Christel; Bendz, David; Jones, Celia

    2008-06-15

    ); . the method was relatively simple; . the method could include an anaerobic step if needed; the method could include food; knowledge of the method existed in Sweden; and the method had been compared and evaluated in a scientific publication. In the experimental part of the study the bioaccessibility of antimony, arsenic, lead, cadmium, chromium, copper, nickel and zinc in seven different ashes at two different particle size fractions (<63 mum and <2 mm) was investigated. These fractions were chosen to represent voluntary (<2 mm) and involuntary (<63 mum) ingestion of ash. The investigated ashes were produced in different incineration plants and represented different categories, i.e. type of ash (fly ash or bottom ash), fuel and incinerator. In the experimental part the influence of total concentration of the elements on their bioaccessibility was also investigated, as well as the influence of particle size fraction on total content of the elements. The influence of type of ash on both bioaccessibility and total concentration of the specific elements was also investigated. The bioaccessible fraction of antimony, arsenic, cadmium, chromium, copper, lead, nickel and zinc in a selection of ashes showed a higher variation between the different elements than between the different ashes. With the exception of arsenic in two of the investigated ashes, the bioaccessible concentration was substantially less than the total concentration of all elements in all ashes. The bioaccessible fraction of arsenic was high both in fly ashes (>85%) and in bottom ashes (40-85%). The bioaccessible fraction of lead was also relatively high and varied between 14 and 60% in the different ashes. Cadmium also had a high bioaccessible fraction which varied between 50-75% in the investigated ashes. The bioaccessible fraction of chromium was much smaller compared to the bioaccessible fraction of the other elements, and was with two exceptions less than 12%. The bioaccessible fraction of copper was

  19. [Ash Meadows Purchase Proposal

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — A proposal sent to the Richard King Mellon Foundation for a loan to fund the purchase of Ash Meadows by the Nature Conservancy. Ash Meadows, set outside of Las...

  20. Evaluating the provenance of Permian-Triassic and Palaeocene-Eocene ash beds by high precision U-Pb and Lu-Hf isotopic analyses of zircons: linking local sedimentary records to global events

    Science.gov (United States)

    Eivind Augland, Lars; Jones, Morgan; Planke, Sverre; Svensen, Henrik; Tegner, Christian

    2016-04-01

    Zircons are a powerful tool in geochronology and isotope geochemistry, as their affinity for U and Hf in the crystal structure and the low initial Pb and Lu allow for precise and accurate dating by U-Pb ID-TIMS and precise and accurate determination of initial Hf isotopic composition by solution MC-ICP-MS analysis. The U-Pb analyses provide accurate chronostratigraphic controls on the sedimentary successions and absolute age frames for the biotic evolution across geological boundaries. Moreover, the analyses of Lu-Hf by solution MC-ICP-MS after Hf-purification column chemistry provide a powerful and robust fingerprinting tool to test the provenance of individual ash beds. Here we focus on ash beds from Permian-Triassic and Palaeocene successions in Svalbard and from the Palaeocene-Eocene Thermal Maximum (PETM) in Fur, Denmark. Used in combination with whole rock geochemistry from the ash layers and the available geochemical and isotopic data from potential source volcanoes, these data are used to evaluate the provenance of the Permian-Triassic and Palaeocene ashes preserved in Svalbard and PETM ashes in Denmark. If explosive eruptions from volcanic centres such as the Siberian Traps and the North Atlantic Igneous Province (NAIP) can be traced to distal basins as ash layers, they provide robust tests of hypotheses of global synchronicity of environmental changes and biotic crises. In addition, the potential correlation of ash layers with source volcanoes will aid in constraining the extent of explosive volcanism in the respective volcanic centres. The new integrated data sets will also contribute to establish new reference sections for the study of these boundary events when combined with stable isotope data and biostratigraphy.

  1. Wet-Treated MSWI Fly Ash Used as Supplementary Cementitious Material

    Directory of Open Access Journals (Sweden)

    Martin Keppert

    2015-01-01

    Full Text Available Municipal solid waste incineration (MSWI is a common technique in treatment of domestic waste. This technique annually produces approximately 25 Mt solid residues (i.e., bottom and fly ash worldwide which is also a major issue in current research. In this research we are concerned with reusing the fly ash (FA as supplementary cementitious material (SCM in concrete. Such application solves the problem with heavy metal immobilization as well. To remove the high content of undesired soluble salts, number of washing treatments has been applied. Chemical composition of FA has been examined before and after treatments. The impact of cement substitution by FA in concrete was evaluated by measurement of its compressive strength and durability.

  2. EVALUATION & COMPARISION OF MECHANICAL PROPERTIES OF ALUMINIUM ALLOY 5052 REINFORCED WITH SILICONCARBIDE, GRAPHITE AND FLY ASH HYBRID METAL MATRIX COMPOSITES

    Directory of Open Access Journals (Sweden)

    ANKUSH SACHDEVA

    2013-10-01

    Full Text Available The engineering fraternity has always been looking forward to develop an outstanding and wonder-materials which would fit the ever-changing demands of the world. In order to fullfill the demands various newdiscoveries have been made by scientists, engineers and resrearchers. In todays competitive world many, materials have been tried for various unexplored conditions , but the never ending demand of the world encourages the researchers to develop the new material. Now the researchers are preparing the material by the combination of different materials called hybrid composite material.. Metal Matrix Composites (MMCs have emerged as a class of materials suitable for structural, aerospace, automotive, electronic, thermal and wearapplications owing to their advantages over the conventional materials. The present study was taken up to explore the possibility of using different reinforcements (silicon carbide, fly ash and graphite to enhance the properties of aluminium alloy (Al5052 composites. Different samples were prepared from the aluminium withvarying reinforcement composition. The mechanical properties studied after the experiment were strength, hardness and elongation.Further, these composites were characterized with the help of, mechanical testing and scanning electron microscopy.

  3. Evaluation of chemical constituents and free-radical scavenging activity of Swarnabhasma (gold ash), an ayurvedic drug.

    Science.gov (United States)

    Mitra, A; Chakraborty, S; Auddy, B; Tripathi, P; Sen, S; Saha, A V; Mukherjee, B

    2002-05-01

    From ancient times, Swarnabhasma (gold ash) has been used in several clinical manifestations including loss of memory, defective eyesight, infertility, overall body weakness and incidence of early aging. Swarnabhasma has been used by Ayurvedic physicians to treat different diseases like bronchial asthma, rheumatoid arthritis, diabetes mellitus, nervous disorders, etc. In the present investigation, Swarnabhasma was prepared after proper purification and calcination as per Ayurvedic pharmacy which consisted of Realger (As(2)S(2)), Lead oxide (Pb(3)O(4)), Pure gold (Au) and Latex of Calotropis gigantea. Qualitative analyses indicated that Swarnabhasma contained not only gold but also several microelements (Fe, Al, Cu, Zn, Co, Mg, Ca, As, Pb, etc.). Infrared spectroscopy showed that the material was free from any organic compound. The metal content in the bhasma was determined by atomic absorption spectrometry. Acute oral administration of Swarnabhasma showed no mortality in mice (up to 1 ml /20 g b.w. of Swarnabhasma suspension containing 1mg of drug). Chronic administration of Swarnabhasma also showed no toxicity as judged by SGPT, SGOT, serum creatinine and serum urea level and histological studies. In an experimental animal model, chronic Swarnabhasma-treated animals showed significantly increased superoxide dismutase and catalase activity, two enzymes that reduce free radical concentrations in the body.

  4. Ash Deposition Trials at Three Power Stations in Denmark

    DEFF Research Database (Denmark)

    Laursen, Karin; Frandsen, Flemming; Larsen, Ole Hede

    1998-01-01

    Six full-scale trials were conducted at three power stations in Denmark: Ensted, Funen, and Vendsyssel power stations. During these trials, pulverized coal, bottom ash, fly ash, and deposits from cooled probes were sampled and analyzed with various techniques. On the basis of SEM analyses......, the deposits can be grouped into five textural types, which all possess distinct textural and chemical characteristics. Likewise, the deposition mechanisms for these five types are characteristic and they may be used for constructing a model for the buildup and maturation of an ash deposit. The deposits...... collected on the probes were thin (maximum 2 mm after 9 h) and the influence of operational parameters and probe temperatures on the magnitude of the deposits were minor. The probe temperatures had no influence on the composition of the ash deposits for coals with low ash deposition propensities, whereas...

  5. ASH MELTING TEMPERATURE PREDICTION FROM CHEMICAL COMPOSITION OF BIOMASS ASH

    OpenAIRE

    Holubcik, Michal; Jandacka, Jozef; Malcho, Milan

    2015-01-01

    Solid fuels, including biomass, consist of combustible, ash and water. Ash in fuel is result of reaction of minerals presented in the biomass. Minerals and other different substances which form ash got into biomass during growth. Ash is solid residue resulted from the perfect laboratory combustion of fuel. It is composed of minerals that are present in the fuel. Some species of biomass ash have low ash melting temperature and can cause various problems in combustion boilers. Ash slags and sin...

  6. Adsorption of reactive Remazol Red RB dye of aqueous solution using zeolite of the coal ash and evaluation of acute toxicity with Daphnia similis

    International Nuclear Information System (INIS)

    In this study, the capacity of zeolite synthesized from coal ash in the removal of Remazol Red dye aqueous solution was investigated by batch mode operation. The equilibrium was attained after 360 min of contact time. The adsorption rate followed the kinetic model of pseudo-second-order. The equilibrium data obtained fitted to Langmuir adsorption isotherm showing the adsorption capacity of up to 1.20mg g-1. The efficiency of adsorption was between 75 to 91% in the equilibrium time. In order to obtain the best conditions for removal of this dye, the influence of the following parameters was: initial concentration of the dye, pH of the aqueous solution, dose of adsorbent and temperature. The thermodynamic parameters were evaluated showing that the adsorption of Remazol red on the zeolite is of a spontaneous nature. Experiments by adding NaCl and Na2SO4 were carried out to simulate the real conditions of the effluents from the dyeing bath and to evaluate the influence of these chemical compounds in the phenomenon of adsorption. The equilibrium data of adsorption of Remazol red on the zeolite was achieved in a shorter time in the presence of increasing concentrations of salts in solution and an increase in adsorption capacity. The efficiency of the study was evaluated as a treatment for acute toxicity using Daphnia similis microcrustacean. (author)

  7. Evaluation of nitric and acetic acid resistance of cement mortars containing high-volume black rice husk ash.

    Science.gov (United States)

    Chatveera, B; Lertwattanaruk, P

    2014-01-15

    This paper presents the performance of cement mortar containing black rice husk ash (BRHA) under nitric and acetic acid attacks. The BRHA, collected from an electrical generating power plant that uses rice husk as fuel, was ground using a grinding machine. The compressive strength loss, weight loss, and expansion of mortars under nitric and acetic acid attack were investigated. The test results of BRHA properties in accordance with the ASTM C 618 standard found that the optimal grinding time was 4 h as this achieved a Blaine fineness of 5370 cm(2)/g. For parametric study, BRHA were used as a Portland cement Type 1 replacement at the levels of 0%, 10%, 20%, 30%, 40%, and 50% by weight of binder. The water-to-binder ratios were 0.55, 0.60, and 0.65. From test results, when the percentage replacements of BRHA in cement increased, it was observed that the strength loss and weight loss of mortars containing BRHA under acetic acid attack were higher than those of the mortars against nitric acid attack. It was found that, of the various BHRA mortars, the strength loss and weight loss due to nitric and acetic acid attacks were the lowest in the mortar with 10% BRHA replacement. For 10%, 20% and 30% BRHA replacements, the rate of expansion of the BRHA mortar decreased when compared with the control mortar. For the mortars with other percentage replacements of BRHA, the rate of expansion increased. Furthermore, the effective water-to-binder ratios of control and BRHA mortars were the primary factor for determining the durability of mortar mixed with BRHA.

  8. Dyes removal of textile wastewater onto surfactant modified zeolite from coal ash and evaluation of the toxic effects; Remocao de corantes de efluente textil por zeolita de cinzas de carvao modificada por surfactante e avaliacao dos efeitos toxicos

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Patricia Cunico

    2015-07-01

    Zeolites synthesized from fly and bottom ashes and modified with hexadecyltrimethylammonium (HDTMA) were used as adsorbent to remove dyes - Solophenyl Navy (SN) and Solophenyl Turquoise (ST) and their hydrolysed forms Solophenyl Navy Hydrolysed (SNH) and Solophenyl Turquoise Hydrolysed (STH), from simulated textile wastewater. The HDTMA-modified fly zeolite (ZMF) and HDTMA-modified bottom zeolite (ZMB) were characterized by different techniques, as X-ray fluorescence spectrometry, X-ray diffraction and scanning electron microscopy, etc. The ZMF and ZMB presented negative charge probably due to the formation of a partial bilayer of HDTMA on exchangeable active sites on the external surface of unmodified zeolite. Initial dye concentration, contact time and equilibrium adsorption were evaluated. The adsorption kinetic for SN, ST, SNH and STH onto the zeolites followed the pseudo second-order model. The equilibrium time was 20 min for SN and ST and 30 min for SNH and STH, respectively. Langmuir, Freundlich and Temkin models were applied to describe the adsorption isotherms. Adsorption of the dyes were best described by the Langmuir model, with exception to SN/ZPM, SNH/ZPM and SNH/ZLM systems that followed Freundlich model. The maximum adsorption capacities were 3,64; 3,57; 2,91 e 4,93 for SN, ST, SNH e STH by ZLM, respectively and 0,235; 0,492; 1,26 e 1,86 by ZPM, in this order. The best performance for hydrolyzed dyes has been attributed to reduction of the size of dyes molecules during the hydrolysis process. Acute toxicity of the dyes to a different organism were evaluated by different test-organisms. Waterflea, Ceriodaphnia dubia showed EC50 value of 1,25; 54,5; 0,78 and 2,56 mgL{sup -1} for SN, ST, SNH and STH, respectively. The plant Lemna minor showed EC50 values of 18,9; 69,4; 10,9 and 70,9 mgL{sup -1} for SN, ST, SNH and STH, respectively. Midges larvae of Chironomus tepperi showed EC50 values of 119 and 440 mgL{sup -1} for SN and ST, respectively. Regarding

  9. Fly ash carbon passivation

    Science.gov (United States)

    La Count, Robert B; Baltrus, John P; Kern, Douglas G

    2013-05-14

    A thermal method to passivate the carbon and/or other components in fly ash significantly decreases adsorption. The passivated carbon remains in the fly ash. Heating the fly ash to about 500 and 800 degrees C. under inert gas conditions sharply decreases the amount of surfactant adsorbed by the fly ash recovered after thermal treatment despite the fact that the carbon content remains in the fly ash. Using oxygen and inert gas mixtures, the present invention shows that a thermal treatment to about 500 degrees C. also sharply decreases the surfactant adsorption of the recovered fly ash even though most of the carbon remains intact. Also, thermal treatment to about 800 degrees C. under these same oxidative conditions shows a sharp decrease in surfactant adsorption of the recovered fly ash due to the fact that the carbon has been removed. This experiment simulates the various "carbon burnout" methods and is not a claim in this method. The present invention provides a thermal method of deactivating high carbon fly ash toward adsorption of AEAs while retaining the fly ash carbon. The fly ash can be used, for example, as a partial Portland cement replacement in air-entrained concrete, in conductive and other concretes, and for other applications.

  10. Characterization of black carbon and organic contaminants in wood ash from different feedstocks and types of furnaces

    Science.gov (United States)

    Merino, Agustin; Rey-Salgueiro, Ledicia; Omil, Beatriz; Martinez-Carballo, Elena; Simal-Gandara, Jesus

    2015-04-01

    spectra, DSC and FTIR confirmed the presence of condensed structures, specially in the coarse particles. However, the different wood ash showed an important range of properties revealing the presence from charred material to charcoal containing condensed structures (H/C ratios lower than 0.6; aromaticity higher than 80 % and T50-DSC higher than 500 °C). Typical organic pollutants including those water-soluble such as BTEX plus styrene, but also those water-insoluble such as polycyclic aromatic hydrocarbons (PAHs), together with aliphatic hydrocarbons, were examined in the ash. Their contents were related to degree of combustion of the biomass, determined through the content and composition of the organic matter in the wood ash. The sum of BTEX plus styrene varied from non-detected to 30 mg/kg, and the total amounts of PAHs (total PAHs) ranged between non-detected and 422 µg/kg, not exceeding the regulated limits. This research provides basic information for the evaluation of the environmental risk and potential uses of WW incinerator bottom ash The results demonstrate the important variability in the charred material properties of the different power plants and size-particles. The organic compounds contents are also variable, but in all cases were levels of pollutants in all the samples were below the limits for both soil and industrial use (Environmental Protection Agency in the European Union and the USA.

  11. Evaluating vehicle re-entrained road dust and its potential to deposit to Lake Tahoe: a bottom-up inventory approach.

    Science.gov (United States)

    Zhu, Dongzi; Kuhns, Hampden D; Gillies, John A; Gertler, Alan W

    2014-01-01

    Identifying hotspot areas impacted by emissions of dust from roadways is an essential step for mitigation. This paper develops a detailed road dust PM₁₀ emission inventory using a bottom-up approach and evaluates the potential for the dust to deposit to Lake Tahoe where it can affect water clarity. Previous studies of estimates of quantities of atmospheric deposition of fine sediment particles ("FSP", dust emission factors, five years of meteorological data, a traffic demand model and GIS analysis was used to estimate the near field deposition of airborne particulate matter atmospheric deposition to the lake. Approximately ~20 Mg year(-1) of PM₁₀ and ~36 Mg year(-1) Total Suspended Particulate (TSP) from roadway emissions of dust are estimated to reach the lake. We estimate that the atmospheric dry deposition of particles to the lake attributable to vehicle travel on paved roads is approximately 0.6% of the Total Maximum Daily Loadings (TMDL) of FSP that the lake can receive and still meet water quality standards.

  12. Experimental study on the rheological behaviour of coal ash slurries

    Directory of Open Access Journals (Sweden)

    Assefa K.M.

    2015-12-01

    Full Text Available Extensive experimental investigations were carried out to evaluate the rheological behaviour of fly ash (FA slurry without and with the addition of bottom ash (BA and BA slurry without and with the addition of FA. The FA slurries exhibited Bingham behaviour at solid mass concentrations ranging from 60–65% and mixing proportions from 10– 40%. A substantial reduction in yield stress was observed except for mixing proportion of 40% on which the yield stress and viscosity were increased drastically for all solid concentrations. Hence, it can be concluded that the yield stress and viscosity of FA slurry were very much influenced by adding BA up to the mixing proportion of 30%. The rheological behaviour of BA slurries with and without the addition of FA in proportions of 10–50% was investigated and exhibited Newtonian behaviours for solid mass concentrations ranging from 30–50% without and with the addition of FA. The viscosity increases with increasing the solid concentrations and proportion of FA. Based on these experimental data, a correlation was developed to predict the relative viscosity of BA slurries as a function of solid volume fraction and FA mass proportion of 0–50% and the RMSE and R2 values showed good agreement between the experimental and the predicted data.

  13. Preliminary results on the ash behavior of peach stones during fluidized bed gasification: evaluation of fractionation and leaching as pre-treatments

    Energy Technology Data Exchange (ETDEWEB)

    Arvelakis, S.; Koukios, E.G. [National Technical Univ., Athens (Greece). Dept. of Chemical Engineering; Gehrmann, H. [Clausthaler Umwelttechnik Institut GmbH, Claushal Zellerfeld (Germany); Beckmann, M. [Bauhaus Universitat Dept. of Process Engineering and Environment, Weimar (Germany)

    2005-03-01

    Peach stones comprise a valuable agroindustrial by-product that is available in many countries of the World and especially in the Mediterranean region. A number of important advantages such as its high energy value, the low ash content in combination with the absence of transportation costs due to the fact that is produced in agro-industries, make peach stones an ideal fuel for energy production via gasification. Gasification tests were performed in a lab-scale fluidized bed gasifier in order to study the behavior of peach stones and especially its ash during the gasification process. Apart from the tests with the initial peach stone samples, gasification tests were performed using peach stones that had been pre-treated using two different methods fractionation and leaching. Pre-treatments used in order to study their effect on the beneficiation of the materials ash and on the avoidance of ash-related problems such as deposition, agglomeration and corrosion during the gasification process. A water-cooled steel tube placed vertical to the flow of the gasification gases was used in order to collect samples of ash deposits that were analyzed using SEM-EDX analysis techniques in order to assess the effect of the pre-treatment techniques on the peach stones ash behavior. The produced results showed that peach stones can be used as gasification feedstock without significant ash problems. Fractionation resulted in a deterioration of the ash behavior of the material, increasing the amounts of alkali metals and chlorine included in its ash, while leaching showed a positive effect but to a moderate extent. (author)

  14. Gas generation in incinerator ash; Gasbildning i aska

    Energy Technology Data Exchange (ETDEWEB)

    Arm, Maria; Lindeberg, Johanna; Rodin, Aasa; Oehrstroem, Anna; Backman, Rainer; Oehman, Marcus; Bostroem, Dan

    2006-02-15

    In recent years, explosions have occurred in certain phases of ash handling in Sweden. Investigations have revealed that hydrogen may have been present in all cases. The hydrogen is believed to be generated by chemical reactions of aluminium and other metals within the ash in the presence of water. The purpose with this study is to increase the knowledge of gas generation of incinerator ash. Thereby, guides for appropriate ash management can be introduced and the risk for further explosions prevented. The study has comprised analyses of the ash properties, such as chemical and physical composition and the pH, of ash from 14 incineration plants (mostly waste incineration plants). Different fractions of ash materials representing different parts of the process in each plant have been analysed. Furthermore, the fuel and the technical differences between the plants have been analysed. A tool for measuring the gas generation in the laboratory has been developed and the gas generation of the different ash materials at natural and increased pH was measured. Gas analyses and thermodynamic calculations have also been performed. The results showed that: bottom ash from fluidised bed boilers generated small amounts of gas at increased pH, much smaller amounts than the idle pass, cyclone and filter ash did, bottom ash from grate fired boilers generated more gas at increased pH than their cyclone ash and filter ash, with exception of the Linkoeping plant, all bio waste incineration plants generated ash with low gas generation potential, all fly ash materials with a gas generation potential of more than 10 l/kg originated from municipal waste incineration plants, filter ash that had been stored in oxygen rich environment generated significant less gas than fresh filter ash of the same origin, hardly any other gases were generated apart from hydrogen (very small amounts of acetone, furane, benzene and most likely methane were detected in some of the ash materials), there were no

  15. Engineering properties of cement mortar with pond ash in South Korea as construction materials: from waste to concrete

    Science.gov (United States)

    Jung, Sang; Kwon, Seung-Jun

    2013-09-01

    Among the wastes from coal combustion product, only fly ash is widely used for mineral mixture in concrete for its various advantages. However the other wastes including bottom ash, so called PA (pond ash) are limitedly reused for reclamation. In this paper, the engineering properties of domestic pond ash which has been used for reclamation are experimentally studied. For this, two reclamation sites (DH and TA) in South Korea are selected, and two domestic PAs are obtained. Cement mortar with two different w/c (water to cement) ratios and 3 different replacement ratios (0%, 30%, and 60%) of sand are prepared for the tests. For workability and physical properties of PA cement mortar, several tests like flow, setting time, and compressive strength are evaluated. Several durability tests including porosity measuring, freezing and thawing, chloride migration, and accelerated carbonation are also performed. Through the tests, PA (especially from DH area) in surface saturated condition is evaluated to have internal curing action which leads to reasonable strength development and durability performances. The results show a potential applicability of PA to concrete aggregate, which can reduce consuming natural resources and lead to active reutilization of coal product waste.

