WorldWideScience

Sample records for borophosphates

  1. Surface degradation behaviour of sodium borophosphate glass in ...

    Indian Academy of Sciences (India)

    Administrator

    corrosion mechanism were different in acid and alkali media. Keywords. Borophosphate glass; surface degradation; aqueous media. 1. Introduction. Phosphate glasses and glass–ceramics are useful for appli- cations such as bone transplantation, glass–to–metal seals, containment of radioactive wastes, fast ion conduc-.

  2. Spectral studies on CuO in sodium–calcium borophosphate glasses

    Indian Academy of Sciences (India)

    Abstract. Transparent borophosphate glasses doped with CuO were prepared by melt quenching technique. X-ray diffraction (XRD), optical and luminescence properties of sodium–calcium borophosphate glasses doped with. CuO have been studied. The XRD results showed the amorphous nature of the sample.

  3. Structural and topological aspects of borophosphate glasses and their relation to physical properties

    DEFF Research Database (Denmark)

    Hermansen, Christian; Youngman, R.E.; Wang, J.

    2015-01-01

    We establish a topological model of alkali borophosphate and calcium borophosphate glasses that describes both the effect of the network formers and network modifiers on physical properties. We show that the glass transition temperature (Tg), Vickers hardness (HV), liquid fragility (m) and isobaric....... The origin of the effect of the type of network modifying oxide on Tg, HV, m and ΔCp of calcium borophosphate glasses is revealed in terms of the modifying ion sub-network. The same topological principles quantitatively explain the significant differences in physical properties between the alkali...... and the calcium borophosphate glasses. This work has implications for quantifying structure-property relations in complex glass forming systems containing several types of network forming and modifying oxides....

  4. Comparative investigation on the spectroscopic properties of Pr3+-doped boro-phosphate, boro-germo-silicate and tellurite glasses

    Science.gov (United States)

    Zhang, Liaolin; Dong, Guoping; Peng, Mingying; Qiu, Jianrong

    We report on the spectroscopic properties of Pr3+-doped boro-phosphate, boro-germo-silicate and tellurite glasses. The stimulated absorption and emission cross sections were estimated. Only one emission at 596 nm and 605 nm is observed in Pr3+-doped boro-phosphate and boro-germo-silicate glasses, respectively, while three emissions at 605 nm, 612 nm and 645 nm are observed in Pr3+-doped tellurite glass when excited at 467 nm. The fluorescence lifetime at 600 nm in Pr3+-doped boro-phosphate, boro-germo-silicate and tellurite glasses is 137 μs, 73 μs and 51 μs, respectively. The emissions from Pr3+-doped boro-phosphate, boro-germo-silicate and tellurite glasses show different decay behaviors and can be well explained by multiphonon relaxation theory.

  5. Dynamic and Mechanical Properties of Calcium Borophosphate Glasses in Relation to Structure and Topology

    DEFF Research Database (Denmark)

    Hermansen, Christian; Yue, Yuanzheng

    because both end-members form glasses and the CaO/P2O5 ratio (which is related to bioactivity) varies from unity to infinity across the join. We explore the composition and structure dependence of the glass transition temperature, kinetic fragility, indentation hardness, and glass stability. We also study......Calcium borophosphate glasses and glass ceramics are of interest as bone-replacement implants as they can bond to bone through an apatite layer, and dissolve in vitro at a rate comparable to the growth rate of natural bone. We investigate the pseudo-binary join between CaO•P2O5 and CaO•2B2O3...... the crystallization behavior of this glass series. The compositional variation of these properties is analyzed using the Phillips-Thorpe rigidity percolation paradigm and the temperature dependent constraint theory. This analysis gives insight into the link between properties and composition in borophosphate glasses....

  6. Comparative investigation on the spectroscopic properties of Pr³⁺-doped boro-phosphate, boro-germo-silicate and tellurite glasses.

    Science.gov (United States)

    Zhang, Liaolin; Dong, Guoping; Peng, Mingying; Qiu, Jianrong

    2012-07-01

    We report on the spectroscopic properties of Pr(3+)-doped boro-phosphate, boro-germo-silicate and tellurite glasses. The stimulated absorption and emission cross sections were estimated. Only one emission at 596 nm and 605 nm is observed in Pr(3+)-doped boro-phosphate and boro-germo-silicate glasses, respectively, while three emissions at 605 nm, 612 nm and 645 nm are observed in Pr(3+)-doped tellurite glass when excited at 467 nm. The fluorescence lifetime at 600 nm in Pr(3+)-doped boro-phosphate, boro-germo-silicate and tellurite glasses is 137 μs, 73 μs and 51 μs, respectively. The emissions from Pr(3+)-doped boro-phosphate, boro-germo-silicate and tellurite glasses show different decay behaviors and can be well explained by multiphonon relaxation theory. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Glass transition temperature and conductivity in Li2O and Na2O doped borophosphate glasses

    Science.gov (United States)

    Ashwajeet, J. S.; Sankarappa, T.; Ramanna, R.; Sujatha, T.; Awasthi, A. M.

    2015-08-01

    Two alkali doped Borophosphate glasses in the composition, (B2O3)0.2. (P2O5)0.3. (Na2O)(0.5-x). (Li2O)x, where x = 0.05 to 0.50 were prepared by standard melt quenching method at 1200K. Non-crystalline nature was confirmed by XRD studies. Room temperature density was measured by Archimedes principle. DC conductivity in the temperature range from 300K to 575K has been measured. Samples were DSC studied in the temperature range from 423K to 673K and glass transition temperature was determined. Glass transition temperature passed through minima for Li2O con.2centration between 0.25 and 0.30 mole fractions. Activation energy of conduction has been determined by analyzing temperature variation of conductivity determining Arrhenius law. Conductivity passed through minimum and activation passed through maximum for Li2O content from 0.25 to 0.30 mole fractions. Glass transition temperature passed through minimum for the same range of Li2O content. These results revealed mixed alkali effect taking place in these glasses. It is for the first time borophosphate glasses doped with Li2O and Na2O have been studied for density and dc conductivity and, the mixed alkali effect (MAE) has been observed.

  8. Concentration dependent spectroscopic properties of Dy3+ ions doped boro-phosphate glasses

    Science.gov (United States)

    Mariyappan, M.; Marimuthu, K.

    2016-05-01

    Dy3+ ions doped boro-phosphate glasses have been synthesized by melt quenching method and characterized through FTIR, absorption and luminescence spectral measurements. The presence of various stretching and bending vibrations of different borate and phosphate groups were identified from the FTIR spectra. In order to examine the electronic band structure of the studied glasses, Optical energy gap (Eopt) and Urbach energy (ΔE) values were estimated from the absorption spectra. The Judd-Ofelt (JO) intensity parameters were calculated to examine the symmetry of the ligand environment around the Dy3+ ions site. The emission spectra exhibit two intense emission bands at around 482 nm (blue) and 574 nm (yellow) corresponding to the 4F9/2→6H15/2 and 4F9/2→6H13/2 transitions respectively. The emission spectra were characterized through Commission International d'Eclairage (CIE) 1931 chromaticity diagram to explore its suitability for WLED applications.

  9. Influence of silver nanoparticles on the spectroscopic properties of Sm3+ doped boro-phosphate glasses

    Science.gov (United States)

    Suthanthirakumar, P.; Marimuthu, K.

