WorldWideScience

Sample records for borophosphate glass

  1. Structural and topological aspects of borophosphate glasses and their relation to physical properties

    DEFF Research Database (Denmark)

    Hermansen, Christian; Youngman, R.E.; Wang, J.;

    2015-01-01

    We establish a topological model of alkali borophosphate and calcium borophosphate glasses that describes both the effect of the network formers and network modifiers on physical properties. We show that the glass transition temperature (Tg), Vickers hardness (HV), liquid fragility (m) and isobaric...

  2. Dynamic and Mechanical Properties of Calcium Borophosphate Glasses in Relation to Structure and Topology

    DEFF Research Database (Denmark)

    Hermansen, Christian; Yue, Yuanzheng

    Calcium borophosphate glasses and glass ceramics are of interest as bone-replacement implants as they can bond to bone through an apatite layer, and dissolve in vitro at a rate comparable to the growth rate of natural bone. We investigate the pseudo-binary join between CaO•P2O5 and CaO•2B2O3...

  3. Glass transition temperature and conductivity in Li2O and Na2O doped borophosphate glasses

    Science.gov (United States)

    Ashwajeet, J. S.; Sankarappa, T.; Ramanna, R.; Sujatha, T.; Awasthi, A. M.

    2015-08-01

    Two alkali doped Borophosphate glasses in the composition, (B2O3)0.2. (P2O5)0.3. (Na2O)(0.5-x). (Li2O)x, where x = 0.05 to 0.50 were prepared by standard melt quenching method at 1200K. Non-crystalline nature was confirmed by XRD studies. Room temperature density was measured by Archimedes principle. DC conductivity in the temperature range from 300K to 575K has been measured. Samples were DSC studied in the temperature range from 423K to 673K and glass transition temperature was determined. Glass transition temperature passed through minima for Li2O con.2centration between 0.25 and 0.30 mole fractions. Activation energy of conduction has been determined by analyzing temperature variation of conductivity determining Arrhenius law. Conductivity passed through minimum and activation passed through maximum for Li2O content from 0.25 to 0.30 mole fractions. Glass transition temperature passed through minimum for the same range of Li2O content. These results revealed mixed alkali effect taking place in these glasses. It is for the first time borophosphate glasses doped with Li2O and Na2O have been studied for density and dc conductivity and, the mixed alkali effect (MAE) has been observed.

  4. Immobilization of gadolinium in iron borophosphate glasses and iron borophosphate based glass-ceramics: Implications for the immobilization of plutonium(Ⅲ)

    Science.gov (United States)

    Wang, Fu; Liao, Qilong; Dai, Yunya; Zhu, Hanzhen

    2016-08-01

    Immobilization of gadolinium (Gd), a nonradioactive surrogate for Pu3+, in iron borophosphate glasses/glass-ceramics (IBP glasses/glass-ceramics) has been investigated. The IBP glass containing 4 mol% Gd2O3 is homogeneously amorphous. At higher Gd2O3 concentrations, additional Gd is retained in the glasses as crystalline inclusions of monazite GdPO4 crystalline phase detected with X-ray diffraction. Moreover, Gd2O3 addition increases the Tg of the IBP glasses in glass formation range, which is consistent with the structural modification of the glasses. The structure of the Gd2O3-loaded IBP glasses/glass-ceramics is mainly based on pyrophosphate units. The chemical durability of Gd2O3-loaded IBP glasses/glass-ceramics is comparable to widely used borosilicate glass waste forms and the existence of monazite GdPO4 crystalline phase does not degrade the aqueous chemical durability of the IBP glasses/glass-ceramics. The Gd-loading results imply that the solubility should not be a limiting factor in processing nuclide Pu3+ if the formed crystalline phase(s) have high chemical durability.

  5. Spectral studies on CuO in sodium–calcium borophosphate glasses

    Indian Academy of Sciences (India)

    S SHAILAJHA; K GEETHA; P VASANTHARANI

    2016-08-01

    Transparent borophosphate glasses doped with CuO were prepared by melt quenching technique. X-ray diffraction (XRD), optical and luminescence properties of sodium–calcium borophosphate glasses doped with CuO have been studied. The XRD results showed the amorphous nature of the sample. The introduction of CuO was favourable for the colour changes from light blue to dark bluish green colour. Direct optical energy bandgaps before and after doping with different percents of copper oxide obtained in the range 4.81–2.99 eV indicated the role of copper in the glassy matrix by ultraviolet (UV) spectra. The glasses have more than 80% transparency for emission wavelength range, and strong absorption bands due to the charge transition of the Cu$^+$ and Cu$^{2+}$ ions were observed. The emission bands observed in the UV and blue regions are attributed to 3d$^9$4s–3d$^{10}$ triplet transition in Cu$^+$ ion.

  6. Structural and luminescence studies of europium ions in lithium aluminium borophosphate glasses

    Institute of Scientific and Technical Information of China (English)

    Poh Sum Wong; Ming Hua Wan; Rosli Hussin; Hendrik O Lintang; Salasiah Endud

    2014-01-01

    Eu3+doped borophosphate glasses with the chemical composition 20Li2O-30Al2O3-10B2O3-40P2O5-xEu2O3 (where x=0.05 mol.%, 0.1 mol.%, 1.0 mol.%, 1.5 mol.%and 2.0 mol.%) were prepared by conventional melt quenching technique. The structural and luminescence properties of the prepared Eu3+doped borophosphate glasses were studied and compared with reported results. The XRD pattern showed the amorphous nature of the prepared glasses. Whereas, the FTIR spectra revealed the vibrational modes in the prepared glasses. The bonding parameters (βandδ) were calculated through the excitation spectra. Judd-Ofelt (J-O) intensity pa-rameters were calculated from the emission spectra and were used to determine transition probability (A), stimulated emission cross-section (σEP ), radiative lifetime (τR) and branching ratios (βexp) for the transition 5D0→7Fj (j=1, 2, 3 and 4) of Eu3+ ions. Furthermore, the luminescence intensity ratio (R) of 5D0→7F2 to 5D0→7F1 transition was also calculated. Transition 5D0→7F2 had the highest value of stimulated emission cross-section and branching ratios and the results were comparable with the reported values. This indicated that the present glass is promising host material for Eu3+doped fiber amplifiers.

  7. Concentration dependent spectroscopic properties of Dy3+ ions doped boro-phosphate glasses

    Science.gov (United States)

    Mariyappan, M.; Marimuthu, K.

    2016-05-01

    Dy3+ ions doped boro-phosphate glasses have been synthesized by melt quenching method and characterized through FTIR, absorption and luminescence spectral measurements. The presence of various stretching and bending vibrations of different borate and phosphate groups were identified from the FTIR spectra. In order to examine the electronic band structure of the studied glasses, Optical energy gap (Eopt) and Urbach energy (ΔE) values were estimated from the absorption spectra. The Judd-Ofelt (JO) intensity parameters were calculated to examine the symmetry of the ligand environment around the Dy3+ ions site. The emission spectra exhibit two intense emission bands at around 482 nm (blue) and 574 nm (yellow) corresponding to the 4F9/2→6H15/2 and 4F9/2→6H13/2 transitions respectively. The emission spectra were characterized through Commission International d'Eclairage (CIE) 1931 chromaticity diagram to explore its suitability for WLED applications.

  8. Intermediate length scale organisation in tin borophosphate glasses: new insights from high field correlation NMR.

    Science.gov (United States)

    Tricot, G; Saitoh, A; Takebe, H

    2015-11-28

    The structure of tin borophosphate glasses, considered for the development of low temperature sealing glasses or anode materials for Li-batteries, has been analysed at the intermediate length scale by a combination of high field standard and advanced 1D/2D nuclear magnetic resonance techniques. The nature and extent of B/P mixing were analysed using the (11)B((31)P) dipolar heteronuclear multiple quantum coherence NMR sequence and the data interpretation allowed (i) detecting the presence and analysing the nature of the B-O-P linkages, (ii) re-interpreting the 1D (31)P spectra and (iii) extracting the proportion of P connected to borate species. Interaction between the different borate species was analysed using the (11)B double quantum-simple quantum experiment to (i) investigate the presence and nature of the B-O-B linkage, (ii) assign the different borate species observed all along the composition line and (iii) monitor the borate network formation. In addition, (119)Sn static NMR was used to investigate the evolution of the chemical environment of the tin polyhedra. Altogether, the set of data allowed determining the structural units constituting the glass network and quantifying the extent of B/P mixing. The structural data were then used to explain the non-linear and unusual evolution of the glass transition temperature.

  9. Investigations on optical properties of Sm{sup 3+} ion doped boro-phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Vijayakumar, R.; Suthanthirakumar, P.; Karthikeyan, P.; Marimuthu, K., E-mail: mari-ram2000@yahoo.com [Department of Physics, Gandhigram Rural Institute – Deemed University, Gandhigram – 624302 (India)

    2015-06-24

    The Sm{sup 3+} doped Boro-phosphate glasses with the chemical composition 60H{sub 3}BO{sub 3}+20Li{sub 2}CO{sub 3}+10ZnO+(10−x) H{sub 6}NO{sub 4}P+xSm{sub 2}O{sub 3} (where x= 0.1, 0.5, 1 and 2 in wt%) have been prepared by melt quenching technique. The prepared glasses were characterized through optical absorption and luminescence spectral measurements. The band gap energies corresponding to the direct and indirect allowed transitions and the Urbach’s energy values were estimated from the absorption spectra. Judd-Ofelt intensity parameters have been derived to predict the radiative properties of the various emission transitions. In order to identify the emission color of the prepared glasses, the emission intensities were analyzed using CIE 1931 color chromaticity diagram. The energy transfer process takes place between Sm{sup 3+}−Sm{sup 3+} ions through cross-relaxation mechanism have also been investigated and the results were discussed and reported.

  10. White light simulation and luminescence studies on Dy{sup 3+} doped Zinc borophosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Vijayakumar, R. [Department of Physics, Gandhigram Rural University, Gandhigram 624302 (India); Venkataiah, G. [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India); Marimuthu, K., E-mail: mari_ram2000@yahoo.com [Department of Physics, Gandhigram Rural University, Gandhigram 624302 (India)

    2015-01-15

    The Dy{sup 3+} doped Zinc borophosphate glasses with the chemical composition (79-x)B{sub 2}O{sub 3}+xP{sub 2}O{sub 5}+10Li{sub 2}O+10ZnO+1Dy{sub 2}O{sub 3} (where x=0, 10, 20, 30 and 50 in wt%) have been prepared by melt quenching technique. The prepared glass samples were characterized through optical absorption, emission and decay measurements. The bonding parameters, optical band gap and Urbach's energy values were calculated from the optical absorption spectra to explore the bonding nature of the Dy–O metal ligand and electronic band structure of the studied glasses. Judd–Ofelt (JO) intensity parameters were calculated from the absorption spectra by using the JO theory and it gives information about symmetry of the ligand environment around the Dy{sup 3+} ion site. The Y/B intensity ratio and radiative properties were obtained from the emission spectra and the results were compared with the reported literature. The x, y chromaticity color coordinates of the studied glasses were analyzed using a CIE 1931 color chromaticity diagram and found that the x, y coordinates lie in the white light region. The decay curve measurements of the prepared glasses exhibit non-exponential behavior and are well fitted to Inokuti–Hirayama (IH) model to understand the energy transfer mechanism between Dy{sup 3+} ions. The Q, R{sub 0} and C{sub DA} values of the prepared Dy{sup 3+} doped glasses were obtained from the IH model and the results were discussed and compared with the reported literature.

  11. White light emission from Dy3+ doped sodium-lead borophosphate glasses under UV light excitation

    Science.gov (United States)

    Kiran, N.; Suresh Kumar, A.

    2013-12-01

    Sodium-lead borophosphate glasses doped with different Dy3+ concentrations have been prepared and characterized through, XRD, FTIR, optical absorption and photoluminescence techniques. FTIR spectrum indicates the presence of BO3 and PO4 structural units. The optical absorption spectrum has been studied at room temperature and several bands have been observed. These bands have been assigned to the ground state 6H15/2 to several excited states. The bonding parameters have been evaluated based on the observed band positions. From the absorption spectrum, Judd-Ofelt (J-O) intensity parameters have been evaluated. By using J-O parameters radiative parameters such as transition probabilities, branching ratios and absorption cross section have been evaluated. The emission spectra have been studied for different concentrations of Dy3+ ions. The yellow/blue values due to 4F9/2 → 6H13/2/4F9/2 → 6H15/2 luminescence intensity ratios of Dy3+ ions, increase with increasing concentrations, suggesting higher asymmetry and more covalent bonding character between Dy and oxygen ligands. The chromaticity coordinates were calculated from emission spectra and analysed with Commission International deI'Eclarige Color diagram. The life time of the 4F9/2 level has been measured and found to decrease with increase in Dy3+ ions concentration.

  12. Color tuning of Eu-Tb co-doped borophosphate glasses for white light through valence state adjustment

    Institute of Scientific and Technical Information of China (English)

    XU Suo-cheng; ZHENG Xi; TIAN Hua; LV Tian-shuai; WANG Peng; WANG Da-jian

    2011-01-01

    The dependence of color points of white light on the composition of borophosphate glasses co-doped with europium (Eu) and terbium (Tb) has been investigated in terms of valence change of rare earth ions.Under ultraviolet (UV) excitation,the white light is observed to be from a combination of 4f65d → 4f7band transition emission at 425 nm for Eu2+,5D0 → 7FJ (J=-l,2) lineemissions at 593 nm and 611 nm for Eu3+,and 5D4 → 7F5 band transition emission at 545 nm for Tb3+.By varying the glass composition,the resultant emission color can be tuned efficiently.Eventually,the optimized white light with commission intemational de l'Eclairage (CIE) coordinate of (0.3382,0.2763) and the correlate color temperature (CCT) at 5010 K are achieved.

  13. Investigations of structure and transport in lithium and silver borophosphate glasses

    Science.gov (United States)

    Kumar, Sundeep; Vinatier, Philippe; Levasseur, Alain; Rao, K. J.

    2004-04-01

    Glasses in the system xLi 2O·(1- x)[0.5B 2O 3·0.5P 2O 5] and xAg 2O·(1- x)[0.5B 2O 3·0.5P 2O 5] have been prepared from melt quenching method. Glasses have been characterized for their densities, molar volumes, glass transition temperatures and heat capacities. Structural studies have been done using infrared and high resolution magic angle spinning nuclear magnetic resonance (HR MAS NMR) of 31P, 11B and 7Li nuclei. Boron is present only in tetrahedral coordination except in Li 2O-rich glasses. Transport properties have been investigated over a wide range of frequency and temperature. Silver containing glasses are found to possess higher conductivities and lower barriers than lithium containing glasses. A structural model has been proposed in which pure B 2O 3-P 2O 5 compositions are assumed to be constituted of BPO 4 units and modification occurs selectively on the phosphate moiety. Tetrahedral boron units are thus expected to be retained in the glass structure.

  14. Surface degradation behaviour of sodium borophosphate glass in aqueous media: Some studies

    Indian Academy of Sciences (India)

    K V Shah; M Goswami; S Manikandan; V K Shrikhande; G P Kothiyal

    2009-06-01

    The degradation behaviour of phosphate glass with nominal composition, 40Na2O–10BaO–B2O3–(50–)P2O5, where 0 ≤ ≤ 20 mol%, was studied in water, HCl and NaOH solutions at room temperature to 60°C for different periods extending up to 300 h. These glasses were synthesized by conventional melt-quench technique. Dissolution rates were found to increase with B2O3 content in the glass. The dissolution rates for the glass having 10 mol% B2O3 were found to be 0.002 g/cm2 and 0.015 g/cm2 in distilled water and 5% NaOH solution, respectively, at room temperature after 225 h of total immersion period, whereas it increased considerably to 0.32 g/cm2 in 5% NaOH at 60°C after 225 h. However, glass samples with = 15 and 20 mol% B2O3 were dissolved in 5% HCl solution after 5 h immersion. The degradation behaviour has been correlated with the structural features present in the glass. The optical microscopy of the corroded surface revealed that the corrosion mechanism were different in acid and alkali media.

  15. Study on the water durability of zinc boro-phosphate glasses doped with MgO, Fe2O3, and TiO2

    Science.gov (United States)

    Hwang, Moon Kyung; Ryu, Bong Ki

    2016-07-01

    The water durability of zinc boro-phosphate (PZB) glasses with the composition 60P2O5-20ZnO-20B2O3- xMeO ( x = 0, 2, 4, 6 and MeO = MgO, Fe2O3, or TiO2) (mol%) was measured, and PZB glass was studied in terms of its thermal properties, density, and FTIR characteristics. The surface conditions and corrosion byproducts were analyzed using scanning electron microscopy. When MgO, Fe2O3, and TiO2 were doped into the PZB glass, Q2 was decreased and Q1 was increased in the phosphate structure, while the number of BO4 structures increased with increasing MeO content. The density of the PZB glass was increased by the addition of Fe2O3 and TiO2, while the glass transition temperature ( T g ) and dilatometric softening temperature ( T d ) were increased when additional MgO, Fe2O3, and TiO2 were added. From the weight loss analysis (95 ◦ C, 96 h), TiO2 doped glass showed the lowest weight loss (1.70 × 10 -3 g/cm2) while MgO doped glass showed the highest value (2.44 × 10 -3 g/cm2), compared with PZB glass (3.07 × 10 -3 g/cm2). These results were discussed in terms of the Me n+ ions in the glass structure, and their different coordination numbers and bonding strengths.

  16. An optical and structural investigation into CdTe nanocrystals embedded into the tellurium lithium borophosphate glass matrix

    Institute of Scientific and Technical Information of China (English)

    WAGEH; S

    2010-01-01

    Cadmium telluride nanocrystals that form in the TeO2-Li2O-B2O3-P2O5 glass matrix have been synthesized and studied.They are investigated by X-ray diffraction(XRD),optical transmission and infrared spectroscopy.It has been shown that the long annealing time effect on present samples leads to the growth of CdTe nanoparticles and an increase of tellurium oxide on the surface of nanocrystallites.On the other hand,the infrared spectroscopy shows that the phosphate and borate networks of the glass matrices are modified with doping by CdTe nanoparticles.

  17. Investigation on Structures and Properties of Yb3+-Doped Laser Glasses

    Institute of Scientific and Technical Information of China (English)

    Liu Shujiang; Lu Anxian; Tang Xiaodong; He Shaobo

    2006-01-01

    The Yb3+-doped silicate, phosphate and borophosphate laser glasses were prepared by means of conventional melt quenching technology.The physical and spectral properties of the glasses were investigated.The results show that, due to the existence of OH-, the fluorescence lifetime of phosphate glass is shorter than that of silicate glass, so silicate glass has better spectral properties than phosphate glass.Silicate glass has better mechanical and thermal properties than phosphate glass, but with the addition of B2O3, mechanical and thermal properties of phosphate glass are improved greatly without fluorescence quenching effect.This kind of borophosphate glass can be used in high average power solid state lasers.

  18. A Novel Borophosphate Coordination Polymer with Sandwich-type Supramolecular Architecture

    Institute of Scientific and Technical Information of China (English)

    Mao Feng LI; Heng Zhen SHI; Yong Kui SHAN; Ming Yuan HE

    2004-01-01

    A novel borophosphate (Hmel)3{Co2[(mel)2(HPO4)2(PO4)](H3BO3·H2O} (mel = melamine) has been synthesized under mild solvothermal conditions. The structure of the compound exists a high ordered organic-inorganic sandwich-type supramolecular architecture via metal-coordination, hydrogen bonds and π-π stacking interactions.

  19. Synthesis and characterization of zinc borophosphates with ANA-zeotype framework by the microwave method

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yu, E-mail: songyu@dlpu.edu.cn [Dalian Polytechnic University, Dalian 116034 (China); Ding, Ling; An, Qingda; Zhai, Shangru [Dalian Polytechnic University, Dalian 116034 (China); Song, Xiaowei [State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012 (China)

    2013-06-15

    Zinc borophosphate (NH{sub 4}){sub 16}[Zn{sub 16}B{sub 8}P{sub 24}O{sub 96}] (denoted as ZnBP-ANA) with ANA-zeotype structure has been synthesized by employing microwave-assisted solvothermal synthesis in the reaction system ZnCl{sub 2}∙6H{sub 2}O-(NH{sub 4}){sub 2}HPO{sub 4}–H{sub 3}BO{sub 3} using ethylene glycol as a co-solvent. The influences of various experimental parameters, such as reaction temperature, solvent ratio, zinc precursors and reactive power, have been systematically investigated. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA), and so on. Small and homogeneous ZnBP-ANA single crystal with regular cube morphology are crystallized by using microwave solvothermal synthesis method within a shorter time, and its grain size decreases with power. - Graphical abstract: Tailor-made ANA zeolites with varied size can be prepared by simply changing the reaction power. - Highlights: • Zinc borophosphate zeolites with ANA-zeotype structures were prepared by microwave technique. • The size of crystals could be controlled by tuning power. • Synthesis period can be significantly reduced by raising reaction temperature.

  20. Glasses

    DEFF Research Database (Denmark)

    Dyre, Jeppe

    2004-01-01

    The temperature dependence of the viscosity of most glassforming liquids is known to depart significantly from the classical Arrhenius behaviour of simple fluids. The discovery of an unexpected correlation between the extent of this departure and the Poisson ratio of the resulting glass could lead...... to new understanding of glass ageing and viscous liquid dynamics....

  1. Influence of addition of B2O3 on properties of Yb3+ -doped phosphate laser glass

    Institute of Scientific and Technical Information of China (English)

    LIU Shu-jiang; LU An-xian; TANG Xiao-dong; HE Shao-bo

    2006-01-01

    The three host glasses doped with Yb3+ were prepared by means of conventional melt quenching technol ogy, and the influence on physical and spectral properties of phosphate glass due to addition of B2O3 was investigated and compared with silicate glass. The results show that due to the existence of OH- impurities which induce thenon-radiative route, the fluorescence lifetime of phosphate glass is shorter, so silicate glass has better spectral properties than phosphate glass. Silicate glass has more excellent thermal-mechanical properties than phosphate glass,but with the addition of B2O3, thermal-mechanical properties of phosphate glass are improved greatly without fluo rescence quenching effect, and this kind of borophosphate glass will be the candidate to be used in high average pow er solid state laser.

  2. Structure and properties of ZnO-B{sub 2}O{sub 3}-P{sub 2}O{sub 5}-TeO{sub 2} glasses

    Energy Technology Data Exchange (ETDEWEB)

    Mosner, Petr, E-mail: petr.mosner@upce.cz [Department of General and Inorganic Chemistry, University of Pardubice, Faculty of Chemical Technology, 53210 Pardubice (Czech Republic); Vosejpkova, Katerina; Koudelka, Ladislav [Department of General and Inorganic Chemistry, University of Pardubice, Faculty of Chemical Technology, 53210 Pardubice (Czech Republic); Montagne, Lionel; Revel, Bertrand [Unite de Catalyse et de Chimie du Solide - UCCS, Univ Lille Nord de France, F-59000, CNRS UMR 8181, USTL F-59655, ENSCL F-59652, Villeneuve d' Ascq (France)

    2010-11-01

    Zinc borophosphate glasses doped with TeO{sub 2} were studied in the compositional series (100 - x)[0.5ZnO-0.1B{sub 2}O{sub 3}-0.4P{sub 2}O{sub 5}]-xTeO{sub 2} in a broad concentration range of x = 0-80 mol% TeO{sub 2}. The structure of the glasses was studied by Raman and IR spectroscopy and by {sup 31}P and {sup 11}B MAS NMR spectroscopy. According to the Raman and IR spectra, TeO{sub 2} is incorporated in the structural network in the form of TeO{sub 3}, TeO{sub 3+1} and TeO{sub 4} structural units. The ratio of TeO{sub 4}/TeO{sub 3} increases with increasing TeO{sub 2} content in the glasses. The incorporation of TeO{sub x} units into the glass network is associated with the depolymerisation of phosphate chains, as revealed by Raman spectroscopy. The incorporation of TeO{sub 2} modifies also the coordination of boron atoms, where B(OP){sub 4} structural units are gradually replaced by B(OP){sub 4-n}(OTe){sub n} units. The addition of TeO{sub 2} to the parent zinc borophosphate glass results in a decrease of glass transition temperature associated with the replacement of stronger P-O and B-O bonds by weaker Te-O bonds. Chemical durability of glasses reveals a minimum at the glass containing 10 mol% TeO{sub 2}, but with further additions of TeO{sub 2} it improves and the glasses with a high TeO{sub 2} content reveal better durability than the parent zinc borophosphate glass.

  3. New bismuth borophosphate Bi{sub 4}BPO{sub 10}: Synthesis, crystal structure, optical and band structure analysis

    Energy Technology Data Exchange (ETDEWEB)

    Babitsky, Nicolay A.; Leshok, Darya Y.; Mikhaleva, Natalia S. [Siberian Federal University, 79 Svobodny Av, Krasnoyarsk, 660041 (Russian Federation); Kuzubov, Aleksandr A., E-mail: alexkuzubov@gmail.com [Siberian Federal University, 79 Svobodny Av, Krasnoyarsk, 660041 (Russian Federation); Institute of Physics SB RAS, Krasnoyarsk 660036 (Russian Federation); Zhereb, Vladimir P. [Siberian Federal University, 79 Svobodny Av, Krasnoyarsk, 660041 (Russian Federation); Kirik, Sergei D., E-mail: kiriksd@yandex.ru [Siberian Federal University, 79 Svobodny Av, Krasnoyarsk, 660041 (Russian Federation)

    2015-08-01

    New bismuth borophosphate Bi{sub 4}BPO{sub 10} was obtained by spontaneous crystallization from the melt of correspondent composition at 804 °C. Crystal structure with orthorhombic lattice parameters: a = 22.5731(3) Å, b = 14.0523(2) Å, c = 5.5149(1) Å, V = 1749.34(4), Z = 8, SG Pcab was determined by X-ray powder diffraction technique. The [Bi{sub 2}O{sub 2}]{sup 2+} -layers, which are typical for bismuth oxide compounds, transform into cationic endless strips of 4 bismuth atoms width directed along the c-axis in Bi{sub 4}BPO{sub 10}. The strips combining stacks are separated by flat triangle [BO{sub 3}]{sup 3−} -anions within stacks. Neighboring stacks are separated by tetrahedral [PO{sub 4}]{sup 3−}-anions and shifted relatively to each other. Bismuth atoms are placed in 5–7 vertex oxygen irregular polyhedra. Bi{sub 4}BPO{sub 10} is stable up to 812 °C, then melts according to the peritectic law. The absorption spectrum in the range 350–700 nm was obtained and the width of the forbidden band was estimated as 3.46 eV. The band electronic structure of Bi{sub 4}BPO{sub 10} was modeled using DFT approach. The calculated band gap (3.56 eV) is in good agreement with the experimentally obtained data. - Graphical abstract: Display Omitted - Highlights: • New bismuth borophosphate with composition Bi{sub 4}BPO{sub 10} was synthesized. • The crystal structure was determined by X-ray powder diffraction technique. • Bismuth-oxygen part [Bi{sub 4}O{sub 3}]{sup 6+} forms endless strips of 4 bismuth atoms width. • Electronic structure was modeled by DFT method. • The calculated band gap (3.56 eV) is very close to the experimental one (3.46 eV)

  4. One-pot synthesis of tin-borophosphate-carbon composites as anode materials for Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Mouyane, Mohamed [Institut Charles Gerhardt, UMR 5253 CNRS, Université de Montpellier, CC 1502, 34095 Montpellier Cedex 5 (France); LUSAC (EA 4253), Université de Caen Basse Normandie, 50130 Cherbourg-Octeville (France); Jumas, Jean-Claude; Olivier-Fourcade, Josette [Institut Charles Gerhardt, UMR 5253 CNRS, Université de Montpellier, CC 1502, 34095 Montpellier Cedex 5 (France); Cassaignon, Sophie [UPMC (UMR7574 CNRS), Chimie de la Matière Condensée de Paris (France); Collège de France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05 (France); Jordy, Christian [SAFT, Direction de la Recherche, 111–113 Bd Alfred Daney, 33074 Bordeaux (France); Lippens, Pierre-Emmanuel, E-mail: lippens@univ-montp2.fr [Institut Charles Gerhardt, UMR 5253 CNRS, Université de Montpellier, CC 1502, 34095 Montpellier Cedex 5 (France)

    2016-01-15

    Sn{sub x}(Ca{sub 0.05}B{sub 0.975}P{sub 0.975}O{sub 3.95}){sub 1−x}/C composites as anode material for Li-ion batteries, with x=0.83 and x=0.71 were synthesized by a facile route including cellulose as carbon source. The composites were characterized by X-ray diffraction, scanning electron microscopy, Raman spectroscopy and {sup 119}Sn Mössbauer spectroscopy. In the latter case, different tin phases were found in the composite including the Sn{sup II}-based amorphous interface between metallic tin and borophosphate particles that improves the dispersion of the active species. The best electrochemical performances were obtained for x=0.71 that were further improved by ball-milled the composite with a small amount of carbon black. - Graphical abstract: {sup 119}Sn Mössbauer spectra of Sn{sub x}(Ca{sub 0.05}B{sub 0.975}P{sub 0.975}O{sub 3.95}){sub 1−x}/C composites with x=0.83 (a) and x=0.71 (b).

