Vertex operators for a bosonic string
International Nuclear Information System (INIS)
Sasaki, Ryu; Yamanaka, Itaru.
1985-09-01
Based on the operator formalism and the Virasoro algebra, we present a simple method of constructing vertex operators describing the emission and absorption of general particles in bosonic string theories. (author)
Plethystic vertex operators and boson-fermion correspondences
International Nuclear Information System (INIS)
Fauser, Bertfried; Jarvis, Peter D; King, Ronald C
2016-01-01
We study the algebraic properties of plethystic vertex operators, introduced in (2010 J. Phys. A: Math. Theor. 43 405202), underlying the structure of symmetric functions associated with certain generalized universal character rings of subgroups of the general linear group, defined to stabilize tensors of Young symmetry type characterized by a partition of arbitrary shape π . Here we establish an extension of the well-known boson-fermion correspondence involving Schur functions and their associated (Bernstein) vertex operators: for each π , the modes generated by the plethystic vertex operators and their suitably constructed duals, satisfy the anticommutation relations of a complex Clifford algebra. The combinatorial manipulations underlying the results involve exchange identities exploiting the Hopf-algebraic structure of certain symmetric function series and their plethysms. (paper)
Plethystic vertex operators and boson-fermion correspondences
Fauser, Bertfried; Jarvis, Peter D.; King, Ronald C.
2016-10-01
We study the algebraic properties of plethystic vertex operators, introduced in (2010 J. Phys. A: Math. Theor. 43 405202), underlying the structure of symmetric functions associated with certain generalized universal character rings of subgroups of the general linear group, defined to stabilize tensors of Young symmetry type characterized by a partition of arbitrary shape π. Here we establish an extension of the well-known boson-fermion correspondence involving Schur functions and their associated (Bernstein) vertex operators: for each π, the modes generated by the plethystic vertex operators and their suitably constructed duals, satisfy the anticommutation relations of a complex Clifford algebra. The combinatorial manipulations underlying the results involve exchange identities exploiting the Hopf-algebraic structure of certain symmetric function series and their plethysms.
Operator bosonization on Riemann surfaces: new vertex operators
International Nuclear Information System (INIS)
Semikhatov, A.M.
1989-01-01
A new formalism is proposed for the construction of an operator theory of generalized ghost systems (bc theories of spin J) on Riemann surfaces (loop diagrams of the theory of closed strings). The operators of the bc system are expressed in terms of operators of the bosonic conformal theory on a Riemann surface. In contrast to the standard bosonization formulas, which have meaning only locally, operator Baker-Akhiezer functions, which are well defined globally on a Riemann surface of arbitrary genus, are introduced. The operator algebra of the Baker-Akhiezer functions generates explicitly the algebraic-geometric τ function and correlation functions of bc systems on Riemann surfaces
Twisted vertex algebras, bicharacter construction and boson-fermion correspondences
International Nuclear Information System (INIS)
Anguelova, Iana I.
2013-01-01
The boson-fermion correspondences are an important phenomena on the intersection of several areas in mathematical physics: representation theory, vertex algebras and conformal field theory, integrable systems, number theory, cohomology. Two such correspondences are well known: the types A and B (and their super extensions). As a main result of this paper we present a new boson-fermion correspondence of type D-A. Further, we define a new concept of twisted vertex algebra of order N, which generalizes super vertex algebra. We develop the bicharacter construction which we use for constructing classes of examples of twisted vertex algebras, as well as for deriving formulas for the operator product expansions, analytic continuations, and normal ordered products. By using the underlying Hopf algebra structure we prove general bicharacter formulas for the vacuum expectation values for two important groups of examples. We show that the correspondences of types B, C, and D-A are isomorphisms of twisted vertex algebras
Construction of vertex operators using operator formalism techniques
International Nuclear Information System (INIS)
Gato, B.; Massachusetts Inst. of Tech., Cambridge
1989-01-01
We derive vertex operators in oscillator form as an application of the conserved charges method developed by Vafa for the operator formalism in higher genus Riemann surfaces. This construction proves to be clear, direct and valid for the bosonic and fermionic strings as wells as for twisted strings on orbifolds. We discuss the method and construct vertex operators for the bosonic string moving on Z N orbifolds and for the fermionic string in the NSR formulation. (orig.)
A nonperturbative fermion-boson vertex
International Nuclear Information System (INIS)
Bashir, A.; Raya, A.
2002-01-01
We calculate the massive fermion propagator at one-loop order in QED3. The Ward-Takahashi identity (WTI) relates the propagator to the vertex. This allows us to split the vertex into its longitudinal and transverse parts. The former is fixed by the WTI. Following the scheme of Ball and Chiu later modified by Kizilersue et. al., we calculate the full vertex at one-loop order. A mere subtraction of the longitudinal part of the vertex gives us the transverse part. The α dependence in the transverse vertex can be eliminated by making use of the perturbative expressions for the wavefunction renormalization function and the mass function of complicated arguments of the incoming and outgoing fermion momenta. This leads us to a vertex which is nonperturbative in nature. We also calculate an effective vertex for which the arguments of the unknown functions have no angular dependence, making it particularly suitable for numerical studies of dynamical symmetry breaking
Vertex operators and Jordan fields
International Nuclear Information System (INIS)
Ferreira, L.A.; Gomes, J.F.; Zimerman, A.H.
1988-01-01
The construction of Lie algebras in terms of Jordan algebras generators is discussed. The key to the construction is the triality relation already incorporated into matrix products. A generalisation to Kac-Moody algebras in terms of vertex operators is proposed and may provide a clue for the construction of new representations of Kac-Moody algebras in terms of Jordan fields. (author) [pt
Intrinsic-normal-ordered vertex operators from the multiloop N-tachyon amplitude
International Nuclear Information System (INIS)
Aldazabal, G.; Nunez, C.; Bonini, M.; Iengo, R.
1987-09-01
We construct vertex operators for arbitrary mass level states of the closed bosonic string. Starting from a generalization of the Koba-Nielsen amplitude which is suitable for an arbitrary genus Riemann surface, we read the vertex operators from the residues of the poles for the intermediate states. Since the original expression is metric independent and normal ordered without the need of inventing any regularization scheme, our vertex operators also possess these properties. We discuss their general features. (author). 17 refs
Twisted Frobenius identies from vertex operator superalgebras
Czech Academy of Sciences Publication Activity Database
Zuevsky, Alexander
2017-01-01
Roč. 2017, 9 November (2017), č. článku 2340410. ISSN 1687-9120 Institutional support: RVO:67985840 Keywords : vertex operator superalgebras * intertwining operators * Riemann surfaces Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.643, year: 2016 https://www.hindawi.com/journals/amp/2017/2340410/
Twisted Frobenius Identities from Vertex Operator Superalgebras
Directory of Open Access Journals (Sweden)
Alexander Zuevsky
2017-01-01
Full Text Available In consideration of the continuous orbifold partition function and a generating function for all n-point correlation functions for the rank two free fermion vertex operator superalgebra on the self-sewing torus, we introduce the twisted version of Frobenius identity.
Cluster algebras bases on vertex operator algebras
Czech Academy of Sciences Publication Activity Database
Zuevsky, Alexander
2016-01-01
Roč. 30, 28-29 (2016), č. článku 1640030. ISSN 0217-9792 Institutional support: RVO:67985840 Keywords : cluster alegbras * vertex operator algebras * Riemann surfaces Subject RIV: BA - General Mathematics Impact factor: 0.736, year: 2016 http://www.worldscientific.com/doi/abs/10.1142/S0217979216400300
BRST invariant mixed string vertex for the bosonic string
International Nuclear Information System (INIS)
Clarizia, A.; Pezzella, F.
1987-09-01
We construct a BRST invariant (N+M)-string vertex including both open and closed string states. When we saturate it with N open string and M closed string physical states it reproduces their corresponding scattering amplitude. As a particular case we obtain BRST invariant vertex for the open-closed string transition. (orig.)
Certain extensions of vertex operator algebras of affine type
International Nuclear Information System (INIS)
Li Haisheng
2001-01-01
We generalize Feigin and Miwa's construction of extended vertex operator (super)algebras A k (sl(2)) for other types of simple Lie algebras. For all the constructed extended vertex operator (super)algebras, irreducible modules are classified, complete reducibility of every module is proved and fusion rules are determined modulo the fusion rules for vertex operator algebras of affine type. (orig.)
N-point g-loop vertex for free bosonic theory with vacuum charge Q
International Nuclear Information System (INIS)
Di Vecchia, P.; Pezzella, F.; Frau, M.; Hornfeck, K.
1988-12-01
Starting from the N-Point Vertex on the sphere and using the sewing procedure we construct the N-Point g-Loop Vertex for a free bosonic theory with vacuum charge Q. We then show that, when this vertex is saturated with N highest weight states, it gives their correlation function on an arbitrary Riemann surface of genus g. We also extend our formalism to the case of a free scalar field compactified on a circle, which is related to the Coulomb gas description of minimal models. (orig.)
The vertex Zagreb indices of some graph operations
Directory of Open Access Journals (Sweden)
N. De
2016-12-01
Full Text Available Recently, Tavakoli et al. introduced a new version of Zagreb indices, named as vertex Zagreb indices. In this paper explicit expressions of different graphs operations of vertex Zagreb indices are presented and also as an application, explicit formulas for vertex Zagreb indices of some chemical graphs are obtained.
Chiral vertex operators in off-conformal theory: Sine-Gordon example
International Nuclear Information System (INIS)
Chang, S.; Rajaraman, R.
1996-01-01
We study chiral vertex operators in sine-Gordon (SG) theory, viewed as an off-conformal system. We find that these operators, which would have been primary fields in the conformal limit, have interesting properties in the SG model. Some of them commute with the cosine interaction term in the Hamiltonian at a finite separation. Their Heisenberg equations of motion are local in space. An example of such vertex operators is Mandelstam close-quote s bosonic representation of the Fermi field. Another example is a set of vertex operators of topological number 2. We show how to construct conserved nonlocal currents from these operators. In the presence of the nonconformal interactions, these nonlocal currents have unique Lorentz spins. copyright 1996 The American Physical Society
The elliptic quantum algebra Uq,p(sl-hatN) and its vertex operators
International Nuclear Information System (INIS)
Chang Wenjing; Ding Xiangmao
2009-01-01
We construct a realization of the elliptic quantum algebra U q,p (sl-hat N ) for any given level k in terms of free boson fields and their twisted partners. It can be considered as the elliptic deformation of the Wakimoto realization of the quantum affine algebra U q (sl-hat N ). We also construct a family of screening currents, which commute with the currents of U q,p (sl-hat N ) up to total q-differences. And we give explicit twisted expressions for the type I and type II vertex operators of U q,p (sl-hat N ) by twisting the known results of the type I vertex operators of the quantum affine algebra U q (sl-hat N ) and the new results of the type II vertex operators of U q (sl-hat N ) we obtained in this paper.
Fermionic construction of vertex operators for twisted affine algebras
International Nuclear Information System (INIS)
Frappat, L.; Sorba, P.; Sciarrino, A.
1988-03-01
We construct vertex operator representations of the twisted affine algebras in terms of fermionic (or parafermionic in some cases) elementary fields. The folding method applied to the extended Dynkin diagrams of the affine algebras allows us to determine explicitly these fermionic fields as vertex operators
Vertex operators, non-abelian orbifolds and the Riemann-Hilbert problem
International Nuclear Information System (INIS)
Gato, B.; Massachusetts Inst. of Tech., Cambridge
1990-01-01
We show how to construct the oscillator part of vertex operators for the bosonic string moving on non-abelian orbifolds, using the conserved charges method. When the three-string vertices are twisted by non-commuting group elements, the construction of the conserved charges becomes the Riemann-Hilbert problem with monodromy matrices given by the twists. This is solvable for any given configuration and any non-abelian orbifold. (orig.)
International Nuclear Information System (INIS)
Estre, N.
2004-01-01
The CMS (compact muon solenoid) detector that will be set on the future LHC (large hadron collider) accelerator will enable us to continue our search for the Higgs boson as well as to look for any hint for a new physics beyond the standard model. CMS is composed of an efficient muon detector, an electromagnetic calorimeter and of a tracker with high spatial resolution, this tracker is the topic of this thesis. The tracker will allow an accurate reconstruction of charged-particles trajectories and the reconstruction of the primary interaction vertex. The tracker's technology is based on micro-strip Si detectors, tests performed with the SPS particle beam show that these detectors have an impact reconstruction efficiency greater than 98% and a piling-up rate limited to 6%. The spatial resolution concerning particle trajectories is about 45 μm for an interval of 183 μm between 2 strips. The simulation for the search for a light charged Higgs boson show that an excess of τν τ + bb-bar + qq-bar' events is possible to be observed for any value of tan(β) up to M A = 122 GeV/c 2 during the first year of operation and up to 136 GeV/c 2 afterwards. With the assumption that this event excess is due to the decay of charged Higgs bosons we can state that the assessment of its mass will be possible till m H = 150 GeV/c 2 with an accuracy of 15 GeV/c 2 . (A.C.)
Operator Product Formulas in the Algebraic Approach of the Refined Topological Vertex
International Nuclear Information System (INIS)
Cai Li-Qiang; Wang Li-Fang; Wu Ke; Yang Jie
2013-01-01
The refined topological vertex of Iqbal—Kozçaz—Vafa has been investigated from the viewpoint of the quantum algebra of type W 1+∞ by Awata, Feigin, and Shiraishi. They introduced the trivalent intertwining operator Φ which is normal ordered along with some prefactors. We manage to establish formulas from the infinite operator product of the vertex operators and the generalized ones to restore this prefactor, and obtain an explicit formula for the vertex realization of the topological vertex as well as the refined topological vertex
Vertex operator construction of superconformal ghosts and string field theory
International Nuclear Information System (INIS)
Ezawa, Z.F.; Nakamura, S.; Tezuka, A.
1987-01-01
Superconformal ghosts in string theories are characterized by the SU(1,1) Kac-Moody algebra with central charge -1/2. These ghost fields are constructed as the vertex operators realizing spinor representations of the Kac-Moody algebra. Representations of the canonical commutation relations of the superconformal ghosts are analyzed extensively. All irreducible representations are found to possess only the trivial inner product but for one exceptional case. Consequently, in superstring field theory it is necessary to consider reducible representations in general. Hilbert spaces with a non-trivial inner product are explicitly obtained upon which second quantization of superstring may be carried out. (orig.)
q-bosons, Toda lattice, Pieri rules and Baxter q-operator
International Nuclear Information System (INIS)
Duval, Antoine; Pasquier, Vincent
2016-01-01
We use the Pieri rules to recover the q-boson model and show it is equivalent to a discretized version of the relativistic Toda chain. We identify its semi infinite transfer matrix and the corresponding Baxter Q-matrix with half vertex operators related by an ω-duality transformation. We observe that the scalar product of two higher spin XXZ wave functions can be expressed with a Gaudin determinant. (paper)
The elliptic quantum algebra U{sub q,p}(sl-hat{sub N}) and its vertex operators
Energy Technology Data Exchange (ETDEWEB)
Chang Wenjing [School of Mathematical Science, Capital Normal University, Beijing 100048 (China); Ding Xiangmao [Institute of Applied Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190 (China)], E-mail: wjchang@amss.ac.cn, E-mail: xmding@amss.ac.cn
2009-10-23
We construct a realization of the elliptic quantum algebra U{sub q,p}(sl-hat{sub N}) for any given level k in terms of free boson fields and their twisted partners. It can be considered as the elliptic deformation of the Wakimoto realization of the quantum affine algebra U{sub q}(sl-hat{sub N}). We also construct a family of screening currents, which commute with the currents of U{sub q,p}(sl-hat{sub N}) up to total q-differences. And we give explicit twisted expressions for the type I and type II vertex operators of U{sub q,p}(sl-hat{sub N}) by twisting the known results of the type I vertex operators of the quantum affine algebra U{sub q}(sl-hat{sub N}) and the new results of the type II vertex operators of U{sub q}(sl-hat{sub N}) we obtained in this paper.
String bits and the spin vertex
Jiang, YunfengInstitut de Physique Théorique, DSM, CEA, URA2306 CNRS Saclay, F-91191 Gif-sur-Yvette, France; Kostov, Ivan(Institut de Physique Théorique, DSM, CEA, URA2306 CNRS Saclay, F-91191 Gif-sur-Yvette, France); Petrovskii, Andrei(Institut de Physique Théorique, DSM, CEA, URA2306 CNRS Saclay, F-91191 Gif-sur-Yvette, France); Serban, Didina(Institut de Physique Théorique, DSM, CEA, URA2306 CNRS Saclay, F-91191 Gif-sur-Yvette, France)
2015-01-01
We initiate a novel formalism for computing correlation functions of trace operators in the planar N=4 SYM theory. The central object in our formalism is the spin vertex, which is the weak coupling analogy of the string vertex in string field theory. We construct the spin vertex explicitly for all sectors at the leading order using a set of bosonic and fermionic oscillators. We prove that the vertex has trivial monodromy, or put in other words, it is a Yangian invariant. Since the monodromy o...
Bosonization methods in string theory
International Nuclear Information System (INIS)
Abdalla, E.
1988-02-01
The use of bosonization/fermionization techniques to convert non-linear operators of the dual, is discussed. Non abelian bosonization to the case where the central charge of the Kac-Moody algebra is not unity, is generalized. In particular, using this generalization of non-abelian bosonization, the bosonic string vertex of the compactified theory; turns out to be fundamental field of thre fermionic theory, or bound states of it thus permiting explicit computations easily. (author) [pt
Direct search for Higgs boson in LHCb and contribution to the development of the Vertex Detector
Locatelli, L
2007-01-01
The LHCb experiment (Large Hadron Collider beauty) is one of the four experiments under construction at the LHC (Large Hadron Collider) at CERN near Geneva. It is planned to start in 2007 and its goal is the study of b-quark physics. The LHC is a circular accelerator in which collide protons-protons at a center-of-mass energy of sqrt{s} = 14 TeV. This generates a large number of high energy b-bbar pairs which are predominantly produced in the same forward cone. The LHCb detector is therefore a forward single arm spectrometer designed to exploit the large b-bbar production cross section (\\sigma b-bbar ~ 500 \\mu b) and to perform precise measurements of CP violation in b-hadrons decays. One of the actual greatest challenges in High Energy Physics is the discovery of the Higgs boson which is responsible for the Model Standard particles mass generation through the Spontaneous Symmetry Breaking process. The Higgs mass is not known and cannot be predicted by the theory. However the recent results of LEP at CERN hav...
Energy Technology Data Exchange (ETDEWEB)
Estre, N
2004-07-01
The CMS (compact muon solenoid) detector that will be set on the future LHC (large hadron collider) accelerator will enable us to continue our search for the Higgs boson as well as to look for any hint for a new physics beyond the standard model. CMS is composed of an efficient muon detector, an electromagnetic calorimeter and of a tracker with high spatial resolution, this tracker is the topic of this thesis. The tracker will allow an accurate reconstruction of charged-particles trajectories and the reconstruction of the primary interaction vertex. The tracker's technology is based on micro-strip Si detectors, tests performed with the SPS particle beam show that these detectors have an impact reconstruction efficiency greater than 98% and a piling-up rate limited to 6%. The spatial resolution concerning particle trajectories is about 45 {mu}m for an interval of 183 {mu}m between 2 strips. The simulation for the search for a light charged Higgs boson show that an excess of {tau}{nu}{sub {tau}} + bb-bar + qq-bar' events is possible to be observed for any value of tan({beta}) up to M{sub A} = 122 GeV/c{sup 2} during the first year of operation and up to 136 GeV/c{sup 2} afterwards. With the assumption that this event excess is due to the decay of charged Higgs bosons we can state that the assessment of its mass will be possible till m{sub H} = 150 GeV/c{sup 2} with an accuracy of 15 GeV/c{sup 2}. (A.C.)
Algebraic characterization of the Witten vertex
International Nuclear Information System (INIS)
Embacher, F.
1989-01-01
The Witten vertex of open bosonic string field theory is characterized by a set of algebraic properties written down in the Fock-space operator formalism. The typical 3-string overlap structure as well as the correct ghost midpoint insertion are not required from the outset but arise as consequences. 20 refs. (Author)
Operation of the CDF Silicon Vertex Detector with colliding beams at Fermilab
International Nuclear Information System (INIS)
Bedeschi, F.; Bolognesi, V.; Dell'Agnello, S.; Galeotti, S.; Grieco, G.; Mariotti, M.; Menzione, A.; Punzi, G.; Raffaelli, F.; Ristori, L.; Tartarelli, F.; Turini, N.; Wenzel, H.; Zetti, F.; Bailey, M.W.; Garfinkel, A.F.; Kruse, M.C.; Shaw, N.M.; Carithers, W.C.; Ely, R.; Haber, C.; Holland, S.; Kleinfelder, S.; Merrick, T.; Schneider, O.; Wester, W.; Wong, M.; Yao, W.; Carter, H.; Flaugher, B.; Nelson, C.; Segler, S.; Shaw, T.; Tkaczyk, S.; Turner, K.; Wesson, T.R.; Barnett, B.; Boswell, C.; Skarha, J.; Snider, F.D.; Spies, A.; Tseng, J.; Vejcik, S.; Amidei, D.; Derwent, P.F.; Song, T.Y.; Dunn, A.; Gold, M.; Matthews, J.; Bacchetta, N.; Azzi, P.; Bisello, D.; Busetto, G.; Castro, A.; Loreti, M.; Pescara, L.; Tipton, P.; Watts, G.
1992-10-01
In this paper we briefly describe the main features of the CDF Silicon Vertex Detector (SVX) and discuss its performance during actual colliding beam operation at the Fermilab Tevatron. Details on S/N ratio, alignment, resolution and efficiency are given
Operation and performance of the silicon vertex detector (SVX') at CDF
International Nuclear Information System (INIS)
Singh, P.P.
1994-10-01
The authors describe the operation and performance of the Silicon Vertex Detector (SVX'), which replaced the CDF SVX detector for run lb of the Fermilab Tevatron Collider. The new features of the SVX' include AC coupled readout, Field OXide Field Effect Transistor (FOXFET) biasing and radiation hard front end electronics. The authors expect the detector to survive beyond the 100 pb -1 of data taking anticipated for the present CDF physics run. Preliminary results from the collider data show that the detector has a resolution of about 12 μm. This provides a powerful tool to do top and bottom physics
International Nuclear Information System (INIS)
Lueth, V.
1992-07-01
The purpose of a vertex detector is to measure position and angles of charged particle tracks to sufficient precision so as to be able to separate tracks originating from decay vertices from those produced at the interaction vertex. Such measurements are interesting because they permit the detection of weakly decaying particles with lifetimes down to 10 -13 s, among them the τ lepton and charm and beauty hadrons. These two lectures are intended to introduce the reader to the different techniques for the detection of secondary vertices that have been developed over the past decades. The first lecture includes a brief introduction to the methods used to detect secondary vertices and to estimate particle lifetimes. It describes the traditional technologies, based on photographic recording in emulsions and on film of bubble chambers, and introduces fast electronic registration of signals derived from scintillating fibers, drift chambers and gaseous micro-strip chambers. The second lecture is devoted to solid state detectors. It begins with a brief introduction into semiconductor devices, and then describes the application of large arrays of strip and pixel diodes for charged particle tracking. These lectures can only serve as an introduction the topic of vertex detectors. Time and space do not allow for an in-depth coverage of many of the interesting aspects of vertex detector design and operation
Plethysms, replicated Schur functions and series, with applications to vertex operators
International Nuclear Information System (INIS)
Fauser, Bertfried; Jarvis, Peter D; King, Ronald C
2010-01-01
Specializations of Schur functions are exploited to define and evaluate the Schur functions s λ [αX] and plethysms s λ [αs ν (X))] for any α-integer, real or complex. Plethysms are then used to define pairs of mutually inverse infinite series of Schur functions, M π and L π , specified by arbitrary partitions π. These are used in turn to define and provide generating functions for formal characters, s (π) λ , of certain groups H π , thereby extending known results for orthogonal and symplectic group characters. Each of these formal characters is then given a vertex operator realization, first in terms of the series M = M (0) and various L p erpendicular σ dual to L σ , and then more explicitly in the exponential form. Finally the replicated form of such vertex operators are written down. The characters of the orthogonal and symplectic groups have been found by Schur [34] and Weyl [35] respectively. The method used is transcendental, and depends on integration over the group manifold. These characters, however, may be obtained by purely algebraic methods,.... This algebraic method would seem to offer a better prospect of successful application to other restricted groups than the method of group integration. Littlewood D E 1944 Phil. Trans. R. Soc. London, Ser. A 239 (809) 392
AUTHOR|(INSPIRE)INSPIRE-00287090
This thesis presents the cross-section measurements of associated vector bosons production with bottom quarks jets at 7 and 8 TeV of centre-of-mass energies. The first channel for cross-section measurement is the Z+b-jet with $Z/\\gamma^* \\to \\mu^+\\mu^-$ in proton-proton collisions at $\\sqrt s = \\text {7 TeV}$ using data collected by the LHCb experiment in 2011. The second channel is the $W + b\\overline b$, requiring two b-jets and one lepton. Apart from cross-section measurement this channel is also used to calculate limits of the Higgs boson produced in association with a vector boson and decaying into a pair of bottom or charm quarks. One of the main source of systematic errors in these analyses is the jet energy resolution and correction. Reduction of this error is achieved by performing a calibration of the neutral jet energy component, named neutral recovery, where empirical functions of the ratio between the charged particle energy of the jet and the particle momentum are determined. This method improv...
Hasse-Schmidt derivations on Grassmann algebras with applications to vertex operators
Gatto, Letterio
2016-01-01
This book provides a comprehensive advanced multi-linear algebra course based on the concept of Hasse-Schmidt derivations on a Grassmann algebra (an analogue of the Taylor expansion for real-valued functions), and shows how this notion provides a natural framework for many ostensibly unrelated subjects: traces of an endomorphism and the Cayley-Hamilton theorem, generic linear ODEs and their Wronskians, the exponential of a matrix with indeterminate entries (Putzer's method revisited), universal decomposition of a polynomial in the product of two monic polynomials of fixed smaller degree, Schubert calculus for Grassmannian varieties, and vertex operators obtained with the help of Schubert calculus tools (Giambelli's formula). Significant emphasis is placed on the characterization of decomposable tensors of an exterior power of a free abelian group of possibly infinite rank, which then leads to the celebrated Hirota bilinear form of the Kadomtsev-Petviashvili (KP) hierarchy describing the Plücker embedding of ...
1994-01-01
Bosonization is a useful technique for studying systems of interacting fermions in low dimensions. It has applications in both particle and condensed matter physics.This book contains reprints of papers on the method as used in these fields. The papers range from the classic work of Tomonaga in the 1950's on one-dimensional electron gases, through the discovery of fermionic solitons in the 1970's, to integrable systems and bosonization on Riemann surfaces. A four-chapter pedagogical introduction by the editor should make the book accessible to graduate students and experienced researchers alik
Vertex operator algebras of Argyres-Douglas theories from M5-branes
Song, Jaewon; Xie, Dan; Yan, Wenbin
2017-12-01
We study aspects of the vertex operator algebra (VOA) corresponding to Argyres-Douglas (AD) theories engineered using the 6d N=(2, 0) theory of type J on a punctured sphere. We denote the AD theories as ( J b [ k], Y), where J b [ k] and Y represent an irregular and a regular singularity respectively. We restrict to the `minimal' case where J b [ k] has no associated mass parameters, and the theory does not admit any exactly marginal deformations. The VOA corresponding to the AD theory is conjectured to be the W-algebra W^{k_{2d}}(J, Y ) , where {k}_{2d}=-h+b/b+k with h being the dual Coxeter number of J. We verify this conjecture by showing that the Schur index of the AD theory is identical to the vacuum character of the corresponding VOA, and the Hall-Littlewood index computes the Hilbert series of the Higgs branch. We also find that the Schur and Hall-Littlewood index for the AD theory can be written in a simple closed form for b = h. We also test the conjecture that the associated variety of such VOA is identical to the Higgs branch. The M5-brane construction of these theories and the corresponding TQFT structure of the index play a crucial role in our computations.
Diagonalizing quadratic bosonic operators by non-autonomous flow equations
Bach, Volker
2016-01-01
The authors study a non-autonomous, non-linear evolution equation on the space of operators on a complex Hilbert space. They specify assumptions that ensure the global existence of its solutions and allow them to derive its asymptotics at temporal infinity. They demonstrate that these assumptions are optimal in a suitable sense and more general than those used before. The evolution equation derives from the Brocketâe"Wegner flow that was proposed to diagonalize matrices and operators by a strongly continuous unitary flow. In fact, the solution of the non-linear flow equation leads to a diagonalization of Hamiltonian operators in boson quantum field theory which are quadratic in the field.
Operator-sum representation for bosonic Gaussian channels
International Nuclear Information System (INIS)
Ivan, J. Solomon; Sabapathy, Krishna Kumar; Simon, R.
2011-01-01
Operator-sum or Kraus representations for single-mode bosonic Gaussian channels are developed, and several of their consequences explored. The fact that the two-mode metaplectic operators acting as unitary purification of these channels do not, in their canonical form, mix the position and momentum variables is exploited to present a procedure which applies uniformly to all families in the Holevo classification. In this procedure the Kraus operators of every quantum-limited Gaussian channel can be simply read off from the matrix elements of a corresponding metaplectic operator. Kraus operators are employed to bring out, in the Fock basis, the manner in which the antilinear, unphysical matrix transposition map when accompanied by injection of a threshold classical noise becomes a physical channel, denoted D(κ) in the Holevo classification. The matrix transposition channels D(κ), D(κ -1 ) turn out to be a dual pair in the sense that their Kraus operators are related by the adjoint operation. The amplifier channel with amplification factor κ and the beam-splitter channel with attenuation factor κ -1 turn out to be mutually dual in the same sense. The action of the quantum-limited attenuator and amplifier channels as simply scaling maps on suitable quasiprobabilities in phase space is examined in the Kraus picture. Consideration of cumulants is used to examine the issue of fixed points. The semigroup property of the amplifier and attenuator families leads in both cases to a Zeno-like effect arising as a consequence of interrupted evolution. In the cases of entanglement-breaking channels a description in terms of rank 1 Kraus operators is shown to emerge quite simply. In contradistinction, it is shown that there is not even one finite rank operator in the entire linear span of Kraus operators of the quantum-limited amplifier or attenuator families, an assertion far stronger than the statement that these are not entanglement breaking channels. A characterization of
Interacting bosonic strings in subcritical dimensions
International Nuclear Information System (INIS)
Hwang, S.; Marnelius, R.
1988-01-01
Interaction theory for relativistic bosonic string in spacetime dimensions below the critical value 26 is formulated using BRST techniques with an extra scalar field. One-loop zero-point amplitudes for closed strings are modular invariant. For a free scalar field, vertex operators are constructed leading to, e.g., the old dual N-tachyon tree amplitudes in D < 26. The N-tachyon one-loop expressions contain closed string poles for open strings, and are modular invariant for closed strings. However, the threshold cuts are wrong in D < 25. Only for D=25 to the considered vertex operators lead to consistency. (orig.)
Bosonization of fermion operators as linked-cluster expansions
International Nuclear Information System (INIS)
Kishimoto, T.; Tamura, T.
1983-01-01
In order for a boson-expansion theory to be useful for practical purposes, it must satisfy at least two requirements: It must be in the form of a linked-cluster expansion, and the pure (ideal) boson states must be usable as basis states. Previously, we constructed such a boson theory and used it successfully for many realistic calculations. This construction, however, lacked mathematical rigor. In the present paper, we develop an entirely new approach, which results in the same boson expansions obtained earlier, but now in a mathematically rigorous fashion. The achievement of the new formalism goes beyond this. Its framework is much more general and flexible than was that of the earlier formalism, and it allows us to extend the calculations beyond what had been done in the past
Czech Academy of Sciences Publication Activity Database
Exner, Pavel; Post, O.
2013-01-01
Roč. 322, č. 1 (2013), s. 207-227 ISSN 0010-3616 R&D Projects: GA ČR GAP203/11/0701; GA MŠk LC06002 Institutional support: RVO:61389005 Keywords : quantum graph * vertex coupling * tubular network * approximation Subject RIV: BE - Theoretical Physics Impact factor: 1.901, year: 2013 http://download.springer.com/static/pdf/685/art%253A10.1007%252Fs00220-013-1699-9.pdf?auth66=1379859821_26f2df9c1c7e0997b290a90ec2fdfc7e&ext=.pdf
Vertex algebras and algebraic curves
Frenkel, Edward
2004-01-01
Vertex algebras are algebraic objects that encapsulate the concept of operator product expansion from two-dimensional conformal field theory. Vertex algebras are fast becoming ubiquitous in many areas of modern mathematics, with applications to representation theory, algebraic geometry, the theory of finite groups, modular functions, topology, integrable systems, and combinatorics. This book is an introduction to the theory of vertex algebras with a particular emphasis on the relationship with the geometry of algebraic curves. The notion of a vertex algebra is introduced in a coordinate-independent way, so that vertex operators become well defined on arbitrary smooth algebraic curves, possibly equipped with additional data, such as a vector bundle. Vertex algebras then appear as the algebraic objects encoding the geometric structure of various moduli spaces associated with algebraic curves. Therefore they may be used to give a geometric interpretation of various questions of representation theory. The book co...
International Nuclear Information System (INIS)
Belich, H.; Cuba, G.; Paunov, R.
1997-12-01
Affine Toda theories based on simple Lie algebras G are known to posses soliton solutions. Toda solitons has been found by Olive, Turok and Underwood within the group-theoretical approach to the integrable field equations. Single solitons are created by exponentials of special elements of the underlying affine Lie algebra which diagonalize the adjoint action of the principal Heisenberg subalgebra. When G is simply laced and level one representations are considered, the generators of the affine Lie algebra are expressed in terms of the principal Heisenberg oscillators. This representation is known as vertex operator construction. It plays a crucial role in the string theory as well as in the conformal field theory. Alternatively, solitons can be generated from the vacuum by dressing transformations. The problem to relate dressing symmetry to the vertex operator representation of the tau functions for the sine-Gordon model was previously considered by Babelon and Bernard. In the present paper, we extend this relation for arbitrary A (1) n Toda field theory. (author)
Thirring strings: use of generalized non abelian bosonization techniques
International Nuclear Information System (INIS)
Abdalla, E.
1988-02-01
A discussion of compactified bosonic string theory is presented, with a thorough use of conformal invariance in order to relate the theory to the WZW model and U(n) invariant Thirring model at critical coupling. The quantization of these theories is discussed, as well as the definition of vertex operators in the various equivalent models above. (author) [pt
Institute of Scientific and Technical Information of China (English)
XU Xiu-Wei; REN Ting-Qi; LIU Shu-Yan; MA Qiu-Ming; LIU Sheng-Dian
2007-01-01
Making use of the transformation relation among usual, normal, and antinormal ordering for the multimode boson exponential quadratic polynomial operators (BEQPO's), we present the analytic expression of arbitrary matrix elements for BEQPO's. As a preliminary application, we obtain the exact expressions of partition function about the boson quadratic polynomial system, matrix elements in particle-number, coordinate, and momentum representation, and P representation for the BEQPO's.
International Nuclear Information System (INIS)
Kneipp, Marco A.C.
1999-10-01
Soliton time delays and the semiclassical limit for soliton S-matrices are calculated for non-simply laced Affine Toda Field Theories. The phase shift is written as a sum over bilinears on the soliton conserved charges. The results apply to any two solitons of any Affine Toda Field Theory. As a by-product, a general expression for the number of bound states and the values of the coupling in which the S-matrix can be diagonal are obtained. In order to arrive at these results, a vertex operator is constructed, in the principal gradation, for non-simply laced affine Lie algebras, extending the previous constructions for simply laced and twisted affine Lie algebras. (author)
Higgs boson transverse momentum distribution
CERN. Geneva
2018-01-01
I will review the recent progress in understanding Higgs boson transverse momentum distribution focusing on effects that go beyond the point-like approximation for the Higgs-glue interaction vertex.
Continuous spins in 2D gravity: Chiral vertex operators and local fields
International Nuclear Information System (INIS)
Gervais, Jean-Loup; Schnittger, Jens
1994-01-01
We construct the exponentials of the Liouville field with continuous powers within the operator approach. Their chiral decomposition is realized using the explicit Coulomb-gas operators we introduced earlier. From the quantum group viewpoint, they are related to semi-infinite highest- or lowest-weight representations with continuous spins. The Liouville field itself is defined, and the canonical commutation relations are verified, as well as the validity of the quantum Liouville field equations. In a second part, both screening charges are considered. The braiding of the chiral components is derived and shown to agree with an ansatz of a parallel paper of Gervais and Roussel. ((orig.))
Operational Experience, Improvements, and Performance of the CDF Run II Silicon Vertex Detector
Aaltonen, T; Boveia, A.; Brau, B.; Bolla, G; Bortoletto, D; Calancha, C; Carron, S.; Cihangir, S.; Corbo, M.; Clark, D.; Di Ruzza, B.; Eusebi, R.; Fernandez, J.P.; Freeman, J.C.; Garcia, J.E.; Garcia-Sciveres, M.; Gonzalez, O.; Grinstein, S.; Hartz, M.; Herndon, M.; Hill, C.; Hocker, A.; Husemann, U.; Incandela, J.; Issever, C.; Jindariani, S.; Junk, T.R.; Knoepfel, K.; Lewis, J.D.; Martinez-Ballarin, R.; Mathis, M.; Mattson, M.; Merkel, P; Mondragon, M.N.; Moore, R.; Mumford, J.R.; Nahn, S.; Nielsen, J.; Nelson, T.K.; Pavlicek, V.; Pursley, J.; Redondo, I.; Roser, R.; Schultz, K.; Spalding, J.; Stancari, M.; Stanitzki, M.; Stuart, D.; Sukhanov, A.; Tesarek, R.; Treptow, K.; Wallny, R.; Worm, S.
2013-01-01
The Collider Detector at Fermilab (CDF) pursues a broad physics program at Fermilab's Tevatron collider. Between Run II commissioning in early 2001 and the end of operations in September 2011, the Tevatron delivered 12 fb-1 of integrated luminosity of p-pbar collisions at sqrt(s)=1.96 TeV. Many physics analyses undertaken by CDF require heavy flavor tagging with large charged particle tracking acceptance. To realize these goals, in 2001 CDF installed eight layers of silicon microstrip detectors around its interaction region. These detectors were designed for 2--5 years of operation, radiation doses up to 2 Mrad (0.02 Gy), and were expected to be replaced in 2004. The sensors were not replaced, and the Tevatron run was extended for several years beyond its design, exposing the sensors and electronics to much higher radiation doses than anticipated. In this paper we describe the operational challenges encountered over the past 10 years of running the CDF silicon detectors, the preventive measures undertaken, an...
Vertex algebras and mirror symmetry
International Nuclear Information System (INIS)
Borisov, L.A.
2001-01-01
Mirror Symmetry for Calabi-Yau hypersurfaces in toric varieties is by now well established. However, previous approaches to it did not uncover the underlying reason for mirror varieties to be mirror. We are able to calculate explicitly vertex algebras that correspond to holomorphic parts of A and B models of Calabi-Yau hypersurfaces and complete intersections in toric varieties. We establish the relation between these vertex algebras for mirror Calabi-Yau manifolds. This should eventually allow us to rewrite the whole story of toric mirror symmetry in the language of sheaves of vertex algebras. Our approach is purely algebraic and involves simple techniques from toric geometry and homological algebra, as well as some basic results of the theory of vertex algebras. Ideas of this paper may also be useful in other problems related to maps from curves to algebraic varieties.This paper could also be of interest to physicists, because it contains explicit description of holomorphic parts of A and B models of Calabi-Yau hypersurfaces and complete intersections in terms of free bosons and fermions. (orig.)
Exponential quadratic operators and evolution of bosonic systems coupled to a heat bath
International Nuclear Information System (INIS)
Ni Xiaotong; Liu Yuxi; Kwek, L. C.; Wang Xiangbin
2010-01-01
Using exponential quadratic operators, we present a general framework for studying the exact dynamics of system-bath interaction in which the Hamiltonian is described by the quadratic form of bosonic operators. To demonstrate the versatility of the approach, we study how the environment affects the squeezing of quadrature components of the system. We further propose that the squeezing can be enhanced when parity kicks are applied to the system.
International Nuclear Information System (INIS)
Chabanat, E.; D'Hondt, J.; Estre, N.; Fruehwirth, R.; Prokofiev, K.; Speer, T.; Vanlaer, P.; Waltenberger, W.
2005-01-01
Due to the high track multiplicity in the final states expected in proton collisions at the LHC experiments, novel vertex reconstruction algorithms are required. The vertex reconstruction problem can be decomposed into a pattern recognition problem ('vertex finding') and an estimation problem ('vertex fitting'). Starting from least-squares methods, robustifications of the classical algorithms are discussed and the statistical properties of the novel methods are shown. A whole set of different approaches for the vertex finding problem is presented and compared in relevant physics channels
Chabanat, E; D'Hondt, J; Vanlaer, P; Prokofiev, K; Speer, T; Frühwirth, R; Waltenberger, W
2005-01-01
Because of the high track multiplicity in the final states expected in proton collisions at the LHC experiments, novel vertex reconstruction algorithms are required. The vertex reconstruction problem can be decomposed into a pattern recognition problem ("vertex finding") and an estimation problem ("vertex fitting"). Starting from least-square methods, ways to render the classical algorithms more robust are discussed and the statistical properties of the novel methods are shown. A whole set of different approaches for the vertex finding problem is presented and compared in relevant physics channels.
Hardware-efficient bosonic quantum error-correcting codes based on symmetry operators
Niu, Murphy Yuezhen; Chuang, Isaac L.; Shapiro, Jeffrey H.
2018-03-01
We establish a symmetry-operator framework for designing quantum error-correcting (QEC) codes based on fundamental properties of the underlying system dynamics. Based on this framework, we propose three hardware-efficient bosonic QEC codes that are suitable for χ(2 )-interaction based quantum computation in multimode Fock bases: the χ(2 ) parity-check code, the χ(2 ) embedded error-correcting code, and the χ(2 ) binomial code. All of these QEC codes detect photon-loss or photon-gain errors by means of photon-number parity measurements, and then correct them via χ(2 ) Hamiltonian evolutions and linear-optics transformations. Our symmetry-operator framework provides a systematic procedure for finding QEC codes that are not stabilizer codes, and it enables convenient extension of a given encoding to higher-dimensional qudit bases. The χ(2 ) binomial code is of special interest because, with m ≤N identified from channel monitoring, it can correct m -photon-loss errors, or m -photon-gain errors, or (m -1 )th -order dephasing errors using logical qudits that are encoded in O (N ) photons. In comparison, other bosonic QEC codes require O (N2) photons to correct the same degree of bosonic errors. Such improved photon efficiency underscores the additional error-correction power that can be provided by channel monitoring. We develop quantum Hamming bounds for photon-loss errors in the code subspaces associated with the χ(2 ) parity-check code and the χ(2 ) embedded error-correcting code, and we prove that these codes saturate their respective bounds. Our χ(2 ) QEC codes exhibit hardware efficiency in that they address the principal error mechanisms and exploit the available physical interactions of the underlying hardware, thus reducing the physical resources required for implementing their encoding, decoding, and error-correction operations, and their universal encoded-basis gate sets.
Aganagic, M; Marino, M; Vafa, C; Aganagic, Mina; Klemm, Albrecht; Marino, Marcos; Vafa, Cumrun
2005-01-01
We construct a cubic field theory which provides all genus amplitudes of the topological A-model for all non-compact Calabi-Yau toric threefolds. The topology of a given Feynman diagram encodes the topology of a fixed Calabi-Yau, with Schwinger parameters playing the role of Kahler classes of Calabi-Yau. We interpret this result as an operator computation of the amplitudes in the B-model mirror which is the Kodaira-Spencer quantum theory. The only degree of freedom of this theory is an unconventional chiral scalar on a Riemann surface. In this setup we identify the B-branes on the mirror Riemann surface as fermions related to the chiral boson by bosonization.
The ARGUS silicon vertex detector
International Nuclear Information System (INIS)
Michel, E.; Ball, S.; Ehret, K.; Geyer, C.; Hesselbarth, J.; Hoelscher, A.; Hofmann, W.; Holzer, B.; Huepper, A.; Khan, S.; Knoepfle, K.T.; Seeger, M.; Spengler, J.; Brogle, M.; Horisberger, R.
1994-01-01
A silicon microstrip vertex detector has been built as an upgrade to the ARGUS detector for increased precision and efficiency in the reconstruction of decay vertices. This paper discusses the mechanical and electronic design of this device and presents first results from its successful test operation yielding an impact parameter resolution of about 18 μm. ((orig.))
The CDF Silicon Vertex Detector
International Nuclear Information System (INIS)
Tkaczyk, S.; Carter, H.; Flaugher, B.
1993-01-01
A silicon strip vertex detector was designed, constructed and commissioned at the CDF experiment at the Tevatron collider at Fermilab. The mechanical design of the detector, its cooling and monitoring are presented. The front end electronics employing a custom VLSI chip, the readout electronics and various components of the SVX system are described. The system performance and the experience with the operation of the
On the toroidal compactifications of bosonic strings in higher genus
International Nuclear Information System (INIS)
Semikhatov, A.M.
1989-01-01
For the bosonic string in a higher genus, compactified on the maximal torus of a simply laced Lie group, we discuss a possibility to construct an operator formalism involving only those operators that are well-defined globally over the whole Riemann surface. We find, in particular, higher genus extensions of (some combinations of) the vertex operators for the Kac-Moody algebra. This allows us to derive the relation between the Sugawara and Virasoro constructions of the energy-momentum tensor on Riemann surfaces, and to propose an operator mechanism underlying the construction of group current correlation functions in higher genus. (orig.)
Proposal for a CLEO precision vertex detector
International Nuclear Information System (INIS)
1991-01-01
Fermilab experiment E691 and CERN experiment NA32 have demonstrated the enormous power of precision vertexing for studying heavy quark physics. Nearly all collider experiments now have or are installing precision vertex detectors. This is a proposal for a precision vertex detector for CLEO, which will be the pre-eminent heavy quark experiment for at least the next 5 years. The purpose of a precision vertex detector for CLEO is to enhance the capabilities for isolating B, charm, and tau decays and to make it possible to measure the decay time. The precision vertex detector will also significantly improve strange particle identification and help with the tracking. The installation and use of this detector at CLEO is an important step in developing a vertex detector for an asymmetric B factory and therefore in observing CP violation in B decays. The CLEO environment imposes a number of unique conditions and challenges. The machine will be operating near the γ (4S) in energy. This means that B's are produced with a very small velocity and travel a distance about 1/2 that of the expected vertex position resolution. As a consequence B decay time information will not be useful for most physics. On the other hand, the charm products of B decays have a higher velocity. For the long lived D + in particular, vertex information can be used to isolate the charm particle on an event-by-event basis. This helps significantly in reconstructing B's. The vertex resolution for D's from B's is limited by multiple Coulomb scattering of the necessarily rather low momentum tracks. As a consequence it is essential to minimize the material, as measured in radiation lengths, in the beam pip and the vertex detector itself. It is also essential to build the beam pipe and detector with the smallest possible radius
A vertex including emission of spin fields for an arbitrary bc system
International Nuclear Information System (INIS)
Di Vecchia, P.; Madsen, R.A.; Roland, K.
1990-01-01
We construct the (N+2M) Point Vertex involving the emission of N Neveu-Schwarz and 2M Ramond states for a bosonic and fermionic bc system with a bockground charge Q. From it one can compute correlation functions on the sphere involving any number of spin fields. We show in detail that the vertex satisfies overlap conditions. (orig.)
Seniority bosons from similarity transformations
International Nuclear Information System (INIS)
Geyer, H.B.
1986-01-01
The requirement of associating in the boson space seniority with twice the number of non-s bosons defines a similarity transformation which re-expresses the Dyson pair boson images in terms of seniority bosons. In particular the fermion S-pair creation operator is mapped onto an operator which, unlike the pair boson image, does not change the number of non-s bosons. The original results of Otsuka, Arima and Iachello are recovered by this procedure while at the same time they are generalized to include g-bosons or even bosons with J>4 as well as any higher order boson terms. Furthermore the seniority boson images are valid for an arbitrary number of d- or g-bosons - a result which is not readily obtainable within the framework of the usual Marumori- or OAI-method
Blossier, BenoÃ®t.; Brinet, Mariane; Guichon, Pierre; Morénas, Vincent; Pène, Olivier; Rodríguez-Quintero, Jose; Zafeiropoulos, Savvas
2015-06-01
We present a precise nonperturbative determination of the renormalization constants in the mass independent RI'-MOM scheme. The lattice implementation uses the Iwasaki gauge action and four degenerate dynamical twisted-mass fermions. The gauge configurations are provided by the ETM Collaboration. Renormalization constants for scalar, pseudoscalar, vector and axial operators, as well as the quark propagator renormalization, are computed at three different values of the lattice spacing, two volumes and several twisted-mass parameters. The method we developed allows for a precise cross-check of the running, thanks to the particular proper treatment of hypercubic artifacts. Results for the twist-2 operator O44 are also presented.
Non-commutative analytic geometry and a new model for the field theory of closed bosonic strings
International Nuclear Information System (INIS)
Awada, M.A.
1986-07-01
We propose a new model for the field theory of interacting closed bosonic strings. The key ingredient in our constructions is based on the assumption that the action is written in terms of two independent states rather than one state. The first state is chiral while the second state is antichiral. The new picture of the corresponding vertex operator is not just an overlap ''δ'' functional
Silicon Technologies for the CLIC Vertex Detector
Spannagel, Simon
2017-01-01
CLIC is a proposed linear e$^+$e$^−$ collider designed to provide particle collisions at center-of-mass energies of up to 3 TeV. Precise measurements of the properties of the top quark and the Higgs boson, as well as searches for Beyond the Standard Model physics require a highly performant CLIC detector. In particular the vertex detector must provide a single point resolution of only a few micrometers while not exceeding the envisaged material budget of around 0.2%$~X_0$ per layer. Beam-beam interactions and beamstrahlung processes impose an additional requirement on the timestamping capabilities of the vertex detector of about 10 ns. These goals can only be met by using novel techniques in the sensor and ASIC design as well as in the detector construction. The R&D program for the CLIC vertex detector explores various technologies in order to meet these demands. The feasibility of planar sensors with a thickness of 50–150$~\\mu$m, including different active edge designs, are evaluated using Timepix3 A...
The LHCb VERTEX LOCATOR performance and VERTEX LOCATOR upgrade
International Nuclear Information System (INIS)
Rodríguez Pérez, P
2012-01-01
LHCb is an experiment dedicated to the study of new physics in the decays of beauty and charm hadrons at the Large Hadron Collider (LHC) at CERN. The Vertex Locator (VELO) is the silicon detector surrounding the LHCb interaction point. The detector operates in a severe and highly non-uniform radiation environment. The small pitch and analogue readout result in a best single hit precision of 4 μm. The upgrade of the LHCb experiment, planned for 2018, will transform the entire readout to a trigger-less system operating at 40 MHz event rate. The vertex detector will have to cope with radiation levels up to 10 16 1 MeVn eq /cm 2 , more than an order of magnitude higher than those expected at the current experiment. A solution is under development with a pixel detector, based on the Timepix/Medipix family of chips with 55 x 55 μm pixels. In addition a micro-strip solution is also under development, with finer pitch, higher granularity and lower mass than the current detector. The current status of the VELO will be described together with recent testbeam results.
Design of a secondary-vertex trigger system
International Nuclear Information System (INIS)
Husby, D.; Chew, P.; Sterner, K.; Selove, W.
1995-06-01
For the selection of beauty and charm events with high efficiency at the Tevatron, a secondary-vertex trigger system is under design. It would operate on forward-geometry events. The system would use on-line tracking of all tracks in the vertex detector, to identify events with clearly detached secondary vertices
Graphs with No Induced Five-Vertex Path or Antipath
DEFF Research Database (Denmark)
Chudnovsky, Maria; Esperet, Louis; Lemoine, Laetitia
2017-01-01
We prove that a graph G contains no induced five-vertex path and no induced complement of a five-vertex path if and only if G is obtained from 5-cycles and split graphs by repeatedly applying the following operations: substitution, split unification, and split unification in the complement, where...
Silicon technologies for the CLIC vertex detector
Spannagel, S.