    2016-05-01

    The Sm3+ doped novel boro-phosphate glasses containing silver nanoparticles (NPs) (SmBPxA) have been prepared following the melt quenching technique and their structural and spectroscopic behavior were studied through HR-TEM, optical absorption and photoluminescence spectral measurements. The TEM analysis validates the existence of Ag NPs with an average diameter of ~8 nm. The Surface plasmon resonance (SPR) band of silver NPs was found at around 600 nm from the absorption spectrum of the Sm3+ ions free glass sample. The optical band gap energy (Eopt) corresponding to the direct and indirect allowed transitions and the Urbach energy (ΔE) values were determined from the absorption spectral measurements. The luminescence intensity is found to get enhance when the Ag NPs were embedded along with the Sm3+ ions in the prepared glasses due to the local electric field effect around the rare earth (RE) ion site produced by the SPR of Ag NPs.

  10. Fabrication of optical fiber of zinc tin borophosphate glass with zero photoelastic constant

    Science.gov (United States)

    Saitoh, Akira; Oba, Yuya; Takebe, Hiromichi

    2015-10-01

    An optical fiber made of zinc tin boro-phosphate glass having a zero photoelastic constant, good water durability, and excluding hazardous elements was drawn from a prepared preform for use in a fiber-type current sensor device. The proposed cladding compositions enable single-mode propagation for a wavelength of 1550 nm, which is estimated from the difference in the refractive index between the core and cladding compositions. The drawing conditions should be controlled since the multiple-component glass is very sensitive to changes in viscosity and crystal precipitation during the heat-treated stretching of the preform. The temperature dependence of viscosity in the core and cladding reveals the feasibility of drawing.

  11. Novel fundamental building blocks and site dependent isomorphism in the first actinide borophosphates.

    Science.gov (United States)

    Wu, Shijun; Polinski, Matthew J; Malcherek, Thomas; Bismayer, Ulrich; Klinkenberg, Martina; Modolo, Giuseppe; Bosbach, Dirk; Depmeier, Wulf; Albrecht-Schmitt, Thomas E; Alekseev, Evgeny V

    2013-07-15

    Three novel uranyl borophosphates, Ag2(NH4)3[(UO2)2{B3O(PO4)4(PO4H)2}]H2O (AgNBPU-1), Ag(2-x)(NH4)3[(UO2)2{B2P5O(20-x)(OH)x}] (x = 1.26) (AgNBPU-2), and Ag(2-x)(NH4)3[(UO2)2{B2P(5-y)AsyO(20-x)(OH)x}] (x = 1.43, y = 2.24) (AgNBPU-3), have been prepared by the H3BO3-NH4H2PO4/NH4H2AsO4 flux method. The structure of AgNBPU-1 has an unprecedented fundamental building block (FBB), composed of three BO4 and six PO4 tetrahedra which can be written as 9□:[Φ] □□|□□|□□|. Two Ag atoms are linearly coordinated; the coordination of a third one is T-shaped. AgNBPU-2 and AgNBPU-3 are isostructural and possess a FBB of two BO4 and five TO4 (T = P, As) tetrahedra (7□:□□|□). AgNBPU-3 is a solid solution with some PO4 tetrahedra of the AgNBPU-2 end-member being substituted by AsO4. Only two out of the three independent P positions are partially occupied by As, resulting in site dependent isomorphism. The three compounds represent the first actinide borophosphates.

  12. New bismuth borophosphate Bi4BPO10: Synthesis, crystal structure, optical and band structure analysis

    International Nuclear Information System (INIS)

    Babitsky, Nicolay A.; Leshok, Darya Y.; Mikhaleva, Natalia S.; Kuzubov, Aleksandr A.; Zhereb, Vladimir P.; Kirik, Sergei D.

    2015-01-01

    New bismuth borophosphate Bi 4 BPO 10 was obtained by spontaneous crystallization from the melt of correspondent composition at 804 °C. Crystal structure with orthorhombic lattice parameters: a = 22.5731(3) Å, b = 14.0523(2) Å, c = 5.5149(1) Å, V = 1749.34(4), Z = 8, SG Pcab was determined by X-ray powder diffraction technique. The [Bi 2 O 2 ] 2+ -layers, which are typical for bismuth oxide compounds, transform into cationic endless strips of 4 bismuth atoms width directed along the c-axis in Bi 4 BPO 10 . The strips combining stacks are separated by flat triangle [BO 3 ] 3− -anions within stacks. Neighboring stacks are separated by tetrahedral [PO 4 ] 3− -anions and shifted relatively to each other. Bismuth atoms are placed in 5–7 vertex oxygen irregular polyhedra. Bi 4 BPO 10 is stable up to 812 °C, then melts according to the peritectic law. The absorption spectrum in the range 350–700 nm was obtained and the width of the forbidden band was estimated as 3.46 eV. The band electronic structure of Bi 4 BPO 10 was modeled using DFT approach. The calculated band gap (3.56 eV) is in good agreement with the experimentally obtained data. - Graphical abstract: Display Omitted - Highlights: • New bismuth borophosphate with composition Bi 4 BPO 10 was synthesized. • The crystal structure was determined by X-ray powder diffraction technique. • Bismuth-oxygen part [Bi 4 O 3 ] 6+ forms endless strips of 4 bismuth atoms width. • Electronic structure was modeled by DFT method. • The calculated band gap (3.56 eV) is very close to the experimental one (3.46 eV)

  13. Investigations on optical properties of Sm3+ ion doped boro-phosphate glasses

    Science.gov (United States)

    Vijayakumar, R.; Suthanthirakumar, P.; Karthikeyan, P.; Marimuthu, K.

    2015-06-01

    The Sm3+ doped Boro-phosphate glasses with the chemical composition 60H3BO3+20Li2CO3+10ZnO+(10-x) H6NO4P+xSm2O3 (where x= 0.1, 0.5, 1 and 2 in wt%) have been prepared by melt quenching technique. The prepared glasses were characterized through optical absorption and luminescence spectral measurements. The band gap energies corresponding to the direct and indirect allowed transitions and the Urbach's energy values were estimated from the absorption spectra. Judd-Ofelt intensity parameters have been derived to predict the radiative properties of the various emission transitions. In order to identify the emission color of the prepared glasses, the emission intensities were analyzed using CIE 1931 color chromaticity diagram. The energy transfer process takes place between Sm3+-Sm3+ ions through cross-relaxation mechanism have also been investigated and the results were discussed and reported.

  14. Concentration dependent spectroscopic properties of Dy{sup 3+} ions doped boro-phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Mariyappan, M.; Marimuthu, K., E-mail: mari-ram2000@yahoo.com [Department of Physics, Gandhigram Rural Institute - Deemed University, Gandhigram – 624 302 (India)

    2016-05-23

    Dy{sup 3+} ions doped boro-phosphate glasses have been synthesized by melt quenching method and characterized through FTIR, absorption and luminescence spectral measurements. The presence of various stretching and bending vibrations of different borate and phosphate groups were identified from the FTIR spectra. In order to examine the electronic band structure of the studied glasses, Optical energy gap (E{sub opt}) and Urbach energy (ΔE) values were estimated from the absorption spectra. The Judd-Ofelt (JO) intensity parameters were calculated to examine the symmetry of the ligand environment around the Dy{sup 3+} ions site. The emission spectra exhibit two intense emission bands at around 482 nm (blue) and 574 nm (yellow) corresponding to the {sup 4}F{sub 9/2}→{sup 6}H{sub 15/2} and {sup 4}F{sub 9/2}→{sup 6}H{sub 13/2} transitions respectively. The emission spectra were characterized through Commission International d’Eclairage (CIE) 1931 chromaticity diagram to explore its suitability for WLED applications.