  16. Shedding of ash deposits

    DEFF Research Database (Denmark)

    Zbogar, Ana; Frandsen, Flemming; Jensen, Peter Arendt;

    2009-01-01

    Ash deposits formed during fuel thermal conversion and located on furnace walls and on convective pass tubes, may seriously inhibit the transfer of heat to the working fluid and hence reduce the overall process efficiency. Combustion of biomass causes formation of large quantities of troublesome....... Low melting temperatures make straw ashes especially troublesome, since their stickiness is higher at lower temperatures, compared to coal ashes. Increased stickiness will eventually lead to a higher collection efficiency of incoming ash particles, meaning that the deposit may grow even faster...

  17. Possibilities of municipal solid waste incinerator fly ash utilisation.

    Science.gov (United States)

    Hartmann, Silvie; Koval, Lukáš; Škrobánková, Hana; Matýsek, Dalibor; Winter, Franz; Purgar, Amon

    2015-08-01

    Properties of the waste treatment residual fly ash generated from municipal solid waste incinerator fly ash were investigated in this study. Six different mortar blends with the addition of the municipal solid waste incinerator fly ash were evaluated. The Portland cement replacement levels of the municipal solid waste incinerator fly ash used were 25%, 30% and 50%. Both, raw and washed municipal solid waste incinerator fly ash samples were examined. According to the mineralogical composition measurements, a 22.6% increase in the pozzolanic/hydraulic properties was observed for the washed municipal solid waste incinerator fly ash sample. The maximum replacement level of 25% for the washed municipal solid waste incinerator fly ash in mortar blends was established in order to preserve the compressive strength properties. Moreover, the leaching characteristics of the crushed mortar blend was analysed in order to examine the immobilisation of its hazardous contents. PMID:26060198

  18. Utilization Of Rice Husk Ash

    Directory of Open Access Journals (Sweden)

    S. D. Nagrale

    2012-07-01

    Full Text Available India is a major rice producing country, and the husk generated during milling is mostly used as a fuel in the boilers for processing paddy, producing energy through direct combustion and / or by gasification. About 20 million tones of Rice Husk Ash (RHA is produced annually. This RHA is a great environment threat causing damage to the land and the surrounding area in which it is dumped. Lots of ways are being thought of for disposing them by making commercial use of this RHA. RHA can be used as a replacement for concrete (15 to 25%.This paper evaluates how different contents of Rice Husk Ash added to concrete may influence its physical and mechanical properties. Sample Cubes were tested with different percentage of RHA and different w/c ratio, replacing in mass the cement. Properties like Compressive strength, Water absorption and Slump retention were evaluated.

  19. Spring Bottom Trawl Survey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The standardized NEFSC Spring Bottom Trawl Survey was initiated in 1968 and covered an area from Cape Hatteras, NC, to Nova Scotia, Canada, at depths >27m....

  20. Winter Bottom Trawl Survey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The standardized NEFSC Winter Bottom Trawl Survey was initiated in 1992 and covered offshore areas from the Mid-Atlantic to Georges Bank. Inshore strata were...

  1. Fall Bottom Trawl Survey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The standardized NEFSC Fall Bottom Trawl Survey was initiated in 1963 and covered an area from Hudson Canyon, NY to Nova Scotia, Canada. Throughout the years,...

  2. Summer Bottom Trawl Survey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sampling the coastal waters of the Gulf of Maine using the Northeast Fishery Science Center standardized bottom trawl has been problematic due to large areas of...

  3. Volcanic Ash Transport and Dispersion Forecasting

    Science.gov (United States)

    Servranckx, R.; Stunder, B.

    2006-12-01

    Volcanic ash transport and dispersion models (VATDM) have been used operationally since the mid 1990's by the International Civil Aviation Organization (ICAO) designated Volcanic Ash Advisory Centers (VAAC) to provide ash forecast guidance. Over the years, significant improvements in the detection and prediction of airborne volcanic ash have been realized thanks to improved models, increases in computing power, 24-hr real time monitoring by VAACs / Meteorological Watch Offices and close coordination with Volcano Observatories around the world. Yet, predicting accurately the spatial and temporal structures of airborne volcanic ash and the deposition at the earth's surface remains a difficult and challenging problem. The forecasting problem is influenced by 3 main components. The first one (ERUPTION SOURCE PARAMETERS) comprises all non-meteorological parameters that characterize a specific eruption or volcanic ash cloud. For example, the volume / mass of ash released in the atmosphere, the duration of the eruption, the altitude and distribution of the ash cloud, the particle size distribution, etc. The second component (METEOROLOGY) includes all meteorological parameters (wind, moisture, stability, etc.) that are calculated by Numerical Weather Prediction models and that serve as input to the VATDM. The third component (TRANSPORT AND DISPERSION) combines input from the other 2 components through the use of VATDM to transport and disperse airborne volcanic ash in the atmosphere as well as depositing it at the surface though various removal mechanisms. Any weakness in one of the components may adversely affect the accuracy of the forecast. In a real-time, operational response context such as exists at the VAACs, the rapid delivery of the modeling results puts some constraints on model resolution and computing time. Efforts are ongoing to evaluate the reliability of VATDM forecasts though the use of various methods, including ensemble techniques. Remote sensing data

  4. Fungal leaching of valuable metals from a power plant residual ash using Penicillium simplicissimum: Evaluation of thermal pretreatment and different bioleaching methods.

    Science.gov (United States)

    Rasoulnia, P; Mousavi, S M; Rastegar, S O; Azargoshasb, H

    2016-06-01

    Each year a tremendous volume of V-Ni rich ashes is produced by fuel oil consuming power plants throughout the world. Recovery of precious metals existing in these ashes is very important from both economic and environmental aspects. The present research was aimed at investigating bioleaching potential of Penicillium simplicissimum for the recovery of metals from power plant residual ash (PPR ash) using different bioleaching methods such as one-step, two-step, and spent-medium bioleaching at 1% (w/v) pulp density. Furthermore, the effects of thermal pretreatment on leaching of V, Ni, and Fe, as major elements present in PPR ash, were studied. Thermal pretreatment at various temperatures removed the carbonaceous and volatile fraction of the ash and affected the fungal growth and metal leachability. The highest extraction yields of V and Ni were achieved for the original PPR ash, using spent-medium bioleaching in which nearly 100% of V and 40% of Ni were extracted. The maximum extraction yield of Fe (48.3%) was obtained for the pretreated PPR ash at 400°C by spent-medium bioleaching. In addition, the fungal growth in pure culture was investigated through measurement of produced organic acids via high performance liquid chromatography (HPLC). Chemical leaching experiments were performed, using commercial organic acids at the same concentrations as those produced under optimum condition of fungal growth (5237ppm citric, 3666ppm gluconic, 1287ppm oxalic and 188ppm malic acid). It was found that in comparison to chemical leaching, bioleaching improved V and Ni recovery up to 19% and 12%, respectively. Moreover, changes in physical and chemical properties as well as morphology of the samples utilizing appropriate analytical methods such as XRF, XRD, FTIR, and FE-SEM were comprehensively investigated. PMID:27095291

  5. On the impact of additional spectral bands usage on RST-ASH performance in volcanic ash plume detected from space

    Science.gov (United States)

    Falconieri, Alfredo; Filizzola, Carolina; Marchese, Francesco; Pergola, Nicola; Tramutoli, Valerio

    2016-04-01

    RST-ASH is an algorithm developed for detecting and tracking volcanic ash clouds from space based on the Robust Satellite Technique (RST) multi-temporal approach. For the identification of ash affected areas RST-ASH uses two local variation indexes in combination. They analyse the Brightness Temperature Differences (BTD) of the signal measured at 11 μm and 12 μm and at around 3.5 and 11 μm wavelengths to detect ash in both nighttime and daytime conditions. RST-ASH was tested on Advanced Very High Resolution Radiometer (AVHRR) and on Moderate Resolution Imaging Spectroradiometer (MODIS) records and was then implemented on Spinning Enhanced Visible and Infrared Imager (SEVIRI) for studying and monitoring eruptions of different volcanoes. In this study, some experimental configurations of RST-ASH, analyzing signal also in other spectral bands (e.g. VIS, SO2) will be tested and assessed, studying recent ash plumes (e.g. Etna, Eyjafjallajökull, Grímsvötn) affecting different geographic areas. Results achieved using both polar and geostationary satellite data will be evaluated even for comparison with other state of the art methods. The work shows that when the extended spectral capabilities offered by high temporal resolution satellites are exploited an improvement of RST-ASH performance in some observational and plume conditions is achievable, making RST-ASH still more suited for identifying and monitoring ash clouds in the framework of possible operational scenarios.

  6. High temperature co-treatment of bottom ash and stabilized fly ashes from waste incineration

    DEFF Research Database (Denmark)

    Sørensen, Mette Abildgaard; Mogensen, E.P.B.; Lundtorp, Kasper;

    2001-01-01

    stream that may be utilized as a secondary road construction material. Scanning electron microscope analysis and grain size distribution analysis indicated that sintering of the particles did not occur. Batch leaching tests at liquid/solid 10 I/kg at a range of pH-values (6-10) quantified with respect...

  7. 罐底腐蚀声发射检测数据评价方法%Acoustic Emission Test Data Evaluation Method for the Tank Bottom Corrosion

    Institute of Scientific and Technical Information of China (English)

    汪文有; 许凤旌

    2012-01-01

    Atmospheric storage tank storage media are flammable, explosive, high toxic characteristic, and the leak, explosion and other accidents shall cause serious economic loss, personnel casualties and social influence. The existing inspection methods are subjected with undetected error, long construction period, the influence on production and error detection. High reliability and non-invasive overall evaluation might be realized by using the acoustic emission technique to on-line assessment of tank bottom corrosion status. The parameters filter, filter of the time difference sensor method, filtering noise, mechanical noise, electromagnetic noise interference data and the filtered data comprehensive rating according to the different levels of corrosion condition give the corresponding repair advice. Acoustic emission evaluation technology is characteristic of non-disrupting, needing no tank cleaning, reducing environmental pollution, saving tank inspection and maintenance costs, thus improving the management level of storage to be in safety condition etc.%常压储罐存储介质往往具有易燃、易爆、高毒等特点,其发生的泄露、爆炸等事故易造成严重的经济损失、人员伤亡和社会影响。现有的定检方法存在着漏检、工期长、影响生产和误检等缺点。采用声发射技术在线评估罐底腐蚀状况具有高可靠性特点,能够实现非侵入式的整体评价。通过采用参数滤波、时差滤波、护卫传感器的方法,滤除环境噪声、机械噪声、电磁噪声等干扰数据,对滤波后的有效数据进行综合评级,根据不同等级腐蚀状况给出相应的维修建议。声发射在线评估技术具有不停产、不清罐,减少环境污染,节省储罐的检测维护费用,提高储罐安全状态的管理水平等优点。

  8. Vector-like bottom quarks in composite Higgs models

    DEFF Research Database (Denmark)

    Gillioz, M.; Grober, R.; Kapuvari, A.;

    2014-01-01

    , and we test the compatibility with the electroweak precision observables. In particular we evaluate the constraint from the Z coupling to left-handed bottom quarks. General formulae have been derived which include the effects of new bottom partners in the loop corrections to this coupling and which can...... of the left-handed top and bottom quarks....

  9. Monitoring of test roads with MSWI bottom ash in the sub-base. Measurements with falling weight deflectometer on test structures in Malmoe and Umeaa. Analyses of ground water and leachate along test structures in Umeaa; Uppfoeljning av slaggrusprovvaegar. Fallviktsmaetning paa provstraeckor paa Toerringevaegen i Malmoe och Daavamyran i Umeaa. Grundvatten- och lakvattenanalyser paa provstraeckor vid Daavamyran i Umeaa

    Energy Technology Data Exchange (ETDEWEB)

    Arm, Maria; Larsson, Lennart; Tiberg, Charlotta; Lind, Bo; Arvidslund, Ola

    2008-12-15

    A number of test roads and test areas with processed municipal solid waste incinerator bottom ash, here called MSWI gravel, have been built in Sweden during the last 10-15 years. The main purpose of the projects reported here was to take advantage of the existing test roads to increase the knowledge of the long-term strength and environmental impact of MSWI gravel, when it is used as a road material. Two test roads with MSWI gravel in the sub-base were monitored through falling weight deflectometer (FWD) measurements and, for one of the roads, by means of sampling and analyses of groundwater and leachate within and along the road. The first road, constructed in 1998, is named Toerringevaegen and is situated outside Malmoe in the south of Sweden. The second road, Daava test road, was constructed in 2001 and is situated outside Umeaa in the north of Sweden. The roads were monitored regarding strength from 2004 to 2008 and Daava test road was also monitored regarding environmental impact from 2006 to 2008. For both roads, comparison was made over time and between the test sections with MSWI gravel and reference sections with crushed rock. Comparison was also made with results from previous studies on these test roads, resulting in a uniquely long monitoring period. The results from Toerringevaegen show that the road section with MSWI gravel in the sub-base retains its strength after several years. The three measurements performed at the Daava road revealed an initially decreasing strength and then a stabilisation. As in previous studies, the strength of the MSWI gravel was found to be about 70% of that of the crushed rock, which has to be taken into account in the design phase. It was concluded that regarding the strength properties MSWI gravel is suitable as sub-base material if the road is properly designed. It can also be used as a filling material, in embankments and as a capping layer. This confirms the conclusions from previous studies. The results from the

  10. Field and seismic evaluation of the block-and-ash flows emplaced from eruption columns of the 2005 Vulcanian explosions at Volcán de Colima, Mexico

    Science.gov (United States)

    Zobin, Vyacheslav M.; Carrasco-Núñez, Gerardo; Vargas-Gutiérrez, Víctor R.

    2016-04-01

    The May-September 2005 Vulcanian explosion sequence was the most intense of all the activity during the recent 1998-2015 unrest at Volcán de Colima, Mexico. This study presents field measurements of volume and runout distances of block-and-ash flows emplaced from eruption columns that punctuated the six largest explosions of this sequence. The energy of these explosions and the emplacement duration of the pyroclastic flows were obtained from broadband seismic signals associated with these events. The field and seismic characteristics of the 2005 explosions at Volcán de Colima and associated block-and-ash flows showed that six explosions with energy ranging between 3.0 × 1011 and 1.5 × 1013 J emplaced the block-and-ash flows with volumes ranging between 1.8 × 105 and 3.1 × 105 m3 DRE (dense rock equivalent). Analysis of durations of seismic signals associated with the movement of the 2005 block-and-ash flows emplaced from the eruption columns allowed us to quantify them as M3-magnitude events using the techniques proposed by Zobin et al. (Bull Volcanol 67: 679-688, 2005) to quantify the block-and-ash flows emplaced from the partial collapse of the lava dome at Volcán de Colima.

  11. Charmed Bottom Baryon Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Zachary S; Detmold, William; Meinel, Stefan; Orginos, Kostas

    2014-11-01

    The spectrum of doubly and triply heavy baryons remains experimentally unexplored to a large extent. Although the detection of such heavy particle states may lie beyond the reach of exper- iments for some time, it is interesting compute this spectrum from QCD and compare results between lattice calculations and continuum theoretical models. Several lattice calculations ex- ist for both doubly and triply charmed as well as doubly and triply bottom baryons. Here, we present preliminary results from the first lattice calculation of doubly and triply heavy baryons including both charm and bottom quarks. We use domain wall fermions for 2+1 flavors (up down and strange) of sea and valence quarks, a relativistic heavy quark action for the charm quarks, and non-relativistic QCD for the heavier bottom quarks. We present preliminary results for the ground state spectrum.

  12. Evaluation of contaminant release from solidified/stabilized municipal waste combustor residues for disposal and utilization

    International Nuclear Information System (INIS)

    Solidification/stabilization of municipal waste combustor residues is being considered for treatment of municipal waste combustion residues prior to disposal or utilization. Traditionally, contaminant release has been evaluated based on regulatory leach tests such as EP Toxicity or TCLP. Five S/S. processes, applied to bottom ash, combined ash and APC residues, each were evaluated using five different leaching procedures. The set of leaching procedures selected was designed to provide an understanding of contaminant release under differing potential management scenarios. This paper will discuss testing results and implications for evaluation of MWC residue utilization

  13. ACC 305 ASH

    OpenAIRE

    admn

    2015-01-01

    ACC 305 ASH Check this A+ tutorial guideline at   http://www.assignmentcloud.com/ACC-305-ASH/ACC-305-ASH-Complete-Class ACC 305 Week 1 Assignments E 3-18, E 3-20, J Case 3-5 ACC 305 Week 1 DQ 1 FASB and Ethics ACC 305 Week 1 DQ 2 Cash versus Accrual & Financial Disclosures ACC 305 Week 2 DQ 1 Earnings Management Case 4-3 ACC 305 Week 2 DQ 2 Revenue Recognition Case 5-2 ACC 305 Week 2 Problem E4-16 Bluebonnet Bakers ACC 305 Week 2 Problem E4-19 ...

  14. HIS 204 ASH Course Tutorial / Tutorialoutlet

    OpenAIRE

    JOHN

    2015-01-01

    For more course tutorials visit www.tutorialoutlet.com   HIS 204 Week 1 DQ 1 (Ash) HIS 204 Week 1 DQ 2 (Ash) HIS 204 Week 1 Quiz (Ash) HIS 204 Week 2 DQ 1 (Ash) HIS 204 Week 2 DQ 2 (Ash) HIS 204 Week 2 Quiz (Ash) HIS 204 Week 3 Assignment Women Right, Sacrifices & Independence (Ash) HIS 204 Week 3 DQ 1 (Ash) HIS 204 Week 3 DQ 2 (Ash) HIS 204 Week 4 DQ 1 (Ash) HIS 204 Week 4 DQ 2 (Ash) HIS 204 Week 4 Quiz (Ash) HIS 204 Week 5 DQ 1 (Ash) ...

  15. Pre-study - Straw ash in a nutrient loop; Foerstudie - Halmaska i ett kretslopp

    Energy Technology Data Exchange (ETDEWEB)

    Ottosson, Peter; Bjurstroem, Henrik; Johansson, Christina; Svensson, Sven-Erik; Mattsson, Jan Erik

    2009-03-15

    A sustainable production of energy crops requires that the loss of mineral nutrients when removing biomass is compensated naturally or by an addition of plant nutrients. Recycling ash is a natural way to satisfy this need arising after combustion of energy crops. In this pre-study, the prerequisites for recycling straw ash have been investigated. The Danish experience with spreading ash to fields and information in literature on the composition of ash have been collected and presented. Analysis of straw samples taken from four different places in Scania yielded information on cadmium and nutrient concentration in straw and in ash. A balance between removal of nutrient and cadmium with wheat straw and restoring them by recycling straw ash has been computed. Straw ash is a potassium fertiliser with some phosphorus and some liming effect. It is technically difficult to spread the small quantities of ash in solid form, ca 250 kg per hectare and year in average, which a pure recycling would require. It is easier to spread larger quantities, e.g. ca 1 ton per hectare every fourth year, which corresponds to spreading once in a four year crop rotation, but then one provides too much potassium if one considers the actual needs of the coming crops at that occasion, which could lead to potassium being leached out on light soils. Alternatively, one could spread only bottom ash, but this would lead to half of the potassium content not being recycled to agricultural soil and lost with the fly ash that is disposed of. If one spreads about 500 kg bottom ash per hectare every other year, which could be a suitable strategy to avoid overloading soils with potassium, the dose brought to 1 ha may be computed as: 4 - 10 kg phosphorus, 50 - 100 kg potassium, 5 - 15 kg sulphur, 4 - 8 kg magnesium, 0.1 - 0.3 kg manganese and 20 - 40 kg CaO. These basis of these calculations is the results from the analyses performed in this study. The cadmium concentration was significantly higher in wheat

  16. Enrichment and particle size dependence of polonium and other naturally occurring radionuclides in coal ash

    International Nuclear Information System (INIS)

    Coal fired thermal power contributes 70% of power in India. Coal fired power generation results in huge amounts of fly ash and bottom ash of varying properties. Coal, which contains the naturally occurring radionuclides, on burning results in enrichment of these radionuclides in the ashes. In the present study, coal, bottom ash and fly ash samples collected from six coal-fired power plants in India were measured for 210Po using alpha spectrometry and for natural U, 226Ra, 232Th and 40K by an HPGe γ-ray spectrometer. 210Po in fly ash ranged from 25.7 to 70 Bq/kg with a mean value of 40.5 Bq/kg. The range and mean activities of 238U, 226Ra, 232Th, 40K in fly ash were 38.5–101 (78.1), 60–105.7 (79), 20–125 (61.7) and 43.6–200 (100) Bq/kg respectively. Fly ash and bottom ash contains two to five times more natural radionuclides than feed coal. The results were compared with the available data from earlier studies in other countries. The effect of particle size on enrichment factor of the nuclides in fly ash was studied. 210Po showed the largest size dependence with its concentration favoring the smaller particle size while 232Th showed least size dependence. 238U and 226Ra showed behavior intermediate to that of 210Po and 232Th. Also the correlation between sulfur content of the feed coal and activity of 210Po was investigated. Increased sulfur content in feed coal enhanced enrichment of 210Po in ash

  17. Economic evaluation of losses to electric power utilities caused by ash fouling. Final technical report, November 1, 1979-April 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Burkhardt, F.R.; Persnger, M.M.

    1980-01-01

    Problems with convection ash fouling and wall slagging were considerable during our study. The Dakota lignites posed the greatest problems, particularly with fouling. The subbituminous coals had considerable problems, related mostly with wall slagging. The Texas lignites had few problems, and those were only associated with wall slagging. The generation losses were as follows: The Dakota lignite burning stations averaged an overall availability of 87.13%. Convection fouling outages were responsible for 57.75% of this outage time for a decrease in availability of 7.43%. Fouling was responsible for curtailment losses of 317,649 Mwh or 8.25% of the remaining available generation. Slagging was responsible for losses of 2732 megawatt hours or .07% of the remaining available generation. Total ash related losses amounted to 16.08% of the total available generation. The subbituminous burning stations averaged an overall availability of 78.36%. Total ash related losses amounted to 1.54% of the total available generation. The Texas lignite burning stations averaged an overall availability of 80.63%. No ash related outage losses occurred. Slagging curtailments accounted 0.08% of the total available generation. Costs due to ash fouling and slagging related curtailments are a tremendous sum. Seven power stations were studied for a six month period to assess costs. The total cost directly attributable to ash slagging and fouling condition was $20,638,113. Recommendations for reducing the problems involve soot blowers, control of furnace gas exit temperature, water blowers and more conservative boiler design.

