WorldWideScience

Sample records for bosr regulatory protein

  1. Extracting protein regulatory networks with graphical models.

    Science.gov (United States)

    Grzegorczyk, Marco

    2007-09-01

    During the last decade the development of high-throughput biotechnologies has resulted in the production of exponentially expanding quantities of biological data, such as genomic and proteomic expression data. One fundamental problem in systems biology is to learn the architecture of biochemical pathways and regulatory networks in an inferential way from such postgenomic data. Along with the increasing amount of available data, a lot of novel statistical methods have been developed and proposed in the literature. This article gives a non-mathematical overview of three widely used reverse engineering methods, namely relevance networks, graphical Gaussian models, and Bayesian networks, whereby the focus is on their relative merits and shortcomings. In addition the reverse engineering results of these graphical methods on cytometric protein data from the RAF-signalling network are cross-compared via AUROC scatter plots. PMID:17893851

  2. Plant Antifreeze Proteins and Their Expression Regulatory Mechanism

    Institute of Scientific and Technical Information of China (English)

    Lin Yuan-zhen; Lin Shan-zhi; Zhang Zhi-yi; Zhang Wei; Liu Wen-feng

    2005-01-01

    Low temperature is one of the major limiting environmental factors which constitutes the growth, development,productivity and distribution of plants. Over the past several years, the proteins and genes associated with freezing resistance of plants have been widely studied. The recent progress of domestic and foreign research on plant antifreeze proteins and the identification and characterization of plant antifreeze protein genes, especially on expression regulatory mechanism of plant antifreeze proteins are reviewed in this paper. Finally, some unsolved problems and the trend of research in physiological functions and gene expression regulatory mechanism of plant antifreeze proteins are discussed.

  3. Protein kinase A regulatory subunit distribution in medulloblastoma

    International Nuclear Information System (INIS)

    Previous studies showed a differential distribution of the four regulatory subunits of cAMP-dependent protein kinases inside the brain, that changed in rodent gliomas: therefore, the distribution of these proteins inside the brain can give information on the functional state of the cells. Our goal was to examine human brain tumors to provide evidence for a differential distribution of protein kinase A in different tumors. The distribution of detergent insoluble regulatory (R1 and R2) and catalytic subunits of cAMP dependent kinases was examined in pediatric brain tumors by immunohistochemistry and fluorescent cAMP analogues binding. R2 is organized in large single dots in medulloblastomas, while it has a different appearance in other tumors. Fluorescent cAMP labelling was observed only in medulloblastoma. A different distribution of cAMP dependent protein kinases has been observed in medulloblastoma

  4. Dynamical Analysis of Protein Regulatory Network in Budding Yeast Nucleus

    Institute of Scientific and Technical Information of China (English)

    LI Fang-Ting; JIA Xun

    2006-01-01

    @@ Recent progresses in the protein regulatory network of budding yeast Saccharomyces cerevisiae have provided a global picture of its protein network for further dynamical research. We simplify and modularize the protein regulatory networks in yeast nucleus, and study the dynamical properties of the core 37-node network by a Boolean network model, especially the evolution steps and final fixed points. Our simulation results show that the number of fixed points N(k) for a given size of the attraction basin k obeys a power-law distribution N(k)∝k-2.024. The yeast network is more similar to a scale-free network than a random network in the above dynamical properties.

  5. Laboratory tests for disorders of complement and complement regulatory proteins.

    Science.gov (United States)

    Shih, Angela R; Murali, Mandakolathur R

    2015-12-01

    The complement pathway is a cascade of proteases that is involved in immune surveillance and innate immunity, as well as adaptive immunity. Dysfunction of the complement cascade may be mediated by aberrations in the pathways of activation, complement regulatory proteins, or complement deficiencies, and has been linked to a number of hematologic disorders, including paroxysmal noctural hemoglobinuria (PNH), hereditary angioedema (HAE), and atypical hemolytic-uremic syndrome (aHUS). Here, current laboratory tests for disorders of the complement pathway are reviewed, and their utility and limitations in hematologic disorders and systemic diseases are discussed. Current therapeutic advances targeting the complement pathway in treatment of complement-mediated hematologic disorders are also reviewed.

  6. Exploitation of complement regulatory proteins by Borrelia and Francisella.

    Science.gov (United States)

    Madar, Marian; Bencurova, Elena; Mlynarcik, Patrik; Almeida, André M; Soares, Renata; Bhide, Katarina; Pulzova, Lucia; Kovac, Andrej; Coelho, Ana V; Bhide, Mangesh

    2015-06-01

    Pathogens have developed sophisticated mechanisms of complement evasion such as binding to the host complement regulatory proteins (CRPs) on their surface or expression of CRP mimicking molecules. The ability of pathogens to evade the complement system has been correlated with pathogenesis and host selectivity. Hitherto, little work has been undertaken to determine whether Borrelia and Francisella exploit various CRPs to block complement attack. Seventeen Borrelia (twelve species) and six Francisella (three subspecies) strains were used to assess their ability to bind human, sheep and cattle CRPs or mimic membrane associated complement regulators. A series of experiments including affinity ligand binding experiments, pull-down assays and mass spectrometry based protein identification, revealed an array of CRP binding proteins of Borrelia and Francisella. Unlike Francisella, Borrelia strains were able to bind multiple human CRPs. Three strains of Borrelia (SKT-4, SKT-2 and HO14) showed the presence of a human CD46-homologous motif, indicating their ability to possess putative human CD46 mimicking molecules. Similarly, five strains of Borrelia and two strains of Francisella may have surface proteins with human CD59-homologous motifs. Among ovine and bovine CRPs, the only CRP bound by Francisella (LVS, Tul4 strain) was vitronectin, while ovine C4BP, ovine factor H and bovine factor H were bound to Borrelia strains SKT-2, DN127 and Co53. This study presents an array of proteins of Borrelia and Francisella that bind CRPs or may mimic membrane-CRPs, thus enabling multiphasic complement evasion strategies of these pathogens.

  7. Enzymatic Mercury Detoxification: The Regulatory Protein MerR

    CERN Multimedia

    Ctortecka, B; Walsh, C T; Comess, K M

    2002-01-01

    Mercury ions and organomercurial reagents are extremely toxic due to their affinity for thiol groups. Many bacteria contain an elaborate detoxification system for a metabolic conversion of toxic Hg$^{2+}$ or organomercurials to less toxic elemental Hg$^0$. The main components of the enzymatic mercury detoxification (see Fig. 1) are the regulatory protein MerR (mercury responsive genetic switch), the organomercurial lyase MerB (cleavage of carbon mercury bonds), and the mercuric ion reductase MerA (reduction of mercuric ions). In these proteins Hg$^{2+}$ is usually coordinated by the thiol groups of cysteines. We utilize the nuclear quadrupole interaction (NQI) of ${\\rm^{199m}}$Hg detected by time differential perturbed angular correlation (TDPAC) to identify the Hg metal site geometries in these proteins in order to elucidate the molecular origin of the ultrasensitivity, selectivity and reaction mechanism of this detoxification system. The short lived TDPAC probe ${\\rm^{199m}}$Hg ($\\tau_{1/2} =$ 43 min) is su...

  8. Maintaining cholesterol homeostasis:Sterol regulatory element-binding proteins

    Institute of Scientific and Technical Information of China (English)

    Lutz W. Weber; Meinrad Boll; Andreas Stampfl

    2004-01-01

    The molecular mechanism of how hepatocytes maintain cholesterol homeostasis has become much more transparent with the discovery of sterol regulatory element binding proteins (SREBPs) in recent years. These membrane proteins are members of the basic helix-loop-helix-leucine zipper (bHLHZip) family of transcription factors. They activate the expression of at least 30 genes involved in the synthesis of cholesterol and lipids. SREBPs are synthesized as precursor proteins in the endoplasmic reticulum (ER), where they form a complex with another protein, SREBP cleavage activating protein (SCAP).The SCAP molecule contains a sterol sensory domain. In the presence of high cellular sterol concentrations SCAP confines SREBP to the ER. With low cellular concentrations, SCAP escorts SREBP to activation in the Golgi. There, SREBP undergoes two proteolytic cleavage steps to release the mature, biologically active transcription factor, nuclear SREBP (nSREBP). nSREBP translocates to the nucleus and binds to sterol response elements (SRE) in the promoter/enhancer regions of target genes. Additional transcription factors are required to activate transcription of these genes. Three different SREBPs are known, SREBPs-1a, -1c and -2. SREBP-1a and -1c are isoforms produced from a single gene by alternate splicing. SREBP-2is encoded by a different gene and does not display any isoforms. It appears that SREBPs alone, in the sequence described above, can exert complete control over cholesterol synthesis, whereas many additional factors (hormones,cytokines, etc.) are required for complete control of lipid metabolism. Medicinal manipulation of the SREBP/SCAP system is expected to prove highly beneficial in the management of cholesterol-related disease.

  9. Iron Regulatory Proteins Mediate Host Resistance to Salmonella Infection.

    Science.gov (United States)

    Nairz, Manfred; Ferring-Appel, Dunja; Casarrubea, Daniela; Sonnweber, Thomas; Viatte, Lydie; Schroll, Andrea; Haschka, David; Fang, Ferric C; Hentze, Matthias W; Weiss, Guenter; Galy, Bruno

    2015-08-12

    Macrophages are essential for systemic iron recycling, and also control iron availability to pathogens. Iron metabolism in mammalian cells is orchestrated posttranscriptionally by iron-regulatory proteins (IRP)-1 and -2. Here, we generated mice with selective and combined ablation of both IRPs in macrophages to investigate the role of IRPs in controlling iron availability. These animals are hyperferritinemic but otherwise display normal clinical iron parameters. However, mutant mice rapidly succumb to systemic infection with Salmonella Typhimurium, a pathogenic bacterium that multiplies within macrophages, with increased bacterial burdens in liver and spleen. Ex vivo infection experiments indicate that IRP function restricts bacterial access to iron via the EntC and Feo bacterial iron-acquisition systems. Further, IRPs contain Salmonella by promoting the induction of lipocalin 2, a host antimicrobial factor that inhibits bacterial uptake of iron-laden siderophores, and by suppressing the ferritin iron pool. This work reveals the importance of the IRPs in innate immunity.

  10. Pleiotropy constrains the evolution of protein but not regulatory sequences in a transcription regulatory network influencing complex social behaviours

    Directory of Open Access Journals (Sweden)

    Daria eMolodtsova

    2014-12-01

    Full Text Available It is increasingly apparent that genes and networks that influence complex behaviour are evolutionary conserved, which is paradoxical considering that behaviour is labile over evolutionary timescales. How does adaptive change in behaviour arise if behaviour is controlled by conserved, pleiotropic, and likely evolutionary constrained genes? Pleiotropy and connectedness are known to constrain the general rate of protein evolution, prompting some to suggest that the evolution of complex traits, including behaviour, is fuelled by regulatory sequence evolution. However, we seldom have data on the strength of selection on mutations in coding and regulatory sequences, and this hinders our ability to study how pleiotropy influences coding and regulatory sequence evolution. Here we use population genomics to estimate the strength of selection on coding and regulatory mutations for a transcriptional regulatory network that influences complex behaviour of honey bees. We found that replacement mutations in highly connected transcription factors and target genes experience significantly stronger negative selection relative to weakly connected transcription factors and targets. Adaptively evolving proteins were significantly more likely to reside at the periphery of the regulatory network, while proteins with signs of negative selection were near the core of the network. Interestingly, connectedness and network structure had minimal influence on the strength of selection on putative regulatory sequences for both transcription factors and their targets. Our study indicates that adaptive evolution of complex behaviour can arise because of positive selection on protein-coding mutations in peripheral genes, and on regulatory sequence mutations in both transcription factors and their targets throughout the network.

  11. The Evolution of the Secreted Regulatory Protein Progranulin.

    Directory of Open Access Journals (Sweden)

    Roger G E Palfree

    Full Text Available Progranulin is a secreted growth factor that is active in tumorigenesis, wound repair, and inflammation. Haploinsufficiency of the human progranulin gene, GRN, causes frontotemporal dementia. Progranulins are composed of chains of cysteine-rich granulin modules. Modules may be released from progranulin by proteolysis as 6kDa granulin polypeptides. Both intact progranulin and some of the granulin polypeptides are biologically active. The granulin module occurs in certain plant proteases and progranulins are present in early diverging metazoan clades such as the sponges, indicating their ancient evolutionary origin. There is only one Grn gene in mammalian genomes. More gene-rich Grn families occur in teleost fish with between 3 and 6 members per species including short-form Grns that have no tetrapod counterparts. Our goals are to elucidate progranulin and granulin module evolution by investigating (i: the origins of metazoan progranulins (ii: the evolutionary relationships between the single Grn of tetrapods and the multiple Grn genes of fish (iii: the evolution of granulin module architectures of vertebrate progranulins (iv: the conservation of mammalian granulin polypeptide sequences and how the conserved granulin amino acid sequences map to the known three dimensional structures of granulin modules. We report that progranulin-like proteins are present in unicellular eukaryotes that are closely related to metazoa suggesting that progranulin is among the earliest extracellular regulatory proteins still employed by multicellular animals. From the genomes of the elephant shark and coelacanth we identified contemporary representatives of a precursor for short-from Grn genes of ray-finned fish that is lost in tetrapods. In vertebrate Grns pathways of exon duplication resulted in a conserved module architecture at the amino-terminus that is frequently accompanied by an unusual pattern of tandem nearly identical module repeats near the carboxyl

  12. Antidiabetic effects of glucokinase regulatory protein small-molecule disruptors

    Science.gov (United States)

    Lloyd, David J.; St Jean, David J.; Kurzeja, Robert J. M.; Wahl, Robert C.; Michelsen, Klaus; Cupples, Rod; Chen, Michelle; Wu, John; Sivits, Glenn; Helmering, Joan; Komorowski, Renée; Ashton, Kate S.; Pennington, Lewis D.; Fotsch, Christopher; Vazir, Mukta; Chen, Kui; Chmait, Samer; Zhang, Jiandong; Liu, Longbin; Norman, Mark H.; Andrews, Kristin L.; Bartberger, Michael D.; van, Gwyneth; Galbreath, Elizabeth J.; Vonderfecht, Steven L.; Wang, Minghan; Jordan, Steven R.; Véniant, Murielle M.; Hale, Clarence

    2013-12-01

    Glucose homeostasis is a vital and complex process, and its disruption can cause hyperglycaemia and type II diabetes mellitus. Glucokinase (GK), a key enzyme that regulates glucose homeostasis, converts glucose to glucose-6-phosphate in pancreatic β-cells, liver hepatocytes, specific hypothalamic neurons, and gut enterocytes. In hepatocytes, GK regulates glucose uptake and glycogen synthesis, suppresses glucose production, and is subject to the endogenous inhibitor GK regulatory protein (GKRP). During fasting, GKRP binds, inactivates and sequesters GK in the nucleus, which removes GK from the gluconeogenic process and prevents a futile cycle of glucose phosphorylation. Compounds that directly hyperactivate GK (GK activators) lower blood glucose levels and are being evaluated clinically as potential therapeutics for the treatment of type II diabetes mellitus. However, initial reports indicate that an increased risk of hypoglycaemia is associated with some GK activators. To mitigate the risk of hypoglycaemia, we sought to increase GK activity by blocking GKRP. Here we describe the identification of two potent small-molecule GK-GKRP disruptors (AMG-1694 and AMG-3969) that normalized blood glucose levels in several rodent models of diabetes. These compounds potently reversed the inhibitory effect of GKRP on GK activity and promoted GK translocation both in vitro (isolated hepatocytes) and in vivo (liver). A co-crystal structure of full-length human GKRP in complex with AMG-1694 revealed a previously unknown binding pocket in GKRP distinct from that of the phosphofructose-binding site. Furthermore, with AMG-1694 and AMG-3969 (but not GK activators), blood glucose lowering was restricted to diabetic and not normoglycaemic animals. These findings exploit a new cellular mechanism for lowering blood glucose levels with reduced potential for hypoglycaemic risk in patients with type II diabetes mellitus.

  13. Regulatory elements of Caenorhabditis elegans ribosomal protein genes

    Directory of Open Access Journals (Sweden)

    Sleumer Monica C

    2012-08-01

    Full Text Available Abstract Background Ribosomal protein genes (RPGs are essential, tightly regulated, and highly expressed during embryonic development and cell growth. Even though their protein sequences are strongly conserved, their mechanism of regulation is not conserved across yeast, Drosophila, and vertebrates. A recent investigation of genomic sequences conserved across both nematode species and associated with different gene groups indicated the existence of several elements in the upstream regions of C. elegans RPGs, providing a new insight regarding the regulation of these genes in C. elegans. Results In this study, we performed an in-depth examination of C. elegans RPG regulation and found nine highly conserved motifs in the upstream regions of C. elegans RPGs using the motif discovery algorithm DME. Four motifs were partially similar to transcription factor binding sites from C. elegans, Drosophila, yeast, and human. One pair of these motifs was found to co-occur in the upstream regions of 250 transcripts including 22 RPGs. The distance between the two motifs displayed a complex frequency pattern that was related to their relative orientation. We tested the impact of three of these motifs on the expression of rpl-2 using a series of reporter gene constructs and showed that all three motifs are necessary to maintain the high natural expression level of this gene. One of the motifs was similar to the binding site of an orthologue of POP-1, and we showed that RNAi knockdown of pop-1 impacts the expression of rpl-2. We further determined the transcription start site of rpl-2 by 5’ RACE and found that the motifs lie 40–90 bases upstream of the start site. We also found evidence that a noncoding RNA, contained within the outron of rpl-2, is co-transcribed with rpl-2 and cleaved during trans-splicing. Conclusions Our results indicate that C. elegans RPGs are regulated by a complex novel series of regulatory elements that is evolutionarily distinct from

  14. p42.3 gene expression in gastric cancer cell and its protein regulatory network analysis

    Directory of Open Access Journals (Sweden)

    Zhang Jianhua

    2012-12-01

    Full Text Available Abstract Background To analyze the p42.3 gene expression in gastric cancer (GC cell, find the relationship between protein structure and function, establish the regulatory network of p42.3 protein molecule and then to obtain the optimal regulatory pathway. Methods The expression of p42.3 gene was analyzed by RT-PCR, Western Blot and other biotechnologies. The relationship between the spatial conformation of p42.3 protein molecule and its function was analyzed using bioinformatics, MATLAB and related knowledge about protein structure and function. Furthermore, based on similarity algorithm of spatial layered spherical coordinate, we compared p42.3 molecule with several similar structured proteins which are known for the function, screened the characteristic nodes related to tumorigenesis and development, and established the multi variable relational model between p42.3 protein expression, cell cycle regulation and biological characteristics in the level of molecular regulatory networks. Finally, the optimal regulatory network was found by using Bayesian network. Results (1 The expression amount of p42.3 in G1 and M phase was higher than that in S and G2 phase; (2 The space coordinate systems of different structural domains of p42.3 protein were established in Matlab7.0 software; (3 The optimal pathway of p42.3 gene in protein regulatory network in gastric cancer is Ras protein, Raf-1 protein, MEK, MAPK kinase, MAPK, tubulin, spindle protein, centromere protein and tumor. Conclusion It is of vital significance for mechanism research to find out the action pathway of p42.3 in protein regulatory network, since p42.3 protein plays an important role in the generation and development of GC.

  15. Type One Protein Phosphatase 1 and Its Regulatory Protein Inhibitor 2 Negatively Regulate ABA Signaling

    Science.gov (United States)

    Zhao, Yang; Xie, Shaojun; Batelli, Giorgia; Wang, Bangshing; Duan, Cheng-Guo; Wang, Xingang; Xing, Lu; Lei, Mingguang; Yan, Jun; Zhu, Xiaohong; Zhu, Jian-Kang

    2016-01-01

    The phytohormone abscisic acid (ABA) regulates plant growth, development and responses to biotic and abiotic stresses. The core ABA signaling pathway consists of three major components: ABA receptor (PYR1/PYLs), type 2C Protein Phosphatase (PP2C) and SNF1-related protein kinase 2 (SnRK2). Nevertheless, the complexity of ABA signaling remains to be explored. To uncover new components of ABA signal transduction pathways, we performed a yeast two-hybrid screen for SnRK2-interacting proteins. We found that Type One Protein Phosphatase 1 (TOPP1) and its regulatory protein, At Inhibitor-2 (AtI-2), physically interact with SnRK2s and also with PYLs. TOPP1 inhibited the kinase activity of SnRK2.6, and this inhibition could be enhanced by AtI-2. Transactivation assays showed that TOPP1 and AtI-2 negatively regulated the SnRK2.2/3/6-mediated activation of the ABA responsive reporter gene RD29B, supporting a negative role of TOPP1 and AtI-2 in ABA signaling. Consistent with these findings, topp1 and ati-2 mutant plants displayed hypersensitivities to ABA and salt treatments, and transcriptome analysis of TOPP1 and AtI-2 knockout plants revealed an increased expression of multiple ABA-responsive genes in the mutants. Taken together, our results uncover TOPP1 and AtI-2 as negative regulators of ABA signaling. PMID:26943172

  16. Bovine viral diarrhea virus structural protein E2 as a complement regulatory protein.

    Science.gov (United States)

    Ostachuk, Agustín

    2016-07-01

    Bovine viral diarrhea virus (BVDV) is a member of the genus Pestivirus, family Flaviviridae, and is one of the most widely distributed viruses in cattle worldwide. Approximately 60 % of cattle in endemic areas without control measures are infected with BVDV during their lifetime. This wide prevalence of BVDV in cattle populations results in significant economic losses. BVDV is capable of establishing persistent infections in its host due to its ability to infect fetuses, causing immune tolerance. However, this cannot explain how the virus evades the innate immune system. The objective of the present work was to test the potential activity of E2 as a complement regulatory protein. E2 glycoprotein, produced both in soluble and transmembrane forms in stable CHO-K1 cell lines, was able to reduce complement-mediated cell lysis up to 40 % and complement-mediated DNA fragmentation by 50 %, in comparison with cell lines not expressing the glycoprotein. This work provides the first evidence of E2 as a complement regulatory protein and, thus, the finding of a mechanism of immune evasion by BVDV. Furthermore, it is postulated that E2 acts as a self-associated molecular pattern (SAMP), enabling the virus to avoid being targeted by the immune system and to be recognized as self. PMID:27038454

  17. cis-Regulatory and Protein Evolution in Orthologous and Duplicate Genes

    OpenAIRE

    Castillo-Davis, Cristian I.; Hartl, Daniel L.; Achaz, Guillaume

    2004-01-01

    The relationship between protein and regulatory sequence evolution is a central question in molecular evolution. It is currently not known to what extent changes in gene expression are coupled with the evolution of protein coding sequences, or whether these changes differ among orthologs (species homologs) and paralogs (duplicate genes). Here, we develop a method to measure the extent of functionally relevant cis-regulatory sequence change in homologous genes, and validate it using microarray...

  18. Regulatory mechanisms of skeletal muscle protein turnover during exercise

    DEFF Research Database (Denmark)

    Rose, Adam John; Richter, Erik

    2009-01-01

    Skeletal muscle protein turnover is a relatively slow metabolic process that is altered by various physiological stimuli such as feeding/fasting and exercise. During exercise, catabolism of amino acids contributes very little to ATP turnover in working muscle. With regards to protein turnover...... with available and new techniques will undoubtedly reveal the functional significance and signaling mechanisms behind changes in skeletal muscle protein turnover during exercise. Key words: Exercise, skeletal muscle, protein metabolism, translation....

  19. Bimolecular fluorescence complementation as a tool to study interactions of regulatory proteins in plant protoplasts.

    Science.gov (United States)

    Pattanaik, Sitakanta; Werkman, Joshua R; Yuan, Ling

    2011-01-01

    Protein-protein interactions are an important aspect of the gene regulation process. The expression of a gene in response to certain stimuli, within a specific cell type or at a particular developmental stage, involves a complex network of interactions between different regulatory proteins and the cis-regulatory elements present in the promoter of the gene. A number of methods have been developed to study protein-protein interactions in vitro and in vivo in plant cells, one of which is bimolecular fluorescence complementation (BiFC). BiFC is a relatively simple technique based upon the reconstitution of a fluorescent protein. The interacting protein complex can be visualized directly in a living plant cell when two non-fluorescent fragments, of an otherwise fluorescent protein, are fused to proteins found within that complex. Interaction of tagged proteins brings the two non-fluorescent fragments into close proximity and reconstitutes the fluorescent protein. In addition, the subcellular location of an interacting protein complex in the cell can be simultaneously determined. Using this approach, we have successfully demonstrated a protein-protein interaction between a R2R3 MYB and a basic helix-loop-helix MYC transcription factor related to flavonoid biosynthetic pathway in tobacco protoplasts.

  20. Complement regulatory protein genes in channel catfish and their involvement in disease defense response.

    Science.gov (United States)

    Jiang, Chen; Zhang, Jiaren; Yao, Jun; Liu, Shikai; Li, Yun; Song, Lin; Li, Chao; Wang, Xiaozhu; Liu, Zhanjiang

    2015-11-01

    Complement system is one of the most important defense systems of innate immunity, which plays a crucial role in disease defense responses in channel catfish. However, inappropriate and excessive complement activation could lead to potential damage to the host cells. Therefore the complement system is controlled by a set of complement regulatory proteins to allow normal defensive functions, but prevent hazardous complement activation to host tissues. In this study, we identified nine complement regulatory protein genes from the channel catfish genome. Phylogenetic and syntenic analyses were conducted to determine their orthology relationships, supporting their correct annotation and potential functional inferences. The expression profiles of the complement regulatory protein genes were determined in channel catfish healthy tissues and after infection with the two main bacterial pathogens, Edwardsiella ictaluri and Flavobacterium columnare. The vast majority of complement regulatory protein genes were significantly regulated after bacterial infections, but interestingly were generally up-regulated after E. ictaluri infection while mostly down-regulated after F. columnare infection, suggesting a pathogen-specific pattern of regulation. Collectively, these findings suggested that complement regulatory protein genes may play complex roles in the host immune responses to bacterial pathogens in channel catfish.

  1. Regulatory crosstalk by protein kinases on CFTR trafficking and activity

    Science.gov (United States)

    Farinha, Carlos Miguel; Swiatecka-Urban, Agnieszka; Brautigan, David; Jordan, Peter

    2016-01-01

    Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a member of the ATP binding cassette (ABC) transporter superfamily that functions as a cAMP-activated chloride ion channel in fluid-transporting epithelia. There is abundant evidence that CFTR activity (i.e. channel opening and closing) is regulated by protein kinases and phosphatases via phosphorylation and dephosphorylation. Here, we review recent evidence for the role of protein kinases in regulation of CFTR delivery to and retention in the plasma membrane. We review this information in a broader context of regulation of other transporters by protein kinases because the overall functional output of transporters involves the integrated control of both their number at the plasma membrane and their specific activity. While many details of the regulation of intracellular distribution of CFTR and other transporters remain to be elucidated, we hope that this review will motivate research providing new insights into how protein kinases control membrane transport to impact health and disease.

  2. RNA-Binding Proteins in Trichomonas vaginalis: Atypical Multifunctional Proteins Involved in a Posttranscriptional Iron Regulatory Mechanism

    Science.gov (United States)

    Figueroa-Angulo, Elisa E.; Calla-Choque, Jaeson S.; Mancilla-Olea, Maria Inocente; Arroyo, Rossana

    2015-01-01

    Iron homeostasis is highly regulated in vertebrates through a regulatory system mediated by RNA-protein interactions between the iron regulatory proteins (IRPs) that interact with an iron responsive element (IRE) located in certain mRNAs, dubbed the IRE-IRP regulatory system. Trichomonas vaginalis, the causal agent of trichomoniasis, presents high iron dependency to regulate its growth, metabolism, and virulence properties. Although T. vaginalis lacks IRPs or proteins with aconitase activity, possesses gene expression mechanisms of iron regulation at the transcriptional and posttranscriptional levels. However, only one gene with iron regulation at the transcriptional level has been described. Recently, our research group described an iron posttranscriptional regulatory mechanism in the T. vaginalis tvcp4 and tvcp12 cysteine proteinase mRNAs. The tvcp4 and tvcp12 mRNAs have a stem-loop structure in the 5'-coding region or in the 3'-UTR, respectively that interacts with T. vaginalis multifunctional proteins HSP70, α-Actinin, and Actin under iron starvation condition, causing translation inhibition or mRNA stabilization similar to the previously characterized IRE-IRP system in eukaryotes. Herein, we summarize recent progress and shed some light on atypical RNA-binding proteins that may participate in the iron posttranscriptional regulation in T. vaginalis. PMID:26703754

  3. A novel regulatory mechanism for whey acidic protein gene expression.

    OpenAIRE

    Chen, L.H.; Bissell, M J

    1989-01-01

    When primary mouse mammary epithelial cells (PMME) are cultured on a basement membrane type matrix, they undergo extensive morphogenesis leading to the formation of 3-dimensional alveoli-like spherical structures surrounding a closed lumen. We show for the first time that cells cultured on basement membrane-type matrix express high levels of whey acidic protein (WAP) mRNA and secrete the protein into the lumen. The expression of WAP appears to be dependent upon the formation of the alveoli-li...

  4. Subnuclear organization and trafficking of regulatory proteins: implications for biological control and cancer.

    Science.gov (United States)

    Stein, G S; van Wijnen, A J; Stein, J L; Lian, J B; Montecino, M; Zaidi, K; Javed, A

    2000-01-01

    The regulated and regulatory components that interrelate nuclear structure and function must be experimentally established. A formidable challenge is to define further the control of transcription factor targeting to acceptor sites associated with the nuclear matrix. It will be important to determine whether acceptor proteins are associated with a pre-existing core-filament structural lattice or whether a compositely organized scaffold of regulatory factors is dynamically assembled. An inclusive model for all steps in the targeting of proteins to subnuclear sites cannot yet be proposed. However, this model must account for the apparent diversity of intranuclear targeting signals. It is also important to assess the extent to which regulatory discrimination is mediated by subnuclear domain-specific trafficking signals. Furthermore, the checkpoints that monitor subnuclear distribution of regulatory factors and the sorting steps that ensure both structural and functional fidelity of nuclear domains in which replication and expression of genes occur must be biochemically and mechanistically defined. There is emerging recognition that placement of regulatory components of gene expression must be temporally and spatially coordinated to facilitate biological control. The consequences of breaches in nuclear structure-function relationships are observed in an expanding series of diseases that include cancer [Weis et al., 1994; Rogaia et al., 1997; Yano et al., 1997; Rowley, 1998; Zeng et al., 1998; McNeil et al., 1999; Tao and Levine, 1999a] and neurological disorders [Skinner et al., 1997]. As the repertoire of architecture-associated regulatory factors and cofactors expands, workers in the field are becoming increasingly confident that nuclear organization contributes significantly to control of transcription. To gain increased appreciation for the complexities of subnuclear organization and gene regulation, we must continue to characterize mechanisms that direct

  5. Herpes simplex virus glycoprotein C: molecular mimicry of complement regulatory proteins by a viral protein.

    Science.gov (United States)

    Huemer, H P; Wang, Y; Garred, P; Koistinen, V; Oppermann, S

    1993-08-01

    Herpes simplex virus (HSV) encodes a protein, glycoprotein C (gC), which binds to the third complement component, the central mediator of complement activation. In this study the structural and functional relationships of gC from HSV type 1 (HSV-1) and known human complement regulatory proteins factor H, properdin, factor B, complement receptor 1 (CR1) and 2 (CR2) were investigated. The interaction of gC with C3b was studied using purified complement components, synthetic peptides, antisera against different C3 fragments and anti-C3 monoclonal antibodies (mAb) with known inhibitory effects on C3-ligand interactions. All the mAb that inhibited gC/C3b interactions, in a differential manner, also prevented binding of C3 fragments to factors H, B, CR1 or CR2. No blocking was observed with synthetic peptides representing different C3 regions or with factor B and C3d, whereas C3b, C3c and factor H were inhibitory, as well as purified gC. There was no binding of gC to cobra venom factor (CVF), a C3c-like fragment derived from cobra gland. Purified gC bound to iC3, iC3b and C3c, but failed to bind to C3d. Glycoprotein C bound only weakly to iC3 derived from bovine and porcine plasma, thus indicating a preference of the viral protein for the appropriate host. Binding of gC was also observed to proteolytic C3 fragments, especially to the beta-chain, thus suggesting the importance of the C3 region as a binding site. Purified gC from HSV-1, but not HSV-2, inhibited the binding of factor H and properdin but not of CR1 to C3b. The binding of iC3b to CR2, a molecule involved in B-cell activation and binding of the Epstein-Barr virus, was also inhibited by the HSV-1 protein. As factor H and properdin, the binding of which was inhibited by gC, are important regulators of the alternative complement pathway, these data further support a role of gC in the evasion of HSV from a major first-line host defence mechanism, i.e. the complement system. In addition, the inhibition of the C3/CR

  6. THE REGULATORY EFFECT OF NUCLEOSIDE DIPHOSPHATE KINASE ON G-PROTEIN AND G-PROTEIN MEDIATED PHOSPHOLIPASE C

    Institute of Scientific and Technical Information of China (English)

    张德昌; 张宽仁

    1995-01-01

    The effect of nueleoside diphosphate kinase (NDPK) on the activity of guanine nueleotide regulatory protein (G-protein) mediated phospholipase C (PLC) and on the [35S ] GTPTτS binding of G-protein was investigated in this work in order to demonstrate the mechanism behind the regulation of G-protein and its effector PLC by NDPK. The stimulation of PLC in turkey erythrocyte membrane by both GTP and GTPτS indicated that the PLC stimulation was msdiated by G-protein, NDPK alone stimulated PLC activity, as well as the stimulation in the presence of GTP and GDP, in a dose-dependent manner. However, NDPK inhibited GTPτS-stimulated PLC, Furthermore, NDPK inhibited [35S] GTPτS binding of purified Gi-protein in a non-competitive manner. A hypothesis implying an important role of direct interaction of G-protein and NDPK in the regulation of their functions is suggested and discussed.

  7. Characterization of a manganese-dependent regulatory protein, TroR, from Treponema pallidum

    OpenAIRE

    Posey, James E.; Hardham, John M.; Norris, Steven J; Gherardini, Frank C.

    1999-01-01

    Genome sequence analysis of Treponema pallidum, the causative agent of syphilis, suggests that this bacterium has a limited iron requirement with few, if any, proteins that require iron. Instead, T. pallidum may use manganese-dependent enzymes for metabolic pathways. This strategy apparently alleviates the necessity of T. pallidum to acquire iron from the host, thus overcoming iron limitation, which is a primary host defense. Interestingly, a putative metal-dependent regulatory protein, TroR,...

  8. Control of Alternative Splicing by Signal-dependent Degradation of Splicing-regulatory Proteins*S⃞

    OpenAIRE

    Katzenberger, Rebeccah J.; Marengo, Matthew S.; Wassarman, David A.

    2009-01-01

    Alternative pre-mRNA splicing is a major gene expression regulatory mechanism in metazoan organisms. Proteins that bind pre-mRNA elements and control assembly of splicing complexes regulate utilization of pre-mRNA alternative splice sites. To understand how signaling pathways impact this mechanism, an RNA interference screen in Drosophila S2 cells was used to identify proteins that regulate TAF1 (TBP-associated factor 1) alternative splicing in response to activation o...

  9. Regulation of glutamine synthetase by regulatory protein PII in Klebsiella aerogenes mutants lacking adenylyltransferase.

    OpenAIRE

    Reuveny, Z; Foor, F; Magasanik, B

    1981-01-01

    A mutation of Klebsiella aerogenes causing production of an altered PII regulatory protein which stimulates overadenylylation of glutamine synthetase and also prevents its derepression was combined with mutations abolishing the activity of adenylyltransferase. The results support the idea that PII plays a role in the regulation of the level of glutamine synthetase which is independent of its interaction with adenylyltransferase.

  10. The impact of RGS and other G-protein regulatory proteins on Gαi-mediated signaling in immunity.

    Science.gov (United States)

    Kehrl, John H

    2016-08-15

    Leukocyte chemoattractant receptors are members of the G-protein coupled receptor (GPCR) family. Signaling downstream of these receptors directs the localization, positioning and homeostatic trafficking of leukocytes; as well as their recruitment to, and their retention at, inflammatory sites. Ligand induced changes in the molecular conformation of chemoattractant receptors results in the engagement of heterotrimeric G-proteins, which promotes α subunits to undergo GTP/GDP exchange. This results in the functional release of βγ subunits from the heterotrimers, thereby activating downstream effector molecules, which initiate leukocyte polarization, gradient sensing, and directional migration. Pertussis toxin ADP ribosylates Gαi subunits and prevents chemoattractant receptors from triggering Gαi nucleotide exchange. The use of pertussis toxin revealed the essential importance of Gαi subunit nucleotide exchange for chemoattractant receptor signaling. More recent studies have identified a range of regulatory mechanisms that target these receptors and their associated heterotrimeric G-proteins, thereby helping to control the magnitude, kinetics, and duration of signaling. A failure in these regulatory pathways can lead to impaired receptor signaling and immunopathology. The analysis of mice with targeted deletions of Gαi isoforms as well as some of these G-protein regulatory proteins is providing insights into their roles in chemoattractant receptor signaling. PMID:27071343

  11. A synthetic biology approach to self-regulatory recombinant protein production in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Dragosits Martin

    2012-03-01

    Full Text Available Abstract Background Recombinant protein production is a process of great industrial interest, with products that range from pharmaceuticals to biofuels. Since high level production of recombinant protein imposes significant stress in the host organism, several methods have been developed over the years to optimize protein production. So far, these trial-and-error techniques have proved laborious and sensitive to process parameters, while there has been no attempt to address the problem by applying Synthetic Biology principles and methods, such as integration of standardized parts in novel synthetic circuits. Results We present a novel self-regulatory protein production system that couples the control of recombinant protein production with a stress-induced, negative feedback mechanism. The synthetic circuit allows the down-regulation of recombinant protein expression through a stress-induced promoter. We used E. coli as the host organism, since it is widely used in recombinant processes. Our results show that the introduction of the self-regulatory circuit increases the soluble/insoluble ratio of recombinant protein at the expense of total protein yield. To further elucidate the dynamics of the system, we developed a computational model that is in agreement with the observed experimental data, and provides insight on the interplay between protein solubility and yield. Conclusion Our work introduces the idea of a self-regulatory circuit for recombinant protein products, and paves the way for processes with reduced external control or monitoring needs. It demonstrates that the library of standard biological parts serves as a valuable resource for initial synthetic blocks that needs to be further refined to be successfully applied in practical problems of biotechnological significance. Finally, the development of a predictive model in conjunction with experimental validation facilitates a better understanding of the underlying dynamics and can be

  12. Iron Regulatory Proteins Control a Mucosal Block to Intestinal Iron Absorption

    Directory of Open Access Journals (Sweden)

    Bruno Galy

    2013-03-01

    Full Text Available Mammalian iron metabolism is regulated systemically by the hormone hepcidin and cellularly by iron regulatory proteins (IRPs that orchestrate a posttranscriptional regulatory network. Through ligand-inducible genetic ablation of both IRPs in the gut epithelium of adult mice, we demonstrate that IRP deficiency impairs iron absorption and promotes mucosal iron retention via a ferritin-mediated “mucosal block.” We show that IRP deficiency does not interfere with intestinal sensing of body iron loading and erythropoietic iron need, but rather alters the basal expression of the iron-absorption machinery. IRPs thus secure sufficient iron transport across absorptive enterocytes by restricting the ferritin “mucosal block” and define a basal set point for iron absorption upon which IRP-independent systemic regulatory inputs are overlaid.

  13. Divisome and segrosome components of Deinococcus radiodurans interact through cell division regulatory proteins.

    Science.gov (United States)

    Maurya, Ganesh K; Modi, Kruti; Misra, Hari S

    2016-08-01

    The Deinococcus radiodurans genome encodes many of the known components of divisome as well as four sets of genome partitioning proteins, ParA and ParB on its multipartite genome. Interdependent regulation of cell division and genome segregation is not understood. In vivo interactions of D. radiodurans' sdivisome, segrosome and other cell division regulatory proteins expressed on multicopy plasmids were studied in Escherichia coli using a bacterial two-hybrid system and confirmed by co-immunoprecipitation with the proteins made in E. coli. Many of these showed interactions both with the self and with other proteins. For example, DrFtsA, DrFtsZ, DrMinD, DrMinC, DrDivIVA and all four ParB proteins individually formed at least homodimers, while DrFtsA interacted with DrFtsZ, DrFtsW, DrFtsE, DrFtsK and DrMinD. DrMinD also showed interaction with DrFtsW, DrFtsE and DrMinC. Interestingly, septum site determining protein, DrDivIVA showed interactions with secondary genome ParAs as well as ParB1, ParB3 and ParB4 while DrMinC interacted with ParB1 and ParB3. PprA, a pleiotropic protein recently implicated in cell division regulation, neither interacted with divisome proteins nor ParBs but interacted at different levels with all four ParAs. These results suggest the formation of independent multiprotein complexes of 'DrFts' proteins, segrosome proteins and cell division regulatory proteins, and these complexes could interact with each other through DrMinC and DrDivIVA, and PprA in D. radiodurans.

  14. Membrane-bound complement regulatory proteins as biomarkers and potential therapeutic targets for SLE.

    Science.gov (United States)

    Das, Nibhriti; Biswas, Bintili; Khera, Rohan

    2013-01-01

    For the last two decades, there had been remarkable advancement in understanding the role of complement regulatory proteins in autoimmune disorders and importance of complement inhibitors as therapeutics. Systemic lupus erythematosus is a prototype of systemic autoimmune disorders. The disease, though rare, is potentially fatal and afflicts women at their reproductive age. It is a complex disease with multiorgan involvement, and each patient presents with a different set of symptoms. The diagnosis is often difficult and is based on the diagnostic criteria set by the American Rheumatology Association. Presence of antinuclear antibodies and more specifically antidouble-stranded DNA indicates SLE. Since the disease is multifactorial and its phenotypes are highly heterogeneous, there is a need to identify multiple noninvasive biomarkers for SLE. Lack of validated biomarkers for SLE disease activity or response to treatment is a barrier to the efficient management of the disease, drug discovery, as well as development of new therapeutics. Recent studies with gene knockout mice have suggested that membrane-bound complement regulatory proteins (CRPs) may critically determine the sensitivity of host tissues to complement injury in autoimmune and inflammatory disorders. Case-controlled and followup studies carried out in our laboratory suggest an intimate relation between the level of DAF, MCP, CR1, and CD59 transcripts and the disease activity in SLE. Based on comparative evaluation of our data on these four membrane-bound complement regulatory proteins, we envisaged CR1 and MCP transcripts as putative noninvasive disease activity markers and the respective proteins as therapeutic targets for SLE. Following is a brief appraisal on membrane-bound complement regulatory proteins DAF, MCP, CR1, and CD59 as biomarkers and therapeutic targets for SLE. PMID:23402019

  15. Activation of protein phosphatase 1 by a small molecule designed to bind to the enzyme's regulatory site.

    Science.gov (United States)

    Tappan, Erin; Chamberlin, A Richard

    2008-02-01

    The activity of protein phosphatase 1 (PP1), a serine-threonine phosphatase that participates ubiquitously in cellular signaling, is controlled by a wide variety of regulatory proteins that interact with PP1 at an allosteric regulatory site that recognizes a "loose" consensus sequence (usually designated as RVXF) found in all such regulatory proteins. Peptides containing the regulatory consensus sequence have been found to recapitulate the binding and PP1 activity modulation of the regulatory proteins, suggesting that it might be possible to design small-molecule surrogates that activate PP1 rather than inhibiting it. This prospect constitutes a largely unexplored way of controlling signaling pathways that could be functionally complementary to the much more extensively explored stratagem of kinase inhibition. Based on these principles, we have designed a microcystin analog that activates PP1. PMID:18291321

  16. Overexpression of KH-type splicing regulatory protein regulates proliferation, migration, and implantation ability of osteosarcoma

    Science.gov (United States)

    Pruksakorn, Dumnoensun; Teeyakasem, Pimpisa; Klangjorhor, Jeerawan; Chaiyawat, Parunya; Settakorn, Jongkolnee; Diskul-Na-Ayudthaya, Penchatr; Chokchaichamnankit, Daranee; Pothacharoen, Peraphan; Srisomsap, Chantragan

    2016-01-01

    Osteosarcoma is a common malignant bone tumor in children and adolescents. The current 5-year survival rate is ~60% and that seems to be reaching a plateau. In order to improve treatment outcomes of osteosarcoma, a better understanding of tumorigenesis and underlying molecular mechanisms is required for searching out possible new treatment targets. This study aimed to identify the potential proteins involving the pathogenesis of osteosarcoma using a proteomics approach. Proteins extracted from primary cell culture of osteosarcoma (n=7) and osteoblasts of cancellous bone (n=7) were studied. Using 2-DE based proteomics and LC-MS/MS analysis, we successfully determined seven differentially expressed protein spots. Four upregulated proteins and three downregulated proteins were observed in this study in which KH-type splicing regulatory protein (KSRP) was selected for further exploration. KSRP was significantly upregulated in osteosarcoma cells compared to osteoblasts using western blot assay. In addition, immunohistochemistry demonstrated that KSRP was also highly expressed in osteosarcoma tissue of independent cases from the experimental group. More importantly, KSRP silencing of osteosarcoma cell lines significantly decreased cell proliferation, migration ability, as well as implantation and growth ability in chick chorioallantoic membrane assay. Taken together, these findings demonstrate, that KSRP plays important roles in regulatory controls of osteosarcoma pathogenesis and serves as a potentially therapeutic target of osteosarcoma. PMID:27573585

  17. Structural studies of bacterial transcriptional regulatory proteins by multidimensional heteronuclear NMR

    Energy Technology Data Exchange (ETDEWEB)

    Volkman, B.F.

    1995-02-01

    Nuclear magnetic resonance spectroscopy was used to elucidate detailed structural information for peptide and protein molecules. A small peptide was designed and synthesized, and its three-dimensional structure was calculated using distance information derived from two-dimensional NMR measurements. The peptide was used to induce antibodies in mice, and the cross-reactivity of the antibodies with a related protein was analyzed with enzyme-linked immunosorbent assays. Two proteins which are involved in regulation of transcription in bacteria were also studied. The ferric uptake regulation (Fur) protein is a metal-dependent repressor which controls iron uptake in bacteria. Two- and three-dimensional NMR techniques, coupled with uniform and selective isotope labeling allowed the nearly complete assignment of the resonances of the metal-binding domain of the Fur protein. NTRC is a transcriptional enhancer binding protein whose N-terminal domain is a {open_quote}receiver domain{close_quote} in the family of {open_quote}two-component{close_quote} regulatory systems. Phosphorylation of the N-terminal domain of NTRC activates the initiation of transcription of aeries encoding proteins involved in nitrogen regulation. Three- and four-dimensional NMR spectroscopy methods have been used to complete the resonance assignments and determine the solution structure of the N-terminal receiver domain of the NTRC protein. Comparison of the solution structure of the NTRC receiver domain with the crystal structures of the homologous protein CheY reveals a very similar fold, with the only significant difference being the position of helix 4 relative to the rest of the protein. The determination of the structure of the NTRC receiver domain is the first step toward understanding a mechanism of signal transduction which is common to many bacterial regulatory systems.

  18. DNA-protein interaction at erythroid important regulatory elements of MEL cells by in vivo footprinting

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Using ligation-mediated PCR method to study the status of DNA-protein interaction at hypersensitive site 2 of locus control Region and β maj promoter of MEL cell line before and after induction, MEL cell has been cultured and induced to differentiation by Hemin and DMSO, then the live cells have been treated with dimethyl sulfate. Ligation mediated PCR has been carried out following the chemical cleavage. The results demonstrate that before and after induction, the status of DNA-protein interaction at both hypersensitive site 2 and β maj promoter change significantly, indicating that distal regulatory elements (locus control region, hypersensitive sites) as well as proximal regulatory elements (promoter, enhancer) of β -globin gene cluster participate in the regulation of developmental specificity.

  19. [The effect of extremely low doses of the novel regulatory plant proteins ].

    Science.gov (United States)

    Krasnov, M S; Margasiuk, D V; Iamskov, I A; Iamskova, V P

    2003-01-01

    Searching and study on regulatory proteins, which can keep under control the scope of important processes as like as cell adhesion, proliferation, differentiation and morphogenesis, is an actual aim of the current biochemistry. Recently we have identified S-100 proteins in plants of following species: plantain (Plantago major L.), aloe (Aloe arborescens L.), and bilberry (Vaccinum myrtillus L.). Extraction and purification of S-100 proteins gotten from these plants were performed by the method we developed earlier for adhesion proteins of animal tissues. Homogeneity of the studied plant proteins was evaluated and confirmed by HPLC and SDS-electrophoresis in PAAG. Both, plant and animal proteins have appeared to be biologically active at extremely low doses. The tests were performed by adhesiometrical method in short-term tissue culture of mouse's liver in vitro. As a result it was established that the plant proteins insert a membranotropic effect being added in extremely low doses, corresponding to 10(-10)-10(-13) mg/ml. Keeping in mind that the plantain is well known remedy for wound protection and healing, in several experiments we studied the biological effect of plant S-100 proteins on animal cells. It was found that S-100 proteins obtained from plantain influences proliferation of human fibroblasts in vitro. It was found that after the treatment with this protein in low doses the cell growth rate increases essentially.

  20. [The effect of extremely low doses of the novel regulatory plant proteins ].

    Science.gov (United States)

    Krasnov, M S; Margasiuk, D V; Iamskov, I A; Iamskova, V P

    2003-01-01

    Searching and study on regulatory proteins, which can keep under control the scope of important processes as like as cell adhesion, proliferation, differentiation and morphogenesis, is an actual aim of the current biochemistry. Recently we have identified S-100 proteins in plants of following species: plantain (Plantago major L.), aloe (Aloe arborescens L.), and bilberry (Vaccinum myrtillus L.). Extraction and purification of S-100 proteins gotten from these plants were performed by the method we developed earlier for adhesion proteins of animal tissues. Homogeneity of the studied plant proteins was evaluated and confirmed by HPLC and SDS-electrophoresis in PAAG. Both, plant and animal proteins have appeared to be biologically active at extremely low doses. The tests were performed by adhesiometrical method in short-term tissue culture of mouse's liver in vitro. As a result it was established that the plant proteins insert a membranotropic effect being added in extremely low doses, corresponding to 10(-10)-10(-13) mg/ml. Keeping in mind that the plantain is well known remedy for wound protection and healing, in several experiments we studied the biological effect of plant S-100 proteins on animal cells. It was found that S-100 proteins obtained from plantain influences proliferation of human fibroblasts in vitro. It was found that after the treatment with this protein in low doses the cell growth rate increases essentially. PMID:12881977

  1. Proteomic shifts in embryonic stem cells with gene dose modifications suggest the presence of balancer proteins in protein regulatory networks.

    Directory of Open Access Journals (Sweden)

    Lei Mao

    Full Text Available Large numbers of protein expression changes are usually observed in mouse models for neurodegenerative diseases, even when only a single gene was mutated in each case. To study the effect of gene dose alterations on the cellular proteome, we carried out a proteomic investigation on murine embryonic stem cells that either overexpressed individual genes or displayed aneuploidy over a genomic region encompassing 14 genes. The number of variant proteins detected per cell line ranged between 70 and 110, and did not correlate with the number of modified genes. In cell lines with single gene mutations, up and down-regulated proteins were always in balance in comparison to parental cell lines regarding number as well as concentration of differentially expressed proteins. In contrast, dose alteration of 14 genes resulted in an unequal number of up and down-regulated proteins, though the balance was kept at the level of protein concentration. We propose that the observed protein changes might partially be explained by a proteomic network response. Hence, we hypothesize the existence of a class of "balancer" proteins within the proteomic network, defined as proteins that buffer or cushion a system, and thus oppose multiple system disturbances. Through database queries and resilience analysis of the protein interaction network, we found that potential balancer proteins are of high cellular abundance, possess a low number of direct interaction partners, and show great allelic variation. Moreover, balancer proteins contribute more heavily to the network entropy, and thus are of high importance in terms of system resilience. We propose that the "elasticity" of the proteomic regulatory network mediated by balancer proteins may compensate for changes that occur under diseased conditions.

  2. The Contribution of Serine 194 Phosphorylation to Steroidogenic Acute Regulatory Protein Function

    OpenAIRE

    Sasaki, Goro; Zubair, Mohamad; Ishii, Tomohiro; Mitsui, Toshikatsu; Hasegawa, Tomonobu; Auchus, Richard J

    2014-01-01

    The steroidogenic acute regulatory protein (StAR) facilitates the delivery of cholesterol to the inner mitochondrial membrane, where the cholesterol side-chain cleavage enzyme catalyzes the initial step of steroid hormone biosynthesis. StAR was initially identified in adrenocortical cells as a phosphoprotein, the expression and phosphorylation of which were stimulated by corticotropin. A number of in vitro studies have implicated cAMP-dependent phosphorylation at serine 194 (S194, S195 in hum...

  3. Autoregulation and multiple DNA interactions by a transcriptional regulatory protein in E. coli pili biogenesis.

    OpenAIRE

    Forsman, K; M. Göransson; Uhlin, B E

    1989-01-01

    An operon mediating biogenesis of digalactoside-binding pilus-adhesin of serotype F13 in uropathogenic Escherichia coli includes the regulatory gene papB. The papB gene product was found to act as transcriptional activator of an operon which includes the papB gene and several pap cistrons encoding the proteins of the pilus polymer. Studies of how pap gene expression was affected by increasing amounts of PapB protein in the cells showed that high levels did not stimulate transcription but caus...

  4. The Emerging Role of Protein Phosphorylation as a Critical Regulatory Mechanism Controlling Cellulose Biosynthesis

    Science.gov (United States)

    Jones, Danielle M.; Murray, Christian M.; Ketelaar, KassaDee J.; Thomas, Joseph J.; Villalobos, Jose A.; Wallace, Ian S.

    2016-01-01

    Plant cell walls are extracellular matrices that surround plant cells and critically influence basic cellular processes, such as cell division and expansion. Cellulose is a major constituent of plant cell walls, and this paracrystalline polysaccharide is synthesized at the plasma membrane by a large protein complex known as the cellulose synthase complex (CSC). Recent efforts have identified numerous protein components of the CSC, but relatively little is known about regulation of cellulose biosynthesis. Numerous phosphoproteomic surveys have identified phosphorylation events in CSC associated proteins, suggesting that protein phosphorylation may represent an important regulatory control of CSC activity. In this review, we discuss the composition and dynamics of the CSC in vivo, the catalog of CSC phosphorylation sites that have been identified, the function of experimentally examined phosphorylation events, and potential kinases responsible for these phosphorylation events. Additionally, we discuss future directions in cellulose synthase kinase identification and functional analyses of CSC phosphorylation sites. PMID:27252710

  5. The Emerging Role of Protein Phosphorylation as a Critical Regulatory Mechanism Controlling Cellulose Biosynthesis.

    Science.gov (United States)

    Jones, Danielle M; Murray, Christian M; Ketelaar, KassaDee J; Thomas, Joseph J; Villalobos, Jose A; Wallace, Ian S

    2016-01-01

    Plant cell walls are extracellular matrices that surround plant cells and critically influence basic cellular processes, such as cell division and expansion. Cellulose is a major constituent of plant cell walls, and this paracrystalline polysaccharide is synthesized at the plasma membrane by a large protein complex known as the cellulose synthase complex (CSC). Recent efforts have identified numerous protein components of the CSC, but relatively little is known about regulation of cellulose biosynthesis. Numerous phosphoproteomic surveys have identified phosphorylation events in CSC associated proteins, suggesting that protein phosphorylation may represent an important regulatory control of CSC activity. In this review, we discuss the composition and dynamics of the CSC in vivo, the catalog of CSC phosphorylation sites that have been identified, the function of experimentally examined phosphorylation events, and potential kinases responsible for these phosphorylation events. Additionally, we discuss future directions in cellulose synthase kinase identification and functional analyses of CSC phosphorylation sites. PMID:27252710

  6. Ethanol utilization regulatory protein: profile alignments give no evidence of origin through aldehyde and alcohol dehydrogenase gene fusion.

    OpenAIRE

    Nicholas, H B; Persson, B; Jörnvall, H; Hempel, J.

    1995-01-01

    The suggestion that the ethanol regulatory protein from Aspergillus has its evolutionary origin in a gene fusion between aldehyde and alcohol dehydrogenase genes (Hawkins AR, Lamb HK, Radford A, Moore JD, 1994, Gene 146:145-158) has been tested by profile analysis with aldehyde and alcohol dehydrogenase family profiles. We show that the degree and kind of similarity observed between these profiles and the ethanol regulatory protein sequence is that expected from random sequences of the same c...

  7. Regulatory effect of heat shock protein 70 in stress-induced rat intestinal epithelial barrier dysfunction

    Directory of Open Access Journals (Sweden)

    Ping-Chang Yang

    2009-01-01

    Full Text Available Background : Psychological stress is one of the factors associated with many human diseases; the mechanisms need to be further understood. Methods : Rats were subjected to chronic water avoid stress. Intestinal epithelial heat shock protein (HSP 70 was evaluated. The intestinal epithelial permeability was examined with Ussing chamber technique. Results : HSP70 was detected in normal intestinal epithelial cells. Psychological stress decreased HSP70 in the intestinal epithelial cells that correlated with the stress-induced intestinal epithelial hyperpermeability. Pretreatment with HSP70 abrogated stress-induced intestinal barrier dysfunction. Conclusions : Chronic stress inhibits HSP70 activity in rat intestinal epithelial layer that is associated with intestinal epithelial barrier dysfunction, which can be prevented by pretreatment with HSP70 protein. (Yang PC, Tu YH, Perdue MH, Oluwole C, Struiksma S. Regulatory effect of heat shock protein 70 in stress-induced rat intestinal epithelial barrier dysfunction.

  8. Involvement of the Iron Regulatory Protein from Eisenia andrei Earthworms in the Regulation of Cellular Iron Homeostasis

    OpenAIRE

    Petra Procházková; František Škanta; Radka Roubalová; Marcela Šilerová; Jiří Dvořák; Martin Bilej

    2014-01-01

    Iron homeostasis in cells is regulated by iron regulatory proteins (IRPs) that exist in different organisms. IRPs are cytosolic proteins that bind to iron-responsive elements (IREs) of the 5'- or 3'-untranslated regions (UTR) of mRNAs that encode many proteins involved in iron metabolism. In this study, we have cloned and described a new regulatory protein belonging to the family of IRPs from the earthworm Eisenia andrei (EaIRP). The earthworm IRE site in 5'-UTR of ferritin mRNA most likely f...

  9. Differential recruitment of co-regulatory proteins to the human estrogen receptor 1 in response to xenoestrogens.

    Science.gov (United States)

    Smith, L Cody; Clark, Jessica C; Bisesi, Joseph H; Ferguson, P Lee; Sabo-Attwood, Tara

    2016-09-01

    The diverse biological effects of xenoestrogens may be explained by their ability to differentially recruit co-regulatory proteins to the estrogen receptor (ER). We employed high-throughput receptor affinity binding and co-regulatory protein recruitment screening assays based on fluorescence polarization and time resolved florescence resonance energy transfer (TR-FRET), respectively, to assess xenoestrogen-specific binding and co-regulatory protein recruitment to the ER. Then we used a functional proteomic assay based on co-immunoprecipitation of ER-bound proteins to isolate and identify intact co-regulatory proteins recruited to a ligand-activated ER. Through these approaches, we revealed differential binding affinity of bisphenol-A (BPA) and genistein (GEN) to the human ERα (ESR1) and ligand-dependent recruitment of SRC-1 and SRC-3 peptides. Recruitment profiles were variable for each ligand and in some cases were distinct compared to 17β-estradiol (E2). For example, E2 and GEN recruited both SRC-1 and -3 peptides whereas BPA recruited only SRC-1 peptides. Results of the functional proteomic assay showed differential recruitment between ligands where E2 recruited the greatest number of proteins followed by BPA then GEN. A number of proteins share previously identified relationships with ESR1 as determined by STRING analysis. Although there was limited overlap in proteins identified between treatments, all ligands recruited proteins involved in cell growth as determined by subnetwork enrichment analysis (precruitment of known and previously unknown co-regulatory proteins to ESR1 and highlight new methods to assay recruitment of low abundant and intact, endogenous co-regulatory proteins to ESR1 or other nuclear receptors, in both human and aquatic species. PMID:27156127

  10. Role of complement and complement regulatory proteins in the complications of diabetes.

    Science.gov (United States)

    Ghosh, Pamela; Sahoo, Rupam; Vaidya, Anand; Chorev, Michael; Halperin, Jose A

    2015-06-01

    It is well established that the organ damage that complicates human diabetes is caused by prolonged hyperglycemia, but the cellular and molecular mechanisms by which high levels of glucose cause tissue damage in humans are still not fully understood. The prevalent hypothesis explaining the mechanisms that may underlie the pathogenesis of diabetes complications includes overproduction of reactive oxygen species, increased flux through the polyol pathway, overactivity of the hexosamine pathway causing intracellular formation of advanced glycation end products, and activation of protein kinase C isoforms. In addition, experimental and clinical evidence reported in past decades supports a strong link between the complement system, complement regulatory proteins, and the pathogenesis of diabetes complications. In this article, we summarize the body of evidence that supports a role for the complement system and complement regulatory proteins in the pathogenesis of diabetic vascular complications, with specific emphasis on the role of the membrane attack complex (MAC) and of CD59, an extracellular cell membrane-anchored inhibitor of MAC formation that is inactivated by nonenzymatic glycation. We discuss a pathogenic model of human diabetic complications in which a combination of CD59 inactivation by glycation and hyperglycemia-induced complement activation increases MAC deposition, activates pathways of intracellular signaling, and induces the release of proinflammatory, prothrombotic cytokines and growth factors. Combined, complement-dependent and complement-independent mechanisms induced by high glucose promote inflammation, proliferation, and thrombosis as characteristically seen in the target organs of diabetes complications.

  11. Spatial proximity statistics suggest a regulatory role of protein phosphorylation on compound binding.

    Science.gov (United States)

    Korkuć, Paula; Walther, Dirk

    2016-05-01

    Phosphorylation is an important post-translational modification that regulates protein function by the attachment of negatively charged phosphate groups to phosphorylatable amino acid residues. As a mode of action, an influence of phosphorylation on the binding of compounds to proteins has been discussed and described for a number of proteins in the literature. However, a systematic statistical survey probing for enriched phosphorylation sites close to compound binding sites in support of this notion and with properly chosen random reference distributions has not been presented yet. Using high-resolution protein structures from the Protein Data Bank including their co-crystallized non-covalently bound compounds and experimentally determined phosphorylation sites, we analyzed the pairwise distance distributions of phosphorylation and compound binding sites on protein surfaces. We found that phosphorylation sites are indeed located at significantly closer distances to compounds than expected by chance holding true specifically also for the subset of compound binding sites serving as catalytic sites of metabolic reactions. This tendency was particularly evident when treating phosphorylation sites as collective sets supporting the relevance of phosphorylation hotspots. Interestingly, phosphorylation sites were found to be closer to negatively charged than to positively charged compounds suggesting a stronger modulation of the binding of negatively charged compounds in dependence on phosphorylation status than on positively charged compounds. The enrichment of phosphorylation sites near compound binding sites confirms a regulatory role of phosphorylation in compound binding and provides a solid statistical basis for the literature-reported selected events.

  12. Role of Glucokinase in the Subcellular Localization of Glucokinase Regulatory Protein

    Directory of Open Access Journals (Sweden)

    Ling Jin

    2015-04-01

    Full Text Available Glucokinase (GCK is the rate-limiting enzyme of liver glucose metabolism. Through protein-protein interactions, glucokinase regulatory protein (GCKR post-transcriptionally regulates GCK function in the liver, and causes its nuclear localization. However the role of GCK in regulating GCKR localization is unknown. In the present study, using in vitro and in vivo models, we examined the levels of GCK and GCKR, and their subcellular localization. We found that total cellular levels of GCKR did not vary in the in vivo models, but its subcellular localization did. In animals with normal levels of GCK, GCKR is mainly localized to the nuclei of hepatocytes. In seven-day old rats and liver-specific Gck gene knockout mice (animals that lack or have reduced levels of GCK protein, GCKR was found primarily in the cytoplasm. The interaction of GCK with GCKR was further examined using in vitro models where we varied the levels of GCK and GCKR. Varying the level of GCK protein had no effect on total cellular GCKR protein levels. Taken together, our results indicate that GCK is important for the localization of GCKR to the nucleus and raises the possibility that GCKR may have functions in addition to those regulating GCK activity in the cytoplasm.

  13. EWS and FUS bind a subset of transcribed genes encoding proteins enriched in RNA regulatory functions

    DEFF Research Database (Denmark)

    Luo, Yonglun; Friis, Jenny Blechingberg; Fernandes, Ana Miguel;

    2015-01-01

    IP-seq). Our results show that FUS and EWS bind to a subset of actively transcribed genes, that binding often is downstream the poly(A)-signal, and that binding overlaps with RNA polymerase II. Functional examinations of selected target genes identified that FUS and EWS can regulate gene expression...... at different levels. Gene Ontology analyses showed that FUS and EWS target genes preferentially encode proteins involved in regulatory processes at the RNA level. Conclusions The presented results yield new insights into gene interactions of EWS and FUS and have identified a set of FUS and EWS target genes...

  14. Protein phosphatase 2A regulatory subunit B56α limits phosphatase activity in the heart.

    Science.gov (United States)

    Little, Sean C; Curran, Jerry; Makara, Michael A; Kline, Crystal F; Ho, Hsiang-Ting; Xu, Zhaobin; Wu, Xiangqiong; Polina, Iuliia; Musa, Hassan; Meadows, Allison M; Carnes, Cynthia A; Biesiadecki, Brandon J; Davis, Jonathan P; Weisleder, Noah; Györke, Sandor; Wehrens, Xander H; Hund, Thomas J; Mohler, Peter J

    2015-07-21

    Protein phosphatase 2A (PP2A) is a serine/threonine-selective holoenzyme composed of a catalytic, scaffolding, and regulatory subunit. In the heart, PP2A activity is requisite for cardiac excitation-contraction coupling and central in adrenergic signaling. We found that mice deficient in the PP2A regulatory subunit B56α (1 of 13 regulatory subunits) had altered PP2A signaling in the heart that was associated with changes in cardiac physiology, suggesting that the B56α regulatory subunit had an autoinhibitory role that suppressed excess PP2A activity. The increase in PP2A activity in the mice with reduced B56α expression resulted in slower heart rates and increased heart rate variability, conduction defects, and increased sensitivity of heart rate to parasympathetic agonists. Increased PP2A activity in B56α(+/-) myocytes resulted in reduced Ca(2+) waves and sparks, which was associated with decreased phosphorylation (and thus decreased activation) of the ryanodine receptor RyR2, an ion channel on intracellular membranes that is involved in Ca(2+) regulation in cardiomyocytes. In line with an autoinhibitory role for B56α, in vivo expression of B56α in the absence of altered abundance of other PP2A subunits decreased basal phosphatase activity. Consequently, in vivo expression of B56α suppressed parasympathetic regulation of heart rate and increased RyR2 phosphorylation in cardiomyocytes. These data show that an integral component of the PP2A holoenzyme has an important inhibitory role in controlling PP2A enzyme activity in the heart.

  15. Possible regulatory function of the Saccharomyces cerevisiae Ty1 retrotransposon core protein.

    Science.gov (United States)

    Roth, J F; Kingsman, S M; Kingsman, A J; Martin-Rendon, E

    2000-07-01

    The yeast Ty1 retrotransposon encodes proteins and RNA that assemble into virus-like particles (VLPs) as part of the life cycle of the retro-element. The Tya protein, which is equivalent to the retroviral Gag, is the major structural component of these particles. In this work, we demonstrate that Tya proteins fulfil other functions apart from their structural role. We show that Tya interacts in vitro with the Ty1 RNA domain required for RNA packaging, suggesting that this RNA-protein interaction may direct the packaging process. Furthermore, the overexpression of both Tya proteins, i.e. p1, the primary translation product, and p2, the mature form, increases endogenous Ty1 RNA levels in trans without increasing translation significantly. These observations suggest that Tya may exert a regulatory function during transposition. Interestingly, however, only p2, the mature form of Tya, trans-activates transposition of a marked genomic Ty element. This confirms that processing is required for transposition. PMID:10870103

  16. Pro-protein convertases control the maturation and processing of the iron-regulatory protein, RGMc/hemojuvelin

    Directory of Open Access Journals (Sweden)

    Rotwein Peter

    2008-04-01

    Full Text Available Abstract Background Repulsive guidance molecule c (RGMc or hemojuvelin, a glycosylphosphatidylinositol-linked glycoprotein expressed in liver and striated muscle, plays a central role in systemic iron balance. Inactivating mutations in the RGMc gene cause juvenile hemochromatosis (JH, a rapidly progressing iron storage disorder with severe systemic manifestations. RGMc undergoes complex biosynthetic steps leading to membrane-bound and soluble forms of the protein, including both 50 and 40 kDa single-chain species. Results We now show that pro-protein convertases (PC are responsible for conversion of 50 kDa RGMc to a 40 kDa protein with a truncated COOH-terminus. Unlike related molecules RGMa and RGMb, RGMc encodes a conserved PC recognition and cleavage site, and JH-associated RGMc frame-shift mutants undergo COOH-terminal cleavage only if this site is present. A cell-impermeable peptide PC inhibitor blocks the appearance of 40 kDa RGMc in extra-cellular fluid, as does an engineered mutation in the conserved PC recognition sequence, while the PC furin cleaves 50 kDa RGMc in vitro into a 40 kDa molecule with an intact NH2-terminus. Iron loading reduces release of RGMc from the cell membrane, and diminishes accumulation of the 40 kDa species in cell culture medium. Conclusion Our results define a role for PCs in the maturation of RGMc that may have implications for the physiological actions of this critical iron-regulatory protein.

  17. Structural basis for specific recognition of multiple mRNA targets by a PUF regulatory protein

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yeming; Opperman, Laura; Wickens, Marvin; Tanaka Hall, Traci M. (NIH); (UW)

    2011-11-02

    Caenorhabditis elegans fem-3 binding factor (FBF) is a founding member of the PUMILIO/FBF (PUF) family of mRNA regulatory proteins. It regulates multiple mRNAs critical for stem cell maintenance and germline development. Here, we report crystal structures of FBF in complex with 6 different 9-nt RNA sequences, including elements from 4 natural mRNAs. These structures reveal that FBF binds to conserved bases at positions 1-3 and 7-8. The key specificity determinant of FBF vs. other PUF proteins lies in positions 4-6. In FBF/RNA complexes, these bases stack directly with one another and turn away from the RNA-binding surface. A short region of FBF is sufficient to impart its unique specificity and lies directly opposite the flipped bases. We suggest that this region imposes a flattened curvature on the protein; hence, the requirement for the additional nucleotide. The principles of FBF/RNA recognition suggest a general mechanism by which PUF proteins recognize distinct families of RNAs yet exploit very nearly identical atomic contacts in doing so.

  18. Structural basis for specific recognition of multiple mRNA targets by a PUF regulatory protein

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yeming; Opperman, Laura; Wickens, Marvin; Tanaka Hall, Traci M.; (NIH); (UW)

    2010-08-19

    Caenorhabditis elegans fem-3 binding factor (FBF) is a founding member of the PUMILIO/FBF (PUF) family of mRNA regulatory proteins. It regulates multiple mRNAs critical for stem cell maintenance and germline development. Here, we report crystal structures of FBF in complex with 6 different 9-nt RNA sequences, including elements from 4 natural mRNAs. These structures reveal that FBF binds to conserved bases at positions 1-3 and 7-8. The key specificity determinant of FBF vs. other PUF proteins lies in positions 4-6. In FBF/RNA complexes, these bases stack directly with one another and turn away from the RNA-binding surface. A short region of FBF is sufficient to impart its unique specificity and lies directly opposite the flipped bases. We suggest that this region imposes a flattened curvature on the protein; hence, the requirement for the additional nucleotide. The principles of FBF/RNA recognition suggest a general mechanism by which PUF proteins recognize distinct families of RNAs yet exploit very nearly identical atomic contacts in doing so.

  19. Molecular cloning and characterization of a novel type of regulatory protein (GDI) for smg p25A, a ras p21-like GTP-binding protein.

    OpenAIRE

    Matsui, Y.; Kikuchi, A; Araki, S; Hata, Y; Kondo, J; Teranishi, Y; Takai, Y.

    1990-01-01

    We recently purified to near homogeneity a novel type of regulatory protein for smg p25A, a ras p21-like GTP-binding protein, from bovine brain cytosol. This regulatory protein, named smg p25A GDP dissociation inhibitor (GDI), regulates the GDP-GTP exchange reaction of smg p25A by inhibiting dissociation of GDP from and subsequent binding of GTP to it. In the present studies, we isolated and sequenced the cDNA of smg p25A GDI from a bovine brain cDNA library by using an oligonucleotide probe ...

  20. Mutations in complement regulatory proteins predispose to preeclampsia: a genetic analysis of the PROMISSE cohort.

    Directory of Open Access Journals (Sweden)

    Jane E Salmon

    2011-03-01

    Full Text Available BACKGROUND: Pregnancy in women with systemic lupus erythematosus (SLE or antiphospholipid antibodies (APL Ab--autoimmune conditions characterized by complement-mediated injury--is associated with increased risk of preeclampsia and miscarriage. Our previous studies in mice indicate that complement activation targeted to the placenta drives angiogenic imbalance and placental insufficiency. METHODS AND FINDINGS: We use PROMISSE, a prospective study of 250 pregnant patients with SLE and/or APL Ab, to test the hypothesis in humans that impaired capacity to limit complement activation predisposes to preeclampsia. We sequenced genes encoding three complement regulatory proteins--membrane cofactor protein (MCP, complement factor I (CFI, and complement factor H (CFH--in 40 patients who had preeclampsia and found heterozygous mutations in seven (18%. Five of these patients had risk variants in MCP or CFI that were previously identified in atypical hemolytic uremic syndrome, a disease characterized by endothelial damage. One had a novel mutation in MCP that impairs regulation of C4b. These findings constitute, to our knowledge, the first genetic defects associated with preeclampsia in SLE and/or APL Ab. We confirmed the association of hypomorphic variants of MCP and CFI in a cohort of non-autoimmune preeclampsia patients in which five of 59 were heterozygous for mutations. CONCLUSION: The presence of risk variants in complement regulatory proteins in patients with SLE and/or APL Ab who develop preeclampsia, as well as in preeclampsia patients lacking autoimmune disease, links complement activation to disease pathogenesis and suggests new targets for treatment of this important public health problem. STUDY REGISTRATION: ClinicalTrials.gov NCT00198068.

  1. Identification of a novel regulatory protein (CsrD) that targets the global regulatory RNAs CsrB and CsrC for degradation by RNase E

    OpenAIRE

    Suzuki, Kazushi; Babitzke, Paul; Kushner, Sidney R.; Romeo, Tony

    2006-01-01

    In Escherichia coli, the global regulatory protein CsrA (carbon store regulator A) binds to leader segments of target mRNAs, affecting their translation and stability. CsrA activity is regulated by two noncoding RNAs, CsrB and CsrC, which act by sequestering multiple CsrA dimers. Here, we describe a protein (CsrD) that controls the degradation of CsrB/C RNAs. The dramatic stabilization of CsrB/C RNAs in a csrD mutant altered the expression of CsrA-controlled genes in a manner predicted from t...

  2. A Pyrococcus homolog of the leucine-responsive regulatory protein, LrpA, inhibits transcription by abrogating RNA polymerase recruitment

    OpenAIRE

    Dahlke, Isabell; Thomm, Michael

    2002-01-01

    The genomes of Archaea harbor homologs of the global bacterial regulator leucine-responsive regulatory protein (Lrp). Archaeal Lrp homologs are helix–turn–helix DNA-binding proteins that specifically repress the transcription of their own genes in vitro. Here, we analyze the interaction of Pyrococcus LrpA with components of the archaeal transcriptional machinery at the lrpA promoter. DNA–protein complexes can be isolated by electrophoretic mobility shift assays that contain both LrpA and the ...