  5. Synthesis, thermal and photoluminescent properties of ZnSe- based oxyfluoride glasses doped with samarium

    Science.gov (United States)

    Kostova, I.; Okada, G.; Pashova, T.; Tonchev, D.; Kasap, S.

    2014-12-01

    Rare earth (RE) doped glasses and glass ceramic materials have recently received considerable attention because of their potential or realized applications as X-ray intensifying screens, phosphors, detectors, waveguides, lasers etc. [1]. In this work, we present a new RE doped ZnO-ZnSe-SrF2-P2O5-B2O3-Sm2O3-SmF3 (ZSPB) glass system synthesized by melt quenching technique. The resulting glasses were visually fully transparent and stable with glass the transition temperatures around 530°C. The thermal properties of this glass system were characterized by Modulated Differential Scanning Calorimetry (MDSC) measurements before and after annealing at 650°C. We have characterized these glasses by Raman spectroscopy and photoluminescence (PL) measurements over the UV-VIS range using light emitting diodes (LED) and laser diodes (LD) excitation sources. We have also irradiated thermally treated and non-treated glass samples by X-rays and have studied the resulting PL. We discuss the results in terms of previously reported models for Sm-doped Zn-borophosphate oxide, oxyfluoride and oxyselenide glasses.

  6. Zero photoelastic and water durable ZnO–SnO–P2O5–B2O3 glasses

    Directory of Open Access Journals (Sweden)

    Akira Saitoh

    2015-04-01

    Full Text Available We report properties of zero birefringent xZnO–(67–xSnO–(33–yP2O5–y B2O3 glasses, within 18.5 ≤ x ≤ 22 and y = 0, 3, and 10 mol. %. These compositions of boro-phosphate glasses provide both zero photoelastic constant (PEC and improved water durability. x = 19 and y = 3 compositions show minimum PEC of −0.002 × 10−12 Pa−1, which can contribute to candidate material for fiber current sensor devise without lead. The structures of zero photoelastic glasses were investigated by Raman scattering and nuclear magnetic resonance spectroscopies. Compositions of zero PEC glasses are explained by the empirical model proposed by Zwanziger et al. [Chem. Mater. 19, 286-290 (2007].

  7. Synthesis, Structure, Thermal and Magnetic Properties of a New Open-framework Borophosphate: NH4Mn(H2O)2BP2O8·H2O

    Institute of Scientific and Technical Information of China (English)

    SHI,Heng-Zhen; CHANG,Jia-Zhong; TANG-BO,HeJin; DING,Han-Ming; SHAN,Yong-Kui

    2006-01-01

    Using new template agent, a new borophosphate compound, NH4Mn(H2O)2BP2Os·H2O was hydrothermally prepared and structurally characterized. It crystallizes in a hexagonal space group P6122 with lattice parameters a=0.9652(2) nm, c=1.5792(5) nm, V=1.2740(5) nm3 and Z=6. The structure has a three-dimensional open-frame work with borophosphate helical ribbons 1∞{[BP2O8]3-} and MnO4(H2O)2 octahedra. The water molecules are positioned inside the helical channels. Very interestingly, the ammonium ions are located outside the loop of the free helical ribbons via the strong hydrogen bonds, which is different from the borophosphate analogue reported.The magnetization of the title compound is paramagnetic down to 5 K of the Curie-Weiss type within the measured range of 5-300 K with θ= -7.3 K, indicative of very weak antiferromagnetic interactions. The thermal decomposition of the compound was also described.

  8. Low-temperature flux syntheses and characterizations of two 1-D anhydrous borophosphates: Na 3B 6PO 13 and Na 3BP 2O 8

    Science.gov (United States)

    Xiong, Ding-Bang; Chen, Hao-Hong; Yang, Xin-Xin; Zhao, Jing-Tai

    2007-01-01

    Two new anhydrous sodium borophosphates with one-dimensional structure, Na 3B 6PO 13(1) and Na 3BP 2O 8(2), were synthesized by low-temperature molten salts techniques using boric acid and sodium dihydrogen phosphate as flux, respectively. The crystal structures were solved by means of single-crystal X-ray diffraction ( 1, orthorhombic, Pnma (no. 62), a=9.3727(4) Å, b=16.2307(7) Å, c=6.7232(3) Å, Z=4; 2 , monoclinic, C2/ c (no. 15), a=12.567(4) Å, b=10.290(3) Å, c=10.210(3) Å, β=92.492(5)°, Z=8). Compound 1 is characterized by an infinite chain of ∞1{[BPO]} containing eight-membered rings in which all vertexes of borate groups contribute to interconnection. Compound 2 reveals an infinite straight chain ∞1{[BPO]} built of vertex-sharing four-membered rings, and chains in neighboring layers arranged along different orientations. The relations between structures and the synthetic conditions with only traced water are discussed.

  9. Glass sealing

    Energy Technology Data Exchange (ETDEWEB)

    Brow, R.K.; Kovacic, L.; Chambers, R.S. [Sandia National Labs., Albuquerque, NM (United States)

    1996-04-01

    Hernetic glass sealing technologies developed for weapons component applications can be utilized for the design and manufacture of fuel cells. Design and processing of of a seal are optimized through an integrated approach based on glass composition research, finite element analysis, and sealing process definition. Glass sealing procedures are selected to accommodate the limits imposed by glass composition and predicted calculations.

  10. 过渡金属和主族元素硼磷酸盐体系的研究%Investigations on Transition-metal and Main-group-element Borophosphate Systems

    Institute of Scientific and Technical Information of China (English)

    宓锦校; 黄雅熙; 赵景泰; 毛少瑜; 李满荣

    2001-01-01

    总结了作者近几年在硼磷酸盐研究中所合成和表征的10多个新化合物,即元素周期表第4周期从Cr至Ga的元素或氧化物与工业催化剂材料BPO.在高温固相反应中,分别合成出具有3种结构类型的新化合物:新结构类型的三方Cr2[BP3O12]、正交AlPO4型的(B,M)[PO4](M=Mn,Fe.Co,Ni,Cu,Zn)和新型四方(Ga,B)PO4;用水热法合成出NaGa[BP2O7(OH)3]、Na2In2[PO3(OH)]4·H2O和Na4Co3H2(PO4)4·8H2O等新化合物.同时还讨论了硼磷酸盐化合物研究的最新进展及结构化学的一般规律.%Borophosphates have attracted much attention of scientists in the last few years due to the potential applications of these compounds as functional materials. More than ten new compounds in the related systems have been synthesized and characterized here by either solid state reactions or hydrothermal methods. The new compounds have either new structure types like Cr2BP3O12 which contains new building motif, or with very well known structure type like low cristobalite. The general structural features of these compounds have been discussed together with the literature data, and the new developments of the borophosphate research have also been reviewed here.

  11. Recycle Glass in Foam Glass Production

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    The foam glass industry turn recycle glass into heat insulating building materials. The foaming process is relative insensitive to impurities in the recycle glass. It is therefore considered to play an important role in future glass recycling. We show and discuss trends of use of recycled glasses...... in foam glass industry and the supply sources and capacity of recycle glass....

  12. Glass Glimpsed

    DEFF Research Database (Denmark)

    Lock, Charles

    2015-01-01

    Glass in poetry as it reflects the viewer and as its power of reflection are both reduced and enhanced by technology.......Glass in poetry as it reflects the viewer and as its power of reflection are both reduced and enhanced by technology....

  13. Cosmos & Glass

    DEFF Research Database (Denmark)

    Beim, Anne

    1996-01-01

    The article unfolds the architectural visions of glass by Bruno Taut. It refers to inspirations by Paul Sheerbart and litterature and the Crystal Chain, also it analyses the tectonic univers that can be found in the glass pavillion for the Werkbund exposition in Cologne....

  14. Enhanced luminescence behaviour of Eu3+ doped heavy metal oxide telluroborate glasses for Laser and LED applications

    Science.gov (United States)

    Pravinraj, S.; Vijayakumar, M.; Marimuthu, K.

    2017-03-01

    Effect on structural and spectroscopic behaviour caused by the replacement of lead cations with the aluminium cations in the Eu3+ doped heavy metal oxide borophosphate glasses have been studied with the chemical composition (55B2O3+19.5TeO2+10K2O+(15-x)PbO+xAl2O3+0.5Eu2O3 (where x=0, 2.5, 5, 7.5, 10, 12.5 and 15 in wt%) prepared by melt quenching technique. The FTIR and Raman spectral studies reveal the presence of various fundamental vibrational units and are used to identify the phonon energy of the title glasses. The positive values of bonding parameter (δ) indicate the formation of covalent bonds between the dopant (Eu3+) and the anions (O2-). Luminescence spectra of all the titled glasses exhibit five emission bands due to the electronic transitions of the trivalent europium ions. The radiative properties such as transition probability (A), stimulated emission cross-section (σpE) and branching ratio (βR) of the various emission transitions of the Eu3+ ions have been estimated using Judd-Ofelt (JO) theory. The characteristic emission was identified through CIE 1931 color chromaticity diagram and McCamy's formula have been used to estimate the correlated color temperature (CCT) using (x,y) chromaticity coordinates. The luminescence decay profile pertaining to the 5D0 metastable state of the Eu3+ ions exhibits single exponential behaviour uniformly for all the titled glasses and the experimental lifetime values were obtained following the curve fitting method.

  15. Effect of B2O3 addition on microhardness and structural features of 40Na2O–10BaO–B2O3–(50–)P2O5 glass system

    Indian Academy of Sciences (India)

    K V Shah; M Goswami; M N Deo; A Sarkar; S Manikandan; V K Shrikhande; G P Kothiyal

    2006-02-01

    Phosphate glasses having composition, 40Na2O–10BaO–B2O3–(50–)P2O5, where = 0–20 mol% were prepared using conventional melt quench technique. Density of these glasses was measured using Archimedes principle. Microhardness (MH) was measured by Vicker’s indentation technique. Structural studies were carried out using IR spectroscopy and 31P and 11B MAS NMR. Density was found to vary between 2.62 and 2.77 g/cc. MH was found to increase with the increase in boron content. 31P MAS NMR spectra showed the presence of middle 2 groups and end 1 and 0 groups with P–O–B linkages. FTIR studies showed the presence of BO3 and BO4 structural units along with the depolymerization of phosphate chains in conformity with 31P MAS NMR. 11B NMR spectra showed increase in BO4 structural units with increasing boron content. The increase in MH with B2O3 content is due to the increase of P–O–B linkages and BO4 structural units as observed from MAS NMR studies resulting in a more rigid borophosphate glass networks.

  16. Glass Fibers: Quo Vadis?

    Directory of Open Access Journals (Sweden)

    Edith Mäder

    2017-02-01

    Full Text Available Since the early 1930s, the process of melting glass and subsequently forming fibers, in particular discontinuous fiber glass or continuous glass filaments, evolved into commercial-scale manufacturing.[...

  17. CRYSTALLIZATION IN MULTICOMPONENT GLASSES

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; HRMA PR

    2009-10-08

    In glass processing situations involving glass crystallization, various crystalline forms nucleate, grow, and dissolve, typically in a nonuniform temperature field of molten glass subjected to convection. Nuclear waste glasses are remarkable examples of multicomponent vitrified mixtures involving partial crystallization. In the glass melter, crystals form and dissolve during batch-to-glass conversion, melter processing, and product cooling. Crystals often agglomerate and sink, and they may settle at the melter bottom. Within the body of cooling glass, multiple phases crystallize in a non-uniform time-dependent temperature field. Self-organizing periodic distribution (the Liesegnang effect) is common. Various crystallization phenomena that occur in glass making are reviewed.

  18. Recycling of Glass

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Damgaard, Anders

    2011-01-01

    Glass is used for many purposes, but in the waste system glass is predominantly found in terms of beverage and food containers with a relatively short lifetime before ending up in the waste. Furthermore there is a large amount of flat glass used in building materials which also ends up in the waste...... system; this glass though has a long lifetime before ending up in the waste. Altogether these product types add up to 82% of the production of the European glass industry (IPCC, 2001). Recycling of glass in terms of cleaning and refilling of bottles as well as the use of broken glass in the production...... of new glass containers is well established in the glass industry. This chapter describes briefly howglass is produced and howwaste glass is recycled in the industry. Quality requirements and use of recycled products are discussed, as are the resource and environmental issues of glass recycling....

  19. lead glass brick

    CERN Multimedia

    When you look through the glass at a picture behind, the picture appears raised up because light is slowed down in the dense glass. It is this density (4.06 gcm-3) that makes lead glass attractive to physicists. The refractive index of the glass is 1.708 at 400nm (violet light), meaning that light travels in the glass at about 58% its normal speed. At CERN, the OPAL detector uses some 12000 blocks of glass like this to measure particle energies.

  20. Microstructuring of glasses

    CERN Document Server

    Hülsenberg, Dagmar; Bismarck, Alexander

    2008-01-01

    As microstructured glass becomes increasingly important for microsystems technology, the main application fields include micro-fluidic systems, micro-analysis systems, sensors, micro-actuators and implants. And, because glass has quite distinct properties from silicon, PMMA and metals, applications exist where only glass devices meet the requirements. The main advantages of glass derive from its amorphous nature, the precondition for its - theoretically - direction-independent geometric structurability. Microstructuring of Glasses deals with the amorphous state, various glass compositions and their properties, the interactions between glasses and the electromagnetic waves used to modify it. Also treated in detail are methods for influencing the geometrical microstructure of glasses by mechanical, chemical, thermal, optical, and electrical treatment, and the methods and equipment required to produce actual microdevices.

  1. Fluoride glass fiber optics

    CERN Document Server

    Aggarwal, Ishwar D

    1991-01-01

    Fluoride Glass Fiber Optics reviews the fundamental aspects of fluoride glasses. This book is divided into nine chapters. Chapter 1 discusses the wide range of fluoride glasses with an emphasis on fluorozirconate-based compositions. The structure of simple fluoride systems, such as BaF2 binary glass is elaborated in Chapter 2. The third chapter covers the intrinsic transparency of fluoride glasses from the UV to the IR, with particular emphasis on the multiphonon edge and electronic edge. The next three chapters are devoted to ultra-low loss optical fibers, reviewing methods for purifying and

  2. Liquid Glass: A Facile Soft Replication Method for Structuring Glass.

    Science.gov (United States)

    Kotz, Frederik; Plewa, Klaus; Bauer, Werner; Schneider, Norbert; Keller, Nico; Nargang, Tobias; Helmer, Dorothea; Sachsenheimer, Kai; Schäfer, Michael; Worgull, Matthias; Greiner, Christian; Richter, Christiane; Rapp, Bastian E

    2016-06-01

    Liquid glass is a photocurable amorphous silica nanocomposite that can be structured using soft replication molds and turned into glass via thermal debinding and sintering. Simple polymer bonding techniques allow the fabrication of complex microsystems in glass like microfluidic chips. Liquid glass is a step toward prototyping of glass microstructures at low cost without requiring cleanroom facilities or hazardous chemicals.

  3. Radiation effects in glasses

    Energy Technology Data Exchange (ETDEWEB)

    Ehrt, D.; Vogel, W. (Otto-Schott-Inst., Chemische Fakultaet, Friedrich-Schiller-Univ., Jena (Germany))

    1992-03-01

    Glass was produced by man about 4000 years ago. The scientific exploration of glass is very young and closely connected with Jena. Fraunhofer, Goethe, Dobereiner, Abbe, Zeiss and Schott are famous names on this field. Both crystals and glasses are solids. However, there are fundamental differences in their properties and behavior. Glass is a thermodynamically unstable state and has a defect structure compared to the crystal. Glass and its properties are subject to a variety of changes under the influence of high energy radiation. In general, effects extend from the reduction of specific ions to the collapse of the entire network. Ultraviolet and X-ray radiation effects on UV-transmitting glasses will be discussed. (orig.).

  4. Homogeneity of Inorganic Glasses

    DEFF Research Database (Denmark)

    Jensen, Martin; Zhang, L.; Keding, Ralf;

    2011-01-01

    Homogeneity of glasses is a key factor determining their physical and chemical properties and overall quality. However, quantification of the homogeneity of a variety of glasses is still a challenge for glass scientists and technologists. Here, we show a simple approach by which the homogeneity...... of different glass products can be quantified and ranked. This approach is based on determination of both the optical intensity and dimension of the striations in glasses. These two characteristic values areobtained using the image processing method established recently. The logarithmic ratio between...... the dimension and the intensity is used to quantify and rank the homogeneity of glass products. Compared with the refractive index method, the image processing method has a wider detection range and a lower statistical uncertainty....

  5. Diamond turning of glass

    Energy Technology Data Exchange (ETDEWEB)

    Blackley, W.S.; Scattergood, R.O.

    1988-12-01

    A new research initiative will be undertaken to investigate the critical cutting depth concepts for single point diamond turning of brittle, amorphous materials. Inorganic glasses and a brittle, thermoset polymer (organic glass) are the principal candidate materials. Interrupted cutting tests similar to those done in earlier research are Ge and Si crystals will be made to obtain critical depth values as a function of machining parameters. The results will provide systematic data with which to assess machining performance on glasses and amorphous materials

  6. Raman Spectra of Glasses

    Science.gov (United States)

    1986-11-30

    17), Raman spectra, plus a , . theoretical treatment of the data, f complex fluorozirconate 14 I anions in ZBLAN glasses and melts (16), and...based ZBLAN glasses ) 17. ICORS (International Conference on Raman Spectroscopy) Proceedings, London, England. Conferencf 5-9 Sep 88. (Molten silica...RESEARCH FINAL REPORT DTIC CONTRACT N00014-81-K-0501 &JELECTE 1 MAY 81 -- 30 NOV 86 EJJAN041989 V "RAMAN SPECTRA OF GLASSES " 0 During the five years of the

  7. Metal Halide Optical Glasses.

    Science.gov (United States)

    1988-01-01

    while some of the multi- component "modified" glasses (e.g., ZBLAN ) could easily be cast into pieces several mm thick. 23 The difference between the...energy. 7-1 0 Typical plots pf 24 of log Iqi versus ]/Tf for ZB-I, ZBL, ZBLA, ZBLAN and ZBLALi glasses are presented in Fig. 3. These plots are linear... ZBLAN glasses are more resistant to devitrification than the corresponding ZBLLi or ZBLN glasses , although this does not appear to be manifested in

  8. Lanthanoides in Glass and Glass Ceramics

    Science.gov (United States)

    Meinhardt, Jürgen; Kilo, Martin; Somorowsky, Ferdinand; Hopp, Werner

    2017-03-01

    Many types of glass contain lanthanoides; among them, special glass for optical applications is the one with the highest content of lanthanoides. The precise determination of the lanthanoides' concentration is performed by inductively coupled plasma-optical emission spectrometry (ICP-OES). However, up to now, there are no established standard processes guaranteeing a uniform approach to the lanthanoide analysis. The knowledge of the lanthanoides' concentrations is necessary on the microscale in some cases, especially if a suitable separation and recycling procedure is to be applied. Here, the analysis is performed by energy-dispersive X-ray (EDX) or wavelength-dispersive X-ray (WDX) analytics in the scanning electron microscope.

  9. lead glass brick

    CERN Multimedia

    As well as accelerators to boost particles up to high energy, physicists need detectors to see what happens when those particles collide. This lead glass block is part of a CERN detector called OPAL. OPAL uses some 12 000 blocks of glass like this to measure particle energies.

  10. Getting Started with Glass

    Science.gov (United States)

    White, Heather

    2007-01-01

    The metamorphosis of glass when heated is a magical process to students, yet teachers are often reluctant to try it in class. The biggest challenge in working with glass in the classroom is to simplify procedures just enough to ensure student success while maintaining strict safety practices so no students are injured. Project concepts and safety…

  11. Glass Sword of Damocles

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    A string of accidents draws attention to the safety of the gleaming glass-walled skyscrapers, now common in China’s major cities On July 8, as 19-year-old Zhu Yiyi was walking past a 23-story building in Hangzhou, east China’s Zhejiang Province, shards of glass falling

  12. Glasses for photonic applications

    NARCIS (Netherlands)

    Richardson, K.; Krol, D.M.; Hirao, K.

    2010-01-01

    Recent advances in the application of glassy materials in planar and fiber-based photonic structures have led to novel devices and components that go beyond the original thinking of the use of glass in the 1960s, when glass fibers were developed for low-loss, optical communication applications. Expl

  13. Electric glass capturing markets

    Energy Technology Data Exchange (ETDEWEB)

    Wikman, K.; Wikstroem, T.

    1996-11-01

    Electric glass has found its place on the construction market. In public buildings, electrically heatable windows are becoming the leading option for large glass walls. Studies on detached houses, both new and renovated, show that floor heating combined with electrically heatable windowpanes is the best choice with respect to resident`s comfort. (orig.)

  14. Defense HLW Glass Degradation Model

    Energy Technology Data Exchange (ETDEWEB)

    D. Strachan

    2004-10-20

    The purpose of this report is to document the development of a model for calculating the release rate for radionuclides and other key elements from high-level radioactive waste (HLW) glasses under exposure conditions relevant to the performance of the repository. Several glass compositions are planned for the repository, some of which have yet to be identified (i.e., glasses from Hanford and Idaho National Engineering and Environmental Laboratory). The mechanism for glass dissolution is the same for these glasses and the glasses yet to be developed for the disposal of DOE wastes. All of these glasses will be of a quality consistent with the glasses used to develop this report.

  15. Thermal Conductivity of Foam Glass

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    with different gas compositions. The foam glasses were characterised concerning densities, open/closed porosity and crystallinity. We find out, through analytical calculations and experiments, how the thermal conductivity of foam glass depends on density, glass composition and gas composition. Certain glass......Due to the increased focus on energy savings and waste recycling foam glass materials have gained increased attention. The production process of foam glass is a potential low-cost recycle option for challenging waste, e.g. CRT glass and industrial waste (fly ash and slags). Foam glass is used...... as thermal insulating material in building and chemical industry. The large volume of gas (porosity 90 – 95%) is the main reason of the low thermal conductivity of the foam glass. If gases with lower thermal conductivity compared to air are entrapped in the glass melt, the derived foam glass will contain...

  16. Glass Stronger than Steel

    Science.gov (United States)

    Yarris, Lynn

    2011-03-28

    A new type of damage-tolerant metallic glass, demonstrating a strength and toughness beyond that of steel or any other known material, has been developed and tested by a collaboration of researchers from Berkeley Lab and Caltech.

  17. Shattering the Glass Ceiling

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    @@ "Shattering the Glass Ceiling: the Myths, Opportunities and Chal lenges of Women in Corporate China" was the theme of CEIBS'first Women in Management Forum held on December l 1 on the school's main campus in Shanghai.

  18. Mechanically reinforced glass beams

    DEFF Research Database (Denmark)

    Nielsen, Jens Henrik; Olesen, John Forbes

    2007-01-01

    to breakage without any warning or ductility, which can be catastrophic if no precautions are taken. One aspect of this issue is treated here by looking at the possibility of mechanically reinforcing glass beams in order to obtain ductile failure for such a structural component. A mechanically reinforced...... the mechanical behavior of the beam is explained. Finally, some design criterions for reinforced glass beams are discussed....

  19. Baseline LAW Glass Formulation Testing

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A. [USDOE Office of River Protection, Richland, WA (United States); Mooers, Cavin [The Catholic University of America, Washington, DC (United States). Vitreous State Lab.; Bazemore, Gina [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Pegg, Ian L. [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Hight, Kenneth [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Lai, Shan Tao [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Buechele, Andrew [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Rielley, Elizabeth [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Gan, Hao [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Muller, Isabelle S. [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Cecil, Richard [The Catholic University of America, Washington, DC (United States). Vitreous State Lab

    2013-06-13

    The major objective of the baseline glass formulation work was to develop and select glass formulations that are compliant with contractual and processing requirements for each of the LAW waste streams. Other objectives of the work included preparation and characterization of glasses with respect to the properties of interest, optimization of sulfate loading in the glasses, evaluation of ability to achieve waste loading limits, testing to demonstrate compatibility of glass melts with melter materials of construction, development of glass formulations to support ILAW qualification activities, and identification of glass formulation issues with respect to contract specifications and processing requirements.

  20. Wastes based glasses and glass-ceramics

    Directory of Open Access Journals (Sweden)

    Barbieri, L.

    2001-12-01

    Full Text Available Actually, the inertization, recovery and valorisation of the wastes coming from municipal and industrial processes are the most important goals from the environmental and economical point of view. An alternative technology capable to overcome the problem of the dishomogeneity of the raw material chemical composition is the vitrification process that is able to increase the homogeneity and the constancy of the chemical composition of the system and to modulate the properties in order to address the reutilization of the waste. Moreover, the glasses obtained subjected to different controlled thermal treatments, can be transformed in semy-cristalline material (named glass-ceramics with improved properties with respect to the parent amorphous materials. In this review the tailoring, preparation and characterization of glasses and glass-ceramics obtained starting from municipal incinerator grate ash, coal and steel fly ashes and glass cullet are described.

    Realmente la inertización, recuperación y valorización de residuos que proceden de los procesos de incineración de residuos municipales y de residuos industriales son metas importantes desde el punto de vista ambiental y económico. Una tecnología alternativa capaz de superar el problema de la heterogeneidad de la composición química de los materiales de partida es el proceso de la vitrificación que es capaz de aumentar la homogeneidad y la constancia de la composición química del sistema y modular las propiedades a fin de la reutilización del residuo. En este artículo se presentan los resultados de vitrificación en que los vidrios fueron sometidos a tratamientos térmicos controlados diferentes, de manera que se transforman en materiales semicristalinos (también denominados vitrocerámicos con mejores propiedades respecto a los materiales amorfos originales. En esta revisión se muestra el diseño, preparación y caracterización de vidrios y vitrocerámicos partiendo de

  1. Glass microsphere lubrication

    Science.gov (United States)

    Geiger, Michelle; Goode, Henry; Ohanlon, Sean; Pieloch, Stuart; Sorrells, Cindy; Willette, Chris

    1991-01-01

    The harsh lunar environment eliminated the consideration of most lubricants used on earth. Considering that the majority of the surface of the moon consists of sand, the elements that make up this mixture were analyzed. According to previous space missions, a large portion of the moon's surface is made up of fine grained crystalline rock, about 0.02 to 0.05 mm in size. These fine grained particles can be divided into four groups: lunar rock fragments, glasses, agglutinates (rock particles, crystals, or glasses), and fragments of meteorite material (rare). Analysis of the soil obtained from the missions has given chemical compositions of its materials. It is about 53 to 63 percent oxygen, 16 to 22 percent silicon, 10 to 16 percent sulfur, 5 to 9 percent aluminum, and has lesser amounts of magnesium, carbon, and sodium. To be self-supporting, the lubricant must utilize one or more of the above elements. Considering that the element must be easy to extract and readily manipulated, silicon or glass was the most logical choice. Being a ceramic, glass has a high strength and excellent resistance to temperature. The glass would also not contaminate the environment as it comes directly from it. If sand entered a bearing lubricated with grease, the lubricant would eventually fail and the shaft would bind, causing damage to the system. In a bearing lubricated with a solid glass lubricant, sand would be ground up and have little effect on the system. The next issue was what shape to form the glass in. Solid glass spheres was the only logical choice. The strength of the glass and its endurance would be optimal in this form. To behave as an effective lubricant, the diameter of the spheres would have to be very small, on the order of hundreds of microns or less. This would allow smaller clearances between the bearing and the shaft, and less material would be needed. The production of glass microspheres was divided into two parts, production and sorting. Production includes the

  2. Optimized Synthesis of Foam Glass from Recycled CRT Panel Glass

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    Most of the panel glass from cathode ray tubes (CRTs) is landfilled today. Instead of landfilling, the panel glass can be turned into new environment-friendly foam glass. Low density foam glass is an effective heat insulating material and can be produced just by using recycle glass and foaming...... additives. In this work we recycle the CRT panel glass to synthesize the foam glass as a crucial component of building and insulating materials. The synthesis conditions such as foaming temperature, duration, glass particle size, type and concentrations of foaming agents, and so on are optimized...... by performing systematic experiments. In particular, the concentration of foaming agents is an important parameter that influences the size of bubbles and the distribution of bubbles throughout the sample. The foam glasses are characterised regarding density and open/closed porosity. Differential scanning...