  18. Evaluation of Ohio fly ash/hydrated lime slurries and Type 1 cement sorbent slurries in the U.C. Pilot spray dryer facility. Final report, September 1, 1993--August 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Keener, T.C.; Khang, S.J.; Meyers, G.R. [Cincinnati Univ., OH (United States)

    1995-02-01

    The objectives of this year`s work included an evaluation of the performance of fly ash/hydrated lime as well as hydrated cement sorbents for spray drying adsorption (SDA) of SO{sub 2} from a simulated high-sulfur flue gas. These sorbents were evaluated for several different hydration methods, and under different SDA operating conditions. In addition, the physical properties of surface area and porosity of the sorbents was determined. The most reactive fly ash/hydrated lime sorbent studied was prepared at room temperature with milled fly ash. Milling fly ash prior to hydration with lime did have a beneficial effect on calcium utilization. No benefit in utilization was experienced either by hydrating the slurries at a temperature of 90{degrees}C as compared to hydration at room temperature, or by increasing hydration time. While the surface areas varied greatly from sorbent to sorbent, the pore size distributions indicated ``ink bottle`` pores with surface porosity on the order of 0.5 microns. No correlation could be drawn between the surface area of the sorbents and calcium utilization. These results suggest that the composition of the resulting sorbent might be more important than its surface area. The most effective sorbent studied this year was produced by hydrating cement for 3 days at room temperature. This sorbent provided a removal efficiency and a calcium utilization over 25 percent higher than baseline results at an approach to saturation temperature of 30{degrees}F and a stoichiometric ratio of 0.9. A maximum SO{sub 2} removal efficiency of about 90 percent was experienced with this sorbent at an approach to saturation temperature of 20{degrees}F.

  19. Content and the forms of heavy metals in bottom sediments in the zone of industrial pollution sources ,

    Directory of Open Access Journals (Sweden)

    Voytyuk Y.Y.

    2014-12-01

    Full Text Available Regularities in the distribution of heavy metals in sediments in the zone of influence of the steel industry in Mariupol are installed. The study results of the forms of occurrence of Zn, Pb, Cu, Cr, Ni are represented. Ecological and geochemical assessment of sediment contamination by heavy metals is performed. The main sources of pollution of bottom sediments are air borne emissions from industrial plants, hydrogenous pollution in industrial sewage entering the water, sewage sludge, ash dumps, slag, ore, sludge, oil spills and salt solutions. Pollution hydrogenous sediments may be significant, contaminated sediments are a source of long-term contamination of water, even after cessation of discharges into rivers untreated wastewater. The environmental condition of bottom sediments in gross content of heavy metals is little information because they do not reflect the transformation and further migration to adjacent environment. The study forms of giving objective information for ecological and geochemical evaluation. The study forms of heavy metals in the sediments carried by successive extracts. Concentrations of heavy metals in the extracts determined by atomic absorption spectrometer analysis CAS-115. It was established that a number of elements typical of exceeding their content in bottom sediments of the background values, due likely to their technogenic origin. Man-made pollution of bottom sediments. Mariupol has disrupted the natural form of the ratio of heavy metals. In the studied sediments form ion exchange increased content of heavy metals, which contributes to their migration in the aquatic environment.

  20. The influence of ashes in waste dump restoration. Evaluation of the vegetation; Influencias de las cenizas en la restauracion de escombreras. Evolucion de la vegetacion

    Energy Technology Data Exchange (ETDEWEB)

    Ibanez Guerra, J. F. [Grupo ENDESA. Madrid (Spain)

    1999-11-01

    Ash is solid waste from coal combustion which is produced at Power Plants in huge quantities, the disposal of which can cause serious problems. Countless studies have been done in order to give it a practical use, and the results give rise to hope regarding construction materials: cement, blocks, floor stabilization, etc. In recent years, research and test have taken place about the possibility of using ash as a neutralizer of acid soils, as well as a supplier of trace elements and micro nutrients necessary for the growth of plants. This paper deals with a test taken place on the Puentes Mine Dump, consisting mainly of adding different quantities of limestone and ash over a waste dump followed by a cover of grass. The close control of the experiment for three years, watching the behaviour of soil and vegetation, confirms that an adequate dose of ash applied upon acid or very acid soils, compensates this acidity on a medium an long term basis, and also improves in many cases soil texture, allowing therefore the setting of a very stable and persistent green cover. (Author)

  1. Polonium and other naturally occurring radionuclides in fly ash from coal fired thermal power plants

    International Nuclear Information System (INIS)

    Coal fired thermal power is the largest contributing power sector in India (about 70%) along with 25 hydel power generation, 3% nuclear power generation and about 1% wind power generation Power on demand by 2012. The role of GIS, GPS and remote sensing in power sector. Published by, CSDMS, IT for geography. The increasing demand of power in a developing country like India has resulted in rapid increase in thermal generation capacity. The coal fired power generation results in huge amounts of fly ash and bottom ash of varying properties. Coal which contains the naturally occurring radionuclides, on burning results in enrichment of these radionuclides in the ashes. In the present study, coal, bottom ash and fly ash samples collected from six coal-fire power plants in India were measured for 210Po using alpha spectrometry and natural U, 226Ra, 232Th and 40K by an HPGeã-ray spectrometer. The results show that fly ash or bottom ash contains two to five times more natural radionuclides than feed coal. The results were compared with the available data from earlier studies in other countries. (author)

  2. Fusion characterization of biomass ash

    DEFF Research Database (Denmark)

    Ma, Teng; Fan, Chuigang; Hao, Lifang;

    2016-01-01

    The ash fusion characteristics are important parameters for thermochemical utilization of biomass. In this research, a method for measuring the fusion characteristics of biomass ash by Thermo-mechanical Analyzer, TMA, is described. The typical TMA shrinking ratio curve can be divided into two...... stages, which are closely related to ash melting behaviors. Several characteristics temperatures based on the TMA curves are used to assess the ash fusion characteristics. A new characteristics temperature, Tm, is proposed to represent the severe melting temperature of biomass ash. The fusion...... characteristics of six types of biomass ash have been measured by TMA. Compared with standard ash fusibility temperatures (AFT) test, TMA is more suitable for measuring the fusion characteristics of biomass ash. The glassy molten areas of the ash samples are sticky and mainly consist of K-Ca-silicates....

  3. COAL ASH RESOURCES RESEARCH CONSORTIUM

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    The Coal Ash Resources Research Consortium (CARRC, pronounced �cars�) is the core coal combustion by-product (CCB) research group at the Energy & Environmental Research Center (EERC). CARRC focuses on performing fundamental and applied scientific and engineering research emphasizing the environmentally safe, economical use of CCBs. CARRC member organizations, which include utilities and marketers, are key to developing industry-driven research in the area of CCB utilization and ensuring its successful application. CARRC continued the partnership of industry partners, university researchers, and the U.S. Department of Energy (DOE) addressing needs in the CCB industry through technical research and development projects. Technology transfer also continued through distribution and presentation of the results of research activities to appropriate audiences, with emphasis on reaching government agency representatives and end users of CCBs. CARRC partners have evolved technically and have jointly developed an understanding of the layers of social, regulatory, legal, and competition issues that impact the success of CCB utilization as applies to the CCB industry in general and to individual companies. Many CARRC tasks are designed to provide information on CCB performance including environmental performance, engineering performance, favorable economics, and improved life cycle of products and projects. CARRC activities from 1993�1998 included a variety of research tasks, with primary work performed in laboratory tasks developed to answer specific questions or evaluate important fundamental properties of CCBs. The tasks summarized in this report are 1) The Demonstration of CCB Use in Small Construction Projects, 2) Application of CCSEM (computer-controlled scanning electron microscopy) for Coal Combustion By-Product Characterization, 3) Development of a Procedure to Determine Heat of Hydration for Coal Combustion By-Products, 4) Investigation of the Behavior of High

  4. Production of cements from Illinois coal ash. Technical report, September 1, 1995--November 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, J.C. [Institute of Gas Technology, Chicago, IL (United States); Bhatty, J.I.; Mishulovich, A. [Construction Technology Labs., Inc., Washington, DC (United States)

    1995-12-31

    The objective of this program is to convert Illinois coal combustion residues, such as fly ash, bottom ash, and boiler slag, into novel cementitious materials for use in the construction industry. Currently only about 30% of the 5 million tons of these coal combustion residues generated in Illinois each year are utilized, mainly as aggregate. These residues are composed largely Of SiO{sub 2}, Al{sub 2}O{sub 3}, Fe{sub 2}O{sub 3}, MgO, and CaO, which are also the major components of cement. The process being developed in this program will use the residues directly in the manufacture of cement products. Therefore, a much larger amount of residues can be utilized. To achieve the above objective, in the first phase (current year) samples of coal combustion residues will be blended and mixed, as needed, with a lime or cement kiln dust (CKD) to adjust the CaO composition. Six mixtures will be melted in a laboratory-scale furnace at CTL. The resulting products will then be tested for cementitious properties. Two preliminary blends have been tested. One blend used fly ash with limestone, while the other used fly ash with CKD. Each blend was melted and then quenched, and the resulting product samples were ground to a specific surface area similar to portland cement. Cementitious properties of these product samples were evaluated by compression testing of 1-inch cube specimens. The specimens were formed out of cement paste where a certain percentage of the cement paste is displaced by one of the sample products. The specimens were cured for 24 hours at 55{degrees}C and 100% relative humidity. The specimens made with the product samples obtained 84 and 89% of the strength of a pure portland cement control cube. For comparison, similar (pozzolanic) materials in standard concrete practice are required to have a compressive strength of at least 75% of that of the control.

  5. Processing of Sugarcane Bagasse ash and Reactivity of Ash-blended Cement Mortar

    Science.gov (United States)

    Ajay, Goyal; Hattori, Kunio; Ogata, Hidehiko; Ashraf, Muhammad

    Sugarcane bagasse ash (SCBA), a sugar-mill waste, has the potential of a partial cement replacement material if processed and obtained under controlled conditions. This paper discusses the reactivity of SCBA obtained by control burning of sugarcane bagasse procured from Punjab province of India. X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques were employed to ascertain the amorphousness and morphology of the minerals ash particles. Destructive and non-destructive tests were conducted on SCBA-blended mortar specimens. Ash-blended cement paste specimens were analyzed by XRD, thermal analysis, and SEM methods to evaluate the hydration reaction of SCBA with cement. Results showed that the SCBA processed at 600°C for 5 hours was reactive as ash-blended mortar specimens with up to 15% substitution of cement gave better strength than control specimens.

  6. INHALATION STUDIES OF MT. ST. HELENS VOLCANIC ASH IN ANIMALS: RESPIRATORY MECHANICS, AIRWAY REACTIVITY AND DEPOSITION

    Science.gov (United States)

    Effects of fine volcanic ash aerosol on pulmonary mechanical properties of awake guinea pigs were evaluated during exposure by inhalation. Ash penetration into the lungs as well as tissue response to ash were determined by transmission electron microscopy. The reactivity of airwa...

  7. 粉煤灰控失肥的制备及其铵氮溶出特性的评价%Preparation of Coal Fly Ash Controlled-Lost Fertilizer and Evaluation of Its Ammonium-Nitrogen Dissolution Characteristic

    Institute of Scientific and Technical Information of China (English)

    钟书华; 何瑜; 李玲; 宋功武; 沙淮丽

    2011-01-01

    将粉煤灰在850℃焙烧2~3 h,用2 mol·L-1盐酸在70℃、搅拌条件下对焙烧产物酸溶2~3 h,得到改性粉煤灰;将改性粉煤灰与氢氧化铝、碳酸钠按质量比为10 ∶ 1∶15混合,在850℃焙烧2~3 h,得到焙烧产物;将焙烧产物进行浸取、晶化、烘干等处理,然后添加一定比例的高分子聚合物,制得化肥控失剂;将控失剂与化肥按一定比例混合造粒,制得粉煤灰控失肥.通过人工模拟淋失实验,对粉煤灰控失肥的铵氮溶出特性进行了评价,结果表明,该控失肥可降低肥料中氮素流失率20%左右.%Coal fly ash is a kind of granule material formed by combustion, which has capacity of adsorption. The coal fly ash was firstly roasted at the temperature of 850 ℃ for 2~3 h, then was dissolved by 2 mol ? L-1 of hydrochloric acid at the temperature of 70 ℃ , and modified coal fly ash was obtained. Modified coal fly ash, aluminum hydroxide and sodium carbonate were mixed at the mass ratio of 10 * 1 ? 15 and roasted for 2~ 3 h at the temperature of 850 ℃ , then the roasted product was obtained. After leaching, crystallization, drying and adding some polymers, the fertilizer controlled-lost agent was obtained. In the end, through controlling the ratio of the fertilizer controlled-lost agent and the fertilizer, the coal fly ash controlled-lost fertilizer was prepared. The ammonium-nitrogen dissolution characteristic was evaluated through manual simulation of leaching loss experiment, and the result showed that this controlled-lost fertilizer could reduce its nitrogen loss rate a-bout 20%.

  8. MAT 126 ASH Course Tutorial / Tutorialoutlet

    OpenAIRE

    stylia

    2015-01-01

    For more course tutorials visit www.tutorialoutlet.com   MAT 126 Week 1 DQ 1 (Ash) MAT 126 Week 1 Quiz (Ash) MAT 126 Week 1 Written Assignment (Arithmetic and geometric sequence) (Ash) MAT 126 Week 2 DQ 1 (Ash) MAT 126 Week 2 DQ 2 (Ash) MAT 126 Week 2 Assignment Is It Fat Free (Ash) MAT 126 Week 2 Quiz (Ash) MAT 126 Week 3 DQ 1 (Ash) MAT 126 Week 3 DQ 2 (Ash) MAT 126 Week 3 Assignment Quadratic Equations (Ash) MAT 126 Week 3 Quiz (Ash) MAT 126...

  9. Morphological and Strength Properties of Tanjung Bin Coal Ash Mixtures for applied in Geotechnical Engineering Work

    Directory of Open Access Journals (Sweden)

    Abd. Rahim Awang

    2012-01-01

    Full Text Available In Malaysia, coal has been used as a raw material to generate electricity since 1988. In the past, most of the wastage of coal burning especially the bottom ash was not managed properly as it was dumped in the waste pond and accumulated drastically.This paper focuses on some properties of coal ash mixtures (fly  ash and bottom ash mixtures from Tanjung Bin power plant. The characteristics studied were morphological properties, compaction behaviour and strength properties. Strength properties of coal ash mixtures are carried out by conducting direct shear test and unconfined compression test. Besides, morphology and mineralogy of coal ash mixtures are studied using scanning electron microscope (SEM and x-ray diffraction (XRD. The coal ash mixtures were compacted at 95% of maximum dry density, sealed and cured for 0, 14, and 28 days before they were analysed for shear strength, morphological and mineralogical analyses. The shear strength of coal ash mixtures varied depending on the fly ash compositions. The maximum shear strength was obtained at mixture with 50%FA: 50%BA and the value increased with curing periods. The friction angle obtained ranged from 27° to 37°. Morphological analysis showed that the number of irregular shaped particles increased confirming change in material type with curing period. From mineralogical analysis, the crystalline compounds present in Tanjung Bin coal ash were Mullite, Quartz, Calcium Phosphide, Calcite, Cristobalite and Hematite. It can be concluded that the coal ash mixtures can advantageously be applied in the construction of embankments, roads, reclamation and fill behind retaining structures.

  10. Combustion Air Pre-heating from Ash Sensible Heat in Municipal Waste Incineration Systems

    OpenAIRE

    Zakariya Kaneesamkandi

    2014-01-01

    Heat recovery from bottom ash is more important in municipal waste combustion systems than in any other solid fuel combustion since almost 50% of it comprises of non-combustibles. In this study, an ash cooling system using air as the cooling medium has been modeled for pre-heating the combustion air. Air cooling has several advantages over water cooling methods. The study involves modeling using Gambit tool and is solved with the fluent solver. Municipal solid waste incineration systems have ...

  11. Electrodialytic treatment of fly ash

    DEFF Research Database (Denmark)

    Jensen, Pernille Erland; Pedersen, Anne Juul; Kirkelund, Gunvor Marie;

    Heavy metals are removed from the fly ashes by an electrodialytic treatment with the aim of up-grading the ashes for reuse in stead of disposal in landfill.A great potential for upgrading of bio- and waste incineration ashes by electrodialytic treatment exists. In the future, the applicability...

  12. Selective mobilization of critical elements in incineration ashes; Selektiv mobilisering av kritiska element hos energiaskor

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Malin; Herrmann, Inga; Ecke, Holger [Luleaa Univ. of Technology (Sweden); Sjoeblom, Rolf [TEKEDO AB, Nykoeping (Sweden)

    2005-05-01

    In the project SMAK, the selective mobilization of critical elements in ashes was studied. Non-hazardous bottom ash from Daava kraftvaermeverk, Umeaa, and hazardous fly ash from Hoegdalenverket, Stockholm, line P6 were investigated. Sb, Mo, Cu, Cr and Cl{sup -} were identified as critical elements in the bottom ash since these elements exceeded the limit values for acceptance on landfills as inert waste according to the Council decision on acceptance criteria at landfills. Critical elements in the fly ash were Cr, Se, Pb and Cl{sup -}, these elements exceeded the limit values for acceptance on landfills as non-hazardous waste. The mobilization of the critical elements was studied in experiments performed according to a reduced 2{sup 6-1} factorial design with three centerpoints. Factors in the experiments were ultrasonic pre-treatment, pre-treatment with carbonation, L/S-ratio, pH, time and temperature. Empirical models of the mobilization were used to identify the optimal factor setting ensuring sufficient mobilization of critical elements, i.e. to achieve a solid residue meeting non-hazardous and inert landfill criteria for fly ash and bottom ash, respectively. No ultrasonic treatment, pre-treatment with carbonation, L/Sratio 5, pH 12, time 2h and temperature at 20 deg C were identified as optimal factor setting for the bottom ash. For the fly ash, no ultrasonic treatment, no pre-treatment with carbonation, L/S-ratio 5, pH 7, time 2h and temperature at 20 deg C were identified as optimal factor setting. The treatment with optimal factor settings did not change the classification according to the Council decision on acceptance criteria at landfills of neither ash. For the bottom ash, Sb, Mo and Cr exceeded the limit values for landfilling as inert waste according to the Council decision on acceptance criteria at landfills. Only Cr exceeded the limit value for landfilling the fly ash as non-hazardous waste. According to the Waste Decree (Avfallsfoerordningen) both

  13. The rare earth elements in municipal solid waste incinerators ash and promising tools for their prospecting.

    Science.gov (United States)

    Funari, Valerio; Bokhari, Syed Nadeem Hussain; Vigliotti, Luigi; Meisel, Thomas; Braga, Roberto

    2016-01-15

    Bottom and fly ashes from Municipal Solid Waste Incinerators (MSWI) are hazardous products that present concern for their safe management. An attractive option to reduce their impact both on the environment and the financial commitment is turning MSWI ashes into secondary raw materials. In this study we present the REE content and distribution of bottom and fly ashes from MSWI after a highly effective digestion method and samples analysis by ICP-MS. The chondrite-normalised REE patterns of MSWI bottom and fly ash are comparable with that of crustal averages, suggesting a main geogenic source. Deviations from typical crustal pattern (e.g., Eu, Tb) disclose a contribution of likely anthropogenic provenance. The correlation with major elements indicates possible sources for REE and facilitates a preliminary resource assessment. Moreover, magnetic susceptibility measurements can be a useful prospecting method in urban ores made of MSWI ashes. The relationship between REE and some influencing parameters (e.g., Pricing Influence Factor) emphasises the importance of MSWI ash as alternative source of REE and the need of further efforts for REE recovery and purification from low concentrations but high flows waste. PMID:26414924

  14. Use of Recycled Aggregate and Fly Ash in Concrete Pavement

    Directory of Open Access Journals (Sweden)

    Myle N. James

    2011-01-01

    Full Text Available Problem statement: Recycled materials aggregate from the demolished concrete structures and fly ash from burning coal shows the possible application as structural and non structural components in concrete structures. This research aims to evaluate the feasibility of using concrete containing recycled concrete aggregate and fly ash in concrete pavement. Approach: Two water cement ratio (0.45 and 0.55 the compressive strength, modulus of electricity and flexural strength for concrete with recycled aggregate and fly ash with 0, 25% replacing cement in mass were considered. Results: The material properties of recycled aggregate concrete with fly ash indicate comparable results with that of concrete with natural aggregate and without fly ash. Conclusion/Recommendations: The recycled materials could be used in concrete pavement and it will promote the sustainability of concrete.

  15. Utilisation aspects of ashes and green liquor dregs from an integrated semichemical pulp and board mill

    Energy Technology Data Exchange (ETDEWEB)

    Manskinen, K.

    2013-09-01

    This thesis investigated the properties of bottom and fly ashes originating from a bubbling fluidised bed boiler (120 MW) using two different fuel mixtures (i.e. Fuel mixture A: coal, wood and peat; and B: wood and peat) and of the green liquor dregs originating from the associated semichemical pulp and board mill in relation to the potential utilisation of these residues from various aspects. The total concentrations of As, Cd, Cr, Cu, Ni, Pb, Zn and Hg in the bottom ashes were lower than the maximum allowable concentrations for these elements in forest fertilisers. The total Ca concentrations in bottom ashes A (2.4%; d.w.) and B (3.4%; d.w.) were lower than the legal requirement of 6.0% (d.w.) for ash used as a forest fertiliser. The total Ca concentrations in fly ashes A (6.4%; d.w.) and B (11.0%; d.w.) were higher than the minimum limit value of 6.0% (d.w.), but the concentration of As in fly ashes A (46.9 mg/kg d.w.) and B (41.3 mg/kg; d.w.) exceeded the maximum limit value of 40 mg/kg (d.w.). Only bottom ash B could be used as a forest fertiliser, provided some additional Ca is used. The bottom ashes both fulfilled the Finnish regulations on waste recovery in earth construction. Due to the elevated total concentration of PAH (23 mg/kg; d.w.) and extractable concentrations of Mo (3.9 mg/kg; d.w.) and Se (0.2 mg/kg; d.w.) in fly ash A, this residue cannot be used in covered structures. Due to the elevated concentration of PAH (90 mg/kg; d.w.) in fly ash B, this residue cannot be used in covered and paved structures. However, the utilisation of these residues as an earth construction agent is still possible, but an environmental permit would be required. According to the sequential extraction studies, extractable concentrations of most of the elements in the fly ash A were higher than those in the bottom ash A. The extractability of various elements, both in the bottom and fly ashes A, varied widely. Most of the elements did not occur as readily soluble and

  16. ASH and NASH.

    Science.gov (United States)

    Scaglioni, F; Ciccia, S; Marino, M; Bedogni, G; Bellentani, S

    2011-01-01

    Non-alcoholic steatohepatitis (NASH) and alcoholic steatohepatitis (ASH) have a similar pathogenesis and histopathology but a different etiology and epidemiology. NASH and ASH are advanced stages of non-alcoholic fatty liver disease (NAFLD) and alcoholic fatty liver disease (AFLD). NAFLD is characterized by excessive fat accumulation in the liver (steatosis), without any other evident causes of chronic liver diseases (viral, autoimmune, genetic, etc.), and with an alcohol consumption ≤20-30 g/day. On the contrary, AFLD is defined as the presence of steatosis and alcohol consumption >20-30 g/day. The most common phenotypic manifestations of primary NAFLD/NASH are overweight/obesity, visceral adiposity, type 2 diabetes, hypertriglyceridemia and hypertension. The prevalence of NAFLD in the general population in Western countries is estimated to be 25-30%. The prevalence and incidence of NASH and ASH are not known because of the impossibility of performing liver biopsy in the general population. Up to 90% of alcoholics have fatty liver, and 5-15% of these subjects will develop cirrhosis over 20 years. The risk of cirrhosis increases to 30-40% in those who continue to drink alcohol. About 10-35% of alcoholics exhibit changes on liver biopsy consistent with alcoholic hepatitis. Natural histories of NASH and ASH are not completely defined, even if patients with NASH have a reduced life expectancy due to liver-related death and cardiovascular diseases. The best treatment of AFLD/ASH is to stop drinking, and the most effective first-line therapeutic option for NAFLD/NASH is non-pharmacologic lifestyle interventions through a multidisciplinary approach including weight loss, dietary changes, physical exercise, and cognitive-behavior therapy. PMID:21734385

  17. Fly ash as an adsorbent for textile dyes from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Khan, B.; Gupta, P.; Jala, S.; Goyal, D. [Thapar Institute of Engineering and Technology, Patiala (India). Dept. of Biotechnology and Environmental Sciences

    2003-07-01

    Fly ash is a solid waste generated as a result of combustion of coal and is of three types: the ESP (electrostatic precipitator) ash, bottom ash, and pond ash. Decolorization of two triphenylmethane dyes (crystal violet and malachite green) and one azo dye (congo red) was tried using the ESP fly ash in bath and column mode. Decolorization of 20 ppm of crystal violet and 100 ppm of malachite green occurred to the extent of 86% and 84% respectively, in batch mode. In columns packed with fly ash, 100 ppm of inlet solution of congo red and decolorized by 84%, at a flow rate of 2.0 ml/hour of packed bed column. When fly ash was mixed with activated charcoal in the ratio of 8:2, almost complete decolorization of the dye solution was observed, and the heavy metal content in the resulting colourless effluent was within permissible limits. This suggested that a combination of fly ash and activated charcoal can lead to replacement of nearly 80% of the activated charcoal, which can be a direct saving in operation costs along with gainful utilization of fly ash. 21 refs., 1 fig., 2 tabs.