  15. Investigations on optical properties of Sm{sup 3+} ion doped boro-phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Vijayakumar, R.; Suthanthirakumar, P.; Karthikeyan, P.; Marimuthu, K., E-mail: mari-ram2000@yahoo.com [Department of Physics, Gandhigram Rural Institute – Deemed University, Gandhigram – 624302 (India)

    2015-06-24

    The Sm{sup 3+} doped Boro-phosphate glasses with the chemical composition 60H{sub 3}BO{sub 3}+20Li{sub 2}CO{sub 3}+10ZnO+(10−x) H{sub 6}NO{sub 4}P+xSm{sub 2}O{sub 3} (where x= 0.1, 0.5, 1 and 2 in wt%) have been prepared by melt quenching technique. The prepared glasses were characterized through optical absorption and luminescence spectral measurements. The band gap energies corresponding to the direct and indirect allowed transitions and the Urbach’s energy values were estimated from the absorption spectra. Judd-Ofelt intensity parameters have been derived to predict the radiative properties of the various emission transitions. In order to identify the emission color of the prepared glasses, the emission intensities were analyzed using CIE 1931 color chromaticity diagram. The energy transfer process takes place between Sm{sup 3+}−Sm{sup 3+} ions through cross-relaxation mechanism have also been investigated and the results were discussed and reported.

  16. Novel selenium containing boro-phosphate glasses: Preparation and structural study

    International Nuclear Information System (INIS)

    Ciceo-Lucacel, R.; Radu, T.; Ponta, O.; Simon, V.

    2014-01-01

    We synthesized a new boro-phosphate glass system with different %mol SeO 2 content by conventional melt quenching technique. All samples were obtained in a glassy state with the vitreous structure confirmed by X-ray diffraction analysis. Scanning electron microscopy (SEM) revealed some non-homogeneous domains on the glasses surface, and their tendency to link each other once the selenium oxide content increases. Energy-dispersive X-ray analysis (EDAX) indicated similar elemental composition in different regions of each sample. X-ray photoelectron spectroscopy (XPS) was used to determine the nature of chemical bonding and the elemental composition at the sample surfaces, and Fourier transform infrared (FT-IR) spectroscopy was used to determine the structural groups in the obtained glass structure. Based on FT-IR results, the glass structure at short range order consists mainly of small phosphate units such as pyrophosphate (i.e. P 2 O 7 4− dimmers or terminating groups at the end of phosphate chains) and some metaphosphate (i.e. PO 3 − middle groups in the phosphate chains) units. The boron atoms are mainly placed in three-coordinated sites in BØ 3 or BØ 2 O − units. A small contribution of BØ 4 − units was also detected from the FT-IR spectra of glasses. For SeO 2 content higher than 5 mol%, the modifier role of selenium ions is strongly reflected on the local structure dominated in this case by pyrophosphate units. - Highlights: • New P 2 O 5 -CaO-B 2 O 3 -SeO 2 glasses synthesized by conventional melt quenching method. • Evidences for the Se ions modifier role in the local structure by FT-IR and XPS. • Significant advances in understanding the structural properties of the new system

  17. Novel selenium containing boro-phosphate glasses: preparation and structural study.

    Science.gov (United States)

    Ciceo-Lucacel, R; Radu, T; Ponta, O; Simon, V

    2014-06-01

    We synthesized a new boro-phosphate glass system with different %mol SeO2 content by conventional melt quenching technique. All samples were obtained in a glassy state with the vitreous structure confirmed by X-ray diffraction analysis. Scanning electron microscopy (SEM) revealed some non-homogeneous domains on the glasses surface, and their tendency to link each other once the selenium oxide content increases. Energy-dispersive X-ray analysis (EDAX) indicated similar elemental composition in different regions of each sample. X-ray photoelectron spectroscopy (XPS) was used to determine the nature of chemical bonding and the elemental composition at the sample surfaces, and Fourier transform infrared (FT-IR) spectroscopy was used to determine the structural groups in the obtained glass structure. Based on FT-IR results, the glass structure at short range order consists mainly of small phosphate units such as pyrophosphate (i.e. P2O7(4-) dimmers or terminating groups at the end of phosphate chains) and some metaphosphate (i.e. PO3(-) middle groups in the phosphate chains) units. The boron atoms are mainly placed in three-coordinated sites in BØ3 or BØ2O(-) units. A small contribution of BØ4(-) units was also detected from the FT-IR spectra of glasses. For SeO2 content higher than 5mol%, the modifier role of selenium ions is strongly reflected on the local structure dominated in this case by pyrophosphate units. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Structural and luminescence properties of Mn2+ ions doped calcium zinc borophosphate glasses

    International Nuclear Information System (INIS)

    Wan, Ming Hua; Wong, Poh Sum; Hussin, Rosli; Lintang, Hendrik O.; Endud, Salasiah

    2014-01-01

    Highlights: • FT-IR revealed that the network structures are from borate and phosphate network. • The PL spectrum exhibits a green emission band at 582 nm ( 4 T 1g → 6 A 1g ). • As the concentration of Mn 2+ ions is increased, the emission band had been red shifted. • These glasses are found to have potential applications as luminescent optical materials. - Abstract: Calcium zinc borophosphate glasses (CaZnBP) doped with various concentrations of Mn 2+ ions and borate and phosphate as variable were prepared using conventional melt quenching technique. The structure of obtained glasses were examined by means of use: X-ray diffraction (XRD) and fourier transform infrared (FT-IR). XRD analysis confirmed amorphous nature of glass samples. The FT-IR spectra reveals the presence of both borate and phosphate vibrational modes in the prepared glasses. The doping of Mn 2+ ions (2–10 mol%) shows no significant changes in the main IR vibrational bands. Optical properties were studied by measuring the near infrared photoluminescence (PL) spectra. CaZnBP glasses exhibited intense green emission peak (582 nm) (tetrahedral symmetry), which is assigned to a transition from the upper 4 T 1g → 6 A 1g ground state of Mn 2+ ions. As the concentration of Mn 2+ ions increases, the emission band increases from 582 nm to 650 nm and exhibited a red light emission (octahedral symmetry). The decay curves of 4 T 1g level were examined for all concentrations and the measured lifetimes are found to depend strongly on Mn 2+ concentrations. From the emission characteristic parameters of 6 A 1g (S) level, it shows that the CaZnBP glasses could have potential applications as luminescent optical materials, visible lasers and fluorescent display devices

  19. Structural and luminescence properties of Mn{sup 2+} ions doped calcium zinc borophosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Ming Hua, E-mail: wanminghua819@gmail.com [Phosphor Research Group, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor (Malaysia); Wong, Poh Sum, E-mail: pohsumwong@gmail.com [Phosphor Research Group, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor (Malaysia); Hussin, Rosli, E-mail: roslihussin@utm.my [Phosphor Research Group, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor (Malaysia); Lintang, Hendrik O., E-mail: hendrik@ibnusina.utm.my [Catalytic Science and Technology (CST) Research Group, Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, Skudai 81310, Johor (Malaysia); Endud, Salasiah, E-mail: salasiah@kimia.fs.utm.my [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia)

    2014-05-15

    Highlights: • FT-IR revealed that the network structures are from borate and phosphate network. • The PL spectrum exhibits a green emission band at 582 nm ({sup 4}T{sub 1g} → {sup 6}A{sub 1g}). • As the concentration of Mn{sup 2+} ions is increased, the emission band had been red shifted. • These glasses are found to have potential applications as luminescent optical materials. - Abstract: Calcium zinc borophosphate glasses (CaZnBP) doped with various concentrations of Mn{sup 2+} ions and borate and phosphate as variable were prepared using conventional melt quenching technique. The structure of obtained glasses were examined by means of use: X-ray diffraction (XRD) and fourier transform infrared (FT-IR). XRD analysis confirmed amorphous nature of glass samples. The FT-IR spectra reveals the presence of both borate and phosphate vibrational modes in the prepared glasses. The doping of Mn{sup 2+} ions (2–10 mol%) shows no significant changes in the main IR vibrational bands. Optical properties were studied by measuring the near infrared photoluminescence (PL) spectra. CaZnBP glasses exhibited intense green emission peak (582 nm) (tetrahedral symmetry), which is assigned to a transition from the upper {sup 4}T{sub 1g} → {sup 6}A{sub 1g} ground state of Mn{sup 2+} ions. As the concentration of Mn{sup 2+} ions increases, the emission band increases from 582 nm to 650 nm and exhibited a red light emission (octahedral symmetry). The decay curves of {sup 4}T{sub 1g} level were examined for all concentrations and the measured lifetimes are found to depend strongly on Mn{sup 2+} concentrations. From the emission characteristic parameters of {sup 6}A{sub 1g} (S) level, it shows that the CaZnBP glasses could have potential applications as luminescent optical materials, visible lasers and fluorescent display devices.