  3. Transcriptional control by two leucine-responsive regulatory proteins in Halobacterium salinarum R1

    Directory of Open Access Journals (Sweden)

    Tarasov Valery

    2010-05-01

    Full Text Available Abstract Background Archaea combine bacterial-as well as eukaryotic-like features to regulate cellular processes. Halobacterium salinarum R1 encodes eight leucine-responsive regulatory protein (Lrp-homologues. The function of two of them, Irp (OE3923F and lrpA1 (OE2621R, were analyzed by gene deletion and overexpression, including genome scale impacts using microarrays. Results It was shown that Lrp affects the transcription of multiple target genes, including those encoding enzymes involved in amino acid synthesis, central metabolism, transport processes and other regulators of transcription. In contrast, LrpA1 regulates transcription in a more specific manner. The aspB3 gene, coding for an aspartate transaminase, was repressed by LrpA1 in the presence of L-aspartate. Analytical DNA-affinity chromatography was adapted to high salt, and demonstrated binding of LrpA1 to its own promoter, as well as L-aspartate dependent binding to the aspB3 promoter. Conclusion The gene expression profiles of two archaeal Lrp-homologues report in detail their role in H. salinarum R1. LrpA1 and Lrp show similar functions to those already described in bacteria, but in addition they play a key role in regulatory networks, such as controlling the transcription of other regulators. In a more detailed analysis ligand dependent binding of LrpA1 was demonstrated to its target gene aspB3.

  4. Regulation of the endogenous VEGF-A gene by exogenous designed regulatory proteins

    Science.gov (United States)

    Tachikawa, Kiyoshi; Schröder, Oliver; Frey, Gerhard; Briggs, Steven P.; Sera, Takashi

    2004-01-01

    We describe a facile method to activate or repress transcription of endogenous genes in a quantitative and specific manner by treatment with designed regulatory proteins (DRPs), in which artificial transcription factors (ATFs) are fused to cell-penetrating peptides (CPPs). Penetration of DRPs into cells is mediated by an N-terminal CPP fused to a nuclear localization signal; a DNA-binding domain and a transactivation domain follow. The DNA-binding domain was targeted to the vascular endothelial growth factor (VEGF)-A gene. An agonist DRP was rapidly taken up by cells and transported to the nucleus; soon after, the cells began transcribing the gene and secreting VEGF-A protein in a dose-dependent manner. Multiple copies of a short oligopeptide derived from a minimal transactivation domain of human β-catenin was stronger than VP-16. The SRDX domain from the plant transcription factor, SUPERMAN, changed the DRP to a hypoxia-induced antagonist of VEGF-A. DRPs combine many of the potential benefits of transgenes with those of recombinant proteins. PMID:15475575

  5. Protein SUMOylation Is Required for Regulatory T Cell Expansion and Function.

    Science.gov (United States)

    Ding, Xiao; Wang, Aibo; Ma, Xiaopeng; Demarque, Maud; Jin, Wei; Xin, Huawei; Dejean, Anne; Dong, Chen

    2016-07-26

    Foxp3-expressing regulatory T (Treg) cells are essential for immune tolerance; however, the molecular mechanisms underlying Treg cell expansion and function are still not well understood. SUMOylation is a protein post-translational modification characterized by covalent attachment of SUMO moieties to lysines. UBC9 is the only E2 conjugating enzyme involved in this process, and loss of UBC9 completely abolishes the SUMOylation pathway. Here, we report that selective deletion of Ubc9 within the Treg lineage results in fatal early-onset autoimmunity similar to Foxp3 mutant mice. Ubc9-deficient Treg cells exhibit severe defects in TCR-driven homeostatic proliferation, accompanied by impaired activation and compromised suppressor function. Importantly, TCR ligation enhanced SUMOylation of IRF4, a critical regulator of Treg cell function downstream of TCR signals, which regulates its stability in Treg cells. Our data thus have demonstrated an essential role of SUMOylation in the expansion and function of Treg cells. PMID:27425617

  6. Evolutionary adaptation of an AraC-like regulatory protein in Citrobacter rodentium and Escherichia species.

    Science.gov (United States)

    Tan, Aimee; Petty, Nicola K; Hocking, Dianna; Bennett-Wood, Vicki; Wakefield, Matthew; Praszkier, Judyta; Tauschek, Marija; Yang, Ji; Robins-Browne, Roy

    2015-04-01

    The evolution of pathogenic bacteria is a multifaceted and complex process, which is strongly influenced by the horizontal acquisition of genetic elements and their subsequent expression in their new hosts. A well-studied example is the RegA regulon of the enteric pathogen Citrobacter rodentium. The RegA regulatory protein is a member of the AraC/XylS superfamily, which coordinates the expression of a gene repertoire that is necessary for full pathogenicity of this murine pathogen. Upon stimulation by an exogenous, gut-associated signal, namely, bicarbonate ions, RegA activates the expression of a series of genes, including virulence factors, such as autotransporters, fimbriae, a dispersin-like protein, and the grlRA operon on the locus of enterocyte effacement pathogenicity island. Interestingly, the genes encoding RegA homologues are distributed across the genus Escherichia, encompassing pathogenic and nonpathogenic subtypes. In this study, we carried out a series of bioinformatic, transcriptional, and functional analyses of the RegA regulons of these bacteria. Our results demonstrated that regA has been horizontally transferred to Escherichia spp. and C. rodentium. Comparative studies of two RegA homologues, namely, those from C. rodentium and E. coli SMS-3-5, a multiresistant environmental strain of E. coli, showed that the two regulators acted similarly in vitro but differed in terms of their abilities to activate the virulence of C. rodentium in vivo, which evidently was due to their differential activation of grlRA. Our data indicate that RegA from C. rodentium has strain-specific adaptations that facilitate infection of its murine host. These findings shed new light on the development of virulence by C. rodentium and on the evolution of virulence-regulatory genes of bacterial pathogens in general.

  7. The Multifaceted Activity of the VirF Regulatory Protein in the Shigella Lifestyle

    Science.gov (United States)

    Di Martino, Maria Letizia; Falconi, Maurizio; Micheli, Gioacchino; Colonna, Bianca; Prosseda, Gianni

    2016-01-01

    Shigella is a highly adapted human pathogen, mainly found in the developing world and causing a severe enteric syndrome. The highly sophisticated infectious strategy of Shigella banks on the capacity to invade the intestinal epithelial barrier and cause its inflammatory destruction. The cellular pathogenesis and clinical presentation of shigellosis are the sum of the complex action of a large number of bacterial virulence factors mainly located on a large virulence plasmid (pINV). The expression of pINV genes is controlled by multiple environmental stimuli through a regulatory cascade involving proteins and sRNAs encoded by both the pINV and the chromosome. The primary regulator of the virulence phenotype is VirF, a DNA-binding protein belonging to the AraC family of transcriptional regulators. The virF gene, located on the pINV, is expressed only within the host, mainly in response to the temperature transition occurring when the bacterium transits from the outer environment to the intestinal milieu. VirF then acts as anti-H-NS protein and directly activates the icsA and virB genes, triggering the full expression of the invasion program of Shigella. In this review we will focus on the structure of VirF, on its sophisticated regulation, and on its role as major player in the path leading from the non-invasive to the invasive phenotype of Shigella. We will address also the involvement of VirF in mechanisms aimed at withstanding adverse conditions inside the host, indicating that this protein is emerging as a global regulator whose action is not limited to virulence systems. Finally, we will discuss recent observations conferring VirF the potential of a novel antibacterial target for shigellosis. PMID:27747215

  8. Comparison of two different stochastic models for extracting protein regulatory pathways using Bayesian networks.

    Science.gov (United States)

    Grzegorczyk, Marco

    2008-01-01

    Toxicoproteomics integrates traditional toxicology and systems biology and seeks to infer the architecture of biochemical pathways in biological systems that are affected by and respond to chemical and environmental exposures. Different reverse engineering methods for extracting biochemical regulatory networks from data have been proposed and it is important to understand their relative strengths and weaknesses. To shed some light onto this problem, Werhli et al. (2006) cross-compared three widely used methodologies, relevance networks, graphical Gaussian models, and Bayesian networks (BN), on real cytometric and synthetic expression data. This study continues with the evaluation and compares the learning performances of two different stochastic models (BGe and BDe) for BN. Cytometric protein expression data from the RAF-signaling pathway were used for the cross-method comparison. Understanding this pathway is an important task, as it is known that RAF is a critical signaling protein whose deregulation leads to carcinogenesis. When the more flexible BDe model is employed, a data discretization, which usually incurs an inevitable information loss, is needed. However, the results of the study reveal that the BDe model is preferable to the BGe model when a sufficiently large number of observations from the pathway are available. PMID:18569581

  9. Effect of high mobility group box-1 protein on immune cells and its regulatory mechanism

    Institute of Scientific and Technical Information of China (English)

    Ying-yi LUAN; Feng-huaYAO; Qing-hong ZHANG; Xiao-mei ZHU; Ning DONG; Yong-ming YAO

    2012-01-01

    High mobility group box-1 protein (HMGB1),which is a nuclear protein,participates in chromatin architecture and transcriptional regulation.When released from cells,HMGB1 also plays a well-established role as a pro-inflammatory mediator during innate immune responses to injury.In the initial stage of injury,there is a release of large quantities of early pro-inflammatory mediators to initiate or perpetuate immune responses against pathogens,but this pro-inflammatory period is transient,and it is followed by a prolonged period of immune suppression.At present,several lines of evidences have suggested that HMGB1 is a late cytokine provoking delayed endotoxin morbidity,which may enhance the production of early proinflammatory mediators,and it can contribute potently to the activation of different immune cells and play a role in the development of host cell-mediated immunity.The biology of HMGB1 has been extensively studied as a pro-inflammatory cytokine of systemic inflammation,however,this review will attempt to provide a summary of the effects of HMGB1 on different immune cells and its regulatory mechanism in acute insults.

  10. Hypoxia alters cell cycle regulatory protein expression and induces premature maturation of oligodendrocyte precursor cells.

    Directory of Open Access Journals (Sweden)

    Ravi Shankar Akundi

    Full Text Available BACKGROUND: Periventricular white matter injury (PWMI is a common form of brain injury sustained by preterm infants. A major factor that predisposes to PWMI is hypoxia. Because oligodendrocytes (OLs are responsible for myelination of axons, abnormal OL development or function may affect brain myelination. At present our understanding of the influences of hypoxia on OL development is limited. To examine isolated effects of hypoxia on OLs, we examined the influences of hypoxia on OL development in vitro. METHODOLOGY/FINDINGS: Cultures of oligodendrocyte precursor cells (OPCs were prepared from mixed glial cultures and were 99% pure. OPCs were maintained at 21% O(2 or hypoxia (1% or 4% O(2 for up to 7 days. We observed that 1% O(2 lead to an increase in the proportion of myelin basic protein (MBP-positive OLs after 1 week in culture, and a decrease in the proportion of platelet-derived growth factor receptor alpha (PDGFRalpha-positive cells suggesting premature OL maturation. Increased expression of the cell cycle regulatory proteins p27(Kip1 and phospho-cdc2, which play a role in OL differentiation, was seen as well. CONCLUSIONS: These results show that hypoxia interferes with the normal process of OL differentiation by inducing premature OPC maturation.

  11. Retinoid regulated macrophage cholesterol efflux involves the steroidogenic acute regulatory protein.

    Science.gov (United States)

    Manna, Pulak R

    2016-06-01

    Elimination of excess cholesteryl esters from macrophage-derived foam cells is known to be a key process in limiting plaque stability and progression of atherosclerotic lesions. We have recently demonstrated that regulation of retinoid mediated cholesterol efflux is influenced by liver X receptor (LXR) signaling in mouse macrophages (Manna, P.R. et al., 2015, Biochem. Biophys. Res. Commun., 464:312-317). The data presented in this article evaluate the importance of the steroidogenic acute regulatory protein (StAR) in retinoid mediated macrophage cholesterol efflux. Overexpression of StAR in mouse RAW 264.7 macrophages increased the effects of both all-trans retinoic acid (atRA) and 9-cis RA on cholesterol efflux, suggesting StAR enhances the efficacy of retinoic acid receptor (RAR) and/or retinoid X receptor (RXR) ligands. Additional data revealed that atRA enhances (Bu)2cAMP induced StAR and ATP-binding cassette transporter A1 protein levels. Treatment of macrophages transfected with an LXRE reporter plasmid (pLXREx3-Luc) was found to induce the effects of RAR and RXR analogs on LXR activity. PMID:27081671

  12. Dynamic localization of glucokinase and its regulatory protein in hypothalamic tanycytes.

    Directory of Open Access Journals (Sweden)

    Magdiel Salgado

    Full Text Available Glucokinase (GK, the hexokinase involved in glucose sensing in pancreatic β cells, is also expressed in hypothalamic tanycytes, which cover the ventricular walls of the basal hypothalamus and are implicated in an indirect control of neuronal activity by glucose. Previously, we demonstrated that GK was preferentially localized in tanycyte nuclei in euglycemic rats, which has been reported in hepatocytes and is suggestive of the presence of the GK regulatory protein, GKRP. In the present study, GK intracellular localization in hypothalamic and hepatic tissues of the same rats under several glycemic conditions was compared using confocal microscopy and Western blot analysis. In the hypothalamus, increased GK nuclear localization was observed in hyperglycemic conditions; however, it was primarily localized in the cytoplasm in hepatic tissue under the same conditions. Both GK and GKRP were next cloned from primary cultures of tanycytes. Expression of GK by Escherichia coli revealed a functional cooperative protein with a S0.5 of 10 mM. GKRP, expressed in Saccharomyces cerevisiae, inhibited GK activity in vitro with a Ki 0.2 µM. We also demonstrated increased nuclear reactivity of both GK and GKRP in response to high glucose concentrations in tanycyte cultures. These data were confirmed using Western blot analysis of nuclear extracts. Results indicate that GK undergoes short-term regulation by nuclear compartmentalization. Thus, in tanycytes, GK can act as a molecular switch to arrest cellular responses to increased glucose.

  13. Extracellular superoxide dismutase regulates the expression of small gtpase regulatory proteins GEFs, GAPs, and GDI.

    Directory of Open Access Journals (Sweden)

    Mikko O Laukkanen

    Full Text Available Extracellular superoxide dismutase (SOD3, which catalyzes the dismutation of superoxide anions to hydrogen peroxide at the cell membranes, regulates the cellular growth in a dose-dependent manner. This enzyme induces primary cell proliferation and immortalization at low expression levels whereas it activates cancer barrier signaling through the p53-p21 pathway at high expression levels, causing growth arrest, senescence, and apoptosis. Because previous reports suggested that the SOD3-induced reduction in the rates of cellular growth and migration also occurred in the absence of functional p53 signaling, in the current study we investigated the SOD3-induced growth-suppressive mechanisms in anaplastic thyroid cancer cells. Based on our data, the robust over-expression of SOD3 increased the level of phosphorylation of the EGFR, ERBB2, RYK, ALK, FLT3, and EPHA10 receptor tyrosine kinases with the consequent downstream activation of the SRC, FYN, YES, HCK, and LYN kinases. However, pull-down experiments focusing on the small GTPase RAS, RAC, CDC42, and RHO revealed a reduced level of growth and migration signal transduction, such as the lack of stimulation of the mitogen pathway, in the SOD3 over-expressing cells, which was confirmed by MEK1/2 and ERK1/2 Western blotting analysis. Interestingly, the mRNA expression analyses indicated that SOD3 regulated the expression of guanine nucleotide-exchange factors (RHO GEF16, RAL GEF RGL1, GTPase-activating proteins (ARFGAP ADAP2, RAS GAP RASAL1, RGS4, and a Rho guanine nucleotide-disassociation inhibitor (RHO GDI 2 in a dose dependent manner, thus controlling signaling through the small G protein GTPases. Therefore, our current data may suggest the occurrence of dose-dependent SOD3-driven control of the GTP loading of small G proteins indicating a novel growth regulatory mechanism of this enzyme.

  14. Extracellular superoxide dismutase regulates the expression of small gtpase regulatory proteins GEFs, GAPs, and GDI.

    Science.gov (United States)

    Laukkanen, Mikko O; Cammarota, Francesca; Esposito, Tiziana; Salvatore, Marco; Castellone, Maria D

    2015-01-01

    Extracellular superoxide dismutase (SOD3), which catalyzes the dismutation of superoxide anions to hydrogen peroxide at the cell membranes, regulates the cellular growth in a dose-dependent manner. This enzyme induces primary cell proliferation and immortalization at low expression levels whereas it activates cancer barrier signaling through the p53-p21 pathway at high expression levels, causing growth arrest, senescence, and apoptosis. Because previous reports suggested that the SOD3-induced reduction in the rates of cellular growth and migration also occurred in the absence of functional p53 signaling, in the current study we investigated the SOD3-induced growth-suppressive mechanisms in anaplastic thyroid cancer cells. Based on our data, the robust over-expression of SOD3 increased the level of phosphorylation of the EGFR, ERBB2, RYK, ALK, FLT3, and EPHA10 receptor tyrosine kinases with the consequent downstream activation of the SRC, FYN, YES, HCK, and LYN kinases. However, pull-down experiments focusing on the small GTPase RAS, RAC, CDC42, and RHO revealed a reduced level of growth and migration signal transduction, such as the lack of stimulation of the mitogen pathway, in the SOD3 over-expressing cells, which was confirmed by MEK1/2 and ERK1/2 Western blotting analysis. Interestingly, the mRNA expression analyses indicated that SOD3 regulated the expression of guanine nucleotide-exchange factors (RHO GEF16, RAL GEF RGL1), GTPase-activating proteins (ARFGAP ADAP2, RAS GAP RASAL1, RGS4), and a Rho guanine nucleotide-disassociation inhibitor (RHO GDI 2) in a dose dependent manner, thus controlling signaling through the small G protein GTPases. Therefore, our current data may suggest the occurrence of dose-dependent SOD3-driven control of the GTP loading of small G proteins indicating a novel growth regulatory mechanism of this enzyme. PMID:25751262

  15. Steroidogenic Acute Regulatory Protein (StAR: Evidence of Gonadotropin-Induced Steroidogenesis in Alzheimer Disease

    Directory of Open Access Journals (Sweden)

    Webber Kate M

    2006-10-01

    Full Text Available Abstract Background Alzheimer disease (AD is clinically characterized by progressive memory loss, impairments in behavior, language and visual-spatial skills and ultimately, death. Epidemiological data reporting the predisposition of women to AD has led to a number of lines of evidence suggesting that age-related changes in hormones of the hypothalamic-pituitary-gonadal (HPG axis following reproductive senescence, may contribute to the etiology of AD. Recent studies from our group and others have reported not only increases in circulating gonadotropins, namely luteinizing hormone (LH in individuals with AD compared with control individuals, but also significant elevations of LH in vulnerable neuronal populations in individuals with AD compared to control cases as well as the highest density of gonadotropin receptors in the brain are found within the hippocampus, a region devastated in AD. However, while LH is higher in AD patients, the downstream consequences of this are incompletely understood. To begin to examine this issue, here, we examined the expression levels of steroidogenic acute regulatory (StAR protein, which regulates the first key event in steroidogenesis, namely, the transport of cholesterol into the mitochondria, and is regulated by LH through the cyclic AMP second messenger pathway, in AD and control brain tissue. Results Our data revealed that StAR protein was markedly increased in both the cytoplasm of hippocampal pyramidal neurons as well as in the cytoplasm of other non-neuronal cell types from AD brains when compared with age-matched controls. Importantly, and suggestive of a direct mechanistic link, StAR protein expression in AD brains colocalized with LH receptor expression. Conclusion Therefore, our findings suggest that LH is not only able to bind to its receptor and induce potentially pathogenic signaling in AD, but also that steroidogenic pathways regulated by LH may play a role in AD.

  16. Identification of Functional Regulatory Residues of the β-Lactam Inducible Penicillin Binding Protein in Methicillin-Resistant Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Andreas N. Mbah

    2013-01-01

    Full Text Available Resistance to methicillin by Staphylococcus aureus is a persistent clinical problem worldwide. A mechanism for resistance has been proposed in which methicillin resistant Staphylococcus aureus (MRSA isolates acquired a new protein called β-lactam inducible penicillin binding protein (PBP-2′. The PBP-2′ functions by substituting other penicillin binding proteins which have been inhibited by β-lactam antibiotics. Presently, there is no structural and regulatory information on PBP-2′ protein. We conducted a complete structural and functional regulatory analysis of PBP-2′ protein. Our analysis revealed that the PBP-2′ is very stable with more hydrophilic amino acids expressing antigenic sites. PBP-2′ has three striking regulatory points constituted by first penicillin binding site at Ser25, second penicillin binding site at Ser405, and finally a single metallic ligand binding site at Glu657 which binds to Zn2+ ions. This report highlights structural features of PBP-2′ that can serve as targets for developing new chemotherapeutic agents and conducting site direct mutagenesis experiments.

  17. Expression of steroidogenic acute regulatory protein and its regulation by interferon-gamma in rat corpus luteum

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The steroidogenic acute regulatory protein (StAR) is the key regulatory protein of steroidogenesis. De novo synthesis of StAR protein is required for intramitochondrial translocation of cholesterol to the cytochrome P450 side chain cleavage enzyme which is located on the matrix side of the inner mitochondrial membrane. This is the rate-limiting step of steroid biosynthesis. Using in situ hybridization and immunohistochemistry we studied StAR expression in various stages of the corpora luteal and its regulation by interferon-gamma (IFNγ) in the adult pseudopregnant rat. The results indicated that expression of StAR in the corpora luteal was correlated with progesteron production and IFNγ was capable of inhibiting its expression.

  18. Human Sterol Regulatory Element-Binding Protein 1a Contributes Significantly to Hepatic Lipogenic Gene Expression

    Directory of Open Access Journals (Sweden)

    Andreas Bitter

    2015-01-01

    Full Text Available Background/Aims: Sterol regulatory element-binding protein (SREBP 1, the master regulator of lipogenesis, was shown to be associated with non-alcoholic fatty liver disease, which is attributed to its major isoform SREBP1c. Based on studies in mice, the minor isoform SREBP1a is regarded as negligible for hepatic lipogenesis. This study aims to elucidate the expression and functional role of SREBP1a in human liver. Methods: mRNA expression of both isoforms was quantified in cohorts of human livers and primary human hepatocytes. Hepatocytes were treated with PF-429242 to inhibit the proteolytic activation of SREBP precursor protein. SREBP1a-specifc and pan-SREBP1 knock-down were performed by transfection of respective siRNAs. Lipogenic SREBP-target gene expression was analyzed by real-time RT-PCR. Results: In human liver, SREBP1a accounts for up to half of the total SREBP1 pool. Treatment with PF-429242 indicated SREBP-dependent auto-regulation of SREBP1a, which however was much weaker than of SREBP1c. SREBP1a-specifc knock-down also reduced significantly the expression of SREBP1c and of SREBP-target genes. Regarding most SREBP-target genes, simultaneous knock-down of both isoforms resulted in effects of only similar extent as SREBP1a-specific knock-down. Conclusion: We here showed that SREBP1a is significantly contributing to the human hepatic SREBP1 pool and has a share in human hepatic lipogenic gene expression.

  19. Serotonin transporter protein overexpression and association to Th17 and T regulatory cells in lupoid leishmaniasis.

    Science.gov (United States)

    Mashayekhi Goyonlo, Vahid; Elnour, Husameldin; Nordlind, Klas

    2014-03-01

    The immunopathogenesis of chronic non-healing Old World cutaneous leishmaniasis is challenging. There is a bidirectional communication between the nervous and immune systems, serotonin being an important mediator in this respect. Our aim was to study the role of the serotonin transporter protein (SERT) and its relation to T cell-related immune responses in lupoid leishmaniasis. Paraffin-embedded skin biopsies of 12 cases of lupoid and 12 cases of usual types of cutaneous leishmaniasis were investigated using immunohistochemistry regarding expression of SERT, Th1, Th2, Th17 and T regulatory cell (Treg) markers. SERT as well as Tregs and interleukin (IL)-17 positive cells were more prevalent while IL-5 (Th2) and interferon (IFN)-γ (Th1) expressing cells were less numerous in the lupoid tissue compared to those from the usual type of leishmaniasis. The majority of the SERT(+) cells were also tryptase(+) (mast cells). There was a positive correlation between a higher number of SERT(+) and IL-17(+) cells in the lupoid type, while lower numbers of SERT(+) cells were significantly related to lower percentages of CD25(+) cells in the usual type of leishmaniasis. These results might indicate a role for SERT, Th17 and Tregs in the pathogenesis of lupoid leishmaniasis. PMID:23989888

  20. Cross-phosphorylation of bacterial serine/threonine and tyrosine protein kinases on key regulatory residues

    Directory of Open Access Journals (Sweden)

    Lei eShi

    2014-09-01

    Full Text Available Bacteria possess protein serine/threonine and tyrosine kinases which resemble eukaryal kinases in their capacity to phosphorylate multiple substrates. We hypothesized that the analogy might extend further, and bacterial kinases may also undergo mutual phosphorylation and activation, which is currently considered as a hallmark of eukaryal kinase networks. In order to test this hypothesis, we explored the capacity of all members of four different classes of serine/threonine and tyrosine kinases present in the firmicute model organism Bacillus subtilis to phosphorylate each other in vitro and interact with each other in vivo. The interactomics data suggested a high degree of connectivity among all types of kinases, while phosphorylation assays revealed equally wide-spread cross-phosphorylation events. Our findings suggest that the Hanks-type kinases PrkC, PrkD and YabT exhibit the highest capacity to phosphorylate other B. subtilis kinases, while the BY-kinase PtkA and the two-component-like kinases RsbW and SpoIIAB show the highest propensity to be phosphorylated by other kinases. Analysis of phosphorylated residues on several selected recipient kinases suggests that most cross-phosphorylation events concern key regulatory residues. Therefore, cross-phosphorylation events are very likely to influence the capacity of recipient kinases to phosphorylate substrates downstream in the signal transduction cascade. We therefore conclude that bacterial serine/threonine and tyrosine kinases probably engage in a network-type behavior previously described only in eukaryal cells.

  1. 14-3-3 checkpoint regulatory proteins interact specifically with DNA repair protein human exonuclease 1 (hEXO1) via a semi-conserved motif

    DEFF Research Database (Denmark)

    Andersen, Sofie Dabros; Keijzers, Guido; Rampakakis, Emmanouil;

    2012-01-01

    are regulatory phosphorserine/threonine binding proteins involved in the control of diverse cellular events, including cell cycle checkpoint and apoptosis signaling. hEXO1 is regulated by post-translation Ser/Thr phosphorylation in a yet not fully clarified manner, but evidently three phosphorylation sites...... are specifically induced by replication inhibition leading to protein ubiquitination and degradation. We demonstrate direct and robust interaction between hEXO1 and six of the seven 14-3-3 isoforms in vitro, suggestive of a novel protein interaction network between DNA repair and cell cycle control. Binding...

  2. Redox Modulation of Cellular Signaling and Metabolism Through Reversible Oxidation of Methionine Sensors in Calcium Regulatory Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Bigelow, Diana J.; Squier, Thomas C.

    2005-01-17

    Adaptive responses associated with environmental stressors are critical to cell survival. These involve the modulation of central signaling protein functions through site-specific and enzymatically reversible oxidative modifications of methionines to coordinate cellular metabolism, energy utilization, and calcium signaling. Under conditions when cellular redox and antioxidant defenses are overwhelmed, the selective oxidation of critical methionines within selected protein sensors functions to down-regulate energy metabolism and the further generation of reactive oxygen species (ROS). Mechanistically, these functional changes within protein sensors take advantage of the helix-breaking character of methionine sulfoxide. Thus, depending on either the ecological niche of the organism or the cellular milieu of different organ systems, cellular metabolism can be fine-tuned to maintain optimal function in the face of variable amounts of collateral oxidative damage. The sensitivity of several calcium regulatory proteins to oxidative modification provides cellular sensors that link oxidative stress to cellular response and recovery. Calmodulin (CaM) is one such critical calcium regulatory protein, which is functionally sensitive to methionine oxidation. Helix destabilization resulting from the oxidation of either Met{sup 144} or Met{sup 145} results in the nonproductive association between CaM and target proteins. The ability of oxidized CaM to stabilize its target proteins in an inhibited state with an affinity similar to that of native (unoxidized) CaM permits this central regulatory protein to function as a cellular rheostat that down-regulates energy metabolism in response to oxidative stress. Likewise, oxidation of a methionine within a critical switch region of the regulatory protein phospholamban is expected to destabilize the phosphorylationdependent helix formation necessary for the release of enzyme inhibition, resulting in a down-regulation of the Ca-ATPase in

  3. The complement regulatory protein CD59: insights into attenuation of choroidal neovascularization.

    Science.gov (United States)

    Schnabolk, Gloriane; Tomlinson, Stephen; Rohrer, Bärbel

    2014-01-01

    Complement activation is associated with age-related macular degeneration (AMD), with the retinal pigment epithelium (RPE) being one of the main target tissues. In AMD, disease severity is correlated with the formation of the membrane attack complex (MAC), the terminal step in the complement cascade, as well as diminished RPE expression of CD59, a membrane-bound regulatory protein of MAC formation. This has prompted the search for therapeutic strategies based on MAC inhibition, and soluble forms of CD59 (sCD59) have been investigated in mouse laser-induced choroidal neovascularization, a model for "wet" AMD. Unlike membrane-bound CD59, sCD59 provides relatively poor cell protection from complement, and different strategies to increase sCD59 activity at the cell membrane level have been investigated. These include increasing the circulatory half-life of sCD59 by the addition of an Fc moiety; increasing the half-life of sCD59 in target tissues by modifying CD59 with a (non-specific) membrane-targeting domain; and by locally overexpressing sCD59 via adenoviral vectors. Finally, a different strategy currently under investigation employs complement receptor (CR)2-mediated targeting of CD59 exclusively to membranes under complement attack. CR2 recognizes long-lasting membrane-bound breakdown activation fragments of complement C3. CR2-CD59 may have greater therapeutic potential than other complement inhibitory approaches, since it can be administered either systemically or locally, it will bind specifically to membranes containing activated complement activation fragments, and dosing can be regulated. Hence, this strategy might offer opportunities for site-specific inhibition of complement in diseases with restricted sites of inflammation such as AMD. PMID:24664728

  4. The complement regulatory protein CD59: insights into attenuation of choroidal neovascularization.

    Science.gov (United States)

    Schnabolk, Gloriane; Tomlinson, Stephen; Rohrer, Bärbel

    2014-01-01

    Complement activation is associated with age-related macular degeneration (AMD), with the retinal pigment epithelium (RPE) being one of the main target tissues. In AMD, disease severity is correlated with the formation of the membrane attack complex (MAC), the terminal step in the complement cascade, as well as diminished RPE expression of CD59, a membrane-bound regulatory protein of MAC formation. This has prompted the search for therapeutic strategies based on MAC inhibition, and soluble forms of CD59 (sCD59) have been investigated in mouse laser-induced choroidal neovascularization, a model for "wet" AMD. Unlike membrane-bound CD59, sCD59 provides relatively poor cell protection from complement, and different strategies to increase sCD59 activity at the cell membrane level have been investigated. These include increasing the circulatory half-life of sCD59 by the addition of an Fc moiety; increasing the half-life of sCD59 in target tissues by modifying CD59 with a (non-specific) membrane-targeting domain; and by locally overexpressing sCD59 via adenoviral vectors. Finally, a different strategy currently under investigation employs complement receptor (CR)2-mediated targeting of CD59 exclusively to membranes under complement attack. CR2 recognizes long-lasting membrane-bound breakdown activation fragments of complement C3. CR2-CD59 may have greater therapeutic potential than other complement inhibitory approaches, since it can be administered either systemically or locally, it will bind specifically to membranes containing activated complement activation fragments, and dosing can be regulated. Hence, this strategy might offer opportunities for site-specific inhibition of complement in diseases with restricted sites of inflammation such as AMD.

  5. Involvement of the iron regulatory protein from Eisenia andrei earthworms in the regulation of cellular iron homeostasis.

    Science.gov (United States)

    Procházková, Petra; Škanta, František; Roubalová, Radka; Šilerová, Marcela; Dvořák, Jiří; Bilej, Martin

    2014-01-01

    Iron homeostasis in cells is regulated by iron regulatory proteins (IRPs) that exist in different organisms. IRPs are cytosolic proteins that bind to iron-responsive elements (IREs) of the 5'- or 3'-untranslated regions (UTR) of mRNAs that encode many proteins involved in iron metabolism. In this study, we have cloned and described a new regulatory protein belonging to the family of IRPs from the earthworm Eisenia andrei (EaIRP). The earthworm IRE site in 5'-UTR of ferritin mRNA most likely folds into a secondary structure that differs from the conventional IRE structures of ferritin due to the absence of a typically unpaired cytosine that participates in protein binding. Prepared recombinant EaIRP and proteins from mammalian liver extracts are able to bind both mammalian and Eisenia IRE structures of ferritin mRNA, although the affinity of the rEaIRP/Eisenia IRE structure is rather low. This result suggests the possible contribution of a conventional IRE structure. When IRP is supplemented with a Fe-S cluster, it can function as a cytosolic aconitase. Cellular cytosolic and mitochondrial fractions, as well as recombinant EaIRP, exhibit aconitase activity that can be abolished by the action of oxygen radicals. The highest expression of EaIRP was detected in parts of the digestive tract. We can assume that earthworms may possess an IRE/IRP regulatory network as a potential mechanism for maintaining cellular iron homeostasis, although the aconitase function of EaIRP is most likely more relevant. PMID:25279857

  6. Involvement of the iron regulatory protein from Eisenia andrei earthworms in the regulation of cellular iron homeostasis.

    Directory of Open Access Journals (Sweden)

    Petra Procházková

    Full Text Available Iron homeostasis in cells is regulated by iron regulatory proteins (IRPs that exist in different organisms. IRPs are cytosolic proteins that bind to iron-responsive elements (IREs of the 5'- or 3'-untranslated regions (UTR of mRNAs that encode many proteins involved in iron metabolism. In this study, we have cloned and described a new regulatory protein belonging to the family of IRPs from the earthworm Eisenia andrei (EaIRP. The earthworm IRE site in 5'-UTR of ferritin mRNA most likely folds into a secondary structure that differs from the conventional IRE structures of ferritin due to the absence of a typically unpaired cytosine that participates in protein binding. Prepared recombinant EaIRP and proteins from mammalian liver extracts are able to bind both mammalian and Eisenia IRE structures of ferritin mRNA, although the affinity of the rEaIRP/Eisenia IRE structure is rather low. This result suggests the possible contribution of a conventional IRE structure. When IRP is supplemented with a Fe-S cluster, it can function as a cytosolic aconitase. Cellular cytosolic and mitochondrial fractions, as well as recombinant EaIRP, exhibit aconitase activity that can be abolished by the action of oxygen radicals. The highest expression of EaIRP was detected in parts of the digestive tract. We can assume that earthworms may possess an IRE/IRP regulatory network as a potential mechanism for maintaining cellular iron homeostasis, although the aconitase function of EaIRP is most likely more relevant.

  7. The regulatory beta-subunit of protein kinase CK2 regulates cell-cycle progression at the onset of mitosis

    DEFF Research Database (Denmark)

    Yde, C W; Olsen, B B; Meek, D;

    2008-01-01

    Cell-cycle transition from the G(2) phase into mitosis is regulated by the cyclin-dependent protein kinase 1 (CDK1) in complex with cyclin B. CDK1 activity is controlled by both inhibitory phosphorylation, catalysed by the Myt1 and Wee1 kinases, and activating dephosphorylation, mediated by the CDC......25 dual-specificity phosphatase family members. In somatic cells, Wee1 is downregulated by phosphorylation and ubiquitin-mediated degradation to ensure rapid activation of CDK1 at the beginning of M phase. Here, we show that downregulation of the regulatory beta-subunit of protein kinase CK2 by RNA...

  8. Unusual Heme Binding in the Bacterial Iron Response Regulator Protein (Irr): Spectral Characterization of Heme Binding to Heme Regulatory Motif

    OpenAIRE

    Ishikawa, Haruto; Nakagaki, Megumi; Bamba, Ai; Uchida, Takeshi; Hori, Hiroshi; O'Brian, Mark R.; Iwai, Kazuhiro; Ishimori, Koichiro

    2011-01-01

    We characterized heme binding in the bacterial iron response regulator (Irr) protein, which is a simple heme-regulated protein having a single “heme-regulatory motif”, HRM, and plays a key role in the iron homeostasis of a nitrogen fixing bacterium. The heme titration to wild-type and mutant Irr clearly showed that Irr has two heme binding sites: one of the heme binding sites is in the HRM, where 29Cys is the axial ligand, and the other one, the secondary heme binding site, is located outside...

  9. Lentivirus-Mediated Short-Hairpin RNA Targeting Protein Phosphatase 4 Regulatory Subunit 1 Inhibits Growth in Breast Cancer

    OpenAIRE

    Qi, Yuying; Hu, Tinghui; Li, Kai; Ye, Renqing; Ye, Zuodong

    2015-01-01

    Purpose Protein phosphatase 4 regulatory subunit 1 (PP4R1), as an interaction partner of the catalytic serine/threonine-protein phosphatase 4 catalytic subunit has been shown to involve in cellular processes and nuclear factor κB signaling. However, the functions of PP4R1 in human breast cancers remain unclear. This study is designed to explore the effect of PP4R1 knockdown on the biological characteristics of breast cancer cells. Methods A lentivirus-mediated short hairpin RNA (shRNA) was de...

  10. CTL Responses to Regulatory Proteins Tat and Rev in HIV-1 B'/C Virus-Infected Individuals

    Institute of Scientific and Technical Information of China (English)

    MING-MING JIA; KUN-XUE HONG; JIAN-PING CHEN; HONG-WEI LIU; SHA LIU; XIAO-QING ZHANG; HONG-JING ZHAO; YI-MING SHAO

    2008-01-01

    To characterize HIV-1 specific CTL responses to regulatory proteins Tat and Rev in HIV-B'/C vires-infected ART-naive individuals. Methods HIV-1-specific CTL responses were analyzed by IFN-γ ELISPOT assay using overlapping peptides spanning the consensus sequences of HIV-1 clade C Tat and Rev proteins. Statistical analysis and graphical presentation were performed using SIGMAPLOT 10.0 and SIGMASTAT 3.5. For samples with a positive response, the magnitude of CTL responses was compared between HIV-1 C proteins by Wilcoxon rank sum test, and the significance threshold was P<0.05. Results Tat and Rev were frequently recognized, with 23% and 52% of the tested individuals having detectable responses to these proteins, respectively. Several immunodominant regions were detected in Rev. No significant correlation was observed between the magnitude and breadth of CTL responses to regulatory proteins and the control of virus replication in this study. Conclusion Tat and Rev can serve as targets for HIV-1-specific CTL, and several immunodominant regions are detectable in Rev. Further characterization of epitopes and their role in virus control may shed light on pathogenesis of HIV-1 natural infection and also be useful for the design and testing of candidate vaccines.

  11. Identifying Functional Mechanisms of Gene and Protein Regulatory Networks in Response to a Broader Range of Environmental Stresses

    Directory of Open Access Journals (Sweden)

    Cheng-Wei Li

    2010-01-01

    Full Text Available Cellular responses to sudden environmental stresses or physiological changes provide living organisms with the opportunity for final survival and further development. Therefore, it is an important topic to understand protective mechanisms against environmental stresses from the viewpoint of gene and protein networks. We propose two coupled nonlinear stochastic dynamic models to reconstruct stress-activated gene and protein regulatory networks via microarray data in response to environmental stresses. According to the reconstructed gene/protein networks, some possible mutual interactions, feedforward and feedback loops are found for accelerating response and filtering noises in these signaling pathways. A bow-tie core network is also identified to coordinate mutual interactions and feedforward loops, feedback inhibitions, feedback activations, and cross talks to cope efficiently with a broader range of environmental stresses with limited proteins and pathways.

  12. Evolving New Skeletal Traits by cis-Regulatory Changes in Bone Morphogenetic Proteins.

    Science.gov (United States)

    Indjeian, Vahan B; Kingman, Garrett A; Jones, Felicity C; Guenther, Catherine A; Grimwood, Jane; Schmutz, Jeremy; Myers, Richard M; Kingsley, David M

    2016-01-14

    Changes in bone size and shape are defining features of many vertebrates. Here we use genetic crosses and comparative genomics to identify specific regulatory DNA alterations controlling skeletal evolution. Armor bone-size differences in sticklebacks map to a major effect locus overlapping BMP family member GDF6. Freshwater fish express more GDF6 due in part to a transposon insertion, and transgenic overexpression of GDF6 phenocopies evolutionary changes in armor-plate size. The human GDF6 locus also has undergone distinctive regulatory evolution, including complete loss of an enhancer that is otherwise highly conserved between chimps and other mammals. Functional tests show that the ancestral enhancer drives expression in hindlimbs but not forelimbs, in locations that have been specifically modified during the human transition to bipedalism. Both gain and loss of regulatory elements can localize BMP changes to specific anatomical locations, providing a flexible regulatory basis for evolving species-specific changes in skeletal form. PMID:26774823

  13. Inability of a Fusion Protein of IL-2 and Diphtheria Toxin (Denileukin Diftitox, DAB389IL-2, ONTAK) to Eliminate Regulatory T Lymphocytes in Patients With Melanoma

    OpenAIRE

    Attia, Peter; Maker, Ajay V; Haworth, Leah R.; Rogers-Freezer, Linda; Rosenberg, Steven A.

    2005-01-01

    Elimination of regulatory T lymphocytes may provide a way to break self-tolerance and unleash the anti-tumor properties of circulating lymphocytes. The use of fusion proteins, which link cytotoxic molecules to receptor targets, provides one approach to this problem. This study examined the ability of a fusion protein of interleukin-2 (IL-2) and diphtheria toxin (Denileukin Diftitox, DAB389IL-2, ONTAK) to eliminate regulatory T lymphocytes based on their expression of high-affinity IL-2 recept...

  14. Structure-function analysis of the beta regulatory subunit of protein kinase CK2 by targeting embryonic stem cell.

    Science.gov (United States)

    Ziercher, Léa; Filhol, Odile; Laudet, Béatrice; Prudent, Renaud; Cochet, Claude; Buchou, Thierry

    2011-10-01

    Programs that govern stem cell maintenance and pluripotency are dependent on extracellular factors and of intrinsic cell modulators. Embryonic stem (ES) cells with a specific depletion of the gene encoding the regulatory subunit of protein kinase CK2 (CK2β) revealed a viability defect. However, analysis of CK2β functions along the neural lineage established CK2β as a positive regulator for neural stem/progenitor cell (NSC) proliferation and multipotency. By using an in vitro genetic conditional approach, we demonstrate in this work that specific domains of CK2β involved in the regulatory function towards CK2 catalytic subunits are crucial structural determinants for ES cell homeostasis. PMID:21861102

  15. Stress-induced Start Codon Fidelity Regulates Arsenite-inducible Regulatory Particle-associated Protein (AIRAP) Translation*

    Science.gov (United States)

    Zach, Lolita; Braunstein, Ilana; Stanhill, Ariel

    2014-01-01

    Initial steps in protein synthesis are highly regulated processes as they define the reading frame of the translation machinery. Eukaryotic translation initiation is a process facilitated by numerous factors (eIFs), aimed to form a “scanning” mechanism toward the initiation codon. Translation initiation of the main open reading frame (ORF) in an mRNA transcript has been reported to be regulated by upstream open reading frames (uORFs) in a manner of re-initiation. This mode of regulation is governed by the phosphorylation status of eIF2α and controlled by cellular stresses. Another mode of translational initiation regulation is leaky scanning, and this regulatory process has not been extensively studied. We have identified arsenite-inducible regulatory particle-associated protein (AIRAP) transcript to be translationally induced during arsenite stress conditions. AIRAP transcript contains a single uORF in a poor-kozak context. AIRAP translation induction is governed by means of leaky scanning and not re-initiation. This induction of AIRAP is solely dependent on eIF1 and the uORF kozak context. We show that eIF1 is phosphorylated under specific conditions that induce protein misfolding and have biochemically characterized this site of phosphorylation. Our data indicate that leaky scanning like re-initiation is responsive to stress conditions and that leaky scanning can induce ORF translation by bypassing poor kozak context of a single uORF transcript. PMID:24898249

  16. The Cytoskeletal Regulatory Scaffold Protein GIT2 Modulates Mesenchymal Stem Cell Differentiation and Osteoblastogenesis

    OpenAIRE

    Wang, Xiaojuan; Liao, Shaoxi; Nelson, Erik R.; Schmalzigaug, Robert; Spurney, Robert F.; Guilak, Farshid; Premont, Richard T.; Gesty-Palmer, Diane

    2012-01-01

    G protein-coupled receptor kinase interacting protein 2 (GIT2) is a signaling scaffold protein involved in the regulation of cytoskeletal structure, membrane trafficking, and G protein-coupled receptor internalization. Since dynamic cytoskeletal reorganization plays key roles both in osteoblast differentiation and in the maintenance of osteoclast polarity during bone resorption, we hypothesized that skeletal physiology would be altered in GIT2−/− mice. We found that adult GIT2−/− mice have de...

  17. The two positively acting regulatory proteins PHO2 and PHO4 physically interact with PHO5 upstream activation regions.

    OpenAIRE

    Vogel, K.; Hörz, W; Hinnen, A

    1989-01-01

    The repressible acid phosphatase gene PHO5 of Saccharomyces cerevisiae requires the two positively acting regulatory proteins PHO2 and PHO4 for expression. pho2 or pho4 mutants are not able to derepress the PHO5 gene under low-Pi conditions. Here we show that both PHO2 and PHO4 bind specifically to the PHO5 promoter in vitro. Gel retardation assays using promoter deletions revealed two regions involved in PHO4 binding. Further characterization by DNase I footprinting showed two protected area...

  18. Novel RNA-binding properties of the MTG chromatin regulatory proteins

    NARCIS (Netherlands)

    S. Rossetti (Stefano); L. van Unen (Leontine); N. Sacchi; A.T. Hoogeveen (Andre)

    2008-01-01

    textabstractBackground: The myeloid translocation gene (MTG) proteins are non-DNA-binding transcriptional regulators capable of interacting with chromatin modifying proteins. As a consequence of leukemia-associated chromosomal translocations, two of the MTG proteins, MTG8 and MTG16, are fused to the

  19. Comparative genomic analysis of two-component regulatory proteins in Pseudomonas syringae

    DEFF Research Database (Denmark)

    Lavin, J.L.; Kiil, Kristoffer; Resano, O.;

    2007-01-01

    1448A were found to contain a large number of genes encoding TCS proteins, and a core of complete TCS proteins were shared between these genomes: 30 putative TCS clusters, 11 orphan HKs, 33 orphan RRs, and 16 hybrid HKs. A close analysis of the distribution of genes encoding TCS proteins revealed...

  20. Cell Cycle and Apoptosis Regulatory Protein (CARP)-1 is Expressed inOsteoblasts and Regulated by PTH

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Sonali; Mahalingam, Chandrika D.; Das, Varsha [Department of Internal Medicine/Endocrinology, Wayne State University School of Medicine, Detroit, MI 48201 (United States); Jamal, Shazia [Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201 (United States); Levi, Edi [Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201 (United States); Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201 (United States); Rishi, Arun K. [Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201 (United States); Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201 (United States); VA Medical Center, Wayne State University School of Medicine, Detroit, MI 48201 (United States); Datta, Nabanita S., E-mail: ndatta@med.wayne.edu [Department of Internal Medicine/Endocrinology, Wayne State University School of Medicine, Detroit, MI 48201 (United States); Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201 (United States); Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201 (United States)

    2013-07-12

    Highlights: •CARP-1 is identified for the first time in bone cells. •PTH downregulates CARP-1 expression in differentiated osteoblasts. •PTH displaces CARP-1 from nucleus to the cytoplasm in differentiated osteoblasts. •Downregulation of CARP-1 by PTH involves PKA, PKC and P-p38 MAPK pathways. -- Abstract: Bone mass is dependent on osteoblast proliferation, differentiation and life-span of osteoblasts. Parathyroid hormone (PTH) controls osteoblast cell cycle regulatory proteins and suppresses mature osteoblasts apoptosis. Intermittent administration of PTH increases bone mass but the mechanism of action are complex and incompletely understood. Cell Cycle and Apoptosis Regulatory Protein (CARP)-1 (aka CCAR1) is a novel transducer of signaling by diverse agents including cell growth and differentiation factors. To gain further insight into the molecular mechanism, we investigated involvement of CARP-1 in PTH signaling in osteoblasts. Immunostaining studies revealed presence of CARP-1 in osteoblasts and osteocytes, while a minimal to absent levels were noted in the chondrocytes of femora from 10 to 12-week old mice. Treatment of 7-day differentiated MC3T3-E1 clone-4 (MC-4) mouse osteoblastic cells and primary calvarial osteoblasts with PTH for 30 min to 5 h followed by Western blot analysis showed 2- to 3-fold down-regulation of CARP-1 protein expression in a dose- and time-dependent manner compared to the respective vehicle treated control cells. H-89, a Protein Kinase A (PKA) inhibitor, suppressed PTH action on CARP-1 protein expression indicating PKA-dependent mechanism. PMA, a Protein Kinase C (PKC) agonist, mimicked PTH action, and the PKC inhibitor, GF109203X, partially blocked PTH-dependent downregulation of CARP-1, implying involvement of PKC. U0126, a Mitogen-Activated Protein Kinase (MAPK) Kinase (MEK) inhibitor, failed to interfere with CARP-1 suppression by PTH. In contrast, SB203580, p38 inhibitor, attenuated PTH down-regulation of CARP-1

  1. Expression of protein kinase A regulatory subunits in benign and malignant human thyroid tissues: A systematic review.

    Science.gov (United States)

    Del Gobbo, Alessandro; Peverelli, Erika; Treppiedi, Donatella; Lania, Andrea; Mantovani, Giovanna; Ferrero, Stefano

    2016-08-01

    In this review, we discuss the molecular mechanisms and prognostic implications of the protein kinase A (PKA) signaling pathway in human tumors, with special emphasis on the malignant thyroid. The PKA signaling pathway is differentially activated by the expression of regulatory subunits 1 (R1) and 2 (R2), whose levels change during development, differentiation, and neoplastic transformation. Following the identification of gene mutations within the PKA regulatory subunit R1A (PRKAR1A) that cause Carney complex-associated neoplasms, several investigators have studied PRKAR1A expression in sporadic thyroid tumors. The PKA regulatory subunit R2B (PRKAR2B) is highly expressed in benign, as well as in malignant differentiated and undifferentiated lesions. PRKAR1A is highly expressed in follicular adenomas and malignant lesions with a statistically significant gradient between benign and malignant tumors; however, it is not expressed in hyperplastic nodules. Although the importance of PKA in human malignancy outcomes is not completely understood, PRKAR1A expression correlates with tumor dimension in malignant lesions. Additional studies are needed to determine whether a relationship exists between PKA subunit expression and clinical outcomes, particularly in undifferentiated tumors. In conclusion, the R1A subunit might be a good molecular candidate for the targeted treatment of malignant thyroid tumors. PMID:27321957

  2. Prostasin and its regulatory proteins in human placentas from pregnant women with preeclampsia and healthy pregnant controls

    DEFF Research Database (Denmark)

    Frederiksen-Møller, Britta; Jørgensen, Jan Stener; Vogel, Lotte Katrine;

    2015-01-01

    OBJECTIVES: Serine proteases are enzymes involved in digestion, immune response, blood coagulation and reproduction. The serine protease prostasin (PRSS8, CAP1) and its regulatory associated proteins (Matriptase, Hepatocyt growth factor activator inhibitors (HAIs), and Nexin-1) are essential...... for normal placental development in mice. Prostasin is regulated by aldosterone in the kidney and may activate the epithelial sodium channel (ENaC). Preeclampsia is characterized by disturbed placentation, suppression of aldosterone and avid renal sodium retention with hypertension. It was hypothesized......+ for protein on urine dipstick). Blood and urine samples were obtained in relation to delivery and placental biopsies were taken immediately after delivery (control = 39 and preeclampsia 40 weeks). RESULTS: Women with preeclampsia displayed lower levels of aldosterone in plasma (p=0.0475) and in spot urine...

  3. Using BAC transgenesis in zebrafish to identify regulatory sequences of the amyloid precursor protein gene in humans

    Directory of Open Access Journals (Sweden)

    Shakes Leighcraft A

    2012-09-01

    Full Text Available Abstract Background Non-coding DNA in and around the human Amyloid Precursor Protein (APP gene that is central to Alzheimer’s disease (AD shares little sequence similarity with that of appb in zebrafish. Identifying DNA domains regulating expression of the gene in such situations becomes a challenge. Taking advantage of the zebrafish system that allows rapid functional analyses of gene regulatory sequences, we previously showed that two discontinuous DNA domains in zebrafish appb are important for expression of the gene in neurons: an enhancer in intron 1 and sequences 28–31 kb upstream of the gene. Here we identify the putative transcription factor binding sites responsible for this distal cis-acting regulation, and use that information to identify a regulatory region of the human APP gene. Results Functional analyses of intron 1 enhancer mutations in enhancer-trap BACs expressed as transgenes in zebrafish identified putative binding sites of two known transcription factor proteins, E4BP4/ NFIL3 and Forkhead, to be required for expression of appb. A cluster of three E4BP4 sites at −31 kb is also shown to be essential for neuron-specific expression, suggesting that the dependence of expression on upstream sequences is mediated by these E4BP4 sites. E4BP4/ NFIL3 and XFD1 sites in the intron enhancer and E4BP4/ NFIL3 sites at −31 kb specifically and efficiently bind the corresponding zebrafish proteins in vitro. These sites are statistically over-represented in both the zebrafish appb and the human APP genes, although their locations are different. Remarkably, a cluster of four E4BP4 sites in intron 4 of human APP exists in actively transcribing chromatin in a human neuroblastoma cell-line, SHSY5Y, expressing APP as shown using chromatin immunoprecipitation (ChIP experiments. Thus although the two genes share little sequence conservation, they appear to share the same regulatory logic and are regulated by a similar set of transcription

  4. Novel RNA-binding properties of the MTG chromatin regulatory proteins

    Directory of Open Access Journals (Sweden)

    Sacchi Nicoletta

    2008-10-01

    Full Text Available Abstract Background The myeloid translocation gene (MTG proteins are non-DNA-binding transcriptional regulators capable of interacting with chromatin modifying proteins. As a consequence of leukemia-associated chromosomal translocations, two of the MTG proteins, MTG8 and MTG16, are fused to the DNA-binding domain of AML1, a transcriptional activator crucial for hematopoiesis. The AML1-MTG fusion proteins, as the wild type MTGs, display four conserved homology regions (NHR1-4 related to the Drosophila nervy protein. Structural protein analyses led us to test the hypothesis that specific MTG domains may mediate RNA binding. Results By using an RNA-binding assay based on synthetic RNA homopolymers and a panel of MTG deletion mutants, here we show that all the MTG proteins can bind RNA. The RNA-binding properties can be traced to two regions: the Zinc finger domains in the NHR4, which mediate Zinc-dependent RNA binding, and a novel short basic region (SBR upstream of the NHR2, which mediates Zinc-independent RNA binding. The two AML1-MTG fusion proteins, retaining both the Zinc fingers domains and the SBR, also display RNA-binding properties. Conclusion Evidence has been accumulating that RNA plays a role in transcriptional control. Both wild type MTGs and chimeric AML1-MTG proteins display in vitro RNA-binding properties, thus opening new perspectives on the possible involvement of an RNA component in MTG-mediated chromatin regulation.

  5. A role for HOX13 proteins in the regulatory switch between TADs at the HoxD locus.

    Science.gov (United States)

    Beccari, Leonardo; Yakushiji-Kaminatsui, Nayuta; Woltering, Joost M; Necsulea, Anamaria; Lonfat, Nicolas; Rodríguez-Carballo, Eddie; Mascrez, Benedicte; Yamamoto, Shiori; Kuroiwa, Atsushi; Duboule, Denis

    2016-05-15

    During vertebrate limb development, Hoxd genes are regulated following a bimodal strategy involving two topologically associating domains (TADs) located on either side of the gene cluster. These regulatory landscapes alternatively control different subsets of Hoxd targets, first into the arm and subsequently into the digits. We studied the transition between these two global regulations, a switch that correlates with the positioning of the wrist, which articulates these two main limb segments. We show that the HOX13 proteins themselves help switch off the telomeric TAD, likely through a global repressive mechanism. At the same time, they directly interact with distal enhancers to sustain the activity of the centromeric TAD, thus explaining both the sequential and exclusive operating processes of these two regulatory domains. We propose a model in which the activation of Hox13 gene expression in distal limb cells both interrupts the proximal Hox gene regulation and re-enforces the distal regulation. In the absence of HOX13 proteins, a proximal limb structure grows without any sign of wrist articulation, likely related to an ancestral fish-like condition. PMID:27198226

  6. Sterol Regulatory Element Binding Protein (Srb1) Is Required for Hypoxic Adaptation and Virulence in the Dimorphic Fungus Histoplasma capsulatum

    Science.gov (United States)

    DuBois, Juwen C.; Smulian, A. George

    2016-01-01

    The Histoplasma capsulatum sterol regulatory element binding protein (SREBP), Srb1 is a member of the basic helix-loop-helix (bHLH), leucine zipper DNA binding protein family of transcription factors that possess a unique tyrosine (Y) residue instead of an arginine (R) residue in the bHLH region. We have determined that Srb1 message levels increase in a time dependent manner during growth under oxygen deprivation (hypoxia). To further understand the role of Srb1 during infection and hypoxia, we silenced the gene encoding Srb1 using RNA interference (RNAi); characterized the resulting phenotype, determined its response to hypoxia, and its ability to cause disease within an infected host. Silencing of Srb1 resulted in a strain of H. capsulatum that is incapable of surviving in vitro hypoxia. We found that without complete Srb1 expression, H. capsulatum is killed by murine macrophages and avirulent in mice given a lethal dose of yeasts. Additionally, silencing Srb1 inhibited the hypoxic upregulation of other known H. capsulatum hypoxia-responsive genes (HRG), and genes that encode ergosterol biosynthetic enzymes. Consistent with these regulatory functions, Srb1 silenced H. capsulatum cells were hypersensitive to the antifungal azole drug itraconazole. These data support the theory that the H. capsulatum SREBP is critical for hypoxic adaptation and is required for H. capsulatum virulence. PMID:27711233

  7. A novel processing system of sterol regulatory element-binding protein-1c regulated by polyunsaturated fatty acid.

    Science.gov (United States)

    Nakakuki, Masanori; Kawano, Hiroyuki; Notsu, Tatsuto; Imada, Kazunori; Mizuguchi, Kiyoshi; Shimano, Hitoshi

    2014-05-01

    The proteolytic cascade is the key step in transactivation of sterol regulatory element-binding proteins (SREBPs), a transcriptional factor of lipid synthesis. Proteolysis of SREBP-2 is strictly regulated by sterols, but that of SREBP-1c was not strongly sterol-regulated, but inhibited by polyunsaturated fatty acids (PUFAs). In this study, the proteolytic processing of SREBP-1 and -2 was examined by transfection studies of cDNA-encoding mutants in which all the known cleavage sites were disrupted. In cultured cells, sterol-regulated SREBP-2 processing was completely eliminated by mutation of cleavage sites. In contrast, the corresponding SREBP-1c mutants as well as wild type exhibited large amounts of cleaved products in the nuclear extracts from culture cells and murine liver in vivo. The nuclear form of the mutant SREBP-1c was induced by delipidated condition and suppressed by eicosapentaenoic acid, an n-3 PUFA, but not by sterols. This novel processing mechanism was affected by neither SREBP cleavage-activating protein (SCAP) nor insulin-induced gene (Insig)-1, unlike SREBP-2, but abolished by a serine protease inhibitor. Through analysis of deletion mutant, a site-2 protease recognition sequence (DRSR) was identified to be involved in this novel processing. These findings suggest that SREBP-1c cleavage could be subjected to a novel PUFA-regulated cleavage system in addition to the sterol-regulatory SCAP/Insig system.

  8. Analysis of Two Putative Candida albicans Phosphopantothenoylcysteine Decarboxylase / Protein Phosphatase Z Regulatory Subunits Reveals an Unexpected Distribution of Functional Roles

    Science.gov (United States)

    Petrényi, Katalin; Molero, Cristina; Kónya, Zoltán; Erdődi, Ferenc; Ariño, Joaquin; Dombrádi, Viktor

    2016-01-01

    Protein phosphatase Z (Ppz) is a fungus specific enzyme that regulates cell wall integrity, cation homeostasis and oxidative stress response. Work on Saccharomyces cerevisiae has shown that the enzyme is inhibited by Hal3/Vhs3 moonlighting proteins that together with Cab3 constitute the essential phosphopantothenoylcysteine decarboxylase (PPCDC) enzyme. In Candida albicans CaPpz1 is also involved in the morphological changes and infectiveness of this opportunistic human pathogen. To reveal the CaPpz1 regulatory context we searched the C. albicans database and identified two genes that, based on the structure of their S. cerevisiae counterparts, were termed CaHal3 and CaCab3. By pull down analysis and phosphatase assays we demonstrated that both of the bacterially expressed recombinant proteins were able to bind and inhibit CaPpz1 as well as its C-terminal catalytic domain (CaPpz1-Cter) with comparable efficiency. The binding and inhibition were always more pronounced with CaPpz1-Cter, indicating a protective effect against inhibition by the N-terminal domain in the full length protein. The functions of the C. albicans proteins were tested by their overexpression in S. cerevisiae. Contrary to expectations we found that only CaCab3 and not CaHal3 rescued the phenotypic traits that are related to phosphatase inhibition by ScHal3, such as tolerance to LiCl or hygromycin B, requirement for external K+ concentrations, or growth in a MAP kinase deficient slt2 background. On the other hand, both of the Candida proteins turned out to be essential PPCDC components and behaved as their S. cerevisiae counterparts: expression of CaCab3 and CaHal3 rescued the cab3 and hal3 vhs3 S. cerevisiae mutations, respectively. Thus, both CaHal3 and CaCab3 retained the PPCDC related functions and have the potential for CaPpz1 inhibition in vitro. The fact that only CaCab3 exhibits its phosphatase regulatory potential in vivo suggests that in C. albicans CaCab3, but not CaHal3, acts as a

  9. Detection of hCG Responsive Expression of the Steroidogenic Acute Regulatory Protein in Mouse Leydig Cells

    Directory of Open Access Journals (Sweden)

    Manna Pulak R.

    2004-01-01

    Full Text Available The steroidogenic acute regulatory (StAR protein, a novel mitochondrial protein, is involved in the regulation of steroid hormone biosynthesis through its mediation of the intramitochondrial transport of the steroid substrate, cholesterol, to the cytochrome P450 cholesterol side chain cleavage (P450scc enzyme. The expression of StAR protein is regulated by cAMP-dependent signaling in steroidogenic cells. During the course of our studies in mouse Leydig cells, we employ several methods for studying the regulation of StAR protein expression by human chorionic gonadotropin (hCG. A sensitive quantitative reverse transcription and polymerase chain reaction (RT-PCR was utilized for determining StAR mRNA expression. Stimulation of mLTC-1 mouse Leydig tumor cells with hCG resulted in the coordinate regulation of StAR mRNA expression and progesterone accumulation in a time-response manner. The validity and accuracy of quantitative RT-PCR results in mLTC-1 cells were verified by a competitive PCR approach and were further confirmed in primary cultures of isolated mouse Leydig cells. Immunoblotting studies demonstrated an increase in the levels of the StAR protein in a concentration dependent manner following hCG stimulation in mLTC-1 cells. Northern hybridization analysis revealed three StAR transcripts, all of which were of sufficient size to encode functional StAR protein, and which were coordinately expressed in response to hCG. Collectively, the experimental approaches utilized in the present investigation allow for the demonstration and characterization of hCG mediated regulation of StAR mRNA and StAR protein expression in mouse Leydig cells.

  10. Cytoplasmic dynein and its regulatory proteins in Golgi pathology in nervous system disorders

    NARCIS (Netherlands)

    D. Jaarsma (Dick); C.C. Hoogenraad (Casper)

    2015-01-01

    textabstractThe Golgi apparatus is a dynamic organelle involved in processing and sorting of lipids and proteins. In neurons, the Golgi apparatus is important for the development of axons and dendrites and maintenance of their highly complex polarized morphology. The motor protein complex cytoplasmi

  11. Cytoplasmic dynein and its regulatory proteins in Golgi pathology in nervous system disorders

    NARCIS (Netherlands)

    Jaarsma, Dick; Hoogenraad, Casper C

    2015-01-01

    The Golgi apparatus is a dynamic organelle involved in processing and sorting of lipids and proteins. In neurons, the Golgi apparatus is important for the development of axons and dendrites and maintenance of their highly complex polarized morphology. The motor protein complex cytoplasmic dynein has

  12. Methyl phosphotriesters in alkylated DNA are repaired by the Ada regulatory protein of E. coli.

    OpenAIRE

    McCarthy, T.V.; Lindahl, T

    1985-01-01

    The E. coli ada+ gene product that controls the adaptive response to alkylating agents has been purified to apparent homogeneity using an overproducing expression vector system. This 39 kDa protein repairs 0(6)-methylguanine and 0(4)-methylthymine residues in alkylated DNA by transfer of the methyl group from the base to a cysteine residue in the protein itself. The Ada protein also corrects one of the stereoisomers of methyl phosphotriesters in DNA by the same mechanism, while the other isom...

  13. The mitochondrial PPR protein LOVASTATIN INSENSITIVE 1 plays regulatory roles in cytosolic and plastidial isoprenoid biosynthesis through RNA editing.

    Science.gov (United States)

    Tang, Jianwei; Kobayashi, Keiko; Suzuki, Masashi; Matsumoto, Shogo; Muranaka, Toshiya

    2010-02-01

    Unlike animals, plants synthesize isoprenoids via two pathways, the cytosolic mevalonate (MVA) pathway and the plastidial 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway. Little information is known about the mechanisms that regulate these complex biosynthetic networks over multiple organelles. To understand such regulatory mechanisms of the biosynthesis of isoprenoids in plants, we previously characterized the Arabidopsis mutant, lovastatin insensitive 1 (loi1), which is resistant to lovastatin and clomazone, specific inhibitors of the MVA and MEP pathways, respectively. LOI1 encodes a pentatricopeptide repeat (PPR) protein localized in mitochondria that is thought to have RNA binding ability and function in post-transcriptional regulation of mitochondrial gene expression. LOI1 belongs to the DYW subclass of PPR proteins, which is hypothesized to be correlated with RNA editing. As a result of analysis of RNA editing of mitochondrial genes in loi1, a defect in RNA editing of three genes, nad4, ccb203 and cox3, was identified in loi1. These genes are related to the respiratory chain. Wild type (WT) treated with some respiration inhibitors mimicked the loi1 phenotype. Interestingly, HMG-CoA reductase activity of WT treated with lovastatin combined with antimycin A, an inhibitor of complex III in the respiratory chain, was higher than that of WT treated with only lovastatin, despite the lack of alteration of transcript or protein levels of HMGR. These results suggest that HMGR enzyme activity is regulated through the respiratory cytochrome pathway. Although various mechanisms exist for isoprenoid biosynthesis, our studies demonstrate the novel possibility that mitochondrial respiration plays potentially regulatory roles in isoprenoid biosynthesis.

  14. Crystallographic characterization of a multidomain histidine protein kinase from an essential two-component regulatory system

    OpenAIRE

    Zhao, Haiyan; Tang, Liang

    2009-01-01

    The multidomain cytoplasmic portion of the histidine protein kinase from an essential two-component signal transduction system has been crystallized and X-ray data have been collected to 2.8 Å resolution.

  15. Identification of a novel Leucine-rich repeat protein and candidate PP1 regulatory subunit expressed in developing spermatids

    Directory of Open Access Journals (Sweden)

    Sperry Ann O

    2008-01-01

    . TLRR is homologous to a class of regulatory subunits for PP1, a central phosphatase in the reversible phosphorylation of proteins that is key to modulation of many intracellular processes. TLRR may serve to target this important signaling molecule near the nucleus of developing spermatids in order to control the cellular rearrangements of spermiogenesis.

  16. Quaternary structure changes in a second Per-Arnt-Sim domain mediate intramolecular redox signal relay in the NifL regulatory protein

    OpenAIRE

    Slavny, Peter; Little, Richard; Salinas Berná, Paloma; Clarke, Thomas A.; Dixon, Ray

    2009-01-01

    Per-Arnt-Sim (PAS) domains play a critical role in signal transduction in multidomain proteins by sensing diverse environmental signals and regulating the activity of output domains. Multiple PAS domains are often found within a single protein. The NifL regulatory protein from Azotobacter vinelandii contains tandem PAS domains, the most N-terminal of which, PAS1, contains a FAD cofactor and is responsible for redox sensing, whereas the second PAS domain, PAS2, has no apparent cofactor and its...

  17. Comparative genomic analysis of two-component regulatory proteins in Pseudomonas syringae

    Directory of Open Access Journals (Sweden)

    Ussery David W

    2007-10-01

    Full Text Available Abstract Background Pseudomonas syringae is a widespread bacterial plant pathogen, and strains of P. syringae may be assigned to different pathovars based on host specificity among different plant species. The genomes of P. syringae pv. syringae (Psy B728a, pv. tomato (Pto DC3000 and pv. phaseolicola (Pph 1448A have been recently sequenced providing a major resource for comparative genomic analysis. A mechanism commonly found in bacteria for signal transduction is the two-component system (TCS, which typically consists of a sensor histidine kinase (HK and a response regulator (RR. P. syringae requires a complex array of TCS proteins to cope with diverse plant hosts, host responses, and environmental conditions. Results Based on the genomic data, pattern searches with Hidden Markov Model (HMM profiles have been used to identify putative HKs and RRs. The genomes of Psy B728a, Pto DC3000 and Pph 1448A were found to contain a large number of genes encoding TCS proteins, and a core of complete TCS proteins were shared between these genomes: 30 putative TCS clusters, 11 orphan HKs, 33 orphan RRs, and 16 hybrid HKs. A close analysis of the distribution of genes encoding TCS proteins revealed important differences in TCS proteins among the three P. syringae pathovars. Conclusion In this article we present a thorough analysis of the identification and distribution of TCS proteins among the sequenced genomes of P. syringae. We have identified differences in TCS proteins among the three P. syringae pathovars that may contribute to their diverse host ranges and association with plant hosts. The identification and analysis of the repertoire of TCS proteins in the genomes of P. syringae pathovars constitute a basis for future functional genomic studies of the signal transduction pathways in this important bacterial phytopathogen.

  18. The RFA regulatory sequence-binding protein in the promoter of prostate-specific antigen gene

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    To assure what sequence associated with the androgen regulation, a 15 bp region at the upstream of the ARE of prostate-specific antigen (PSA) promoter, termed RFA, was found indispensable for androgen receptor (AR)-mediated transactivation of PSA promoter. In transfection and CAT assays, some nucleotides substitution in RFA could significantly decrease the androgen inducibility for PSA promoter. The in vitro DNA binding assay demonstrated that RFA bound specifically with some non-receptor protein factors in prostate cell nucleus, but the mutant type of RFA lost this ability, so RFA might be a novel accessory cis-element. The RFA-binding proteins were isolated and purified by affinity chromatography using RFA probes. SDS-PAGE and preliminary protein identification showed these proteins possessed sequence high homology with multifunctional protein heterogeneous nuclear ribonucleoprotein A1, A2 (hnRNP A1, A2). RFA-binding proteins possibly cooperate with AR-mediated transactivation for PSA promoter as coactivator. The study results will facilitate further understanding the mechanism and tissue specificity of PSA promoter.

  19. Conservation of protein abundance patterns reveals the regulatory architecture of the EGFR-MAPK pathway.

    Science.gov (United States)

    Shi, Tujin; Niepel, Mario; McDermott, Jason E; Gao, Yuqian; Nicora, Carrie D; Chrisler, William B; Markillie, Lye M; Petyuk, Vladislav A; Smith, Richard D; Rodland, Karin D; Sorger, Peter K; Qian, Wei-Jun; Wiley, H Steven

    2016-01-01

    Various genetic mutations associated with cancer are known to alter cell signaling, but it is not clear whether they dysregulate signaling pathways by altering the abundance of pathway proteins. Using a combination of RNA sequencing and ultrasensitive targeted proteomics, we defined the primary components-16 core proteins and 10 feedback regulators-of the epidermal growth factor receptor (EGFR)-mitogen-activated protein kinase (MAPK) pathway in normal human mammary epithelial cells and then quantified their absolute abundance across a panel of normal and breast cancer cell lines as well as fibroblasts. We found that core pathway proteins were present at very similar concentrations across all cell types, with a variance similar to that of proteins previously shown to display conserved abundances across species. In contrast, EGFR and transcriptionally controlled feedback regulators were present at highly variable concentrations. The absolute abundance of most core proteins was between 50,000 and 70,000 copies per cell, but the adaptors SOS1, SOS2, and GAB1 were found at far lower amounts (2000 to 5000 copies per cell). MAPK signaling showed saturation in all cells between 3000 and 10,000 occupied EGFRs, consistent with the idea that adaptors limit signaling. Our results suggest that the relative stoichiometry of core MAPK pathway proteins is very similar across different cell types, with cell-specific differences mostly restricted to variable amounts of feedback regulators and receptors. The low abundance of adaptors relative to EGFR could be responsible for previous observations that only a fraction of total cell surface EGFR is capable of rapid endocytosis, high-affinity binding, and mitogenic signaling. PMID:27405981

  20. Conservation of protein abundance patterns reveals the regulatory architecture of the EGFR-MAPK pathway

    Science.gov (United States)

    Shi, Tujin; Niepel, Mario; McDermott, Jason E.; Gao, Yuqian; Nicora, Carrie D.; Chrisler, William B.; Markillie, Lye M.; Petyuk, Vladislav A.; Smith, Richard D.; Rodland, Karin D.; Sorger, Peter K.; Qian, Wei-Jun; Wiley, H. Steven

    2016-01-01

    Various genetic mutations associated with cancer are known to alter cell signaling, but it is not clear whether they dysregulate signaling pathways by altering the abundance of pathway proteins. Using a combination of RNA sequencing and ultrasensitive targeted proteomics, we defined the primary components—16 core proteins and 10 feedback regulators—of the epidermal growth factor receptor (EGFR)–mitogen-activated protein kinase (MAPK) pathway in normal human mammary epithelial cells and then quantified their absolute abundance across a panel of normal and breast cancer cell lines as well as fibroblasts. We found that core pathway proteins were present at very similar concentrations across all cell types, with a variance similar to that of proteins previously shown to display conserved abundances across species. In contrast, EGFR and transcriptionally controlled feedback regulators were present at highly variable concentrations. The absolute abundance of most core proteins was between 50,000 and 70,000 copies per cell, but the adaptors SOS1, SOS2, and GAB1 were found at far lower amounts (2000 to 5000 copies per cell). MAPK signaling showed saturation in all cells between 3000 and 10,000 occupied EGFRs, consistent with the idea that adaptors limit signaling. Our results suggest that the relative stoichiometry of core MAPK pathway proteins is very similar across different cell types, with cell-specific differences mostly restricted to variable amounts of feedback regulators and receptors. The low abundance of adaptors relative to EGFR could be responsible for previous observations that only a fraction of total cell surface EGFR is capable of rapid endocytosis, high-affinity binding, and mitogenic signaling. PMID:27405981

  1. The iron regulatory capability of the major protein participants in prevalent neurodegenerative disorders

    Directory of Open Access Journals (Sweden)

    Bruce Xue Wen Wong

    2014-04-01

    Full Text Available As with most bioavailable transition metals, iron is essential for many metabolic processes required by the cell but when left unregulated is implicated as a potent source of reactive oxygen species. It is uncertain whether the brain’s evident vulnerability to reactive species-induced oxidative stress is caused by a reduced capability in cellular response or an increased metabolic activity. Either way, dys-regulated iron levels appear to be involved in oxidative stress provoked neurodegeneration. As in peripheral iron management, cells within the central nervous system tightly regulate iron homeostasis via responsive expression of select proteins required for iron flux, transport and storage. Recently proteins directly implicated in the most prevalent neurodegenerative diseases, such as amyloid-β precursor protein, tau, α-synuclein, prion protein and huntingtin, have been connected to neuronal iron homeostatic control. This suggests that disrupted expression, processing or location of these proteins may result in a failure of their cellular iron homeostatic roles and augment the common underlying susceptibility to neuronal oxidative damage that is triggered in neurodegenerative disease.