  18. MGT 330 ASH Course Tutorial / Tutorialoutlet

    OpenAIRE

    alfoniz

    2015-01-01

    For more course tutorials visit www.tutorialoutlet.com   MGT 330 Week 1 Individual Assignment Functions of Management Paper (Ash) MGT 330 Week 1 DQ 1 (Ash) MGT 330 Week 1 DQ 2 (Ash) MGT 330 Week 1 DQ 3 (Ash) MGT 330 Week 1 Summary (Ash) MGT 330 Week 2 Team Assignment External Internal Factors Paper (Ash) MGT 330 Week 2 Individual Assignment Delegation (Ash) MGT 330 Week 2 Summary (Ash) MGT 330 Week 2 DQ 1 (Ash) MGT 330 Week 2 DQ 2 (Ash) MGT 330 W...

  19. National volcanic ash operations plan for aviation

    Science.gov (United States)

    ,; ,

    2007-01-01

    International Civil Aviation Organization’s (ICAO) International Airways Volcano Watch. This plan defines agency responsibilities, provides a comprehensive description of an interagency standard for volcanic ash products and their formats, describes the agency backup procedures for operational products, and outlines the actions to be taken by each agency following an occurrence of a volcanic eruption that subsequently affects and impacts aviation services. Since our most recent International Conference on Volcanic Ash and Aviation Safety, volcanic ash-related product and service activities have grown considerably along with partnerships and alliances throughout the aviation community. In January 2005, the National Oceanic and Atmospheric Administration’s National Centers for Environment Prediction began running the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model in place of the Volcanic Ash Forecast Transport and Dispersion (VAFTAD) model, upgrading support to the volcanic ash advisory community. Today, improvements to the HYSPLIT model are ongoing based on recommendations by the OFCM-sponsored Joint Action Group for the Selection and Evaluation of Atmospheric Transport and Diffusion Models and the Joint Action Group for Atmospheric Transport and Diffusion Modeling (Research and Development Plan). Two international workshops on volcanic ash have already taken place, noticeable improvements and innovations in education, training, and outreach have been made, and federal and public education and training programs on volcanic ash-related products, services, and procedures iv continue to evolve. For example, in partnership with Embry-Riddle Aeronautical University and other academic institutions, volcanic ash hazard and mitigation training has been incorporated into aviation meteorology courses. As an essential next step, our volcanic ash-related efforts in the near term will be centered on the development of an interagency implementation plan to

  20. Experimental studies on pulp and paper mill sludge ash behavior in fluidized bed combustors

    Energy Technology Data Exchange (ETDEWEB)

    Latva-Somppi, J. [VTT Chemical Technology, Espoo (Finland). Process Technology

    1998-11-01

    Ash formation during the fluidized bed combustion (FBC) of pulp and paper mill sludges has been experimentally studied on an industrial and bench scale. The methods included aerosol measurements, chemical and crystalline composition analyses, thermogravimetry and electron microscopy. Fly ash mass and number size distributions and elemental enrichment in submicron particles and bottom ash were measured. Fly ash, bottom ash and ash deposits were characterized and their formation mechanisms are discussed. During combustion the fine paper-making additives in sludge, clay minerals and calcite, sintered fanning porous agglomerates. The fly ash mass mean size was 7.5 - 15 lam and the supermicron particles included 93.6 - 97.3 % of the fly ash. Condensation of the volatilized inorganic species formed spherical submicron particles in the fly ash. Their mass concentration was almost negligible when co-firing paper mill sludges and wood. This suggests that the fraction of the volatilized inorganic species in the paper mill sludges was low. Results from pulp mill sludge and bark co-firing were different. A clear mass mode below 0.3 pm, presenting 2.2 - 5.0 weight-% of the fly ash was detected. The condensed species included K, Na, S and Cl. Their mass fraction was higher in the pulp mill sludge than in the paper mill sludge. Evidently this resulted in increased volatilization and formation of condensed particles. The following trace elements were enriched in the submicron ash during pulp mill sludge and wood co-firing: As, Cd, Rb and Pb. The main part of the volatile species was, however, captured in the bulk ash. Presumably, this was due to the high surface area concentration in the bulk ash. Sludge moisture was observed to reduce the inorganic species volatilization. Probably steam vaporization from the wet sludge through the burning layer decreased combustion temperatures on char surface and less char was produced. Hence, the volatilization of ash forming species was

  1. Excited bottom and bottom-strange mesons in the quark model

    Science.gov (United States)

    Lü, Qi-Fang; Pan, Ting-Ting; Wang, Yan-Yan; Wang, En; Li, De-Min

    2016-10-01

    In order to understand the possible q q ¯ quark-model assignments of the BJ(5840 ) and BJ(5960 ) recently reported by the LHCb Collaboration, we evaluate mass spectra, strong decays, and radiative decays of bottom and bottom-strange mesons in a nonrelativistic quark model. Comparing these predictions with the relevant experimental results, we suggest that the BJ(5840 ) and BJ(5960 ) can be identified as the B (2 1S0) and B (1 3D3) , respectively, and the B (5970 ) reported by the CDF Collaboration can be interpreted as the B (2 3S1) or B (1 3D3) . Further precise measurements of the width, spin and decay modes of the B (5970 ) are needed to distinguish these two assignments. These predictions of bottom and bottom-strange mesons can provide useful information to further experimental investigations.

  2. Excited bottom and bottom-strange mesons in the quark model

    CERN Document Server

    Lü, Qi-Fang; Wang, Yan-Yan; Wang, En; Li, De-Min

    2016-01-01

    In order to understand the possible $q\\bar{q}$ quark-model assignments of the $B_J(5840)$ and $B_J(5960)$ recently reported by the LHCb Collaboration, we evaluate mass spectra, strong decays, and radiative decays of bottom and bottom-strange mesons in a nonrelativistic quark model. Comparing these predictions with the relevant experimental results, we suggest that the $B_J(5840)$ and $B_J(5960)$ can be identified as $B(2^1S_0)$ and $B(1^3D_3)$, respectively, and the $B(5970)$ reported by the CDF Collaboration can be interpreted as $B(2^3S_1)$ or $B(1^3D_3)$. Further precise measurements of the width, spin and decay modes of the $B(5970)$ are needed to distinguish these two assignments. These predictions of bottom and bottom-strange mesons can provide useful information to further experimental investigations.

  3. Synthesis of zeolites coal ash in surfactant modified in application and removal of orange 8 acid solution: study in batch, fixed bed column and evaluation ecotoxicological; Sintese de zeolitas de cinzas de carvao modificada por surfactante e aplicacao na remocao de acido laranja 8 de solucao aquosa: estudo em leito movel, coluna de leito fixo e avaliacao ecotoxicologica

    Energy Technology Data Exchange (ETDEWEB)

    Magdalena, Carina Pitwak

    2015-09-01

    In this study, synthesized zeolitic material from coal ash and modified cationic surfactant was used for removing the acid dye Orange 8 (AL8) by adsorption process using moving bed and fixed-bed column. The raw material and adsorbents were characterized by different techniques, such as X-ray diffraction, X-ray fluorescence spectroscopy, among others. The adsorption of AL8 was performed by moving bed in order to optimize the results when they are launched in a fixed bed. The effects of adsorption on zeolite AL8 were compared: (1) Effect of counterions Br{sup -} and Cl{sup -} surfactant used in the modification of the zeolite; (2) effect of type of coal ash used as raw material in the synthesis of zeolites (fly and bottom). The following adsorbents were used in the study: fly and bottom zeolite modified by surfactant hexadecyltrimethylammonium bromide (ZLMS-Br-Br and ZPMS-Br) and fly zeolite modified by surfactant hexadecyltrimethylammonium chloride (ZLMS-Cl). The pseudo-second-order kinetic described the adsorption of the dye on all adsorbents. The equilibrium time was reached 40, 60 and 120 min for ZLMS-Br, ZLMS-Cl and ZPMS-Br, respectively. The adsorption equilibrium was analyzed by the equations of the models of linear and nonlinear isotherms of Langmuir, Freundlich, Temkin and Dubinin- Radushkevivh (DR) and the criterion of best fit was evaluated using the error functions.The DR model was adjusted better to the experimental data for the system AL8 / ZLMS-Br, the Freundlich model for AL8 / ZLMS-Cl and Langmuir for AL8 / ZPMS. According to the Langmuir maximum adsorption capacity was 4.67, 1.48 and 1.38 mg g{sup -1} for ZLMS-Br, ZLMS-Cl and ZPMS-Br, in order. In studies employing fixed bed columns, the effects of inlet concentration (20- 30 mg L{sup -1}), flow rate (4.0 -5.3 mL min{sup -1}) and the bed height (5, 5 - 6.5 cm) above the breakthrough curves characteristics in the adsorption system were determined. The Adams-Bohart, Thomas, Yoon-Nelson models were

  4. CO2 capture using fly ash from coal fired power plant and applications of CO2-captured fly ash as a mineral admixture for concrete.

    Science.gov (United States)

    Siriruang, Chaichan; Toochinda, Pisanu; Julnipitawong, Parnthep; Tangtermsirikul, Somnuk

    2016-04-01

    The utilization of fly ash as a solid sorbent material for CO2 capture via surface adsorption and carbonation reaction was evaluated as an economically feasible CO2 reduction technique. The results show that fly ash from a coal fired power plant can capture CO2 up to 304.7 μmol/g fly ash, consisting of 2.9 and 301.8 μmol/g fly ash via adsorption and carbonation, respectively. The CO2 adsorption conditions (temperature, pressure, and moisture) can affect CO2 capture performance of fly ash. The carbonation of CO2 with free CaO in fly ashes was evaluated and the results indicated that the reaction consumed most of free CaO in fly ash. The fly ashes after CO2 capture were further used for application as a mineral admixture for concrete. Properties such as water requirement, compressive strength, autoclave expansion, and carbonation depth of mortar and paste specimens using fly ash before and after CO2 capture were tested and compared with material standards. The results show that the expansion of mortar specimens using fly ash after CO2 capture was greatly reduced due to the reduction of free CaO content in the fly ash compared to the expansion of specimens using fresh fly ash. There were no significant differences in the water requirement and compressive strength of specimens using fly ash, before and after CO2 capture process. The results from this study can lead to an alternative CO2 capture technique with doubtless utilization of fly ash after CO2 capture as a mineral admixture for concrete. PMID:26803257

  5. CO2 capture using fly ash from coal fired power plant and applications of CO2-captured fly ash as a mineral admixture for concrete.

    Science.gov (United States)

    Siriruang, Chaichan; Toochinda, Pisanu; Julnipitawong, Parnthep; Tangtermsirikul, Somnuk

    2016-04-01

    The utilization of fly ash as a solid sorbent material for CO2 capture via surface adsorption and carbonation reaction was evaluated as an economically feasible CO2 reduction technique. The results show that fly ash from a coal fired power plant can capture CO2 up to 304.7 μmol/g fly ash, consisting of 2.9 and 301.8 μmol/g fly ash via adsorption and carbonation, respectively. The CO2 adsorption conditions (temperature, pressure, and moisture) can affect CO2 capture performance of fly ash. The carbonation of CO2 with free CaO in fly ashes was evaluated and the results indicated that the reaction consumed most of free CaO in fly ash. The fly ashes after CO2 capture were further used for application as a mineral admixture for concrete. Properties such as water requirement, compressive strength, autoclave expansion, and carbonation depth of mortar and paste specimens using fly ash before and after CO2 capture were tested and compared with material standards. The results show that the expansion of mortar specimens using fly ash after CO2 capture was greatly reduced due to the reduction of free CaO content in the fly ash compared to the expansion of specimens using fresh fly ash. There were no significant differences in the water requirement and compressive strength of specimens using fly ash, before and after CO2 capture process. The results from this study can lead to an alternative CO2 capture technique with doubtless utilization of fly ash after CO2 capture as a mineral admixture for concrete.

  6. Literature survey on phase composition of hardened cement paste containing fly ash

    International Nuclear Information System (INIS)

    The purpose of this literature survey is to collect the knowledge on the effect of fly ash in hardened cement paste and the information about evaluation of physicochemical performance based on phase composition of hardened cement paste. The performance of hardened cement paste containing fly ash is affected by the property of fly ash, hydration of cement and pozzolanic reaction of fly ash. Some properties of fly ash such as density and chemical composition are reflected in phase composition, showing the progress of cement hydration and pozzolanic reaction. Therefore clarification of the relationship of phase composition and performance will lead to appropriate evaluation of the property of fly ash. The amount of pore, chemical shrinkage, pore solution, compressive strength, Young modulus and alkali silica reaction have relations to the phase composition of hardened cement paste. It is considered as future subject to clarify the relationship of phase composition and performance for various properties of fly ash. (author)

  7. Delineation of a volcanic ash body using electrical resistivity profiling

    International Nuclear Information System (INIS)

    Four lines of electrical resistivity profiling (ERP) were performed to define the extent of a shallow Quaternary volcanic ash deposit being mined in the United States. Inversion results of ERP proved suitable for defining the thickness and lateral extent of the volcanic ash deposit at this testing site. These interpretations were confirmed by shallow borehole drilling. The model sensitivity information indicates that inverted models possess sufficient resolving power down to a depth of 7 m and are fairly consistent in terms of horizontal resolution along the four ERP lines. The bottom of most of the volcanic ash deposit in the study area is less than 7 m in depth. Based on synthesis of the ERP and drill information, the limits of the mineable ash bed resources were clearly defined. Moreover, by integrating the ERP results with a minimal number of optimally placed borings, the volume of the volcanic ash deposit was established at a lesser cost, and with greater accuracy than would be possible with a traditionally designed grid drilling programme

  8. Evaluation of erosion-oxidation and ash deposition in the convective section of an industrial watertube boiler retrofitted to fire coal-water fuel

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Jianyang; Walsh, P.M.; Miller, B.G.; Scaroni, A.W. [Pennsylvania State Univ., University Park, PA (United States)

    1994-12-31

    The feasibility of directly firing coal-water fuel in an oil-designed industrial watertube boiler is being determined for possible deployment at Department of Defense facilities. Erosion of carbon steel by particles and deposition of ash were measured in the convective section of the boiler while cofiring coal-water fuel and natural gas. Erosion was enhanced by directing a small jet of nitrogen, air, or oxygen toward the surface of a test coupon mounted on an air-cooled tube. The temperature and oxygen dependencies of the erosion rate were explained by a model for simultaneous erosion and oxidation. Extrapolation, using the experimentally determined coefficients for metal and oxide erosion, provided estimates of the erosion rate as functions of the gas velocity and angular position about the circumference of a heat exchanger tube in the convective section of the boiler. Under the conditions of metal temperature, oxygen concentration in the gas, particle size, and particle loading investigated, erosion of carbon steel is expected to be slower than 0.05 {mu}m/hour when the gas velocity in the convection section is less than approximately 8 m/s. A measurement in the convective section at 4 m/s gas velocity showed a pattern of ash deposits covering the circumference at positions on the tube surface where no erosion is predicted.

  9. Study of the Analytical Conditions for the Determination of Cadmium in Coal Fly Ashes by GFAAS with evaluation of several matrix modifiers

    International Nuclear Information System (INIS)

    A new method for the determination of cadmium in coal fly ash samples by Graphite Furnace Atomic Absorption Spectrometry (GFAAS) has been developed. Analytical conditions and different instrumental parameters have been optimized. In a first step, several types of matrix modifiers have been tested and a mixture of 2% NH4H2PO4 with 0.4%Mg(NO3)2 in 0.5N HNO3 has been selected, since it provides the highest sensitivity. In a second step, an optimization of several conditions, using the selected modifier, has been carried out, such as ashing and atomization temperatures, heating rate, etc. The influence of the use of a L' vov platform on the analytical and background signals has been studied, showing a significative decrease on the background signal, being the net absorbance similar to those obtained in absence of the platform. Using the optimal conditions, the direct method with standard samples provides cadmium concentration consistent with those obtained using the standard addition method. (Author) 18 refs

  10. “Technical Properties of Pond Ash - Clay Fired Bricks – An Experimental Study”

    Directory of Open Access Journals (Sweden)

    Prashant G. Sonawane

    2013-09-01

    Full Text Available In the thermal power plants the coal is burnt to heat the water for making the steam, which in turn is used to run the turbines. The pond ash is a waste product from the boilers. It is mainly obtained from the wet disposal of the fly ash, which when get mixed with bottom ash is disposed off in large pond or dykes as slurry. The pond ash is being generated in an alarming rate. The generation of the pond ash is posing a lot of threat to environment and thus its sustainable management has become the thrust area in engineering research. As the pond ash is relatively coarse and the dissolvable alkalies present in it are washed with water, its pozzolanic reactivity becomes low and hence it is not preferred as part replacement of cement in concrete as in the case of fly ash. In this research work an attempt is made to find out the possibility of using pond ash in burnt clay bricks. The part of the clay is replaced by pond ash in different composition and the bricks are made in conventional method at a brick manufacturing plant. The bricks are fired in a traditional way as per usual practice in the area and the final products with different composition of pond ash are tested in laboratory; for tolerance in dimension, water absorption, compressive strength, initial rate of absorption and weathering. The results of all the tests on brick samples with different % of pond ash are compared with clay bricks and the effect on different characteristics of bricks due to addition of pond ash are studied.

  11. INFLUENCE OF FLY ASH REPLACEMENT ON STRENGTH PROPERTIES OF CEMENT MORTAR

    OpenAIRE

    AMARNATH YERRAMALA; BHASKAR DESAI V; RAMA CHANDURDU C

    2012-01-01

    Strength properties of fly ash mortars were evaluated through laboratory investigations. OPC of 53 grade replaced with class F fly ash with 5 - 25 % in the increments of 5 %. The results shown that at early age at all fly ash replacements the strength decreased with respect to normal mortar. However, after 28 days and above themortars made with fly ash replacement up to 15% resulted higher strength than normal OPC mortar. Fly ash replacement of 20 and 25% always had lower strength than normal...

  12. Volcanic ash melting under conditions relevant to ash turbine interactions

    Science.gov (United States)

    Song, Wenjia; Lavallée, Yan; Hess, Kai-Uwe; Kueppers, Ulrich; Cimarelli, Corrado; Dingwell, Donald B.

    2016-03-01

    The ingestion of volcanic ash by jet engines is widely recognized as a potentially fatal hazard for aircraft operation. The high temperatures (1,200-2,000 °C) typical of jet engines exacerbate the impact of ash by provoking its melting and sticking to turbine parts. Estimation of this potential hazard is complicated by the fact that chemical composition, which affects the temperature at which volcanic ash becomes liquid, can vary widely amongst volcanoes. Here, based on experiments, we parameterize ash behaviour and develop a model to predict melting and sticking conditions for its global compositional range. The results of our experiments confirm that the common use of sand or dust proxy is wholly inadequate for the prediction of the behaviour of volcanic ash, leading to overestimates of sticking temperature and thus severe underestimates of the thermal hazard. Our model can be used to assess the deposition probability of volcanic ash in jet engines.

  13. Fly ash effects. II. The active effect of fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Aiqin Wang; Chengzhi Zhang; Wei Suna [Southeast University, Nanjing (China). Department of Materials Science and Engineering

    2004-11-01

    This paper examines the method for determining the hydration degree of cement clinker and the pozzolanic reaction degree of fly ash in the system of cement and fly ash. In the base, the active effect of fly ash is studied. The studied results show that the active effect includes two aspects: (1) Fly ash has stronger pozzolanic activity and can react with Ca(OH)2, and (2) it can promote the hydration of cement. When the content of fly ash is less, its pozzolanic activity can exert well, but its promoting role to the hydration of cement is weaker. When the content of fly ash is more, it is less than its pozzolanic activity can be used, but its promoting role to the hydration of cement is stronger.

  14. Volcanic ash melting under conditions relevant to ash turbine interactions.

    Science.gov (United States)

    Song, Wenjia; Lavallée, Yan; Hess, Kai-Uwe; Kueppers, Ulrich; Cimarelli, Corrado; Dingwell, Donald B

    2016-03-02

    The ingestion of volcanic ash by jet engines is widely recognized as a potentially fatal hazard for aircraft operation. The high temperatures (1,200-2,000 °C) typical of jet engines exacerbate the impact of ash by provoking its melting and sticking to turbine parts. Estimation of this potential hazard is complicated by the fact that chemical composition, which affects the temperature at which volcanic ash becomes liquid, can vary widely amongst volcanoes. Here, based on experiments, we parameterize ash behaviour and develop a model to predict melting and sticking conditions for its global compositional range. The results of our experiments confirm that the common use of sand or dust proxy is wholly inadequate for the prediction of the behaviour of volcanic ash, leading to overestimates of sticking temperature and thus severe underestimates of the thermal hazard. Our model can be used to assess the deposition probability of volcanic ash in jet engines.