  3. DWPF GLASS BEADS AND GLASS FRIT TRANSPORT DEMONSTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, D; Bradley Pickenheim, B

    2008-11-24

    DWPF is considering replacing irregularly shaped glass frit with spherical glass beads in the Slurry Mix Evaporator (SME) process to decrease the yield stress of the melter feed (a non-Newtonian Bingham Plastic). Pilot-scale testing was conducted on spherical glass beads and glass frit to determine how well the glass beads would transfer when compared to the glass frit. Process Engineering Development designed and constructed the test apparatus to aid in the understanding and impacts that spherical glass beads may have on the existing DWPF Frit Transfer System. Testing was conducted to determine if the lines would plug with the glass beads and the glass frit slurry and what is required to unplug the lines. The flow loop consisted of vertical and horizontal runs of clear PVC piping, similar in geometry to the existing system. Two different batches of glass slurry were tested: a batch of 50 wt% spherical glass beads and a batch of 50 wt% glass frit in process water. No chemicals such as formic acid was used in slurry, only water and glass formers. The glass beads used for this testing were commercially available borosilicate glass of mesh size -100+200. The glass frit was Frit 418 obtained from DWPF and is nominally -45+200 mesh. The spherical glass beads did not have a negative impact on the frit transfer system. The transferring of the spherical glass beads was much easier than the glass frit. It was difficult to create a plug with glass bead slurry in the pilot transfer system. When a small plug occurred from setting overnight with the spherical glass beads, the plug was easy to displace using only the pump. In the case of creating a man made plug in a vertical line, by filling the line with spherical glass beads and allowing the slurry to settle for days, the plug was easy to remove by using flush water. The glass frit proved to be much more difficult to transfer when compared to the spherical glass beads. The glass frit impacted the transfer system to the point

  4. Sol-Gel Glasses

    Science.gov (United States)

    Mukherjee, S. P.

    1985-01-01

    Multicomponent homogeneous, ultrapure noncrystalline gels/gel derived glasses are promising batch materials for the containerless glass melting experiments in microgravity. Hence, ultrapure, homogeneous gel precursors could be used to: (1) investigate the effect of the container induced nucleation on the glass forming ability of marginally glass forming compositions; and (2) investigate the influence of gravity on the phase separation and coarsening behavior of gel derived glasses in the liquid-liquid immiscibility zone of the nonsilicate systems having a high density phase. The structure and crystallization behavior of gels in the SiO2-GeO2 as a function of gel chemistry and thermal treatment were investigated. As are the chemical principles involved in the distribution of a second network former in silica gel matrix being investigated. The procedures for synthesizing noncrystalline gels/gel-monoliths in the SiO2-GeO2, GeO2-PbO systems were developed. Preliminary investigations on the levitation and thermal treatment of germania silicate gel-monoliths in the Pressure Facility Acoustic Levitator were done.

  5. Bio-Glasses An Introduction

    CERN Document Server

    Jones, Julian

    2012-01-01

    This new work is dedicated to glasses and their variants which can be used as biomaterials to repair diseased and damaged tissues. Bio-glasses are superior to other biomaterials in many applications, such as healing bone by signaling stem cells to become bone cells.   Key features:  First book on biomaterials to focus on bio-glassesEdited by a leading authority on bio-glasses trained by one of its inventors, Dr Larry HenchSupported by the International Commission on Glass (ICG)Authored by members of the ICG Biomedical Glass Committee, with the goal of creating a seamless textb

  6. Glass strengthening and patterning methods

    Science.gov (United States)

    Harper, David C; Wereszczak, Andrew A; Duty, Chad E

    2015-01-27

    High intensity plasma-arc heat sources, such as a plasma-arc lamp, are used to irradiate glass, glass ceramics and/or ceramic materials to strengthen the glass. The same high intensity plasma-arc heat source may also be used to form a permanent pattern on the glass surface--the pattern being raised above the glass surface and integral with the glass (formed of the same material) by use of, for example, a screen-printed ink composition having been irradiated by the heat source.

  7. Glass formation - A contemporary view

    Science.gov (United States)

    Uhlmann, D. R.

    1983-01-01

    The process of glass formation is discussed from several perspectives. Particular attention is directed to kinetic treatments of glass formation and to the question of how fast a given liquid must be cooled in order to form a glass. Specific consideration is paid to the calculation of critical cooling rates for glass formation, to the effects of nucleating heterogeneities and transients in nucleation on the critical cooling rates, to crystallization on reheating a glass, to the experimental determination of nucleation rates and barriers to crystal nucleation, and to the characteristics of materials which are most conducive to glass formation.

  8. Heavy Metal Fluoride Glasses.

    Science.gov (United States)

    1987-04-01

    i 2N E ihhhhh1112h MEmhhhhEEEohhhhE I.’....momo 111111111’-20 LA ’Ll2. AFWL-TR-86-37 AFWL-TR- 86-37 oT C ,l C ’-’ N HEAVY METAL FLUORIDE GLASSES 0nI...Secwrit CkasmfcationJ HEAVY METAL FLUORIDE GLASSES 12. PERSONAL AUTHOR(S) Reisfield, Renata; and Eyal, Mrek 13. TYPE OF REPORT 113b. TIME COVERED 114...glasses containing about 50 mole% of ZrF4 [which can be replaced by HfF 4 or TIF 4 (Refs. 1-3) or heavy metal fluorides based on PbF2 and on 3d-group

  9. Perspectives on spin glasses

    CERN Document Server

    Contucci, Pierluigi

    2013-01-01

    Presenting and developing the theory of spin glasses as a prototype for complex systems, this book is a rigorous and up-to-date introduction to their properties. The book combines a mathematical description with a physical insight of spin glass models. Topics covered include the physical origins of those models and their treatment with replica theory; mathematical properties like correlation inequalities and their use in the thermodynamic limit theory; main exact solutions of the mean field models and their probabilistic structures; and the theory of the structural properties of the spin glass phase such as stochastic stability and the overlap identities. Finally, a detailed account is given of the recent numerical simulation results and properties, including overlap equivalence, ultrametricity and decay of correlations. The book is ideal for mathematical physicists and probabilists working in disordered systems.

  10. Glass as matter

    DEFF Research Database (Denmark)

    Beim, Anne

    2000-01-01

    Refraiming the Moderns - Substitute Windows and Glass. In general terms, the seminar has contributed to the growing interest in the problems concerning the restoration of Modern Movement architecture. More particularly, it has of course drawn our attention to modern windows, which are increasingly...

  11. Stained-Glass Pastels

    Science.gov (United States)

    Laird, Shirley

    2009-01-01

    The author has always liked the look of stained-glass windows. Usually the designs are simplified and the shapes are easier for younger students to draw. This technique seemed to be the perfect place for her fifth-graders to try their hand at color mixing. The smaller spaces and simple shapes were just what she needed for this group. Her students…

  12. Microchips on glass

    NARCIS (Netherlands)

    Keulemans, M.

    2007-01-01

    Microchips on glass. What about a mobile phone that uses a single microchip to receive all the available frequency bands, plus extras such as television, gps, and Internet access? Or, in due time, see-though implants that will monitor your state of health, and equipment that will let you see through

  13. "Stained Glass" Landscape Windows

    Science.gov (United States)

    Vannata, Janine

    2008-01-01

    Both adults and children alike marvel at the grand vivid stained-glass windows created by American artist Louis Comfort Tiffany. Today he is commonly recognized as one of America's most influential designers and artists throughout the last nineteenth and early twentieth century. In the lesson described in this article, students created their own…

  14. Supercooled Liquids and Glasses

    OpenAIRE

    1999-01-01

    In these lectures, which were presented at "Soft and Fragile Matter, Nonequilibrium Dynamics, Metastability and Flow" University of St. Andrews, 8 July - 22 July, 1999, I give an introduction to the physics of supercooled liquids and glasses and discuss some computer simulations done to investigate these systems.

  15. Shattering women's glass ceiling

    OpenAIRE

    Camilleri Podesta, Marie Therese; Duca, Edward

    2013-01-01

    The role of women in academia has always greatly interested me. Several years ago, when I was asked to become Gender Issues Committee chairperson at the University of Malta, I readily accepted. http://www.um.edu.mt/think/shattering-womens-glass-ceiling/

  16. Stained Glass and Flu

    Centers for Disease Control (CDC) Podcasts

    2017-02-01

    Dr. Robert Webster, an Emeritus member of the Department of Infectious Diseases at St. Jude Children's Research Hospital, discusses his cover art story on stained glass and influenza.  Created: 2/1/2017 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 2/1/2017.

  17. Stained Glass and Flu

    Centers for Disease Control (CDC) Podcasts

    2016-02-01

    Dr. Robert Webster, an Emeritus member of the Department of Infectious Diseases at St. Jude Children's Research Hospital, discusses his cover art story on stained glass and influenza.  Created: 2/1/2016 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 2/1/2016.

  18. Yesterday's Trash Makes Tomorrow's "Glass"

    Science.gov (United States)

    Wayne, Dale

    2010-01-01

    In this article, the author describes a glass art project inspired by Dale Chihuly. This project uses two-liter plastic soda bottles which are cut apart and trimmed. Applying heat using a hair dryer, the plastic curls and takes an uneven blown-glass quality. The "glass" is then painted using acrylic paint. (Contains 2 resources and 1 online…

  19. Molecular Mobility in Sugar Glasses

    NARCIS (Netherlands)

    Dries, van den I.J.

    2000-01-01

    Glasses are liquids that exhibit solid state behavior as a result of their extremely high viscosity. Regarding their application to foods, glasses play a role in the preservation of foods, due to their high viscosity and the concomitant low molecular mobility. This thesis focuses on sugar glasses. S

  20. Analysis of glass fibre sizing

    DEFF Research Database (Denmark)

    Petersen, Helga Nørgaard; Kusano, Yukihiro; Brøndsted, Povl

    2014-01-01

    . Soxhlet extraction was used to extract components of the sizing from the glass fibres. The glass fibres, their extracts and coated glass plates were analysed by Thermo-Gravimetric Analysis combined with a mass spectrometer (TGA-MS), and Attenuated Total Reflectance Fourier Transform Infrared (ATR...

  1. Glass for Solid State Devices

    Science.gov (United States)

    Bailey, R. F.

    1982-01-01

    Glass film has low intrinsic compressive stress for isolating active layers of magnetic-bubble and other solid-state devices. Solid-state device structure incorporates low-stress glasses as barrier and spacer layers. Glass layers mechanically isolate substrate, conductor, and nickel/iron layers.

  2. Heliostat glass survey and evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Lind, M. A.; Russin, J. M.

    1978-01-01

    The glass characterization and specification task included a comprehensive survey of both foreign and domestic sources of low distortion, low iron, .125 nominal flat glass for use in heliostat applications. PNL attempted to determine the availability of production lines, estimate industry interest, lead times, and costs for producing glass for second surface heliostat mirrors for the Barstow pilot plant and future commercial plants. Glass samples representative of the industry production capability were collected and characterized. The results of the survey and analysis were used to generate a specification for the Barstow Pilot Plant glass procurement.

  3. Low thermal expansion glass ceramics

    CERN Document Server

    1995-01-01

    This book is one of a series reporting on international research and development activities conducted by the Schott group of companies With the series, Schott aims to provide an overview of its activities for scientists, engineers, and managers from all branches of industry worldwide where glasses and glass ceramics are of interest Each volume begins with a chapter providing a general idea of the current problems, results, and trends relating to the subjects treated This volume describes the fundamental principles, the manufacturing process, and applications of low thermal expansion glass ceramics The composition, structure, and stability of polycrystalline materials having a low thermal expansion are described, and it is shown how low thermal expansion glass ceramics can be manufactured from appropriately chosen glass compositions Examples illustrate the formation of this type of glass ceramic by utilizing normal production processes together with controlled crystallization Thus glass ceramics with thermal c...

  4. Production of glass or glass-ceramic to metal seals with the application of pressure

    Science.gov (United States)

    Kelly, M.D.; Kramer, D.P.

    1985-01-04

    In a process for preparing a glass or glass-ceramic to metal seal comprising contacting the glass with the metal and heat-treating the glass and metal under conditions whereby the glass to metal seal is effected and, optionally, the glass is converted to a glass-ceramic, an improvement comprises carrying out the heat-treating step using hot isostatic pressing.

  5. Breaking the glass ceiling.

    Science.gov (United States)

    Lazarus, A

    1997-03-01

    The glass ceiling is a form of organizational bias and discrimination that prevents qualified professionals from achieving positions of top governance and leadership. This article examines glass ceiling barriers that keep physicians from the upper reaches of management. While these factors apply mainly to women and minority physicians in academia, and are attributable to sexual harassment and discrimination, physicians as a class are frequently denied executive management positions. Such denial results from inadequate preparation for a career in health care administration. Important issues in the professional development of physician executives include mentoring, training and education, administrative experience, and cultural and personality factors. All of those must be considered when making the transition from medicine to management.

  6. Glasses for Mali

    CERN Multimedia

    PH Department

    2008-01-01

    We are collecting old pairs of glasses to take out to Mali, where they can be re-used by people there. The price for a pair of glasses can often exceed 3 months salary, so they are prohibitively expensive for many people. If you have any old spectacles you can donate, please put them in the special box in the ATLAS secretariat, Bldg.40-4-D01 before the Christmas closure on 19 December so we can take them with us when we leave for Africa at the end of the month. (more details in ATLAS e-news edition of 29 September 2008: http://atlas-service-enews.web.cern.ch/atlas-service-enews/news/news_mali.php) many thanks! Katharine Leney co-driver of the ATLAS car on the Charity Run to Mali

  7. Supersymmetric Spin Glass

    CERN Document Server

    Gukov, S G

    1997-01-01

    The evidently supersymmetric four-dimensional Wess-Zumino model with quenched disorder is considered at the one-loop level. The infrared fixed points of a beta-function form the moduli space $M = RP^2$ where two types of phases were found: with and without replica symmetry. While the former phase possesses only a trivial fixed point, this point become unstable in the latter phase which may be interpreted as a spin glass phase.

  8. Transferability of glass lens molding

    Science.gov (United States)

    Katsuki, Masahide

    2006-02-01

    Sphere lenses have been used for long time. But it is well known that sphere lenses theoretically have spherical aberration, coma and so on. And, aspheric lenses attract attention recently. Plastic lenses are molded easily with injection machines, and are relatively low cost. They are suitable for mass production. On the other hand, glass lenses have several excellent features such as high refractive index, heat resistance and so on. Many aspheric glass lenses came to be used for the latest digital camera and mobile phone camera module. It is very difficult to produce aspheric glass lenses by conventional process of curve generating and polishing. For the solution of this problem, Glass Molding Machine was developed and is spreading through the market. High precision mold is necessary to mold glass lenses with Glass Molding Machine. The mold core is ground or turned by high precision NC aspheric generator. To obtain higher transferability of the mold core, the function of the molding machine and the conditions of molding are very important. But because of high molding temperature, there are factors of thermal expansion and contraction of the mold and glass material. And it is hard to avoid the factors. In this session, I introduce following items. [1] Technology of glass molding and the machine is introduced. [2] The transferability of glass molding is analyzed with some data of glass lenses molded. [3] Compensation of molding shape error is discussed with examples.

  9. Analytical Plan for Roman Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Strachan, Denis M.; Buck, Edgar C.; Mueller, Karl T.; Schwantes, Jon M.; Olszta, Matthew J.; Thevuthasan, Suntharampillai; Heeren, Ronald M.

    2011-01-01

    Roman glasses that have been in the sea or underground for about 1800 years can serve as the independent “experiment” that is needed for validation of codes and models that are used in performance assessment. Two sets of Roman-era glasses have been obtained for this purpose. One set comes from the sunken vessel the Iulia Felix; the second from recently excavated glasses from a Roman villa in Aquileia, Italy. The specimens contain glass artifacts and attached sediment or soil. In the case of the Iulia Felix glasses quite a lot of analytical work has been completed at the University of Padova, but from an archaeological perspective. The glasses from Aquileia have not been so carefully analyzed, but they are similar to other Roman glasses. Both glass and sediment or soil need to be analyzed and are the subject of this analytical plan. The glasses need to be analyzed with the goal of validating the model used to describe glass dissolution. The sediment and soil need to be analyzed to determine the profile of elements released from the glass. This latter need represents a significant analytical challenge because of the trace quantities that need to be analyzed. Both pieces of information will yield important information useful in the validation of the glass dissolution model and the chemical transport code(s) used to determine the migration of elements once released from the glass. In this plan, we outline the analytical techniques that should be useful in obtaining the needed information and suggest a useful starting point for this analytical effort.

  10. Low Thermal Expansion Glass Ceramics

    CERN Document Server

    Bach, Hans

    2005-01-01

    This book appears in the authoritative series reporting the international research and development activities conducted by the Schott group of companies. This series provides an overview of Schott's activities for scientists, engineers, and managers from all branches of industry worldwide in which glasses and glass ceramics are of interest. Each volume begins with a chapter providing a general idea of the current problems, results, and trends relating to the subjects treated. This new extended edition describes the fundamental principles, the manufacturing process, and applications of low thermal expansion glass ceramics. The composition, structure, and stability of polycrystalline materials having a low thermal expansion are described, and it is shown how low thermal expansion glass ceramics can be manufactured from appropriately chosen glass compositions. Examples illustrate the formation of this type of glass ceramic by utilizing normal production processes together with controlled crystallization. Thus g...

  11. Advances in Glass Ionomer Cements

    OpenAIRE

    KAYA, Dt. Tuğba; TİRALİ, Yard. Doç. Dr. Resmiye Ebru

    2013-01-01

    In recent years there have been a number of innovations and developments with respect to glass ionomer cements and their applications in clinical dentistry. This article considers some of the recent outstanding studies regarding the field of glass ionomer cement applications, adhesion and setting mechanisms, types, advantage and disadvantages among themselves and also to enhance the physical and antibacterial properties under the title of 'Advances in Glass Ionomer Cements'. As their biologic...

  12. Structural color from colloidal glasses

    Science.gov (United States)

    Magkiriadou, Sofia

    When a material has inhomogeneities at a lengthscale comparable to the wavelength of light, interference can give rise to structural colors: colors that originate from the interaction of the material's microstructure with light and do not require absorbing dyes. In this thesis we study a class of these materials, called photonic glasses, where the inhomogeneities form a dense and random arrangement. Photonic glasses have angle-independent structural colors that look like those of conventional dyes. However, when this work started, there was only a handful of colors accessible with photonic glasses, mostly hues of blue. We use various types of colloidal particles to make photonic glasses, and we study, both theoretically and experimentally, how the optical properties of these glasses relate to their structure and constituent particles. Based on our observations from glasses of conventional particles, we construct a theoretical model that explains the scarcity of yellow, orange, and red photonic glasses. Guided by this model, we develop novel colloidal systems that allow a higher degree of control over structural color. We assemble glasses of soft, core-shell particles with scattering cores and transparent shells, where the resonant wavelength can be tuned independently of the reflectivity. We then encapsulate glasses of these core-shell particles into emulsion droplets of tunable size; in this system, we observe, for the first time, angle-independent structural colors that cover the entire visible spectrum. To enhance color saturation, we begin experimenting with inverse glasses, where the refractive index of the particles is lower than the refractive index of the medium, with promising results. Finally, based on our theoretical model for scattering from colloidal glasses, we begin an exploration of the color gamut that could be achieved with this technique, and we find that photonic glasses are a promising approach to a new type of long-lasting, non-toxic, and

  13. Toughness of Bulk Metallic Glasses

    Directory of Open Access Journals (Sweden)

    Shantanu V. Madge

    2015-07-01

    Full Text Available Bulk metallic glasses (BMGs have desirable properties like high strength and low modulus, but their toughness can show much variation, depending on the kind of test as well as alloy chemistry. This article reviews the type of toughness tests commonly performed and the factors influencing the data obtained. It appears that even the less-tough metallic glasses are tougher than oxide glasses. The current theories describing the links between toughness and material parameters, including elastic constants and alloy chemistry (ordering in the glass, are discussed. Based on the current literature, a few important issues for further work are identified.

  14. Joints in Tempered Glass Using Glass Dowel Discs

    DEFF Research Database (Denmark)

    Nielsen, Jens Henrik; Poulsen, Peter Noe

    transparency of the glass. This is achieved by using a dowel disc made entirely of tempered glass. The concept of the joint is proved by pilot tests and numerical models. From the work it is seen that the load-carrying capacity of such a connection is similar to what is found for traditionally in-plane loaded...

  15. Comparison of Leaching Rates of Glass-Ceramic and Glass

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>With the increase of the burn-up of the nuclear fuel, the amounts of the long-lived radionuclides increase. The solubility of actinides such as plutonium in glass is very limited. Glass-ceramic as the new

  16. POROUS WALL, HOLLOW GLASS MICROSPHERES

    Energy Technology Data Exchange (ETDEWEB)

    Sexton, W.

    2012-06-30

    Hollow Glass Microspheres (HGM) is not a new technology. All one has to do is go to the internet and Google{trademark} HGM. Anyone can buy HGM and they have a wide variety of uses. HGM are usually between 1 to 100 microns in diameter, although their size can range from 100 nanometers to 5 millimeters in diameter. HGM are used as lightweight filler in composite materials such as syntactic foam and lightweight concrete. In 1968 a patent was issued to W. Beck of the 3M{trademark} Company for 'Glass Bubbles Prepared by Reheating Solid Glass Particles'. In 1983 P. Howell was issued a patent for 'Glass Bubbles of Increased Collapse Strength' and in 1988 H. Marshall was issued a patent for 'Glass Microbubbles'. Now Google{trademark}, Porous Wall, Hollow Glass Microspheres (PW-HGMs), the key words here are Porous Wall. Almost every article has its beginning with the research done at the Savannah River National Laboratory (SRNL). The Savannah River Site (SRS) where SRNL is located has a long and successful history of working with hydrogen and its isotopes for national security, energy, waste management and environmental remediation applications. This includes more than 30 years of experience developing, processing, and implementing special ceramics, including glasses for a variety of Department of Energy (DOE) missions. In the case of glasses, SRS and SRNL have been involved in both the science and engineering of vitreous or glass based systems. As a part of this glass experience and expertise, SRNL has developed a number of niches in the glass arena, one of which is the development of porous glass systems for a variety of applications. These porous glass systems include sol gel glasses, which include both xerogels and aerogels, as well as phase separated glass compositions, that can be subsequently treated to produce another unique type of porosity within the glass forms. The porous glasses can increase the surface area compared to &apos

  17. INORGANIC PHOSPHORS IN GLASS BASED ON LEAD SILICATE GLASSES

    Directory of Open Access Journals (Sweden)

    V. A. Aseev

    2014-09-01

    Full Text Available We created and synthesized luminescent composite of the "phosphor in glass" type, based on the lead-silicate matrix and fine-dispersed powder of cerium-activated yttrium-aluminum garnet crystal. Lead-silicate system (40SiO2- 20PbO-(40-x PbF2-xAlF3, x = 0-25 was chosen as the glassy matrix. Initial glass was reduced to powder (frit for "phosphor in glass" composite with a particle size about 50 µm. Glass frit and powder of commercial YAG:Ce3+ phosphor were mixed in a ratio of 30 to 70 (wt %. Then this composite was pressed in a tablet and sintered on a quartz substrate at 823 К for 30 minutes. Thus, the plane parallel sheet for composite of the "phosphor in glass" was obtained with a diameter equal to 10 mm. For the purpose to reduce the loss of light in the presence of dispersion at a glass-phosphor boundary, optimization of glass mixture was done by adjusting the refractive index. X-ray phase and spectral-luminescent analysis of the derived composite were done. The results of these studies showed that there was no degradation of YAG: Ce powder during sintering. Dependence of luminescence intensity from temperature in the range from room temperature to 473 К was studied. It was shown, that with the phosphor in glass usage thermal quenching of luminescence was reduced in comparison with the silicone. The model of white LED was created with the "phosphor in glass" composite based on lead-silicate glasses with low temperature of vitrifying. The derived LED emits white light with a color temperature of 4370 K, and the luminous efficiency is equal to 58 lm/W. The developed luminescent composite based on the lead-silicate matrix can be used for the production of high-power white light LED.

  18. Glasses in the D'Orbigny Angrite

    Science.gov (United States)

    Varela, M. E.; Kurat, G.; Brandstätter, F.; Bonnin-Mosbah, M.; Metrich, N.

    2001-03-01

    The D'Orbigny angrite contains abundant glasses, a phase which has not been previously reported from any other angrite. Glasses fill in part open druses and intersticial spaces between major silicates, or occur as glass inclusions in olivine.

  19. Holder for rotating glass body

    Science.gov (United States)

    Kolleck, Floyd W.

    1978-04-04

    A device is provided for holding and centering a rotating glass body such as a rod or tube. The device includes a tubular tip holder which may be held in a lathe chuck. The device can utilize a variety of centering tips each adapted for a particular configuration, such as a glass O-ring joint or semi-ball joint.

  20. OPAL Various Lead Glass Blocks

    CERN Multimedia

    These lead glass blocks were part of a CERN detector called OPAL (one of the four experiments at the LEP particle detector). OPAL uses some 12 000 blocks of glass like this to measure particle energies in the electromagnetic calorimeter. This detector measured the energy deposited when electrons and photons were slowed down and stopped.

  1. International Congress on Glass XII

    Energy Technology Data Exchange (ETDEWEB)

    Doremus, R H; LaCourse, W C; Mackenzie, J D; Varner, J R; Wolf, W W [eds.

    1980-01-01

    A total of 158 papers are included under nine headings: structure and glass formation; optical properties; electrical and magnetic properties; mechanical properties and relaxation; mass transport; chemical durability and surfaces; nucleation; crystallization; and glass ceramics; processing; and automatic controls. Separate abstracts were prepared for eight papers; four of the remaining papers had been processed previously for the data base. (DLC)

  2. Fullerene-doped porous glasses

    Science.gov (United States)

    Joshi, M. P.; Kukreja, L. M.; Rustagi, K. C.

    We report the doping of C60 in porous glass by diffusion in solution phase at room temperature. The presence of C60 in the doped porous glass was confirmed spectroscopically. We also report the changes in optical absorption spectrum and intensity-dependent transmission of 30 ns laser pulses at 527 nm in these materials.

  3. Fullerene-doped porous glasses

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, M.P. [Center for Adv. Technol., Indore (India). Nonlinear Optics Group; Kukreja, L.M. [Center for Adv. Technol., Indore (India). Nonlinear Optics Group; Rustagi, K.C. [Center for Adv. Technol., Indore (India). Nonlinear Optics Group

    1997-07-01

    We report the doping of C{sub 60} in porous glass by diffusion in solution phase at room temperature. The presence of C{sub 60} in the doped porous glass was confirmed spectroscopically. We also report the changes in optical absorption spectrum and intensity-dependent transmission of 30 ns laser pulses at 527 nm in these materials. (orig.)