  20. Novel selenium containing boro-phosphate glasses: Preparation and structural study

    Energy Technology Data Exchange (ETDEWEB)

    Ciceo-Lucacel, R.; Radu, T., E-mail: teodora.radu@phys.ubbcluj.ro; Ponta, O.; Simon, V.

    2014-06-01

    We synthesized a new boro-phosphate glass system with different %mol SeO{sub 2} content by conventional melt quenching technique. All samples were obtained in a glassy state with the vitreous structure confirmed by X-ray diffraction analysis. Scanning electron microscopy (SEM) revealed some non-homogeneous domains on the glasses surface, and their tendency to link each other once the selenium oxide content increases. Energy-dispersive X-ray analysis (EDAX) indicated similar elemental composition in different regions of each sample. X-ray photoelectron spectroscopy (XPS) was used to determine the nature of chemical bonding and the elemental composition at the sample surfaces, and Fourier transform infrared (FT-IR) spectroscopy was used to determine the structural groups in the obtained glass structure. Based on FT-IR results, the glass structure at short range order consists mainly of small phosphate units such as pyrophosphate (i.e. P{sub 2}O{sub 7}{sup 4−} dimmers or terminating groups at the end of phosphate chains) and some metaphosphate (i.e. PO{sub 3}{sup −} middle groups in the phosphate chains) units. The boron atoms are mainly placed in three-coordinated sites in BØ{sub 3} or BØ{sub 2}O{sup −} units. A small contribution of BØ{sub 4}{sup −} units was also detected from the FT-IR spectra of glasses. For SeO{sub 2} content higher than 5 mol%, the modifier role of selenium ions is strongly reflected on the local structure dominated in this case by pyrophosphate units. - Highlights: • New P{sub 2}O{sub 5}-CaO-B{sub 2}O{sub 3}-SeO{sub 2} glasses synthesized by conventional melt quenching method. • Evidences for the Se ions modifier role in the local structure by FT-IR and XPS. • Significant advances in understanding the structural properties of the new system.

  1. Luminescence studies on Dy3+ and Dy3+:Eu3+ co-doped boro-phosphate glasses for WLED applications

    Science.gov (United States)

    Vijayakumar, M.; Uma, V.; Arunkumar, S.; Marimuthu, K.

    2015-06-01

    Dy3+ and Dy3+:Eu3+ co-doped boro-phosphate glasses have been prepared and optically characterized using absorption, luminescence and decay measurements. The Nephelauxetic ratios (β), Bonding parameters (δ) and Judd-Ofelt (JO) intensity parameters Ωλ (λ = 2, 4 and 6) were calculated to study the nature of the environment around the RE3+ ions in the prepared glasses. The yellow to blue (Y/B) intensity ratio and the chromaticity color coordinates were calculated from the luminescence measurements. The lifetimes of the 4F9/2 excited level were measured using decay curves and is found to decrease in the Dy3+:Eu3+ co-doped glass due to the occurrence of resonant energy transfer between Dy3+-Eu3+ ions and the non-exponential decay rates have been fitted with Inokuti-Hirayama (IH) model. The decay curves are well fitted for S= 6 suggesting that the interaction between active ions for the energy transfer is of dipole-dipole nature.

  2. Influence of silver nanoparticles on the spectroscopic properties of Sm{sup 3+} doped boro-phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Suthanthirakumar, P.; Marimuthu, K., E-mail: emari-ram2000@yahoo.com [Department of Physics, Gandhigram Rural University, Gandhigram - 624 302 (India)

    2016-05-23

    The Sm{sup 3+} doped novel boro-phosphate glasses containing silver nanoparticles (NPs) (SmBPxA) have been prepared following the melt quenching technique and their structural and spectroscopic behavior were studied through HR-TEM, optical absorption and photoluminescence spectral measurements. The TEM analysis validates the existence of Ag NPs with an average diameter of ~8 nm. The Surface plasmon resonance (SPR) band of silver NPs was found at around 600 nm from the absorption spectrum of the Sm{sup 3+} ions free glass sample. The optical band gap energy (E{sub opt}) corresponding to the direct and indirect allowed transitions and the Urbach energy (ΔE) values were determined from the absorption spectral measurements. The luminescence intensity is found to get enhance when the Ag NPs were embedded along with the Sm{sup 3+} ions in the prepared glasses due to the local electric field effect around the rare earth (RE) ion site produced by the SPR of Ag NPs.

  3. Synthesis and magnetic properties of a new borophosphate SrCo2BPO7 with a four-column ribbon structure.

    Science.gov (United States)

    Gou, Wenbin; He, Zhangzhen; Yang, Ming; Zhang, Weilong; Cheng, Wendan

    2013-03-04

    A new borophosphate SrCo2BPO7 is synthesized by a conventional high-temperature solid-state reaction. The titled compound is found to crystallize in monoclinic system with space group P21/c, which displays a distorted four-column ribbon structure. Both BO3 triangles and PO4 tetrahedra are isolated, while irregular triangles built by Co(2+) ions are found to exist between the connecting ribbons. Magnetic behaviors are investigated by means of susceptibility, magnetization, and heat capacity measurements. The results confirm that SrCo2BPO7 possesses a three-dimensional antiferromagnetic ordering at 25 K. The possible spin arrangements in the system are also suggested.

  4. Amplification optique dans des verres borophosphate de niobium et tellurite dopés aux ions de terres rares présentant un indice optique non linéaire élevé.

    OpenAIRE

    Petit, Laëticia

    2002-01-01

    This study fits, non only, into the understanding of the relation between the rare earth and the non linear index, but also, into the search of new rare earth doped materials for optical commutation. The erbium oxide introduction in tellurite and borophosphate glasses, showing intrinsically high third order nonlinearity, has been studied. It has been demonstrated that it is possible to correlate the gain and the nonlinearity in doped materials with the structural analysis and the spectroscopi...

  5. Study on the water durability of zinc boro-phosphate glasses doped with MgO, Fe2O3, and TiO2

    Science.gov (United States)

    Hwang, Moon Kyung; Ryu, Bong Ki

    2016-07-01

    The water durability of zinc boro-phosphate (PZB) glasses with the composition 60P2O5-20ZnO-20B2O3- xMeO ( x = 0, 2, 4, 6 and MeO = MgO, Fe2O3, or TiO2) (mol%) was measured, and PZB glass was studied in terms of its thermal properties, density, and FTIR characteristics. The surface conditions and corrosion byproducts were analyzed using scanning electron microscopy. When MgO, Fe2O3, and TiO2 were doped into the PZB glass, Q2 was decreased and Q1 was increased in the phosphate structure, while the number of BO4 structures increased with increasing MeO content. The density of the PZB glass was increased by the addition of Fe2O3 and TiO2, while the glass transition temperature ( T g ) and dilatometric softening temperature ( T d ) were increased when additional MgO, Fe2O3, and TiO2 were added. From the weight loss analysis (95 ◦ C, 96 h), TiO2 doped glass showed the lowest weight loss (1.70 × 10 -3 g/cm2) while MgO doped glass showed the highest value (2.44 × 10 -3 g/cm2), compared with PZB glass (3.07 × 10 -3 g/cm2). These results were discussed in terms of the Me n+ ions in the glass structure, and their different coordination numbers and bonding strengths.