  2. Purification and binding analysis of the nitrogen fixation regulatory NifA protein from Azospirillum brasilense

    Directory of Open Access Journals (Sweden)

    L.M.P. Passaglia

    1998-11-01

    Full Text Available NifA protein activates transcription of nitrogen fixation operons by the alternative sigma54 holoenzyme form of RNA polymerase. This protein binds to a well-defined upstream activator sequence (UAS located at the -200/-100 position of nif promoters with the consensus motif TGT-N10-ACA. NifA of Azospirillum brasilense was purified in the form of a glutathione-S-transferase (GST-NifA fusion protein and proteolytic release of GST yielded inactive and partially soluble NifA. However, the purified NifA was able to induce the production of specific anti-A. brasilense NifA-antiserum that recognized NifA from A. brasilense but not from K. pneumoniae. Both GST-NifA and NifA expressed from the E. coli tac promoter are able to activate transcription from the nifHDK promoter but only in an A. brasilense background. In order to investigate the mechanism that regulates NifA binding capacity we have used E. coli total protein extracts expressing A. brasilense nifA in mobility shift assays. DNA fragments carrying the two overlapping, wild-type or mutated UAS motifs present in the nifH promoter region revealed a retarded band of related size. These data show that the binding activity present in the C-terminal domain of A. brasilense NifA protein is still functional even in the presence of oxygen.

  3. Purification and binding analysis of the nitrogen fixation regulatory NifA protein from Azospirillum brasilense.

    Science.gov (United States)

    Passaglia, L M; Van Soom, C; Schrank, A; Schrank, I S

    1998-11-01

    NifA protein activates transcription of nitrogen fixation operons by the alternative sigma 54 holoenzyme form of RNA polymerase. This protein binds to a well-defined upstream activator sequence (UAS) located at the -200/-100 position of nif promoters with the consensus motif TGT-N10-ACA. NifA of Azospirillum brasilense was purified in the form of a glutathione-S-transferase (GST)-NifA fusion protein and proteolytic release of GST yielded inactive and partially soluble NifA. However, the purified NifA was able to induce the production of specific anti-A. brasilense NifA-antiserum that recognized NifA from A. brasilense but not from K. pneumoniae. Both GST-NifA and NifA expressed from the E. coli tac promoter are able to activate transcription from the nifHDK promoter but only in an A. brasilense background. In order to investigate the mechanism that regulates NifA binding capacity we have used E. coli total protein extracts expressing A. brasilense nifA in mobility shift assays. DNA fragments carrying the two overlapping, wild-type or mutated UAS motifs present in the nifH promoter region revealed a retarded band of related size. These data show that the binding activity present in the C-terminal domain of A. brasilense NifA protein is still functional even in the presence of oxygen.

  4. Quercetin and vitamin E attenuate Bonny Light crude oil-induced alterations in testicular apoptosis, stress proteins and steroidogenic acute regulatory protein in Wistar rats.

    Science.gov (United States)

    Ebokaiwe, Azubuike P; Mathur, Premendu P; Farombi, Ebenezer O

    2016-10-01

    Studies have shown the reproductive effects of Bonny Light crude oil (BLCO) via the mechanism of oxidative stress and testicular apoptosis. We investigated the protective role of quercetin and vitamin E on BLCO-induced testicular apoptosis. Experimental rats were divided into four groups of four each. Animals were orally administered 2 ml/kg corn oil (control: group 1), BLCO-800 mg/kg body weight + 10 mg/kg quercetin (group 2), BLCO-800 mg/kg body weight + 50 mg/kg vitamin E (group 3) and BLCO-800 mg/kg body weight only (group 4) for 7 d. Protein levels of caspase 3, FasL, NF-kB, steroidogenic acute regulatory protein and stress response proteins were determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Immunofluorescence staining was used to quantify the expression of caspase 3, FasL and NF-kB. Apoptosis was quantified by the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay. Administration of BLCO resulted in a significant increase in the levels of stress response proteins and apoptosis-related proteins by 50% and above after 7 d following BLCO exposure and a concomitant increase in expression of caspase 3, FasL and NF-kB expression by immunofluorescence staining. Apoptosis showed a significant increase in TUNEL positive cells. Co-administration with quercetin or vitamin E reversed BLCO-induced apoptosis and levels of stress protein, relative to control. These findings suggest that quercetin and vitamin E may confer protection against BLCO-induced testicular oxidative stress-related apoptosis. PMID:26821606

  5. Structural and dynamic characterization of eukaryotic gene regulatory protein domains in solution

    Energy Technology Data Exchange (ETDEWEB)

    Lee, A L [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    1996-05-01

    Solution NMR was primarily used to characterize structure and dynamics in two different eukaryotic protein systems: the {delta}-Al-{var_epsilon} activation domain from c-jun and the Drosophila RNA-binding protein Sex-lethal. The second system is the Drosophila Sex-lethal (Sxl) protein, an RNA-binding protein which is the ``master switch`` in sex determination. Sxl contains two adjacent RNA-binding domains (RBDs) of the RNP consensus-type. The NMR spectrum of the second RBD (Sxl-RBD2) was assigned using multidimensional heteronuclear NMR, and an intermediate-resolution family of structures was calculated from primarily NOE distance restraints. The overall fold was determined to be similar to other RBDs: a {beta}{alpha}{beta}-{beta}{alpha}{beta} pattern of secondary structure, with the two helices packed against a 4-stranded anti-parallel {beta}-sheet. In addition {sup 15}N T{sub 1}, T{sub 2}, and {sup 15}N/{sup 1}H NOE relaxation measurements were carried out to characterize the backbone dynamics of Sxl-RBD2 in solution. RNA corresponding to the polypyrimidine tract of transformer pre-mRNA was generated and titrated into 3 different Sxl-RBD protein constructs. Combining Sxl-RBD1+2 (bht RBDs) with this RNA formed a specific, high affinity protein/RNA complex that is amenable to further NMR characterization. The backbone {sup 1}H, {sup 13}C, and {sup 15}N resonances of Sxl-RBD1+2 were assigned using a triple-resonance approach, and {sup 15}N relaxation experiments were carried out to characterize the backbone dynamics of this complex. The changes in chemical shift in Sxl-RBD1+2 upon binding RNA are observed using Sxl-RBD2 as a substitute for unbound Sxl-RBD1+2. This allowed the binding interface to be qualitatively mapped for the second domain.

  6. Inducer effect on the complex formation between rat liver nuclear proteins and cytochrome P450 2B gene regulatory elements.

    Science.gov (United States)

    Duzhak, T G; Schwartz, E I; Gulyaeva, L F; Lyakhovich, V V

    2002-09-01

    DNA gel retardation assay has been applied to the investigation of complexes between rat liver nuclear proteins and Barbie box positive regulatory element of cytochrome P450 2B (CYP2B) genes. The intensities of B1 and B2 bands detected in the absence of an inducer increased after 30 min protein incubation with phenobarbital (PB) or triphenyldioxane (TPD), but not with 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOPOB). In addition, a new complex (B3 band) was for the first time detected under induction by PB, TPD, and TCPOPOB. Increase in the incubation time up to 2 h facilitated the formation of other new complexes (B4 and B5 bands), which were detected only in the presence of TPD. The use of [3H]TPD in hybridization experiments revealed that this inducer, capable of binding to Barbie box DNA, is also present in B4 and B5 complexes. It is probable that the investigated compounds activate the same proteins at the initial induction steps, which correlates with the formation of B1, B2, and B3 complexes. The further induction step might be inducer-specific, as indicated by the formation of B4 and B5 complexes in the presence of TPD only. Thus, the present data suggest the possibility of specific gene activation signaling pathways that are dependent on a particular inducer. PMID:12387719

  7. Stress-evoked tyrosine phosphorylation of signal regulatory protein α regulates behavioral immobility in the forced swim test.

    Science.gov (United States)

    Ohnishi, Hiroshi; Murata, Takaaki; Kusakari, Shinya; Hayashi, Yuriko; Takao, Keizo; Maruyama, Toshi; Ago, Yukio; Koda, Ken; Jin, Feng-Jie; Okawa, Katsuya; Oldenborg, Per-Arne; Okazawa, Hideki; Murata, Yoji; Furuya, Nobuhiko; Matsuda, Toshio; Miyakawa, Tsuyoshi; Matozaki, Takashi

    2010-08-01

    Severe stress induces changes in neuronal function that are implicated in stress-related disorders such as depression. The molecular mechanisms underlying the response of the brain to stress remain primarily unknown, however. Signal regulatory protein alpha (SIRPalpha) is an Ig-superfamily protein that undergoes tyrosine phosphorylation and binds the protein tyrosine phosphatase Shp2. Here we show that mice expressing a form of SIRPalpha that lacks most of the cytoplasmic region manifest prolonged immobility (depression-like behavior) in the forced swim (FS) test. FS stress induced marked tyrosine phosphorylation of SIRPalpha in the brain of wild-type mice through activation of Src family kinases. The SIRPalpha ligand CD47 was important for such SIRPalpha phosphorylation, and CD47-deficient mice also manifested prolonged immobility in the FS test. Moreover, FS stress-induced tyrosine phosphorylation of both the NR2B subunit of the NMDA subtype of glutamate receptor and the K+-channel subunit Kvbeta2 was regulated by SIRPalpha. Thus, tyrosine phosphorylation of SIRPalpha is important for regulation of depression-like behavior in the response of the brain to stress.

  8. Complement and membrane-bound complement regulatory proteins as biomarkers and therapeutic targets for autoimmune inflammatory disorders, RA and SLE.

    Science.gov (United States)

    Das, Nibhriti

    2015-11-01

    Complement system is a major effecter system of the innate immunity that bridges with adaptive immunity. The system consists of about 40 humoral and cell surface proteins that include zymogens, receptors and regulators. The zymogens get activated in a cascade fashion by antigen-antibody complex, antigen alone or by polymannans, respectively, by the classical, alternative and mannose binding lectin (MBL) pathways. The ongoing research on complement regulators and complement receptors suggest key role of these proteins in the initiation, regulation and effecter mechanisms of the innate and adaptive immunity. Although, the complement system provides the first line of defence against the invading pathogens, its aberrant uncontrolled activation causes extensive self tissue injury. A large number of humoral and cell surface complement regulatory protein keep the system well-regulated in healthy individuals. Complement profiling had brought important information on the pathophysiology of several infectious and chronic inflammatory disorders. In view of the diversity of the clinical disorders involving abnormal complement activity or regulation, which include both acute and chronic diseases that affect a wide range of organs, diverse yet specifically tailored therapeutic approaches may be needed to shift complement back into balance. This brief review discusses on the complement system, its functions and its importance as biomarkers and therapeutic targets for autoimmune diseases with focus on SLE and RA.

  9. Functional analysis of membrane-bound complement regulatory protein on T-cell immune response in ginbuna crucian carp.

    Science.gov (United States)

    Nur, Indriyani; Abdelkhalek, Nevien K; Motobe, Shiori; Nakamura, Ryota; Tsujikura, Masakazu; Somamoto, Tomonori; Nakao, Miki

    2016-02-01

    Complements have long been considered to be a pivotal component in innate immunity. Recent researches, however, highlight novel roles of complements in T-cell-mediated adaptive immunity. Membrane-bound complement regulatory protein CD46, a costimulatory protein for T cells, is a key molecule for T-cell immunomodulation. Teleost CD46-like molecule, termed Tecrem, has been newly identified in common carp and shown to function as a complement regulator. However, it remains unclear whether Tecrem is involved in T-cell immune response. We investigated Tecrem function related to T-cell responses in ginbuna crucian carp. Ginbuna Tecrem (gTecrem) proteins were detected by immunoprecipitation using anti-common carp Tecrem monoclonal antibody (mAb) and were ubiquitously expressed on blood cells including CD8α(+) and CD4(+) lymphocytes. gTecrem expression on leucocyte surface was enhanced after stimulation with the T-cell mitogen, phytohaemagglutinin (PHA). Coculture with the anti-Tecrem mAb significantly inhibited the proliferative activity of PHA-stimulated peripheral blood lymphocytes, suggesting that cross-linking of Tecrems on T-cells interferes with a signal transduction pathway for T-cell activation. These findings indicate that Tecrem may act as a T-cell moderator and imply that the complement system in teleost, as well as mammals, plays an important role for linking adaptive and innate immunity.

  10. Expression of the type I regulatory subunit of cAMP-dependent protein kinase in Escherichia coli

    International Nuclear Information System (INIS)

    The cDNA for the bovine type I regulatory subunit of cAMP-dependent protein kinase has been inserted into the expression vector pUC7. When E. coli JM105 was transformed with this plasmid, R-subunit was expressed in amounts that approached 2-4 mg/liter. The expressed protein was visualized in total cell extracts by photolabeling with 8-N3-[32P]-cAMP following transfer from SDS polyacrylamide gels to nitrocellulose. Expression of R-subunit was independent of IPTG. R-subunit accumulated in large amounts only in the stationary phase of growth. The addition of IPTG during the log phase of growth actually blocked the accumulation of R-subunit. The soluble, dimeric R-subunit was purifided to homogeneity by affinity chromatography. This R-subunit bound 2 mol cAMP/mol R monomer, reassociated with C-subunit to form cAMP-dependent holoenzyme, and migrated as a dimer on SDS polyacrylamide gels in the absence of reducing agents. The expressed protein was also susceptible to limited proteolysis yielding a monomeric cAMP-binding fragment having a molecular weight of 35,000. In all of these properties the expressed protein was indistinguishable from R/sup I/ purified from bovine tissue even though the R-subunit expressed in E. coli represents a fusion protein that contains 10 additional amino acids at the amino terminus that are provided by the lac Z gene of the vector. The NH2-terminal sequence was confirmed by amino acid sequencing

  11. CD55 is a key complement regulatory protein that counteracts complement-mediated inactivation of Newcastle Disease Virus.

    Science.gov (United States)

    Rangaswamy, Udaya S; Cotter, Christopher R; Cheng, Xing; Jin, Hong; Chen, Zhongying

    2016-08-01

    Newcastle disease virus (NDV) is being developed as an oncolytic virus for virotherapy. In this study we analysed the regulation of complement-mediated inactivation of a recombinant NDV in different host cells. NDV grown in human cells was less sensitive to complement-mediated virus inactivation than NDV grown in embryonated chicken eggs. Additionally, NDV produced from HeLa-S3 cells is more resistant to complement than NDV from 293F cells, which correlated with higher expression and incorporation of complement regulatory proteins (CD46, CD55 and CD59) into virions from HeLa-S3 cells. Further analysis of the recombinant NDVs individually expressing the three CD molecules showed that CD55 is the most potent in counteracting complement-mediated virus inactivation. The results provide important information on selecting NDV manufacture substrate to mitigate complement-mediated virus inactivation.

  12. Modulation of cell cycle regulatory protein expression and suppression of tumor growth by mimosine in nude mice.

    Science.gov (United States)

    Chang, H C; Weng, C F; Yen, M H; Chuang, L Y; Hung, W C

    2000-10-01

    Our previous results demonstrated that the plant amino acid mimosine blocked cell cycle progression and suppressed proliferation of human lung cancer cells in vitro by multiple mechanisms. Inhibition of cyclin D1 expression or induction of cyclin-dependent kinase inhibitor p21WAF1 expression was found in mimosine-treated lung cancer cells. However, whether mimosine may modulate the expression of these cell cycle regulatory proteins and suppress tumor growth in vivo is unknown. In this study, we examined the anti-cancer effect of mimosine on human H226 lung cancer cells grown in nude mice. Our results demonstrated that mimosine inhibits cyclin D1 and induces p21WAF1 expression in vivo. Furthermore, results of TUNEL analysis indicated that mimosine may induce apoptosis to suppress tumor growth in nude mice. Collectively, these results suggest that mimosine exerts anti-cancer effect in vivo and might be useful in the therapy of lung cancer. PMID:10995875

  13. Overexpression or silencing of FOXO3a affects proliferation of endothelial progenitor cells and expression of cell cycle regulatory proteins.

    Directory of Open Access Journals (Sweden)

    Tiantian Sang

    Full Text Available Endothelial dysfunction is involved in the pathogenesis of many cardiovascular diseases such as atherosclerosis. Endothelial progenitor cells (EPCs have been considered to be of great significance in therapeutic angiogenesis. Furthermore, the Forkhead box O (FOXO transcription factors are known to be important regulators of cell cycle. Therefore, we investigated the effects of changes in FOXO3a activity on cell proliferation and cell cycle regulatory proteins in EPCs. The constructed recombinant adenovirus vectors Ad-TM (triple mutant-FOXO3a, Ad-shRNA-FOXO3a and the control Ad-GFP were transfected into EPCs derived from human umbilical cord blood. Assessment of transfection efficiency using an inverted fluorescence microscope and flow cytometry indicated a successful transfection. Additionally, the expression of FOXO3a was markedly increased in the Ad-TM-FOXO3a group but was inhibited in the Ad-shRNA-FOXO3a group as seen by western blotting. Overexpression of FOXO3a suppressed EPC proliferation and modulated expression of the cell cycle regulatory proteins including upregulation of the cell cycle inhibitor p27(kip1 and downregulation of cyclin-dependent kinase 2 (CDK2, cyclin D1 and proliferating cell nuclear antigen (PCNA. In the Ad-shRNA-FOXO3a group, the results were counter-productive. Furthermore, flow cytometry for cell cycle analysis suggested that the active mutant of FOXO3a caused a noticeable increase in G1- and S-phase frequencies, while a decrease was observed after FOXO3a silencing. In conclusion, these data demonstrated that FOXO3a could possibly inhibit EPC proliferation via cell cycle arrest involving upregulation of p27(kip1 and downregulation of CDK2, cyclin D1 and PCNA.

  14. Bovine proteins containing poly-glutamine repeats are often polymorphic and enriched for components of transcriptional regulatory complexes

    LENUS (Irish Health Repository)

    Whan, Vicki

    2010-11-23

    Abstract Background About forty human diseases are caused by repeat instability mutations. A distinct subset of these diseases is the result of extreme expansions of polymorphic trinucleotide repeats; typically CAG repeats encoding poly-glutamine (poly-Q) tracts in proteins. Polymorphic repeat length variation is also apparent in human poly-Q encoding genes from normal individuals. As these coding sequence repeats are subject to selection in mammals, it has been suggested that normal variations in some of these typically highly conserved genes are implicated in morphological differences between species and phenotypic variations within species. At present, poly-Q encoding genes in non-human mammalian species are poorly documented, as are their functions and propensities for polymorphic variation. Results The current investigation identified 178 bovine poly-Q encoding genes (Q ≥ 5) and within this group, 26 genes with orthologs in both human and mouse that did not contain poly-Q repeats. The bovine poly-Q encoding genes typically had ubiquitous expression patterns although there was bias towards expression in epithelia, brain and testes. They were also characterised by unusually large sizes. Analysis of gene ontology terms revealed that the encoded proteins were strongly enriched for functions associated with transcriptional regulation and many contributed to physical interaction networks in the nucleus where they presumably act cooperatively in transcriptional regulatory complexes. In addition, the coding sequence CAG repeats in some bovine genes impacted mRNA splicing thereby generating unusual transcriptional diversity, which in at least one instance was tissue-specific. The poly-Q encoding genes were prioritised using multiple criteria for their likelihood of being polymorphic and then the highest ranking group was experimentally tested for polymorphic variation within a cattle diversity panel. Extensive and meiotically stable variation was identified

  15. pH-Regulatory Proteins as Potential Targets in Breast Cancer

    DEFF Research Database (Denmark)

    Andersen, Anne Poder

    cancer spheroid growth in a cell-type dependent manner, with MCT1 and NBCn1 playing particular important roles in MCF-7 cells and NHE1 in MDA-MB-231 cells. In Papers III-IV we employed mouse models to study the functional relevance and the relative roles of NHE1, NBCn1 and MCT4 in breast cancer...... and proliferation, tumor cells must initiate strategies to circumvent intracellular acid loading. The main facilitators of acid extrusion in tumor cells include the pH-regulatory ion transporters Na+/H+ exchanger NHE1, electroneutral Na+-HCO3 - cotransporter NBCn1 and the lactate-H+ cotransporters MCT1 and -4...... exhibit distinct spatial organization during 3D growth of MCF-7 and MDA-MB-231 breast cancer cells. By pharmacological inhibition and stable shRNA-mediated knockdown, we addressed the specific contributions of the transporters to spheroid growth and show that the specific transporters contribute to breast...

  16. Increase in cell viability by polyamines through stimulation of the synthesis of ppGpp regulatory protein and ω protein of RNA polymerase in Escherichia coli.

    Science.gov (United States)

    Terui, Yusuke; Akiyama, Mariko; Sakamoto, Akihiko; Tomitori, Hideyuki; Yamamoto, Kaneyoshi; Ishihama, Akira; Igarashi, Kazuei; Kashiwagi, Keiko

    2012-02-01

    It is known that polyamines increase cell growth through stimulation of the synthesis of several kinds of proteins encoded by the so-called "polyamine modulon". We recently reported that polyamines also increase cell viability at the stationary phase of cell growth through stimulation of the synthesis of ribosome modulation factor, a component of the polyamine modulon. Accordingly, we looked for other proteins involved in cell viability whose synthesis is stimulated by polyamines. It was found that the synthesis of ppGpp regulatory protein (SpoT) and ω protein of RNA polymerase (RpoZ) was stimulated by polyamines at the level of translation. Stimulation of the synthesis of SpoT and RpoZ by polyamines was due to an inefficient initiation codon UUG in spoT mRNA and an unusual location of a Shine-Dalgarno (SD) sequence in rpoZ mRNA. Accordingly, the spoT and rpoZ genes are components of the polyamine modulon involved in cell viability. Reduced cell viability caused by polyamine deficiency was prevented by modified spoT and rpoZ genes whose synthesis was not influenced by polyamines. Under these conditions, the level of ppGpp increased in parallel with increase of SpoT protein. The results indicate that polyamine stimulation of synthesis of SpoT and RpoZ plays important roles for cell viability through stimulation of ppGpp synthesis by SpoT and modulation of RNA synthesis by ppGpp-RpoZ complex.

  17. Regulatory effect of heat shock protein 70 in stress-induced rat intestinal epithelial barrier dysfunction

    Directory of Open Access Journals (Sweden)

    Stevie Struiksma

    2009-06-01

    Full Text Available Background: Psychological stress is one of the factors associated with many human diseases; the mechanisms need to be further understood. Methods: Rats were subjected to chronic water avoid stress. Intestinal epithelial heat shock protein (HSP 70 was evaluated. The intestinal epithelial permeability was examined with Ussing chamber technique. Results: HSP70 was detected in normal intestinal epithelial cells. Psychological stress decreased HSP70 in the intestinal epithelial cells that correlated with the stress-induced intestinal epithelial hyperpermeability. Pretreatment with HSP70 abrogated stress-induced intestinal barrier dysfunction. Conclusions: Chronic stress inhibits HSP70 activity in rat intestinal epithelial layer that is associated with intestinal epithelial barrier dysfunction, which can be prevented by pretreatment with HSP70 protein.

  18. Expression of survivin, a novel apoptosis inhibitor and cell cycle regulatory protein, in human gliomas

    Institute of Scientific and Technical Information of China (English)

    焦保华; 姚志刚; 耿少梅; 左书浩

    2004-01-01

    @@ Recently, a novel anti-apoptosis gene, named survivin,was identified as a structurally unique member of the inhibitor of apoptosis protein (lAP) family. The gene is located on chromosome 17q25. Survivin is a 16.5 kDa protein that is expressed in vivo in common human cancers, but not in normal adjacent tissue,1 during the G2/M phase of the cell cycle. Survivin expression is turned off during fetal development and not found in nonneoplastic adult human tissue, and it is turned on in most common human cancers. We investigated the expression of survivin in 50 patients with human gliomas, and determined its association with cell apoptosis and cell proliferation, and its impact on tumor progression and prognosis.

  19. Lamins, laminopathies and disease mechanisms: Possible role for proteasomal degradation of key regulatory proteins

    Indian Academy of Sciences (India)

    Veena K Parnaik; Pankaj Chaturvedi; B H Muralikrishna

    2011-08-01

    Lamins are major structural proteins of the nucleus and are essential for nuclear integrity and organization of nuclear functions. Mutations in the human lamin genes lead to highly degenerative genetic diseases that affect a number of different tissues such as muscle, adipose or neuronal tissues, or cause premature ageing syndromes. New findings on the role of lamins in cellular signalling pathways, as well as in ubiquitin-mediated proteasomal degradation, have given important insights into possible mechanisms of pathogenesis.

  20. Regulatory Implications of Structural Changes in Tyr201 of the Oxygen Sensor Protein FixL.

    Science.gov (United States)

    Yamawaki, Takeo; Ishikawa, Haruto; Mizuno, Misao; Nakamura, Hiro; Shiro, Yoshitsugu; Mizutani, Yasuhisa

    2016-07-26

    FixL is a heme-based oxygen-sensing histidine kinase that induces the expression of nitrogen fixation genes under hypoxic conditions. Oxygen dissociation from heme iron in the sensor domain of FixL initiates protein conformational changes that are transmitted to the histidine kinase domain, activating autophosphorylation activity. Conversely, oxygen binding inhibits FixL kinase activity. It is essential to elucidate the changes that occur in the protein structure upon this oxygen dissociation for understanding of the allosteric transduction mechanism. We measured ultraviolet resonance Raman spectra of FixL and its mutants for deoxy, oxy, and carbonmonoxy forms to examine the changes in protein structure upon oxygen dissociation. The observed spectral changes indicated that Tyr201 and its neighboring residues undergo structural changes upon oxygen dissociation. Kinase assays showed that substitution of Tyr201 significantly decreased the inhibition of kinase activity upon oxygen binding. These data mean that weakening of the hydrogen bond of Tyr201 that is induced by oxygen dissociation is essential for inhibition of kinase activity. We also observed spectral changes in Tyr residues in the kinase domain upon oxygen dissociation from FixL, which is the first observation of oxygen-dependent structural changes in the kinase domain of FixL. The observed structural changes support the allosteric transduction pathway of FixL which we proposed previously [ Yano, S., Ishikawa, H., Mizuno, M., Nakamura, H., Shiro, Y., and Mizutani, Y. ( 2013 ) J. Phys. Chem. B 117 , 15786 - 15791 ]. PMID:27367650

  1. Recycling of a regulatory protein by degradation of the RNA to which it binds.

    Science.gov (United States)

    Deikus, Gintaras; Babitzke, Paul; Bechhofer, David H

    2004-03-01

    When Bacillus subtilis is grown in the presence of excess tryptophan, transcription of the trp operon is regulated by binding of tryptophan-activated TRAP to trp leader RNA, which promotes transcription termination in the trp leader region. Transcriptome analysis of a B. subtilis strain lacking polynucleotide phosphorylase (PNPase; a 3'-to-5' exoribonuclease) revealed a striking overexpression of trp operon structural genes when the strain was grown in the presence of abundant tryptophan. Analysis of trp leader RNA in the PNPase(-) strain showed accumulation of a stable, TRAP-protected fragment of trp leader RNA. Loss of trp operon transcriptional regulation in the PNPase(-) strain was due to the inability of ribonucleases other than PNPase to degrade TRAP-bound leader RNA, resulting in the sequestration of limiting TRAP. Thus, in the case of the B. subtilis trp operon, specific ribonuclease degradation of RNA in an RNA-protein complex is required for recycling of an RNA-binding protein. Such a mechanism may be relevant to other systems in which limiting concentrations of an RNA-binding protein must keep pace with ongoing transcription. PMID:14976255

  2. LaeA control of velvet family regulatory proteins for light-dependent development and fungal cell-type specificity.

    Directory of Open Access Journals (Sweden)

    Ozlem Sarikaya Bayram

    Full Text Available VeA is the founding member of the velvet superfamily of fungal regulatory proteins. This protein is involved in light response and coordinates sexual reproduction and secondary metabolism in Aspergillus nidulans. In the dark, VeA bridges VelB and LaeA to form the VelB-VeA-LaeA (velvet complex. The VeA-like protein VelB is another developmental regulator, and LaeA has been known as global regulator of secondary metabolism. In this study, we show that VelB forms a second light-regulated developmental complex together with VosA, another member of the velvet family, which represses asexual development. LaeA plays a key role, not only in secondary metabolism, but also in directing formation of the VelB-VosA and VelB-VeA-LaeA complexes. LaeA controls VeA modification and protein levels and possesses additional developmental functions. The laeA null mutant results in constitutive sexual differentiation, indicating that LaeA plays a pivotal role in inhibiting sexual development in response to light. Moreover, the absence of LaeA results in the formation of significantly smaller fruiting bodies. This is due to the lack of a specific globose cell type (Hülle cells, which nurse the young fruiting body during development. This suggests that LaeA controls Hülle cells. In summary, LaeA plays a dynamic role in fungal morphological and chemical development, and it controls expression, interactions, and modification of the velvet regulators.

  3. LPS induces KH-type splicing regulatory protein-dependent processing of microRNA-155 precursors in macrophages.

    Science.gov (United States)

    Ruggiero, Tina; Trabucchi, Michele; De Santa, Francesca; Zupo, Simona; Harfe, Brian D; McManus, Michael T; Rosenfeld, M Geoff; Briata, Paola; Gherzi, Roberto

    2009-09-01

    The importance of post-transcriptional mechanisms for the regulation of the homoeostasis of the immune system and the response to challenge by microorganisms is becoming increasingly appreciated. We investigated the contribution of microRNAs (miRNAs) to macrophage activation induced by lipopolysaccharide (LPS). We first observed that Dicer knockout in bone marrow-derived macrophages (BMDMs) increases the LPS-induced expression of some inflammation mediators. miRNA microarray analysis in BMDMs revealed that LPS significantly induces the expression of a single miRNA, miR-155, and this induction depends on enhanced miR-155 maturation from its precursors. The single-strand RNA-binding protein KH-type splicing regulatory protein (KSRP) binds to the terminal loop of miR-155 precursors and promotes their maturation. Both inhibition of miR-155 and KSRP knockdown enhance the LPS-induced expression of select inflammation mediators, and the effect of KSRP knockdown is reverted by mature miR-155. Our studies unveil the existence of an LPS-dependent post-transcriptional regulation of miR-155 biogenesis. Once induced, miR-155 finely tunes the expression of select inflammation mediators in response to LPS. PMID:19423639

  4. Lovastatin insensitive 1, a Novel pentatricopeptide repeat protein, is a potential regulatory factor of isoprenoid biosynthesis in Arabidopsis.

    Science.gov (United States)

    Kobayashi, Keiko; Suzuki, Masashi; Tang, Jianwei; Nagata, Noriko; Ohyama, Kiyoshi; Seki, Hikaru; Kiuchi, Reiko; Kaneko, Yasuko; Nakazawa, Miki; Matsui, Minami; Matsumoto, Shogo; Yoshida, Shigeo; Muranaka, Toshiya

    2007-02-01

    Higher plants have two metabolic pathways for isoprenoid biosynthesis: the cytosolic mevalonate (MVA) pathway and the plastidal non-mevalonate (MEP) pathway. Despite the compartmentalization of these two pathways, metabolic flow occurs between them. However, little is known about the mechanisms that regulate the two pathways and the metabolic cross-talk. To identify such regulatory mechanisms, we isolated and characterized the Arabidopsis T-DNA insertion mutant lovastatin insensitive 1 (loi1), which is resistant to lovastatin and clomazone, inhibitors of the MVA and MEP pathways, respectively. The accumulation of the major products of these pathways, i.e. sterols and chlorophyll, was less affected by lovastatin and clomazone, respectively, in loi1 than in the wild type. Furthermore, the 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) activity analysis showed higher activity of HMGR in loi1-1 treated with lovastatin than that in the WT. We consider that the lovastatin-resistant phenotype of loi1-1 was derived from this post-transcriptional up-regulation of HMGR. The LOI1 gene encodes a novel pentatricopeptide repeat (PPR) protein. PPR proteins are thought to regulate the expression of genes encoded in organelle genomes by post-transcriptional regulation in mitochondria or plastids. Our results demonstrate that LOI1 is predicted to localize in mitochondria and has the ability to bind single-stranded nucleic acids. Our investigation revealed that the post-transcriptional regulation of mitochondrial RNA may be involved in isoprenoid biosynthesis in both the MVA and MEP pathways.

  5. The C-terminus of DSX(F5) protein acts as a novel regulatory domain in Bombyx mori.

    Science.gov (United States)

    Duan, Jianping; Meng, Xianxin; Ma, Sanyuan; Wang, Feng; Guo, Huozhen; Zhang, Liying; Zhao, Ping; Kan, Yunchao; Yao, Lunguang; Xia, Qingyou

    2016-08-01

    The doublesex gene regulates the somatic sexual development of Bombyx mori by alternatively splicing into sex-specific splice forms. In our previous study, the splice form Bmdsx (F7) , which encodes the BmDSX(F5) protein, was found to be expressed in a female-specific manner and to contain a novel C-terminus. In this study, we aimed to investigate the role of this C-terminus. Two transgenic lines, L1 and L2, were constructed to ectopically express Bmdsx (F7) in males. Phenotype and W chromosome-specific polymerase chain reaction (PCR) analysis showed that developmental abnormalities and sex reversal did not occur. Moreover, the sex ratio was also normal. Quantitative PCR revealed that the expression levels of SP1 and Vg were upregulated in the fat body of transgenic males. Additionally, the expression level of PBP was downregulated in the antenna of transgenic males. The results suggested that the C-terminus of BmDSX(F5) functioned as a regulatory domain during regulation of downstream target gene expression and that BmDSX(F5) participated in the sexual development of somatic cells together with other DSX proteins in B. mori. PMID:26975733

  6. Regulation of steroid 5-{alpha} reductase type 2 (Srd5a2) by sterol regulatory element binding proteins and statin

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Young-Kyo [Department of Molecular Biology and Biochemistry, 3244 McGaugh Hall, University of California, UC Irvine, Irvine, CA 92697-3900 (United States); Zhu, Bing [Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0144 (United States); Jeon, Tae-Il [Department of Molecular Biology and Biochemistry, 3244 McGaugh Hall, University of California, UC Irvine, Irvine, CA 92697-3900 (United States); Osborne, Timothy F., E-mail: tfosborn@uci.edu [Department of Molecular Biology and Biochemistry, 3244 McGaugh Hall, University of California, UC Irvine, Irvine, CA 92697-3900 (United States)

    2009-11-01

    In this study, we show that sterol regulatory element binding proteins (SREBPs) regulate expression of Srd5a2, an enzyme that catalyzes the irreversible conversion of testosterone to dihydroxytestosterone in the male reproductive tract and is highly expressed in androgen-sensitive tissues such as the prostate and skin. We show that Srd5a2 is induced in livers and prostate from mice fed a chow diet supplemented with lovastatin plus ezitimibe (L/E), which increases the activity of nuclear SREBP-2. The three fold increase in Srd5a2 mRNA mediated by L/E treatment was accompanied by the induction of SREBP-2 binding to the Srd5a2 promoter detected by a ChIP-chip assay in liver. We identified a SREBP-2 responsive region within the first 300 upstream bases of the mouse Srd5a2 promoter by co-transfection assays which contain a site that bound SREBP-2 in vitro by an EMSA. Srd5a2 protein was also induced in cells over-expressing SREBP-2 in culture. The induction of Srd5a2 through SREBP-2 provides a mechanistic explanation for why even though statin therapy is effective in reducing cholesterol levels in treating hypercholesterolemia it does not compromise androgen production in clinical studies.

  7. Novel functions for the endocytic regulatory proteins MICAL-L1 and EHD1 in mitosis.

    Science.gov (United States)

    Reinecke, James B; Katafiasz, Dawn; Naslavsky, Naava; Caplan, Steve

    2015-01-01

    During interphase, recycling endosomes mediate the transport of internalized cargo back to the plasma membrane. However, in mitotic cells, recycling endosomes are essential for the completion of cytokinesis, the last phase of mitosis that promotes the physical separation the two daughter cells. Despite recent advances, our understanding of the molecular determinants that regulate recycling endosome dynamics during cytokinesis remains incomplete. We have previously demonstrated that Molecule Interacting with CasL Like-1 (MICAL-L1) and C-terminal Eps15 Homology Domain protein 1 (EHD1) coordinately regulate receptor transport from tubular recycling endosomes during interphase. However, their potential roles in controlling cytokinesis had not been addressed. In this study, we show that MICAL-L1 and EHD1 regulate mitosis. Depletion of either protein resulted in increased numbers of bi-nucleated cells. We provide evidence that bi-nucleation in MICAL-L1- and EHD1-depleted cells is a consequence of impaired recycling endosome transport during late cytokinesis. However, depletion of MICAL-L1, but not EHD1, resulted in aberrant chromosome alignment and lagging chromosomes, suggesting an EHD1-independent function for MICAL-L1 earlier in mitosis. Moreover, we provide evidence that MICAL-L1 and EHD1 differentially influence microtubule dynamics during early and late mitosis. Collectively, our new data suggest several unanticipated roles for MICAL-L1 and EHD1 during the cell cycle.

  8. A novel Snf2 protein maintains trans-generational regulatory states established by paramutation in maize.

    Directory of Open Access Journals (Sweden)

    Christopher J Hale

    2007-10-01

    Full Text Available Paramutations represent heritable epigenetic alterations that cause departures from Mendelian inheritance. While the mechanism responsible is largely unknown, recent results in both mouse and maize suggest paramutations are correlated with RNA molecules capable of affecting changes in gene expression patterns. In maize, multiple required to maintain repression (rmr loci stabilize these paramutant states. Here we show rmr1 encodes a novel Snf2 protein that affects both small RNA accumulation and cytosine methylation of a proximal transposon fragment at the Pl1-Rhoades allele. However, these cytosine methylation differences do not define the various epigenetic states associated with paramutations. Pedigree analyses also show RMR1 does not mediate the allelic interactions that typically establish paramutations. Strikingly, our mutant analyses show that Pl1-Rhoades RNA transcript levels are altered independently of transcription rates, implicating a post-transcriptional level of RMR1 action. These results suggest the RNA component of maize paramutation maintains small heterochromatic-like domains that can affect, via the activity of a Snf2 protein, the stability of nascent transcripts from adjacent genes by way of a cotranscriptional repression process. These findings highlight a mechanism by which alleles of endogenous loci can acquire novel expression patterns that are meiotically transmissible.

  9. Social dominance-related major urinary proteins and the regulatory mechanism in mice.

    Science.gov (United States)

    Guo, Huifen; Fang, Qi; Huo, Ying; Zhang, Yaohua; Zhang, Jianxu

    2015-11-01

    Major urinary proteins (MUPs) have been proven to be non-volatile male pheromones in mice. Here, we aimed to elucidate the relationship between MUPs and dominance hierarchy, and the underlying molecular mechanisms. Dominance-submission relationship was established by chronic dyadic encountering. We found that at the urinary protein level and hepatic mRNA level, the expression of major MUPs, including Mup20, was enhanced in dominant males compared with subordinate males, indicating that MUPs might signal the social status of male mice. Meanwhile, the mRNA level of hepatic corticotropin releasing hormone receptor 2 (CRHR2) was higher in subordinate male mice than in dominant male mice. Castration also enhanced the expression of CRHR2, but suppressed that of MUPs. CRHR2 agonist treatment reduced the expression of MUPs in liver. However, male social status failed to exert significant influence on serum testosterone and corticosterone as well as the mRNA expression of their receptors. These findings reveal that some MUPs, especially Mup20, might constitute potential dominance pheromones and could be downregulated by hepatic CRHR2, which is possibly independent of androgen or corticosterone systems.

  10. Molecular dynamics simulations of conformation changes of HIV-1 regulatory protein on graphene

    Science.gov (United States)

    Zhao, Daohui; Li, Libo; He, Daohang; Zhou, Jian

    2016-07-01

    The fragment of viral protein R (Vpr), Vpr13-33, plays an important role in regulating nuclear importing of HIV genes through channel formation in which it adopts a leucine-zipper-like alpha-helical conformation. A recent experimental study reported that helical Vpr13-33 would transform to β-sheet or random coil structures and aggregate on the surface of graphene or graphene oxide through hydrophobic interactions. Due to experimental limitations, however, there is still a considerable lack of understanding on the adsorption dynamics at the early stage of the conformational transition at water-graphene interface and the underlying driving force at molecular level. In this study, atomistic molecular dynamics simulations were used to explore the conformation transition phenomena. Vpr13-33 kept α-helical structure in solution, but changed to β-sheet structure when strongly adsorbed onto graphene. Preferential adsorption of Vpr13-33 on graphene is dominated by hydrophobic interactions. The cluster analysis identified the most significant populated conformation and the early stage of structure conversion from α-helical to β-sheet was found, but the full β-sheet propagation was not observed. Free energy landscape analysis further complemented the transformation analysis of peptide conformations. These findings are consistent with experimental results, and give a molecular level interpretation for the reduced cytotoxicity of Vpr13-33 to some extent upon graphene exposure. Meanwhile, this study provides some significant insights into the detailed mechanism of graphene-induced protein conformation transition.

  11. Complex Role of the Mitochondrial Targeting Signal in the Function of Steroidogenic Acute Regulatory Protein Revealed by Bacterial Artificial Chromosome Transgenesis in Vivo

    OpenAIRE

    Sasaki, Goro; Ishii, Tomohiro; Jeyasuria, Pancharatnam; Jo, Youngah; Bahat, Assaf; Orly, Joseph; Hasegawa, Tomonobu; Parker, Keith L.

    2008-01-01

    The steroidogenic acute regulatory protein (StAR) stimulates the regulated production of steroid hormones in the adrenal cortex and gonads by facilitating the delivery of cholesterol to the inner mitochondrial membrane. To explore key aspects of StAR function within bona fide steroidogenic cells, we used a transgenic mouse model to explore the function of StAR proteins in vivo. We first validated this transgenic bacterial artificial chromosome reconstitution system by targeting enhanced green...

  12. Phosphorylation of the regulatory beta-subunit of protein kinase CK2 by checkpoint kinase Chk1: identification of the in vitro CK2beta phosphorylation site

    DEFF Research Database (Denmark)

    Kristensen, Lars P; Larsen, Martin Røssel; Højrup, Peter;

    2004-01-01

    The regulatory beta-subunit of protein kinase CK2 mediates the formation of the CK2 tetrameric form and it has functions independent of CK2 catalytic subunit through interaction with several intracellular proteins. Recently, we have shown that CK2beta associates with the human checkpoint kinase Chk...... by the modification of Thr213 but it does require the presence of an active Chk1 kinase....

  13. Defective jejunal and colonic salt absorption and alteredNa +/H+ exchanger 3 (NHE3) activity in NHE regulatory factor 1 (NHERF1) adaptor protein-deficient mice

    NARCIS (Netherlands)

    N. Broere (Nellie); M. Chen (Min); A. Cinar (Ayhan); A.K. Singh (Arbind); J. Hillesheim (Jutta); B. Riederer (Beat Michel); M. Lunnemann; I. Rottinghaus (Ingrid); A. Krabbenhöft (Anja); R. Engelhardt (Regina); B. Rausch; E.J. Weinman (Edward); M. Donowitz (Mark); A. Hubbard; O. Kocher (Olivier); H.R. de Jonge (Hugo); B.M. Hogema (Boris); U. Seidler (Ursula)

    2009-01-01

    textabstractWe investigated the role of the Na+/H+ exchanger regulatory factor 1 (NHERF1) on intestinal salt and water absorption, brush border membrane (BBM) morphology, and on the NHE3 mRNA expression, protein abundance, and transport activity in the murine intestine. NHERF1-deficient mice display

  14. Interactions between Barley a-Amylases, Substrates, Inhibitors and Regulatory Proteins

    DEFF Research Database (Denmark)

    Hachem, Maher Abou; Bozonnet, Sophie; Willemoës, Martin;

    2006-01-01

    Barley a-amylase binds sugars at two sites on the enzyme surface in addition to the active site. Crystallography and site-directed mutagenesis highlight the importance of aromatic residues at these surface sites as demonstrated by Kd values determined for ß-cyclodextrin by surface plasmon resonance...... by mutagenesis, crystallography and microcalorimetry. Further improvement of recombinant AMY2 production allows future direct mutational analysis in this isozyme. Specific proteinaceous inhibitors act on a-amylases of different origin. In the complex of barley a-amylase/subtilisin inhibitor (BASI) with AMY2...... of the disulphide reductase thioredoxin h that attacks a specific disulphide bond in BASI and, remarkably, reduces two different disulphide bonds in the barley monomeric and dimeric amylase inhibitors that both belong to the CM-proteins and inhibit animal a-amylase....

  15. Perilipin-mediated lipid droplet formation in adipocytes promotes sterol regulatory element-binding protein-1 processing and triacylglyceride accumulation.

    Directory of Open Access Journals (Sweden)

    Yu Takahashi

    Full Text Available Sterol regulatory element-binding protein-1 (SREBP-1 has been thought to be a critical factor that assists adipogenesis. During adipogenesis SREBP-1 stimulates lipogenic gene expression, and peroxisome proliferator-activated receptor γ (PPARγ enhances perilipin (plin gene expression, resulting in generating lipid droplets (LDs to store triacylglycerol (TAG in adipocytes. Plin coats adipocyte LDs and protects them from lipolysis. Here we show in white adipose tissue (WAT of plin-/- mice that nuclear active SREBP-1 and its target gene expression, but not nuclear SREBP-2, significantly decreased on attenuated LD formation. When plin-/- mouse embryonic fibroblasts (MEFs differentiated into adipocytes, attenuated LDs were formed and nuclear SREBP-1 decreased, but enforced plin expression restored them to their original state. Since LDs are largely derived from the endoplasmic reticulum (ER, alterations in the ER cholesterol content were investigated during adipogenesis of 3T3-L1 cells. The ER cholesterol greatly reduced in differentiated adipocytes. The ER cholesterol level in plin-/- WAT was significantly higher than that of wild-type mice, suggesting that increased LD formation caused a change in ER environment along with a decrease in cholesterol. When GFP-SREBP-1 fusion proteins were exogenously expressed in 3T3-L1 cells, a mutant protein lacking the S1P cleavage site was poorly processed during adipogenesis, providing evidence of the increased canonical pathway for SREBP processing in which SREBP-1 is activated by two cleavage enzymes in the Golgi. Therefore, LD biogenesis may create the ER microenvironment favorable for SREBP-1 activation. We describe the novel interplay between LD formation and SREBP-1 activation through a positive feedback loop.

  16. The function of the RNA-binding protein TEL1 in moss reveals ancient regulatory mechanisms of shoot development.

    Science.gov (United States)

    Vivancos, Julien; Spinner, Lara; Mazubert, Christelle; Charlot, Florence; Paquet, Nicolas; Thareau, Vincent; Dron, Michel; Nogué, Fabien; Charon, Céline

    2012-03-01

    The shoot represents the basic body plan in land plants. It consists of a repeated structure composed of stems and leaves. Whereas vascular plants generate a shoot in their diploid phase, non-vascular plants such as mosses form a shoot (called the gametophore) in their haploid generation. The evolution of regulatory mechanisms or genetic networks used in the development of these two kinds of shoots is unclear. TERMINAL EAR1-like genes have been involved in diploid shoot development in vascular plants. Here, we show that disruption of PpTEL1 from the moss Physcomitrella patens, causes reduced protonema growth and gametophore initiation, as well as defects in gametophore development. Leafy shoots formed on ΔTEL1 mutants exhibit shorter stems with more leaves per shoot, suggesting an accelerated leaf initiation (shortened plastochron), a phenotype shared with the Poaceae vascular plants TE1 and PLA2/LHD2 mutants. Moreover, the positive correlation between plastochron length and leaf size observed in ΔTEL1 mutants suggests a conserved compensatory mechanism correlating leaf growth and leaf initiation rate that would minimize overall changes in plant biomass. The RNA-binding protein encoded by PpTEL1 contains two N-terminus RNA-recognition motifs, and a third C-terminus non-canonical RRM, specific to TEL proteins. Removal of the PpTEL1 C-terminus (including this third RRM) or only 16-18 amino acids within it seriously impairs PpTEL1 function, suggesting a critical role for this third RRM. These results show a conserved function of the RNA-binding PpTEL1 protein in the regulation of shoot development, from early ancestors to vascular plants, that depends on the third TEL-specific RRM.

  17. Adaptive and maladaptive expression of the mRNA regulatory protein HuR

    Institute of Scientific and Technical Information of China (English)

    Suman; Govindaraju; Beth; S; Lee

    2013-01-01

    The RNA-binding proteins involved in regulation of mRNA post-transcriptional processing and translation control the fates of thousands of mRNA transcripts and basic cellular processes. The best studied of these, HuR, is well characterized as a mediator of mRNA stability and translation, and more recently, as a factor in nuclear functions such as pre-mRNA splicing. Due to HuR’s role in regulating thousands of mRNA transcripts, including those for other RNA-binding proteins, HuR can act as a master regulator of cell survival and proliferation. HuR itself is subject to multiple post-translationa modifications including regulation of its nucleocytoplasmic distribution. However, the mechanisms that govern HuR levels in the cell have only recently begun to be defined. These mechanisms are critical to cell health, as it has become clear in recent years that aberrant expression of HuR can lead alternately to decreased cell viability or to promotion of pathological proliferation and invasiveness. HuR is expressed as alternate mRNAs that vary in their untranslated regions, leading to differences in transcript stability and translatability. Multiple transcription factors and modulators of mRNA stability that regulate HuR mRNA expression have been identified. In addition, translation of HuR is regulated by numerous microRNAs, several of which have been demonstrated to have anti-tumor properties due to their suppression of HuR expression. This review summarizes the current state of knowledge of the factors that regulate HuR expression, along with the circumstances under which these factors contribute to cancer and inflammation.

  18. Regulatory roles of tumor-suppressor proteins and noncoding RNA in cancer and normal cell functions.

    Science.gov (United States)

    Garen, Alan; Song, Xu

    2008-04-15

    We describe a mechanism for reversible regulation of gene transcription, mediated by a family of tumor-suppressor proteins (TSP) containing a DNA-binding domain (DBD) that binds to a gene and represses transcription, and RNA-binding domains (RBDs) that bind RNA, usually a noncoding RNA (ncRNA), forming a TSP/RNA complex that releases the TSP from a gene and reverses repression. This mechanism appears to be involved in the regulation of embryogenesis, oncogenesis, and steroidogenesis. Embryonic cells express high levels of RNA that bind to a TSP and prevent repression of proto-oncogenes that drive cell proliferation. The level of the RNA subsequently decreases in most differentiating cells, enabling a TSP to repress proto-oncogenes and stop cell proliferation. Oncogenesis can result when the level of the RNA fails to decrease in a proliferating cell or increases in a differentiated cell. This mechanism also regulates transcription of P450scc, the first gene in the steroidogenic pathway.

  19. Epithelial and endothelial expression of the green fluorescent protein reporter gene under the control of bovine prion protein (PrP) gene regulatory sequences in transgenic mice

    Science.gov (United States)

    Lemaire-Vieille, Catherine; Schulze, Tobias; Podevin-Dimster, Valérie; Follet, Jérome; Bailly, Yannick; Blanquet-Grossard, Françoise; Decavel, Jean-Pierre; Heinen, Ernst; Cesbron, Jean-Yves

    2000-05-01

    The expression of the cellular form of the prion protein (PrPc) gene is required for prion replication and neuroinvasion in transmissible spongiform encephalopathies. The identification of the cell types expressing PrPc is necessary to understanding how the agent replicates and spreads from peripheral sites to the central nervous system. To determine the nature of the cell types expressing PrPc, a green fluorescent protein reporter gene was expressed in transgenic mice under the control of 6.9 kb of the bovine PrP gene regulatory sequences. It was shown that the bovine PrP gene is expressed as two populations of mRNA differing by alternative splicing of one 115-bp 5' untranslated exon in 17 different bovine tissues. The analysis of transgenic mice showed reporter gene expression in some cells that have been identified as expressing PrP, such as cerebellar Purkinje cells, lymphocytes, and keratinocytes. In addition, expression of green fluorescent protein was observed in the plexus of the enteric nervous system and in a restricted subset of cells not yet clearly identified as expressing PrP: the epithelial cells of the thymic medullary and the endothelial cells of both the mucosal capillaries of the intestine and the renal capillaries. These data provide valuable information on the distribution of PrPc at the cellular level and argue for roles of the epithelial and endothelial cells in the spread of infection from the periphery to the brain. Moreover, the transgenic mice described in this paper provide a model that will allow for the study of the transcriptional activity of the PrP gene promoter in response to scrapie infection.

  20. Hepatitis C virus nonstructural protein-5A activates sterol regulatory element-binding protein-1c through transcription factor Sp1

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Zhonghua; Qiao, Ling; Zhou, Yan [Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E3 (Canada); Babiuk, Lorne A. [University of Alberta, Edmonton, Alberta (Canada); Liu, Qiang, E-mail: qiang.liu@usask.ca [Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E3 (Canada)

    2010-11-19

    Research highlights: {yields} A chimeric subgenomic HCV replicon expresses HCV-3a NS5A in an HCV-1b backbone. {yields} HCV-3a NS5A increases mature SREBP-1c protein level. {yields} HCV-3a NS5A activates SREBP-1c transcription. {yields} Domain II of HCV-3a NS5A is more effective in SREBP-1c promoter activation. {yields} Transcription factor Sp1 is required for SREBP-1c activation by HCV-3a NS5A. -- Abstract: Steatosis is an important clinical manifestation of hepatitis C virus (HCV) infection. The molecular mechanisms of HCV-associated steatosis are not well understood. Sterol regulatory element-binding protein-1c (SREBP-1c) is a key transcription factor which activates the transcription of lipogenic genes. Here we showed that the nuclear, mature SREBP-1c level increases in the nucleus of replicon cells expressing HCV-3a nonstructural protein-5A (NS5A). We further showed that HCV-3a NS5A up-regulates SREBP-1c transcription. Additional analysis showed that transcriptional factor Sp1 is involved in SREBP-1c activation by HCV-3a NS5A because inhibition of Sp1 activity by mithramycin A or a dominant-negative Sp1 construct abrogated SREBP-1c promoter activation by HCV-3a NS5A. In addition, chromatin immunoprecipitation (ChIP) assay demonstrated enhanced binding of Sp1 on the SREBP-1c promoter in HCV-3a NS5A replicon cells. These results showed that HCV-3a NS5A activates SREBP-1c transcription through Sp1. Taken together, our results suggest that HCV-3a NS5A is a contributing factor for steatosis caused by HCV-3a infection.

  1. MAR binding protein SMAR1 favors IL-10 mediated regulatory T cell function in acute colitis

    Energy Technology Data Exchange (ETDEWEB)

    Mirlekar, Bhalchandra; Patil, Sachin [Chromatin and Disease Biology Laboratory, National Centre for Cell Science, Ganeshkhind, Pune 411007 (India); Bopanna, Ramanamurthy [Experimental Animal Facility, National Centre for Cell Science, Ganeshkhind, Pune 411007 (India); Chattopadhyay, Samit, E-mail: samit@nccs.res.in [Chromatin and Disease Biology Laboratory, National Centre for Cell Science, Ganeshkhind, Pune 411007 (India)

    2015-08-21

    T{sub reg} cells are not only crucial for controlling immune responses to autoantigens but also prevent those directed towards commensal pathogens. Control of effector immune responses by T{sub reg} cells depend on their capacity to accumulate at inflammatory site and accordingly accommodate to inflammatory environment. Till date, the factors associated with maintaining these aspects of T{sub reg} phenotype is not understood properly. Here we have shown that a known nuclear matrix binding protein SMAR1 is selectively expressed more in colonic T{sub reg} cells and is required for their ability to accumulate at inflammatory site and to sustain high levels of Foxp3 and IL-10 expression during acute colitis. Elimination of anti-inflammatory subsets revealed a protective role for IL-10 producing T{sub reg} cells in SMAR1{sup −/−} mice. Moreover, a combined action of Foxp3 and SMAR1 restricts effector cytokine production and enhance the production of IL-10 by colonic T{sub reg} cells that controls acute colitis. This data highlights a critical role of SMAR1 in maintaining T{sub reg} physiology during inflammatory disorders. - Highlights: • SMAR1 is essential to sustain high level of Foxp3 and IL-10 in T{sub reg} cells. • SMAR1{sup −/−} T{sub reg} cells produce pro-inflammatory cytokine IL-17 leads to inflammation. • IL-10 administration can control the inflammation in SMAR1{sup −/−} mice. • Both Foxp3 and SMAR1 maintain T{sub reg} phenotype that controls colitis.

  2. The HTLV-1 Tax protein binding domain of cyclin-dependent kinase 4 (CDK4 includes the regulatory PSTAIRE helix

    Directory of Open Access Journals (Sweden)

    Grassmann Ralph

    2005-09-01

    Full Text Available Abstract Background The Tax oncoprotein of human T-cell leukemia virus type 1 (HTLV-1 is leukemogenic in transgenic mice and induces permanent T-cell growth in vitro. It is found in active CDK holoenzyme complexes from adult T-cell leukemia-derived cultures and stimulates the G1- to-S phase transition by activating the cyclin-dependent kinase (CDK CDK4. The Tax protein directly and specifically interacts with CDK4 and cyclin D2 and binding is required for enhanced CDK4 kinase activity. The protein-protein contact between Tax and the components of the cyclin D/CDK complexes increases the association of CDK4 and its positive regulatory subunit cyclin D and renders the complex resistant to p21CIP inhibition. Tax mutants affecting the N-terminus cannot bind cyclin D and CDK4. Results To analyze, whether the N-terminus of Tax is capable of CDK4-binding, in vitro binding -, pull down -, and mammalian two-hybrid analyses were performed. These experiments revealed that a segment of 40 amino acids is sufficient to interact with CDK4 and cyclin D2. To define a Tax-binding domain and analyze how Tax influences the kinase activity, a series of CDK4 deletion mutants was tested. Different assays revealed two regions which upon deletion consistently result in reduced binding activity. These were isolated and subjected to mammalian two-hybrid analysis to test their potential to interact with the Tax N-terminus. These experiments concurrently revealed binding at the N- and C-terminus of CDK4. The N-terminal segment contains the PSTAIRE helix, which is known to control the access of substrate to the active cleft of CDK4 and thus the kinase activity. Conclusion Since the N- and C-terminus of CDK4 are neighboring in the predicted three-dimensional protein structure, it is conceivable that they comprise a single binding domain, which interacts with the Tax N-terminus.

  3. Isolation of a cDNA clone for the type I regulatory subunit of bovine cAMP-dependent protein kinase.

    OpenAIRE

    Lee, D C; Carmichael, D F; Krebs, E G; McKnight, G S

    1983-01-01

    A cDNA clone for the type I regulatory subunit (RI) of cAMP-dependent protein kinase (ATP:protein phosphotransferase, EC 2.7.1.37) was isolated from bovine testis by a differential screening method. mRNA coding for RI was enriched 50- to 100-fold by polysome immunoadsorption chromatography with affinity-purified rabbit anti-RI and protein A-Sepharose. Poly(A)+ RNA from these polysomes was utilized to construct a cDNA library in pBR322, and this library was screened for hybridization to 32P-la...

  4. Characterization of novel StAR (steroidogenic acute regulatory protein mutations causing non-classic lipoid adrenal hyperplasia.

    Directory of Open Access Journals (Sweden)

    Christa E Flück

    Full Text Available CONTEXT: Steroidogenic acute regulatory protein (StAR is crucial for transport of cholesterol to mitochondria where biosynthesis of steroids is initiated. Loss of StAR function causes lipoid congenital adrenal hyperplasia (LCAH. OBJECTIVE: StAR gene mutations causing partial loss of function manifest atypical and may be mistaken as familial glucocorticoid deficiency. Only a few mutations have been reported. DESIGN: To report clinical, biochemical, genetic, protein structure and functional data on two novel StAR mutations, and to compare them with published literature. SETTING: Collaboration between the University Children's Hospital Bern, Switzerland, and the CIBERER, Hospital Vall d'Hebron, Autonomous University, Barcelona, Spain. PATIENTS: Two subjects of a non-consanguineous Caucasian family were studied. The 46,XX phenotypic normal female was diagnosed with adrenal insufficiency at the age of 10 months, had normal pubertal development and still has no signs of hypergonodatropic hypogonadism at 32 years of age. Her 46,XY brother was born with normal male external genitalia and was diagnosed with adrenal insufficiency at 14 months. Puberty was normal and no signs of hypergonadotropic hypogonadism are present at 29 years of age. RESULTS: StAR gene analysis revealed two novel compound heterozygote mutations T44HfsX3 and G221S. T44HfsX3 is a loss-of-function StAR mutation. G221S retains partial activity (∼30% and is therefore responsible for a milder, non-classic phenotype. G221S is located in the cholesterol binding pocket and seems to alter binding/release of cholesterol. CONCLUSIONS: StAR mutations located in the cholesterol binding pocket (V187M, R188C, R192C, G221D/S seem to cause non-classic lipoid CAH. Accuracy of genotype-phenotype prediction by in vitro testing may vary with the assays employed.

  5. Role of Regulatory T Cells (Treg and the Treg Effector Molecule Fibrinogen-like Protein 2 in Alloimmunity and Autoimmunity

    Directory of Open Access Journals (Sweden)

    Andrzej Chruscinski

    2015-07-01

    Full Text Available CD4+CD25+Foxp3+ regulatory T cells (Treg are critical to the maintenance of immune tolerance. Treg are known to utilize a number of molecular pathways to control immune responses and maintain immune homeostasis. Fibrinogen-like protein 2 (FGL2 has been identified by a number of investigators as an important immunosuppressive effector of Treg, which exerts its immunoregulatory activity by binding to inhibitory FcγRIIB receptors expressed on antigen-presenting cells including dendritic cells, endothelial cells, and B cells. More recently, it has been suggested that FGL2 accounts for the immunosuppressive activity of a highly suppressive subset of Treg that express T cell immunoreceptor with Ig and ITIM domains (TIGIT. Here we discuss the important role of Treg and FGL2 in preventing alloimmune and autoimmune disease. The FGL2–FcγRIIB pathway is also known to be utilized by viruses and tumor cells to evade immune surveillance. Moving forward, therapies based on modulation of the FGL2–FcγRIIB pathway hold promise for the treatment of a wide variety of conditions ranging from autoimmunity to cancer.

  6. Diethylnitrosamine (DEN) induces irreversible hepatocellular carcinogenesis through overexpression of G1/S-phase regulatory proteins in rat.

    Science.gov (United States)

    Park, Dae-Hun; Shin, Jae Wook; Park, Seung-Kee; Seo, Jae-Nam; Li, Lan; Jang, Ja-June; Lee, Min-Jae

    2009-12-15

    Hepatocellular carcinoma (HCC) is the fifth most frequent cause of cancer deaths in males and was the third most frequent cause of cancer deaths in 2007 throughout the world. The incidence rate is 2-3 times higher in developing countries than in developed countries. Animal models have enabled study of the mechanism of HCC and the development of possible strategies for treatment. Diethylnitrosamine (DEN) is a representative chemical carcinogen with the potential to cause tumors in various organs, including the liver, skin, gastrointestinal tract, and respiratory system. Specifically in HCC, DEN is a complete carcinogen. Many lines of evidence have demonstrated a relationship between carcinogenesis and cell cycle regulation. In this study we found that cell cycle regulatory proteins were critically involved in cancer initiation and promotion by DEN. Cyclin D1, cyclin E, cdk4, and p21(CIP1/WAF1) are factors whose expression levels may be useful as criteria for the classification of hepatic disease. In particular, cdk4 had a pivotal role in the transition to the neoplastic stage. In conclusion, we suggest that changes in the level of cdk4 may be useful as a biomarker for detection of HCC. PMID:19822196

  7. A Model of Yeast Cell-Cycle Regulation Based on a Standard Component Modeling Strategy for Protein Regulatory Networks

    Science.gov (United States)

    Laomettachit, Teeraphan; Chen, Katherine C.; Baumann, William T.

    2016-01-01

    To understand the molecular mechanisms that regulate cell cycle progression in eukaryotes, a variety of mathematical modeling approaches have been employed, ranging from Boolean networks and differential equations to stochastic simulations. Each approach has its own characteristic strengths and weaknesses. In this paper, we propose a “standard component” modeling strategy that combines advantageous features of Boolean networks, differential equations and stochastic simulations in a framework that acknowledges the typical sorts of reactions found in protein regulatory networks. Applying this strategy to a comprehensive mechanism of the budding yeast cell cycle, we illustrate the potential value of standard component modeling. The deterministic version of our model reproduces the phenotypic properties of wild-type cells and of 125 mutant strains. The stochastic version of our model reproduces the cell-to-cell variability of wild-type cells and the partial viability of the CLB2-dbΔ clb5Δ mutant strain. Our simulations show that mathematical modeling with “standard components” can capture in quantitative detail many essential properties of cell cycle control in budding yeast. PMID:27187804

  8. Novel 5' untranslated region directed blockers of iron-regulatory protein-1 dependent amyloid precursor protein translation: implications for down syndrome and Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Sanghamitra Bandyopadhyay

    Full Text Available We reported that iron influx drives the translational expression of the neuronal amyloid precursor protein (APP, which has a role in iron efflux. This is via a classic release of repressor interaction of APP mRNA with iron-regulatory protein-1 (IRP1 whereas IRP2 controls the mRNAs encoding the L- and H-subunits of the iron storage protein, ferritin. Here, we identified thirteen potent APP translation blockers that acted selectively towards the uniquely configured iron-responsive element (IRE RNA stem loop in the 5' untranslated region (UTR of APP mRNA. These agents were 10-fold less inhibitory of 5'UTR sequences of the related prion protein (PrP mRNA. Western blotting confirmed that the 'ninth' small molecule in the series selectively reduced neural APP production in SH-SY5Y cells at picomolar concentrations without affecting viability or the expression of α-synuclein and ferritin. APP blocker-9 (JTR-009, a benzimidazole, reduced the production of toxic Aβ in SH-SY5Y neuronal cells to a greater extent than other well tolerated APP 5'UTR-directed translation blockers, including posiphen, that were shown to limit amyloid burden in mouse models of Alzheimer's disease (AD. RNA binding assays demonstrated that JTR-009 operated by preventing IRP1 from binding to the IRE in APP mRNA, while maintaining IRP1 interaction with the H-ferritin IRE RNA stem loop. Thus, JTR-009 constitutively repressed translation driven by APP 5'UTR sequences. Calcein staining showed that JTR-009 did not indirectly change iron uptake in neuronal cells suggesting a direct interaction with the APP 5'UTR. These studies provide key data to develop small molecules that selectively reduce neural APP and Aβ production at 10-fold lower concentrations than related previously characterized translation blockers. Our data evidenced a novel therapeutic strategy of potential impact for people with trisomy of the APP gene on chromosome 21, which is a phenotype long associated with Down

  9. The relationship of sterol regulatory element-binding protein cleavage-activation protein and apolipoprotein E gene polymorphisms with metabolic changes during weight reduction.

    Science.gov (United States)

    Nieminen, Tuomo; Matinheikki, Jussi; Nenonen, Arja; Kukkonen-Harjula, Katriina; Lindi, Virpi; Hämelahti, Päivi; Laaksonen, Reijo; Fan, Yue-Mei; Kähönen, Mika; Fogelholm, Mikael; Lehtimäki, Terho

    2007-07-01

    Sterol regulatory element-binding protein cleavage-activating protein (SCAP) and apolipoprotein E (apo E) regulate cellular and plasma lipid metabolism. Therefore, variations in the corresponding genes might influence weight reduction and obesity-associated metabolic changes. We investigated the relationships of SCAP (Ile796Val) and apo E polymorphisms on metabolic changes during weight reduction by using a 12-week very low-energy diet. Body composition, serum lipids, plasma glucose, and insulin were assessed in 78 healthy premenopausal women (initial body mass index, 34 +/- 4 kg/m(2); age, 40 +/- 4 years) before and after the intervention. The SCAP genotype groups did not differ in the responses of any parameters measured during weight reduction. Apo E did not differentiate the weight loss, but the changes in total and low-density lipoprotein cholesterol for the genotype groups apo E epsilon2/3, epsilon3/3, as well as epsilon3/4 and epsilon4/4 combined were -0.94 +/- 0.56 and -0.59 +/- 0.32, -0.71 +/- 0.49 and -0.49 +/- 0.45, and -0.55 +/- 0.47 and -0.37 +/- 0.39 mmol/L, respectively (P < .05 for both). In conclusion, neither the SCAP Ile796Val nor the apo E polymorphism was associated with weight loss in obese premenopausal women. However, the apo E-but not SCAP genotype-seems to be one of the modifying factors for serum cholesterol concentrations during very low-energy diet in obese premenopausal women. PMID:17570245

  10. Sterile-α- and Armadillo Motif-Containing Protein Inhibits the TRIF-Dependent Downregulation of Signal Regulatory Protein α To Interfere with Intracellular Bacterial Elimination in Burkholderia pseudomallei-Infected Mouse Macrophages

    OpenAIRE

    Baral, Pankaj; Utaisincharoen, Pongsak

    2013-01-01

    Burkholderia pseudomallei, the causative agent of melioidosis, evades macrophage killing by suppressing the TRIF-dependent pathway, leading to inhibition of inducible nitric oxide synthase (iNOS) expression. We previously demonstrated that virulent wild-type B. pseudomallei inhibits the TRIF-dependent pathway by upregulating sterile-α- and armadillo motif-containing protein (SARM) and by inhibiting downregulation of signal regulatory protein α (SIRPα); both molecules are negative regulators o...

  11. The DtxR protein acting as dual transcriptional regulator directs a global regulatory network involved in iron metabolism of Corynebacterium glutamicum

    Directory of Open Access Journals (Sweden)

    Hüser Andrea T

    2006-02-01

    Full Text Available Abstract Background The knowledge about complete bacterial genome sequences opens the way to reconstruct the qualitative topology and global connectivity of transcriptional regulatory networks. Since iron is essential for a variety of cellular processes but also poses problems in biological systems due to its high toxicity, bacteria have evolved complex transcriptional regulatory networks to achieve an effective iron homeostasis. Here, we apply a combination of transcriptomics, bioinformatics, in vitro assays, and comparative genomics to decipher the regulatory network of the iron-dependent transcriptional regulator DtxR of Corynebacterium glutamicum. Results A deletion of the dtxR gene of C. glutamicum ATCC 13032 led to the mutant strain C. glutamicum IB2103 that was able to grow in minimal medium only under low-iron conditions. By performing genome-wide DNA microarray hybridizations, differentially expressed genes involved in iron metabolism of C. glutamicum were detected in the dtxR mutant. Bioinformatics analysis of the genome sequence identified a common 19-bp motif within the upstream region of 31 genes, whose differential expression in C. glutamicum IB2103 was verified by real-time reverse transcription PCR. Binding of a His-tagged DtxR protein to oligonucleotides containing the 19-bp motifs was demonstrated in vitro by DNA band shift assays. At least 64 genes encoding a variety of physiological functions in iron transport and utilization, in central carbohydrate metabolism and in transcriptional regulation are controlled directly by the DtxR protein. A comparison with the bioinformatically predicted networks of C. efficiens, C. diphtheriae and C. jeikeium identified evolutionary conserved elements of the DtxR network. Conclusion This work adds considerably to our currrent understanding of the transcriptional regulatory network of C. glutamicum genes that are controlled by DtxR. The DtxR protein has a major role in controlling the

  12. 细胞周期调控蛋白与肾脏疾病%Cell cycle- regulatory proteins and kidney disease

    Institute of Scientific and Technical Information of China (English)

    秦福芳; 邵凤民

    2011-01-01

    Cell is alwayse going on cell division, proliferation, hypertrophy, necrosis, no matter what physiological reaction or pathology. And those activities are regulated by Cell cycle - regulatory proteins, the relation and relative progress of Cell cycle - regulatory proteins and kidney disease were reviewed in this paper.%无论是生理情况下或病理情况下,细胞都在进行着分裂、增殖、肥大或凋亡与坏死,而这一系列细胞分裂增殖活动受到细胞周期调控蛋白的调节.本文主要就细胞周期调控蛋白与肾脏疾病之间的关系和相关进展作一综述.

  13. Sterol regulatory element-binding proteins are regulators of the rat thyroid peroxidase gene in thyroid cells.

    Directory of Open Access Journals (Sweden)

    Christine Rauer

    Full Text Available Sterol regulatory element-binding proteins (SREBPs-1c and -2, which were initially discovered as master transcriptional regulators of lipid biosynthesis and uptake, were recently identified as novel transcriptional regulators of the sodium-iodide symporter gene in the thyroid, which is essential for thyroid hormone synthesis. Based on this observation that SREBPs play a role for thyroid hormone synthesis, we hypothesized that another gene involved in thyroid hormone synthesis, the thyroid peroxidase (TPO gene, is also a target of SREBP-1c and -2. Thyroid epithelial cells treated with 25-hydroxycholesterol, which is known to inhibit SREBP activation, had about 50% decreased mRNA levels of TPO. Similarly, the mRNA level of TPO was reduced by about 50% in response to siRNA mediated knockdown of both, SREBP-1 and SREBP-2. Reporter gene assays revealed that overexpression of active SREBP-1c and -2 causes a strong transcriptional activation of the rat TPO gene, which was localized to an approximately 80 bp region in the intron 1 of the rat TPO gene. In vitro- and in vivo-binding of both, SREBP-1c and SREBP-2, to this region in the rat TPO gene could be demonstrated using gel-shift assays and chromatin immunoprecipitation. Mutation analysis of the 80 bp region of rat TPO intron 1 revealed two isolated and two overlapping SREBP-binding elements from which one, the overlapping SRE+609/InvSRE+614, was shown to be functional in reporter gene assays. In connection with recent findings that the rat NIS gene is also a SREBP target gene in the thyroid, the present findings suggest that SREBPs may be possible novel targets for pharmacological modulation of thyroid hormone synthesis.

  14. Dynamic changes in binding of immunoglobulin heavy chain 3' regulatory region to protein factors during class switching.

    Science.gov (United States)

    Chatterjee, Sanjukta; Ju, Zhongliang; Hassan, Rabih; Volpi, Sabrina A; Emelyanov, Alexander V; Birshtein, Barbara K

    2011-08-19

    The 3' regulatory region (3' RR) of the Igh locus works at long distances on variable region (V(H)) and switch region (I) region promoters to initiate germ line (non-coding) transcription (GT) and promote class switch recombination (CSR). The 3' RR contains multiple elements, including enhancers (hs3a, hs1.2, hs3b, and hs4) and a proposed insulator region containing CTCF (CCCTC-binding factor) binding sites, i.e. hs5/6/7 and the downstream region ("38"). Notably, deletion of each individual enhancer (hs3a-hs4) has no significant phenotypic consequence, suggesting that the 3' RR has considerable structural flexibility in its function. To better understand how the 3' RR functions, we identified transcription factor binding sites and used chromatin immunoprecipitation (ChIP) assays to monitor their occupancy in splenic B cells that initiate GT and undergo CSR (LPS±IL4), are deficient in GT and CSR (p50(-/-)), or do not undergo CSR despite efficient GT (anti-IgM+IL4). Like 3' RR enhancers, hs5-7 and the 38 region were observed to contain multiple Pax5 binding sites (in addition to multiple CTCF sites). We found that the Pax5 binding profile to the 3' RR dynamically changed during CSR independent of the specific isotype to which switching was induced, and binding focused on hs1.2, hs4, and hs7. CTCF-associated and CTCF-independent cohesin interactions were also identified. Our observations are consistent with a scaffold model in which a platform of active protein complexes capable of facilitating GT and CSR can be formed by varying constellations of 3' RR elements.