  4. Database and Interim Glass Property Models for Hanford HLW Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Hrma, Pavel R; Piepel, Gregory F; Vienna, John D; Cooley, Scott K; Kim, Dong-Sang; Russell, Renee L

    2001-07-24

    The purpose of this report is to provide a methodology for an increase in the efficiency and a decrease in the cost of vitrifying high-level waste (HLW) by optimizing HLW glass formulation. This methodology consists in collecting and generating a database of glass properties that determine HLW glass processability and acceptability and relating these properties to glass composition. The report explains how the property-composition models are developed, fitted to data, used for glass formulation optimization, and continuously updated in response to changes in HLW composition estimates and changes in glass processing technology. Further, the report reviews the glass property-composition literature data and presents their preliminary critical evaluation and screening. Finally the report provides interim property-composition models for melt viscosity, for liquidus temperature (with spinel and zircon primary crystalline phases), and for the product consistency test normalized releases of B, Na, and Li. Models were fitted to a subset of the screened database deemed most relevant for the current HLW composition region.

  5. Energetics of glass fragmentation: Experiments on synthetic and natural glasses

    Science.gov (United States)

    Kolzenburg, S.; Russell, J. K.; Kennedy, L. A.

    2013-11-01

    Natural silicate glasses are an essential component of many volcanic rock types including coherent and pyroclastic rocks; they span a wide range of compositions, occur in diverse environments, and form under a variety of pressure-temperature conditions. In subsurface volcanic environments (e.g., conduits and feeders), melts intersect the thermodynamically defined glass transition temperature to form glasses at elevated confining pressures and under differential stresses. We present a series of room temperature experiments designed to explore the fundamental mechanical and fragmentation behavior of natural (obsidian) and synthetic glasses (Pyrex™) under confining pressures of 0.1-100 MPa. In each experiment, glass cores are driven to brittle failure under compressive triaxial stress. Analysis of the load-displacement response curves is used to quantify the storage of energy in samples prior to failure, the (brittle) release of elastic energy at failure, and the residual energy stored in the post-failure material. We then establish a relationship between the energy density within the sample at failure and the grain-size distributions (D-values) of the experimental products. The relationship between D-values and energy density for compressive fragmentation is significantly different from relationships established by previous workers for decompressive fragmentation. Compressive fragmentation is found to have lower fragmentation efficiency than fragmentation through decompression (i.e., a smaller change in D-value with increasing energy density). We further show that the stress storage capacity of natural glasses can be enhanced (approaching synthetic glasses) through heat treatment.

  6. Glass science tutorial: Lecture No. 7, Waste glass technology for Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, A.A.

    1995-07-01

    This paper presents the details of the waste glass tutorial session that was held to promote knowledge of waste glass technology and how this can be used at the Hanford Reservation. Topics discussed include: glass properties; statistical approach to glass development; processing properties of nuclear waste glass; glass composition and the effects of composition on durability; model comparisons of free energy of hydration; LLW glass structure; glass crystallization; amorphous phase separation; corrosion of refractories and electrodes in waste glass melters; and glass formulation for maximum waste loading.

  7. [Respiratory function in glass blowers].

    Science.gov (United States)

    Zuskin, E; Butković, D; Mustajbegović, J

    1992-01-01

    The prevalence of chronic and acute respiratory symptoms and diseases and changes in lung function in a group of 80 glass blowers have been investigated. In addition a group of 80 not exposed workers was used as a control group for respiratory symptoms and diseases. In glass blowers, there was significant increase in prevalence of chronic bronchitis, nasal catarrh, and sinusitis than in the controls. Glass blowers exposed for more and less than 10 years had similar prevalences of respiratory symptoms. A large number of glass blowers complained of acute across-shift symptoms. Significant increase in FVC, FEF50 and FEF25 was documented at the end of the work shift. Comparison with predicted normal values showed that glass blowers had FVC and FEF25 significantly lower than predicted. RV and RV/TLC were significantly increased compared with the predicted normal values. DLCO was within the normal values in most glass blowers. It is concluded that work in the glass blower industry is likely to lead the development of chronic respiratory disorders.

  8. OPAL 96 Blocks Lead Glass

    CERN Multimedia

    This array of 96 lead glass bricks formed part of the OPAL electromagnetic calorimeter. One half of the complete calorimeter is shown in the picture above. There were 9440 lead glass counters in the OPAL electromagnetic calorimeter. These are made of Schott type SF57 glass and each block weighs about 25 kg and consists of 76% PbO by weight. Each block has a Hamamatsu R2238 photomultiplier glued on to it. The complete detector was in the form of a cylinder 7m long and 6m in diameter. It was used to measure the energy of electrons and photons produced in LEP interactions.

  9. Shattered glass seeking the densest matter: the color glass condensate

    CERN Multimedia

    Appell, D

    2004-01-01

    "Physicists investigating heavy-particle collisions believe they are on the track of a universal form of matter, one common to very high energy particles ranging from protons to heavy nuclei such as uranium. Some think that this matter, called a color glass condensate, may explain new nuclear properties and the process of particle formation during collisions. Experimentalists have recently reported intriguing data that suggest a color glass condensate has actually formed in past work" (1 page)

  10. Potential and challenges of interdisciplinary research on historical window glass, stained glass and reverse glass paintings

    Science.gov (United States)

    Trümpler, Stefan; Wolf, Sophie; Kessler, Cordula; Goll, Jürg

    The interdisciplinary study of ancient materials has become an increasingly common strategy, mainly because it has proved to be a highly rewarding approach to studying the age, provenance and production of archaeological objects. The results of such an approach sometimes also provide answers to questions relating not only to socio-cultural, economic or technological developments in a particular region or period (trade, innovation, production etc.), but also the conservation of the materials or artefacts in question. A number of analytical methods, ranging from microscopic to elementary analyses, have been successfully applied to determine the nature of materials and technologies used in the production, as well as to identify the provenance of ancient glass. As far as window glass and stained glass is concerned, the study of architectural context and art history - as well as the technological characteristics of materials - has proved to be most helpful in determining history, production and artistic importance of the objects under study. This paper discusses some of the multidisciplinary studies that the Vitrocentre Romont has conducted on early medieval window glass, stained glass and reverse glass paintings and illustrates the potential of a holistic approach in solving questions about materials, techniques, window design and conservation. It also addresses the limitations of the approach, which are often related to finding appropriate (i.e. non-destructive and possibly portable) methods for the analysis of sometimes extremely fragile stained glass windows.

  11. The bearable lightness of all glass structures

    NARCIS (Netherlands)

    Nijsse, R.

    2015-01-01

    This paper is new developments in structural engineering related especially to the use of the material glass. After a philosophical discussion about why glass is the material for the Future, all glass elements and related techniques are presented from which an all glass building can be assembled. To

  12. The Future of all glass structures

    NARCIS (Netherlands)

    Nijsse, R.

    2015-01-01

    This paper is new developments in structural engineering related especially to the use of the material glass. After a philosophical discussion about why glass is the material for the Future, all glass elements and related techniques are presented from which an all glass building can be assembled. To

  13. Perceptual effects of overlapping curved glass

    NARCIS (Netherlands)

    Cruz, P.J.S.; Veer, F.A.; Carvalho, P.L.L.

    2010-01-01

    The application of glass in contemporary architecture explores perceptual phenomenon that intentionally change the way we experience space. SANAA'S recent work uses glass in a radical way, proposing a renewed approach to transparency. The Toledo Glass Pavilion, with most spaces defined by glass wall

  14. 7 CFR 2902.30 - Glass cleaners.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Glass cleaners. 2902.30 Section 2902.30 Agriculture... Glass cleaners. (a) Definition. Cleaning products designed specifically for use in cleaning glass... qualifying biobased glass cleaners. By that date, Federal agencies that have the responsibility for...

  15. The structural strength of glass: hidden damage

    NARCIS (Netherlands)

    Veer, F.A.; Rodichev, Y.M.

    2011-01-01

    We discuss “hidden damage” of glass by the rolling process, which results in heterogeneous distribution of microcracks on the edge surface of glass element, which are the fracture source deteriorating glass element strength. It is shown that removal of this damage on the edges of glass elements incr

  16. Faraday Rotator Glass for Laser Application

    Institute of Scientific and Technical Information of China (English)

    JIANG Ya-si; ZHOU Bei-ming; WANG Biao; HU Li-li

    2007-01-01

    Glasses with strong Faraday rotation are interest for laser applications. The principles of diamagnetic and paramagnetic Faraday rotator glasses are described theoretically and experimentally. High performance Tb-paramagnetic glass series were developed and produced at Kigre in the US and SIOM in Shanghai. Large aperture glass disks have been used for high power laser fusion systems.

  17. Turning nuclear waste into glass

    Energy Technology Data Exchange (ETDEWEB)

    Pegg, Ian L.

    2015-02-15

    Vitrification has emerged as the treatment option of choice for the most dangerous radioactive waste. But dealing with the nuclear waste legacy of the Cold War will require state-of-the-art facilities and advanced glass formulations.

  18. Spin glasses on thin graphs

    CERN Document Server

    Baillie, C F; Johnston, D A; Plechác, P

    1995-01-01

    In a recent paper we found strong evidence from simulations that the Ising antiferromagnet on ``thin'' random graphs - Feynman diagrams - displayed a mean-field spin glass transition. The intrinsic interest of considering such random graphs is that they give mean field results without long range interactions or the drawbacks, arising from boundary problems, of the Bethe lattice. In this paper we reprise the saddle point calculations for the Ising and Potts ferromagnet, antiferromagnet and spin glass on Feynman diagrams. We use standard results from bifurcation theory that enable us to treat an arbitrary number of replicas and any quenched bond distribution. We note the agreement between the ferromagnetic and spin glass transition temperatures thus calculated and those derived by analogy with the Bethe lattice, or in previous replica calculations. We then investigate numerically spin glasses with a plus or minus J bond distribution fo rthe Ising and Q=3,3,10,50 state Potts models, paying particular attention t...

  19. Porous glasses for optical sensors

    Science.gov (United States)

    Dorosz, Dominik; Procyk, Bernadeta

    2006-03-01

    Microporous glasses from the Na II0-B II0 3-Si0 II system can be obtained by appropriate thermal and chemical treatment. During the thermal treatment the separation of the borate phase from the silicon skeleton has been occurred. The borates are in the form small drops joined to each other. In the course of chemical treatment the borates become leached in water, water solutions of acids or basis and the glass becomes porous. Microporous glasses may find application in many branches of science and engineering. The applications depend on the internal arrangement, size and shape of pores. These parameters may be in a wide range modified by a change of the chemical composition. The received porous glass was used as an element in optical fibre NO II sensor. The specific coloration reaction between organic reagents and NO II in the pores was occurred. It is possible to detection of 10-50 ppm NO II level.

  20. Glass microspheres for medical applications

    Science.gov (United States)

    Conzone, Samuel David

    Radioactive dysprosium lithium borate glass microspheres have been developed as biodegradable radiation delivery vehicles for the radiation synovectomy treatment of rheumatoid arthritis. Once injected into a diseased joint, the microspheres deliver a potent dose of radiation to the diseased tissue, while a non-uniform chemical reaction converts the glass into an amorphous, porous, hydrated dysprosium phosphate reaction product. The non-radioactive, lithium-borate component is dissolved from the glass (up to 94% weight loss), while the radioactive 165Dy reacts with phosphate anions in the body fluids, and becomes "chemically" trapped in a solid, dysprosium phosphate reaction product that has the same size as the un-reacted glass microsphere. Ethylene diamine tetraacetate (EDTA) chelation therapy can be used to dissolve the dysprosium phosphate reaction product after the radiation delivery has subsided. The dysprosium phosphate reaction product, which formed in vivo in the joint of a Sprague-Dawley rat, was dissolved by EDTA chelation therapy in 100 Gy) of localized beta radiation to a treatment site within the body, followed by complete biodegradability. The non-uniform reaction process is a desirable characteristic for a biodegradable radiation delivery vehicle, but it is also a novel material synthesis technique that can convert a glass to a highly porous materials with widely varying chemical composition by simple, low-temperature, glass/solution reaction. The reaction product formed by nonuniform reaction occupies the same volume as the un-reacted glass, and after drying for 1 h at 300°C, has a specific surface area of ≈200 m2/g, a pore size of ≈30 nm, and a nominal crushing strength of ≈10 MPa. Finally, rhenium glass microspheres, composed of micron-sized, metallic rhenium particles dispersed within a magnesium alumino borate glass matrix were produced by sintering ReO2 powder and glass frit at 1050°C. A 50 mg injection of radioactive rhenium glass

  1. Random Fields and Spin Glasses

    Science.gov (United States)

    De Dominicis, Cirano; Giardina, Irene

    2010-06-01

    1. A brief introduction; 2. The Random Field Ising model; 3. The dynamical approach; 4. The p=2 spherical model; 5. Mean field spin glasses: one-step RSB; 6. The Sherrington-Kirkpatrick model; 7. Mean field via TAP equations; 8. Spin glass above D=6; 9. Propagators, mostly replicon; 10. Ward-Takahashi identities and Goldstone modes; 11. Alternative approaches and conclusions; Appendices; Index.

  2. Do atmospheric aerosols form glasses?

    OpenAIRE

    Zobrist, B.; Marcolli, C.; Pedernera, D. A.; Koop, T.

    2008-01-01

    A new process is presented by which water soluble organics might influence ice nucleation, ice growth, chemical reactions and water uptake of aerosols in the upper troposphere: the formation of glassy aerosol particles. Glasses are disordered amorphous (non-crystalline) solids that form when a liquid is cooled without crystallization until the viscosity increases exponentially and molecular diffusion practically ceases. The glass transition temperatures, Tg

  3. Rhenium volatilization in waste glasses

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Kai; Pierce, David A. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Hrma, Pavel, E-mail: pavel.hrma@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Schweiger, Michael J. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Kruger, Albert A. [U.S. Department of Energy, Office of River Protection, Richland, WA 99352 (United States)

    2015-09-15

    Highlights: • Re did not volatilize from a HLW feed until 1000 °C. • Re began to volatilize from LAW feeds at ∼600 °C. • The vigorous foaming and generation of gases from salts enhanced Re evaporation in LAW feeds. • The HLW glass with less foaming and salts is a promising medium for Tc immobilization. - Abstract: We investigated volatilization of rhenium (Re), sulfur, cesium, and iodine during the course of conversion of high-level waste melter feed to glass and compared the results for Re volatilization with those in low-activity waste borosilicate glasses. Whereas Re did not volatilize from high-level waste feed heated at 5 K min{sup −1} until 1000 °C, it began to volatilize from low-activity waste borosilicate glass feeds at ∼600 °C, a temperature ∼200 °C below the onset temperature of evaporation from pure KReO{sub 4}. Below 800 °C, perrhenate evaporation in low-activity waste melter feeds was enhanced by vigorous foaming and generation of gases from molten salts as they reacted with the glass-forming constituents. At high temperatures, when the glass-forming phase was consolidated, perrhenates were transported to the top surface of glass melt in bubbles, typically together with sulfates and halides. Based on the results of this study (to be considered preliminary at this stage), the high-level waste glass with less foaming and salts appears a promising medium for technetium immobilization.

  4. Production of lightweight foam glass (invited talk)

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    The foam glass production allows low cost recycling of postconsumer glass and industrial waste materials as foaming agent or as melt resource. Foam glass is commonly produced by utilising milled glass mixed with a foaming agent. The powder mixture is heat-treated to around 10^3.7 – 10^6 Pa s, which...... result in viscous sintering and subsequent foaming of the glass melt. The porous glass melt is cooled down to room temperature to freeze-in the foam structure. The resulting foam glass is applied in constructions as a light weight material to reduce load bearing capacity and as heat insulating material...... in buildings and industry. We foam panel glass from old televisions with different foaming agents. We discuss the foaming ability and the foaming mechanism of different foaming systems. We compare several studies to define a viscous window for preparing low density foam glass. However, preparing foam glass...

  5. Bioactive glasses: Frontiers and challenges

    Directory of Open Access Journals (Sweden)

    Larry L. Hench

    2015-11-01

    Full Text Available Bioactive glasses were discovered in 1969 and provided for the first time an alternative to nearly inert implant materials. Bioglass formed a rapid, strong and stable bond with host tissues. This article examines the frontiers of research crossed to achieve clinical use of bioactive glasses and glass-ceramics. In the 1980’s it was discovered that bioactive glasses could be used in particulate form to stimulate osteogenesis, which thereby led to the concept of regeneration of tissues. Later, it was discovered that the dissolution ions from the glasses behaved like growth factors, providing signals to the cells. This article summarizes the frontiers of knowledge crossed during four eras of development of bioactive glasses that have led from concept of bioactivity to widespread clinical and commercial use, with emphasis on the first composition, 45S5 Bioglass®. The four eras are: a discovery; b clinical application; c tissue regeneration; and d innovation. Questions still to be answered for the fourth era are included to stimulate innovation in the field and exploration of new frontiers that can be the basis for a general theory of bioactive stimulation of regeneration of tissues and application to numerous clinical needs.

  6. BNFL Report Glass Formers Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, R.F.

    2000-07-27

    The objective of this task was to obtain powder property data on candidate glass former materials, sufficient to guide conceptual design and estimate the cost of glass former handling facilities as requested under Part B1 of BNFL Technical and Development Support. Twenty-nine glass forming materials were selected and obtained from vendors for the characterization of their physical properties, durability in caustic solution, and powder flow characteristics. A glass former was selected based on the characterization for each of the ten oxide classes required for Envelope A, B, and C mixtures. Three blends (A, B, and C) were prepared based on formulations provided by Vitreous State Laboratory and evaluated with the same methods employed for the glass formers. The properties obtained are presented in a series of attached Tables. It was determined that five of the ten glass formers, (kyanite, iron oxide, titania, zircon, and zinc oxide) have the potential to cause some level of solids f low problems. The problems might include arching or ratholing in the silo/hopper. In addition, all of the blends may require consideration for their handling.

  7. BNFL Report Glass Formers Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, R.F.

    2000-07-27

    The objective of this task was to obtain powder property data on candidate glass former materials, sufficient to guide conceptual design and estimate the cost of glass former handling facilities as requested under Part B1 of BNFL Technical and Development Support. Twenty-nine glass forming materials were selected and obtained from vendors for the characterization of their physical properties, durability in caustic solution, and powder flow characteristics. A glass former was selected based on the characterization for each of the ten oxide classes required for Envelope A, B, and C mixtures. Three blends (A, B, and C) were prepared based on formulations provided by Vitreous State Laboratory and evaluated with the same methods employed for the glass formers. The properties obtained are presented in a series of attached Tables. It was determined that five of the ten glass formers, (kyanite, iron oxide, titania, zircon, and zinc oxide) have the potential to cause some level of solids f low problems. In addition, all of the blends may require consideration for their handling. A number of engineering considerations and recommendations were prepared based on the experimental findings, experience, and other process considerations. Recommendations for future testing are included. In conjunction with future work, it is recommended that a professional consultant be engaged to guide and assist with testing and design input.

  8. Operational Modal Analysis on laminated glass beams

    OpenAIRE

    López Aenlle, Manuel; Fernández, Pelayo; Villa García, Luis Manuel; Barredo Egusquiza, Josu; Hermanns, Lutz Karl Heinz; Fraile de Lerma, Alberto

    2011-01-01

    Laminated glass is a sandwich element consisting of two or more glass sheets, with one or more interlayers of polyvinyl butyral (PVB). The dynamic response of laminated glass beams and plates can be predicted using analytical or numerical models in which the glass and the PVB are usually modelled as linear-elastic and linear viscoelastic materials, respectively. In this work the dynamic behavior of laminated glass beams are predicted using a finite element model and the analytical model ...

  9. Natural analogues of nuclear waste glass corrosion.

    Energy Technology Data Exchange (ETDEWEB)

    Abrajano, T.A. Jr.; Ebert, W.L.; Luo, J.S.

    1999-01-06

    This report reviews and summarizes studies performed to characterize the products and processes involved in the corrosion of natural glasses. Studies are also reviewed and evaluated on how well the corrosion of natural glasses in natural environments serves as an analogue for the corrosion of high-level radioactive waste glasses in an engineered geologic disposal system. A wide range of natural and experimental corrosion studies has been performed on three major groups of natural glasses: tektite, obsidian, and basalt. Studies of the corrosion of natural glass attempt to characterize both the nature of alteration products and the reaction kinetics. Information available on natural glass was then compared to corresponding information on the corrosion of nuclear waste glasses, specifically to resolve two key questions: (1) whether one or more natural glasses behave similarly to nuclear waste glasses in laboratory tests, and (2) how these similarities can be used to support projections of the long-term corrosion of nuclear waste glasses. The corrosion behavior of basaltic glasses was most similar to that of nuclear waste glasses, but the corrosion of tektite and obsidian glasses involves certain processes that also occur during the corrosion of nuclear waste glasses. The reactions and processes that control basalt glass dissolution are similar to those that are important in nuclear waste glass dissolution. The key reaction of the overall corrosion mechanism is network hydrolysis, which eventually breaks down the glass network structure that remains after the initial ion-exchange and diffusion processes. This review also highlights some unresolved issues related to the application of an analogue approach to predicting long-term behavior of nuclear waste glass corrosion, such as discrepancies between experimental and field-based estimates of kinetic parameters for basaltic glasses.

  10. Effects of ionization on silicate glasses. [Silicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Primak, W.

    1982-02-01

    This evaluation of radiation effects in silicate glasses caused by ionization is based on our own investigations, on material collected in our files (reports, articles, and notes), and on a computer literature search through recent issues of Physics Abstracts and Chemical Abstracts (and the apparently pertinent references which appeared). Some of our recent results, available heretofore only in internal correspondence, are presented in some detail. It is concluded that research into the behavior of silicate glasses generally will be required before the specific effects in the radioactive waste storage glasses can be properly understood and evaluated. Two particular neglected areas of investigation are targeted for immediate concern: a kinetic analysis of annealing data and the acquisition of data on effects of irradiation at controlled elevated temperatures.

  11. Refractories Quality Improvement for Glass Industry Upgrading

    Institute of Scientific and Technical Information of China (English)

    ZENG Dafan

    2009-01-01

    @@ 1 Glass Industry and Refractories Industry Closely Connect 1.1 Glass Development Drives Refractories Progress Refractories are indispensable to glass industry; the rapid development of glass industry drives the growth of refractories industry. China's glass industry developed slowly before the mid 1980s. The kilns and furnaces were backward and small-scale with furnace life of only 2-3 years; glass was produced with extremely low efficiency and poor quality. During that period, refractories for glass melting furnaces had very limited varieties and inferior quality. The fused cast refractories for advanced glass melting furnaces were imported, for the materials made in China could not meet the requirements, which seriously restrained the technical progress of China's glass industry.

  12. Kinetic competition during glass formation

    Energy Technology Data Exchange (ETDEWEB)

    Perepezko, J.H., E-mail: perepezk@engr.wisc.edu [University of Wisconsin-Madison, Department of Materials Science and Engineering, 1509 University Ave., Madison, WI 53706 (United States); Santhaweesuk, C.; Wang, J.Q. [University of Wisconsin-Madison, Department of Materials Science and Engineering, 1509 University Ave., Madison, WI 53706 (United States); Imhoff, S.D. [Los Alamos National Laboratory, Materials Science and Technology Div., Los Alamos, NM 87545 (United States)

    2014-12-05

    Highlights: • The kinetics of glass formation has been elucidated in an Fe and Au-base alloy. • A critical cooling rate range should be considered for glass formation. • Wedge casting, calorimetry and upquenching data are used to model TTT curves. - Abstract: For vitrification of an alloy melt during cooling there is a kinetic competition with the nucleation and growth of metastable and stable crystalline phases. Many of the measures of glass forming ability (GFA) attempt to capture some of the features of the kinetic competition, but the GFA metrics are static measures and the kinetic processes are dynamic in nature. In fact, the critical cooling rate for glass formation should be viewed in terms of a critical cooling rate range to acknowledge the stochastic nature of crystal nucleation behavior. Direct measurements of the critical cooling rate range confirm this behavior and also provide useful input for kinetics analysis. Usually kinetics analyses are based upon crystallization behavior that is measured either isothermally or upon heating to temperatures near the crystallization onset, T{sub x} and the results are extrapolated to much higher temperatures. This practice is based upon a number of assumptions about transport behavior in the undercooled liquid. With rapid up-quenching of amorphous samples, the high temperature crystallization behavior can be measured and used to refine the kinetics analysis and provide useful insight on the kinetic competition and glass forming ability.

  13. Antibacterial effects of glass ionomers.

    Science.gov (United States)

    DeSchepper, E J; White, R R; von der Lehr, W

    1989-04-01

    Glass ionomer cements have been shown to possess antimicrobial activity. Proposed mechanisms of action include acidity and fluoride. It was the purpose of this study to determine the antimicrobial effect of 11 glass ionomer cements, their individual powder and liquid components and one resin-bonded liner containing high fluoride ionomer glass against Streptococcus mutans #6715. The role of fluoride and pH in the antibacterial activity was also studied. Using agar diffusion assay methodology, the following results were obtained. All of the glass ionomer cements were inhibitory against S. mutans. The antibacterial cements and slurries that were tested for fluoride, released the ion in excess of reported minimum inhibitory values. The antimicrobial activity of the liquid components, that were tested for the effects of pH changes, was totally lost when the pH was adjusted to 5. The resin bonded liner was inactive against S. mutans and did not release inhibitory concentrations of fluoride. These results indicate that freshly-mixed glass ionomer cements are antimicrobial against S. mutans and that the mechanism of action is probably a function of both fluoride and pH although additional factors may be involved.

  14. HLW Glass Studies: Development of Crystal-Tolerant HLW Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Matyas, Josef; Huckleberry, Adam R.; Rodriguez, Carmen P.; Lang, Jesse B.; Owen, Antionette T.; Kruger, Albert A.

    2012-04-02

    In our study, a series of lab-scale crucible tests were performed on designed glasses of different compositions to further investigate and simulate the effect of Cr, Ni, Fe, Al, Li, and RuO2 on the accumulation rate of spinel crystals in the glass discharge riser of the HLW melter. The experimental data were used to expand the compositional region covered by an empirical model developed previously (Matyáš et al. 2010b), improving its predictive performance. We also investigated the mechanism for agglomeration of particles and impact of agglomerates on accumulation rate. In addition, the TL was measured as a function of temperature and composition.

  15. Electrical conduction and glass relaxation in alkali- silicate glasses

    Science.gov (United States)

    Angel, Paul William

    Electrical response measurements from 1 Hz to 1 MHz between 50o and 540oC were made on potassium, sodium and lithium-silicate glasses with low alkali oxide contents. Conductivity and electrical relaxation responses for both annealed and air quenched glasses of the same composition were compared. Quenching was found to lower the dc conductivity, σdc, and activation energy as well as increase the pre-exponential term when compared to the corresponding annealed glass of the same composition. All of the glasses exhibited Arrhenius behavior in the log σdc against 1/T plots. A sharp decrease in σdc was observed for glasses containing alkali concentrations of 7 mol% or less. The σdc activation energy exhibited similar behavior when plotted as a function of alkali composition and was explained in terms of a mixture of the weak and strong electrolyte models. The depression angle for fits to the complex impedance data were also measured as a function of thermal history, alkali concentration and alkali species. These results were interpreted in terms of changes in the distribution of relaxation times. Annealed samples from a single melt of a 10 mol% K2O-90SiO2 glass were reheated to temperatures ranging from 450o to 800oC, held isothermally for 20 min, and then quenched in either air or silicon oil. The complex impedance of both an annealed and the quenched samples were then measured as a function of temperature from 120o to 250oC. The σdc was found to be remain unaffected by heat treatments below 450oC, to increase rapidly over an approximate 200oC range of temperatures that was dependent on cooling rate and to be constant for heat treatments above this range. This behavior is interpreted in terms of the mean structural relaxation time as a function of temperature and cooling rate near the glass transition temperature and glass transformation ranges. A more detailed definition for the transition and transformation temperatures and ranges was also provided.