  15. Volcanic ash melting under conditions relevant to ash turbine interactions.

    Science.gov (United States)

    Song, Wenjia; Lavallée, Yan; Hess, Kai-Uwe; Kueppers, Ulrich; Cimarelli, Corrado; Dingwell, Donald B

    2016-01-01

    The ingestion of volcanic ash by jet engines is widely recognized as a potentially fatal hazard for aircraft operation. The high temperatures (1,200-2,000 °C) typical of jet engines exacerbate the impact of ash by provoking its melting and sticking to turbine parts. Estimation of this potential hazard is complicated by the fact that chemical composition, which affects the temperature at which volcanic ash becomes liquid, can vary widely amongst volcanoes. Here, based on experiments, we parameterize ash behaviour and develop a model to predict melting and sticking conditions for its global compositional range. The results of our experiments confirm that the common use of sand or dust proxy is wholly inadequate for the prediction of the behaviour of volcanic ash, leading to overestimates of sticking temperature and thus severe underestimates of the thermal hazard. Our model can be used to assess the deposition probability of volcanic ash in jet engines. PMID:26931824

  16. Ashes for organic farming

    OpenAIRE

    Kousa, T.; Heinonen, M; Suoniitty, T.; Peltonen, K

    2013-01-01

    Nowadays only eight percent of the cultivated field area is used for organic farming. The Ministry of Agriculture and Forestry has published the guidelines for the program of organic farming to diversify the supply and the consumption of organic food. The aim is to increase organically arable land to 20% by the year 2020.The demand of organic fertilizer products is strongly increasing. Interest in forestry by-products (ash, bark, zero fiber, etc.) for use in organic production has recently be...

  17. Elemental analysis of ash residue from combustion of CCA treated wood waste before and after electrodialytic extraction

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; Ottosen, Lisbeth M.

    2006-01-01

    Element distribution in a combined fly ash and bottom ash from combustion of copper chromate arsenate (CCA) treated wood waste was investigated by scanning electron microscopy (SEM/EDX) before and after electrodialytic extraction. The untreated ash contained various particles, including pieces...... in the incompletely combusted wood pieces and was also found in almost pure form in a surface layer of some matrix particles – indicating surface condensation of volatile Cu species. In treated ash, Ca and As were no longer found together, indicating that Ca-arsenates had been dissolved due to the electrodialytic....... Chemical analyses of untreated and treated ash confirmed that most As, but only smaller amounts of Cu and Cr was removed due to the electrodialytic extraction. Overall metal contents in the original ash residue were: 1.4 g As, 2.76 g Cu and 2.48 g Cr, after electrodialytic extraction these amounts were...

  18. INF 325 ASH Course Tutorial / Tutorialoutlet

    OpenAIRE

    SINDHU

    2015-01-01

    For more course tutorials visit www.tutorialoutlet.com INF 325 Week 1 DQ 1 Network Management (Ash) INF 325 Week 1 DQ 2 Ethernet Network (Ash) INF 325 Week 1 Commercial Internet Expansion (Ash) INF 325 Week 2 DQ 1 UTP Cord Problem (Ash) INF 325 Week 2 DQ 2 Managed Switches (Ash) INF 325 Week 2 Leased Lines (Ash) INF 325 Week 3 DQ 1 WPA (Ash) INF 325 Week 3 DQ 2 Remote Access Management (Ash) INF 325 Week 3 Mobile Service (Ash) INF 325 Week 4 DQ 1 Ro...

  19. INF 336 ASH Course Tutorial / Tutorialoutlet

    OpenAIRE

    MADURA

    2015-01-01

    For more course tutorials visit www.tutorialoutlet.com INF 336 Week 1 DQ 1 Risk Management (Ash) INF 336 Week 1 DQ 2 Organizational Structure (Ash) INF 336 Week 2 DQ 1 Supply Process Improvements (Ash) INF 336 Week 2 DQ 2 Outsourcing (Ash) INF 336 Week 2 Assignment Article Review (Ash) INF 336 Week 3 DQ 1 Capital Goods (Ash) INF 336 Week 3 DQ 2 Quality (Ash) INF 336 Week 3 Assignment Need Definition (Ash) INF 336 Week 4 DQ 1 Procuring Services (Ash) ...

  20. INF 410 ASH Course Tutorial / Tutorialoutlet

    OpenAIRE

    MADHURA

    2015-01-01

    For more course tutorials visit www.tutorialoutlet.com     INF 410 Week 1 DQ 1 Project Life Cycle (Ash) INF 410 Week 1 DQ 2 The Importance of Project Management (Ash) INF 410 Week 1 Quiz (Ash) INF 410 Week 2 DQ 1 Project Charter (Ash) INF 410 Week 2 DQ 2 Project Management Plan (Ash) INF 410 Week 2 Quiz (Ash) INF 410 Week 3 DQ 1 Risk Identification (Ash) INF 410 Week 3 DQ 2 Triple Constraint (Ash) INF 410 Week 3 Quiz (Ash) INF 410 Week 4 DQ...

  1. Ash in the Soil System

    Science.gov (United States)

    Pereira, P.

    2012-04-01

    Ash is the organic and inorganic residue produced by combustion, under laboratory and field conditions. This definition is far away to be accepted. Some researchers consider ash only as the inorganic part, others include also the material not completely combusted as charcoal or biochar. There is a need to have a convergence about this question and define clear "what means ash". After the fire and after spread ash onto soil surface, soil properties can be substantially changed depending on ash properties, that can be different according to the burned residue (e.g wood, coal, solid waste, peppermill, animal residues), material treatment before burning, time of exposition and storage conditions. Ash produced in boilers is different from the produced in fires because of the material diferent propertie and burning conditions. In addition, the ash produced in boilers is frequently treated (e.g pelletization, granulation, self curing) previously to application, to reduce the negative effects on soil (e.g rapid increase of pH, mycorrhiza, fine roots of trees and microfauna). These treatments normally reduce the rate of nutrients dissolution. In fires this does not happen. Thus the implications on soil properties are logically different. Depending on the combustion temperature and/or severity, ash could have different physical (e.g texture, wettability) and chemical properties (e.g amount and type of total and leached nutrients) and this will have implications on soil. Ash can increase and decrease soil aggregation, wettablity and water retention, bulk density, runoff and water infiltration. Normally, ash increases soil pH, Electrical Conductivity, and the amount of some basic nutrients as calcium, magnesium, sodium and potassium. However it is also a potential source of heavy metals, especially if ash pH is low. However the effect of ash on soil in space and time depends especially of the ash amount and characteristics, fire temperature, severity, topography, aspect

  2. Life cycle perspective on recycling of ashes; Livscykelperspektiv paa aatervinning av askor

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, Susanna

    2007-07-01

    The purpose of this project was to, from a life cycle perspective, discuss the consequences of recycling or disposing combustion ashes. The aim was to regard regional as well as global environmental impacts and point at potential conflicts between different environmental objectives, in order to produce basic information for decision-making on criteria and regulations for ash handling.Three different ashes were studied: bottom ash from waste incineration, fly ash from combustion of peat and from forest fuels. For all ashes three different scenarios were studied, two where the ash is recycled, and one where it is disposed. Focus was put on the difference between the three scenarios during 100 years. The use of bottom ash from waste incineration for roads saved crushed rock and energy, but produced more leaching of metals than the disposal alternative. Using this ash in drainage strata saves sand but causes higher metal leaching too. The same conclusions can be drawn for fly ash from peat, here leaching of Arsenic is the main factor. Using the peat ash as road contraction material saves more resources than the use for drainage blankets. For forest fuel ash, both the use as road construction material and recycling to the forest saves resources and energy. Recycling to the forest saves most energy but also the resources of Zinc, Phosphorous and Dolomite. Leaching of metals is most important for the forest recycling, and the nature of this resource recycling can be argued. The results are most sensitive concerning transports and leaching, but also for maintenance of the constructions where the ash is used. For the forest fuel ash, the suppositions about the necessity of compensation for nutrients removed with the fuel, have important effects for the result. Generally it can be said, for all three cases, that the estimates of leaching of metals are very uncertain, and that there is a need to develop the existing models for long term leaching. The three cases demonstrated

  3. Dielectric properties of fly ash

    Indian Academy of Sciences (India)

    S C Raghavendra; R L Raibagkar; A B Kulkarni

    2002-02-01

    This paper reports the dielectric properties of fly ash. The dielectric measurements were performed as a function of frequency and temperature. The sample of fly ash shows almost similar behaviour in the frequency and temperature range studied. The large value of dielectric constant in the typical frequency range is because of orientation polarization and tight binding force between the ions or atoms in the fly ash. The sample of fly ash is of great scientific and technological interest because of its high value of dielectric constant (104).

  4. Physicochemical properties and heavy metals leachability of fly ash from coal-fired power plant

    Institute of Scientific and Technical Information of China (English)

    Xiang Wei; Han Baoping; Zhou Dong; Nzihou Ange

    2012-01-01

    The physicochemical properties of fly ash from two kinds of coal-fired power plants were studied.Three aspects were examined:the micro-morphology,the mineral composition and the content of heavy met als.The results show that the fly ash from plants using a circulating fluidized bed are more irregular particles,while the particles from the plants using a pulverized coal-fired boiler are mainly spherical in shape.Quartz and mullite are the main crystalline phases in the ash.Clearly,both the technology and the coal used by a power plant can influence the mineral composition of the ash.The mineral composition of fly ash from a circulating fluidized bed is more complex than that from a pulverized coal-fired boiler.The quantity of elements found in the fly ash is greater than that found in the bottom ash for the same plant.Heavy metals are likely to be enriched in the fly ash.Heavy metal leachability was studied using two leaching methods.The results indicate that most of the heavy metals that leached during either batch leaching or column leaching experiments did not exceed the related maximum concentration standards.But Ni concentrations in the leachates from both batch and column tests exceed the standard.The highest excess rates in both tests were 572% and 497%,which levels might threaten the environment.

  5. Utilize Cementitious High Carbon Fly Ash (CHCFA) to Stabilize Cold In-Place Recycled (CIR) Asphalt Pavement as Base Coarse

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Haifang; Li, Xiaojun; Edil, Tuncer; O' Donnell, Jonathan; Danda, Swapna

    2011-02-05

    The purpose of this study was to evaluate the performance of cementitious high carbon fly ash (CHCFA) stabilized recycled asphalt pavement as a base course material in a real world setting. Three test road cells were built at MnROAD facility in Minnesota. These cells have the same asphalt surface layers, subbases, and subgrades, but three different base courses: conventional crushed aggregates, untreated recycled pavement materials (RPM), and CHCFA stabilized RPM materials. During and after the construction of the three cells, laboratory and field tests were carried out to characterize the material properties. The test results were used in the mechanistic-empirical pavement design guide (MEPDG) to predict the pavement performance. Based on the performance prediction, the life cycle analyses of cost, energy consumption, and greenhouse gasses were performed. The leaching impacts of these three types of base materials were compared. The laboratory and field tests showed that fly ash stabilized RPM had higher modulus than crushed aggregate and RPM did. Based on the MEPDG performance prediction, the service life of the Cell 79 containing fly ash stabilized RPM, is 23.5 years, which is about twice the service life (11 years) of the Cell 77 with RPM base, and about three times the service life (7.5 years) of the Cell 78 with crushed aggregate base. The life cycle analysis indicated that the usage of the fly ash stabilized RPM as the base of the flexible pavement can significantly reduce the life cycle cost, the energy consumption, the greenhouse gases emission. Concentrations of many trace elements, particularly those with relatively low water quality standards, diminish over time as water flows through the pavement profile. For many elements, concentrations below US water drinking water quality standards are attained at the bottom of the pavement profile within 2-4 pore volumes of flow.

  6. Use of Recycled Aggregate and Fly Ash in Concrete Pavement

    OpenAIRE

    Myle N. James; Wonchang Choi; Taher Abu-Lebdeh

    2011-01-01

    Problem statement: Recycled materials aggregate from the demolished concrete structures and fly ash from burning coal shows the possible application as structural and non structural components in concrete structures. This research aims to evaluate the feasibility of using concrete containing recycled concrete aggregate and fly ash in concrete pavement. Approach: Two water cement ratio (0.45 and 0.55) the compressive strength, modulus of electricity and flexural streng...

  7. Characteristics of Coal Ashes in Yanzhou Mining District and Distribution of Trace Elements in Them

    Institute of Scientific and Technical Information of China (English)

    刘桂建; 彭子成; 杨萍玥; 桂和荣; 王桂梁

    2001-01-01

    In the process of combustion of coal organic and inorganic materials in it will undergo a complex variation. Part of them will become volatiles and, together with coal smoke, enter into atmosphere, some will remain in micro-particulates such as ash and dust and find their way into atmosphere in the form of solid particles, and the rest will be retained in ash and slag. Coal ashes are the residues of organic and inorganic substances in coal left after coal combustion and the composition of coal ashes is dependent on that of minerals and organic matter in coal This paper deals with the chemical composition of coal ashes, the distribution of trace elements in them and their petrological characteristics, and also studies the relationship between the yield of coal ashes and the distribution of trace elements. In addition, a preliminary study is also under taken on the factors that affect the chemical composition of coal ashes. As viewed from the analyses of coal ash samples collected from the Yanzhou mining district, it can be seen clearly that coal ashes from the region studied are composed chiefly of crystalline materials, glassy ma terials and uncombusted organic matter and the major chemical compositions are SiO2, A12O3,Fe2O3, and CaO, as well as minor amounts of SO3, P2O5, Na2O, K2O and TiO2. During the combustion of coal, its trace elements will be redistributed and most of them are enriched in coal ashes. At the same time, the concentrations of the trace elements in flying ash are much higher than those of bottom ash, i.e. , with decreasing particle-size of coal ashes their concen trations will become higher and higher. So the contents of trace elements are negatively propor tional to the particle-size of coal ashes. There has been found a positive correlation between the trace elements Th, V, Zn, Cu and Pb and the yield of coal ashes while a negative correlation between C1 and the yield of coal ashes.

  8. Leaching optimization of municipal solid waste incineration ash for resource recovery: A case study of Cu, Zn, Pb and Cd.

    Science.gov (United States)

    Tang, Jinfeng; Steenari, Britt-Marie

    2016-02-01

    Ash from municipal solid waste incineration (MSWI) may be quite cumbersome to handle. Some ash fractions contain organic pollutants, such as dioxins, as well as toxic metals. Additionally, some of the metals have a high value and are considered as critical to the industry. Recovery of copper, zinc and lead from MSWI ashes, for example, will not only provide valuable metals that would otherwise be landfilled but also give an ash residue with lower concentrations of toxic metals. In this work, fly ash and bottom ash from an MSWI facility was used for the study and optimization of metal leaching using different solutions (nitric acid, hydrochloric acid and sulfuric acid) and parameters (temperature, controlled pH value, leaching time, and liquid/solid ratio). It was found that hydrochloric acid is relatively efficient in solubilizing copper (68.2±6.3%) and zinc (80.8±5.3%) from the fly ash in less than 24h at 20°C. Efficient leaching of cadmium and lead (over 92% and 90% respectively) was also achieved. Bottom ash from the same combustion unit was also characterized and leached using acid. The metal yields were moderate and the leachates had a tendency to form a gelatinous precipitate, which indicates that the solutions were actually over-saturated with respect to some components. This gel formation will cause problems for further metal purification processes, e.g. solvent extraction. PMID:26463013

  9. Leaching optimization of municipal solid waste incineration ash for resource recovery: A case study of Cu, Zn, Pb and Cd.

    Science.gov (United States)

    Tang, Jinfeng; Steenari, Britt-Marie

    2016-02-01

    Ash from municipal solid waste incineration (MSWI) may be quite cumbersome to handle. Some ash fractions contain organic pollutants, such as dioxins, as well as toxic metals. Additionally, some of the metals have a high value and are considered as critical to the industry. Recovery of copper, zinc and lead from MSWI ashes, for example, will not only provide valuable metals that would otherwise be landfilled but also give an ash residue with lower concentrations of toxic metals. In this work, fly ash and bottom ash from an MSWI facility was used for the study and optimization of metal leaching using different solutions (nitric acid, hydrochloric acid and sulfuric acid) and parameters (temperature, controlled pH value, leaching time, and liquid/solid ratio). It was found that hydrochloric acid is relatively efficient in solubilizing copper (68.2±6.3%) and zinc (80.8±5.3%) from the fly ash in less than 24h at 20°C. Efficient leaching of cadmium and lead (over 92% and 90% respectively) was also achieved. Bottom ash from the same combustion unit was also characterized and leached using acid. The metal yields were moderate and the leachates had a tendency to form a gelatinous precipitate, which indicates that the solutions were actually over-saturated with respect to some components. This gel formation will cause problems for further metal purification processes, e.g. solvent extraction.

  10. HD Diesel engine equipped with a bottoming Rankine cycle as a waste heat recovery system. Part 2: Evaluation of alternative solutions

    OpenAIRE

    Serrano Cruz, José Ramón; Dolz Ruiz, Vicente; Novella Rosa, Ricardo; García Martínez, Antonio

    2012-01-01

    A theoretical investigation has been performed on the feasibility of introducing a waste heat recovery (WHR) system in a two-stage turbocharged HDD engine. The WHR is attained by introducing a Rankine cycle, which uses an organic substance or directly water as a working fluid depending on energetic performance considerations. A previous research was carried out to evaluate the maximum potential of this WHR concept, a conventional layout was used for coupling the Rankine cycle to the thermal e...

  11. Effects of Characteristics of Fly Ash on the Properties of Geopolymer

    Institute of Scientific and Technical Information of China (English)

    杜海燕; 杨立娜; 高婉琪; 刘家臣

    2016-01-01

    The properties of two types of fly ash geopolymers made from class F fly ashes produced in wet bottom and dry bottom boilers were investigated in the present study. The source material used in the geopolymer concrete was activated with sodium hydroxide and sodium silicate solution. The results revealed that the geopolymer pro-duced with wet bottom boiler fly ash(CZ-FA)hardened quickly, and had higher early-age strength and lower shrinkage than the geopolymer produced with dry bottom boiler fly ash(SX-FA). The compressive strength of the two geopolymers made from CZ-FA and SX-FA was 45 MPa and 15 MPa respectively when cured at 60℃ and delayed for 14 d. However, after 90 days’ delay, the compressive strength of both the samples is almost the same, up to 80 MPa. Nearly 20% volume shrinkage of the samples made from SX-FA was much higher than that made from CZ-FA, which was almost zero. XRD, SEM/EDS and FT-IR were used to analyze the main reason of the dif-ferences.

  12. Fly ash quality and utilization

    Energy Technology Data Exchange (ETDEWEB)

    Barta, L.E.; Lachner, L.; Wenzel, G.B. [Inst. for Energy, Budapest (Hungary); Beer, M.J. [Massachusetts Inst. of Technology, Cambridge, MA (United States)

    1995-12-01

    The quality of fly ash is of considerable importance to fly ash utilizers. The fly ash puzzolanic activity is one of the most important properties that determines the role of fly ash as a binding agent in the cementing process. The puzzolanic activity, however is a function of fly ash particle size and chemical composition. These parameters are closely related to the process of fly ash formation in pulverized coal fired furnaces. In turn, it is essential to understand the transformation of mineral matter during coal combustion. Due to the particle-to-particle variation of coal properties and the random coalescence of mineral particles, the properties of fly ash particles e.g. size, SiO{sub 2} content, viscosity can change considerably from particle to particle. These variations can be described by the use of the probability theory. Since the mean values of these randomly changing parameters are not sufficient to describe the behavior of individual fly ash particles during the formation of concrete, therefore it is necessary to investigate the distribution of these variables. Examples of these variations were examined by the Computer Controlled Scanning Electron Microscopy (CCSEM) for particle size and chemical composition for Texas lignite and Eagel Butte mineral matter and fly ash. The effect of combustion on the variations of these properties for both the fly ash and mineral matter were studied by using a laminar flow reactor. It is shown in our paper, that there are significant variations (about 40-50% around the mean values) of the above-listed properties for both coal samples. By comparing the particle size and chemical composition distributions of the mineral matter and fly ash, it was possible to conclude that for the Texas lignite mineral matter, the combustion did not effect significantly the distribution of these properties, however, for the Eagel Butte coal the combustion had a major impact on these mineral matter parameters.

  13. Reducing carbon-in-ash

    Energy Technology Data Exchange (ETDEWEB)

    Nigel S. Dong [IEA Clean Coal Centre, London (United Kingdom)

    2010-05-15

    High levels of carbon-in-ash lead to reduced power plant efficiency and higher fuel costs, degrade the performance of electrostatic precipitators and increase emissions of particulates. Increased carbon levels in the fly ash can lead to problems with ash use in cement/concrete production. This report reviews current measures and technologies that can be used to prevent excessive carbon-in-ash in pulverised coal combustion (PCC) power plants. These include coal cleaning, coal fineness improvement, reduction of distribution imbalance of coal among burners, increasing coal-air mixing rates at both burner and OFA levels and optimising excess air ratios. A plasma-assisted combustion enhancement technology can help achieve better ignition and more stable flame for coals that are normally difficult to burn. Computer-based combustion optimisation using expert systems, neural network systems and coal combustion simulation is becoming an invaluable means to tackle the carbon-in-ash issue. This report also reviews the regulations in nine major coal-consuming countries, which stipulate the maximum unburnt carbon levels permitted for fly ash for use in concrete/cement production. The Loss on Ignition (LOI) parameter is used in all national standards, although it is considered inadequate and may exclude some usable fly ash from being utilised. Performance-based regulations are more appropriate and have been adopted by Canada and USA. The EU and Canada now permit the use of fly ash produced from co-combustion of coal and biomass. China and Russia allow very high LOI levels for certain fly ash but the other countries require similar LOI limits for fly ash for use in concrete. Finally, this report discusses measures and technologies for reduction of carbon-in-ash, including classification, froth flotation, triboelectrostatic separators, thermal processes and carbon surface modification. 146 refs., 19 figs., 15 tabs.

  14. Ashes from oily sewage sludge combustion: chemistry, mineralogy and leaching properties

    Directory of Open Access Journals (Sweden)

    Róbert Polc

    2016-07-01

    Full Text Available In the current paper the chemical and mineralogical properties of bottom ash and fly ash from oily sewage sludge combustion are investigated. The mineralogical composition and the morphology of ashes were determined by X-ray powder diffraction (XRD in combination with scanning electron microscopy with quantitative energy-dispersive X-ray microanalysis (SEM-EDX. In addition, a leaching test results are presented to shed light on the potential toxicity of studied materials and their impact on the environment is discussed. Both of the studied materials are final products of thermal oxidation at industrial sludge incinerator. This facility aims to sanitary disposal of mechanical and biological sludge from industrial wastewater treatment plant. Bottom ash and fly ash are relatively stable solid products with slightly different chemical and mineralogical composition that reflects their different origin – burning condition in furnace vs. flues gas cleaning technology. Leaching tests of both mentioned materials were implemented under laboratory conditions. The aim of the laboratory tests was to determine the possibility of the pollutants release into the environment. The data presented herein support the importance of detailed mineralogical and geochemical study for the better understanding of the leaching tests. The obtained results showed that both of the sewage sludge ash samples exceed the criteria for accepting waste in landfilles established for Slovakia.

  15. Ash deposit characterisation in a large-scale municipal waste-to-energy incineration plant

    International Nuclear Information System (INIS)

    The deposition of ash - combustion residues - on superheaters and heat exchanger surfaces reduce their efficiency; this phenomenon was investigated for a large-scale waste-to-energy incineration facility. Over a period of six months, ash samples were collected from the plant, which included the bottom ash and deposits from the superheater, as well as flyash from the convective heat exchanger, the economiser and fabric filters. These were analysed for particle size, unburned carbon, elemental composition and surface morphology. Element partitioning was evident in the different combustion residues, as volatile metals, such as cadmium, antimony and arsenic, were found to be depleted in the bottom ash by the high combustion temperatures (1000+oC) and concentrated/enriched in the fabric filter ash (transferred by evaporation). Non-volatile elements by contrast were distributed equally in all locations (transported by particle entrainment). The heat exchanger deposits and fabric filter ash had elevated levels of alkali metals. 82% of flyash particles from the fabric filter were in the submicron range.