  15. The adenovirus E1A protein targets the SAGA but not the ADA transcriptional regulatory complex through multiple independent domains.

    Science.gov (United States)

    Shuen, Michael; Avvakumov, Nikita; Walfish, Paul G; Brandl, Chris J; Mymryk, Joe S

    2002-08-23

    Expression of the adenovirus E1A protein in the simple eukaryote Saccharomyces cerevisiae inhibits growth. We tested four regions of E1A that alter growth and transcription in mammalian cells for their effects in yeast when expressed as fusions to the Gal4p DNA binding domain. Expression of the N-terminal/conserved region (CR) 1 or CR3, but not of the CR2 or the C-terminal portion of E1A, inhibited yeast growth. Growth inhibition was relieved by deletion of the genes encoding the yGcn5p, Ngg1p, or Spt7p components of the SAGA transcriptional regulatory complex, but not the Ahc1p component of the related ADA complex, indicating that the N-terminal/CR1 and CR3 regions of E1A target the SAGA complex independently. Expression of the pCAF acetyltransferase, a mammalian homologue of yGcn5p, also suppressed growth inhibition by either portion of E1A. Furthermore, the N-terminal 29 residues and the CR3 portion of E1A interacted independently with yGcn5p and pCAF in vitro. Thus, two separate regions of E1A target the yGcn5p component of the SAGA transcriptional activation complex. A subregion of the N-terminal/CR1 fragment spanning residues 30-69 within CR1 also inhibited yeast growth in a SAGA-dependent fashion. However, this region did not interact with yGcn5p or pCAF, suggesting that it makes a third contact with another SAGA component. Our results provide a new model system to elucidate mechanisms by which E1A and the SAGA complex regulate transcription and growth. PMID:12070146

  16. Comprehensive behavioral analysis of voltage-gated calcium channel beta-anchoring and -regulatory protein knockout mice

    Directory of Open Access Journals (Sweden)

    Akito eNakao

    2015-06-01

    Full Text Available Calcium (Ca2+ influx through voltage-gated Ca2+ channels (VGCCs induces numerous intracellular events such as neuronal excitability, neurotransmitter release, synaptic plasticity, and gene regulation. It has been shown that genes related to Ca2+ signaling, such as the CACNA1C, CACNB2, and CACNA1I genes that encode VGCC subunits, are associated with schizophrenia and other psychiatric disorders. Recently, VGCC beta-anchoring and -regulatory protein (BARP was identified as a novel regulator of VGCC activity via the interaction of VGCC β subunits. To examine the role of the BARP in higher brain functions, we generated BARP knockout (KO mice and conducted a comprehensive battery of behavioral tests. BARP KO mice exhibited greatly reduced locomotor activity, as evidenced by decreased vertical activity, stereotypic counts in the open field test, and activity level in the home cage, and longer latency to complete a session in spontaneous T-maze alteration test, which reached study-wide significance. Acoustic startle response was also reduced in the mutants. Interestingly, they showed multiple behavioral phenotypes that are seemingly opposite to those seen in the mouse models of schizophrenia and its related disorders, including increased working memory, flexibility, prepulse inhibition, and social interaction, and decreased locomotor activity, though many of these phenotypes are statistically weak and require further replications. These results demonstrate that BARP is involved in the regulation of locomotor activity and, possibly, emotionality. The possibility was also suggested that BARP KO mice may serve as a unique tool for investigating the pathogenesis/pathophysiology of schizophrenia and related disorders. Further evaluation of the molecular and physiological phenotypes of the mutant mice would provide new insights into the role of BARP in higher brain functions.

  17. Activation of sterol regulatory element binding protein and NLRP3 inflammasome in atherosclerotic lesion development in diabetic pigs.

    Directory of Open Access Journals (Sweden)

    Yu Li

    Full Text Available BACKGROUND: Aberrantly elevated sterol regulatory element binding protein (SREBP, the lipogenic transcription factor, contributes to the development of fatty liver and insulin resistance in animals. Our recent studies have discovered that AMP-activated protein kinase (AMPK phosphorylates SREBP at Ser-327 and inhibits its activity, represses SREBP-dependent lipogenesis, and thereby ameliorates hepatic steatosis and atherosclerosis in insulin-resistant LDLR(-/- mice. Chronic inflammation and activation of NLRP3 inflammasome have been implicated in atherosclerosis and fatty liver disease. However, whether SREBP is involved in vascular lipid accumulation and inflammation in atherosclerosis remains largely unknown. PRINCIPAL FINDINGS: The preclinical study with aortic pouch biopsy specimens from humans with atherosclerosis and diabetes shows intense immunostaining for SREBP-1 and the inflammatory marker VCAM-1 in atherosclerotic plaques. The cleavage processing of SREBP-1 and -2 and expression of their target genes are increased in the well-established porcine model of diabetes and atherosclerosis, which develops human-like, complex atherosclerotic plaques. Immunostaining analysis indicates an elevation in SREBP-1 that is primarily localized in endothelial cells and in infiltrated macrophages within fatty streaks, fibrous caps with necrotic cores, and cholesterol crystals in advanced lesions. Moreover, concomitant suppression of NAD-dependent deacetylase SIRT1 and AMPK is observed in atherosclerotic pigs, which leads to the proteolytic activation of SREBP-1 by diminishing the deacetylation and Ser-372 phosphorylation of SREBP-1. Aberrantly elevated NLRP3 inflammasome markers are evidenced by increased expression of inflammasome components including NLPR3, ASC, and IL-1β. The increase in SREBP-1 activity and IL-1β production in lesions is associated with vascular inflammation and endothelial dysfunction in atherosclerotic pig aorta, as demonstrated

  18. High concentrations of protein test substances may have non-toxic effects on Daphnia magna: implications for regulatory study designs and ecological risk assessments for GM crops.

    Science.gov (United States)

    Raybould, Alan; Burns, Andrea; Hamer, Mick

    2014-01-01

    Laboratory testing for possible adverse effects of insecticidal proteins on non-target organisms (NTOs) is an important part of many ecological risk assessments for regulatory decision-making about the cultivation of insect-resistant genetically modified (IRGM) crops. To increase confidence in the risk assessments, regulatory guidelines for effects testing specify that representative surrogate species for NTOs are exposed to concentrations of insecticidal proteins that are in excess of worst-case predicted exposures in the field. High concentrations in effects tests are achieved by using protein test substances produced in microbes, such as Escherichia coli. In a study that exposed Daphnia magna to a single high concentration of a microbial test substance containing Vip3Aa20, the insecticidal protein in MIR162 maize, small reductions in growth were observed. These effects were surprising as many other studies strongly suggest that the activity of Vip3Aa20 is limited to Lepidoptera. A plausible explanation for the effect on growth is that high concentrations of test substance have a non-toxic effect on Daphnia, perhaps by reducing its feeding rate. A follow-up study tested that hypothesis by exposing D. magna to several concentrations of Vip3Aa20, and a high concentration of a non-toxic protein, bovine serum albumin (BSA). Vip3Aa20 and BSA had sporadic effects on the reproduction and growth of D. magna. The pattern of the effects suggests that they result from non-toxic effects of high concentrations of protein, and not from toxicity. The implications of these results for regulatory NTO effects testing and ERA of IRGM crops are discussed.

  19. α -Actinin TvACTN3 of Trichomonas vaginalis is an RNA-binding protein that could participate in its posttranscriptional iron regulatory mechanism.

    Science.gov (United States)

    Calla-Choque, Jaeson Santos; Figueroa-Angulo, Elisa Elvira; Ávila-González, Leticia; Arroyo, Rossana

    2014-01-01

    Trichomonas vaginalis is a sexually transmitted flagellated protist parasite responsible for trichomoniasis. This parasite is dependent on high levels of iron, favoring its growth and multiplication. Iron also differentially regulates some trichomonad virulence properties by unknown mechanisms. However, there is evidence to support the existence of gene regulatory mechanisms at the transcriptional and posttranscriptional levels that are mediated by iron concentration in T. vaginalis. Thus, the goal of this study was to identify an RNA-binding protein in T. vaginalis that interacts with the tvcp4 RNA stem-loop structure, which may participate in a posttranscriptional iron regulatory mechanism mediated by RNA-protein interactions. We performed RNA electrophoretic mobility shift assay (REMSA) and supershift, UV cross-linking, Northwestern blot, and western blot (WB) assays using cytoplasmic protein extracts from T. vaginalis with the tvcp4 RNA hairpin structure as a probe. We identified a 135-kDa protein isolated by the UV cross-linking assays as α-actinin 3 (TvACTN3) by MALDI-TOF-MS that was confirmed by LS-MS/MS and de novo sequencing. TvACTN3 is a cytoplasmic protein that specifically binds to hairpin RNA structures from trichomonads and humans when the parasites are grown under iron-depleted conditions. Thus, TvACTN3 could participate in the regulation of gene expression by iron in T. vaginalis through a parallel posttranscriptional mechanism similar to that of the IRE/IRP system.

  20. Yeast sterol regulatory element-binding protein (SREBP) cleavage requires Cdc48 and Dsc5, a ubiquitin regulatory X domain-containing subunit of the Golgi Dsc E3 ligase.

    Science.gov (United States)

    Stewart, Emerson V; Lloyd, S Julie-Ann; Burg, John S; Nwosu, Christine C; Lintner, Robert E; Daza, Riza; Russ, Carsten; Ponchner, Karen; Nusbaum, Chad; Espenshade, Peter J

    2012-01-01

    Schizosaccharomyces pombe Sre1 is a membrane-bound transcription factor that controls adaptation to hypoxia. Like its mammalian homolog, sterol regulatory element-binding protein (SREBP), Sre1 activation requires release from the membrane. However, in fission yeast, this release occurs through a strikingly different mechanism that requires the Golgi Dsc E3 ubiquitin ligase complex and the proteasome. The mechanistic details of Sre1 cleavage, including the link between the Dsc E3 ligase complex and proteasome, are not well understood. Here, we present results of a genetic selection designed to identify additional components required for Sre1 cleavage. From the selection, we identified two new components of the fission yeast SREBP pathway: Dsc5 and Cdc48. The AAA (ATPase associated with diverse cellular activities) ATPase Cdc48 and Dsc5, a ubiquitin regulatory X domain-containing protein, interact with known Dsc complex components and are required for SREBP cleavage. These findings provide a mechanistic link between the Dsc E3 ligase complex and the proteasome in SREBP cleavage and add to a growing list of similarities between the Dsc E3 ligase and membrane E3 ligases involved in endoplasmic reticulum-associated degradation.

  1. Identification of the regulatory domain of the mammalian multifunctional protein CAD by the construction of an Escherichia coli hamster hybrid carbamyl-phosphate synthetase.

    Science.gov (United States)

    Liu, X; Guy, H I; Evans, D R

    1994-11-01

    Carbamyl-phosphate synthetases from different organisms have similar catalytic mechanisms and amino acid sequences, but their structural organization, sub-unit structure, and mode of regulation can be very different. Escherichia coli carbamyl-phosphate synthetase (CPSase), a monofunctional protein consisting of amido-transferase and synthetase subunits, is allosterically inhibited by UMP and activated by NH3, IMP, and ornithine. In contrast, mammalian CPSase II, part of the large multifunctional polypeptide, CAD, is inhibited by UTP and activated by 5-phosphoribosyl-1-pyrophosphate (PRPP). Previous photoaffinity labeling studies of E. coli CPSase showed that allosteric effectors bind near the carboxyl-terminal end of the synthetase subunit. This region of the molecule may be a regulatory subdomain common to all CPSases. An E. coli mammalian hybrid CPSase gene has been constructed and expressed in E. coli. The hybrid consists of the E. coli CPSase synthetase catalytic subdomains, residues 1-900 of the 1073 residue polypeptide, fused to the amino-terminal end of the putative 190-residue regulatory subdomain of the mammalian protein. The hybrid CPSase had normal activity, but was no longer regulated by the prokaryotic allosteric effectors. Instead, the glutamine- and ammonia-dependent CPSase activities and both ATP-dependent partial reactions were activated by PRPP and inhibited by UTP, indicating that the binding sites of both of these ligands are located in a regulatory region at the carboxyl-terminal end of the CPSase domain of CAD. The apparent ligand dissociation constants and extent of inhibition by UTP are similar in the hybrid and the wild type mammalian protein, but PRPP binds 4-fold more weakly to the hybrid. The allosteric ligands affected the steady state kinetic parameters of the hybrid differently, suggesting that while the linkage between the catalytic and regulatory subdomains has been preserved, there may be qualitative differences in interdomain

  2. Disruption of the regulatory beta subunit of protein kinase CK2 in mice leads to a cell-autonomous defect and early embryonic lethality

    DEFF Research Database (Denmark)

    Buchou, Thierry; Vernet, Muriel; Blond, Olivier;

    2003-01-01

    . Attempts to generate homozygous embryonic stem (ES) cells failed. By using a conditional knockout approach, we show that lack of CK2beta is deleterious for mouse ES cells and primary embryonic fibroblasts. This is in contrast to what occurs with yeast cells, which can survive without functional CK2beta...... in mice leads to postimplantation lethality. Mutant embryos were reduced in size at embryonic day 6.5 (E6.5). They did not exhibit signs of apoptosis but did show reduced cell proliferation. Mutant embryos were resorbed at E7.5. In vitro, CK2beta(-/-) morula development stopped after the blastocyst stage......Protein kinase CK2 is a ubiquitous protein kinase implicated in proliferation and cell survival. Its regulatory beta subunit, CK2beta, which is encoded by a single gene in mammals, has been suspected of regulating other protein kinases. In this work, we show that knockout of the CK2beta gene...

  3. Decreased basal chloride secretion and altered cystic fibrosis transmembrane conductance regulatory protein, Villin, GLUT5 protein expression in jejunum from leptin-deficient mice

    Directory of Open Access Journals (Sweden)

    Leung L

    2014-07-01

    Full Text Available Lana Leung, Jonathan Kang, Esa Rayyan, Ashesh Bhakta, Brennan Barrett, David Larsen, Ryan Jelinek, Justin Willey, Scott Cochran, Tom L Broderick, Layla Al-NakkashDepartment of Physiology, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USAAbstract: Patients with diabetes and obesity are at increased risk of developing disturbances in intestinal function. In this study, we characterized jejunal function in the clinically relevant leptin-deficient ob/ob mouse, a model of diabetes and obesity. We measured transepithelial short circuit current (Isc, across freshly isolated segments of jejunum from 12-week-old ob/ob and lean C57BL/6J (female and male mice. The basal Isc was significantly decreased (~30% in the ob/ob mice (66.5±5.7 µA/cm2 [n=20] (P< 0.05 compared with their lean counterparts (95.1±9.1 µA/cm2 [n=19]. Inhibition with clotrimazole (100 µM, applied bilaterally was significantly reduced in the ob/ob mice (−7.92%±3.67% [n=15] (P<0.05 compared with the lean mice (10.44%±7.92% [n=15], indicating a decreased contribution of Ca2+-activated K+ (KCa channels in the ob/ob mice. Inhibition with ouabain (100 µM, applied serosally was significantly reduced in the ob/ob mice (1.40%±3.61%, n=13 (P< 0.05 versus the lean mice (18.93%±3.76% [n=18], suggesting a potential defect in the Na+/K+-adenosine triphosphate (ATPase pump with leptin-deficiency. Expression of cystic fibrosis transmembrane conductance regulatory protein (CFTR (normalized to glyceraldehyde-3-phosphate dehydrogenase [GAPDH] was significantly decreased ~twofold (P<0.05 in the ob/ob mice compared with the leans, whilst crypt depth was unchanged. Villi length was significantly increased by ~25% (P<0.05 in the ob/ob mice compared with the leans and was associated with an increase in Villin and GLUT5 expression. GLUT2 and SGLT-1 expression were both unchanged. Our data suggests that reduced basal jejunal Isc in ob/ob mice is likely a consequence of

  4. Characterization of DNA sequences that mediate nuclear protein binding to the regulatory region of the Pisum sativum (pea) chlorophyl a/b binding protein gene AB80: identification of a repeated heptamer motif.

    Science.gov (United States)

    Argüello, G; García-Hernández, E; Sánchez, M; Gariglio, P; Herrera-Estrella, L; Simpson, J

    1992-05-01

    Two protein factors binding to the regulatory region of the pea chlorophyl a/b binding protein gene AB80 have been identified. One of these factors is found only in green tissue but not in etiolated or root tissue. The second factor (denominated ABF-2) binds to a DNA sequence element that contains a direct heptamer repeat TCTCAAA. It was found that presence of both of the repeats is essential for binding. ABF-2 is present in both green and etiolated tissue and in roots and factors analogous to ABF-2 are present in several plant species. Computer analysis showed that the TCTCAAA motif is present in the regulatory region of several plant genes. PMID:1303797

  5. Interactome Analysis of the NS1 Protein Encoded by Influenza A H1N1 Virus Reveals a Positive Regulatory Role of Host Protein PRP19 in Viral Replication.

    Science.gov (United States)

    Kuo, Rei-Lin; Li, Zong-Hua; Li, Li-Hsin; Lee, Kuo-Ming; Tam, Ee-Hong; Liu, Helene M; Liu, Hao-Ping; Shih, Shin-Ru; Wu, Chih-Ching

    2016-05-01

    Influenza A virus, which can cause severe respiratory illnesses in infected individuals, is responsible for worldwide human pandemics. The NS1 protein encoded by this virus plays a crucial role in regulating the host antiviral response through various mechanisms. In addition, it has been reported that NS1 can modulate cellular pre-mRNA splicing events. To investigate the biological processes potentially affected by the NS1 protein in host cells, NS1-associated protein complexes in human cells were identified using coimmunoprecipitation combined with GeLC-MS/MS. By employing software to build biological process and protein-protein interaction networks, NS1-interacting cellular proteins were found to be related to RNA splicing/processing, cell cycle, and protein folding/targeting cellular processes. By monitoring spliced and unspliced RNAs of a reporter plasmid, we further validated that NS1 can interfere with cellular pre-mRNA splicing. One of the identified proteins, pre-mRNA-processing factor 19 (PRP19), was confirmed to interact with the NS1 protein in influenza A virus-infected cells. Importantly, depletion of PRP19 in host cells reduced replication of influenza A virus. In summary, the interactome of influenza A virus NS1 in host cells was comprehensively profiled, and our findings reveal a novel regulatory role for PRP19 in viral replication. PMID:27096427

  6. Differential expression of exons 1a and 1c in mRNAs for sterol regulatory element binding protein-1 in human and mouse organs and cultured cells.

    OpenAIRE

    Shimomura, I; Shimano, H; Horton, J D; Goldstein, J L; Brown, M S

    1997-01-01

    The 5' end of the mRNA-encoding sterol regulatory element binding protein-1 (SREBP-1) exists in two forms, designated 1a and 1c. The divergence results from the use of two transcription start sites that produce two separate 5' exons, each of which is spliced to a common exon 2. Here we show that the ratio of SREBP-1c to 1a transcripts varies markedly among organs of the adult mouse. At one extreme is the liver, in which the 1c transcript predominates by a 9:1 ratio. High 1c:1a ratios are also...

  7. 细胞周期调节蛋白与糖尿病肾病%Relationship between cell cycle regulatory proteins and diabetic nephropathy

    Institute of Scientific and Technical Information of China (English)

    朱俊; 陈澍

    2011-01-01

    肾细胞的异常肥大、增殖、凋亡是糖尿病肾病发生及发展过程中的重要环节,细胞生长的调控最终发生在细胞周期水平上,细胞周期凋节蛋白正是细胞水平调节细胞周期的重要因素,包括细胞周期素(cyclin)、细胞周期素依赖激酶(CDK)、CIP/KIP家族及CDK4抑制剂(INK4)家族.这些细胞周期调节蛋白在肾小球的异常肥大、增殖及硬化中均起了极大的作用.多种药物具有通过调节细胞周期蛋白治疗糖尿病肾病的作用.因此有效调节细胞周期蛋白不仅可以预防糖尿病肾病的发生、发展,还将给糖尿病肾病的治疗带来新的启示.%The hypertrophy, proliferation, apoptosis of renal cell are the important segments to the process of diabetic nephropathy. Meanwhile,the regulation will take place during the cellular level. The cell cycle regulatory proteins are the important factor that adjusts cell cycle in the cellular level ,including cyclin,cyclin-dependent kinase(CDK) ,CIP/KIP and INK4. All these cell cycle regulatory proteins play vital roles in the hypertrophy, proliferation, sclerosis of renal cell. Many drugs can treat diabetic nephropathy by the way of adjusting the cell cycle regulatory proteins. So effective regulation of the cell cycle regulatory protein not only can prevent the incidence of diabetic nephropathy, but also can bring some new enlightenments to the treatment of diabetic nephropathy.

  8. Both short intense and prolonged moderate in vitro stimulation reduce the mRNA expression of calcium-regulatory proteins in rat skeletal muscle

    DEFF Research Database (Denmark)

    Mänttäri, Satu; Ørtenblad, N; Madsen, Klavs;

    2013-01-01

    Sarcoplasmic and t-tubule membrane proteins regulating sarcoplasmic Ca(2+) concentration exhibit fibre-type-dependent isoform expression, and play central roles in muscle contraction and relaxation. The purpose of this study was to evaluate the effects of in vitro electrical stimulation on the mR......+)-regulating system in skeletal muscle. The down-regulation of both isoforms of SERCA and CASQ after a single electrical stimulation session suggests that adaptations to repeated stimulation involve further regulatory mechanisms in addition to acute mRNA responses....

  9. The vasa regulatory region mediates germline expression and maternal transmission of proteins in the malaria mosquito Anopheles gambiae: a versatile tool for genetic control strategies

    Directory of Open Access Journals (Sweden)

    Burt Austin

    2009-07-01

    Full Text Available Abstract Background Germline specific promoters are an essential component of potential vector control strategies which function by genetic drive, however suitable promoters are not currently available for the main human malaria vector Anopheles gambiae. Results We have identified the Anopheles gambiae vasa-like gene and found its expression to be specifically localized to both the male and female gonads in adult mosquitoes. We have functionally characterised using transgenic reporter lines the regulatory regions required for driving transgene expression in a pattern mirroring that of the endogenous vasa locus. Two reporter constructs indicate the existence of distinct vasa regulatory elements within the 5' untranslated regions responsible not only for the spatial and temporal but also for the sex specific germline expression. vasa driven eGFP expression in the ovary of heterozygous mosquitoes resulted in the progressive accumulation of maternal protein and transcript in developing oocytes that were then detectable in all embryos and neonatal larvae. Conclusion We have characterized the vasa regulatory regions that are not only suited to drive transgenes in the early germline of both sexes but could also be utilized to manipulate the zygotic genome of developing embryos via maternal deposition of active molecules. We have used computational models to show that a homing endonuclease-based gene drive system can function in the presence of maternal deposition and describe a novel non-invasive control strategy based on early vasa driven homing endonuclease expression.

  10. Lysosomal-associated Transmembrane Protein 4B (LAPTM4B) Decreases Transforming Growth Factor β1 (TGF-β1) Production in Human Regulatory T Cells.

    Science.gov (United States)

    Huygens, Caroline; Liénart, Stéphanie; Dedobbeleer, Olivier; Stockis, Julie; Gauthy, Emilie; Coulie, Pierre G; Lucas, Sophie

    2015-08-14

    Production of active TGF-β1 is one mechanism by which human regulatory T cells (Tregs) suppress immune responses. This production is regulated by glycoprotein A repetitions predominant (GARP), a transmembrane protein present on stimulated Tregs but not on other T lymphocytes (Th and CTLs). GARP forms disulfide bonds with proTGF-β1, favors its cleavage into latent inactive TGF-β1, induces the secretion and surface presentation of GARP·latent TGF-β1 complexes, and is required for activation of the cytokine in Tregs. We explored whether additional Treg-specific protein(s) associated with GARP·TGF-β1 complexes regulate TGF-β1 production in Tregs. We searched for such proteins by yeast two-hybrid assay, using GARP as a bait to screen a human Treg cDNA library. We identified lysosomal-associated transmembrane protein 4B (LAPTM4B), which interacts with GARP in mammalian cells and is expressed at higher levels in Tregs than in Th cells. LAPTM4B decreases cleavage of proTGF-β1, secretion of soluble latent TGF-β1, and surface presentation of GARP·TGF-β1 complexes by Tregs but does not contribute to TGF-β1 activation. Therefore, LAPTM4B binds to GARP and is a negative regulator of TGF-β1 production in human Tregs. It may play a role in the control of immune responses by decreasing Treg immunosuppression.

  11. Age-Dependent Increase of Brain Copper Levels and Expressions of Copper Regulatory Proteins in the Subventricular Zone and Choroid Plexus

    Directory of Open Access Journals (Sweden)

    Sherleen eFu

    2015-06-01

    Full Text Available Our recent data suggest a high accumulation of Cu in the subventricular zone (SVZ along the wall of brain ventricles. Anatomically, SVZ is in direct contact with cerebrospinal fluid (CSF, which is secreted by a neighboring tissue choroid plexus. Changes in Cu regulatory gene expressions in the SVZ and choroid plexus as the function of aging may determine Cu levels in the CSF and SVZ. This study was designed to investigate associations between age, Cu levels, and Cu regulatory genes in SVZ and plexus. The SVZ and choroid plexus were dissected from brains of 3-week, 10-week or 9-month old male rats. Analyses by atomic absorption spectroscopy revealed that the SVZ of adult and old animals contained the highest Cu level compared with other tested brain regions. Significant positive correlations between age and Cu levels in SVZ and plexus were observed; the SVZ Cu level of old animals was 7.5- and 5.8-fold higher than those of young and adult rats (p<0.01, respectively. Quantitation by qPCR of the transcriptional expressions of Cu regulatory proteins showed that the SVZ expressed the highest level of Cu storage protein MTs, while the choroid plexus expressed the high level of Cu transporter protein Ctr1. Noticeably, Cu levels in the SVZ were positively associated with type B slow proliferating cell marker Gfap (p<0.05, but inversely associated with type A proliferating neuroblast marker Dcx (p<0.05 and type C transit amplifying progenitor marker Nestin (p<0.01. Dmt1 had significant positive correlations with age and Cu levels in the plexus (p<0.01. These findings suggest that Cu levels in all tested brain regions are increased as the function of age. The SVZ shows a different expression pattern of Cu-regulatory genes from the choroid plexus. The age-related increase of MTs and decrease of Ctr1 may contribute to the high Cu level in this neurogenesis active brain region.

  12. Inhibitory Effects of NO-Fluvastatin on Proliferation of Human Lens Epithelial Cells in vitro by Modulating Cell Cycle Regulatory Proteins

    Institute of Scientific and Technical Information of China (English)

    Zhi WANG; Ruiying GAO; Qianqian SHI; Yukan HUANG; Wen CHEN; Kaiying SHI

    2008-01-01

    Summary: The effects of NO-Fluvastatin on proliferation of human lens epithelial cells (HLECs) and the action mechanism were investigated. Cell proliferation was assessed by MTT assay. Cell cycle was analyzed by flow cytometry. The expression of cell cycle regulatory proteins CyclinE mRNA and P21wafl mRNA was detected by reverse transcription polymerase chain reaction (RT-PCR). MTT staining colorimetry showed that HLECs proliferation was markedly inhibited by NO-Fluvastatin and the effect was dependently related to time (24, 48 and 72 h) and dosage (1, 5 and 20 μmol/L). Flow cytometry revealed that NO-Fluvastatin could significantly block HLECs in the G0/G1 phase, resulting in the increased cells in the G0G1 phase and decreased in the S phase (P<0.05). RT-PCR showed that NO-Fluvastatin could obviously inhibit the CyclinE mRNA expression and induce the P21wafl mRNA expression as compared with the negative control groups (P<0.05). This experiment suggested that NO-Fluvastatin could suppress the proliferation of HLECs by regulating cell cycle regulatory proteins (inhibiting the expression of CyclinE mRNA and inducing the expression of P21wafl mRNA), resulting in the arrest of HLECs in the G0/G1 phase, which can offer theory basis for NO-Fluvastatin in treating posterior capsular opacification in clinic practice.

  13. Activation of an immune-regulatory macrophage response and inhibition of lung inflammation in a mouse model of COPD using heat-shock protein alpha B-crystallin-loaded PLGA microparticles

    NARCIS (Netherlands)

    van Noort, Johannes M.; Bsibsi, Malika; Nacken, Peter J.; Gerritsen, Wouter H.; Amor, Sandra; Holtman, Inge R.; Boddeke, Erik; van Ark, Ingrid; Leusink-Muis, Thea; Folkerts, Gert; Hennink, Wim E.; Amidi, Maryam

    2013-01-01

    As an extracellular protein, the small heat-shock protein alpha B-crystallin (HSPB5) has anti-inflammatory effects in several mouse models of inflammation. Here, we show that these effects are associated with the ability of HSPB5 to activate an immune-regulatory response in macrophages via endosomal

  14. Regulatory elements and structural features of Beta vulgaris polygalacturonase-inhibiting protein gene for fungal and pest control

    Science.gov (United States)

    Polygalacturonase-inhibiting proteins (PGIPs) are involved in plant defense. PGIPs are cell wall leucine-rich repeat (LRR) proteins that are known to inhibit pathogen and pest polygalacturonases (PGs) during the infection process. Several sugar beet (Beta vulgaris L.) PGIP genes (BvPGIP) were clon...

  15. Redox proteins of hydroxylating bacterial dioxygenases establish a regulatory cascade that prevents gratuitous induction of tetralin biodegradation genes.

    Science.gov (United States)

    Ledesma-García, Laura; Sánchez-Azqueta, Ana; Medina, Milagros; Reyes-Ramírez, Francisca; Santero, Eduardo

    2016-01-01

    Bacterial dioxygenase systems are multicomponent enzymes that catalyze the initial degradation of many environmentally hazardous compounds. In Sphingopyxis granuli strain TFA tetralin dioxygenase hydroxylates tetralin, an organic contaminant. It consists of a ferredoxin reductase (ThnA4), a ferredoxin (ThnA3) and a oxygenase (ThnA1/ThnA2), forming a NAD(P)H-ThnA4-ThnA3-ThnA1/ThnA2 electron transport chain. ThnA3 has also a regulatory function since it prevents expression of tetralin degradation genes (thn) in the presence of non-metabolizable substrates of the catabolic pathway. This role is of physiological relevance since avoids gratuitous and wasteful production of catabolic enzymes. Our hypothesis for thn regulation implies that ThnA3 exerts its action by diverting electrons towards the regulator ThnY, an iron-sulfur flavoprotein that together with the transcriptional activator ThnR is necessary for thn gene expression. Here we analyze electron transfer among ThnA4, ThnA3 and ThnY by using stopped-flow spectrophotometry and determination of midpoint reduction potentials. Our results indicate that when accumulated in its reduced form ThnA3 is able to fully reduce ThnY. In addition, we have reproduced in vitro the regulatory circuit in the proposed physiological direction, NAD(P)H-ThnA4-ThnA3-ThnY. ThnA3 represents an unprecedented way of communication between a catabolic pathway and its regulatory system to prevent gratuitous induction. PMID:27030382

  16. Redox proteins of hydroxylating bacterial dioxygenases establish a regulatory cascade that prevents gratuitous induction of tetralin biodegradation genes

    Science.gov (United States)

    Ledesma-García, Laura; Sánchez-Azqueta, Ana; Medina, Milagros; Reyes-Ramírez, Francisca; Santero, Eduardo

    2016-01-01

    Bacterial dioxygenase systems are multicomponent enzymes that catalyze the initial degradation of many environmentally hazardous compounds. In Sphingopyxis granuli strain TFA tetralin dioxygenase hydroxylates tetralin, an organic contaminant. It consists of a ferredoxin reductase (ThnA4), a ferredoxin (ThnA3) and a oxygenase (ThnA1/ThnA2), forming a NAD(P)H–ThnA4–ThnA3–ThnA1/ThnA2 electron transport chain. ThnA3 has also a regulatory function since it prevents expression of tetralin degradation genes (thn) in the presence of non-metabolizable substrates of the catabolic pathway. This role is of physiological relevance since avoids gratuitous and wasteful production of catabolic enzymes. Our hypothesis for thn regulation implies that ThnA3 exerts its action by diverting electrons towards the regulator ThnY, an iron-sulfur flavoprotein that together with the transcriptional activator ThnR is necessary for thn gene expression. Here we analyze electron transfer among ThnA4, ThnA3 and ThnY by using stopped-flow spectrophotometry and determination of midpoint reduction potentials. Our results indicate that when accumulated in its reduced form ThnA3 is able to fully reduce ThnY. In addition, we have reproduced in vitro the regulatory circuit in the proposed physiological direction, NAD(P)H–ThnA4–ThnA3–ThnY. ThnA3 represents an unprecedented way of communication between a catabolic pathway and its regulatory system to prevent gratuitous induction. PMID:27030382

  17. Neutron and x-ray scattering studies of the interactions between Ca{sup 2+}-binding proteins and their regulatory targets: Comparisons of troponin C and calmodulin

    Energy Technology Data Exchange (ETDEWEB)

    Trewhella, J.; Olah, G.A.

    1993-11-01

    The regulatory proteins calmodulin and troponin C share a strikingly unusual overall structure. Their crystal structures show each protein consists of two structurally homologous globular domains connected by an extended, solvent exposed alpha-helix of = 8 turns. Calmodulin regulates a variety of enzymes that show remarkable functional and structural diversity. This diversity extends to the amino acid sequences of the calmodulin-binding domains in the target enzymes. In contrast with calodulin, troponin C appears to have a single very specialized function. It is an integral part of the troponin complex, and Ca{sup 2+} binding to troponin c results in the release of the inhibitory function of troponin I, which eventually leads to actin-binding to myosin and the triggering of muscle contraction. Small-angle scattering has been particularly useful for studying the dumbbell shaped proteins because the technique is very sensitive to changes in the relative dispositions of the two globular domains. Small-angle scattering, using x-rays or neutrons, gives information on the overall shapes of proteins in solution. Small-angle scattering studies of calmodulin and its complexes with calmodulin-binding domains from various target enzymes have played an important role in helping us understand the functional role of its unusual solvent exposed helix. Likewise, small-angle scattering has been used to study troponin C with various peptides, to shed light on the similarities and differences between calmodulin and troponin C.

  18. Phylogenetic divergence of CD47 interactions with human signal regulatory protein alpha reveals locus of species specificity. Implications for the binding site.

    Science.gov (United States)

    Subramanian, Shyamsundar; Boder, Eric T; Discher, Dennis E

    2007-01-19

    Cell-cell interactions between ubiquitously expressed integrin-associated protein (CD47) and its counterreceptor signal regulatory protein (SIRPalpha) on phagocytes regulate a wide range of adhesive signaling processes, including the inhibition of phagocytosis as documented in mice. We show that CD47-SIRPalpha binding interactions are different between mice and humans, and we exploit phylogenetic divergence to identify the species-specific binding locus on the immunoglobulin domain of human CD47. All of the studies are conducted in the physiological context of membrane protein display on Chinese hamster ovary (CHO) cells. Novel quantitative flow cytometry analyses with CD47-green fluorescent protein and soluble human SIRPalpha as a probe show that neither human CD47 nor SIRPalpha requires glycosylation for interaction. Human CD47-expressing CHO cells spread rapidly on SIRPalpha-coated glass surfaces, correlating well with the spreading of primary human T cells. In contrast, CHO cells expressing mouse CD47 spread minimally and show equally weak binding to soluble human SIRPalpha. Further phylogenetic analyses and multisite substitutions of the CD47 Ig domain show that human to cow mutation of a cluster of seven residues on adjacent strands near the middle of the domain decreases the association constant for human SIRPalpha to about one-third that of human CD47. Direct tests of cell-cell adhesion between human monocytes and CD47-displaying CHO cells affirm the species specificity as well as the importance of the newly identified binding locus in cell-cell interactions.

  19. Detection of regulatory circuits by integrating the cellular networks of protein–protein interactions and transcription regulation

    OpenAIRE

    Yeger-Lotem, Esti; Margalit, Hanah

    2003-01-01

    The post-genomic era is marked by huge amounts of data generated by large-scale functional genomic and proteomic experiments. A major challenge is to integrate the various types of genome-scale information in order to reveal the intra- and inter- relationships between genes and proteins that constitute a living cell. Here we present a novel application of classical graph algorithms to integrate the cellular networks of protein–protein interactions and transcription regulation. We demonstrate ...

  20. Regulatory activities

    International Nuclear Information System (INIS)

    This publication, compiled in 8 chapters, presents the regulatory system developed by the Nuclear Regulatory Authority (NRA) of the Argentine Republic. The following activities and developed topics in this document describe: the evolution of the nuclear regulatory activity in Argentina; the Argentine regulatory system; the nuclear regulatory laws and standards; the inspection and safeguards of nuclear facilities; the emergency systems; the environmental systems; the environmental monitoring; the analysis laboratories on physical and biological dosimetry, prenatal irradiation, internal irradiation, radiation measurements, detection techniques on nuclear testing, medical program on radiation protection; the institutional relations with national and international organization; the training courses and meeting; the technical information

  1. Signal peptide cleavage is essential for surface expression of a regulatory T cell surface protein, leucine rich repeat containing 32 (LRRC32

    Directory of Open Access Journals (Sweden)

    Sugiyama Hideaki

    2011-05-01

    Full Text Available Abstract Background Elevated numbers of regulatory T cells (Tregs have been implicated in certain cancers. Depletion of Tregs has been shown to increase anti-tumor immunity. Tregs also play a critical role in the suppression of autoimmune responses. The study of Tregs has been hampered by a lack of adequate surface markers. Leucine Rich Repeat Containing 32 (LRRC32, also known as Glycoprotein A Repetitions Predominant (GARP, has been postulated as a novel surface marker of activated Tregs. However, there is limited information regarding the processing of LRRC32 or the regulatory phenotype and functional activity of Tregs expressing LRRC32. Results Using naturally-occurring freshly isolated Tregs, we demonstrate that low levels of LRRC32 are present intracellularly prior to activation and that freshly isolated LRRC32+ Tregs are distinct from LRRC32- Tregs with respect to the expression of surface CD62L. Using LRRC32 transfectants of HEK cells, we demonstrate that the N-terminus of LRRC32 is cleaved prior to expression of the protein at the cell surface. Furthermore, we demonstrate using a construct containing a deleted putative signal peptide region that the presence of a signal peptide region is critical to cell surface expression of LRRC32. Finally, mixed lymphocyte assays demonstrate that LRRC32+ Tregs are more potent suppressors than LRRC32- Tregs. Conclusions A cleaved signal peptide site in LRRC32 is necessary for surface localization of native LRRC32 following activation of naturally-occurring freshly-isolated regulatory T cells. LRRC32 expression appears to alter the surface expression of activation markers of T cells such as CD62L. LRRC32 surface expression may be useful as a marker that selects for more potent Treg populations. In summary, understanding the processing and expression of LRRC32 may provide insight into the mechanism of action of Tregs and the refinement of immunotherapeutic strategies aimed at targeting these cells.

  2. Regulatory elements in the promoter region of the rat gene encoding the acyl-CoA-binding protein

    DEFF Research Database (Denmark)

    Elholm, M; Bjerking, G; Knudsen, J;

    1996-01-01

    Acyl-CoA-binding protein (ACBP) is an ubiquitously expressed 10-kDa protein which is present in high amounts in cells involved in solute transport or secretion. Rat ACBP is encoded by a gene containing the typical hallmarks of a housekeeping gene. Analysis of the promoter region of the rat ACBP...... gene by electrophoretic mobility shift assay (EMSA) revealed specific binding of proteins from rat liver nuclear extracts to potential recognition sequences of NF-1/CTF, Sp1, AP-1, C/EBP and HNF-3. In addition, specific binding to a DR-1 type element was observed. By using in vitro translated...... for the ACBP DR-1 element. Addition of peroxisome proliferators (PP) to H4IIEC3 rat hepatoma cells led to an increase in the ACBP mRNA level, indicating that the DR-1 element could be a functional peroxisome proliferator responsive element (PPRE). Analysis of the ACBP promoter by transient transfection showed...

  3. Metal ion interaction of an oligopeptide fragment representing the regulatory metal binding site of a CueR protein

    DEFF Research Database (Denmark)

    Jancsó, Attila; Szokolai, Hajnalka; Roszahegyi, Livia;

    2013-01-01

    Metalloregulatory proteins of the MerR family are transcriptional activators that sense/control the concentration of various metal ions inside bacteria.1 The Cu+ efflux regulator CueR, similarly to other MerR proteins, possesses a short multiple Cys-containing metal binding loop close to the C......-terminus. CueR has a high selectivity for Cu+, Ag+ and Au+, but exhibits no transcriptional activity for the divalent ions Hg2+ and Zn2+.2 The two Cys- residues of the metal binding loop were shown to settle M+ ions into a linear coordination environment but other factors may also play a role in the recognition...... of cognate metal ions.2 Nevertheless, it is an interesting question whether the same sequence, when removed from the protein, shows a flexibility to adopt different coordination environments and may efficiently bind metal ions having preferences for larger coordination numbers....

  4. Cyclic AMP-dependent protein kinase (cAPK) regulatory subunits are packaged and secreted by many exocrine and endocrine cells

    Energy Technology Data Exchange (ETDEWEB)

    Mednieks, M.I.; Hand, A.R.

    1986-05-01

    Regulatory (R) subunits of cAPK were identified by us as components of rat and human saliva by photoaffinity labeling with (/sup 32/P)-8-azido cyclic AMP. Photoaffinity labeling of purified rat parotid granule contents and immunogold labeling of thin sections with monoclonal antibodies showed the presence of R subunits in granules. The authors now report that cAPK R subunits are present in secretory granules and are apparently secreted by many exocrine and endocrine cell types. Labeling of thin sections of rat tissues with antibody to R subunits and protein A-gold shows gold particles over secretory granules of endocrine cells of the pituitary, pancreas and intestine. Zymogen granules of exocrine pancreatic acinar cells, the dense cores of secretory granules of seminal vesicle epithelial cells and secretory product in the seminal vesicle lumina were prominently labeled with gold. Photoaffinity labeling shows that pancreatic secretions and seminal vesicle contents have cAPK components. Phosphorylative modification of cellular proteins by cAMP controls hormonally stimulated protein secretion by many cell types. Although no catalytic activity was detected, identification of R subunits in granules and as secretory products indicates that they may have multiple roles in cellular mechanisms of action of cyclic AMP-mediated events in secretory cells.

  5. Control of regulatory T cell and Th17 cell differentiation by inhibitory helix-loop-helix protein Id3

    OpenAIRE

    Maruyama, Takashi; Li, Jun; Vaque, Jose P.; Konkel, Joanne E.; Wang, Weifeng; Zhang, Baojun; Zhang, Pin; Zamarron, Brian; Yu, Dongyang; Wu, Yuntao; Zhuang, Yuan; Gutkind, J Silvio; Chen, Wanjun

    2010-01-01

    The molecular mechanisms directing Foxp3 gene transcription in CD4+ T cells remain ill defined. We show that deletion of the inhibitory helix-loop-helix (HLH) protein Id3 results in defective Foxp3+ Treg cell generation. We identified two transforming grothw factor-β1 (TGF-β1)-dependent mechanisms that are vital for activation of Foxp3 gene transcription, and are defective in Id3−/− CD4+ T cells. Enhanced binding of the HLH protein E2A to the Foxp3 promoter promoted Foxp3 gene transcription. ...

  6. Fish Myogenic Regulatory Protein LUC7L: Characterization and Expression Analysis in Korean Rose Bitterling (Rhodeus uyekii)

    OpenAIRE

    Kim, Ju Lan; Kong, Hee Jeong; Kim, Hyung Soo; Kim, Woo-Jin; Kim, Dong-Gyun; Nam, Bo-Hye; Kim, Young-Ok; An, Cheul Min

    2014-01-01

    Serine-arginine-rich nuclear protein LUC7L plays an important role in the regulation of myogenesis in mice. In the present study, we isolated and characterized the Korean rose bitterling Rhodeus uyekii Luc7l cDNA, designated RuLuc7l. The RuLuc7l cDNA is 1,688 bp long and encodes a 364-amino-acid polypeptide containing serine/arginine-rich region at the C-terminus. The deduced RuLuc7l protein has high amino acid identity (71-97%) with those of other species including human. Phylogenetic analys...

  7. Potential of acute phase proteins as predictor of postpartum uterine infections during transition period and its regulatory mechanism in dairy cattle

    Directory of Open Access Journals (Sweden)

    A. Manimaran

    2016-01-01

    Full Text Available Among the various systemic reactions against infection or injury, the acute phase response is the cascade of reaction and mostly coordinated by cytokines-mediated acute phase proteins (APPs production. Since APPs are sensitive innate immune molecules, they are useful for early detection of inflammation in bovines and believed to be better discriminators than routine hematological parameters. Therefore, the possibility of using APPs as a diagnostic and prognostic marker of inflammation in major bovine health disorders including postpartum uterine infection has been explored by many workers. In this review, we discussed specifically importance of postpartum uterine infection, the role of energy balance in uterine infections and potential of APPs as a predictor of postpartum uterine infections during the transition period and its regulatory mechanism in dairy cattle.

  8. A Novel Mutation in the type Iα Regulatory Subunit of Protein Kinase A (PRKAR1A) in a Cushing's Syndrome Patient with Primary Pigmented Nodular Adrenocortical Disease.

    Science.gov (United States)

    Mineo, Ryohei; Tamba, Sachiko; Yamada, Yuya; Okita, Tomonori; Kawachi, Yusuke; Mori, Reiko; Kyo, Mitsuaki; Saisho, Kenji; Kuroda, Yohei; Yamamoto, Koji; Furuya, Akiko; Mukai, Tokuo; Maekawa, Takashi; Nakamura, Yasuhiro; Sasano, Hironobu; Matsuzawa, Yuji

    2016-01-01

    A 40-year-old man presented with Cushing's syndrome due to bilateral adrenal hyperplasia with multiple nodules. Computed tomography scan results were atypical demonstrating an enlargement of the bilateral adrenal glands harboring multiple small nodules, but the lesion was clinically diagnosed to be primary pigmented nodular adrenocortical disease (PPNAD) based on both endocrinological test results and his family history. We performed bilateral adrenalectomy and confirmed the diagnosis histologically. An analysis of the patient and his mother's genomic DNA identified a novel mutation in the type Iα regulatory subunit of protein kinase A (PRKAR1A) gene; p.E17X (c.49G>T). This confirmed the diagnosis of PPNAD which is associated with Carney Complex. PMID:27580546

  9. Variations in the Regulatory Region of Alpha S1-Casein Milk Protein Gene among Tropically Adapted Indian Native (Bos Indicus) Cattle

    Science.gov (United States)

    Kishore, Amit; Mukesh, Manishi; Sobti, Ranbir C.; Mishra, Bishnu P.; Sodhi, Monika

    2013-01-01

    Regulatory region of milk protein alpha S1-casein (αS1-CN) gene was sequenced, characterized, and analyzed to detect variations among 13 Indian cattle (Bos indicus) breeds. Comparative analysis of 1,587 bp region comprising promoter (1,418 bp), exon-I (53 bp), and partial intron-I (116 bp) revealed 35 nucleotide substitutions (32 within promoter region, 1 in exon-I, and 2 in partial intron-I region) and 4 Indels. Within promoter, 15 variations at positions −1399 (A > G), −1288 (G > A), −1259 (T > C), −1158 (T > C), −1016 (A > T), −941 (T > G), −778 (C > T), −610 (G > A), −536 (A > G), −521 (A > G), −330 (A > C), −214 (A > G), −205 (A > T), −206 (C > A), and −175 (A > G) were located within the potential transcription factor binding sites (TFBSs), namely, NF-κE1/c-Myc, GATA-1, GATA-1/NF-E, Oct-1/POU3F2, MEF-2/YY1, GATA-1, AP-1, POU1F1a/GR, TMF, GAL4, YY1/Oct-1, HNF-1, GRalpha/AR, GRalpha/AR, and AP-1, respectively. Seventy-four percent (26/35) of the observed SNPs were novel to Indian cattle and 11 of these novel SNPs were located within one or more TFBSs. Collectively, these might influence the binding affinity towards their respective nuclear TFs thus modulating the level of transcripts in milk and affecting overall protein composition. The study provides information on several distinct variations across indicine and taurine αS1-CN regulatory domains. PMID:25937984

  10. The Yersinia enterocolitica type three secretion chaperone SycO is integrated into the Yop regulatory network and binds to the Yop secretion protein YscM1

    Directory of Open Access Journals (Sweden)

    Heesemann Jürgen

    2007-07-01

    Full Text Available Abstract Background Pathogenic yersiniae (Y. pestis, Y. pseudotuberculosis, Y. enterocolitica share a virulence plasmid encoding a type three secretion system (T3SS. This T3SS comprises more than 40 constituents. Among these are the transport substrates called Yops (Yersinia outer proteins, the specific Yop chaperones (Sycs, and the Ysc (Yop secretion proteins which form the transport machinery. The effectors YopO and YopP are encoded on an operon together with SycO, the chaperone of YopO. The characterization of SycO is the focus of this study. Results We have established the large-scale production of recombinant SycO in its outright form. We confirm that Y. enterocolitica SycO forms homodimers which is typical for Syc chaperones. SycO overproduction in Y. enterocolitica decreases secretion of Yops into the culture supernatant suggesting a regulatory role of SycO in type III secretion. We demonstrate that in vitro SycO interacts with YscM1, a negative regulator of Yop expression in Y. enterocolitica. However, the SycO overproduction phenotype was not mediated by YscM1, YscM2, YopO or YopP as revealed by analysis of isogenic deletion mutants. Conclusion We present evidence that SycO is integrated into the regulatory network of the Yersinia T3SS. Our picture of the Yersinia T3SS interactome is supplemented by identification of the SycO/YscM1 interaction. Further, our results suggest that at least one additional interaction partner of SycO has to be identified.

  11. Regulation of Calcium-Independent Phospholipase A2 Expression by Adrenoceptors and Sterol Regulatory Element Binding Protein-Potential Crosstalk Between Sterol and Glycerophospholipid Mediators.

    Science.gov (United States)

    Chew, Wee-Siong; Ong, Wei-Yi

    2016-01-01

    Calcium-independent phospholipase A2 (iPLA2) is an 85-kDa enzyme that releases docosahexaenoic acid (DHA) from glycerophospholipids. DHA can be metabolized to resolvins and neuroprotectins that have anti-inflammatory properties and effects on neural plasticity. Recent studies show an important role of prefrontal cortical iPLA2 in hippocampo-prefrontal cortical LTP and antidepressant-like effect of the norepinephrine reuptake inhibitor (NRI) antidepressant, maprotiline. In this study, we elucidated the cellular mechanisms through which stimulation of adrenergic receptors could lead to increased iPLA2 expression. Treatment of SH-SY5Y neuroblastoma cells with maprotiline, another tricyclic antidepressant with noradrenaline reuptake inhibiting properties, nortriptyline, and the adrenergic receptor agonist, phenylephrine, resulted in increased iPLA2β mRNA expression. This increase was blocked by inhibitors to alpha-1 adrenergic receptor, mitogen-activated protein (MAP) kinase or extracellular signal-regulated kinase (ERK) 1/2, and sterol regulatory element-binding protein (SREBP). Maprotiline and phenylephrine induced binding of SREBP-2 to sterol regulatory element (SRE) region on the iPLA2 promoter, as determined by electrophoretic mobility shift assay (EMSA). Together, results indicate that stimulation of adrenoreceptors causes increased iPLA2 expression via MAP kinase/ERK 1/2 and SREBP, and suggest a possible mechanism for effect of CNS noradrenaline on neural plasticity and crosstalk between sterol and glycerophospholipid mediators, that may play a role in physiological or pathophysiological processes in the brain and other organs.

  12. Dissecting the expression relationships between RNA-binding proteins and their cognate targets in eukaryotic post-transcriptional regulatory networks

    Science.gov (United States)

    Nishtala, Sneha; Neelamraju, Yaseswini; Janga, Sarath Chandra

    2016-05-01

    RNA-binding proteins (RBPs) are pivotal in orchestrating several steps in the metabolism of RNA in eukaryotes thereby controlling an extensive network of RBP-RNA interactions. Here, we employed CLIP (cross-linking immunoprecipitation)-seq datasets for 60 human RBPs and RIP-ChIP (RNP immunoprecipitation-microarray) data for 69 yeast RBPs to construct a network of genome-wide RBP- target RNA interactions for each RBP. We show in humans that majority (~78%) of the RBPs are strongly associated with their target transcripts at transcript level while ~95% of the studied RBPs were also found to be strongly associated with expression levels of target transcripts when protein expression levels of RBPs were employed. At transcript level, RBP - RNA interaction data for the yeast genome, exhibited a strong association for 63% of the RBPs, confirming the association to be conserved across large phylogenetic distances. Analysis to uncover the features contributing to these associations revealed the number of target transcripts and length of the selected protein-coding transcript of an RBP at the transcript level while intensity of the CLIP signal, number of RNA-Binding domains, location of the binding site on the transcript, to be significant at the protein level. Our analysis will contribute to improved modelling and prediction of post-transcriptional networks.

  13. The α-proteobacteria Wolbachia pipientis protein disulfide machinery has a regulatory mechanism absent in γ-proteobacteria.

    Directory of Open Access Journals (Sweden)

    Patricia M Walden

    Full Text Available The α-proteobacterium Wolbachia pipientis infects more than 65% of insect species worldwide and manipulates the host reproductive machinery to enable its own survival. It can live in mutualistic relationships with hosts that cause human disease, including mosquitoes that carry the Dengue virus. Like many other bacteria, Wolbachia contains disulfide bond forming (Dsb proteins that introduce disulfide bonds into secreted effector proteins. The genome of the Wolbachia strain wMel encodes two DsbA-like proteins sharing just 21% sequence identity to each other, α-DsbA1 and α-DsbA2, and an integral membrane protein, α-DsbB. α-DsbA1 and α-DsbA2 both have a Cys-X-X-Cys active site that, by analogy with Escherichia coli DsbA, would need to be oxidized to the disulfide form to serve as a disulfide bond donor toward substrate proteins. Here we show that the integral membrane protein α-DsbB oxidizes α-DsbA1, but not α-DsbA2. The interaction between α-DsbA1 and α-DsbB is very specific, involving four essential cysteines located in the two periplasmic loops of α-DsbB. In the electron flow cascade, oxidation of α-DsbA1 by α-DsbB is initiated by an oxidizing quinone cofactor that interacts with the cysteine pair in the first periplasmic loop. Oxidizing power is transferred to the second cysteine pair, which directly interacts with α-DsbA1. This reaction is inhibited by a non-catalytic disulfide present in α-DsbA1, conserved in other α-proteobacterial DsbAs but not in γ-proteobacterial DsbAs. This is the first characterization of the integral membrane protein α-DsbB from Wolbachia and reveals that the non-catalytic cysteines of α-DsbA1 regulate the redox relay system in cooperation with α-DsbB.

  14. Regulatory mechanisms for 3'-end alternative splicing and polyadenylation of the Glial Fibrillary Acidic Protein, GFAP, transcript

    DEFF Research Database (Denmark)

    Blechingberg, Jenny; Lykke-Andersen, Søren; Jensen, Torben Heick;

    2007-01-01

    molecular mechanisms participating in alternative GFAP expression. Usage of a polyadenylation signal within the alternatively spliced exon 7a is essential to generate the GFAP kappa and GFAP kappa transcripts. The GFAP kappa mRNA is distinct from GFAP epsilon mRNA given that it also includes intron 7a....... Polyadenylation at the exon 7a site is stimulated by the upstream splice site. Moreover, exon 7a splice enhancer motifs supported both exon 7a splicing and polyadenylation. SR proteins increased the usage of the exon 7a polyadenylation signal but not the exon 7a splicing, whereas the polypyrimidine tract binding...... (PTB) protein enhanced both exon 7a polyadenylation and exon 7a splicing. Finally, increasing transcription by the VP16 trans-activator did not affect the frequency of use of the exon 7a polyadenylation signal whereas the exon 7a splicing frequency was decreased. Our data suggest a model...

  15. Ku autoantigen is the regulatory component of a template-associated protein kinase that phosphorylates RNA polymerase II.

    OpenAIRE

    Dvir, A; Peterson, S R; Knuth, M W; Lu, H.; Dynan, W S

    1992-01-01

    The carboxyl-terminal domain of RNA polymerase II contains a tandemly repeated heptapeptide sequence. Previous work has shown that this sequence is phosphorylated at multiple sites by a template-associated protein kinase, in a reaction that is closely associated with the initiation of RNA synthesis. We have purified this kinase to apparent homogeneity from human (HeLa) cells. The purified kinase phosphorylates native RNA polymerase II only in the presence of DNA and the general transcription ...

  16. Splicing changes in SMA mouse motoneurons and SMN-depleted neuroblastoma cells: evidence for involvement of splicing regulatory proteins.

    OpenAIRE

    Huo, Qing; Kayikci, Melis; Odermatt, Philipp; Meyer, Kathrin; Michels, Olivia; Saxena, Smita; Ule, Jernej; Schümperli, Daniel

    2014-01-01

    Spinal Muscular Atrophy (SMA) is caused by deletions or mutations in the Survival Motor Neuron 1 (SMN1) gene. The second gene copy, SMN2, produces some, but not enough, functional SMN protein. SMN is essential to assemble small nuclear ribonucleoproteins (snRNPs) that form the spliceosome. However, it is not clear whether SMA is caused by defects in this function that could lead to splicing changes in all tissues, or by the impairment of an additional, less well characterized, but motoneuron-...

  17. Comparisons of Ribosomal Protein Gene Promoters Indicate Superiority of Heterologous Regulatory Sequences for Expressing Transgenes in Phytophthora infestans.

    Science.gov (United States)

    Poidevin, Laetitia; Andreeva, Kalina; Khachatoorian, Careen; Judelson, Howard S

    2015-01-01

    Molecular genetics approaches in Phytophthora research can be hampered by the limited number of known constitutive promoters for expressing transgenes and the instability of transgene activity. We have therefore characterized genes encoding the cytoplasmic ribosomal proteins of Phytophthora and studied their suitability for expressing transgenes in P. infestans. Phytophthora spp. encode a standard complement of 79 cytoplasmic ribosomal proteins. Several genes are duplicated, and two appear to be pseudogenes. Half of the genes are expressed at similar levels during all stages of asexual development, and we discovered that the majority share a novel promoter motif named the PhRiboBox. This sequence is enriched in genes associated with transcription, translation, and DNA replication, including tRNA and rRNA biogenesis. Promoters from the three P. infestans genes encoding ribosomal proteins S9, L10, and L23 and their orthologs from P. capsici were tested for their ability to drive transgenes in stable transformants of P. infestans. Five of the six promoters yielded strong expression of a GUS reporter, but the stability of expression was higher using the P. capsici promoters. With the RPS9 and RPL10 promoters of P. infestans, about half of transformants stopped making GUS over two years of culture, while their P. capsici orthologs conferred stable expression. Since cross-talk between native and transgene loci may trigger gene silencing, we encourage the use of heterologous promoters in transformation studies.

  18. Mapping the ribosomal protein S7 regulatory binding site on mRNA of the E. coli streptomycin operon.

    Science.gov (United States)

    Surdina, A V; Rassokhin, T I; Golovin, A V; Spiridonova, V A; Kopylov, A M

    2010-07-01

    In this work it is shown by deletion analysis that an intercistronic region (ICR) approximately 80 nucleotides in length is necessary for interaction with recombinant E. coli S7 protein (r6hEcoS7). A model is proposed for the interaction of S7 with two ICR sites-region of hairpin bifurcations and Shine-Dalgarno sequence of cistron S7. A de novo RNA binding site for heterologous S7 protein of Thermus thermophilus (r6hTthS7) was constructed by selection of a combinatorial RNA library based on E. coli ICR: it has only a single supposed protein recognition site in the region of bifurcation. The SERW technique was used for selection of two intercistronic RNA libraries in which five nucleotides of a double-stranded region, adjacent to the bifurcation, had the randomized sequence. One library contained an authentic AG (-82/-20) pair, while in the other this pair was replaced by AU. A serwamer capable of specific binding to r6hTthS7 was selected; it appeared to be the RNA68 mutant with eight nucleotide mutations. The serwamer binds to r6hTthS7 with the same affinity as homologous authentic ICR of str mRNA binds to r6hEcoS7; apparent dissociation constants are 89 +/- 43 and 50 +/- 24 nM, respectively.

  19. To Gate, or Not to Gate: Regulatory Mechanisms for Intercellular Protein Transport and Virus Movement in Plants

    Institute of Scientific and Technical Information of China (English)

    Shoko Ueki; Vitaly Citovsky

    2011-01-01

    Cell-to-cell signal transduction is vital for orchestrating the whole-body physiology of multi-cellular organisms,and many endogenous macromolecules,proteins,and nucleic acids function as such transported signals.In plants,many of these molecules are transported through plasmodesmata (Pd),the cell wall-spanning channel structures that interconnect plant cells.Furthermore,Pd also act as conduits for cell-to-cell movement of most plant viruses that have evolved to pirate these channels to spread the infection.Pd transport is presumed to be highly selective,and only a limited repertoire of molecules is transported through these channels.Recent studies have begun to unravel mechanisms that actively regulate the opening of the Pd channel to allow traffic.This macromolecular transport between cells comprises two consecutive steps:intracellular targeting to Pd and translocation through the channel to the adjacent cell.Here,we review the current knowledge of molecular species that are transported though Pd and the mechanisms that control this traffic.Generally,Pd traffic can occur by passive diffusion through the trans-Pd cytoplasm or through the membrane/lumen of the trans-Pd ER,or by active transport that includes protein-protein interactions.It is this latter mode of Pd transport that is involved in intercellular traffic of most signal molecules and is regulated by distinct and sometimes interdependent mechanisms,which represent the focus of this article.

  20. The Hepatitis C Virus-induced NLRP3 Inflammasome Activates the Sterol Regulatory Element-binding Protein (SREBP) and Regulates Lipid Metabolism.

    Science.gov (United States)

    McRae, Steven; Iqbal, Jawed; Sarkar-Dutta, Mehuli; Lane, Samantha; Nagaraj, Abhiram; Ali, Naushad; Waris, Gulam

    2016-02-12

    Hepatitis C virus (HCV) relies on host lipids and lipid droplets for replication and morphogenesis. The accumulation of lipid droplets in infected hepatocytes manifests as hepatosteatosis, a common pathology observed in chronic hepatitis C patients. One way by which HCV promotes the accumulation of intracellular lipids is through enhancing de novo lipogenesis by activating the sterol regulatory element-binding proteins (SREBPs). In general, activation of SREBPs occurs during cholesterol depletion. Interestingly, during HCV infection, the activation of SREBPs occurs under normal cholesterol levels, but the underlying mechanisms are still elusive. Our previous study has demonstrated the activation of the inflammasome complex in HCV-infected human hepatoma cells. In this study, we elucidate the potential link between chronic hepatitis C-associated inflammation and alteration of lipid homeostasis in infected cells. Our results reveal that the HCV-activated NLRP3 inflammasome is required for the up-regulation of lipogenic genes such as 3-hydroxy-3-methylglutaryl-coenzyme A synthase, fatty acid synthase, and stearoyl-CoA desaturase. Using pharmacological inhibitors and siRNA against the inflammasome components (NLRP3, apoptosis-associated speck-like protein containing a CARD, and caspase-1), we further show that the activation of the NLRP3 inflammasome plays a critical role in lipid droplet formation. NLRP3 inflammasome activation in HCV-infected cells enables caspase-1-mediated degradation of insulin-induced gene proteins. This subsequently leads to the transport of the SREBP cleavage-activating protein·SREBP complex from the endoplasmic reticulum to the Golgi, followed by proteolytic activation of SREBPs by S1P and S2P in the Golgi. Typically, inflammasome activation leads to viral clearance. Paradoxically, here we demonstrate how HCV exploits the NLRP3 inflammasome to activate SREBPs and host lipid metabolism, leading to liver disease pathogenesis associated with

  1. The Hepatitis C Virus-induced NLRP3 Inflammasome Activates the Sterol Regulatory Element-binding Protein (SREBP) and Regulates Lipid Metabolism.

    Science.gov (United States)

    McRae, Steven; Iqbal, Jawed; Sarkar-Dutta, Mehuli; Lane, Samantha; Nagaraj, Abhiram; Ali, Naushad; Waris, Gulam

    2016-02-12

    Hepatitis C virus (HCV) relies on host lipids and lipid droplets for replication and morphogenesis. The accumulation of lipid droplets in infected hepatocytes manifests as hepatosteatosis, a common pathology observed in chronic hepatitis C patients. One way by which HCV promotes the accumulation of intracellular lipids is through enhancing de novo lipogenesis by activating the sterol regulatory element-binding proteins (SREBPs). In general, activation of SREBPs occurs during cholesterol depletion. Interestingly, during HCV infection, the activation of SREBPs occurs under normal cholesterol levels, but the underlying mechanisms are still elusive. Our previous study has demonstrated the activation of the inflammasome complex in HCV-infected human hepatoma cells. In this study, we elucidate the potential link between chronic hepatitis C-associated inflammation and alteration of lipid homeostasis in infected cells. Our results reveal that the HCV-activated NLRP3 inflammasome is required for the up-regulation of lipogenic genes such as 3-hydroxy-3-methylglutaryl-coenzyme A synthase, fatty acid synthase, and stearoyl-CoA desaturase. Using pharmacological inhibitors and siRNA against the inflammasome components (NLRP3, apoptosis-associated speck-like protein containing a CARD, and caspase-1), we further show that the activation of the NLRP3 inflammasome plays a critical role in lipid droplet formation. NLRP3 inflammasome activation in HCV-infected cells enables caspase-1-mediated degradation of insulin-induced gene proteins. This subsequently leads to the transport of the SREBP cleavage-activating protein·SREBP complex from the endoplasmic reticulum to the Golgi, followed by proteolytic activation of SREBPs by S1P and S2P in the Golgi. Typically, inflammasome activation leads to viral clearance. Paradoxically, here we demonstrate how HCV exploits the NLRP3 inflammasome to activate SREBPs and host lipid metabolism, leading to liver disease pathogenesis associated with

  2. The effects of HIV-1 regulatory TAT protein expression on brain reward function, response to psychostimulants and delay-dependent memory in mice.

    Science.gov (United States)

    Kesby, James P; Markou, Athina; Semenova, Svetlana

    2016-10-01

    Depression and psychostimulant abuse are common comorbidities among humans with immunodeficiency virus (HIV) disease. The HIV regulatory protein TAT is one of multiple HIV-related proteins associated with HIV-induced neurotoxicity. TAT-induced dysfunction of dopamine and serotonin systems in corticolimbic brain areas may result in impaired reward function, thus, contributing to depressive symptoms and psychostimulant abuse. Transgenic mice with doxycycline-induced TAT protein expression in the brain (TAT+, TAT- control) show neuropathology resembling brain abnormalities in HIV+ humans. We evaluated brain reward function in response to TAT expression, nicotine and methamphetamine administration in TAT+ and TAT- mice using the intracranial self-stimulation procedure. We evaluated the brain dopamine and serotonin systems with high-performance liquid chromatography. The effects of TAT expression on delay-dependent working memory in TAT+ and TAT- mice using the operant delayed nonmatch-to-position task were also assessed. During doxycycline administration, reward thresholds were elevated by 20% in TAT+ mice compared with TAT- mice. After the termination of doxycycline treatment, thresholds of TAT+ mice remained significantly higher than those of TAT- mice and this was associated with changes in mesolimbic serotonin and dopamine levels. TAT+ mice showed a greater methamphetamine-induced threshold lowering compared with TAT- mice. TAT expression did not alter delay-dependent working memory. These results indicate that TAT expression in mice leads to reward deficits, a core symptom of depression, and a greater sensitivity to methamphetamine-induced reward enhancement. Our findings suggest that the TAT protein may contribute to increased depressive-like symptoms and continued methamphetamine use in HIV-positive individuals. PMID:27316905

  3. Overlapping protein-binding sites within a negative regulatory element modulate the brain-preferential expression of the human HPRT gene

    Energy Technology Data Exchange (ETDEWEB)

    Rincon-Limas, D.E.; Amaya-Manzanares, E.; Nino-Rosales, M.L. [Baylor College of Medicine, Houston, TX (United States)] [and others

    1994-09-01

    The hypoxanthine phosphoribosyltransferase (HPRT) gene, whose deficiency in humans causes the Lesch-Nyhan syndrome, is constitutively expressed at low levels in all tissues but at higher levels in the brain, the significance and mechanism of which is unknown. Towards dissecting this molecular mechanism, we have previously identified a 182 bp element (hHPRT-NE) within the 5{prime}-flanking region of the human HPRT gene which is involved not only in conferring neuronal specificity but also in repressing gene expression in non-neuronal tissues. Here we report that this element interacts with different nuclear proteins, some of which are present specifically in neuronal cells (complex I) and others of which are present in cells showing constitutive expression of the gene (complex II). In addition, we found that complex I factors are expressed in human NT2/D1 cells following induction of neuronal differentiation by retinoic acid. This finding correlates with an increase of HPRT gene transcription following neuronal differentiation, as demonstrated by RT-PCR and RNAase protection assays. We also mapped the binding sites for both complexes to a 60 bp region which, when tested by transient transfections in cultured fibroblasts, functioned as a repressor element. Methylation interference footprinting revealed a minimal unique DNA motif as the binding site for nuclear proteins from both neuronal and non-neuronal sources. Moreover, UV-crosslinking experiments showed that both complexes are formed by the association of several distinct proteins. Strikingly, site-directed mutagenesis of the footprinted region indicated that different nucleotides are essential for the association of these two complexes. These data suggest that differential formation of DNA-protein complexes at this regulatory domain could be a major determinant in the brain-preferential expression of the human HPRT gene.

  4. Clonorchis sinensis-derived total protein attenuates airway inflammation in murine asthma model by inducing regulatory T cells and modulating dendritic cell functions

    International Nuclear Information System (INIS)

    Highlights: → Treatment with Clonorchis sinensis-derived total protein attenuates OVA-induced airway inflammation and AHR to methacholine. → Induction of CD4+CD25+Foxp3+ T cells and IL-10 along with suppression of splenocyte proliferation by C. sinensis-derived total protein. → C. sinensis-derived total protein interferes with the expression of co-stimulatory molecules in DCs. -- Abstract: Asthma is characterized by Th2-mediated inflammation, resulting in airway hyperresponsiveness (AHR) through airway remodeling. Recent epidemiological and experimental reports have suggested an inverse relationship between the development of allergy and helminth infections. Infection by Clonorchis sinensis, a liver fluke that resides in the bile duct of humans, is endemic predominantly in Asia including Korea and China. Using a murine model for asthma, we investigated the effects of C. sinensis-derived total protein (Cs-TP) on allergen-induced airway inflammation and the mechanism underlying the protective effects of Cs-TP administration on asthma. Treatment with Cs-TP attenuated OVA-induced airway inflammation and methacholine-induced AHR, as well as eosinophilia development, lymphocyte infiltration into the lung, and goblet cell metaplasia. This protective effect of Cs-TP is associated with markedly reduced OVA-specific IgE and Th1/Th2 cytokine production. Moreover, Cs-TP increased the number of CD4+CD25+Foxp3+ regulatory T (Treg) cells as well as their suppressive activity. In fact, proliferation of OVA-restimulated splenocytes was suppressed significantly. Cs-TP also inhibited the expression of such co-stimulatory molecules as CD80, CD86, and CD40 in LPS- or OVA-stimulated dendritic cells (DCs), suggesting that Cs-TP could interfere with the capacity of airway DCs to prime naive T cells. These data demonstrate the capacity of C. sinensis to ameliorate allergic asthma and broaden our understanding of the paradoxical relationship between the allergic immune response and

  5. PuF, an antimetastatic and developmental signaling protein, interacts with the Alzheimer’s amyloid-β precursor protein via a tissue-specific proximal regulatory element (PRE

    Directory of Open Access Journals (Sweden)

    Lahiri Debomoy K

    2013-01-01

    Full Text Available Abstract Background Alzheimer’s disease (AD is intimately tied to amyloid-β (Aβ peptide. Extraneuronal brain plaques consisting primarily of Aβ aggregates are a hallmark of AD. Intraneuronal Aβ subunits are strongly implicated in disease progression. Protein sequence mutations of the Aβ precursor protein (APP account for a small proportion of AD cases, suggesting that regulation of the associated gene (APP may play a more important role in AD etiology. The APP promoter possesses a novel 30 nucleotide sequence, or “proximal regulatory element” (PRE, at −76/−47, from the +1 transcription start site that confers cell type specificity. This PRE contains sequences that make it vulnerable to epigenetic modification and may present a viable target for drug studies. We examined PRE-nuclear protein interaction by gel electrophoretic mobility shift assay (EMSA and PRE mutant EMSA. This was followed by functional studies of PRE mutant/reporter gene fusion clones. Results EMSA probed with the PRE showed DNA-protein interaction in multiple nuclear extracts and in human brain tissue nuclear extract in a tissue-type specific manner. We identified transcription factors that are likely to bind the PRE, using competition gel shift and gel supershift: Activator protein 2 (AP2, nm23 nucleoside diphosphate kinase/metastatic inhibitory protein (PuF, and specificity protein 1 (SP1. These sites crossed a known single nucleotide polymorphism (SNP. EMSA with PRE mutants and promoter/reporter clone transfection analysis further implicated PuF in cells and extracts. Functional assays of mutant/reporter clone transfections were evaluated by ELISA of reporter protein levels. EMSA and ELISA results correlated by meta-analysis. Conclusions We propose that PuF may regulate the APP gene promoter and that AD risk may be increased by interference with PuF regulation at the PRE. PuF is targeted by calcium/calmodulin-dependent protein kinase II inhibitor 1, which also

  6. Role of AtCDC48 & the AtCDC48 Regulatory Protein Family, PUX, in Plant Cell Morphogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Bednarek, Sebastian, Y.

    2009-11-08

    The long-term objective of this work is to understand the molecular events and mechanisms involved in secretory membrane trafficking and organelle biogenesis, which are crucial for normal plant growth and development. Our studies have suggested a vital role for the cytosolic chaperone Cdc48p/p97 during cytokinesis and cell expansion which are highly dependent upon secretory membrane trafficking. Localization studies have shown that the plant Cdc48p/p97, AtCDC48, and the Arabidopsis ortholog of the ER- and Golgi-associated SNARE, syntaxin 5, (referred to as SYP31) are targeted to the division plane during cytokinesis. In addition, AtCDC48 and SYP31 were shown to interact in vitro and in vivo. To characterize further the function of AtCDC48 and SYP31 we have utilized affinity chromatography and MALDI-MS to identify several plant-specific proteins that interact with SYP31 and/or modulate the activity of AtCDC48 including two UBX (i.e. ubiquitin-like) domain containing proteins, PUX1 and PUX2 (Proteins containing UBX domain). These proteins define a plant protein family consisting of 15 uncharacterized members that we postulate interact with AtCDC48. Biochemical studies have demonstrated that PUX2 is a novel membrane adapter for AtCDC48 that mediates AtCDC48/SYP31 interaction and is likely to control AtCDC48-dependent membrane fusion. In contrast, PUX1 negatively regulates AtCDC48 by inhibiting its ATPase activity and by promoting the disassembly of the active hexamer. These findings provide the first evidence that the assembly and disassembly of the CDC48/p97complex is actually a dynamic process. This new unexpected level of regulation for CDC48/p97 was demonstrated to be critical in vivo as pux1 loss-of-function mutants grow faster than wild-type plants. These studies suggest a role for AtCDC48 in plant cell cycle progression including cytokinesis and/or cell expansion. The proposed studies are designed to: 1) characterize further the localization and function of At

  7. Regulatory interaction of the Galpha protein with phospholipase A2 in the plasma membrane of Eschscholzia californica.