  16. INFLUENCE OF GLASS CULLET IN CEMENT PASTES

    Institute of Scientific and Technical Information of China (English)

    A.Karamberi; E.Chaniotakis; D.Papageorgiou; A.Moutsatsou

    2006-01-01

    The present study investigates glass and cement compatibility with a view to use glass as a cement replacement. Amber, flint and green glasses were chosen due to their prevalence in the Greek market as packaging materials. The factors under investigation were the pozzolanicity of the glass cullet, the hydration rate and the mechanical strength development of the cement pastes, as well as the expansion of the specimens due to alkali-silica reaction.Moreover, the potential enhancement of glass pozzolanic activity was examined. The results of the study were encouraging to show the potentiality of utilising glass cullet in cementitious products.

  17. High density fluoride glass calorimeter

    Science.gov (United States)

    Xie, Q.; Scheltzbaum, J.; Akgun, U.

    2014-04-01

    The unprecedented radiation levels in current Large Hadron Collider runs, and plans to even increase the luminosity creates a need for new detector technologies to be investigated. Quartz plates to replace the plastic scintillators in current LHC calorimeters have been proposed in recent reports. Quartz based Cherenkov calorimeters can solve the radiation damage problem, however light production and transfer have proven to be challenging. This report summarizes the results from a computational study on the performance of a high-density glass calorimeter. High-density, scintillating, fluoride glass, CHG3, was used as the active material. This glass has been developed specifically for hadron collider experiments, and is known for fast response time, in addition to high light yield. Here, the details of a Geant4 model for a sampling calorimeter prototype with 20 layers, and its hadronic as well as electromagnetic performances are reported.

  18. Plate shell structures of glass

    DEFF Research Database (Denmark)

    Bagger, Anne

    to their curved shape. A plate shell structure maintains a high stiffness-to-weight ratio, while facilitating the use of plane structural elements. The study focuses on using laminated glass panes for the load bearing facets. Various methods of generating a plate shell geometry are suggested. Together with Ghent......, such as facet size, imperfections, and connection characteristics. The critical load is compared to that of a similar, but smoothly curved, shell structure. Based on the investigations throughout the study, a set of guidelines for the structural design of plate shells of glass is proposed....

  19. Temprature Sponses of Intelligence Glass

    Institute of Scientific and Technical Information of China (English)

    Li Baojun; Liu Ming; Yang Tao; Fu Li; Zhou Yao; Li Tiansi

    2004-01-01

    The windowpane is an important collecting sunlight part of building, and also a part that loses most heat.How to increase absorbing heat and decrease losing heat of the windowpane is the key problem of the construction saving energy technology. The intelligence glass can auto control transmissivity with varying temperature outside the room.When temperature outside the room is above 25 ℃, the transmissivity of the windowpane is decreased with increasing of temperature outside the room. The composition of the intelligence glass and its temperature varying cove with outside the room on the basis of testing result for the windowpane were introduced.

  20. Characteristics of radiophotoluminescent glass dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Masashi; Shiraishi, Akemi; Murakami, Hiroyuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-07-01

    In Japan Atomic Energy Research Institute, a film badge is recently replaced by a new type radiophotoluminescent (RPL) glass dosimeter for external personal monitoring. Some fundamental characteristics of this dosimeter, such as dose dependence linearity, energy dependence, angular dependence, dose evaluation accuracy at mixed irradiation conditions, fading, etc., were examined at the Facility of Radiation Standard (FRS), JAERI. The results have proved that the RPL glass dosimeter has sufficient characteristics for practical use as a personal dosimeter for all of the items examined. (author)

  1. Crystal Structure of Borophosphate with 61 Screw Axis Helices

    Institute of Scientific and Technical Information of China (English)

    石恒真; 单永奎; 戴立益; 刘煜炎; 翁林红

    2003-01-01

    A brilliant purple octahedral single crystal is hydrothermally synthesized by the reaction of CoCl2·6H2O, H3BO3 and H3PO4 in NaOH aqueous solution of CH3(CH2)15N(CH3)3Br, and its crystal structure has been characterized by single-crystal X-ray diffraction. The compound, NaCo(H2O)2BP2O8·H2O (Mr = 336.72), belongs to hexagonal, space group P6122 with a = 9.447(5), c = 15.83(1) (A。), V = 1223(1) (A。)3, Dc = 2.742 g/cm3, Z = 6, F(000) = 1002 and β= 2.606 mm-1. The three-dimensional framework in the compound is built up from the linkage tetrahedral ribbons, in which the BO4 and PO4 tetrahedra alternate with CoO6 octahedra. The sodium ions and water molecules are located within the free thread of the helical ribbons.

  2. Structures and optical properties of tellurite glasses and glass ceramics

    Science.gov (United States)

    Hart, Robert Theodore, Jr.

    The structures and optical properties of (K2O)15(Nb 2O5)15(TeO2)70 glass and glass ceramic have been studied in order to understand the second harmonic generation observed from the glass ceramic. We have used 93Nb NMR, Raman spectroscopy, differential scanning calorimetry, small angle x-ray scattering, transmission electron microscopy, and powder x-ray and neutron scattering. We find that there is a microstructure consistent with binodal phase separation leading to spherical inclusions ˜20 nm in size. Upon heat treatment, these domains become nanocrystals of K2Te 4O9. A theory of optical heterogeneity is used to describe the observed second harmonic generation which is ˜95 times more intense that quartz. The chi(2) value for this material is 3.0 x 10-9 esu. A second project has used 125Te and 17O NMR to study alkali tellurite glasses in the system (M2O) x(TeO2)10-x, where M = Li, Na or K and x = 1, 2 or 3. The 125Te results show that complex models of network modification are needed to explain the resulting spectra that include a distribution of polyhedral tellurite units at all compositions. The 17O results show that there is a clear distinction between bridging and non-bridging oxygen sites in tellurite crystals and that sophisticated NMR experiments should be able to distinguish them in the glasses. Further, we have used Extended Huckel theory tight-binding calculations to predict the 17O NMR shifts of SiO2, GeO 2 and TeO2. We find that these calculations allow accurate predictions of the chemical shifts based solely on the trend in valence orbital size, and that expensive calculations of electron currents need not be used for this application.

  3. Recycling of post-consumer glass: energy savings, CO2 emission reduction, effects on glass quality and glass melting

    NARCIS (Netherlands)

    Beerkens, R.G.C.; Kers, G.; Santen, E. van

    2011-01-01

    This presentation shows the advantages of re-melting post-consumer glass, but also the potential risks of using contaminated cullet in the raw material batch of glass furnaces (e.g. container glass furnaces). As an example of potential advantages: increasing the cullet % in the batch of an efficient

  4. Flight Deck I-Glasses Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Flight Deck i-Glasses is a color, stereoscopic 3-D display mounted on consumer style eye glass frames that will enhance operator performance and multi-modal...

  5. Energy-Efficient Glass Melting: Submerged Combustion

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-01-01

    Oxy-gas-fired submerged combustion melter offers simpler, improved performance. For the last 100 years, the domestic glass industry has used the same basic equipment for melting glass on an industrial scale.

  6. The appraisal of structural glass assemblies

    CERN Document Server

    Overend, M

    2002-01-01

    A design methodology is advanced primarily to determine the tensile strength of annealed and tempered glass. The proposed approach consists of an analytical method to assess the tensile strength of glass, sigma sub f , and a computer algorithm which is used to compute the applied equivalent uniform stress, sigma sub p. The glass design approach put forward endeavours to ensure that the surface tensile strength of glass is not exceeded by the equivalent uniform stress. The analytical method, referred to as the General Crack Growth Model, is related to the fundamental properties of the glass surface and incorporates all factors that are known to significantly affect the strength of glass. The General Crack Growth Model is based on the comparison of recent fracture mechanics methods and empirical formulations proposed elsewhere. The proposed glass strength equation or the derived glass strength charts may be used to determine the maximum allowable surface tension, sigma sub f. The performance of the proposed Gen...

  7. Chalcogenide Glass for Passive Infrared Applications

    Institute of Scientific and Technical Information of China (English)

    Xianghua Zhang; Hongli Ma; Jacques Lucas

    2003-01-01

    Chalcogenide glass fibers have been successfully used for remote spectroscopy, temperature sensing and CO2 laser power delivery. In bulk form, chalcogenide glass is the most promising candidate for replacing the expensive germanium lenses for thermal imaging.

  8. Embedded adhesive connection for laminated glass plates

    DEFF Research Database (Denmark)

    Hansen, Jens Zangenberg; Poulsen, S.H.; Bagger, A.

    2012-01-01

    The structural behavior of a new connection design, the embedded adhesive connection, used for laminated glass plates is investigated. The connection consists of an aluminum plate encapsulated in-between two adjacent triple layered laminated glass plates. Fastening between glass and aluminum...... usage in a design situation. The embedded connection shows promising potential as a future fastening system for load-carrying laminated glass plates....

  9. Fluoride glasses: properties, technology and applications

    OpenAIRE

    Poulain, M.

    2010-01-01

    Heavy Metal Fluoride Glasses (HMFG) make a group of specialty glasses that require a dry processing, purity control of starting materials and specific thermal procedures. Numerous glass compositions have been identified in different chemical systems: fluorozirconates, fluoroaluminates and fluoroindates. The most commonly used HMFG is the ZBLAN fluorozirconate glass that exhibits the largest stability against devitrification. By comparison to ZBLAN the IR cut-off wavelength is shorter in AlF3-...

  10. Volcanic glasses, their origins and alteration processes

    Science.gov (United States)

    Friedman, I.; Long, W.

    1984-01-01

    Natural glass can be formed by volcanic processes, lightning (fulgarites) burning coal, and by meteorite impact. By far the most common process is volcanic - basically the glass is rapidly chilled molten rock. All natural glasses are thermodynamically unstable and tend to alter chemically or to crystallize. The rate of these processes is determined by the chemical composition of the magma. The hot and fluid basaltic melts have a structure that allows for rapid crystal growth, and seldom forms glass selvages greater than a few centimeters thick, even when the melt is rapidly cooled by extrusion in the deep sea. In contrast the cooler and very viscous rhyolitic magmas can yield bodies of glass that are tens of meters thick. These highly polymerized magmas have a high silica content - often 71-77% SiO2. Their high viscosity inhibits diffusive crystal growth. Basalt glass in sea water forms an alteration zone called palagonite whose thickness increases linearly with time. The rate of diffusion of water into rhyolitic glass, which follows the relationship - thickness = k (time) 1 2, has been determined as a function of the glass composition and temperature. Increased SiO2 increases the rate, whereas increased CaO, MgO and H2O decrease the rate. The activation energy of water diffusion varies from about 19 to 22 kcal/mol. for the glasses studied. The diffusion of alkali out of rhyolite glass occurs simultaneously with water diffusion into the glass. The rate of devitrification of rhyolitic glass is a function of the glass viscosity, which in turn is a function of water content and temperature. Although all of the aforementioned processes tend to destroy natural glasses, the slow rates of these processes, particularly for rhyolitic glass, has allowed samples of glass to persist for 60 million years. ?? 1984.

  11. Passing through the Glass Ceiling.

    Science.gov (United States)

    McGinty, Robert L.

    This paper describes personal and professional networking, discusses data on women and networking skills, and argues that women should exercise these skills in their efforts to shatter the "glass ceiling" and achieve their career potential. An introductory discussion notes that women, though they do network, may develop ties primarily with other…

  12. Hollow glass for insulating layers

    Science.gov (United States)

    Merticaru, Andreea R.; Moagar-Poladian, Gabriel

    1999-03-01

    Common porous materials, some of which will be considered in the chapters of this book, include concrete, paper, ceramics, clays, porous semiconductors, chromotography materials, and natural materials like coral, bone, sponges, rocks and shells. Porous materials can also be reactive, such as in charcoal gasification, acid rock dissolution, catalyst deactivation and concrete. This study continues the investigations about the properties of, so-called, hollow glass. In this paper is presented a computer simulation approach in which the thermo-mechanical behavior of a 3D microstructure is directly computed. In this paper a computer modeling approach of porous glass is presented. One way to test the accuracy of the reconstructed microstructures is to computed their physical properties and compare to experimental measurement on equivalent systems. In this view, we imagine a new type of porous type of glass designed as buffer layer in multilayered printed boards in ICs. Our glass is a variable material with a variable pore size and surface area. The porosity could be tailored early from the deposition phases that permitting us to keep in a reasonable balance the dielectric constant and thermal conductivity.

  13. Penetration Physics of Armor Glass

    Science.gov (United States)

    2009-11-30

    Penetration Response of Borosilicate Glass during Short Rod Impact”, Proc. 23rd Int. Symp. Ballistics, 2, 1251-1258, Graficas Couche, Madrid, Spain (2007...glass”, Proc. 23rd Int. Symp. Ballistics, 2, 1049-1056, Graficas Couche, Madrid, Spain (2007). 8D. R. Curran, “Comparison of Mesomechanical and

  14. Spin glasses and neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Parga, N. (Comision Nacional de Energia Atomica, San Carlos de Bariloche (Argentina). Centro Atomico Bariloche; Universidad Nacional de Cuyo, San Carlos de Bariloche (Argentina). Inst. Balseiro)

    1989-07-01

    The mean-field theory of spin glass models has been used as a prototype of systems with frustration and disorder. One of the most interesting related systems are models of associative memories. In these lectures we review the main concepts developed to solve the Sherrington-Kirkpatrick model and its application to neural networks. (orig.).

  15. Who will buy smart glasses?

    DEFF Research Database (Denmark)

    Rauschnabel, Philipp; Brem, Alexander; Ivens, Bjørn S.

    2015-01-01

    and social conformity of smart glasses are more likely to adopt such wearables. The strength of these effects is moderated by consumers’ individual personality, particularly by their levels of openness to experience, extraversion and neuroticism. This article concludes with a discussion of theoretical...

  16. Glass bead cultivation of fungi

    DEFF Research Database (Denmark)

    Droce, Aida; Sørensen, Jens Laurids; Giese, H.

    2013-01-01

    Production of bioactive compounds and enzymes from filamentous fungi is highly dependent on cultivation conditions. Here we present an easy way to cultivate filamentous fungi on glass beads that allow complete control of nutrient supply. Secondary metabolite production in Fusarium graminearum and...

  17. Reflectivity of metallodielectric photonic glasses

    NARCIS (Netherlands)

    Velikov, K.; Vos, W.L.; Moroz, A.; van Blaaderen, A.

    2004-01-01

    We report on the fabrication and optical properties of metallodielectric photonic glasses of colloidal silver spheres with a radius ranging from 200 to 420 nm and volume fractions around 60%. Strong modulations (∼25%) in the optical reflectivity were observed in the visible range for these structure

  18. Reflectivity of metallodielectric photonic glasses

    NARCIS (Netherlands)

    Velikov, K.P.; Vos, W.L.; Moroz, A.; Blaaderen, van A.

    2004-01-01

    We report on the fabrication and optical properties of metallodielectric photonic glasses of colloidal silver spheres with a radius ranging from 200 to 420 nm and volume fractions around 60%. Strong modulations (~25%) in the optical reflectivity were observed in the visible range for these structure

  19. Optical scattering in glass ceramics

    NARCIS (Netherlands)

    Mattarelli, M.; Montagna, M.; Verrocchio, P.

    2008-01-01

    The transparency of glass ceramics with nanocrystals is generally higher than that expected from the theory of Rayleigh scattering. We attribute this ultra-transparency to the spatial correlation of the nanoparticles. The structure factor is calculated for a simple model system, the random sequentia

  20. Are the dynamics of silicate glasses and glass-forming liquids embedded in their elastic properties?

    DEFF Research Database (Denmark)

    Smedskjær, Morten Mattrup; Mauro, John C.

    According to the elastic theory of the glass transition, the dynamics of glasses and glass-forming liquids are controlled by the evolution of shear modulus. In particular, the elastic shoving model expresses dynamics in terms of an activation energy required to shove aside the surrounding atoms, ...... of the silicate glass transition are governed by additional factors beyond the evolution of the shear modulus....

  1. Effect of small glass composition changes on flue gas emissions of glass furnaces

    NARCIS (Netherlands)

    Limpt, J.A.C. van; Beerkens, R.G.C.; Kersbergen, M.J. van

    2008-01-01

    Relatively small changes in glass composition might have drastic consequences on the evaporation rates of volatile glass components in glass melting furnaces. Transpiration evaporation tests have been applied to measure the impact of minor glass composition changes on the evaporation rates of volati

  2. Advances in glass-ionomer cements

    OpenAIRE

    Davidson, Carel Leon

    2006-01-01

    This article describes the properties, advances and shortcomings of glass-ionomer cement as a restorative material. The adhesion of glass-ionomer to tooth structure is less technique sensitive than composite resins and its quality increases with time. Therefore glass-ionomer might turn out to the more reliable restorative material in minimal invasive dentistry based on adhesive techniques.

  3. Simulation of Glass Fiber Forming Processes

    DEFF Research Database (Denmark)

    Von der Ohe, Renate

    Two glass fiber forming processes have been simulated using FEM, which are the drawing of continuous glass fibers for reinforcement purposes and the spinning of discontinuous glass fibers - stone wool for insulation. The aim of this work was to set up a numerical model for each process, and to use...

  4. Advances in glass-ionomer cements.

    Science.gov (United States)

    Davidson, Carel Leon

    2006-01-01

    This article describes the properties, advances and shortcomings of glass-ionomer cement as a restorative material. The adhesion of glass-ionomer to tooth structure is less technique sensitive than composite resins and its quality increases with time. Therefore glass-ionomer might turn out to the more reliable restorative material in minimal invasive dentistry based on adhesive techniques.

  5. Jagged Edges of the Glass Ceiling

    Science.gov (United States)

    Robinson, Victoria L.

    2004-01-01

    Although many aspiring young women might believe the glass ceiling was shattered a decade ago, they still need to understand how that glass ceiling impacted an older generation of women in educational leadership. They also must be aware that some segments of the glass ceiling might still exist. This article provides a historical overview of the…

  6. Protection of window glass from acoustic leakage

    OpenAIRE

    Lych, Sergij; Rakobovchuk, Volodymyr

    2013-01-01

    In a survey was presented an analysis of the most common glass samples on the Ukrainian market on their protection level against leakage of acoustic information. The glass samples were studied by means of roentgen analysis, and the impact of elemental composition of glass according to a laser beam reflection factor was defined.

  7. Structural relaxation in annealed hyperquenched basaltic glasses

    DEFF Research Database (Denmark)

    Guo, Xiaoju; Mauro, John C.; Potuzak, M.;

    2012-01-01

    The enthalpy relaxation behavior of hyperquenched (HQ) and annealed hyperquenched (AHQ) basaltic glass is investigated through calorimetric measurements. The results reveal a common onset temperature of the glass transition for all the HQ and AHQ glasses under study, indicating that the primary...

  8. 24th International Congress on Glass

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    April 7-11,2016Shanghai,ChinaWelcome The International Commission on Glass was created in 1933 in order to promote international collaboration and to disseminate information throughout the entire glass community.One way to achieve this mission consists in the triennial organization of the International Glass Congress.

  9. Optical limiting in semiconductor-doped glasses

    Science.gov (United States)

    Bindra, K. S.; Oak, S. M.; Rustagi, K. C.

    1996-02-01

    We report optical limiting at 527 nm in two Schott semiconductor-doped glasses OG530 and OG515. These two glasses show quite contrasting nonlinear optical behaviour. The glass OG515 shows strong clamping while OG530 shows no clamping in optical limiting inspite of having much larger nonlinear refractive index. Similarly OG530 exhibits saturation of absorption while OG515 does not.

  10. DURABLE GLASS FOR THOUSANDS OF YEARS

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C.

    2009-12-04

    The durability of natural glasses on geological time scales and ancient glasses for thousands of years is well documented. The necessity to predict the durability of high level nuclear waste (HLW) glasses on extended time scales has led to various thermodynamic and kinetic approaches. Advances in the measurement of medium range order (MRO) in glasses has led to the understanding that the molecular structure of a glass, and thus the glass composition, controls the glass durability by establishing the distribution of ion exchange sites, hydrolysis sites, and the access of water to those sites. During the early stages of glass dissolution, a 'gel' layer resembling a membrane forms through which ions exchange between the glass and the leachant. The hydrated gel layer exhibits acid/base properties which are manifested as the pH dependence of the thickness and nature of the gel layer. The gel layer ages into clay or zeolite minerals by Ostwald ripening. Zeolite mineral assemblages (higher pH and Al{sup 3+} rich glasses) may cause the dissolution rate to increase which is undesirable for long-term performance of glass in the environment. Thermodynamic and structural approaches to the prediction of glass durability are compared versus Ostwald ripening.

  11. Chiral-glass transition and replica symmetry breaking of a three-dimensional heisenberg spin glass

    Science.gov (United States)

    Hukushima; Kawamura

    2000-02-01

    Extensive equilibrium Monte Carlo simulations are performed for a three-dimensional Heisenberg spin glass with the nearest-neighbor Gaussian coupling to investigate its spin-glass and chiral-glass orderings. The occurrence of a finite-temperature chiral-glass transition without the conventional spin-glass order is established. Critical exponents characterizing the transition are different from those of the standard Ising spin glass. The calculated overlap distribution suggests the appearance of a peculiar type of replica-symmetry breaking in the chiral-glass ordered state.

  12. Analysis of early medieval glass beads - Glass in the transition period

    Science.gov (United States)

    Šmit, Žiga; Knific, Timotej; Jezeršek, David; Istenič, Janka

    2012-05-01

    Glass beads from graves excavated in Slovenia and dated archaeologically to the 7th-10th century AD were analysed by the combined PIXE-PIGE method. The results indicate two groups of glass; natron glass made in the Roman tradition and glass made with alkalis from the ash of halophytic plants, which gradually replaced natron glass after c. 800 AD. The alkalis used in the second group of glass seem to be in close relation to a variant of the Venetian white glass that appeared several centuries later. The origin of this glass may be traced to glass production in Mesopotamia and around the Aral Sea. All the mosaic beads with eye decoration, as well as most of the drawn-segmented and drawn-cut beads analysed, are of plant-ash glass, which confirms their supposed oriental origin.

  13. The role of glass composition in the behaviour of glass acetic acid and glass lactic acid cements.

    Science.gov (United States)

    Shahid, Saroash; Billington, R W; Pearson, G J

    2008-02-01

    Cements have recently been described, made from glass ionomer glass reacted with acetic and lactic acid instead of polymeric carboxylic acid. From their behaviour a theory relating to a possible secondary setting mechanism of glass ionomer has been adduced. However, only one glass (G338) was used throughout. In this study a much simpler glass ionomer glass (MP4) was compared with G338. This produced very different results. With acetic acid G338 formed cement which became resistant to water over a period of hours, as previously reported, MP4 formed cement which was never stable to water. With lactic acid G338 behaved similarly to G338 with acetic acid, again as reported, but MP4 produced a cement which was completely resistant to water at early exposure and unusually became slightly less resistant if exposure was delayed for 6 h or more. These findings indicate that the theories relating to secondary setting in glass ionomer maturation may need revision.

  14. Effective Utilisation of Waste Glass in Concrete

    Directory of Open Access Journals (Sweden)

    Sameer Shaikh

    2015-12-01

    Full Text Available Glass is a widely used product throughout the world; it is versatile, durable and reliable. The uses of glass ranges drastically, therefore waste glass is discarded, stockpiled or land filled. About million tons of waste glass is generated and around large percent of this glass is disposed of in landfills. This pattern has influenced environmental organizations to pressure the professional community to lower the amount of glass being discarded as well as find use to the non-recycled glass in new applications. In relation, the recycling of waste glass as a component in concrete gives waste glass a sustainable alternative to land filling and therefore makes it economically viable.The proposed study of utilising waste glass powder(GLP in concrete as partial replacement of cement as well as the use of crushed glass particles(CGP retained on 1.18mm & 2.36mm IS sieve as a partial replacement to sand, which offers important benefits related to strength of concrete as well as it is eco-friendly. Recycling of mixed-colour waste glass possesses major problems for municipalities, and this problem can be greatly eliminated by re-using waste glass as sand/cement replacement in concrete. Moreover, re-using waste materials in construction can reduce the demand on the sources of primary materials.In this project the attempts have been made to partially replace the cement as well as sand by waste glass powder and crushed glass particles with equal combination by 5% interval up to 20% replacement and observe its effect on the strength of concrete after 7 days and 28 days of curing.

  15. Major element composition of Luna 20 glasses.

    Science.gov (United States)

    Warner, J.; Reid, A. M.; Ridley, W. I.; Brown, R. W.

    1972-01-01

    Ten per cent of the 50 to 150-micron size fraction of Luna 20 soil is glass. A random suite of 270 of these glasses has been analyzed by electron microprobe techniques. The major glass type forms a strong cluster around a mean value corresponding to Highland basalt (anorthositic gabbro) with 70% normative feldspar. Minor glass groups have the compositions of mare basalts and of low-K Fra Mauro type basalts. The glass data indicate that Highland basalt is the major rock type in the highlands north of Mare Fecunditatis.

  16. Sustainable Innovation of Glass Design and Craft

    DEFF Research Database (Denmark)

    Sparre-Petersen, Maria

    2014-01-01

    windows to beads. Glass is a natural material and can be found in nature in the form of i.e. obsidian and fulgurites. Glass in itself does not impact the environment negatively, but mining and transportation of raw materials and production of new glass products contributes to CO2 emission. Therefore...... companies to buy raw materials at a lower price than it would cost to prepare collected glass for recycling. The sustainable impact of recycling is evident. According to Waste Online (2011) statistics show that: • by mixing shards (recycled glass) in the batch (virgin materials) a reduction of the energy...

  17. Bioactive Glasses in Dentistry: A Review

    Directory of Open Access Journals (Sweden)

    Abbasi Z

    2015-03-01

    Full Text Available Bioactive glasses are silicate-based and can form a strong chemical bond with the tissues. These biomaterials are highly biocompatible and can form a hydroxyapatite layer when implanted in the body or soaked in the simulated body fluid. Due to several disadvantages, conventional glass processing method including melting of glass components, is replaced by sol-gel method with a large number of benefits such as low processing temperature, higher purity and homogeneity and therefore better control of bioactivity. Bioactive glasses have a wide range of applications, particularly in dentistry. These glasses can be used as particulates or monolithic shapes and porous or dense constructs in different applications such as remineralization or hypersensitivity treatment. Some properties of bioactive glasses such as antibacterial properties can be promoted by adding different elements into the glass. Bioactive glasses can also be used to modify different biocompatible materials that need to be bioactive. This study reviews the significant developments of bioactive glasses in clinical application, especially dentistry. Furthermore, we will discuss the field of bioactive glasses from beginning to the current developments, which includes processing methods, applications, and properties of these glasses.

  18. Identifying glass compositions in fly ash

    Directory of Open Access Journals (Sweden)

    Katherine eAughenbaugh

    2016-01-01

    Full Text Available In this study, four Class F fly ashes were studied with a scanning electron microscope; the glassy phases were identified and their compositions quantified using point compositional analysis with k-means clustering and multispectral image analysis. The results showed that while the bulk oxide contents of the fly ashes were different, the four fly ashes had somewhat similar glassy phase compositions. Aluminosilicate glasses (AS, calcium aluminosilicate glasses (CAS, a mixed glass, and, in one case, a high iron glass were identified in the fly ashes. Quartz and iron crystalline phases were identified in each fly ash as well. The compositions of the three main glasses identified, AS, CAS, and mixed glass, were relatively similar in each ash. The amounts of each glass were varied by fly ash, with the highest calcium fly ash containing the most of calcium-containing glass. Some of the glasses were identified as intermixed in individual particles, particularly the calcium-containing glasses. Finally, the smallest particles in the fly ashes, with the most surface area available to react in alkaline solution, such as when mixed with portland cement or in alkali-activated fly ash, were not different in composition than the large particles, with each of the glasses represented. The method used in the study may be applied to a fly ash of interest for use as a cementing material in order to understand its potential for reactivity.