2017-06-01
CLIC is a proposed linear e+e- collider designed to provide particle collisions at center-of-mass energies of up to 3 TeV. Precise measurements of the properties of the top quark and the Higgs boson, as well as searches for Beyond the Standard Model physics require a highly performant CLIC detector. In particular the vertex detector must provide a single point resolution of only a few micrometers while not exceeding the envisaged material budget of around 0.2% X0 per layer. Beam-beam interactions and beamstrahlung processes impose an additional requirement on the timestamping capabilities of the vertex detector of about 10 ns. These goals can only be met by using novel techniques in the sensor and ASIC design as well as in the detector construction. The R&D program for the CLIC vertex detector explores various technologies in order to meet these demands. The feasibility of planar sensors with a thickness of 50-150 μm, including different active edge designs, are evaluated using Timepix3 ASICs. First prototypes of the CLICpix readout ASIC, implemented in 65 nm CMOS technology and with a pixel size of 25×25μm 2, have been produced and tested in particle beams. An updated version of the ASIC with a larger pixel matrix and improved precision of the time-over-threshold and time-of-arrival measurements has been submitted. Different hybridization concepts have been developed for the interconnection between the sensor and readout ASIC, ranging from small-pitch bump bonding of planar sensors to capacitive coupling of active HV-CMOS sensors. Detector simulations based on Geant 4 and TCAD are compared with experimental results to assess and optimize the performance of the various designs. This contribution gives an overview of the R&D program undertaken for the CLIC vertex detector and presents performance measurements of the prototype detectors currently under investigation.
The OPAL vertex detector prototype
International Nuclear Information System (INIS)
Roney, J.M.; Armitage, J.C.; Carnegie, R.K.; Giles, G.L.; Hemingway, R.J.; McPherson, A.C.; Pinfold, J.L.; Waterhouse, J.; Godfrey, L.; Hargrove, C.K.
1989-01-01
The prototype test results of a high resolution charged particle tracking detector are reported. The detector is designed to measure vertex topologies of particles produced in the e + e - collisions of the OPAL experiment at LEP. The OPAL vertex detector is a 1 m long, 0.46 m diameter cylindrical drift chamber consisting of an axial and stereo layer each of which is divided into 36 jet cells. A prototype chamber containing four axial and two stereo cells was studied using a pion test beam at CERN. The studies examined the prototype under a variety of operating conditions. An r-Φ resolution of 60 μm was obtained when the chamber was operated with argon (50%)-ethane (50%) at 3.75 bar, and when CO 2 (80%)-isobutane (20%) at 2.5 bar was used a 25 μm resolution was achieved. A z measurement using end-to-end time difference has a resolution of 3.5 cm. The details of these prototype studies are discussed in this paper. (orig.)
Lifetime tests for MAC vertex chamber
International Nuclear Information System (INIS)
Nelson, H.N.
1986-07-01
A vertex chamber for MAC was proposed to increase precision in the measurement of the B hadron and tau lepton lifetimes. Thin-walled aluminized mylar drift tubes were used for detector elements. A study of radiation hardness was conducted under the conditions of the proposed design using different gases and different operating conditions
International Nuclear Information System (INIS)
Markovic, D; Gros, C
2009-01-01
A class of models describing the flow of information within networks via routing processes is proposed and investigated, concentrating on the effects of memory traces on the global properties. The long-term flow of information is governed by cyclic attractors, allowing to define a measure for the information centrality of a vertex given by the number of attractors passing through this vertex. We find the number of vertices having a nonzero information centrality to be extensive/subextensive for models with/without a memory trace in the thermodynamic limit. We evaluate the distribution of the number of cycles, of the cycle length and of the maximal basins of attraction, finding a complete scaling collapse in the thermodynamic limit for the latter. Possible implications of our results for the information flow in social networks are discussed.
Jet Vertex Charge Reconstruction
Nektarijevic, Snezana; The ATLAS collaboration
2015-01-01
A newly developed algorithm called the jet vertex charge tagger, aimed at identifying the sign of the charge of jets containing $b$-hadrons, referred to as $b$-jets, is presented. In addition to the well established track-based jet charge determination, this algorithm introduces the so-called \\emph{jet vertex charge} reconstruction, which exploits the charge information associated to the displaced vertices within the jet. Furthermore, the charge of a soft muon contained in the jet is taken into account when available. All available information is combined into a multivariate discriminator. The algorithm has been developed on jets matched to generator level $b$-hadrons provided by $t\\bar{t}$ events simulated at $\\sqrt{s}$=13~TeV using the full ATLAS detector simulation and reconstruction.
International Nuclear Information System (INIS)
Koch, N.; Kolander, M.; Kolanoski, H.; Siegmund, T.; Bergter, J.; Eckstein, P.; Schubert, K.R.; Waldi, R.; Imhof, M.; Ressing, D.; Weiss, U.; Weseler, S.
1995-09-01
A fast second level trigger has been developed for the ARGUS experiment which recognizes tracks originating from the interaction region. The processor compares the hits in the ARGUS Micro Vertex Drift Chamber to 245760 masks stored in random access memories. The masks which are fully defined in three dimensions are able to reject tracks originating in the wall of the narrow beampipe of 10.5 mm radius. (orig.)
Biricodar. Vertex Pharmaceuticals.
Dey, Saibal
2002-05-01
Vertex is developing biricodar as a chemosensitizing agent designed to restore the effectiveness of chemotherapeutic agents in tumor multidrug resistance. By November 1998, phase II trials had commenced for biricodar, in combination with chemotherapy, for five common cancer indications: breast, ovarian, soft-tissue sarcomas, small cell lung cancer and prostate cancer. Phase II trials were ongoing in January 2002. By March 2000, Vertex was the sole developer of biricodar, as an agreement made in 1996 with BioChem Pharma (now Shire Pharmaceuticals), for the development and marketing of biricodar in Canada was terminated. Biricodar is the free base compound, which also has a citrate salt analog known as VX-710-3. Vertex has published three patents, WO-09615101, WO-09636630 and WO-09736869, disclosing derivatives of biricodar that are claimed for the treatment of multidrug resistant protein and P-glycoprotein-mediated multidrug resistant tumors. In January 2002, a Banc of America analyst report forecast that biricodar had a 30% chance of reaching the market with a launch date in the second half of 2005, with peak sales estimated at $250 million.
Perturbative quantum field theory via vertex algebras
International Nuclear Information System (INIS)
Hollands, Stefan; Olbermann, Heiner
2009-01-01
In this paper, we explain how perturbative quantum field theory can be formulated in terms of (a version of) vertex algebras. Our starting point is the Wilson-Zimmermann operator product expansion (OPE). Following ideas of a previous paper (S. Hollands, e-print arXiv:0802.2198), we consider a consistency (essentially associativity) condition satisfied by the coefficients in this expansion. We observe that the information in the OPE coefficients can be repackaged straightforwardly into 'vertex operators' and that the consistency condition then has essentially the same form as the key condition in the theory of vertex algebras. We develop a general theory of perturbations of the algebras that we encounter, similar in nature to the Hochschild cohomology describing the deformation theory of ordinary algebras. The main part of the paper is devoted to the question how one can calculate the perturbations corresponding to a given interaction Lagrangian (such as λφ 4 ) in practice, using the consistency condition and the corresponding nonlinear field equation. We derive graphical rules, which display the vertex operators (i.e., OPE coefficients) in terms of certain multiple series of hypergeometric type.
The BELLE silicon vertex detector
Energy Technology Data Exchange (ETDEWEB)
Alimonti, G.; Aihara, H.; Alexander, J.; Asano, Y.; Bakich, A.; Bozek, A.; Banas, E.; Browder, T.; Dragic, J.; Fukunaga, C.; Gordon, A.; Guler, H.; Everton, C.; Heenan, E.; Haba, J.; Hazumi, M.; Hastings, N.; Hara, T.; Hojo, T.; Higuchi, T.; Iwai, G.; Ishino, H.; Jalocha, P.; Korotuschenko, K.; Kaneko, J.; Kapusta, P.; Kawasaki, T.; Lange, J.S.; Li, Y.; Marlow, D.; Moloney, G.; Moffitt, L.; Mori, S.; Matsubara, T.; Nakadaira, T.; Nakamura, T.; Natkaniec, Z.; Okuno, S.; Olsen, S.; Ostrowicz, W.; Palka, H.; Peak, L.S.; Ryuko, J.; Rozanska, M.; Sevior, M.; Shimada, J.; Sumisawa, K.; Stock, R.; Stanic, S.; Swain, S.; Taylor, G.; Takasaki, F.; Tajima, H.; Trabelsi, K.; Tamura, N.; Tanaka, J.; Tanaka, M. E-mail: tanakam@post.kek.jp; Takahashi, S.; Tomura, T.; Tsuboyama, T.; Tsujita, Y.; Varner, G.; Varvell, K.E.; Watanabe, Y.; Yamamoto, H.; Yamada, Y.; Yokoyama, M.; Zhao, H.; Zontar, D
2000-10-11
A silicon vertex detector has been developed for the BELLE experiment at the KEK B-factory to be used to determine the relative displacements of B-meson decay vertices for CP violation measurements. The device has been successfully installed and operated with high-luminosity beam conditions. The average strip yield is larger than 96%, including the preamplifier electronics yield and the detector is currently working stably with a signal-to-noise ratio of 17-40. The measured impact parameter resolution agrees with expectations based on Monte Carlo simulations, and the measured D{sup 0} lifetime is in good agreement with the particle data group's average of other measurements. Several B{yields}J/{psi}K events produced at the {upsilon}(4S) resonance have been detected and separate decay vertices have been found.
The ZEUS vertex detector: Design and prototype
International Nuclear Information System (INIS)
Alvisi, C.; Anzivino, G.; Arzarello, F.; Barbagli, G.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, G.; Bruni, P.; Camerini, U.; Cara Romeo, G.; Castellini, G.; Chiarini, M.; Cifarelli, L.; Cindolo, F.; Ciralli, F.; Contin, A.; Costa, M.; D'Auria, S.; Del Papa, C.; De Pasquale, S.; Fiori, F.; Forte, A.; Frasconi, F.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Lisowski, B.; Maccarrone, G.; Margotti, A.; Massam, T.; Nania, R.; O'Shea, V.; Palmonari, F.; Pelfer, P.; Pilastrini, R.; Qian, S.; Sartorelli, G.; Schioppa, M.; Susinno, G.; Timellini, R.; Zichichi, A.; Bologna Univ.; Cosenza Univ.; Florence Univ.; Istituto Nazionale di Fisica Nucleare, Bologna; Istituto Nazionale di Fisica Nucleare, Florence; Istituto Nazionale di Fisica Nucleare, Frascati; Consiglio Nazionale delle Ricerche, Florence
1991-01-01
A gas vertex detector, operated with dimethylether (DME) at atmospheric pressure, is presently being built for the ZEUS experiment at HERA. Its main design features, together with the performances of a prototype measured at various operating voltages, particle rates and geometrical conditions on a CERN Proton Synchrotron test beam, are presented. A spatial resolution down to 35 μm and an average wire efficiency of 96% have been achieved, for a 3 mm gas gap relative to each sense wire. (orig.)
International Nuclear Information System (INIS)
Bonatsos, D.; Lo Liduce, N.; Raychev, P.; Roussev, R.; Terziev, P.
1996-01-01
Quantum algebras (also called quantum groups) are nonlinear generalization of the usual Lie algebras, to which the reduce in the limiting case when the deformed parameters are set equal to unity. From mathematical point of view they have the structure of Holf algebras. The interest for applications of quantum algebras in physics was triggered in 1989 by the introduction of the q-deformed harmonic oscillator. In this connection the quantum algebra su q (2) has been used for description of superdeformed bands of even-even nuclei and rotational nuclear and molecular spectra. The construction of chains of subalgebras of a given q-algebra is a non trivial problem, since the existence of a chain of subalgebras of the corresponding Lie algebra does not guarantee the existence of the q-analogue of this chain. In particular, the so q (3) subalgebra of u q (3) has attracted much attention, since its classical analogue is a basic ingredient of several nuclear models, as the Elliot model and the su(3) limit of the Interacting Boson Model (IBM), the Fermion Dynamical Symmetry Model (FDSM), the Interacting Vector Boson Model (IVBM), the nuclear vibron model for clustering, as well as of the su(3) limit of the vibron model for molecules. In the present report we compute the reduced matrix elements of a special second-rank tensor operator (quadrupole operator) in the so q (3) subgroup of u q (3) basis (for the most symmetric u q (3)-representations) and investigate some of their properties. Also we construct a simplified boson realization of the so q (3) subalgebra of u q (3) and the corresponding so q (3) basis states. It should be noted that the obtained results are valid only for real values of the deformation parameter q. On the other hand the comparison of the experimental data with the predictions of a number of physical models, based on the q deformed su q (2) algebra, shows that one can achieve a good agreement between theory and experiment only if q is a pure phase (q
International Nuclear Information System (INIS)
Delbourgo, R.
1976-01-01
Owing to weak interactions, the three-photon vertex is non-zero. From gauge invariance and symmetry requirements, it is proved that the C = -1P = - 1 vertex amplitudes are at least of order q 7 in the limit of soft photon momentum q and that if any two photons are placed on mass shell the form factors vanish identically. (author)
Squark decay into Higgs bosons in the MSSM with complex parameter
International Nuclear Information System (INIS)
Nguyen Dinh Cuong; Dao Thi Le Thuy; Ha Huy Bang
2003-01-01
The squark decays into Higgs bosons with complex parameters have been considered. The one loop vertex correction to the decay width has been calculated. The numerical results are also performed. (author)
On the colour contribution to effective weak vertex in broken colour gauge theories
International Nuclear Information System (INIS)
Ramachandran, R.
1979-01-01
Treating the breaking of colour symmetry via the mixing between the colour gluons and weak bosons (a la Rajasekaran and Roy) it is observed that the colour contribution to the effective weak vertex of a quark at zero momentum transfer is zero upto 0(α). (author)
Studies of the Triple Pomeron Vertex in perturbative QCD and its applications in phenomenology
International Nuclear Information System (INIS)
Kutak, K.
2006-12-01
We study the properties of the Triple Pomeron Vertex in the perturbative QCD using the twist expansion method. Such analysis allows us to find the momenta configurations preferred by the vertex. When the momentum transfer is zero, the dominant contribution in the limit when N c →∞ comes from anticollinear pole. This is in agreement with result obtained without expanding, but by direct averaging of the Triple Pomeron Vertex over angles. Resulting theta functions show that the anticollinear configuration is optimal for the vertex. In the finite N c case the collinear term also contributes. Using the Triple Pomeron Vertex we construct a pomeron loop and we also consider four gluon propagation between two Triple Pomeron Vertices. We apply the Triple Pomeron Vertex to construct the Hamiltonian from which we derive the Balitsky-Kovchegov equation for an unintegrated gluon density. In order to apply this equation to phenomenology, we apply the Kwiecinski-Martin-Stasto model for higher order corrections to a linear part of the Balitsky-Kovchegov equation. We introduce the definition of the saturation scale which reflects properties of this equation. Finally, we use it for computation of observables, such as the F 2 structure function and diffractive Higgs boson production cross section. The impact of screening corrections on F 2 is negligible, but those effects turn out to be significant for diffractive Higgs boson production at LHC
Studies of the Triple PomeronVertex in perturbative QCD and its applications in phenomenology
Energy Technology Data Exchange (ETDEWEB)
Kutak, K.
2006-12-15
We study the properties of the Triple Pomeron Vertex in the perturbative QCD using the twist expansion method. Such analysis allows us to find the momenta configurations preferred by the vertex. When the momentum transfer is zero, the dominant contribution in the limit when N{sub c}{yields}{infinity} comes from anticollinear pole. This is in agreement with result obtained without expanding, but by direct averaging of the Triple Pomeron Vertex over angles. Resulting theta functions show that the anticollinear configuration is optimal for the vertex. In the finite N{sub c} case the collinear term also contributes. Using the Triple Pomeron Vertex we construct a pomeron loop and we also consider four gluon propagation between two Triple Pomeron Vertices. We apply the Triple Pomeron Vertex to construct the Hamiltonian from which we derive the Balitsky-Kovchegov equation for an unintegrated gluon density. In order to apply this equation to phenomenology, we apply the Kwiecinski-Martin-Stasto model for higher order corrections to a linear part of the Balitsky-Kovchegov equation. We introduce the definition of the saturation scale which reflects properties of this equation. Finally, we use it for computation of observables, such as the F{sub 2} structure function and diffractive Higgs boson production cross section. The impact of screening corrections on F{sub 2} is negligible, but those effects turn out to be significant for diffractive Higgs boson production at LHC.
Performance-Optimization Studies for the CLIC Vertex Detector
AUTHOR|(CDS)2085406; Roloff, Philipp
The Compact Linear Collider (CLIC) is a mutli-TeV linear e+e- collider currently under development at CERN. In the post-LHC era, CLIC will allow to explore a great number of searches for New Physics such as the precise measurements of the Higgs boson. In this master thesis, we mainly focus on the development and the improvement of the vertex detector. The vertex detector requires excellent spatial resolution, low mass, geometrical coverage down to low polar angles, high rate readout for the sensors and new cooling technologies for heat removal. Considering such requirements, the CLIC vertex detector technology is far more advanced in comparison to the technologies currently used in particle physics. This project consists of two main parts. In the first part, we study the vertex detector and optimize its geometry for the use of airflow cooling techniques and also for flavor tagging. In the second part, we implement a decoder which can respect the timing constraints for the CLICpix chip, a silicon pixel detect...
International Nuclear Information System (INIS)
Navratil, P.; Dobes, J.
1992-01-01
Methods of boson mapping are tested in calculations for a simple model system of four protons and four neutrons in single-j distinguishable orbits. Two-body terms in the boson images of the fermion operators are considered. Effects of the seniority v=4 states are thus included. The treatment of unphysical states and the influence of boson space truncation are particularly studied. Both the Dyson boson mapping and the seniority boson mapping as dictated by the similarity transformed Dyson mapping do not seem to be simply amenable to truncation. This situation improves when the one-body form of the seniority image of the quadrupole operator is employed. Truncation of the boson space is addressed by using the effective operator theory with a notable improvement of results
From integrability to conformal symmetry: Bosonic superconformal Toda theories
International Nuclear Information System (INIS)
Bo-Yu Hou; Liu Chao
1993-01-01
In this paper the authors study the conformal integrable models obtained from conformal reductions of WZNW theory associated with second order constraints. These models are called bosonic superconformal Toda models due to their conformal spectra and their resemblance to the usual Toda theories. From the reduction procedure they get the equations of motion and the linearized Lax equations in a generic Z gradation of the underlying Lie algebra. Then, in the special case of principal gradation, they derive the classical r matrix, fundamental Poisson relation, exchange algebra of chiral operators and find out the classical vertex operators. The result shows that their model is very similar to the ordinary Toda theories in that one can obtain various conformal properties of the model from its integrability
The leading eikonal operator in string-brane scattering at high energy
D'Appollonio, Giuseppe; Russo, Rodolfo; Veneziano, Gabriele
2013-01-01
In this paper we present two (a priori independent) derivations of the eikonal operator in string-brane scattering. The first one is obtained by summing surfaces with any number of boundaries, while in the second one the eikonal operator is derived from the three-string vertex in a suitable light-cone gauge. This second derivation shows that the bosonic oscillators present in the leading eikonal operator are to be identified with the string bosonic oscillators in a suitable light-cone gauge, while the first one shows that it exponentiates recovering unitarity. This paper is a review of results obtained in two previous publications of the same authors.
The leading eikonal operator in string-brane scattering at high energy
DEFF Research Database (Denmark)
Giuseppe, D'Appollonio; di Vecchia, Paolo; Russo, Rodolfo
2015-01-01
In this paper we present two (a priori independent) derivations of the eikonal operator in string-brane scattering. The rst one is obtained by summing surfaces with any number of boundaries, while in the second one the eikonal operator is derived from the three-string vertex in a suitable light......-cone gauge. This second derivation shows that the bosonic oscillators present in the leading eikonal operator are to be identied with the string bosonic oscillators in a suitable light-cone gauge, while the rst one shows that it exponentiates recovering unitarity. This paper is a review of results obtained...
The STAR Vertex Position Detector
Energy Technology Data Exchange (ETDEWEB)
Llope, W.J., E-mail: llope@rice.edu [Rice University, Houston, TX 77005 (United States); Zhou, J.; Nussbaum, T. [Rice University, Houston, TX 77005 (United States); Hoffmann, G.W. [University of Texas, Austin, TX 78712 (United States); Asselta, K. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Brandenburg, J.D.; Butterworth, J. [Rice University, Houston, TX 77005 (United States); Camarda, T.; Christie, W. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Crawford, H.J. [University of California, Berkeley, CA 94720 (United States); Dong, X. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Engelage, J. [University of California, Berkeley, CA 94720 (United States); Eppley, G.; Geurts, F. [Rice University, Houston, TX 77005 (United States); Hammond, J. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Judd, E. [University of California, Berkeley, CA 94720 (United States); McDonald, D.L. [Rice University, Houston, TX 77005 (United States); Perkins, C. [University of California, Berkeley, CA 94720 (United States); Ruan, L.; Scheblein, J. [Brookhaven National Laboratory, Upton, NY 11973 (United States); and others
2014-09-21
The 2×3 channel pseudo Vertex Position Detector (pVPD) in the STAR experiment at RHIC has been upgraded to a 2×19 channel detector in the same acceptance, called the Vertex Position Detector (VPD). This detector is fully integrated into the STAR trigger system and provides the primary input to the minimum-bias trigger in Au+Au collisions. The information from the detector is used both in the STAR Level-0 trigger and offline to measure the location of the primary collision vertex along the beam pipe and the event “start time” needed by other fast-timing detectors in STAR. The offline timing resolution of single detector channels in full-energy Au+Au collisions is ∼100 ps, resulting in a start time resolution of a few tens of picoseconds and a resolution on the primary vertex location of ∼1 cm.
Evidence of Higgs Boson Production through Vector Boson Fusion
AUTHOR|(INSPIRE)INSPIRE-00333580
The discovery of the Higgs boson in 2012 provided confirmation of the proposed mechanism for preserving the electroweak $SU(2) \\times U(1)$ gauge symmetry of the Standard Model of particle physics. It also heralded in a new era of precision Higgs physics. This thesis presents a measurement of the rate at which the Higgs boson is produced by vector boson fusion in the \\wwlnln decay channel. With gauge boson couplings in both the production and decay vertices, a VBF measurement in this channel is a powerful probe of the $VVH$ vertex strength. Using $4.5$~fb$^{-1}$ and $20.3$~fb$^{-1}$ of $pp$ collision data collected at respective center-of-mass energies of 7 and $8 \\tev$ in the ATLAS detector, measurements of the statistical significance and the signal strength are carried out in the Higgs mass range $100 \\leq m_H \\leq 200 \\gev$. These measurements are enhanced with a boosted decision tree that exploits the correlations between eight kinematic inputs in order to separate signal and background processes. At the...
Constraint on the QED vertex from the mass anomalous dimension γm = 1
International Nuclear Information System (INIS)
Bashir, A.; Pennington, M.R.
1995-10-01
We discuss the structure of the non-perturbative fermion-boson vertex in quenched QED. We show that it is possible to construct a vertex which not only ensures that the fermion propagator is multiplicatively renormalizable, obeys the appropriate Ward-Takahashi identity, reproduces perturbation theory for weak couplings and guarantees that the critical coupling at which the mass is dynamically generated is gauge independent but also makes sure that the value for the anomalous dimension for the mass function is strictly 1, as Holdom and Mahanta have proposed. (author). 8 refs
International Nuclear Information System (INIS)
Adler, J.; Bolton, T.; Bunnell, K.
1987-07-01
The design and construction of the new Mark III vertex chamber is described. Initial tests with cosmic rays prove the ability of track reconstruction and yield triplet resolutions below 50 μm at 3 atm using argon/ethane (50:50). Also performed are studies using a prototype of a pressurized wire vertex chamber with 8 mm diameter straw geometry. Spatial resolution of 35mm was obtained using dimethyl ether (DME) at 1 atm and 30 μm using argon/ethane (50/50 mixture) at 4 atm. Preliminary studies indicate the DME to adversely affect such materials as aluminized Mylar and Delrin
Operadic formulation of topological vertex algebras and gerstenhaber or Batalin-Vilkovisky algebras
International Nuclear Information System (INIS)
Huang Yizhi
1994-01-01
We give the operadic formulation of (weak, strong) topological vertex algebras, which are variants of topological vertex operator algebras studied recently by Lian and Zuckerman. As an application, we obtain a conceptual and geometric construction of the Batalin-Vilkovisky algebraic structure (or the Gerstenhaber algebra structure) on the cohomology of a topological vertex algebra (or of a weak topological vertex algebra) by combining this operadic formulation with a theorem of Getzler (or of Cohen) which formulates Batalin-Vilkovisky algebras (or Gerstenhaber algebras) in terms of the homology of the framed little disk operad (or of the little disk operad). (orig.)
The Mark II Vertex Drift Chamber
International Nuclear Information System (INIS)
Alexander, J.P.; Baggs, R.; Fujino, D.
1989-03-01
We have completed constructing and begun operating the Mark II Drift Chamber Vertex Detector. The chamber, based on a modified jet cell design, achieves 30 μm spatial resolution and 2 gas mixtures. Special emphasis has been placed on controlling systematic errors including the use of novel construction techniques which permit accurate wire placement. Chamber performance has been studied with cosmic ray tracks collected with the chamber located both inside and outside the Mark II. Results on spatial resolution, average pulse shape, and some properties of CO 2 mixtures are presented. 10 refs., 12 figs., 1 tab
Vertex ring-indexed Lie algebras
International Nuclear Information System (INIS)
Fairlie, David; Zachos, Cosmas
2005-01-01
Infinite-dimensional Lie algebras are introduced, which are only partially graded, and are specified by indices lying on cyclotomic rings. They may be thought of as generalizations of the Onsager algebra, but unlike it, or its sl(n) generalizations, they are not subalgebras of the loop algebras associated with sl(n). In a particular interesting case associated with sl(3), their indices lie on the Eisenstein integer triangular lattice, and these algebras are expected to underlie vertex operator combinations in CFT, brane physics, and graphite monolayers
Technologies for Future Vertex and Tracking Detectors at CLIC
Spannagel, Simon
2018-01-01
CLIC is a proposed linear e$^{+}$e$^{-}$ collider with center-of-mass energies of up to 3 TeV. Its main objectives are precise top quark and Higgs boson measurements, as well as searches for Beyond Standard Model physics. To meet the physics goals, the vertex and tracking detectors require not only a spatial resolution of a few micrometers and a very low material budget, but also timing capabilities with a precision of a few nanoseconds to allow suppression of beam-induced backgrounds. Different technologies using hybrid silicon detectors are explored for the vertex detectors, such as dedicated readout ASICs, small-pitch active edge sensors as well as capacitively coupled High-Voltage CMOS sensors. Monolithic sensors are considered as an option for the tracking detector, and a prototype using a CMOS process with a high-resistivity epitaxial layer is being designed. Different designs using a silicon-on-insulator process are under investigation for both vertex and tracking detector. All prototypes are evaluate...
First Results from the LHCb Vertex Locator
Borghi, S
2010-01-01
LHCb is a dedicated experiment to study new physics in the decays of beauty and charm hadrons at the Large Hadron Collider (LHC) at CERN. The beauty and charm hadrons are identified through their flight distance in the Vertex Locator (VELO), and hence the detector is critical for both the trigger and offline physics analyses. The VELO is the silicon detector surrounding the interaction point, and is the closest LHC vertex detector to the interaction point, located only 7 mm from the LHC beam during normal operation. The detector will operate in an extreme and highly non-uniform radiation environment. The VELO consists of two retractable detector halves with 21 silicon micro-strip tracking modules each. A module is composed of two n+-on-n 300 micron thick half disc sensors with R-measuring and Phi-measuring micro-strip geometry, mounted on a carbon fibre support paddle. The minimum pitch is approximately 40 $\\mu$m. The detector is also equipped with one n-on-p module. The detectors are operated in vacuum and a...
Connections for Small Vertex Models
Indian Academy of Sciences (India)
This paper is a first attempt at calssifying connections on small vertex models i.e., commuting squares of the form displayed in (1.2) below. ... obtain necessary conditions for two such `model connections' in (2, ) to be ... Current Issue : Vol.
A Macdonald refined topological vertex
Foda, Omar; Wu, Jian-Feng
2017-07-01
We consider the refined topological vertex of Iqbal et al (2009 J. High Energy Phys. JHEP10(2009)069), as a function of two parameters ≤ft\\lgroup x, y \\right\\rgroup , and deform it by introducing the Macdonald parameters ≤ft\\lgroup q, t \\right\\rgroup , as in the work of Vuletić on plane partitions (Vuletić M 2009 Trans. Am. Math. Soc. 361 2789-804), to obtain ‘a Macdonald refined topological vertex’. In the limit q → t , we recover the refined topological vertex of Iqbal et al and in the limit x → y , we obtain a qt-deformation of the original topological vertex of Aganagic et al (2005 Commun. Math. Phys. 25 425-78). Copies of the vertex can be glued to obtain qt-deformed 5D instanton partition functions that have well-defined 4D limits and, for generic values of ≤ft\\lgroup q, t\\right\\rgroup , contain infinite-towers of poles for every pole present in the limit q → t .
Aleph silicon microstrip vertex detector
Laurent Guiraud
1998-01-01
This microstrip vertex locator was located at the heart of the ALEPH experiment, one of the four experiments at the Large Electron-Positron (LEP) collider. In the experiments at CERN's LEP, which ran from 1989 to 2000, modern silicon microvertex detectors, such as those used at ALEPH, monitored the production of short-lived particles close to the beam pipe.
The CDF Silicon Vertex Trigger
International Nuclear Information System (INIS)
Dell'Orso, Mauro
2006-01-01
Motivations, design, performance and ongoing upgrade of the CDF Silicon Vertex Trigger are presented. The system provides CDF with a powerful tool for online tracking with offline quality in order to enhance the reach on B-physics and large P t -physics coupled to b quarks
Bosonization and quantum hydrodynamics
Indian Academy of Sciences (India)
thereby completing the formalism introduced earlier [10]. It is worth emphasizing that it is the slow part of the field operator that is easily expressed in terms of the bosons rather than the full field as was implied in one of the author's earlier work. [5]. The present approach, together with the action mentioned in the abstract, can.
Calculation of track and vertex errors for detector design studies
International Nuclear Information System (INIS)
Harr, R.
1995-01-01
The Kalman Filter technique has come into wide use for charged track reconstruction in high-energy physics experiments. It is also well suited for detector design studies, allowing for the efficient estimation of optimal track covariance matrices without the need of a hit level Monte Carlo simulation. Although much has been published about the Kalman filter equations, there is a lack of previous literature explaining how to implement the equations. In this paper, the operators necessary to implement the Kalman filter equations for two common detector configurations are worked out: a central detector in a uniform solenoidal magnetic field, and a fixed-target detector with no magnetic field in the region of the interactions. With the track covariance matrices in hand, vertex and invariant mass errors are readily calculable. These quantities are particularly interesting for evaluating experiments designed to study weakly decaying particles which give rise to displaced vertices. The optimal vertex errors are obtained via a constrained vertex fit. Solutions are presented to the constrained vertex problem with and without kinematic constraints. Invariant mass errors are obtained via propagation of errors; the use of vertex constrained track parameters is discussed. Many of the derivations are new or previously unpublished
A Novel Vertex Affinity for Community Detection
Energy Technology Data Exchange (ETDEWEB)
Yoo, Andy [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sanders, Geoffrey [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Henson, Van [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vassilevski, Panayot [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2015-10-05
We propose a novel vertex affinity measure in this paper. The new vertex affinity quantifies the proximity between two vertices in terms of their clustering strength and is ideal for such graph analytics applications as community detection. We also developed a framework that combines simple graph searches and resistance circuit formulas to compute the vertex affinity efficiently. We study the properties of the new affinity measure empirically in comparison to those of other popular vertex proximity metrics. Our results show that the existing metrics are ill-suited for community detection due to their lack of fundamental properties that are essential for correctly capturing inter- and intra-cluster vertex proximity.
Vector boson scattering at CLIC
Energy Technology Data Exchange (ETDEWEB)
Kilian, Wolfgang; Fleper, Christian [Department Physik, Universitaet Siegen, 57068 Siegen (Germany); Reuter, Juergen [DESY Theory Group, 22603 Hamburg (Germany); Sekulla, Marco [Institut fuer Theoretische Physik, Karlsruher Institut fuer Technologie, 76131 Karlsruhe (Germany)
2016-07-01
Linear colliders operating in a range of multiple TeV are able to investigate the details of vector boson scattering and electroweak symmetry breaking. We calculate cross sections with the Monte Carlo generator WHIZARD for vector boson scattering processes at the future linear e{sup +} e{sup -} collider CLIC. By finding suitable cuts, the vector boson scattering signal processes are isolated from the background. Finally, we are able to determine exclusion sensitivities on the non-Standard Model parameters of the relevant dimension eight operators.
Tripartite connection condition for a quantum graph vertex
Czech Academy of Sciences Publication Activity Database
Cheon, T.; Exner, Pavel; Turek, Ondřej
2010-01-01
Roč. 375, č. 2 (2010), s. 113-118 ISSN 0375-9601 R&D Projects: GA MŠk LC06002 Institutional research plan: CEZ:AV0Z10480505 Keywords : Schrodinger operator * Singular vertex * Boundary conditions Subject RIV: BA - General Mathematics Impact factor: 1.963, year: 2010
Parquet theory of finite temperature boson systems
International Nuclear Information System (INIS)
He, H.W.
1992-01-01
In this dissertation, the author uses the parquet summation for the two-body vertex as the framework for a perturbation theory of finite-temperature homogeneous boson systems. The present formalism is a first step toward a full description of the thermodynamic behavior of a finite temperature boson system through parquet summation. The current approximation scheme focuses on a system below the Bose-Einstein condensation temperature and considers only the contribution from Bogoliubov excitations out of a boson condensate. Comparison with the finite temperature variational theory by Campbell et al. shows strong similarities between variational theory and the current theory. Numerical results from a 4 He system and a nuclear system are discussed
Belle II silicon vertex detector
Energy Technology Data Exchange (ETDEWEB)
Adamczyk, K. [H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342 (Poland); Aihara, H. [Department of Physics, University of Tokyo, Tokyo 113-0033 (Japan); Angelini, C. [Dipartimento di Fisica, Università di Pisa, I-56127 Pisa (Italy); INFN Sezione di Pisa, I-56127 Pisa (Italy); Aziz, T.; Babu, V. [Tata Institute of Fundamental Research, Mumbai 400005 (India); Bacher, S. [H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342 (Poland); Bahinipati, S. [Indian Institute of Technology Bhubaneswar, Satya Nagar (India); Barberio, E.; Baroncelli, Ti.; Baroncelli, To. [School of Physics, University of Melbourne, Melbourne, Victoria 3010 (Australia); Basith, A.K. [Indian Institute of Technology Madras, Chennai 600036 (India); Batignani, G. [Dipartimento di Fisica, Università di Pisa, I-56127 Pisa (Italy); INFN Sezione di Pisa, I-56127 Pisa (Italy); Bauer, A. [Institute of High Energy Physics, Austrian Academy of Sciences, 1050 Vienna (Austria); Behera, P.K. [Indian Institute of Technology Madras, Chennai 600036 (India); Bergauer, T. [Institute of High Energy Physics, Austrian Academy of Sciences, 1050 Vienna (Austria); Bettarini, S. [Dipartimento di Fisica, Università di Pisa, I-56127 Pisa (Italy); INFN Sezione di Pisa, I-56127 Pisa (Italy); Bhuyan, B. [Indian Institute of Technology Guwahati, Assam 781039 (India); Bilka, T. [Faculty of Mathematics and Physics, Charles University, 121 16 Prague (Czech Republic); Bosi, F. [INFN Sezione di Pisa, I-56127 Pisa (Italy); Bosisio, L. [Dipartimento di Fisica, Università di Trieste, I-34127 Trieste (Italy); INFN Sezione di Trieste, I-34127 Trieste (Italy); and others
2016-09-21
The Belle II experiment at the SuperKEKB collider in Japan is designed to indirectly probe new physics using approximately 50 times the data recorded by its predecessor. An accurate determination of the decay-point position of subatomic particles such as beauty and charm hadrons as well as a precise measurement of low-momentum charged particles will play a key role in this pursuit. These will be accomplished by an inner tracking device comprising two layers of pixelated silicon detector and four layers of silicon vertex detector based on double-sided microstrip sensors. We describe herein the design, prototyping and construction efforts of the Belle-II silicon vertex detector.
Jost, Jürgen
2007-01-01
This book presents a mathematical treatment of Bosonic string theory from the point of view of global geometry. As motivation, Jost presents the theory of point particles and Feynman path integrals. He provides detailed background material, including the geometry of Teichmüller space, the conformal and complex geometry of Riemann surfaces, and the subtleties of boundary regularity questions. The high point is the description of the partition function for Bosonic strings as a finite-dimensional integral over a moduli space of Riemann surfaces. Jost concludes with some topics related to open and closed strings and D-branes. Bosonic Strings is suitable for graduate students and researchers interested in the mathematics underlying string theory.
STAR Vertex Detector Upgrade Development
International Nuclear Information System (INIS)
Greiner, Leo C.; Matis, Howard S.; Stezelberger, Thorsten; Vu, Chinh Q.; Wieman, Howard; Szelezniak, Michal; Sun, Xiangming
2008-01-01
We report on the development and prototyping efforts undertaken with the goal of producing a micro-vertex detector for the STAR experiment at the RHIC accelerator at BNL. We present the basic detector requirements and show a sensor development path, conceptual mechanical design candidates and readout architecture. Prototyping and beam test results with current generation MimoSTAR-2 sensors and a readout system featuring FPGA based on-the-fly hit finding and data sparsification are also presented
International Nuclear Information System (INIS)
Carter, J.R.; Elcombe, P.A.; Hill, J.C.; Roach, C.M.; Armitage, J.C.; Carnegie, R.K.; Estabrooks, P.; Hemingway, R.; Karlen, D.; McPherson, A.; Pinfold, J.; Roney, J.M.; Routenburg, P.; Waterhouse, J.; Hargrove, C.K.; Klem, D.; Oakham, F.G.; Carter, A.A.; Jones, R.W.L.; Lasota, M.M.B.; Lloyd, S.L.; Pritchard, T.W.; Wyatt, T.R.
1990-01-01
A high precision vertex drift chamber has been installed in the OPAL experiment at LEP. The design of the chamber and the associated readout electronics is described. The performance of the system has been studied using cosmic ray muons and the results of these studies are presented. A space resolution of 50 μm in the drift direction is obtained using the OPAL central detector gas mixture at 4 bar. (orig.)
Lectures on the Topological Vertex
Mariño, M
2008-01-01
In this lectures, I will summarize the approach to Gromov–Witten invariants on toric Calabi–Yau threefolds based on large N dualities. Since the large N duality/topological vertex approach computes Gromov–Witten invariants in terms of Chern–Simons knot and link invariants, Sect. 2 is devoted to a review of these. Section 3 reviews topological strings and Gromov–Witten invariants, and gives some information about the open string case. Section 4 introduces the class of geometries we will deal with, namely toric (noncompact) Calabi–Yau manifolds, and we present a useful graphical way to represent these manifolds which constitutes the geometric core of the theory of the topological vertex. Finally, in Sect. 5, we define the vertex and present some explicit formulae for it and some simple applications. A brief Appendix contains useful information about symmetric polynomials. It has not been possible to present all the relevant background and physical derivations in this set of lectures. However, these...
An asynchronous data-driven readout prototype for CEPC vertex detector
Yang, Ping; Sun, Xiangming; Huang, Guangming; Xiao, Le; Gao, Chaosong; Huang, Xing; Zhou, Wei; Ren, Weiping; Li, Yashu; Liu, Jianchao; You, Bihui; Zhang, Li
2017-12-01
The Circular Electron Positron Collider (CEPC) is proposed as a Higgs boson and/or Z boson factory for high-precision measurements on the Higgs boson. The precision of secondary vertex impact parameter plays an important role in such measurements which typically rely on flavor-tagging. Thus silicon CMOS Pixel Sensors (CPS) are the most promising technology candidate for a CEPC vertex detector, which can most likely feature a high position resolution, a low power consumption and a fast readout simultaneously. For the R&D of the CEPC vertex detector, we have developed a prototype MIC4 in the Towerjazz 180 nm CMOS Image Sensor (CIS) process. We have proposed and implemented a new architecture of asynchronous zero-suppression data-driven readout inside the matrix combined with a binary front-end inside the pixel. The matrix contains 128 rows and 64 columns with a small pixel pitch of 25 μm. The readout architecture has implemented the traditional OR-gate chain inside a super pixel combined with a priority arbiter tree between the super pixels, only reading out relevant pixels. The MIC4 architecture will be introduced in more detail in this paper. It will be taped out in May and will be characterized when the chip comes back.
Quantum Vertex Model for Reversible Classical Computing
Chamon, Claudio; Mucciolo, Eduardo; Ruckenstein, Andrei; Yang, Zhicheng
We present a planar vertex model that encodes the result of a universal reversible classical computation in its ground state. The approach involves Boolean variables (spins) placed on links of a two-dimensional lattice, with vertices representing logic gates. Large short-ranged interactions between at most two spins implement the operation of each gate. The lattice is anisotropic with one direction corresponding to computational time, and with transverse boundaries storing the computation's input and output. The model displays no finite temperature phase transitions, including no glass transitions, independent of circuit. The computational complexity is encoded in the scaling of the relaxation rate into the ground state with the system size. We use thermal annealing and a novel and more efficient heuristic \\x9Dannealing with learning to study various computational problems. To explore faster relaxation routes, we construct an explicit mapping of the vertex model into the Chimera architecture of the D-Wave machine, initiating a novel approach to reversible classical computation based on quantum annealing.
Status of the CBM micro vertex detector
Energy Technology Data Exchange (ETDEWEB)
Koziel, Michal [Goethe-Universitaet Frankfurt (Germany); Collaboration: CBM-MVD-Collaboration
2015-07-01
The fixed-target experiment CBM at FAIR will explore the phase diagram of strongly interacting matter in the regime of highest net baryon densities with numerous probes, among them open charm. For the reconstruction of open charm hadrons with the CBM experiment a Micro Vertex Detector (MVD) with an excellent spatial resolution of the secondary decay vertex is required. Hence, a material budget of a few 0.1% X0 is mandatory for the individual detector stations positioned downstream in close vicinity to the target. To reduce multiple scattering, the MVD operates in vacuum, which poses challenging requirements on both, the power dissipation of the sensors and the integration concept. Here one should mention the selection of high-performance materials providing the mechanical support and cooling for the 0.05 mm thin sensors, establishing the sensor quality assessment procedures as well as defining the sensor integration. In addition, a substantial progress with respect to sensor development will be reported, mainly to the studies on their radiation hardness. Also, the 2nd generation of the sensor control and read-out based on TRBv3 standard has been commissioned. In this contribution we highlight several activities that have been successfully accomplished, which enable us to define the start version of the CBM MVD.
Witten's ghost vertex made simple
International Nuclear Information System (INIS)
Belov, D.M.
2004-01-01
First, we diagonalize the bc-ghost 3-string Neumann matrices using the technique described in Phys. Rev. D 68, 066003 (2003). Their eigenvalues are in complete agreement with the previous authors. Second, we diagonalize the N-string gluing vertices for the bosonized ghost system. Third, we verify the descent and associativity relations for the combined bosonic matter+ghost gluing vertices. We find that in order for these relations to be true, the vertices must be normalized by the factor Z N . Here Z N is the partition function of the bosonic matter+ghost CFT on the gluing surface, which is the unit disk with the Neumann boundary conditions and the midpoint conelike singularity specified by the angle excess π(N-2)
Analysis of bilinear relation of a six-vertex model
International Nuclear Information System (INIS)
Korepin, V.E.
1982-01-01
A problem of calculating all matrices of T(μ) monodromy satisfying certain commutation relations for the six-vertex model matrix is considered. The paper presents full description of all accurate L-operators (all monodromy-matrices per one lattice step). It is noted that the a/d function has the simpliest form for L operators, and the corresponding A, B, C, D operators act transitively in rather narrow subspace of the constructed space
Lifetime tests for MAC vertex chamber
International Nuclear Information System (INIS)
Nelson, H.
1986-01-01
A vertex chamber for MAC was proposed in fall 1983 to increase precision in the measurement of the B hadron and tau lepton lifetimes. The chamber had to be placed within the existing central drift chamber, making access for repairs difficult and costly. Therefore for detector elements thin-walled aluminized mylar drift tubes (straws) were used because of their simplicity and robustness. The diameter of the drift tubes was 6.9 mm. The radial extent of the proposed chamber was from 3 cm to 10 cm, the inner wall of the central drift. It was clear that radiation levels, from synchrotron x-rays and overfocussed electrons, were potentially high. Since the drift distance is short in the straws, it was desirable to operate them at the highest possible gas gain, to achieve the best spatial resolution. There was a likelihood of drawing large currents in the chamber and thus causing radiation damage. Therefore a study of radiation hardness under the conditions of their proposed design was undertaken. In tests, argon-hydrocarbon mixtures consistently became unusable at ∼0.05 C/cm collected charge, due to anode buildup. Argon-CO 2 mixtures, while underquenched, were operational to 0.25 C/cm, at which point loss of cathode material became intolerable. Argon-xenon-CO 2 proved to be quenched as well as argon-hydrocarbons, but was limited by cathode damage. The MAC vertex chamber has operated at a distance of 4.6 cm from the e + e - interaction point at PEP for two years and has shown no aging effects
Fermion to boson mappings revisited
International Nuclear Information System (INIS)
Ginocchio, J.N.; Johnson, C.W.
1996-01-01
We briefly review various mappings of fermion pairs to bosons, including those based on mapping operators, such as Belyaev-Zelevinskii, and those on mapping states, such as Marumori; in particular we consider the work of Otsuka-Arima-Iachello, aimed at deriving the Interacting Boson Model. We then give a rigorous and unified description of state-mapping procedures which allows one to systematically go beyond Otsuka-Arima-Iachello and related approaches, along with several exact results. (orig.)
What can we learn from sum rules for vertex functions in QCD
International Nuclear Information System (INIS)
Craigie, N.S.; Stern, J.
1982-04-01
We demonstrate that the light cone sum rules for vertex functions based on the operator product expansion and QCD perturbation theory lead to interesting relationships between various non-perturbative parameters associated with hadronic bound states (e.g. vertex couplings and decay constants). We also show that such sum rules provide a valuable means of estimating the matrix elements of the higher spin operators in the meson wave function. (author)
Vertex operator algebras and conformal field theory
International Nuclear Information System (INIS)
Huang, Y.Z.
1992-01-01
This paper discusses conformal field theory, an important physical theory, describing both two-dimensional critical phenomena in condensed matter physics and classical motions of strings in string theory. The study of conformal field theory will deepen the understanding of these theories and will help to understand string theory conceptually. Besides its importance in physics, the beautiful and rich mathematical structure of conformal field theory has interested many mathematicians. New relations between different branches of mathematics, such as representations of infinite-dimensional Lie algebras and Lie groups, Riemann surfaces and algebraic curves, the Monster sporadic group, modular functions and modular forms, elliptic genera and elliptic cohomology, Calabi-Yau manifolds, tensor categories, and knot theory, are revealed in the study of conformal field theory. It is therefore believed that the study of the mathematics involved in conformal field theory will ultimately lead to new mathematical structures which would be important to both mathematics and physics
Damerell, C J S
2005-01-01
Over the past 20 years, CCD-based vertex detectors have been used to construct some of the most precise 'tracking microscopes' in particle physics. They were initially used by the ACCMOR collaboration for fixed target experiments in CERN, where they enabled the lifetimes of some of the shortest-lived charm particles to be measured precisely. The migration to collider experiments was accomplished in the SLD experiment, where the original 120 Mpixel detector was later upgraded to one with 307 Mpixels. This detector was used in a range of physics studies which exceeded the capability of the LEP detectors, including the most precise limit to date on the Bs mixing parameter. This success, and the high background hit densities that will inevitably be encountered at the future TeV-scale linear collider, have established the need for a silicon pixel-based vertex detector at this machine. The technical options have now been broadened to include a wide range of possible silicon imaging technologies as well as CCDs (mon...
DEFF Research Database (Denmark)
Tichy, Malte C.; Bouvrier, P. Alexander; Mølmer, Klaus
2013-01-01
Composite bosons made of two bosonic constituents exhibit deviations from ideal bosonic behavior due to their substructure. This deviation is reflected by the normalization ratio of the quantum state of N composites. We find a set of saturable, efficiently evaluable bounds for this indicator, which...... quantifies the bosonic behavior of composites via the entanglement of their constituents. We predict an abrupt transition between ordinary and exaggerated bosonic behavior in a condensate of two-boson composites....
New vertex reconstruction algorithms for CMS
Frühwirth, R; Prokofiev, Kirill; Speer, T.; Vanlaer, P.; Chabanat, E.; Estre, N.
2003-01-01
The reconstruction of interaction vertices can be decomposed into a pattern recognition problem (``vertex finding'') and a statistical problem (``vertex fitting''). We briefly review classical methods. We introduce novel approaches and motivate them in the framework of high-luminosity experiments like at the LHC. We then show comparisons with the classical methods in relevant physics channels
Vertex Reconstruction in ATLAS Run II
Zhang, Matt; The ATLAS collaboration
2016-01-01
Vertex reconstruction is the process of taking reconstructed tracks and using them to determine the locations of proton collisions. In this poster we present the performance of our current vertex reconstruction algorithm, and look at investigations into potential improvements from a new seed finding method.
Collider searches for fermiophobic gauge bosons
International Nuclear Information System (INIS)
Bramante, Joseph; Kumar, Jason; Yaylali, David; Hundi, R. S.; Rajaraman, Arvind
2011-01-01
We explore the phenomenology of an extra U(1) gauge boson which primarily couples to standard model gauge bosons. We classify all possible parity-odd couplings up to dimension 6 operators. We then study the prospects for the detection of such a boson at the LHC and show that the electroweak decay channels lead to very clean signals, allowing us to probe couplings well into the TeV scale.
Boson mapping and the microscopic collective nuclear Hamiltonian
International Nuclear Information System (INIS)
Dobes, J.; Ivanova, S.P.; Dzholos, R.V.; Pedrosa, R.
1990-01-01
Starting with the mapping of the quadrupole collective states in the fermion space onto the boson space, the fermion nuclear problem is transformed into the boson one. The boson images of the bifermion operators and of the fermion Hamiltonian are found. Recurrence relations are used to obtain approximately the norm matrix which appears in the boson-fermion mapping. The resulting boson Hamiltonian contains terms which go beyond the ordinary SU(6) symmetry Hamiltonian of the interacting boson model. Calculations, however, suggest that on the phenomenological level the differences between the mapped Hamiltonian and the SU(6) Hamiltonian are not too important. 18 refs.; 2 figs
The CDF silicon vertex detector SVX and its upgrades
International Nuclear Information System (INIS)
Seidel, S.; Univ. of New Mexico, Albuquerque, NM
1994-11-01
The three generations of CDF silicon vertex detectors, SVX, SVX', and SVX II, are described. SVX, which operated during Tevatron run Ia, achieved 10.6 μm resolution in r - φ. SVX' is a radiation-hard device for run Ib with a similar but improved mechanical design and improved signal/noise. SVX II, which will be installed for run II, will track in three dimensions with radiation tolerance and electronics appropriate to a Main Injector environment
Elements of the interacting boson approximation
International Nuclear Information System (INIS)
Cseh, Jozsef
1985-01-01
The main features of the interacting boson model family are briefly summarized. The main tool of the model is the group theory; its basic useful results (symmetry groups, spectrum generating algebra, dynamic groups and symmetries, tensor representations, broken symmetries, subgroup chains) are summarized. The emission and annihilation operators of the individual boson degrees of freedom form a U(n) algebra. Its reprezentation theory can be used to classify the basic states and energy levels of the system. A simple variant of the interacting boson model is analyzed in detail. The genealogy of different interacting boson models from vibron model to supersymmetric ones is surveyed. (D.Gy.)
Performance of the LHCb Vertex Locator
Aaij, R.; Akiba, K.; Alexander, M.; Ali, S.; Appleby, R.B.; Artuso, M.; Bates, A.; Bay, A.; Behrendt, O.; Benton, J.; van Beuzekom, M.; Bjornstad, P.M.; Bogdanova, G.; Borghi, S.; Borgia, A.; Bowcock, T.J.V.; van den Brand, J.; Brown, H.; Buytaert, J.; Callot, O.; Carroll, J.; Casse, G.; Collins, P.; De Capua, S.; Doets, M.; Donleavy, S.; Dossett, D.; Dumps, R.; Eckstein, D.; Eklund, L.; Farinelli, C.; Farry, S.; Ferro-Luzzi, M.; Frei, R.; Garofoli, J.; Gersabeck, M.; Gershon, T.; Gong, A.; Gong, H.; Gordon, H.; Haefeli, G.; Harrison, J.; Heijne, V.; Hennessy, K.; Hulsbergen, W.; Huse, T.; Hutchcroft, D.; Jaeger, A.; Jalocha, P.; Jans, E.; John, M.; Keaveney, J.; Ketel, T.; Korolev, M.; Kraan, M.; Lastovicka, T.; Laﬀerty, G.; Latham, T.; Lefeuvre, G.; Leﬂat, A.; Liles, M.; van Lysebetten, A.; MacGregor, G.; Marinho, F.; McNulty, R.; Merkin, M.; Moran, D.; Mountain, R.; Mous, I.; Mylroie-Smith, J.; Needham, M.; Nikitin, N.; Noor, A.; Oblakowska-Mucha, A.; Papadelis, A.; Pappagallo, M.; Parkes, C.; Patel, G.D.; Rakotomiaramanana, B.; Redford, S.; Reid, M.; Rinnert, K.; Rodrigues, E.; Saavedra, A.F.; Schiller, M.; Schneider, O.; Shears, T.; Silva Coutinho, R.; Smith, N.A.; Szumlak, T.; Thomas, C.; van Tilburg, J.; Tobin, M.; Velthuis, J.; Verlaat, B.; Viret, S.; Volkov, V.; Wallace, C.; Wang, J.; Webber, A.; Whitehead, M.; Zverev, E.