  6. [Mo5VMo7VIO30(BPO4)2(O3P-Ph)6]5-: a phenyl-substituted molybdenum(V/VI) boro-phosphate polyoxometalate.

    Science.gov (United States)

    Sassoye, Capucine; Norton, Kieran; Sevov, Slavi C

    2003-03-10

    The title polyanion is the first hybrid borophosphate-phenylphosphonate polyoxometalate. It was structurally characterized as its imidazolium salt, (C(3)N(2)H(5))(5)[Mo(12)O(30)(BPO(4))(2)(O(3)P-Ph)(6)].H(2)O (monoclinic, P2(1)/c, a = 22.120(3) A, b = 13.042(2) A, and c = 32.632(4) A, beta = 101.293(3) degrees ), which was synthesized hydrothermally from imidazole, molybdenum oxide and metal, and boric, phosphoric, and phenylphosphonic acids. The anion is the second example of a new class of polyoxometalates that resemble Dawson anions but where the two pole caps of three edge-sharing MoO(6) octahedra in the latter are replaced by other units, in this case tetrahedral borate sharing corners with three phenylphosphonic groups, [(OB)(O(3)P-Ph)(3)]. The 12 molybdenum atoms forming the two equatorial belts of the cluster are of mixed-valence, five are Mo(V) and seven are Mo(VI), and the resulting five electrons are delocalized. Four of these electrons are paired according to the temperature dependence of the magnetic susceptibility. The new compound is soluble in a mixture of water and pyridine (in equal volumes) as well as in nitromethane, and the anions are intact in these solutions.

  7. Viscosity properties of sodium borophosphate glasses

    International Nuclear Information System (INIS)

    Gaylord, S.; Tincher, B.; Petit, L.; Richardson, K.

    2009-01-01

    The viscosity behavior of (1 - x)NaPO 3 -xNa 2 B 4 O 7 glasses (x = 0.05-0.20) have been measured as a function of temperature using beam-bending and parallel-plate viscometry. The viscosity was found to shift to higher temperatures with increasing sodium borate content. The kinetic fragility parameter, m, estimated from the viscosity curve, decreases from 52 to 33 when x increases from 0.05 to 0.20 indicating that the glass network transforms from fragile to strong with the addition of Na 2 B 4 O 7 . The decrease in fragility with increasing x is due to the progressive depolymerization of the phosphate network by the preferred four-coordinated boron atoms present in the low alkali borate glasses. As confirmed by Raman spectroscopy increasing alkali borate leads to enhanced B-O-P linkages realized with the accompanying transition from solely four-coordinated boron (in BO 4 units) to mixed BO 4 /BO 3 structures. The glass viscosity characteristics of the investigated glasses were compared to those of P-SF67 and N-FK5 commercial glasses from SCHOTT. We showed that the dependence of the viscosity of P-SF67 was similar to the investigated glasses due to similar phosphate network organization confirmed by Raman spectroscopy, whereas N-FK5 exhibited a very different viscosity curve and fragility parameter due to its highly coordinated silicate network

  8. Surface degradation behaviour of sodium borophosphate glass in ...

    Indian Academy of Sciences (India)

    Administrator

    determining the chemical durability of these glasses. The corrosion studies on alkali alkaline earth phos- phate glasses (Wilder 1980) revealed that corrosion resis- tance of these glasses to water attack was improved by small addition of Al2O3 and glasses with thermal expan- sion coefficients (TEC) greater than 200 × 10.

  9. Surface degradation behaviour of sodium borophosphate glass in ...

    Indian Academy of Sciences (India)

    The dissolution rates for the glass having 10 mol% B2O3 were found to be 0.002 g/cm2 and 0.015 g/cm2 in distilled water and 5% NaOH solution, respectively, at room temperature after 225 h of total immersion period, whereas it increased considerably to 0.32 g/cm2 in 5% NaOH at 60°C after 225 h. However, glass ...

  10. Structure and properties of MoO.sub.3./sub.-containing zinc borophosphate glasses

    Czech Academy of Sciences Publication Activity Database

    Šubčík, J.; Koudelka, L.; Mošner, P.; Montagne, L.; Revel, B.; Gregora, Ivan

    2009-01-01

    Roč. 355, 16-17 (2009), 970-975 ISSN 0022-3093 R&D Projects: GA AV ČR KAN301370701 Institutional research plan: CEZ:AV0Z10100520 Keywords : glass formation * glass es * phosphates * structure Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.252, year: 2009

  11. Structure and properties of barium tin boro-phosphate glass systems with very low photoelastic constant

    Science.gov (United States)

    Itadani, M.; Tricot, G.; Doumert, B.; Takebe, H.; Saitoh, A.

    2017-08-01

    Glasses in the BaO-SnO-P2O5-B2O3 system were prepared and evaluated in order to formulate preform glasses suitable for the fabrication of fiber cores with a very low photoelastic constant. A first glass system (I: xBaO-(60-x)SnO-40P2O5) was designed with a constant P2O5 content and various BaO contents (0-40 mol. %). Introduction of 3 mol. % of B2O3 to enhance the glass stability leads to the second glass system (II: x'BaO-(57-x')SnO-40P2O5-3B2O3) with 33-38 mol. % BaO. The structure of both systems was investigated by 1D/2D magic-angle spinning nuclear magnetic resonance, Raman, and Fourier transform infrared spectroscopic techniques. 31P NMR showed the presence of Q2 and Q1 units in the first system and correlation 11B/31P NMR indicated that boron enters into the network as B(OP)4 structural units. The photoelastic constant was determined and the stability of the best formulations as well as their refractive index dispersion was established. The drawing temperature and isothermal heating time (without crystal precipitation) parameters were also accurately measured by using experimental time-temperature-transition. Considering that the refractive indices of the core and the cladding materials must match, detailed core and cladding compositions for a fiber enabling single-mode waveguide transmission were proposed.

  12. Spectral studies on CuO in sodium–calcium borophosphate glasses

    Indian Academy of Sciences (India)

    XRD; optical bandgap; luminescence; copper phosphoborate glass. 1. Introduction. In recent years, glasses doped with transition metal ions have attracted a great deal of attention, because of their me- mory and photoconducting properties. They also find wide applications in solid-state lasers, luminescent solar energy.

  13. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Transparent borophosphate glasses doped with CuO were prepared by melt quenching technique. X-ray diffraction (XRD), optical and luminescence properties of sodium–calcium borophosphate glasses doped with CuO have been studied. The XRD results showed the amorphous nature of the sample. The introduction of ...