    Science.gov (United States)

    Heinze, Michael; Steighardt, Jörg; Gesell, Andreas; Schwartze, Wieland; Roos, Werner

    2007-12-01

    Plant heterotrimeric G-proteins are involved in a variety of signaling pathways, though only one alpha and a few betagamma isoforms of their subunits exist. In isolated plasma membranes of California poppy (Eschscholzia californica), the plant-specific Galpha subunit was isolated and identified immunologically and by homology of the cloned gene with that of several plants. In the same membrane, phospholipase A(2) (PLA(2)) was activated by yeast elicitor only if GTPgammaS (an activator of Galpha) was present. From the cholate-solubilized membrane proteins, PLA(2) was co-precipitated together with Galpha by a polyclonal antiserum raised against the recombinant Galpha. In this immunoprecipitate and in the plasma membrane (but not in the Galpha-free supernatant) PLA(2) was stimulated by GTPgammaS. Plasma membranes and immunoprecipitates obtained from antisense transformants with a low Galpha content allowed no such stimulation. An antiserum raised against the C-terminus (which in animal Galphas is located near the target coupling site) precipitated Galpha without any PLA(2) activity. Using non-denaturing PAGE, complexes of solubilized plasma membrane proteins were visualized that contained Galpha plus PLA(2) activity and dissociated at pH 9.5. At this pH, PLA(2) was no longer stimulated by GTPgammaS. It is concluded that a distinct fraction of the plasma membrane-bound PLA(2) exists in a detergent-resistant complex with Galpha that can be dissociated at pH 9.5. This complex allows the Galpha-mediated activation of PLA(2).

  8. Activation of a Ca(2+)-dependent protein kinase involves intramolecular binding of a calmodulin-like regulatory domain

    Science.gov (United States)

    Huang, J. F.; Teyton, L.; Harper, J. F.; Evans, M. L. (Principal Investigator)

    1996-01-01

    Ca(2+)-dependent protein kinases (CDPKs) are regulated by a C-terminal calmodulin-like domain (CaM-LD). The CaM-LD is connected to the kinase by a short junction sequence which contains a pseudosubstrate autoinhibitor. To understand how the CaM-LD regulates a CDPK, a recombinant CDPK (isoform CPK-1 from Arabidopsis, accession no. L14771) was made as a fusion protein in Escherichia coli. We show here that a truncated CDPK lacking a CaM-LD (e.g. mutant delta NC-26H) can be activated by exogenous calmodulin or an isolated CaM-LD (Kact approximately 2 microM). We propose that Ca2+ activation of a CDPK normally occurs through intramolecular binding of the CaM-LD to the junction. When the junction and CaM-LD are made as two separate polypeptides, the CaM-LD can bind the junction in a Ca(2+)-dependent fashion with a dissociation constant (KD) of 6 x 10(-6) M, as determined by kinetic binding analyses. When the junction and CaM-LD are tethered in a single polypeptide (e.g. in protein JC-1), their ability to engage in bimolecular binding is suppressed (e.g. the tethered CaM-LD cannot bind a separate junction). A mutation which disrupts the putative CaM-LD binding sequence (e.g. substitution LRV-1444 to DLPG) appears to block intramolecular binding, as indicated by the restored ability of a tethered CaM-LD to engage in bimolecular binding. This mutation, in the context of a full-length enzyme (mutant KJM46H), appears to block Ca2+ activation. Thus, a disruption of intramolecular binding correlates with a disruption of the Ca2+ activation mechanism. CDPKs provide the first example of a member of the calmodulin superfamily where a target binding sequence is located within the same polypeptide.

  9. Regulatory Interactions of Csr Components: the RNA Binding Protein CsrA Activates csrB Transcription in Escherichia coli

    OpenAIRE

    Gudapaty, Seshagirirao; Suzuki, Kazushi; Wang, Xin; Babitzke, Paul; Romeo, Tony

    2001-01-01

    The global regulator CsrA (carbon storage regulator) of Escherichia coli is a small RNA binding protein that represses various metabolic pathways and processes that are induced in the stationary phase of growth, while it activates certain exponential phase functions. Both repression and activation by CsrA involve posttranscriptional mechanisms, in which CsrA binding to mRNA leads to decreased or increased transcript stability, respectively. CsrA also binds to a small untranslated RNA, CsrB, f...

  10. Regulatory and junctional proteins of the blood-testis barrier in human Sertoli cells are modified by monobutyl phthalate (MBP) and bisphenol A (BPA) exposure.

    Science.gov (United States)

    de Freitas, André Teves Aquino Gonçalves; Ribeiro, Mariana Antunes; Pinho, Cristiane Figueiredo; Peixoto, André Rebelo; Domeniconi, Raquel Fantin; Scarano, Wellerson R

    2016-08-01

    The blood-testis barrier (BTB) is responsible for providing a protected environment and coordinating the spermatogenesis. Endocrine disruptors (EDs) might lead to infertility, interfering in the BTB structure and modulation. This study aimed to correlate the actions of two EDs, monobutyl phthalate (MBP) and bisphenol A (BPA) in different periods of exposure, in a low toxicity dose to the human Sertoli cells (HSeC) and its effects on the proteins of the BTB and regulatory proteins involved in its modulation. HSeC cells were exposed to MBP (10μM) and BPA (20μM) for 6 and 48h. Western Blot assay indicated that MBP was able to reduce the expression of occludin, ZO-1, N-cadherin and Androgen Receptor (AR), while BPA leads to a reduction of occludin, ZO-1, β-catenin and AR. TGF-β2 and F-actin were not modified. Phalloidin and Hematoxylin and Eosin assay revealed phenotically disruption in Sertoli cells adhesion, without changes in F-actin expression or localization. Our data suggested both EDs present potential for disrupting the structure and maintenance of the human BTB by AR dependent pathway. PMID:26922907

  11. A Recombinant G Protein Plus Cyclosporine A-Based Respiratory Syncytial Virus Vaccine Elicits Humoral and Regulatory T Cell Responses against Infection without Vaccine-Enhanced Disease.

    Science.gov (United States)

    Li, Chaofan; Zhou, Xian; Zhong, Yiwei; Li, Changgui; Dong, Aihua; He, Zhonghuai; Zhang, Shuren; Wang, Bin

    2016-02-15

    Respiratory syncytial virus (RSV) infection can cause severe disease in the lower respiratory tract of infants and older people. Vaccination with a formalin-inactivated RSV vaccine (FI-RSV) and subsequent RSV infection has led to mild to severe pneumonia with two deaths among vaccinees. The vaccine-enhanced disease (VED) was recently demonstrated to be due to an elevated level of Th2 cell responses following loss of regulatory T (Treg) cells from the lungs. To induce high levels of neutralizing Abs and minimize pathogenic T cell responses, we developed a novel strategy of immunizing animals with a recombinant RSV G protein together with cyclosporine A. This novel vaccine induced not only a higher level of neutralizing Abs against RSV infection, but, most importantly, also significantly higher levels of Treg cells that suppressed VED in the lung after RSV infection. The induced responses provided protection against RSV challenge with no sign of pneumonia or bronchitis. Treg cell production of IL-10 was one of the key factors to suppress VED. These finding indicate that G protein plus cyclosporine A could be a promising vaccine against RSV infection in children and older people.

  12. Discovery of the First α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptor Antagonist Dependent upon Transmembrane AMPA Receptor Regulatory Protein (TARP) γ-8.

    Science.gov (United States)

    Gardinier, Kevin M; Gernert, Douglas L; Porter, Warren J; Reel, Jon K; Ornstein, Paul L; Spinazze, Patrick; Stevens, F Craig; Hahn, Patric; Hollinshead, Sean P; Mayhugh, Daniel; Schkeryantz, Jeff; Khilevich, Albert; De Frutos, Oscar; Gleason, Scott D; Kato, Akihiko S; Luffer-Atlas, Debra; Desai, Prashant V; Swanson, Steven; Burris, Kevin D; Ding, Chunjin; Heinz, Beverly A; Need, Anne B; Barth, Vanessa N; Stephenson, Gregory A; Diseroad, Benjamin A; Woods, Tim A; Yu, Hong; Bredt, David; Witkin, Jeffrey M

    2016-05-26

    Transmembrane AMPA receptor regulatory proteins (TARPs) are a family of scaffolding proteins that regulate AMPA receptor trafficking and function. TARP γ-8 is one member of this family and is highly expressed within the hippocampus relative to the cerebellum. A selective TARP γ-8-dependent AMPA receptor antagonist (TDAA) is an innovative approach to modulate AMPA receptors in specific brain regions to potentially increase the therapeutic index relative to known non-TARP-dependent AMPA antagonists. We describe here, for the first time, the discovery of a noncompetitive AMPA receptor antagonist that is dependent on the presence of TARP γ-8. Three major iteration cycles were employed to improve upon potency, CYP1A2-dependent challenges, and in vivo clearance. An optimized molecule, compound (-)-25 (LY3130481), was fully protective against pentylenetetrazole-induced convulsions in rats without the motor impairment associated with non-TARP-dependent AMPA receptor antagonists. Compound (-)-25 could be utilized to provide proof of concept for antiepileptic efficacy with reduced motor side effects in patients. PMID:27067148

  13. A Promoter Polymorphism in the CD59 Complement Regulatory Protein Gene in Donor Lungs Correlates With a Higher Risk for Chronic Rejection After Lung Transplantation.

    Science.gov (United States)

    Budding, K; van de Graaf, E A; Kardol-Hoefnagel, T; Broen, J C A; Kwakkel-van Erp, J M; Oudijk, E-J D; van Kessel, D A; Hack, C E; Otten, H G

    2016-03-01

    Complement activation leads primarily to membrane attack complex formation and subsequent target cell lysis. Protection against self-damage is regulated by complement regulatory proteins, including CD46, CD55, and CD59. Within their promoter regions, single-nucleotide polymorphisms (SNPs) are present that could influence transcription. We analyzed these SNPs and investigated their influence on protein expression levels. A single SNP configuration in the promoter region of CD59 was found correlating with lower CD59 expression on lung endothelial cells (p = 0.016) and monocytes (p = 0.013). Lung endothelial cells with this SNP configuration secreted more profibrotic cytokine IL-6 (p = 0.047) and fibroblast growth factor β (p = 0.036) on exposure to sublytic complement activation than cells with the opposing configuration, whereas monocytes were more susceptible to antibody-mediated complement lysis (p < 0.0001). Analysis of 137 lung transplant donors indicated that this CD59 SNP configuration correlates with impaired long-term survival (p = 0.094) and a significantly higher incidence of bronchiolitis obliterans syndrome (p = 0.046) in the recipient. These findings support a role for complement in the pathogenesis of this posttransplant complication and are the first to show a deleterious association of a donor CD59 promoter polymorphism in lung transplantation.

  14. Cholesterol regulatory effects and antioxidant activities of protein hydrolysates from zebra blenny (Salaria basilisca) in cholesterol-fed rats.

    Science.gov (United States)

    Ktari, Naourez; Belguith-Hadriche, Olfa; Ben Amara, Ibtissem; Ben Hadj, Aïda; Turki, Mouna; Makni-Ayedi, Fatma; Boudaouara, Tahia; El Feki, Abdelfattah; Boualga, Ahmed; Ben Salah, Riadh; Nasri, Moncef

    2015-07-01

    This study aims to explore the hypocholesterolemic effects and antioxidative activities of zebra blenny protein hydrolysates (ZBPHs) in rats fed with a hypercholesterolemic diet. The rats were fed during eight weeks a standard laboratory diet (normal rats), a high-cholesterol diet (HCD) (1%) or a HCD and orally treated with ZBPHs or undigested zebra blenny proteins (UZBPs) (400 mg per kg per day). Results showed that a hypercholesterolemic diet induced the increase of total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C). Treatment with ZBPHs increased the level of high-density lipoprotein cholesterol (HDL-C) and decreased significantly the levels of TC, TG, and LDL-C. In addition, ZBPH treatment showed significant normalization of thiobarbituric acid-reactive substance (TBARS) levels as well as catalase, superoxide dismutase (SOD), and glutathione peroxidase (GPx) activities in renal and hepatic tissues. Furthermore, ZBPHs may also exert significant protective effects on liver and kidney functions, evidenced by a marked decrease in the level of serum urea, uric acid, creatinine, alkaline phosphatase (ALP), and alanine aminotransferase (ALAT). Histological studies confirmed that ZBPHs effectively protected the livers and kidneys against hypercholesterolemia-mediated oxidative damage. Therefore, the study strengthens the hypothesis that ZBPHs can be used as novel antioxidants and hypocholesterolemic compounds against hyperlipidemia induced atherosclerosis. PMID:26065510

  15. Signal regulatory protein alpha negatively regulates beta2 integrin-mediated monocyte adhesion, transendothelial migration and phagocytosis.

    Directory of Open Access Journals (Sweden)

    Dan-Qing Liu

    Full Text Available BACKGROUND: Signal regulate protein alpha (SIRPalpha is involved in many functional aspects of monocytes. Here we investigate the role of SIRPalpha in regulating beta(2 integrin-mediated monocyte adhesion, transendothelial migration (TEM and phagocytosis. METHODOLOGY/PRINCIPAL FINDINGS: THP-1 monocytes/macropahges treated with advanced glycation end products (AGEs resulted in a decrease of SIRPalpha expression but an increase of beta(2 integrin cell surface expression and beta(2 integrin-mediated adhesion to tumor necrosis factor-alpha (TNFalpha-stimulated human microvascular endothelial cell (HMEC-1 monolayers. In contrast, SIRPalpha overexpression in THP-1 cells showed a significant less monocyte chemotactic protein-1 (MCP-1-triggered cell surface expression of beta(2 integrins, in particular CD11b/CD18. SIRPalpha overexpression reduced beta(2 integrin-mediated firm adhesion of THP-1 cells to either TNFalpha-stimulated HMEC-1 monolayers or to immobilized intercellular adhesion molecule-1 (ICAM-1. SIRPalpha overexpression also reduced MCP-1-initiated migration of THP-1 cells across TNFalpha-stimulated HMEC-1 monolayers. Furthermore, beta(2 integrin-mediated THP-1 cell spreading and actin polymerization in response to MCP-1, and phagocytosis of bacteria were both inhibited by SIRPalpha overexpression. CONCLUSIONS/SIGNIFICANCE: SIRPalpha negatively regulates beta(2 integrin-mediated monocyte adhesion, transendothelial migration and phagocytosis, thus may serve as a critical molecule in preventing excessive activation and accumulation of monocytes in the arterial wall during early stage of atherosclerosis.

  16. A Novel Sterol Regulatory Element-Binding Protein Gene (sreA) Identified in Penicillium digitatum Is Required for Prochloraz Resistance, Full Virulence and erg11 (cyp51) Regulation

    OpenAIRE

    Jing Liu; Yongze Yuan; Zhi Wu; Na Li; Yuanlei Chen; Tingting Qin; Hui Geng; Li Xiong; Deli Liu

    2015-01-01

    Penicillium digitatum is the most destructive postharvest pathogen of citrus fruits, causing fruit decay and economic loss. Additionally, control of the disease is further complicated by the emergence of drug-resistant strains due to the extensive use of triazole antifungal drugs. In this work, an orthologus gene encoding a putative sterol regulatory element-binding protein (SREBP) was identified in the genome of P. digitatum and named sreA. The putative SreA protein contains a conserved doma...

  17. Differential association of the Na+/H+ exchanger regulatory factor (NHERF) family of adaptor proteins with the raft- and the non-raft brush border membrane fractions of NHE3

    NARCIS (Netherlands)

    A. Sultan (Ayesha); M. Luo (Ma); Q. Yu (Qingbao); B. Riederer (Beat Michel); W. Xia (Weiliang); M. Chen (Mingmin); S. Lissner (Simone); J.E. Gessner (Johannes); M. Donowitz (Mark); C. Chris Yun (C.); H. deJonge (Hugo); G. Lamprecht (Georg); U. Seidler (Ursula)

    2013-01-01

    textabstractBackground/Aims: Trafficking, brush border membrane (BBM) retention, and signal-specific regulation of the Na+/H+ exchanger NHE3 is regulated by the Na+/H+ Exchanger Regulatory Factor (NHERF) family of PDZ-adaptor proteins, which enable the formation of multiprotein complexes. It is uncl

  18. Identification of putative regulatory region of insulin-like androgenic gland hormone gene (IAG) in the prawn Macrobrachium nipponense and proteins that interact with IAG by using yeast two-hybrid system.

    Science.gov (United States)

    Ma, Ke-Yi; Li, Jia-Le; Qiu, Gao-Feng

    2016-04-01

    Insulin-like androgenic gland hormone gene (IAG) is a sex regulator specifically expressed in male crustaceans, controlling the male sexual differentiation, spermatogenesis and reproductive strategy. Our previous study reported the cloning and characterization of the prawn Macrobrachium nipponense IAG (MnIAG). In this study, we further identified a 2214-bp MnIAG 5'-flanking region, and analyzed its transcription factor binding sites and transcriptional activity. The results showed that there were two potential promoter core sequences, three TATA boxes and one CAAT box existing in the MnIAG 5'-flanking region as well as many potential transcription factor binding sites, such as SRY, Sox-5, GATA-1, etc. Notably, the transcriptional activity was weak in this region, and a negative regulatory region was found in -604 to -231bp. In addition, we constructed M. nipponense yeast libraries and identified proteins interacting with the MnIAG protein by yeast two hybridization assay. The yeast two-hybrid screening yielded ten positive clones, of which five were annotated by NCBI database, namely heat shock protein 21, NADH dehydrogenase, zinc finger protein, beta-N-acetylglucosaminidase and a hypothetical protein. The identification of MnIAG putative regulatory region and proteins that interact with IAG will facilitate our understanding of the regulatory role of MnIAG and provide a foundation for deep insight into the prawn sex differentiation mechanism and signaling transduction pathways. PMID:26979275

  19. Mechanisms of action of hormone-sensitive lipase in mouse Leydig cells: its role in the regulation of the steroidogenic acute regulatory protein.

    Science.gov (United States)

    Manna, Pulak R; Cohen-Tannoudji, Joëlle; Counis, Raymond; Garner, Charles W; Huhtaniemi, Ilpo; Kraemer, Fredric B; Stocco, Douglas M

    2013-03-22

    Hormone-sensitive lipase (HSL) catalyzes the hydrolysis of cholesteryl esters in steroidogenic tissues and, thus, facilitates cholesterol availability for steroidogenesis. The steroidogenic acute regulatory protein (StAR) controls the rate-limiting step in steroid biosynthesis. However, the modes of action of HSL in the regulation of StAR expression remain obscure. We demonstrate in MA-10 mouse Leydig cells that activation of the protein kinase A (PKA) pathway, by a cAMP analog Bt2cAMP, enhanced expression of HSL and its phosphorylation (P) at Ser-660 and Ser-563, but not at Ser-565, concomitant with increased HSL activity. Phosphorylation and activation of HSL coincided with increases in StAR, P-StAR (Ser-194), and progesterone levels. Inhibition of HSL activity by CAY10499 effectively suppressed Bt2cAMP-induced StAR expression and progesterone synthesis. Targeted silencing of endogenous HSL, with siRNAs, resulted in increased cholesteryl ester levels and decreased cholesterol content in MA-10 cells. Depletion of HSL affected lipoprotein-derived cellular cholesterol influx, diminished the supply of cholesterol to the mitochondria, and resulted in the repression of StAR and P-StAR levels. Cells overexpressing HSL increased the efficacy of liver X receptor (LXR) ligands on StAR expression and steroid synthesis, suggesting HSL-mediated steroidogenesis entails enhanced oxysterol production. Conversely, cells deficient in LXRs exhibited decreased HSL responsiveness. Furthermore, an increase in HSL was correlated with the LXR target genes, steroid receptor element-binding protein 1c and ATP binding cassette transporter A1, demonstrating HSL-dependent regulation of steroidogenesis predominantly involves LXR signaling. LXRs interact/cooperate with RXRs and result in the activation of StAR gene transcription. These findings provide novel insight and demonstrate the molecular events by which HSL acts to drive cAMP/PKA-mediated regulation of StAR expression and

  20. Subunit architecture of the Golgi Dsc E3 ligase required for sterol regulatory element-binding protein (SREBP) cleavage in fission yeast.

    Science.gov (United States)

    Lloyd, S Julie-Ann; Raychaudhuri, Sumana; Espenshade, Peter J

    2013-07-19

    The membrane-bound sterol regulatory element-binding protein (SREBP) transcription factors regulate lipogenesis in mammalian cells and are activated through sequential cleavage by the Golgi-localized Site-1 and Site-2 proteases. The mechanism of fission yeast SREBP cleavage is less well defined and, in contrast, requires the Golgi-localized Dsc E3 ligase complex. The Dsc E3 ligase consists of five integral membrane subunits, Dsc1 through Dsc5, and resembles membrane E3 ligases that function in endoplasmic reticulum-associated degradation. Using immunoprecipitation assays and blue native electrophoresis, we determined the subunit architecture for the complex of Dsc1 through Dsc5, showing that the Dsc proteins form subcomplexes and display defined connectivity. Dsc2 is a rhomboid pseudoprotease family member homologous to mammalian UBAC2 and a central component of the Dsc E3 ligase. We identified conservation in the architecture of the Dsc E3 ligase and the multisubunit E3 ligase gp78 in mammals. Specifically, Dsc1-Dsc2-Dsc5 forms a complex resembling gp78-UBAC2-UBXD8. Further characterization of Dsc2 revealed that its C-terminal UBA domain can bind to ubiquitin chains but that the Dsc2 UBA domain is not essential for yeast SREBP cleavage. Based on the ability of rhomboid superfamily members to bind transmembrane proteins, we speculate that Dsc2 functions in SREBP recognition and binding. Homologs of Dsc1 through Dsc4 are required for SREBP cleavage and virulence in the human opportunistic pathogen Aspergillus fumigatus. Thus, these studies advance our organizational understanding of multisubunit E3 ligases involved in endoplasmic reticulum-associated degradation and fungal pathogenesis.

  1. Northwestern profiling of potential translation-regulatory proteins in human breast epithelial cells and malignant breast tissues: evidence for pathological activation of the IGF1R IRES.

    Science.gov (United States)

    Blume, Scott W; Jackson, Nateka L; Frost, Andra R; Grizzle, William E; Shcherbakov, Oleg D; Choi, Hyoungsoo; Meng, Zheng

    2010-06-01

    . Most importantly, we are able to assess the RNA-binding activities of these putative translation-regulatory proteins in primary human breast surgical specimens, and begin to discern positive correlations between individual ITAFs and the malignant phenotype. Together with our previous findings, these new data provide further evidence that pathological dysregulation of IGF1R translational control may contribute to development and progression of human breast cancer, and breast metastasis in particular.

  2. An effective strategy for a whole-cell biosensor based on putative effector interaction site of the regulatory DmpR protein.

    Directory of Open Access Journals (Sweden)

    Saurabh Gupta

    Full Text Available INTRODUCTION AND RATIONALE: The detection of bioavailable phenol is a very important issue in environmental and human hazard assessment. Despite modest developments recently, there is a stern need for development of novel biosensors with high sensitivity for priority phenol pollutants. DmpR (Dimethyl phenol regulatory protein, an NtrC-like regulatory protein for the phenol degradation of Pseudomonas sp. strain CF600, represents an attractive biosensor regimen. Thus, we sought to design a novel biosensor by modifying the phenol detection capacity of DmpR by using mutagenic PCR. METHODS: Binding sites of 'A' domain of DmpR were predicted by LIGSITE, and molecular docking was performed by using GOLD to identify the regions where phenol may interact with DmpR. Total five point mutations, one single at position 42 (Phe-to-Leu, two double at 140 (Asp-to-Glu and 143 (Gln-to-Leu, and two double at L113M (Leu-to- Met and D116A (Asp-to- Ala were created in DmpR by site-directed mutagenesis to construct the reporter plasmids pRLuc42R, pRLuc140p143R, and pRLuc113p116R, respectively. Luciferase assays were performed to measure the activity of luc gene in the presence of phenol and its derivatives, while RT-PCR was used to check the expression of luc gene in the presence of phenol. RESULTS: Only pRLuc42R and pRLuc113p116R showed positive responses to phenolic effectors. The lowest detectable concentration of phenol was 0.5 µM (0.047 mg/L, 0.1 µM for 2, 4-dimethylphenol and 2-nitrophenol, 10 µM for 2, 4, 6-trichlorophenol and 2-chlorophenol, 100 µM for 2, 4-dichlorophenol, 0.01 µM for 4-nitrophenol, and 1 µM for o-cresol. These concentrations were measured by modified luciferase assay within 3 hrs compared to 6-7 hrs in previous studies. Importantly, increased expression of luciferase gene of pRLuc42R was observed by RT-PCR. CONCLUSIONS: The present study offers an effective strategy to design a quick and sensitive biosensor for phenol by constructing

  3. The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors.

    Science.gov (United States)

    Willingham, Stephen B; Volkmer, Jens-Peter; Gentles, Andrew J; Sahoo, Debashis; Dalerba, Piero; Mitra, Siddhartha S; Wang, Jian; Contreras-Trujillo, Humberto; Martin, Robin; Cohen, Justin D; Lovelace, Patricia; Scheeren, Ferenc A; Chao, Mark P; Weiskopf, Kipp; Tang, Chad; Volkmer, Anne Kathrin; Naik, Tejaswitha J; Storm, Theresa A; Mosley, Adriane R; Edris, Badreddin; Schmid, Seraina M; Sun, Chris K; Chua, Mei-Sze; Murillo, Oihana; Rajendran, Pradeep; Cha, Adriel C; Chin, Robert K; Kim, Dongkyoon; Adorno, Maddalena; Raveh, Tal; Tseng, Diane; Jaiswal, Siddhartha; Enger, Per Øyvind; Steinberg, Gary K; Li, Gordon; So, Samuel K; Majeti, Ravindra; Harsh, Griffith R; van de Rijn, Matt; Teng, Nelson N H; Sunwoo, John B; Alizadeh, Ash A; Clarke, Michael F; Weissman, Irving L

    2012-04-24

    CD47, a "don't eat me" signal for phagocytic cells, is expressed on the surface of all human solid tumor cells. Analysis of patient tumor and matched adjacent normal (nontumor) tissue revealed that CD47 is overexpressed on cancer cells. CD47 mRNA expression levels correlated with a decreased probability of survival for multiple types of cancer. CD47 is a ligand for SIRPα, a protein expressed on macrophages and dendritic cells. In vitro, blockade of CD47 signaling using targeted monoclonal antibodies enabled macrophage phagocytosis of tumor cells that were otherwise protected. Administration of anti-CD47 antibodies inhibited tumor growth in orthotopic immunodeficient mouse xenotransplantation models established with patient tumor cells and increased the survival of the mice over time. Anti-CD47 antibody therapy initiated on larger tumors inhibited tumor growth and prevented or treated metastasis, but initiation of the therapy on smaller tumors was potentially curative. The safety and efficacy of targeting CD47 was further tested and validated in immune competent hosts using an orthotopic mouse breast cancer model. These results suggest all human solid tumor cells require CD47 expression to suppress phagocytic innate immune surveillance and elimination. These data, taken together with similar findings with other human neoplasms, show that CD47 is a commonly expressed molecule on all cancers, its function to block phagocytosis is known, and blockade of its function leads to tumor cell phagocytosis and elimination. CD47 is therefore a validated target for cancer therapies.

  4. The Regulatory Effects of Protein Kinase C on the Proliferation of Cultured Human Low-passage Meningioma Cells

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The potential role of the protein kinase C (PKC)-mediated signal transduction pathways in growth regulation was evaluated and the effects and the possible mechanism of PKC inhibitor on low-passage human meningioma cells in vitro investigated. Freshly resected meningiomas obtained from the operation were placed into cell cultures. Cells from early-passage were used for the following experiments. The numbers of the cultured meningioma cells were counted to evaluate the effect of the PKC inhibitor staurosporine on proliferation of meningioma cells. The basal phosphatidylinositol (PI) turnover rate and the inhibitory rate of starosporine on the proliferation of the meningioma cells were detected. It was found that the proliferation of the low-passage human meningioma cells was inhibited by staurosporine in a dose-dependent manner. The inhibitory rate of staurosporine was positively correlated with the basal PI turnover rate (r=0.58, P<0.01). It was suggested that PKC-mediated signal pathway is involved in the proliferation of the low-passage human meningioma cells. The procedure that PKC regulated the proliferation of human meningioma cells is a complex procedure. It is necessary to make more research in order to explore a non-operation therapy or an adjuvant therapy.

  5. Heat shock protein 60 enhances CD4+ CD25+ regulatory T cell function via innate TLR2 signaling.

    Science.gov (United States)

    Zanin-Zhorov, Alexandra; Cahalon, Liora; Tal, Guy; Margalit, Raanan; Lider, Ofer; Cohen, Irun R

    2006-07-01

    CD4+CD25+ Tregs regulate immunity, but little is known about their own regulation. We now report that the human 60-kDa heat shock protein (HSP60) acts as a costimulator of human Tregs, both CD4+CD25int and CD4+CD25hi. Treatment of Tregs with HSP60, or its peptide p277, before anti-CD3 activation significantly enhanced the ability of relatively low concentrations of the Tregs to downregulate CD4+CD25- or CD8+ target T cells, detected as inhibition of target T cell proliferation and IFN-gamma and TNF-alpha secretion. The enhancing effects of HSP60 costimulation on Tregs involved innate signaling via TLR2, led to activation of PKC, PI3K, and p38, and were further enhanced by inhibition of ERK. HSP60-treated Tregs suppressed target T cells both by cell-to-cell contact and by secretion of TGF-beta and IL-10. In addition, the expression of ERK, NF-kappaB, and T-bet by downregulated target T cells was inhibited. Thus, HSP60, a self-molecule, can downregulate adaptive immune responses by upregulating Tregs innately through TLR2 signaling. PMID:16767222

  6. Expression of Angiogenesis Regulatory Proteins and Epithelial-Mesenchymal Transition Factors in Platelets of the Breast Cancer Patients

    Directory of Open Access Journals (Sweden)

    Hui Han

    2014-01-01

    Full Text Available Platelets play a role in tumor angiogenesis and growth and are the main transporters of several angiogenesis regulators. Here, we aimed to determine the levels of angiogenesis regulators and epithelial-mesenchymal transition factors sequestered by circulating platelets in breast cancer patients and age-matched healthy controls. Platelet pellets (PP and platelet-poor plasma (PPP were collected by routine protocols. Vascular endothelial growth factor (VEGF, platelet-derived growth factor BB (PDGF-BB, thrombospondin-1 (TSP-1, platelet factor 4 (PF4, and transforming growth factor-β1 (TGF-β1 were measured by enzyme-linked immunosorbent assay. Angiogenesis-associated expression of VEGF (2.1 pg/106 platelets versus 0.9 pg/106 platelets, P < 0.001, PF4 (21.2 ng/106 platelets versus 10.2 ng/106 platelets, P < 0.001, PDGF-BB (42.9 pg/106 platelets versus 19.1 pg/106 platelets, P < 0.001, and TGF-β1 (15.3 ng/106 platelets versus 4.3 ng/106 platelets, P < 0.001 differed in the PP samples of cancer and control subjects. In addition, protein concentrations were associated with clinical characteristics (P<0.05. Circulating platelets in breast cancer sequester higher levels of PF4, VEGF, PDGF-BB, and TGF-β1, suggesting a possible target for early diagnosis. VEGF, PDGF, and TGF-β1 concentrations in platelets may be associated with prognosis.

  7. Clonorchis sinensis-derived total protein attenuates airway inflammation in murine asthma model by inducing regulatory T cells and modulating dendritic cell functions

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Young-Il [Div. of Malaria and Parasitic Diseases, Korea Centers for Disease Control and Prevention, Osong (Korea, Republic of); Kim, Seung Hyun [Div. of AIDS, National Institute of Health, Korea Centers for Disease Control and Prevention, Osong (Korea, Republic of); Ju, Jung Won; Cho, Shin Hyeong; Lee, Won Ja [Div. of Malaria and Parasitic Diseases, Korea Centers for Disease Control and Prevention, Osong (Korea, Republic of); Park, Jin Wook; Park, Yeong-Min [Dept. of Microbiology and Immunology, College of Medicine, Pusan National University, Yang-San (Korea, Republic of); Lee, Sang Eun, E-mail: ondalgl@cdc.go.kr [Div. of Malaria and Parasitic Diseases, Korea Centers for Disease Control and Prevention, Osong (Korea, Republic of)

    2011-04-22

    Highlights: {yields} Treatment with Clonorchis sinensis-derived total protein attenuates OVA-induced airway inflammation and AHR to methacholine. {yields} Induction of CD4{sup +}CD25{sup +}Foxp3{sup +} T cells and IL-10 along with suppression of splenocyte proliferation by C. sinensis-derived total protein. {yields} C. sinensis-derived total protein interferes with the expression of co-stimulatory molecules in DCs. -- Abstract: Asthma is characterized by Th2-mediated inflammation, resulting in airway hyperresponsiveness (AHR) through airway remodeling. Recent epidemiological and experimental reports have suggested an inverse relationship between the development of allergy and helminth infections. Infection by Clonorchis sinensis, a liver fluke that resides in the bile duct of humans, is endemic predominantly in Asia including Korea and China. Using a murine model for asthma, we investigated the effects of C. sinensis-derived total protein (Cs-TP) on allergen-induced airway inflammation and the mechanism underlying the protective effects of Cs-TP administration on asthma. Treatment with Cs-TP attenuated OVA-induced airway inflammation and methacholine-induced AHR, as well as eosinophilia development, lymphocyte infiltration into the lung, and goblet cell metaplasia. This protective effect of Cs-TP is associated with markedly reduced OVA-specific IgE and Th1/Th2 cytokine production. Moreover, Cs-TP increased the number of CD4{sup +}CD25{sup +}Foxp3{sup +} regulatory T (Treg) cells as well as their suppressive activity. In fact, proliferation of OVA-restimulated splenocytes was suppressed significantly. Cs-TP also inhibited the expression of such co-stimulatory molecules as CD80, CD86, and CD40 in LPS- or OVA-stimulated dendritic cells (DCs), suggesting that Cs-TP could interfere with the capacity of airway DCs to prime naive T cells. These data demonstrate the capacity of C. sinensis to ameliorate allergic asthma and broaden our understanding of the paradoxical

  8. Foot-and-mouth disease virus leader proteinase inhibits dsRNA-induced type I interferon transcription by decreasing interferon regulatory factor 3/7 in protein levels

    International Nuclear Information System (INIS)

    Research highlights: → FMDV Lpro inhibits poly(I:C)-induced IFN-α1/β mRNA expression. → Lpro inhibits MDA5-mediated activation of the IFN-α1/β promoter. → Lpro significantly reduced the transcription of multiple IRF-responsive genes. → Lpro inhibits IFN-α1/β promoter activation by decreasing IRF-3/7 in protein levels. → The ability to process eIF-4G of Lpro is not necessary to inhibit IFN-α1/β activation. -- Abstract: The leader proteinase (Lpro) of foot-and-mouth disease virus (FMDV) has been identified as an interferon-β (IFN-β) antagonist that disrupts the integrity of transcription factor nuclear factor κB (NF-κB). In this study, we showed that the reduction of double stranded RNA (dsRNA)-induced IFN-α1/β expression caused by Lpro was also associated with a decrease of interferon regulatory factor 3/7 (IRF-3/7) in protein levels, two critical transcription factors for activation of IFN-α/β. Furthermore, overexpression of Lpro significantly reduced the transcription of multiple IRF-responsive genes including 2',5'-OAS, ISG54, IP-10, and RANTES. Screening Lpro mutants indicated that the ability to process eIF-4G of Lpro is not required for suppressing dsRNA-induced activation of the IFN-α1/β promoter and decreasing IRF-3/7 expression. Taken together, our results demonstrate that, in addition to disrupting NF-κB, Lpro also decreases IRF-3/7 expression to suppress dsRNA-induced type I IFN production, suggesting multiple strategies used by FMDV to counteract the immune response to viral infection.

  9. Compressive stress induces dephosphorylation of the myosin regulatory light chain via RhoA phosphorylation by the adenylyl cyclase/protein kinase A signaling pathway.

    Directory of Open Access Journals (Sweden)

    Kenji Takemoto

    Full Text Available Mechanical stress that arises due to deformation of the extracellular matrix (ECM either stretches or compresses cells. The cellular response to stretching has been actively studied. For example, stretching induces phosphorylation of the myosin regulatory light chain (MRLC via the RhoA/RhoA-associated protein kinase (ROCK pathway, resulting in increased cellular tension. In contrast, the effects of compressive stress on cellular functions are not fully resolved. The mechanisms for sensing and differentially responding to stretching and compressive stress are not known. To address these questions, we investigated whether phosphorylation levels of MRLC were affected by compressive stress. Contrary to the response in stretching cells, MRLC was dephosphorylated 5 min after cells were subjected to compressive stress. Compressive loading induced activation of myosin phosphatase mediated via the dephosphorylation of myosin phosphatase targeting subunit 1 (Thr853. Because myosin phosphatase targeting subunit 1 (Thr853 is phosphorylated only by ROCK, compressive loading may have induced inactivation of ROCK. However, GTP-bound RhoA (active form increased in response to compressive stress. The compression-induced activation of RhoA and inactivation of its effector ROCK are contradictory. This inconsistency was due to phosphorylation of RhoA (Ser188 that reduced affinity of RhoA to ROCK. Treatment with the inhibitor of protein kinase A that phosphorylates RhoA (Ser188 induced suppression of compression-stimulated MRLC dephosphorylation. Incidentally, stretching induced phosphorylation of MRLC, but did not affect phosphorylation levels of RhoA (Ser188. Together, our results suggest that RhoA phosphorylation is an important process for MRLC dephosphorylation by compressive loading, and for distinguishing between stretching and compressing cells.

  10. Peptidoglycan recognition protein 1 enhances experimental asthma by promoting Th2 and Th17 and limiting regulatory T cell and plasmacytoid dendritic cell responses.

    Science.gov (United States)

    Park, Shin Yong; Jing, Xuefang; Gupta, Dipika; Dziarski, Roman

    2013-04-01

    Asthma is a common inflammatory disease involving cross-talk between innate and adaptive immunity. We reveal that antibacterial innate immunity protein, peptidoglycan recognition protein (Pglyrp)1, is involved in the development of allergic asthma. Pglyrp1(-/-) mice developed less severe asthma than wild-type (WT) mice following sensitization with house dust mite (allergen) (HDM). HDM-sensitized Pglyrp1(-/-) mice, compared with WT mice, had diminished bronchial hyperresponsiveness (lung airway resistance); numbers of eosinophils, neutrophils, lymphocytes, and macrophages in bronchoalveolar lavage fluid and lungs; inflammatory cell infiltrates in the lungs around bronchi, bronchioles, and pulmonary arteries and veins; lung remodeling (mucin-producing goblet cell hyperplasia and metaplasia and smooth muscle hypertrophy and fibrosis); levels of IgE, eotaxins, IL-4, IL-5, and IL-17 in the lungs; and numbers of Th2 and Th17 cells and expression of their marker genes in the lungs. The mechanism underlying this decreased sensitivity of Pglyrp1(-/-) mice to asthma was increased generation and activation of CD8α(+)β(+) and CD8α(+)β(-) plasmacytoid dendritic cells (pDC) and increased recruitment and activity of regulatory T (Treg) cells in the lungs. In vivo depletion of pDC in HDM-sensitized Pglyrp1(-/-) mice reversed the low responsive asthma phenotype of Pglyrp1(-/-) mice to resemble the more severe WT phenotype. Thus, Pglyrp1(-/-) mice efficiently control allergic asthma by upregulating pDC and Treg cells in the lungs, whereas in WT mice, Pglyrp1 is proinflammatory and decreases pDC and Treg cells and increases proasthmatic Th2 and Th17 responses. Blocking Pglyrp1 or enhancing pDC in the lungs may be beneficial for prevention and treatment of asthma. PMID:23420883

  11. Foot-and-mouth disease virus leader proteinase inhibits dsRNA-induced type I interferon transcription by decreasing interferon regulatory factor 3/7 in protein levels

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dang; Fang, Liurong; Luo, Rui; Ye, Rui; Fang, Ying; Xie, Lilan; Chen, Huanchun [Division of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070 (China); Xiao, Shaobo, E-mail: shaoboxiao@yahoo.com [Division of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070 (China)

    2010-08-13

    Research highlights: {yields} FMDV L{sup pro} inhibits poly(I:C)-induced IFN-{alpha}1/{beta} mRNA expression. {yields} L{sup pro} inhibits MDA5-mediated activation of the IFN-{alpha}1/{beta} promoter. {yields} L{sup pro} significantly reduced the transcription of multiple IRF-responsive genes. {yields} L{sup pro} inhibits IFN-{alpha}1/{beta} promoter activation by decreasing IRF-3/7 in protein levels. {yields} The ability to process eIF-4G of L{sup pro} is not necessary to inhibit IFN-{alpha}1/{beta} activation. -- Abstract: The leader proteinase (L{sup pro}) of foot-and-mouth disease virus (FMDV) has been identified as an interferon-{beta} (IFN-{beta}) antagonist that disrupts the integrity of transcription factor nuclear factor {kappa}B (NF-{kappa}B). In this study, we showed that the reduction of double stranded RNA (dsRNA)-induced IFN-{alpha}1/{beta} expression caused by L{sup pro} was also associated with a decrease of interferon regulatory factor 3/7 (IRF-3/7) in protein levels, two critical transcription factors for activation of IFN-{alpha}/{beta}. Furthermore, overexpression of L{sup pro} significantly reduced the transcription of multiple IRF-responsive genes including 2',5'-OAS, ISG54, IP-10, and RANTES. Screening L{sup pro} mutants indicated that the ability to process eIF-4G of L{sup pro} is not required for suppressing dsRNA-induced activation of the IFN-{alpha}1/{beta} promoter and decreasing IRF-3/7 expression. Taken together, our results demonstrate that, in addition to disrupting NF-{kappa}B, L{sup pro} also decreases IRF-3/7 expression to suppress dsRNA-induced type I IFN production, suggesting multiple strategies used by FMDV to counteract the immune response to viral infection.

  12. β-Hydroxybutyrate Facilitates Fatty Acids Synthesis Mediated by Sterol Regulatory Element-Binding Protein1 in Bovine Mammary Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Min Zhang

    2015-11-01

    Full Text Available Background/Aims: In dairy cows, β-hydroxybutyrate (BHBA is utilized as precursors of de novo synthesized fatty acids in mammary gland. Ketotic cows are characterized by excessive negative energy balance (NEB, which can further increase the blood BHBA concentration. Sterol regulatory element-binding protein1 (SREBP1 and cell death-inducing DNA fragmentation factor-alpha-like effector α (Cidea play crucial roles in lipid synthesis. Therefore, we hypothesized that BHBA could stimulate SREBP1/Cidea pathway to increase milk fat synthesis in bovine mammary epithelial cells. Methods: Bovine mammary epithelial cells were treated with different concentrations of BHBA and transfected with adenovirus to silence SREBP1 expression. The effects of BHBA on the lipid synthesis in bovine mammary epithelial cells were investigated. Results: The results showed that BHBA could significantly increase the expression of SREBP1, fatty acid synthase (FAS, acetyl-CoA carboxylase α (ACC-α, Cidea and diacylglycerol transferase-1 (DGAT-1, as well as the triglycerides (TG content in bovine mammary epithelial cells. BHBA treatment also increased the transfer of mature SREBP1 to nucleus compared with control group. However, SREBP1 silencing could significantly down-regulate the overexpression of FAS, ACC-α, Cidea and DGAT-1, as well as TG content induced by BHBA. Conclusion: The present data indicate that BHBA can significantly increase TG secretion mediated by SREBP1 in bovine mammary epithelial cells.

  13. The effect of high glucose levels on the hypermethylation of protein phosphatase 1 regulatory subunit 3C (PPP1R3C) gene in colorectal cancer

    Indian Academy of Sciences (India)

    Soo Kyung Lee; Ji Wook Moon; Yong Woo Lee; Jung Ok Lee; Su Jin Kim; Nami Kim; Jin Kim; Hyeon Soo Kim; Sun-Hwa Park

    2015-03-01

    DNA methylation is an epigenetic event that occurs frequently in colorectal cancer (CRC). Increased glucose level is a strong risk factor for CRC. Protein phosphatase 1 regulatory subunit 3C (PPP1R3C) modulates glycogen metabolism, particularly glycogen synthesis. The aim of this study was to investigate the effect of high glucose levels on DNA methylation of PPP1R3C in CRC. PPP1R3C was significantly hypermethylated in CRC tissues (76/105, 72.38%, < 0.05) and colon cancer cell lines ( < 0.05). CRC tissues obtained from patients with high glucose levels showed that the methylation of PPP1R3C was lower than in patients who had normal levels of glucose. When DLD-1 cells were cultured under conditions of high glucose, the methylation of PPP1R3C was repressed. The expression of PPP1R3C was inversely related to methylation status. In addition, a promoter luciferase assay showed that the transcriptional activity of PPP1R3C was increased in high glucose culture conditions. The number of cells decreased when PPP1R3C was silenced in DLD-1 cells. These results suggest that PPP1R3C, a novel hypermethylated gene in CRC, may play a critical role in cancer cell growth in association with glucose levels.

  14. Prominent 85-kDa oligomannosidic glycoproteins of rat brain are signal regulatory proteins and include the SHP substrate-1 for tyrosine phosphatases.

    Science.gov (United States)

    Bartoszewicz, Z P; Jaffe, H; Sasaki, M; Möller, J R; Stebbins, J W; Gebrekristos, H; Quarles, R H

    1999-04-01

    The glycoprotein component in rat brain reacting most strongly with Galanthus nivalis agglutinin (GNA) on western blots migrates as an 85-kDa band. GNA identifies mannose-rich oligosaccharides because it is highly specific for terminal alpha-mannose residues. After purification of this 85-kDa glycoprotein band by chromatography on GNA-agarose and preparative gel electrophoresis, binding of other lectins demonstrated the presence of fucose and a trace of galactose, but no sialic acid. Treatment with N-Glycanase or endoglycosidase H produced a 65-kDa band, indicating that it consisted of about one-fourth N-linked oligomannosidic carbohydrate moieties. High-performance anion-exchange chromatography and fluorescence-assisted carbohydrate electrophoresis indicated that the major carbohydrate moiety is a heptasaccharide with the structure Manalpha1-6(Manalpha1-3)Manalpha1-6(Manalpha1-3) Manbeta1-4Glc-NAcbeta1-4GlcNAc (Man5GlcNAc2). Determination of amino acid sequences of peptides produced by endoproteinase digestion demonstrated that this 85-kDa mannose-rich glycoprotein component contained the SHP substrate-1 for phosphotyrosine phosphatases and at least one other member of the signal-regulatory protein (SIRP) family. The unusually high content of oligomannosidic carbohydrate moieties on these receptor-like members of the immunoglobulin superfamily in neural tissue could be of functional significance for intercellular adhesion or signaling.

  15. Modulation of glucokinase by glucose, small-molecule activator and glucokinase regulatory protein: steady-state kinetic and cell-based analysis.

    Science.gov (United States)

    Bourbonais, Francis J; Chen, Jing; Huang, Cong; Zhang, Yanwei; Pfefferkorn, Jeffrey A; Landro, James A

    2012-02-01

    GK (glucokinase) is an enzyme central to glucose metabolism that displays positive co-operativity to substrate glucose. Small-molecule GKAs (GK activators) modulate GK catalytic activity and glucose affinity and are currently being pursued as a treatment for Type 2 diabetes. GK progress curves monitoring product formation are linear up to 1 mM glucose, but biphasic at 5 mM, with the transition from the lower initial velocity to the higher steady-state velocity being described by the rate constant kact. In the presence of a liver-specific GKA (compound A), progress curves at 1 mM glucose are similar to those at 5 mM, reflecting activation of GK by compound A. We show that GKRP (GK regulatory protein) is a slow tight-binding inhibitor of GK. Analysis of progress curves indicate that this inhibition is time dependent, with apparent initial and final Ki values being 113 and 12.8 nM respectively. When GK is pre-incubated with glucose and compound A, the inhibition observed by GKRP is time dependent, but independent of GKRP concentration, reflecting the GKA-controlled transition between closed and open GK conformations. These data are supported by cell-based imaging data from primary rat hepatocytes. This work characterizes the modulation of GK by a novel GKA that may enable the design of new and improved GKAs.

  16. Expression of 17beta- and 3beta-hydroxysteroid dehydrogenases and steroidogenic acute regulatory protein in non-luteinizing bovine granulosa cells in vitro.

    Science.gov (United States)

    Sahmi, M; Nicola, E S; Silva, J M; Price, C A

    2004-08-31

    Granulosa cells of small follicles differentiate in vitro in serum-free medium, resulting in increased estradiol secretion and abundance of mRNA encoding cytochrome P450aromatase (P450arom). We tested the hypothesis that differentiation in vitro also involves increased expression of 3beta- and 17beta-hydroxysteroid dehydrogenases (HSD) in the absence of steroidogenic acute regulatory protein (StAR) expression, as has been observed in vivo. Granulosa cells from small (basal layer of the membrana granulosa) did not affect steroidogenesis. We conclude that under the present cell culture system granulosa cells do not luteinize, and show expression of key steroidogenic enzymes in patterns similar to those occurring in differentiating follicles in vivo. Further, the data suggest that 17beta-HSD may be as important as P450arom in regulating estradiol secretion, and that 3beta-HSD is more important than P450scc as a regulator of progesterone secretion in non-luteinizing granulosa cells. PMID:15279910

  17. Clonorchis sinensis-derived total protein attenuates airway inflammation in murine asthma model by inducing regulatory T cells and modulating dendritic cell functions.

    Science.gov (United States)

    Jeong, Young-Il; Kim, Seung Hyun; Ju, Jung Won; Cho, Shin Hyeong; Lee, Won Ja; Park, Jin Wook; Park, Yeong-Min; Lee, Sang Eun

    2011-04-22

    Asthma is characterized by Th2-mediated inflammation, resulting in airway hyperresponsiveness (AHR) through airway remodeling. Recent epidemiological and experimental reports have suggested an inverse relationship between the development of allergy and helminth infections. Infection by Clonorchis sinensis, a liver fluke that resides in the bile duct of humans, is endemic predominantly in Asia including Korea and China. Using a murine model for asthma, we investigated the effects of C. sinensis-derived total protein (Cs-TP) on allergen-induced airway inflammation and the mechanism underlying the protective effects of Cs-TP administration on asthma. Treatment with Cs-TP attenuated OVA-induced airway inflammation and methacholine-induced AHR, as well as eosinophilia development, lymphocyte infiltration into the lung, and goblet cell metaplasia. This protective effect of Cs-TP is associated with markedly reduced OVA-specific IgE and Th1/Th2 cytokine production. Moreover, Cs-TP increased the number of CD4(+)CD25(+)Foxp3(+) regulatory T (Treg) cells as well as their suppressive activity. In fact, proliferation of OVA-restimulated splenocytes was suppressed significantly. Cs-TP also inhibited the expression of such co-stimulatory molecules as CD80, CD86, and CD40 in LPS- or OVA-stimulated dendritic cells (DCs), suggesting that Cs-TP could interfere with the capacity of airway DCs to prime naïve T cells. These data demonstrate the capacity of C. sinensis to ameliorate allergic asthma and broaden our understanding of the paradoxical relationship between the allergic immune response and helminth infection. PMID:21440530

  18. Porcine complement regulatory protein CD46 and heparan sulfates are the major factors for classical swine fever virus attachment in vitro.

    Science.gov (United States)

    Dräger, Carolin; Beer, Martin; Blome, Sandra

    2015-03-01

    Classical swine fever virus (CSFV) is the causative agent of a severe multi-systemic disease of pigs. While several aspects of virus-host-interaction are known, the early steps of infection remain unclear. For the closely related bovine viral diarrhea virus (BVDV), a cellular receptor is known: bovine complement regulatory protein CD46. Given that these two pestiviruses are closely related, porcine CD46 is also a candidate receptor for CSFV. In addition to CD46, cell-culture-adapted CSFV strains have been shown to use heparan sulfates as an additional cellular factor. In the present study, the interaction of field-type and cell-culture-adapted CSFV with a permanent porcine cell line or primary macrophages was assessed using anti-porcine CD46 monoclonal antibodies and a heparan-sulfate-blocking compound, DSTP-27. The influence of receptor blocking was assessed using virus titration and quantitative PCR. Treatment of cells with monoclonal antibodies against porcine CD46 led to a reduction of viral growth in both cell types. The effect was most pronounced with field-type CSFV. The blocking could be enhanced by addition of DSTP-27, especially for cell-culture-adapted CSFV. The combined use of both blocking agents led to a significant reduction of viral growth but was also not able to abolish infection completely. The results obtained in this study showed that both porcine CD46 and heparan sulfates play a major role in the initial steps of CSFV infection. Additional receptors might also play a role for attachment and entry; however, their impact is obviously limited in vitro in comparison to CD46 and heparan sulfates.

  19. Tlr4-mutant mice are resistant to acute alcohol-induced sterol-regulatory element binding protein activation and hepatic lipid accumulation

    Science.gov (United States)

    Zhang, Zhi-Hui; Liu, Xiao-Qian; Zhang, Cheng; He, Wei; Wang, Hua; Chen, Yuan-Hua; Liu, Xiao-Jing; Chen, Xi; Xu, De-Xiang

    2016-01-01

    Previous studies demonstrated that acute alcohol intoxication caused hepatic lipid accumulation. The present study showed that acute alcohol intoxication caused hepatic lipid accumulation in Tlr4-wild-type mice but not in Tlr4-mutant mice. Hepatic sterol-regulatory element binding protein (SREBP)-1, a transcription factor regulating fatty acid and triglyceride (TG) synthesis, was activated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Hepatic Fas, Acc, Scd-1 and Dgat-2, the key genes for fatty acid and TG synthesis, were up-regulated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Additional experiment showed that hepatic MyD88 was elevated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Hepatic NF-κB was activated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Moreover, hepatic GSH content was reduced and hepatic MDA level was elevated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Hepatic CYP2E1 was elevated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Hepatic p67phox and gp91phox, two NADPH oxidase subunits, were up-regulated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Alpha-phenyl-N-t-butylnitrone (PBN), a free radical spin-trapping agent, protected against alcohol-induced hepatic SREBP-1 activation and hepatic lipid accumulation. In conclusion, Tlr4-mutant mice are resistant to acute alcohol-induced hepatic SREBP-1 activation and hepatic lipid accumulation. PMID:27627966

  20. Regulatory Anatomy

    DEFF Research Database (Denmark)

    Hoeyer, Klaus

    2015-01-01

    This article proposes the term “safety logics” to understand attempts within the European Union (EU) to harmonize member state legislation to ensure a safe and stable supply of human biological material for transplants and transfusions. With safety logics, I refer to assemblages of discourses, le...... they arise. In short, I expose the regulatory anatomy of the policy landscape....

  1. Regulatory protein OmpR influences the serum resistance of Yersinia enterocolitica O:9 by modifying the structure of the outer membrane.

    Directory of Open Access Journals (Sweden)

    Karolina Skorek

    Full Text Available The EnvZ/OmpR two-component system constitutes a regulatory pathway involved in bacterial adaptive responses to environmental cues. Our previous findings indicated that the OmpR regulator in Yersinia enterocolitica O:9 positively regulates the expression of FlhDC, the master flagellar activator, which influences adhesion/invasion properties and biofilm formation. Here we show that a strain lacking OmpR grown at 37°C exhibits extremely high resistance to the bactericidal activity of normal human serum (NHS compared with the wild-type strain. Analysis of OMP expression in the ompR mutant revealed that OmpR reciprocally regulates Ail and OmpX, two homologous OMPs of Y. enterocolitica, without causing significant changes in the level of YadA, the major serum resistance factor. Analysis of mutants in individual genes belonging to the OmpR regulon (ail, ompX, ompC and flhDC and strains lacking plasmid pYV, expressing YadA, demonstrated the contribution of the respective proteins to serum resistance. We show that Ail and OmpC act in an opposite way to the OmpX protein to confer serum resistance to the wild-type strain, but are not responsible for the high resistance of the ompR mutant. The serum resistance phenotype of ompR seems to be multifactorial and mainly attributable to alterations that potentiate the function of YadA. Our results indicate that a decreased level of FlhDC in the ompR mutant cells is partly responsible for the serum resistance and this effect can be suppressed by overexpression of flhDC in trans. The observation that the loss of FlhDC enhances the survival of wild-type cells in NHS supports the involvement of FlhDC regulator in this phenotype. In addition, the ompR mutant exhibited a lower level of LPS, but this was not correlated with changes in the level of FlhDC. We propose that OmpR might alter the susceptibility of Y. enterocolitica O:9 to complement-mediated killing through remodeling of the outer membrane.

  2. Decreased expression of complement regulatory proteins, CD55 and CD59, on peripheral blood leucocytes in patients with type 2 diabetes and macrovascular diseases

    Institute of Scientific and Technical Information of China (English)

    MA Xi-wen; CHANG Zhi-wen; QIN Ming-zhao; SUN Ying; HUANG Hui-lian; HE Yan

    2009-01-01

    Background Macro- and microvascular diseases are the leading cause of morbidity and mortality in diabetic patients, but their mechanisms remain unclear. Recent reports provide evidence that the levels of CD55 and CD59 are decreased in diabetic microvascular diseases. However, very little is known about the levels of CD55 and CD59, the relationship between them and carotid artery intima-media thickness, and the effects of statins on CD55 and CD59 in diabetic macrovascular diseases.Methods The mean fluorescence intensity (MFI) of CD55 and CD59 expression on peripheral blood leucocyte subsets (lymphocytes, monocytes and neutrophils) was studied using flow cytometry, and carotid artery intima-media thickness was measured using B-mode ultrasonography in 23 healthy subjects (controls), 19 patients with type 2 diabetes (T2DM), and 43 patients with type 2 diabetes and macrovascular diseases (T2DM-M). The patients with T2DM-M were assigned to two subgroups based on whether statins were used: group with statins (n=23) and group without statins (n=20).Results Compared with the controls and T2DM, the MFI of CD55 positive neutrophils was significantly lower in T2DM-M (P=0.049 vs controls and P=0.033 vs T2DM); similarly, the MFI of CD59 positive monocytes was also lower in T2DM-M (P=0.038 vs controls and P=0.043 vs T2DM). The MFI of CD59 positive neutrophils in T2DM-M was lower than in T2DM (P=0.032). The levels of CD55 and CD59 were negatively associated with age and blood pressure (r=-0.245--0.352, P=0.041-0.003), but not acute-phase reactants and carotid artery intima-media thickness. The levels of CD55 and CD59 increased after treatment with statins, but the results were not significantly different (P >0.05).Conclusions CD55 and CD59 expressions on peripheral blood leucocytes are decreased in T2DM patients with macrovascular diseases. The results suggest that the decreased levels of complement regulatory proteins might play an important role in diabetic macrovascular

  3. High mobility group box-1 protein inhibits regulatory T cell immune activity in liver failure in patients with chronic hepatitis B

    Institute of Scientific and Technical Information of China (English)

    Lu-WenWang; Hui Chen; Zuo-Jiong Gong

    2010-01-01

    BACKGROUND: Liver failure in chronic hepatitis B (CHB) patients is a severe, life-threatening condition. Intestinal endotoxemia plays a significant role in the progress to liver failure. High mobility group box-1 (HMGB1) protein is involved in the process of endotoxemia. Regulatory T (Treg) cells maintain immune tolerance and contribute to the immunological hyporesponsiveness against HBV infection. However, the roles of HMGB1 and Treg cells in the pathogenesis of liver failure in CHB patients, and whether HMGB1 affects the immune activity of Treg cells are poorly known at present, and so were explored in this study. METHODS: The levels of HMGB1 expression were detected by ELISA, real-time RT-PCR, and Western blotting, and the percentage of CD4+CD25+CD127low Treg cells among CD4+cells was detected by flow cytometry in liver failure patients with chronic HBV infection, CHB patients, and healthy controls. Then, CD4+CD25+CD127low Treg cells isolated from the peripheral blood mononuclear cells from CHB patients were stimulated with HMGB1 at different concentrations or at various intervals. The effect of HMGB1 on the immune activity of Treg cells was assessed by a suppression assay of the allogeneic mixed lymphocyte response. The levels of forkhead box P3 (Foxp3) expression in Treg cells treated with HMGB1 were detected by RT-PCR and Western blotting. RESULTS: A higher level of HMGB1 expression and a lower percentage of Treg cells within the population of CD4+ cells were found in liver failure patients than in CHB patients (82.6±20.1 μg/L vs. 34.2±13.7 μg/L; 4.55±1.34% vs. 9.52± 3.89%, respectively). The immune activity of Treg cells was significantly weakened and the levels of Foxp3 expression were reduced in a dose- or time-dependent manner when Treg cells were stimulated with HMGB1 in vitro. CONCLUSIONS: The high level of HMGB1 and the low percentage of Treg cells play an important role in the pathogenesis of liver failure in patients with chronic HBV infection

  4. Structure of the regulatory domain of the LysR family regulator NMB2055 (MetR-like protein) from Neisseria meningitidis

    OpenAIRE

    Sainsbury, S; Ren, J; Saunders, NJ; Stuart, DI; Owens, RJ

    2012-01-01

    Copyright @ 2012 International Union of Crystallography The crystal structure of the regulatory domain of NMB2055, a putative MetR regulator from Neisseria meningitidis, is reported at 2.5 Å resolution. The structure revealed that there is a disulfide bond inside the predicted effector-binding pocket of the regulatory domain. Mutation of the cysteines (Cys103 and Cys106) that form the disulfide bond to serines resulted in significant changes to the structure of the effector pocket. Taken t...

  5. Association of sterol regulatory element binding protein 2 and insulin-like growth factor binding protein 3 genetic polymorphisms with avascular necrosis of the femoral head in the Chinese population

    Institute of Scientific and Technical Information of China (English)

    SONG Yang; DU Zhen-wu; LI Qiu-ju; ZHANG Gui-zhen; WANG Ling-ling; WU Ning; WANG Jin-cheng; GAO Zhong-li

    2012-01-01

    Background Sterol regulatory element binding protein(SREBP)-2 plays a key role in lipid homeostasis by stimulating gene expression of cholesterol biosynthetic pathways.The insulin-like growth factor binding protein(IGFBP)family regulates growth and metabolism,especially bone cell metabolism,and correlates with osteonecrosis.However,association of their gene polymorphisms with risk of avascular necrosis of the femoral head(ANFH)has rarely been reported.We determined whether SREBP-2 and IGFBP-3 gene polymorphisms were associated with increased ANFH risk in the Chinese population.Methods Two single nucleotide polymorphisms of SREBP2 gene,rs2267439 and rs2267443,and one of IGFBP-3 gene,rs2453839,were selected and genotyped in 49 ANFH patients and 42 control individuals by direct sequencing assay.Results The frequencies of rs2267439 TT and rs2267443 GA of SREBP2 and rs2453839 TT and CT of IGFBP-3 in the ANFH group showed increased and decreased tendencies(against normal control group),respectively.Interaction analysis of genes revealed that the frequency of carrying rs2267439 TT and rs2267443 GA genctypes of SREBF-2 in ANFH patients was significantly higher than in the control group(P<0.05).Association analysis between polymorphisms and clinical phenotype demonstrated that the disease course in ANFH patients with the rs2453839 TT genotype of IGFBP-3 was significantly shorter than that of CT+CC carriers(P<0.01).CT+CC genotype frequency in patients with stage Ⅲ/Ⅳ?bilateral hip lesions was significantly higher than in those with stage Ⅲ/Ⅳ?unilateral lesions and stage Ⅱ/Ⅲ?bilateral lesions(P<0.05-0.02).Conclusions Our results suggested that interaction of SREBP-2 gene polymorphisms and the relationship between the polymorphisms and clinical phenotype of IGFBP-3 were closely related to increased ANFH risk in the Chinese population.The most significant finding was that the CT+CC genotype carriers of IGFBP-3 rs2453839 were highly associated with the

  6. Regulatory concerns associated with use of value-added recombinant proteins and peptides screened in hgh-throughput for expression in fuel ethanol yeast strains

    Science.gov (United States)

    Recombinant proteins expressed in animals have been a public concern as a risk to the consumer since the animals are genetically modified to obtain desired improvements (GMO animals). Similarly, various commercially valuable proteins or peptides expressed in fuel ethanol yeast strains under develop...

  7. Effects of Stearoyl-CoA Desaturase 1 and Sterol Regulatory Element Binding Protein Gene Polymorphisms on Milk Production, Composition and Coagulation Properties of Individual Milk of Brown Swiss Cows

    Directory of Open Access Journals (Sweden)

    Alice Maurmayr

    2011-10-01

    Full Text Available Associations between stearoyl-CoA desaturase (SCD and sterol regulatory element binding protein (SREBP-1 gene polymorphisms and milk production, composition (fat, protein, and casein content, acidity (pH and titratable acidity and coagulation properties (MCP, namely rennet coagulation time (RCT, min and curd firmness (a30, mm were investigated on individual Brown Swiss milk. A total of 294 cows from 16 herds and progeny of 15 sires were milk-sampled once. Th e additive effects of SCD and SREBP-1 genotypes on the aforementioned traits were analyzed through Bayesian linear models. The SCD gene was associated with protein content, casein content and a30. Lower protein, casein and a30 was observed for milk yielded by SCD V than A cows, whereas for other traits the effect was trivial. Animals carrying the L allele of SREBP-1 showed higher fat content than animals carrying the S allele. These results suggest a possible use of these loci in gene-assisted selection programs for the improvement of milk quality traits and MCP in Brown Swiss cattle, although large scale studies in different breeds are required.

  8. 营养素调控奶牛乳蛋白合成的研究进展%Recent Advance in Research on the Regulatory Effect of Nutrients on Bovine Milk Protein Synthesis

    Institute of Scientific and Technical Information of China (English)

    毕微微; 高学军; 林叶; 李庆章

    2012-01-01

    乳蛋白含有机体几乎所有的必需氨基酸,有较高的营养价值。随着蛋白质营养研究的深入,如何提高乳蛋白的产量,改善乳品质已成为当今研究的热点。本文从营养素角度,对碳水化合物、氨基酸及小肽三方面对奶牛乳蛋白合成调控的影响做综述。%Milk proteins contain nearly all the essential amino acids for the human body,which have great nutritional value.Today,how to increase milk protein production and improve milk quality has become the focus of increasingly intensive studies on protein nutrition.This paper provides a review of the regulatory effect of nutrients on bovine milk protein synthesis.

  9. Effects of Stearoyl-CoA Desaturase 1 and Sterol Regulatory Element Binding Protein Gene Polymorphisms on Milk Production, Composition and Coagulation Properties of Individual Milk of Brown Swiss Cows

    Directory of Open Access Journals (Sweden)

    Alice Maurmayr

    2011-09-01

    Full Text Available Associations between stearoyl-CoA desaturase (SCD and sterol regulatory element binding protein (SREBP-1 gene polymorphisms and milk production, composition (fat, protein, and casein content, acidity (pH and titratable acidity and coagulation properties (MCP, namely rennet coagulation time (RCT, min and curd firmness (a30, mm were investigated on individual Brown Swiss milk. A total of 294 cows from 16 herds and progeny of 15 sires were milk-sampled once. Th e additive effects of SCD and SREBP-1 genotypes on the aforementioned traits were analyzed through Bayesian linear models. The SCD gene was associated with protein content, casein content and a30. Lower protein, casein and a30 was observed for milk yielded by SCD V than A cows, whereas for other traits the effect was trivial. Animals carrying the L allele of SREBP-1 showed higher fat content than animals carrying the S allele. These results suggest a possible use of these loci in gene-assisted selection programs for the improvement of milk quality traits and MCP in Brown Swiss cattle, although large scale studies in different breeds are required.

  10. Mutant Forms of the Azotobacter vinelandii Transcriptional Activator NifA Resistant to Inhibition by the NifL Regulatory Protein

    OpenAIRE

    Reyes-Ramirez, Francisca; Little, Richard; Dixon, Ray

    2002-01-01

    The Azotobacter vinelandii σ54-dependent transcriptional activator protein NifA is regulated by the NifL protein in response to redox, carbon, and nitrogen status. Under conditions inappropriate for nitrogen fixation, NifL inhibits transcription activation by NifA through the formation of the NifL-NifA protein complex. NifL inhibits the ATPase activity of the central AAA+ domain of NifA required to drive open complex formation by σ54-RNA polymerase and may also inhibit the activator-polymeras...

  11. A new set of regulatory molecules in plants: A plant phospholipid similar to platelet-activating factor stimulates protein kinase and proton-translocating ATPase in membrane vesicles.

    Science.gov (United States)

    Scherer, G F; Martiny-Baron, G; Stoffel, B

    1988-08-01

    1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine, an ether phospholipid from mammals known as platelet-activating factor (PAF), specifically stimulates proton transport in zucchini (Cucurbita pepo L.) microsomes (G.F.E. Scherer, 1985, Biochem. Biophys. Res. Commm. 133, 1160-1167). When plant lipids were analyzed by two-dimensional thin-layer chromatography a lipid was found with chromatographic properties very similar to the PAF (G.F.E. Scherer and B. Stoffel, 1987, Planta, 172, 127-130). This lipid was isolated from zucchini hypocotyls, red beet root, lupin root, maize seedlings and crude soybean phospholipids. It had biological activity similar to that of the PAF, based on phosphorus content, and stimulated the steady-state ΔpH in zucchini hypocotyl microsomes about twofold. Other phospholipids, monoglyceride, diglyceride, triglyceride, oleic acid, phorbol ester, and 1-O-alkylglycerol did not stimulate proton transport. When microsomes were washed the PAF was ineffective but when soluble protein was added the PAF stimulation of H(+) transport was reconstituted. The soluble protein responsible for the PAF-dependent stimulation of transport activity could be partially purified by diethylaminoethyl Sephacel column chromatography. In the same fractions where the PAF-dependent transport-stimulatory protien was found, a protein kinase was active. This protein kinase was stimulated twofold either by the PAF or by Ca(2+). When Ca(2+) was present the PAF did not stimulate protein-kinase activity. When either the PAF, protein kinase, or both were added to membranes isolated on a linear sucrose gradient, ATPase activity was stimulated up to 30%. Comparison with marker enzymes indicated the possibility that tonoplast and plasma-membrane H(+)-ATPase might be stimulated by the PAF and protein kinase. We speculate that a PAF-dependent protein kinase is involved in the regulation of proton transport in plants in vitro and in vivo.

  12. Peptidoglycan Recognition Protein Pglyrp1 Enhances Experimental Asthma by Promoting Th2 and Th17 and Limiting Regulatory T Cell and Plasmacytoid Dendritic Cell Responses

    OpenAIRE

    Park, Shin Yong; Jing, Xuefang; Gupta, Dipika; Dziarski, Roman

    2013-01-01

    Asthma is a common inflammatory disease involving crosstalk between innate and adaptive immunity. We reveal that antibacterial innate immunity protein, peptidoglycan recognition protein 1 (Pglyrp1), is involved in the development of allergic asthma. Pglyrp1−/− mice developed less severe asthma than wild type (WT) mice following sensitization with house dust mite (HDM) allergen. HDM-sensitized Pglyrp1−/− mice, compared with WT mice, had diminished: bronchial hyper-responsiveness (lung airway r...

  13. Characterisation of the Putative Effector Interaction Site of the Regulatory HbpR Protein from Pseudomonas azelaica by Site-Directed Mutagenesis

    OpenAIRE

    Christelle Vogne; Hansi Bisht; Sagrario Arias; Sofia Fraile; Rup Lal; Jan Roelof van der Meer

    2011-01-01

    Bacterial transcription activators of the XylR/DmpR subfamily exert their expression control via σ(54)-dependent RNA polymerase upon stimulation by a chemical effector, typically an aromatic compound. Where the chemical effector interacts with the transcription regulator protein to achieve activation is still largely unknown. Here we focus on the HbpR protein from Pseudomonas azelaica, which is a member of the XylR/DmpR subfamily and responds to biaromatic effectors such as 2-hydroxybiph...

  14. Crystal structure of the flagellar accessory protein FlaH of Methanocaldococcus jannaschii suggests a regulatory role in archaeal flagellum assembly.

    Science.gov (United States)

    Meshcheryakov, Vladimir A; Wolf, Matthias

    2016-06-01

    Archaeal flagella are unique structures that share functional similarity with bacterial flagella, but are structurally related to bacterial type IV pili. The flagellar accessory protein FlaH is one of the conserved components of the archaeal motility system. However, its function is not clearly understood. Here, we present the 2.2 Å resolution crystal structure of FlaH from the hyperthermophilic archaeon, Methanocaldococcus jannaschii. The protein has a characteristic RecA-like fold, which has been found previously both in archaea and bacteria. We show that FlaH binds to immobilized ATP-however, it lacks ATPase activity. Surface plasmon resonance analysis demonstrates that ATP affects the interaction between FlaH and the archaeal motor protein FlaI. In the presence of ATP, the FlaH-FlaI interaction becomes significantly weaker. A database search revealed similarity between FlaH and several DNA-binding proteins of the RecA superfamily. The closest structural homologs of FlaH are KaiC-like proteins, which are archaeal homologs of the circadian clock protein KaiC from cyanobacteria. We propose that one of the functions of FlaH may be the regulation of archaeal motor complex assembly. PMID:27060465

  15. Glucocorticoid induced TNFR-related protein (GITR as marker of human regulatory T cells: expansion of the GITR+CD25- cell subset in patients with systemic lupus erythematosus

    Directory of Open Access Journals (Sweden)

    E. Bartoloni Bocci

    2011-06-01

    Full Text Available Objectives: Regulatory T cells (TREG represent a T cell subset able to modulate immune response by suppressing autoreactive T-lymphocytes. The evidence of a reduced number and an impaired function of this cell population in autoimmune/ inflammatory chronic diseases led to the hypothesis of its involvement in the pathogenesis of these disorders. Glucocorticoid-induced TNFR-related protein (GITR is a well known marker of murine TREG cells, but little is known in humans. The aim of this study was to investigate the characteristics of TREG cells in systemic lupus erythematosus (SLE and the potential role of GITR as marker of human TREG. Methods: Nineteen SLE patients and 15 sex- and age-matched normal controls (NC were enrolled. CD4+ T cells were magnetic sorted from peripheral blood by negative selection. Cell phenotype was analyzed through flow-cytometry using primary and secondary antibodies and real time polymerase-chain reaction (PCR using TaqMan probes. Results: The CD25highGITRhigh subset was significantly decreased in SLE patients with respect to NC (0.37±0.21% vs 0.72±0.19%; p<0.05. On the opposite, the CD25-GITRhigh cell population was expanded in the peripheral blood of SLE patients (3.5±2.25 vs 0.70±0.32%, p<0.01. Interestingly, FoxP3 at mRNA level was expressed in both CD25- GITRhigh and CD25highGITRhigh cells, suggesting that both cell subsets have regulatory activity. Conclusions: CD4+CD25-GITRhigh cells are increased in SLE as compared to NC. The expression of high level of GITR, but not CD25, on FoxP3+ cells appears to point to a regulatory phenotype of this peculiar T cell subset.

  16. Down-regulation of outer membrane proteins by noncoding RNAs: unraveling the cAMP-CRP- and sigmaE-dependent CyaR-ompX regulatory case

    DEFF Research Database (Denmark)

    Johansen, Jesper; Eriksen, Maiken; Kallipolitis, Birgitte;

    2008-01-01

    is sufficient to trigger the envelope stress response. Recent work indicates that small Hfq-binding RNAs play a major role in maintaining envelope homeostasis and, so far, two sigma(E)-dependent small noncoding RNAs (sRNAs), MicA and RybB, have been shown to facilitate rapid removal of multiple omp transcripts...... is also up-regulated, directly or indirectly, by sigma(E). In addition, this work identified MicA as a factor that cooperates in the negative control of ompX expression. The conservation of CyaR, MicA, RybB, and their targets suggests that the omp mRNA-sRNA regulatory network is an integral part...