2014-01-01
The Vertex Locator (VELO) is a silicon microstrip detector that surrounds the proton-proton interaction region in the LHCb experiment. The performance of the detector during the first years of its physics operation is reviewed. The system is operated in vacuum, uses a bi-phase CO2 cooling system, and the sensors are moved to 7 mm from the LHC beam for physics data taking. The performance and stability of these characteristic features of the detector are described, and details of the material budget are given. The calibration of the timing and the data processing algorithms that are implemented in FPGAs are described. The system performance is fully characterised. The sensors have a signal to noise ratio of approximately 20 and a best hit resolution of 4 microns is achieved at the optimal track angle. The typical detector occupancy for minimum bias events in standard operating conditions in 2011 is around 0.5%, and the detector has less than 1% of faulty strips. The proximity of the detector to the beam means ...
From the shell model to the interacting boson model
International Nuclear Information System (INIS)
Ginocchio, J.N.; Johnson, C.W.
1994-01-01
Starting from a general, microscopic fermion-pair-to-boson mapping of a complete fermion space that preserves Hermitian conjugation, we show that the resulting infinite and non-convergent boson Hamilitonian can be factored into a finite (e.g., a 1 + 2-body fermion Hamiltonian is mapped to a 1 + 2-body boson Hamiltonian) image Hamilitonian times the norm operator, and it is the norm operator that is infinite and non-convergent. We then truncate to a collective boson space and we give conditions under which the exact boson images of finite fermion operators are also finite in the truncated basis
International Nuclear Information System (INIS)
Montano, J.; Tavares-Velasco, G.; Toscano, J.J.; Ramirez-Zavaleta, F.
2005-01-01
We study the one-loop sensitivity of the WWV (V=γ,Z) vertex to the new massive gauge bosons predicted by the minimal SU L (3)xU X (1) model, which have unusual couplings to the standard model (SM) gauge bosons. A gauge-fixing procedure covariant under the SU L (2)xU Y (1) group was introduced for these new gauge bosons (dubbed bileptons) in order to generate gauge-invariant Green functions. The similarities between this procedure and the unconventional quantization scheme of the background field method are discussed. It is found that, for relatively light bileptons, with a mass ranging from 2m W to 6m W , the radiative corrections to the form factors associated with the WWV vertex can be of the same order of magnitude than the SM one. In the case of heavier bileptons, their contribution is smaller by about one and 2 orders of magnitude than their SM counterpart
The BaBar silicon vertex tracker
International Nuclear Information System (INIS)
Bozzi, C.; Carassiti, V.; Ramusino, A. Cotta; Dittongo, S.; Folegani, M.; Piemontese, L.; Abbott, B.K.; Breon, A.B.; Clark, A.R.; Dow, S.; Fan, Q.; Goozen, F.; Hernikl, C.; Karcher, A.; Kerth, L.T.; Kipnis, I.; Kluth, S.; Lynch, G.; Levi, M.; Luft, P.; Luo, L.; Nyman, M.; Pedrali-Noy, M.; Roe, N.A.; Zizka, G.; Roberts, D.; Barni, D.; Brenna, E.; Defendi, I.; Forti, A.; Giugni, D.; Lanni, F.; Palombo, F.; Vaniev, V.; Leona, A.; Mandelli, E.; Manfredi, P.F.; Perazzo, A.; Re, V.; Angelini, C.; Batignani, G.; Bettarini, S.; Bondioli, M.; Bosi, F.; Calderini, G.; Carpinelli, M.; Dutra, F.; Forti, F.; Gagliardi, D.; Giorgi, M.A.; Lusiani, A.; Mammini, P.; Morganti, M.; Morsani, F.; Paoloni, E.; Profeti, A.; Rama, M.; Rampino, G.; Rizzo, G.; Sandrelli, F.; Simi, G.; Triggiani, G.; Tritto, S.; Vitale, R.; Burchat, P.; Cheng, C.; Kirkby, D.; Meyer, T.; Roat, C.; Bona, M.; Bianchi, F.; Daudo, F.; Girolamo, B. Di; Gamba, D.; Giraudo, G.; Grosso, P.; Romero, A.; Smol, A.; Trapani, P.; Zanin, D.; Bosisio, L.; Ricca, G. Della; Lanceri, L.; Pompili, A.; Poropat, P.; Prest, M.; Rastelli, C.; Vallazza, E.; Vuagnin, G.; Hast, C.; Potter, E.P.; Sharma, V.; Burke, S.; Callahan, D.; Campagnari, C.; Dahmes, B.; Eppich, A.; Hale, D.; Hall, K.; Hart, P.; Kuznetsova, N.; Kyre, S.; Levy, S.; Long, O.; May, J.; Richman, J.; Verkerke, W.; Witherell, M.; Beringer, J.; Eisner, A.M.; Frey, A.; Grillo, A.; Grothe, M.; Johnson, R.; Kroeger, W.; Lockman, W.; Pulliam, T.; Rowe, W.; Schmitz, R.; Seiden, A.; Spencer, E.; Turri, M.; Wilder, M.; Charles, E.; Elmer, P.; Nielsen, J.; Orejudos, W.; Scott, I.; Walsh, J.; Zobernig, H.
2000-01-01
The BaBar Silicon Vertex Tracker (SVT) is designed to provide the high-precision vertexing necessary for making measurements of CP violation at the SLAC B-Factory PEP-II. The instrument consists of five layers of double-sided silicon strip detectors and has been installed in the BaBar experiment and taking colliding beam data since May 1999. An overview of the design as well as performance and experience from the initial running will be presented
Energy Technology Data Exchange (ETDEWEB)
Marchesini, Ivan; Nowatschin, Dominik; Ott, Jochen; Schmidt, Alexander; Tholen, Heiner [University of Hamburg (Germany)
2015-07-01
In LHC Run II, CMS b-tagging algorithms will employ a new core algorithm, named Inclusive Vertex Finder (IVF). The IVF is designed to perform decay vertex reconstruction of long-lived particles, such as B hadrons. Using only tracks from the silicon tracker, it does not depend on jet clustering and allows for higher reconstruction efficiency of decay vertices, which particularly applies to topologies with two or more decay vertices at low distance. Thus, the IVF will offer increased sensitivity for SM measurements (e.g. angular correlations), but also for the search of BSM physics (e.g. final states with boosted Higgs bosons decaying into b-quarks). For the first time, the dependence of the IVF reconstruction efficiency on the distance of vertices in the η-φ plane is investigated with a data-driven approach. We use a clean set of top quark pair events, selected from data recorded in 2012 in pp-collisions at 8 TeV with the CMS detector, and perform a template fit to a 2D-distribution of the masses of the vertices in an event. Correction factors are derived for the application to simulated events. We conclude that our technique will enable precise calibration of double vertexing with the IVF in the LHC Run II.
Ghost story. II. The midpoint ghost vertex
International Nuclear Information System (INIS)
Bonora, L; Maccaferri, C; Scherer Santos, R.J.; Tolla, D D
2009-01-01
We construct the ghost number 9 three strings vertex for OSFT in the natural normal ordering. We find two versions, one with a ghost insertion at z = i and a twist-conjugate one with insertion at z = -i. For this reason we call them midpoint vertices. We show that the relevant Neumann matrices commute among themselves and with the matrix G representing the operator K 1 . We analyze the spectrum of the latter and find that beside a continuous spectrum there is a (so far ignored) discrete one. We are able to write spectral formulas for all the Neumann matrices involved and clarify the important role of the integration contour over the continuous spectrum. We then pass to examine the (ghost) wedge states. We compute the discrete and continuous eigenvalues of the corresponding Neumann matrices and show that they satisfy the appropriate recursion relations. Using these results we show that the formulas for our vertices correctly define the star product in that, starting from the data of two ghost number 0 wedge states, they allow us to reconstruct a ghost number 3 state which is the expected wedge state with the ghost insertion at the midpoint, according to the star recursion relation.
Vertex trigger implementation using shared memory technology
Müller, H
1998-01-01
The implementation of a 1 st level vertex trigger for LHC-B is particularly difficult due to the high ( 1 MHz ) input data rate. With ca. 350 silicon hits per event, both the R strips and Phi strips of the detectors produce a total of ca 2 Gbyte/s zero-suppressed da ta.1 note succeeds to the ideas to use R-phi coordinates for fast integer linefinding in programmable hardware, as described in LHB note 97-006. For an implementation we propose a FPGA preprocessing stage operating at 1 MHz with the benefit to substantially reduce the amount of data to be transmitted to the CPUs and to liberate a large fraction of CPU time. Interconnected via 4 Gbit/s SCI technol-ogy 2 , a shared memory system can be built which allows to perform data driven eventbuilding with, or without preprocessing. A fully data driven architecture between source modules and destination memories provides a highly reliable memory-to-memory transfer mechanism of very low latency. The eventbuilding is performed via associating events at the sourc...
Data driven processor 'Vertex Trigger' for B experiments
International Nuclear Information System (INIS)
Hartouni, E.P.
1993-01-01
Data Driven Processors (DDP's) are specialized computation engines configured to solve specific numerical problems, such as vertex reconstruction. The architecture of the DDP which is the subject of this talk was designed and implemented by W. Sippach and B.C. Knapp at Nevis Lab. in the early 1980's. This particular implementation allows multiple parallel streams of data to provide input to a heterogenous collection of simple operators whose interconnection form an algorithm. The local data flow control allows this device to execute algorithms extremely quickly provided that care is taken in the layout of the algorithm. I/O rates of several hundred megabytes/second are routinely achieved thus making DDP's attractive candidates for complex online calculations. The original question was open-quote can a DDP reconstruct tracks in a Silicon Vertex Detector, find events with a separated vertex and do it fast enough to be used as an online trigger?close-quote Restating this inquiry as three questions and describing the answers to the questions will be the subject of this talk. The three specific questions are: (1) Can an algorithm be found which reconstructs tracks in a planar geometry and no magnetic field; (2) Can separated vertices be recognized in some way; (3) Can the algorithm be implemented in the Nevis-UMass and DDP and execute in 10-20 μs?
Performance of the VTL PEPR vertex guidance system
International Nuclear Information System (INIS)
Dunn, L.A.; Harris, R.; Kenyon, R.G.; Lubatti, H.J.; Moriyasu, K.
1975-01-01
A PEPR vertex guidance system requiring no operator intervention has been operating at the University of Washington's Visual Techniques Laboratory since 1972. The measurement of 140 000 events consisting of 3, 4, 5, and 6-prong interactions of a 15 GeV/c π - beam with deuterium was recently completed. The system employs global transformations that reduce circular tracks to a point in a two-dimensional angle-curvature space. Noise reduction techniques are used to improve position and angle accuracy and thereby the system resolution and efficiency. Monitoring criteria were developed to ensure continuous peak performance over long production periods. (Auth.)
Veltman, Martinus J. G.
1986-01-01
Reports recent findings related to the particle Higgs boson and examines its possible contribution to the standard mode of elementary processes. Critically explores the strengths and uncertainties of the Higgs boson and proposed Higgs field. (ML)
Quantum vertex model for reversible classical computing.
Chamon, C; Mucciolo, E R; Ruckenstein, A E; Yang, Z-C
2017-05-12
Mappings of classical computation onto statistical mechanics models have led to remarkable successes in addressing some complex computational problems. However, such mappings display thermodynamic phase transitions that may prevent reaching solution even for easy problems known to be solvable in polynomial time. Here we map universal reversible classical computations onto a planar vertex model that exhibits no bulk classical thermodynamic phase transition, independent of the computational circuit. Within our approach the solution of the computation is encoded in the ground state of the vertex model and its complexity is reflected in the dynamics of the relaxation of the system to its ground state. We use thermal annealing with and without 'learning' to explore typical computational problems. We also construct a mapping of the vertex model into the Chimera architecture of the D-Wave machine, initiating an approach to reversible classical computation based on state-of-the-art implementations of quantum annealing.
A note on arbitrarily vertex decomposable graphs
Directory of Open Access Journals (Sweden)
Antoni Marczyk
2006-01-01
Full Text Available A graph \\(G\\ of order \\(n\\ is said to be arbitrarily vertex decomposable if for each sequence \\((n_{1},\\ldots,n_k\\ of positive integers such that \\(n_{1}+\\ldots+n_{k}=n\\ there exists a partition \\((V_{1},\\ldots,V_{k}\\ of the vertex set of \\(G\\ such that for each \\(i \\in \\{1,\\ldots,k\\}\\, \\(V_{i}\\ induces a connected subgraph of \\(G\\ on \\(n_i\\ vertices. In this paper we show that if \\(G\\ is a two-connected graph on \\(n\\ vertices with the independence number at most \\(\\lceil n/2\\rceil\\ and such that the degree sum of any pair of non-adjacent vertices is at least \\(n-3\\, then \\(G\\ is arbitrarily vertex decomposable. We present another result for connected graphs satisfying a similar condition, where the bound \\(n-3\\ is replaced by \\(n-2\\.
Secondary vertex detection at the SLC
International Nuclear Information System (INIS)
Anon.
1982-01-01
The vertex topology of a high energy e + e - interaction contains a wealth of information. These interactions copiously produce the tau lepton and hadrons containing the c and b quarks; all these particles decay within a millimeter or so of the primary interaction point, giving these interactions a rich secondary vertex structure. With suitable detectors, one can hope to reconstruct these vertices and so tag events with tau's, c's and b's; measure lifetimes and mixing angles; and perhaps directly measure the flavor of c and b jets. The spatial resolution and track-pair resolution required of such detectors demand detector development, but several techniques, including solid state microstrip and CCD detectors, pressurized drift chambers, and holographic bubbble chambers look promising. Vertex detection in the colliding beam environment has already yielded a measurement of the tau lifetime. The SLC, with its micron-sized beam and one-centimeter sized beam pipe is uniquely suited for these studies. Compared to conventional storage rings, it offers a well-defined and minute primary interaction point, the possibility of locating a detector within a centimeter of the interaction (an order of magnitude improvement over LEP), negligibly thin beam pipes, and a repetition rate low enough to permit novel detectors and readout schemes. This report discusses the physics accessible with vertex detectors, depicts the physics environment at 100 GeV - particle multiplicities, momenta, angular correlations, and topologies of charm decays, sketches the elements of a vertex detector, and, through some model studies evaluates the spatial resolution and track-pair resolution requirements, and summarizes the detector technologies which seem most promising for vertex detection
Performance of the LHCb Vertex Locator
Bjørnstad, Pal Marius
2011-01-01
The Vertex Locator is a silicon microstrip detector which provides the LHCb experiment with high precision measurements of tracks and decay vertices. The VELO sensors are exposed to a radiation dose of (2.5-6.5) x 10$^{13}n_{eq}$/cm$^2$ per fb$^{-1}$ in the area which is most irradiated. A best hit resolution of 4$mu$ is obtained for angled tracks, in agreement with expectations. The VELO has a vertex position resolution down to 11$mu$m in the transverse direction and an excellent momentum dependent performance.
Random tree growth by vertex splitting
International Nuclear Information System (INIS)
David, F; Dukes, W M B; Jonsson, T; Stefánsson, S Ö
2009-01-01
We study a model of growing planar tree graphs where in each time step we separate the tree into two components by splitting a vertex and then connect the two pieces by inserting a new link between the daughter vertices. This model generalizes the preferential attachment model and Ford's α-model for phylogenetic trees. We develop a mean field theory for the vertex degree distribution, prove that the mean field theory is exact in some special cases and check that it agrees with numerical simulations in general. We calculate various correlation functions and show that the intrinsic Hausdorff dimension can vary from 1 to ∞, depending on the parameters of the model
Vertex Reconstruction for AEGIS’ FACT Detector
Themistokleous, Neofytos
2017-01-01
My project dealt with the development of a vertex reconstruction technique to discriminate antihydrogen from background signals in the AEGIS apparatus. It involved the creation of a Toy Monte-Carlo to simulate particle annihilation events, and a vertex reconstruction utility based on the Bayesian theory of probability. The ﬁrst results based on 107 generated events with single track in the detector are encouraging. For such events, the algorithm can reconstruct the z-coordinate accurately , while for the r-coordinate the result is less accurate.
Primary vertex reconstruction at the ATLAS experiment
AUTHOR|(INSPIRE)INSPIRE-00301388; The ATLAS collaboration; Casper, D.; Hooberman, B.; Gui, B.; Lee, G.; Maurer, J.; Morley, A.; Pagan Griso, S.; Petersen, B.; Prokofiev, K.; Shan, L.; Shope, D.; Wharton, A.; Whitmore, B.; Zhang, M.
2017-01-01
These proceedings present the method and performance of primary vertex reconstruction at the ATLAS experiment during Runs 1 and 2 at the LHC. The studies presented focus on data taken during 2012 at a centre-of-mass energy of $\\sqrt{s} = 8$ TeV, and during 2015-2016 at $\\sqrt{s} = 13$ TeV. Some predictions toward future runs are also presented. The measurement of the position and size of the luminous region and its use as a constraint to improve the primary vertex resolution are discussed.
A NEW HYBRID GENETIC ALGORITHM FOR VERTEX COVER PROBLEM
UĞURLU, Onur
2015-01-01
The minimum vertex cover problem belongs to the class of NP-compl ete graph theoretical problems. This paper presents a hybrid genetic algorithm to solve minimum ver tex cover problem. In this paper, it has been shown that when local optimization technique is added t o genetic algorithm to form hybrid genetic algorithm, it gives more quality solution than simple genet ic algorithm. Also, anew mutation operator has been developed especially for minimum verte...
Vertex Normals and Face Curvatures of Triangle Meshes
Sun, Xiang
2016-08-12
This study contributes to the discrete differential geometry of triangle meshes, in combination with discrete line congruences associated with such meshes. In particular we discuss when a congruence defined by linear interpolation of vertex normals deserves to be called a ŉormal’ congruence. Our main results are a discussion of various definitions of normality, a detailed study of the geometry of such congruences, and a concept of curvatures and shape operators associated with the faces of a triangle mesh. These curvatures are compatible with both normal congruences and the Steiner formula.
An exact fermion-pair to boson mapping
International Nuclear Information System (INIS)
Johnson, C.W.
1993-01-01
I derive in a novel fashion exact formulas for the calculation of general matrix elements, including the overlap (norm) matrix, between states constructed from fermion pairs. Mapping the fermion pairs to bosons, I show how to construct finite and exact (in the sense of preserving matrix elements) boson representations of the norm operator and one- and two-fermion operators. This may lead to a microscopic basis for the Interacting Boson Model, as well as new truncation schemes for the nuclear shell model
Seniority mappings for probing phenomenological nuclear boson models
International Nuclear Information System (INIS)
De Kock, E.A.
1988-12-01
The interacting boson model (IBM) and interacting boson-fermion model (IBFM) are discussed. The main ideas of boson mapping of fermion systems are introduced using Holstein-Primakoff and Dyson-Maleev mappings of angular momentum operators. Generalized Dyson-Maleev (GDM) and Holstein-Primakoff (GHP) mappings are included. In fermoin problems, the degrees of freedom of collective motion are described by a collective subalgebra of the complete bifermion subalgebra. GDM mapping of Sp(6) generators, the transformation to collect bosons and truncation to these bosons led to collective sd-boson realization of Sp(6) algebra. This resulted in an IBM-like description of the collective subspace. Non-hermitian and existing hermitian forms are indicated in the assumed structure of an IBM Hamiltonian Boson mapping based on seniority considerations and involving single-j shell approximations of the shell model are examined. One method utilized truncation of a shell model space to a space spanned by monopole (S) and quadrupole (D) pairs. The association between states in truncated fermion and sd-boson spaces constructs boson images of fermion operators by equating boson and fermion matrix elements. To obtain boson images with IBM-like structures, a zero-order approximation was adopted. This approximation retains only N-body terms in the images of N-body fermion operators. A similarity transformation re-expressing GDM images of single-j shell fermion operators in seniority bosons was applied to the GDM image of a general shell model Hamiltonian. Numerical results for the surface-delta interaction show that truncation to s- and d-bosons in the seniority image of a two-body operator is not allowed if N≥2. This transformation was extended to odd fermion systems and applied to the image of the quadrupole pairing interaction. 79 refs., 3 figs., 4 tabs
Improving vertex position determination by using a kinematic fit
International Nuclear Information System (INIS)
Forden, G.E.; Saxon, D.H.
1985-05-01
A method is developed for improving decay vertex reconstruction by using kinematic fits. This is applied to generated charm meson decays. An improvement of 16% in the vertex position measurement along the flight path is achieved. (author)
Intertwiner dynamics in the flipped vertex
Energy Technology Data Exchange (ETDEWEB)
Alesci, Emanuele; Bianchi, Eugenio; Magliaro, Elena; Perini, Claudio, E-mail: alesci@fis.uniroma3.i, E-mail: e.bianchi@sns.i, E-mail: elena.magliaro@gmail.co, E-mail: claude.perin@libero.i [Centre de Physique Theorique de Luminy, Case 907, F-13288 Marseille (France)
2009-09-21
We continue the semiclassical analysis, started in a previous paper, of the intertwiner sector of the flipped vertex spinfoam model. We use independently both a semi-analytical and a purely numerical approach, finding the correct behavior of wavepacket propagation and physical expectation values. In the end, we show preliminary results about correlation functions.
LHCb Vertex Locator Upgrade Work Report
Estrada, Michael
2017-01-01
As the LHCb prepares for the planned upgrade of its vertex locator, there is a great need for supporting work such as the design and testing of apparatus that will ensure the smooth implementation of new hardware and infrastructure. My work this summer consisted largely of tasks to support this process.
Primary Vertex Reconstruction at the ATLAS Experiment
Grimm, Kathryn; The ATLAS collaboration
2016-01-01
Efficient and precise reconstruction of the primary vertex in an LHC collision is essential in both the reconstruction of the full kinematic properties of a hard-scatter event and of soft interactions as a measure of the amount of pile-up. The reconstruction of primary vertices in the busy, high pile-up environment of Run-2 of the LHC is a challenging task. New methods have been developed by the ATLAS experiment to reconstruct vertices in such environments. Advances in vertex seeding include methods taken from medical imaging, which allow for reconstruction of multiple vertices with small spatial separation. The adoption of this new seeding algorithm within the ATLAS adaptive vertex finding and fitting procedure will be discussed, and the first results of the new techniques from Run-2 data will be presented. Additionally, data-driven methods to evaluate vertex resolution will be presented with special focus on correct methods to evaluate the effect of the beam spot constraint; results from these methods in Ru...
Silicon vertex detector for superheavy elements identification
Directory of Open Access Journals (Sweden)
Bednarek A.
2012-07-01
Full Text Available Silicon vertex detector for superheavy elements (SHE identification has been proposed. It will be constructed using very thin silicon detectors about 5 μm thickness. Results of test of 7.3 μm four inch silicon strip detector (SSD with fission fragments and α particles emitted by 252Cf source are presented
On fermionic representation of the framed topological vertex
International Nuclear Information System (INIS)
Deng, Fusheng; Zhou, Jian
2015-01-01
The Gromov-Witten invariants of ℂ"3 with branes is encoded in the topological vertex which has a very complicated combinatorial expression. A simple formula for the topological vertex was proposed by Aganagic et al. in the fermionic picture. We will propose a similar formula for the framed topological vertex and prove it in the case when there are one or two branes.
Bosonic behavior of entangled fermions
DEFF Research Database (Denmark)
C. Tichy, Malte; Alexander Bouvrie, Peter; Mølmer, Klaus
2012-01-01
Two bound, entangled fermions form a composite boson, which can be treated as an elementary boson as long as the Pauli principle does not affect the behavior of many such composite bosons. The departure of ideal bosonic behavior is quantified by the normalization ratio of multi-composite-boson st......Two bound, entangled fermions form a composite boson, which can be treated as an elementary boson as long as the Pauli principle does not affect the behavior of many such composite bosons. The departure of ideal bosonic behavior is quantified by the normalization ratio of multi...
Gauge boson/Higgs boson unification: The Higgs bosons as superpartners of massive gauge bosons
International Nuclear Information System (INIS)
Fayet, P.
1984-01-01
We show how one can use massive gauge superfields to describe, simultaneously, gauge bosons (Wsup(+-), Z, ...) and Higgs bosons (wsup(+-), z, ...) together with their spin-1/2 partners (pairs of winos, zinos, ...), despite their different electroweak properties. This provides a manifestly supersymmetric formulation of spontaneously broken supersymmetric gauge theories, and makes explicit the relations between massive gauge bosons and Higgs bosons. It raises, however, the following question: if the gauge bosons Wsup(+-) and Z and the Higgs bosons wsup(+-) and z are related by supersymmetry, how it is possible that the former couple to leptons and quarks proportionately to g or g', and the latter proportionately to gsub(F)sup(1/2) m (fermions). The paradox is solved as follows: when the Higgs bosons are described by massive gauge superfields, the lagrangian density is non-polynomial and field redefinitions have to be performed, in particular: lepton or quark field -> lepton or quark field + (approx.= Gsub(F)sup(1/2) Higgs field) (lepton or quark field). They automatically regenerate, from the lepton and quark supersymmetric mass terms, the correct Yukawa couplings of Higgs bosons proportional to fermion masses. We also apply this method to the case in which an extra U(1) group is gauged, the standard Higgs boson h 0 being then the superpartner of the new neutral gauge boson U. (orig.)
Electronics cooling of Phenix multiplicity and vertex detector
International Nuclear Information System (INIS)
Chen, Z.; Gregory, W.S.
1996-08-01
The Multiplicity and Vertex Detector (MVD) uses silicon strip sensors arranged in two concentric barrels around the beam pipe of the PHENIX detector that will be installed at Brookhaven National Laboratory. Each silicon sensor is connected by a flexible kapton cable to its own front-end electronics printed circuit board that is a multi-chip module or MCM. The MCMs are the main heat source in the system. To maintain the MVD at optimized operational status, the maximum temperature of the multi-chip modules must be below 40 C. Using COSMOS/M HSTAR for the Heat Transfer analysis, a finite element model of a typical MCM plate was created to simulate a 9m/s airflow and 9m/s mixed flow composed of 50% helium and 50% air respectively, with convective heat transfer on both sides of the plate. The results using a mixed flow of helium and air show that the average maximum temperature reached by the MCMs is 37.5 C. The maximum temperature which is represented by the hot spots on the MCM is 39.43 C for the helium and air mixture which meets the design temperature requirement 40 C. To maintain the Multiplicity and Vertex Detector at optimized operational status, the configuration of the plenum chamber, the power dissipated by the silicon chips, the fluid flow velocity and comparison on the MCM design parameters will be discussed
Two-dimensional thermofield bosonization
International Nuclear Information System (INIS)
Amaral, R.L.P.G.; Belvedere, L.V.; Rothe, K.D.
2005-01-01
The main objective of this paper was to obtain an operator realization for the bosonization of fermions in 1 + 1 dimensions, at finite, non-zero temperature T. This is achieved in the framework of the real-time formalism of Thermofield Dynamics. Formally, the results parallel those of the T = 0 case. The well-known two-dimensional Fermion-Boson correspondences at zero temperature are shown to hold also at finite temperature. To emphasize the usefulness of the operator realization for handling a large class of two-dimensional quantum field-theoretic problems, we contrast this global approach with the cumbersome calculation of the fermion-current two-point function in the imaginary-time formalism and real-time formalisms. The calculations also illustrate the very different ways in which the transmutation from Fermi-Dirac to Bose-Einstein statistics is realized
N-point g-loop vertex for a free fermionic theory with arbitrary spin
International Nuclear Information System (INIS)
Di Vecchia, P.; Pezzella, F.; Frau, M.; Hornfeck, K.
1990-01-01
We use the sewing procedure of the operator formalism to construct explicitly the N-point g-loop vertex V N;g for a free fermionic (b, c)-system with conformal weight (λ, 1-λ). We show that this vertex has the structure we expect from geometrical arguments. We obtain also several geometrical objects, e.g. the holomorphic λ-differentials on an arbitrary Riemann surface, which turn out to be expressed as a Poincare θ-series over all elements of the Schottky group. From V N;g we compute explicitly correlation functions for our system, finding agreement with the geometrical procedure. (orig.)
N-point g-loop vertex for a free fermionic theory with arbitrary spin
International Nuclear Information System (INIS)
Di Vecchia, P.; Pezzella, F.; Frau, M.; Hornfeck, K.
1989-07-01
We use the sewing procedure of the operator fomalism to construct explicitly the N-Point g-Loop Vertex V N;g for a free fermionic (b, c)-system with conformal weight (λ, 1-λ). We show that this Vertex has the structure we expect from geometrical arguments. We obtain also several geometrical objects, e.g. the holomorphic λ differentials on an arbitrary Riemann surface, which turn out to be expressed as a Poincare θ series over all elements of the Schottky group. From V N;g we compute explicitly correlation functions for our system, finding agreement with the geometrical procedure. (orig.)
Status of vertex and tracking detector R&D at CLIC
AUTHOR|(SzGeCERN)754272
2015-01-01
The physics aims at the future CLIC high-energy linear e+e- collider set very high precision requirements on the performance of the vertex and tracking detectors. Moreover, these detectors have to be well adapted to the experimental conditions, such as the bunch train structure of the beam and the presence of beam-induced backgrounds. The principal challenges are: a point resolution of a few micron, ultra-low mass (~0.2% X0 per layer for the inner vertex region), very low power dissipation (compatible with air-flow cooling in the inner vertex region) and pulsed power operation, complemented with ~10 ns time stamping capabilities. An overview of the R&D program for pixel and tracking detectors at CLIC will be presented, including recent results on an innovative hybridisation concept based on capacitive coupling between active sensors (HV-CMOS) and readout ASICs (CLICpix).
VXD3: The SLD vertex detector upgrade based on a 307 Mpixel CCD system
International Nuclear Information System (INIS)
1995-07-01
The SLD Collaboration is building a new CCD vertex detector (VXD3) comprising 96 3.2 Mpixel CCDs of 13 cm 2 each for a total of 307 million pixels. This system is an upgrade of the Pioneering CCD vertex detector VXD2 which has operated in SLD since 1992. The CCDs of VXD3 are mounted on beryllium ladders in three cylinders, providing three space point measurements along each track of about 5 microns resolution in all three coordinates. The design and construction of VXD3 builds on three years of successful performance of VXD2. Significant improvements are achieved with VXD3 in impact parameters resolution (about a factor of two) and acceptance (∼20%) through optimized geometry and reduced material. New readout electronics have been developed for this system. This new vertex detector will be installed in late 1995 for the future runs of SLD
Microscopic boson approach to nuclear collective motion
International Nuclear Information System (INIS)
Kuchta, R.
1989-01-01
A quantum mechanical approach to the maximally decoupled nuclear collective motion is proposed. The essential idea is to transcribe the original shell-model Hamiltonian in terms of boson operators, then to isolate the collective one-boson eigenstates of the mapped Hamiltonian and to perform a canonical transformation which eliminates (up to the two-body terms) the coupling between the collective and noncollective bosons. Unphysical states arising due to the violtion of the Pauli principle in the boson space are identified and removed within a suitable approximation. The method is applied to study the low-lying collective states of nuclei which are successfully described by the exactly solvable multilevel pairing Hamiltonian (Sn, Ni, Pb). 75 refs.; 8 figs
Control and data acquisition electronics for the CDF Silicon Vertex Detector
Energy Technology Data Exchange (ETDEWEB)
Turner, K.J.; Nelson, C.A.; Shaw, T.M.; Wesson, T.R.
1991-11-01
A control and data acquisition system has been designed for the CDF Silicon Vertex Detector (SVX) at Fermilab. The system controls the operation of the SVX Rev D integrated circuit (SVX IC) that is used to instrument a 46,000 microstrip silicon detector. The system consists of a Fastbus Sequencer, a Crate Controller and Digitizer modules. 11 refs., 6 figs., 3 tabs.
Control and data acquisition electronics for the CDF silicon vertex detector
International Nuclear Information System (INIS)
urner, K.J.; Nelson, C.A.; Shaw, T.M.; Wesson, T.R.
1992-01-01
This paper reports on a control and data acquisition system that has been designed for the CDF Silicon Vertex Detector (SVX) at Fermilab. The system controls the operation of the SVX Rev D integrated circuit (SVX IC) that is used to instrument a 46,000 microstrip silicon detector. The system consists of a Fastbus Sequencer, a Crate Controller and Digitizer modules
Control and data acquisition electronics for the CDF Silicon Vertex Detector
International Nuclear Information System (INIS)
Turner, K.J.; Nelson, C.A.; Shaw, T.M.; Wesson, T.R.
1991-11-01
A control and data acquisition system has been designed for the CDF Silicon Vertex Detector (SVX) at Fermilab. The system controls the operation of the SVX Rev D integrated circuit (SVX IC) that is used to instrument a 46,000 microstrip silicon detector. The system consists of a Fastbus Sequencer, a Crate Controller and Digitizer modules. 11 refs., 6 figs., 3 tabs
Directory of Open Access Journals (Sweden)
Kazuhiro Hikami
2010-12-01
Full Text Available We define a class of Y(sl_{(m|n} Yangian invariant Haldane-Shastry (HS like spin chains, by assuming that their partition functions can be written in a particular form in terms of the super Schur polynomials. Using some properties of the super Schur polynomials, we show that the partition functions of this class of spin chains are equivalent to the partition functions of a class of one-dimensional vertex models with appropriately defined energy functions. We also establish a boson-fermion duality relation for the partition functions of this class of supersymmetric HS like spin chains by using their correspondence with one-dimensional vertex models.
Vertex Reconstruction and Performance in ATLAS
Whitmore, Ben William; The ATLAS collaboration
2017-01-01
Efficient and precise reconstruction of the primary vertices in LHC collisions is essential in both the reconstruction of the full kinematic properties of a hard-scatter event and of soft interactions as a measure of the amount of pile-up. The reconstruction of the primary vertices in the busy, high pile up environment of the LHC is a challenging task. The challenges and novel methods developed by the ATLAS experiment to reconstruct vertices in such environments will be presented. The performance of the current vertexing algorithms using Run-2 data will be presented and compared to results from simulation. Additionally, data-driven methods to evaluate vertex resolution, and details of upgrades to the ATLAS inner detector will be presented.
The CDF online silicon vertex tracker
International Nuclear Information System (INIS)
Ashmanskas, W.
2001-01-01
The CDF Online Silicon Vertex Tracker reconstructs 2-D tracks by linking hit positions measured by the Silicon Vertex Detector to the Central Outer Chamber tracks found by the eXtremely Fast Tracker. The system has been completely built and assembled and it is now being commissioned using the first CDF run II data. The precision measurement of the track impact parameter will allow triggering on B hadron decay vertices and thus investigating important areas in the B sector, like CP violation and B s mixing. In this paper we briefly review the architecture and the tracking algorithms implemented in the SVT and we report on the performance of the system achieved in the early phase of CDF run II
The CDF online Silicon Vertex Tracker
International Nuclear Information System (INIS)
Ashmanskas, W.; Bardi, A.; Bari, M.; Belforte, S.; Berryhill, J.; Bogdan, M.; Carosi, R.; Cerri, A.; Chlachidze, G.; Culbertson, R.; Dell'Orso, M.; Donati, S.; Fiori, I.; Frisch, H.J.; Galeotti, S.; Giannetti, P.; Glagolev, V.; Moneta, L.; Morsani, F.; Nakaya, T.; Passuello, D.; Punzi, G.; Rescigno, M.; Ristori, L.; Sanders, H.; Sarkar, S.; Semenov, A.; Shochet, M.; Speer, T.; Spinella, F.; Wu, X.; Yang, U.; Zanello, L.; Zanetti, A.M.
2002-01-01
The CDF Online Silicon Vertex Tracker (SVT) reconstructs 2D tracks by linking hit positions measured by the Silicon Vertex Detector to the Central Outer Chamber tracks found by the eXtremely Fast Tracker (XFT). The system has been completely built and assembled and it is now being commissioned using the first CDF run II data. The precision measurement of the track impact parameter will allow triggering on B hadron decay vertices and thus investigating important areas in the B sector, like CP violation and B s mixing. In this paper we briefly review the architecture and the tracking algorithms implemented in the SVT and we report on the performance of the system achieved in the early phase of CDF run II
Stone, Michael
The following sections are included: * Introduction * Free Fermi Fields * Free Bosons * The Bosonization Rules * A Quantum Pythagoras Theorem * Appendix 1A. Complex Coordinates * Appendix IB. Conformal Symmetry * References
Primary vertex reconstruction with the ATLAS detector
International Nuclear Information System (INIS)
Meloni, F.
2016-01-01
Efficient and precise reconstruction of the primary vertex in a LHC collision is essential for determining the full kinematic properties of a hard-scatter event and of soft interactions as a measure of the amount of pile-up. The reconstruction of primary vertices in the busy, high pile-up environment of Run-2 of the LHC is a challenging task. The algorithms developed by the ATLAS experiments to reconstruct multiple vertices with small spatial separation are presented.
The H1 silicon vertex detector
International Nuclear Information System (INIS)
Pitzl, D.; Behnke, O.; Biddulph, M.; Boesiger, K.; Eichler, R.; Erdmann, W.; Gabathuler, K.; Gassner, J.; Haynes, W.J..; Horisberger, R.; Kausch, M.; Lindstroem, M.; Niggli, H.; Noyes, G.; Pollet, P.; Steiner, S.; Streuli, S.; Szeker, K.; Truoel, P.
2000-01-01
The design, construction and performance of the H1 silicon vertex detector is described. It consists of two cylindrical layers of double-sided, double-metal silicon sensors read out by a custom designed analog pipeline chip. The analog signals are transmitted by optical fibres to a custom-designed ADC board and are reduced on PowerPC processors. Details of the design and construction are given and performance figures from the first data-taking periods are presented
International Nuclear Information System (INIS)
Koller, K.; Zerwas, P.M.; Walsh, T.F.
1978-12-01
We show how the Q 2 evolution of gluon jets can be used to provide indirect but strong evidence for the 3 gluon vertex of QCD. We propose looking for this evolution in the QantiQ → 3G → hadrons decay of successive 1 3 S 1 quarkonium states. The results apply to other processes if G jets can be isolated. (orig.) [de
Nonperturbative Aspects of Axial Vector Vertex
Institute of Scientific and Technical Information of China (English)
ZONG Hong-Shi; CHEN Xiang-Song; WANG Fan; CHANG Chao-Hsi; ZHAO En-Guang
2002-01-01
It is shown how the axial vector current of current quarks is related to that of constituent quarks within the framework of the global color symmetry model.Gluon dressing of the axial vector vertex and the quark self-energy functions are described by the inhomogeneous Bethe-Salpeter equation in the ladder approximation and the Schwinger Dyson equation in the rainbow approximation,respectively.
Vertical integration technologies for vertex detectors
International Nuclear Information System (INIS)
Ratti, L.
2011-01-01
This work is focused on the use of vertical integration (3D) technologies in the design of hybrid or monolithic pixel detectors in view of applications to silicon vertex trackers (SVTs) at the future high luminosity colliders. After a short introduction on the specifications of next-generation SVTs, the paper will discuss the general features of 3D microelectronic processes and the benefits they can provide to the design of pixel detectors for high energy physics experiments.
Vertex chamber for the KEDR detector
International Nuclear Information System (INIS)
Aulchenko, V.M.; Chilingarov, A.G.; Kolachev, G.M.; Lazarenko, O.B.; Nagaslaev, V.P.; Romanov, L.V.
1989-01-01
The project and design of the vertex chamber for the KEDR detector is described. The chamber consists of 6 cylindrical layers of tubes with 10 mm diameter and 800 mm length. The tubes are made of 20 μm thick aluminized mylar. The prototype tests show that it is possible to achieve a resolution of 20-30 μm using the cool gas mixtures. (orig.)
Flipped spinfoam vertex and loop gravity
Energy Technology Data Exchange (ETDEWEB)
Engle, Jonathan; Pereira, Roberto [CPT, CNRS Case 907, Universite de la Mediterranee, F-13288 Marseille (France); Rovelli, Carlo [CPT, CNRS Case 907, Universite de la Mediterranee, F-13288 Marseille (France)], E-mail: rovelli@cpt.univ-mrs.fr
2008-07-21
We introduce a vertex amplitude for 4d loop quantum gravity. We derive it from a conventional quantization of a Regge discretization of euclidean general relativity. This yields a spinfoam sum that corrects some difficulties of the Barrett-Crane theory. The second class simplicity constraints are imposed weakly, and not strongly as in Barrett-Crane theory. Thanks to a flip in the quantum algebra, the boundary states turn out to match those of SO(3) loop quantum gravity-the two can be identified as eigenstates of the same physical quantities-providing a solution to the problem of connecting the covariant SO(4) spinfoam formalism with the canonical SO(3) spin-network one. The vertex amplitude is SO(3) and SO(4)-covariant. It rectifies the triviality of the intertwiner dependence of the Barrett-Crane vertex, which is responsible for its failure to yield the correct propagator tensorial structure. The construction provides also an independent derivation of the kinematics of loop quantum gravity and of the result that geometry is quantized.
Spin wave Feynman diagram vertex computation package
Price, Alexander; Javernick, Philip; Datta, Trinanjan
Spin wave theory is a well-established theoretical technique that can correctly predict the physical behavior of ordered magnetic states. However, computing the effects of an interacting spin wave theory incorporating magnons involve a laborious by hand derivation of Feynman diagram vertices. The process is tedious and time consuming. Hence, to improve productivity and have another means to check the analytical calculations, we have devised a Feynman Diagram Vertex Computation package. In this talk, we will describe our research group's effort to implement a Mathematica based symbolic Feynman diagram vertex computation package that computes spin wave vertices. Utilizing the non-commutative algebra package NCAlgebra as an add-on to Mathematica, symbolic expressions for the Feynman diagram vertices of a Heisenberg quantum antiferromagnet are obtained. Our existing code reproduces the well-known expressions of a nearest neighbor square lattice Heisenberg model. We also discuss the case of a triangular lattice Heisenberg model where non collinear terms contribute to the vertex interactions.
Markov branching in the vertex splitting model
International Nuclear Information System (INIS)
Stefánsson, Sigurdur Örn
2012-01-01
We study a special case of the vertex splitting model which is a recent model of randomly growing trees. For any finite maximum vertex degree D, we find a one parameter model, with parameter α element of [0,1] which has a so-called Markov branching property. When D=∞ we find a two parameter model with an additional parameter γ element of [0,1] which also has this feature. In the case D = 3, the model bears resemblance to Ford's α-model of phylogenetic trees and when D=∞ it is similar to its generalization, the αγ-model. For α = 0, the model reduces to the well known model of preferential attachment. In the case α > 0, we prove convergence of the finite volume probability measures, generated by the growth rules, to a measure on infinite trees which is concentrated on the set of trees with a single spine. We show that the annealed Hausdorff dimension with respect to the infinite volume measure is 1/α. When γ = 0 the model reduces to a model of growing caterpillar graphs in which case we prove that the Hausdorff dimension is almost surely 1/α and that the spectral dimension is almost surely 2/(1 + α). We comment briefly on the distribution of vertex degrees and correlations between degrees of neighbouring vertices
Complex growing networks with intrinsic vertex fitness
International Nuclear Information System (INIS)
Bedogne, C.; Rodgers, G. J.
2006-01-01
One of the major questions in complex network research is to identify the range of mechanisms by which a complex network can self organize into a scale-free state. In this paper we investigate the interplay between a fitness linking mechanism and both random and preferential attachment. In our models, each vertex is assigned a fitness x, drawn from a probability distribution ρ(x). In Model A, at each time step a vertex is added and joined to an existing vertex, selected at random, with probability p and an edge is introduced between vertices with fitnesses x and y, with a rate f(x,y), with probability 1-p. Model B differs from Model A in that, with probability p, edges are added with preferential attachment rather than randomly. The analysis of Model A shows that, for every fixed fitness x, the network's degree distribution decays exponentially. In Model B we recover instead a power-law degree distribution whose exponent depends only on p, and we show how this result can be generalized. The properties of a number of particular networks are examined
The Belle II silicon vertex detector assembly and mechanics
Energy Technology Data Exchange (ETDEWEB)
Adamczyk, K. [H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342 (Poland); Aihara, H. [Department of Physics, University of Tokyo, Tokyo 113-0033 (Japan); Angelini, C. [Dipartimento di Fisica, Università di Pisa, I-56127 Pisa (Italy); INFN Sezione di Pisa, I-56127 Pisa (Italy); Aziz, T.; Babu, V. [Tata Institute of Fundamental Research, Mumbai 400005 (India); Bacher, S. [H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342 (Poland); Bahinipati, S. [Indian Institute of Technology Bhubaneswar, Satya Nagar (India); Barberio, E.; Baroncelli, Ti.; Baroncelli, To. [School of Physics, University of Melbourne, Melbourne, Victoria 3010 (Australia); Basith, A.K. [Indian Institute of Technology Madras, Chennai 600036 (India); Batignani, G. [Dipartimento di Fisica, Università di Pisa, I-56127 Pisa (Italy); INFN Sezione di Pisa, I-56127 Pisa (Italy); Bauer, A. [Institute of High Energy Physics, Austrian Academy of Sciences, 1050 Vienna (Austria); Behera, P.K. [Indian Institute of Technology Madras, Chennai 600036 (India); Bergauer, T. [Institute of High Energy Physics, Austrian Academy of Sciences, 1050 Vienna (Austria); Bettarini, S., E-mail: stefano.bettarini@pi.infn.it [Dipartimento di Fisica, Università di Pisa, I-56127 Pisa (Italy); INFN Sezione di Pisa, I-56127 Pisa (Italy); Bhuyan, B. [Indian Institute of Technology Guwahati, Assam 781039 (India); Bilka, T. [Faculty of Mathematics and Physics, Charles University, 121 16 Prague (Czech Republic); Bosi, F. [INFN Sezione di Pisa, I-56127 Pisa (Italy); Bosisio, L. [Dipartimento di Fisica, Università di Trieste, I-34127 Trieste (Italy); INFN Sezione di Trieste, I-34127 Trieste (Italy); and others
2017-02-11
The Belle II experiment at the asymmetric SuperKEKB collider in Japan will operate at an instantaneous luminosity approximately 50 times greater than its predecessor (Belle). The central feature of the experiment is a vertex detector comprising two layers of pixelated silicon detectors (PXD) and four layers of double-sided silicon microstrip detectors (SVD). One of the key measurements for Belle II is CP violation asymmetry in the decays of beauty and charm hadrons, which hinges on a precise charged-track vertex determination and low-momentum track measurement. Towards this goal, a proper assembly of the SVD components with precise alignment ought to be performed and the geometrical tolerances should be checked to fall within the design limits. We present an overview of the assembly procedure that is being followed, which includes the precision gluing of the SVD module components, wire-bonding of the various electrical components, and precision 3D coordinate measurements of the final SVD modules. Finally, some results from the latest test-beam are reported.
First results with prototype ISIS devices for ILC vertex detector
International Nuclear Information System (INIS)
Damerell, C.; Zhang, Z.; Gao, R.; John John, Jaya; Li, Y.; Nomerotski, A.; Holland, A.; Seabroke, G.; Havranek, M.; Stefanov, K.; Kar-Roy, A.; Bell, R.; Burt, D.; Pool, P.
2010-01-01
The vertex detectors at the International Linear Collider (ILC) (there will be two of them, one for each of two general purpose detectors) will certainly be built with silicon pixel detectors, either monolithic or perhaps vertically integrated. However, beyond this general statement, there is a wide range of options supported by active R and D programmes all over the world. Pixel-based vertex detectors build on the experience at the SLAC large detector (SLD) operating at the SLAC linear collider (SLC), where a 307 Mpixel detector permitted the highest physics performance at LEP or SLC. For ILC, machine conditions demand much faster readout than at SLC, something like 20 time slices during the 1 ms bunch train. The approach of the image sensor with in-situ storage (ISIS) is unique in offering this capability while avoiding the undesirable requirement of 'pulsed power'. First results from a prototype device that approaches the pixel size of 20 μm square, needed for physics, are reported. The dimensional challenge is met by using a 0.18 μm imaging CMOS process, instead of a conventional CCD process.
First results with prototype ISIS devices for ILC vertex detector
Energy Technology Data Exchange (ETDEWEB)
Damerell, C., E-mail: c.damerell@rl.ac.u [RAL, Oxon OX11 0QX (United Kingdom); Zhang, Z. [RAL, Oxon OX11 0QX (United Kingdom); Gao, R.; John John, Jaya; Li, Y.; Nomerotski, A. [Oxford U (United Kingdom); Holland, A.; Seabroke, G. [Centre for Electronic Imaging, Open U (United Kingdom); Havranek, M. [Czech Technical University in Prague (Czech Republic); Stefanov, K. [Sentec Ltd, Cambridge (United Kingdom); Kar-Roy, A. [Jazz Semiconductors, California (United States); Bell, R.; Burt, D.; Pool, P. [e2V Technologies, Chelmsford (United Kingdom)
2010-12-11
The vertex detectors at the International Linear Collider (ILC) (there will be two of them, one for each of two general purpose detectors) will certainly be built with silicon pixel detectors, either monolithic or perhaps vertically integrated. However, beyond this general statement, there is a wide range of options supported by active R and D programmes all over the world. Pixel-based vertex detectors build on the experience at the SLAC large detector (SLD) operating at the SLAC linear collider (SLC), where a 307 Mpixel detector permitted the highest physics performance at LEP or SLC. For ILC, machine conditions demand much faster readout than at SLC, something like 20 time slices during the 1 ms bunch train. The approach of the image sensor with in-situ storage (ISIS) is unique in offering this capability while avoiding the undesirable requirement of 'pulsed power'. First results from a prototype device that approaches the pixel size of 20 {mu}m square, needed for physics, are reported. The dimensional challenge is met by using a 0.18 {mu}m imaging CMOS process, instead of a conventional CCD process.
2008-01-01
Quantum physicists think they know the answer. Probabilistic calculations reveal than the data provided by previous experiments has been miscalculated and that the Higgs boson has in fact been discovered. Weird! The Higgs boson is the only particle predicted by the Standard Model that hasn't been discovered yet.
Higher order corrections to Higgs boson decays in the MSSM with complex parameters
Energy Technology Data Exchange (ETDEWEB)
Williams, Karina E. [Bonn Univ. (Germany). Bethe Center for Theoretical Physics; Rzehak, Heidi [Freiburg Univ. (Germany). Physikalisches Inst.; Weiglein, Georg [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2011-03-15
We discuss Higgs boson decays in the CP-violating MSSM, and examine their phe- nomenological impact using cross section limits from the LEP Higgs searches. This includes a discussion of the full 1-loop results for the partial decay widths of neutral Higgs bosons into lighter neutral Higgs bosons (h{sub a}{yields}h{sub b}h{sub c}) and of neutral Higgs bosons into fermions (h{sub a}{yields}f anti f). In calculating the genuine vertex corrections, we take into account the full spectrum of supersymmetric particles and all complex phases of the supersymmetric parameters. These genuine vertex corrections are supplemented with Higgs propagator corrections incorporating the full one-loop and the dominant two-loop contributions, and we illustrate a method of consistently treating diagrams involving mixing with Goldstone and Z bosons. In particular, the genuine vertex corrections to the process h{sub a}{yields}h{sub b}h{sub c} are found to be very large and, where this process is kinematically allowed, can have a significant effect on the regions of the CPX bench- mark scenario which can be excluded by the results of the Higgs searches at LEP. However, there remains an unexcluded region of CPX parameter space at a lightest neutral Higgs boson mass of {proportional_to}45 GeV. In the analysis, we pay particular attention to the conversion between parameters defined in different renormalisation schemes and are therefore able to make a comparison to the results found using renormalisation group improved/effective potential calculations. (orig.)
Unified theory of fermion pair to boson mappings in full and truncated spaces
International Nuclear Information System (INIS)
Ginocchio, J.N.; Johnson, C.W.
1995-01-01
After a brief review of various mappings of fermion pairs to bosons, we rigorously derive a general approach. Following the methods of Marumori and Otsuka, Arima, and Iachello, our approach begins with mapping states and constructs boson representations that preserve fermion matrix elements. In several cases these representations factor into finite, Hermitian boson images times a projection or norm operator that embodies the Pauli principle. We pay particular attention to truncated boson spaces, and describe general methods for constructing Hermitian and approximately finite boson image Hamiltonians. This method is akin to that of Otsuka, Arima, and Iachello introduced in connection with the interacting boson model, but is more rigorous, general, and systematic
Who will catch the Higgs boson?