  19. Designing and constructing corrugated glass facades

    Directory of Open Access Journals (Sweden)

    Rob Nijsse

    2015-05-01

    Full Text Available Flat glass panels are in use since the time of the Roman Empire. In the ruins of the city of Pompeii, destroyed by the Vulcan Vesuvius in 79 DC, a glass panel in a bronze frame of 300 × 600 mm was found. In this article we describe a mayor improvement in the structural behaviour of glass panels by making the glass curved, or more accurately, corrugated. Both the in- and out-plane loading meet far more resistance against deformation, and the corrugated glass panels have a largely increased bearing capacity with the same thickness of glass the flat panel has. Also architecturally the appearance of a corrugated glass panel in facades is far more appealing.

  20. Recirculation bubbler for glass melter apparatus

    Science.gov (United States)

    Guerrero, Hector; Bickford, Dennis

    2007-06-05

    A gas bubbler device provides enhanced recirculation of molten glass within a glass melter apparatus. The bubbler device includes a tube member disposed within a pool of molten glass contained in the melter. The tube member includes a lower opening through which the molten glass enters and upper slots disposed close to (above or below) the upper surface of the pool of molten glass and from which the glass exits. A gas (air) line is disposed within the tube member and extends longitudinally thereof. A gas bubble distribution device, which is located adjacent to the lower end of the tube member and is connected to the lower end of the gas line, releases gas through openings therein so as to produce gas bubbles of a desired size in the molten glass and in a distributed pattern across the tube member.

  1. Viscous Control of the Foam Glass Process

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Smedskjær, Morten Mattrup

    The production of foam glass as heat insulating material is an important industrial process because it enables low-cost recycling of glass waste from a variety of chemical compositions. Optimization of the foaming process of new glass waste compositions is time consuming, since many factors affect...... in which the foaming process should take place, particularly when the type of recycled cullet is changed or several types of cullet are mixed in one batch. According to recent glass literature, the foaming process should occur at viscosity 103 to 105 Pa s. However, no systematic studies have hitherto been...... conducted concerning how the melt rheology influences the foam glass process and if any universal optimum viscosity exist for foaming different types of glass cullet. In this work, we show the details of viscous control of glass foaming processes. We have measured the viscosity-temperature relationships...

  2. Durability of Silicate Glasses: An Historical Approach

    Energy Technology Data Exchange (ETDEWEB)

    Farges, Francois; /Museum Natl. Hist. Natur. /Stanford U., Geo. Environ. Sci.; Etcheverry, Marie-Pierre; /Marne la Vallee U.; Haddi, Amine; /Marne la Valle U.; Trocellier,; /Saclay; Curti, Enzo; /PSI, Villigen; Brown, Gordon E., Jr.; /SLAC, SSRL

    2007-01-02

    We present a short review of current theories of glass weathering, including glass dissolution, and hydrolysis of nuclear waste glasses, and leaching of historical glasses from an XAFS perspective. The results of various laboratory leaching experiments at different timescales (30 days to 12 years) are compared with results for historical glasses that were weathered by atmospheric gases and soil waters over 500 to 3000 years. Good agreement is found between laboratory experiments and slowly leached historical glasses, with a strong enrichment of metals at the water/gel interface. Depending on the nature of the transition elements originally dissolved in the melt, increasing elemental distributions are expected to increase with time for a given glass durability context.

  3. Google Glass in Medical Applications

    OpenAIRE

    2015-01-01

    Le thème de ce travail de Bachelor est de réalisé une application pour les Google Glass pour le domaine médical et plus précisément pour les ambulanciers. Le but est de pouvoir filmer les interventions des ambulanciers et de transmettre en temps réel la vidéo à l’hôpital, l’ambulancier peut communiquer directement avec le personnel médical à l’hôpital et le personnel médical peut aussi envoyer les informations lié au patient et d’afficher sur les Google Glass. Pour atteindre ce but, il faut c...

  4. Sodium diffusion in boroaluminosilicate glasses

    DEFF Research Database (Denmark)

    Smedskjaer, Morten M.; Zheng, Qiuju; Mauro, John C.

    2011-01-01

    of isothermal sodium diffusion in BAS glasses by ion exchange, inward diffusion, and tracer diffusion experiments. By varying the [SiO2]/[Al2O3] ratio of the glasses, different structural regimes of sodium behavior are accessed. We show that the mobility of the sodium ions decreases with increasing [SiO2]/[Al2O......3] ratio, revealing that sodium is more mobile when it acts as a charge compensator to stabilize network formers than when it acts as a creator of non-bridging oxygens on tetrahedrally-coordinated silicon and trigonal boron. The impacts of both the addition of iron and its redox state on the sodium...... be attributed to the fact that for sodium inward diffusion, the charge compensation for electron holes is a rather slow process that limits the rate of diffusion. (C) 2011 Elsevier B.V. All rights reserved....

  5. Glass shell manufacturing in space

    Science.gov (United States)

    Nolen, R. L.; Downs, R. L.; Ebner, M. A.

    1982-01-01

    Highly-uniform, hollow glass spheres, which are used for inertial-confinement fusion targets, are formed from metal-organic gel powder feedstock in a drop-tower furnace. The modelling of this gel-to-sphere transformation has consisted of three phases: gel thermochemistry, furnance-to-gel heat transfer, and gravity-driven degradation of the concentricity of the molten shell. The heat transfer from the furnace to the free-falling gel particle was modelled with forced convection. The gel mass, dimensions, and specific heat as well as furnace temperature profile and furnace gas conductivity, were controlled variables. This model has been experimentally verified. In the third phase, a mathematical model was developed to describe the gravity-driven degradation of concentricity in molten glass shells.

  6. Formulation of heat absorbing glasses

    Directory of Open Access Journals (Sweden)

    Álvarez-Casariego, Pedro

    1996-06-01

    Full Text Available In the thermal exchanges between buildings and environment, glazing is an element of major importance, for it largely influences the so-called Solar Heat Gain and Thermal Losses. These parameters can be modified by applying different type of coatings onto glass surface or by adding colorant compounds during glass melting. The latter is a cheaper way to control the Solar Heat Gain. The knowledge of the laws governing the interaction between colorant compounds and solar radiation, allows us to define glass formulations achieving specific aesthetic requirements and solar energy absorption. In this paper two examples of application of the modelling of glass colorants spectral absorptance are presented. First is addressed to obtaining a glass with high luminous transmittance and low solar energy transmittance, and the other one to obtaining a glass with neutral colour appearance and minimized solar energy transmittance. Calculation formulas are defined together with photometric properties so-obtained. These type of glasses are particularly suitable to be used as building and automotive glazing, for they retain the mechanical characteristics and possibilities of transformation of standard glass.

    En los intercambios de energía entre un edificio y el medio exterior, el vidrio es el elemento de mayor importancia, por su influencia en la Ganancia de Calor Solar y en las Pérdidas Térmicas. Estos parámetros pueden ser modificados mediante el depósito de capas sobre el vidrio o mediante la adición de compuestos absorbentes de la radiación solar. Esta última vía es la más económica para controlar la Ganancia de Calor Solar. El conocimiento de las leyes que gobiernan la interacción de los diversos colorantes con la radiación solar, permite definir formulaciones de vidrios con características especificas de tipo estético y de absorción energética. En este trabajo se presentan dos ejemplos de aplicación de esta modelización de las

  7. Metallic glasses: properties and applications

    Energy Technology Data Exchange (ETDEWEB)

    Dugdale, J.S.; Pavuna, D.; Rhodes, P.

    1985-01-01

    Metallic glasses are a class of disordered materials that contrast with crystalline metals and provide a new challenge to theories of electronic structure and magnetic interactions in solids. Their study will undoubtedly broaden and deepen our understanding of the solid state. In addition, they are now finding a wide variety of technological applications. Some of these applications as well as their magnetic properties are presented here. 7 references, 3 figures, 1 table.

  8. Melter Glass Removal and Dismantlement

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, BS

    2000-10-31

    The U.S. Department of Energy (DOE) has been using vitrification processes to convert high-level radioactive waste forms into a stable glass for disposal in waste repositories. Vitrification facilities at the Savannah River Site (SRS) and at the West Valley Demonstration Project (WVDP) are converting liquid high-level waste (HLW) by combining it with a glass-forming media to form a borosilicate glass, which will ensure safe long-term storage. Large, slurry fed melters, which are used for this process, were anticipated to have a finite life (on the order of two to three years) at which time they would have to be replaced using remote methods because of the high radiation fields. In actuality the melters useable life spans have, to date, exceeded original life-span estimates. Initial plans called for the removal of failed melters by placing the melter assembly into a container and storing the assembly in a concrete vault on the vitrification plant site pending size-reduction, segregation, containerization, and shipment to appropriate storage facilities. Separate facilities for the processing of the failed melters currently do not exist. Options for handling these melters include (1) locating a facility to conduct the size-reduction, characterization, and containerization as originally planned; (2) long-term storing or disposing of the complete melter assembly; and (3) attempting to refurbish the melter and to reuse the melter assembly. The focus of this report is to look at methods and issues pertinent to size-reduction and/or melter refurbishment in particular, removing the glass as a part of a refurbishment or to reduce contamination levels (thus allowing for disposal of a greater proportion of the melter as low level waste).

  9. High insulation foam glass material from waste cathode ray tube panel glass

    DEFF Research Database (Denmark)

    König, Jakob; Petersen, Rasmus Rosenlund; Yue, Yuanzheng

    . In general CRT consists of two types of glasses: barium/strontium containing glass (panel glass) and lead containing glass (funnel and panel glass). In this work we present the possibility to produce high performance insulation material from the recycled lead-free glass. We studied the influence of foaming...... parameters on the characteristics of foamed glass. CRT panel glass was crushed, milled and sieved below 63 m. Activated carbon used as a foaming agent and MnO2 as an ‘oxidizing’ agent were mixed with glass powders by means of a planetary ball mill. Foaming effect was observed in the temperature range...... between 750 and 850°C. We investigated the influence of milling time, particle size, foaming and oxidizing agent concentrations, temperature and time on the foaming process, foam density, foam porosity and homogeneity. Only moderate foaming was observed in carbon containing samples, while the addition...

  10. A Modified Glass Formation Criterion for Various Glass Forming Liquids with Higher Reliability

    Institute of Scientific and Technical Information of China (English)

    X.H.Du; J.C.Huang

    2007-01-01

    A modified indicator of the glass forming ability (GFA) from the previous γ= Tx/(Tl+Tg) for various glass forming liquids is proposed based on a conceptual approach which combines more acceptable physical metallurgy views in terms of the time-temperature-transformation diagrams. It is found that the glass forming ability for glass forming liquids is closely associated mainly with two factors, i.e. (2Tx-Tg) and Tl (wherein Tx is the onset crystallization temperature, Tg the glass transition temperature, and Tl the liquidus temperature), and could be predicated by a unified parameter γm defined as (2Tx-Tg)/Tl. This approach is confirmed and validated by experimental data in various glass forming systems including oxide glasses, cryoprotectants and metallic glasses, which all shows a higher reliability when their glass forming ability is predicted by the modified parameter.

  11. High Quantum Efficiency and High Concentration Erbium-Doped Silica Glasses Fabricated by Sintering Nanoporous Glasses

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A new method was used to prepare erbium-doped high silica (SiO2%>96%) glasses by sintering nanoporous glasses. The concentration of erbium ions in high silica glasses can be considerably more than that in silica glasses prepared by using conventional methods. The fluorescence of 1532 nm has an FWHM (Full Wave at Half Maximum) of 50 nm, wider than 35 nm of EDSFA (erbium-doped silica fiber amplifer), and hence the glass possesses potential application in broadband fiber amplifiers. The Judd-Ofelt theoretical analysis reflects that the quantum efficiency of this erbium-doped glass is about 0.78, although the erbium concentration in this glass (6×103) is about twenty times higher than that in silica glass. These excellent characteristics of Er-doped high silica glass will be conducive to its usage in optical amplifiers and microchip lasers.

  12. Manufacturing laser glass by continuous melting

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J H; Suratwala, T; krenitsky, S; Takeuchi, K

    2000-07-01

    A novel, continuous melting process is being used to manufacture meter-sized plates of laser glass at a rate 20-times faster, 5-times cheaper, and with 2-3 times better optical quality than with previous one-at-a-time, ''discontinuous'' technology processes. This new technology for manufacturing laser glass, which is arguably the most difficult continuously-melted optical material ever produced, comes as a result of a $60 million, six-year joint R&D program between government and industry. The glasses manufactured by the new continuous melting process are Nd-doped phosphate-based glasses and are marketed under the product names LG-770 (Schott Glass Technologies) and LHG-8 (Hoya Corporation USA). With this advance in glass manufacturing technology, it is now possible to construct high-energy, high-peak-power lasers for use in fusion energy development, national defense, and basic physics research that would have been impractical to build using the old melting technology. The development of continuously melted laser glass required technological advances that have lead to improvements in the manufacture of other optical glass products as well. For example, advances in forming, annealing, and conditioning steps of the laser glass continuous melting process are now being used in manufacture of other large-size optical glasses.

  13. Transfer of glass fragments when bottles and drinking glasses are broken.

    Science.gov (United States)

    Irwin, Margaret

    2011-03-01

    Experiments have been carried out to determine if and how many glass fragments are transferred onto upper garments following breakage of bottles and drinking glasses. In all instances glass was transferred. The numbers of transferred fragments after a bottle is broken ranges from three to twenty five. The numbers of fragments transferred following the breakage of a drinking glass ranges from three to approximately one hundred and twenty. On average three times the amount of glass is transferred following breakage of a drinking glass as compared to breakage of a bottle.

  14. Compositional threshold for nuclear waste glass durability

    Energy Technology Data Exchange (ETDEWEB)

    Farooqi, Rahmatullah; Hrma, Pavel [Pohang Univ. of Science and Technology, Pohang (Korea, Republic of)

    2013-07-01

    The issue of major concern with the waste form, such as glass, is its chemical durability, I. e., the resistance to corrosion by aqueous media. A number of standard durability tests have been established for waste glasses, among which the product consistency test was selected as a criterion of HLW glass acceptability for the repository subsequently, a large PCT database has been collected containing over 1000 glasses. Such a database allows the development of models that relate PCT releases to glass is a strong function of composition, these models are used to formulate acceptable glasses in which the waste loading is maximized. Within the composition space of glasses, a distinct threshold appears to exist that separates 'good' glasses, I. e. these which are sufficiently durable, from 'bad' glasses of a low durability. According to Populate al., transition region between durable and less durable glasses lies around 2a m{sup -2} as determined by the 7-day PCT normalized B release. The objective of our research is to clarify the origin of this threshold by exploring the relationship between glass composition, glass structure and chemical durability around the threshold region. Our study is focused on the corrosion behavior of SiO{sub 2} - B{sub 2}O{sub 3} - Na{sub 2}O - Al{sub 2}O{sub 3} - Colleagues composition region. In particular, we try to identify the durability threshold separating durable from nondurable glasses in the composition space. So far we have explored the elemental releases of Na and B measured with the 7-day PCT.

  15. Precise dispersion equations of absorbing filter glasses

    Science.gov (United States)

    Reichel, S.; Biertümpfel, Ralf

    2014-05-01

    The refractive indices versus wavelength of optical transparent glasses are measured at a few wavelengths only. In order to calculate the refractive index at any wavelength, a so-called Sellmeier series is used as an approximation of the wavelength dependent refractive index. Such a Sellmeier representation assumes an absorbing free (= loss less) material. In optical transparent glasses this assumption is valid since the absorption of such transparent glasses is very low. However, optical filter glasses have often a rather high absorbance in certain regions of the spectrum. The exact description of the wavelength dependent function of the refractive index is essential for an optimized design for sophisticated optical applications. Digital cameras use an IR cut filter to ensure good color rendition and image quality. In order to reduce ghost images by reflections and to be nearly angle independent absorbing filter glass is used, e.g. blue glass BG60 from SCHOTT. Nowadays digital cameras improve their performance and so the IR cut filter needs to be improved and thus the accurate knowledge of the refractive index (dispersion) of the used glasses must be known. But absorbing filter glass is not loss less as needed for a Sellmeier representation. In addition it is very difficult to measure it in the absorption region of the filter glass. We have focused a lot of effort on measuring the refractive index at specific wavelength for absorbing filter glass - even in the absorption region. It will be described how to do such a measurement. In addition we estimate the use of a Sellmeier representation for filter glasses. It turns out that in most cases a Sellmeier representation can be used even for absorbing filter glasses. Finally Sellmeier coefficients for the approximation of the refractive index will be given for different filter glasses.

  16. A review of glass-ionomers: From conventional glass-ionomer to bioactive glass-ionomer

    Directory of Open Access Journals (Sweden)

    Maryam Khoroushi

    2013-01-01

    Full Text Available Materials used in the body, especially the materials used in various oral cavity regions should be stable and passive without any interactions with the body tissues or fluids. Dental amalgam, composite resins and dental cements are the materials of choice with such properties. The first attempts to produce active materials, which could interact with the human body tissues and fluids were prompted by the concept that fluoride-releasing materials exert useful effects in the body. The concept of using the "smart" materials in dentistry has attracted a lot of attention in recent years. Conventional glass-ionomer (GI cements have a large number of applications in dentistry. They are biocompatible with the dental pulp to some extent. GI is predominantly used as cements in dentistry; however, they have some disadvantages, the most important of which is lack of adequate strength and toughness. In an attempt to improve the mechanical properties of the conventional GI, resin-modified glass-ionomers have been marketed, with hydrophilic monomers, such as hydroxyethyl methacrylated (HEMA. Some recent studies have evaluated GI with bioactive glass in its structure to validate the claims that such a combination will improve tooth bioactivity, regeneration capacity and restoration. There is ever-increasing interest in the application of bioactive materials in the dental field in an attempt to remineralize affected dentin. The aim of this review article is to evaluate these materials and their characteristics and applications.

  17. Topological Principles of Borosilicate Glass Chemistry

    DEFF Research Database (Denmark)

    Smedskjær, Morten Mattrup; Mauro, J. C.; Youngman, R. E.

    2011-01-01

    Borosilicate glasses display a rich complexity of chemical behavior depending on the details of their composition and thermal history. Noted for their high chemical durability and thermal shock resistance, borosilicate glasses have found a variety of important uses from common household...... and laboratory glassware to high-tech applications such as liquid crystal displays. In this paper, we investigate the topological principles of borosilicate glass chemistry covering the extremes from pure borate to pure silicate end members. Based on NMR measurements, we present a two-state statistical...... earthborosilicate glasses that enables the accurate prediction of properties such as glass transition temperature, liquid fragility, and hardness. The modeling approach enables an understanding of the microscopic mechanisms governing macroscopic properties. The implications of the glass topology are discussed...

  18. Electron anions and the glass transition temperature

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Lewis E.; Sushko, Peter V.; Tomota, Yudai; Hosono, Hideo

    2016-08-24

    Properties of glasses are typically controlled by judicious selection of the glass-forming and glass-modifying constituents. Through an experimental and computational study of the crystalline, molten, and amorphous [Ca12Al14O32]2+ ∙ (e)2, we demonstrate that electron anions in this system behave as glass-modifiers that strongly affect solidification dynamics, the glass transition temperature, and spectroscopic properties of the resultant amorphous material. Concentration of such electron anions is a consequential control parameter: it invokes materials evolution pathways and properties not available in conventional glasses, which opens a new avenue in rational materials design.

  19. Novel spin glasses by mechanical milling

    Institute of Scientific and Technical Information of China (English)

    周国富; H.Bakker

    1996-01-01

    Novel spin-glass alloys were synthesized by milling intermetallic compounds and also by milling mixtures of crystalline elemental powder in a high-energy ball mill.Spin glass behaviour was found in amorphous Co2Ge,which was amorphised by milling in mechanically disordered crystalline GdAl2 in ball-milled crystalline and amorphous CoZr,and in mechanically alloyed Co-Cu,which formed a supersaturated f.c.c.solid solution.All these materials are binary alloys and tlie concentration of the magnetic element is high,which makes them novel types of spin glasses.It is shown that ball milling may not only lead to structural metallic glasses,but can also generate the magnetic pendant of a structural glass,namely the spin glass.

  20. Archaeological and historical glasses: A bibliometric study

    OpenAIRE

    Palomar Sanz, Teresa; García Heras, Manuel; Villegas Broncano, María Ángeles

    2009-01-01

    Glass is one of the materials more widely developed throughout History. In the last decades, it has been stated a growing demand in the application of chemical-physical techniques to obtain more detailed information on technology and production of glasses in past societies. This research field lies within the domain of archaeometry. Results of a bibliometric study undertaken on 201 scientific articles published on ancient and historical glasses between 1987 and 2008 are presented ...

  1. Some recent developments in spin glasses

    Indian Academy of Sciences (India)

    A P Young

    2005-06-01

    I give some experimental and theoretical background to spin glasses, and then discuss the nature of the phase transition in spin glasses with vector spins. Results of Monte Carlo simulations of the Heisenberg spin glass model in three dimensions are presented. A finite-size scaling analysis of the correlation length of the spins and chiralities shows that there is a single, finite-temperature transition at which both spins and chiralities order.

  2. Anti-biofilm Effect of Glass Ionomer Cements Incorporated with Chlorhexidine and Bioaetive Glass

    Institute of Scientific and Technical Information of China (English)

    HUANG Xueqing; YANG Tiantian; ZHAO Suling; HUANG Cui; DU Xijin

    2012-01-01

    The effect of glass ionomer cement and resin-modified glass ionomer cement incorporated with chlorhexidine and bioactive glass on antimicrobial activity and physicochemical properties were investigated.The experimental results showed that groups incorporated with 1% chlorhexidine exhibited a significant reduction of optical density values of the bacterial suspension and increased the degradation of Streptococcus mutans biofilm.However,groups incorporated with 10% bioactive glass did not affect the optical density values and the biofilm formation.The mechanical properties of the materials and the polymerization were not influenced by the addition of chlorhexidine.Nevertheless,the compressive strength was lower when the materials were incorporated with bioactive glass.It can be concluded that glass ionomer cements incorporated with chlorhexidine can maintain its mechanical properties as well as reduce early S mutans biofilm formation.Controlled release/sustained release technology may be required to optimize the antibacterial activity of glass ionomer cements incorporated with bioactive glass.

  3. The influence of glass composition on crystalline phase stability in glass-ceramic wasteforms

    Energy Technology Data Exchange (ETDEWEB)

    Maddrell, Ewan, E-mail: ewan.r.maddrell@nnl.co.uk [National Nuclear Laboratory, Sellafield, Seascale, Cumbria CA20 1PG (United Kingdom); Thornber, Stephanie; Hyatt, Neil C. [Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom)

    2015-01-15

    Highlights: • Crystalline phase formation shown to depend on glass matrix composition. • Zirconolite forms as the sole crystalline phase only for most aluminous glasses. • Thermodynamics indicate that low silica activity glasses stabilise zirconolite. - Abstract: Zirconolite glass-ceramic wasteforms were prepared using a suite of Na{sub 2}O–Al{sub 2}O{sub 3}–B{sub 2}O{sub 3}–SiO{sub 2} glass matrices with variable Al:B ratios. Zirconolite was the dominant crystalline phase only for the most alumina rich glass compositions. As the Al:B ratio decreased zirconolite was replaced by sphene, zircon and rutile. Thermodynamic data were used to calculate a silica activity in the glass melt below which zirconolite is the favoured crystalline phase. The concept of the crystalline reference state of glass melts is then utilised to provide a physical basis for why silica activity varies with the Al:B ratio.

  4. Healing of lithographically introduced flaws in glass and glass containing ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Ackler, H.D.

    1992-12-01

    The morphological evolution of cylindrical pores or channels'' and crack-like cavities in glass and glass-containing ceramics at elevated temperatures was studied. The systems studied were: Coming 7056 alkali borosilicate glass, soda-lime glass (microscope slides), a commercially available 96% Al[sub 2]O[sub 3]with [approx]5--10% intergranular glass, 96% Al[sub 2]O[sub 3] bonded to sapphire, and a model sapphire/glass/sapphire system fabricated by diffusion bonding etched and unetched pieces of sapphire onto which 30--50 nm of SiO[sub 2] had been sputter deposited. These systems span a broad range of glass contents, and permit observation of healing behavior with varying glass content. The results were compared with analytical models and results of similar studies in completely crystalline systems.

  5. Healing of lithographically introduced flaws in glass and glass containing ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Ackler, H.D.

    1992-12-01

    The morphological evolution of cylindrical pores or ``channels`` and crack-like cavities in glass and glass-containing ceramics at elevated temperatures was studied. The systems studied were: Coming 7056 alkali borosilicate glass, soda-lime glass (microscope slides), a commercially available 96% Al{sub 2}O{sub 3}with {approx}5--10% intergranular glass, 96% Al{sub 2}O{sub 3} bonded to sapphire, and a model sapphire/glass/sapphire system fabricated by diffusion bonding etched and unetched pieces of sapphire onto which 30--50 nm of SiO{sub 2} had been sputter deposited. These systems span a broad range of glass contents, and permit observation of healing behavior with varying glass content. The results were compared with analytical models and results of similar studies in completely crystalline systems.

  6. Predicting the glass transition temperature of bioactive glasses from their molecular chemical composition.

    Science.gov (United States)

    Hill, Robert G; Brauer, Delia S

    2011-10-01

    A recently published paper (M.D. O'Donnell, Acta Biomaterialia 7 (2011) 2264-2269) suggests that it is possible to correlate the glass transition temperature (T(g)) of bioactive glasses with their molar composition, based on iterative least-squares fitting of published T(g) data. However, we show that the glass structure is an important parameter in determining T(g). Phase separation, local structural effects and components (intermediate oxides) which can switch their structural role in the glass network need to be taken into consideration, as they are likely to influence the glass transition temperature of bioactive glasses. Although the model suggested by O'Donnell works reasonably well for glasses within the composition range presented, it is oversimplified and fails for glasses outside certain compositional boundaries.

  7. Glass Property Data and Models for Estimating High-Level Waste Glass Volume

    Energy Technology Data Exchange (ETDEWEB)

    Vienna, John D.; Fluegel, Alexander; Kim, Dong-Sang; Hrma, Pavel R.

    2009-10-05

    This report describes recent efforts to develop glass property models that can be used to help estimate the volume of high-level waste (HLW) glass that will result from vitrification of Hanford tank waste. The compositions of acceptable and processable HLW glasses need to be optimized to minimize the waste-form volume and, hence, to save cost. A database of properties and associated compositions for simulated waste glasses was collected for developing property-composition models. This database, although not comprehensive, represents a large fraction of data on waste-glass compositions and properties that were available at the time of this report. Glass property-composition models were fit to subsets of the database for several key glass properties. These models apply to a significantly broader composition space than those previously publised. These models should be considered for interim use in calculating properties of Hanford waste glasses.

  8. Iron phosphate glass containing simulated fast reactor waste: Characterization and comparison with pristine iron phosphate glass

    Science.gov (United States)

    Joseph, Kitheri; Asuvathraman, R.; Venkata Krishnan, R.; Ravindran, T. R.; Govindaraj, R.; Govindan Kutty, K. V.; Vasudeva Rao, P. R.

    2014-09-01

    Detailed characterization was carried out on an iron phosphate glass waste form containing 20 wt.% of a simulated nuclear waste. High temperature viscosity measurement was carried out by the rotating spindle method. The Fe3+/Fe ratio and structure of this waste loaded iron phosphate glass was investigated using Mössbauer and Raman spectroscopy respectively. Specific heat measurement was carried out in the temperature range of 300-700 K using differential scanning calorimeter. Isoconversional kinetic analysis was employed to understand the crystallization behavior of the waste loaded iron phosphate glass. The glass forming ability and glass stability of the waste loaded glass were also evaluated. All the measured properties of the waste loaded glass were compared with the characteristics of pristine iron phosphate glass.