  16. BUS 611 Ash course tutorial / uophelp

    OpenAIRE

    uophelp

    2015-01-01

    For more course tutorials visit www.uophelp.com   BUS 611 Week 1 Assignment Article Review (Ash Course) BUS 611 Week 2 Assignment Project Risk (Ash Course) BUS 611 Week 3 Assignment WBS (Ash Course) BUS 611 Week 4 Assignment Integrated Project Management Tools (Ash Course) BUS 611 Week 5 Assignment Monthly Status Reports (Ash Course) BUS 611 Week 6 Final Research Paper (Ash Course)  

  17. Measurement of natural activity in peat ashes

    International Nuclear Information System (INIS)

    High proportions of radioactive materials in peat ashes may involve radiation hazards during handling and deposition of these waste materials. Measurements have been performed to determine the content of radioactive materials in ashes from peat burning. The activities in fly ash and ''solid'' ash in seven peat-fired power plants in Sweden are presented. The methods of analysing and measuring peat ashes for activity from different radionuclides are described. The activity levels in ash samples are given

  18. Study of thermal-flow processes in ash cooler cooperating with CFB boiler

    Directory of Open Access Journals (Sweden)

    Paweł Regucki

    2016-03-01

    Full Text Available The article presents an example of thermal-flow analysis of the bottom ash cooler cooperating with the circulating fluidized bed boiler. There is presented a mathematical model of series-parallel hydraulic system supplying the ash cooler in cooling water. The numerical calculations indicate an influence of changes of the pipeline geometrical parameters on the cooling water flow rate in the system. Paper discusses the methodology of the studies and presents examples of the results of thermal balance calculations based on the results of measurements. The numerical results of the thermal-flow analysis in comparison with the measurements on the object indicate that the presented approach could be used as a diagnostic tool investigating the technical state of the bottom ash cooler.

  19. ECO 316(ASH) course tutorial/tutorialoutlet

    OpenAIRE

    naresh 1

    2015-01-01

    For more course tutorials visit www.tutorialoutlet.com   ECO 316 Week 1 DQ 1 Should You Invest Short Term (Ash) ECO 316 Week 1 DQ 2 Treasury Inflation Protection Bonds (Ash) ECO 316 Week 1 Quiz (Chapter 1-6) (Ash) ECO 316 Week 2 DQ 1 New Product, Will I Be Rich (Ash) ECO 316 Week 2 DQ 2 Mutual Fund Regulation (Ash) ECO 316 Week 2 Quiz (Chapter 7-12) (Ash) ECO 316 Week 3 DQ 1 Exchange Rate Risk (Ash) ECO 316 Week 3 DQ 2 Should I Expect a Bail Out (Ash) ...

  20. CRJ 303 ASH course tutorial/tutorialoutlet

    OpenAIRE

    naresh 1

    2015-01-01

    For more course tutorials visit www.tutorialoutlet.com   Product Description CRJ 303 Week 1 DQ 1 Goals of Sentencing (Ash) CRJ 303 Week 1 DQ 2 Sentencing Techniques (Ash) CRJ 303 Week 2 DQ 1 Punishment (Ash) CRJ 303 Week 2 DQ 2 Privatizing Prisons (Ash) CRJ 303 Week 2 Assignment Jails vs. Prisons (Ash) CRJ 303 Wee 3 DQ 1 Probation and Parole (Ash) CRJ 303 Week 3 DQ 2 Civil Commitments (Ash) CRJ 303 Week 3 Assignment Juvenile Detainees (Ash) CRJ 303...

  1. PSY 496 ASH Tutorial Course / Uoptutorial

    OpenAIRE

    John Allen

    2015-01-01

    PSY 496 Week 1 Assignment Foundations for the Final Paper (Ash) PSY 496 Week 2 Assignment Finalized Resources and Revisions for the Final Paper (Ash) PSY 496 Week 1 DQ 1 Approaches to Research (Ash) PSY 496 Week 1 DQ 2 Measuring Change (Ash) PSY 496 Week 2 DQ 1 Protecting Participants from Harm (Ash) PSY 496 Week 2 DQ 2 Areas of Competence (Ash) PSY 496 Week 2 Journal Ethics in Research and Practice (Ash) PSY 496 Week 3 Assignment Final Paper Draft (Ash) PSY 49...

  2. MGT 415 ASH Course Tutorial / Tutorialoutlet

    OpenAIRE

    kennith archi

    2015-01-01

    For more course tutorials visit www.tutorialoutlet.com   MGT 415 Week 1 DQ 1 Organizational Design (Ash) MGT 415 Week 1 DQ 2 The Research Project (Ash) MGT 415 Week 2 DQ 1 Group Development Process (Ash) MGT 415 Week 2 DQ 2 Influence of Informal Groups (Ash)  MGT 415 Week 3 DQ 1 Group Cohesion and Productivity (Ash) MGT 415 Week 3 DQ 2 Norms and Conformity (Ash) MGT 415 Week 3 Assignment Best Workplace (Ash) MGT 415 Week 4 DQ 1 Group Decisions (Ash) ...

  3. HIS 103 ASH course tutorial/tutorialoutlet

    OpenAIRE

    NARESH 34

    2015-01-01

    For more course tutorials visit www.tutorialoutlet.com   HIS 103 Week 1 DQ 1 (Transition to Agriculture) (Ash) HIS 103 Week 1 DQ 2 (Early Complex Societies) (Ash) HIS 103 Week 1 Quiz (Ash) HIS 103 Week 1 Assignment (Ash) HIS 103 Week 2 Assignment Greco Roman Influence Paper (Ash) HIS 103 Week 2 DQ 1 Chinese Social and Political Order Systems (Ash) HIS 103 Week 2 DQ 2 Caste System (Ash) HIS 103 Week 2 Quiz (Ash) HIS 103 Week 3 Assignment Black Death Dra...

  4. MAT 222 ASH Course Tutorial / Tutorialoutlet

    OpenAIRE

    mirat

    2015-01-01

    For more course tutorials visit www.tutorialoutlet.com   MAT 222 Week 1 Solving Proportions (Ash) MAT 222 Week 1 DQ 1 Can't Cancel Terms (Ash) MAT 222 Week 2 DQ 1 One-Variable Compound Inequalities (Ash) MAT 222 Week 2 Two-Variable Inequalities (Ash) MAT 222 Week 3 DQ 1 Simplifying Radicals (Ash) MAT 222 Week 3 Real World Radical Formulas (Ash) MAT 222 Week 4 DQ 1 Solving Quadratic Equations (Ash) MAT 222 Week 4 Real World Quadratic Functions (Ash) ...

  5. BUS 642 Ash course tutorial / uophelp

    OpenAIRE

    uophelp

    2015-01-01

    www.uophelp.com     BUS 642 Week 1 DQ 1 Scientific Thinking (Ash Course) BUS 642 Week 1 DQ 2 Making Research Decisions (Ash Course) BUS 642 Week 1 Exercises (Ash Course) BUS 642 Week 2 DQ 1 Ethics in Business Research (Ash Course) BUS 642 Week 2 DQ 2 Design of Research (Ash Course) BUS 642 Week 2 Exercises (Ash Course) BUS 642 Week 3 DQ 1 Measurement Scales (Ash Course) BUS 642 Week 3 DQ 2 Clarifying the Research Questions (Ash Course) BUS...

  6. Volcanic ash - Terrestrial versus extraterrestrial

    Science.gov (United States)

    Okeefe, J. A.

    1976-01-01

    A principal difference between terrestrial and extraterrestrial lavas may consist in the greater ability of terrestrial lavas to form thin films (like those of soap bubbles) and hence foams. It would follow that, in place of the pumice and spiny shards found in terrestrial volcanic ash, an extraterrestrial ash should contain minute spherules. This hypothesis may help to explain lunar microspherules.

  7. Leaching from biomass combustion ash

    DEFF Research Database (Denmark)

    Maresca, Alberto; Astrup, Thomas Fruergaard

    2014-01-01

    in water. The content of the selected heavy metals (i.e. Cr, Ni, Pb and Cd) complied with the Danish Statutory Order on the use of bio-ash for agricultural purposes; however, critical releases of Cr were detected in the leachate extracts, especially in the fly ash. High alkaline pHs were measured in all...

  8. Ash Properties of Alternative Biomass

    DEFF Research Database (Denmark)

    Capablo, Joaquin; Jensen, Peter Arendt; Pedersen, Kim Hougaard;

    2009-01-01

    The ash behavior during suspension firing of 12 alternative solid biofuels, such as pectin waste, mash from a beer brewery, or waste from cigarette production have been studied and compared to wood and straw ash behavior. Laboratory suspension firing tests were performed on an entrained flow...

  9. Investigations of ash fouling with cattle wastes as reburn fuel in a small-scale boiler burner under transient conditions.

    Science.gov (United States)

    Oh, Hyukjin; Annamalai, Kalyan; Sweeten, John M

    2008-04-01

    Fouling behavior under reburn conditions was investigated with cattle wastes (termed as feedlot biomass [FB]) and coal as reburn fuels under a transient condition and short-time operation. A small-scale (30 kW or 100,000 Btu/hr) boiler burner research facility was used for the reburn experiments. The fuels considered for these experiments were natural gas (NG) for the ashless case, pure coal, pure FB, and blends of coal and FB. Two parameters that were used to characterize the ash "fouling" were (1) the overall heat-transfer coefficient (OHTC) when burning NG and solid fuels as reburn fuels, and (2) the combustible loss through ash deposited on the surfaces of heat exchanger tubes and the bottom ash in the ash port. A new methodology is presented for determining ash-fouling behavior under transient conditions. Results on the OHTCs for solid reburn fuels are compared with the OHTCs for NG. It was found that the growth of the layer of ash depositions over longer periods typically lowers OHTC, and the increased concentration of ash in gas phase promotes radiation in high-temperature zones during initial periods while decreasing the heat transfer in low-temperature zones. The ash analyses indicated that the bottom ash in the ash port contained a smaller percentage of combustibles with a higher FB percentage in the fuels, indicating better performance compared with coal because small particles in FB burn faster and the FB has higher volatile matter on a dry ash-free basis promoting more burn out.

  10. An evaluation of the environmental implications of petroleum refinery emissions by multielemental neutron activation analysis of rumen fluid ash of buffaloes

    International Nuclear Information System (INIS)

    In order to study environmental pollution in and around a petroleum refinery complex, a multielemental instrumental neutron activation analysis (INAA) method was used to assay concentrations of As, Ba, Br, Cl, Co, Cr, Cs, Cu, Fe, Hg, La, Mn, Mo, K, Na, P, Sc, Rb, Se, Sr, W and Zn in the rumen fluid ash sample of buffaloes from the vicinity of the refinery. Corresponding samples from a control area 300 km away from the refinery were analysed. Standard Reference Materials, Bovine liver (SRM 1577a), Oyster tissue (SRM 1566a) and Animal bone (CRM H-5) were also analysed for quality control. Samples were irradiated with thermal neutrons at 1012-1013n cm-2 s-1 and counted by high-resolution γ spectrometry. Mean elemental concentrations of As, Ba, Br, Cr, Hg and Fe were found to be enhanced, whereas those of Na, K, Cl, Cu, Mn and P were depleted in samples from the vicinity of the refinery complex compared to controls. The environmental implications of anomalous elemental concentrations are discussed. (Author)

  11. Efficient Research Design: Using Value-of-Information Analysis to Estimate the Optimal Mix of Top-down and Bottom-up Costing Approaches in an Economic Evaluation alongside a Clinical Trial.

    Science.gov (United States)

    Wilson, Edward C F; Mugford, Miranda; Barton, Garry; Shepstone, Lee

    2016-04-01

    In designing economic evaluations alongside clinical trials, analysts are frequently faced with alternative methods of collecting the same data, the extremes being top-down ("gross costing") and bottom-up ("micro-costing") approaches. A priori, bottom-up approaches may be considered superior to top-down approaches but are also more expensive to collect and analyze. In this article, we use value-of-information analysis to estimate the efficient mix of observations on each method in a proposed clinical trial. By assigning a prior bivariate distribution to the 2 data collection processes, the predicted posterior (i.e., preposterior) mean and variance of the superior process can be calculated from proposed samples using either process. This is then used to calculate the preposterior mean and variance of incremental net benefit and hence the expected net gain of sampling. We apply this method to a previously collected data set to estimate the value of conducting a further trial and identifying the optimal mix of observations on drug costs at 2 levels: by individual item (process A) and by drug class (process B). We find that substituting a number of observations on process A for process B leads to a modest £ 35,000 increase in expected net gain of sampling. Drivers of the results are the correlation between the 2 processes and their relative cost. This method has potential use following a pilot study to inform efficient data collection approaches for a subsequent full-scale trial. It provides a formal quantitative approach to inform trialists whether it is efficient to collect resource use data on all patients in a trial or on a subset of patients only or to collect limited data on most and detailed data on a subset.

  12. Using fly ash for construction

    Energy Technology Data Exchange (ETDEWEB)

    Valenti, M.

    1995-05-01

    Each year electrical utilities generate 80 million tons of fly ash, primarily from coal combustion. Typically, utilities dispose of fly ash by hauling it to landfills, but that is changing because of the increasing cost of landfilling, as well as environmental regulations. Now, the Electric Power Research Institute (EPRI), in Palo Alto, Calif., its member utilities, and manufacturers of building materials are finding ways of turning this energy byproduct into the building blocks of roads and structures by converting fly ash into construction materials. Some of these materials include concrete and autoclaved cellular concrete (ACC, also known as aerated concrete), flowable fill, and light-weight aggregate. EPRI is also exploring uses for fly ash other than in construction materials. One of the more high-end uses for the material is in metal matrix composites. In this application, fly ash is mixed with softer metals, such as aluminum and magnesium, to strengthen them, while retaining their lighter weight.

  13. Fly ash based zeolitic pigments for application in anticorrosive paints

    Science.gov (United States)

    Shaw, Ruchi; Tiwari, Sangeeta

    2016-04-01

    The purpose of this work is to evaluate the utilization of waste fly ash in anticorrosive paints. Zeolite NaY was synthesized from waste fly ash and subsequently modified by exchanging its nominal cation Na+ with Mg2+ and Ca2+ ions. The metal ion exchanged zeolite was then used as anticorrosive zeolitic pigments in paints. The prepared zeolite NaY was characterized using X-Ray diffraction technique and Scanning electron microscopy. The size, shape and density of the prepared fly ash based pigments were determined by various techniques. The paints were prepared by using fly ash based zeolitic pigments in epoxy resin and the percentages of pigments used in paints were 2% and 5%. These paints were applied to the mild steel panels and the anticorrosive properties of the pigments were assessed by the electrochemical spectroscopy technique (EIS).

  14. Why is Coal Ash of Concern and How to Assess Potential Impacts

    Science.gov (United States)

    EPA's new test methods - the leaching environmental assessment framework (LEAF) are discussed including how they have been used to evaluate fly ash and scrubber residues. Work to evaluate high-volume encapsulated use of fly ash in cementitious material is also described.

  15. Idaho Nuclear Technology and Engineering Center (INTEC) (formerly ICPP) ash reutilization study

    International Nuclear Information System (INIS)

    Since 1984, the coal-fired plant at the Idaho Nuclear Technology and Engineering Center (INTEC, formerly Idaho Chemical Processing Plant) has been generating fly ash at a rate of approximately 1,000 tons per year. This ash is hydrated and placed in an ash bury pit near the coal-fired plant. The existing ash bury pit will be full in less than 1 year at its present rate of use. A conceptual design to build a new ash bury pit was completed, and the new pit is estimated to cost $1.7 million. This report evaluates ash reutilization alternatives that propose to eliminate this waste stream and save the $1.7 million required to build a new pit. The alternatives include using ash for landfill day cover, concrete admixture, flowable fill, soil stabilization, waste remediation, and carbon recovery technology. Both physical and chemical testing, under the guidance of the American Society for Testing and Materials, have been performed on ash from the existing pit and from different steps within the facility's processes. The test results have been evaluated, compared to commercial ash, and are discussed as they relate to reutilization alternatives. This study recommends that the ash be used in flowable fill concrete for Deactivation and Demolition work at the Idaho National Engineering and Environmental Laboratory

  16. Reuse of Partially Sulphated CFBC Ash as an SO2 Sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yinghai; Jia, Lufei; Anthony, E.J. [CanmetENERGY, 1 Haanel Drive, Ottawa, Ontario, K1A1M1 (Canada); Nobili, M.; Telesca, A. [Department of Environmental Engineering and Physics, University of Basilicata, Viale dell' Ateneo, Lucano 10, 85100 Potenza (Italy); Montagnaro, F. [Department of Chemistry, University of Naples ' Federico II' , Monte Sant' Angelo, 80126 Naples (Italy)

    2010-06-15

    Ashes produced from fluidized bed combustors (FBC) burning high-sulphur fuels often contain 20-30 % unreacted CaO because of the limestone added to remove SO2 in situ. This paper presents the results from experiments into reactivating partially sulphated FBC ash (both bed ash and fly ash) with liquid water, steam and sodium carbonate. The water- or steam-hydrated ashes were subsequently re-sulphated in a thermogravimetric analyzer (TGA) with simulated flue gas. The TGA results show that, while liquid water and steam successfully hydrate and reactivate the unreacted CaO in the bed ash, the treated ashes sulphated to widely different extents. Attempts to reactivate fly ash with hydration failed, although fly ash by itself is extremely reactive. A pilot-scale mini-circulating FBC (CFBC) was also used to evaluate the results of reactivation on the bed ash by hydrating with liquid water and admixtures of inorganic salt (Na2CO3) in the form of either powder or solution. When the treated ash was re-injected into the combustor with the fuel, the effect on SO2 removal efficiency was negligible if Na2CO3 was added as powder. Doping with aqueous solution resulted in enhanced SO2 removal; however, the extent was lower than the level achieved if only water hydration was employed. Increasing the amount of water (from 10% to 30%) to reactivate the ash did not improve the sulphur capture capacity in the mini-CFBC. Overall, this study suggests that the most practical way for re-use of the partially sulphated bed ash as a sulphur sorbent is reactivation by water. A proposal for utilization of the fly ash in an economically reasonable way is also discussed.

  17. Evaluation of low-pH cement degradation in tunnel plugs and bottom plate systems in the frame of SR-Site

    Energy Technology Data Exchange (ETDEWEB)

    Grandia, Fidel; Galindez, Juan-Manuel; Molinero, Jorge; Arcos, David (Amphos XXI Consulting S.L., Barcelona (Spain))

    2010-09-15

    Low-pH concrete plugs are going to be used during the backfilling of depositional tunnels of the high-level nuclear waste repository. The stability of these plugs, however, is thought to be affected by water-concrete interaction that may lead to cement degradation and dissolution. Alkaline plumes derived from such a degradation could jeopardize the chemical stability of the clay material in the backfill due to the enhanced dissolution kinetics under high-pH solutions. In this study, the cement durability of concrete plugs to be used in the repository is numerically evaluated by performing reactive transport simulations based on the geochemical degradation of the cement compounds, mainly calcium silicate hydrates (CSH). The implementation of degradation process into the geochemical model is based on a solid solution approach for CSH alteration. The numerical model also takes into account the dependency of transport properties (e.g. molecular diffusion coefficient) with the changes in porosity due to mineral precipitation-dissolution. The simulations predict that the effect of low-pH concrete alteration on the stability of backfill materials would be low. The main process governing geochemistry in the backfill-concrete boundary would be the quick loss of porosity due to ettringite precipitation. The very high molar volume of this mineral enhances the rate of clogging. The ettringite formation is mainly driven by the high sulphate concentration in the backfill porewater, which in turn is controlled by the equilibrium with gypsum in the backfill. The release and diffusion of calcium (from CSH replacement) and Al (from katoite dissolution) from concrete causes ettringite precipitation at the concrete-backfill boundary. The loss of porosity dramatically reduces solute diffusion and, consequently, the backfill-concrete system remains almost invariably for hundreds of years

  18. Control methods for mitigating biomass ash-related problems in fluidized beds.

    Science.gov (United States)

    Vamvuka, D; Zografos, D; Alevizos, G

    2008-06-01

    Embodiment of biomass combustion technologies in the Cretan energy system will play an important role and will contribute to the local development. The main biomass fuels of Crete are the agricultural residues olive kernel and olive tree wood. Future applications of these biofuels may create, among others, operational problems related to ash effects. In this regard, the thermal behavior of the ashes during lab-scale fluidized bed combustion tests was examined, in terms of slagging/fouling and agglomeration of bed material. Control methodologies for mitigating ash problems were applied, such as leaching the raw fuels with water and using different mineral additives during combustion. The ashes and the bed material were characterized in terms of mineralogical, chemical and morphological analyses and the slagging/fouling and agglomeration propensities were determined. The results showed that fly ashes were rich in Ca, Si and Fe minerals and contained substantial amounts of alkali, falling within the range of "certain or probable slagging/fouling". Leaching of the raw fuels with water resulted in a significant reduction of the problematic elements K, Na, Cl and S in the fly ashes. The use of fuel additives decreased the concentrations of alkali and iron minerals in the fly ashes. With clay additives calcium compounds were enriched in the bottom ash, while with carbonate additives they were enriched in the fly ash. Fuel additives or water leaching reduced the slagging/fouling potential due to alkali. Under the conditions of the combustion tests, no signs of ash deposition or bed agglomeration were noticed. PMID:17826986

  19. Knowledge Transfer from the Forestry Sector to the Agricultural Sector concerning Ash Recycling; Kunskapsoeverfoering fraan skogssektorn till jordbrukssektorn angaaende askaaterfoering

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, Johanna; Salomon, Eva

    2009-02-15

    Cultivation of energy crops on arable land is increasing in Sweden. More than half these crops can be used for combustion, increasing the amount of ash that can be recycled to arable land. Ash is an interesting agricultural fertiliser, but more knowledge is needed before it can be applied and handled in a controlled way. Knowledge and experience concerning recycling of ash within the forest sector can be transferred to the agricultural sector. This project examined ways for ash producers to ensure safe long-term disposal of ash and to improve plant nutrient recycling. The overall aims were to identify experiences and knowledge within forestry that could be applied in agriculture; to identify gaps in knowledge and research requirements regarding ash recycling to arable land; and to produce recommendations on how to increase ash recycling. Literature describing the conditions for ash application to arable land and existing knowledge about ash recycling to forestry were reviewed. Nutrient balances were drawn up for phosphorus, cadmium, zinc and copper, which are relevant in biofuel ash recycling to agriculture. Data on ash application, mainly on forest land, were collected through telephone interviews. For ash to be more attractive for farmers, the ash product must be a realistic alternative to artificial fertilisers. Research and demonstration projects are needed to study the effects of ash on yield and quality in different crops. Different biofuel ash products have differing qualities and can thus have different fields of application within agriculture and can be applied in varying amounts. For example, clean straw ash has a low P and Cd content and mainly supplies potassium and lime. The balance calculations showed that the highest quality ash for arable land is bottom ash from grate combustion of forest trash with 2-5 % of willow. There are both differences and similarities between ash application in agriculture and forestry. An important feature is the

  20. Recent succession of the pedunculate oak and narrow-leaved ash forest in the unflooded part of Gornji Srem

    OpenAIRE

    Tomić Zagorka; Jović Nikola

    2002-01-01

    In the unflooded part of the river Sava, Bosut and Studva bottom lands in Gornji Srem (forest sections Moroviæ and Višnjiæevo), the following succession series are clearly differentiated on large areas: forests of narrow-leaved ash (Fraxinetum angustifoliae Jov. et Tom.1979. s.l) on ((/(-(/(-gley ( forests of pedunculate oak and narrow-leaved ash (Fraxino-Quercetum roboris Jov. et Tom.1979. s.l) on humogley, humosemigley and semigley ( forests of pedunculate oak, hornbeam and ash (Carpino-Fra...