International Nuclear Information System (INIS)
Colas, P.; Tuchming, B.
2004-01-01
The Higgs boson was theoretically created about 40 years ago by a Scott Peter Higgs who wanted to explain why some particles get a mass. Since then the Higgs boson has taken consistency and has become an important point of the standard model theory. Its experimental discovery would be a milestone of modern physics. The search for the Higgs boson is an international challenge that takes place around 2 huge machines: the Tevatron near Chicago and the LHC (large hadron collider) that is being built in CERN. The Tevatron is in fact the upgrading of an old particle accelerator, it is a proton collider and its narrow range of energy is compensated by a low background noise. On the other hand the LHC will begin operating only in 2007 and its full power will be reached a few years later, the energy available to create particles will be then 7 times higher than for the Tevatron. Both machines have chance of succeeding by being the first to detect the Higgs boson. Time plays in favor of the Tevatron but in any case if the Higgs boson exists it will be detected at LHC because this equipment covers completely the energy range in which the Higgs boson is suspected to exist. (A.C.)
A combination of preliminary results on gauge boson couplings measured by the LEP Experiments
CERN. Geneva
2004-01-01
This note presents a combination of published and preliminary measurements of triple gauge boson couplings (TGCs) and quartic gauge boson couplings (QGCs) from the four LEP experiments. We give an updated combination of the charged TGCs, g1z, kg and lg in single and multi-parameter fits. Updated results from the QGCs from the ZZgg vertex, ac/Lambda^2 and a0/Lambda^2, are given as well. The combinations of neutral TGCs hiv anf fiv are also presented, including an updated fiv combination.
Probing diffractive production of gauge bosons at forward rapidities
Energy Technology Data Exchange (ETDEWEB)
Basso, Eduardo; Rangel, Murilo S. [Universidade Federal do Rio de Janeiro, Instituto de Fisica, Caixa Postal 68528, Rio de Janeiro, RJ (Brazil); Goncalves, Victor P. [Universidade Federal de Pelotas, Instituto de Fisica e Matematica, Pelotas, RS (Brazil)
2016-12-15
Gauge boson production at forward rapidities in single diffractive events at the LHC is investigated considering pp collisions at √(s) = 8 and 13 TeV. The impact of gap survival effects is analysed using two different models for the soft rescattering contributions. We demonstrate that using the forward shower counter Project at LHCb-HERSCHEL, together with the Vertex Locator-VELO, it is possible to discriminate diffractive production of the gauge bosons W and Z from the non-diffractive processes and studies of the Pomeron structure and diffraction phenomenology are feasible. Moreover, we show that the analysis of this process can be useful to constrain the modelling of the gap survival effects. (orig.)
Numerical indications on the semiclassical limit of the flipped vertex
Energy Technology Data Exchange (ETDEWEB)
Magliaro, Elena; Perini, Claudio; Rovelli, Carlo [Centre de Physique Theorique de Luminy , Case 907, F-13288 Marseille (France)
2008-05-07
We introduce a technique for testing the semiclassical limit of a quantum gravity vertex amplitude. The technique is based on the propagation of a semiclassical wave packet. We apply this technique to the newly introduced 'flipped' vertex in loop quantum gravity, in order to test the intertwiner dependence of the vertex. Under some drastic simplifications, we find very preliminary, but surprisingly good numerical evidence for the correct classical limit.
Mechanical design of the CDF SVX II silicon vertex detector
International Nuclear Information System (INIS)
Skarha, J.E.
1994-08-01
A next generation silicon vertex detector is planned at CDF for the 1998 Tevatron collider run with the Main Injector. The SVX II silicon vertex detector will allow high luminosity data-taking, enable online triggering of secondary vertex production, and greatly increase the acceptance for heavy flavor physics at CDF. The design specifications, geometric layout, and early mechanical prototyping work for this detector are discussed
Loop vertex expansion for higher-order interactions
Rivasseau, Vincent
2018-05-01
This note provides an extension of the constructive loop vertex expansion to stable interactions of arbitrarily high order, opening the way to many applications. We treat in detail the example of the (\\bar{φ } φ )^p field theory in zero dimension. We find that the important feature to extend the loop vertex expansion is not to use an intermediate field representation, but rather to force integration of exactly one particular field per vertex of the initial action.
Pion-nucleon vertex function with one nucleon off shell
International Nuclear Information System (INIS)
Mizutani, T.; Rochus, P.
1979-01-01
The pion-nucleon vertex function with an off-mass-shell nucleon is obtained through sideways dispersion relations with the P 11 and S 11 pion-nucleon phase shifts as only input. Contrary to the recent calculation of Nutt and Shakin, we find that the proper and improper vertex functions behave quite differently, indicating the importance of the nucleon propagator dressing. In particular the proper vertex function is found to have two poles in the unphysical region
Symmetry between bosons and fermions
International Nuclear Information System (INIS)
Ohnuki, Y.; Kamefuchi, S.
1986-01-01
By definition Bosons and Fermions behave quite differently as regards statistics. It is equally true, however, that in some other respects they do behave similarly or even symmetrically. In the present paper they would like to show that such similarity or symmetry can be exhibited most fully when the theory is formulated in a specific manner, i.e. in terms of annihilation and creation operators a/sub j/ and a/sub j//sup dagger/ or what they term g-numbers. The difference between Bosons and Fermions can, of course, be traced back to the difference in the signatures (jj) = +,- attached to the brackets in the basic commutation relations: [a/sub j/,a/sub j//sup dagger/]-(jj) = 1, [a/sub j/,a/sub j/]-(jj) = 0. However, the substantial part of the theory can in fact be formulated without specifying the individual signatures (jj). This is why it is possible to treat Bosons and Fermions in a unified manner, and to thereby consider, among the two, super- or more general, g-symmetry transformations. 6 references, 1 table
The Belle II Silicon Vertex Detector
Energy Technology Data Exchange (ETDEWEB)
Friedl, M., E-mail: markus.friedl@oeaw.ac.at [HEPHY – Institute of High Energy Physics, Nikolsdorfer Gasse 18, 1050 Vienna (Austria); Ackermann, K. [MPI Munich, Föhringer Ring 6, 80805 München (Germany); Aihara, H. [University of Tokyo, Department of Physics, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Aziz, T. [Tata Institute of Fundamental Research, Experimental High Energy Physics Group, Homi Bhabha Road, Mumbai 400 005 (India); Bergauer, T. [HEPHY – Institute of High Energy Physics, Nikolsdorfer Gasse 18, 1050 Vienna (Austria); Bozek, A. [Institute of Nuclear Physics, Division of Particle Physics and Astrophysics, ul. Radzikowskiego 152, 31 342 Krakow (Poland); Campbell, A. [DESY, Notkestrasse 85, 22607 Hamburg (Germany); Dingfelder, J. [University of Bonn, Department of Physics and Astronomy, Nussallee 12, 53115 Bonn (Germany); Drasal, Z. [Charles University, Institute of Particle and Nuclear Physics, Ke Karlovu 3, 121 16 Praha 2 (Czech Republic); Frankenberger, A. [HEPHY – Institute of High Energy Physics, Nikolsdorfer Gasse 18, 1050 Vienna (Austria); Gadow, K. [DESY, Notkestrasse 85, 22607 Hamburg (Germany); Gfall, I. [HEPHY – Institute of High Energy Physics, Nikolsdorfer Gasse 18, 1050 Vienna (Austria); Haba, J.; Hara, K.; Hara, T. [KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Higuchi, T. [University of Tokyo, Kavli Institute for Physics and Mathematics of the Universe, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Himori, S. [Tohoku University, Department of Physics, Aoba Aramaki Aoba-ku, Sendai 980-8578 (Japan); Irmler, C. [HEPHY – Institute of High Energy Physics, Nikolsdorfer Gasse 18, 1050 Vienna (Austria); Ishikawa, A. [Tohoku University, Department of Physics, Aoba Aramaki Aoba-ku, Sendai 980-8578 (Japan); Joo, C. [Seoul National University, High Energy Physics Laboratory, 25-107 Shinlim-dong, Kwanak-gu, Seoul 151-742 (Korea, Republic of); and others
2013-12-21
The KEKB machine and the Belle experiment in Tsukuba (Japan) are now undergoing an upgrade, leading to an ultimate luminosity of 8×10{sup 35}cm{sup −2}s{sup −1} in order to measure rare decays in the B system with high statistics. The previous vertex detector cannot cope with this 40-fold increase of luminosity and thus needs to be replaced. Belle II will be equipped with a two-layer Pixel Detector surrounding the beam pipe, and four layers of double-sided silicon strip sensors at higher radii than the old detector. The Silicon Vertex Detector (SVD) will have a total sensitive area of 1.13m{sup 2} and 223,744 channels—twice as many as its predecessor. All silicon sensors will be made from 150 mm wafers in order to maximize their size and thus to reduce the relative contribution of the support structure. The forward part has slanted sensors of trapezoidal shape to improve the measurement precision and to minimize the amount of material as seen by particles from the vertex. Fast-shaping front-end amplifiers will be used in conjunction with an online hit time reconstruction algorithm in order to reduce the occupancy to the level of a few percent at most. A novel “Origami” chip-on-sensor scheme is used to minimize both the distance between strips and amplifier (thus reducing the electronic noise) as well as the overall material budget. This report gives an overview on the status of the Belle II SVD and its components, including sensors, front-end detector ladders, mechanics, cooling and the readout electronics.
The Belle II Silicon Vertex Detector
International Nuclear Information System (INIS)
Friedl, M.; Ackermann, K.; Aihara, H.; Aziz, T.; Bergauer, T.; Bozek, A.; Campbell, A.; Dingfelder, J.; Drasal, Z.; Frankenberger, A.; Gadow, K.; Gfall, I.; Haba, J.; Hara, K.; Hara, T.; Higuchi, T.; Himori, S.; Irmler, C.; Ishikawa, A.; Joo, C.
2013-01-01
The KEKB machine and the Belle experiment in Tsukuba (Japan) are now undergoing an upgrade, leading to an ultimate luminosity of 8×10 35 cm −2 s −1 in order to measure rare decays in the B system with high statistics. The previous vertex detector cannot cope with this 40-fold increase of luminosity and thus needs to be replaced. Belle II will be equipped with a two-layer Pixel Detector surrounding the beam pipe, and four layers of double-sided silicon strip sensors at higher radii than the old detector. The Silicon Vertex Detector (SVD) will have a total sensitive area of 1.13m 2 and 223,744 channels—twice as many as its predecessor. All silicon sensors will be made from 150 mm wafers in order to maximize their size and thus to reduce the relative contribution of the support structure. The forward part has slanted sensors of trapezoidal shape to improve the measurement precision and to minimize the amount of material as seen by particles from the vertex. Fast-shaping front-end amplifiers will be used in conjunction with an online hit time reconstruction algorithm in order to reduce the occupancy to the level of a few percent at most. A novel “Origami” chip-on-sensor scheme is used to minimize both the distance between strips and amplifier (thus reducing the electronic noise) as well as the overall material budget. This report gives an overview on the status of the Belle II SVD and its components, including sensors, front-end detector ladders, mechanics, cooling and the readout electronics
Propagation of the trip behavior in the VENUS vertex chamber
International Nuclear Information System (INIS)
Ohama, Taro; Yamada, Yoshikazu.
1995-03-01
The high voltage system of the VENUS vertex chamber occasionally trips by a discharge somewhere among cathode electrodes during data taking. This trip behavior induces often additional trips at other electrodes such as the skin and the grid electrodes in the vertex chamber. This propagation mechanism of trips is so complicated in this system related with multi-electrodes. Although the vertex chamber is already installed inside the VENUS detector and consequently the discharge is not able to observe directly, a trial to estimate the propagation has been done using only the information which appears around the trip circuits and the power supply of the vertex chamber. (author)
Loop-quantum-gravity vertex amplitude.
Engle, Jonathan; Pereira, Roberto; Rovelli, Carlo
2007-10-19
Spin foam models are hoped to provide the dynamics of loop-quantum gravity. However, the most popular of these, the Barrett-Crane model, does not have the good boundary state space and there are indications that it fails to yield good low-energy n-point functions. We present an alternative dynamics that can be derived as a quantization of a Regge discretization of Euclidean general relativity, where second class constraints are imposed weakly. Its state space matches the SO(3) loop gravity one and it yields an SO(4)-covariant vertex amplitude for Euclidean loop gravity.
Construction of the CDF silicon vertex detector
International Nuclear Information System (INIS)
Skarha, J.; Barnett, B.; Boswell, C.; Snider, F.; Spies, A.; Tseng, J.; Vejcik, S.; Carter, H.; Flaugher, B.; Gonzales, B.; Hrycyk, M.; Nelson, C.; Segler, S.; Shaw, T.; Tkaczyk, S.; Turner, K.; Wesson, T.; Carithers, W.; Ely, R.; Haber, C.; Holland, S.; Kleinfelder, S.; Merrick, T.; Schneider, O.; Wester, W.; Wong, M.; Amidei, D.; Derwent, P.; Gold, M.; Matthews, J.; Bacchetta, N.; Bisello, D.; Busetto, G.; Castro, A.; Loreti, M.; Pescara, L.; Bedeschi, F.; Bolognesi, V.; Dell'Agnello, S.; Galeotti, S.; Mariotti, M.; Menzione, A.; Punzi, G.; Raffaelli, F.; Risotri, L.; Tartarelli, F.; Turini, N.; Wenzel, H.; Zetti, F.; Bailey, M.; Garfinkel, A.; Shaw, N.; Tipton, P.; Watts, G.
1992-04-01
Technical details and methods used in constructing the CDF silicon vertex detector are presented. This description includes a discussion of the foam-carbon fiber composite structure used to silicon microstrip detectors and the procedure for achievement of 5 μm detector alignment. The construction of the beryllium barrel structure, which houses the detector assemblies, is also described. In addition, the 10 μm placement accuracy of the detectors in the barrel structure is discussed and the detector cooling and mounting systems are described. 12 refs
Developments in solid state vertex detectors
International Nuclear Information System (INIS)
Damerell, C.J.S.
1984-12-01
Since the discovery of the J/psi in November 1974, there has been a strong interest in the physics of particles containing higher-flavour quarks (charm, bottom, top, ...). High precision vertex detectors can be used to identify the decay products of parent particles which have lifetimes of the order 10 -13 s. The paper surveys the progress which is being made in developing silicon detectors with the necessary tracking precision (< approx. 5 μm) to be used for this purpose in fixed target experiments and also in colliders such as SLC and LEP. (author)
Silicon detectors for tracking and vertexing
International Nuclear Information System (INIS)
Nomerotski, Andrei
2009-01-01
This review covers recent developments in silicon detectors used for particle physics experiments for the tracking and vertexing systems. After a general introduction the main focus of the report is on new challenges for this field posed by requirements of the future generation machines. Technologies reviewed in more detail are column parallel CCDs, DEPFET, vertical integration of sensors and electronics and several others which allow fast readout and low mass design. Important system issues such as mechanical arrangements for the sensors and power distribution, which are critical for the low mass design, are also discussed.
Silicon vertex tracker for RHIC PHENIX experiment
Energy Technology Data Exchange (ETDEWEB)
Taketani, A [RIKEN, Nishina Ctr Accelerator Based Sci, Wako, Saitama, Japan; Cianciolo, Vince [ORNL; Enokizono, Akitomo [Oak Ridge National Laboratory (ORNL); PHENIX, Collaboration [The
2010-01-01
The PHENIX experiment at Relativistic Heavy Ion Collider will be equipped with Silicon Vertex tracker to enhance its physics capability. There are four layers of silicon sensor to reconstruct charged tracks with 50 {micro}m resolution of decay length measurement. The VTX surrounds the collision point. The inner two layers and the outer two layers are composed of 30 pixel ladders and 44 stripixel ladders, respectively. We have been developing these detectors and done a performance test with 120 GeV proton beam.
System software design for the CDF Silicon Vertex Detector
Energy Technology Data Exchange (ETDEWEB)
Tkaczyk, S. (Fermi National Accelerator Lab., Batavia, IL (United States)); Bailey, M. (Purdue Univ., Lafayette, IN (United States))
1991-11-01
An automated system for testing and performance evaluation of the CDF Silicon Vertex Detector (SVX) data acquisition electronics is described. The SVX data acquisition chain includes the Fastbus Sequencer and the Rabbit Crate Controller and Digitizers. The Sequencer is a programmable device for which we developed a high level assembly language. Diagnostic, calibration and data acquisition programs have been developed. A distributed software package was developed in order to operate the modules. The package includes programs written in assembly and Fortran languages that are executed concurrently on the SVX Sequencer modules and either a microvax or an SSP. Test software was included to assist technical personnel during the production and maintenance of the modules. Details of the design of different components of the package are reported.
System software design for the CDF Silicon Vertex Detector
International Nuclear Information System (INIS)
Tkaczyk, S.; Bailey, M.
1991-11-01
An automated system for testing and performance evaluation of the CDF Silicon Vertex Detector (SVX) data acquisition electronics is described. The SVX data acquisition chain includes the Fastbus Sequencer and the Rabbit Crate Controller and Digitizers. The Sequencer is a programmable device for which we developed a high level assembly language. Diagnostic, calibration and data acquisition programs have been developed. A distributed software package was developed in order to operate the modules. The package includes programs written in assembly and Fortran languages that are executed concurrently on the SVX Sequencer modules and either a microvax or an SSP. Test software was included to assist technical personnel during the production and maintenance of the modules. Details of the design of different components of the package are reported
Dφ vertex drift chamber construction and test results
International Nuclear Information System (INIS)
Clark, A.R.; Goozen, F.; Grudberg, P.; Klopfenstein, C.; Kerth, L.T.; Loken, S.C.; Oltman, E.; Strovink, M.; Trippe, T.G.
1991-05-01
A jet-cell based vertex chamber has been built for the D OE experiment at Fermilab and operated in a test beam there. Low drift velocity and diffusion properties were achieved using CO 2 (95%)-ethane(5%) at atmospheric pressure. The drift velocity is found to be consistent with [9.74+8.68(|E|-1.25)] μm/nsec where E is the electric field strength in (kV/cm < |E| z 1.6 kV/cm.) An intrinsic spatial resolution of 60 μm or better for drift distances greater than 2 mm is measured. The track pair efficiency is estimated to be better than 90% for separations greater than 630 μm. 8 refs., 6 figs., 1 tab
CDF silicon vertex tracker: tevatron run II preliminary results
International Nuclear Information System (INIS)
Ashmanskas, W.; Belforte, S.; Budagov, Yu.
2002-01-01
The Online Silicon Vertex Tracker (SVT) is the unique new trigger processor dedicated to the 2-D reconstruction of charged particle trajectories at Level 2 of the CDF trigger. The SVT has been successfully built, installed and operated during the 2000 and 20001 CDF data taking runs. The performance of the SVT is already very close to the design. The SVT is able to find tracks and calculate their impact parameter with high precision (σ d = 35 μm). It is possible to correct the beam position offset and give the beam position feedback to accelerator in real time. In fact, the beam position is calculated online every few seconds with an accuracy of 1 to 5 μm. The beam position is continuously sent to the accelerator control. By using trigger tracks, parent particles such as K S 's and D 0 's are reconstructed, proving that the SVT is ready to be used for physics studies
International Nuclear Information System (INIS)
Geyer, H.B.
1986-01-01
The qualitative ideas put forward by Geyer and Lee are given quantitative content by constructing a similarity transformation which reexpresses the Dyson boson images of the single-j shell fermion operators in terms of seniority bosons. It is shown that the results of Otsuka, Arima, and Iachello, or generalizations thereof which include g bosons or even bosons with J>4, can be obtained in an economic and transparent way without resorting to any comparison of matrix elements
Microscopy of bosonic models using Schwinger and Holstein - Primakoff bosonization techniques
International Nuclear Information System (INIS)
Pinto, M.E.B.
1988-01-01
Two kinds of bosonic expansions for the SU(2) case, one being finite (Schwinger) and the other being infinite (Holstein-Primakoff) are analysed. The existence of a transformation connecting them was discussed. Utilizing the two methods, the Two Level Model hamiltonian into the many boson space is mapped. Considering systems composed by 4, 6 and 14 particles, calculations for the eigenenergies within the ''vibrational limit'' of the model were performed. The results show that the Schwinger mapping is exact. Approximated bosonic images with the Holstein-Primakoff mapping are obtained. Indeed, the anharmonicities observed in the region between the ideal '' spherical limit'' and the ''transitional point'', were well described by the approximation containing up to quartic terms on the bosonic operators. (author) [pt
Indian Academy of Sciences (India)
Keith Ulmer
... new scalar particle. The Gauge field 'ate' the Goldsone boson, thereby acquiring both a mass ... Production rate is very very low in comparison with other physics process, need. ➢ ..... origin of mass of subatomic particles, and which recently ...
Strongly interacting Higgs bosons
International Nuclear Information System (INIS)
Appelquist, T.; Bernard, C.
1980-01-01
The sensitivity of present-energy weak interactions to a strongly interacting heavy-Higgs-boson sector is discussed. The gauged nonlinear sigma model, which is the limit of the linear model as the Higgs-boson mass goes to infinity, is used to organize and catalogue all possible heavy-Higgs-boson effects. As long as the SU(2)/sub L/ x SU(2)/sub R/ symmetry of the Higgs sector is preserved, these effects are found to be small, of the order of the square of the gauge coupling times logarithms (but not powers) of the Higgs-boson mass divided by the W mass. We work in the context of a simplified model with gauge group SU(2)/sub L/; the extension to SU(2)/sub L/ x U(1) is briefly discussed
International Nuclear Information System (INIS)
Anon.
1979-01-01
The possibility of the production of weak bosons in the proton-antiproton colliding beam facilities which are currently being developed, is discussed. The production, decay and predicted properties of these particles are described. (W.D.L.).
The Construction of Spin Foam Vertex Amplitudes
Directory of Open Access Journals (Sweden)
Eugenio Bianchi
2013-01-01
Full Text Available Spin foam vertex amplitudes are the key ingredient of spin foam models for quantum gravity. These fall into the realm of discretized path integral, and can be seen as generalized lattice gauge theories. They can be seen as an attempt at a 4-dimensional generalization of the Ponzano-Regge model for 3d quantum gravity. We motivate and review the construction of the vertex amplitudes of recent spin foam models, giving two different and complementary perspectives of this construction. The first proceeds by extracting geometric configurations from a topological theory of the BF type, and can be seen to be in the tradition of the work of Barrett, Crane, Freidel and Krasnov. The second keeps closer contact to the structure of Loop Quantum Gravity and tries to identify an appropriate set of constraints to define a Lorentz-invariant interaction of its quanta of space. This approach is in the tradition of the work of Smolin, Markopoulous, Engle, Pereira, Rovelli and Livine.
A hadron-quark vertex function
International Nuclear Information System (INIS)
Mitra, A.N.; Bhatnagar, S.
1992-01-01
This paper reports that the interrelation between the 4D and 3D forms of the Bethe-Salpeter equation (BSE) with a kernel K(q,q') which depends on the relative four-momenta, q μ = q μ - P · qP μ /P 2 , orthogonal to P μ is exploited to obtain a hadron-quark vertex function of the Lorentz-invariant form Γ(q) = D(q 2 ) circle time φ(q). The denominator function D(q 2 ) is universal and controls the 3D BSE, which provides the mass spectra with the eigenfunctions φ(q). The vertex function, directly related to the 4D wave function Ψ which satisfies a corresponding BSE, defines a natural off-shell extension over the whole of four-momentum space, and provides the basis for the evaluation of transition amplitudes via appropriate quark-loop diagrams. The key role of the quantity q 2 in this formalism is clarified in relation to earlier approaches, in which the applications of this quantity had mostly been limited to the mass shell (q · P = 0). Two applications (f p values for P → ell bar ell and F π for π 0 → γγ) are sketched as illustrations of this formalism, and attention is drawn to the problem of complex amplitudes for bigger quark loops with more hadrons, together with the role of the D(q) function in overcoming this problem
Vertex models, TASEP and Grothendieck polynomials
International Nuclear Information System (INIS)
Motegi, Kohei; Sakai, Kazumitsu
2013-01-01
We examine the wavefunctions and their scalar products of a one-parameter family of integrable five-vertex models. At a special point of the parameter, the model investigated is related to an irreversible interacting stochastic particle system—the so-called totally asymmetric simple exclusion process (TASEP). By combining the quantum inverse scattering method with a matrix product representation of the wavefunctions, the on-/off-shell wavefunctions of the five-vertex models are represented as a certain determinant form. Up to some normalization factors, we find that the wavefunctions are given by Grothendieck polynomials, which are a one-parameter deformation of Schur polynomials. Introducing a dual version of the Grothendieck polynomials, and utilizing the determinant representation for the scalar products of the wavefunctions, we derive a generalized Cauchy identity satisfied by the Grothendieck polynomials and their duals. Several representation theoretical formulae for the Grothendieck polynomials are also presented. As a byproduct, the relaxation dynamics such as Green functions for the periodic TASEP are found to be described in terms of the Grothendieck polynomials. (paper)
International Nuclear Information System (INIS)
Gottschalk, E.E.
2001-01-01
BTeV is a collider experiment that has been approved to run in the Tevatron at Fermilab. The experiment will conduct precision studies of CP violation using a forward-geometry detector. The detector will be optimized for high-rate detection of beauty and charm particles produced in collisions between protons and anti-protons. BTeV will trigger on beauty and charm events by taking advantage of the main difference between these heavy quark events and more typical hadronic events - the presence of detached beauty and charm decay vertices. The first stage of the BTeV trigger will receive data from a pixel vertex detector at a rate of 100 gb s -1 , reconstruct tracks and vertices for every beam crossing, reject 99% of beam crossings that do not produce beauty or charm particles, and trigger on beauty events with high efficiency. An overview of the trigger design and its influence on the design of the pixel vertex detector is presented
International Nuclear Information System (INIS)
Bastianelli, F.
1991-01-01
We examine the bosonization of chiral fermions in a gravitational background, using a path integral approach. The bosonic model is given by an action proposed some time ago by Floreanini and Jackiw, suitably coupled to gravity. We use a regulator for the path integral measure obtained from the general construction of Diaz, Hatsuda, Troost, van Nieuwenhuizen and Van Proeyen. We show that the effective actions are identical. (orig.)
International Nuclear Information System (INIS)
Akama, K.; Hattori, T.; Yasue, M.
1991-01-01
An exotic composite vector boson V is introduced in two dynamical models of composite quarks, leptons, W, and Z. One is based on four-Fermi interactions, in which composite vector bosons are regarded as fermion-antifermion bound states and the other is based on the confining SU(2) L gauge model, in which they are given by scalar-antiscalar bound states. Both approaches describe the same effective interactions for the sector of composite quarks, leptons, W, Z, γ, and V
Stefania Pandolfi
2016-01-01
CERN celebrated the fourth anniversary of the historical Higgs boson announcement with special pizzas. 400 pizzas were served on Higgs pizza day in Restaurant 1 at CERN to celebrate the fourth anniversary of the announcement of the discovery of the Higgs Boson (Image: Maximilien Brice/ CERN) What do the Higgs boson and a pizza have in common? Pierluigi Paolucci, INFN and CMS collaboration member, together with INFN president Fernando Ferroni found out the answer one day in Naples: the pizza in front of them looked exactly like a Higgs boson event display. A special recipe was then created in collaboration with the chef of the historic “Ettore” pizzeria in the St. Lucia area of Naples, and two pizzas were designed to resemble two Higgs boson decay channel event displays. The “Higgs Boson Pizza Day” was held on Monday, 4 July 2016, on the fourth anniversary of the announcement of the discovery of the Higgs boso...
Drift chamber vertex detectors for SLC/LEP
International Nuclear Information System (INIS)
Hayes, K.G.
1987-03-01
The short but measurable lifetimes of the b and c quarks and the tau lepton have motivated the development of high precision tracking detectors capable of providing information on the decay vertex topology of events containing these particles. This paper reviews the OPAL, L3, and MARK II experiments vertex drift chambers
Algebraic Bethe ansatz for 19-vertex models with reflection conditions
International Nuclear Information System (INIS)
Utiel, Wagner
2003-01-01
In this work we solve the 19-vertex models with the use of algebraic Bethe ansatz for diagonal reflection matrices (Sklyanin K-matrices). The eigenvectors, eigenvalues and Bethe equations are given in a general form. Quantum spin chains of spin one derived from the 19-vertex models were also discussed
Drift chamber vertex detectors for SLC/LEP
Energy Technology Data Exchange (ETDEWEB)
Hayes, K G
1988-03-01
Factors influencing the design of drift chamber vertex detectors for SLC and LEP are discussed including global strategy, chamber gas, cell design, and signal processing. The designs of the vertex chambers for the L3 and OPAL experiments at LEP and the Mark II experiment at the SLC are described.
Vertex epidural haematoma manifesting with bilateral upper limb ...
African Journals Online (AJOL)
Vertex epidural haematomas (VEDH) are rare and difficulties are encountered in diagnosis and management. This is a case report of a patient with a vertex epidural haematoma who presented with signs of severe head injury with upper limb decerebrate posture. We discuss the challenges of radiological investigation and ...
Subgraphs in vertex neighborhoods of K-free graphs
DEFF Research Database (Denmark)
Bang-Jensen, J.; Brandt, Stephan
2004-01-01
In a K-free graph, the neighborhood of every vertex induces a K-free subgraph. The K-free graphs with the converse property that every induced K-free subgraph is contained in the neighborhood of a vertex are characterized, based on the characterization in the case r = 3 due to Pach [8]....
Multipole expansion of vertex functions with two final particles
International Nuclear Information System (INIS)
Daumens, Michel
1977-01-01
The expansions of the usual vertex functions are generalized to the vertex functions with two final particles. For four vector functions, expressions are similar to those of Chew, Goldberger, Low and Nambu, and of Adler and the consequences of the isobaric model are studied [fr
The Mark III vertex chamber and prototype test results
International Nuclear Information System (INIS)
Grab, C.
1987-07-01
A vertex chamber has been constructed for use in the Mark III experiment. The chamber is positioned inside the current main drift chamber and will be used to trigger data collection, to aid in vertex reconstruction, and to improve the momentum resolution. This paper discusses the chamber's construction and performance and tests of the prototype
On Pathos Adjacency Cut Vertex Jump Graph of a Tree
Nagesh.H.M; R.Chandrasekhar
2014-01-01
In this paper the concept of pathos adjacency cut vertex jump graph PJC(T) of a tree T is introduced. We also present a characterization of graphs whose pathos adjacency cut vertex jump graphs are planar, outerplanar, minimally non-outerplanar, Eulerian and Hamiltonian.
Vertex Accentuation in Female Pattern Hair Loss in Asians
Directory of Open Access Journals (Sweden)
Chavalit Supsrisunjai
2016-05-01
Full Text Available Background: The most common cause of hair loss seen in women is female pattern hair loss (FPHL, also known as female androgenetic alopecia. It affects the central part of the scalp, but spares the frontal hairline. Frontal accentuation was also described by Olsen. In Asian women, vertex thinning patterns are frequently developed, but there has been no report about vertex thinning pattern in female pattern hair loss. Objective: To find prevalence of vertex accentuation in female pattern hair loss (FPHL in Asian women. Methods: Scalp hair counting (n/cm2 were measured at 3 different areas; vertex, mid scalp and frontal area respectively by digital dermoscope (Dino digital AM-413T. Visual counting and photography were performed. Outcomes were evaluated by gross appearance of vertex thinning and/or hair density <120 /cm2 in any of 3 areas. Results: 143 patients were evaluated. Mean age was 45.54 years. Of the hair loss type, 36.4% were mid-scalp, 33.6% were vertex accentuation and 30.1% were frontal accentuation, respectively. Age was not significantly different among the 3 types of hair loss (P- value 0.859. Conclusion: Although the most common female pattern hair loss type is diffuse type (Ludwig type, vertex accentuation pattern is the second most common pattern in this study. This study is the first to mention “Vertex accentuation” to be another pattern for FPHL.
Genus Ranges of 4-Regular Rigid Vertex Graphs.
Buck, Dorothy; Dolzhenko, Egor; Jonoska, Nataša; Saito, Masahico; Valencia, Karin
2015-01-01
A rigid vertex of a graph is one that has a prescribed cyclic order of its incident edges. We study orientable genus ranges of 4-regular rigid vertex graphs. The (orientable) genus range is a set of genera values over all orientable surfaces into which a graph is embedded cellularly, and the embeddings of rigid vertex graphs are required to preserve the prescribed cyclic order of incident edges at every vertex. The genus ranges of 4-regular rigid vertex graphs are sets of consecutive integers, and we address two questions: which intervals of integers appear as genus ranges of such graphs, and what types of graphs realize a given genus range. For graphs with 2 n vertices ( n > 1), we prove that all intervals [ a, b ] for all a genus ranges. For graphs with 2 n - 1 vertices ( n ≥ 1), we prove that all intervals [ a, b ] for all a genus ranges. We also provide constructions of graphs that realize these ranges.
Quantum contextuality in N-boson systems
International Nuclear Information System (INIS)
Benatti, Fabio; Floreanini, Roberto; Genovese, Marco; Olivares, Stefano
2011-01-01
Quantum contextuality in systems of identical bosonic particles is explicitly exhibited via the maximum violation of a suitable inequality of Clauser-Horne-Shimony-Holt type. Unlike the approaches considered so far, which make use of single-particle observables, our analysis involves collective observables constructed using multiboson operators. An exemplifying scheme to test this violation with a quantum optical setup is also discussed.
Resistance Distances in Vertex-Face Graphs
Shangguan, Yingmin; Chen, Haiyan
2018-01-01
The computation of two-point resistances in networks is a classical problem in electric circuit theory and graph theory. Let G be a triangulation graph with n vertices embedded on an orientable surface. Define K(G) to be the graph obtained from G by inserting a new vertex vϕ to each face ϕ of G and adding three new edges (u, vϕ), (v, vϕ) and (w, vϕ), where u, v and w are three vertices on the boundary of ϕ. In this paper, using star-triangle transformation and resistance local-sum rules, explicit relations between resistance distances in K(G) and those in G are obtained. These relations enable us to compute resistance distance between any two points of Kk(G) recursively. As explanation examples, some resistances in several networks are computed, including the modified Apollonian network and networks constructed from tetrahedron, octahedron and icosahedron, respectively.
Report of the 'Vertex detector' working group
International Nuclear Information System (INIS)
Bellini, G.; Rancoita, P.G.
1984-01-01
An analysis, even rough, of the vertex detector performances, based on the pattern recognition and on currently available techniques (see below) makes clear that the high repetition rate option is strongly favoured. In this hypothesis, with a luminosity of approx.= 3 x 10 32 cm -2 s -1 and a time between bunch collision approx.= 25 ns, we expect = 1 as number of events per bunch collision, e.i. 36.8% of events with 0 interaction, 36.8% with 1 and 26.4% with more than 1 event. Two or three events per crossing bunch can be separated and 25 ns of repetition time does not appear to be a major problem. (orig./HSI)
Quarkonium decays: Testing the 3-gluon vertex
International Nuclear Information System (INIS)
Koller, K.; Walsh, T.F.; Zerwas, P.M.; Technische Hochschule Aachen
1980-12-01
We study the 3-jet decays of S and P-wave quarkonia with C = +. If observed, some of these will offer a way of seeing the 3G vertex of QCD via 1 Ssub(o), 3 Psub(o), 3 P 2 (Qanti Q) → GGG + Gqanti q → 3 jets. (As is well-known, cancellations reduce 3 P 1 (anti Q) → GGG.) We elaborate in detail the S-wave decay as it is expected to show all the characteristic features of orthoquarkonium decays into 4 jets, 3 S 1 (Qanti Q) → GGGG + GGqanti q → 4 jets which we will comment upon. These quarkonium decays offer a very clear signal for QCD as a non-abelian local gauge field theory with color-charged gluons. (orig.)
Primary Vertex Reconstruction for Upgrade at LHCb
Wanczyk, Joanna
2016-01-01
The aim of the LHCb experiment is the study of beauty and charm hadron decays with the main focus on CP violating phenomena and searches for physics beyond the Standard Model through rare decays. At the present, the second data taking period is ongoing, which is called Run II. After 2018 during the long shutdown, the replacement of signicant parts of the LHCb detector is planned. One of main changes is upgrade of the present software and hardware trigger to a more rapid full software trigger. Primary Vertex (PV) is a basis for the further tracking and it is sensitive to the LHC running conditions, which are going to change for the Upgrade. In particular, the center-of-mass collision energy should reach the maximum value of 14 TeV. As a result the quality of the reconstruction has to be studied and the reconstruction algorithms have to be optimized.
Brink, L; Scherk, J
1973-01-01
Study of the non-planar orientable single dual loop diagrams in 26 space-time dimensions has revealed an infinite positive-definite spectrum of 'pomeron' intermediate states which couple to reggeons via a bilinear pomeron-reggeon vertex operator. General algebraic techniques are developed to derive the behaviour of this vertex with respect to the Visasoro gauge operators. A reflection and transmission behaviour is found, reminiscent of the behaviour of a wave incident at the interface between two different media (in this case reggeonic and pomeronic). These gauge properties are such as to guarantee the desired 'good properties', namely completeness of the transverse reggeon states when coupled between physical reggeon states on one side, and on the other side, either physical pomeron states or else physical reggeon states created via an intermediate pomeron. This is yet another example of the amazing and gratifying self-consistency of the dual model with respect to duality, transversality and unitarity. (13 r...
A Future Vertex Locator with Precise Timing for the LHCb Experiment
Mitreska, Biljana
2017-01-01
The LHCb experiment is designed to perform high precision measurements of matter-antimatter asymmetries and searches for rare and forbidden decays, with the aim of discovering new and unexpected particles and forces. In 2030 the LHC beam intensity will increase by a factor of 50 compared to current operations. This means increased samples of the particles we need to study, but it also presents experimental challenges. In particular, with current technology it becomes impossible to differentiate the many (>50) separate proton-proton collisions which occur for each bunch crossing. A Monte Carlo simulation was developed to model the operation of a silicon pixel vertex detector surrounding the collision region at LHCb, under the conditions expected after 2030, after the second upgrade of the Vertex Locator (VELO). The main goal was studying the effect of adding '4D' detectors which save high-precision timing information, in addition to the usual three spatial coordinates, as charged particles pass through them. W...
Boson representations of fermion systems: Proton-neutron systems
International Nuclear Information System (INIS)
Sambataro, M.
1988-01-01
Applications of a procedure recently proposed to construct boson images of fermion Hamiltonians are shown for proton-neutron systems. First the mapping from SD fermion onto sd boson spaces is discussed and a Q/sub π/xQ/sub ν/ interaction investigated. A Hermitian one-body Q boson operator is derived and analytical expressions for its coefficients are obtained. A (Q/sub π/+Q/sub ν/)x(Q/sub π/+Q/sub ν/) interaction is, then, studied for particle-hole systems and the connections with the SU/sup */(3) dynamical symmetry of the neutron-proton interacting boson model are discussed. Finally, an example of mapping from SDG onto sdg spaces is analyzed. Fermion spectra and E2 matrix elements are well reproduced in the boson spaces
γ-unstable nuclei in the sdg boson model
International Nuclear Information System (INIS)
Kuyucak, S.; Lac, V-S.; Morrison, I.; Barret, B.R.
1991-01-01
Following the recent Pt(p,p') experiments which indicated the need for g bosons to reproduce the E4 data, we have extended the O(6) limit of the sd boson model to the sdg bosons. It is shown that a γ-unstable Hamiltonian in the sdg model consisting of a quadrupole interaction and a g boson energy leads to results that are very similar to the O(6) limit. Deviations from the empirical energy spectrum that stem from the γ-unstable nature of the Hamiltonian can be improved by including a consistent hexadecapole interaction which induces triaxiality. The same hexadecapole operator can also account for the strong E4 transitions to the 4 + states presumed to be g boson states. Specific applications are made to the Xe and Pt isotopes. 12 refs., 2 tabs., 4 figs
Gamma-unstable nuclei in the sdg boson model
Kuyucak, S.; Lac, V.-S.; Morrison, I.; Barret, B. R.
Following the recent Pt(p,p') experiments which indicated the need for high angular momentum (g) bosons to reproduce the E4 data, we have extended the O(6) limit of the sd boson model to the sdg bosons. It is shown that a gamma-unstable Hamiltonian in the sdg model consisting of a quadrupole interaction and a g boson energy leads to results that are very similar to the O(6) limit. Deviations from the empirical energy spectrum that stem from the gamma-unstable nature of the Hamiltonian can be improved by including a consistent hexadecapole interaction which induces triaxiality. The same hexadecapole operator can also account for the strong E4 transitions to the 4(sup +) states presumed to be g boson states. Specific applications are made to the Xe and Pt isotopes.
Isospin invariant forms of interacting boson model (IBM)
International Nuclear Information System (INIS)
Evans, A.
1989-01-01
In the original version of the interacting boson model, IBM1, there are only two quantum numbers with exact values: the angular momentum and the number of bosons. IBM2 distinguishes between two kinds of bosons. However, the IBM2 algebra does not include the operators T± and consequently the states in the model have no good isospin, generally. IBM3 includes the isospin in the algebra and therefore the construction of states with any number of bosons and good isospin presents no problem. In this work, IBM3 is compared with the shell model. IBFM3 is also studied, which describes an odd nucleus as a system of N bosons plus a single nucleon that is a neutron with some probability and a proton with the complementary probability. The spectra obtained in the shell model, IBFM3 and IBFM2 for 45 Ti and 45 Sc are compared. (Author) [es
Electroweak boson production and searches for aQGC in CMS
Mora Herrera, Clemencia
2016-01-01
The production of electroweak bosons is an important part the Standard Model and it can also shed a light on new physics, in the form of anomalous gauge couplings. This poster presents the study of exclusive or quasi-exclusive $\\gamma \\gamma \\rightarrow W^+W^-$ production. The measurement of the process $pp \\rightarrow p^{(*)}+ W^+ W^- + p^{(*)} \\rightarrow p^{(*)}+ e^\\pm \\mu^\\mp+p^{(*)}$ used an integrated luminosity of $19.7\\mathrm{fb}^{-1}$ of 8TeV proton-proton collisions at the LHC. Events are selected by requiring the presence of an electron-muon pair with large transverse momentum $p_\\mathrm{T}(\\mu^\\pm e^\\mp) > 30 $ GeV, and no associated charged particles detected from the same vertex. With this analysis the CMS Collaboration has set upper limits on the values of anomalous quartic gauge coupling coefficients for both dimension-6 and dimension-8 effective field theory operators, giving the most stringent limits to date.
Kotwal, Ashutosh V
2016-01-01
The measurement of the W boson mass has been growing in importance as its precision has improved, along with the precision of other electroweak observables and the top quark mass. Over the last decade, the measurement of the W boson mass has been led at hadron colliders. Combined with the precise measurement of the top quark mass at hadron colliders, the W boson mass helped to pin down the mass of the Standard Model Higgs boson through its induced radiative correction on the W boson mass. With the discovery of the Higgs boson and the measurement of its mass, the electroweak sector of the Standard Model is over-constrained. Increasing the precision of the W boson mass probes new physics at the TeV-scale. We summarize an extensive Tevatron (1984–2011) program to measure the W boson mass at the CDF and Dø experiments. We highlight the recent Tevatron measurements and prospects for the final Tevatron measurements.
Approximations of quantum-graph vertex couplings by singularly scaled potentials
Czech Academy of Sciences Publication Activity Database
Exner, Pavel; Manko, S. S.
2013-01-01
Roč. 46, č. 34 (2013), s. 345202 ISSN 1751-8113 R&D Projects: GA ČR GAP203/11/0701 Institutional support: RVO:61389005 Keywords : Schrödinger operators * vertex coupling Subject RIV: BE - Theoretical Physics Impact factor: 1.687, year: 2013 http://iopscience.iop.org/1751-8121/46/34/345202/pdf/1751-8121_46_34_345202.pdf
Reconstruction of Higgs bosons in the di-tau channel via 3-prong decay
International Nuclear Information System (INIS)
Gripaios, Ben; Webber, Bryan; Nojiri, Mihoko; Sakurai, Kazuki
2012-10-01
We propose a method for reconstructing the mass of a particle, such as the Higgs boson, decaying into a pair of τ leptons, of which one subsequently undergoes a 3-prong decay. The kinematics is solved using information from the visible decay products, the missing transverse momentum, and the 3-prong τ decay vertex, with the detector resolution taken into account using a likelihood method. The method is shown to give good discrimination between a 125 GeV Higgs boson signal and the dominant backgrounds, such as Z 0 decays to ττ and W ± plus jets production. As a result, we find an improvement, compared to existing methods for this channel, in the discovery potential, as well as in measurements of the Higgs boson mass and production cross section times branching ratio.
Reconstruction of Higgs bosons in the di-tau channel via 3-prong decay
Energy Technology Data Exchange (ETDEWEB)
Gripaios, Ben; Webber, Bryan [Cambridge Univ. (United Kingdom). Cavendish Lab.; Nagao, Keiko [KEK Theory Center, Tsukuba (Japan); Nojiri, Mihoko [KEK Theory Center, Tsukuba (Japan); The Graduate Univ. for Advanced Studies (Sokendai) IPNS, KEK, Tsukuba (Japan); Kavli Institute of the Physics and Mathematics of the Universe (Kavli IPMU), Chiba (Japan); Sakurai, Kazuki [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2012-10-15
We propose a method for reconstructing the mass of a particle, such as the Higgs boson, decaying into a pair of {tau} leptons, of which one subsequently undergoes a 3-prong decay. The kinematics is solved using information from the visible decay products, the missing transverse momentum, and the 3-prong {tau} decay vertex, with the detector resolution taken into account using a likelihood method. The method is shown to give good discrimination between a 125 GeV Higgs boson signal and the dominant backgrounds, such as Z{sup 0} decays to {tau}{tau} and W{sup {+-}} plus jets production. As a result, we find an improvement, compared to existing methods for this channel, in the discovery potential, as well as in measurements of the Higgs boson mass and production cross section times branching ratio.
Directory of Open Access Journals (Sweden)
Steven L. Liebling
2012-05-01
Full Text Available The idea of stable, localized bundles of energy has strong appeal as a model for particles. In the 1950s, John Wheeler envisioned such bundles as smooth configurations of electromagnetic energy that he called geons, but none were found. Instead, particle-like solutions were found in the late 1960s with the addition of a scalar field, and these were given the name boson stars. Since then, boson stars find use in a wide variety of models as sources of dark matter, as black hole mimickers, in simple models of binary systems, and as a tool in finding black holes in higher dimensions with only a single Killing vector. We discuss important varieties of boson stars, their dynamic properties, and some of their uses, concentrating on recent efforts.
Locking mechanisms in degree-4 vertex origami structures
Fang, Hongbin; Li, Suyi; Xu, Jian; Wang, K. W.
2016-04-01
Origami has emerged as a potential tool for the design of mechanical metamaterials and metastructures whose novel properties originate from their crease patterns. Most of the attention in origami engineering has focused on the wellknown Miura-Ori, a folded tessellation that is flat-foldable for folded sheet and stacked blocks. This study advances the state of the art and expands the research field to investigate generic degree-4 vertex (4-vertex) origami, with a focus on facet-binding. In order to understand how facet-binding attributes to the mechanical properties of 4-vertex origami structures, geometries of the 4-vertex origami cells are analyzed and analytically expressed. Through repeating and stacking 4-vertex cells, origami sheets and stacked origami blocks can be constructed. Geometry analyses discover four mechanisms that will lead to the self-locking of 4-vertex origami cells, sheets, and stacked blocks: in-cell facet-binding, inlayer facet-binding, inter-layer facet binding, and in-layer and inter-layer facet-bindings. These mechanisms and the predicted self-locking phenomena are verified through 3D simulations and prototype experiments. Finally, this paper briefly introduces the unusual mechanical properties caused by the locking of 4-vertex origami structures. The research reported in this paper could foster a new breed of self-locking structures with various engineering applications.
The operator formalism and contact terms in string theory
International Nuclear Information System (INIS)
Doyle, M.D.
1992-01-01
The operator formalism has proven to be a powerful tool in string theory. In particular, by making explicit the role of a choice of local coordinates (or, equivalently, a normal-ordering prescription) at vertex operator insertions, it provides a framework for understanding the insertion of very general states in both on-shell string theory and string field theory, for formulating a semirigid N = 2 geometry-based approach to topological gravity, for resolving ambiguities in fermionic string theory, and for analyzing contact interactions. The main focus of this thesis on this last application of the operator formalism, although it touches on each of the others. The first goal is the analysis of the dilaton contact terms required for the dilaton equation in the bosonic and heterotic strings. In the bosonic case, a coordinate family appropriate for a punctured sphere is given and is used to calculate dilaton two-point functions. This coordinate family is later generalized to a 'good' coordinate family appropriate for dilaton calculations on higher genus surfaces. It is found that dilaton-dilaton contact terms are improperly normalized resulting in the failure of the dilaton equation, suggesting that the zero-momentum dilaton is not the string coupling constant. This seems to be the result of a tachyon divergence. A similar calculation in the heterotic case, where there is no tachyon, shows that the dilaton contact terms are properly normalized, and that the dilaton equation and the interpretation of the dilaton as the string coupling constant goes through. The other major goal is re-examination of Green and Seiberg's work which showed that, in simple treatments of fermionic string theory, it is necessary to introduce contact interactions when vertex operators collide to avoid the failure of certain superconformal Ward identities
International Nuclear Information System (INIS)
Dawson, S.; Haber, H.E.; Rindani, S.D.
1989-05-01
This is the summary report of the Higgs Boson Working Group. We discuss a variety of search techniques for a Higgs boson which is lighter than the Z. The processes K → πH, η prime → ηH,Υ → Hγ and e + e - → ZH are examined with particular attention paid to theoretical uncertainties in the calculations. We also briefly examine new features of Higgs phenomenology in a model which contains Higgs triplets as well as the usual doublet of scalar fields. 33 refs., 6 figs., 1 tab
Tracking and vertexing for B physics at hadron accelerators
International Nuclear Information System (INIS)
Johnson, R.; Purohit, M.; Weidemann, A.W.
1993-01-01
In this note, the authors report on some of the activities of the Tracking and Vertexing Working Group of this Workshop. Track and vertex finding is essential to exploit the high production rate of B-mesons at hadron accelerators, both for triggering and analysis. Here, they review the tracking and vertex-finding systems of some of the major existing and proposed collider and fixed-target experiments at existing and future hadron accelerators, with a view towards their usefulness for B-physics. The capabilities of both general-purpose detectors and those of dedicated B-physics experiments are considered
The silicon vertex detector of the Belle II experiment
Energy Technology Data Exchange (ETDEWEB)
Friedl, Markus, E-mail: friedl@hephy.a [Institute of High Energy Physics, Nikolsdorfergasse 18, A-1050 Vienna (Austria); Bergauer, Thomas; Gfall, Immanuel; Irmler, Christian; Valentan, Manfred [Institute of High Energy Physics, Nikolsdorfergasse 18, A-1050 Vienna (Austria)
2011-02-01
After 10 years of successful operation, the Belle experiment at KEK (Tsukuba, Japan) will be completed in 2010. Thereafter, a major upgrade of the KEK-B machine is foreseen until 2014, aiming at a final luminosity of 8x10{sup 35} cm{sup -2} s{sup -1}, which is about 40 times higher than the present peak value. Consequently, also the Belle experiment needs to be changed and the Silicon Vertex Detector (SVD) in particular will be completely replaced as it already operates close to its limits in the present system. The future SVD (a.k.a. SuperSVD) will consist of four layers of double-sided silicon strip detectors like the present one, but at larger radii, because it will be complemented by a two-layer pixel detector as the innermost sensing device. The SuperSVD will be entirely composed of silicon sensors made from 6 in. wafers read out by APV25 front-end chips that were originally developed for the CMS experiment at the LHC. Several years of R and D effort led to innovations such as the Origami chip-on-sensor concept and readout electronics with hit time finding which were successfully demonstrated on prototypes. These features will be included in the final system which is presently being designed. This paper will give an overview of the SuperSVD and present results from prototype tests ranging from detector modules to back-end electronics.
The silicon vertex detector of the Belle II experiment
International Nuclear Information System (INIS)
Friedl, Markus; Bergauer, Thomas; Gfall, Immanuel; Irmler, Christian; Valentan, Manfred
2011-01-01
After 10 years of successful operation, the Belle experiment at KEK (Tsukuba, Japan) will be completed in 2010. Thereafter, a major upgrade of the KEK-B machine is foreseen until 2014, aiming at a final luminosity of 8x10 35 cm -2 s -1 , which is about 40 times higher than the present peak value. Consequently, also the Belle experiment needs to be changed and the Silicon Vertex Detector (SVD) in particular will be completely replaced as it already operates close to its limits in the present system. The future SVD (a.k.a. SuperSVD) will consist of four layers of double-sided silicon strip detectors like the present one, but at larger radii, because it will be complemented by a two-layer pixel detector as the innermost sensing device. The SuperSVD will be entirely composed of silicon sensors made from 6 in. wafers read out by APV25 front-end chips that were originally developed for the CMS experiment at the LHC. Several years of R and D effort led to innovations such as the Origami chip-on-sensor concept and readout electronics with hit time finding which were successfully demonstrated on prototypes. These features will be included in the final system which is presently being designed. This paper will give an overview of the SuperSVD and present results from prototype tests ranging from detector modules to back-end electronics.