  9. Float glass innovation in the flat glass industry

    CERN Document Server

    Uusitalo, Olavi

    2014-01-01

    A thorough industry analysis is of utmost importance for a study on the impact of technological changes on industry structure. This book evaluates the consequences of a vaguely chosen level of an industry analysis. Too broad a definition of the industry may disaggregate sub-industries, processing industries and international aspects. This is illustrated by revisiting an industry study upon which the dominant design model was based. Readers will see and understand the consequences of too broadly defined industries together with quantitative research approach can have. The book argues that the nature of the industry should define the level of the analysis. This is done by revisiting the flat glass industry study, on which Anderson and Tushman’s (1990) dominant design model is partly based. In their study Anderson and Tushman defined the flat glass industry based on four-digit SIC codes. It is argued that this definition was too broad and it disaggregated important sub-industries, processing industries and int...

  10. Compliant Glass Seals for SOFC Stacks

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Y. S.; Choi, Jung-Pyung; Xu, Wei; Stephens, Elizabeth V.; Koeppel, Brian J.; Stevenson, Jeffry W.; Lara-Curzio, Edgar

    2014-04-01

    This report summarizes results from experimental and modeling studies performed by participants in the Solid-State Energy Conversion Alliance (SECA) Core Technology Program, which indicate that compliant glass-based seals offer a number of potential advantages over conventional seals based on de-vitrifying glasses, including reduced stresses during stack operation and thermal cycling, and the ability to heal micro-damage induced during thermal cycling. The properties and composition of glasses developed and/or investigated in these studies are reported, along with results from long-term (up to 5,800h) evaluations of seals based on a compliant glass containing ceramic particles or ceramic fibers.

  11. Radiopaque strontium fluoroapatite glass-ceramics

    Directory of Open Access Journals (Sweden)

    Wolfram eHöland

    2015-10-01

    Full Text Available The controlled precipitation of strontium fluoroapatite crystals, was studied in four base glass compositions derived from the SiO2 – Al2O3 – Y2O3 – SrO – Na2O – K2O/Rb2O/Cs2O – P2O5 – F system. The crystal phase formation of these glasses and the main properties of the glass-ceramics, such as thermal and optical properties and radiopacity were compared with a fifth, a reference glass-ceramic. The reference glass-ceramic was characterized as Ca-fluoroapatite glass-ceramic. The four strontium fluoroapatite glass-ceramics showed the following crystal phases: a Sr5(PO43F – leucite, KAlSi2O6 , b Sr5(PO43F – leucite, KAlSi2O6, and nano-sized NaSrPO4 c Sr5(PO43F – pollucite, CsAlSiO4 , and nano-sized NaSrPO4, d Sr5(PO43F – Rb-leucite, RbAlSi2O6, and nano-sized NaSrPO4.The proof of crystal phase formation was possible by X-ray diffraction (XRD. The microstructures, which were studied using scanning electron microscopy (SEM demonstrated a uniform distribution of the crystals in the glass matrix. The Sr-fluoroapatites were precipitated based on an internal crystallization process, and the crystals demonstrated a needlelike morphology. The study of the crystal growth of needlelike Sr-fluoroapatites gave a clear evidence of an Ostwald ripening mechanism.The formation of leucite, pollucite and Rb-leucite was based on a surface crystallization mechanism. Therefore, a twofold crystallization mechanism was successfully applied to develop these types of glass-ceramics. The main focus of this study was the controlled development of glass-ceramics exhibiting high radiopacity in comparison to the reference glass-ceramic. This goal could be achieved with all four glass-ceramics with the preferred development of the Sr-fluoroapatite – pollucite-type glass-ceramic. In addition to this main development, it was possible to control the thermal properties. Especially the Rb-leucite containing glass-ceramic showed the highest coefficient of thermal

  12. Degradation of glass in the soil

    Energy Technology Data Exchange (ETDEWEB)

    Romich, H.; Gerlach, S.; Mottner, P. [Fraunhofer-Institut fur Silicatforschung (ISC), Wertheim-Bronnbach (Germany)

    2004-07-01

    Full text of publication follows: Glass has been produced and used in Europe for over 2000 years. Glass objects from the Roman period onwards have been excavated during the last centuries. In general, Roman glass is chemically quite stable, and often the only sign of chemical alteration is an iridescent surface, caused by the leaching of cations, which leads to the formation of a hydrated silica-rich layer. Medieval potash glasses are much less durable, and their surfaces are often found deeply leached, sometimes to a point that no unaltered glass remains. These surfaces may be coherent, though fragile, or they are laminar, with no cohesion between the layers at all. In this study an analytical examination of a series of fragments of archaeological glass retrieved from different sites near Cologne and Stuttgart (Germany) has been carried out. Samples of corroded glasses were analysed by optical microscopy and SEM/EDX (surface and cross sections) in order to obtain information about the chemical composition of the bulk glass and the weathered layers. Since the environmental parameters have constantly varied for archaeological objects, mechanistic studies have to rely on laboratory experiments under controlled conditions. For an extensive exposure programme standardised soil or natural garden earth was used, for which the pH was modified. Several corrosion sensitive potash-lime silicate glasses have been designed to study the effect of glass composition. A model glass consisting of SiO{sub 2} (54.2), CaO (28.8) and K{sub 2}O (17.0 weight-%) mostly lead to the formation of a crust on the leached layer, with a total thickness of 100 micrometer (for soil with pH 7 to 8, 12 months exposure). Model glasses also containing Al, Mg and P have built up preferably laminated structures (total thickness up to 200 micrometer). This presentation will give an overview about the variety of degradation phenomena observed on originals and compare the results with controlled laboratory

  13. Compliant Glass Seals for SOFC Stacks

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Yeong -Shyung [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Choi, Jung-Pyung [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xu, Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stephens, Elizabeth V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Koeppel, Brian J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stevenson, Jeffry W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lara-Curzio, Edgar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-04-30

    This report summarizes results from experimental and modeling studies performed by participants in the Solid-State Energy Conversion Alliance (SECA) Core Technology Program, which indicate that compliant glass-based seals offer a number of potential advantages over conventional seals based on de-vitrifying glasses, including reduced stresses during stack operation and thermal cycling, and the ability to heal micro-damage induced during thermal cycling. The properties and composition of glasses developed and/or investigated in these studies are reported, along with results from long-term (up to 5,800h) evaluations of seals based on a compliant glass containing ceramic particles or ceramic fibers.

  14. Phase separation in an ionomer glass

    DEFF Research Database (Denmark)

    Pedersen, Malene Thostrup; Tian, K.V.; Dobó-Nagy, C.

    2015-01-01

    conclusively determined. In this work, we identify these phases by performing differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analyses on both the as-received glass and heat-treated samples. We detected three glass transitions in the as-received G338 glass during DSC upscaning, implying...... amorphous phases in G388 are Ca/Na-Al-Si-O, Ca-Al-F and Ca-P-O-F phases, respectively. However, the exact chemical compositions of the three phases still require further exploration. The results of this work are important for understanding the impact of phase separation within ionomer glasses on the setting...

  15. SOI silicon on glass for optical MEMS

    DEFF Research Database (Denmark)

    Larsen, Kristian Pontoppidan; Ravnkilde, Jan Tue; Hansen, Ole

    2003-01-01

    A newly developed fabrication method for fabrication of single crystalline Si (SCS) components on glass, utilizing Deep Reactive Ion Etching (DRIE) of a Silicon On Insulator (SOI) wafer is presented. The devices are packaged at wafer level in a glass-silicon-glass (GSG) stack by anodic bonding...... and a final sealing at the interconnects can be performed using a suitable polymer. Packaged MEMS on glass are advantageous within Optical MEMS and for sensitive capacitive devices. We report on experiences with bonding SOI to Pyrex. Uniform DRIE shallow and deep etching was achieved by a combination...

  16. Terbium-activated heavy scintillating glasses

    OpenAIRE

    Fu,J.; Kobayashi, M.; Parker, J.M.

    2008-01-01

    Tb-activated scintillating glasses with high Ln2O3 (Ln=Gd, Y, Lu) concentration up to 40mol% have been prepared. The effects of Ln3+ ions on the density, thermal properties, transmission and luminescence properties under both UV and X-ray excitation have been investigated. The glasses containing Gd2O3 or Lu2O3 exhibit a high density of more than 6.0g/cm3. Energy transfer from Gd3+ to Tb3+ takes place in Gd-containing glass and as a result the Gd-containing glass shows a light yield 2.5 times ...

  17. Integrated Glass Coating Manufacturing Line

    Energy Technology Data Exchange (ETDEWEB)

    Brophy, Brenor [Enki Technology Inc., San Jose, CA (United States)

    2015-09-30

    This project aims to enable US module manufacturers to coat glass with Enki’s state of the art tunable functionalized AR coatings at the lowest possible cost and highest possible performance by encapsulating Enki’s coating process in an integrated tool that facilitates effective process improvement through metrology and data analysis for greater quality and performance while reducing footprint, operating and capital costs. The Phase 1 objective was a fully designed manufacturing line, including fully specified equipment ready for issue of purchase requisitions; a detailed economic justification based on market prices at the end of Phase 1 and projected manufacturing costs and a detailed deployment plan for the equipment.

  18. Glass-bead peen plating

    Science.gov (United States)

    Graves, J. R.

    1974-01-01

    Peen plating of aluminum, copper, and nickel powders was investigated. Only aluminum was plated successfully within the range of peen plating conditions studied. Optimum plating conditions for aluminum were found to be: (1) bead/powder mixture containing 25 to 35% powder by weight, (2) peening intensity of 0.007A as measured by Almen strip, and (3) glass impact bead diameter of at least 297 microns (0.0117 inches) for depositing-100 mesh aluminum powder. No extensive cleaning or substrate preparation is required beyond removing loose dirt or heavy oil.

  19. Do atmospheric aerosols form glasses?

    Science.gov (United States)

    Zobrist, B.; Marcolli, C.; Pedernera, D. A.; Koop, T.

    2008-09-01

    A new process is presented by which water soluble organics might influence ice nucleation, ice growth, chemical reactions and water uptake of aerosols in the upper troposphere: the formation of glassy aerosol particles. Glasses are disordered amorphous (non-crystalline) solids that form when a liquid is cooled without crystallization until the viscosity increases exponentially and molecular diffusion practically ceases. The glass transition temperatures, Tg, homogeneous ice nucleation temperatures, Thom, and ice melting temperatures, Tm, of various aqueous inorganic, organic and multi-component solutions are investigated with a differential scanning calorimeter. The investigated solutes are: various polyols, glucose, raffinose, levoglucosan, an aromatic compound, sulfuric acid, ammonium bisulfate and mixtures of dicarboxylic acids (M5), of dicarboxylic acids and ammonium sulfate (M5AS), of two polyols, of glucose and ammonium nitrate, and of raffinose and M5AS. The results indicate that aqueous solutions of the investigated inorganic solutes show Tg values that are too low to be of atmospheric importance. In contrast, aqueous organic and multi-component solutions readily form glasses at low but atmospherically relevant temperatures (≤230 K). To apply the laboratory data to the atmospheric situation, the measured phase transition temperatures were transformed from a concentration to a water activity scale by extrapolating water activities determined between 252 K and 313 K to lower temperatures. The obtained state diagrams reveal that the higher the molar mass of the aqueous organic or multi-component solutes, the higher Tg of their respective solutions at a given water activity. To a lesser extent, Tg also depends on the hydrophilicity of the organic solutes. Therefore, aerosol particles containing larger (≳150 g mol-1) and more hydrophobic organic molecules are more likely to form glasses at intermediate to high relative humidities in the upper troposphere

  20. Do atmospheric aerosols form glasses?

    Directory of Open Access Journals (Sweden)

    D. A. Pedernera

    2008-09-01

    Full Text Available A new process is presented by which water soluble organics might influence ice nucleation, ice growth, chemical reactions and water uptake of aerosols in the upper troposphere: the formation of glassy aerosol particles. Glasses are disordered amorphous (non-crystalline solids that form when a liquid is cooled without crystallization until the viscosity increases exponentially and molecular diffusion practically ceases. The glass transition temperatures, Tg, homogeneous ice nucleation temperatures, Thom, and ice melting temperatures, Tm, of various aqueous inorganic, organic and multi-component solutions are investigated with a differential scanning calorimeter. The investigated solutes are: various polyols, glucose, raffinose, levoglucosan, an aromatic compound, sulfuric acid, ammonium bisulfate and mixtures of dicarboxylic acids (M5, of dicarboxylic acids and ammonium sulfate (M5AS, of two polyols, of glucose and ammonium nitrate, and of raffinose and M5AS. The results indicate that aqueous solutions of the investigated inorganic solutes show Tg values that are too low to be of atmospheric importance. In contrast, aqueous organic and multi-component solutions readily form glasses at low but atmospherically relevant temperatures (≤230 K. To apply the laboratory data to the atmospheric situation, the measured phase transition temperatures were transformed from a concentration to a water activity scale by extrapolating water activities determined between 252 K and 313 K to lower temperatures. The obtained state diagrams reveal that the higher the molar mass of the aqueous organic or multi-component solutes, the higher Tg of their respective solutions at a given water activity. To a lesser extent, Tg also depends on the hydrophilicity of the organic solutes. Therefore, aerosol particles containing larger (≳150 g mol−1 and

  1. Do atmospheric aerosols form glasses?

    Directory of Open Access Journals (Sweden)

    B. Zobrist

    2008-05-01

    Full Text Available A new process is presented by which water-soluble organics might influence ice nucleation, ice growth, chemical reactions and water uptake of aerosols in the upper troposphere: the formation of glassy aerosol particles. Glasses are disordered amorphous (non-crystalline solids that form when a liquid is cooled without crystallization until the viscosity increases exponentially and molecular diffusion practically ceases. The glass transition temperatures, Tg, homogeneous ice nucleation temperatures, Thom, and ice melting temperatures, Tm, of various aqueous inorganic, organic and multi-component solutions are investigated with a differential scanning calorimeter. The investigated solutes are: various polyols, glucose, raffinose, levoglucosan, an aromatic compound, sulfuric acid, ammonium bisulphate and mixtures of dicarboxylic acids (M5, of dicarboxylic acids and ammonium sulphate (M5AS, of two polyols, of glucose and ammonium nitrate, and of raffinose and M5AS. The results indicate that aqueous solutions of the investigated inorganic solutes show Tg-values that are too low to be of atmospheric importance. In contrast, aqueous organic and multi-component solutions readily form glasses at low but atmospherically relevant temperatures (≤230 K. To apply the laboratory data to the atmospheric situation, the measured phase transition temperatures were transformed from a concentration to a water activity scale by extrapolating water activities determined between 252 K and 313 K to lower temperatures. The obtained state diagrams reveal that the higher the molar mass of the aqueous organic or multi-component solutes, the higher Tg of their respective solutions at a given water activity. To a lesser extent, Tg also depends on the hydrophilicity of the organic solutes. Therefore, aerosol particles containing larger and more hydrophobic organic

  2. Glass-windowed ultrasound transducers.

    Science.gov (United States)

    Yddal, Tostein; Gilja, Odd Helge; Cochran, Sandy; Postema, Michiel; Kotopoulis, Spiros

    2016-05-01

    In research and industrial processes, it is increasingly common practice to combine multiple measurement modalities. Nevertheless, experimental tools that allow the co-linear combination of optical and ultrasonic transmission have rarely been reported. The aim of this study was to develop and characterise a water-matched ultrasound transducer architecture using standard components, with a central optical window larger than 10 mm in diameter allowing for optical transmission. The window can be used to place illumination or imaging apparatus such as light guides, miniature cameras, or microscope objectives, simplifying experimental setups. Four design variations of a basic architecture were fabricated and characterised with the objective to assess whether the variations influence the acoustic output. The basic architecture consisted of a piezoelectric ring and a glass disc, with an aluminium casing. The designs differed in piezoelectric element dimensions: inner diameter, ID=10 mm, outer diameter, OD=25 mm, thickness, TH=4 mm or ID=20 mm, OD=40 mm, TH=5 mm; glass disc dimensions OD=20-50 mm, TH=2-4 mm; and details of assembly. The transducers' frequency responses were characterised using electrical impedance spectroscopy and pulse-echo measurements, the acoustic propagation pattern using acoustic pressure field scans, the acoustic power output using radiation force balance measurements, and the acoustic pressure using a needle hydrophone. Depending on the design and piezoelectric element dimensions, the resonance frequency was in the range 350-630 kHz, the -6 dB bandwidth was in the range 87-97%, acoustic output power exceeded 1 W, and acoustic pressure exceeded 1 MPa peak-to-peak. 3D stress simulations were performed to predict the isostatic pressure required to induce material failure and 4D acoustic simulations. The pressure simulations indicated that specific design variations could sustain isostatic pressures up to 4.8 MPa.The acoustic simulations were able to

  3. The Effect of Lucite Glass Reinforcement on the Properties of Conventional Glass-Ionomer Filling Materials

    OpenAIRE

    Haleh Kazemi Yazdi; Richard van Noort; Mona Mansouri

    2016-01-01

    Statement of the Problem: The usage of glass ionomer cements (GICs) restorative materials are very limited due to lack of flexural strength and toughness. Purpose: The aim of this study was to investigate the effect of using a leucite glass on a range of mechanical and optical properties of commercially available conventional glass ionomer cement. Materials and Method: Ball milled 45μm leucite glass particles were incorporated into commercial conventional GIC, Ketac-Molar Easymix (KMEm...

  4. Synthesis for Lunar Simulants: Glass, Agglutinate, Plagioclase, Breccia

    Science.gov (United States)

    Weinstein, Michael; Wilson, Stephen A.; Rickman, Douglas L.; Stoeser, Douglas

    2012-01-01

    The video describes a process for making glass for lunar regolith simulants that was developed from a patented glass-producing technology. Glass composition can be matched to simulant design and specification. Production of glass, pseudo agglutinates, plagioclase, and breccias is demonstrated. The system is capable of producing hundreds of kilograms of high quality glass and simulants per day.

  5. 24 CFR 3280.113 - Glass and glazed openings.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Glass and glazed openings. 3280.113... Glass and glazed openings. (a) Windows and sliding glass doors. All windows and sliding glass doors shall meet the requirements of § 3280.403 the “Standard for Windows and Sliding Glass Doors Used...

  6. 49 CFR 230.56 - Water glass lamps.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Water glass lamps. 230.56 Section 230.56... Water Glasses and Gauge Cocks § 230.56 Water glass lamps. All water glasses must be supplied with a suitable lamp properly located to enable the engine crew to easily see the water in the glass....

  7. Research of Environment-friendly Low Emissivity Glass

    Institute of Scientific and Technical Information of China (English)

    YU Feng

    2007-01-01

    The environment-friendly glasses which integrate function and structure were introduced, among these glasses can save energy very efficiently due to its low infrared emissivity. The fundamental principle of the low emissivity glass and the research progress of this kind glass were analyzed. Meanwhile,high performance and low applied development trend of emissivity glass were reviewed.

  8. Storage and disposal of radioactive waste as glass in canisters

    Energy Technology Data Exchange (ETDEWEB)

    Mendel, J.E.

    1978-12-01

    A review of the use of waste glass for the immobilization of high-level radioactive waste glass is presented. Typical properties of the canisters used to contain the glass, and the waste glass, are described. Those properties are used to project the stability of canisterized waste glass through interim storage, transportation, and geologic disposal.

  9. Reinforcement of conventional glass-ionomer restorative material with short glass fibers.

    Science.gov (United States)

    Hammouda, Ibrahim M

    2009-01-01

    This study investigated the strengthening effect of glass fibers when added to conventional glass-ionomer restorative material. Glass fibers were incorporated into glass-ionomer powder in 3 wt% and 5 wt%. The fibers used had 1 mm length and 10 microm thickness. These criteria of fiber length, diameter, and concentration represent a new approach for reinforcing conventional glass-ionomer [Medifill, conventional restorative glass-ionomer]. The mechanical properties tested were diametral tensile strength, hardness, flexural strength, flexural modulus and fracture toughness after 24-h and 7-days of storage in deionized water. Glass short fibers were mixed thoroughly into the glass-ionomer powder before mixing with the cement liquid. Samples of specific dimensions were prepared for each time interval and fiber loading according to the manufacturer's instructions and international standards. Hardness was measured using a micro-hardness tester at 100 gram applied load for 15 s. The other mechanical properties were measured using a Lloyd universal testing machine. The results showed increased diametral tensile strength, flexural strength, flexural modulus, and fracture toughness by the addition of glass fibers. There was an appreciable increase of the tested mechanical properties of glass-ionomer restorative material as a result of increasing fiber loading and water storage for 1 week. It was concluded that conventional glass-ionomer can be reinforced by the addition of short glass fibers.

  10. Weeping Glass: The Identification of Ionic Species on the Surface of Vessel Glass Using Ion Chromatography

    NARCIS (Netherlands)

    G. Verhaar; M.R. van Bommel; N.H. Tennent

    2016-01-01

    Aqueous films on the surface of unstable vessel glass were analysed. Five cation and eight anion species from eleven glass items in the Rijksmuseum, Amsterdam, the Hamburg Museum and the Corning Museum of Glass have been quantified by ion chromatography. Sodium, potassium, magnesium and calcium cati

  11. Wet water glass production plant

    Directory of Open Access Journals (Sweden)

    Stanković Mirjana S.

    2003-01-01

    Full Text Available The IGPC Engineering Department designed basic projects for a wet hydrate dissolution plant, using technology developed in the IGPC laboratories. Several projects were completed: technological, machine, electrical, automation. On the basis of these projects, a production plant of a capacity of 75,000 t/y was manufactured, at "Zeolite Mira", Mira (VE, Italy, in 1997. and 1998, increasing detergent zeolite production, from 50,000 to 100,000 t/y. Several goals were realized by designing a wet hydrate dissolution plant. The main goal was increasing the detergent zeolite production. The technological cycle of NaOH was closed, and no effluents emitted, and there is no pollution (except for the filter cake. The wet water glass production process is fully automatized, and the product has uniform quality. The production process can be controlled manually, which is necessary during start - up, and repairs. By installing additional process equipment (centrifugal pumps and heat exchangers technological bottlenecks were overcome, and by adjusting the operation of autoclaves, and water glass filters and also by optimizing the capacities of process equipment.

  12. Equilibrium avalanches in spin glasses

    Science.gov (United States)

    Le Doussal, Pierre; Müller, Markus; Wiese, Kay Jörg

    2012-06-01

    We study the distribution of equilibrium avalanches (shocks) in Ising spin glasses which occur at zero temperature upon small changes in the magnetic field. For the infinite-range Sherrington-Kirkpatrick (SK) model, we present a detailed derivation of the density ρ(ΔM) of the magnetization jumps ΔM. It is obtained by introducing a multicomponent generalization of the Parisi-Duplantier equation, which allows us to compute all cumulants of the magnetization. We find that ρ(ΔM)˜ΔM-τ with an avalanche exponent τ=1 for the SK model, originating from the marginal stability (criticality) of the model. It holds for jumps of size 1≪ΔMmodel. For finite-range models, using droplet arguments, we obtain the prediction τ=(df+θ)/dm where df,dm, and θ are the fractal dimension, magnetization exponent, and energy exponent of a droplet, respectively. This formula is expected to apply to other glassy disordered systems, such as the random-field model and pinned interfaces. We make suggestions for further numerical investigations, as well as experimental studies of the Barkhausen noise in spin glasses.

  13. Crystallization Kinetics in Fluorochloroziroconate Glass-Ceramics

    Science.gov (United States)

    Alvarez, Carlos J.

    Annealing fluorochlorozirconate (FCZ) glasses nucleates BaCl2 nanocrystals in the glass matrix, resulting in a nanocomposite glass-ceramic that has optical properties suitable for use as a medical X-ray imaging plate. Understanding the way in which the BaCl¬2 nanocrystal nucleation, growth and phase transformation processes proceed is critical to controlling the optical behavior. However, there is a very limited amount of information about the formation, morphology, and distribution of the nanocrystalline particles in FCZ glass-ceramics. In this thesis, the correlation between the microstructure and the crystallization kinetics of FCZ glass-ceramics, are studied in detail. In situ X-ray diffraction and transmission electron microscopy annealing experiments are used to analyze the crystal structure, size and distribution of BaCl 2 nanocrystals in FCZ glass-ceramics as a function of annealing rate and temperature. Microstructural analysis of the early stages on nucleation identified the formation of both BaCl2 and BaF2 nanocrystals. Annealing FCZ glass-ceramics above 280°C can cause the formation of additional glass matrix phase crystals, their microstructure and the annealing parameters required for their growth are identified. As the crystalline phases grow directly from the glass, small variations in processing of the glass can have a profound influence on the crystallization process. The information obtained from these experiments improves the understanding of the nucleation, growth and phase transformation process of the BaCl¬2 nanocrystals and additional crystalline phases that form in FCZ glass-ceramics, and may help expedite the implementation of FCZ glass-ceramics as next-generation X-ray detectors. Lastly, as these glass-ceramics may one day be commercialized, an investigation into their degradation in different environmental conditions was also performed. The effects of direct contact with water or prolonged exposure to humid environments on the

  14. Ion Exchange in Glass-Ceramics

    Science.gov (United States)

    Beall, George; Comte, Monique; Deneka, Matthew; Marques, Paulo; Pradeau, Philippe; Smith, Charlene

    2016-08-01

    In the past few years ion-exchange in glasses has found a renewed interest with a lot of new development and research in industrial and academic labs and the commercialization of materials with outstanding mechanical properties. These glasses are now widely used in many electronic devices including hand-held displays and tablets. The exchange is generally conducted in a bath of molten salt below the transition temperature of the glass. The exchange at the surface of an alkali ion by a bigger one brings compressive stress at the surface. The mechanical properties are dependent on the stress level at the surface and the depth of penetration of the bigger ion. As compared to glasses, glass-ceramics have the interest to display a wide range of aspects (transparent to opaque) and different mechanical properties (especially higher modulus and toughness). There has been little research on ion-exchange in glass-ceramics. In these materials the mechanisms are much more complex than in glasses because of their polyphasic nature: ion-exchange generally takes place mostly in one phase (crystalline phase or residual glass). The mechanism can be similar to what is observed in glasses with the replacement of an ion by another in the structure. But in some cases this ion-exchange leads to microstructural modifications (for example amorphisation or phase change). This article reviews these ion-exchange mechanisms using several transparent and opaque alumino-silicate glass-ceramics as examples. The effect of the ion exchange in the various glass-ceramics will be described, with particular emphasis on flexural strength.

  15. Laser spectroscopy of rare earth ions in lead borate glasses and transparent glass-ceramics

    Science.gov (United States)

    Pisarski, W. A.; Grobelny, Ł.; Pisarska, J.; Lisiecki, R.; Dominiak-Dzik, G.; Ryba-Romanowski, W.

    2010-03-01

    Rare earth doped lead borate glasses and transparent glass-ceramics have been studied using optical spectroscopy. Based on the absorption, emission and its decay and the Judd-Ofelt calculations, several radiative and laser parameters for Ln 3+ ( Ln = Pr, Nd, Eu, Dy, Er, Tm) were evaluated. The large values of luminescence lifetime, quantum efficiency of excited state and room temperature peak stimulated emission cross-section suggest efficient laser transitions of Ln 3+ ions in lead borate glasses. The obtained results indicate that lead borate glasses and glass-ceramics containing Ln 3+ ions are promising host matrices for solid-state laser applications.

  16. Mixed cation effect in sodium aluminosilicate glasses

    DEFF Research Database (Denmark)

    Kjeldsen, Jonas; Smedskjær, Morten Mattrup; Mauro, John C.

    , network structure, and the resistances associated with the deformation processes in mixed cation glasses by partially substituting magnesium for calcium and calcium for lithium in sodium aluminosilicate glasses. We use Raman and 27Al NMR spectroscopies to obtain insights into the structural...

  17. Devitrification properties of lead borate glasses

    Science.gov (United States)

    Bajaj, Anu; Khanna, Atul; Krishnan, K.; Aggarwal, Suresh K.