  14. Effect of B{sub 2}O{sub 3}/P{sub 2}O{sub 5} substitution on the properties and structure of tin boro-phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Saitoh, Akira, E-mail: asaito@ehime-u.ac.jp [Graduate School of Science and Engineering, Ehime University, Matsuyama, 3 Bunkyo-cho (Japan); Tricot, Grégory [LASIR UMR-CNRS 8516, Université de Lille 1, Villeneuve d' Ascq 59655 (France); UCCS UMR-CNRS 8181, Université de Lille 1, Villeneuve d' Ascq 59655 (France); Rajbhandari, Prashant [UCCS UMR-CNRS 8181, Université de Lille 1, Villeneuve d' Ascq 59655 (France); Anan, Shoji; Takebe, Hiromichi [Graduate School of Science and Engineering, Ehime University, Matsuyama, 3 Bunkyo-cho (Japan)

    2015-01-15

    Effect of B{sub 2}O{sub 3}/P{sub 2}O{sub 5} substitution on the properties and structure of the ternary 67SnO–(33–x)P{sub 2}O{sub 5}–xB{sub 2}O{sub 3} composition line (from x = 0–33 mol%) are examined in this contribution. We show that density and glass transition temperature increase while molar volume and thermal expansion coefficient decrease with increasing B{sub 2}O{sub 3} concentration. Density and thermal properties experience an original three-domain evolution with rapid (region I: 0 ≤ x < 5), substantial (II: 5 < x ≤ 15), and moderate (III: 15 < x ≤ 33) increase. In order to explain this unconventional behaviour, the glass structure has been investigated using high magnetic field 1 dimensional {sup 31}P and {sup 11}B MAS–NMR, micro-Raman and infrared spectroscopies. {sup 11}B MAS–NMR experiments allow to (i) monitor the 3- and 4-fold coordinated borate species proportion and (ii) highlight the presence of unreported 4-fold coordinated species in the region (III). Finally, it is shown that substitution of P{sub 2}O{sub 5} by B{sub 2}O{sub 3} induces an alteration of the dimeric phosphate network and formation of mixed anion structure that consists of Q{sup 0} phosphate units, 3- and 4-fold coordinated borate units and their combinations. - Highlights: • We examined B{sub 2}O{sub 3}/P{sub 2}O{sub 5} substitution effect on the ternary SnO–P{sub 2}O{sub 5}–B{sub 2}O{sub 3} glasses. • We show a three-domains evolution for density and thermal properties. • The structure was investigated by {sup 31}P and {sup 11}B NMR, Raman and IR spectroscopies. • 3 and 4-folded borate species and unreported 4-folded species are revealed. • Mixed anion structure consists of Q{sup 0} phosphate unit and 3- and 4-folded borate units.

  15. A study of the local structure around Eu3+ ions in oxide glasses using Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Todoroki, S.; Hirao, K.; Soga, N.

    1993-01-01

    The local structure around Eu 3+ ions in several oxide glasses (silicate, germanate and borophosphate glasses) was investigated by using 151 Eu Moessbauer spectroscopy. It was found that the isomer shift (IS) of silicate and borophosphate glasses was independent of the sodium content, but that of germanate glasses was not. This means the first coordination sphere around Eu 3+ ions in silicate glasses is insensitive to the composition of the glass matrix. It is assumed that, regardless of the sodium content, Eu 3+ ions in silicate glasses attract a certain amount of nonbridging oxygen (NBO, Si-O direct difference ) when incorporated stably into silicate glass matrix, because NBO is the only species donating negative charge. For germanate glasses, the behavior of IS is considered to be related to the resence of GeO 6/2 octahedra. On the basis of experimental results, the coordination models of Eu 3+ in these systems are proposed. (orig.)

  16. Vitrification of high-level alumina nuclear waste

    International Nuclear Information System (INIS)

    Brotzman, J.R.

    1979-01-01

    Borophosphate glass compositions have been developed for the vitrification of a high-alumina calcined defense waste. The effect of substituting SiO 2 , P 2 O 5 and CuO for B 2 O 3 on the viscosity and leach resistance was measured. The effect of the alkali to borate ratio and the Li 2 O:Na 2 O ratio on the melt viscosity and leach resistance was also measured

  17. Structure and properties of ZnO-B{sub 2}O{sub 3}-P{sub 2}O{sub 5}-TeO{sub 2} glasses

    Energy Technology Data Exchange (ETDEWEB)

    Mosner, Petr, E-mail: petr.mosner@upce.cz [Department of General and Inorganic Chemistry, University of Pardubice, Faculty of Chemical Technology, 53210 Pardubice (Czech Republic); Vosejpkova, Katerina; Koudelka, Ladislav [Department of General and Inorganic Chemistry, University of Pardubice, Faculty of Chemical Technology, 53210 Pardubice (Czech Republic); Montagne, Lionel; Revel, Bertrand [Unite de Catalyse et de Chimie du Solide - UCCS, Univ Lille Nord de France, F-59000, CNRS UMR 8181, USTL F-59655, ENSCL F-59652, Villeneuve d' Ascq (France)

    2010-11-01

    Zinc borophosphate glasses doped with TeO{sub 2} were studied in the compositional series (100 - x)[0.5ZnO-0.1B{sub 2}O{sub 3}-0.4P{sub 2}O{sub 5}]-xTeO{sub 2} in a broad concentration range of x = 0-80 mol% TeO{sub 2}. The structure of the glasses was studied by Raman and IR spectroscopy and by {sup 31}P and {sup 11}B MAS NMR spectroscopy. According to the Raman and IR spectra, TeO{sub 2} is incorporated in the structural network in the form of TeO{sub 3}, TeO{sub 3+1} and TeO{sub 4} structural units. The ratio of TeO{sub 4}/TeO{sub 3} increases with increasing TeO{sub 2} content in the glasses. The incorporation of TeO{sub x} units into the glass network is associated with the depolymerisation of phosphate chains, as revealed by Raman spectroscopy. The incorporation of TeO{sub 2} modifies also the coordination of boron atoms, where B(OP){sub 4} structural units are gradually replaced by B(OP){sub 4-n}(OTe){sub n} units. The addition of TeO{sub 2} to the parent zinc borophosphate glass results in a decrease of glass transition temperature associated with the replacement of stronger P-O and B-O bonds by weaker Te-O bonds. Chemical durability of glasses reveals a minimum at the glass containing 10 mol% TeO{sub 2}, but with further additions of TeO{sub 2} it improves and the glasses with a high TeO{sub 2} content reveal better durability than the parent zinc borophosphate glass.

  18. Lithium manganese(II) diaqua-boro-phosphate monohydrate.

    Science.gov (United States)

    Zhuang, Rong-Chuan; Chen, Xue-Yun; Mi, Jin-Xiao

    2008-07-05

    The title compound, LiMn(H(2)O)(2)[BP(2)O(8)]·H(2)O, is built up of an open framework of helical borophosphate ribbons inter-connected by MnO(4)(H(2)O)(2) octa-hedra, forming one-dimensional channels along [001] occupied by Li(+) cations and disordered H(2)O mol-ecules (site occupancy 0.5). The Li cations reside in two partially occupied sites [occupancies = 0.42 (3) and 0.289 (13)] near the helices.

  19. Sol-gel processing of glasses and glass-ceramics for microelectronic packaging

    International Nuclear Information System (INIS)

    Sriram, M.A.; Kumta, P.N.

    1992-01-01

    In recent years considerable progress has been made in electronic packaging substrate technology. The future need of miniaturization of devices to increase the signal processing speeds calls for an increase in the device density requiring the substrates to be designed for better thermal, mechanical and electrical efficiency. Fast signal propagation with minimum delay requires the substrate to possess very low dielectric constant. Several glasses and glass-ceramic materials have been identified over the years which show good promise as candidate substrate materials. among these borophosphate and borophosphosilicate glass-ceramics have been recently identified to have the lowest dielectric constant. This paper reports that sol-gel processing has been used to synthesize borosilicate, borophosphosilicate and borophosphate glasses and glass-ceramics using inexpensive boron oxide and phosphorus pentoxide precursors. Preliminary results of the processing of these gels and the effect of volatility of boron alkoxide and its modification on the gel structure are described. X-ray diffraction, Differential thermal analyses and FTIR have been used to characterize the as-prepared and heat treated gels

  20. Zero photoelastic and water durable ZnO-SnO-P2O5-B2O3 glasses

    Science.gov (United States)

    Saitoh, Akira; Nakata, Kohei; Tricot, Grégory; Chen, Yuanyuan; Yamamoto, Naoki; Takebe, Hiromichi

    2015-04-01

    We report properties of zero birefringent xZnO-(67-x)SnO-(33-y)P2O5-y B2O3 glasses, within 18.5 ≤ x ≤ 22 and y = 0, 3, and 10 mol. %. These compositions of boro-phosphate glasses provide both zero photoelastic constant (PEC) and improved water durability. x = 19 and y = 3 compositions show minimum PEC of -0.002 × 10-12 Pa-1, which can contribute to candidate material for fiber current sensor devise without lead. The structures of zero photoelastic glasses were investigated by Raman scattering and nuclear magnetic resonance spectroscopies. Compositions of zero PEC glasses are explained by the empirical model proposed by Zwanziger et al. [Chem. Mater. 19, 286-290 (2007)].