The silicon vertex tracker for star and future applications of silicon drift detectors
International Nuclear Information System (INIS)
Bellwied, Rene
2001-01-01
The Silicon Vertex Tracker (SVT) for the STAR experiment at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory has recently been completed and installed. First data were taken in July 2001. The SVT is based on a novel semi-conductor technology called Silicon Drift Detectors. 216 large area (6 by 6 cm) Silicon wafers were employed to build a three barrel device capable of vertexing and tracking in a high occupancy environment. Its intrinsic radiation hardness, its operation at room temperature and its excellent position resolution (better than 20 micron) in two dimensions with a one dimensional detector readout, make this technology very robust and inexpensive and thus a viable alternative to CCD, Silicon pixel and Silicon strip detectors in a variety of applications from fundamental research in high-energy and nuclear physics to astrophysics to medical imaging. I will describe the development that led to the STAR-SVT, its performance and possible applications for the near future
Use of a track and vertex processor in a fixed-target charm experiment
International Nuclear Information System (INIS)
Schub, M.H.; Carey, T.A.; Hsiung, Y.B.; Kaplan, D.M.; Lee, C.; Miller, G.; Sa, J.; Teng, P.K.
1996-01-01
We have constructed and operated a high-speed parallel-pipelined track and vertex processor and used it to trigger data acquisition in a high-rate charm and beauty experiment at Fermilab. The processor uses information from hodoscopes and wire chambers to reconstruct tracks in the bend view of a magnetic spectrometer, and uses these tracks to find the corresponding tracks in a set of silicon-strip detectors. The processor then forms vertices and triggers the experiment if at least one vertex is downstream of the target. Under typical charm running conditions, with an interaction rate of ∼5 MHz, the processor rejects 80-90% of lower-level triggers while maintaining efficiency of ∼70% for two-prong D-meson decays. (orig.)
Duplantier, Bertrand; Rivasseau, Vincent
2017-01-01
This volume provides a detailed description of the seminal theoretical construction in 1964, independently by Robert Brout and Francois Englert, and by Peter W. Higgs, of a mechanism for short-range fundamental interactions, now called the Brout-Englert-Higgs (BEH) mechanism. It accounts for the non-zero mass of elementary particles and predicts the existence of a new particle - an elementary massive scalar boson. In addition to this the book describes the experimental discovery of this fundamental missing element in the Standard Model of particle physics. The H Boson, also called the Higgs Boson, was produced and detected in the Large Hadron Collider (LHC) of CERN near Geneva by two large experimental collaborations, ATLAS and CMS, which announced its discovery on the 4th of July 2012. This new volume of the Poincaré Seminar Series, The H Boson, corresponds to the nineteenth seminar, held on November 29, 2014, at Institut Henri Po incaré in Paris.
Vertex Normals and Face Curvatures of Triangle Meshes
Sun, Xiang; Jiang, Caigui; Wallner, Johannes; Pottmann, Helmut
2016-01-01
This study contributes to the discrete differential geometry of triangle meshes, in combination with discrete line congruences associated with such meshes. In particular we discuss when a congruence defined by linear interpolation of vertex normals
Graph Theory. 2. Vertex Descriptors and Graph Coloring
Directory of Open Access Journals (Sweden)
Lorentz JÄNTSCHI
2002-12-01
Full Text Available This original work presents the construction of a set of ten sequence matrices and their applications for ordering vertices in graphs. For every sequence matrix three ordering criteria are applied: lexicographic ordering, based on strings of numbers, corresponding to every vertex, extracted as rows from sequence matrices; ordering by the sum of path lengths from a given vertex; and ordering by the sum of paths, starting from a given vertex. We also examine a graph that has different orderings for the above criteria. We then proceed to demonstrate that every criterion induced its own partition of graph vertex. We propose the following theoretical result: both LAVS and LVDS criteria generate identical partitioning of vertices in any graph. Finally, a coloring of graph vertices according to introduced ordering criteria was proposed.
Vertex function of an electron in a constant electromagnetic field
International Nuclear Information System (INIS)
Morozov, D.A.; Narozhnyj, N.B.; Ritus, V.I.
1981-01-01
The third order with respect to radiation field vertex function for an electron located in a constant crossed field of arbitrary intensity is determined. It is shown that radiative interaction smears out the Airy function which describes the intensity of the interaction between electrons and photons in an external field as a function of the nonconserving momentum component. The qualitative relation Vsup((3)) approximately αchisup(2/3)Vsup((1)) between the third and first order vertex functions is found for large values of the dynamic parameter chi=((eFp)sup(2))sup(1/2)msup(-2). It is also shown that radiative interaction does not alter the order of magnitude of the squared mass of the system transferred at the vertex. The vertex function satisfies the Ward identity modified by the external field [ru
The NA50 segmented target and vertex recognition system
International Nuclear Information System (INIS)
Bellaiche, F.; Cheynis, B.; Contardo, D.; Drapier, O.; Grossiord, J.Y.; Guichard, A.; Haroutunian, R.; Jacquin, M.; Ohlsson-Malek, F.; Pizzi, J.R.
1997-01-01
The NA50 segmented target and vertex recognition system is described. The segmented target consists of 7 sub-targets of 1-2 mm thickness. The vertex recognition system used to determine the sub-target where an interaction has occured is based upon quartz elements which produce Cerenkov light when traversed by charged particles from the interaction. The geometrical arrangement of the quartz elements has been optimized for vertex recognition in 208 Pb-Pb collisions at 158 GeV/nucleon. A simple algorithm provides a vertex recognition efficiency of better than 85% for dimuon trigger events collected with a 1 mm sub-target set-up. A method for recognizing interactions of projectile fragments (nuclei and/or groups of nucleons) is presented. The segmented target allows a large target thickness which together with a high beam intensity (∼10 7 ions/s) enables high statistics measurements. (orig.)
Vertex functions at finite momentum: Application to antiferromagnetic quantum criticality
Wölfle, Peter; Abrahams, Elihu
2016-02-01
We analyze the three-point vertex function that describes the coupling of fermionic particle-hole pairs in a metal to spin or charge fluctuations at nonzero momentum. We consider Ward identities, which connect two-particle vertex functions to the self-energy, in the framework of a Hubbard model. These are derived using conservation laws following from local symmetries. The generators considered are the spin density and particle density. It is shown that at certain antiferromagnetic critical points, where the quasiparticle effective mass is diverging, the vertex function describing the coupling of particle-hole pairs to the spin density Fourier component at the antiferromagnetic wave vector is also divergent. Then we give an explicit calculation of the irreducible vertex function for the case of three-dimensional antiferromagnetic fluctuations, and show that it is proportional to the diverging quasiparticle effective mass.
Uncovering the triple omeron vertex from Wilson line formalism
International Nuclear Information System (INIS)
Chirilli, G. A.; Szymanowski, L.; Wallon, S.
2011-01-01
We compute the triple omeron vertex from the Wilson line formalism, including both planar and nonplanar contributions, and get perfect agreement with the result obtained in the Extended Generalized Logarithmic Approximation based on Reggeon calculus.
Vertex Reconstruction in the ATLAS Experiment at the LHC
Bouhova-Thacker, E; The ATLAS collaboration; Kostyukhin, V; Liebig, W; Limper, M; Piacquadio, G; Lichard, P; Weiser, C; Wildauer, A
2009-01-01
In the harsh environment of the Large Hadron Collider at CERN (design luminosity of $10^{34}$ cm$^{-2}$ s$^{-1}$) efficient reconstruction of vertices is crucial for many physics analyses. Described in this paper are the strategies for vertex reconstruction used in the ATLAS experiment and their implementation in the software framework Athena. The algorithms for the reconstruction of primary and secondary vertices as well as for finding of photon conversions and vertex reconstruction in jets are described. A special emphasis is made on the vertex fitting with application of additional constraints. The implementation of mentioned algorithms follows a very modular design based on object-oriented C++ and use of abstract interfaces. The user-friendly concept allows event reconstruction and physics analyses to compare and optimize their choice among different vertex reconstruction strategies. The performance of implemented algorithms has been studied on a variety of Monte Carlo samples and results are presented.
Discussion on the electronic problems of straw vertex detector
International Nuclear Information System (INIS)
Xi Deming
1992-01-01
The measurement of the characteristic time of the output waveform of straw vertex detector, the design of its high resolution and high counting rate readout system and the problems of the charge and time calibrations are discussed
A new method for computing the quark-gluon vertex
International Nuclear Information System (INIS)
Aguilar, A C
2015-01-01
In this talk we present a new method for determining the nonperturbative quark-gluon vertex, which constitutes a crucial ingredient for a variety of theoretical and phenomenological studies. This new method relies heavily on the exact all-order relation connecting the conventional quark-gluon vertex with the corresponding vertex of the background field method, which is Abelian-like. The longitudinal part of this latter quantity is fixed using the standard gauge technique, whereas the transverse is estimated with the help of the so-called transverse Ward identities. This method allows the approximate determination of the nonperturbative behavior of all twelve form factors comprising the quark-gluon vertex, for arbitrary values of the momenta. Numerical results are presented for the form factors in three special kinematical configurations (soft gluon and quark symmetric limit, zero quark momentum), and compared with the corresponding lattice data. (paper)
Fluctuations in two-dimensional six-vertex systems
International Nuclear Information System (INIS)
Youngblood, R.W.; Axe, J.D.; McCoy, B.M.
1979-01-01
The character of polarization correlations in six-vertex systems is discussed. With the aid of a connection between the 1-d Heisenberg--Ising chain and the six-vertex problem, existing results for the chain correlations are used to obtain information about long-wavelength polarization correlations in six-vertex models. These results are compared with a neutron scattering study of 2-d polarization correlations in the layered compound copper formate tetrahydrate. Because the six-vertex model is equivalent to a particular roughening model, these results also explicitly predict the critical behavior of that roughening model just above its roughening temperature. The results correspond to the predictions of Kosterlitz and Thouless for the phase transition in the 2-d Coulomb gas. 5 figures
Dynamical Vertex Approximation for the Hubbard Model
Toschi, Alessandro
A full understanding of correlated electron systems in the physically relevant situations of three and two dimensions represents a challenge for the contemporary condensed matter theory. However, in the last years considerable progress has been achieved by means of increasingly more powerful quantum many-body algorithms, applied to the basic model for correlated electrons, the Hubbard Hamiltonian. Here, I will review the physics emerging from studies performed with the dynamical vertex approximation, which includes diagrammatic corrections to the local description of the dynamical mean field theory (DMFT). In particular, I will first discuss the phase diagram in three dimensions with a special focus on the commensurate and incommensurate magnetic phases, their (quantum) critical properties, and the impact of fluctuations on electronic lifetimes and spectral functions. In two dimensions, the effects of non-local fluctuations beyond DMFT grow enormously, determining the appearance of a low-temperature insulating behavior for all values of the interaction in the unfrustrated model: Here the prototypical features of the Mott-Hubbard metal-insulator transition, as well as the existence of magnetically ordered phases, are completely overwhelmed by antiferromagnetic fluctuations of exponentially large extension, in accordance with the Mermin-Wagner theorem. Eventually, by a fluctuation diagnostics analysis of cluster DMFT self-energies, the same magnetic fluctuations are identified as responsible for the pseudogap regime in the holed-doped frustrated case, with important implications for the theoretical modeling of the cuprate physics.
Functional imaging of sleep vertex sharp transients.
Stern, John M; Caporro, Matteo; Haneef, Zulfi; Yeh, Hsiang J; Buttinelli, Carla; Lenartowicz, Agatha; Mumford, Jeanette A; Parvizi, Josef; Poldrack, Russell A
2011-07-01
The vertex sharp transient (VST) is an electroencephalographic (EEG) discharge that is an early marker of non-REM sleep. It has been recognized since the beginning of sleep physiology research, but its source and function remain mostly unexplained. We investigated VST generation using functional MRI (fMRI). Simultaneous EEG and fMRI were recorded from seven individuals in drowsiness and light sleep. VST occurrences on EEG were modeled with fMRI using an impulse function convolved with a hemodynamic response function to identify cerebral regions correlating to the VSTs. A resulting statistical image was thresholded at Z>2.3. Two hundred VSTs were identified. Significantly increased signal was present bilaterally in medial central, lateral precentral, posterior superior temporal, and medial occipital cortex. No regions of decreased signal were present. The regions are consistent with electrophysiologic evidence from animal models and functional imaging of human sleep, but the results are specific to VSTs. The regions principally encompass the primary sensorimotor cortical regions for vision, hearing, and touch. The results depict a network comprising the presumed VST generator and its associated regions. The associated regions functional similarity for primary sensation suggests a role for VSTs in sensory experience during sleep. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Commutators method for boson mapping in the seniority scheme
International Nuclear Information System (INIS)
Bonatsos, D.; Klein, A.; Ching-Teh Li
1984-01-01
A new approximate method for carrying out the boson mapping in the seniority scheme is described, in which the boson expansions of the pair and multipole operators are determined by satisfying the commutation relations for the associated Lie algebra. The method is illustrated for the single-j shell-model algebra SO(2(2j + 1)). The calculation is successively carried out to lowest and to next-higher order, the latter exhibiting the necessity of including g-bosons in the calculation in order to reach algebraic consistency. Agreement with the exact result of Ginocchio for j = 3/2 is established to the order considered. (orig.)
Mirror of the refined topological vertex from a matrix model
Eynard, B
2011-01-01
We find an explicit matrix model computing the refined topological vertex, starting from its representation in terms of plane partitions. We then find the spectral curve of that matrix model, and thus the mirror symmetry of the refined vertex. With the same method we also find a matrix model for the strip geometry, and we find its mirror curve. The fact that there is a matrix model shows that the refined topological string amplitudes also satisfy the remodeling the B-model construction.
Performance of the ATLAS primary vertex reconstruction algorithms
Zhang, Matt
2017-01-01
The reconstruction of primary vertices in the busy, high pile up environment of the LHC is a challenging task. The challenges and novel methods developed by the ATLAS experiment to reconstruct vertices in such environments will be presented. Such advances in vertex seeding include methods taken from medical imagining, which allow for reconstruction of very nearby vertices will be highlighted. The performance of the current vertexing algorithms using early Run-2 data will be presented and compared to results from simulation.
The quintic interaction vertex in light-cone gravity
International Nuclear Information System (INIS)
Ananth, Sudarshan
2008-01-01
We consider pure gravity in light-cone gauge and derive the complete quintic interaction vertex. Up to quartic order, the Kawai-Lewellen-Tye (KLT) relations can be made manifest at the level of the Einstein-Hilbert Lagrangian. The quintic interaction vertex represents an essential first step in further extending the off-shell validity of the KLT relations to higher order vertices
Tracking and vertexing with the ATLAS detector at the LHC
International Nuclear Information System (INIS)
Hirsch, F.
2011-01-01
The Inner Detector of the ATLAS experiment at the Large Hadron Collider at CERN contains three tracking systems: The silicon Pixel Detector, the Silicon Microstrip Tracker and the Transition Radiation Tracker. In combination these detectors provide excellent track and vertex reconstruction efficiencies and resolutions. This paper describes studies which show the performance of track and vertex reconstruction on data collected at 7 TeV center-of-mass energy.
Stochastic higher spin six vertex model and Macdonald measures
Borodin, Alexei
2018-02-01
We prove an identity that relates the q-Laplace transform of the height function of a (higher spin inhomogeneous) stochastic six vertex model in a quadrant on one side and a multiplicative functional of a Macdonald measure on the other. The identity is used to prove the GUE Tracy-Widom asymptotics for two instances of the stochastic six vertex model via asymptotic analysis of the corresponding Schur measures.
The vertex detector for the Lepton/Photon collaboration
Energy Technology Data Exchange (ETDEWEB)
Sullivan, J.P.; Boissevain, J.G.; Fox, D.; Hecke, H. van; Jacak, B.V.; Kapustinsky, J.S.; Leitch, M.J.; McGaughey, P.L.; Moss, J.M.; Sondheim, W.E. [Los Alamos National Lab., NM (United States)
1991-12-31
The conceptual design of the vertex detector for the Lepton/Photon Collaboration at RHIC is described, including simulations of its expected performance. The design consists of two con- centric layers of single-sided Si strips. The expected performance as a multiplicity detector and in measuring the pseudo-rapidity ({nu}) distribution is discussed as well as the expected vertex finding efficiency and accuracy. Various options which could be used to reduce the cost of the detector are also discussed.
The vertex detector for the Lepton/Photon Collaboration
International Nuclear Information System (INIS)
Sullivan, J.P.; Boissevain, J.G.; Fox, D.; van Hecke, H.; Jacak, B.V.; Kapustinsky, J.S.; Leitch, M.J.; McGaughey, P.L.; Moss, J.M.; Sondheim, W.E.
1991-01-01
The conceptual design of the vertex detector for the Lepton/Photon Collaboration at RHIC is described, including simulations of its expected performance. The design consists of two concentric layers of single-sided Si strips. The expected performance as a multiplicity detector and in measuring the pseudo-rapidity η distribution is discussed as well as the expected vertex finding efficiency and accuracy. Various options which could be used to reduce the cost of the detector are also discussed
Vertex Reconstruction at STAR: Overview and Performance Evaluation
Smirnov, D.; Lauret, J.; Perevoztchikov, V.; Van Buren, G.; Webb, J.
2017-10-01
The STAR experiment at the Relativistic Heavy Ion Collider (RHIC) has a rich physics program ranging from studies of the Quark Gluon Plasma to the exploration of the spin structure of the proton. Many measurements carried out by the STAR collaboration rely on the efficient reconstruction and precise knowledge of the position of the primary-interaction vertex. Throughout the years two main vertex finders have been predominantly utilized in event reconstruction by the experiment: MinutVF and PPV with their application domains focusing on heavy ion and proton-proton events respectively. In this work we give a brief overview and discuss recent improvements to the vertex finding algorithms implemented in the STAR software library. In our studies we focus on the finding efficiency and the quality of the reconstructed primary vertex. We examine the effect of an additional constraint, imposed by an independent measurement of the beam line position, when it is applied during the fit. We evaluate the significance of the improved primary vertex resolution on identification of the secondary decay vertices occurring inside the beam pipe. Finally, we present a method and its software implementation developed to measure the performance of the primary vertex reconstruction algorithms.
LHC constraints on gauge boson couplings to dark matter
Crivellin, Andreas; Hibbs, Anthony
2015-01-01
Collider searches for energetic particles recoiling against missing transverse energy allow to place strong bounds on the interactions between dark matter (DM) and standard model particles. In this article we update and extend LHC constraints on effective dimension-7 operators involving DM and electroweak gauge bosons. A concise comparison of the sensitivity of the mono-photon, mono-W, mono-Z, mono-W/Z, invisible Higgs-boson decays in the vector boson fusion mode and the mono-jet channel is presented. Depending on the parameter choices, either the mono-photon or the mono-jet data provide the most stringent bounds at the moment. We furthermore explore the potential of improving the current 8 TeV limits at 14 TeV. Future strategies capable of disentangling the effects of the different effective operators involving electroweak gauge bosons are discussed as well.
Vertex operators of ghost number three in Type IIB supergravity
International Nuclear Information System (INIS)
Mikhailov, Andrei
2016-01-01
We study the cohomology of the massless BRST complex of the Type IIB pure spinor superstring in flat space. In particular, we find that the cohomology at the ghost number three is nontrivial and transforms in the same representation of the supersymmetry algebra as the solutions of the linearized classical supergravity equations. Modulo some finite dimensional spaces, the ghost number three cohomology is the same as the ghost number two cohomology. We also comment on the difference between the naive and semi-relative cohomology, and the role of b-ghost.
Smarandachely Adjacent-Vertex-Distinguishing Proper Edge Chromatic Number of Cm∨Kn
Shunqin Liu
2016-01-01
According to different conditions, researchers have defined a great deal of coloring problems and the corresponding chromatic numbers. Such as, adjacent-vertex-distinguishing total chromatic number, adjacent-vertex-distinguishing proper edge chromatic number, smarandachely-adjacent-vertex-distinguishing proper edge chromatic number, smarandachely-adjacent-vertex-distinguishing proper total chromatic number. And we focus on the smarandachely adjacent-vertex-distinguishing proper edge chromatic...
The upgrade of the LHCb Vertex Locator (VELO)
van Beuzekom, M
2014-01-01
The upgrade of the LHCb experiment, planned for 2018, will enable the detector to run at a luminosity of 2 x 10$^{33}$ cm$^{-22}$s$^{-1}$ and explore New Physics effects in the beauty and charm sector with unprecedented precision. To achieve this, the entire readout will be transformed into a triggerless system operating at 40 MHz, where the event selection algorithms will be executed by high-level software in the CPU farm. The upgraded silicon vertex detector (VELO) must be lightweight, radiation hard, vacuum compatible, and has to drive data to the data acquisition system at speeds of up to 3 Tbit/s. This challenge will be met with a new VELO design based on hybrid pixel detectors, positioned to within 5 mm of the LHC colliding beams. The sensors have 55 x 55 $\\mu$m$^2$ square pixels and the VeloPix ASIC, which is being developed for the readout, is based on the Timepix/Medipix family of chips. The hottest ASIC will have to cope with integrated hit rates of up to 900 MHz which translates to a bandwidth of m...
Automatised Data Quality Monitoring of the LHCb Vertex Locator
Szumlak, Tomasz
2016-01-01
The LHCb Vertex Locator (VELO) is a silicon strip semiconductor detector operating at just 8mm distance to the LHC beams. Its 172,000 strips are read at a frequency of 1 MHz and processed by off-detector FPGAs followed by a PC cluster that reduces the event rate to about 10 kHz. During the second run of the LHC, which lasts from 2015 until 2018, the detector performance will undergo continued change due to radiation damage effects. This necessitates a detailed monitoring of the data quality to avoid adverse effects on the physics analysis performance. The VELO monitoring infrastructure has been re-designed compared to the first run of the LHC when it was based on manual checks. The new system is based around an automatic analysis framework, which monitors the performance of new data as well as long-term trends and flags issues whenever they arise. An unbiased subset of the detector data are processed about once per hour by monitoring algorithms. The new analysis framework then analyses the plots that are prod...
Readout and trigger electronics for the TPC vertex chamber
International Nuclear Information System (INIS)
Ronan, M.T.; Jared, R.C.; McGathen, T.K.; Eisner, A.M.; Broeder, W.J.; Godfrey, G.L.
1987-10-01
The introduction of the vertex chamber required the addition of new front-end electronics and a new 1024-channel, high-accuracy TDC system. The preamplifier/discriminator should be capable of triggering on the first electrons and the time digitzer should preserve the measurement resolution. For the TDC's, in order to maintain compatibility with the existing TPC readout system, an upgrade of a previous inner drift chamber digitizer system has been chosen. Tests of the accuracy and stability of the original design indicated that the new design specifications would be met. The TPC detector requires a fast pretrigger to turn on its gating grid within 500 ns of the e/sup +/e/sup -/ beam crossing time, to minimize the loss of ionization information. A pretrigger based on the Straw Chamber signals, operating at a rate of about 2 K/sec, will be used for charged particle final states. In addition, in order to reject low mass Two-Photon events at the final trigger level, an accurate transverse momentum cutoff will be made by the Straw Chamber trigger logic. In this paper, we describe the readout and trigger electronics systems which have been built to satisfy the above requirements. 5 refs., 8 figs
Combining Vertex-centric Graph Processing with SPARQL for Large-scale RDF Data Analytics
Abdelaziz, Ibrahim
2017-06-27
Modern applications, such as drug repositioning, require sophisticated analytics on RDF graphs that combine structural queries with generic graph computations. Existing systems support either declarative SPARQL queries, or generic graph processing, but not both. We bridge the gap by introducing Spartex, a versatile framework for complex RDF analytics. Spartex extends SPARQL to support programs that combine seamlessly generic graph algorithms (e.g., PageRank, Shortest Paths, etc.) with SPARQL queries. Spartex builds on existing vertex-centric graph processing frameworks, such as Graphlab or Pregel. It implements a generic SPARQL operator as a vertex-centric program that interprets SPARQL queries and executes them efficiently using a built-in optimizer. In addition, any graph algorithm implemented in the underlying vertex-centric framework, can be executed in Spartex. We present various scenarios where our framework simplifies significantly the implementation of complex RDF data analytics programs. We demonstrate that Spartex scales to datasets with billions of edges, and show that our core SPARQL engine is at least as fast as the state-of-the-art specialized RDF engines. For complex analytical tasks that combine generic graph processing with SPARQL, Spartex is at least an order of magnitude faster than existing alternatives.
Relativistic quantum mechanics of bosons
International Nuclear Information System (INIS)
Ghose, P.; Home, D.; Sinha Roy, M.N.
1993-01-01
We show that it is possible to use the Klein-Gordon, Proca and Maxwell formulations to construct multi-component relativistic configuration space wavefunctions of spin-0 and spin-1 bosons in an external field. These wavefunctions satisfy the first-order Kemmer-Duffin equation. The crucial ingredient is the use of the future-causal normal n μ (n μ n μ =1, n 0 >0) to the space-like hypersurfaces foliating space-time, inherent in the concept of a relativistic wavefunction, to construct a conserved future-causal probability current four-vector from the second-rank energy-momentum tensor, following Holland's prescription. The existence of a Hermitian position operator, localized solutions, compatibility with the second quantized theories and the question of interpretation are discussed. (orig.)
Hemmer, Sabine
2018-01-01
Poster di ATLAS sul bosone di Higgs indirizzato al pubblico generico, che spiega il meccanismo di Brout-Englert-Higgs e la sua importanza. Spiega anche il ruolo del Bosone di Higgs, come viene cercato, il percorso della sua scoperta e cosa viene dopo la scoperta. Disponibile anche in Francese (http://cds.cern.ch/record/1697501) e Inglese (http://cds.cern.ch/record/1697389). Non esitate a utilizzarlo nelle sedi dei vostri Istituti e negli eventi divulgativi! Il poster è in formato A0. Cliccate sull'immagine per scaricare il .pdf ad alta qualità e stamparlo dove preferite. Per qualisasi domanda o commento potete contattare atlas-outreach-coordination@cern.ch
Diaz, Victor Alfonzo; Giusti, Andrea
2018-03-01
The aim of this paper is to present a simple generalization of bosonic string theory in the framework of the theory of fractional variational problems. Specifically, we present a fractional extension of the Polyakov action, for which we compute the general form of the equations of motion and discuss the connection between the new fractional action and a generalization the Nambu-Goto action. Consequently, we analyze the symmetries of the modified Polyakov action and try to fix the gauge, following the classical procedures. Then we solve the equations of motion in a simplified setting. Finally, we present a Hamiltonian description of the classical fractional bosonic string and introduce the fractional light-cone gauge. It is important to remark that, throughout the whole paper, we thoroughly discuss how to recover the known results as an "integer" limit of the presented model.
Amusia, M. Ya.; Chernysheva, L. V.
2018-01-01
We investigate ground state properties of atoms, in which substitute fermions - electrons by bosons, namely π --mesons. We perform some calculations in the frame of modified Hartree-Fock (HF) equation. The modification takes into account symmetry, instead of anti-symmetry of the pair identical bosons wave function. The modified HF approach thus enhances (doubles) the effect of self-action for the boson case. Therefore, we accordingly modify the HF equations by eliminating the self-action terms "by hand". The contribution of meson-meson and meson-nucleon non-Coulomb interaction is inessential at least for atoms with low and intermediate nuclear charge, which is our main subject. We found that the binding energy of pion negative ions A π - , pion atoms A π , and the number of extra bound pions ΔN π increases with the growth of nuclear charge Z. For e.g. Xe ΔN π = 4. As an example of a simple process with a pion atom, we consider photoionization that differs essentially from that for electron atoms. Namely, it is not monotonic decreasing from the threshold but has instead a prominent maximum above threshold. We study also elastic scattering of pions by pion atoms.
International Nuclear Information System (INIS)
Gleiser, M.
1988-01-01
Boson stars are gravitationally bound, spherically symmetric equilibrium configurations of cold, free, or interacting complex scalar fields phi. As these equilibrium configurations naturally present local anisotropy, it is sensible to expect departures from the well-known stability criteria for fluid stars. With this in mind, I investigate the dynamical instability of boson stars against charge-conserving, small radial perturbations. Following the method developed by Chandrasekhar, a variational base for determining the eigenfrequencies of the perturbations is found. This approach allows one to find numerically an upper bound for the central density where dynamical instability occurs. As applications of the formalism, I study the stability of equilibrium configurations obtained both for the free and for the self-interacting [with V(phi) = (λ/4)chemical bondphichemical bond 4 ] massive scalar field phi. Instabilities are found to occur not for the critical central density as in fluid stars but for central densities considerably higher. The departure from the results for fluid stars is sensitive to the coupling λ; the higher the value of λ, the more the stability properties of boson stars approach those of a fluid star. These results are linked to the fractional anisotropy at the radius of the configuration
Chiral anomaly, bosonization and fractional charge
International Nuclear Information System (INIS)
Mignaco, J.A.; Rego Monteiro, M.A. do.
1984-01-01
A method to evaluate the Jacobian of chiral rotations, regulating determinants through the proper time method and using Seeley's asymptotic expansion is presented. With this method the chiral anomaly ofr ν=4,6 dimensions is computed easily, bosonization of some massless two-dimensional models is discussed and the problem of charge fractionization is handled. Besides, the general validity of Fujikawa's approach to regulate the Jacobian of chiral rotations with non-hermitean operators is commented. (Author) [pt
Chiral anomaly, bosonization, and fractional charge
International Nuclear Information System (INIS)
Mignaco, J.A.; Monteiro, M.A.R.
1985-01-01
We present a method to evaluate the Jacobian of chiral rotations, regulating determinants through the proper-time method and using Seeley's asymptotic expansion. With this method we compute easily the chiral anomaly for ν = 4,6 dimensions, discuss bosonization of some massless two-dimensional models, and handle the problem of charge fractionization. In addition, we comment on the general validity of Fujikawa's approach to regulate the Jacobian of chiral rotations with non-Hermitian operators
Quantum Kinematics of Bosonic Vortex Loops
International Nuclear Information System (INIS)
Goldin, G.A.; Owczarek, R.; Sharp, D.H.
1999-01-01
Poisson structure for vortex filaments (loops and arcs) in 2D ideal incompressible fluid is analyzed in detail. Canonical coordinates and momenta on coadjoint orbits of the area-preserving diffeomorphism group, associated with such vortices, are found. The quantum space of states in the simplest case of ''bosonic'' vortex loops is built within a geometric quantization approach to the description of a quantum fluid. Fock-like structure and non-local creation and annihilation operators of quantum vortex filaments are introduced
Search for new heavy charged gauge bosons
International Nuclear Information System (INIS)
Magass, Carsten Martin
2007-01-01
The TEVATRON proton-antiproton collider at FERMILAB (near Chicago/USA) is operating at a center-of-mass energy of √(s)=1.96 TeV since March 2001. This analysis uses data taken with the DOe detector until February 2006 corresponding to an integrated luminosity of about ∫Ldt=1 fb -1 . Using this dataset, a search for a new heavy charged gauge boson W ' and its subsequent decay into an electron and a neutrino is performed: p anti p→W ' +X→eν+X. Additional gauge bosons (including the equivalent to the Z, the Z ' ) are introduced in many extensions to the Standard Model of particle physics. Assuming the most general case, the new gauge group can comprise a new mixing angle and new couplings. Here, the Altarelli Reference Model is considered which represents a generalization of the Manifest Left-Right Symmetric Model with light right-handed neutrinos. This model makes the assumptions that the new gauge boson W ' has the same couplings as the Standard Model W boson and that there is no mixing. Hence, the W ' is a heavy copy of the Standard Model W boson. The clear decay signature (in analogy to the decay of the W) contains an isolated electron with extreme high energy which is important for triggering. The neutrino can not be detected, but it gives rise to missing energy in the detector. The Jacobian peak in the transverse mass distribution stemming from the W decay is used for calibration, whereas the tail of the transverse mass distribution is searched for a possible W ' signal. The data agrees with the expectation from background processes. For instance, in the data 37 events are reconstructed with transverse masses above 300 GeV compared to a prediction of 37.1±2.1(stat) +6.0 -3.7 (sys) background events. Since no significant excess is found in the data, an upper limit is set on the production cross section for heavy charged gauge bosons decaying into electron and neutrino, σ W ' x Br(W ' →eν). Using this limit, a lower bound on the mass of the new gauge
Search for new heavy charged gauge bosons
Energy Technology Data Exchange (ETDEWEB)
Magass, Carsten Martin
2007-11-02
The TEVATRON proton-antiproton collider at FERMILAB (near Chicago/USA) is operating at a center-of-mass energy of {radical}(s)=1.96 TeV since March 2001. This analysis uses data taken with the DOe detector until February 2006 corresponding to an integrated luminosity of about {integral}Ldt=1 fb{sup -1}. Using this dataset, a search for a new heavy charged gauge boson W{sup '} and its subsequent decay into an electron and a neutrino is performed: p anti p{yields}W{sup '}+X{yields}e{nu}+X. Additional gauge bosons (including the equivalent to the Z, the Z{sup '}) are introduced in many extensions to the Standard Model of particle physics. Assuming the most general case, the new gauge group can comprise a new mixing angle and new couplings. Here, the Altarelli Reference Model is considered which represents a generalization of the Manifest Left-Right Symmetric Model with light right-handed neutrinos. This model makes the assumptions that the new gauge boson W{sup '} has the same couplings as the Standard Model W boson and that there is no mixing. Hence, the W{sup '} is a heavy copy of the Standard Model W boson. The clear decay signature (in analogy to the decay of the W) contains an isolated electron with extreme high energy which is important for triggering. The neutrino can not be detected, but it gives rise to missing energy in the detector. The Jacobian peak in the transverse mass distribution stemming from the W decay is used for calibration, whereas the tail of the transverse mass distribution is searched for a possible W{sup '} signal. The data agrees with the expectation from background processes. For instance, in the data 37 events are reconstructed with transverse masses above 300 GeV compared to a prediction of 37.1{+-}2.1(stat){sup +6.0}{sub -3.7}(sys) background events. Since no significant excess is found in the data, an upper limit is set on the production cross section for heavy charged gauge bosons decaying into electron and neutrino, {sigma}{sub W
Search for new heavy charged gauge bosons
Energy Technology Data Exchange (ETDEWEB)
Magass, Carsten Martin
2007-11-02
The TEVATRON proton-antiproton collider at FERMILAB (near Chicago/USA) is operating at a center-of-mass energy of {radical}(s)=1.96 TeV since March 2001. This analysis uses data taken with the DOe detector until February 2006 corresponding to an integrated luminosity of about {integral}Ldt=1 fb{sup -1}. Using this dataset, a search for a new heavy charged gauge boson W{sup '} and its subsequent decay into an electron and a neutrino is performed: p anti p{yields}W{sup '}+X{yields}e{nu}+X. Additional gauge bosons (including the equivalent to the Z, the Z{sup '}) are introduced in many extensions to the Standard Model of particle physics. Assuming the most general case, the new gauge group can comprise a new mixing angle and new couplings. Here, the Altarelli Reference Model is considered which represents a generalization of the Manifest Left-Right Symmetric Model with light right-handed neutrinos. This model makes the assumptions that the new gauge boson W{sup '} has the same couplings as the Standard Model W boson and that there is no mixing. Hence, the W{sup '} is a heavy copy of the Standard Model W boson. The clear decay signature (in analogy to the decay of the W) contains an isolated electron with extreme high energy which is important for triggering. The neutrino can not be detected, but it gives rise to missing energy in the detector. The Jacobian peak in the transverse mass distribution stemming from the W decay is used for calibration, whereas the tail of the transverse mass distribution is searched for a possible W{sup '} signal. The data agrees with the expectation from background processes. For instance, in the data 37 events are reconstructed with transverse masses above 300 GeV compared to a prediction of 37.1{+-}2.1(stat){sup +6.0}{sub -3.7}(sys) background events. Since no significant excess is found in the data, an upper limit is set on the production cross section for heavy charged gauge bosons decaying into electron
New remarks on chiral bosonization
International Nuclear Information System (INIS)
Souza Dutra, A. de
1992-01-01
We discuss a certain duality between the constraints appearing in ordinary Lagrangian density and its first order counterpart for the gauged Siegel chiral boson. It is demonstrated the equivalence, at the classical level, of the two versions of the gauged Siegel chiral boson to its corresponding gauged Floreanini-Jackiw chiral bosons. It is also argued that the most general constrained Lagrangian density, that leads to a bosonic field obeying a first order differential equation of motion and preserve simultaneously Lorentz invariance, is just the Floreanini-Jackiw one. (author)
A covariant representation of the Ball–Chiu vertex
International Nuclear Information System (INIS)
Ahmadiniaz, Naser; Schubert, Christian
2013-01-01
In nonabelian gauge theory the three-gluon vertex function contains important structural information, in particular on infrared divergences, and is also an essential ingredient in the Schwinger–Dyson equations. Much effort has gone into analyzing its general structure, and at the one-loop level also a number of explicit computations have been done, using various approaches. Here we use the string-inspired formalism to unify the calculations of the scalar, spinor and gluon loop contributions to the one-loop vertex, leading to an extremely compact representation in all cases. The vertex is computed fully off-shell and in dimensionally continued form, so that it can be used as a building block for higher-loop calculations. We find that the Bern–Kosower loop replacement rules, originally derived for the on-shell case, hold off-shell as well. We explain the relation of the structure of this representation to the low-energy effective action, and establish the precise connection with the standard Ball–Chiu decomposition of the vertex. This allows us also to predict that the vanishing of the completely antisymmetric coefficient function S of this decomposition is not a one-loop accident, but persists at higher-loop orders. The sum rule found by Binger and Brodsky, which leads to the vanishing of the one-loop vertex in N=4 SYM theory, in the present approach relates to worldline supersymmetry
A covariant representation of the Ball–Chiu vertex
Energy Technology Data Exchange (ETDEWEB)
Ahmadiniaz, Naser, E-mail: naser@ifm.umich.mx [Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C-3, Apdo. Postal 2-82, C.P. 58040, Morelia, Michoacán (Mexico); Dipartimento di Fisica, Università di Bologna and INFN, Sezione di Bologna, Via Irnerio 46, I-40126 Bologna (Italy); Schubert, Christian, E-mail: schubert@ifm.umich.mx [Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C-3, Apdo. Postal 2-82, C.P. 58040, Morelia, Michoacán (Mexico); Dipartimento di Fisica, Università di Bologna and INFN, Sezione di Bologna, Via Irnerio 46, I-40126 Bologna (Italy); Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, Mühlenberg 1, D-14476 Potsdam (Germany)
2013-04-21
In nonabelian gauge theory the three-gluon vertex function contains important structural information, in particular on infrared divergences, and is also an essential ingredient in the Schwinger–Dyson equations. Much effort has gone into analyzing its general structure, and at the one-loop level also a number of explicit computations have been done, using various approaches. Here we use the string-inspired formalism to unify the calculations of the scalar, spinor and gluon loop contributions to the one-loop vertex, leading to an extremely compact representation in all cases. The vertex is computed fully off-shell and in dimensionally continued form, so that it can be used as a building block for higher-loop calculations. We find that the Bern–Kosower loop replacement rules, originally derived for the on-shell case, hold off-shell as well. We explain the relation of the structure of this representation to the low-energy effective action, and establish the precise connection with the standard Ball–Chiu decomposition of the vertex. This allows us also to predict that the vanishing of the completely antisymmetric coefficient function S of this decomposition is not a one-loop accident, but persists at higher-loop orders. The sum rule found by Binger and Brodsky, which leads to the vanishing of the one-loop vertex in N=4 SYM theory, in the present approach relates to worldline supersymmetry.
Quantum Glass of Interacting Bosons with Off-Diagonal Disorder
Piekarska, A. M.; Kopeć, T. K.
2018-04-01
We study disordered interacting bosons described by the Bose-Hubbard model with Gaussian-distributed random tunneling amplitudes. It is shown that the off-diagonal disorder induces a spin-glass-like ground state, characterized by randomly frozen quantum-mechanical U(1) phases of bosons. To access criticality, we employ the "n -replica trick," as in the spin-glass theory, and the Trotter-Suzuki method for decomposition of the statistical density operator, along with numerical calculations. The interplay between disorder, quantum, and thermal fluctuations leads to phase diagrams exhibiting a glassy state of bosons, which are studied as a function of model parameters. The considered system may be relevant for quantum simulators of optical-lattice bosons, where the randomness can be introduced in a controlled way. The latter is supported by a proposition of experimental realization of the system in question.
gamma. -unstable nuclei in the sdg boson model
Energy Technology Data Exchange (ETDEWEB)
Kuyucak, S.; Lac, V.S.; Morrison, I.; Barrett, B.R. (School of Physics, Univ. of Melbourne, Parkville (Australia))
1991-07-18
Following the recent Pt(p, p') experiments which indicated the need for g bosons to reproduce the E4 data, we have extended the O(6) limit of the sd boson model to include g bosons. It is shown that a {gamma}-unstable hamiltonian in the sdg model consisting of a quadrupole interaction and a g boson energy leads to results that are very similar to the O(6) limit. Deviations from the empirical energy spectrum that stem from the {gamma}-unstable nature of the hamiltonian can be improved by including a consistent hexadecapole interaction which induces triaxiality. The same hexadecapole operator can also account for the strong E4 transitions. Applications are made to the Xe and Pt isotopes. (orig.).
γ-unstable nuclei in the sdg boson model
Kuyucak, S.; Lac, V.-S.; Morrison, I.; Barrett, B. R.
1991-07-01
Following the recent Pt(p, p‧) experiments which indicated the need for g bosons to reproduce the E4 data, we have extended the O(6) limit of the sd boson model to include g bosons. It is shown that a γ-unstable hamiltonian in the sdg model consisting of a quadrupole interaction and a g boson energy leads to results that are very similar to the O(6) limit. Deviations from the empirical energy spectrum that stem from the γ-unstable nature of the hamiltonian can be improved by including a consistent hexadecapole interaction which induces triaxiality. The same hexadecapole operator can also account for the strong E4 transitions. Applications are made to the Xe and Pt isotopes.
Superconductivity in mixed boson-fermion systems
International Nuclear Information System (INIS)
Ioffe, L.; Larkin, A.I.; Ovchinnikov, Yu.N.; Yu, L.
1989-12-01
The superconductivity of mixed boson-fermion systems is studied using a simple boson-fermion transformation model. The critical temperature of the superconducting transition is calculated over a wide range of the narrow boson band position relative to the Fermi level. The BCS scenario and boson condensation picture are recovered in two limiting cases of high and low positions of boson band, respectively, with modifications due to boson-fermion interaction. (author). 11 refs
Comment on ''Spectroscopy of samarium isotopes in the sdg interacting boson model''
International Nuclear Information System (INIS)
Kuyucak, S.; Lac, V.
1993-01-01
We point out that the data used in the sdg boson model calculations by Devi and Kota [Phys. Rev. C 45, 2238 (1992)] can be equally well described by the much simpler sd boson model. We present additional data for the Sm isotopes which cannot be explained in the sd model and hence may justify such an extension to the sdg bosons. We also comment on the form of the Hamiltonian and the transition operators used in this paper
Track and Vertex Reconstruction in the ATLAS Experiment
Lacuesta, V; The ATLAS collaboration
2012-01-01
The track and vertex reconstruction algorithms of the ATLAS Inner Detector have demonstrated excellent performance in the early data from the LHC. However, the rapidly increas- ing number of interactions per bunch crossing introduces new challenges both in computational aspects and physics performance. The combination of both silicon and gas based detectors provides high precision impact parameter and momentum measurement of charged particles, with high efficiency and small fake rate. Vertex reconstruction is used to identify with high efficiency the hard scattering process and to measure the amount of pile-up interactions, both aspects are cru- cial for many physics analyses. The performance of track and vertex reconstruction efficiency and resolution achieved in the 2011 and 2012 data-taking period are presented.
Track and Vertex Reconstruction in the ATLAS Experiment
Lacuesta, V; The ATLAS collaboration
2012-01-01
The track and vertex reconstruction algorithms of the ATLAS Inner Detector have demonstrated excellent performance in the early data from the LHC. However, the rapidly increas- ing number of interactions per bunch crossing introduces new challenges both in computational aspects and physics performance. The combination of both silicon and gas based detectors pro- vides high precision impact parameter and momentum measurement of charged particles, with high efficiency and small fake rate. Vertex reconstruction is used to identify with high efficiency the hard scattering process and to measure the amount of pile-up interactions, both aspects are cru- cial for many physics analyses. The performance of track and vertex reconstruction efficiency and resolution achieved in the 2011 and 2012 data-taking period are presented.
Measurement of Rb Using a Vertex Mass Tag
International Nuclear Information System (INIS)
Steiner, R.; Benvenuti, A.C.; Coller, J.A.; Hedges, S.J.; Johnson, A.S.; Shank, J.T.; Whitaker, J.S.; Allen, N.J.; Cotton, R.; Dervan, P.J.; Hasan, A.; McKemey, A.K.; Watts, S.J.; Caldwell, D.O.; Lu, A.; Yellin, S.J.; Cavalli-Sforza, M.; Coyne, D.G.; Fernandez, J.P.; Liu, X.; Reinertsen, P.L.; Schalk, T.; Schumm, B.A.; DOliveira, A.; Johnson, R.A.; Meadows, B.T.; Nussbaum, M.; Dima, M.; Harton, J.L.; Smy, M.B.; Staengle, H.; Wilson, R.J.; Baranko, G.; Fahey, S.; Fan, C.; Krishna, N.M.; Lauber, J.A.; Nauenberg, U.; Wagner, D.L.; Bazarko, A.O.; Bolton, T.; Rowson, P.C.; Shaevitz, M.H.; Camanzi, B.; Mazzucato, E.; Piemontese, L.; Calcaterra, A.; De Sangro, R.; Peruzzi, I.; Piccolo, M.; Eisenstein, B.I.; Gladding, G.; Karliner, I.; Shapiro, G.; Steiner, H.; Bardon, O.; Burrows, P.N.; Busza, W.; Cowan, R.F.; Dong, D.N.; Fero, M.J.; Gonzalez, S.; Kendall, H.W.; Lath, A.; Lia, V.; Osborne, L.S.; Quigley, J.; Taylor, F.E.; Torrence, E.; Verdier, R.; Williams, D.C.
1998-01-01
We report a new measurement of R b =Γ Z 0 →bbar b /Γ Z 0 →hadrons using a double tag technique, where the b hemisphere selection is based on the reconstructed mass of the B hadron decay vertex. The measurement was performed using a sample of 130x10 3 hadronic Z 0 events, collected with the SLD detector at SLC. The method utilizes the 3D vertexing abilities of the CCD pixel vertex detector and the small stable SLC beams to obtain a high b -tagging efficiency and purity. We obtain R b =0.2142±0.0034(stat) ±0.0015(syst)±0.0002( R c ) . copyright 1998 The American Physical Society
Track and vertex reconstruction in the ATLAS experiment
International Nuclear Information System (INIS)
Lacuesta, V
2013-01-01
The track and vertex reconstruction algorithms of the ATLAS Inner Detector have demonstrated excellent performance in the early data from the LHC. However, the rapidly increasing number of interactions per bunch crossing introduces new challenges both in computational aspects and physics performance. The combination of both silicon and gas based detectors provides high precision impact parameter and momentum measurement of charged particles, with high efficiency and small fake rate. Vertex reconstruction is used to identify with high efficiency the hard scattering process and to measure the amount of pile-up interactions, both aspects are crucial for many physics analyses. The performance of track and vertex reconstruction efficiency and resolution achieved in the 2011 and 2012 data-taking period are presented.
Ecker, Katharina Maria; Kortner, Sandra
The tensor structure of the Higgs boson couplings to gluons and heavy weak gauge bosons has been probed for small admixtures of non-Standard Model CP-odd and, only for heavy vector bosons, CP-even couplings to the CP-even Standard Model coupling. The Higgs boson candidates are reconstructed in the $\\HZZllll$ $(\\ell\\equiv e,\\mu)$ decay channel using proton-proton collision data recorded by the ATLAS detector at the Large Hadron Collider (LHC) in 2011 and 2012 at centre-of-mass energies of $\\sqrt{s}=7$ and $8\\,\\tev$ corresponding to an integrated luminosity of $\\intlumisetot\\,\\ifb$ and in 2015 and 2016 at $\\ecms$ corresponding to $\\intlumi\\,\\ifb$.\\\\ The non-Standard Model coupling parameters are defined within an effective field theory, the so-called Higgs characterisation framework. The relative contributions of the CP-even and CP-odd terms are described by the CP mixing angle $\\alpha$. The parameter $\\kaggnoma$ denotes the CP-odd non-Standard Model coupling at the Higgs to gluon interaction vertex and $\\khvv...
Search for Higgs boson production in proton-antiproton collisions at √s = 1.96 TeV
Energy Technology Data Exchange (ETDEWEB)
Kusakabe, Yoshiaki [Waseda Univ., Shinjuku (Japan)
2006-12-01
We performed a search for Standard Model Higgs boson production in association with W boson (p$\\bar{p}$ → W^{±}H → ℓvb$\\bar{b}$) in p$\\bar{p}$ collisions at √s = 1.96 TeV. The search uses the data collected between February 2002 and February 2006 at Collider Detector at Fermilab (CDF), which corresponds to an integrated luminosity of about 1 fb^{-1}. The experimental final state of WH → ℓvb$\\bar{b}$ process is lepton (e^{±}/μ^{±}), missing transverse energy and two jets. The largest background in lepton+jets events is W+light flavor process, therefore the identification of jets as b-jets reduces this kind of background significantly. We used displaced SECondary VerTeX b-tagging (SECVTX) technique, which utilizes the signature that b-jets have secondary vertex displaced away from primary vertex because of the long life time of B-mesons. However, there is still much contamination in SECVTX b-tagged jets. Finite resolution of secondary vertex tracking measurements results in false tags, and c-jets are also identified as b-jets due to the long life time of D-mesons frequently. For the purpose of increasing the purity of the SECVTX b-tagged jets, we applied Neural Network to SECVTX tagged jets for the first time by using secondary vertex variables and some variables independent of it. Neural Network filter rejects 65% of light flavor jets and 50% of c-jets from the SECVTX tagged jets. We improved the sensitivity of the Higgs boson signal search by 10% with Neural Network b-tagging technique. Events with one high p_{T} electron or muon, large missing transverse energy and either single SECVTX b-tagged jet which passes the Neural Network filter or at least two SECVTX b-tagged jets are selected. The number of selected events and dijet mass distributions are consistent with the Standard Model background expectations. Therefore we set an upper limit on σ(p$\\bar{p}$ → WH) • Br(H → b$\\bar{b}$) as 3.9 to 1
Ouraou, Ahmimed; The ATLAS collaboration
2016-01-01
Latest results on the measurement of gauge boson couplings, from ATLAS and CMS at the LHC, are presented. This review starts with an introduction to boson couplings, then the measurements of Triple and Quartic Couplings are described. And finally, limits on anomalous couplings are summarized.
International Nuclear Information System (INIS)
Dawson, S.
1988-01-01
Experimental limits on light Higgs bosons (M/sub H/ < 5 GeV) are examined. Particular attention is paid to the process K → πH. It is shown that there may be an allowed window for light Higgs bosons between about 100 and 210 MeV. 13 refs., 2 figs
A DNA Computing Model for the Graph Vertex Coloring Problem Based on a Probe Graph
Directory of Open Access Journals (Sweden)
Jin Xu
2018-02-01
Full Text Available The biggest bottleneck in DNA computing is exponential explosion, in which the DNA molecules used as data in information processing grow exponentially with an increase of problem size. To overcome this bottleneck and improve the processing speed, we propose a DNA computing model to solve the graph vertex coloring problem. The main points of the model are as follows: ① The exponential explosion problem is solved by dividing subgraphs, reducing the vertex colors without losing the solutions, and ordering the vertices in subgraphs; and ② the bio-operation times are reduced considerably by a designed parallel polymerase chain reaction (PCR technology that dramatically improves the processing speed. In this article, a 3-colorable graph with 61 vertices is used to illustrate the capability of the DNA computing model. The experiment showed that not only are all the solutions of the graph found, but also more than 99% of false solutions are deleted when the initial solution space is constructed. The powerful computational capability of the model was based on specific reactions among the large number of nanoscale oligonucleotide strands. All these tiny strands are operated by DNA self-assembly and parallel PCR. After thousands of accurate PCR operations, the solutions were found by recognizing, splicing, and assembling. We also prove that the searching capability of this model is up to O(359. By means of an exhaustive search, it would take more than 896 000 years for an electronic computer (5 × 1014 s−1 to achieve this enormous task. This searching capability is the largest among both the electronic and non-electronic computers that have been developed since the DNA computing model was proposed by Adleman’s research group in 2002 (with a searching capability of O(220. Keywords: DNA computing, Graph vertex coloring problem, Polymerase chain reaction
International Nuclear Information System (INIS)
Iachello, F.; Arima, A.