  1. 49 CFR 230.69 - Ash pans.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Ash pans. 230.69 Section 230.69 Transportation... TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Ash Pans § 230.69 Ash pans. Ash pans shall be securely supported from mud-rings or frames with no part less than...

  2. Milled high-carbon clinker ash as a Portland cement extender

    Energy Technology Data Exchange (ETDEWEB)

    Gogol, V.R.; Heckroodt, R.O. [University of Cape Town, Cape Town (South Africa)

    1994-12-31

    Fly ash is the fine fraction of pulverized fuel ash extracted from the boiler flue gases by either electrostatic precipitation or collected in bag filters. Clinker ash is produced when boilers are fired by lump coal. The use of fly ash as a pozzolanic material is well established. The benefits gained from incorporating fly ash in concrete as a cement extender include reduced costs and improved durability, while the main drawback is the slower strength development of the concrete. The prospect of using milled clinker ash from the Van Eck power station in Windhoek, Namibia is economically very attractive to the concrete producers in Namibia because of the potential savings on transport costs. However, the carbon content of this ash could be as high as 35 mass%, which is three times the amount normally allowed in pozzolanic fly ash, according to ASTM C618. The purpose of this investigation was to evaluate the pozzolanic reactivity of such a high-carbon clinker ash and to compare its performance in concrete to fly ashes produced in selected ESKOM power stations. 4 refs., 2 figs., 4 tabs.

  3. Wood Ash from Bread Bakery as Partial Replacement for Cement in Concrete

    Directory of Open Access Journals (Sweden)

    Akeem Ayinde Raheem

    2013-04-01

    Full Text Available This paper reports the results of experiments evaluating the use of wood ash from bread bakery as partial replacement for ordinary Portland cement in concrete. The chemical composition of the wood ash as well as the workability and compressive strength of the concrete were determined. Wood ash was used to replace 5% - 25% by weight of the cement in concrete. Concrete with no wood ash serves as the control. The mix ratio used was 1:2:4 with water to binder ratio maintained at 0.5. The Compressive strength was determined at curing ages 3, 7, 28, 56, 90 and 120 days. The results showed that wood ash from bread bakery is a Class F fly ash since the sum of (SiO2 +Al2O3 +Fe2O3 is greater than 70%. The compressive strength of wood ash concrete increases with curing period and decreases with increasing wood ash content. There was a sharp decrease in compressive strength beyond 10% wood ash substitution. It was concluded that a maximum of 10% wood ash substitution is adequate for use in structural concrete

  4. Research on Adsorbent Using Modified Fly Ash for Campus Domestic Sewage Treatment

    Directory of Open Access Journals (Sweden)

    Li Jinping

    2016-01-01

    Full Text Available As a kind of extensive sources and low cost industrial waste, fly ash has many features, such as porosity, large surface area, adsorption capacity, chemical activity and weakly alkaline, which seem a wide prospect of application in wastewater treatment. This study proposed the acid modification test on fly ash. The effect of key factors including the particle size, pH, the dosage of fly ash, adsorption time and dosage of the modifier on domestic sewage removal efficiencies were evaluated. The optimum conditions and the corresponding removal efficiency were determined. The results show that the removal efficiency is increased firstly and steady subsequently with the increase of fly ash dosage, increased firstly and decreased subsequently with the increase of adsorption time, and increased firstly and decreased subsequently with the increase of pH value. The removal efficiency can up to 95.19% when 0.7 g fly ash added in 200 mL wastewater when the pH value was adjusted to 5 at the adsorption time of 20 min. And the best particle size of fly ash is 200 meshes, when used 2mol/L hydrochloride as modifier and soaked fly ash for 2h, and the ratio of hydrochloride and fly ash is 1mL / g, the effect is best. It also finds obviously that fly ash can have a better effect on removal efficiency than raw fly ash.

  5. BUS 620 Ash course tutorial / uophelp

    OpenAIRE

    uophelp

    2015-01-01

    For more course tutorials visit www.uophelp.com   BUS 620 Week 1 DQ 1 What is Marketing (Ash Course) BUS 620 Week 1 DQ 2 Marketing Strategies (Ash Course) BUS 620 Week 1 The Future of the New York Times (Ash Course) BUS 620 Week 2 DQ 1 Buyer Behavior (Ash Course) BUS 620 Week 2 DQ 2 Customer Needs (Ash Course) BUS 620 Week 2 Industry Forecasting (Ash Course) BUS 620 Week 3 DQ 1 Braining Nordstrom (Ash Course) BUS 620 Week 3 DQ 2 Marketing Segmentat...

  6. GEN 499 ASH course tutorial/tutorialoutlet

    OpenAIRE

    NARESH 34

    2015-01-01

    For more course tutorials visit www.tutorialoutlet.com       GEN 499 Week 1 DQ 1 Final Research Paper Topic and Plan (Ash) GEN 499 Week 1 DQ 2 Social Media (Ash) GEN 499 Week 2 DQ 1 Professional Resume and Cover Letter (Ash) GEN 499 Week 2 Assignment Critiquing Internet Sources (Ash) GEN 499 Week 3 DQ 1 Social Capital (Ash) GEN 499 Week 3 DQ 2 Federal Policy (Ash) GEN 499 Week 3 Assignment Annotated Bibliography (Ash) GEN 499 Week 4 DQ 1...

  7. BUS 372 ASH Material - bus372dotcom

    OpenAIRE

    lucky108

    2015-01-01

    For more course tutorials visit www.bus372.com       BUS 372 Week 1 DQ 1 The Role of Unionization (Ash Course) BUS 372 Week 1 DQ 2 Meeting Member Needs (Ash Course) BUS 372 Week 2 DQ 1 Profit Interest and Employee Interest (Ash Course) BUS 372 Week 2 DQ 2 Union Requirements (Ash Course) BUS 372 Week 2 Assignment Changing Landscape of Unions (Ash Course) BUS 372 Week 2 Quiz (Ash Course) BUS 372 Week 3 DQ 1 Strikes (Ash Course) BUS ...

  8. HCA 375 (ASH) course tutorial/tutorialoutlet

    OpenAIRE

    NARESH 34

    2015-01-01

    For more course tutorials visit www.tutorialoutlet.com     HCA 375 Week 1 DQ 1 Management versus Leadership (Ash) HCA 375 Week 1 DQ 2 Implementation and Barriers (Ash) HCA 375 Week 2 DQ 1 Measurement (Ash) HCA 375 Week 2 DQ 2 Quality and Outcomes (Ash) HCA 375 Week 2 Assignment Customer Satisfaction and Quality Care (Ash) HCA 375 Week 3 DQ 1 Teamwork in Health Care (Ash) HCA 375 Week 3 DQ 2 The Impact of Nursing (Ash) HCA 375 Week 3 Ass...

  9. HCA 430(ASH) course tutorial/tutorialoutlet

    OpenAIRE

    NARESH 34

    2015-01-01

    For more course tutorials visit www.tutorialoutlet.com   HCA 430 Week 1 DQ 1 Perspective (Ash) HCA 430 Week 1 DQ 2 Trends in Vulnerable Populations (Ash) HCA 430 Week 2 DQ 1 Vulnerable Populations (Ash) HCA 430 Week 2 DQ 2 Resource Availability (Ash) HCA 430 Week 2 DQ 3 Race, Ethnicity, and Healthcare (Ash) HCA 430 Week 2 Assignment Critical Thinking Paper (Ash) HCA 430 Week 3 DQ 1 Continuum of Care (Ash) HCA 430 Week 3 DQ 2 Paying for Healthcar...

  10. ENG 328 ASH course tutorial/tutorialoutlet

    OpenAIRE

    NARESH 34

    2015-01-01

    For more course tutorials visit www.tutorialoutlet.com     ENG 328 Week 1 DQ 1 What is Technical Writing (Ash) ENG 328 Week 1 DQ 2 Target Audience (Ash) ENG 328 Week 2 DQ 1 Collaborative Writing Process (Ash) ENG 328 Week 2 DQ 2 Design and Graphics (Ash) ENG 328 Week 3 DQ 1 Web Design and Readability (Ash) ENG 328 Week 3 DQ 2 Online Technical Documents (Ash) ENG 328 Week 4 DQ 1 Writing Instructions (Ash) ENG 328 Week 4 DQ 2 Writing Proposa...

  11. Fly ash reinforced thermoplastic vulcanizates obtained from waste tire powder.

    Science.gov (United States)

    Sridhar, V; Xiu, Zhang Zhen; Xu, Deng; Lee, Sung Hyo; Kim, Jin Kuk; Kang, Dong Jin; Bang, Dae-Suk

    2009-03-01

    Novel thermoplastic composites made from two major industrial and consumer wastes, fly ash and waste tire powder, have been developed. The effect of increasing fly ash loadings on performance characteristics such as tensile strength, thermal, dynamic mechanical and magnetic properties has been investigated. The morphology of the blends shows that fly ash particles have more affinity and adhesion towards the rubbery phase when compared to the plastic phase. The fracture surface of the composites shows extensive debonding of fly ash particles. Thermal analysis of the composites shows a progressive increase in activation energy with increase in fly ash loadings. Additionally, morphological studies of the ash residue after 90% thermal degradation shows extensive changes occurring in both the polymer and filler phases. The processing ability of the thermoplastics has been carried out in a Monsanto processability testing machine as a function of shear rate and temperature. Shear thinning behavior, typical of particulate polymer systems, has been observed irrespective of the testing temperatures. Magnetic properties and percolation behavior of the composites have also been evaluated. PMID:18838261

  12. Fly ash reinforced thermoplastic vulcanizates obtained from waste tire powder.

    Science.gov (United States)

    Sridhar, V; Xiu, Zhang Zhen; Xu, Deng; Lee, Sung Hyo; Kim, Jin Kuk; Kang, Dong Jin; Bang, Dae-Suk

    2009-03-01

    Novel thermoplastic composites made from two major industrial and consumer wastes, fly ash and waste tire powder, have been developed. The effect of increasing fly ash loadings on performance characteristics such as tensile strength, thermal, dynamic mechanical and magnetic properties has been investigated. The morphology of the blends shows that fly ash particles have more affinity and adhesion towards the rubbery phase when compared to the plastic phase. The fracture surface of the composites shows extensive debonding of fly ash particles. Thermal analysis of the composites shows a progressive increase in activation energy with increase in fly ash loadings. Additionally, morphological studies of the ash residue after 90% thermal degradation shows extensive changes occurring in both the polymer and filler phases. The processing ability of the thermoplastics has been carried out in a Monsanto processability testing machine as a function of shear rate and temperature. Shear thinning behavior, typical of particulate polymer systems, has been observed irrespective of the testing temperatures. Magnetic properties and percolation behavior of the composites have also been evaluated.

  13. Suppressing Heavy Metal Leaching through Ball Milling of Fly Ash

    Directory of Open Access Journals (Sweden)

    Zhiliang Chen

    2016-07-01

    Full Text Available Ball milling is investigated as a method of reducing the leaching concentration (often termed stablilization of heavy metals in municipal solid waste incineration (MSWI fly ash. Three heavy metals (Cu, Cr, Pb loose much of their solubility in leachate by treating fly ash in a planetary ball mill, in which collisions between balls and fly ash drive various physical processes, as well as chemical reactions. The efficiency of stabilization is evaluated by analysing heavy metals in the leachable fraction from treated fly ash. Ball milling reduces the leaching concentration of Cu, Cr, and Pb, and water washing effectively promotes stabilization efficiency by removing soluble salts. Size distribution and morphology of particles were analysed by laser particle diameter analysis and scanning electron microscopy. X-ray diffraction analysis reveals significant reduction of the crystallinity of fly ash by milling. Fly ash particles can be activated through this ball milling, leading to a significant decrease in particle size, a rise in its BET-surface, and turning basic crystals therein into amorphous structures. The dissolution rate of acid buffering materials present in activated particles is enhanced, resulting in a rising pH value of the leachate, reducing the leaching out of some heavy metals.

  14. Ash Reduction of Corn Stover by Mild Hydrothermal Preprocessing

    Energy Technology Data Exchange (ETDEWEB)

    M. Toufiq Reza; Rachel Emerson; M. Helal Uddin; Garold Gresham; Charles J. Coronella

    2014-04-22

    Lignocellulosic biomass such as corn stover can contain high ash content, which may act as an inhibitor in downstream conversion processes. Most of the structural ash in biomass is located in the cross-linked structure of lignin, which is mildly reactive in basic solutions. Four organic acids (formic, oxalic, tartaric, and citric) were evaluated for effectiveness in ash reduction, with limited success. Because of sodium citrate’s chelating and basic characteristics, it is effective in ash removal. More than 75 % of structural and 85 % of whole ash was removed from the biomass by treatment with 0.1 g of sodium citrate per gram of biomass at 130 °C and 2.7 bar. FTIR, fiber analysis, and chemical analyses show that cellulose and hemicellulose were unaffected by the treatment. ICP–AES showed that all inorganics measured were reduced within the biomass feedstock, except sodium due to the addition of Na through the treatment. Sodium citrate addition to the preconversion process of corn stover is an effective way to reduced physiological ash content of the feedstock without negatively impacting carbohydrate and lignin content.

  15. Evaluation of palm oil mill fly ash supported calcium oxide as a heterogeneous base catalyst in biodiesel synthesis from crude palm oil

    International Nuclear Information System (INIS)

    Highlights: • Calcination temperature is an important influencing factor in catalytic activity. • The optimum calcination conditions were determined to be 850 °C for 2 h. • Maximum yield of 79.8% and FAME conversion of 97.1% was achieved. • Kinetic data fitted the pseudo-first order model and the Ea was 42.56 kJ mol−1. • The novel catalyst can be reused for 3 cycles with a final biodiesel yield of 60%. - Abstract: A palm oil mill fly ash supported calcium oxide (CaO) catalyst was developed to be used as a heterogeneous base catalyst in biodiesel synthesis from crude palm oil (CPO). The catalyst preparation procedure was optimised in terms of final calcination temperature and duration. The optimum catalyst preparation conditions were determined as final calcination at 850 °C for 2 h with 45 wt.% loading of calcined calcium carbonate (CaCO3). A maximum biodiesel yield of 75.73% was achieved for this catalyst under fixed transesterification conditions. Characterisation tests showed that the catalyst had higher surface area and basic sites which favoured transesterification. The effects of catalyst loading, methanol to oil molar ratio, reaction temperature and reaction time on biodiesel yield and fatty acid methyl ester (FAME) conversion were also investigated. It was determined that transesterification conditions of 6 wt.% catalyst loading, 12:1 methanol to oil molar ratio, 45 °C reaction temperature, 3 h reaction time and 700 rpm stirring speed resulted in biodiesel yield and FAME conversion of 79.76% and 97.09%, respectively. Experimental kinetic data obtained from the heterogeneous transesterification reactions fitted the pseudo-first order kinetic model. The activation energy (Ea) of the reaction was calculated to be 42.56 kJ mol−1. Key physicochemical properties of the produced biodiesel were measured and found to be within the limits set by EN 14214. The developed catalyst could feasibly be used up to three consecutive cycles after regeneration

  16. Ocean bottom pressure changes lead to a decreasing length-of-day in a warming climate

    OpenAIRE

    F. Landerer; Jungclaus, J.; Marotzke, J.

    2007-01-01

    We use a coupled climate model to evaluate ocean bottom pressure changes in the IPCC-A1B climate scenario. Ocean warming in the 21st and 22nd centuries causes secular oceanic bottom pressure anomalies. The essential feature is a net mass transfer onto shallow shelf areas from the deeper ocean areas, which exhibit negative bottom pressure anomalies. We develop a simple mass redistribution model that explains this mechanism. Regionally, however, distinct patterns of bottom pressure anomalies em...

  17. Summary of the program 'Environmentally correct utilization of ashes' at Vaermeforsk 2002-2005; Syntes av delprogrammet 'Miljoeriktig anvaendning av askor' foer 2002-2005

    Energy Technology Data Exchange (ETDEWEB)

    Bjurstroem, Henrik [AaF-Process AB, Stockholm (Sweden)

    2006-04-15

    The present report summarizes the results during the period 2002-2005. The report also presents an evaluation of the programme and suggests priorities for the coming period, 2006-2008. During the period 2002-2005, 61 projects have been performed. The utilizations of ashes that have been targeted are, as materials in geotechnical construction, and as nutrients in forestry. Work has been carried out in four main areas: geotechnical constructions, landfills, recycling ash to soils, environment and chemistry. Among all results obtained, the following progresses along lines of development may be shown: A proposal for environmental guidelines on the utilization of ashes in construction; A battery of tests that allow a discussion of the geotechnical properties of ashes in e.g. road construction; Continued development of the use of ashes together with wastewater sludge as a cover for landfills, the use of fly ash in gravel roads; Use of ashes from biofuels in concrete; Evidence for the positive effects of spreading ashes on forest growth; and A method to classify those by-products from combustion that have mirror entries in the EWC as hazardous or non-hazardous. Each year, about 1 million tons of by-products, or ashes, are produced at the Swedish combustion plants. The largest potential market for these materials is in construction, which consumes some 100 million tons of materials each year. The most immediate uses are in road construction, in landfills or as ballast or filler in concrete. The most important barriers for use in e.g. road construction have been the absence of methods to assess the impact on the environment, and the absence of relevant testing methods for the geotechnical properties of ashes. Both these barriers were addressed in parallel projects. Guidelines with general limit values for road construction have been proposed. This work has also yielded an unexpected result: leaching of metals from ashes to soil and water is usually not the problem that it

  18. Chemical and ecotoxicological characterization of ashes obtained from sewage sludge combustion in a fluidised-bed reactor

    International Nuclear Information System (INIS)

    In 1999, the DEECA/INETI and the UBiA/FCT/UNL started a researching project on the partition of heavy metals during the combustion of stabilised sewage sludge (Biogran[reg]), in a fluidised-bed reactor, and on the quality of the bottom ashes and fly ashes produced. This project was entitled Bimetal and was funded by the Portuguese Foundation for Science and Technology. In this paper only the results on the combustion of Biogran[reg]) are reported. The combustion process was performed in two different trials, in which different amounts of sewage sludge and time of combustion were applied. Several ash samples were collected from the bed (bottom ashes) and from two cyclones (first cyclone and second cyclone ashes). Sewage sludge, bed material (sand) and ash samples were submitted to the leaching process defined in the European leaching standard EN 12457-2. The eluates were characterized for a set of inorganic chemical species. The ecotoxicological levels of the eluates were determined for two biological indicators (Vibrio fischeri and Daphnia magna). The results were compared with the limit values of the CEMWE French Regulation. The samples were also ranked according to an index based on the chemical characterization of the eluates. It was observed an increase of the concentration of metals along the combustion system. The ashes trapped in the second cyclone, for both combustion trials, showed the highest concentration of metals in the eluates. Chemically, the ashes of the second cyclone were the most different ones. In the ecotoxicological point of view, the ecotoxicity levels of the eluates of the ashes, for both combustion cycles, did not follow the same pattern as observed for the chemical characterization. The ashes of the first cyclone showed the highest ecotoxicity levels for V. fischeri and D. magna. This difference on chemical and ecotoxicological results proves the need for performing both chemical and ecotoxicological characterizations of the sub

  19. Additives for granulating and removing ash from finely dispersed coal

    Energy Technology Data Exchange (ETDEWEB)

    Ivabutin, K.; Fukuda, T.; Goto, M.; Miva, K.; Murata, T.; Taguti, D.

    1982-07-31

    One to thirty percent of a 0.01 to 10 percent solution of synthetic polymers (SPL) of ethylene and vinylacetate or methacrylate, polybutadiene rubbers, resins based on vinylchloride, low molecular PA and so on in an organic solvent mixed with high boiling point bottoms of coal distillation or that of crude oil and or an inorganic electrolyte (a sulfate or phosphate of an alkaline metal) is added to an aqueous suspension of coal powder in order to utilize the dust particles of the coal and to make low ash granules from them.

  20. Market assessment of PFBC ash use

    Energy Technology Data Exchange (ETDEWEB)

    Bland, A. E.; Brown, T. H., Western Research Institute

    1998-01-01

    Pressurized fluidized bed combustion (PFBC) of coal is undergoing demonstration in the United States, as well as throughout the world. American Electric Power`s (AEP`s) bubbling PFBC 70 MWe Tidd demonstration program in Ohio and pilot-scale development at Foster Wheeler Energia Oy 10 MWth circulating PFBC at Karhula, Finland, have demonstrated the advantages of PFBC technology. Further technology development in the US is planned with the deployment of the technology at the MacIntosh Clean Coal project in Lakeland, Florida. Development of uses for solid wastes from PFBC coal-fired power systems is being actively pursued as part of the demonstration of PFBC technologies. Ashes collected from Foster Wheeler Energia Oy pilot circulating PFBC tests in Karhula, Finland, operating on (1) low sulfur subbituminous and (2) high sulfur bituminous coal; and ash from the AEP`s high-sulfur bituminous coal-fired bubbling PFBC in Brilliant, Ohio, were evaluated in laboratory and pilot-scale ash use testing at Western Research Institute (WRI).

  1. Bottom sediments of Ypacarai Lake

    International Nuclear Information System (INIS)

    Bottom sediments of Ypacarai Lake was investigated with XRF and Mossbauer techniques. The lake of about 120 Km2, is a shallow one, medium deep of about 1.8m. In addition to its use for recreation, its basin has a wide area of influence and of economical significance. Bottom sediments play an important role in the overall distribution of trace elements in the aquatic system and act as a sink for metals. Bottom samples were taken from 5 different sampling stations, selected according to the morphology and population sites in the shore. The concentration of toxic metals was found to be low and no negative ecological impact should be expected. The main metallic ion component is iron (1.69%). Mossbauer studies showed this element appears as Fe+3 and no Fe+2 was detected. It is here suggested that Fe+3 acts as the limiting element which controls eutrophication process

  2. Bottomed analog of Z+(4433)

    International Nuclear Information System (INIS)

    The newly observed Z+(4433) resonance by BELLE is believed to be a tetraquark bound state made up of (cu)(cd). We propose the bottomed analog of this bound state, namely, by replacing one of the charm quarks by a bottom quark, thus forming Zbc0,±,±±. One of the Zbc is doubly charged. The predicted mass of Zbc is around 7.6 GeV. This doubly charged bound state can be detected by its decay into Bc±π±. Similarly, we can also replace both charm quark and antiquark of the Z+(4433) by bottom quark and antiquark, respectively, thus forming Zbb the bottomonium analog of Z+(4433). The predicted mass of Zbb is about 10.7 GeV

  3. AshMeadowsNaucorid_CH

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — These data identify the areas where final critical habitat for the Ash Meadows Naucorid (Ambrysus amargosus) occur. "Nevada, Nye County. Point of Rocks Springs and...