  1. Zero photoelastic and water durable ZnO–SnO–P2O5–B2O3 glasses

    Directory of Open Access Journals (Sweden)

    Akira Saitoh

    2015-04-01

    Full Text Available We report properties of zero birefringent xZnO–(67–xSnO–(33–yP2O5–y B2O3 glasses, within 18.5 ≤ x ≤ 22 and y = 0, 3, and 10 mol. %. These compositions of boro-phosphate glasses provide both zero photoelastic constant (PEC and improved water durability. x = 19 and y = 3 compositions show minimum PEC of −0.002 × 10−12 Pa−1, which can contribute to candidate material for fiber current sensor devise without lead. The structures of zero photoelastic glasses were investigated by Raman scattering and nuclear magnetic resonance spectroscopies. Compositions of zero PEC glasses are explained by the empirical model proposed by Zwanziger et al. [Chem. Mater. 19, 286-290 (2007].

  2. Zero photoelastic and water durable ZnO–SnO–P{sub 2}O{sub 5}–B{sub 2}O{sub 3} glasses

    Energy Technology Data Exchange (ETDEWEB)

    Saitoh, Akira; Nakata, Kohei; Yamamoto, Naoki; Takebe, Hiromichi [Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama 790-8577 (Japan); Tricot, Grégory; Chen, Yuanyuan [LASIR UMR-CNRS 8516, Université de Lille 1, Villeneuve d’Ascq F-59655 (France)

    2015-04-01

    We report properties of zero birefringent xZnO–(67–x)SnO–(33–y)P{sub 2}O{sub 5}–y B{sub 2}O{sub 3} glasses, within 18.5 ≤ x ≤ 22 and y = 0, 3, and 10 mol. %. These compositions of boro-phosphate glasses provide both zero photoelastic constant (PEC) and improved water durability. x = 19 and y = 3 compositions show minimum PEC of −0.002 × 10{sup −12} Pa{sup −1}, which can contribute to candidate material for fiber current sensor devise without lead. The structures of zero photoelastic glasses were investigated by Raman scattering and nuclear magnetic resonance spectroscopies. Compositions of zero PEC glasses are explained by the empirical model proposed by Zwanziger et al. [Chem. Mater. 19, 286-290 (2007)].

  3. Nonlinear femtosecond near infrared laser structuring in oxide glasses

    Science.gov (United States)

    Royon, Arnaud

    Three-dimensional femtosecond laser structuring has a growing interest because of its ease of implementation and the numerous possible applications in the domain of photonic components. Structures such as waveguides, diffraction gratings, optical memories or photonic crystals can be fabricated thanks to this technique. Its use with oxide glasses is promising because of several advantages; they are resistant to flux and ageing, their chemical composition can easily be changed to fit the well-defined requirements of an application. They can already be found in Raman amplifiers, optical fibers, fiber lasers, and other devices. This thesis is based on two axes. The first axis consists in characterizing the linear and nonlinear optical properties of bulk vitreous materials in order to optimize their composition with a particular application in view. Within this context, the nonlinear optical properties, their physical origins (electronic and nuclear) as well as their characteristic response times (from a few femtoseconds to a few hundreds of picoseconds) are described within the Born-Oppenheimer approximation. Fused silica and several sodium-borophosphate glasses containing different concentrations in niobium oxide have been studied. Results show that the nonlinear optical properties of fused silica are mainly from electronic origin, whereas in the sodium-borophosphate glasses, the contribution from nuclear origin becomes predominant when the concentration of niobium oxide exceeds 30%. The second axis is based on the structuring of materials. Three commercially available fused silica samples presenting different fabrication conditions (therefore distinct impurity levels) and irradiated with a near infrared femtosecond laser have been studied. The laser induced defects have been identified by means of several spectroscopic techniques. They show the formation of color centers as well as a densification inside the irradiated area. Their linear refractive index and

  4. New polyanion-based cathode materials for alkali-ion batteries

    Science.gov (United States)

    Yaghoobnejad Asl, Hooman

    A number of new materials have been discovered through exploratory synthesis with the aim to be studied as the positive electrode (cathode) in Li-ion and Na-ion batteries. The focus has been set on the ease of synthesis, cost and availability of active ingredients in the battery, and decent cycle-life performance through a combination of iron and several polyanionic ligands. An emphasis has been placed also on phosphite (HPO32-) as a polyanionic ligand, mainly due to the fact that it has not been studied seriously before as a polyanion for cathode materials. The concept of mixed polyanions, for example, boro-phosphate and phosphate-nitrates were also explored. In each case the material was first made and purified via different synthetic strategies, and the crystal structure, which dominantly controls the performance of the materials, has been extensively studied through Single-Crystal X-ray Diffraction (SCXRD) or synchrotron-based Powder X-ray Diffraction (PXRD). This investigation yielded four new compositions, namely Li3Fe 2(HPO3)3Cl, LiFe(HPO3)2, Li0.8Fe(H2O)2B[P2O8]•H 2O and AFePO4NO3 (A = NH4/Li, K). Furthermore, for each material the electrochemical performance for insertion of Li+ ion has been studied by means of various electrochemical techniques to reveal the nature of alkali ion insertion. In addition Na-ion intercalation has been studied for boro-phosphate and AFePO4NO3. Additionally a novel synthesis procedure has been reported for tavorite LiFePO4F 1-x(OH)x, where 0 ≤ x ≤ 1, an important class of cathode materials. The results obtained clearly demonstrate the importance of crystal structure on the cathode performance through structural and compositional effects. Moreover these findings may contribute to the energy storage community by providing insight into the solid-state science of electrode material synthesis and proposing new alternative compositions based on sustainable materials.

  5. Acid-base synergistic flame retardant wood pulp paper with high thermal stability.

    Science.gov (United States)

    Wang, Ning; Liu, Yuansen; Xu, Changan; Liu, Yuan; Wang, Qi

    2017-12-15

    Acid-catalytic degradation caused by acid source flame retardants is the main reason for a decline in thermal stability of flame-retarded lignocellulosic materials. In the present research, a guanidine phosphate (GP)/borax (BX) flame retardant system based on acid-base synergistic interaction was designed and used in wood pulp paper (WPP) to solve this problem. Results showed that the treated WPP obtained good flame retardancy with a limiting oxygen index (LOI) value of 35.7%. As a basic flame retardant, borax could chemically combine with the acids released by guanidine phosphate, thus decreasing the acidity of the system in the initial heating stage. In this way, acid-catalytic degradation is greatly retarded on the lignocelluloses to improve thermal stability (the temperature of maximum degradation peak from 286°C to 314°C). Meanwhile, borax was also advantageous to form a denser and firmer condensed phase through reinforcement of the acid-base reaction product, borophosphates, allowing it to provide a protective barrier with higher quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Local-field approximation of homonuclear dipolar interactions in ⁷Li-NMR: density-matrix calculations and random-walk simulations tested by echo experiments on borate glasses.