  17. Protein and mRNA levels support the notion that a genetic regulatory circuit controls growth phases in E. coli populations

    Directory of Open Access Journals (Sweden)

    Agustino Martinez-Antonio

    2015-09-01

    Full Text Available Bacterial populations transition between growing and non-growing phases, based on nutrient availability and stresses conditions. The hallmark of a growing state is anabolism, including DNA replication and cell division. In contrast, bacteria in a growth-arrested state acquire a resistant physiology and diminished metabolism. However, there is little knowledge on how this transition occurs at the molecular level. Here, we provide new evidence that a multi-element genetic regulatory circuit might work to maintain genetic control among growth-phase transitions in Escherichia coli. This work contributes to the discovering of design principles behind the performance of biological functions, which could be of relevance on the new disciplines of biological engineering and synthetic biology.

  18. Characterization and functional studies of forkhead box protein 3(-) lymphocyte activation gene 3(+) CD4(+) regulatory T cells induced by mucosal B cells.

    Science.gov (United States)

    Chu, K-H; Chiang, B-L

    2015-05-01

    The induction of mucosal tolerance has been demonstrated to be an effective therapeutic approach for the treatment of allergic diseases. Our previous study demonstrated that Peyer's patch B cells could convert naive T cells into regulatory T cells (so-called Treg -of-B(P) cells); however, it is important to characterize this particular subset of Treg -of-B cells for future applications. This study aimed to investigate the role of lymphocyte activating gene 3 (LAG3) in mediating the regulatory function of Treg -of-B(P) cells induced by mucosal follicular B (FOB) cells. Microarray analysis and real-time polymerase chain reaction (PCR) were used to assess the gene expression pattern of Treg -of-B(P) cells. To evaluate the role of LAG3, the in-vitro suppressive function and the alleviation of airway inflammation in a murine model of asthma was assessed. Our data indicated that FOB cells isolated from Peyer's patches had the ability to generate more suppressive Treg -of-B cells with LAG3 expression, compared with CD23(lo) CD21(lo) B cells. LAG3 is not only a marker for Treg -of-B(P) cells, but also participate in the suppressive ability. Moreover, CCR4 and CCR6 could be detected on the LAG3(+) , not LAG3(-) , Treg -of-B(P) cells and would help cells homing to allergic lung. In the murine model of asthma, the adoptive transfer of LAG3(+) Treg -of-B(P) cells was able to sufficiently suppress T helper type 2 (Th2) cytokine production, eosinophil infiltration and alleviate asthmatic symptoms. LAG3 was expressed in Treg -of-B(P) cells and was also involved in the function of Treg -of-B(P) cells. In the future, this particular subset of Treg -of-B cells might be used to alleviate allergic symptoms. PMID:25581421

  19. Autophagy gets in on the regulatory act

    Institute of Scientific and Technical Information of China (English)

    Steven K. Backues; Daniel J. Klionsky

    2011-01-01

    Autophagy down-regulates the Wnt signal transduction pathway via targeted degradation of a key signaling protein. This may provide an explanation for autophagy's role in tumor suppression.%@@ The eukaryotic cell has at its disposal two primary methods for getting rid of unwanted proteins: the proteasome and autophagy.The proteasome is a large protein complex comprising regulatory and proteolytic subunits whose core function is the degradation of damaged or misfolded proteins.

  20. Maize and Arabidopsis ARGOS Proteins Interact with Ethylene Receptor Signaling Complex, Supporting a Regulatory Role for ARGOS in Ethylene Signal Transduction[OPEN

    Science.gov (United States)

    Shi, Jinrui; Wang, Hongyu; Habben, Jeffrey E.

    2016-01-01

    The phytohormone ethylene regulates plant growth and development as well as plant response to environmental cues. ARGOS genes reduce plant sensitivity to ethylene when overexpressed in transgenic Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). A previous genetic study suggested that the endoplasmic reticulum and Golgi-localized maize ARGOS1 targets the ethylene signal transduction components at or upstream of CONSTITUTIVE TRIPLE RESPONSE1, but the mechanism of ARGOS modulating ethylene signaling is unknown. Here, we demonstrate in Arabidopsis that ZmARGOS1, as well as the Arabidopsis ARGOS homolog ORGAN SIZE RELATED1, physically interacts with Arabidopsis REVERSION-TO-ETHYLENE SENSITIVITY1 (RTE1), an ethylene receptor interacting protein that regulates the activity of ETHYLENE RESPONSE1. The protein-protein interaction was also detected with the yeast split-ubiquitin two-hybrid system. Using the same yeast assay, we found that maize RTE1 homolog REVERSION-TO-ETHYLENE SENSITIVITY1 LIKE4 (ZmRTL4) and ZmRTL2 also interact with maize and Arabidopsis ARGOS proteins. Like AtRTE1 in Arabidopsis, ZmRTL4 and ZmRTL2 reduce ethylene responses when overexpressed in maize, indicating a similar mechanism for ARGOS regulating ethylene signaling in maize. A polypeptide fragment derived from ZmARGOS8, consisting of a Pro-rich motif flanked by two transmembrane helices that are conserved among members of the ARGOS family, can interact with AtRTE1 and maize RTL proteins in Arabidopsis. The conserved domain is necessary and sufficient to reduce ethylene sensitivity in Arabidopsis and maize. Overall, these results suggest a physical association between ARGOS and the ethylene receptor signaling complex via AtRTE1 and maize RTL proteins, supporting a role for ARGOS in regulating ethylene perception and the early steps of signal transduction in Arabidopsis and maize. PMID:27268962

  1. Concentration-Dependent Effects of Rhodiola Rosea on Long-Term Survival and Stress Resistance of Yeast Saccharomyces Cerevisiae: The Involvement of YAP 1 and MSN2/4 Regulatory Proteins.

    Science.gov (United States)

    Bayliak, Maria M; Burdyliuk, Nadia I; Izers'ka, Lilia I; Lushchak, Volodymyr I

    2014-01-01

    Concentration-dependent effects of aqueous extract from R. rosea root on long-term survival and stress resistance of budding yeast Saccharomyces cerevisiae were studied. At low concentrations, R. rosea aqueous extract extended yeast chronological lifespan, enhanced oxidative stress resistance of stationary-phase cells and resistance to number stressors in exponentially growing cultures. At high concentrations, R. rosea extract sensitized yeast cells to stresses and shortened yeast lifespan. These biphasic concentration-responses describe a common hormetic phenomenon characterized by a low-dose stimulation and a high-dose inhibition. Yeast pretreatment with low doses of R. rosea extract enhanced yeast survival and prevented protein oxidation under H2O2-induced oxidative stress. Positive effect of R. rosea extract on yeast survival under heat shock exposure was not accompanied with changes in antioxidant enzyme activities and levels of oxidized proteins. The deficiency in transcriptional regulators, Msn2/Msn4 and Yap1, abolished the positive effect of low doses of R. rosea extract on yeast viability under stress challenges. Potential involvement of Msn2/Msn4 and Yap1 regulatory proteins in realization of R. rosea beneficial effects is discussed.

  2. The 73 kDa subunit of the CPSF complex binds to the HIV-1 LTR promoter and functions as a negative regulatory factor that is inhibited by the HIV-1 Tat protein.

    Science.gov (United States)

    de la Vega, Laureano; Sánchez-Duffhues, Gonzalo; Fresno, Manuel; Schmitz, M Lienhard; Muñoz, Eduardo; Calzado, Marco A

    2007-09-14

    Gene expression in eukaryotes requires the post-transcriptional cleavage of mRNA precursors into mature mRNAs. The cleavage and polyadenylation specificity factor (CPSF) is critical for this process and its 73 kDa subunit (CPSF-73) mediates cleavage coupled to polyadenylation and histone pre-mRNA processing. Using CPSF-73 over-expression and siRNA-mediated knockdown experiments, this study identifies CPSF-73 as an important regulatory protein that represses the basal transcriptional activity of the HIV-1 LTR promoter. Similar results were found with over-expression of the CPSF-73 homologue RC-68, but not with CPSF 100 kDa subunit (CPSF-100) and RC-74. Chromatin immunoprecipitation assays revealed the physical interaction of CPSF-73 with the HIV-1 LTR promoter. Further experiments revealed indirect CPSF-73 binding to the region between -275 to -110 within the 5' upstream region. Functional assays revealed the importance for the 5' upstream region (-454 to -110) of the LTR for CPSF-73-mediated transcription repression. We also show that HIV-1 Tat protein interacts with CPSF-73 and counteracts its repressive activity on the HIV-1 LTR promoter. Our results clearly show a novel function for CPSF-73 and add another candidate protein for explaining the molecular mechanisms underlying HIV-1 latency.

  3. Multiprotein bridging factor 1 (MBF1) is an evolutionarily conserved transcriptional coactivator that connects a regulatory factor and TATA element-binding protein

    OpenAIRE

    Takemaru, Ken-Ichi; Li, Feng-Qian; Ueda, Hitoshi; Hirose, Susumu

    1997-01-01

    Multiprotein bridging factor 1 (MBF1) is a transcriptional cofactor that bridges between the TATA box-binding protein (TBP) and the Drosophila melanogaster nuclear hormone receptor FTZ-F1 or its silkworm counterpart BmFTZ-F1. A cDNA clone encoding MBF1 was isolated from the silkworm Bombyx mori whose sequence predicts a basic protein consisting of 146 amino acids. Bacterially expressed recombinant MBF1 is functional in interactions with TBP and a positive cofactor MBF2. The recombinant MBF1 a...

  4. Neutron scattering with deuterium labeling reveals the nature of complexes formed by Ca{sup 2+}-binding proteins and their regulatory targets

    Energy Technology Data Exchange (ETDEWEB)

    Trewhella, J. [Los Alamos National Laboratory, NM (United States)

    1994-12-01

    Small-angle neutron scattering with deuterium labeling is extremely useful for studying the structures of complex biomolecular assemblies in solution. The different neutron scattering properties of their isotopes of hydrogen combines with the ability to uniformly label biomolecules with deuterium allow one to characterize the structures and relative dispositions of the individual components of an assembly using methods of {open_quotes}contrast variation.{close_quotes} We have applied these techniques to studies of the evolutionarily related dumbbell-shaped Ca{sup 2+}-binding proteins calmodulin and troponin C and their interactions with the target proteins whose activities they regulate. Ca{sup 2+} is one of the simplest of nature`s messengers used in the communication pathways between physiological stimulus and cellular response. The signaling mechanism generally involves Ca{sup 2+} binding to a protein and inducing a conformational change that transmits a signal to modify the activity of a specific target protein. Ca{sup 2+} is thus important in the regulation of a diverse array of intracellular responses, including neurotransmitter release, muscle contraction, the degradation of glycogen to glucose to generate energy, microtubule assembly, membrane phosphorylation, etc. It is the conformational language of the Ca{sup 2+} induced signal transduction that we have sought to understand because of its central importance to biochemical regulation and, hence, to healthy cellular function.

  5. Characterisation of the putative effector interaction site of the regulatory HbpR protein from Pseudomonas azelaica by site-directed mutagenesis.

    Directory of Open Access Journals (Sweden)

    Christelle Vogne

    Full Text Available Bacterial transcription activators of the XylR/DmpR subfamily exert their expression control via σ(54-dependent RNA polymerase upon stimulation by a chemical effector, typically an aromatic compound. Where the chemical effector interacts with the transcription regulator protein to achieve activation is still largely unknown. Here we focus on the HbpR protein from Pseudomonas azelaica, which is a member of the XylR/DmpR subfamily and responds to biaromatic effectors such as 2-hydroxybiphenyl. We use protein structure modeling to predict folding of the effector recognition domain of HbpR and molecular docking to identify the region where 2-hydroxybiphenyl may interact with HbpR. A large number of site-directed HbpR mutants of residues in- and outside the predicted interaction area was created and their potential to induce reporter gene expression in Escherichia coli from the cognate P(C promoter upon activation with 2-hydroxybiphenyl was studied. Mutant proteins were purified to study their conformation. Critical residues for effector stimulation indeed grouped near the predicted area, some of which are conserved among XylR/DmpR subfamily members in spite of displaying different effector specificities. This suggests that they are important for the process of effector activation, but not necessarily for effector specificity recognition.

  6. Cold-inducible RNA-binding protein mediates airway inflammation and mucus hypersecretion through a post-transcriptional regulatory mechanism under cold stress.

    Science.gov (United States)

    Juan, Yang; Haiqiao, Wu; Xie, Wenyao; Huaping, Huang; Zhong, Han; Xiangdong, Zhou; Kolosov, Victor P; Perelman, Juliy M

    2016-09-01

    Acute or chronic cold exposure exacerbates chronic inflammatory airway diseases, such as chronic obstructive pulmonary disease (COPD) and asthma. Cold-inducible RNA-binding protein (CIRP) is a cold-shock protein and is induced by various environmental stressors, such as hypothermia and hypoxia. In this study, we showed that CIRP gene and protein levels were significantly increased in patients with COPD and in rats with chronic airway inflammation compared with healthy subjects. Similarly, inflammatory cytokine production and MUC5AC secretion were up-regulated in rats following cigarette smoke inhalation. Cold temperature-induced CIRP overexpression and translocation were shown to be dependent on arginine methylation in vitro. CIRP overexpression promoted stress granule (SG) assembly. In the cytoplasm, the stability of pro-inflammatory cytokine mRNAs was increased through specific interactions between CIRP and mediator mRNA 3'-UTRs; these interactions increased the mRNA translation, resulting in MUC5AC overproduction in response to cold stress. Conversely, CIRP silencing and a methyltransferase inhibitor (adenosine dialdehyde) promoted cytokine mRNA degradation and inhibited the inflammatory response and mucus hypersecretion. These findings indicate that cold temperature can induce an airway inflammatory response and excess mucus production via a CIRP-mediated increase in mRNA stability and protein translation. PMID:27477308

  7. Identification of the human zinc transcriptional regulatory element (ZTRE): a palindromic protein-binding DNA sequence responsible for zinc-induced transcriptional repression

    NARCIS (Netherlands)

    Coneyworth, L.J.; Jackson, K.A.; Tyson, J.; Bosomworth, H.J.; Hagen, E.A.E. van der; Hann, G.M.; Ogo, O.A.; Swann, D.C.; Mathers, J.C.; Valentine, R.A.; Ford, D.

    2012-01-01

    Many genes with crucial roles in zinc homeostasis in mammals respond to fluctuating zinc supply through unknown mechanisms, and uncovering these mechanisms is essential to understanding the process at cellular and systemic levels. We detected zinc-dependent binding of a zinc-induced protein to a spe

  8. Effect of subsoiling in fallow period on soil water storage and grain protein accumulation of dryland wheat and its regulatory effect by nitrogen application.

    Directory of Open Access Journals (Sweden)

    Min Sun

    Full Text Available To provide a new way to increase water storage and retention of dryland wheat, a field study was conducted at Wenxi experimental site of Shanxi Agricultural University. The effect of subsoiling in fallow period on soil water storage, accumulation of proline, and formation of grain protein after anthesis were determined. Our results showed that subsoiling in fallow period could increase water storage in the 0-300 cm soil at pre-sowing stage and at anthesis stage with low or medium N application, especially for the 60-160 cm soil. However, the proline content, glutamine synthetase (GS activity, glutamate dehydrogenase (GDH activity in flag leaves and grains were all decreased by subsoiling in fallow period. In addition, the content of albumin, gliadin, and total protein in grains were also decreased while globulin content, Glu/Gli, protein yield, and glutelin content were increased. With N application increasing, water storage of soil layers from 20 to 200 cm was decreased at anthesis stage. High N application resulted in the increment of proline content and GS activity in grains. Besides, correlation analysis showed that soil storage in 40-160 cm soil was negatively correlated with proline content in grains; proline content in grains was positively correlated with GS and GDH activity in flag leaves. Contents of albumin, globulin and total protein in grains were positively correlated with proline content in grains and GDH activity in flag leaves. In conclusion, subsoiling in fallow period, together with N application at 150 kg·hm(-2, was beneficial to increase the protein yield and Glu/Gli in grains which improve the quality of wheat.

  9. Prognostic significance of catalase expression and its regulatory effects on hepatitis B virus X protein (HBx) in HBV-related advanced hepatocellular carcinomas.

    Science.gov (United States)

    Cho, Mi-Young; Cheong, Jae Youn; Lim, Wonchung; Jo, Sujin; Lee, Youngsoo; Wang, Hee-Jung; Han, Kyou-Hoon; Cho, Hyeseong

    2014-12-15

    Hepatitis B virus X protein (HBx) plays a role in liver cancer development. We previously showed that ROS increased HBx levels and here, we investigated the role of antioxidants in the regulation of HBx expression and their clinical relevance. We found that overexpression of catalase induced a significant loss in HBx levels. The cysteine null mutant of HBx (Cys-) showed a dramatic reduction in its protein stability. In clonogenic proliferation assays, Huh7-X cells produced a significant number of colonies whereas Huh7-Cys- cells failed to generate them. The Cys at position 69 of HBx was crucial to maintain its protein stability and transactivation function in response to ROS. Among 50 HBV-related hepatocellular carcinoma (HCC) specimens, 72% of HCCs showed lower catalase levels than those of surrounding non-tumor tissues. In advanced stage IV, catalase levels in non-tumor tissues were increased whereas those in tumors were further reduced. Accordingly, patients with a high T/N ratio for catalase showed significantly longer survival than those with a low T/N ratio. Together, catalase expression in HCC patients can be clinically useful for prediction of patient survival, and restoration of catalase expression in HCCs could be an important strategy for intervention in HBV-induced liver diseases.

  10. The Ubiquitin Regulatory X (UBX) Domain-containing Protein TUG Regulates the p97 ATPase and Resides at the Endoplasmic Reticulum-Golgi Intermediate Compartment*

    Science.gov (United States)

    Orme, Charisse M.; Bogan, Jonathan S.

    2012-01-01

    p97/VCP is a hexameric ATPase that is coupled to diverse cellular processes, such as membrane fusion and proteolysis. How p97 activity is regulated is not fully understood. Here we studied the potential role of TUG, a widely expressed protein containing a UBX domain, to control mammalian p97. In HEK293 cells, the vast majority of TUG was bound to p97. Surprisingly, the TUG UBX domain was neither necessary nor sufficient for this interaction. Rather, an extended sequence, comprising three regions of TUG, bound to the p97 N-terminal domain. The TUG C terminus resembled the Arabidopsis protein PUX1. Similar to the previously described action of PUX1 on AtCDC48, TUG caused the conversion of p97 hexamers into monomers. Hexamer disassembly was stoichiometric rather than catalytic and was not greatly affected by the p97 ATP-binding state or by TUG N-terminal regions in vitro. In HeLa cells, TUG localized to the endoplasmic reticulum-to-Golgi intermediate compartment and endoplasmic reticulum exit sites. Although siRNA-mediated TUG depletion had no marked effect on total ubiquitylated proteins or p97 localization, TUG overexpression caused an accumulation of ubiquitylated substrates and targeted both TUG and p97 to the nucleus. A physiologic role of TUG was revealed by siRNA-mediated depletion, which showed that TUG is required for efficient reassembly of the Golgi complex after brefeldin A removal. Together, these data support a model in which TUG controls p97 oligomeric status at a particular location in the early secretory pathway and in which this process regulates membrane trafficking in various cell types. PMID:22207755

  11. Effect of Subsoiling in Fallow Period on Soil Water Storage and Grain Protein Accumulation of Dryland Wheat and Its Regulatory Effect by Nitrogen Application

    OpenAIRE

    Min Sun; ZhiQiang Gao; WeiFeng Zhao; LianFeng Deng; Yan Deng; HongMei Zhao; AiXia Ren; Gang Li; ZhenPing Yang

    2013-01-01

    To provide a new way to increase water storage and retention of dryland wheat, a field study was conducted at Wenxi experimental site of Shanxi Agricultural University. The effect of subsoiling in fallow period on soil water storage, accumulation of proline, and formation of grain protein after anthesis were determined. Our results showed that subsoiling in fallow period could increase water storage in the 0-300 cm soil at pre-sowing stage and at anthesis stage with low or medium N applicatio...

  12. Regulatory role of PI3K-protein kinase B on the release of interleukin-1β in peritoneal macrophages from the ascites of cirrhotic patients.

    Science.gov (United States)

    Tapia-Abellán, A; Ruiz-Alcaraz, A J; Antón, G; Miras-López, M; Francés, R; Such, J; Martínez-Esparza, M; García-Peñarrubia, P

    2014-12-01

    Great effort has been paid to identify novel targets for pharmaceutical intervention to control inflammation associated with different diseases. We have studied the effect of signalling inhibitors in the secretion of the proinflammatory and profibrogenic cytokine interleukin (IL)-1β in monocyte-derived macrophages (M-DM) obtained from the ascites of cirrhotic patients and compared with those obtained from the blood of healthy donors. Peritoneal M-DM were isolated from non-infected ascites of cirrhotic patients and stimulated in vitro with lipopolysaccharide (LPS) and heat-killed Candida albicans in the presence or absence of inhibitors for c-Jun N-terminal kinase (JNK), mitogen-activated protein kinase kinase 1 (MEK1), p38 mitogen-activated protein kinase (MAPK) and phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K). The IL1B and CASP1 gene expression were evaluated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The expression of IL-1β and caspase-1 were determined by Western blot. IL-1β was also assayed by enzyme-linked immunosorbent assay (ELISA) in cell culture supernatants. Results revealed that MEK1 and JNK inhibition significantly reduced the basal and stimulated IL-1β secretion, while the p38 MAPK inhibitor had no effect on IL-1β levels. On the contrary, inhibition of PI3K increased the secretion of IL-1β from stimulated M-DM. The activating effect of PI3K inhibitor on IL-1β release was mediated mainly by the enhancement of the intracellular IL-1β and caspase-1 content release to the extracellular medium and not by increasing the corresponding mRNA and protein expression levels. These data point towards the role of MEK1 and JNK inhibitors, in contrast to the PI3K-protein kinase B inhibitors, as potential therapeutic tools for pharmaceutical intervention to diminish hepatic damage by reducing the inflammatory response mediated by IL-1β associated with liver failure.

  13. Antagonistic control of the turnover pathway for the global regulatory sRNA CsrB by the CsrA and CsrD proteins.

    Science.gov (United States)

    Vakulskas, Christopher A; Leng, Yuanyuan; Abe, Hazuki; Amaki, Takumi; Okayama, Akihiro; Babitzke, Paul; Suzuki, Kazushi; Romeo, Tony

    2016-09-19

    The widely conserved protein CsrA (carbon storage regulator A) globally regulates bacterial gene expression at the post-transcriptional level. In many species, CsrA activity is governed by untranslated sRNAs, CsrB and CsrC in Escherichia coli, which bind to multiple CsrA dimers, sequestering them from lower affinity mRNA targets. Both the synthesis and turnover of CsrB/C are regulated. Their turnover requires the housekeeping endonuclease RNase E and is activated by the presence of a preferred carbon source via the binding of EIIA(Glc) of the glucose transport system to the GGDEF-EAL domain protein CsrD. We demonstrate that the CsrB 3' segment contains the features necessary for CsrD-mediated decay. RNase E cleavage in an unstructured segment located immediately upstream from the intrinsic terminator is necessary for subsequent degradation to occur. CsrA stabilizes CsrB against RNase E cleavage by binding to two canonical sites adjacent to the necessary cleavage site, while CsrD acts by overcoming CsrA-mediated protection. Our genetic, biochemical and structural studies establish a molecular framework for sRNA turnover by the CsrD-RNase E pathway. We propose that CsrD evolution was driven by the selective advantage of decoupling Csr sRNA decay from CsrA binding, connecting it instead to the availability of a preferred carbon source. PMID:27235416

  14. Analysis of the Arabidopsis shoot meristem transcriptome during floral transition identifies distinct regulatory patterns and a leucine-rich repeat protein that promotes flowering.

    Science.gov (United States)

    Torti, Stefano; Fornara, Fabio; Vincent, Coral; Andrés, Fernando; Nordström, Karl; Göbel, Ulrike; Knoll, Daniela; Schoof, Heiko; Coupland, George

    2012-02-01

    Flowering of Arabidopsis thaliana is induced by exposure to long days (LDs). During this process, the shoot apical meristem is converted to an inflorescence meristem that forms flowers, and this transition is maintained even if plants are returned to short days (SDs). We show that exposure to five LDs is sufficient to commit the meristem of SD-grown plants to flower as if they were exposed to continuous LDs. The MADS box proteins SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) and FRUITFULL (FUL) play essential roles in this commitment process and in the induction of flowering downstream of the transmissible FLOWERING LOCUS T (FT) signal. We exploited laser microdissection and Solexa sequencing to identify 202 genes whose transcripts increase in the meristem during floral commitment. Expression of six of these transcripts was tested in different mutants, allowing them to be assigned to FT-dependent or FT-independent pathways. Most, but not all, of those dependent on FT and its paralog TWIN SISTER OF FT (TSF) also relied on SOC1 and FUL. However, this dependency on FT and TSF or SOC1 and FUL was often bypassed in the presence of the short vegetative phase mutation. FLOR1, which encodes a leucine-rich repeat protein, was induced in the early inflorescence meristem, and flor1 mutations delayed flowering. Our data contribute to the definition of LD-dependent pathways downstream and in parallel to FT.

  15. Loss of p53-regulatory protein IFI16 induces NBS1 leading to activation of p53-mediated checkpoint by phosphorylation of p53 SER37.

    Science.gov (United States)

    Tawara, Hideyuki; Fujiuchi, Nobuko; Sironi, Juan; Martin, Sarah; Aglipay, Jason; Ouchi, Mutsuko; Taga, Makoto; Chen, Phang-Lang; Ouchi, Toru

    2008-01-01

    Our previous results that IFI16 is involved in p53 transcription activity under conditions of ionizing radiation (IR), and that the protein is frequently lost in human breast cancer cell lines and breast adenocarcinoma tissues suggesting that IFI16 plays a crucial role in controlling cell growth. Here, we show that loss of IFI16 by RNA interference in cell culture causes elevated phosphorylation of p53 Ser37 and accumulated NBS1 (nibrin) and p21WAF1, leading to growth retardation. Consistent with these observations, doxycyclin-induced NBS1 caused accumulation of p21WAF1 and increased phosphorylation of p53 Ser37, leading to cell cycle arrest in G1 phase. Wortmannin treatment was found to decrease p53 Ser37 phosphorylation in NBS-induced cells. These results suggest that loss of IFI16 activates p53 checkpoint through NBS1-DNA-PKcs pathway. PMID:17981542

  16. Retinol-binding protein 4 in twins: regulatory mechanisms and impact of circulating and tissue expression levels on insulin secretion and action

    DEFF Research Database (Denmark)

    Ribel-Madsen, Rasmus; Friedrichsen, Martin; Vaag, Allan;

    2009-01-01

    OBJECTIVE: Retinol-binding protein (RBP) 4 is an adipokine of which plasma levels are elevated in obesity and type 2 diabetes. The aims of the study were to identify determinants of plasma RBP4 and RBP4 mRNA expression in subcutaneous adipose tissue (SAT) and skeletal muscle and to investigate...... the association between RBP4 and in vivo measures of glucose metabolism. RESEARCH DESIGN AND METHODS: The study population included 298 elderly twins (aged 62-83 years), with glucose tolerance ranging from normal to overt type 2 diabetes, and 178 young (aged 25-32 years) and elderly (aged 58-66 years) nondiabetic....... Plasma RBP4 was elevated in type 2 diabetes and increased with duration of disease. Plasma RBP4 correlated inversely with peripheral, but not hepatic, insulin sensitivity. However, the association disappeared after correction for covariates, including plasma adiponectin. Plasma retinol, and not RBP4...

  17. DLX5, FGF8 and the Pin1 isomerase control ΔNp63α protein stability during limb development: a regulatory loop at the basis of the SHFM and EEC congenital malformations.

    Science.gov (United States)

    Restelli, Michela; Lopardo, Teresa; Lo Iacono, Nadia; Garaffo, Giulia; Conte, Daniele; Rustighi, Alessandra; Napoli, Marco; Del Sal, Giannino; Perez-Morga, David; Costanzo, Antonio; Merlo, Giorgio Roberto; Guerrini, Luisa

    2014-07-15

    Ectrodactyly, or Split-Hand/Foot Malformation (SHFM), is a congenital condition characterized by the loss of central rays of hands and feet. The p63 and the DLX5;DLX6 transcription factors, expressed in the embryonic limb buds and ectoderm, are disease genes for these conditions. Mutations of p63 also cause the ectodermal dysplasia-ectrodactyly-cleft lip/palate (EEC) syndrome, comprising SHFM. Ectrodactyly is linked to defects of the apical ectodermal ridge (AER) of the developing limb buds. FGF8 is the key signaling molecule in this process, able to direct proximo-distal growth and patterning of the skeletal primordial of the limbs. In the limb buds of both p63 and Dlx5;Dlx6 murine models of SHFM, the AER is poorly stratified and FGF8 expression is severely reduced. We show here that the FGF8 locus is a downstream target of DLX5 and that FGF8 counteracts Pin1-ΔNp63α interaction. In vivo, lack of Pin1 leads to accumulation of the p63 protein in the embryonic limbs and ectoderm. We show also that ΔNp63α protein stability is negatively regulated by the interaction with the prolyl-isomerase Pin1, via proteasome-mediated degradation; p63 mutant proteins associated with SHFM or EEC syndromes are resistant to Pin1 action. Thus, DLX5, p63, Pin1 and FGF8 participate to the same time- and location-restricted regulatory loop essential for AER stratification, hence for normal patterning and skeletal morphogenesis of the limb buds. These results shed new light on the molecular mechanisms at the basis of the SHFM and EEC limb malformations. PMID:24569166

  18. Expression of the translocator protein (TSPO from Pseudomonas fluorescens Pfo-1 requires the stress regulatory sigma factors AlgU and RpoH

    Directory of Open Access Journals (Sweden)

    Charlène eLeneveu-Jenvrin

    2015-09-01

    Full Text Available The translocator protein (TSPO, previously designated as peripheral-type benzodiazepine receptor, is an evolutionary conserved protein that is found in many Eukarya, Archae and Bacteria, in which it plays several important functions including for example membrane biogenesis, signaling and stress response. A tspo homologue gene has been identified in several members of the Pseudomonas genus, among which the soil bacterium P. fluorescens Pf0-1. In this bacterium, the tspo gene is located in the vicinity of a putative hybrid histidine kinase-encoding gene. Since tspo has been involved in water stress related response in plants, we explored the effects of hyperosmolarity and temperature on P. fluorescens Pf0-1 tspo expression using a strategy based on lux-reporter fusions. We show that the two genes Pfl01_2810 and tspo are co-transcribed forming a transcription unit. The expression of this operon is growth phase-dependent and is increased in response to high concentrations of NaCl, sucrose and to a D-cycloserine treatment, which are conditions leading to activity of the major cell wall stress responsive extracytoplasmic sigma factor AlgU. Interestingly, the promoter region activity is strongly lowered in a P. aeruginosa algU mutant, suggesting that AlgU may be involved at least partly in the molecular mechanism leading to Pfl01_2810-tspo expression. In silico analysis of this promoter region failed to detect an AlgU consensus binding site; however, we detect a putative binding site for the heat shock response RpoH sigma factor. Accordingly, the promoter activity of the region containing this sequence is increased in response to high growth temperature and slightly lowered in a P. aeruginosa rpoH mutant strain. Taken together, our data suggest that P. fluorescens tspo gene may belong at least partly to the cell wall stress response.

  19. The influence of sleep deprivation on expression of apoptosis regulatory proteins p53, bcl-2 and bax following rat tongue carcinogenesis induced by 4-nitroquinoline 1-oxide

    Directory of Open Access Journals (Sweden)

    Juliana Noguti

    2013-01-01

    Full Text Available Background: The aim of this study was to evaluate whether paradoxical sleep deprivation could affects the mechanisms and pathways essentials for cancer cells in tongue cancer induced by 4-nitroquinole 1-oxide in Wistar rats. Materials and Methods: For this purpose, the animals were distributed into 4 groups of 5 animals each treated with 50 ppm 4 nitroquinoline 1 oxide (4 NQO solution through their drinking water for 4 and 12 weeks. The animals were submitted to paradoxical sleep deprivation (PSD for 72 h using the modified multiple platform method, which consisted of placing 5 mice in a cage (41 × 34 × 16 cm containing 10 circular platforms (3.5 cm in diameter with water 1 cm below the upper surface. The investigations were conducted using immunohistochemistry of p53, Bax and Bcl-2 proteins related to apoptosis and its pathways. Statistical analysis was performed by Kruskal-Wallis non-parametric test followed by the Dunn′s test using SPSS software pack (version 1.0. P value < 0.05 was considered for statistic significance. Results: Although no histopathological abnormalities were induced in the epithelium after 4 weeks of carcinogen exposure in all groups, in 12 weeks were observed pre-neoplasic lesions. Data analysis revealed statistically significant differences ( P < 0.05 in 4 weeks group for p53 and for bcl-2 and for all immunomarkers after 12 weeks of 4NQO administration. Conclusion: Our results reveal that sleep deprivation exerted alterations in proteins associated with proliferation and apoptosis in carcinogenesis.

  20. ApoHRP-based Assay to Measure Intracellular Regulatory Heme

    OpenAIRE

    Atamna, Hani; Brahmbhatt, Marmik; Atamna, Wafa; Shanower, Gregory A.; Dhahbi, Joseph M.

    2015-01-01

    The majority of the heme-binding proteins possess a “heme-pocket” that stably binds with heme. Usually known as housekeeping heme-proteins, they participate in a variety of metabolic reactions (e.g., catalase). Heme also binds with lower affinity to the “Heme-Regulatory Motifs” (HRM) in specific regulatory proteins. This type of heme binding is known as exchangeable or regulatory heme (RH). Heme binding to HRM proteins regulates their function (e.g., Bach1). Although there are well-establishe...

  1. A point mutation in the DNA-binding domain of HPV-2 E2 protein increases its DNA-binding capacity and reverses its transcriptional regulatory activity on the viral early promoter

    Directory of Open Access Journals (Sweden)

    Gao Chen

    2012-02-01

    Full Text Available Abstract Background The human papillomavirus (HPV E2 protein is a multifunctional DNA-binding protein. The transcriptional activity of HPV E2 is mediated by binding to its specific binding sites in the upstream regulatory region of the HPV genomes. Previously we reported a HPV-2 variant from a verrucae vulgaris patient with huge extensive clustered cutaneous, which have five point mutations in its E2 ORF, L118S, S235P, Y287H, S293R and A338V. Under the control of HPV-2 LCR, co-expression of the mutated HPV E2 induced an increased activity on the viral early promoter. In the present study, a series of mammalian expression plasmids encoding E2 proteins with one to five amino acid (aa substitutions for these mutations were constructed and transfected into HeLa, C33A and SiHa cells. Results CAT expression assays indicated that the enhanced promoter activity was due to the co-expressions of the E2 constructs containing A338V mutation within the DNA-binding domain. Western blots analysis demonstrated that the transiently transfected E2 expressing plasmids, regardless of prototype or the A338V mutant, were continuously expressed in the cells. To study the effect of E2 mutations on its DNA-binding activity, a serial of recombinant E2 proteins with various lengths were expressed and purified. Electrophoresis mobility shift assays (EMSA showed that the binding affinity of E2 protein with A338V mutation to both an artificial probe with two E2 binding sites or HPV-2 and HPV-16 promoter-proximal LCR sequences were significantly stronger than that of the HPV-2 prototype E2. Furthermore, co-expression of the construct containing A338V mutant exhibited increased activities on heterologous HPV-16 early promoter P97 than that of prototype E2. Conclusions These results suggest that the mutation from Ala to Val at aa 338 is critical for E2 DNA-binding and its transcriptional regulation.

  2. Comparative inter-strain sequence analysis of the putative regulatory region of murine psychostimulant-regulated gene GNB1 (G protein beta 1 subunit gene).

    Science.gov (United States)

    Kitanaka, Nobue; Kitanaka, Junichi; Walther, Donna; Wang, Xiao-Bing; Uhl, George R

    2003-08-01

    We isolated a cDNA clone from a murine genomic library of C57BL/6 strain, carrying 13.8 kb of nucleotides including exon 1 of heterotrimeric GTP-binding protein beta 1 subunit gene (genetic symbol, GNB1) and 10.6 kb of the 5' flanking region. Sequence comparison with GNB1 gene locus from 129Sv strain revealed a 0.2% divergence in a 13.2 kb common region between these two strains. The divergence consisted of eight single nucleotide polymorphisms, three insertions and one deletion, with 129Sv used as the reference. The exon 1 and the putative regulation elements, such as cyclic AMP response element, AP1, AP2, Sp1 and nuclear factor-kappa B recognition sites, were perfectly conserved. The expression of GNB1 mRNA was significantly increased in mouse striatum 2 h after single methamphetamine administration with an approximately 150% expression level compared with the basal level. In contrast, no change in the expression level was observed in the cerebral cortex. After the chronic methamphetamine treatment regimen, the expression level of GNB1 mRNA did not change in any brain regions examined. These results suggest (1) that the 5' flanking nucleotide sequence of GNB1 gene was strictly conserved for its possible contribution to the same change in the expression level between the mouse strains in response to psychostimulants and (2) that the initial process of development of behavioral sensitization appeared to occur parallel to the significant increase in the expression level of GNB1 gene in the mouse striatum. PMID:14631649

  3. PAPEL DE LAS PROTEÍNAS REGULADORAS Y ACCESORIAS DEL VIH-1 EN LA PATOGÉNESIS DE ESA INFECCIÓN Role of the regulatory and accesory proteins of HIV- 1 in its pathogenisis

    Directory of Open Access Journals (Sweden)

    XIOMARA úSUGA

    in the development of new antiretrovirals and their impact in the quality and life expectancy of infected individuals, the current therapy does not allow a complete immune reconstitution and is also associated with deleterious side effects and the appearance of viral resistance. Therefore the search for new therapeutic targets is required to face this pandemic. The role of the accessory and regulatory proteins of the HIV- 1 in the replication cycle and in the pathogenesis of the infection has been ignored for several years now; however, recent studies indicated that these proteins play essential roles in the replication cycle, being responsible for several processes associated to viral pathogenesis. These findings have underlined the importance of these proteins as promissory targets in the development of new therapeutic agents. In this review, we detailed the role of each one of the HIV-1’s regulatory and accessory proteins in the replicative cycle and in the pathogenesis of this infection.

  4. A novel sterol regulatory element-binding protein gene (sreA) identified in penicillium digitatum is required for prochloraz resistance, full virulence and erg11 (cyp51) regulation.

    Science.gov (United States)

    Liu, Jing; Yuan, Yongze; Wu, Zhi; Li, Na; Chen, Yuanlei; Qin, Tingting; Geng, Hui; Xiong, Li; Liu, Deli

    2015-01-01

    Penicillium digitatum is the most destructive postharvest pathogen of citrus fruits, causing fruit decay and economic loss. Additionally, control of the disease is further complicated by the emergence of drug-resistant strains due to the extensive use of triazole antifungal drugs. In this work, an orthologus gene encoding a putative sterol regulatory element-binding protein (SREBP) was identified in the genome of P. digitatum and named sreA. The putative SreA protein contains a conserved domain of unknown function (DUF2014) at its carboxyl terminus and a helix-loop-helix (HLH) leucine zipper DNA binding domain at its amino terminus, domains that are functionally associated with SREBP transcription factors. The deletion of sreA (ΔsreA) in a prochloraz-resistant strain (PdHS-F6) by Agrobacterium tumefaciens-mediated transformation led to increased susceptibility to prochloraz and a significantly lower EC50 value compared with the HS-F6 wild-type or complementation strain (COsreA). A virulence assay showed that the ΔsreA strain was defective in virulence towards citrus fruits, while the complementation of sreA could restore the virulence to a large extent. Further analysis by quantitative real-time PCR demonstrated that prochloraz-induced expression of cyp51A and cyp51B in PdHS-F6 was completely abolished in the ΔsreA strain. These results demonstrate that sreA is a critical transcription factor gene required for prochloraz resistance and full virulence in P. digitatum and is involved in the regulation of cyp51 expression.

  5. A novel sterol regulatory element-binding protein gene (sreA) identified in penicillium digitatum is required for prochloraz resistance, full virulence and erg11 (cyp51) regulation.

    Science.gov (United States)

    Liu, Jing; Yuan, Yongze; Wu, Zhi; Li, Na; Chen, Yuanlei; Qin, Tingting; Geng, Hui; Xiong, Li; Liu, Deli

    2015-01-01

    Penicillium digitatum is the most destructive postharvest pathogen of citrus fruits, causing fruit decay and economic loss. Additionally, control of the disease is further complicated by the emergence of drug-resistant strains due to the extensive use of triazole antifungal drugs. In this work, an orthologus gene encoding a putative sterol regulatory element-binding protein (SREBP) was identified in the genome of P. digitatum and named sreA. The putative SreA protein contains a conserved domain of unknown function (DUF2014) at its carboxyl terminus and a helix-loop-helix (HLH) leucine zipper DNA binding domain at its amino terminus, domains that are functionally associated with SREBP transcription factors. The deletion of sreA (ΔsreA) in a prochloraz-resistant strain (PdHS-F6) by Agrobacterium tumefaciens-mediated transformation led to increased susceptibility to prochloraz and a significantly lower EC50 value compared with the HS-F6 wild-type or complementation strain (COsreA). A virulence assay showed that the ΔsreA strain was defective in virulence towards citrus fruits, while the complementation of sreA could restore the virulence to a large extent. Further analysis by quantitative real-time PCR demonstrated that prochloraz-induced expression of cyp51A and cyp51B in PdHS-F6 was completely abolished in the ΔsreA strain. These results demonstrate that sreA is a critical transcription factor gene required for prochloraz resistance and full virulence in P. digitatum and is involved in the regulation of cyp51 expression. PMID:25699519

  6. A novel sterol regulatory element-binding protein gene (sreA identified in penicillium digitatum is required for prochloraz resistance, full virulence and erg11 (cyp51 regulation.

    Directory of Open Access Journals (Sweden)

    Jing Liu

    Full Text Available Penicillium digitatum is the most destructive postharvest pathogen of citrus fruits, causing fruit decay and economic loss. Additionally, control of the disease is further complicated by the emergence of drug-resistant strains due to the extensive use of triazole antifungal drugs. In this work, an orthologus gene encoding a putative sterol regulatory element-binding protein (SREBP was identified in the genome of P. digitatum and named sreA. The putative SreA protein contains a conserved domain of unknown function (DUF2014 at its carboxyl terminus and a helix-loop-helix (HLH leucine zipper DNA binding domain at its amino terminus, domains that are functionally associated with SREBP transcription factors. The deletion of sreA (ΔsreA in a prochloraz-resistant strain (PdHS-F6 by Agrobacterium tumefaciens-mediated transformation led to increased susceptibility to prochloraz and a significantly lower EC50 value compared with the HS-F6 wild-type or complementation strain (COsreA. A virulence assay showed that the ΔsreA strain was defective in virulence towards citrus fruits, while the complementation of sreA could restore the virulence to a large extent. Further analysis by quantitative real-time PCR demonstrated that prochloraz-induced expression of cyp51A and cyp51B in PdHS-F6 was completely abolished in the ΔsreA strain. These results demonstrate that sreA is a critical transcription factor gene required for prochloraz resistance and full virulence in P. digitatum and is involved in the regulation of cyp51 expression.

  7. Effects of tryptophan starvation on levels of the trp RNA-binding attenuation protein (TRAP) and anti-TRAP regulatory protein and their influence on trp operon expression in Bacillus subtilis.

    Science.gov (United States)

    Yang, Wen-Jen; Yanofsky, Charles

    2005-03-01

    The anti-TRAP protein (AT), encoded by the rtpA gene of Bacillus subtilis, can bind to and inhibit the tryptophan-activated trp RNA-binding attenuation protein (TRAP). AT binding can prevent TRAP from promoting transcription termination in the leader region of the trp operon, thereby increasing trp operon expression. We show here that AT levels continue to increase as tryptophan starvation becomes more severe, whereas the TRAP level remains relatively constant and independent of tryptophan starvation. Assuming that the functional form of AT is a trimer, we estimate that the ratios of AT trimers per TRAP molecule are 0.39 when the cells are grown under mild tryptophan starvation conditions, 0.83 under more severe starvation conditions, and approximately 2.0 when AT is expressed maximally. As the AT level is increased, a corresponding increase is observed in the anthranilate synthase level. When AT is expressed maximally, the anthranilate synthase level is about 70% of the level observed in a strain lacking TRAP. In a nutritional shift experiment where excess phenylalanine and tyrosine could potentially starve cells of tryptophan, both the AT level and anthranilate synthase activity were observed to increase. Expression of the trp operon is clearly influenced by the level of AT. PMID:15743934

  8. NRC Regulatory Agenda

    International Nuclear Information System (INIS)

    The NRC Regulatory Agenda is a compilation of all rules on which the NRC has recently completed action or has proposed, or is considering action and all petitions for rulemaking which have been received by the commission and are pending disposition by the Commission. The Regulatory Agenda is updated and issued each quarter

  9. NRC regulatory agenda

    International Nuclear Information System (INIS)

    The NRC Regulatory Agenda is a compilation of all rules on which the NRC has proposed or is considering action and all petitions for rulemaking which have been received by the Commission and are pending disposition by the Commission. The Regulatory Agenda is updated and issued each quarter

  10. Nuclear Regulatory legislation

    International Nuclear Information System (INIS)

    This compilation of statutes and material pertaining to nuclear regulatory legislation through the 97th Congress, 2nd Session, has been prepared by the Office of the Executive Legal Director, U.S. Nuclear Regulatory Commission, with the assistance of staff, for use as an internal resource document

  11. NRC regulatory agenda

    International Nuclear Information System (INIS)

    The NRC Regulatory Agenda is a compilation of all rules on which the NRC has recently completed action, or has proposed action, or is considering action, and all petitions for rulemaking which have been received by the Commission and are pending disposition by the Commission. The Regulatory Agenda is updated and issued each quarter

  12. NRC Regulatory Agenda

    International Nuclear Information System (INIS)

    The NRC Regulatory Agenda is a compilation of all rules on which the NRC has recently completed action, or has proposed action, or is considering action, and all petitions for rulemaking which have been received by the Commission and are pending disposition by the Commission. The Regulatory Agenda is updated and issued each quarter

  13. 3 CFR - Regulatory Review

    Science.gov (United States)

    2010-01-01

    ... transparency; encourage public participation in agency regulatory processes; offer suggestions on the role of cost-benefit analysis; address the role of distributional considerations, fairness, and concern for the... delay; clarify the role of the behavioral sciences in formulating regulatory policy; and identify...

  14. Mutational robustness of gene regulatory networks.

    Directory of Open Access Journals (Sweden)

    Aalt D J van Dijk

    Full Text Available Mutational robustness of gene regulatory networks refers to their ability to generate constant biological output upon mutations that change network structure. Such networks contain regulatory interactions (transcription factor-target gene interactions but often also protein-protein interactions between transcription factors. Using computational modeling, we study factors that influence robustness and we infer several network properties governing it. These include the type of mutation, i.e. whether a regulatory interaction or a protein-protein interaction is mutated, and in the case of mutation of a regulatory interaction, the sign of the interaction (activating vs. repressive. In addition, we analyze the effect of combinations of mutations and we compare networks containing monomeric with those containing dimeric transcription factors. Our results are consistent with available data on biological networks, for example based on evolutionary conservation of network features. As a novel and remarkable property, we predict that networks are more robust against mutations in monomer than in dimer transcription factors, a prediction for which analysis of conservation of DNA binding residues in monomeric vs. dimeric transcription factors provides indirect evidence.

  15. Bacillus subtilis regulatory protein GerE

    OpenAIRE

    Ducros, V M A; Brannigan, J.A.; Lewis, R J; Wilkinson, A.J.

    1998-01-01

    GerE is the latest-acting of a series of factors which regulate gene expression in the mother cell during sporulation in Bacillus. The gene encoding GerE has been cloned from B. subtilis and overexpressed in Escherichia coli. Purified GerE has been crystallized by the hanging-drop vapour-diffusion method using polyethylene glycol as a precipitant. The small plate-like crystals belong to the monoclinic space group C2 and diffract beyond 2.2 Angstrom resolution with a synchrotron radiation X-ra...

  16. Differential Association of the Na+/H+ Exchanger Regulatory Factor (NHERF Family of Adaptor Proteins with the Raft- and the Non-Raft Brush Border Membrane Fractions of NHE3

    Directory of Open Access Journals (Sweden)

    Ayesha Sultan

    2013-11-01

    Full Text Available Background/Aims: Trafficking, brush border membrane (BBM retention, and signal-specific regulation of the Na+/H+ exchanger NHE3 is regulated by the Na+/H+ Exchanger Regulatory Factor (NHERF family of PDZ-adaptor proteins, which enable the formation of multiprotein complexes. It is unclear, however, what determines signal specificity of these NHERFs. Thus, we studied the association of NHE3, NHERF1 (EBP50, NHERF2 (E3KARP, and NHERF3 (PDZK1 with lipid rafts in murine small intestinal BBM. Methods: Detergent resistant membranes (“lipid rafts” were isolated by floatation of Triton X-incubated small intestinal BBM from a variety of knockout mouse strains in an Optiprep step gradient. Acid-activated NHE3 activity was measured fluorometrically in BCECF-loaded microdissected villi, or by assessment of CO2/HCO3- mediated increase in fluid absorption in perfused jejunal loops of anethetized mice. Results: NHE3 was found to partially associate with lipid rafts in the native BBM, and NHE3 raft association had an impact on NHE3 transport activity and regulation in vivo. NHERF1, 2 and 3 were differentially distributed to rafts and non-rafts, with NHERF2 being most raft-associated and NHERF3 entirely non-raft associated. NHERF2 expression enhanced the localization of NHE3 to membrane rafts. The use of acid sphingomyelinase-deficient mice, which have altered membrane lipid as well as lipid raft composition, allowed us to test the validity of the lipid raft concept in vivo. Conclusions: The differential association of the NHERFs with the raft-associated and the non-raft fraction of NHE3 in the brush border membrane is one component of the differential and signal-specific NHE3 regulation by the different NHERFs.

  17. Ex vivo expanded human regulatory T cells delay islet allograft rejection via inhibiting islet-derived monocyte chemoattractant protein-1 production in CD34+ stem cells-reconstituted NOD-scid IL2rγnull mice.

    Directory of Open Access Journals (Sweden)

    Fang Xiao

    Full Text Available Type 1 diabetes mellitus (T1DM is an autoimmune disease caused by immune-mediated destruction of insulin-secreting β cells of the pancreas. Near complete dependence on exogenous insulin makes T1DM very difficult to control, with the result that patients are exposed to high blood glucose and risk of diabetic complications and/or intermittent low blood glucose that can cause unconsciousness, fits and even death. Allograft transplantation of pancreatic islets restores normoglycemia with a low risk of surgical complications. However, although successful immediately after transplantation, islets are progressively lost, with most of the patients requiring exogenous insulin within 2 years post-transplant. Therefore, there is an urgent requirement for the development of new strategies to prevent islet rejection. In this study, we explored the importance of human regulatory T cells in the control of islets allograft rejection. We developed a pre-clinical model of human islet transplantation by reconstituting NOD-scid IL2rγnull mice with cord blood-derived human CD34+ stem cells and demonstrated that although the engrafted human immune system mediated the rejection of human islets, their survival was significantly prolonged following adoptive transfer of ex vivo expanded human Tregs. Mechanistically, Tregs inhibited the infiltration of innate immune cells and CD4+ T cells into the graft by down-regulating the islet graft-derived monocyte chemoattractant protein-1. Our findings might contribute to the development of clinical strategies for Treg therapy to control human islet rejection. We also show for the first time that CD34+ cells-reconstituted NOD-scid IL2rγnull mouse model could be beneficial for investigating human innate immunity in vivo.

  18. Sex differences, developmental changes, response to injury and cAMP regulation of the mRNA levels of steroidogenic acute regulatory protein, cytochrome p450scc, and aromatase in the olivocerebellar system.

    Science.gov (United States)

    Lavaque, Esteban; Mayen, Aurora; Azcoitia, Iñigo; Tena-Sempere, Manuel; Garcia-Segura, Luis M

    2006-02-15

    Compelling evidence has now demonstrated direct biological actions of sex steroids at the cerebellum. Likewise, the expression of key steroidogenic factors, such as the steroidogenic acute regulatory protein (StAR), cytochrome P450 side chain cleavage (P450scc), and aromatase, at this neural site has been reported. Little is known, however, about the regulation of their genes in the cerebellum. Assessment of StAR, P450scc, and aromatase mRNAs in the cerebellum of male and female rats revealed that the expression of these genes is developmentally regulated, with the highest levels at early postnatal ages in both sexes and with significantly higher mRNA levels in postnatal males. Expression of these genes in the female remained unaltered after perinatal androgenization and along the estrous cycle. In contrast, damage of cerebellar afferent neurons of the inferior olivary nucleus evoked a significant increase in StAR, P450scc, and aromatase mRNA levels at this site, as well as a transient elevation in StAR mRNA at the cerebellum. Finally, enhancement of cAMP levels in cultured cerebellar neurons induced a significant increase in StAR and aromatase mRNA levels. In summary, we present herein novel evidence for the developmentally regulated and partially sexually dimorphic pattern of expression of StAR, P450scc, and aromatase genes in the rat cerebellum. These observations, together with the finding that the mRNA levels of these steroidogenic molecules are sensitive to injury and are regulated by intracellular cAMP, strongly suggest that local steroidogenesis is likely to play an important role during development and adaptation to neurodegenerative processes in the olivocerebellar system. PMID:16329132

  19. Regulatory guidance document

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-05-01

    The Office of Civilian Radioactive Waste Management (OCRWM) Program Management System Manual requires preparation of the OCRWM Regulatory Guidance Document (RGD) that addresses licensing, environmental compliance, and safety and health compliance. The document provides: regulatory compliance policy; guidance to OCRWM organizational elements to ensure a consistent approach when complying with regulatory requirements; strategies to achieve policy objectives; organizational responsibilities for regulatory compliance; guidance with regard to Program compliance oversight; and guidance on the contents of a project-level Regulatory Compliance Plan. The scope of the RGD includes site suitability evaluation, licensing, environmental compliance, and safety and health compliance, in accordance with the direction provided by Section 4.6.3 of the PMS Manual. Site suitability evaluation and regulatory compliance during site characterization are significant activities, particularly with regard to the YW MSA. OCRWM`s evaluation of whether the Yucca Mountain site is suitable for repository development must precede its submittal of a license application to the Nuclear Regulatory Commission (NRC). Accordingly, site suitability evaluation is discussed in Chapter 4, and the general statements of policy regarding site suitability evaluation are discussed in Section 2.1. Although much of the data and analyses may initially be similar, the licensing process is discussed separately in Chapter 5. Environmental compliance is discussed in Chapter 6. Safety and Health compliance is discussed in Chapter 7.

  20. Regulatory guidance document

    International Nuclear Information System (INIS)

    The Office of Civilian Radioactive Waste Management (OCRWM) Program Management System Manual requires preparation of the OCRWM Regulatory Guidance Document (RGD) that addresses licensing, environmental compliance, and safety and health compliance. The document provides: regulatory compliance policy; guidance to OCRWM organizational elements to ensure a consistent approach when complying with regulatory requirements; strategies to achieve policy objectives; organizational responsibilities for regulatory compliance; guidance with regard to Program compliance oversight; and guidance on the contents of a project-level Regulatory Compliance Plan. The scope of the RGD includes site suitability evaluation, licensing, environmental compliance, and safety and health compliance, in accordance with the direction provided by Section 4.6.3 of the PMS Manual. Site suitability evaluation and regulatory compliance during site characterization are significant activities, particularly with regard to the YW MSA. OCRWM's evaluation of whether the Yucca Mountain site is suitable for repository development must precede its submittal of a license application to the Nuclear Regulatory Commission (NRC). Accordingly, site suitability evaluation is discussed in Chapter 4, and the general statements of policy regarding site suitability evaluation are discussed in Section 2.1. Although much of the data and analyses may initially be similar, the licensing process is discussed separately in Chapter 5. Environmental compliance is discussed in Chapter 6. Safety and Health compliance is discussed in Chapter 7

  1. Managing Regulatory Body Competence

    International Nuclear Information System (INIS)

    In 2001, the IAEA published TECDOC 1254, which examined the way in which the recognized functions of a regulatory body for nuclear facilities results in competence needs. Using the systematic approach to training (SAT), TECDOC 1254 provided a framework for regulatory bodies for managing training and developing and their maintaining their competence. It has been successfully used by many regulators. The IAEA has also introduced a methodology and an assessment tool - Guidelines for Systematic Assessment of Regulatory Competence Needs (SARCoN) - which provides practical guidance on analysing the training and development needs of a regulatory body and, through a gap analysis, guidance on establishing competence needs and how to meet them. In 2009, the IAEA established a steering committee (supported by a bureau) with the mission to advise the IAEA on how it could best assist Member States to develop suitable competence management systems for their regulatory bodies. The committee recommended the development of a safety report on managing staff competence as an integral part of a regulatory body's management system. This Safety Report was developed in response to this request. It supersedes TECDOC 1254, broadens its application to regulatory bodies for all facilities and activities, and builds upon the experience gained through the application of TECDOC 1254 and SARCoN and the feedback received from Member States. This Safety Report applies to the management of adequate competence as needs change, and as such is equally applicable to the needs of States 'embarking' on a nuclear power programme. It also deals with the special case of building up the competence of regulatory bodies as part of the overall process of establishing an 'embarking' State's regulatory system

  2. NRC regulatory agenda

    International Nuclear Information System (INIS)

    The Regulatory Agenda is a quarterly compilation of all rules on which the NRC has recently completed action or has proposed, or is considering action and of all petitions for rulemaking that the NRC has received that are pending disposition

  3. Regulatory unbundling in telecommunications

    OpenAIRE

    Knieps, Günter

    2011-01-01

    Due to its dynamic nature, and the increasing importance of competitive sub-parts, the telecommunications sector provides particularly interesting insights for studying regulatory unbundling. Based on the theory of monopolistic bottle-necks the fallacies of overregulation by undue unbundling obligations are indicated. Neither the promotion of infrastructure competition by mandatory un-bundling of competitive subparts of telecommunications infrastructure, nor regulatory induced network fragmen...

  4. NRC regulatory initiatives

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, T.C. [Nuclear Regulatory Commission (United States)

    1989-11-01

    The US Nuclear Regulatory Commission (NRC) is addressing several low-level waste disposal issues that will be important to waste generators and to States and Compacts developing new disposal capacity. These issues include Greater-Than-Class C (GTCC) waste, mixed waste, below regulatory concern (BRC) waste, and the low-level waste data base. This paper discusses these issues and their current status.

  5. Protein: FEB6 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available FEB6 Photoresponse regulatory proteins HD1 SE1 Zinc finger protein HD1 Protein CONSTANS-like, Protein... HEADING DATE 1, Protein PHOTOPERIOD SENSITIVITY 1 39947 Oryza sativa subsp. japonica 4340746 Q9FDX8 21952207, 19246394 #shimamoto ...

  6. Expression of sterol regulatory element-binding transcription factor (SREBF 2 and SREBF cleavage-activating protein (SCAP in human atheroma and the association of their allelic variants with sudden cardiac death

    Directory of Open Access Journals (Sweden)

    Kytömäki Leena

    2008-12-01

    Full Text Available Abstract Background Disturbed cellular cholesterol homeostasis may lead to accumulation of cholesterol in human atheroma plaques. Cellular cholesterol homeostasis is controlled by the sterol regulatory element-binding transcription factor 2 (SREBF-2 and the SREBF cleavage-activating protein (SCAP. We investigated whole genome expression in a series of human atherosclerotic samples from different vascular territories and studied whether the non-synonymous coding variants in the interacting domains of two genes, SREBF-2 1784G>C (rs2228314 and SCAP 2386A>G, are related to the progression of coronary atherosclerosis and the risk of pre-hospital sudden cardiac death (SCD. Methods Whole genome expression profiling was completed in twenty vascular samples from carotid, aortic and femoral atherosclerotic plaques and six control samples from internal mammary arteries. Three hundred sudden pre-hospital deaths of middle-aged (33–69 years Caucasian Finnish men were subjected to detailed autopsy in the Helsinki Sudden Death Study. Coronary narrowing and areas of coronary wall covered with fatty streaks or fibrotic, calcified or complicated lesions were measured and related to the SREBF-2 and SCAP genotypes. Results Whole genome expression profiling showed a significant (p = 0.02 down-regulation of SREBF-2 in atherosclerotic carotid plaques (types IV-V, but not in the aorta or femoral arteries (p = NS for both, as compared with the histologically confirmed non-atherosclerotic tissues. In logistic regression analysis, a significant interaction between the SREBF-2 1784G>C and the SCAP 2386A>G genotype was observed on the risk of SCD (p = 0.046. Men with the SREBF-2 C allele and the SCAP G allele had a significantly increased risk of SCD (OR 2.68, 95% CI 1.07–6.71, compared to SCAP AA homologous subjects carrying the SREBF-2 C allele. Furthermore, similar trends for having complicated lesions and for the occurrence of thrombosis were found, although the

  7. Transcription regulatory networks analysis using CAGE

    KAUST Repository

    Tegnér, Jesper N.

    2009-10-01

    Mapping out cellular networks in general and transcriptional networks in particular has proved to be a bottle-neck hampering our understanding of biological processes. Integrative approaches fusing computational and experimental technologies for decoding transcriptional networks at a high level of resolution is therefore of uttermost importance. Yet, this is challenging since the control of gene expression in eukaryotes is a complex multi-level process influenced by several epigenetic factors and the fine interplay between regulatory proteins and the promoter structure governing the combinatorial regulation of gene expression. In this chapter we review how the CAGE data can be integrated with other measurements such as expression, physical interactions and computational prediction of regulatory motifs, which together can provide a genome-wide picture of eukaryotic transcriptional regulatory networks at a new level of resolution. © 2010 by Pan Stanford Publishing Pte. Ltd. All rights reserved.

  8. Protein: MPA6 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available MPA6 SREBBP1c SREBF1 BHLHD1, SREBP1 Sterol regulatory element-binding protein 1 Cla...ss D basic helix-loop-helix protein 1, Sterol regulatory element-binding transcription factor 1 9606 Homo sapiens P36956 6720 1AM9 6720 P36956 ...

  9. Regulatory RNAs in photosynthetic cyanobacteria.

    Science.gov (United States)

    Kopf, Matthias; Hess, Wolfgang R

    2015-05-01

    Regulatory RNAs play versatile roles in bacteria in the coordination of gene expression during various physiological processes, especially during stress adaptation. Photosynthetic bacteria use sunlight as their major energy source. Therefore, they are particularly vulnerable to the damaging effects of excess light or UV irradiation. In addition, like all bacteria, photosynthetic bacteria must adapt to limiting nutrient concentrations and abiotic and biotic stress factors. Transcriptome analyses have identified hundreds of potential regulatory small RNAs (sRNAs) in model cyanobacteria such as Synechocystis sp. PCC 6803 or Anabaena sp. PCC 7120, and in environmentally relevant genera such as Trichodesmium, Synechococcus and Prochlorococcus. Some sRNAs have been shown to actually contain μORFs and encode short proteins. Examples include the 40-amino-acid product of the sml0013 gene, which encodes the NdhP subunit of the NDH1 complex. In contrast, the functional characterization of the non-coding sRNA PsrR1 revealed that the 131 nt long sRNA controls photosynthetic functions by targeting multiple mRNAs, providing a paradigm for sRNA functions in photosynthetic bacteria. We suggest that actuatons comprise a new class of genetic elements in which an sRNA gene is inserted upstream of a coding region to modify or enable transcription of that region.

  10. Nuclear Regulatory Legislation

    International Nuclear Information System (INIS)

    This compilation of statutes and material pertaining to nuclear regulatory legislation through the 100th Congress, 2nd Session, has been prepared by the Office of the General Counsel, US Nuclear Regulatory Commission, with the assistance of staff, for use as an internal resource document. Persons using this document are placed on notice that it may not be used as an authoritative citation in lieu of the primary legislative sources. Furthermore, while every effort has been made to ensure the completeness and accuracy of this material, neither the United States Government, the Nuclear Regulatory Commission, nor any of their employees makes any expressed or implied warranty or assumes liability for the accuracy or completeness of the material presented in this compilation

  11. Functional characterization of variations on regulatory motifs.

    Directory of Open Access Journals (Sweden)

    Michal Lapidot

    2008-03-01

    Full Text Available Transcription factors (TFs regulate gene expression through specific interactions with short promoter elements. The same regulatory protein may recognize a variety of related sequences. Moreover, once they are detected it is hard to predict whether highly similar sequence motifs will be recognized by the same TF and regulate similar gene expression patterns, or serve as binding sites for distinct regulatory factors. We developed computational measures to assess the functional implications of variations on regulatory motifs and to compare the functions of related sites. We have developed computational means for estimating the functional outcome of substituting a single position within a binding site and applied them to a collection of putative regulatory motifs. We predict the effects of nucleotide variations within motifs on gene expression patterns. In cases where such predictions could be compared to suitable published experimental evidence, we found very good agreement. We further accumulated statistics from multiple substitutions across various binding sites in an attempt to deduce general properties that characterize nucleotide substitutions that are more likely to alter expression. We found that substitutions involving Adenine are more likely to retain the expression pattern and that substitutions involving Guanine are more likely to alter expression compared to the rest of the substitutions. Our results should facilitate the prediction of the expression outcomes of binding site variations. One typical important implication is expected to be the ability to predict the phenotypic effect of variation in regulatory motifs in promoters.

  12. Balanced Integrated Regulatory Oversight

    International Nuclear Information System (INIS)

    Reactor safety, protecting the public health and safety, and protecting the environment must always be the nuclear regulator's top priorities. Enabling the use of nuclear power for the benefit of society, while protecting the public and the environment requires the regulator to balance many factors. In addition, the regulator is only one part of the overall government that must consider many factors as it carries out its societal responsibilities. Some of the factors that must be balanced and the practical impacts on how the regulator carries out its responsibilities will be addressed. The first International Conference on Effective Regulatory Systems, held in Moscow, Russian Federation, in 2006, focused on safety and security challenges with a goal of improving regulatory effectiveness through cooperation and sharing of information and best practices. The challenge of meeting both safety and security objectives is one example of potentially competing programmes that must be balanced. Other balances that must be evaluated include the benefits of safety improvements compared to the cost of implementation, the use of deterministic and probabilistic approaches, communication openness balanced with the protection of information that could be used for detrimental purposes, and timeliness of regulatory decision making balanced with the need to perform quality work in support of oversight responsibilities. A balanced and integrated approach to regulatory oversight is vital to ensuring that the regulatory body remains effective in its mission to enable the use of nuclear power while protecting the public and the environment. This concept is applicable to nations beginning a nuclear programme as well as established and experienced regulatory bodies. (author)

  13. Rationales for regulatory activity

    Energy Technology Data Exchange (ETDEWEB)

    Perhac, R.M. [Univ. of Tennessee, Knoxville, TN (United States)

    1997-02-01

    The author provides an outline which touches on the types of concerns about risk evaluation which are addressed in the process of establishing regulatory guides. Broadly he says regulatory activity serves three broad constituents: (1) Paternalism (private risk); (2) Promotion of social welfare (public risks); (3) Protection of individual rights (public risks). He then discusses some of the major issues encountered in reaching a decision on what is an acceptable level of risk within each of these areas, and how one establishes such a level.

  14. A regulatory review for products containing glutathione

    OpenAIRE

    Nur Hidayah Abd Rahim; Long Chiau Ming; Yaser Mohammed Ali Al-Worafi; Md. Moklesur Rahman Sarker

    2016-01-01

    Glutathione is a potent antioxidant as well as has important role for DNA synthesis and repair, protein synthesis, amino acid transport, and enzyme activation. Besides this, Glutathione products are now mainly selling as whitening agent which are mainly marketing through social media (Facebook) and different websites. Information is not available whether glutathione product are following the regulatory guidelines of National Pharmaceutical Control Bureau of Malaysia (NPCB) for selling, advert...

  15. Toxicogenomics in Regulatory Ecotoxicology

    Science.gov (United States)

    The potential utility of toxicogenomics in toxicological research and regulatory activities has been the subject of scientific discussions, and as with any new technology, there is a wide range of opinion. The purpose of this feature article is to consider roles of toxicogenomic...

  16. Comments on regulatory reform

    International Nuclear Information System (INIS)

    Nuclear regulatory reform is divided into two parts. The first part contains all those matters for which new legislation is required. The second part concerns all those matters that are within the power of the Commission under existing statutes. Recommendations are presented

  17. NRC Regulatory Agenda

    International Nuclear Information System (INIS)

    This document is a compilation of all rules on which the NRC has proposed or is considering action and all petitions for rulemaking which have been received by the Commission and are pending disposition by the Commission. The Regulatory Agenda is updated and issued each quarter

  18. NRC regulatory agenda

    International Nuclear Information System (INIS)

    This document is a compilation of all rules on which the NRC has recently completed action, or has proposed action, or is considered action, and all petitions for rulemaking which have been received by the Commission and are pending disposition by the Commission. The Regulatory Agenda is updated and issued each quarter

  19. NRC Regulatory Agenda

    International Nuclear Information System (INIS)

    This document compilation of all rules on which the NRC has recently completed action, or has proposed action, or is considering action, and all petitions for rule making which have been received by the Commission and are pending disposition by the Commission. The Regulatory Agenda is updated and issued each quarter

  20. NRC regulatory agenda

    International Nuclear Information System (INIS)

    This document provides a compilation of all rules on which the NRC has recently completed action, or has proposed action, or is considering action, and all petitions for rulemaking which have been received by the Commission and are pending disposition by the Commission. The Regulatory Agenda is updated and issued each quarter

  1. Prediction of regulatory elements

    DEFF Research Database (Denmark)

    Sandelin, Albin

    2008-01-01

    Finding the regulatory mechanisms responsible for gene expression remains one of the most important challenges for biomedical research. A major focus in cellular biology is to find functional transcription factor binding sites (TFBS) responsible for the regulation of a downstream gene. As wet...

  2. Regulatory and operating experience

    International Nuclear Information System (INIS)

    Regulatory and operating experience in the disposal of radioactive waste can be divided into three time periods, World War II and its aftermath, Post World War II till the end of the cold war, and crystal ball gazing into the future. In the first period, there was little regulatory guidance and operating practices, all conducted under wartime secrecy conditions, sometimes were not even up to the norms of the times. Environmental releases resulted in some seriously contaminated sites and high dosages to some offsite populations. Failure to consider even the storage of wastes in a systems context resulted in some stocks that were difficult to recover, treat and dispose of in a final manner. In the second period, increasing civilian uses of nuclear power and isotopes for medical, research, and industrial purposes and military pressure for increased production of Pu-239 resulted in large and more dispersed disposal of radioactive wastes. Regulatory regimes, following growing environmental consciousness, came into existence that minimized exposure to environmental contamination. Practices, in most instances, increasingly conformed to these regulatory demands. The future is unknowable. However, for high level wastes, except for thermodynamically stable forms, no technology can guarantee safety and present methodologies are calculated to produce doses orders of magnitude lower than regulatory limits. Therefore, it is possible that research will be limited to no higher technology than is reasonably achievable. Whereas for low level waste, where proof is practicably possible, as high technology as is reasonably achievable will be best in the long run. (author). 24 refs, 5 figs, 3 tabs

  3. Nuclear Regulatory Commission information digest

    International Nuclear Information System (INIS)

    The Nuclear Regulatory Commission information digest provides summary information regarding the US Nuclear Regulatory Commission, its regulatory responsibilities, and areas licensed by the commission. This is an annual publication for the general use of the NRC Staff and is available to the public. The digest is divided into two parts: the first presents an overview of the US Nuclear Regulatory Commission and the second provides data on NRC commercial nuclear reactor licensees and commercial nuclear power reactors worldwide

  4. NRC regulatory agenda

    International Nuclear Information System (INIS)

    The NRC Regulatory Agenda is a compilation of all rules on which the NRC has recently completed action, or has proposed action, or is considering action, and all petitions for rulemaking which have been received by the Commission and are pending disposition by the Commission. The Regulatory Agenda is updated and issued each quarter. The rules on which final action has been taken since March 31, 1993 are: Repeal of NRC standards of conduct; Fitness-for-duty requirements for licensees who possess, use, or transport Category I material; Training and qualification of nuclear power plant personnel; Monitoring the effectiveness of maintenance at nuclear power plants; Licensing requirements for land disposal of radioactive wastes; and Licensees' announcements of safeguards inspections

  5. Rethinking Regulatory Democracy

    OpenAIRE

    Cuellar, Mariano-Florentino

    2004-01-01

    This Article presents a critique of democratic participation in the modern administrative state, and provides an affirmative proposal for reforming public participation in shaping regulatory policy. According to several different strands of thinking about law and democracy, the legitimacy of the administrative state depends on the claim that it provides opportunities for public engagement as well as a mechanism for expert decisionmaking. A typical rulemaking proceeding lets experts make tec...

  6. A flexible regulatory framework

    International Nuclear Information System (INIS)

    Regulatory reform of the Finnish electricity market meant opening up potentially competitive parts of the electricity sector to competition and eliminating all unnecessary forms of regulation covering generation, wholesale supply, retail supply, and foreign trade in electricity. New types of control and regulatory mechanisms and institutions were set up for those parts of the electricity industry that were excluded from competition, such as network operations. Network activities now have to be licensed, whereas no licence is needed for generation or supply. A new sector-specific regulatory authority was established in 1995 to coincide with the implementation of the Electricity Market Act, known as the Electricity Market Authority. This is responsible for regulating network activities and retail supply to captive customers. The core function of the authority, which employs some 14 people, is to promote the smooth operation of the Finnish electricity market and to oversee the implementation of the Electricity Market Act and its provisions. Its most important duties are linked to overseeing the process by which network companies price their electricity. As price regulation no longer exists, all the companies in the electricity sector set their tariffs independently, even network companies. The job of controlling the pricing of network services is handed by the Electricity Market Authority, following the principles of competition control. Pricing control takes place ex post - after a pricing system has been adopted by a company and concentrates on individual cases and companies. There is no ex ante system of setting or approving prices and tariffs by the regulator. The tariffs and pricing of network services can be evaluated, however, by both the Electricity Market Authority and the Finnish Competition Authority, which have overlapping powers as regards the pricing of network activities. The Finnish regulatory framework can be described as a system of light

  7. The changing regulatory environment

    International Nuclear Information System (INIS)

    The role and value of regulation in the energy sector was discussed, demonstrating how, despite common perception, regulation is an essential part of Canada's strategy to find and develop new opportunities. The future vision of regulation for industry participants was presented with particular focus on issues related to streamlining the regulatory process. As far as pipelines are concerned, regulatory actions are necessary to facilitate capacity increases and to ensure the line's integrity, safety and environmental record. Furthermore, regulation provides economic solutions where market forces cannot provide them, as for example where business has elements of monopoly. It arbitrates interests of landowners, business, consumers, and environmental groups. It looks for ways to ensure conditions under which competition can flourish. It acts as the guardian of citizens' rights in a democratic society by providing citizens with an opportunity to be heard on the building or expansion of pipelines and associated facilities. As citizens become more and more concerned about their property and the land that surrounds them, citizen involvement in decision making about how industry activity affects their quality of life will become correspondingly more important. Regulatory agencies are committed to facilitate this engagement by flexible hearing procedures and by making use of evolving communication and information technology

  8. Regulatory aspects on nanomedicines.

    Science.gov (United States)

    Sainz, Vanessa; Conniot, João; Matos, Ana I; Peres, Carina; Zupancic, Eva; Moura, Liane; Silva, Liana C; Florindo, Helena F; Gaspar, Rogério S

    2015-12-18

    Nanomedicines have been in the forefront of pharmaceutical research in the last decades, creating new challenges for research community, industry, and regulators. There is a strong demand for the fast development of scientific and technological tools to address unmet medical needs, thus improving human health care and life quality. Tremendous advances in the biomaterials and nanotechnology fields have prompted their use as promising tools to overcome important drawbacks, mostly associated to the non-specific effects of conventional therapeutic approaches. However, the wide range of application of nanomedicines demands a profound knowledge and characterization of these complex products. Their properties need to be extensively understood to avoid unpredicted effects on patients, such as potential immune reactivity. Research policy and alliances have been bringing together scientists, regulators, industry, and, more frequently in recent years, patient representatives and patient advocacy institutions. In order to successfully enhance the development of new technologies, improved strategies for research-based corporate organizations, more integrated research tools dealing with appropriate translational requirements aiming at clinical development, and proactive regulatory policies are essential in the near future. This review focuses on the most important aspects currently recognized as key factors for the regulation of nanomedicines, discussing the efforts under development by industry and regulatory agencies to promote their translation into the market. Regulatory Science aspects driving a faster and safer development of nanomedicines will be a central issue for the next years. PMID:26260323

  9. Delay-independent stability of genetic regulatory networks.

    Science.gov (United States)

    Wu, Fang-Xiang

    2011-11-01

    Genetic regulatory networks can be described by nonlinear differential equations with time delays. In this paper, we study both locally and globally delay-independent stability of genetic regulatory networks, taking messenger ribonucleic acid alternative splicing into consideration. Based on nonnegative matrix theory, we first develop necessary and sufficient conditions for locally delay-independent stability of genetic regulatory networks with multiple time delays. Compared to the previous results, these conditions are easy to verify. Then we develop sufficient conditions for global delay-independent stability for genetic regulatory networks. Compared to the previous results, this sufficient condition is less conservative. To illustrate theorems developed in this paper, we analyze delay-independent stability of two genetic regulatory networks: a real-life repressilatory network with three genes and three proteins, and a synthetic gene regulatory network with five genes and seven proteins. The simulation results show that the theorems developed in this paper can effectively determine the delay-independent stability of genetic regulatory networks.