  4. Wood Ash from Bread Bakery as Partial Replacement for Cement in Concrete

    OpenAIRE

    Akeem Ayinde Raheem; Olumide A Adenuga

    2013-01-01

    This paper reports the results of experiments evaluating the use of wood ash from bread bakery as partial replacement for ordinary Portland cement in concrete. The chemical composition of the wood ash as well as the workability and compressive strength of the concrete were determined. Wood ash was used to replace 5% - 25% by weight of the cement in concrete. Concrete with no wood ash serves as the control. The mix ratio used was 1:2:4 with water to binder ratio maintained at 0.5. The Compress...

  5. Malaysian Rice Husk Ash – Improving the Durability and Corrosion Resistance of Concrete: Pre-review

    Directory of Open Access Journals (Sweden)

    Hamidi Abdulaziz

    2010-03-01

    Full Text Available

    The objective of this paper is to presents and study a pre-review of Malaysian rice ash ask as a partial cement replacement in different percentage, grinding time and performance corrosion of RHA blended concrete. The increasing demand for producing durable

  6. Fly ash. Quality recycling material

    Energy Technology Data Exchange (ETDEWEB)

    Blomster, D.; Leisio, C.

    1996-11-01

    Imatran Voima`s coal-fired power plants not only generate power and heat but also produce fly ash which is suitable raw material for recycling. This material for recycling is produced in the flue gas cleaning process. It is economical and, thanks to close quality control, is suitable for use as a raw material in the building materials industry, in asphalt production, and in earthworks. Structures made from fly ash are also safe from an environmental point of view. (orig.)

  7. Evaluasi karakteristik abu sekam padi dengan kitosan molekul tinggi nanopartikel sebagai bahan dentinogenesis (Characteristic evaluation of rice husk ash with chitosan high molecule nanoparticle as dentinogenesis material

    Directory of Open Access Journals (Sweden)

    Pretty Farida Sinta Silalahi

    2014-06-01

    Full Text Available Background: Mineral trioxide aggregate (MTA and resin modified glass ionomer cement (RMGIC are the material used for indirect and direct pulp capping due to biocompatibility, but these materials have many shortcomings. Mineral trioxide aggregate contains a little amount of arsenic and has long setting time, while HEMA containing RMGIC are cytotoxic. Rice husk ash nanoparticles (RHAn is a potential source of silica. High molecular chitosan nanoparticles (HMCn can stimulate the formation of reparative dentin. Combination of these two materials is biocompatible and have good sealing ability. Purpose: This study was aimed to study RHAn + HMCn used as biomaterials for prevention of pulpodentinal complex by examined at the microstructure of dentin surfaces applied with RHAn + HMCn. Methods: Twenty-four mandibular premolar teeth extracted for orthodontic purposes, were made cavity class I preparation with 3 mm depth above the cemento-enamel junction (CEJ. Then each tooth was cut in bucco-lingual direction and each part was cut using a cervical disc bur. Samples were divided into 3 groups, group I the teeth were applied with MTA; group II the teeth were applied RMGIC; group III the teeth were apllied with RHAn + HMCn. Characterization was done by using Scanning Electron Microscopy (SEM on the interface between test material and dentin adjacent to the pulp to see surface microstructure. Results: Material microstructure of RHAn + HMCn applied to the dentine showed tags like structure which was more significant than MTA. RHAn + HMCn showed to have better sealing ability than MTA. Porosity of ASPn + HMCn was less than MTA and RMGIC. Conclusion: The study suggested that the combined RHAn + HMCn biomaterials could be used as an active biomaterial that can maintain the integrity of pulp dentinal complex.Latar belakang: Mineral trioksida agregat (MTA dan semen ionomer kaca modifikasi resin (SIKMR adalah bahan yang digunakan untuk pulp capping langsung dan tidak

  8. Culture from the Bottom Up

    Science.gov (United States)

    Atkinson, Dwight; Sohn, Jija

    2013-01-01

    The culture concept has been severely criticized for its top-down nature in TESOL, leading arguably to its falling out of favor in the field. But what of the fact that people do "live culturally" (Ingold, 1994)? This article describes a case study of culture from the bottom up--culture as understood and enacted by its individual users.…

  9. Research on the influence of the fly ash on the concrete carbonation

    Institute of Scientific and Technical Information of China (English)

    Chen Ce; Zhong Jianchi

    2011-01-01

    The influence of fly ash on the fresh properties, mechanical properties and carbonation properties were studied in this paper. The performance of a kind of curing agent which was applied to the hardened concrete surface was evaluated. Incorporating large volume of fly ash will risk the concrete carbonation. The curing agent could prevent the concrete carbonation, and the mechanism was explained.

  10. Coal Ash Corrosion Resistant Materials Testing

    Energy Technology Data Exchange (ETDEWEB)

    D. K. McDonald; P. L. Daniel; D. J. DeVault

    2003-08-31

    In April 1999, three identical superheater test sections were installed into the Niles Unit No.1 for the purpose of testing and ranking the coal ash corrosion resistance of candidate superheater alloys. The Niles boiler burns high sulfur coal (3% to 3.5%) that has a reasonably high alkali content, thus the constituents necessary for coal ash corrosion are present in the ash. The test sections were controlled to operate with an average surface metal temperature from approximately 1060 F to 1210 F which was well within the temperature range over which coal ash corrosion occurs. Thus, this combination of aggressive environment and high temperature was appropriate for testing the performance of candidate corrosion-resistant tube materials. Analyses of the deposit and scale confirmed that the aggressive alkali-iron-trisulfate constituent was present at the metal surface and active in tube metal wastage. The test sections were constructed so that the response of twelve different candidate tube and/or coating materials could be studied. The plan was to remove and evaluate one of the three test sections at time intervals of 1 year, 3 years, and 5 years. This would permit an assessment of performance of the candidate materials as a function of time. This report provides the results of the evaluation of Test Section C, including the samples that remained in the Test Section for the full exposure period as well as those that were removed early. The analysis of Test Section C followed much the same protocol that was employed in the assessment of Test Section A. Again, the focus was on determining and documenting the relative corrosion rates of the candidate materials. The detailed results of the investigation are included in this report as a series of twelve appendices. Each appendix is devoted to the performance of one of the candidate alloys. The table below summarizes metal loss rate for the worst case sample of each of the candidate materials for both Test Sections A and C

  11. Stability and leaching of cobalt smelter fly ash

    DEFF Research Database (Denmark)

    Vítková, Martina; Hyks, Jiri; Ettler, Vojtěch;

    2013-01-01

    The leaching behaviour of fly ash from a Co smelter situated in the Zambian Copperbelt was studied as a function of pH (5–12) using the pH-static leaching test (CEN/TS 14997). Various experimental time intervals (48h and 168h) were evaluated. The leaching results were combined with the ORCHESTRA...... elements, the released concentrations were very similar after 48h and 168h, indicating near-equilibrium conditions in the system. Calcite, clinopyroxenes, quartz and amorphous phases predominated in the fly ash. Various metallic sulfides, alloys and the presence of Cu, Co and Zn in silicates and glass were...... and Cu. However, there is a high risk of Co, Cu, Pb and Zn mobility in the acidic soils around the smelter facility. Therefore, potential local options for “stabilisation” of the fly ash were evaluated on the basis of the modelling results using the PHREEQC code....

  12. CHARACTERISTICS OF SLUDGE BOTTOM MESH

    Directory of Open Access Journals (Sweden)

    Kamil Szydłowski

    2016-05-01

    Full Text Available The main aim of the study was to assess the selected heavy metals pollution of bottom sediments of small water bodies of different catchment management. Two ponds located in Mostkowo village were chosen for investigation. The first small water reservoir is surrounded by the cereal fields, cultivated without the use of organic and mineral fertilizers (NPK. The second reservoir is located in a park near rural buildings. Sediment samples were collected by the usage of KC Denmark sediments core probe. Samples were taken from 4 layers of sediment, from depth: 0–5, 5–10, 10–20 and 20–30 cm. Sampling was made once during the winter period (2014 year when ice occurred on the surface of small water bodies, from three points. The material was prepared for further analysis according to procedures used in soil science. The content of heavy metals (Cd, Cr, Cu, Ni, Pb and Zn were determined by atomic absorption spectrometry by usage of ASA ICE 3000 Thermo Scientific after prior digestion in the mixture (5: 1 of concentrated acids (HNO3 and HClO4. Higher pH values ​​were characteristic for sediments of pond located in a park than in pond located within the agricultural fields. In both small water bodies the highest heavy metal concentrations occurred in the deepest points of the research. In the sediments of the pond located within crop fields the highest concentration of cadmium, copper, lead and zinc were observed in a layer of 0–5 cm, wherein the nickel and chromium in a layer of 20–30 cm. In the sediments of the pond, located in the park the highest values ​​occurred at the deepest sampling point in the layer taken form 10–20 cm. Sediments from second reservoir were characterized by the largest average concentrations of heavy metals, except the lead content in sediment form the layer of 10–20 cm. According to the geochemical evaluation of sediments proposed by Bojakowska and Sokołowska [1998], the majority of samples belongs to Ist

  13. Characterization of residues from waste combustion in fluidized bed boilers. Evaluation report

    International Nuclear Information System (INIS)

    In this report a thorough characterization of the solid residues from municipal solid waste combustion in a Kvaerner EnviroPower bubbling fluidized bed boiler in Lidkoeping, is presented. Three different end products are generated, namely bottom ash, cyclone ash, and filter ash. The bottom ash, consisting of bed ash and hopper ash, is screened and useful bed material recycled. In the characterization, also the primary constituents bed ash and hopper ash have been included. A chemical characterization have been performed including total inorganic contents, content of unburnt matter, leaching behaviour (availability tests, column tests, pH-static tests) and leaching tests according to certain standards for classification (AFX31-210, DIN38414, TCLP). Physical characterization have included grain size distribution, grain density, compaction properties and stabilization of cyclone ash with subsequent testing of comprehensive strength and saturated hydraulic conductivity. From an environmental point of view, the quality of the bottom ash and probably the cyclone ash from fluidized bed combustion as determined in this study, indicate a potential for utilization. Utilization of the bottom ash could be accepted in certain countries, e.g. France, according to their current limit values. In other countries, e.g. Sweden, no general limit values are given and utilization have to be applied for in each case. The judgement is then based, not only on total contents in the residue and its leaching behaviour, but also on the specific environmental conditions at the site. 7 refs, 17 figs, 12 tabs

  14. Geochemical and Petrographic Characterization of Ash in the Cretaceous Eagle Ford Formation

    Science.gov (United States)

    Ronay, E.; Lee, C. T.

    2015-12-01

    suggests that there may be an excess in Al associated with a detrital component. The detrital component can be separated from the ash by calculating the amount of Al in a rock with the SiO2 given from our Ti /Zr data and then subtracting that from the Al of the present day ash. This allows us to evaluate whether ash and indicators of biological productivity are correlated.

  15. Classification and categorization of treatment methods for ash generated by municipal solid waste incineration: a case for the 2 greater metropolitan regions of Greece.

    Science.gov (United States)

    Karagiannidis, A; Kontogianni, St; Logothetis, D

    2013-02-01

    The primary goal of managing MSW incineration residues is to avoid any impact on human health or the environment. Incineration residues consist of bottom ash, which is generally considered as rather harmless and fly ash which usually contains compounds which are potentially harmful for public health. Small quantities of ash (both bottom and fly) are produced currently in Greece, mainly from the healthcare waste incineration facility in Attica region. Once incineration plants for MSW (currently under planning) are constructed in Greece, the produced ash quantities will increase highly. Thus, it is necessary to organize, already at this stage, a roadmap towards disposal/recovery methods of these ash quantities expected. Certain methods, related to the treatment of the future generated ash which are more appropriate to be implemented in Greece are highlighted in the present paper. The performed analysis offers a waste management approach, having 2016 as a reference year for two different incineration rates; 30% and 100% of the remaining MSW after recycling process. The results focus on the two greater regions of Greece: Attica and Central Macedonia. The quantity of potential future ash generation ranges from 137 to 459 kt for Attica region and from 62 to 207 kt for central Macedonia region depending on the incineration rate applied. Three alternative scenarios for the treatment of each kind of ash are compiled and analysed. Metal recovery and reuse as an aggregate in concrete construction proved to be the most advantageous -in terms of economy-bottom ash management scenario. Concerning management of the fly ash, chemical treatment with phosphoric solution addition results to be the lowest total treatment cost and is considered as the most profitable solution. The proposed methodology constitutes a safe calculation model for operators of MSW incineration plants regardless of the region or country they are located in. PMID:23206519

  16. HCA 421(ASH) course tutorial/tutorialoutlet

    OpenAIRE

    NARESH 34

    2015-01-01

    For more course tutorials visit www.tutorialoutlet.com   HCA 421 Week 1 DQ 1 (Basic Strategy) (Ash) HCA 421 Week 1 DQ 2 (Internal Audit of Strategic Assets) (Ash) HCA 421 Week 2 Assignment Competition in Healthcare (Ash) HCA 421 Week 2 DQ 1 (Strategic External Assessment Industry and Competition) (Ash) HCA 421 Week 2 DQ 2 (Market Segments) (Ash) HCA 421 Week 3 Assignment The Future Direction of Health Care (Five challenges) (Ash) HCA 421 Week 3 DQ 1 (Pr...

  17. HCA 415(ASH) course tutorial/tutorialoutlet

    OpenAIRE

    NARESH 34

    2015-01-01

    For more course tutorials visit www.tutorialoutlet.com   HCA 415 Week 1 DQ 1 Historical Contributions of Public Health (Ash) HCA 415 Week 1 DQ 2 Poverty and Health (Ash) HCA 415 Week 2 DQ 1 U.S. Health Care System Critical Issues (Ash) HCA 415 Week 2 DQ 2 Role of Prevention in Health Status (Ash) HCA 415 Week 2 Assignment Public Health and the Law (Ash) HCA 415 Week 3 DQ 1 Tools for Assessing Community Health (Ash) HCA 415 Week 3 DQ 2 Essential Ser...

  18. Controlling formaldehyde emissions with boiler ash.

    Science.gov (United States)

    Cowan, Jennifer; Abu-Daabes, Malyuba; Banerjee, Sujit

    2005-07-01

    Fluidized wood ash reduces formaldehyde in air from about 20 to formaldehyde reduction increases with increasing moisture content of the ash. Sorption of formaldehyde to ash can be substantially accounted for by partitioning to the water contained in the ash followed by rate-controlling binding to the ash solids. Adsorption occurs at temperatures of up to 165 degrees C; oxidation predominates thereafter. It is proposed that formaldehyde could be stripped from an air stream in a fluidized bed containing ash, which could then be returned to a boiler to incinerate the formaldehyde.

  19. Do phytotoxic allelochemicals remain in ashes after burning Chrysanthemoides monilifera subsp. monilifera (boneseed)?

    Science.gov (United States)

    Harun, Md Abdullah Yousuf Al; Johnson, Joshua; Robinson, Randall W

    2016-06-01

    Australia is facing challenges in controlling Chrysanthemoides monilifera subsp. monilifera (boneseed). However, burning has achieved some success in this regard. We aimed to investigate the comparative phytotoxicity of boneseed dried powder and ashes (burnt at 450°C and 250°C). Phenolic compounds in powder and ashes were measured using Folin-Ciocalteu assay and HPLC. The phytotoxicity of boneseed powder and ash extracts was assessed through germination bioassay on Lactuca sativa and the phytotoxicity of litter and ashes was evaluated using field soil, both in growth chamber. Burning of boneseed reduced total phenolics in ashes of boneseed organs by 99% and 100% both at high and low temperatures. The four phenolic compounds that were detected in boneseed were either absent or at negligible levels in the ashes, with inversely related to temperature. Both boneseed ash extracts and litter ash-mediated soil significantly reduced phytotoxicity displaying increased germination, biometric and biochemical parameters of test species compared with unburnt powder extracts and litter powder-mediated soil respectively, with greater reduction of phytotoxicity found for ashes produced at the lower temperature. Interestingly, the ash extracts and litter ash-mediated soil were found to stimulate some of those parameters of the test species compared to control. There was no excessive reactive oxygen species (ROS) produced in test species exposed to ash extracts compared with unburnt powder extracts. These findings suggest that burning of boneseed is an appropriate method of weed control and that this approach will reduce phytotoxicity of this species on native plants. PMID:27266307

  20. Ectomycorrhizal community structure and function in relation to forest residue harvesting and wood ash applications

    International Nuclear Information System (INIS)

    Ectomycorrhizal fungi form symbiotic associations with tree roots and assist in nutrient-uptake and -cycling in forest ecosystems, thereby constituting a most significant part of the microbial community. The aims of the studies described in this thesis were to evaluate the potential of DNA-based molecular methods in below-ground ectomycorrhizal community studies and to investigate changes in ectomycorrhizal communities on spruce roots in sites with different N deposition, and in sites subjected to harvesting of forest residues or application of wood ash. The ability of selected ectomycorrhizal fungi to mobilise nutrients from wood ash and to colonise root systems in the presence and absence of ash was also studied. In total 39 ectomycorrhizal species were detected in the experimental forests located in southern Sweden. At each site five to six species colonised around 60% of the root tips. The dominant species, common to the sites, were Tylospora fibrillosa, Thelephora terrestris and Cenococcum geophilum. Differences between two sites with differing levels of N deposition suggested that community structure may be influenced by N deposition, although site history, location and degree of isolation may also influence species composition. Repeated harvesting of forest residues reduced numbers of mycorrhizal roots in the humus layer to approximately 50% of that in control plots but no shift in the ectomycorrhizal community could be detected. At another site, application of granulated wood ash induced a shift in ectomycorrhizal community structure and three ectomycorrhizal fungi ('ash fungi') were found to colonise ash granules. Two 'ash fungi' showed a superior ability to solubilise stabilised wood ash in laboratory experiments compared to other ectomycorrhizal isolates from the same site. In laboratory microcosms containing intact mycorrhizal mycelia, colonisation of wood ash patches by one 'ash fungus' was good whereas colonisation by Piloderma croceum was poor. In a

  1. INVESTIGATION OF AMMONIA ADSORPTION ON FLY ASH DUE TO INSTALLATION OF SELECTIVE CATALYTIC REDUCTION SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    G.F. Brendel; J.E. Bonetti; R.F. Rathbone; R.N. Frey Jr.

    2000-11-01

    This report summarizes an investigation of the potential impacts associated with the utilization of selective catalytic reduction (SCR) systems at coal-fired power plants. The study was sponsored by the U.S. Department of Energy Emission Control By-Products Consortium, Dominion Generation, the University of Kentucky Center for Applied Energy Research and GAI Consultants, Inc. SCR systems are effective in reducing nitrogen oxides (NOx) emissions as required by the Clean Air Act (CAA) Amendments. However, there may be potential consequences associated with ammonia contamination of stack emissions and combustion by-products from these systems. Costs for air quality, landfill and pond environmental compliance may increase significantly and the marketability of ash may be seriously reduced, which, in turn, may also lead to increased disposal costs. The potential impacts to air, surface water, groundwater, ash disposal, ash utilization, health and safety, and environmental compliance can not be easily quantified based on the information presently available. The investigation included: (1) a review of information and data available from published and unpublished sources; (2) baseline ash characterization testing of ash samples produced from several central Appalachian high-volatile bituminous coals from plants that do not currently employ SCR systems in order to characterize the ash prior to ammonia exposure; (3) an investigation of ammonia release from fly ash, including leaching and thermal studies; and (4) an evaluation of the potential impacts on plant equipment, air quality, water quality, ash disposal operations, and ash marketing.

  2. Use of disposed waste ash from landfills to replace Portland cement.

    Science.gov (United States)

    Rukzon, Sumrerng; Chindaprasirt, Prinya

    2009-09-01

    In this study, waste ash was utilized as a pozzolanic material in blended Portland cement in order to reduce negative environmental effects and landfill volume required to dispose of waste ash. The influence of waste ash, namely palm oil fuel ash, rice husk ash and fly ash on compressive strength and sulfate resistance in mortar were studied and evaluated by some accelerated short-term techniques in sodium sulfate solutions. Ordinary Portland cement (OPC) was partially replaced with ground palm oil fuel ash (POA), ground rice husk ash (RHA) and classified fly ash (FA). Single pozzolan and a blend of equal weight portions of POA, RHA and FA were also used. The resistance to sulfate attack of mortar improves substantially with partial replacement of OPC with POA, RHA and FA. The use of a blend of equal weight portions of FA and POA or RHA produced mixes with good strength and resistance to sulfate attack. POA, RHA and FA have a high potential to be used as a pozzolanic material.

  3. Effects of soil application of fly ash on the fusarial wilt on tomato cultivars

    Energy Technology Data Exchange (ETDEWEB)

    Khan, M.R.; Singh, W.N. [Aligarh Muslim University, Aligarh (India). Dept. of Plant Protection, Rafi Ahmad Kidwai Institute of Agricultural Science

    2001-07-01

    A study was carried out in microplots to evaluate the effect of fly ash on the plant growth and yield of tomato cultivars, Pusa Ruby, Pusa Early Dwarf and New Uday, and on wilt disease caused by Fusarium oxysporum f. sp. lycopersici. Fly ash was applied to soil by broadcast or in rows at the rate of 1, 2, 3 and 4 kg ash m{sup -2} in place of inorganic fertilizers. In control plots, NPK (about 40 : 20 : 20 kg acre{sup -1}) and compost were added in place of fly ash. Ash application greatly increased the soil contents of P, K, B, Ca, Mg, Mn, Zn, carbonates, bicarbonates and sulphates. Plants grown in the ash-treated plots, especially at 3 or 4 kg dose, showed luxuriant growth and greener foliage, and plant growth and yield of the three cultivars were significantly increased in comparison with the plants grown in plots without fly ash. The wilt fungus, F. oxysporum f. sp. lycopersiciat the inoculum level of 2 g plant{sup -1} caused significant suppression of growth and yield in all three cultivars. Application of fly ash, however, checked the suppressive effect of the fungus, leading to a significant increase in the considered variables compared with the inoculated control. Soil population of the fungus gradually decreased with an increase in ash dose. Row application was found to be relatively more effective in enhancing the yield of tomato cultivars and suppressing the wilt disease.

  4. Comparative study of two analytical procedures for the determination of acid insoluble ash for evaluation of nutrient retention in broilers | Estudio comparativo de dos metodologías analíticas utilizadas para la determinación de cenizas insolubles en ácido para evaluar la retención de nutrientes en pollos de engorde

    OpenAIRE

    de Coca-Sinova, A.; G. G. Mateos; Gonzalez-Alvarado, J.M.; Centeno, Carmen; Lázaro, Rosa; Jiménez-Moreno, E

    2011-01-01

    Inert markers are routinely used in research to estimate nutrient retention and apparent metabolisable energy nitrogen-corrected (AMEn) content of poultry diets. Acid insoluble ash (AIA) is used as a marker to substitute metal compounds because of environmental concerns. In the current research, two methodologies recommended for determining AIA content in feeds and excretas for