    Science.gov (United States)

    Storek, Michael; Jeffrey, Kenneth R; Böhmer, Roland

    2014-01-01

    NMR echo techniques have proven to be important to study dynamics in ion conductors and other solid materials. Using the spin-3/2 nucleus (7)Li as a probe, both the quadrupolar and the often neglected homonuclear dipolar interactions modulate the NMR frequency as the ion performs jump processes. Retaining only the local-field term of the many-body Hamiltonian, the impact of the dipolar interaction on various echo experiments was studied using spin dynamics calculations yielding products of dipolar and quadrupolar correlation functions. Using a simple stochastic model these functions were simulated with particular emphasis on the impact of ionic motions and on the conditions under which the dipolar and quadrupolar contributions factorize. The results of the computations and of the random-walk simulations are compared with experimental data obtained for various lithium borate and lithium borophosphate glasses. It is concluded that the local-field approximation is a useful means of treating the Li-Li dipole interactions and that the simple model that we introduce is capable of describing many experimentally observed features. Furthermore, because the dipolar and quadrupolar contributions essentially factorize, a selective determination of the corresponding correlation functions becomes possible. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Synthesis, thermal and photoluminescent properties of ZnSe- based oxyfluoride glasses doped with samarium

    Science.gov (United States)

    Kostova, I.; Okada, G.; Pashova, T.; Tonchev, D.; Kasap, S.

    2014-12-01

    Rare earth (RE) doped glasses and glass ceramic materials have recently received considerable attention because of their potential or realized applications as X-ray intensifying screens, phosphors, detectors, waveguides, lasers etc. [1]. In this work, we present a new RE doped ZnO-ZnSe-SrF2-P2O5-B2O3-Sm2O3-SmF3 (ZSPB) glass system synthesized by melt quenching technique. The resulting glasses were visually fully transparent and stable with glass the transition temperatures around 530°C. The thermal properties of this glass system were characterized by Modulated Differential Scanning Calorimetry (MDSC) measurements before and after annealing at 650°C. We have characterized these glasses by Raman spectroscopy and photoluminescence (PL) measurements over the UV-VIS range using light emitting diodes (LED) and laser diodes (LD) excitation sources. We have also irradiated thermally treated and non-treated glass samples by X-rays and have studied the resulting PL. We discuss the results in terms of previously reported models for Sm-doped Zn-borophosphate oxide, oxyfluoride and oxyselenide glasses.

  8. Optical properties of Eu3+ & Tb3+ ions doped alkali oxide (Li2O/ Na2O/ K2O) modified boro phosphate glasses for red, green lasers and display device applications

    Science.gov (United States)

    Moulika, G.; Sailaja, S.; Reddy, B. Naveen Kumar; Reddy, V. Sahadeva; Dhoble, S. J.; Reddy, B. Sudhakar

    2018-04-01

    In this article we report on alkali oxide modified borophosphate glasses doped with Eu3+and Tb3+ ions, with the chemical composition of 69.5 B2O3+10P2O5 + 10CaF2 + 5 Li2O+ 5ZnO+ R+ 0.5 Eu2O3 [where R = 5 (LiO2/Na2O/K2O)] have been prepared by conventional melt quenching technique, and the spectroscopic properties of the prepared glasses have been studied by XRD, Optical absorption, excitation and emission spectral analysis. XRD spectrum of the glasses have shown the amorphous nature of the glasses. The red emission corresponding to 5D0 → 7F2 (613 nm) transition was observed under the excitation of 394 nm wavelength, corresponding to Eu3+ ions, for all the prepared glasses. For Eu3+ ion doped glasses, emission bands were observed, such as; 5D1→ 7F1 (538 nm), 5D0→ 7F0 (580 nm), 5D0→ 7F1 (592 nm), 5D0→ 7F2 (613 nm), 5D0→ 7F3 (613 nm) and 5D0→ 7F4 (702 nm) are identified. In the case of Tb3+ ion doped glasses, four emission lines were observed, such as 5D4→ (7F6, 7F5, 7F4), which are located at 489 nm, 545 nm and 585 nm, respectively, after the samples were excited with 376 nm ultraviolet source. The green emission corresponding to 5D4 → 7F5 (543 nm) transition was observed under excitation wavelength 376 nm of the Tb3+ ions for all the prepared glasses. For all these emission bands, the decay curves were recorded to evaluate the emission life times. The mechanism underlying the observed emission from the glasses was explained in terms of energy levels.

  9. Lithium-Ion Mobility in Quaternary Boro-Germano-Phosphate Glasses.

    Science.gov (United States)

    Moguš-Milanković, Andrea; Sklepić, Kristina; Mošner, Petr; Koudelka, Ladislav; Kalenda, Petr

    2016-04-28

    Effect of the structural changes, electrical conductivity, and dielectric properties on the addition of a third glass-former, GeO2, to the borophosphate glasses, 40Li2O-10B2O3-(50 - x)P2O5-xGeO2, x = 0-25 mol %, has been studied. Introduction of GeO2 causes the structural modifications in the glass network, which results in a continuous increase in electrical conductivity. Glasses with low GeO2 content, up to 10 mol %, show a rapid increase in dc conductivity as a result of the interlinkage of slightly depolymerized phosphate chains and negatively charged [GeO4](-) units, which enhances the migration of Li(+) ions. The Li(+) ions compensate these delocalized charges connecting both phosphate and germanium units, which results in reduction of both bond effectiveness and binding energy of Li(+) ions and therefore enables their hop to the next charge-compensating site. For higher GeO2 content, the dc conductivity increases slightly, tending to approach a maximum in Li(+) ion mobility caused by the incorporation of GeO2 units into phosphate network combined with conversion of GeO4 to GeO6 units. The strong cross-linkage of germanium and phosphate units creates heteroatomic P-O-Ge bonds responsible for more effectively trapped Li(+) ions. A close correspondence between dielectric and conductivity parameters at high frequencies indicates that the increase in conductivity indeed is controlled by the modification of structure as a function of GeO2 addition.

  10. Organic Minerals in the Origin of Life

    Science.gov (United States)

    Benner, S.; Biondi, E.; Kim, H. J.

    2017-12-01

    Models for the origin of life are plagued by fundamental problems that, due to their difficulty, are called "paradoxes". One of these, known to anyone who has ever worked in a kitchen, is that organics, when given energy and left to itself, does not generate life. Rather, organics devolve to give tarry mixtures that become increasingly complex and increasingly less likely to support life (like asphalt). However, even if those mixtures escape devolution to create something useful for Darwinism, like building blocks for RNA, the water in which they must work is corrosive, leading to their destruction. Even if RNA is created, it is itself easily degraded. One current trend to manage those paradoxes turns to minerals in environments on early Earth. Inorganic minerals containing borate have now been shown to prevent the destruction of ribose (the R in RNA) and other carbohydrates essential for early Earth. Evaporite desert basins supplied with aqueous runoff from tourmaline-containing basalts are ideal environments for forming borate minerals, especially if they are made alkaline by serpentinizing peridotite. In the evaporite environments, drying cycles mitigate the destructive capability of water. Further, we have shown that phosphate is segregated from calcium (avoiding formation of relatively unreacted apatites) if magnesium and borate are present. Further, a common magnesium borophosphate (luneburgite) not only makes phosphate available for prebiotic synthesis, but selectively phosphorylates RNA building blocks as it releases borate to stabilize them against further degradation. Finally, a variety of minerals bind and stabilize RNA itself. Research in this area has also discovered organic minerals that might have been relevant to the origins of life on Earth. Such minerals are scarce on Earth today, since they are easily consumed by microbial communities. However, on a prebiotic Earth, organic minerals could have stored organic species as intermediates towards our