  10. The regulatory niche of intestinal stem cells.

    Science.gov (United States)

    Sailaja, Badi Sri; He, Xi C; Li, Linheng

    2016-09-01

    The niche constitutes a unique category of cells that support the microenvironment for the maintenance and self-renewal of stem cells. Intestinal stem cells reside at the base of the crypt, which contains adjacent epithelial cells, stromal cells and smooth muscle cells, and soluble and cell-associated growth and differentiation factors. We summarize here recent advances in our understanding of the crucial role of the niche in regulating stem cells. The stem cell niche maintains a balance among quiescence, proliferation and regeneration of intestinal stem cells after injury. Mesenchymal cells, Paneth cells, immune cells, endothelial cells and neural cells are important regulatory components that secrete niche ligands, growth factors and cytokines. Intestinal homeostasis is regulated by niche signalling pathways, specifically Wnt, bone morphogenetic protein, Notch and epidermal growth factor. These insights into the regulatory stem cell niche during homeostasis and post-injury regeneration offer the potential to accelerate development of therapies for intestine-related disorders.

  11. Toxicogenomics in regulatory ecotoxicology

    Science.gov (United States)

    Ankley, Gerald T.; Daston, George P.; Degitz, Sigmund J.; Denslow, Nancy D.; Hoke, Robert A.; Kennedy, Sean W.; Miracle, Ann L.; Perkins, Edward J.; Snape, Jason; Tillitt, Donald E.; Tyler, Charles R.; Versteeg, Donald

    2006-01-01

    Recently, we have witnessed an explosion of different genomic approaches that, through a combination of advanced biological, instrumental, and bioinformatic techniques, can yield a previously unparalleled amount of data concerning the molecular and biochemical status of organisms. Fueled partially by large, well-publicized efforts such as the Human Genome Project, genomic research has become a rapidly growing topical area in multiple biological disciplines. Since 1999, when the term “toxicogenomics” was coined to describe the application of genomics to toxicology (1), a rapid increase in publications on the topic has occurred (Figure 1). The potential utility of toxicogenomics in toxicological research and regulatory activities has been the subject of scientific discussions and, as with any new technology, has evoked a wide range of opinion (2–6). VIEWPOINT © 2006 american chemical Society july 1, 2006 / EnvironmEntal SciEncE & tEchnology n 4055 The purpose of this feature article is to consider the roles of toxicogenomics in the field of regulatory ecotoxicology, explore current limitations in the science and practice of genomics, and propose possible avenues to approach and resolve some of the major challenges. A significant amount of input to our analysis came from a workshop sponsored by the Society of Environmental Toxicology and Chemistry (SETAC) in Pellston, Mich., in September 2005. A complete list of names and affiliations of the experts participating in that workshop is provided online in Table 1 of the Supporting Information for this paper.

  12. The regulatory dynamic

    International Nuclear Information System (INIS)

    An outline of the activities and efforts expanded by the National Energy Board to adjust to the changing natural gas market was provided in this presentation. The author began by defining the role of the National Energy Board in energy markets. It must ensure the adoption of rules and procedures that result in a more competitive and efficient market. Light-handed regulatory techniques are the norm, and the National Energy Board is now committed to facilitating the availability and flow of information so that all parties know where opportunities exist, the terms offered to buy or sell goods and services, their quality and costs. It will specialize in providing new participants with information on the workings of the market, who the players are, the regulatory processes in place, and how, when and where the market can be accessed. The manner in which the Board deals with information was reviewed, providing examples along the way to clarify some points. Some of the documents produced by the National Energy Board are being reviewed with the intent of making them easier to read and understand. Audio streaming over the Internet is another avenue being pursued to ensure individuals can listen in real time to hearings without having to be present in the room. The National Energy Board is also exploring alternative dispute resolution techniques. Consultation with energy market participants represents another facet of these efforts to be more accessible and responsive

  13. Assessment of regulatory effectiveness. Peer discussions on regulatory practices

    International Nuclear Information System (INIS)

    This report arises from the seventh series of peer discussions on regulatory practices entitled 'Assessment of Regulatory Effectiveness'. The term 'regulatory effectiveness' covers the quality of the work and level of performance of a regulatory body. In this sense, regulatory effectiveness applies to regulatory body activities aimed at preventing safety degradation and ensuring that an acceptable level of safety is being maintained by the regulated operating organizations. In addition, regulatory effectiveness encompasses the promotion of safety improvements, the timely and cost effective performance of regulatory functions in a manner which ensures the confidence of the operating organizations, the general public and the government, and striving for continuous improvements to performance. Senior regulators from 22 Member States participated in two peer group discussions during March and May 1999. The discussions were focused on the elements of an effective regulatory body, possible indicators of regulatory effectiveness and its assessment. This report presents the outcome of these meetings and recommendations of good practices identified by senior regulators, which do not necessarily reflect those of the governments of the nominating Member States, the organizations they belong to, or the International Atomic Energy Agency. In order to protect people and the environment from hazards associated with nuclear facilities, the main objective of a nuclear regulatory body is to ensure that a high level of safety in the nuclear activities under its jurisdiction is achieved, maintained and within the control of operating organizations. Even if it is possible to directly judge objective safety levels at nuclear facilities, such safety levels would not provide an exclusive indicator of regulatory effectiveness. The way the regulatory body ensures the safety of workers and the public and the way it discharges its responsibilities also determine its effectiveness. Hence the

  14. Statistical inference of regulatory networks for circadian regulation.

    Science.gov (United States)

    Aderhold, Andrej; Husmeier, Dirk; Grzegorczyk, Marco

    2014-06-01

    We assess the accuracy of various state-of-the-art statistics and machine learning methods for reconstructing gene and protein regulatory networks in the context of circadian regulation. Our study draws on the increasing availability of gene expression and protein concentration time series for key circadian clock components in Arabidopsis thaliana. In addition, gene expression and protein concentration time series are simulated from a recently published regulatory network of the circadian clock in A. thaliana, in which protein and gene interactions are described by a Markov jump process based on Michaelis-Menten kinetics. We closely follow recent experimental protocols, including the entrainment of seedlings to different light-dark cycles and the knock-out of various key regulatory genes. Our study provides relative network reconstruction accuracy scores for a critical comparative performance evaluation, and sheds light on a series of highly relevant questions: it quantifies the influence of systematically missing values related to unknown protein concentrations and mRNA transcription rates, it investigates the dependence of the performance on the network topology and the degree of recurrency, it provides deeper insight into when and why non-linear methods fail to outperform linear ones, it offers improved guidelines on parameter settings in different inference procedures, and it suggests new hypotheses about the structure of the central circadian gene regulatory network in A. thaliana. PMID:24864301

  15. Mapping the Regulatory Network for Salmonella enterica Serovar Typhimurium Invasion

    Science.gov (United States)

    Smith, Carol; Stringer, Anne M.; Mao, Chunhong; Palumbo, Michael J.

    2016-01-01

    ABSTRACT Salmonella enterica pathogenicity island 1 (SPI-1) encodes proteins required for invasion of gut epithelial cells. The timing of invasion is tightly controlled by a complex regulatory network. The transcription factor (TF) HilD is the master regulator of this process and senses environmental signals associated with invasion. HilD activates transcription of genes within and outside SPI-1, including six other TFs. Thus, the transcriptional program associated with host cell invasion is controlled by at least 7 TFs. However, very few of the regulatory targets are known for these TFs, and the extent of the regulatory network is unclear. In this study, we used complementary genomic approaches to map the direct regulatory targets of all 7 TFs. Our data reveal a highly complex and interconnected network that includes many previously undescribed regulatory targets. Moreover, the network extends well beyond the 7 TFs, due to the inclusion of many additional TFs and noncoding RNAs. By comparing gene expression profiles of regulatory targets for the 7 TFs, we identified many uncharacterized genes that are likely to play direct roles in invasion. We also uncovered cross talk between SPI-1 regulation and other regulatory pathways, which, in turn, identified gene clusters that likely share related functions. Our data are freely available through an intuitive online browser and represent a valuable resource for the bacterial research community. PMID:27601571

  16. Nuclear Regulatory Commission Issuances

    International Nuclear Information System (INIS)

    This is the thirty-sixth volume of issuances (1-396) of the Nuclear Regulatory Commission and its Atomic Safety and Licensing Boards, Administrative Law Judges, and Office Directors. It covers the period from July 1, 1992-December 31, 1992. Atomic Safety and Licensing Boards are authorized by Section 191 of the Atomic Energy Act of 1954. These Boards, comprised of three members conduct adjudicatory hearings on applications to construct and operate nuclear power plants and related facilities and issue initial decisions which, subject to internal review and appellate procedures, become the final Commission action with respect to those applications. Boards are drawn from the Atomic Safety and Licensing Board Panel, comprised of lawyers, nuclear physicists and engineers, environmentalists, chemists, and economists. The Atomic Energy Commission first established Licensing Boards in 1962 and the Panel in 1967

  17. Radiation and the regulatory landscape of neo2-Darwinism.

    Science.gov (United States)

    Rollo, C David

    2006-05-11

    Several recently revealed features of eukaryotic genomes were not predicted by earlier evolutionary paradigms, including the relatively small number of genes, the very large amounts of non-functional code and its quarantine in heterochromatin, the remarkable conservation of many functionally important genes across relatively enormous phylogenetic distances, and the prevalence of extra-genomic information associated with chromatin structure and histone proteins. All of these emphasize a paramount role for regulatory evolution, which is further reinforced by recent perspectives highlighting even higher-order regulation governing epigenetics and development (EVO-DEVO). Modern neo2-Darwinism, with its emphasis on regulatory mechanisms and regulatory evolution provides new vision for understanding radiation biology, particularly because free radicals and redox states are central to many regulatory mechanisms and free radicals generated by radiation mimic and amplify endogenous signalling. This paper explores some of these aspects and their implications for low-dose radiation biology.

  18. Statistical tests for natural selection on regulatory regions based on the strength of transcription factor binding sites

    OpenAIRE

    Moses Alan M

    2009-01-01

    Abstract Background Although cis-regulatory changes play an important role in evolution, it remains difficult to establish the contribution of natural selection to regulatory differences between species. For protein coding regions, powerful tests of natural selection have been developed based on comparisons of synonymous and non-synonymous substitutions, and analogous tests for regulatory regions would be of great utility. Results Here, tests for natural selection on regulatory regions are pr...

  19. The Experiment Study of Kaiyuqingre's Prescription on the Expression of Sterol Regulatory Element Binding Protein-1c and Fatty Acid Synthase in Peritoneal Adipose Tissue of Spontaneous Type 2 Diabetes Mellitus Rats(OLETF rats)%开郁清热方干预自发2型糖尿病大鼠腹腔脂肪组织SREBP-1c、FAS表达的实验研究

    Institute of Scientific and Technical Information of China (English)

    朴春丽; 仝小林; 韩笑

    2011-01-01

    目的:研究开郁清热方对自发2型糖尿病大鼠(OLETF大鼠)腹腔脂肪组织SIREBP-1c、FAS蛋白及mRNA表达的影响.方法:将成模OLETF大鼠随机分为模型组、二甲双胍组、开郁清热方组,以LETO大鼠为空白对照组.采用免第疫组化、RT-PCR法检测腹腔脂肪组织SREBP-1c、FAS蛋白及mRNA的表达.结果:开郁清热方组的脂肪组织SBEBP-1c、FAS蛋白及mPNA表达水平较模型组明显减低(P<0.01,P<0.05).结论:开郁清热方具有降低自发2型糖尿病大鼠脂肪组织SREBP-lc、FAS蛋白及mRNA表达的作用.%Objective: To observe the effect of Kaiyuqingre's Prescription on the protein and mRNA expression of sterol regulatory element binding protein - 1c and fatty acid synthase in peritoneal adipose tissue of spontaneous Type 2 Diabetes Mellitus rats(OLEFF rats). Methods :A control study was carried out between the OLETF rats and LETO rats,and all OLETF rats were divided into three groups randomly:Model group,Metformin group and Kaiyuqingre′s Prescription group. Immunohistochemical method and real-time flourescent quantitative polymerase chain reaction(PCR)technology were used to detect the expression of sterol regulatory element binding protein - 1c and fatty acid synthaso in adipose tissue from the protein and gene levels in each group. Results: The sterol regulatory dement binding protein - 1c and fatty acid synthase protein and mRNA expression in rats 'adipose tissue:Contrast to Modal group,the Kaiyuqingre′s Prescription group is significantly lower. Conclusion :Kaiyuqingre's Prescription has a role of reducing the expression of protein and mRNA of sterol regulatory dement binding protein - 1c and fatty acid synthase in adipose tissue of spontaneous Type 2 Diabetes Mellitus rats.

  20. Small regulatory RNA and Legionella pneumophila

    Directory of Open Access Journals (Sweden)

    Sebastien P Faucher

    2011-05-01

    Full Text Available Legionella pneumophila is a gram-negative bacterial species that is ubiquitous in almost any aqueous environment. It is the agent of Legionnaires’ disease, an acute and often under-reported form of pneumonia. In mammals, L. pneumophila replicates inside macrophages within a modified vacuole. Many protein regulators have been identified that control virulence-related properties, including RpoS, LetA/LetS and PmrA/PmrB. In the past few years, the importance of regulation of virulence factors by small regulatory RNA has been increasingly appreciated. This is also the case in L. pneumophila where three sRNAs (RsmY, RsmZ and 6S RNA were recently shown to be important determinants of virulence regulation and 79 actively transcribed sRNAs were identified. In this review we describe current knowledge about sRNAs and their regulatory properties and how this relates to the known regulatory systems of L. pneumophila. We also provide a model for sRNA-mediated control of gene expression that serves as a framework for understanding the regulation of virulence-related properties of L. pneumophila.

  1. Regulatory focus in groupt contexts

    NARCIS (Netherlands)

    Faddegon, Krispijn Johannes

    2009-01-01

    The thesis examines the influence of group processes on the regulatory focus of individual group members. It is demonstrated that the group situation can affect group members' regulatory focus both in a top-down fashion (via the identitiy of the group) and in a bottom-up fashion (emerging from the g

  2. Regulatory Foci and Organizational Commitment

    Science.gov (United States)

    Markovits, Yannis; Ullrich, Johannes; van Dick, Rolf; Davis, Ann J.

    2008-01-01

    We use regulatory focus theory to derive specific predictions regarding the differential relationships between regulatory focus and commitment. We estimated a structural equation model using a sample of 520 private and public sector employees and found in line with our hypotheses that (a) promotion focus related more strongly to affective…

  3. Disclosure as a regulatory tool

    DEFF Research Database (Denmark)

    Sørensen, Karsten Engsig

    2006-01-01

    The chapter analyses how disclure can be used as a regulatory tool and analyses how it has been applied so far in the area of financial market law and consumer law.......The chapter analyses how disclure can be used as a regulatory tool and analyses how it has been applied so far in the area of financial market law and consumer law....

  4. Regulatory Streamlining and Improvement

    Energy Technology Data Exchange (ETDEWEB)

    Mark A. Carl

    2006-07-11

    The Interstate Oil and Gas Compact Commission (IOGCC) engaged in numerous projects outlined under the scope of work discussed in the United States Department of Energy (DOE) grant number DE-FC26-04NT15456 awarded to the IOGCC. Numerous projects were completed that were extremely valuable to state oil and gas agencies as a result of work performed utilizing resources provided by the grant. There are numerous areas in which state agencies still need assistance. This additional assistance will need to be addressed under future scopes of work submitted annually to DOE's Project Officer for this grant. This report discusses the progress of the projects outlined under the grant scope of work for the 2005-2006 areas of interest, which are as follows: Area of Interest No. 1--Regulatory Streamlining and Improvement: This area of interest continues to support IOGCC's regulatory streamlining efforts that include the identification and elimination of unnecessary duplications of efforts between and among state and federal programs dealing with exploration and production on public lands. Area of Interest No. 2--Technology: This area of interest seeks to improve efficiency in states through the identification of technologies that can reduce costs. Area of Interest No. 3--Training and Education: This area of interest is vital to upgrading the skills of regulators and industry alike. Within the National Energy Policy, there are many appropriate training and education opportunities. Education was strongly endorsed by the President's National Energy Policy Development group. Acting through the governors offices, states are very effective conduits for the dissemination of energy education information. While the IOGCC favors the development of a comprehensive, long-term energy education plan, states are also supportive of immediate action on important concerns, such as energy prices, availability and conservation. Area of Interest No. 4--Resource Assessment and

  5. Population Dynamics of Genetic Regulatory Networks

    Science.gov (United States)

    Braun, Erez

    2005-03-01

    Unlike common objects in physics, a biological cell processes information. The cell interprets its genome and transforms the genomic information content, through the action of genetic regulatory networks, into proteins which in turn dictate its metabolism, functionality and morphology. Understanding the dynamics of a population of biological cells presents a unique challenge. It requires to link the intracellular dynamics of gene regulation, through the mechanism of cell division, to the level of the population. We present experiments studying adaptive dynamics of populations of genetically homogeneous microorganisms (yeast), grown for long durations under steady conditions. We focus on population dynamics that do not involve random genetic mutations. Our experiments follow the long-term dynamics of the population distributions and allow to quantify the correlations among generations. We focus on three interconnected issues: adaptation of genetically homogeneous populations following environmental changes, selection processes on the population and population variability and expression distributions. We show that while the population exhibits specific short-term responses to environmental inputs, it eventually adapts to a robust steady-state, largely independent of external conditions. Cycles of medium-switch show that the adapted state is imprinted in the population and that this memory is maintained for many generations. To further study population adaptation, we utilize the process of gene recruitment whereby a gene naturally regulated by a specific promoter is placed under a different regulatory system. This naturally occurring process has been recognized as a major driving force in evolution. We have recruited an essential gene to a foreign regulatory network and followed the population long-term dynamics. Rewiring of the regulatory network allows us to expose their complex dynamics and phase space structure.

  6. Global Regulatory Pathways in the Alphaproteobacteria

    Energy Technology Data Exchange (ETDEWEB)

    none

    2007-04-27

    A major goal for microbiologists in the twenty-first century is to develop an understanding of the microbial cell in all its complexity. In addition to understanding the function of individual gene products we need to focus on how the cell regulates gene expression at a global level to respond to different environmental parameters. Development of genomic technologies such as complete genome sequencing, proteomics, and global comparisons of mRNA expression patterns allows us to begin to address this issue. This proposal focuses on a number of phylogenetically related bacteria that are involved in environmentally important processes such as carbon sequestration and bioremediation. Genome sequencing projects of a number of these bacteria have revealed the presence of a small family of regulatory genes found thus far only in the alpha-proteobacteria. These genes encode proteins that are related to the global regulatory protein RosR in Rhizobium etli, which is involved in determining nodulation competitiveness in this bacterium. Our goal is to examine the function of the proteins encoded by this gene family in several of the bacteria containing homologs to RosR. We will construct gene disruption mutations in a number of these bacteria and characterize the resulting mutant strains using two-dimensional gel electrophoresis and genetic and biochemical techniques. We will thus determine if the other proteins also function as global regulators of gene expression. Using proteomics methods we will identify the specific proteins whose expression varies depending on the presence or absence of the RosR homolog. Over fifty loci regulated by RosR have been identified in R. etli using transposon mutagenesis; this will serve as out benchmark to which we will compare the other regulons. We expect to identify genes regulated by RosR homologs in several bacterial species, including, but not limited to Rhodopseudomonas palustris and Sphingomonas aromaticivorans. In this way we will

  7. Interferon regulatory factor-1 binds c-Cbl, enhances mitogen activated protein kinase signaling and promotes retinoic acid-induced differentiation of HL-60 human myelo-monoblastic leukemia cells.

    Science.gov (United States)

    Shen, Miaoqing; Bunaciu, Rodica P; Congleton, Johanna; Jensen, Holly A; Sayam, Lavanya G; Varner, Jeffrey D; Yen, Andrew

    2011-12-01

    All-trans retinoic acid (RA) and interferons (IFNs) have efficacy in treating certain leukemias and lymphomas, respectively, motivating interest in their mechanism of action to improve therapy. Both RA and IFNs induce interferon regulatory factor-1 (IRF-1). We find that in HL-60 myeloblastic leukemia cells which undergo mitogen activated protien kinase (MAPK)-dependent myeloid differentiation in response to RA, IRF-1 propels differentiation. RA induces MAPK-dependent expression of IRF-1. IRF-1 binds c-Cbl, a MAPK related adaptor. Ectopic IRF-1 expression causes CD38 expression and activation of the Raf/MEK/ERK axis, and enhances RA-induced differentiation by augmenting CD38, CD11b, respiratory burst and G0 arrest. Ectopic IRF-1 expression also decreases the activity of aldehyde dehydrogenase 1, a stem cell marker, and enhances RA-induced ALDH1 down-regulation. Interestingly, expression of aryl hydrocarbon receptor (AhR), which is RA-induced and known to down-regulate Oct4 and drive RA-induced differentiation, also enhances IRF-1 expression. The data are consistent with a model whereby IRF-1 acts downstream of RA and AhR to enhance Raf/MEK/ERK activation and propel differentiation.

  8. Fusion of the Tumor-Suppressor Gene CHEK2 and the Gene for the Regulatory Subunit B of Protein Phosphatase 2 PPP2R2A in Childhood Teratoma

    Directory of Open Access Journals (Sweden)

    Yuesheng Jin

    2006-05-01

    Full Text Available We characterized the molecular genetic consequences of a balanced chromosome translocation t(8;22(p21; q12, which occurred as the sole cytogenetic aberration in short-term cultured cells from an intrathoracic mature teratoma in a 15-year-old girl. Fluorescence in situ hybridization and reverse transcription- polymerase chain reaction disclosed that t(8;22 resulted in the fusion of the genes PPP2R2A and CHEK2, with an inserted fragment belonging to class I endogenous retrovirus-related sequences at the junction. Sequencing of the two genes did not reveal any additional mutation. None of the three detected PPP2R2A/CHEK2 fusion transcripts resulted in an in-frame PPP2R2A/CHEK2 chimerical open reading frame; however, in all of them, the known open reading frame of CHEK2 was preserved. Thus, promoter swapping leading to deregulated CHEK2 expression would be the most likely oncogenic mechanism. Whereas inactivating mutations of CHEK2 previously have been described in a variety of sporadic tumors and in inherited cancer-predisposing syndromes, PPP2R2A, encoding a regulatory subunit of the multimeric enzyme phosphatase 2, has not been directly implicated in tumorigenesis. Our findings suggest that deregulation of CHEK2 and/or PPP2R2A is of pathogenetic importance in at least a subset of germ cell tumors.

  9. Internationalization of regulatory requirements.

    Science.gov (United States)

    Juillet, Y

    2003-02-01

    The aim of harmonisation of medicines regulatory requirements is to allow the patient quicker access to new drugs and to avoid animal and human duplications. Harmonisation in the European Union (EU) is now completed, and has led to the submission of one dossier in one language study leading to European marketing authorizations, thanks in particular to efficacy guidelines published at the European level. With the benefit of the European experience since 1989, more than 40 guidelines have been harmonised amongst the EU, Japan and the USA through the International Conference on Harmonisation (ICH). ICH is a unique process gathering regulators and industry experts from the three regions. Its activity is built on expertise and trust. The Common Technical Document (CTD), an agreed common format for application in the three regions, is a logical follow-up to the ICH first phase harmonising the content of the dossier. The CTD final implementation in July 2003 will have considerable influence on the review process and on the exchange of information in the three regions.

  10. 75 FR 7526 - Withdrawal of Regulatory Guide

    Science.gov (United States)

    2010-02-19

    ... CONTACT: Matthew D. Yoder, Division of Component Integrity, Office of Nuclear Reactor Regulation, U.S... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Withdrawal of Regulatory Guide AGENCY: Nuclear Regulatory Commission. ACTION: Withdrawal...

  11. 78 FR 40776 - Issuance of Regulatory Guide 1.124 and Regulatory Guide 1.130

    Science.gov (United States)

    2013-07-08

    ... to ] the subject matters covered in each regulatory guide). The earlier revisions of both guides... COMMISSION Issuance of Regulatory Guide 1.124 and Regulatory Guide 1.130 AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory Guide; Issuance. SUMMARY: The U.S. Nuclear Regulatory Commission (NRC)...

  12. Healthcare regulatory concepts in Brazil.

    Science.gov (United States)

    Oliveira, Robson Rocha de; Elias, Paulo Eduardo Mangeon

    2012-06-01

    The healthcare regulatory concepts used in Brazilian scientific publications on healthcare management were reviewed. A typo-logical classification for regulatory concepts was developed from the most current ideas in five disciplines: life sciences, law, economics, sociology and political science. Four ideas stood out: control, balance, adaptation and direction, with greatest emphasis on the technical nature of regulation. The political nature of regulation was secondary. It was considered that dis-cussion of healthcare regulatory concepts was connected with comprehension of the role that the state plays in this sector. De-finition of the forms of state intervention is the key convergence point between the different ways of conceptualizing healthcare regulation.

  13. Gap junctions and connexin-interacting proteins

    NARCIS (Netherlands)

    Giepmans, Ben N G

    2004-01-01

    Gap junctions form channels between adjacent cells. The core proteins of these channels are the connexins. Regulation of gap junction communication (GJC) can be modulated by connexin-associating proteins, such as regulatory protein phosphatases and protein kinases, of which c-Src is the best-studied

  14. Assessment of regression methods for inference of regulatory networks involved in circadian regulation

    OpenAIRE

    Aderhold, A.; Husmeier, D.; Smith, V A; Millar, A. J.; Grzegorczyk, M.

    2013-01-01

    We assess the accuracy of three established regression methods for reconstructing gene and protein regulatory networks in the context of circadian regulation. Data are simulated from a recently published regulatory network of the circadian clock in Arabidopsis thaliana, in which protein and gene interactions are described by a Markov jump process based on Michaelis-Menten kinetics. We closely follow recent experimental protocols, including the entrainment of seedlings to dif...

  15. The Danish Regulatory Reform of Telecommunications

    DEFF Research Database (Denmark)

    Skouby, Knud Erik

    1998-01-01

    An overview of the liberalisation process and regulatory reform of telecommunications in Denmark......An overview of the liberalisation process and regulatory reform of telecommunications in Denmark...

  16. Regulatory Snapshots: integrative mining of regulatory modules from expression time series and regulatory networks.

    Science.gov (United States)

    Gonçalves, Joana P; Aires, Ricardo S; Francisco, Alexandre P; Madeira, Sara C

    2012-01-01

    Explaining regulatory mechanisms is crucial to understand complex cellular responses leading to system perturbations. Some strategies reverse engineer regulatory interactions from experimental data, while others identify functional regulatory units (modules) under the assumption that biological systems yield a modular organization. Most modular studies focus on network structure and static properties, ignoring that gene regulation is largely driven by stimulus-response behavior. Expression time series are key to gain insight into dynamics, but have been insufficiently explored by current methods, which often (1) apply generic algorithms unsuited for expression analysis over time, due to inability to maintain the chronology of events or incorporate time dependency; (2) ignore local patterns, abundant in most interesting cases of transcriptional activity; (3) neglect physical binding or lack automatic association of regulators, focusing mainly on expression patterns; or (4) limit the discovery to a predefined number of modules. We propose Regulatory Snapshots, an integrative mining approach to identify regulatory modules over time by combining transcriptional control with response, while overcoming the above challenges. Temporal biclustering is first used to reveal transcriptional modules composed of genes showing coherent expression profiles over time. Personalized ranking is then applied to prioritize prominent regulators targeting the modules at each time point using a network of documented regulatory associations and the expression data. Custom graphics are finally depicted to expose the regulatory activity in a module at consecutive time points (snapshots). Regulatory Snapshots successfully unraveled modules underlying yeast response to heat shock and human epithelial-to-mesenchymal transition, based on regulations documented in the YEASTRACT and JASPAR databases, respectively, and available expression data. Regulatory players involved in functionally enriched

  17. Regulatory Snapshots: integrative mining of regulatory modules from expression time series and regulatory networks.

    Directory of Open Access Journals (Sweden)

    Joana P Gonçalves

    Full Text Available Explaining regulatory mechanisms is crucial to understand complex cellular responses leading to system perturbations. Some strategies reverse engineer regulatory interactions from experimental data, while others identify functional regulatory units (modules under the assumption that biological systems yield a modular organization. Most modular studies focus on network structure and static properties, ignoring that gene regulation is largely driven by stimulus-response behavior. Expression time series are key to gain insight into dynamics, but have been insufficiently explored by current methods, which often (1 apply generic algorithms unsuited for expression analysis over time, due to inability to maintain the chronology of events or incorporate time dependency; (2 ignore local patterns, abundant in most interesting cases of transcriptional activity; (3 neglect physical binding or lack automatic association of regulators, focusing mainly on expression patterns; or (4 limit the discovery to a predefined number of modules. We propose Regulatory Snapshots, an integrative mining approach to identify regulatory modules over time by combining transcriptional control with response, while overcoming the above challenges. Temporal biclustering is first used to reveal transcriptional modules composed of genes showing coherent expression profiles over time. Personalized ranking is then applied to prioritize prominent regulators targeting the modules at each time point using a network of documented regulatory associations and the expression data. Custom graphics are finally depicted to expose the regulatory activity in a module at consecutive time points (snapshots. Regulatory Snapshots successfully unraveled modules underlying yeast response to heat shock and human epithelial-to-mesenchymal transition, based on regulations documented in the YEASTRACT and JASPAR databases, respectively, and available expression data. Regulatory players involved in

  18. Quality assurance within regulatory bodies

    International Nuclear Information System (INIS)

    The IAEA directed extensive efforts during the years 1991 to 1995 to the integral revision of all NUSS quality assurance publications, which were approved and issued as Safety Series No.50-C/SG-Q, Quality Assurance for Safety in Nuclear Power Plants and other Nuclear Installations (1996). When these quality assurance publications were developed, their prime focus was on requirements against which work performed by the licensees could be measured and assessed by the regulatory bodies. In this way, they only helped to facilitate the functions of regulators. No requirements or recommendations were provided on how the regulators should ensure the effective implementation of their own activities. The present publication is a first attempt to collect, integrate and offer available experience to directly support performance of regulatory activities. It presents a comprehensive compilation on the application of quality assurance principles and methods by regulatory bodies to their activities. The aim is consistent good performance of regulatory activities through a systematic approach

  19. Regulatory strategies. Topical issue 6

    International Nuclear Information System (INIS)

    The regulatory programmes established by Member States that use radioactive materials, handle radioactive waste or have nuclear installations vary depending on the size and scope of the regulated activities, historical evolution, government and industry structures. The main changes in external factors which will further affect the regulatory programmes include stagnation in the development of nuclear power, the increased economic competition of energy suppliers, ageing plants, continued growth in the industrial and medical uses of radioactive materials, delays in high level waste facilities and the reduced availability of trained personnel. Eight areas are discussed with the objective of identifying ways in which the IAEA can assist Member States to anticipate and respond to changing external factors and facilitate beneficial harmonization of regulatory practices. (1) Regulatory approaches are continuing to evolve among Member States with a general tendency towards less prescriptive practices. (2) Key elements in enhancing safety culture are an open regulator-regulated dialogue and the use of peer reviews by external or international organizations. (3) The efficiency and effectiveness of regulatory bodies is intimately related to the implementation of modem business practices and the hiring and retention of highly qualified staff that keep abreast of developing technology. (4) While nuclear power plant safety performance has improved worldwide, political, economic and social factors combine to make regulatory decisions increasingly difficult. (5) Harmonization of national safety criteria and decisions has largely occurred through the efforts of the IAEA in developing standards, promulgating conventions and hosting peer discussions in a number of forums. (6) Regulatory bodies generally acknowledge the value of probabilistic safety assessment (PSA) methodology as a complementary tool to deterministic safety analysis methods. (7) Significant progress has been made

  20. Regulatory facility guide for Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, S.S.; Bock, R.E.; Francis, M.W.; Gove, R.M.; Johnson, P.E.; Kovac, F.M.; Mynatt, J.O. [Oak Ridge National Lab., TN (United States); Rymer, A.C. [Transportation Consulting Services, Knoxville, TN (United States)

    1994-02-28

    The Regulatory Facility Guide (RFG) has been developed for the DOE and contractor facilities located in the state of Ohio. It provides detailed compilations of international, federal, and state transportation-related regulations applicable to shipments originating at destined to Ohio facilities. This RFG was developed as an additional resource tool for use both by traffic managers who must ensure that transportation operations are in full compliance with all applicable regulatory requirements and by oversight personnel who must verify compliance activities.

  1. Regulatory Auditing and Ramsey Pricing

    OpenAIRE

    Devon Garvie

    1991-01-01

    Truthful revelation mechanisms with auditing have the undesirable property that audits are not actually performed in equilibrium because all inference problems have been solved. A model is proposed in which the inference problem is preserved by separating the regulatory and auditing functions and transfers are costly. The auditor designs a Bayesian audit procedure and the regulator credibly commits to using this procedure in the regulatory mechanism. The auditor is conservative, that is, he d...

  2. ChIP-Seq-Annotated Heliconius erato Genome Highlights Patterns of cis-Regulatory Evolution in Lepidoptera.

    Science.gov (United States)

    Lewis, James J; van der Burg, Karin R L; Mazo-Vargas, Anyi; Reed, Robert D

    2016-09-13

    Uncovering phylogenetic patterns of cis-regulatory evolution remains a fundamental goal for evolutionary and developmental biology. Here, we characterize the evolution of regulatory loci in butterflies and moths using chromatin immunoprecipitation sequencing (ChIP-seq) annotation of regulatory elements across three stages of head development. In the process we provide a high-quality, functionally annotated genome assembly for the butterfly, Heliconius erato. Comparing cis-regulatory element conservation across six lepidopteran genomes, we find that regulatory sequences evolve at a pace similar to that of protein-coding regions. We also observe that elements active at multiple developmental stages are markedly more conserved than elements with stage-specific activity. Surprisingly, we also find that stage-specific proximal and distal regulatory elements evolve at nearly identical rates. Our study provides a benchmark for genome-wide patterns of regulatory element evolution in insects, and it shows that developmental timing of activity strongly predicts patterns of regulatory sequence evolution.

  3. O papel das proteínas reguladoras do complemento CD55/CD59 em células de sangue periférico de pacientes com lúpus eritematoso sistêmico The role of CD55/CD59 complement regulatory proteins on peripheral blood cells of systemic lupus erythematosus patients

    Directory of Open Access Journals (Sweden)

    Ana Paula Alegretti

    2009-06-01

    Full Text Available CD55 e CD59 são proteínas de membrana ancoradas por glicosilfosfatidilinositol que apresentam propriedades reguladoras da ativação da cascata do complemento. Essa regulação ocorre através da inibição da C3 convertase pelo CD55 e prevenção da etapa final de polimerização do complexo de ataque à membrana pelo CD59. Deficiência na expressão dessas proteínas pode estar associada a uma maior ativação do sistema complemento, inclusive do complexo de ataque à membrana, levando à morte celular. Pacientes com lúpus eritematoso sistêmico, com anemia hemolítica e linfopenia, parecem apresentar uma deficiência adquirida de CD55 e CD59. Contudo, os mecanismos que modulam essa diminuída expressão continuam desconhecidos e o seu impacto nas manifestações do lúpus eritematoso sistêmico precisa ser mais bem estudado.CD55 and CD59 are glycosylphosphatidylinositol-anchored proteins with regulatory properties on the activating cascades of the complement system. This regulation occurs through inhibition of the C3-convertase formation by CD55, and prevention of the terminal polymerization of the membrane attack complex by CD59. Deficiency in the expression of these proteins can be associated with increased susceptibility to complement-mediated cell death. Systemic lupus erythematosus patients with hemolytic anemia and lymphopenia seem to have an acquired deficiency of CD55 and CD59 proteins. However, the mechanisms involved in this deficiency and its impact on the clinical manifestation of SLE needs to be further investigated.

  4. 77 FR 52791 - Regulatory Capital Rules: Regulatory Capital, Implementation of Basel III, Minimum Regulatory...

    Science.gov (United States)

    2012-08-30

    ... Basel III, Minimum Regulatory Capital Ratios, Capital Adequacy, Transition Provisions, and Prompt... Capital Ratios, Capital Adequacy, Transition Provisions, and Prompt Corrective Action AGENCIES: Office of..., Capital Adequacy, Transition Provisions, and Prompt Corrective Action'' to facilitate the organization...

  5. Noise Control in Gene Regulatory Networks with Negative Feedback.

    Science.gov (United States)

    Hinczewski, Michael; Thirumalai, D

    2016-07-01

    Genes and proteins regulate cellular functions through complex circuits of biochemical reactions. Fluctuations in the components of these regulatory networks result in noise that invariably corrupts the signal, possibly compromising function. Here, we create a practical formalism based on ideas introduced by Wiener and Kolmogorov (WK) for filtering noise in engineered communications systems to quantitatively assess the extent to which noise can be controlled in biological processes involving negative feedback. Application of the theory, which reproduces the previously proven scaling of the lower bound for noise suppression in terms of the number of signaling events, shows that a tetracycline repressor-based negative-regulatory gene circuit behaves as a WK filter. For the class of Hill-like nonlinear regulatory functions, this type of filter provides the optimal reduction in noise. Our theoretical approach can be readily combined with experimental measurements of response functions in a wide variety of genetic circuits, to elucidate the general principles by which biological networks minimize noise.

  6. Early growth and postprandial appetite regulatory hormone responses

    DEFF Research Database (Denmark)

    Perälä, Mia-Maria; Kajantie, Eero; Valsta, Liisa M;

    2013-01-01

    Strong epidemiological evidence suggests that slow prenatal or postnatal growth is associated with an increased risk of CVD and other metabolic diseases. However, little is known whether early growth affects postprandial metabolism and, especially, the appetite regulatory hormone system. Therefore......, we investigated the impact of early growth on postprandial appetite regulatory hormone responses to two high-protein and two high-fat content meals. Healthy, 65-75-year-old volunteers from the Helsinki Birth Cohort Study were recruited; twelve with a slow increase in BMI during the first year of life......, early growth may have a role in programming appetite regulatory hormone secretion in later life. Slow early growth is also associated with higher postprandial insulin and TAG responses but not with incretin levels....

  7. How to Use SNP_TATA_Comparator to Find a Significant Change in Gene Expression Caused by the Regulatory SNP of This Gene’s Promoter via a Change in Affinity of the TATA-Binding Protein for This Promoter

    Directory of Open Access Journals (Sweden)

    Mikhail Ponomarenko

    2015-01-01

    Full Text Available The use of biomedical SNP markers of diseases can improve effectiveness of treatment. Genotyping of patients with subsequent searching for SNPs more frequent than in norm is the only commonly accepted method for identification of SNP markers within the framework of translational research. The bioinformatics applications aimed at millions of unannotated SNPs of the “1000 Genomes” can make this search for SNP markers more focused and less expensive. We used our Web service involving Fisher’s Z-score for candidate SNP markers to find a significant change in a gene’s expression. Here we analyzed the change caused by SNPs in the gene’s promoter via a change in affinity of the TATA-binding protein for this promoter. We provide examples and discuss how to use this bioinformatics application in the course of practical analysis of unannotated SNPs from the “1000 Genomes” project. Using known biomedical SNP markers, we identified 17 novel candidate SNP markers nearby: rs549858786 (rheumatoid arthritis; rs72661131 (cardiovascular events in rheumatoid arthritis; rs562962093 (stroke; rs563558831 (cyclophosphamide bioactivation; rs55878706 (malaria resistance, leukopenia, rs572527200 (asthma, systemic sclerosis, and psoriasis, rs371045754 (hemophilia B, rs587745372 (cardiovascular events; rs372329931, rs200209906, rs367732974, and rs549591993 (all four: cancer; rs17231520 and rs569033466 (both: atherosclerosis; rs63750953, rs281864525, and rs34166473 (all three: malaria resistance, thalassemia.

  8. Regulatory physiology discipline science plan

    Science.gov (United States)

    1991-01-01

    The focus of the Regulatory Physiology discipline of the Space Physiology and Countermeasures Program is twofold. First, to determine and study how microgravity and associated factors of space flight affect the regulatory mechanisms by which humans adapt and achieve homeostasis and thereby regulate their ability to respond to internal and external signals; and, second, to study selected physiological systems that have been demonstrated to be influenced by gravity. The Regulatory Physiology discipline, as defined here, is composed of seven subdisciplines: (1) Circadian Rhythms, (2) Endocrinology, (3) Fluid and Electrolyte Regulation, (4) Hematology, (5) Immunology, (6) Metabolism and Nutrition, and (7) Temperature Regulation. The purpose of this Discipline Science Plan is to provide a conceptual strategy for NASA's Life Sciences Division research and development activities in the area of regulatory physiology. It covers the research areas critical to NASA's programmatic requirements for the Extended-Duration Orbiter, Space Station Freedom, and exploration mission science activities. These science activities include ground-based and flight; basic, applied, and operational; and animal and human research and development. This document summarizes the current status of the program, outlines available knowledge, establishes goals and objectives, identifies science priorities, and defines critical questions in regulatory physiology. It contains a general plan that will be used by both NASA Headquarters Program Offices and the field centers to review and plan basic, applied, and operational intramural and extramural research and development activities in this area.

  9. Regulatory Expectations for Safety Culture

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Su Jin; Oh, Jang Jin; Choi, Young Sung [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2014-05-15

    The oversight of licensee's safety culture becomes an important issue that attracts great public and political concerns recently in Korea. Beginning from the intended violation of rules, a series of corruptions, documents forgery and disclosure of wrong-doings made the public think that the whole mindset of nuclear workers has been inadequate. Thus, they are demanding that safety culture shall be improved and that regulatory body shall play more roles and responsibilities for the improvements and oversight for them. This paper introduces, as an effort of regulatory side, recent changes in the role of regulators in safety culture, regulatory expectations on the desired status of licensee's safety culture, the pilot inspection program for safety culture and research activity for the development of oversight system. After the Fukushima accident in Japan 2011, many critics has searched for cultural factors that caused the unacceptable negligence pervaded in Japan nuclear society and the renewed emphasis has been placed on rebuilding safety culture by operators, regulators, and relevant institutions globally. Significant progress has been made in how to approach safety culture and led to a new perspective different from the existing normative assessment method both in operators and regulatory side. Regulatory expectations and oversight of them are based on such a new holistic concept for human, organizational and cultural elements to maintain and strengthen the integrity of defense in depth and consequently nuclear safety.

  10. Transcriptional regulatory programs underlying barley germination and regulatory functions of Gibberellin and abscisic acid

    Directory of Open Access Journals (Sweden)

    Lin Li

    2011-06-01

    Full Text Available Abstract Background Seed germination is a complex multi-stage developmental process, and mainly accomplished through concerted activities of many gene products and biological pathways that are often subjected to strict developmental regulation. Gibberellins (GA and abscisic acid (ABA are two key phytohormones regulating seed germination and seedling growth. However, transcriptional regulatory networks underlying seed germination and its associated biological pathways are largely unknown. Results The studies examined transcriptomes of barley representing six distinct and well characterized germination stages and revealed that the transcriptional regulatory program underlying barley germination was composed of early, late, and post-germination phases. Each phase was accompanied with transcriptional up-regulation of distinct biological pathways. Cell wall synthesis and regulatory components including transcription factors, signaling and post-translational modification components were specifically and transiently up-regulated in early germination phase while histone families and many metabolic pathways were up-regulated in late germination phase. Photosynthesis and seed reserve mobilization pathways were up-regulated in post-germination phase. However, stress related pathways and seed storage proteins were suppressed through the entire course of germination. A set of genes were transiently up-regulated within three hours of imbibition, and might play roles in initiating biological pathways involved in seed germination. However, highly abundant transcripts in dry barley and Arabidopsis seeds were significantly conserved. Comparison with transcriptomes of barley aleurone in response to GA and ABA identified three sets of germination responsive genes that were regulated coordinately by GA, antagonistically by ABA, and coordinately by GA but antagonistically by ABA. Major CHO metabolism, cell wall degradation and protein degradation pathways were up

  11. RNA regulatory elements and polyadenylation in plants

    Directory of Open Access Journals (Sweden)

    Arthur G. Hunt

    2012-01-01

    Full Text Available Alternative poly(A site choice (also known as alternative polyadenylation, or APA has the potential to affect gene expression in qualitative and quantitative ways. Alternative polyadenylation may affect as many as 82% of all expressed genes in a plant. The consequences of APA include the generation of transcripts with differing 3’-UTRs (and thus differing potential regulatory potential and of transcripts with differing protein-coding potential. Genome-wide studies of possible APA suggest a linkage with pre-mRNA splicing, and indicate a coincidence of and perhaps cooperation between RNA regulatory elements that affect splicing efficiency and the recognition of novel intronic poly(A sites. These studies also raise the possibility of the existence of a novel class of polyadenylation-related cis elements that are distinct from the well-characterized plant polyadenylation signal. Many potential APA events, however, have not been associated with identifiable cis elements. The present state of the field reveals a broad scope of APA, and also numerous opportunities for research into mechanisms that govern both choice and regulation of poly(A sites in plants.

  12. Studies on cell death and survival regulatory protein c-FLIP as a target for cancer treatment%以细胞存亡调控蛋白c-FLIP为靶点的癌症治疗研究

    Institute of Scientific and Technical Information of China (English)

    陈立立; 陈忠明; 王冠林; 张宽仁

    2014-01-01

    Many tumor cells are resistant to cell apoptosis through the expression of antiapoptotic proteins. c-FLIP is a ma-jor resistance protein of antiapoptosis. In human cells, there are three types of c-FLIP, c-FLIPL , c-FLIPS and c-FLIPR . The c-FLIP binds to FADD to prevent the formation of procaspase-8-DISC and the subsequent activation of caspase cascade. Further-more, c-FLIPL and c-FLIPS have multifunctional roles in various cellular signaling pathways, as well as up-regulating several cyto-protective signaling. Studies show that upregulation of c-FLIP has been found in various tumors, and its downregulation has been shown to restore apoptosis triggered by various chemothera-peutic agents, like the transcriptional regulating agents, trichos-tatin-A, camptothecin, cisplatin, doxorubicin, etc. or other new biotechnologies, such as the specific siRNA. Therefore, c-FLIPS are important targets of cancer therapy. This review summarizes the results on the role of c-FLIP in cancer chemotherapy of tradi-tional antitumor agents and siRNA, and to provide new ideas and rationales of searching for the antiapoptosis effective compounds that can specifically antagonize c-FLIP.%肿瘤细胞通过表达抗凋亡蛋白从而对细胞的凋亡产生耐受,这是肿瘤抗凋亡的重要调节机制。 c-FLIP是抗凋亡的主要抑制因子,在人类细胞中,c-FLIP主要有3种亚型,分别为c-FLIPL、c-FLIPS、c-FLIPR。 c-FLIP通过与FADD结合,从而影响了procaspase-8-DISC的形成及随后的caspase级联反应。此外, c-FLIPL 和c-FLIPS 在不同的信号途径中具有多种功能,可以同时上调许多具有细胞保护作用的信号。研究表明,c-FLIP在许多肿瘤细胞中都有所上调,但可以通过不同的化学治疗药物,如调控细胞转录水平的药物曲古抑菌素A、喜树碱、顺铂、阿霉素等传统化疗药或者通过一些最新的生物技术,如 siRNA 技术,使得 c-FLIP 表达水平有所下调,以此来恢复肿瘤细胞

  13. Evolutionary conservation of regulatory elements in vertebrate HOX gene clusters

    Energy Technology Data Exchange (ETDEWEB)

    Santini, Simona; Boore, Jeffrey L.; Meyer, Axel

    2003-12-31

    Due to their high degree of conservation, comparisons of DNA sequences among evolutionarily distantly-related genomes permit to identify functional regions in noncoding DNA. Hox genes are optimal candidate sequences for comparative genome analyses, because they are extremely conserved in vertebrates and occur in clusters. We aligned (Pipmaker) the nucleotide sequences of HoxA clusters of tilapia, pufferfish, striped bass, zebrafish, horn shark, human and mouse (over 500 million years of evolutionary distance). We identified several highly conserved intergenic sequences, likely to be important in gene regulation. Only a few of these putative regulatory elements have been previously described as being involved in the regulation of Hox genes, while several others are new elements that might have regulatory functions. The majority of these newly identified putative regulatory elements contain short fragments that are almost completely conserved and are identical to known binding sites for regulatory proteins (Transfac). The conserved intergenic regions located between the most rostrally expressed genes in the developing embryo are longer and better retained through evolution. We document that presumed regulatory sequences are retained differentially in either A or A clusters resulting from a genome duplication in the fish lineage. This observation supports both the hypothesis that the conserved elements are involved in gene regulation and the Duplication-Deletion-Complementation model.

  14. Regulatory authority infrastructure for Namibia

    International Nuclear Information System (INIS)

    The Republic of Namibia is participating in the International Atomic Energy Agency's Model Project for the Improvement of National Regulatory Authority Infrastructures in Member States. The paper illustrates our experience in solving problems and difficulties confronted in establishing an effective regulatory authority operating within the existing national infrastructure that should be supported by the Government. An effective regulatory authority is seen as part of the wider administrative scope of our Government through ministerial mandates given by the State from time to time, guaranteeing its independence when implementing legal provisions under statutes. Sections of the report illustrate our experience in the following areas: 1. National radiation protection policy 2. Structure of our national regulatory authority 3. Laws and regulations 4. Provisions for notification, authorization and registration 5. In-depth security measures for radiation sources and radioactive material 6. Systems for the inspection of radiation sources, radioactive materials, enforcement of legal provisions 7. Extent of the applications of radiation sources and radioactive materials in the country. The paper provides information regarding existing Government policy on radiation protection; structure and legal aspects of the national regulatory, including statutes and regulations; the extent of application and uses of radiation sources and security of radioactive materials; human resources: strengths and constraints; management practices and financing of regulatory authority; and plans for emergency recovery of orphan sources. National plans for management of disused sources, recovery of orphan sources, abnormal emergencies, communication of information to affected persons on exposure effects, and the safety training of persons using these applications are discussed. the paper provides a summary and some suggestions of the way forward for Namibia. (author)

  15. Waved with open eyelids 2 (woe2 is a novel spontaneous mouse mutation in the protein phosphatase 1, regulatory (inhibitor subunit 13 like (Ppp1r13l gene

    Directory of Open Access Journals (Sweden)

    Toonen Joseph

    2012-08-01

    Full Text Available Abstract Background Waved with open eyelids 2 (woe2 is a novel autosomal recessive mouse mutation that arose spontaneously in our animal facility. Upon initial evaluation, mutant mice exhibited eyelids open at birth (EOB and wavy fur phenotypes. The goals of this study were to phenotypically characterize the woe2 mice and to identify the gene harboring the mutation responsible for the woe2 phenotype. Results Histological analysis of woe2 embryos identified the failure of embryonic eyelid closure. Clinical and histological analysis of woe2 adult eyes identified severe corneal opacities, abnormalities of the anterior segment of the eye, and the absence of meibomian glands. Abnormalities in the fur texture and the absence of meibomian glands prompted us to evaluate other epidermal appendages: skin, teeth, and nails--as well as lacrimal, mammary, salivary, sebaceous and sweat glands. No obvious morphological differences between WT and woe2 mice were identified in these tissues. However, the analysis of woe2 identified cardiac abnormalities. Positional cloning of the woe2 locus identified a 1308 bp deletion in the Ppp1r13l gene. The deletion resulted in an aberrant Ppp1r13lΔexon9-11 transcript that lacks exons 9, 10 and 11 resulting in a premature stop and a loss of 223 amino acids from the C-terminal end of the putative mutant PPP1R13L protein. Immunohistological analysis during eye development identified expression of PPP1R13L in the palpebral epidermis, palpebral and bulbar conjunctiva, corneal epithelium and meibomian glands. Conclusions The woe2 mouse harbors a novel deletion within the Ppp1r13l gene, likely resulting in a complete loss of PPP1R13L function. Results from this study provide evidence that PPP1R13L has an essential role in embryonic eyelid closure as well in development of meibomian glands and the anterior segment of the eye. The woe2 mice are a useful model for investigation of the role of PPP1R13L, especially during ocular and

  16. Yeast Interacting Proteins Database: YNL201C, YBL046W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YNL201C PSY2 Putative subunit of an evolutionarily conserved protein phosphatase co...s prey (0) YBL046W PSY4 Putative regulatory subunit of an evolutionarily conserve...ne name PSY2 Bait description Putative subunit of an evolutionarily conserved protein phosphatase complex co...gene name PSY4 Prey description Putative regulatory subunit of an evolutionarily conserved protein phosphata

  17. National legislative and regulatory activities

    International Nuclear Information System (INIS)

    This section of the Bulletin presents a summary of the recent national legislative and regulatory activities sorted by country and topic: - Algeria: Nuclear security. - France: Radioactive waste management; Nuclear safety and radiological protection; General legislation; International co-operation. - Germany: International trade. - Indonesia: Nuclear security, General legislation. - Ireland: Nuclear safety and radiological protection; General legislation. - Lithuania: Nuclear security; Nuclear safety and radiological protection. - Slovak Republic: International co-operation; Liability and compensation; Environmental protection. - Switzerland: Radioactive waste management. - United Arab Emirates: Liability and compensation. - United States: Radioactive waste management; Licensing and regulatory infrastructure

  18. Negative cooperativity in regulatory enzymes.

    Science.gov (United States)

    Levitzki, A; Koshland, D E

    1969-04-01

    Negative cooperativity has been observed in CTP synthetase, an allosteric enzyme which contains a regulatory site. Thus, the same enzyme exhibits negative cooperativity for GTP (an effector) and glutamine (a substrate) and positive cooperativity for ATP and UTP (both substrates). In the process of the delineation of these phenomena, diagnostic procedures for negative cooperativity were developed. Application of these procedures to other enzymes indicates that negative cooperativity is a characteristic of many of them. These findings add strong support for the sequential model of subunit interactions which postulates that ligand-induced conformational changes are responsible for regulatory and cooperative phenomena in enzymes. PMID:5256410

  19. NMR of unfolded proteins

    Indian Academy of Sciences (India)

    Amarnath Chtterjee; Ashutosh Kumar; Jeetender Chugh; Sudha Srivastava; Neel S Bhavesh; Ramakrishna V Hosur

    2005-01-01

    In the post-genomic era, as more and more genome sequences are becoming known and hectic efforts are underway to decode the information content in them, it is becoming increasingly evident that flexibility in proteins plays a crucial role in many of the biological functions. Many proteins have intrinsic disorder either wholly or in specific regions. It appears that this disorder may be important for regulatory functions of the proteins, on the one hand, and may help in directing the folding process to reach the compact native state, on the other. Nuclear magnetic resonance (NMR) has over the last two decades emerged as the sole, most powerful technique to help characterize these disordered protein systems. In this review, we first discuss the significance of disorder in proteins and then describe the recent developments in NMR methods for their characterization. A brief description of the results obtained on several disordered proteins is presented at the end.

  20. Association studies of 3′-untranslated region polymorphism of regulatory subunit gene of skeletal muscle protein phosphatase-1 and type 2 diabetes%骨胳肌蛋白磷酸酶1调节亚基基因3′非翻译区多态性与2型糖尿病相关性研究

    Institute of Scientific and Technical Information of China (English)

    谷亚鹏; 谢平; 刘美莲; 宋惠萍

    2002-01-01

    @@ 蛋白质磷酸酶1(protein phosphatase 1,PP1)在胰岛素作用下可通过脱磷酸作用激活糖原合成酶[1],促进葡萄糖摄取和糖原合成[2].PP1由一个催化亚基(PP1 catalytic subunit,PP1C)和糖原目标亚基(又称调节亚基)(glycogen-associated regulatory subunit of type 1,PP1G)组成,调节亚基正性调节催化亚基的去磷酸化,其编码基因被称作PPP1R3基因[3].在胰岛素抵抗状态下,胰岛素对PP1的激活作用减弱,从而降低糖原合成酶的活性[4].

  1. HTLV-1Tax蛋白阳性T细胞中EGR-1表达调控机制的研究%Study of the regulatory mechanism of EGR-1 expression in HTLV-1 virus Tax protein positive-T cells

    Institute of Scientific and Technical Information of China (English)

    韩静贤; 牛志国; 刘威; 高彩; 宋向凤; 张国俊; 孙爱平; 王辉

    2014-01-01

    Objective To explore the expression of early growth response gene-1 (EGR-1) in T cells that were positive for Tax protein of human T-cell leukemia virus type 1 (HTLV-1) and its possible reg-ulatory mechanism .Methods A series of expression structures carrying the regulatory elements of EGR-1 in different length and luciferase reporter genes were constructed .TaxP cells were transfected with the con-structs containing reporter genes and cultured with 5μmol/L of NF-κB inhibitor BAY 11-7082 or equal vol-ume of DMSO.After cultured for 24 hours the cells were collected to test the luciferase activity .BAY 11-7082 or equal volume of DMSO was added into the supernatant of TaxP cell culture to test the expression of EGR-1 protein by Western blot after 24 hours of culture .Tax and its mutants M22 and M47 were transfected into 293 T cells respectively to test the expression of EGR-1 protein by Western blot after 24 hours of culture . Results The expression structures carrying the regulatory elements of EGR-1 in different length and their mutants followed by luciferase reporter genes were successfully constructed .The luciferase activity in the cells transfected with the constructs containing the elements E 1 and E2 were higher than that transfected with E3, DelE and MutE, but the reporter gene expressions were decreased with the interference of BAY 11-7082 (P<0.01).However, there were no significant changes with the luciferase activity in the cells transfected by elements E3, DelE and MutE.Western blot analysis indicated that the expression of EGR-1 protein was significantly decreased with the interference of BAY 10-7082 .The expression of EGR-1 protein in M22 mu-tants-transfected 293 T cells were decreased significantly in comparison with those by wild type tax-and M47-transfected cells .Conclusion NF-κB was the key nuclear factor in regulating the expression of EGR-1 pro-tein in Tax-positive T cells .%目的:探讨成人T淋巴细胞白血病病毒1型( HTLV-1

  2. 维生素A缺乏对大鼠铁调节蛋白2影响%Effect of vitamin A deficiency on iron regulatory protein 2 in rats

    Institute of Scientific and Technical Information of China (English)

    姜珊; 王朝旭; 姜丽英; 李丹娜

    2011-01-01

    Objective To explore the potential role of iron regulator protein 2 (IRP2 ) under conditions of vitamin A deficiency and the relationship between vitamin A deficiency and anemia. Methods Forty-eight SD rats were divided randomly into four groups of control,complete deficient in vitamin A,marginal deficiency in vitamin A,and ion plus vitamin A marginal deficiency. After 8 weeks, all the rats were killed by sodium pentobarbital anesthesia and all samples were collected and detected for gene expression. Results As expected,the concentration of serum retinol in completely vitamin A deficiency group(0. 22 ±0. 26 μmol/L) .compared with that of the control group(1.50 ±0.41μmol/L) ,was significantly decreased. Compared with that of the control group(3. 85 ±0. 94μg/ral) ,the concentration of serum rion(2. 26 ±0.72 μg/ml) in complete vitaminA deficiency group was significantly decreased. Compared with that of the control group (0. 81 ±0.08) , the level of IRP2 mRNA( 1. 53 ±0.18) in complete vitamin A deficiency group was significantly increased,and the level of transferrin receptor mRNA( 0. 62 ± 0. 06) was also increased compared with that of the control group (0. 33 ± 0.02). Compared with the control group (0. 85 ± 0. 04), the level of ferrintin RNA (0. 52 ± 0.08) in complete vitamin A deficiency group was significantly decreased. Conclusion The results indicate that vitamin A deficiency influences iron homeostasis in cells through affecting the expression of IRP2 and the activity of IRP-RNA comhinatiion and then changing the expressions of ferritin and transferrin mRNA.%目的 探讨维生素A缺乏对大鼠铁调节蛋白2(IRP2)mRNA及铁蛋白(Fn) nRNA和转铁蛋白受体(TfR)mRNA表达影响.方法48只雄性SD大鼠按体重随机分为4组,每组12只,对照组、维生素A完全缺乏组;维生素A边缘缺乏组;铁及维生素A边缘缺乏组;喂养8周后,麻醉处死大鼠,取组织和血清,进行相关指标和基因

  3. 78 FR 62417 - Regulatory Capital Rules: Regulatory Capital, Implementation of Basel III, Capital Adequacy...

    Science.gov (United States)

    2013-10-22

    ... Part 324 RIN 3064-AD95 Regulatory Capital Rules: Regulatory Capital, Implementation of Basel III, Capital Adequacy, Transition Provisions, Prompt Corrective Action, Standardized Approach for Risk-Weighted... Capital Rules: Regulatory Capital, Implementation of Basel III, Capital Adequacy, Transition...

  4. Subordinate regulatory mode and leader power: Interpersonal regulatory complementarity predicts task performance

    NARCIS (Netherlands)

    M.R.W. Hamstra; E. Orehek; M. Holleman

    2014-01-01

    This research examines the implications of locomotion regulatory mode (orientation toward making progress on goals) and assessment regulatory mode (orientation toward critically evaluating alternatives) for employees' performance. Regulatory mode theory suggests that, although these are both integra

  5. Regulatory coding of lymphoid lineage choice by hematopoietic transcription factors

    Science.gov (United States)

    Warren, Luigi A.; Rothenberg, Ellen V.

    2003-01-01

    During lymphopoiesis, precursor cells negotiate a complex regulatory space, defined by the levels of several competing and cross-regulating transcription factors, before arriving at stable states of commitment to the B-, T- and NK-specific developmental programs. Recent perturbation experiments provide evidence that this space has three major axes, corresponding to the PU.1 versus GATA-1 balance, the intensity of Notch signaling through the CSL pathway, and the ratio of E-box transcription factors to their Id protein antagonists.

  6. 78 FR 1574 - Regulatory Agenda

    Science.gov (United States)

    2013-01-08

    ... antiseptic products. Timetable: Action Date FR Cite NPRM (Healthcare) 06/17/94 59 FR 31402 Comment Period End... public more effectively participate in the Department's regulatory activity, and the Department welcomes... underlying medicine, public health, and social services. This agenda presents the rulemaking activities...

  7. Private equity and regulatory capital

    NARCIS (Netherlands)

    D. Bongaerts; E. Charlier

    2009-01-01

    Regulatory capital requirements for European banks have been put forward in the Basel II Capital Framework and subsequently in the capital requirements directive (CRD) of the EU. We provide a detailed discussion of the capital requirements for private equity investments under different approaches. F

  8. Radiation practices and regulatory control

    International Nuclear Information System (INIS)

    The general principles to be observed in the regulatory control of ionizing radiation use and practices are specified in the guide. It also takes into account of additions and alterations needed for for compliance with the European Union (EU) directives that have not been mentioned in other STUK/ST-guides. (6 refs.)

  9. National legislative and regulatory activities

    International Nuclear Information System (INIS)

    Different national legislative and regulatory activities in the field of nuclear energy are exposed here; from the radiation protection and the safe use of nuclear energy, to the question of radioactive waste management, the nuclear area is seen through the national decrees, amendments orders and acts for eighteen countries. (N.C.)

  10. Selective constraints in experimentally defined primate regulatory regions.

    Directory of Open Access Journals (Sweden)

    Daniel J Gaffney

    Full Text Available Changes in gene regulation may be important in evolution. However, the evolutionary properties of regulatory mutations are currently poorly understood. This is partly the result of an incomplete annotation of functional regulatory DNA in many species. For example, transcription factor binding sites (TFBSs, a major component of eukaryotic regulatory architecture, are typically short, degenerate, and therefore difficult to differentiate from randomly occurring, nonfunctional sequences. Furthermore, although sites such as TFBSs can be computationally predicted using evolutionary conservation as a criterion, estimates of the true level of selective constraint (defined as the fraction of strongly deleterious mutations occurring at a locus in regulatory regions will, by definition, be upwardly biased in datasets that are a priori evolutionarily conserved. Here we investigate the fitness effects of regulatory mutations using two complementary datasets of human TFBSs that are likely to be relatively free of ascertainment bias with respect to evolutionary conservation but, importantly, are supported by experimental data. The first is a collection of almost >2,100 human TFBSs drawn from the literature in the TRANSFAC database, and the second is derived from several recent high-throughput chromatin immunoprecipitation coupled with genomic microarray (ChIP-chip analyses. We also define a set of putative cis-regulatory modules (pCRMs by spatially clustering multiple TFBSs that regulate the same gene. We find that a relatively high proportion ( approximately 37% of mutations at TFBSs are strongly deleterious, similar to that at a 2-fold degenerate protein-coding site. However, constraint is significantly reduced in human and chimpanzee pCRMS and ChIP-chip sequences, relative to macaques. We estimate that the fraction of regulatory mutations that have been driven to fixation by positive selection in humans is not significantly different from zero. We also find

  11. ReNE: a cytoscape plugin for regulatory network enhancement.

    Science.gov (United States)

    Politano, Gianfranco; Benso, Alfredo; Savino, Alessandro; Di Carlo, Stefano

    2014-01-01

    One of the biggest challenges in the study of biological regulatory mechanisms is the integration, americanmodeling, and analysis of the complex interactions which take place in biological networks. Despite post transcriptional regulatory elements (i.e., miRNAs) are widely investigated in current research, their usage and visualization in biological networks is very limited. Regulatory networks are commonly limited to gene entities. To integrate networks with post transcriptional regulatory data, researchers are therefore forced to manually resort to specific third party databases. In this context, we introduce ReNE, a Cytoscape 3.x plugin designed to automatically enrich a standard gene-based regulatory network with more detailed transcriptional, post transcriptional, and translational data, resulting in an enhanced network that more precisely models the actual biological regulatory mechanisms. ReNE can automatically import a network layout from the Reactome or KEGG repositories, or work with custom pathways described using a standard OWL/XML data format that the Cytoscape import procedure accepts. Moreover, ReNE allows researchers to merge multiple pathways coming from different sources. The merged network structure is normalized to guarantee a consistent and uniform description of the network nodes and edges and to enrich all integrated data with additional annotations retrieved from genome-wide databases like NCBI, thus producing a pathway fully manageable through the Cytoscape environment. The normalized network is then analyzed to include missing transcription factors, miRNAs, and proteins. The resulting enhanced network is still a fully functional Cytoscape network where each regulatory element (transcription factor, miRNA, gene, protein) and regulatory mechanism (up-regulation/down-regulation) is clearly visually identifiable, thus enabling a better visual understanding of its role and the effect in the network behavior. The enhanced network produced by Re

  12. ReNE: a cytoscape plugin for regulatory network enhancement.

    Directory of Open Access Journals (Sweden)

    Gianfranco Politano

    Full Text Available One of the biggest challenges in the study of biological regulatory mechanisms is the integration, americanmodeling, and analysis of the complex interactions which take place in biological networks. Despite post transcriptional regulatory elements (i.e., miRNAs are widely investigated in current research, their usage and visualization in biological networks is very limited. Regulatory networks are commonly limited to gene entities. To integrate networks with post transcriptional regulatory data, researchers are therefore forced to manually resort to specific third party databases. In this context, we introduce ReNE, a Cytoscape 3.x plugin designed to automatically enrich a standard gene-based regulatory network with more detailed transcriptional, post transcriptional, and translational data, resulting in an enhanced network that more precisely models the actual biological regulatory mechanisms. ReNE can automatically import a network layout from the Reactome or KEGG repositories, or work with custom pathways described using a standard OWL/XML data format that the Cytoscape import procedure accepts. Moreover, ReNE allows researchers to merge multiple pathways coming from different sources. The merged network structure is normalized to guarantee a consistent and uniform description of the network nodes and edges and to enrich all integrated data with additional annotations retrieved from genome-wide databases like NCBI, thus producing a pathway fully manageable through the Cytoscape environment. The normalized network is then analyzed to include missing transcription factors, miRNAs, and proteins. The resulting enhanced network is still a fully functional Cytoscape network where each regulatory element (transcription factor, miRNA, gene, protein and regulatory mechanism (up-regulation/down-regulation is clearly visually identifiable, thus enabling a better visual understanding of its role and the effect in the network behavior. The enhanced

  13. Protein leverage and energy intake.

    Science.gov (United States)

    Gosby, A K; Conigrave, A D; Raubenheimer, D; Simpson, S J

    2014-03-01

    Increased energy intakes are contributing to overweight and obesity. Growing evidence supports the role of protein appetite in driving excess intake when dietary protein is diluted (the protein leverage hypothesis). Understanding the interactions between dietary macronutrient balance and nutrient-specific appetite systems will be required for designing dietary interventions that work with, rather than against, basic regulatory physiology. Data were collected from 38 published experimental trials measuring ad libitum intake in subjects confined to menus differing in macronutrient composition. Collectively, these trials encompassed considerable variation in percent protein (spanning 8-54% of total energy), carbohydrate (1.6-72%) and fat (11-66%). The data provide an opportunity to describe the individual and interactive effects of dietary protein, carbohydrate and fat on the control of total energy intake. Percent dietary protein was negatively associated with total energy intake (F = 6.9, P protein. The analysis strongly supports a role for protein leverage in lean, overweight and obese humans. A better appreciation of the targets and regulatory priorities for protein, carbohydrate and fat intake will inform the design of effective and health-promoting weight loss diets, food labelling policies, food production systems and regulatory frameworks.

  14. Molecular characterization of a maize regulatory gene. Progress report, July 1989--March 1990

    Energy Technology Data Exchange (ETDEWEB)

    Wessler, S.

    1990-12-31

    This progress report contains information concerning the characterization of the Maize regulatory gene. The findings of this research program have immediate significance. Firstly, it provides support for the notion that R proteins, produced by the regulatory gene, are functionally equivalent. Secondly, the success of these experiments provides a simple transient assay for either natural or constructed R protein mutations. The relative ease of this assay coupled with overnight results are important prerequisites to the proposed experiments involving a structure-function analysis of the R protein.

  15. ApoHRP-based Assay to Measure Intracellular Regulatory Heme

    Science.gov (United States)

    Atamna, Hani; Brahmbhatt, Marmik; Atamna, Wafa; Shanower, Gregory A.; Dhahbi, Joseph M.

    2015-01-01

    The majority of the heme-binding proteins possess a “heme-pocket” that stably binds with heme. Usually known as housekeeping heme-proteins, they participate in a variety of metabolic reactions (e.g., catalase). Heme also binds with lower affinity to the “Heme-Regulatory Motifs” (HRM) in specific regulatory proteins. This type of heme binding is known as exchangeable or regulatory heme (RH). Heme binding to HRM proteins regulates their function (e.g., Bach1). Although there are well-established methods for assaying total cellular heme (e.g., heme-proteins plus RH), currently there is no method available for measuring RH independently from the total heme (TH). The current study describes and validates a new method to measure intracellular RH. The method is based on the reconstitution of apo-horseradish peroxidase (apoHRP) with heme to form holoHRP. The resulting holoHRP activity is then measured with a colorimetric substrate. The results show that apoHRP specifically binds RH but not with heme from housekeeping heme-proteins. The RH assay detects intracellular RH. Furthermore, using conditions that create positive (hemin) or negative (N-methyl protoporphyrin IX) controls for heme in normal human fibroblasts (IMR90), the RH assay shows that RH is dynamic and independent from TH. We also demonstrated that short-term exposure to subcytotoxic concentrations of lead (Pb), mercury (Hg), or amyloid-β(Aβ) significantly alters intracellular RH with little effect on TH. In conclusion the RH assay is an effective assay to investigate intracellular RH concentration and demonstrates that RH represents ~6% of total heme in IMR90 cells. PMID:25525887

  16. HrpA, a DEAH-box RNA helicase, is involved in global gene regulation in the Lyme disease spirochete.

    Directory of Open Access Journals (Sweden)

    Aydan Salman-Dilgimen

    Full Text Available Spirochetes causing Lyme borreliosis are obligate parasites that can only be found in a tick vector or a vertebrate host. The ability to survive in these two disparate environments requires up and downregulation of specific genes by regulatory circuits that remain largely obscure. In this work on the Lyme spirochete, B. burgdorferi, we show that a disruption of the hrpA gene, which encodes a putative RNA helicase, results in a complete loss in the ability of the spirochetes to infect mice by needle inoculation. Studies of protein expression in culture by 2D gels revealed a change in the expression of 33 proteins in hrpA clones relative to the wild-type parent. Quantitative characterization of protein expression by iTRAQ analysis revealed a total of 187 differentially regulated proteins in an hrpA background: 90 downregulated and 97 upregulated. Forty-two of the 90 downregulated and 65 of the 97 upregulated proteins are not regulated under any conditions by the previously reported regulators in B. burgdorferi (bosR, rrp2, rpoN, rpoS or rrp1. Downregulated and upregulated proteins also fell into distinct functional categories. We conclude that HrpA is part of a new and distinct global regulatory pathway in B. burgdorferi gene expression. Because an HrpA orthologue is present in many bacteria, its participation in global regulation in B. burgdorferi may have relevance in other bacterial species where its function remains obscure. We believe this to be the first report of a role for an RNA helicase in a global regulatory pathway in bacteria. This finding is particularly timely with the recent growth of the field of RNA regulation of gene expression and the ability of RNA helicases to modulate RNA structure and function.

  17. Plant immunity: the EDS1 regulatory node.

    Science.gov (United States)

    Wiermer, Marcel; Feys, Bart J; Parker, Jane E

    2005-08-01

    ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) and its interacting partner, PHYTOALEXIN DEFICIENT 4 (PAD4), constitute a regulatory hub that is essential for basal resistance to invasive biotrophic and hemi-biotrophic pathogens. EDS1 and PAD4 are also recruited by Toll-Interleukin-1 receptor (TIR)-type nucleotide binding-leucine rich repeat (NB-LRR) proteins to signal isolate-specific pathogen recognition. Recent work points to a fundamental role of EDS1 and PAD4 in transducing redox signals in response to certain biotic and abiotic stresses. These intracellular proteins are important activators of salicylic acid (SA) signaling and also mediate antagonism between the jasmonic acid (JA) and ethylene (ET) defense response pathways. EDS1 forms several molecularly and spatially distinct complexes with PAD4 and a newly discovered in vivo signaling partner, SENESCENCE ASSOCIATED GENE 101 (SAG101). Together, EDS1, PAD4 and SAG101 provide a major barrier to infection by both host-adapted and non-host pathogens.