1987-01-01
The book gives an account of some of the properties of the interacting boson model. The model was introduced in 1974 to describe in a unified way the collective properties of nuclei. The book presents the mathematical techniques used to analyse the structure of the model. The mathematical framework of the model is discussed in detail. The book also contains all the formulae that have been developed throughout the years to account for collective properties of nuclei. These formulae can be used by experimentalists to compare their data with the predictions of the model. (U.K.)
Bluj, Michal Jacek
2018-01-01
In this report we review recent Higgs boson results obtained with pp collisions at $\\sqrt{s}=\\,$13 TeV recorded by the CMS detector in 2016 for an integrated luminosity of 35.9fb$^{\\text{-1}}$. The 2016 data allowed the observation of the $H \\to \\tau\\tau$ and $H \\to WW$ decays with high significance. We also present a combined measurement based on a full set of CMS analyses performed with 2016 data. These results are compatible with the standard model predictions with precision of several measurements exceeding results from combination of ATLAS and CMS data collected in 2011 and 2012.
High speed digital TDC for D0 vertex reconstruction
International Nuclear Information System (INIS)
Gao Guosheng; Partridge, R.
1992-01-01
A high speed digital TDC has been built as part of the Level 0 trigger for the D0 experiment at Fermilab. The digital TDC is used to make a fast determination of the primary vertex position by timing the arrival time of beam jets detected in the Level 0 counters. The vertex position is then used by the Level 1 trigger to determine the proper sinθ weighting factors for calculation transverse energies. Commercial GaAs integrated circuits are used in the digital TDC to obtain a time resolution of σ t == 226 ps
Simulations with the PANDA micro-vertex-detector
International Nuclear Information System (INIS)
Kliemt, Ralf
2013-01-01
The PANDA experiment will be built at the upcoming FAIR facility at GSI in Darmstadt, featuring antiproton-proton reactions hadron physics in a medium energy range. Charm physics will play an important role and therefore secondary decays relatively close to the interaction zone as well. The MVD will be the detector closest to these and will provide high-quality vertex position measurements. Alongside the detector layout and hardware development a detailed detector simulation and reconstruction software is required. This work contains the detailed description and the performance studies of the software developed for the MVD. Furthermore, vertexing tools are introduced and their performance is studied for the MVD.
The design and performance of the ZEUS micro vertex detector
International Nuclear Information System (INIS)
Polini, A.; Brock, I.; Goers, S.
2007-08-01
In order to extend the tracking acceptance, to improve the primary and secondary vertex reconstruction and thus enhancing the tagging capabilities for short lived particles, the ZEUS experiment at the HERA Collider at DESY installed a silicon strip vertex detector. The barrel part of the detector is a 63 cm long cylinder with silicon sensors arranged around an elliptical beampipe. The forward part consists of four circular shaped disks. In total just over 200k channels are read out using 2.9 m 2 of silicon. In this report a detailed overview of the design and construction of the detector is given and the performance of the completed system is reviewed. (orig.)
Preliminary studies for the LHCb vertex detector vacuum system
Doets, M; Van Bakel, N; Van den Brand, J F J; van den Brand, Jo
2000-01-01
We lay down some general considerations which will serve as a starting point for design studies of a realistic LHCb vertex detector vacuum system. Based on these considerations, we propose a design strategy and identify issues to be further studied. In particular we try to outline some boundary conditions imposed by LHC and LHCb on the vacuum system. We discuss two possibilities for the LHCb vertex detector vacuum system. The preferred strategy uses a differentially pumped vacuum system with the silicon detectors separated from the beam line vacuum. Some estimations on static vacuum pressures and gas flows are presented.
Dannheim, Dominik
2013-01-01
A detector concept based on hybrid planar pixel-detector technology is under development for the CLIC vertex detector. It comprises fast, low-power and small-pitch readout ASICs implemented in 65 nm CMOS technology (CLICpix) coupled to ultra-thin sensors via low-mass interconnects. The power dissipation of the readout chips is reduced by means of power pulsing, allowing for a cooling system based on forced gas flow. In this paper the CLIC vertex-detector requirements are reviewed and the curr...
RAVE-a Detector-independent vertex reconstruction toolkit
International Nuclear Information System (INIS)
Waltenberger, Wolfgang; Mitaroff, Winfried; Moser, Fabian
2007-01-01
A detector-independent toolkit for vertex reconstruction (RAVE) is being developed, along with a standalone framework (VERTIGO) for testing, analyzing and debugging. The core algorithms represent state of the art for geometric vertex finding and fitting by both linear (Kalman filter) and robust estimation methods. Main design goals are ease of use, flexibility for embedding into existing software frameworks, extensibility, and openness. The implementation is based on modern object-oriented techniques, is coded in C++ with interfaces for Java and Python, and follows an open-source approach. A beta release is available
The RAVE/VERTIGO vertex reconstruction toolkit and framework
Waltenberger, W.; Mitaroff, W.; Moser, F.; Pflugfelder, B.; Riedel, H. V.
2008-07-01
A detector-independent toolkit for vertex reconstruction (RAVE1) is being developed, along with a standalone framework (VERTIGO2) for testing, analyzing and debugging. The core algorithms represent state-of-the-art for geometric vertex finding and fitting by both linear (Kalman filter) and robust estimation methods. Main design goals are ease of use, flexibility for embedding into existing software frameworks, extensibility, and openness. The implementation is based on modern object-oriented techniques, is coded in C++ with interfaces for Java and Python, and follows an open-source approach. A beta release is available.
RAVE-a Detector-independent vertex reconstruction toolkit
Energy Technology Data Exchange (ETDEWEB)
Waltenberger, Wolfgang [Institute of High Energy Physics, Austrian Academy of Sciences A-1050 Vienna (Austria)], E-mail: walten@hephy.oeaw.ac.at; Mitaroff, Winfried; Moser, Fabian [Institute of High Energy Physics, Austrian Academy of Sciences A-1050 Vienna (Austria)
2007-10-21
A detector-independent toolkit for vertex reconstruction (RAVE) is being developed, along with a standalone framework (VERTIGO) for testing, analyzing and debugging. The core algorithms represent state of the art for geometric vertex finding and fitting by both linear (Kalman filter) and robust estimation methods. Main design goals are ease of use, flexibility for embedding into existing software frameworks, extensibility, and openness. The implementation is based on modern object-oriented techniques, is coded in C++ with interfaces for Java and Python, and follows an open-source approach. A beta release is available.
The RAVE/VERTIGO vertex reconstruction toolkit and framework
Energy Technology Data Exchange (ETDEWEB)
Waltenberger, W; Mitaroff, W; Moser, F; Pflugfelder, B; Riedel, H V [Austrian Academy of Sciences, Institute of High Energy Physics, A-1050 Vienna (Austria)], E-mail: walten@hephy.oeaw.ac.at
2008-07-15
A detector-independent toolkit for vertex reconstruction (RAVE{sup 1}) is being developed, along with a standalone framework (VERTIGO{sup 2}) for testing, analyzing and debugging. The core algorithms represent state-of-the-art for geometric vertex finding and fitting by both linear (Kalman filter) and robust estimation methods. Main design goals are ease of use, flexibility for embedding into existing software frameworks, extensibility, and openness. The implementation is based on modern object-oriented techniques, is coded in C++ with interfaces for Java and Python, and follows an open-source approach. A beta release is available.
Z H η vertex in the simplest little Higgs model
He, Shi-Ping; Mao, Ying-nan; Zhang, Chen; Zhu, Shou-hua
2018-04-01
The issue of deriving Z H η vertex in the simplest little Higgs (SLH) model is revisited. Special attention is paid to the treatment of noncanonically-normalized scalar kinetic matrix and vector-scalar two-point transitions. We elucidate a general procedure to diagonalize a general vector-scalar system in gauge theories and apply it to the case of SLH. The resultant Z H η vertex is found to be different from those which have already existed in the literature for a long time. We also present an understanding of this issue from an effective field theory viewpoint.
Simulations of silicon vertex tracker for star experiment at RHIC
Energy Technology Data Exchange (ETDEWEB)
Odyniec, G.; Cebra, D.; Christie, W.; Naudet, C.; Schroeder, L.; Wilson, W. [Lawrence Berkeley Lab., CA (United States); Liko, D. [Institut fur Hochenenergiephysik, Vienna, (Austria); Cramer, J.; Prindle, D.; Trainor, T. [Univ. of Washington, Seattle (United States); Braithwaite, W. [Univ. of Arkansas, Little Rock (United States)
1991-12-31
The first computer simulations to optimize the Silicon Vertex Tracker (SVT) designed for the STAR experiment at RHIC are presented. The physics goals and the expected complexity of the events at RHIC dictate the design of a tracking system for the STAR experiment. The proposed tracking system will consist of a silicon vertex tracker (SVT) to locate the primary interaction and secondary decay vertices and to improve the momentum resolution, and a time projection chamber (TPC), positioned inside a solenoidal magnet, for continuous tracking.
Simulations with the PANDA micro-vertex-detector
Energy Technology Data Exchange (ETDEWEB)
Kliemt, Ralf
2013-07-17
The PANDA experiment will be built at the upcoming FAIR facility at GSI in Darmstadt, featuring antiproton-proton reactions hadron physics in a medium energy range. Charm physics will play an important role and therefore secondary decays relatively close to the interaction zone as well. The MVD will be the detector closest to these and will provide high-quality vertex position measurements. Alongside the detector layout and hardware development a detailed detector simulation and reconstruction software is required. This work contains the detailed description and the performance studies of the software developed for the MVD. Furthermore, vertexing tools are introduced and their performance is studied for the MVD.
Electromagnetic form factors and vertex constants for 6Li
International Nuclear Information System (INIS)
Blokhintsev, L.D.; Shvarts, I.A.
1977-01-01
It has been assumed that the main contribution to the rapidly changing part of the charge form factor of 6 Li provides the amplitude of the triangle diagram containing virtual lines of deuteron and α particle. The vertex constant G 2 for the 6 Li→α+d decay is expressed through the nuclear charge radii for 6 Li, d, and α. Taking into account coulomb interaction in the vertex of the 6 Li→α+d reaction increases G 2 by about a factor of two. The account of virtuality of a deuteron cluster also leads to an increase in G 2
Partially composite Goldstone Higgs boson
DEFF Research Database (Denmark)
Alanne, Tommi; Franzosi, Diogo Buarque; Frandsen, Mads T.
2017-01-01
We consider a model of dynamical electroweak symmetry breaking with a partially composite Goldstone Higgs boson. The model is based on a strongly interacting fermionic sector coupled to a fundamental scalar sector via Yukawa interactions. The SU(4)×SU(4) global symmetry of these two sectors...... is broken to a single SU(4) via Yukawa interactions. Electroweak symmetry breaking is dynamically induced by condensation due to the strong interactions in the new fermionic sector which further breaks the global symmetry SU(4)→Sp(4). The Higgs boson arises as a partially composite state which is an exact...... Goldstone boson in the limit where SM interactions are turned off. Terms breaking the SU(4) global symmetry explicitly generate a mass for the Goldstone Higgs boson. The model realizes in different limits both (partially) composite Higgs and (bosonic) technicolor models, thereby providing a convenient...
A facility for long term evaluation and quality assurance of LHCb Vertex Detector modules
Marinho, F; Dimattia, R; Doherty, F; Dumps, R; Gersabeck, M; Melone, J; Parkes, C; Saavedra, A; Tobin, M
2007-01-01
This note describes the facility developed for long term evaluation and quality assurance of the LHCb Vertex Detector modules, known as the 'Glasgow Burn-in System'. This facility was developed to ensure that the modules conform to stringent quality levels. The system was able to uncover any weaknesses that could be introduced during the manufacturing and assembly of the components or during the transport of the modules to CERN. The system consisted of: a high resolution microscope for visual inspections; and a burn-in system to operate cooled modules in vacuum. The main components of the burn-in system were a vacuum system, a cooling system and a DAQ system.
Bounding the flavor-violating Hbs vertex from the B → Xsγ decay
International Nuclear Information System (INIS)
Aranda, J I; Ramirez-Zavaleta, F; Tututi, E S; Montano, J; Toscano, J J
2011-01-01
The nondiagonal Hbs coupling within the context of an effective Yukawa sector that comprises SU L (2) x U Y (1)-invariant operators of up to dimension six is studied. The recent experimental result on B → X sγ with hard photons is employed to constrain the Hbs vertex, with which the branching ratio for the B s → γγ decay is estimated. It is found that the B s → γγ decay can reach a branching ratio of the order of 4 x 10 -8 .
Signature for g bosons from medium energy proton scattering experiments
International Nuclear Information System (INIS)
Kuyucak, S.
1993-01-01
We apply the recently developed algebraic (1/N expansion) scattering formalism to medium energy proton scattering from 154 Sm and 176 Yb. The nuclear structure effects in this formalism are described by the interacting boson model generalized to arbitrary interactions and types of bosons i.e. s,d,g, etc. We find that, in the sd boson model, a consistent description of cross sections is possible only for the 0 + and 2 + states. The failure of the model with regard to the 4 + states indicates that the effective hexadecapole operator used in the sd model is inadequate. In contrast, the data for scattering to the 0 + , 2 + and 4 + states could be consistently described in the sdg boson model. The spectroscopic data for the low-lying levels usually can not distinguish between the sd and sdg models due to renormalization of parameters, and one has to look at high spin or energy data for evidence of g bosons. The inelastic proton scattering experiments, on the other hand, directly probe the wave functions, and hence could provide a signature for g bosons even in the ground band states
Spurious states in boson calculations - spectre of reality
Energy Technology Data Exchange (ETDEWEB)
Navratil, P. (Stellenbosch Univ. (South Africa). Inst. of Theoretical Nuclear Physics); Geyer, H.B. (Stellenbosch Univ. (South Africa). Inst. of Theoretical Nuclear Physics); Dobes, J. (Inst. of Nuclear Physics, Czech Academy of Sciences, Rez (Czech Republic)); Dobaczewski, J. (Warsaw Univ. (Poland). Inst. of Theoretical Physics)
1994-03-28
We discuss some prevailing misconceptions about the possibility that spurious states may in general contaminate boson calculations of fermion systems on either the phenomenological or microscopic level. Amongst other things we point out that the possible appearance of spurious states is not inherently a mapping problem, but rather linked to a choice of basis in the boson Fock space. This choice is mostly dictated by convenience or the aim to make direct contact with phenomenology. Furthermore, neither well established collectivity, nor the construction of boson operators in the Marumori or OAI fashion can as such serve as a guarantee against the appearance of spurious boson states. Within an SO(12) generalisation of the Ginocchio model where collective decoupling is complete, we illustrate how spurious states may appear in an IBM-type-sdg-boson analysis. We also show how these states may be identified on the boson level. This enables us to present an example of an sdg-spectrum which, although it may be reasonably correlated with experimental data, nevertheless has the first few low lying states all spurious when interpreted from the microscopic point of view. We briefly speculate about the possibility that certain types of truncation may in fact automatically circumvent the appearance of spurious states. (orig.)
Spurious states in boson calculations - spectre of reality?
International Nuclear Information System (INIS)
Navratil, P.; Dobaczewski, J.
1994-01-01
We discuss some prevailing misconceptions about the possibility that spurious states may in general contaminate boson calculations of fermion systems on either the phenomenological or microscopic level. Amongst other things we point out that the possible appearance of spurious states is not inherently a mapping problem, but rather linked to a choice of basis in the boson Fock space. This choice is mostly dictated by convenience or the aim to make direct contact with phenomenology. Furthermore, neither well established collectivity, nor the construction of boson operators in the Marumori or OAI fashion can as such serve as a guarantee against the appearance of spurious boson states. Within an SO(12) generalisation of the Ginocchio model where collective decoupling is complete, we illustrate how spurious states may appear in an IBM-type-sdg-boson analysis. We also show how these states may be identified on the boson level. This enables us to present an example of an sdg-spectrum which, although it may be reasonably correlated with experimental data, nevertheless has the first few low lying states all spurious when interpreted from the microscopic point of view. We briefly speculate about the possibility that certain types of truncation may in fact automatically circumvent the appearance of spurious states. (orig.)
Anomalous dimensions from boson lattice models
de Carvalho, Shaun; de Mello Koch, Robert; Larweh Mahu, Augustine
2018-06-01
Operators dual to strings attached to giant graviton branes in AdS5×S5 can be described rather explicitly in the dual N =4 super-Yang-Mills theory. They have a bare dimension of order N so that for these operators the large N limit and the planar limit are distinct; summing only the planar diagrams will not capture the large N dynamics. Focusing on the one-loop S U (3 ) sector of the theory, we consider operators that are a small deformation of a 1/2 -Bogomol'nyi-Prasad-Sommerfield (BPS) multigiant graviton state. The diagonalization of the dilatation operator at one loop has been carried out in previous studies, but explicit formulas for the operators of a good scaling dimension are only known when certain terms which were argued to be small are neglected. In this article, we include the terms which were neglected. The diagonalization is achieved by a novel mapping which replaces the problem of diagonalizing the dilatation operator with a system of bosons hopping on a lattice. The giant gravitons define the sites of this lattice, and the open strings stretching between distinct giant gravitons define the hopping terms of the Hamiltonian. Using the lattice boson model, we argue that the lowest energy giant graviton states are obtained by distributing the momenta carried by the X and Y fields evenly between the giants with the condition that any particular giant carries only X or Y momenta, but not both.
LHCb VErtex LOcator module characterisation and long term quality assurance tests
Bates, A; Doherty, F; Dumps, R; Dwyer, L; Gersabeck, M; Marinho, 1, F; Melone, J; Parkes, C; Saavedra, A; Tobin, M; Viret, S
2009-01-01
LHCb is the dedicated b-physics experiment of the LHC. Its vertex detector, the VErtex LOcator (VELO), will operate in a harsh radiation environment with limited access due to its proximity to the LHC beam. To ensure the long term operation and performance, every module was required to pass a set of quality assurance tests. These were specifically developed for the VELO modules to take into account their operational environment and assembly steps. Each VELO module was rigorously inspected, tested and thermally cycled in the Glasgow module burn-in procedures. This paper provides details of the burn-in procedures and summarises the main results that were found. Some of the major results presented in this paper are: the full characterisation of the leakage currents; identification of bad channels; and signal to noise measurements. A few minor problems were identified through visual inspections of the modules and the feedback into the production process proved critical. As a result of the electrical and thermal t...
LHCb: Performance and Radiation Damage Effects in the LHCb Vertex Locator
Carvalho Akiba, K
2014-01-01
LHCb is a dedicated experiment to study New Physics in the decays of heavy hadrons at the LHC. Heavy hadrons are identified through their flight distance in the Vertex Locator (VELO), hence the detector is critical for both the trigger and offline physics analyses. The VELO is the retractable silicon-strip detector surrounding the LHCb interaction point. It is located only 7 mm from the LHC beam during normal LHC operation, once moved into its closed position for each LHC fill when stable beams are obtained. During insertion the detector is centred around the LHC beam by the online reconstruction of the primary vertex position. Both VELO halves comprise 21 silicon micro-strip modules each. A module is made of two n-on-n 300 $\\mu$m thick half-disc sensors with R-measuring and $\\phi$-measuring micro-strip geometry, mounted on a carbon fibre support paddle. The minimum pitch is approximately 40 $\\mu$m. The detector is also equipped with the only n-on-p sensors operating at the LHC. The detectors are operated in ...
Performance, Radiation Damage Effects and Upgrade of the LHCb Vertex Locator
De Capua, S
2013-01-01
LHCb is a dedicated experiment to study New Physics in the decays of heavy hadrons at the Large Hadron Collider (LHC). Heavy hadrons are identified through their flight distance in the VELO, the retractable silicon-strip vertex detector surrounding the LHCb interaction point at only 7 mm from the beam during normal LHC operation. Both VELO halves comprise 21 silicon micro-strip modules each. A module is made of two n-on-n 300 µm thick half-disc sensors with R- and phi-measuring geometry, mounted on a carbon fibre support paddle. The minimum pitch is approximately 40 µm. The detector is also equipped with the only n-on-p module operating at the LHC. The performance of the VELO in its three years of successful operation during the LHC physics runs will be presented. Highlights will include alignment, cluster finding efficiency, single hit resolution, and impact parameter and vertex resolutions. The VELO module sensors receive a large and non-uniform radiation dose having inner and outer radii of only 7 and 42...
On the local vertex antimagic total coloring of some families tree
Febriani Putri, Desi; Dafik; Hesti Agustin, Ika; Alfarisi, Ridho
2018-04-01
Let G(V, E) be a graph of vertex set V and edge set E. Local vertex antimagic total coloring developed from local edge and local vertex antimagic coloring of graph. Local vertex antimagic total coloring is defined f:V(G)\\cup E(G)\\to \\{1,2,3,\\ldots,|V(G)|+|E(G)|\\} if for any two adjacent vertices v 1 and v 2, w({v}1)\
Conservation laws, vertex corrections, and screening in Raman spectroscopy
Maiti, Saurabh; Chubukov, Andrey V.; Hirschfeld, P. J.
2017-07-01
We present a microscopic theory for the Raman response of a clean multiband superconductor, with emphasis on the effects of vertex corrections and long-range Coulomb interaction. The measured Raman intensity, R (Ω ) , is proportional to the imaginary part of the fully renormalized particle-hole correlator with Raman form factors γ (k ⃗) . In a BCS superconductor, a bare Raman bubble is nonzero for any γ (k ⃗) and diverges at Ω =2 Δmax , where Δmax is the largest gap along the Fermi surface. However, for γ (k ⃗) = constant, the full R (Ω ) is expected to vanish due to particle number conservation. It was sometimes stated that this vanishing is due to the singular screening by long-range Coulomb interaction. In our general approach, we show diagrammatically that this vanishing actually holds due to vertex corrections from the same short-range interaction that gives rise to superconductivity. We further argue that long-range Coulomb interaction does not affect the Raman signal for any γ (k ⃗) . We argue that vertex corrections eliminate the divergence at 2 Δmax . We also argue that vertex corrections give rise to sharp peaks in R (Ω ) at Ω <2 Δmin (the minimum gap along the Fermi surface), when Ω coincides with the frequency of one of the collective modes in a superconductor, e.g., Leggett and Bardasis-Schrieffer modes in the particle-particle channel, and an excitonic mode in the particle-hole channel.
SVT: an online silicon vertex tracker for the CDF upgrade
International Nuclear Information System (INIS)
Bardi, A.; Belforte, S.; Berryhill, J.
1997-07-01
The SVT is an online tracker for the CDF upgrade which will reconstruct 2D tracks using information from the Silicon VerteX detector (SVXII) and Central Outer Tracker (COT). The precision measurement of the track impact parameter will then be used to select and record large samples of B hadrons. We discuss the overall architecture, algorithms, and hardware implementation of the system
Fast simulation and topological vertex finding in JAVA
International Nuclear Information System (INIS)
Walkowiak, Wolfgang
2001-01-01
An overview of the fast Monte Carlo simulation for NLC detector studies as currently provided in the Java Analysis Studio environment is presented. Special emphasis is given to the simulation of tracks. In addition, the SLD collaboration's topological vertex finding algorithm (ZVTOP) has been implemented in the Java Analysis Studio framework
Random matrices and the six-vertex model
Bleher, Pavel
2013-01-01
This book provides a detailed description of the Riemann-Hilbert approach (RH approach) to the asymptotic analysis of both continuous and discrete orthogonal polynomials, and applications to random matrix models as well as to the six-vertex model. The RH approach was an important ingredient in the proofs of universality in unitary matrix models. This book gives an introduction to the unitary matrix models and discusses bulk and edge universality. The six-vertex model is an exactly solvable two-dimensional model in statistical physics, and thanks to the Izergin-Korepin formula for the model with domain wall boundary conditions, its partition function matches that of a unitary matrix model with nonpolynomial interaction. The authors introduce in this book the six-vertex model and include a proof of the Izergin-Korepin formula. Using the RH approach, they explicitly calculate the leading and subleading terms in the thermodynamic asymptotic behavior of the partition function of the six-vertex model with domain wa...
Self-locking degree-4 vertex origami structures.
Fang, Hongbin; Li, Suyi; Wang, K W
2016-11-01
A generic degree-4 vertex (4-vertex) origami possesses one continuous degree-of-freedom for rigid folding, and this folding process can be stopped when two of its facets bind together. Such facet-binding will induce self-locking so that the overall structure stays at a pre-specified configuration without additional locking elements or actuators. Self-locking offers many promising properties, such as programmable deformation ranges and piecewise stiffness jumps, that could significantly advance many adaptive structural systems. However, despite its excellent potential, the origami self-locking features have not been well studied, understood, and used. To advance the state of the art, this research conducts a comprehensive investigation on the principles of achieving and harnessing self-locking in 4-vertex origami structures. Especially, for the first time, this study expands the 4-vertex structure construction from single-component to dual-component designs and investigates their self-locking behaviours. By exploiting various tessellation designs, this research discovers that the dual-component designs offer the origami structures with extraordinary attributes that the single-component structures do not have, which include the existence of flat-folded locking planes, programmable locking points and deformability. Finally, proof-of-concept experiments investigate how self-locking can effectively induce piecewise stiffness jumps. The results of this research provide new scientific knowledge and a systematic framework for the design, analysis and utilization of self-locking origami structures for many potential engineering applications.
The role of geometry in 4-vertex origami mechanics
Waitukaitis, Scott; Dieleman, Peter; van Hecke, Martin
Origami offers an interesting design platform metamaterials because it strongly couples mechanics with geometry. Even so, most research carried out so far has been limited to one or two particular patterns. I will discuss the full geometrical space of the most common origami building block, the 4-vertex, and show how exotic geometries can have dramatic effects on the mechanics.
Multipole expansion of vertex functions in an arbitrary frame
International Nuclear Information System (INIS)
Daumens, Michel
1977-01-01
Vertex functions are expanded on the bases of tensor spherical harmonics and tensor multipoles. The coefficients of the expansions are rotational invariant form factors. The relations with those defined in particular frames by Durand, De Celles and Marr, and by De Rafael are exhibited. Finally multipolar form factors are built which are irreducible under pure Lorentz transformations [fr
Tests of track segment and vertex finding with neural networks
International Nuclear Information System (INIS)
Denby, B.; Lessner, E.; Lindsey, C.S.
1990-04-01
Feed forward neural networks have been trained, using back-propagation, to find the slopes of simulated track segments in a straw chamber and to find the vertex of tracks from both simulated and real events in a more conventional drift chamber geometry. Network architectures, training, and performance are presented. 12 refs., 7 figs
Network Unfolding Map by Vertex-Edge Dynamics Modeling.
Verri, Filipe Alves Neto; Urio, Paulo Roberto; Zhao, Liang
2018-02-01
The emergence of collective dynamics in neural networks is a mechanism of the animal and human brain for information processing. In this paper, we develop a computational technique using distributed processing elements in a complex network, which are called particles, to solve semisupervised learning problems. Three actions govern the particles' dynamics: generation, walking, and absorption. Labeled vertices generate new particles that compete against rival particles for edge domination. Active particles randomly walk in the network until they are absorbed by either a rival vertex or an edge currently dominated by rival particles. The result from the model evolution consists of sets of edges arranged by the label dominance. Each set tends to form a connected subnetwork to represent a data class. Although the intrinsic dynamics of the model is a stochastic one, we prove that there exists a deterministic version with largely reduced computational complexity; specifically, with linear growth. Furthermore, the edge domination process corresponds to an unfolding map in such way that edges "stretch" and "shrink" according to the vertex-edge dynamics. Consequently, the unfolding effect summarizes the relevant relationships between vertices and the uncovered data classes. The proposed model captures important details of connectivity patterns over the vertex-edge dynamics evolution, in contrast to the previous approaches, which focused on only vertex or only edge dynamics. Computer simulations reveal that the new model can identify nonlinear features in both real and artificial data, including boundaries between distinct classes and overlapping structures of data.
Recent developments in high precision vertex chambers at SLAC
International Nuclear Information System (INIS)
Rust, D.R.
1984-04-01
Three detectors MARK II, MAC, AND HRS are using or planning small drift chambers placed as close as possible to the interaction print at PEP. There is also a program of development for a gaseous vertex detector for MARK II at SLC. All these programs are reviewed. 13 references
Performance of the CDF Silicon VerteX detector
International Nuclear Information System (INIS)
Schneider, O.
1992-11-01
The current status of the online and offline performance of the CDF Silicon VerteX detector is presented. So far, at low radiation dose, the device delivers good quality data. After the latest alignment using collision data, a spatial resolution of 13 pm is achieved in the transverse plane, demonstrating that CDF has a powerful tool to detect b decay vertices
Universal Four-Boson System: Dimer-Atom-Atom Efimov Effect and Recombination Reactions
International Nuclear Information System (INIS)
Deltuva, A.
2013-01-01
Recent theoretical developments in the four-boson system with resonant interactions are described. Momentum-space scattering equations for the four-particle transition operators are used. The properties of unstable tetramers with approximate dimer-atom-atom structure are determined. In addition, the three- and four-cluster recombination processes in the four-boson system are studied. (author)
Derivation of equations for high-Tc by means of slave boson technique
International Nuclear Information System (INIS)
Nguyen Van Hieu; Ha Vinh Tan; Nguyen Toan Thang
1988-07-01
The ''slave boson'' technique is applied for studying the superconductivity of the system of strongly correlated electrons with the Hubbard Hamiltonian. On the basis of the equations of the Green functions for the new boson and fermion operators we derive the dynamical equations determining the order parameters of the given RVB model. (author). 4 refs
sea-boson theory of Landau-Fermi liquids, Luttinger liquids and ...
Indian Academy of Sciences (India)
. The operator in eq. (1) is not an exact boson but we may treat it as such and impose canonical boson commutation rules (this time we include spin for the sake .... pate that these are responsible for breaking Fermi liquid behavior. Here S(q) =.
One-boson exchange model in the Tobocman-Chulick formalism
International Nuclear Information System (INIS)
Chulick, G.S.
1988-01-01
An alternative method to the standard techniques of field theory for the derivation of few-body dynamical equations is presented here. This new formalism gives rise to a set of coupled, three-dimensional, relativistic equations which represent one or more (coupled channel) nuclear interactive processes. The particles represented by these equations are dressed and/or are composite, with mass and vertex renormalization done in a simple, straightforward manner. The n-boson Tamm-Dancoff approximation is then used to restrict to a reasonable amount the number of coupled equations to be solved. In the one-boson Tamm-Dancoff approximation, the formalism gives rise to relativistic One-Boson Exchange time-ordered perturbation theory: i.e., the basic Bonn potential. Moreover, the formalism gives the Bonn potential a firmer theoretical basis, with physical particles, and with mass and vertex renormalization systematically taken into account. The formalism was tested numerically at two levels. First, it was tested for the simple model of elastic scalar NN scattering via the exchange of a single scalar boson. The resultant phase shifts, when compared to those for the Bethe-Salpeter equation and several of its three-dimensional reductions for the same model, were found to be reasonable. Next, the formalism was tested for the same model expanded to include non-elastic NN scattering processes. Even though the resultant scattering cross-sections were not compatible to the empirical scattering cross-sections, it was possible to discern what must be included in the model to obtain qualitative agreement
Gauge equivalence of the electrodynamics of charged bosons
International Nuclear Information System (INIS)
Sohn, R.; Haller, K.
1977-01-01
The quantum electrodynamics of charged scalar and vector bosons is formulated in the Lorentz gauge, and the effect of the charged particle--photon interaction on the subsidiary condition is explicitly taken into account. The results are extensions of earlier work on spinor quantum electrodynamics, but the presence of seagull vertices and anomalous current commutators in the case of the charged bosons make the extensions nontrivial. An operator gauge transformation that encompasses equations of motion as well as the commutator algebra of the field operators is developed; it is used to transform the theory from the Lorentz gauge to the Coulomb gauge
The Higgs Boson Search and Discovery
Bernardi, Gregorio
2016-01-01
We present a brief account of the search for the Higgs boson at the three major colliders that have operated over the last three decades: LEP, the Tevatron, and the LHC. The experimental challenges encountered stemmed from the distinct event phenomenology as determined by the colliders energy and the possible values for the Higgs boson mass, and from the capability of these colliders to deliver as much collision data as possible to fully explore the mass spectrum within their reach. Focusing more on the hadron collider searches during the last decade, we discuss how the search for the Higgs boson was advanced through mastering the experimental signatures of standard theory backgrounds, through the comprehensive utilization of the features of the detectors involved in the searches, and by means of advanced data analysis techniques. The search culminated in 2012 with the discovery, by the ATLAS and CMS collaborations, of a Higgs-like particle with mass close to 125 GeV, confirmed more recently to have propertie...
Kondo length in bosonic lattices
Giuliano, Domenico; Sodano, Pasquale; Trombettoni, Andrea
2017-09-01
Motivated by the fact that the low-energy properties of the Kondo model can be effectively simulated in spin chains, we study the realization of the effect with bond impurities in ultracold bosonic lattices at half filling. After presenting a discussion of the effective theory and of the mapping of the bosonic chain onto a lattice spin Hamiltonian, we provide estimates for the Kondo length as a function of the parameters of the bosonic model. We point out that the Kondo length can be extracted from the integrated real-space correlation functions, which are experimentally accessible quantities in experiments with cold atoms.
International Nuclear Information System (INIS)
Fujiwara, Kohei
2010-01-01
The construction of the Silicon Pixel Detector is starting in spring 2009 as project of the RHIC-PHENIX Silicon Vertex Tracker (VTX) upgrade at the Brookhaven National Laboratory. For the construction, we have developed a fine pitch and low material readout bus as the backbone parts of the VTX. In this article, we report the development and production of the readout bus.
International Nuclear Information System (INIS)
Nelson, Ann E.; Walsh, Jonathan
2008-01-01
We show that for a force mediated by a vector particle coupled to a conserved U(1) charge, the apparent range and strength can depend on the size and density of the source, and the proximity to other sources. This chameleon effect is due to screening from a light charged scalar. Such screening can weaken astrophysical constraints on new gauge bosons. As an example we consider the constraints on chameleonic gauged B-L. We show that although Casimir measurements greatly constrain any B-L force much stronger than gravity with range longer than 0.1 μm, there remains an experimental window for a long-range chameleonic B-L force. Such a force could be much stronger than gravity, and long or infinite range in vacuum, but have an effective range near the surface of the earth which is less than a micron.
International Nuclear Information System (INIS)
Miranda, E.
2003-01-01
This is a pedagogical introduction to the general technique of bosonization of one-dimensional systems starting from scratch and assuming very little besides basic quantum mechanics and second quantization. The formalism is developed in a self-contained fashion and applied to the spinless and spin-1/2 Luttinger models, working out both single and two particle correlation functions. The implications of these results for the specific cases of the (anisotropic) Heisenberg and the Hubbard models are discussed. Although everything in these notes can be found in the published literature, detailed and explicit calculations of most of the results are given, which may prove useful to beginning graduate students or researchers in this area. (author)
Brunet, S
2014-01-01
ATLAS Higgs poster targeted to general public, explaining the Brout-Englert-Higgs mechanism and why it is important. It also explains the role of the Higgs Boson, how we look for it, the journey of the discovery and what comes after the discovery. Also available in French (http://cds.cern.ch/record/1697501). Don’t hesitate to use it in your institute’s corridors and in your outreach events! The poster is in A0 format. You can click on the image to download the high-quality .pdf version and print it at your favorite printshop. For any questions or comments you can contact atlas-outreach-coordination@cern.ch.
Automatised data quality monitoring of the LHCb Vertex Locator
Bel, L.; Crocombe, A. Ch.; Gersabeck, M.; Pearce, A.; Majewski, M.; Szumlak, T.
2017-10-01
The LHCb Vertex Locator (VELO) is a silicon strip semiconductor detector operating at just 8mm distance to the LHC beams. Its 172,000 strips are read at a frequency of 1.1 MHz and processed by off-detector FPGAs followed by a PC cluster that reduces the event rate to about 10 kHz. During the second run of the LHC, which lasts from 2015 until 2018, the detector performance will undergo continued change due to radiation damage effects. This necessitates a detailed monitoring of the data quality to avoid adverse effects on the physics analysis performance. The VELO monitoring infrastructure has been re-designed compared to the first run of the LHC when it was based on manual checks. The new system is based around an automatic analysis framework, which monitors the performance of new data as well as long-term trends and using dedicated algorithms flags issues whenever they arise. The new analysis framework then analyses the plots that are produced by these algorithms. One of its tasks is to perform custom comparisons between the newly processed data and that from reference runs. The most-likely scenario in which this analysis would identify an issue is the parameters of the readout electronics no longer being optimal and requiring retuning. The data of the monitoring plots can be reduced further, e.g. by evaluating averages, and these quantities are input to long-term trending. This is used to detect slow variation of quantities, which are not detectable by the comparison of two nearby runs. Such gradual change is what is expected due to radiation damage effects. It is essential to detect these changes early such that measures can be taken, e.g. adjustments of the operating voltage, to prevent any impact on the quality of high-level quantities and thus on physics analyses. The plots as well as the analysis results and trends are made available through graphical user interfaces (GUIs). These GUIs are dynamically configured by a single configuration that determines the
Role of polarization in probing anomalous gauge interactions of the Higgs boson
International Nuclear Information System (INIS)
Biswal, Sudhansu S.; Godbole, Rohini M.; Choudhury, Debajyoti; Mamta
2009-01-01
We explore the use of polarized e + /e - beams and/or the information on final state decay lepton polarizations in probing the interaction of the Higgs boson with a pair of vector bosons. A model independent analysis of the process e + e - →ffH, where f is any light fermion, is carried out through the construction of observables having identical properties under the discrete symmetry transformations as different individual anomalous interactions. This allows us to probe an individual anomalous term independent of the others. We find that initial state beam polarization can significantly improve the sensitivity to CP-odd couplings of the Z boson with the Higgs boson (ZZH). Moreover, an ability to isolate events with a particular τ helicity, with even 40% efficiency, can improve sensitivities to certain ZZH couplings by as much as a factor of 3. In addition, the contamination from the ZZH vertex contributions present in the measurement of the trilinear Higgs-W (WWH) couplings can be reduced to a great extent by employing polarized beams. The effects of initial state radiation and beamstrahlung, which can be relevant for higher values of the beam energy are also included in the analysis.
First-year experience with the Ba Bar silicon vertex tracker
International Nuclear Information System (INIS)
Bozzi, C.; Carassiti, V.; Cotta Ramusino, A.; Dittongo, S.; Folegani, M.; Piemontese, L.; Abbott, B.K.; Breon, A.B.; Clark, A.R.; Dow, S.; Fan, Q.; Goozen, F.; Hernikl, C.; Karcher, A.; Kerth, L.T.; Kipnis, I.; Kluth, S.; Lynch, G.; Levi, M.; Luft, P.; Luo, L.; Nyman, M.; Pedrali-Noy, M.; Roe, N.A.; Zizka, G.; Roberts, D.; Schieck, J.; Barni, D.; Brenna, E.; Defendi, I.; Forti, A.; Giugni, D.; Lanni, F.; Palombo, F.; Vaniev, V.; Leona, A.; Mandelli, E.; Manfredi, P.F.; Perazzo, A.; Re, V.; Angelini, C.; Batignani, G.; Bettarini, S.; Bondioli, M.; Bosi, F.; Calderini, G.; Carpinelli, M.; Forti, F.; Gagliardi, D.; Giorgi, M.A.; Lusiani, A.; Mammini, P.; Morganti, M.; Morsani, F.; Neri, N.; Paoloni, E.; Profeti, A.; Rama, M.; Rampino, G.; Rizzo, G.; Sandrelli, F.; Simi, G.; Triggiani, G.; Tritto, S.; Vitale, R.; Walsh, J.; Burchat, P.; Cheng, C.; Kirkby, D.; Meyer, T.; Roat, C.; Bona, M.; Bianchi, F.; Daudo, F.; Di Girolamo, B.; Gamba, D.; Giraudo, G.; Grosso, P.; Romero, A.; Smol, A.; Trapani, P.; Zanin, D.; Bosisio, L.; Della Ricca, G.; Rashevskaia, I.; Lanceri, L.; Pompili, A.; Poropat, P.; Prest, M.; Rastelli, C.; Vallazza, E.; Vuagnin, G.; Hast, C.; Potter, E.P.; Sharma, V.; Burke, S.; Callahan, D.; Campagnari, C.; Dahmes, B.; Eppich, A.; Hale, D.; Hall, K.; Hart, P.; Kuznetsova, N.; Kyre, S.; Levy, S.; Long, O.; May, J.; Richman, J.; Verkerke, W.; Witherell, M.; Beringer, J.; Eisner, A.M.; Frey, A.; Grillo, A.; Grothe, M.; Johnson, R.; Kroeger, W.; Lockman, W.; Pulliam, T.; Rowe, W.; Schmitz, R.; Seiden, A.; Spencer, E.; Turri, M.; Walkowiak, W.; Wilder, M.; Charles, E.; Elmer, P.; Nielsen, J.; Orejudos, W.; Scott, I.; Zobernig, H.
2001-01-01
Within its first year of operation, the BaBar Silicon Vertex Tracker (SVT) has accomplished its primary design goal, measuring the z vertex coordinate with sufficient accuracy as to allow the measurement of the time-dependent CP asymmetry in the neutral B-meson system. The SVT consists of five layers of double-sided, AC-coupled silicon-strip detectors of 300 μm thickness with a readout strip pitch of 50-210 μm and a stereo angle of 90 deg. between the strips on the two sides. Detector alignment and performance with respect to spatial resolution and efficiency in the reconstruction of single hits are discussed. In the day-to-day operation of the SVT, radiation damage and protection issues were of primary concern. The SVT is equipped with a dedicated system (SVTRAD) for radiation monitoring and protection, using reverse-biased photodiodes. The evolution of the SVTRAD thresholds on the tolerated radiation level is described. Results on the first-year radiation exposure as measured with the SVTRAD system and on the so far accumulated damage are presented. The implications of test-irradiation results and possible future PEP-II luminosity upgrades on the radiation limited lifetime of the SVT are discussed
Boson mappings for elementary excitations in fermion systems
International Nuclear Information System (INIS)
Geyer, H.B.
1981-07-01
The boson mapping formalism is presented with a dual purpose in mind. It is first demonstrated to constitute a microscopic formalism leading to the introduction of collective variables into the many-fermion problem in an exact and consistent manner. Secondly it is shown to present ideal exploring ground with a view to the reconciliation of phenomenological collective nuclear models and microscopic considerations. Of the various existing possibilities for the construction of a boson mapping, we single out the finite, non-unitary Dyson-Maleev mapping, emphasising the convenience of its finiteness, especially in investigations concerning formal aspects of the boson mapping formalism. A contribution to the theory of Dyson-Maleev mappinigs for fermion operators is made by introducing the construction of a consistent mapping for single fermion operators which is free of limitations previously imposed on such a mapping. In various fermion models studies it is shown how the Dyson-Maleev mapping can be utilized to obtain equivalent boson models which, however, can be restricted to yield information about the collective subspace only. As far as phenomenological models are concerned, some new light from a microscopic viewpiont is shed on the assumption underlying the interacting boson model as well as on the calculational procedures usually adopted in this model. The most important observation concerns the assumed structure of the IBM hamiltonian where a non-hermitian form, rather than the existing hermitian form, is indicated
International Nuclear Information System (INIS)
Druce, C.H.; Moszkowski, S.A.
1986-01-01
The surface delta interaction is used as an effective nucleon-nucleon interaction to investigate the structure and interaction of the bosons in the interacting boson model. We have obtained analytical expressions for the coefficients of a multipole expansion of the neutron-boson-proton-boson interaction for the case of degenerate orbits. A connection is made between these coefficients and the parameters of the interaction boson model Hamiltonian. A link between the latter parameters and the single boson energies is suggested
Energy Technology Data Exchange (ETDEWEB)
Druce, C.H.; Moszkowski, S.A.
1986-01-01
The surface delta interaction is used as an effective nucleon-nucleon interaction to investigate the structure and interaction of the bosons in the interacting boson model. We have obtained analytical expressions for the coefficients of a multipole expansion of the neutron-boson-proton-boson interaction for the case of degenerate orbits. A connection is made between these coefficients and the parameters of the interaction boson model Hamiltonian. A link between the latter parameters and the single boson energies is suggested.
A general approach to bosonization
Indian Academy of Sciences (India)
As the term suggests, 'bosonization' is an effort to recast theories involving ... to use this formula to calculate the Green functions of interacting systems in one ..... this picks up a contribution similar to the one suggested upon time evolution with.
Super boson-fermion correspondence
International Nuclear Information System (INIS)
Kac, V.G.; Leur van de, J.W.
1987-01-01
Since the pioneering work of Skyrme, the boson-fermion correspondence has been playing an increasingly important role in 2-dimensional quantum field theory. More recently, it has become an important ingredient in the work of the Kyoto school on the KP hierarchy of soliton equations. In the present paper we establish a super boson-fermion correspondence, having in mind its applications to super KP hierarchies
An exotic composite vector boson
International Nuclear Information System (INIS)
Akama, Keiichi; Hattori, Takashi; Yasue, Masaki.
1990-08-01
An exotic composite vector boson, V, is introduced in two dynamical models of composite quarks, leptons, W and Z. One is based on four Fermi interactions, in which composite vector bosons are regarded as fermion-antifermion bound states and the other is based on the confining SU(2) L gauge model, in which they are given by scalar-antiscalar bound states. Both approaches describe the same effective interactions for the sector of composite quarks, leptons, W, Z, γ and V. (author)
Microscopic structure of an interacting boson model in terms of the dyson boson mapping
International Nuclear Information System (INIS)
Geyer, H.B.; Lee, S.Y.
1982-01-01
In an application of the generalized Dyson boson mapping to a shell model Hamiltonian acting in a single j shell, a clear distinction emerges between pair bosons and kinematically determined seniority bosons. As in the Otsuka-Arima-Iachello method it is found that the latter type of boson determines the structure of an interactive boson-model-like Hamiltonian for the single j-shell model. It is furthermore shown that the Dyson boson mapping formalism is equally well suited for investigating possible interactive boson-model-like structures in a multishell case, where dynamical considerations are expected to play a much more important role in determining the structure of physical bosons
International Nuclear Information System (INIS)
Hanninger, Guilherme Nunes
2012-01-01
Full text: The Standard Model of particle physics (SM) has been extremely successful describing the elementary particles and their interactions. It also features a theory describing the origin of particle masses: the 'Higgs mechanism', which postulates the existence of a new particle called the 'Higgs boson'. In 2011 and 2012, tantalising hints of the Higgs boson were reported by the experiments at the Large Hadron Collider (LHC). The results of the search for the Standard Model Higgs Boson with the ATLAS detector in proton-proton collisions at the LHC at 7 and 8 TeV center-of-mass energies are presented. A large number of the Higgs Boson decay channels, such as photon, tau, W and Z pairs, as well as for combined channels in the mass range from 110 GeV to 600 GeV are reviewed and discussed. The combined upper limits on the production cross section as a function of the Higgs Boson mass are derived. Practical methods to estimate the backgrounds using control samples in real data are discussed. Validation of some of the data driven background estimation methods using the early 7 TeV ATLAS data at the LHC is also presented. In addition, searches for Higgs Bosons in scenarios beyond the Standard Model (BSM) lead to improved constraints on the Higgs sector of BSM theories such as Supersymmetry. (author)
Search for the Standard Model Higgs boson decaying to $b$ quarks with the CMS experiment
Donato, Silvio; Rizzi, Andrea
2017-01-01
Chapter 1 describes the theory of the Higgs boson in the framework of the SM and gives an overview of the physics of the Higgs boson and of its search performed by the CMS and ATLAS collaborations during the LHC Run 1. Chapter 2 introduces the CMS experiment at the LHC and the event reconstruction used by CMS. My contribution to the event reconstruction is an improvement of the tracking in the core of energetic jets, described in Appendix A. The last section of this Chapter will present the trigger system of CMS, with special attention to the High Level Trigger (HLT). The whole Chapter 3 is devoted to the description of the trigger improvements that I developed during my Ph.D. One of the most important achievements is a fast track- ing that allows to identify pile-up jets for any event accepted by the hardware trigger (∼ 100 kHz). This fast tracking exploits a novel algorithm, the Fast Primary Vertex, that localizes the primary vertex without using tracks, but just hits recorded by the pixel detector and je...
The MAPS based PXL vertex detector for the STAR experiment
Contin, G.; Anderssen, E.; Greiner, L.; Schambach, J.; Silber, J.; Stezelberger, T.; Sun, X.; Szelezniak, M.; Vu, C.; Wieman, H.; Woodmansee, S.
2015-03-01
The Heavy Flavor Tracker (HFT) was installed in the STAR experiment for the 2014 heavy ion run of RHIC. Designed to improve the vertex resolution and extend the measurement capabilities in the heavy flavor domain, the HFT is composed of three different silicon detectors based on CMOS monolithic active pixels (MAPS), pads and strips respectively, arranged in four concentric cylinders close to the STAR interaction point. The two innermost HFT layers are placed at a radius of 2.7 and 8 cm from the beam line, respectively, and accommodate 400 ultra-thin (50 μ m) high resolution MAPS sensors arranged in 10-sensor ladders to cover a total silicon area of 0.16 m2. Each sensor includes a pixel array of 928 rows and 960 columns with a 20.7 μ m pixel pitch, providing a sensitive area of ~ 3.8 cm2. The architecture is based on a column parallel readout with amplification and correlated double sampling inside each pixel. Each column is terminated with a high precision discriminator, is read out in a rolling shutter mode and the output is processed through an integrated zero suppression logic. The results are stored in two SRAM with ping-pong arrangement for a continuous readout. The sensor features 185.6 μ s readout time and 170 mW/cm2 power dissipation. The detector is air-cooled, allowing a global material budget as low as 0.39% on the inner layer. A novel mechanical approach to detector insertion enables effective installation and integration of the pixel layers within an 8 hour shift during the on-going STAR run.In addition to a detailed description of the detector characteristics, the experience of the first months of data taking will be presented in this paper, with a particular focus on sensor threshold calibration, latch-up protection procedures and general system operations aimed at stabilizing the running conditions. Issues faced during the 2014 run will be discussed together with the implemented solutions. A preliminary analysis of the detector performance
The MAPS based PXL vertex detector for the STAR experiment
International Nuclear Information System (INIS)
Contin, G.; Anderssen, E.; Greiner, L.; Silber, J.; Stezelberger, T.; Vu, C.; Wieman, H.; Woodmansee, S.; Schambach, J.; Sun, X.; Szelezniak, M.
2015-01-01
The Heavy Flavor Tracker (HFT) was installed in the STAR experiment for the 2014 heavy ion run of RHIC. Designed to improve the vertex resolution and extend the measurement capabilities in the heavy flavor domain, the HFT is composed of three different silicon detectors based on CMOS monolithic active pixels (MAPS), pads and strips respectively, arranged in four concentric cylinders close to the STAR interaction point. The two innermost HFT layers are placed at a radius of 2.7 and 8 cm from the beam line, respectively, and accommodate 400 ultra-thin (50 μ m) high resolution MAPS sensors arranged in 10-sensor ladders to cover a total silicon area of 0.16 m 2 . Each sensor includes a pixel array of 928 rows and 960 columns with a 20.7 μ m pixel pitch, providing a sensitive area of ∼ 3.8 cm 2 . The architecture is based on a column parallel readout with amplification and correlated double sampling inside each pixel. Each column is terminated with a high precision discriminator, is read out in a rolling shutter mode and the output is processed through an integrated zero suppression logic. The results are stored in two SRAM with ping-pong arrangement for a continuous readout. The sensor features 185.6 μ s readout time and 170 mW/cm 2 power dissipation. The detector is air-cooled, allowing a global material budget as low as 0.39% on the inner layer. A novel mechanical approach to detector insertion enables effective installation and integration of the pixel layers within an 8 hour shift during the on-going STAR run.In addition to a detailed description of the detector characteristics, the experience of the first months of data taking will be presented in this paper, with a particular focus on sensor threshold calibration, latch-up protection procedures and general system operations aimed at stabilizing the running conditions. Issues faced during the 2014 run will be discussed together with the implemented solutions. A preliminary analysis of the detector
A Vertex and Tracking Detector System for CLIC
AUTHOR|(SzGeCERN)718101
2017-01-01
The physics aims at the proposed future CLIC high-energy linear $e^+e^−$ collider pose challenging demands on the performance of the detector system. In particular the vertex and tracking detectors have to combine precision measurements with robustness against the expected high rates of beam-induced backgrounds. The requirements include ultra-low mass, facilitated by power pulsing and air cooling in the vertex-detector region, small cell sizes and precision hit timing at the few-ns level. A detector concept meeting these requirements has been developed and an integrated R&D program addressing the challenges is progressing in the areas of ultra-thin sensors and readout ASICs, interconnect technology, mechanical integration and cooling.
The design and performance of the ZEUS micro vertex detector
Energy Technology Data Exchange (ETDEWEB)
Polini, A. [Bologna Univ. (Italy)]|[INFN Bologna (Italy); Brock, I.; Goers, S. [Bonn Univ. (DE). Physikalisches Institut] (and others)
2007-08-15
In order to extend the tracking acceptance, to improve the primary and secondary vertex reconstruction and thus enhancing the tagging capabilities for short lived particles, the ZEUS experiment at the HERA Collider at DESY installed a silicon strip vertex detector. The barrel part of the detector is a 63 cm long cylinder with silicon sensors arranged around an elliptical beampipe. The forward part consists of four circular shaped disks. In total just over 200k channels are read out using 2.9 m{sup 2} of silicon. In this report a detailed overview of the design and construction of the detector is given and the performance of the completed system is reviewed. (orig.)
Vertex detectors: The state of the art and future prospects
Energy Technology Data Exchange (ETDEWEB)
Damerell, C.J.S. [Rutherford Appleton Laboratory, Didcot (United Kingdom)
1997-01-01
We review the current status of vertex detectors (tracking microscopes for the recognition of charm and bottom particle decays). The reasons why silicon has become the dominant detector medium are explained. Energy loss mechanisms are reviewed, as well as the physics and technology of semiconductor devices, emphasizing the areas of most relevance for detectors. The main design options (microstrips and pixel devices, both CCD`s and APS`s) are discussed, as well as the issue of radiation damage, which probably implies the need to change to detector media beyond silicon for some vertexing applications. Finally, the evolution of key performance parameters over the past 15 years is reviewed, and an attempt is made to extrapolate to the likely performance of detectors working at the energy frontier ten years from now.
OPAL Central Detector (Including vertex, jet and Z chambers)
OPAL was one of the four experiments installed at the LEP particle accelerator from 1989 - 2000. OPAL's central tracking system consists of (in order of increasing radius) a silicon microvertex detector, a vertex detector, a jet chamber, and z-chambers. All the tracking detectors work by observing the ionization of atoms by charged particles passing by: when the atoms are ionized, electrons are knocked out of their atomic orbitals, and are then able to move freely in the detector. These ionization electrons are detected in the different parts of the tracking system. (This piece includes the vertex, jet and Z chambers) In the picture above, the central detector is the piece being removed to the right.
Worldline calculation of the three-gluon vertex
International Nuclear Information System (INIS)
Ahmadiniaz, N.; Schubert, C.
2012-01-01
The three-gluon vertex is a basic object of interest in nonabelian gauge theory. At the one-loop level, it has been calculated and analyzed by a number of authors. Here we use the worldline formalism to unify the calculations of the scalar, spinor and gluon loop contributions to the one-loop vertex, leading to an extremely compact representation in terms of field strength tensors. We verify its equivalence with previously obtained representations, and explain the relation of its structure to the low-energy effective action. The sum rule found by Binger and Brodsky for the scalar, spinor and gluon loop contributions in the present approach relates to worldline supersymmetry.
The silicon vertex locator for the LHCb upgrade
Head, Tim
2014-01-01
The upgrade of the LHCb experiment, planned for 2018, will transform the entire readout to a triggerless system being read out at 40 MHz. The upgraded silicon vertex detector (VELO) must be light weight, radiation hard, and compatible with LHC vacuum requirements. It must be capable of fast pattern recognition, fast track reconstruction and high precision vertexing. This challenge is being met with a new VELO design based on hybrid pixel detectors positioned to within 5 mm of the LHC colliding beams. The detector will be shielded from the beam by a View the MathML source~300μm thick aluminium foil. Evaporative CO2 coolant circulating in micro-channels embedded in a thin silicon substrate will be used for cooling.
The secondary vertex finding algorithm with the ATLAS detector
Heer, Sebastian; The ATLAS collaboration
2017-01-01
A high performance identification of jets, produced via fragmentation of bottom quarks, is crucial for the ATLAS physics program. These jets can be identified by exploiting the presence of cascade decay vertices from bottom hadrons. A general vertex-finding algorithm is introduced and its ap- plication to the search for secondary vertices inside jets is described. Kinematic properties of the reconstructed vertices are used to construct several b-jet identification algorithms. The features and performance of the secondary vertex finding algorithm in a jet, as well as the performance of the jet tagging algorithms, are studied using simulated $pp$ -> $t\\bar{t}$ events at a centre-of-mass energy of 13 TeV.
Six-vertex model and Schramm-Loewner evolution
Kenyon, Richard; Miller, Jason; Sheffield, Scott; Wilson, David B.
2017-05-01
Square ice is a statistical mechanics model for two-dimensional ice, widely believed to have a conformally invariant scaling limit. We associate a Peano (space-filling) curve to a square ice configuration, and more generally to a so-called six-vertex model configuration, and argue that its scaling limit is a space-filling version of the random fractal curve SL E κ, Schramm-Loewner evolution with parameter κ , where 4 <κ ≤12 +8 √{2 } . For square ice, κ =12 . At the "free-fermion point" of the six-vertex model, κ =8 +4 √{3 } . These unusual values lie outside the classical interval 2 ≤κ ≤8 .
Vertex detectors: The state of the art and future prospects
International Nuclear Information System (INIS)
Damerell, C.J.S.
1997-01-01
We review the current status of vertex detectors (tracking microscopes for the recognition of charm and bottom particle decays). The reasons why silicon has become the dominant detector medium are explained. Energy loss mechanisms are reviewed, as well as the physics and technology of semiconductor devices, emphasizing the areas of most relevance for detectors. The main design options (microstrips and pixel devices, both CCD's and APS's) are discussed, as well as the issue of radiation damage, which probably implies the need to change to detector media beyond silicon for some vertexing applications. Finally, the evolution of key performance parameters over the past 15 years is reviewed, and an attempt is made to extrapolate to the likely performance of detectors working at the energy frontier ten years from now
Development of pixel detectors for SSC vertex tracking
International Nuclear Information System (INIS)
Kramer, G.; Shapiro, S.L.; Arens, J.F.; Jernigan, J.G.; Skubic, P.
1991-04-01
A description of hybrid PIN diode arrays and a readout architecture for their use as a vertex detector in the SSC environment is presented. Test results obtained with arrays having 256 x 256 pixels, each 30 μm square, are also presented. The development of a custom readout for the SSC will be discussed, which supports a mechanism for time stamping hit pixels, storing their xy coordinates, and storing the analog information within the pixel. The peripheral logic located on the array, permits the selection of those pixels containing interesting data and their coordinates to be selectively read out. This same logic also resolves ambiguous pixel ghost locations and controls the pixel neighbor read out necessary to achieve high spatial resolution. The thermal design of the vertex tracker and the proposed signal processing architecture will also be discussed. 5 refs., 13 figs., 3 tabs
On the zero crossing of the three-gluon vertex
Energy Technology Data Exchange (ETDEWEB)
Athenodorou, A. [Department of Physics, University of Cyprus, POB 20537, 1678 Nicosia (Cyprus); Binosi, D., E-mail: binosi@ectstar.eu [European Centre for Theoretical Studies in Nuclear Physics and Related Areas - ECT* and Fondazione Bruno Kessler, Villa Tambosi, Strada delle Tabarelle 286, I-38050 Villazzano (Italy); Boucaud, Ph. [Laboratoire de Physique Théorique (UMR8627), CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay (France); De Soto, F. [Dpto. Sistemas Físicos, Químicos y Naturales, Univ. Pablo de Olavide, 41013 Sevilla (Spain); Papavassiliou, J. [Department of Theoretical Physics and IFIC, University of Valencia-CSIC, E-46100, Valencia (Spain); Rodríguez-Quintero, J. [Department of Integrated Sciences, University of Huelva, E-21071 Huelva (Spain); Zafeiropoulos, S. [Institut für Theoretische Physik, Goethe-Universität Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt am Main (Germany)
2016-10-10
We report on new results on the infrared behavior of the three-gluon vertex in quenched Quantum Chromodynamics, obtained from large-volume lattice simulations. The main focus of our study is the appearance of the characteristic infrared feature known as ‘zero crossing’, the origin of which is intimately connected with the nonperturbative masslessness of the Faddeev–Popov ghost. The appearance of this effect is clearly visible in one of the two kinematic configurations analyzed, and its theoretical origin is discussed in the framework of Schwinger–Dyson equations. The effective coupling in the momentum subtraction scheme that corresponds to the three-gluon vertex is constructed, revealing the vanishing of the effective interaction at the exact location of the zero crossing.
Silicon vertex detector upgrade in the ALPHA experiment
Amole, C; Ashkezari, M.D; Baquero-Ruiz, M; Bertsche, W; Burrows, C; Butler, E; Capra, A; Cesar, C.L; Chapman, S; Charlton, M; Deller, A; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M.C; Gill, D.R; Gutierrez, A; Hangst, J.S; Hardy, W.N; Hayden, M.E; Humphries, A.J; Isaac, C.A; Jonsell, S; Kurchaninov, L; Little, A; Madsen, N; McKenna, J.T.K; Menary, S; Napoli, S.C; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Rasmussen, C.Ø; Robicheaux, F; Sacramento, R.L; Sampson, J.A; Sarid, E; Seddon, D; Silveira, D.M; So, C; Stracka, S; Tharp, T; Thompson, R.I; Thornhill, J; Tooley, M.P; Van Der Werf, D.P; Wells, D
2013-01-01
The Silicon Vertex Detector (SVD) is the main diagnostic tool in the ALPHA-experiment. It provides precise spatial and timing information of antiproton (antihydrogen) annihilation events (vertices), and most importantly, the SVD is capable of directly identifying and analysing single annihilation events, thereby forming the basis of ALPHA ' s analysis. This paper describes the ALPHA SVD and its upgrade, installed in the ALPHA ' s new neutral atom trap.
Edge union of networks on the same vertex set
International Nuclear Information System (INIS)
Loe, Chuan Wen; Jensen, Henrik Jeldtoft
2013-01-01
Random network generators such as Erdős–Rényi, Watts–Strogatz and Barabási–Albert models are used as models to study real-world networks. Let G 1 (V, E 1 ) and G 2 (V, E 2 ) be two such networks on the same vertex set V. This paper studies the degree distribution and clustering coefficient of the resultant networks, G(V, E 1 ∪E 2 ). (paper)
Edge union of networks on the same vertex set
Loe, Chuan Wen; Jeldtoft Jensen, Henrik
2013-06-01
Random network generators such as Erdős-Rényi, Watts-Strogatz and Barabási-Albert models are used as models to study real-world networks. Let G1(V, E1) and G2(V, E2) be two such networks on the same vertex set V. This paper studies the degree distribution and clustering coefficient of the resultant networks, G(V, E1∪E2).
Track fitting in the opal vertex detector with stereo wires
Energy Technology Data Exchange (ETDEWEB)
Shally, R; Hemingway, R J; McPherson, A C
1987-10-01
The geometry of the vertex chamber for the OPAL detector at LEP is reviewed and expressions for the coordinates of the hits are given in terms of the measured drift distance and z-coordinate. The tracks are fitted by a procedure based on the Lagrange multipliers method. The increase in the accuracy of the fit due to the use of the stereo wires is discussed.
Technical Design Report for the: PANDA Micro Vertex Detector
Erni, W; Krusche, B; Steinacher, M; Heng, Y; Liu, Z; Liu, H; Shen, X; Wang, Q; Xu, H; Albrecht, M; Becker, J; Eickel, K; Feldbauer, F; Fink, M; Friedel, P; Heinsius, F H; Held, T; Koch, H; Kopf, B; Leyhe, M; Motzko, C; Pelizäus, M; Pychy, J; Roth, B; Schröder, T; Schulze, J; Steinke, M; Trifterer, T; Wiedner, U; Zhong, J; Beck, R; Becker, M; Bianco, S; Brinkmann, K -Th; Hammann, C; Hinterberger, F; Jäkel, R; Kaiser, D; Kliemt, R; Koop, K; Schmidt, C; Schnell, R; Thoma, U; Vlasov, P; Wendel, C; Winnebeck, A; Würschig, Th; Zaunick, H -G; Bianconi, A; Bragadireanu, M; Caprini, M; Ciubancan, M; Pantea, D; Tarta, P -D; De Napoli, M; Giacoppo, F; Rapisarda, E; Sfienti, C; Fiutowski, T; Idzik, N; Mindur, B; Przyborowski, D; Swientek, K; Bialkowski, E; Budzanowski, A; Czech, B; Kliczewski, S; Kozela, A; Kulessa, P; Lebiedowicz, P; Malgorzata, K; Pysz, K; Schäfer, W; Siudak, R; Szczurek, A; Brandys, P; Czyzewski, T; Czyzycki, W; Domagala, M; Hawryluk, M; Filo, G; Kwiatkowski, D; Lisowski, E; Lisowski, F; Bardan, W; Gil, D; Kamys, B; Kistryn, St; Korcyl, K; Krzemieñ, W; Magiera, A; Moskal, P; Rudy, Z; Salabura, P; Smyrski, J; Wroñska, A; Al-Turany, M; Arora, R; Augustin, I; Deppe, H; Dutta, D; Flemming, H; Götzen, K; Hohler, G; Karabowicz, R; Lehmann, D; Lewandowski, B; Lühning, J; Maas, F; Orth, H; Peters, K; Saito, T; Schepers, G; Schmidt, C J; Schmitt, L; Schwarz, C; Schwiening, J; Voss, B; Wieczorek, P; Wilms, A; Abazov, V M; Alexeev, G D; Arefiev, V A; Astakhov, V I; Barabanov, M Yu; Batyunya, B V; Davydov, Yu I; Dodokhov, V Kh; Efremov, A A; Fedunov, A G; Feshchenko, A A; Galoyan, A S; Grigoryan, S; Karmokov, A; Koshurnikov, E K; Lobanov, V I; Lobanov, Yu Yu; Makarov, A F; Malinina, L V; Malyshev, V L; Mustafaev, G A; Olshevski, A G; Pasyuk, M A; Perevalova, E A; Piskun, A A; Pocheptsov, T A; Pontecorvo, G; Rodionov, V K; Rogov, Yu N; Salmin, R A; Samartsev, A G; Sapozhnikov, M G; Shabratova, G S; Skachkova, A N; Skachkov, N B; Strokovsky, E A; Suleimanov, M K; Teshev, R Sh; Tokmenin, V V; Uzhinsky, V V; Vodopyanov, A S; Zaporozhets, S A; Zhuravlev, N I; Zorin, A G; Branford, D; Glazier, D; Watts, D; Woods, P; Britting, A; Eyrich, W; Lehmann, A; Uhlig, F; Dobbs, S; Metreveli, Z; Seth, K; Tann, B; Tomaradze, A; Bettoni, D; Carassiti, V; Dalpiaz, P; Drago, A; Fioravanti, E; Garzia, I; Negrini, M; Savriè, M; Stancari, G; Dulach, B; Gianotti, P; Guaraldo, C; Lucherini, V; Pace, E; Bersani, A; Macri, M; Marinelli, M; Parodi, R F; Dormenev, V; Drexler, P; Düren, M; Eisner, T; Foehl, K; Hayrapetyan, A; Koch, P; Krïoch, B; Kühn, W; Lange, S; Liang, Y; Liu, M; Merle, O; Metag, V; Moritz, M; Nanova, M; Novotny, R; Spruck, B; Stenzel, H; Strackbein, C; Thiel, M; Wang, Q; Clarkson, T; Euan, C; Hill, G; Hoek, M; Ireland, D; Kaiser, R; Keri, T; Lehmann, I; Livingston, K; Lumsden, P; MacGregor, D; McKinnon, B; Montgomery, R; Murray, M; Protopopescu, D; Rosner, G; Seitz, B; Yang, G; Babai, M; Biegun, A K; Glazenborg-Kluttig, A; Guliyev, E; Jothi, V S; Kavatsyuk, M; Lemmens, P; Löhner, H; Messchendorp, J; Poelman, T; Smit, H; van der Weele, J C; Sohlbach, H; Büscher, M; Dosdall, R; Dzhygadlo, R; Esch, S; Gillitzer, A; Goldenbaum, F; Grunwald, D; Jha, V; Kemmerling, G; Kleines, H; Lehrach, A; Maier, R; Mertens, M; Ohm, H; Pohl, D L; Prasuhn, D; Randriamalala, T; Ritman, J; Roeder, M; Sterzenbach, G; Stockmanns, T; Wintz, P; Wüstner, P; Xu, H; Kisiel, J; Li, S; Li, Z; Sun, Z; Xu, H; Fissum, K; Hansen, K; Isaksson, L; Lundin, M; Schröder, B; Achenbach, P; Denig, A; Distler, M; Fritsch, M; Kangh, D; Karavdina, A; Lauth, W; Michel, M; Espi, M C Mora; Pochodzalla, J; Sanchez, S; Sanchez-Lorente, A; Sfienti, C; Weber, T; Dormenev, V I; Fedorov, A A; Korzhik, M V; Missevitch, O V; Boukharov, A; Malyshev, O; Marishev, I; Semenov, A; Varma, R; Höppner, C; Ketzer, B; Konorov, I; Mann, A; Neubert, S; Paul, S; Vandenbroucke, M; Zhang, Q; Khoukaz, A; Rausmann, T; Täschner, A; Wessels, J; Baldin, E; Kotov, K; Peleganchuk, S; Tikhonov, Yu; Hennino, T; Imre, M; Kunne, R; Galliard, C Le; Normand, J P Le; Marchand, D; Maroni, A; Ong, S; Pouthas, J; Ramstein, B; Rosier, P; Sudol, M; Theneau, C; Tomasi-Gustafsson, E; Van de Wiele, J; Zerguerras, T; Boca, G; Braghieri, A; Costanza, S; Fontana, A; Genova, P; Lavezzi, L; Montagna, P; Rotondi, A; Buda, V; Abramov, V V; Davidenko, A M; Derevschikov, A A; Goncharenko, Y M; Grishin, V N; Kachanov, V A; Konstantinov, D A; Kormilitsin, V A; Matulenko, Y A; Melnik, Y M; Meschanin, A P; Minaev, N G; Mochalov, V V; Morozov, D A; Nogach, L V; Nurushev, S B; Ryazantsev, A V; Semenov, P A; Soloviev, L F; Uzunian, A V; Vasiliev, A N; Yakutin, A E; Belostotski, S; Gavrilov, G; Itzotov, A; Kisselev, A; Kravchenko, P; Manaenkov, S; Miklukho, O; Naryshkin, Y; Veretennikov, D; Vikhrov, V; Zhadanov, A; Bäck, T; Cederwall, B; Bargholtz, C; Gerén, L; Tegnér, P E; Thørngren, P; von Würtemberg, K M; Fava, L; Alberto, D; Amoroso, A; Bussa, M P; Busso, L; De Mori, F; Destefanis, M; Ferrero, L; Greco, M; Kugathasan, T; Maggiora, M; Marcello, S; Sosio, S; Spataro, S; Calvo, D; Coli, S; De Remigis, P; Filippi, A; Giraudo, G; Lusso, S; Mazza, G; Mignone, M; Rivetti, A; Wheadon, R; Zotti, L; Morra, O; Iazzi, F; Lavagno, A; Quarati, P; Szymanska, K; Birsa, R; Bradamante, F; Bressan, A; Martin, A; Clement, H; Galnander, B; Calén, H; Fransson, K; Johansson, T; Kupsc, A; Marciniewski, P; Thomé, E; Wolke, M; Zlomanczuk, J; Díaz, J; Ortiz, A; Buda, P; Dmowski, K; Korzeniewski, R; Przemyslaw, D; Slowinski, B; Borsuk, S; Chlopik, A; Guzik, Z; Kopec, J; Kozlowski, T; Melnychuk, D; Plominski, M; Szewinski, J; Traczyk, K; Zwieglinski, B; Bühler, P; Gruber, A; Kienle, P; Marton, J; Widmann, E; Zmeskal, J
2012-01-01
This document illustrates the technical layout and the expected performance of the Micro Vertex Detector (MVD) of the PANDA experiment. The MVD will detect charged particles as close as possible to the interaction zone. Design criteria and the optimisation process as well as the technical solutions chosen are discussed and the results of this process are subjected to extensive Monte Carlo physics studies. The route towards realisation of the detector is outlined.
General Vertex-Distinguishing Total Coloring of Graphs
Directory of Open Access Journals (Sweden)
Chanjuan Liu
2014-01-01
Full Text Available The general vertex-distinguishing total chromatic number of a graph G is the minimum integer k, for which the vertices and edges of G are colored using k colors such that any two vertices have distinct sets of colors of them and their incident edges. In this paper, we figure out the exact value of this chromatic number of some special graphs and propose a conjecture on the upper bound of this chromatic number.
Silicon vertex detector upgrade in the ALPHA experiment
Energy Technology Data Exchange (ETDEWEB)
Amole, C. [Department of Physics and Astronomy, York University, Toronto, ON, M3J 1P3 (Canada); Andresen, G.B. [Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark); Ashkezari, M.D. [Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6 (Canada); Baquero-Ruiz, M. [Department of Physics, University of California at Berkeley, Berkeley, CA 94720-7300 (United States); Bertsche, W. [School of Physics and Astronomy, University of Manchester, M13 9PL Manchester (United Kingdom); The Cockcroft Institute, Daresbury Laboratory, WA4 4AD Warrington (United Kingdom); Burrows, C. [Department of Physics, College of Science, Swansea University, Swansea SA2 8PP (United Kingdom); Butler, E. [Physics Department, CERN, CH-1211 Geneva 23 (Switzerland); Capra, A. [Department of Physics and Astronomy, York University, Toronto, ON, M3J 1P3 (Canada); Cesar, C.L. [Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-972 (Brazil); Chapman, S. [Department of Physics, University of California at Berkeley, Berkeley, CA 94720-7300 (United States); Charlton, M.; Deller, A.; Eriksson, S. [Department of Physics, College of Science, Swansea University, Swansea SA2 8PP (United Kingdom); Fajans, J. [Department of Physics, University of California at Berkeley, Berkeley, CA 94720-7300 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Friesen, T. [Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4 (Canada); Fujiwara, M.C. [Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4 (Canada); TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Gill, D.R. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Gutierrez, A. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z4 (Canada); and others
2013-12-21
The Silicon Vertex Detector (SVD) is the main diagnostic tool in the ALPHA-experiment. It provides precise spatial and timing information of antiproton (antihydrogen) annihilation events (vertices), and most importantly, the SVD is capable of directly identifying and analysing single annihilation events, thereby forming the basis of ALPHA's analysis. This paper describes the ALPHA SVD and its upgrade, installed in the ALPHA's new neutral atom trap.
Edge-injective and edge-surjective vertex labellings
DEFF Research Database (Denmark)
Brandt, Stephan; Rautenbach, D.; Regen, F.
2010-01-01
For a graph G = (V, E) we consider vertex-k-labellings f : V → {1,2, ,k} for which the induced edge weighting w : E → {2, 3,., 2k} with w(uv) = f(u) + f(v) is injective or surjective or both. We study the relation between these labellings and the number theoretic notions of an additive basis and ...
Fatigue crack shape prediction based on vertex singularity
Czech Academy of Sciences Publication Activity Database
Hutař, Pavel; Náhlík, Luboš
2008-01-01
Roč. 2, č. 1 (2008), s. 45-52 ISSN 1802-680X R&D Projects: GA ČR GA101/08/1623; GA ČR GP106/06/P239 Institutional research plan: CEZ:AV0Z20410507 Keywords : 3D vertex singularity * crack shape * fatigue crack propagation Subject RIV: JL - Materials Fatigue, Friction Mechanics
Vertex maps on graphs -- Perron-Frobenius Theory
Bernhardt, Chris
2015-01-01
The goal of this paper is to describe the connections between Perron-Frobenius theory and vertex maps on graphs. In particular, it is shown how Perron-Frobenius theory gives results about the sets of integers that can arise as periods of periodic orbits, about the concepts of transitivity and topological mixing, and about horseshoes and topological entropy. This is a preprint. The final version will appear in the Journal of Difference Equations and Applications.
Readout ASIC for ILC-FPCCD vertex detector
International Nuclear Information System (INIS)
Takubo, Yosuke; Miyamoto, Akiya; Ikeda, Hirokazu; Yamamoto, Hitoshi; Itagaki, Kennosuke; Nagamine, Tadashi; Sugimoto, Yasuhiro
2010-01-01
The concept of FPCCD (Fine Pixel CCD) whose pixel size is 5x5μm 2 has been proposed as vertex detector at ILC. Since FPCCD has 128 x20,000 pixels in one readout channel, its readout poses a considerable challenge. We have developed a prototype of readout ASIC to readout the large number of pixels during the inter-train gap of the ILC beam. In this paper, we report the design and performance of the readout ASIC.
Track fitting in the opal vertex detector with stereo wires
International Nuclear Information System (INIS)
Shally, R.; Hemingway, R.J.; McPherson, A.C.
1987-01-01
The geometry of the vertex chamber for the OPAL detector at LEP is reviewed and expressions for the coordinates of the hits are given in terms of the measured drift distance and z-coordinate. The tracks are fitted by a procedure based on the Lagrange multipliers method. The increase in the accuracy of the fit due to the use of the stereo wires is discussed. (orig.)
The Mark III vertex chamber: Studies using DME
International Nuclear Information System (INIS)
Pitman, D.
1987-04-01
Studies have been performed using a prototype of a pressurized wire vertex chamber with 8 mm diameter straw geometry. A 35 μm spatial resolution using dimethyl ether (DME) at 1 bar and 30 μm using argon ethane (50/50 mixture) at 4 bar was obtained. Preliminary studies show the DME to adversely affect such materials as aluminized Mylar and Delrin
An implementation problem for boson fields and quantum Girsanov transform
Energy Technology Data Exchange (ETDEWEB)
Ji, Un Cig, E-mail: uncigji@chungbuk.ac.kr [Department of Mathematics, Research Institute of Mathematical Finance, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Obata, Nobuaki, E-mail: obata@math.is.tohoku.ac.jp [Graduate School of Information Sciences, Tohoku University, Sendai 980-8579 (Japan)
2016-08-15
We study an implementation problem for quadratic functions of annihilation and creation operators on a boson field in terms of quantum white noise calculus. The implementation problem is shown to be equivalent to a linear differential equation for white noise operators containing quantum white noise derivatives. The solution is explicitly obtained and turns out to form a class of white noise operators including generalized Fourier–Gauss and Fourier–Mehler transforms, Bogoliubov transform, and a quantum extension of the Girsanov transform.
An implementation problem for boson fields and quantum Girsanov transform
International Nuclear Information System (INIS)
Ji, Un Cig; Obata, Nobuaki
2016-01-01
We study an implementation problem for quadratic functions of annihilation and creation operators on a boson field in terms of quantum white noise calculus. The implementation problem is shown to be equivalent to a linear differential equation for white noise operators containing quantum white noise derivatives. The solution is explicitly obtained and turns out to form a class of white noise operators including generalized Fourier–Gauss and Fourier–Mehler transforms, Bogoliubov transform, and a quantum extension of the Girsanov transform.
Colour-independent partition functions in coloured vertex models
Energy Technology Data Exchange (ETDEWEB)
Foda, O., E-mail: omar.foda@unimelb.edu.au [Dept. of Mathematics and Statistics, University of Melbourne, Parkville, VIC 3010 (Australia); Wheeler, M., E-mail: mwheeler@lpthe.jussieu.fr [Laboratoire de Physique Théorique et Hautes Energies, CNRS UMR 7589 (France); Université Pierre et Marie Curie – Paris 6, 4 place Jussieu, 75252 Paris cedex 05 (France)
2013-06-11
We study lattice configurations related to S{sub n}, the scalar product of an off-shell state and an on-shell state in rational A{sub n} integrable vertex models, n∈{1,2}. The lattice lines are colourless and oriented. The state variables are n conserved colours that flow along the line orientations, but do not necessarily cover every bond in the lattice. Choosing boundary conditions such that the positions where the colours flow into the lattice are fixed, and where they flow out are summed over, we show that the partition functions of these configurations, with these boundary conditions, are n-independent. Our results extend to trigonometric A{sub n} models, and to all n. This n-independence explains, in vertex-model terms, results from recent studies of S{sub 2} (Caetano and Vieira, 2012, [1], Wheeler, (arXiv:1204.2089), [2]). Namely, 1.S{sub 2}, which depends on two sets of Bethe roots, {b_1} and {b_2}, and cannot (as far as we know) be expressed in single determinant form, degenerates in the limit {b_1}→∞, and/or {b_2}→∞, into a product of determinants, 2. Each of the latter determinants is an A{sub 1} vertex-model partition function.
Colour-independent partition functions in coloured vertex models
International Nuclear Information System (INIS)
Foda, O.; Wheeler, M.
2013-01-01
We study lattice configurations related to S n , the scalar product of an off-shell state and an on-shell state in rational A n integrable vertex models, n∈{1,2}. The lattice lines are colourless and oriented. The state variables are n conserved colours that flow along the line orientations, but do not necessarily cover every bond in the lattice. Choosing boundary conditions such that the positions where the colours flow into the lattice are fixed, and where they flow out are summed over, we show that the partition functions of these configurations, with these boundary conditions, are n-independent. Our results extend to trigonometric A n models, and to all n. This n-independence explains, in vertex-model terms, results from recent studies of S 2 (Caetano and Vieira, 2012, [1], Wheeler, (arXiv:1204.2089), [2]). Namely, 1.S 2 , which depends on two sets of Bethe roots, {b 1 } and {b 2 }, and cannot (as far as we know) be expressed in single determinant form, degenerates in the limit {b 1 }→∞, and/or {b 2 }→∞, into a product of determinants, 2. Each of the latter determinants is an A 1 vertex-model partition function
Vertex and Tracker Research and Development for CLIC
Munker, M
2017-01-01
Challenging detector requirements are imposed by the physics goals at the future multi-TeV e+e− Compact Linear Collider (CLIC). A single point resolution of 3 μm for the vertex detector and 7 μm for the tracker is required. Moreover, the CLIC vertex detector and tracker need to be extremely light weighted with a material budget of 0.2%X0 per layer in the vertex detector and 1 - 2%X0 in the tracker. A fast time slicing of 10 ns is further required to suppress background from beam-beam interactions. A wide range of sensor and readout ASIC technologies are investigated within the CLIC silicon pixel R&D; effort. Various hybrid planar sensor assemblies with a pixel size of 25 × 25 μm2 and 55 × 55 μm2 have been produced and characterised by laboratory measurements and during test-beam campaigns. Experimental and simulation results for thin (50 μm- 500 μm) slim edge and active-edge planar, and High-Voltage CMOS sensors hybridised to various readout ASICs (Timepix, Timepix3, CLICpix) are presented.
Charged Particle Tracking and Vertex Detection Group summary report
International Nuclear Information System (INIS)
Hanson, G.; Meyer, D.
1984-09-01
Charged particle tracking is essential in order to investigate the new physics expected at the SSC. The Tracking Group studied radiation damage and rate limitations to tracking devices, vertex detectors, and central tracking. The Group concluded that silicon strips and large wire tracking chambers with small cells can probably survive at the design luminosity of 10 33 cm -2 sec -1 ; however, the presently designed electronics for silicon strip vertex detectors can withstand a luminosity of only 10 31 cm -2 sec -1 . Wire chambers at a radius of less than about 25 cm can withstand a luminosity of less than or equal to 10 32 cm -2 sec -1 only. Actual tracking and pattern recognition in central tracking chambers at a luminosity of 10 33 cm -2 sec -1 will be very difficult because of multiple interactions within the resolving time of the chambers; detailed simulations are needed in order to decide whether tracking is indeed possible at this luminosity. Scintillating glass fibers are an interesting possibility both for vertex detectors and for central trackers, but much research and development is still needed both on the fibers themselves and on the readout
Status and prospects of the LHCb Vertex Locator
van Beuzekom, Martin
2007-01-01
The Vertex Locator of the LHCb experiment is a dedicated subdetector for the reconstruction of primary and secondary vertices in b-hadron decays. The vertex detector features two halves with 21 modules each, mounted on retractable bases. Each module consists of two half-disk silicon micro-strip sensors measuring hits in R and $\\Phi$ coordinates. The strip pitch ranges from 40 to about 100 $\\mu$m. A vacuum boy with a 300 $\\mu$m thick aluminium foil shields the sensors from the wakefields of the proton beams which are passing at a distance of 8 mm from the active area of the sensors. Because of the harsh non-uniform radiation environment we opted for n-on-n strips in diffusion oxygenated float zone silicon. The current status of the vertex detector, which has recently entered the commissioning phase, will be discussed. Given the limited lifetime of the detector due to the radiation environment, developments for a detector replacement with n-on-p type modules have already started. Possible upgrade scenarios fo...
Track and vertex reconstruction: From classical to adaptive methods
International Nuclear Information System (INIS)
Strandlie, Are; Fruehwirth, Rudolf
2010-01-01
This paper reviews classical and adaptive methods of track and vertex reconstruction in particle physics experiments. Adaptive methods have been developed to meet the experimental challenges at high-energy colliders, in particular, the CERN Large Hadron Collider. They can be characterized by the obliteration of the traditional boundaries between pattern recognition and statistical estimation, by the competition between different hypotheses about what constitutes a track or a vertex, and by a high level of flexibility and robustness achieved with a minimum of assumptions about the data. The theoretical background of some of the adaptive methods is described, and it is shown that there is a close connection between the two main branches of adaptive methods: neural networks and deformable templates, on the one hand, and robust stochastic filters with annealing, on the other hand. As both classical and adaptive methods of track and vertex reconstruction presuppose precise knowledge of the positions of the sensitive detector elements, the paper includes an overview of detector alignment methods and a survey of the alignment strategies employed by past and current experiments.
Diagonalization of bosonic quadratic Hamiltonians by Bogoliubov transformations
DEFF Research Database (Denmark)
Nam, Phan Thanh; Napiorkowski, Marcin; Solovej, Jan Philip
2016-01-01
We provide general conditions for which bosonic quadratic Hamiltonians on Fock spaces can be diagonalized by Bogoliubov transformations. Our results cover the case when quantum systems have infinite degrees of freedom and the associated one-body kinetic and paring operators are unbounded. Our...
Differential realizations of the two-mode bosonic and fermionic ...
Indian Academy of Sciences (India)
fixed number ϳ and in (35), the Hamiltonian is expressed in terms of one boson operator a1. The transformed Hamiltonian H, in the Bargmann-Fock space, plays an important role in the quasi-exact solution of eq. (1). It can be transformed in the form of one-dimensional differential equations in the Bargmann-Fock space.
Boson spectra and correlations for thermal locally equilibrium systems
International Nuclear Information System (INIS)
Sinyukov, Y.M.
1999-01-01
The single- and multi-particle inclusive spectra for strongly inhomogeneous thermal boson systems are studied using the method of statistical operator. The thermal Wick's theorem is generalized and the analytical solution of the problem for a boost-invariant expanding boson gas is found. The results demonstrate the effects of inhomogeneity for such a system: the spectra and correlations for particles with wavelengths larger than the system's homogeneity lengths change essentially as compared with the results based on the local Bose-Einstein thermal distributions. The effects noticeably grow for overpopulated media, where the chemical potential associated with violation of chemical equilibrium is large enough. (author)
Boson mapping in systems with non-degenerate shells
International Nuclear Information System (INIS)
Nakada, Hitoshi; Arima, Akito
1988-01-01
A new boson mapping, which has some aspects similar to the OAI mapping and can be applied also to a non-degenerate system, is presented in order to give a microscopic foundation of the interacting boson model. Numerical calculations of the E2 operator in a two-j system show that this mapping gives a good approximation for the seniority-changing part, and that it stays at least within the accuracy of the OAI mapping, even for the seniority-conserving part. (orig.)
Design of the cooling systems for the multiplicity and vertex detector
International Nuclear Information System (INIS)
Bernardin, J.D.; Cunningham, R.
1997-11-01
The PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory is being constructed to investigate a phase of matter termed the quark-gluon plasma. The plasma will be produced through the collision of two heavy ions. The multiplicity and vertex detector (MVD) located in the center of PHENIX will characterize the events, determine the collision point, and act as a central trigger. This report presents the final mechanical designs of the cooling systems for the Multiplicity and Vertex Detector (MVD). In particular, the design procedure and layouts are discussed for two different air cooling systems for the multichip modules and MVD enclosure, and a liquid cooling system for the low dropout voltage regulators. First of all, experimental prototype cooling system test results used to drive the final mechanical designs are summarized and discussed. Next, the cooling system requirements and design calculation for the various subsystem components are presented along with detailed lists of supply vendors, components, and costs. Finally, safety measures incorporated in the final mechanical design and operation procedures for each of the subsystems are detailed
Virtual processes and superradiance in spin-boson modes
International Nuclear Information System (INIS)
Alcalde, M. Aparicio; Kullock, R.; Svaiter, N.F.
2008-01-01
We consider spin-boson models composed by a single bosonic mode and an ensemble of N identical two-level atoms. The situation where the coupling between the bosonic mode and the atoms generates real and virtual processes is studied, where the whole system is in thermal equilibrium with a reservoir at temperature β -1 . Phase transitions from ordinary fluorescence to super radiant phase in three different models is investigated. First a model where the coupling between the bosonic mode and the j - th atom is via the pseudo-spin operator σ (j) z is studied. Second, we investigate the generalized Dicke model, introducing different coupling constants between the single mode bosonic field and the environment, g 1 and g 2 for rotating and counter-rotating terms, respectively. Finally it is considered a modified version of the generalized Dicke model with intensity-dependent coupling in the rotating terms. In the first model the zero mode contributes to render the canonical entropy a negative quantity for low temperatures. The last two models presents phase transitions, even when only Hamiltonian terms which generates virtual processes are considered. (author)
Anomalous couplings, resonances and unitarity in vector boson scattering
Energy Technology Data Exchange (ETDEWEB)
Sekulla, Marco
2015-12-04
The Standard Model of particle physics has proved itself as a reliable theory to describe interactions of elementary particles. However, many questions concerning the Higgs sector and the associated electroweak symmetry breaking are still open, even after (or because) a light Higgs boson has been discovered. The 2→2 scattering amplitude of weak vector bosons is suppressed in the Standard Model due to the Higgs boson exchange. Therefore, weak vector boson scattering processes are very sensitive to additional contributions beyond the Standard Model. Possible new physics deviations can be studied model-independently by higher dimensional operators within the effective field theory framework. In this thesis, a complete set of dimension six and eight operators are discussed for vector boson scattering processes. Assuming a scenario where new physics in the Higgs/Goldstone boson decouples from the fermion-sector and the gauge-sector in the high energy limit, the impact of the dimension six operator L{sub HD} and dimension eight operators L{sub S,0} and L{sub S,1} to vector boson scattering processes can be studied separately for complete processes at particle colliders. However, a conventional effective field theory analysis will violate the S-matrix unitarity above a certain energy limit. The direct T-matrix scheme is developed to allow a study of effective field theory operators consistent with basic quantum-mechanical principles in the complete energy reach of current and future colliders. Additionally, this scheme can be used preventively for any model, because it leaves theoretical predictions invariant, which already satisfies unitarity. The effective field theory approach is further extended by allowing additional generic resonances coupling to the Higgs/Goldstone boson sector, namely the isoscalar-scalar, isoscalar-tensor, isotensor-scalar and isotensor-tensor. In particular, the Stueckelberg formalism is used to investigate the impact of the tensor degree of
Phenomenology of a leptonic goldstino and invisible Higgs boson decays
Antoniadis, Ignatios; Zwirner, Fabio; Antoniadis, Ignatios; Tuckmantel, Marc; Zwirner, Fabio
2005-01-01
Non-linearly realized supersymmetry, combined with the Standard Model field content and SU(3)XSU(2)XU(1) gauge invariance, permits local dimension-six operators involving a goldstino, a lepton doublet and a Higgs doublet. These interactions preserve total lepton number if the left-handed goldstino transforms as an antilepton. We discuss the resulting phenomenology, in the simple limit where the new couplings involve only one lepton family, thus conserving also lepton flavour. Both the Z boson and the Higgs boson can decay into a neutrino and a goldstino: the present limits from the invisible Z width and from other observables leave room for the striking possibility of a Higgs boson decaying dominantly, or at least with a sizable branching ratio, via such an invisible mode. We finally comment on the perspectives at hadron and lepton colliders, and on possible extensions of our analysis.
Gauge boson exchange in AdSd+1
International Nuclear Information System (INIS)
D'Hoker, Eric; Freedman, Daniel Z.
1999-01-01
We study the amplitude for exchange of massless gauge bosons between pairs of massive scalar fields in anti-de Sitter space. In the AdS/CFT correspondence this amplitude describes the contribution of conserved flavor symmetry currents to 4-point functions of scalar operators in the boundary conformal theory. A concise, covariant, Y2K compatible derivation of the gauge boson propagator in AdS d+ 1 is given. Techniques are developed to calculate the two bulk integrals over AdS space leading to explicit expressions or convenient, simple integral representations for the amplitude. The amplitude contains leading power and sub-leading logarithmic singularities in the gauge boson channel and leading logarithms in the crossed channel. The new methods of this paper are expected to have other applications in the study of the Maldacena conjecture
Development and characterization of a DEPFET pixel prototype system for the ILC vertex detector
Energy Technology Data Exchange (ETDEWEB)
Kohrs, Robert
2008-09-15
For the future TeV-scale linear collider ILC (International Linear Collider) a vertex detector of unprecedented performance is needed to fully exploit its physics potential. By incorporating a field effect transistor into a fully depleted sensor substrate the DEPFET (Depleted Field Effect Transistor) sensor combines radiation detection and in-pixel amplification. For the operation at a linear collider the excellent noise performance of DEPFET pixels allows building very thin detectors with a high spatial resolution and a low power consumption. With this thesis a prototype system consisting of a 64 x 128 pixels sensor, dedicated steering and readout ASICs and a data acquisition board has been developed and successfully operated in the laboratory and under realistic conditions in beam test environments at DESY and CERN. A DEPFET matrix has been successfully read out using the on-chip zero-suppression of the readout chip CURO 2. The results of the system characterization and beam test results are presented. (orig.)
Development and characterization of a DEPFET pixel prototype system for the ILC vertex detector
International Nuclear Information System (INIS)
Kohrs, Robert
2008-09-01
For the future TeV-scale linear collider ILC (International Linear Collider) a vertex detector of unprecedented performance is needed to fully exploit its physics potential. By incorporating a field effect transistor into a fully depleted sensor substrate the DEPFET (Depleted Field Effect Transistor) sensor combines radiation detection and in-pixel amplification. For the operation at a linear collider the excellent noise performance of DEPFET pixels allows building very thin detectors with a high spatial resolution and a low power consumption. With this thesis a prototype system consisting of a 64 x 128 pixels sensor, dedicated steering and readout ASICs and a data acquisition board has been developed and successfully operated in the laboratory and under realistic conditions in beam test environments at DESY and CERN. A DEPFET matrix has been successfully read out using the on-chip zero-suppression of the readout chip CURO 2. The results of the system characterization and beam test results are presented. (orig.)
Microscopic models for hadronic form factors and vertex functions
International Nuclear Information System (INIS)
Santhanam, I.; Bhatnagar, S.; Mitra, A.N.
1990-01-01
We review the status of nucleon (N) and few-nucleon form factors (f.f.'s) from the view-point of a gradual unfolding of successively inner degrees of freedom (d.o.f.) with increase in q 2 . To this end we focus attention on the problem of a microscopic formulation of hadronic vertex functions (v.f.) from the point of view of their key role in understanding the physics of a large variety of few-hadron reactions on the one hand, and their practical usefulness in articulating the internal dynamics of hadron and few-hadron systems on the other hand. The criterion of an integrated view from low-energy spectroscopy to high-q 2 amplitudes is employed to emphasize the desirability of formulations in terms of relativistic dynamical equations based on Lorentz and gauge invariance in preference to phenomenological models, which often require additional assumptions beyond their original premises to extend their applicability domains. In this respect, the practical possibilities of the Bethe-Salpeter equation (BSE) in articulating the necessary dynamical ingredients are emphasized on a two-tier basis, the basis constants (3) being pre-determined from the mass spectral data (1 st stage) in preparation for the construction of the hadron-quark vertex functions (2 nd stage). An explicit construction is outlined for meson-quark and baryon-quark vertex functions as well as of meson-nucleon vertex functions in a stepwise fashion. The role of the latter as basic parameter-free ingredients is discussed for possible use in the more serious treatment in the current literature of quark-meson level (α) and meson-isobar (β) d.o.f. in 2-N and 3-N form factor studies. Since most of these studies are characterized by the use of RGM techniques at the six-quark level, a comparative discussion is also given of several contemporary RGM based models. Finally, the concrete prospects for employing such hardon-quark vertex functions for evaluating pp-bar annihilation amplitudes are briefly indicated
The geometric content of the interacting boson model for molecular spectra
International Nuclear Information System (INIS)
Levit, S.; Smilansky, U.
1981-12-01
The recently proposed algebraic model for collective spectra of diatomic molecules is analysed in terms of conventional geometrical degrees of freedom. We present a mapping of the algebraic Hamiltonian onto an exactly solvable geometrical Hamiltonian with the Morse potential. This mapping explains the success of the algebraic model in reproducing the low lying part of molecular spectra. At the same time the mapping shows that the expression for the dipole transition operator in terms of boson operators differs from the simplest IBM expression and in general must include many-body boson terms. The study also provides an insight into the problem of possible interpretations of the bosons in the nuclear IBM. (author)
Measurement of the Higgs boson mass with a linear e+e- collider
International Nuclear Information System (INIS)
Garcia-Abia, P.; Lohmann, W.; Raspereza, A.
2005-05-01
The potential of a linear e + e - collider operated at a centre-of-mass energy of 350 GeV is studied for the measurement of the Higgs boson mass. An integrated luminosity of 500 fb -1 is assumed. For Higgs boson masses of 120, 150 and 180 GeV the uncertainty on the Higgs boson mass measurement is estimated to be 40, 65 and 70 MeV, respectively. The effects of beam related systematics, namely a bias in the beam energy measurement, the beam energy spread and the luminosity spectrum due to beamstrahlung, on the precision of the Higgs boson mass measurement are investigated. In order to keep the systematic uncertainty on the Higgs boson mass well below the level of the statistical error, the beam energy measurement must be controlled with a relative precision better than 10 -4 . (orig.)
Prospects for the measurement of the Higgs boson mass with a linear e+e- collider
International Nuclear Information System (INIS)
Garcia-Abia, P.; Lohmann, W.; Raspereza, A.
2005-01-01
The potential of a linear e + e - collider operated at a centre-of-mass energy of 350 GeV is studied for the measurement of the Higgs boson mass. An integrated luminosity of 500 fb -1 is assumed. For Higgs boson masses of 120, 150 and 180 GeV the uncertainty on the Higgs boson mass measurement is estimated to be 40, 65 and 70 MeV, respectively. The effects of beam related systematics, namely a bias in the beam energy measurement, the beam energy spread and the luminosity spectrum due to beamstrahlung, on the precision of the Higgs boson mass measurement are investigated. In order to keep the systematic uncertainty on the Higgs boson mass well below the level of the statistical error, the beam energy measurement must be controlled with a relative precision better than 10 -4 . (orig.)
Distinguishing a SM-like MSSM Higgs boson from SM Higgs boson ...
Indian Academy of Sciences (India)
We explore the possibility of distinguishing the SM-like MSSM Higgs boson from the SM Higgs boson via Higgs boson pair production at future muon collider. We study the behavior of the production cross-section in SM and MSSM with Higgs boson mass for various MSSM parameters tan and A. We observe that at fixed ...
Finite boson mappings of fermion systems
International Nuclear Information System (INIS)
Johnson, C.W.; Ginocchio, J.N.
1994-01-01
We discuss a general mapping of fermion pairs to bosons that preserves Hermitian conjugation, with an eye towards producing finite and usable boson Hamiltonians that approximate well the low-energy dynamics of a fermion Hamiltonian
The search for a heavy Higgs boson
International Nuclear Information System (INIS)
Dawson, S.
1989-02-01
Theoretical limits on the mass of the Higgs boson from vacuum stability and perturbative unitarity are examined. Search techniques for heavy Higgs bosons, M/sub H/ > 200 GeV, are also reviewed. 8 refs., 5 figs
Working Group Report: Higgs Boson
Energy Technology Data Exchange (ETDEWEB)
Dawson, Sally; Gritsan, Andrei; Logan, Heather; Qian, Jianming; Tully, Chris; Van Kooten, Rick [et al.
2013-10-30
This report summarizes the work of the Energy Frontier Higgs Boson working group of the 2013 Community Summer Study (Snowmass). We identify the key elements of a precision Higgs physics program and document the physics potential of future experimental facilities as elucidated during the Snowmass study. We study Higgs couplings to gauge boson and fermion pairs, double Higgs production for the Higgs self-coupling, its quantum numbers and $CP$-mixing in Higgs couplings, the Higgs mass and total width, and prospects for direct searches for additional Higgs bosons in extensions of the Standard Model. Our report includes projections of measurement capabilities from detailed studies of the Compact Linear Collider (CLIC), a Gamma-Gamma Collider, the International Linear Collider (ILC), the Large Hadron Collider High-Luminosity Upgrade (HL-LHC), Very Large Hadron Colliders up to 100 TeV (VLHC), a Muon Collider, and a Triple-Large Electron Positron Collider (TLEP).
Search for intermediate vector bosons
International Nuclear Information System (INIS)
Cline, D.B.; Rubbia, C.; van der Meer, S.
1982-01-01
Over the past 15 years a new class of unified theories has been developed to describe the forces acting between elementary particles. The most successful of the new theories establishes a link between electromagnetism and the weak force. A crucial prediction of this unified electroweak theory is the existence of three massive particles called intermediate vector bosons. If these intermediate vector bosons exist and if they have properties attributed to them by electroweak theory, they should soon be detected, as the world's first particle accelerator with enough energy to create such particles has recently been completed at the European Organization for Nuclear Research (CERN) in Geneva. The accelerator has been converted to a colliding beam machine in which protons and antiprotons collide head on. According to electroweak theory, intermediate vector bosons can be created in proton-antiproton collisions. (SC)
Search for intermediate vector bosons
International Nuclear Information System (INIS)
Klajn, D.B.; Rubbia, K.; Meer, S.
1983-01-01
Problem of registration and search for intermediate vector bosons is discussed. According to weak-current theory there are three intermediate vector bosons with +1(W + )-1(W - ) and zero (Z 0 ) electric charges. It was suggested to conduct the investigation into particles in 1976 by cline, Rubbia and Makintair using proton-antiproton beams. Major difficulties of the experiment are related to the necessity of formation of sufficient amount of antiparticles and the method of antiproton beam ''cooling'' for the purpose of reduction of its random movements. The stochastic method was suggested by van der Meer in 1968 as one of possible cooling methods. Several large detectors were designed for searching intermediate vector bosons
Thermodynamic aspects of light boson conjectures
International Nuclear Information System (INIS)
Ray, P.S.; Miller, D.E.
1984-01-01
Gauge theories have often led to the hypothesis for new particles (light bosons) in order to overcome their unpleasant features. Then one faces the dilemma of not observing these experimentally. We consider a many body system under thermal equilibrium which could emit the light bosons and point out the criterion for existence of the Bose-Einstein condensate for these new bosons
Fermions and bosons : a 'spinless' approach
International Nuclear Information System (INIS)
Oliveira, P.M.C. de; Ribeiro, S.C.
1980-07-01
The fundamental difference between fermions and bosons is presented. The treatment used is based only on indistinguishability and its related implications on interference, with no mention to spin. Comparison between indistinguishable (fermions or bosons) and distinguishable identical particles are also made, yielding the enhancement (bosons) or inhibition (fermions) factors which determine the quantum distribution equations. (Author) [pt
Introduction to the physics of Higgs bosons
International Nuclear Information System (INIS)
Dawson, S.
1994-11-01
A basic introduction to the physics of the Standard Model Higgs boson is given. We discuss Higgs boson production in e + e - and hadronic collisions and survey search techniques at future accelerators. The Higgs bosons of the minimal SUSY model are briefly considered. Indirect limits from triviality arguments, vacuum stability and precision measurements at LEP are also presented
On bosonization in 3 dimensions
International Nuclear Information System (INIS)
Barci, D.G.; Fosco, C.D.; Oxman, L.E.
1995-08-01
A recently proposed path-integral bosonization scheme for massive fermions in 3 dimensions is extended by keeping the full momentum-dependence of the one-loop vacuum polarization tensor. This makes it possible to discuss both the massive and massless fermion cases on an equal footing, and moreover the results it yields for massless fermions are consistent with the ones of another, seemingly different, canonical quantization approach to the problem of bosonization for a massless fermionic field in 3 dimensions. (author). 10 refs
International Nuclear Information System (INIS)
Ekspong, G.