  18. Global analysis of photosynthesis transcriptional regulatory networks.

    Science.gov (United States)

    Imam, Saheed; Noguera, Daniel R; Donohue, Timothy J

    2014-12-01

    Photosynthesis is a crucial biological process that depends on the interplay of many components. This work analyzed the gene targets for 4 transcription factors: FnrL, PrrA, CrpK and MppG (RSP_2888), which are known or predicted to control photosynthesis in Rhodobacter sphaeroides. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) identified 52 operons under direct control of FnrL, illustrating its regulatory role in photosynthesis, iron homeostasis, nitrogen metabolism and regulation of sRNA synthesis. Using global gene expression analysis combined with ChIP-seq, we mapped the regulons of PrrA, CrpK and MppG. PrrA regulates ∼34 operons encoding mainly photosynthesis and electron transport functions, while CrpK, a previously uncharacterized Crp-family protein, regulates genes involved in photosynthesis and maintenance of iron homeostasis. Furthermore, CrpK and FnrL share similar DNA binding determinants, possibly explaining our observation of the ability of CrpK to partially compensate for the growth defects of a ΔFnrL mutant. We show that the Rrf2 family protein, MppG, plays an important role in photopigment biosynthesis, as part of an incoherent feed-forward loop with PrrA. Our results reveal a previously unrealized, high degree of combinatorial regulation of photosynthetic genes and significant cross-talk between their transcriptional regulators, while illustrating previously unidentified links between photosynthesis and the maintenance of iron homeostasis.

  19. One hub-one process: a tool based view on regulatory network topology

    Directory of Open Access Journals (Sweden)

    Sneppen Kim

    2008-03-01

    Full Text Available Abstract Background The relationship between the regulatory design and the functionality of molecular networks is a key issue in biology. Modules and motifs have been associated to various cellular processes, thereby providing anecdotal evidence for performance based localization on molecular networks. Results To quantify structure-function relationship we investigate similarities of proteins which are close in the regulatory network of the yeast Saccharomyces Cerevisiae. We find that the topology of the regulatory network only show weak remnants of its history of network reorganizations, but strong features of co-regulated proteins associated to similar tasks. These functional correlations decreases strongly when one consider proteins separated by more than two steps in the regulatory network. The network topology primarily reflects the processes that is orchestrated by each individual hub, whereas there is nearly no remnants of the history of protein duplications. Conclusion Our results suggests that local topological features of regulatory networks, including broad degree distributions, emerge as an implicit result of matching a number of needed processes to a finite toolbox of proteins.

  20. Regulatory pathways for vaccines for developing countries.

    OpenAIRE

    Milstien, Julie; Belgharbi, Lahouari

    2004-01-01

    Vaccines that are designed for use only in developing countries face regulatory hurdles that may restrict their use. There are two primary reasons for this: most regulatory authorities are set up to address regulation of products for use only within their jurisdictions and regulatory authorities in developing countries traditionally have been considered weak. Some options for regulatory pathways for such products have been identified: licensing in the country of manufacture, file review by th...

  1. Nuclear Regulatory Commission 1989 Information Digest

    International Nuclear Information System (INIS)

    The Nuclear Regulatory Commission 1989 Information Digest provides summary information regarding the US Nuclear Regulatory Commission, its regulatory responsibilities, and areas licensed by the Commission. This is the first of an annual publication for the general use of the NRC staff and is available to the public. The Digest is divided into two parts: the first presents an overview of the US Nuclear Regulatory Commission and the second provides data on NRC commercial nuclear reactor licensees and commercial nuclear power reactors worldwide

  2. Modelling Nonstationary Gene Regulatory Processes

    Directory of Open Access Journals (Sweden)

    Marco Grzegorcyzk

    2010-01-01

    Full Text Available An important objective in systems biology is to infer gene regulatory networks from postgenomic data, and dynamic Bayesian networks have been widely applied as a popular tool to this end. The standard approach for nondiscretised data is restricted to a linear model and a homogeneous Markov chain. Recently, various generalisations based on changepoint processes and free allocation mixture models have been proposed. The former aim to relax the homogeneity assumption, whereas the latter are more flexible and, in principle, more adequate for modelling nonlinear processes. In our paper, we compare both paradigms and discuss theoretical shortcomings of the latter approach. We show that a model based on the changepoint process yields systematically better results than the free allocation model when inferring nonstationary gene regulatory processes from simulated gene expression time series. We further cross-compare the performance of both models on three biological systems: macrophages challenged with viral infection, circadian regulation in Arabidopsis thaliana, and morphogenesis in Drosophila melanogaster.

  3. Genetic flexibility of regulatory networks.

    Science.gov (United States)

    Hunziker, Alexander; Tuboly, Csaba; Horváth, Péter; Krishna, Sandeep; Semsey, Szabolcs

    2010-07-20

    Gene regulatory networks are based on simple building blocks such as promoters, transcription factors (TFs) and their binding sites on DNA. But how diverse are the functions that can be obtained by different arrangements of promoters and TF binding sites? In this work we constructed synthetic regulatory regions using promoter elements and binding sites of two noninteracting TFs, each sensing a single environmental input signal. We show that simply by combining these three kinds of elements, we can obtain 11 of the 16 Boolean logic gates that integrate two environmental signals in vivo. Further, we demonstrate how combination of logic gates can result in new logic functions. Our results suggest that simple elements of transcription regulation form a highly flexible toolbox that can generate diverse functions under natural selection.

  4. Regulatory aspects of NPP safety

    International Nuclear Information System (INIS)

    Extensive review of the NPP Safety is presented including tasks of Ministry of Health, Ministry of Internal Affairs, Ministry of Environment and Waters, Ministry of Defense in the field of national system for monitoring the nuclear power. In the frame of national nuclear safety legislation Bulgaria is in the process of approximation of the national legislation to that of EC. Detailed analysis of the status of regulatory body, its functions, organisation structure, responsibilities and future tasks is included. Basis for establishing the system of regulatory inspections and safety enforcement as well as intensification of inspections is described. Assessment of safety modifications is concerned with complex program for reconstruction of Units 1-4 of Kozloduy NPP, as well as for modernisation of Units 5 and 6. Qualification and licensing of the NPP personnel, Year 2000 problem, priorities and the need of international assistance are mentioned

  5. Proteome-wide analysis of lysine acetylation suggests its broad regulatory scope in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Henriksen, Peter; Wagner, Sebastian Alexander; Weinert, Brian Tate;

    2012-01-01

    Post-translational modification of proteins by lysine acetylation plays important regulatory roles in living cells. The budding yeast Saccharomyces cerevisiae is a widely used unicellular eukaryotic model organism in biomedical research. S. cerevisiae contains several evolutionary conserved lysin...

  6. 78 FR 44399 - Semiannual Regulatory Flexibility Agenda

    Science.gov (United States)

    2013-07-23

    ... Capital, Implementation of Basel III, Minimum Regulatory Capital Ratios, Capital Adequacy, and Transition... leverage capital requirements. Timetable: Action Date FR Cite Board Requested Comment 08/30/12 77 FR 53059... Capital Rules: Regulatory Capital, Implementation of Basel III, Minimum Regulatory Capital Ratios,......

  7. 21 CFR 500.88 - Regulatory method.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Regulatory method. 500.88 Section 500.88 Food and... § 500.88 Regulatory method. (a) The sponsor shall submit for evaluation and validation a regulatory method developed to monitor compliance with FDA's operational definition of no residue. (b)...

  8. 76 FR 54408 - Regulatory Review Schedule

    Science.gov (United States)

    2011-09-01

    ... Regulatory Review Schedule in the Federal Register setting out consultation schedules and review processes. (76 FR 18457, April 4, 2011). The Commission's regulatory review process established a tribal... National Indian Gaming Commission 25 CFR Chapter III Regulatory Review Schedule AGENCY: National...

  9. 76 FR 57683 - Regulatory Review Schedule

    Science.gov (United States)

    2011-09-16

    ... Regulatory Review Schedule in the Federal Register setting out consultation schedules and review processes. (76 FR 18457, April 4, 2011). The Commission's regulatory review process established a Tribal... National Indian Gaming Commission 25 CFR Chapter III Regulatory Review Schedule AGENCY: National...

  10. 76 FR 33181 - Regulatory Review Schedule

    Science.gov (United States)

    2011-06-08

    ... processes. (76 FR 18457, April 4, 2011). The Commission's regulatory review process establishes a detailed... National Indian Gaming Commission 25 CFR Chapter III Regulatory Review Schedule AGENCY: National Indian... Regulatory Review Schedule setting out detailed consultation schedules and review processes. NIGC divided...

  11. 'Green' Preferences as Regulatory Policy

    OpenAIRE

    Brennan, Timothy

    2001-01-01

    We examine the suggestion that if consumers in sufficient numbers are willing to pay the premium to have power generated using low-emission technologies, tax or permit policies become less necessary or stringent. While there are implementation difficulties with this proposal, our purpose is more fundamental: can economics make sense of using preferences as a regulatory instrument? If “green” preferences are exogenously given, to what extent can or should they be regarded as a substitute for o...

  12. Emerging principles of regulatory evolution

    OpenAIRE

    Prud'homme, Benjamin; Gompel, Nicolas; Carroll, Sean B.

    2007-01-01

    Understanding the genetic and molecular mechanisms governing the evolution of morphology is a major challenge in biology. Because most animals share a conserved repertoire of body-building and -patterning genes, morphological diversity appears to evolve primarily through changes in the deployment of these genes during development. The complex expression patterns of developmentally regulated genes are typically controlled by numerous independent cis-regulatory elements (CREs). It has been prop...

  13. RNA-Binding Proteins in Trichomonas vaginalis: Atypical Multifunctional Proteins

    Directory of Open Access Journals (Sweden)

    Elisa E. Figueroa-Angulo

    2015-11-01

    Full Text Available Iron homeostasis is highly regulated in vertebrates through a regulatory system mediated by RNA-protein interactions between the iron regulatory proteins (IRPs that interact with an iron responsive element (IRE located in certain mRNAs, dubbed the IRE-IRP regulatory system. Trichomonas vaginalis, the causal agent of trichomoniasis, presents high iron dependency to regulate its growth, metabolism, and virulence properties. Although T. vaginalis lacks IRPs or proteins with aconitase activity, possesses gene expression mechanisms of iron regulation at the transcriptional and posttranscriptional levels. However, only one gene with iron regulation at the transcriptional level has been described. Recently, our research group described an iron posttranscriptional regulatory mechanism in the T. vaginalis tvcp4 and tvcp12 cysteine proteinase mRNAs. The tvcp4 and tvcp12 mRNAs have a stem-loop structure in the 5'-coding region or in the 3'-UTR, respectively that interacts with T. vaginalis multifunctional proteins HSP70, α-Actinin, and Actin under iron starvation condition, causing translation inhibition or mRNA stabilization similar to the previously characterized IRE-IRP system in eukaryotes. Herein, we summarize recent progress and shed some light on atypical RNA-binding proteins that may participate in the iron posttranscriptional regulation in T. vaginalis.

  14. RNA-Binding Proteins in Trichomonas vaginalis: Atypical Multifunctional Proteins.

    Science.gov (United States)

    Figueroa-Angulo, Elisa E; Calla-Choque, Jaeson S; Mancilla-Olea, Maria Inocente; Arroyo, Rossana

    2015-11-26

    Iron homeostasis is highly regulated in vertebrates through a regulatory system mediated by RNA-protein interactions between the iron regulatory proteins (IRPs) that interact with an iron responsive element (IRE) located in certain mRNAs, dubbed the IRE-IRP regulatory system. Trichomonas vaginalis, the causal agent of trichomoniasis, presents high iron dependency to regulate its growth, metabolism, and virulence properties. Although T. vaginalis lacks IRPs or proteins with aconitase activity, possesses gene expression mechanisms of iron regulation at the transcriptional and posttranscriptional levels. However, only one gene with iron regulation at the transcriptional level has been described. Recently, our research group described an iron posttranscriptional regulatory mechanism in the T. vaginalis tvcp4 and tvcp12 cysteine proteinase mRNAs. The tvcp4 and tvcp12 mRNAs have a stem-loop structure in the 5'-coding region or in the 3'-UTR, respectively that interacts with T. vaginalis multifunctional proteins HSP70, α-Actinin, and Actin under iron starvation condition, causing translation inhibition or mRNA stabilization similar to the previously characterized IRE-IRP system in eukaryotes. Herein, we summarize recent progress and shed some light on atypical RNA-binding proteins that may participate in the iron posttranscriptional regulation in T. vaginalis.

  15. Direct Evidence for a Phenylalanine Site in the Regulatory Domain of Phenylalanine Hydroxylase

    OpenAIRE

    Li, Jun; Ilangovan, Udayar; Daubner, S. Colette; Hinck, Andrew P.; Fitzpatrick, Paul F.

    2010-01-01

    The hydroxylation of phenylalanine to tyrosine by the liver enzyme phenylalanine hydroxylase is regulated by the level of phenylalanine. Whether there is a distinct allosteric binding site for phenylalanine outside of the active site has been unclear. The enzyme contains an N-terminal regulatory domain that extends through Thr117. The regulatory domain of rat phenylalanine hydroxylase was expressed in E. coli. The purified protein behaves as a dimer on a gel filtration column. In the presence...

  16. Integrating Transcriptomic and Proteomic Data Using Predictive Regulatory Network Models of Host Response to Pathogens.

    Directory of Open Access Journals (Sweden)

    Deborah Chasman

    2016-07-01

    Full Text Available Mammalian host response to pathogenic infections is controlled by a complex regulatory network connecting regulatory proteins such as transcription factors and signaling proteins to target genes. An important challenge in infectious disease research is to understand molecular similarities and differences in mammalian host response to diverse sets of pathogens. Recently, systems biology studies have produced rich collections of omic profiles measuring host response to infectious agents such as influenza viruses at multiple levels. To gain a comprehensive understanding of the regulatory network driving host response to multiple infectious agents, we integrated host transcriptomes and proteomes using a network-based approach. Our approach combines expression-based regulatory network inference, structured-sparsity based regression, and network information flow to infer putative physical regulatory programs for expression modules. We applied our approach to identify regulatory networks, modules and subnetworks that drive host response to multiple influenza infections. The inferred regulatory network and modules are significantly enriched for known pathways of immune response and implicate apoptosis, splicing, and interferon signaling processes in the differential response of viral infections of different pathogenicities. We used the learned network to prioritize regulators and study virus and time-point specific networks. RNAi-based knockdown of predicted regulators had significant impact on viral replication and include several previously unknown regulators. Taken together, our integrated analysis identified novel module level patterns that capture strain and pathogenicity-specific patterns of expression and helped identify important regulators of host response to influenza infection.

  17. Integrating Transcriptomic and Proteomic Data Using Predictive Regulatory Network Models of Host Response to Pathogens

    Science.gov (United States)

    Chasman, Deborah; Walters, Kevin B.; Lopes, Tiago J. S.; Eisfeld, Amie J.; Kawaoka, Yoshihiro; Roy, Sushmita

    2016-01-01

    Mammalian host response to pathogenic infections is controlled by a complex regulatory network connecting regulatory proteins such as transcription factors and signaling proteins to target genes. An important challenge in infectious disease research is to understand molecular similarities and differences in mammalian host response to diverse sets of pathogens. Recently, systems biology studies have produced rich collections of omic profiles measuring host response to infectious agents such as influenza viruses at multiple levels. To gain a comprehensive understanding of the regulatory network driving host response to multiple infectious agents, we integrated host transcriptomes and proteomes using a network-based approach. Our approach combines expression-based regulatory network inference, structured-sparsity based regression, and network information flow to infer putative physical regulatory programs for expression modules. We applied our approach to identify regulatory networks, modules and subnetworks that drive host response to multiple influenza infections. The inferred regulatory network and modules are significantly enriched for known pathways of immune response and implicate apoptosis, splicing, and interferon signaling processes in the differential response of viral infections of different pathogenicities. We used the learned network to prioritize regulators and study virus and time-point specific networks. RNAi-based knockdown of predicted regulators had significant impact on viral replication and include several previously unknown regulators. Taken together, our integrated analysis identified novel module level patterns that capture strain and pathogenicity-specific patterns of expression and helped identify important regulators of host response to influenza infection. PMID:27403523

  18. Architecture of transcriptional regulatory circuits is knitted over the topology of bio-molecular interaction networks

    DEFF Research Database (Denmark)

    Soberano de Oliveira, Ana Paula; Patil, Kiran Raosaheb; Nielsen, Jens

    2008-01-01

    Factors, Reporter Proteins and Reporter Complexes, and use this to decipher the logic of regulatory circuits playing a key role in yeast glucose repression and human diabetes. Conclusion: Reporter Features offer the opportunity to identify regulatory hot-spots in bio-molecular interaction networks...... that are significantly affected between or across conditions. Results of the Reporter Feature analysis not only provide a snapshot of the transcriptional regulatory program but also are biologically easy to interpret and provide a powerful way to generate new hypotheses. Our Reporter Features analyses of yeast glucose...

  19. The regulatory epicenter of miRNAs

    Indian Academy of Sciences (India)

    Ashwani Jha; Mrigaya Mehra; Ravi Shankar

    2011-09-01

    miRNAs are small non-coding RNAs with average length of ∼21 bp. miRNA formation seems to be dependent upon multiple factors besides Drosha and Dicer, in a tissue/stage-specific manner, with interplay of several specific binding factors. In the present study, we have investigated transcription factor binding sites in and around the genomic sequences of precursor miRNAs and RNA-binding protein (RBP) sites in miRNA precursor sequences, analysed and tested in comprehensive manner. Here, we report that miRNA precursor regions are positionally enriched for binding of transcription factors as well as RBPs around the 3′ end of mature miRNA region in 5′ arm. The pattern and distribution of such regulatory sites appears to be a characteristic of precursor miRNA sequences when compared with non-miRNA sequences as negative dataset and tested statistically. When compared with 1 kb upstreamregions, a sudden sharp peak for binding sites arises in the enriched zone near the mature miRNA region. An expression-data-based correlation analysis was performed between such miRNAs and their corresponding transcription factors and RBPs for this region. Some specific groups of binding factors and associated miRNAs were identified. We also identified some of the overrepresented transcription factors and associated miRNAs with high expression correlation values which could be useful in cancer-related studies. The highly correlated groups were found to host experimentally validated composite regulatory modules, in which Lmo2-GATA1 appeared as the predominant one. For many of RBP–miRNAs associations, co-expression similarity was also evident among the associated miRNA common to given RBPs, supporting the Regulon model, suggesting a common role and common control of these miRNAs by the associated RBPs. Based on our findings, we propose that the observed characteristic distribution of regulatory sites in precursor miRNA sequence regions could be critical inmiRNA transcription, processing

  20. Caldesmon, an actin-linked regulatory protein, comes across glucocorticoids

    OpenAIRE

    Sobue, Kenji; Fukumoto, Kentaro

    2010-01-01

    The glucocorticoids (GCs), the most downstream effectors of the hypothalamic-pituitary-adrenal (HPA) axis, are the main mediators of stress response. Stress-triggered GCs as well as acute and chronic GC treatment can impair the structural plasticity and function of the brain. The exposure of perinatal animals and humans to excess stress or GCs can affect the brain development, resulting in altered behaviors in the adult offspring of animals and an increased risk of psychiatric disorders in hu...

  1. Human complement regulatory proteins in hyperacute rejection of cardiac xenografts

    NARCIS (Netherlands)

    C.A.E. Verbakel

    2001-01-01

    textabstractDonor organ shortage can be seen as a consequence of the success of allotransplantation and is mainly a problem of the western countries. Due to the progress in transplantation medicine, more patients with end-stage organ failure can be treated. However, many patients will never receive

  2. Generation of the regulatory protein rtTA transgenic mice

    Institute of Scientific and Technical Information of China (English)

    Kang Xu; Xin-Yan Deng; Ying Yue; Zhong-Min Guo; Bing Huang; Xun Hong; Dong Xiao; Xi-Gu Chen

    2005-01-01

    AIM: To translate Tet-on system into a conditional mouse model, in which hepatitis B or C virus (HBV or HCV) gene could be spatiotemporally expressed to overcome "immune tolerance" formed during the embryonic development and "immune escape" against hepatitis virus antigen(s), an effector mouse, carrying the reverse tetracycline-responsive transcriptional activator (rtTA) gene under the tight control of liver-specific human apoE promoter, is required to be generated. METHODS: To address this end, rtTA fragment amplified by PCR was effectively inserted into the vector of pLiv.7 containing apoE promoter to create the rtTA expressing vector, I.e., pApoE-rtTA. ApoE-rtTA transgenic fragment (-6.9 kb) released from pApoE-rtTA was transferred into mice by pronucleus injection, followed by obtaining one transgene (+) founder animal from microinjection through PCR and Southern blot analysis.RESULTS: rtTA transgene which could be transmitted to subsequent generation (F1) derived from founder was expressed in a liver-specific fashion. CONCLUSION: Taken together, these findings demonstrate that rtTA transgenic mice, in which rtTA expression is appropriately targeted to the murine liver, are successfully produced, which lays a solid foundation to 'off-on-off' regulate expression of target gene (s) (e.g., HBV and/or HCV) in transgenic mice mediated by Tet-on system.

  3. Cell-cycle regulatory proteins in human wound healing

    DEFF Research Database (Denmark)

    Bartkova, Jirina; Grøn, Birgitte; Dabelsteen, Erik;

    2003-01-01

    Proper healing of mucosal wounds requires careful orchestration of epithelial cell migration and proliferation. To elucidate the molecular basis of the lack of cellular proliferation in the migrating 'epithelial tongue' during the re-epithelialization of oral mucosal wounds, the expression of cel...

  4. Followers feel valued : When leaders' regulatory focus makes leaders exhibit behavior that fits followers' regulatory focus

    NARCIS (Netherlands)

    Hamstra, Melvyn; Sassenberg, K.; Van Yperen, Nico W.; Wisse, Barbara

    2014-01-01

    When do followers feel valued by their leader? We propose that leaders' regulatory focus can make followers feel valued when leaders' regulatory focus is the same as followers' regulatory focus, that is, when there is regulatory fit between leaders and followers. We further propose that the reason w

  5. Organization of nuclear regulatory activities

    International Nuclear Information System (INIS)

    The paper presents the structure, missions and organizational aspects of the CNCAN, the National Commission for the control of nuclear activities in Romania. The paper addresses the following main issues: 1.General aspects; 2.Organizational structure of the NRA in Romania; 3.General description of the Division for Nuclear Safety Assessments; 4.Specific activities; 5.Regulatory approaches and practices. Under the title of 'General aspects' the following three basic statements are highlighted: 1.CNCAN is a governmental organization responsible for the development of the regulatory framework, the control of its implementation and the licensing of nuclear facilities; 2.CNCAN is the national authority competent in exercising the regulatory activity, authorization and control in the nuclear field provided by the law No. 111/ 1996 republished in 1998; 3.The Commission exercises its functions independently of the ministries and other authorities of the public control administration being subordinated to the Romanian Government. The organizational structure is as follows: - President, the Managerial Council and the Advisory Council coordinating the four General Divisions that are responsible for: - Nuclear Safety with Division of Nuclear Safety Assessment and Division of Nuclear Objectives Surveillance; - Radiological Safety with Division of Radiological Safety Assessment and Division of Operational Radiation Protection; - Surveillance of Environmental Radioactivity with Division of Assessment and Analysis and Division of National Network; - Development and Resource with the Division of Economy and Division of Human Resources. In addition under direct coordination of the President operate the Division of Radiation Protection, Transport and Radioactive Waste and the Division of International Cooperation and Communication. Specific activities are listed describing among others the issues of: - Safety of nuclear installation; - Evaluation relating to licensing of nuclear

  6. Impact of protein uptake and degradation on recombinant protein secretion in yeast

    DEFF Research Database (Denmark)

    Tyo, Keith E. J.; Liu, Zihe; Magnusson, Ylva;

    2014-01-01

    and transcriptomics, we identify metabolic and regulatory markers that are consistent with uptake of whole proteins by endocytosis, followed by intracellular degradation and catabolism of substituent amino acids. Uptake and degradation of recombinant protein products may be common in S. cerevisiae protein secretion...

  7. Regulatory Mechanism of Bone Morphogenetic Proteins 6 on Iron Metabolism During Exercise%运动对骨形态发生蛋白6介导的机体铁代谢调节机制的研究进展

    Institute of Scientific and Technical Information of China (English)

    孙娟; 王海涛; 刘玉倩; 王羽; 王金霞

    2012-01-01

    骨形态发生蛋白6(BMP6)为TGF-β超家族中一员,它产生于骨髓源性间质干细胞(BMSC)及造血干细胞,是一种调节成骨细胞和成软骨细胞分化的骨生长因子,在骨缺损的修复中具有重要作用.运动可促进BMP6的表达.研究发现,BMP6也是铁调素的重要的内源调节子,可以上调铁调素的表达,而铁调素是肠铁吸收的负调节子.因此,运动引起的BMP6表达增加,可以促进机体铁的吸收和释放,从而对运动中维持机体铁的动态平衡有重要的调控作用.%Bone morphogenetic protein 6(BMP6) is a member of the transforming growth factor-β family, it is produced by bone marrow-mesenchymal (BMSC) and hematopoietic stem cells. BMP6 is a potent protein for future treatment strategies of bone regeneration as it is a very important regulator of bone ho-meostasis and is a kind of adjusting the osteoblast and cartilage cells of bone growth factors. Moreover,it is also released by osteoclasts as a key bone coupling factor recruiting osteoblasts to the resorption site. So it has a good application potential in all kinds of bone defect repair. Sports can promote expression of BMP6. Recent study shows that BMP6 can up-regulation of hepcidin expression. However,hepcidin is the negative regulators and down-regulation of intestinal iron absorbing. So exercise-induced increased expression of BMP6 and promotes iron absorption and release. Consequently,to maintain iron homeostasis in the sport has an important regulatory role.

  8. Relationship between changes in mRNAs of the genes encoding steroidogenic acute regulatory protein and P450 cholesterol side chain cleavage in head kidney and plasma levels of cortisol in response to different kinds of acute stress in the rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Geslin, Malika; Auperin, Benoit

    2004-01-01

    In this study, the expression of several genes involved in cortisol synthesis in head kidneys, the site of cortisol production, and in the rainbow trout (Oncorhynchus mykiss) was examined in response to two different acute stressors and an acute ACTH treatment. mRNAs levels of the "steroidogenic acute regulatory" (StAR) sterol transport protein, which transports cholesterol to the inner mitochondrial membrane as well as cytochrome P450 cholesterol side chain cleavage (P450(SCC)) were determined in head kidney (containing the interrenal tissue). In one experiment, we also quantified 3-beta-hydroxysteroid dehydrogenase (3B-HSD) and cytochrome P450(11beta) (11B-H) mRNAs. The presence of these four transcripts in the head kidney was confirmed by Northern blot analysis. For each stress condition, mRNA levels were quantified by quantitative or real-time RT-PCR. The results of these two methods were highly correlated. An acute stress induced by capture, short confinement (2min), and anesthesia (3min) resulted in significant elevation of plasma cortisol (30-fold higher than controls) and an increase in levels of StAR and P450(SCC) mRNAs 3h post-stress. When fish were submitted to an acute stress caused by 5min of chase with a net in a tank, plasma cortisol reached a peak within 1h, but after 3h, levels were only 5-fold higher in stressed trout than in controls and no variations in the expression of StAR, P450(SCC), 3B-HSD, and 11B-H were observed whatever the time post-stress. One hour after acute ACTH stimulation (5IU/kg), plasma cortisol level was 4-fold higher than in control trout and no changes in StAR and P450(SCC) mRNAs levels were detected. The data suggest that the high levels of cortisol after stress need an activation of genes involved in cortisol synthesis, but lower levels do not. Futhermore, under these three test conditions, we always found a strong positive correlation between mRNA levels of StAR and P450(SCC), in contrast to what has been described in

  9. Interfering RNF146 by a short hairpin RNA inhibits the migration and invasiveness and re-lated regulatory proteins expression of non-small cell lung cancer%shRNA沉默环指蛋白146基因对非小细胞肺癌细胞迁移、侵袭及其相关蛋白表达的影响

    Institute of Scientific and Technical Information of China (English)

    高英; 王睿; 徐慧慧; 李锐; 惠林萍; 邱雪杉; 王恩华

    2014-01-01

    Objective:To investigate the role of RNF146 in migration and invasion and related regulatory proteins expression after silencing by a short hairpin RNA targeting-RNF146 in non-small cell lung cancer( NSCLC)cell line. Methods:RT-PCR and Western blot were used to screen NSCLC cell line with high RNF146 expression at mRNA and protein levels. shRNA-RNF146 eukaryotic expression vector was constructed and transient transfected in-to A549 and H1299 cells. The transfection effeciency of RNF146 was evaluated by western blot. The cell migratory and invasive ability were detected by Wound-healing assay and matrigel invasion assay using Buyden chamber. All exper-iments contained shRNA - RNF146 - transfected clones,vector transfected clones and non - transfected parental cells. Migration and invasion related proteins expression was measured by Western blot. Results:Effective downregu-lating of RNF146 expression in A549 and H1299 cells decreased the ability of these cells to migrate as measured by the wound-healing assay(P<0. 01). The number of cell passing through the matrigel and multipore membrane was also decreased in the RNF146-transfected cell compared with those of the vector-transfected clones and parental cells(P<0. 05). Western blot results revealed correlations between the levels of RNF146 in lung cancer cells and the expression of migration and invasion related regulatory proteins including MMP2 and MMP7. Conclusions:The regula-tion of migration and invasion of RNF146 may correlate with MMP2 and MMP7 proteins in lung cancer cell line.%目的:shRNA沉默环指蛋白146(RNF146)基因,观察非小细胞肺癌细胞中RNF146沉默对肺癌细胞迁移和侵袭及其相关蛋白表达的影响。方法:逆转录聚合酶链反应( RT-PCR)和Western blot方法用于筛选RNF146高表达肺癌细胞系。构建shRNA-RNF146真核表达载体,瞬时转染A549和H1299肺癌细胞,West-ern blot检测转染效率。划痕实验评价肺癌细胞体外迁移能

  10. Regulatory pathways for vaccines for developing countries.

    Science.gov (United States)

    Milstien, Julie; Belgharbi, Lahouari

    2004-02-01

    Vaccines that are designed for use only in developing countries face regulatory hurdles that may restrict their use. There are two primary reasons for this: most regulatory authorities are set up to address regulation of products for use only within their jurisdictions and regulatory authorities in developing countries traditionally have been considered weak. Some options for regulatory pathways for such products have been identified: licensing in the country of manufacture, file review by the European Medicines Evaluation Agency on behalf of WHO, export to a country with a competent national regulatory authority (NRA) that could handle all regulatory functions for the developing country market, shared manufacturing and licensing in a developing country with competent manufacturing and regulatory capacity, and use of a contracted independent entity for global regulatory approval. These options have been evaluated on the basis of five criteria: assurance of all regulatory functions for the life of the product, appropriateness of epidemiological assessment, applicability to products no longer used in the domestic market of the manufacturing country, reduction of regulatory risk for the manufacturer, and existing rules and regulations for implementation. No one option satisfies all criteria. For all options, national infrastructures (including the underlying regulatory legislative framework, particularly to formulate and implement local evidence-based vaccine policy) must be developed. WHO has led work to develop this capacity with some success. The paper outlines additional areas of action required by the international community to assure development and use of vaccines needed for the developing world. PMID:15042235

  11. 78 FR 44165 - Nuclear Regulatory Commission Enforcement Policy

    Science.gov (United States)

    2013-07-23

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Nuclear Regulatory Commission Enforcement Policy AGENCY: Nuclear Regulatory Commission. ACTION: Enforcement policy; request for comment. SUMMARY: The U.S. Nuclear Regulatory Commission (NRC) is...

  12. A global regulatory science agenda for vaccines.

    Science.gov (United States)

    Elmgren, Lindsay; Li, Xuguang; Wilson, Carolyn; Ball, Robert; Wang, Junzhi; Cichutek, Klaus; Pfleiderer, Michael; Kato, Atsushi; Cavaleri, Marco; Southern, James; Jivapaisarnpong, Teeranart; Minor, Philip; Griffiths, Elwyn; Sohn, Yeowon; Wood, David

    2013-04-18

    The Decade of Vaccines Collaboration and development of the Global Vaccine Action Plan provides a catalyst and unique opportunity for regulators worldwide to develop and propose a global regulatory science agenda for vaccines. Regulatory oversight is critical to allow access to vaccines that are safe, effective, and of assured quality. Methods used by regulators need to constantly evolve so that scientific and technological advances are applied to address challenges such as new products and technologies, and also to provide an increased understanding of benefits and risks of existing products. Regulatory science builds on high-quality basic research, and encompasses at least two broad categories. First, there is laboratory-based regulatory science. Illustrative examples include development of correlates of immunity; or correlates of safety; or of improved product characterization and potency assays. Included in such science would be tools to standardize assays used for regulatory purposes. Second, there is science to develop regulatory processes. Illustrative examples include adaptive clinical trial designs; or tools to analyze the benefit-risk decision-making process of regulators; or novel pharmacovigilance methodologies. Included in such science would be initiatives to standardize regulatory processes (e.g., definitions of terms for adverse events [AEs] following immunization). The aim of a global regulatory science agenda is to transform current national efforts, mainly by well-resourced regulatory agencies, into a coordinated action plan to support global immunization goals. This article provides examples of how regulatory science has, in the past, contributed to improved access to vaccines, and identifies gaps that could be addressed through a global regulatory science agenda. The article also identifies challenges to implementing a regulatory science agenda and proposes strategies and actions to fill these gaps. A global regulatory science agenda will enable

  13. Moonlighting proteins in cancer.

    Science.gov (United States)

    Min, Kyung-Won; Lee, Seong-Ho; Baek, Seung Joon

    2016-01-01

    Since the 1980s, growing evidence suggested that the cellular localization of proteins determined their activity and biological functions. In a classical view, a protein is characterized by the single cellular compartment where it primarily resides and functions. It is now believed that when proteins appear in different subcellular locations, the cells surpass the expected activity of proteins given the same genomic information to fulfill complex biological behavior. Many proteins are recognized for having the potential to exist in multiple locations in cells. Dysregulation of translocation may cause cancer or contribute to poorer cancer prognosis. Thus, quantitative and comprehensive assessment of dynamic proteins and associated protein movements could be a promising indicator in determining cancer prognosis and efficiency of cancer treatment and therapy. This review will summarize these so-called moonlighting proteins, in terms of a coupled intracellular cancer signaling pathway. Determination of the detailed biological intracellular and extracellular transit and regulatory activity of moonlighting proteins permits a better understanding of cancer and identification of potential means of molecular intervention.

  14. The BBA33 lipoprotein binds collagen and impacts Borrelia burgdorferi pathogenesis

    Science.gov (United States)

    Zhi, Hui; Weening, Eric H.; Barbu, Elena Magda; Hyde, Jenny A.; Höök, Magnus; Skare, Jon T.

    2016-01-01

    Summary Borrelia burgdorferi , the etiologic agent of Lyme disease, adapts to the mammalian hosts by differentially expressing several genes in the BosR and Rrp2-RpoN-RpoS dependent pathways, resulting in a distinct protein profile relative to that seen for survival in the Ixodes spp. tick. Previous studies indicate that a putative lipoprotein, BBA33, is produced in an RpoS-dependent manner under conditions that mimic the mammalian component of the borrelial lifecycle. However, the significance and function for BBA33 is not known. Given its linkage to the BosR/Rrp2-RpoN-RpoS regulatory cascade, we hypothesized that BBA33 facilitates B. burgdorferi infection in the mammalian host. The deletion of bba33 eliminated B. burgdorferi infectivity in C3H mice, which was rescued by genetic complementation with intact bba33. With regard to function, a combinatorial peptide approach, coupled with subsequent in vitro binding assays, indicated that BBA33 binds to collagen type VI and, to a lesser extent, collagen type IV. Whole cell binding assays demonstrated BBA33-dependent binding to human collagen type VI. Taken together, these results suggest that BBA33 interacts with collagenous structures and may function as an adhesin in a process that is required to prevent bacterial clearance. PMID:25560615

  15. Regulatory aspects of NPP safety

    International Nuclear Information System (INIS)

    In beginning, a history of legislative process regulating industrial utilisation of nuclear energy is given, including detailed list of decrees issued by the first regulatory body supervising Czech nuclear installations - Czechoslovak Atomic Energy Commission (CSKAE). Current status of nuclear regulations and radiation protection, especially in connection with Atomic Act (Act No 18/1997 Coll.), is described. The Atomic Act transfers into the Czech legal system a number of obligations following from the Vienna Convention on Civil Liability for Nuclear Damage and Joint Protocol relating to the Application of the Vienna and Paris Convention, to which the Czech Republic had acceded. Actual duties and competence of current nuclear regulatory body - State Office for Nuclear Safety (SUJB) - are given in detail. Execution of the State supervision of peaceful utilisation of nuclear energy and ionising radiation is laid out in several articles of the Act, which comprises: control activities of the SUJB, remedial measures, penalties. Material and human resources are sufficient for fulfilment of the basic functions for which SUJB is authorised by the law. For 1998, the SUJB allotted staff of 149, approximately 2/3 of that number are nuclear safety and radiation protection inspectors. The SUJB budget for 1998 is approximately 180 million Czech crowns (roughly 6 million US dollars). Inspection activity of SUJB is carried out in three different ways: routine inspections, planned specialised inspections, inspections as a response to a certain situation (ad-hoc inspections). Approach to the licensing of major plant upgrades and backfittings are mainly illustrated on the Temelin NPP licensing. Regulatory position and practices concerning review activities are presented. (author)

  16. Probabilistic safety assessment - regulatory perspective

    International Nuclear Information System (INIS)

    Full text: Nuclear power plants (NPPs) have been designed, constructed and operated mainly based on deterministic safety analysis philosophy. In this approach, a substantial amount of safety margin is incorporated in the design and operational requirements. Additional margin is incorporated by applying the highest quality engineering codes, standards and practices, and the concept of defence-in-depth in design and operating procedures, by including conservative assumptions and acceptance criteria in plant response analysis of postulated initiating events (PIEs). However, as the probabilistic approach has been improved and refined over the years, it is possible for the designer, operator and regulator to get a more detailed and realistic picture of the safety importance of plant design features, operating procedures and operational practices by using probabilistic safety assessment (PSA) along with the deterministic methodology. At present, many countries including USA, UK and France are using PSA insights in their decision making along with deterministic basis. India has also made substantial progress in the development of methods for carrying out PSA. However, consensus on the use of PSA in regulatory decision-making has not been achieved yet. This paper emphasises on the requirements (e.g.,level of details, key modelling assumptions, data, modelling aspects, success criteria, sensitivity and uncertainty analysis) for improving the quality and consistency in performance and use of PSA that can facilitate meaningful use of the PSA insights in the regulatory decision-making in India. This paper also provides relevant information on international scenario and various application areas of PSA along with progress made in India. The PSA perspective presented in this paper may help in achieving consensus on the use of PSA for regulatory / utility decision-making in design and operation of NPPs

  17. [Protein toxins of Staphylococcus aureus].

    Science.gov (United States)

    Shamsutdinov, A F; Tiurin, Iu A

    2014-01-01

    Main scientific-research studies regarding protein bacterial toxins of the most widespread bacteria that belong to Staphylococcus spp. genus and in particular the most pathogenic species for humans--Staphylococcus aureus, are analyzed. Structural and biological properties of protein toxins that have received the name of staphylococcus pyrogenic toxins (PTSAg) are presented. Data regarding genetic regulation of secretion and synthesis of these toxins and 3 main regulatory genetic systems (agr--accessory gene regulator, xpr--extracellular protein regulator, sar--staphylococcal accessory regulator) that coordinate synthesis of the most important protein toxins and enzymes for virulence of S. aureus, are presented.

  18. A gene regulatory network armature for T-lymphocyte specification

    Energy Technology Data Exchange (ETDEWEB)

    Fung, Elizabeth-sharon [Los Alamos National Laboratory

    2008-01-01

    Choice of a T-lymphoid fate by hematopoietic progenitor cells depends on sustained Notch-Delta signaling combined with tightly-regulated activities of multiple transcription factors. To dissect the regulatory network connections that mediate this process, we have used high-resolution analysis of regulatory gene expression trajectories from the beginning to the end of specification; tests of the short-term Notchdependence of these gene expression changes; and perturbation analyses of the effects of overexpression of two essential transcription factors, namely PU.l and GATA-3. Quantitative expression measurements of >50 transcription factor and marker genes have been used to derive the principal components of regulatory change through which T-cell precursors progress from primitive multipotency to T-lineage commitment. Distinct parts of the path reveal separate contributions of Notch signaling, GATA-3 activity, and downregulation of PU.l. Using BioTapestry, the results have been assembled into a draft gene regulatory network for the specification of T-cell precursors and the choice of T as opposed to myeloid dendritic or mast-cell fates. This network also accommodates effects of E proteins and mutual repression circuits of Gfil against Egr-2 and of TCF-l against PU.l as proposed elsewhere, but requires additional functions that remain unidentified. Distinctive features of this network structure include the intense dose-dependence of GATA-3 effects; the gene-specific modulation of PU.l activity based on Notch activity; the lack of direct opposition between PU.l and GATA-3; and the need for a distinct, late-acting repressive function or functions to extinguish stem and progenitor-derived regulatory gene expression.

  19. Adoption of the Q transcriptional regulatory system for zebrafish transgenesis

    Science.gov (United States)

    Subedi, Abhignya; Macurak, Michelle; Gee, Stephen T.; Monge, Estela; Goll, Mary G.; Potter, Christopher J.; Parsons, Michael J.; Halpern, Marnie E.

    2013-01-01

    The Gal4-UAS regulatory system of yeast is widely used to modulate gene expression in Drosophila; however, there are limitations to its usefulness in transgenic zebrafish, owing to progressive methylation and silencing of the CpG-rich multicopy upstream activation sequence. Although a modified, less repetitive UAS construct may overcome this problem, it is highly desirable to have additional transcriptional regulatory systems that can be applied independently or in combination with the Gal4/UAS system for intersectional gene expression. The Q transcriptional regulatory system of Neurospora crassa functions similarly to Gal4/UAS. QF is a transcriptional activator that binds to the QUAS upstream regulatory sequence to drive reporter gene expression. Unlike Gal4, the QF binding site does not contain essential CpG dinucleotide sequences that are subject to DNA methylation. The QS protein is a repressor of QF mediated transcriptional activation akin to Gal80. The functionality of the Q system has been demonstrated in Drosophila and C. elegans and we now report its successful application to a vertebrate model, the zebrafish, Danio rerio. Several tissue-specific promoters were used to drive QF expression in stable transgenic lines, as assessed by activation of a QUAS:GFP transgene. The QS repressor was found to dramatically reduce QF activity in injected zebrafish embryos; however, a similar repression has not yet been achieved in transgenic animals expressing QS under the control of ubiquitous promoters. A dual reporter construct containing both QUAS and UAS, each upstream of different fluorescent proteins was also generated and tested in transient assays, demonstrating that the two systems can work in parallel within the same cell. The adoption of the Q system should greatly increase the versatility and power of transgenic approaches for regulating gene expression in zebrafish. PMID:23792917

  20. The expression of tumor necrosis factor-a induced protein 8 like-2 in CD4+ CD25+ regulatory T cells%肿瘤坏死因子-α诱导蛋白-8样分子2在调节性T细胞中的表达

    Institute of Scientific and Technical Information of China (English)

    栾樱译; 姚咏明

    2011-01-01

    目的:观察肿瘤坏死因子-α诱导蛋白-8样分子2(TIPE2)在CD4CD25调节性T细胞(CD4CD25Treg)中的表达.方法:免疫磁珠法分离正常BALB/C小鼠脾脏CD4CD25Tregs,流式细胞术鉴定CD4CD25Treg的纯度.激光共聚焦荧光法检测Treg细胞中TIPE2的分布,并进行初步定位;进一步采用逆转录一聚合酶链反应(RT-PCR)和Western blot技术分别从基因和蛋白水平检测Treg细胞中TIPE2表达.结果:免疫磁珠分选法得到的CD4CD25Tregs纯度在92%以上,台盼蓝染色显示细胞活性大于97%.Western blot证实Treg细胞中存在清晰TIPE2条带,分子质量为21 kD;采用RT-PCR技术在Treg细胞中检测到147 bp大小的特异性TIPE2目的基因条带.结论:TIPE2可表达于小鼠CD4CD25Treg细胞.%Objective: To investigate the expression of tumor necrosis factor-α induced protein 8 like2 ( TIPF2)in CD4+ CD25+ regulatory T cells ( CD4+ CD25+ Tregs). Methods: CD4+ CD25+ Tregs were isolated from the spleens of male BALB/C mice by magnetic beads, and the purity of these cells was determined by flow cytometry.The present study was designed to determine TIPE2 expression in Tregs by confocal microscopy analysis, Western blot and reverse transcription-polymerase chain reaction ( RT-PCR) analysis, respectively. Results: Purity of CD4+ CD25+ Tregs was greater than 92%. The expression of TIPF2 was detected by confocal microscopy, and it was a cytoplasmic protein expressed in CD4+ CD25+Tregs. To confirm the expression of TIPF2 , it was detected by Western blot analysis using specific TIPF2 antibody, and a clear band with a molecular mass of approximately 21 kD from CD4+ CD25+ Tregs was found. Moreover, to determine the gene expression of TIPF2 , total RNA was extracted from CD4+ CD25+ Tregs and RT-PCR was performed, a band of the size of 147 bp was noted as expected. Conclution: TIPF2 appears to be a cytoplasmic protein expressed in CD4+ CD25+ Tregs.

  1. Regulatory Issues Surrounding Merchant Interconnection

    Energy Technology Data Exchange (ETDEWEB)

    Kuijlaars, Kees-Jan; Zwart, Gijsbert [Office for Energy Regulation (DTe), The Hague (Netherlands)

    2003-11-01

    We discussed various issues concerning the regulatory perspective on private investment in interconnectors. One might claim that leaving investment in transmission infrastructure to competing market parties is more efficient than relying on regulated investment only (especially in the case of long (DC) lines connecting previously unconnected parts of the grids, so that externalities from e.g. loop flows do not play a significant role). We considered that some aspects of interconnection might reduce these market benefits. In particular, the large fixed costs of interconnection construction may lead to significant under investment (due to both first mover monopoly power and the fact that part of generation cost efficiencies realised by interconnection are not captured by the investor itself, and remain external to the investment decision). Second, merchant ownership restricts future opportunities for adaptation of regulation, as would be required e.g. for introduction of potentially more sophisticated methods of congestion management or market splitting. Some of the disadvantages of merchant investment may be mitigated however by a suitable regulatory framework, and we discussed some views in this direction. The issues we discussed are not intended to give a complete framework, and detailed regulation will certainly involve many more specific requirements. Areas we did not touch upon include e.g. the treatment of deep connection costs, rules for operation and maintenance of the line, and impact on availability of capacity on other interconnections.

  2. Sublegislative regulatory systems and bodies

    International Nuclear Information System (INIS)

    The author discusses the character of the legal regulatory systems with a view to the relationship between risk and evaluation, puts the current regulatory instruments for control of technological risks into the context of the national constitutional law and then discusses the legal bodies authorised to make technical standards for application in the field of nuclear law. The legal requirements and obligations concerning the bodies' types of organisation and their working procedures are subsequently used to develop the criteria for an assessment of the suggested reform of the Atomic Energy Act. The author's conclusion is that the draft reform fails to comply with the standards and criteria developed by the author. In the field of law under review, which is characterized by a close concatenation of scientific-technological knowledge and legal control and thus is the crucial 'test bed' for the development of a modern law for environmental protection, there are developments to be stated leading to the right direction. But the draft does not keep what the labels sticked to it by the Government promise: The draft does not create 'a modern law for advanced safety of nuclear installations', nor does it contribute substantially to 'reaching an all party consensus about the peaceful uses of atomic energy'. (orig./HP)

  3. Regulatory Issues Surrounding Merchant Interconnection

    International Nuclear Information System (INIS)

    We discussed various issues concerning the regulatory perspective on private investment in interconnectors. One might claim that leaving investment in transmission infrastructure to competing market parties is more efficient than relying on regulated investment only (especially in the case of long (DC) lines connecting previously unconnected parts of the grids, so that externalities from e.g. loop flows do not play a significant role). We considered that some aspects of interconnection might reduce these market benefits. In particular, the large fixed costs of interconnection construction may lead to significant under investment (due to both first mover monopoly power and the fact that part of generation cost efficiencies realised by interconnection are not captured by the investor itself, and remain external to the investment decision). Second, merchant ownership restricts future opportunities for adaptation of regulation, as would be required e.g. for introduction of potentially more sophisticated methods of congestion management or market splitting. Some of the disadvantages of merchant investment may be mitigated however by a suitable regulatory framework, and we discussed some views in this direction. The issues we discussed are not intended to give a complete framework, and detailed regulation will certainly involve many more specific requirements. Areas we did not touch upon include e.g. the treatment of deep connection costs, rules for operation and maintenance of the line, and impact on availability of capacity on other interconnections

  4. Pollution prevention: A regulatory update

    International Nuclear Information System (INIS)

    Pollution prevention is the emphasis of the 1990s environmental philosophy. This new environmental era was ushered in when President Bush signed the Pollution Prevention Act in October 1990. This law, with its accompanying philosophy, was in response to the realization that end-of-the-pipe treatment, which frequently changed the media in which a pollutant or waste was discharged, was inadequate to protect the environment and human health. Pollution prevention advocates source reduction, where material substitutions and engineering solutions are sought to reduce the volume and toxicity of waste and pollutants. This proactive approach reduces environmental impacts such as those of former waste sites which have produced environmental legacies that will cost billions of dollars and take decades to remediate. This paper describes pollution prevention philosophy and summarizes regulatory pollution prevention requirements. It describes current regulatory trends in the area of pollution prevention, including voluntary programs and enforcement actions. The Pollution Prevention Act of 1990 is described, and pollution prevention initiatives embodied in other laws, including the Clean Air Act, the Clean Water Act, the Emergency Planning and Community Right-To-Know Act, the Resource Conservation and Recovery Act, and the Toxic Substances Control Act, are discussed. A historical overview of waste minimization initiatives within the Department of Energy is given, and other pollution prevention initiatives that affect federal facilities, such as Executive Order 12780, which mandates recycling and the procurement of recycled materials, are also outlined

  5. Global analysis of photosynthesis transcriptional regulatory networks.

    Science.gov (United States)

    Imam, Saheed; Noguera, Daniel R; Donohue, Timothy J

    2014-12-01

    Photosynthesis is a crucial biological process that depends on the interplay of many components. This work analyzed the gene targets for 4 transcription factors: FnrL, PrrA, CrpK and MppG (RSP_2888), which are known or predicted to control photosynthesis in Rhodobacter sphaeroides. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) identified 52 operons under direct control of FnrL, illustrating its regulatory role in photosynthesis, iron homeostasis, nitrogen metabolism and regulation of sRNA synthesis. Using global gene expression analysis combined with ChIP-seq, we mapped the regulons of PrrA, CrpK and MppG. PrrA regulates ∼34 operons encoding mainly photosynthesis and electron transport functions, while CrpK, a previously uncharacterized Crp-family protein, regulates genes involved in photosynthesis and maintenance of iron homeostasis. Furthermore, CrpK and FnrL share similar DNA binding determinants, possibly explaining our observation of the ability of CrpK to partially compensate for the growth defects of a ΔFnrL mutant. We show that the Rrf2 family protein, MppG, plays an important role in photopigment biosynthesis, as part of an incoherent feed-forward loop with PrrA. Our results reveal a previously unrealized, high degree of combinatorial regulation of photosynthetic genes and significant cross-talk between their transcriptional regulators, while illustrating previously unidentified links between photosynthesis and the maintenance of iron homeostasis. PMID:25503406

  6. Global analysis of photosynthesis transcriptional regulatory networks.

    Directory of Open Access Journals (Sweden)

    Saheed Imam

    2014-12-01

    Full Text Available Photosynthesis is a crucial biological process that depends on the interplay of many components. This work analyzed the gene targets for 4 transcription factors: FnrL, PrrA, CrpK and MppG (RSP_2888, which are known or predicted to control photosynthesis in Rhodobacter sphaeroides. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq identified 52 operons under direct control of FnrL, illustrating its regulatory role in photosynthesis, iron homeostasis, nitrogen metabolism and regulation of sRNA synthesis. Using global gene expression analysis combined with ChIP-seq, we mapped the regulons of PrrA, CrpK and MppG. PrrA regulates ∼34 operons encoding mainly photosynthesis and electron transport functions, while CrpK, a previously uncharacterized Crp-family protein, regulates genes involved in photosynthesis and maintenance of iron homeostasis. Furthermore, CrpK and FnrL share similar DNA binding determinants, possibly explaining our observation of the ability of CrpK to partially compensate for the growth defects of a ΔFnrL mutant. We show that the Rrf2 family protein, MppG, plays an important role in photopigment biosynthesis, as part of an incoherent feed-forward loop with PrrA. Our results reveal a previously unrealized, high degree of combinatorial regulation of photosynthetic genes and significant cross-talk between their transcriptional regulators, while illustrating previously unidentified links between photosynthesis and the maintenance of iron homeostasis.

  7. 75 FR 79449 - Introduction to The Regulatory Plan and the Unified Agenda of Federal Regulatory and Deregulatory...

    Science.gov (United States)

    2010-12-20

    ... ``Regulatory Planning and Review,'' signed September 30, 1993 (58 FR 51735) and Office of Management and Budget... Information Service Center Introduction to The Regulatory Plan and the Unified Agenda of Federal Regulatory... Regulatory### Plan#0;#0; ] REGULATORY INFORMATION SERVICE CENTER Introduction to The Regulatory Plan and...

  8. Dissecting microregulation of a master regulatory network

    Directory of Open Access Journals (Sweden)

    Kaimal Vivek

    2008-02-01

    Full Text Available Abstract Background The master regulator p53 tumor-suppressor protein through coordination of several downstream target genes and upstream transcription factors controls many pathways important for tumor suppression. While it has been reported that some of the p53's functions are microRNA-mediated, it is not known as to how many other microRNAs might contribute to the p53-mediated tumorigenesis. Results Here, we use bioinformatics-based integrative approach to identify and prioritize putative p53-regulated miRNAs, and unravel the miRNA-based microregulation of the p53 master regulatory network. Specifically, we identify putative microRNA regulators of a transcription factors that are upstream or downstream to p53 and b p53 interactants. The putative p53-miRs and their targets are prioritized using current knowledge of cancer biology and literature-reported cancer-miRNAs. Conclusion Our predicted p53-miRNA-gene networks strongly suggest that coordinated transcriptional and p53-miR mediated networks could be integral to tumorigenesis and the underlying processes and pathways.

  9. Regulatory networks contributing to psoriasis susceptibility.

    Science.gov (United States)

    Szabó, Kornélia; Bata-Csörgő, Zsuzsanna; Dallos, Attila; Bebes, Attila; Francziszti, László; Dobozy, Attila; Kemény, Lajos; Széll, Márta

    2014-07-01

    The non-involved, healthy-looking skin of psoriatic patients displays inherent characteristics that make it prone to develop typical psoriatic symptoms. Our primary aim was to identify genes and proteins that are differentially regulated in the non-involved psoriatic and the normal epidermis, and to discover regulatory networks responsible for these differences. A cDNA microarray experiment was performed to compare the gene expression profiles of 4 healthy and 4 psoriatic non-involved epidermis samples in response to T-cell lymphokine induction in organotypic cultures. We identified 61 annotated genes and another 11 expressed transcripts that were differentially regulated in the psoriatic tissues. Bioinformatics analysis suggested that the regulation of cell morphology, development and cell death is abnormal, and that the metabolism of small molecules and lipids is differentially regulated in psoriatic epidermis. Our results indicate that one of the early steps of psoriasis pathogenesis may be the abnormal regulation of IL-23A and IL-1B genes in psoriatic keratinocytes.

  10. Nitrogen fixation: key genetic regulatory mechanisms.

    Science.gov (United States)

    Martinez-Argudo, I; Little, R; Shearer, N; Johnson, P; Dixon, R

    2005-02-01

    The necessity to respond to the level of fixed nitrogen and external oxygen concentrations and to provide sufficient energy for nitrogen fixation imposes common regulatory principles amongst diazotrophs. The NifL-NifA system in Azotobacter vinelandii integrates the signals of redox, fixed-nitrogen and carbon status to regulate nif transcription. Multidomain signalling interactions between NifL and NifA are modulated by redox changes, ligand binding and interaction with the signal-transduction protein GlnK. Under adverse redox conditions (excess oxygen) or when fixed nitrogen is in excess, NifL forms a complex with NifA in which transcriptional activation is prevented. Oxidized NifL forms a binary complex with NifA to inhibit NifA activity. When fixed nitrogen is in excess, the non-covalently modified form of GlnK interacts with NifL to promote the formation of a GlnK-NifL-NifA ternary complex. When the cell re-encounters favourable conditions for nitrogen fixation, it is necessary to deactivate the signals to ensure that the NifL-NifA complex is dissociated so that NifA is free to activate transcription. This is achieved through interactions with 2-oxoglutarate, a key metabolic signal of the carbon status, which binds to the N-terminal GAF (cGMP-specific and stimulated phosphodiesterases, Anabaena adenylate cyclases and Escherichia coli FhlA) domain of NifA. PMID:15667291

  11. [Advanced therapy: from European regulatory framework to national regulatory framework].

    Science.gov (United States)

    Lucas-Samuel, S

    2013-05-01

    The European regulation n(o) 1394/2007/CE published on the 13th of November 2007 defined and harmonized the European regulatory framework for advanced therapy medicinal products. It creates a specialized committee located at the European Medicine Agency, in charge of the assessment of these medicinal products. The consequences of this regulation are introduced in the French regulation by the law n(o) 2011-302 published on the 22nd of March 2011. It detailed notably the possibility for public establishments (except health establishments) and nonprofit organisms to create pharmaceutical establishments. This law defined also a specific category of advanced therapy medicinal products, which fall under the "hospital exemption" framework. The rules regarding the authorizations of the establishments able to prepare these types of medicinal products and the authorization of the products are defined by the n(o) 2012-1236 decree published on the 6th of November 2012.

  12. Protein Foods

    Science.gov (United States)

    ... Text Size: A A A Listen En Español Protein Foods Foods high in protein such as fish, ... the vegetarian proteins, whether they have carbohydrate. Best Protein Choices The best choices are: Plant-based proteins ...

  13. Activity-Based Protein Profiling of Microbes

    Energy Technology Data Exchange (ETDEWEB)

    Sadler, Natalie C.; Wright, Aaron T.

    2015-02-01

    Activity-Based Protein Profiling (ABPP) in conjunction with multimodal characterization techniques has yielded impactful findings in microbiology, particularly in pathogen, bioenergy, drug discovery, and environmental research. Using small molecule chemical probes that react irreversibly with specific proteins or protein families in complex systems has provided insights in enzyme functions in central metabolic pathways, drug-protein interactions, and regulatory protein redox, for systems ranging from photoautotrophic cyanobacteria to mycobacteria, and combining live cell or cell extract ABPP with proteomics, molecular biology, modeling, and other techniques has greatly expanded our understanding of these systems. New opportunities for application of ABPP to microbial systems include: enhancing protein annotation, characterizing protein activities in myriad environments, and reveal signal transduction and regulatory mechanisms in microbial systems.

  14. 阿尔茨海默病大鼠自噬相关蛋白Beclin-1和凋亡相关蛋白p53表达变化及电针的调控作用%Expression Changes of Autophagy Associated Protein Beclin-1 and Apoptosis Associated Protein p53 in Rats with Alzheimer's Disease and Regulatory Effects of Electroacupuncture

    Institute of Scientific and Technical Information of China (English)

    朱青春; 崔国红; 邵水金; 田金鑫; 韩小晶; 张黎声; 陆萍萍; 国海东

    2014-01-01

    Objective To observe the effects of electroacupuncture on the expressions of autophagy related protein Beclin-1 and apoptosis related protein p53 of hippocampus in rats;To explore the mechanism of electroacupuncture on Alzheimer's disease (AD).Methods The rats were randomly divided into the normal group, the sham-operation group, the model group, and the electroacupuncture treatment group. “Baihui” and “Yongquan” points were taken for electroacupuncture treatment and the treatment course was 7 days. The rats were treated once a day for 4 courses. Changes in morphology and number of Nissl positive cells were examined by Nissl staining in hippocampal CA1 regions. Expressions of Beclin-1 and p53 protein were determined by Western blot analysis.Results Number of Nissl positive cells in CA1 region of the model group was significantly less than that of normal group (P<0.01). After electroacupuncture treatment, number of pyramidal cells and expression of Nissl body significantly increased (P<0.05). Expression of Beclin-1 decreased, while expression of p53 increased in the hippocampus of the model group, compared with that in the normal group (P<0.05). However, electroacupuncture treatment could significantly upregulate the expression of Beclin-1 protein (P<0.01), but downregulate the level of p53 (P<0.05).Conclusion Electro-acupuncture treatment could fight against Aβ-induced neuronal apoptosis, and improve the morphological changes of AD’s hippocampus.%目的:观察电针对大鼠海马自噬相关蛋白Beclin-1和凋亡相关蛋白p53表达的影响,探讨电针治疗阿尔茨海默病(AD)的作用机制。方法将大鼠随机分为正常组、假手术组、模型组和电针组。电针组取“百会”和“涌泉”进行电针治疗,每日1次,7 d为1个疗程,共治疗4个疗程。疗程结束后尼氏染色观察各组海马CA1区组织形态的变化并计数尼氏体阳性细胞,Western blot检测Beclin-1和p53蛋白的表达。结果模型组CA1

  15. Environmental regulatory update table, July 1991

    Energy Technology Data Exchange (ETDEWEB)

    Houlberg, L.M.; Hawkins, G.T.; Salk, M.S.

    1991-08-01

    This Environmental Regulatory Update Table (July 1991) provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

  16. Environmental Regulatory Update Table, December 1989

    International Nuclear Information System (INIS)

    The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action

  17. Environmental Regulatory Update Table, April 1989

    International Nuclear Information System (INIS)

    The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action

  18. Environmental Regulatory Update Table, October 1991

    Energy Technology Data Exchange (ETDEWEB)

    Houlberg, L.M.; Hawkins, G.T.; Salk, M.S.

    1991-11-01

    The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

  19. Environmental Regulatory Update Table, December 1989

    Energy Technology Data Exchange (ETDEWEB)

    Houlbert, L.M.; Langston, M.E. (Tennessee Univ., Knoxville, TN (USA)); Nikbakht, A.; Salk, M.S. (Oak Ridge National Lab., TN (USA))

    1990-01-01

    The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

  20. Environmental regulatory update table, March 1989

    Energy Technology Data Exchange (ETDEWEB)

    Houlberg, L.; Langston, M.E.; Nikbakht, A.; Salk, M.S.

    1989-04-01

    The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

  1. Environmental Regulatory Update Table, April 1989

    Energy Technology Data Exchange (ETDEWEB)

    Houlberg, L.; Langston, M.E.; Nikbakht, A.; Salk, M.S.

    1989-05-01

    The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

  2. Environmental Regulatory Update Table, October 1990

    Energy Technology Data Exchange (ETDEWEB)

    Houlberg, L.M.; Noghrei-Nikbakht, P.A.; Salk, M.S.

    1990-11-01

    The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

  3. Environmental Regulatory Update Table, September 1991

    Energy Technology Data Exchange (ETDEWEB)

    Houlberg, L.M.; Hawkins, G.T.; Salk, M.S.

    1991-10-01

    The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

  4. Environmental Regulatory Update Table, December 1991

    Energy Technology Data Exchange (ETDEWEB)

    Houlberg, L.M.; Hawkins, G.T.; Salk, M.S.

    1992-01-01

    The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

  5. Environmental Regulatory Update Table, November 1991

    Energy Technology Data Exchange (ETDEWEB)

    Houlberg, L.M.; Hawkins, G.T.; Salk, M.S.

    1991-12-01

    The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

  6. Environmental Regulatory Update Table, August 1991

    Energy Technology Data Exchange (ETDEWEB)

    Houlberg, L.M., Hawkins, G.T.; Salk, M.S.

    1991-09-01

    This Environmental Regulatory Update Table (August 1991) provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

  7. Environmental regulatory update table, March 1989

    International Nuclear Information System (INIS)

    The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action

  8. Environmental Regulatory Update Table, August 1990

    International Nuclear Information System (INIS)

    The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action

  9. Effect of the feeding system on the fatty acid composition, expression of the Δ9-desaturase, Peroxisome Proliferator-Activated Receptor Alpha, Gamma, and Sterol Regulatory Element Binding Protein 1 genes in the semitendinous muscle of light lambs of the Rasa Aragonesa breed

    Directory of Open Access Journals (Sweden)

    Rodellar Clementina

    2010-07-01

    Full Text Available Abstract Background Conjugated linoleic acids (CLAs are receiving increasing attention because of their beneficial effects on human health, with milk and meat products derived from ruminants as important sources of CLA in the human diet. SCD gene is responsible for some of the variation in CLA concentration in adipose tissues, and PPARγ, PPARα and SREBP1 genes are regulator of SCD gene. The aim of this work was to evaluate the effect of the feeding system on fatty acid composition, CLA content and relative gene expression of Δ9-desaturase (SCD, Peroxisome Proliferator-Activated Receptor Gamma (PPARγ, Peroxisome Proliferator-Activated Receptor Alpha, (PPARα and Sterol Regulatory Element Binding Protein (SREBP1 in Rasa Aragonesa light lambs in semitendinous muscle. Forty-four single-born male lambs were used to evaluate the effect of the feeding system, varying on an intensity gradient according to the use of concentrates: 1. grazing alfalfa, 2. grazing alfalfa with a supplement for lambs, 3. indoor lambs with grazing ewes and 4. drylot. Results Both grazing systems resulted in a higher concentration of vaccenic acid (VA, CLA, CLA/VA acid ratio, and a lower oleic content, oleic acid (C18:1/stearic acid (C18:0 ratio, PUFA n-6/n-3 ratio and SCD expression compared to other diets. In addition feeding system affected the fatty acid composition and SCD expression, possibly due to CLA concentration or the PUFA n-6/n-3 ratio. Both expression of the SCD gene and the feeding system were important factors affecting CLA concentration in the animal's semitendinous muscle. PPARγ, PPARα and SREBP1 expression seemed to be unaffected by the feeding system. Although no significant results were found, PPARγ, PPARα and SREBP1 showed similar expression pattern as SCD. Moreover, the correlation results between SCD expression and PPARγ (p SREBP1 (p SCD expression in a different way. Conclusions The data indicated that the feeding system is the main factor

  10. Regulatory System for NPPs in Indonesia

    International Nuclear Information System (INIS)

    In order to protect the safety and health of workers, public and environment from the possible hazards of construction and operation of NPPs, regulatory system for the construction and operation of the NPPs is required. The regulatory system of NPPs includes law and regulation, licensing framework, regulatory personnel, and other relevant supporting components. Present paper discusses on a part of the regulatory system, especially that emphasizes on regulation, and licensing requirements and mechanisms. The discussion is given based on the content of the draft of Government Regulation on Nuclear Reactor Licensing, that is currently under final step of discussion. (author)

  11. 75 FR 22868 - Withdrawal of Regulatory Guide

    Science.gov (United States)

    2010-04-30

    ..., Geosciences & Geotechnical Engineering Branch 1, Division of Site & Environmental Reviews, Office of New... Guide Development Branch, Division of Engineering, Office of Nuclear Regulatory Research. BILLING...

  12. Annual Report 2008. Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    The present Annual Report of Activities of the Nuclear Regulatory Authority (ARN), prepared regularly from the creation as independent institution, describes across four parts and seven annexes the activities developed by the organism during 2008. The main topic are: the organization and the activity of the ARN; the regulatory standards; the licensing and inspection of nuclear power plants and critical facilities; the emergency systems; the occupational surveillance; the environmental monitoring; improved organizational and budgetary developments. Also, this publication have annexes with the following content: regulatory documents; regulatory guides; measurement and evaluation of the drinking water of Ezeiza.

  13. Annual Report 2007. Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    The present Annual Report of Activities of the Nuclear Regulatory Authority (ARN), prepared regularly from the creation as independent institution, describes across tree parts and seven annexes the activities developed by the organism during 2007. The main topic are: the organization and the activity of the ARN; the regulatory standards; the licensing and inspection of nuclear power plants and critical facilities; the emergency systems; the occupational surveillance; the environmental monitoring; improved organizational. Also, this publication have annexes with the following content: regulatory documents; inspections to medical, industrial and training installations; regulatory guides; measurement and evaluation of the drinking water of Ezeiza.

  14. Annual Report 2009. Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    The present Annual Report of Activities of the Nuclear Regulatory Authority (ARN), prepared regularly from the creation as independent institution, describes across four parts and seven annexes the activities developed by the organism during 2009. The main topic are: the organization and the activity of the ARN; the regulatory standards; the licensing and inspection of nuclear power plants and critical facilities; the emergency systems; the environmental monitoring; the occupational surveillance; the training and the public information; improved organizational and budgetary developments. Also, this publication have annexes with the following content: regulatory documents; inspections to medical, industrial and training installations; regulatory guides; measurement and evaluation of the drinking water of Ezeiza.

  15. A genomic regulatory network for development

    Science.gov (United States)

    Davidson, Eric H.; Rast, Jonathan P.; Oliveri, Paola; Ransick, Andrew; Calestani, Cristina; Yuh, Chiou-Hwa; Minokawa, Takuya; Amore, Gabriele; Hinman, Veronica; Arenas-Mena, Cesar; Otim, Ochan; Brown, C. Titus; Livi, Carolina B.; Lee, Pei Yun; Revilla, Roger; Rust, Alistair G.; Pan, Zheng jun; Schilstra, Maria J.; Clarke, Peter J C.; Arnone, Maria I.; Rowen, Lee; Cameron, R. Andrew; McClay, David R.; Hood, Leroy; Bolouri, Hamid

    2002-01-01

    Development of the body plan is controlled by large networks of regulatory genes. A gene regulatory network that controls the specification of endoderm and mesoderm in the sea urchin embryo is summarized here. The network was derived from large-scale perturbation analyses, in combination with computational methodologies, genomic data, cis-regulatory analysis, and molecular embryology. The network contains over 40 genes at present, and each node can be directly verified at the DNA sequence level by cis-regulatory analysis. Its architecture reveals specific and general aspects of development, such as how given cells generate their ordained fates in the embryo and why the process moves inexorably forward in developmental time.

  16. National legislative and regulatory activities

    International Nuclear Information System (INIS)

    This section treats of the following National legislative and regulatory activities: 1 - Australia: General legislation - Bill to amend the Australian Radiation Protection and Nuclear Safety Act 1998; 2 - France: General legislation - Law No. 2015-992 of 17 August 2015 on the energy transition for green growth; ASN Report on the state of nuclear safety and radiation protection in France in 2014; 3 - Germany: Radioactive waste management - First Ordinance to amend the 2005 Gorleben Development Freeze Ordinance (2015); 4 - Greece: Radioactive waste management - Joint Ministerial Decision establishing the national policy on the management of spent fuel and radioactive waste; 5 - Lithuania: Nuclear safety and radiological protection - Revised requirements for modifications, Plan for enhancement of nuclear safety, New requirements for the commissioning of nuclear power plants, Revised requirements regulating the provision of information on abnormal events; Radioactive waste management - Revised requirements for acceptance criteria for near surface repository; Nuclear security - Revised requirements for physical protection; 6 - Romania: Licensing and regulatory infrastructure - Government Decision No. 600/2014 for approval of National Nuclear Safety and Security; International co-operation - Government Decision No. 525/2014 for approval of the Co-operation Agreement on the radioactive waste management between the French National Radioactive Waste Management Agency (ANDRA) and Nuclear Agency and Radioactive Waste (ANDR) Strategy; Memorandum of Understanding for Co-operation and Exchange of Information in Nuclear Regulatory Matters between the National Commission for Nuclear Activities Control (CNCAN) of Romania and the President of National Atomic Energy Agency (PAA) of Poland; Government Decision No. 540/2015 for approval of the Agreement between the Government of Romania and the Government of the People's Republic of China regarding co-operation in the peaceful

  17. Regulatory T cells as immunotherapy

    Directory of Open Access Journals (Sweden)

    Benjamin David Singer

    2014-02-01

    Full Text Available Regulatory T cells (Tregs suppress exuberant immune system activation and promote immunologic tolerance. Because Tregs modulate both innate and adaptive immunity, the biomedical community has developed intense interest in using Tregs for immunotherapy. Conditions that require clinical tolerance to improve outcomes—autoimmune disease, solid organ transplantation, and hematopoietic stem cell transplantation—may benefit from Treg immunotherapy. Investigators have designed ex vivo strategies to isolate, preserve, expand, and infuse Tregs. Protocols to manipulate Treg populations in vivo have also been considered. Barriers to clinically feasible Treg immunotherapy include Treg stability, off-cell effects, and demonstration of cell preparation purity and potency. Clinical trials involving Treg adoptive transfer to treat graft versus host disease preliminarily demonstrated the safety and efficacy of Treg immunotherapy in humans. Future work will need to confirm the safety of Treg immunotherapy and establish the efficacy of specific Treg subsets for the treatment of immune-mediated disease.

  18. Radiation and the regulatory landscape of neo{sup 2}-Darwinism

    Energy Technology Data Exchange (ETDEWEB)

    Rollo, C. David [Department of Biology, Life Sciences Building, 1280 Main St. West, Hamilton, Ont., Canada L8S 4K1 (Canada)]. E-mail: rollocd@mcmaster.ca

    2006-05-11

    Several recently revealed features of eukaryotic genomes were not predicted by earlier evolutionary paradigms, including the relatively small number of genes, the very large amounts of non-functional code and its quarantine in heterochromatin, the remarkable conservation of many functionally important genes across relatively enormous phylogenetic distances, and the prevalence of extra-genomic information associated with chromatin structure and histone proteins. All of these emphasize a paramount role for regulatory evolution, which is further reinforced by recent perspectives highlighting even higher-order regulation governing epigenetics and development (EVO-DEVO). Modern neo{sup 2}-Darwinism, with its emphasis on regulatory mechanisms and regulatory evolution provides new vision for understanding radiation biology, particularly because free radicals and redox states are central to many regulatory mechanisms and free radicals generated by radiation mimic and amplify endogenous signalling. This paper explores some of these aspects and their implications for low-dose radiation biology.

  19. T Regulatory Cell Biology in Health and Disease.

    Science.gov (United States)

    Alroqi, Fayhan J; Chatila, Talal A

    2016-04-01

    Regulatory T (Treg) cells that express the transcription factor forkhead box protein P3 (FOXP3) play an essential role in enforcing immune tolerance to self tissues, regulating host-commensal flora interaction, and facilitating tissue repair. Their deficiency and/or dysfunction trigger unbridled autoimmunity and inflammation. A growing number of monogenic defects have been recognized that adversely impact Treg cell development, differentiation, and/or function, leading to heritable diseases of immune dysregulation and autoimmunity. In this article, we review recent insights into Treg cell biology and function, with particular attention to lessons learned from newly recognized clinical disorders of Treg cell deficiency. PMID:26922942

  20. T Regulatory Cell Biology in Health and Disease.

    Science.gov (United States)

    Alroqi, Fayhan J; Chatila, Talal A

    2016-04-01

    Regulatory T (Treg) cells that express the transcription factor forkhead box protein P3 (FOXP3) play an essential role in enforcing immune tolerance to self tissues, regulating host-commensal flora interaction, and facilitating tissue repair. Their deficiency and/or dysfunction trigger unbridled autoimmunity and inflammation. A growing number of monogenic defects have been recognized that adversely impact Treg cell development, differentiation, and/or function, leading to heritable diseases of immune dysregulation and autoimmunity. In this article, we review recent insights into Treg cell biology and function, with particular attention to lessons learned from newly recognized clinical disorders of Treg cell deficiency.