1981-11-01
Among possible production reactions for neutral Higgs bosons it is known that e + e - →Z 0 +H 0 offers advantages of relatively high production cross section and low background from other reactions. With Z 0 decaying to two electrons, which are measured, the existence of a Higgs candidate will be seen as a peak in the missing mass spectrum. It is shown that a sufficiently good mass resolution is obtainable to make a search for Higgs feasible at LEP. In its first phase, the energy of LEP limits the search to Higgs bosons of mass around 10 GeV. (Auth.)
State orthogonality, boson bunching parameter and bosonic enhancement factor
International Nuclear Information System (INIS)
Marchewka, A.; Granot, E.
2016-01-01
Bosons bunching is the tendency of bosons to bunch together with respect to distinguishable particles. It is emphasized that the bunching parameter β = p_B/p_D, i.e. the ratio between the probability to measure 2 bosons and 2 distinguishable particles at the same state, is a constant of motion and depends only on the overlap between the initial wavefunctions. This ratio is equal to β = 2/(1 + l"2), where l is the overlap integral between the initial wavefunctions. That is, only when the initial wavefunctions are orthogonal this ratio is equal to 2, however, this bunching ratio can be reduced to 1, when the two wavefunctions are identical. This simple equation explains the experimental evidences of a beam splitter. A straightforward conclusion is that by measuring the local bunching parameter β (at any point in space and time) it is possible to evaluate a global parameter l (the overlap between the initial wavefunctions). The bunching parameter is then generalized to arbitrary number of particles, and in an analogy to the two-particles scenario, the well-known bosonic enhancement appears only when all states are orthogonal
International Nuclear Information System (INIS)
Tjiang, P.C.; Burden, C.J.
1998-01-01
Full text: We consider the problem of designing an Ansatz for the transverse part of the fermion-photon vertex in QED 3 . Our work is based on that of Ball and Chiu, who consider restrictions placed on the vertex by the U(1) Ward identity, and on subsequent modifications which attempt to satisfy the Landau-Khalatnikov transformation rules. A class of vertex Ansaetze including that proposed by Dong et al is tested using the gauge invariance of the vacuum polarisation scalar
Three-coloring graphs with no induced seven-vertex path II : using a triangle
Chudnovsky, Maria; Maceli, Peter; Zhong, Mingxian
2015-01-01
In this paper, we give a polynomial time algorithm which determines if a given graph containing a triangle and no induced seven-vertex path is 3-colorable, and gives an explicit coloring if one exists. In previous work, we gave a polynomial time algorithm for three-coloring triangle-free graphs with no induced seven-vertex path. Combined, our work shows that three-coloring a graph with no induced seven-vertex path can be done in polynomial time.
Stochastic bosonization for a d ≥ 3 Fermi system
International Nuclear Information System (INIS)
Accardi, L.; Lu, Y.G.; Mastropietro, V.
1997-01-01
We consider a system of fermions interacting via an external field and we prove, in d ≥ 3, that a suitable collective operator, bilinear in the fermionic fields, in the stochastic limit becomes a boson quantum brownian motion. The evolution operator after the limit satisfies a quantum stochastic differential equation, in which the imaginary part of the Ito correction is the ground state shift while its real part is the lifetime of the ground state. (orig.)
cellGPU: Massively parallel simulations of dynamic vertex models
Sussman, Daniel M.
2017-10-01
Vertex models represent confluent tissue by polygonal or polyhedral tilings of space, with the individual cells interacting via force laws that depend on both the geometry of the cells and the topology of the tessellation. This dependence on the connectivity of the cellular network introduces several complications to performing molecular-dynamics-like simulations of vertex models, and in particular makes parallelizing the simulations difficult. cellGPU addresses this difficulty and lays the foundation for massively parallelized, GPU-based simulations of these models. This article discusses its implementation for a pair of two-dimensional models, and compares the typical performance that can be expected between running cellGPU entirely on the CPU versus its performance when running on a range of commercial and server-grade graphics cards. By implementing the calculation of topological changes and forces on cells in a highly parallelizable fashion, cellGPU enables researchers to simulate time- and length-scales previously inaccessible via existing single-threaded CPU implementations. Program Files doi:http://dx.doi.org/10.17632/6j2cj29t3r.1 Licensing provisions: MIT Programming language: CUDA/C++ Nature of problem: Simulations of off-lattice "vertex models" of cells, in which the interaction forces depend on both the geometry and the topology of the cellular aggregate. Solution method: Highly parallelized GPU-accelerated dynamical simulations in which the force calculations and the topological features can be handled on either the CPU or GPU. Additional comments: The code is hosted at https://gitlab.com/dmsussman/cellGPU, with documentation additionally maintained at http://dmsussman.gitlab.io/cellGPUdocumentation
Effects of Vertex Activity and Self-organized Criticality Behavior on a Weighted Evolving Network
International Nuclear Information System (INIS)
Zhang Guiqing; Yang Qiuying; Chen Tianlun
2008-01-01
Effects of vertex activity have been analyzed on a weighted evolving network. The network is characterized by the probability distribution of vertex strength, each edge weight and evolution of the strength of vertices with different vertex activities. The model exhibits self-organized criticality behavior. The probability distribution of avalanche size for different network sizes is also shown. In addition, there is a power law relation between the size and the duration of an avalanche and the average of avalanche size has been studied for different vertex activities
The CMS "Higgs Boson Goose Game" Poster
Davis, Siona Ruth
Building and operating the CMS Detector is a complicated endeavour! Now, more than 20 years after the detector was conceived, the CMS Bologna group proposes to follow the steps of this challenging project by playing "The Higgs Boson Goose Game", illustrating CMS activities and goals. The concept of the game is inspired by the traditional "Game of the Goose". The underlying idea is that the progress of building and operating a detector at the LHC is similar to the progress of the pawns on the game board: it is fast at times, bringing rewards and satisfaction, while sometimes unexpected problems cause delays or even a step back requiring CMS scientists to use all of their skill and creativity to devise new solutions.
The CMS Higgs Boson Goose Game
Cavallo, Francesca Romana
2015-01-01
Building and operating the CMS Detector is a complicated endeavour! Now, more than 20 years after the detector was conceived, the CMS Bologna group proposes to follow the steps of this challenging project by playing The Higgs Boson Goose Game, illustrating CMS activities and goals.The concept of the game is inspired by the traditional Game of the Goose. The underlying idea is that the progress of building and operating a detector at the LHC is similar to the progress of the pawns on the game board it is fast at times, bringing rewards and satisfaction, while sometimes unexpected problems cause delays or even a step back requiring CMS scientists to use all of their skill and creativity to devise new solutions.
The LHCb vertex locator and level-1 trigger
Dijkstra, H
2000-01-01
LHCb will study CP violation and other rare phenomena in B-decays with a forward detector at the LHC. One of the challenges is to design a fast and efficient trigger. The design of the silicon Vertex Locator (VELO) has been driven by the requirements of one of the most selective triggers of the experiment. The VELO trigger is designed to work at an input rate of 1 MHz. The requirements and implementation of the VELO and the associated trigger are summarised, followed by a description of an upgrade which improves the trigger performance significantly. (3 refs).
A new tool for constrained vertex fitting in ATLAS
Colijn, Auke Pieter; Limper, Maaike; Prokofiev, Kirill
2009-01-01
The precise reconstruction of trajectories of charged and neutral particles and their decay vertices is crucial for many physics analyses. Studying the tracking performance on well known benchmark channels helps to understand the properties of the ATLAS detector during the initial phase of the LHC. In order to exploit the correlations between reconstructed parameters of final state tracks having the same mother particle, a new tool for vertex fitting with possibility of simultaneous application of kinematic constraints has been developed. Using this tool on a benchmark channel such as J/psi to μ+μ− helps to correct shifts in the reconstructed curvature induced by systematic deformations of the detector.
W-symmetry, topological vertex and affine Yangian
Energy Technology Data Exchange (ETDEWEB)
Procházka, Tomáš [Arnold Sommerfeld Center for Theoretical Physics, Ludwig Maximilian University of Munich,Theresienstr. 37, D-80333 München (Germany); Institute of Physics AS CR,Na Slovance 2, Prague 8 (Czech Republic)
2016-10-14
We discuss the representation theory of the non-linear chiral algebra W{sub 1+∞} of Gaberdiel and Gopakumar and its connection to the Yangian of (u(1))-hat whose presentation was given by Tsymbaliuk. The characters of completely degenerate representations of W{sub 1+∞} are given by the topological vertex. The Yangian picture provides an infinite number of commuting charges which can be explicitly diagonalized in W{sub 1+∞} highest weight representations. Many properties that are difficult to study in the W{sub 1+∞} picture turn out to have a simple combinatorial interpretation, once translated to the Yangian picture.
3D circuit integration for Vertex and other detectors
Energy Technology Data Exchange (ETDEWEB)
Yarema, Ray; /Fermilab
2007-09-01
High Energy Physics continues to push the technical boundaries for electronics. There is no area where this is truer than for vertex detectors. Lower mass and power along with higher resolution and radiation tolerance are driving forces. New technologies such as SOI CMOS detectors and three dimensional (3D) integrated circuits offer new opportunities to meet these challenges. The fundamentals for SOI CMOS detectors and 3D integrated circuits are discussed. Examples of each approach for physics applications are presented. Cost issues and ways to reduce development costs are discussed.
The design, construction and performance of the ALEPH silicon vertex detector
International Nuclear Information System (INIS)
Mours, B.
1996-03-01
The ALEPH silicon vertex detector is the first detector operating in a colliding beam environment that uses silicon strip detectors which provide readout on both sides and hence a three-dimensional point measurement for the trajectory of charged particles. The detector system was commissioned successfully at the e + e - collider LEP at the research centre CERN, Switzerland, during the year 1991 while taking data at the Z 0 resonance. The achieved spatial resolution of the complete 73 728 channel device (intrinsic plus alignment) in 12 μm in the r.φ view and 12 μm in the z view. The design and construction of the entire detector system are discussed in detail and the experience gained in running the detector is described with special emphasis on the uses of this novel tracking device for the physics of short-lived heavy particles produced in the decays of the Z 0 resonance. (orig.)
Development of Data Processing Algorithms for the Upgraded LHCb Vertex Locator
AUTHOR|(CDS)2101352
The LHCb detector will see a major upgrade during LHC Long Shutdown II, which is planned for 2019/20. The silicon Vertex Locator subdetector will be upgraded for operation under the new run conditions. The detector will be read out using a data acquisition board based on an FPGA. The work presented in this thesis is concerned with the development of the data processing algorithms to be used in this data acquisition board. In particular, work in three different areas of the FPGA is covered: the data processing block, the low level interface, and the post router block. The algorithms produced have been simulated and tested, and shown to provide the required performance. Errors in the initial implementation of the Gigabit Wireline Transmitter serialized data in the low level interface were discovered and corrected. The data scrambling algorithm and the post router block have been incorporated in the front end readout chip.
Recent results with HV-CMOS and planar sensors for the CLIC vertex detector
AUTHOR|(SzGeCERN)734627
2017-01-01
The physics aims for the future multi-TeV e+e- Compact Linear Collider (CLIC) impose high precision requirements on the vertex detector which has to match the experimental conditions, such as the time structure of the collisions and the presence of beam-induced backgrounds. The principal challenges are: a point resolution of 3μm, 10 ns time stamping capabilities, low mass (⇠0.2% X0 per layer), low power dissipation and pulsed power operation. Recent results of test beam measurements and GEANT4 simulations for assemblies with Timepix3 ASICs and thin active-edge sensors are presented. The 65 nm CLICpix readout ASIC with 25μm pitch was bump bonded to planar silicon sensors and also capacitively coupled through a thin layer of glue to active HV-CMOS sensors. Test beam results for these two hybridisation concepts are presented.
Properties of linear integral equations related to the six-vertex model with disorder parameter II
International Nuclear Information System (INIS)
Boos, Hermann; Göhmann, Frank
2012-01-01
We study certain functions arising in the context of the calculation of correlation functions of the XXZ spin chain and of integrable field theories related to various scaling limits of the underlying six-vertex model. We show that several of these functions that are related to linear integral equations can be obtained by acting with (deformed) difference operators on a master function Φ. The latter is defined in terms of a functional equation and of its asymptotic behavior. Concentrating on the so-called temperature case, we show that these conditions uniquely determine the high-temperature series expansions of the master function. This provides an efficient calculation scheme for the high-temperature expansions of the derived functions as well. (paper)
Higgs boson properties in ATLAS
Mansoulie, Bruno; The ATLAS collaboration
2017-01-01
The measurement by the ATLAS collaboration of Higgs boson properties is presented, in terms of production cross-sections, simplified template cross-sections, couplings. The measurements are based on the analysis of the H decay channels to diphoton and 4 leptons, using 36.1 fb-1 of 13 TeV data recorded in 2015 and 2016.
Higgs Boson and the Large Hadron Collider
International Nuclear Information System (INIS)
Banerjee, Sunanda
2014-01-01
The Standard Model of particle physics has been extremely successful in explaining all the precision data collected during the past few decades. The model, however, was incomplete with one of the key particles still not experimentally observed till 2012. This particle is predicted by the theory in the context of providing mass to the fundamental constituents as well as the exchange particles W and Z bosons. In the recent past, two experiments, ATLAS and CMS operating at the Large Hadron Collider, CERN have observed the evidence of a new state. Search signal of this object has been motivated by the Higgs boson within the Standard Model. These results have been consolidated with newer data and some attempt has gone to determine some of the properties of this newly observed state. Some of the most important recent results in this context are presented in this lecture. Several groups from India have participated in the LHC program and contributed to various aspects like the machine, computing grid and the experiments. In particular, 3 institutes and 2 University groups have been a member of the CMS collaboration and took part in the discovery of the new state. The participation of the Indian groups are also highlighted. (author)
Beyond MSSM Higgs Bosons at the LHC
CERN. Geneva
2011-01-01
We consider the Higgs sector in extensions of the Minimal Supersymmetric Standard Model by higher-dimension operators in the context of Higgs searches at the LHC 7 TeV run. Such an effective field theory (EFT) approach, also referred to as BMSSM, allows for a model-independent description that may correspond to the combined effects of additional supersymmetric sectors, such as heavy singlets, triplets or gauge bosons, in which the supersymmetry breaking mass splittings can be treated as a perturbation. We consider the current LHC dataset, to set exclusion limits on a large class of BMSSM models. We also present projections for integrated luminosities of 5 and 15 fb−1, assuming that the ATLAS and CMS collaborations will combine their results in each channel. Our study shows that the majority of the parameter space will be probed at the 2σ level with 15 fb−1 of data. A non-observation of a Higgs boson with about 10 fb−1 of data will point towards a Higgs SUSY spectrum with intermediate tan β ( ≈ a few...
Theoretical estimation of Z´ boson mass
International Nuclear Information System (INIS)
Maji, Priya; Banerjee, Debika; Sahoo, Sukadev
2016-01-01
The discovery of Higgs boson at the LHC brings a renewed perspective in particle physics. With the help of Higgs mechanism, standard model (SM) allows the generation of particle mass. The ATLAS and CMS experiments at the LHC have predicted the mass of Higgs boson as m_H=125-126 GeV. Recently, it is claimed that the Higgs boson might interact with dark matter and there exists relation between the Higgs boson and dark matter (DM). Hertzberg has predicted a correlation between the Higgs mass and the abundance of dark matter. His theoretical result is in good agreement with current data. He has predicted the mass of Higgs boson as GeV. The Higgs boson could be coupled to the particle that constitutes all or part of the dark matter in the universe. Light Z´ boson could have important implications in dark matter phenomenology
Exact solution of the Schroedinger equation with the spin-boson Hamiltonian
International Nuclear Information System (INIS)
Gardas, Bartlomiej
2011-01-01
We address the problem of obtaining the exact reduced dynamics of the spin-half (qubit) immersed within the bosonic bath (environment). An exact solution of the Schroedinger equation with the paradigmatic spin-boson Hamiltonian is obtained. We believe that this result is a major step ahead and may ultimately contribute to the complete resolution of the problem in question. We also construct the constant of motion for the spin-boson system. In contrast to the standard techniques available within the framework of the open quantum systems theory, our analysis is based on the theory of block operator matrices.
New physics/resonances in vector boson scattering at the LHC
International Nuclear Information System (INIS)
Reuter, Juergen; Kilian, Wolfgang; Ohl, Thorsten; Sekulla, Marco
2016-05-01
Vector boson scattering is (together with the production of multiple electroweak gauge bosons) the key process in the current run 2 of LHC to probe the microscopic nature of electroweak symmetry breaking. Deviations from the Standard Model are generically parameterized by higher-dimensional operators, however, there is a subtle issue of perturbative unitarity for such approaches for the process above. We discuss a parameter-free unitarization prescription to get physically meaningful predictions. In the second part, we construct simplified models for generic new resonances that can appear in vector boson scattering, with a special focus on the technicalities of tensor resonances.
International Nuclear Information System (INIS)
Aranda, A.; Balazs, C.; Diaz-Cruz, J.L.
2003-01-01
Electroweak precision measurements indicate that the standard model Higgs boson is light and that it could have already been discovered at LEP 2, or might be found at the Tevatron run 2. In the context of a TeV -1 size extra-dimensional model, we argue that the Higgs boson production rates at LEP and the Tevatron are suppressed, while they might be enhanced at the LHC or at CLIC. This is due to the possible mixing between brane and bulk components of the Higgs boson, that is, the non-trivial brane-bulk 'location' of the lightest Higgs. To parametrize this mixing, we consider two Higgs doublets, one confined to the usual space dimensions and the other propagating in the bulk. Calculating the production and decay rates for the lightest Higgs boson, we find that compared to the standard model (SM), the cross section receives a suppression well below but an enhancement close to and above the compactification scale M c . This impacts the discovery of the lightest (SM like) Higgs boson at colliders. To find a Higgs signal in this model at the Tevatron run 2 or at the LC with √s=1.5 TeV, a higher luminosity would be required than in the SM case. Meanwhile, at the LHC or at CLIC with √s∼3-5 TeV one might find highly enhanced production rates. This will enable the latter experiments to distinguish between the extra-dimensional and the SM for M c up to about 6 TeV
Effective field theory and unitarity in vector boson scattering
International Nuclear Information System (INIS)
Sekulla, Marco; Kilian, Wolfgang; Ohl, Thorsten; Reuter, Juergen
2016-10-01
Weak vector boson scattering at high energies will be one of the key measurements in current and upcoming LHC runs. It is most sensitive to any new physics associated with electroweak symmetry breaking. However, a conventional EFT analysis will fail at high energies. To address this problem, we present a parameter-free prescription valid for arbitrary perturbative and non-perturbative models: the T-matrix unitarization. We describe its implementation as an asymptotically consistent reference model matched to the low-energy effective theory. We show examples of typical observables of vector-boson scattering at the LHC in our unitarized framework. For many strongly-coupled models like composite Higgs models, dimension-8 operators might be actually the leading operators. In addition to those longitudinal and transversal dimension eight EFT operators, the effects of generic tensor and scalar resonances within simplified models are considered.
Structure of the vertex function in finite quantum electrodynamics
International Nuclear Information System (INIS)
Mannheim, P.D.
1975-01-01
We study the structure of the renormalized electromagnetic current vertes, GAMMA-tilde/sub μ/(p,p+q,q), in finite quantum electrodynamics. Using conformal invariance we find that GAMMA-tilde/sub μ/(p,p,0) takes the simple form of Z 1 γ/sub μ/ when the external fermions are far off the mass shell. We interpret this result as an old theorem on the structure of the vertex function due to Gell--Mann and Zachariasen. We give the general structure of the vertex for arbitrary momentum transfer parametrically, and discuss how the Bethe--Salpeter equation and the Federbush--Johnson theorem are satisfied. We contrast the meaning of pointlike in a finite field theory with the meaning understood in the parton model. We discuss to what extent the condition Z 1 = 0, which may hold in conformal theories other than finite quantum electrodynamics, may be interpreted as a bootstrap condition. We show that the vanishing of Z 1 prevents their being bound states in the Migdal--Polyakov bootstrap
SPARTex: A Vertex-Centric Framework for RDF Data Analytics
Abdelaziz, Ibrahim
2015-08-31
A growing number of applications require combining SPARQL queries with generic graph search on RDF data. However, the lack of procedural capabilities in SPARQL makes it inappropriate for graph analytics. Moreover, RDF engines focus on SPARQL query evaluation whereas graph management frameworks perform only generic graph computations. In this work, we bridge the gap by introducing SPARTex, an RDF analytics framework based on the vertex-centric computation model. In SPARTex, user-defined vertex centric programs can be invoked from SPARQL as stored procedures. SPARTex allows the execution of a pipeline of graph algorithms without the need for multiple reads/writes of input data and intermediate results. We use a cost-based optimizer for minimizing the communication cost. SPARTex evaluates queries that combine SPARQL and generic graph computations orders of magnitude faster than existing RDF engines. We demonstrate a real system prototype of SPARTex running on a local cluster using real and synthetic datasets. SPARTex has a real-time graphical user interface that allows the participants to write regular SPARQL queries, use our proposed SPARQL extension to declaratively invoke graph algorithms or combine/pipeline both SPARQL querying and generic graph analytics.
The Mark II vertex detectors: Status and prospects
International Nuclear Information System (INIS)
Jaros, J.A.
1987-03-01
The art of detecting the decay vertices from heavy quarks and leptons is comparatively new at electron-positron storage rings. So far, drift chambers positioned just outside the vacuum pipes which surround the interfaction region have provided the first accurate determinations of the tau and bottom lifetimes, and confirmed earlier measurements of charmed particle lifetimes. ''Second generation'' vertex detectors have demonstrated the feasibility of tagging heavy flavors by observing decay vertices, and are being used to search for anomalous decay topologies. These chambers have modest resolution on the scale of the effects they seek to measure, but are now well-understood and reliable tools. A generation of vertex detectors, considerably more ambitious, is under construction for experiments at SLC and LEP. They boast impact parameter resolution improved by a factor of four or more over previous detectors, and sub-millimeter track-pair resolution. The Mark II collaboration hopes to reach these goals with a high pressure precision drift chamber, and eventually surpass them with the addition of a silicon microstrip detector
The Mark II vertex detectors: Status and prospects
Energy Technology Data Exchange (ETDEWEB)
Jaros, J.A.
1987-03-01
The art of detecting the decay vertices from heavy quarks and leptons is comparatively new at electron-positron storage rings. So far, drift chambers positioned just outside the vacuum pipes which surround the interfaction region have provided the first accurate determinations of the tau and bottom lifetimes, and confirmed earlier measurements of charmed particle lifetimes. ''Second generation'' vertex detectors have demonstrated the feasibility of tagging heavy flavors by observing decay vertices, and are being used to search for anomalous decay topologies. These chambers have modest resolution on the scale of the effects they seek to measure, but are now well-understood and reliable tools. A generation of vertex detectors, considerably more ambitious, is under construction for experiments at SLC and LEP. They boast impact parameter resolution improved by a factor of four or more over previous detectors, and sub-millimeter track-pair resolution. The Mark II collaboration hopes to reach these goals with a high pressure precision drift chamber, and eventually surpass them with the addition of a silicon microstrip detector.
Nonperturbative aspects of the quark-photon vertex
International Nuclear Information System (INIS)
Frank, M.R.
1994-01-01
The electromagnetic interaction with quarks is investigated through a relativistic, electromagnetic gauge-invariant treatment. Gluon dressing of the quark-photon vertex and the quark self-energy functions is described by the inhomogeneous Bethe-Salpeter equation in the ladder approximation and the Schwinger-Dyson equation in the rainbow approximation respectively. Results for the calculation of the quark-photon vertex are presented in both the time-like and space-like regions of photon momentum squared, however emphasis is placed on the space-like region relevant to electron scattering. The treatment presented here simultaneously addresses the role of dynamically generated q bar q vector bound states and the approach to asymptotic behavior. The resulting description is therefore applicable over the entire range of momentum transfers available in electron scattering experiments. Input parameters are limited to the model gluon two-point function which is chosen to reflect confinement and asymptotic freedom and are largely constrained by the obtained bound-state spectrum
The LHCb VELO (VErtex LOcator) and the LHCb VELO upgrade
International Nuclear Information System (INIS)
Collins, P.
2013-01-01
LHCb is a forward spectrometer experiment dedicated to the study of new physics in the decays of beauty and charm hadrons produced in proton collisions at the Large Hadron Collider (LHC) at CERN. The VErtex LOcator (VELO) is the silicon detector surrounding the LHCb interaction point. The beauty and charm hadrons are identified through their flight distance in the Vertex Locator (VELO), and hence the detector is critical for both the trigger and the offline physics analyses. The sensors, which have an inner radius of ∼7mm from the beam axis at the edge, and the first sensitive strips at a radius of ∼8.2mm are exposed to maximum radiation doses of ∼0.6×10 14 1MeVn eq /cm 2 per integrated luminosity of fb −1 . The performance of the VELO during the first two years of LHC running is described, together with the methods used to monitor radiation damage. The detector so far shows no significant performance degradation, however many interesting effects have been observed in the sensors, including a coupling of charge to the second metal routing line layer after irradiation. In 2018 the VELO will be upgraded together with the rest of the LHCb detector to a 40 MHz readout. The modules together with their front end electronics will be completely replaced with a radiation hard system capable of driving the signals out at the required rates. The current status of the R and D for the LHCb VELO Upgrade is outlined.
Standalone vertex finding in the ATLAS muon spectrometer
DEFF Research Database (Denmark)
Aad, A.; Abajyan, T.; Abbott, B.
2014-01-01
A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The perf......A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths....... The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at √s = 7 TeV collected with the ATLAS detector at the LHC during 2011....
The MAPS-based vertex detector for the STAR experiment: Lessons learned and performance
Energy Technology Data Exchange (ETDEWEB)
Contin, Giacomo, E-mail: gcontin@lbl.gov
2016-09-21
The PiXeL detector (PXL) of the STAR experiment at RHIC is the first application of the state-of-the-art thin Monolithic Active Pixel Sensors (MAPS) technology in a collider environment. The PXL, together with the Intermediate Silicon Tracker (IST) and the Silicon Strip Detector (SSD), form the Heavy Flavor Tracker (HFT), which has been designed to improve the vertex resolution and extend the STAR measurement capabilities in the heavy flavor domain, providing a clean probe for studying the Quark–Gluon Plasma. The two PXL layers are placed at a radius of 2.8 and 8 cm from the beam line, respectively, and is based on ultra-thin high resolution MAPS sensors. The sensor features 20.7 μm pixel pitch, 185.6 μs readout time and 170 mW/cm{sup 2} power dissipation. The detector is air-cooled, allowing a global material budget of 0.4% radiation length on the innermost layer. A novel mechanical approach to detector insertion allows for fast installation and integration of the pixel sub detector. The HFT took data in Au+Au collisions at 200 GeV during the 2014 RHIC run. Modified during the RHIC shutdown to improve its reliability, material budget, and tracking capabilities, the HFT took data in p+p and p+Au collisions at √s{sub NN}=200 GeV in the 2015 RHIC run. In this paper we present detector specifications, experience from the construction and operations, and lessons learned. We also show preliminary results from 2014 Au+Au data analyses, demonstrating the capabilities of charm reconstruction with the HFT. - Highlights: • First MAPS-based vertex detector in a collider experiment. • Achieved low material budget of 0.39% of radiation length per detector layer. • Track pointing resolution to the primary vertex better than 10⊕24 GeV/p×c μm. • Gain in significance for the topological reconstruction of the D{sup 0}−>K+π decay in STAR. • Observed latch-up induced damage of MAPS sensors.
Higgs boson mass bounds in the presence of a heavy fourth quark family
Energy Technology Data Exchange (ETDEWEB)
Bulava, John [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Gerhold, Philipp; Kallarackal, Jim; Nagy, Attila [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC
2013-01-15
We present Higgs boson mass bounds in a lattice regularization allowing thus for non-perturbative investigations. In particular, we employ a lattice modified chiral invariant Higgs-Yukawa model using the overlap operator. We show results for the upper and lower Higgs boson mass bounds in the presence of a heavy mass-degenerate quark doublet with masses ranging up to 700 GeV. We perform infinite volume extrapolations in most cases, and examine several values of the lattice cutoff. Furthermore, we argue that the lower Higgs boson mass bound is stable with respect to the addition of higher dimensional operators to the scalar field potential. Our results have severe consequences for the phenomenology of a fourth generation of quarks if a light Higgs boson is discovered at the LHC.
Higgs boson mass bounds in the presence of a heavy fourth quark family
Bulava, John; Nagy, Attila; Kallarackal, Jim; Jansen, Karl
2012-01-01
We present Higgs boson mass bounds in a lattice regularization allowing thus for non-perturbative investigations. In particular, we employ a lattice modified chiral invariant Higgs-Yukawa model using the overlap operator. We show results for the upper and lower Higgs boson mass bounds in the presence of a heavy mass-degenerate quark doublet with masses ranging up to 700 GeV. We perform infinite volume extrapolations in most cases, and examine several values of the lattice cutoff. Furthermore, we argue that the lower Higgs boson mass bound is stable with respect to the addition of higher dimensional operators to the scalar field potential. Our results have severe consequences for the phenomenology of a fourth generation of quarks if a light Higgs boson is discovered at the LHC.
Energy Technology Data Exchange (ETDEWEB)
Aaboud, M. [Univ. Mohamed Premier et LPTPM, Oujda (Morocco). Faculte des Sciences; Aad, G. [CPPM, Aix-Marseille Univ. et CNRS/IN2P3, Marseille (France); Abbott, B. [Oklahoma Univ., Norman, OK (United States). Homer L. Dodge Dept. of Physics and Astronomy; Collaboration: ATLAS Collaboration; and others
2017-04-15
This paper presents a measurement of the polarisation of W bosons from t anti t decays, reconstructed in events with one high-p{sub T} lepton and at least four jets. Data from pp collisions at the LHC were collected at √(s) = 8 TeV and correspond to an integrated luminosity of 20.2 fb{sup -1}. The angle θ* between the b-quark from the top quark decay and a direct W boson decay product in the W boson rest frame is sensitive to the W boson polarisation. Two different W decay products are used as polarisation analysers: the charged lepton and the down-type quark for the leptonically and hadronically decaying W boson, respectively. The most precise measurement of the W boson polarisation via the distribution of cosθ* is obtained using the leptonic analyser and events in which at least two of the jets are tagged as b-quark jets. The fitted fractions of longitudinal, left- and right-handed polarisation states are F{sub 0} = 0.709 ± 0.019, F{sub L} = 0.299 ± 0.015 and F{sub R} = -0.008 ± 0.014, and are the most precisely measured W boson polarisation fractions to date. Limits on anomalous couplings of the Wtb vertex are set. (orig.)
AUTHOR|(INSPIRE)INSPIRE-00358758
This thesis presents two analyses of data recorded by the ATLAS detector during proton-proton collisions at the LHC. The first is the implementation of a vertex counting algorithm to measure the luminosity recorded by ATLAS during collisions at a centre-of-mass energy of $\\sqrt{s}=$8 TeV in 2012. This comprises a Monte Carlo closure test for validation of the method and its corrections, the calibration of the method using the van der Meer scans performed in 2012 and the application of the method to physics runs. It also includes tests of the internal and external consistency of the algorithm and the potential to use this algorithm to measure the luminosity of data collected during proton-proton collisions at $\\sqrt{s}=$13 TeV. \\par The second analysis is the measurement of the inclusive and purely electroweak production of dijets in association with a $Z$ boson, performed using the 3.2 $\\text{fb}^{-1}$ of data collected during collisions at a centre-of-mass energy of $\\sqrt{s}=$13 TeV in 2015. Cross-section ...
The interacting boson model with the high spin bosons
International Nuclear Information System (INIS)
Mizusaki, T.; Otsuka, T.; Yoshinaga, N.
1991-01-01
The phenomenological study in the Ra region was carried out from the view of the sdg-IBM2. The sdg hamiltonian whose parameters are almost kept constant for the isotopes can successfully describe the spherical-deformed phase transition of the Ra isotopes and the enhancement of the moment of inertia of the β band. We emphasize that the role of the g boson is important in the actinide region. (author)
G-Boson renormalizations and mixed symmetry states
International Nuclear Information System (INIS)
Scholten, O.
1986-01-01
In the IBA model the low-lying collective states are described in terms of a system of interacting s- and d-bosons. A boson can be interpreted as corresponding to collective J=0 or J=2 fermion pair states. As such the IBA model space can be seen as only a small subsector of the full shell model space. For medium heavy nuclei such a truncation of the model space is necessary to make calculations feasible. As is well known truncations of a model space make it necessary to renormalize the model parameters. In this work some renormalizations of the Hamiltonian and the E2 transition operator will be discussed. Special attention will be given to the implication of these renormalizations for the properties of mixed symmetry states. The effects of renormalization are obtained by considering the influence of fermion pair states that have been omitted from the model basis. Here the authors focus attention on the effect of the low-lying two particle J=4 state, referred to as g-boson or G-pair state. Renormalizations of the d-boson energy, the E2 effective charges, and symmetry force are discussed
Weak boson emission in hadron collider processes
International Nuclear Information System (INIS)
Baur, U.
2007-01-01
The O(α) virtual weak radiative corrections to many hadron collider processes are known to become large and negative at high energies, due to the appearance of Sudakov-like logarithms. At the same order in perturbation theory, weak boson emission diagrams contribute. Since the W and Z bosons are massive, the O(α) virtual weak radiative corrections and the contributions from weak boson emission are separately finite. Thus, unlike in QED or QCD calculations, there is no technical reason for including gauge boson emission diagrams in calculations of electroweak radiative corrections. In most calculations of the O(α) electroweak radiative corrections, weak boson emission diagrams are therefore not taken into account. Another reason for not including these diagrams is that they lead to final states which differ from that of the original process. However, in experiment, one usually considers partially inclusive final states. Weak boson emission diagrams thus should be included in calculations of electroweak radiative corrections. In this paper, I examine the role of weak boson emission in those processes at the Fermilab Tevatron and the CERN LHC for which the one-loop electroweak radiative corrections are known to become large at high energies (inclusive jet, isolated photon, Z+1 jet, Drell-Yan, di-boson, tt, and single top production). In general, I find that the cross section for weak boson emission is substantial at high energies and that weak boson emission and the O(α) virtual weak radiative corrections partially cancel
QCD calculation of π0γγ vertex at equal Euclidean q2 of both photons
International Nuclear Information System (INIS)
Voloshin, M.B.
1982-01-01
The form factor of the π 6 γγ vertex at equal space-like four- momentum q 2 of the photons (q 1 2 =q 2 2 =-Q 2 ) and a small four- momentum p 2 of the pion is calculated within QCD. Explicit expressions for leading perturbative and non perturbative preasymptotic corrections are derived. To find the latter correction matrix elements of operators of dimension d=5 between the pion and vacuum are calculated. The result for the form factor smoothly matches at Q 2 approximately 0.5 GeV 2 the estimate based on the vector mesom dominance model [ru
International Nuclear Information System (INIS)
Bernardin, J.D.; Bosze, E.
1997-10-01
This report presents a summary of an experimental investigation of a liquid cooling system for the low dropout voltage regulators in the multiplicity and vertex detector (MVD), a device used to determine and characterize the collision location of two accelerated heavy ions. The coolant temperatures and flow rates as well as the voltage regulator operating temperatures were used to assess and optimize the performance of the proposed cooling system, identify potential assembly problems and system limitations, and provide the necessary information for designing and sizing the final MVD cooling system components. The MVD is part of the PHENIX experiment at Brookhaven RHIC
2018-02-01
Information Directorate This report is published in the interest of scientific and technical information exchange, and its publication does not...the current prototype. 15. SUBJECT TERMS Vertex Nomination via Seeded Graph Matching (VN via SGM), Seeded Graph Matching (SGM), Vertex of Interest (VOI...Author’s Example ................................................................................................................. 4 4.2.2 Simple
A momentum space analysis of the Triple Pomeron Vertex in pQCD
International Nuclear Information System (INIS)
Bartels, J.
2007-10-01
We study properties of the momentum space Triple Pomeron Vertex in perturbative QCD. Particular attention is given to the collinear limit where transverse momenta on one side of the vertex are much larger than on the other side. We also comment on the kernels in nonlinear evolution equations. (orig.)
A momentum space analysis of the Triple Pomeron Vertex in pQCD
Energy Technology Data Exchange (ETDEWEB)
Bartels, J. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Kutak, K. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[Instytut Fizyki Jadrowej Polskiej Akademii Nauk, Krakow (Poland)
2007-10-15
We study properties of the momentum space Triple Pomeron Vertex in perturbative QCD. Particular attention is given to the collinear limit where transverse momenta on one side of the vertex are much larger than on the other side. We also comment on the kernels in nonlinear evolution equations. (orig.)
A quantum relativistic integrable model as the continuous limit of the six-vertex model
International Nuclear Information System (INIS)
Zhou, Y.K.
1992-01-01
The six-vertex model in two-dimensional statistical mechanics is used to construct the L-matrix of a one-dimensional quantum relativistic integrable model through a continuous limit. This is the first step to extend the method used earlier by the author to construct quantum completely integrable systems from other well-known two-dimensional vertex models. (orig.)
Rare decays of the Higgs boson with the CMS detector
Marini, Andrea Carlo
2018-01-01
The CMS collaboration reports the latest update on the searches of invisible and rare decays of the Higgs boson. The searches for the standard model Higgs boson decaying into two muons, for the standard model Higgs boson decaying into $\\ell\\ell\\gamma$, and for invisible decay of the Higgs boson in the vector boson fusion production channel are presented.
International Nuclear Information System (INIS)
Bronner, Johanna
2014-01-01
The vector boson fusion production rate of the Standard Model Higgs boson has been measured in decays into two W bosons, each subsequently decaying into an electron or muon and a neutrino, with the ATLAS detector at the Large Hadron Collider (LHC). The vector boson fusion production cross section in the Standard Model is about an order of magnitude smaller than the dominant Higgs boson production cross section from gluon fusion. Proton-proton collision data at a center-of-mass energy of 8 TeV delivered by the LHC recorded with the ATLAS detector corresponding to an integrated luminosity of 21 fb -1 have been analyzed. Motivated by the recent discovery of a Higgs-like boson with a mass of (125.5±0.6) GeV and (125.7±0.4) GeV by the ATLAS and CMS collaborations at the LHC, the analysis is optimized for this mass. An excess of events, compatible with the Standard Model expectation for a Higgs boson with m H =125 GeV, is observed with a significance of 2.8 standard deviations when compared to the background-only expectation. The corresponding signal strength, the observed event rate relative to the Standard Model prediction of m H =125 GeV is 2.1 -0.8 +1.0 . A Higgs boson produced via vector boson fusion is excluded with 95% confidence level in the mass range between 152 GeV and 185 GeV. When combined with measurements of other Higgs boson production and decay channels by ATLAS, evidence for vector boson fusion production with a significance of 3.3 standard deviations is observed. All measurements of Higgs boson couplings to Standard Model particles are in agreement with the predictions of the Standard Model.
A quantum hybrid with a thin antenna at the vertex of a wedge
Energy Technology Data Exchange (ETDEWEB)
Carlone, Raffaele, E-mail: raffaele.carlone@unina.it [Università “Federico II” di Napoli, Dipartimento di Matematica e Applicazioni “R. Caccioppoli”, MSA, via Cinthia, I-80126, Napoli (Italy); Posilicano, Andrea, E-mail: andrea.posilicano@uninsubria.it [DiSAT, Università dell' Insubria, via Valleggio 11, I-22100, Como (Italy)
2017-03-26
We study the spectrum, resonances and scattering matrix of a quantum Hamiltonian on a “hybrid surface” consisting of a half-line attached by its endpoint to the vertex of a concave planar wedge. At the boundary of the wedge, outside the vertex, homogeneous Dirichlet conditions are imposed. The system is tunable by varying the measure of the angle at the vertex. - Highlights: • Spectral characterization of a quantum Hamiltonian on “hybrid surface” consisting of a halfline attached to the vertex of a concave planar wedge. • The system is tunable by varying the measure of the angle at the vertex. • Relation between the conduction properties inside the hybrid and formation of resonances. • Easy generalization of the results to more complicated structures.
The scalar-photon 3-point vertex in massless quenched scalar QED
International Nuclear Information System (INIS)
Concha-Sánchez, Y; Gutiérrez-Guerrero, L X; Fernández-Rangel, L A
2016-01-01
Non perturbative studies of Schwinger-Dyson equations (SDEs) require their infinite, coupled tower to be truncated in order to reduce them to a practically solvable set. In this connection, a physically acceptable ansatz for the three point vertex is the most favorite choice. Scalar quantum electrodynamics (sQED) provides a simple and neat platform to address this problem. The most general form of the scalar-photon three point vertex can be expressed in terms of only two independent form factors, longitudinal and transverse. Ball and Chiu have demonstrated that the longitudinal vertex is fixed by requiring the Ward-Fradkin-Green- Takahashi identity (WFGTI), while the transverse vertex remains undetermined. In massless quenched sQED, we propose the transverse part of the non perturbative scalar-photon vertex. (paper)
Spherical Parametrization of the Higgs Boson Candidate
Gainer, James S; Matchev, Konstantin T; Mrenna, Stephen; Park, Myeonghun
2013-01-01
The latest results from the ATLAS and CMS experiments at the CERN Large Hadron Collider (LHC) unequivocally confirm the existence of a resonance, $X$, with mass near 125 GeV which could be the Higgs boson of the Standard Model. Measuring the properties (quantum numbers and couplings) of this resonance is of paramount importance. Initial analyses by the LHC collaborations disfavor specific alternative benchmark hypotheses, e.g. pure pseudoscalars or gravitons. However, this is just the first step in a long-term program of detailed measurements. We consider the most general set of operators in the decay channels $X \\to ZZ$, $WW$, $Z\\gamma$, $\\gamma\\gamma$ and derive the constraint implied by the measured rate. This allows us to provide a useful parametrization of the orthogonal independent Higgs coupling degrees of freedom as coordinates on a suitably defined sphere.
Introduction to bosonic string theory
Energy Technology Data Exchange (ETDEWEB)
Nunez, Carmen [Instituto de Astronomia y Fisica del Espacio, Buenos Aires (Argentina)], e-mail: carmen@iafe.uba.ar
2009-07-01
This is an introductory set of five lectures on bosonic string theory. The first one deals with the classical theory of bosonic strings. The second and third lectures cover quantization. Three basic quantization methods are sketched: the old covariant formalism, the light-cone gauge quantization, where the spectrum is derived and the Polyakov path integral formalism and in particular the partition function at one loop. Finally, the last lecture covers interactions, low energy effective action, the general idea of compactification and in particular toroidal compactification. The notes are based on books by Green, Schwarz and Witten, Polchinski, Lust and Theissen and Kaku and review papers by D'Hocker and Phong and O. Alvarez. (author)
Sharma, Vivek
2016-01-01
The recent observation of the Higgs boson has been hailed as the scientific discovery of the century and led to the 2013 Nobel Prize in physics. This book describes the detailed science behind the decades-long search for this elusive particle at the Large Electron Positron Collider at CERN and at the Tevatron at Fermilab and its subsequent discovery and characterization at the Large Hadron Collider at CERN. Written by physicists who played leading roles in this epic search and discovery, this book is an authoritative and pedagogical exposition of the portrait of the Higgs boson that has emerged from a large number of experimental measurements. As the first of its kind, this book should be of interest to graduate students and researchers in particle physics.
Distinguishing a SM-like MSSM Higgs boson from SM Higgs boson at muon collider
International Nuclear Information System (INIS)
Singhal, Jai Kumar; Singh, Sardar; Nagawat, Ashok K.
2007-01-01
We explore the possibility of distinguishing the SM-like MSSM Higgs boson from the SM Higgs boson via Higgs boson pair production at future muon collider. We study the behavior of the production cross-section in SM and MSSM with Higgs boson mass for various MSSM parameters tanβ and m A . We observe that at fixed CM energy, in the SM, the total cross-section increases with the increase in Higgs boson mass whereas this trend is reversed for the MSSM. The changes that occur for the MSSM in comparison to the SM predictions are quantified in terms of the relative percentage deviation in cross-section. The observed deviations in cross-section for different choices of Higgs boson masses suggest that the measurements of the cross-section could possibly distinguish the SM-like MSSM Higgs boson from the SM Higgs boson. (author)
International Nuclear Information System (INIS)
Djouadi, A.; Leike, A.; Riemann, T.; Schaile, D.; Verzegnassi, C.
1991-12-01
We analyze signals of additional neutral gauge bosons originating from E 6 and Left-Right models, at a future e + e - collider with 500 GeV c.m. energy. Radiative corrections as well as the experimental situation are taken into account. We show that masses considerably higher than the total energy can be probed, and that a discrimination between theoretical models is possible. (orig.)
Phenomenology of the Higgs boson
International Nuclear Information System (INIS)
Ali, A.
1981-09-01
The phenomenology of the standard Weinberg-Salam Higgs boson is reviewed with particular emphasis on production mechanisms in high energy e + e - and hadron-hadron collisions. The production processes relevant for the ISABELLE and TEVATRON energies are discussed and their backgrounds estimated. It is argued that the toponium production and radiative decay provides the most hopeful reaction to detect a Higgs in both the e + e - and the hadron-hadron machines. (orig.)
Domains of bosonic functional integrals
International Nuclear Information System (INIS)
Botelho, Luiz C.L.; Para Univ., Belem, PA
1998-07-01
We propose a mathematical framework for bosonic Euclidean quantum field functional integrals based on the theory of integration on the dual algebraic vector space of classical field sources. We present a generalization of the Minlos-Dao Xing theorem and apply it to determine exactly the domain of integration associated to the functional integral representation of the two-dimensional quantum electrodynamics Schwinger generating functional. (author)
Barbieri, Riccardo; Kannike, Kristjan; Sala, Filippo; Tesi, Andrea
2013-01-01
Now that one has been found, the search for signs of more scalars is a primary task of current and future experiments. In the motivated hypothesis that the extra Higgs bosons of the next-to-minimal supersymmetric Standard Model (NMSSM) be the lightest new particles around, we outline a possible overall strategy to search for signs of the CP-even states. This work complements Ref. arXiv:1304.3670.
Electroweak boson production at LHCb
Sestini, Lorenzo
2018-01-01
The LHCb experiment offers a complementary phase space to ATLAS and CMS to study electroweak processes, thanks to the forward acceptance and the large bandwidth of the trigger allowing low energy thresholds. For this reason electroweak measurements at LHCb can provide unique constraints to the Parton Distribution Functions. Moreover these measurements can be used to validate reconstruction techniques. In these proceedings the latest measurements on W and Z bosons production performed during the LHC Run I and Run II data taking are presented.
Finding the Higgs boson: A status report
International Nuclear Information System (INIS)
Dawson, S.
1995-01-01
The search for the Higgs boson of the minimal Standard Model has been a major focus of experimental high energy physics for some years now. Here, the authors review the current experimental limits and discuss the prospects for finding the Higgs boson at future accelerators, such as LEPII and the LHC. They consider only the Standard Model Higgs boson. Since a null result which definitively excluded a Higgs boson below some mass scale would be extremely important, they emphasize the case where the Higgs boson is much heavier than the relevant collider energy (or where there is no Higgs boson at all). Many of the results given here are a summary of those obtained by the DPF Committee on Long Term Planning
CMS standard model Higgs boson results
Directory of Open Access Journals (Sweden)
Garcia-Abia Pablo
2013-11-01
Full Text Available In July 2012 CMS announced the discovery of a new boson with properties resembling those of the long-sought Higgs boson. The analysis of the proton-proton collision data recorded by the CMS detector at the LHC, corresponding to integrated luminosities of 5.1 fb−1 at √s = 7 TeV and 19.6 fb−1 at √s = 8 TeV, confirm the Higgs-like nature of the new boson, with a signal strength associated with vector bosons and fermions consistent with the expectations for a standard model (SM Higgs boson, and spin-parity clearly favouring the scalar nature of the new boson. In this note I review the updated results of the CMS experiment.
Seeking heavy Higgs bosons through cascade decays
Coleppa, Baradhwaj; Fuks, Benjamin; Poulose, P.; Sahoo, Shibananda
2018-04-01
We investigate the LHC discovery prospects for a heavy Higgs boson decaying into the standard model Higgs boson and additional weak bosons. We consider a generic model-independent new physics configuration where this decay proceeds via a cascade involving other intermediate scalar bosons and focus on an LHC final-state signature comprised either of four b -jets and two charged leptons or of four charged leptons and two b -jets. We design two analyses of the corresponding signals, and demonstrate that a 5 σ discovery at the 14 TeV LHC is possible for various combinations of the parent and daughter Higgs-boson masses. We moreover find that the standard model backgrounds can be sufficiently rejected to guarantee the reconstruction of the parent Higgs boson mass. We apply our analyses to the Type-II two-Higgs-doublet model and identify the regions of the parameter space to which the LHC is sensitive.
Energy Technology Data Exchange (ETDEWEB)
Kareem, Mohammad Jawad
2017-04-20
Precise measurements of the properties of the top quark allow for testing the Standard Model (SM) and can be used to constrain new physics models. The top quark is predicted in the SM to decay almost exclusively to a W boson and b-quark. Thus, studying the Wtb vertex structure at high precision and in detail is motivated. This thesis presents a measurement of the W boson helicity fractions in top quark decays with t anti t events in the lepton+jets final state using proton-proton collisions at a centre-of-mass energy of √(s)=8 TeV recorded in 2012 with the ATLAS detector at the LHC. The data sample corresponds to an integrated luminosity of 20.2 fb{sup -1}. The angular distribution of two different analysers, the charged lepton and the down-type quark in the W boson rest frame are used to measure the helicity fractions. The most precise measurement is obtained from the leptonic analyser and events which contain at least two b-quark tagged jets. The results of F{sub 0}=0.709±0.012 (stat.+bkg. norm.){sup +0.015}{sub -0.014}(syst.), F{sub L}=0.299±0.008 (stat.+bkg. norm.){sup +0.013}{sub -0.012}(syst.), F{sub R}=-0.008±0.006 (stat.+bkg. norm.)±0.012(syst.), which stand for longitudinal, left- and right-handed W boson helicity fractions respectively, are obtained by performing a combined fit of electron+jets and muon+jets channels to data. The measured helicity fractions are consistent with the Standard Model prediction. As the polarisation state of the W boson in top quark decays is sensitive to the Wtb vertex structure, limits on anomalous Wtb couplings are set.
Symmetry breaking and scalar bosons
International Nuclear Information System (INIS)
Gildener, E.; Weinberg, S.
1976-01-01
There are reasons to suspect that the spontaneous breakdown of the gauge symmetries of the observed weak and electromagnetic interactions may be produced by the vacuum expectation values of massless weakly coupled elementary scalar fields. A method is described for finding the broken-symmetry solutions of such theories even when they contain arbitrary numbers of scalar fields with unconstrained couplings. In any such theory, there should exist a number of heavy Higgs bosons, with masses comparable to the intermediate vector bosons, plus one light Higgs boson, or ''scalon'' with mass of order αG/sub F/sub 1/2/. The mass and couplings of the scalon are calculable in terms of other masses, even without knowing all the details of the theory. For an SU(2) direct-product U(1) model with arbitrary numbers of scalar isodoublets, the scalon mass is greater than 5.26 GeV; a likely value is 7--10 GeV. The production and decay of the scalon are briefly considered. Some comments are offered on the relation between the mass scales associated with the weak and strong interactions
Bosonization of free Weyl fermions
Marino, E. C.
2017-03-01
We generalize the method of bosonization, in its complete form, to a spacetime with 3 + 1 dimensions, and apply it to free Weyl fermion fields, which thereby, can be expressed in terms of a boson field, namely the Kalb-Ramond anti-symmetric tensor gauge field. The result may have interesting consequences both in condensed matter and in particle physics. In the former, the bosonized form of the Weyl chiral currents provides a simple explanation for the angle-dependent magneto-conductance recently observed in materials known as Weyl semimetals. In the latter, conversely, since electrons can be thought of as a combination of left and right Weyl fermions, our result suggests the possibility of a unified description of the elementary particles, which undergo the fundamental interactions, with the mediators of such interactions, namely, the gauge fields. This would fulfill the pioneering attempt of Skyrme, to unify the particles with their interaction mediators (Skyrme 1962 Nucl. Phys. 31 556).
Vertex measurement at a hadron collider. The ATLAS pixel detector
International Nuclear Information System (INIS)
Grosse-Knetter, J.
2008-03-01
The ATLAS Pixel Detector is the innermost layer of the ATLAS tracking system and will contribute significantly to the ATLAS track and vertex reconstruction. The detector consists of identical sensor-chip-hybrid modules, arranged in three barrels in the centre and three disks on either side for the forward region. The position of the Pixel Detector near the interaction point requires excellent radiation hardness, fast read-out, mechanical and thermal robustness, good long-term stability, all combined with a low material budget. The new design concepts used to meet the challenging requirements are discussed with their realisation in the Pixel Detector, followed by a description of a refined and extensive set of measurements to assess the detector performance during and after its construction. (orig.)