    2013-06-01

    Lead borate glasses containing 30 to 60 mol% PbO were prepared by melt quenching technique and devitrified by long duration heat treament in the supercooled region. Glasses crystallized on heating above their glass transition temperature, and the crystalline phases produced on devitrification were characterized by XRD and DSC analyses. Glass with 30 mol% PbO slowly formed a solid solution of Pb6B10O21 and Pb5B8O17 crystalline phases, while glasses with 40 and 50 mol% PbO formed a mixture of Pb6B10O21, Pb5B8O17 and the remanent glassy phase. Glasses with higher PbO concentration of 56 to 60 mol% devitrified completely and produced only Pb5B8O17 crystalline phase. Lead borate glasses with PbO concentration of 40 to 50 mol% showed maximum thermal stability against devitrification, the ease of crystallization of glasses was correlated with the fraction of tetrahedral borons in them.

  18. 24th International Congress on Glass

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    April 7-11,2016 Shanghai,China www.icg2016shanghai.comHosts:The International Commission on Glass The Chinese Ceramic Society Organizer:China Triumph International Engineering Co.,Ltd Shanghai Institute of Optics and Fine Mechanics Congress Topic Plenary talks,invited talks,contributed papers and poster sessions will cover all topics in glass

  19. Mechanical properties of glass polymer multilayer composite

    Indian Academy of Sciences (India)

    A Seal; N R Bose; S K Dalui; A K Mukhopadhyay; K K Phani; H S Maiti

    2001-04-01

    The preliminary experimental studies on the comparative behaviour of the deformation processes involved in the failure of a commercial, 0.3 mm thick, 18 mm diameter soda–lime–silica glass disks () and multilayered glass disk–epoxy (GE) as well as glass disk–epoxy–-glass fabric (GEF) composite structures are reported. The failure tests were conducted in a biaxial flexure at room temperature. The epoxy was a commercial resin and the -glass fabric was also commercially obtained as a two-dimensional weave of -glass fibres to an area density of about 242 g m–2. The multilayered structures were developed by alternate placement of the glass and reinforcing layers by a hand lay-up technique followed by lamination at an appropriate temperature and pressure. Depending on the number of layers the volume fraction of reinforcement could be varied from about 0.20 for the GE system to about 0.50 for the GEF system. It was observed that the specific failure load (load per unit thickness) was enhanced from a value of about 60 N/mm obtained for the glass to a maximum value of about 100 N/mm for the GE composites and to a maximum of about 70 N/mm for the GEF composite system. Similarly, the displacements at failure () measured with a linear variable differential transformer (LVDT) were also found to be a strongly sensitive function of the type of reinforcement (GE or GEF) as well as the number of layers.

  20. Bose-Einstein condensation in quantum glasses

    OpenAIRE

    2009-01-01

    The role of geometrical frustration in strongly interacting bosonic systems is studied with a combined numerical and analytical approach. We demonstrate the existence of a novel quantum phase featuring both Bose-Einstein condensation and spin-glass behaviour. The differences between such a phase and the otherwise insulating "Bose glasses" are elucidated.

  1. Nanoporous Glasses for Nuclear Waste Containment

    Directory of Open Access Journals (Sweden)

    Thierry Woignier

    2016-01-01

    Full Text Available Research is in progress to incorporate nuclear waste in new matrices with high structural stability, resistance to thermal shock, and high chemical durability. Interactions with water are important for materials used as a containment matrix for the radio nuclides. It is indispensable to improve their chemical durability to limit the possible release of radioactive chemical species, if the glass structure is attacked by corrosion. By associating high structural stability and high chemical durability, silica glass optimizes the properties of a suitable host matrix. According to an easy sintering stage, nanoporous glasses such as xerogels, aerogels, and composite gels are alternative ways to synthesize silica glass at relatively low temperatures (≈1,000–1,200°C. Nuclear wastes exist as aqueous salt solutions and we propose using the open pore structure of the nanoporous glass to enable migration of the solution throughout the solid volume. The loaded material is then sintered, thereby trapping the radioactive chemical species. The structure of the sintered materials (glass ceramics is that of nanocomposites: actinide phases (~100 nm embedded in a vitreous silica matrix. Our results showed a large improvement in the chemical durability of glass ceramic over conventional nuclear glass.

  2. Characterising refractive index dispersion in chalcogenide glasses

    DEFF Research Database (Denmark)

    Fang, Y.; Sojka, L.; Jayasuriya, D.;

    2016-01-01

    Much effort has been devoted to the study of glasses that contain the chalcogen elements (sulfur, selenium and tellurium) for photonics' applications out to MIR wavelengths. In this paper we describe some techniques for determining the refractive index dispersion characteristics of these glasses....

  3. Viscous Glass Sealants for SOFC Applications

    Energy Technology Data Exchange (ETDEWEB)

    Scott Misture

    2012-09-30

    Two series of silicate glasses that contain gallium as the primary critical component have been identified and optimized for viscous sealing of solid oxide fuel cells operating from 650 to 850°C. Both series of glass sealants crystallize partially upon heat treatment and yield multiphase microstructures that allow viscous flow at temperatures as low as 650°C. A fully amorphous sealant was also developed by isolating, synthesizing and testing a silicate glass of the same composition as the remnant glassy phase in one of the two glass series. Of ~40 glasses tested for longer than 500 hours, a set of 5 glasses has been further tested for up to 1000h in air, wet hydrogen, and against both yttria-stabilized zirconia and aluminized stainless steel. In some cases the testing times reached 2000h. The reactivity testing has provided new insight into the effects of Y, Zr, and Al on bulk and surface crystallization in boro-gallio-silicate glasses, and demonstrated that at least 5 of the newly-developed glasses are viable viscous sealants.

  4. CLAY SOIL STABILISATION USING POWDERED GLASS

    Directory of Open Access Journals (Sweden)

    J. OLUFOWOBI

    2014-10-01

    Full Text Available This paper assesses the stabilizing effect of powdered glass on clay soil. Broken waste glass was collected and ground into powder form suitable for addition to the clay soil in varying proportions namely 1%, 2%, 5%, 10% and 15% along with 15% cement (base by weight of the soil sample throughout. Consequently, the moisture content, specific gravity, particle size distribution and Atterberg limits tests were carried out to classify the soil using the ASSHTO classification system. Based on the results, the soil sample obtained corresponded to Group A-6 soils identified as ‘fair to poor’ soil type in terms of use as drainage and subgrade material. This justified stabilisation of the soil. Thereafter, compaction, California bearing ratio (CBR and direct shear tests were carried out on the soil with and without the addition of the powdered glass. The results showed improvement in the maximum dry density values on addition of the powdered glass and with corresponding gradual increase up to 5% glass powder content after which it started to decrease at 10% and 15% powdered glass content. The highest CBR values of 14.90% and 112.91% were obtained at 5% glass powder content and 5mm penetration for both the unsoaked and soaked treated samples respectively. The maximum cohesion and angle of internal friction values of 17.0 and 15.0 respectively were obtained at 10% glass powder content.

  5. The Glass Ceiling: Progress and Persistent Challenges

    Science.gov (United States)

    McLlwain, Wendy M.

    2012-01-01

    It has been written that since 2001, there has not been any significant progress and the glass ceiling is still intact. Women are still underrepresented in top positions (Anonymous, 2004). If this is true, the glass ceiling presents a major barrier between women and their desire to advance into executive or senior management positions. In addition…

  6. Hardness of basaltic glass-ceramics

    DEFF Research Database (Denmark)

    Jensen, Martin; Smedskjær, Morten Mattrup; Estrup, Maja;

    2009-01-01

    The dependence of the hardness of basaltic glass-ceramics on their degree of crystallisation has been explored by means of differential scanning calorimetry, optical microscopy, x-ray diffraction, and Vickers indentation. Different degrees of crystallisation in the basaltic glasses were achieved...

  7. Calibration of Li-glass Detector Efficiency

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Li-glass detector will be used to measure the flux of neutron beam in Gamma-ray Total Absorption Facility(GTAF). We have calibrated the detection efficiency of Li-glass detector in 5SDH-2 accelerator. The beam of neutron was produced by the reaction 7Li

  8. Forming Glasses from Se and Te

    Directory of Open Access Journals (Sweden)

    Pierre Lucas

    2009-10-01

    Full Text Available Despite being close neighbors on the Periodic Table, selenium and tellurium present a totally different abilities to form glasses. Se is a very good glass former, and gives rise to numerous glass compositions which are popular for their transparency in the infrared range and their stability against crystallization. These glasses can be shaped into sophisticated optical devices such as optical fibers, planar guides or lenses. Nevertheless, their transparencies are limited at about 12 μm (depending on the thickness of the optical systems due to the relatively small mass of the Se element. On the other hand, tellurium is heavier and its use in substitution for Se permits to shift the IR cutoff beyond 20 μm. However, the semimetallic nature of Te limits its glass formation ability and this glass family is known to be unstable and consequently has found application as phase change material in the Digital Versatile Disk (DVD technology. In this paper, after a review of selenide glasses and their applications, it will be shown how, in a recent past, it has been possible to stabilize tellurium glasses by introducing new elements like Ga or I in their compositions.

  9. Aging in chalcohalide glasses: Origin and consequences

    DEFF Research Database (Denmark)

    Jensen, Martin; Smedskjær, Morten Mattrup; Wang, W.;

    2012-01-01

    The application of chalcogenide and chalcohalide glasses is limited by their uncontrolled drift in properties over time due to aging processes. In the present work, we perform aging experiments on some chalcohalide glasses in oxidizing, inert and reducing atmospheres and afterwards we measure the...

  10. Ongoing Model Development Analyzing Glass Fracture

    DEFF Research Database (Denmark)

    Molnar, G.; Bojtar, I.; Nielsen, Jens Henrik

    2013-01-01

    Present subject deals with an ongoing experimental and numerical analysis of inplane loaded glass plates. The main goal of the investigation is to develop a hybrid – discrete and finite element – model which could follow the fracture process in annealed and in tempered glass. Measurements...... an overview of the structure of the research and a summary of current status archived so far....

  11. Modification of resin modified glass ionomer cement by addition of bioactive glass nanoparticles.

    Science.gov (United States)

    Valanezhad, Alireza; Odatsu, Tetsuro; Udoh, Koichi; Shiraishi, Takanobu; Sawase, Takashi; Watanabe, Ikuya

    2016-01-01

    In the present study, sol-gel derived nanoparticle calcium silicate bioactive glass was added to the resin-modified light cure glass-ionomer cement to assess the influence of additional bioactive glass nanoparticles on the mechanical and biological properties of resin-modified glass-ionomer cement. The fabricated bioactive glass nanoparticles added resin-modified glass-ionomer cements (GICs) were immersed in the phosphate buffer solution for 28 days to mimic real condition for the mechanical properties. Resin-modified GICs containing 3, 5 and 10 % bioactive glass nanoparticles improved the flexural strength compared to the resin-modified glass-ionomer cement and the samples containing 15 and 20 % bioactive glass nanoparticles before and after immersing in the phosphate buffer solution. Characterization of the samples successfully expressed the cause of the critical condition for mechanical properties. Cell study clarified that resin-modified glass-ionomer cement with high concentrations of bioactive glass nanoparticles has higher cell viability and better cell morphology compare to control groups. The results for mechanical properties and toxicity approved that the considering in selection of an optimum condition would have been a more satisfying conclusion for this study.

  12. Glass ionomer restorative cement systems: an update.

    Science.gov (United States)

    Berg, Joel H; Croll, Theodore P

    2015-01-01

    Glass ionomer cements have been used in pediatric restorative dentistry for more than two decades. Their usefulness in clinical dentistry is preferential to other materials because of fluoride release from the glass component, biocompatibility, chemical adhesion to dentin and enamel, coefficient of thermal expansion similar to that of tooth structure, and versatility. The purpose of this paper was to review the uses of glass ionomer materials in pediatric dentistry, specifically as pit and fissure sealants, dentin and enamel replacement repair materials, and luting cements, and for use in glass ionomer/resin-based composite stratification tooth restoration (the sandwich technique). This article can also be used as a guide to research and clinical references regarding specific aspects of the glass ionomer systems and how they are used for young patients.

  13. A consortium approach to glass furnace modeling.

    Energy Technology Data Exchange (ETDEWEB)

    Chang, S.-L.; Golchert, B.; Petrick, M.

    1999-04-20

    Using computational fluid dynamics to model a glass furnace is a difficult task for any one glass company, laboratory, or university to accomplish. The task of building a computational model of the furnace requires knowledge and experience in modeling two dissimilar regimes (the combustion space and the liquid glass bath), along with the skill necessary to couple these two regimes. Also, a detailed set of experimental data is needed in order to evaluate the output of the code to ensure that the code is providing proper results. Since all these diverse skills are not present in any one research institution, a consortium was formed between Argonne National Laboratory, Purdue University, Mississippi State University, and five glass companies in order to marshal these skills into one three-year program. The objective of this program is to develop a fully coupled, validated simulation of a glass melting furnace that may be used by industry to optimize the performance of existing furnaces.

  14. Adsorption of monoclonal antibodies to glass microparticles.

    Science.gov (United States)

    Hoehne, Matthew; Samuel, Fauna; Dong, Aichun; Wurth, Christine; Mahler, Hanns-Christian; Carpenter, John F; Randolph, Theodore W

    2011-01-01

    Microparticulate glass represents a potential contamination to protein formulations that may occur as a result of processing conditions or glass types. The effect of added microparticulate glass to formulations of three humanized antibodies was tested. Under the three formulation conditions tested, all three antibodies adsorbed irreversibly at near monolayer surface coverages to the glass microparticles. Analysis of the secondary structure of the adsorbed antibodies by infrared spectroscopy reveal only minor perturbations as a result of adsorption. Likewise, front-face fluorescence quenching measurements reflected minimal tertiary structural changes upon adsorption. In contrast to the minimal effects on protein structure, adsorption of protein to suspensions of glass microparticles induced significant colloidal destabilization and flocculation of the suspension.

  15. Experimental design of a waste glass study

    Energy Technology Data Exchange (ETDEWEB)

    Piepel, G.F.; Redgate, P.E.; Hrma, P.

    1995-04-01

    A Composition Variation Study (CVS) is being performed to support a future high-level waste glass plant at Hanford. A total of 147 glasses, covering a broad region of compositions melting at approximately 1150{degrees}C, were tested in five statistically designed experimental phases. This paper focuses on the goals, strategies, and techniques used in designing the five phases. The overall strategy was to investigate glass compositions on the boundary and interior of an experimental region defined by single- component, multiple-component, and property constraints. Statistical optimal experimental design techniques were used to cover various subregions of the experimental region in each phase. Empirical mixture models for glass properties (as functions of glass composition) from previous phases wee used in designing subsequent CVS phases.

  16. Bioactive glass coatings for orthopedic metallic implants

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Esteban, Sonia; Saiz, Eduardo; Fujino, Sigheru; Oku, Takeo; Suganuma, Katsuaki; Tomsia, Antoni P.

    2003-06-30

    The objective of this work is to develop bioactive glass coatings for metallic orthopedic implants. A new family of glasses in the SiO2-Na2O-K2O-CaO-MgO-P2O5 system has been synthesized and characterized. The glass properties (thermal expansion, softening and transformation temperatures, density and hardness) are in line with the predictions of established empirical models. The optimized firing conditions to fabricate coatings on Ti-based and Co-Cr alloys have been determined and related to the glass properties and the interfacial reactions. Excellent adhesion to alloys has been achieved through the formation of 100-200 nm thick interfacial layers (Ti5Si3 on Ti-based alloys and CrOx on Co-Cr). Finally, glass coatings, approximately 100 mu m thick, have been fabricated onto commercial Ti alloy-based dental implants.

  17. Performance comparison of SCHOTT laser glasses

    Science.gov (United States)

    Davis, Mark J.; Hayden, Joseph S.

    2011-06-01

    Laser performance measurements (quasi-CW) were made of various Nd-doped SCHOTT catalog laser glasses: LG-680, LG-750, LG-760, LG-770, APG-1, and APG-2; all but the first, a silicate, are phosphate glasses. Nominal Nd3+ doping was approximately 3 × 1020 ions/cm3. An end-pumped, laser diode geometry was used and input powers, pump pulse length, and pump rep-rates were kept low to avoid thermal lensing (4 W, 1 msec, and 0.1 Hz, respectively). As expected, the phosphate glasses performed better than the silicate glass. Slope efficiencies ranged from 25% for LG-680 up to nearly 33% for LG-760. APG-1, designed for high rep-rate, high-power systems, performed nearly the same in this particular configuration as glasses designed for high-energy applications (e.g., LG-770).

  18. Preface JFDE Special Issue Glass

    Directory of Open Access Journals (Sweden)

    Ulrich Knaack

    2015-05-01

    Full Text Available Facade Design and Engineering is a multidisciplinary field that touches many other scientific disciplines. Glass is one of the key materials for building envelopes, and a strong scientific community has developed over the last decade. Designers love glass for its transparency. It is strong but brittle and very demanding in terms of engineering. We continuously see new innovative developments in terms of its climatic performance, structural possibilities, construction design and new applications. Reason enough to dedicate this special issue to the topic. The issue would not have been possible without the contribution of our special editors Jan Belis and Christian Louter, who contributed through their outstanding editorial work and network. Most of the papers in this issue were carefully selected from of a number of invited submissions and conference papers of the COST Action TU0905 Mid-Term Conference, April 17+18 2013, Porec, (CRC Press/Balkema, Leiden and subsequently subjected to the regular blind review process of the journal. Glass as a building material demonstrates the nature of the architectural discipline, where science and building practice are closely linked. Buildings are the live testing bed for scientific research and, at the same time, building practice formulates new research questions. We found that many articles sent to us deal with this relation. Therefore we decided to introduce the new category ’Applied Practice’ for certain journal paper contributions, which from now on can be found at the end of each issue. Although they do not need to be purely scientific, ’Applied Practice’ papers will always discuss new developments, will have a clear structure and are subjected to the strict JFDE review process. Façade Design and Engineering is a peer reviewed, open access journal, funded by The Netherlands Organisation for Scientific Research NWO (www.nwo.nl. We see ’open access’ as the future publishing model. But it

  19. Magnetic Glass Ceramics by Sintering of Borosilicate Glass and Inorganic Waste

    Directory of Open Access Journals (Sweden)

    Inès M. M. M. Ponsot

    2014-07-01

    Full Text Available Ceramics and glass ceramics based on industrial waste have been widely recognized as competitive products for building applications; however, there is a great potential for such materials with novel functionalities. In this paper, we discuss the development of magnetic sintered glass ceramics based on two iron-rich slags, coming from non-ferrous metallurgy and recycled borosilicate glass. The substantial viscous flow of the glass led to dense products for rapid treatments at relatively low temperatures (900–1000 °C, whereas glass/slag interactions resulted in the formation of magnetite crystals, providing ferrimagnetism. Such behavior could be exploited for applying the obtained glass ceramics as induction heating plates, according to preliminary tests (showing the rapid heating of selected samples, even above 200 °C. The chemical durability and safety of the obtained glass ceramics were assessed by both leaching tests and cytotoxicity tests.

  20. Film formation of CdSe quantum dot embedded phosphate glass on an FTO glass substrate

    Science.gov (United States)

    Han, Karam; Kim, Yoon Hwa; Im, Won Bin; Chung, Woon Jin

    2015-07-01

    A thick film with CdSe quantum dot (QD) embedded glass was formed on a fluorine-doped tin oxide (FTO) glass substrate. Phosphate glasses with different CdO and ZnSe concentrations were synthesized, and the heat treatment conditions were varied to determine the appropriate QD and film formation conditions. Phosphate glass with 1 mol. % CdO and 1.5 mol. % ZnSe showed controlled crystallization of CdSe QDs when they were heat treated at 550℃ for 1 hr. Absorption spectra and Raman spectroscopy identified the QD formation. Precursor glass was ground into powder and pasted onto FTO only and TiO2/FTO glass substrates via the screen printing method. Glass film embedded with QDs was successfully formed after sintering, thus demonstrating its potential for film applications. [Figure not available: see fulltext.

  1. Glass Formation Ability and Kinetics of the Gd55Al20Ni25 Bulk Metallic Glass

    Institute of Scientific and Technical Information of China (English)

    JO Chol-Lyong; XIA Lei; DING Ding; DONG Yuan-Da

    2006-01-01

    @@ We report a new bulk glass-forming alloy Gd55Al20Ni25. The bulk sample of the alloy is prepared in the shape of rods in diameter 2mm by suction casting. The rod exhibits typical amorphous characteristics in the xray diffraction pattern, paramagnetic property at 300K, distinct glass transition and multi-step crystallization behaviour in differential scanning calorimetry traces. The glass formation ability of the alloy is investigated by using the reduced glass transition temperature Tγg and the parameter γ. Kinetics of glass transition and primary crystallization is also studied. The fragility parameter m obtained from the Vogel-Fulcher-Tammann dependence of glass transition temperature Tg on ln φ (φ is the heating rate) classifies the bulk metallic glasses into the intermediate category according to Angells classification.

  2. Glass heat capacity and its abrupt change in glass transition region

    DEFF Research Database (Denmark)

    Yue, Yuanzheng; Smedskjær, Morten Mattrup; Mauro, John C.

    ) around glass transition. Here we study this problem through two approaches. First, we analyze the Cp change with temperature on homologous series of glass formers (i.e., with regular compositional substitution). Second, we do the same on non-homologous systems (e.g. without regular compositional......Glass transition (GT) has been a fascinating, but challenging subject in the condensed matter science over decades. Despite progress in understanding GT, many crucial problems still need to be clarified. One of the problems deals with the microscopic origin of abrupt change of heat capacity (Cp...... substitution) or glass systems of different bonding types (covalent, metallic and ionic bonds). In addition, we discuss how chemical bond is associated with glass Cp (at T glass types. We explain why the Cp values of most oxide glasses at Tg agrees with Dulong-Petit law, but some not. We...

  3. Spectroscopic Properties of Nd3+-Doped High Silica Glass Prepared by Sintering Porous Glass

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A new kind of Nd3+-doped high silica glass (SiO2>96% (mass fraction)) was obtained by sintering porous glass impregnated with Nd3+ ions. The absorption and luminescence properties of high silica glass doped with different Nd3+ concentrations were studied. The intensity parameters Ωt (t=2, 4, 6), spontaneous emission probability, fluorescence lifetime, radiative quantum efficiency, fluorescence branching ratio, and stimulated emission cross section were calculated using the Judd-Ofelt theory. The optimal Nd3+ concentration in high silica glass was 0.27% (mole fraction) because of its high quantum efficiency and emission intensity. By comparing the spectroscopic parameters with other Nd3+-doped oxide glasses and commercial silicate glasses, the Nd3+-doped high silica glasses are likely to be a promising material used for high power and high repetition rate lasers.

  4. Terbium-activated lithium lanthanum aluminosilicate oxyfluoride scintillating glass and glass-ceramic

    Science.gov (United States)

    Pan, Z.; James, K.; Cui, Y.; Burger, A.; Cherepy, N.; Payne, S. A.; Mu, R.; Morgan, S. H.

    2008-09-01

    Terbium-activated lithium-lanthanum-aluminosilicate oxyfluoride scintillating glasses, 55SiO 2·6Al 2O 3·28Li 2O·11LaF 3 doped with different TbF 3 concentrations, have been fabricated and investigated. By appropriate heat treatment of the as-prepared glasses above, transparent glass-ceramics were obtained. Differential scanning calorimetry, X-ray diffraction, optical absorption, and luminescence under both UV and beta-particle excitation have been investigated on as-prepared glasses and glass-ceramics. It has been found that these terbium-activated lithium-lanthanum-aluminosilicate oxyfluoride scintillating glasses exhibit good UV-excited luminescence and radioluminescence. The luminescence yield increases for glass-ceramics. The efficiency of beta-induced luminescence is comparable or nearly equal to that of the Schott IQI-301 product.

  5. Damage Development in Confined Borosilicate and Soda-Lime Glasses

    Science.gov (United States)

    2011-07-11

    Elmira, NY). BF is a borosilicate glass manufactured by Schott Glass using a float process. SP float glass is a crystal clear, soda-lime glass . This...2005. 22 21. ASTM £494, "Technique for Measuring Ultrasonic Velocity in Materials", July 2001. 22. Schott Glass , Borofloat 33 Thermal Properties...21945 Damage Development in Conf"med Borosilicate and Soda-Lime Glasses Kathryn A. Dannemann1, Charles E. Anderson. Jr. 1, Sidney Chocron1, James

  6. Crack tip fracture toughness of base glasses for dental restoration glass-ceramics using crack opening displacements.

    Science.gov (United States)

    Deubener, J; Höland, M; Höland, W; Janakiraman, N; Rheinberger, V M

    2011-10-01

    The critical stress intensity factor, also known as the crack tip toughness K(tip), was determined for three base glasses, which are used in the manufacture of glass-ceramics. The glasses included the base glass for a lithium disilicate glass-ceramic, the base glass for a fluoroapatite glass-ceramic and the base glass for a leucite glass-ceramic. These glass-ceramic are extensively used in the form of biomaterials in restorative dental medicine. The crack tip toughness was established by using crack opening displacement profiles under experimental conditions. The crack was produced by Vickers indentation. The crack tip toughness parameters determined for the three glass-ceramics differed quite significantly. The crack tip parameters of the lithium disilicate base glass and the leucite base glass were higher than that of the fluoroapatite base glass. This last material showed glass-in-glass phase separation. The discussion of the results clearly shows that the droplet glass phase is softer than the glass matrix. Therefore, the authors conclude that a direct relationship exists between the chemical nature of the glasses and the crack tip parameter.

  7. Glass dissolution rate measurement and calculation revisited

    Science.gov (United States)

    Fournier, Maxime; Ull, Aurélien; Nicoleau, Elodie; Inagaki, Yaohiro; Odorico, Michaël; Frugier, Pierre; Gin, Stéphane

    2016-08-01

    Aqueous dissolution rate measurements of nuclear glasses are a key step in the long-term behavior study of such waste forms. These rates are routinely normalized to the glass surface area in contact with solution, and experiments are very often carried out using crushed materials. Various methods have been implemented to determine the surface area of such glass powders, leading to differing values, with the notion of the reactive surface area of crushed glass remaining vague. In this study, around forty initial dissolution rate measurements were conducted following static and flow rate (SPFT, MCFT) measurement protocols at 90 °C, pH 10. The international reference glass (ISG), in the forms of powders with different particle sizes and polished monoliths, and soda-lime glass beads were examined. Although crushed glass grains clearly cannot be assimilated with spheres, it is when using the samples geometric surface (Sgeo) that the rates measured on powders are closest to those found for monoliths. Overestimation of the reactive surface when using the BET model (SBET) may be due to small physical features at the atomic scale-contributing to BET surface area but not to AFM surface area. Such features are very small compared with the thickness of water ingress in glass (a few hundred nanometers) and should not be considered in rate calculations. With a SBET/Sgeo ratio of 2.5 ± 0.2 for ISG powders, it is shown here that rates measured on powders and normalized to Sgeo should be divided by 1.3 and rates normalized to SBET should be multiplied by 1.9 in order to be compared with rates measured on a monolith. The use of glass beads indicates that the geometric surface gives a good estimation of glass reactive surface if sample geometry can be precisely described. Although data clearly shows the repeatability of measurements, results must be given with a high uncertainty of approximately ±25%.

  8. Late Byzantine mineral soda high alumina glasses from Asia Minor: a new primary glass production group.

    Science.gov (United States)

    Schibille, Nadine

    2011-04-19

    The chemical characterisation of archaeological glass allows the discrimination between different glass groups and the identification of raw materials and technological traditions of their production. Several lines of evidence point towards the large-scale production of first millennium CE glass in a limited number of glass making factories from a mixture of Egyptian mineral soda and a locally available silica source. Fundamental changes in the manufacturing processes occurred from the eight/ninth century CE onwards, when Egyptian mineral soda was gradually replaced by soda-rich plant ash in Egypt as well as the Islamic Middle East. In order to elucidate the supply and consumption of glass during this transitional period, 31 glass samples from the assemblage found at Pergamon (Turkey) that date to the fourth to fourteenth centuries CE were analysed by electron microprobe analysis (EPMA) and by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). The statistical evaluation of the data revealed that the Byzantine glasses from Pergamon represent at least three different glass production technologies, one of which had not previously been recognised in the glass making traditions of the Mediterranean. While the chemical characteristics of the late antique and early medieval fragments confirm the current model of glass production and distribution at the time, the elemental make-up of the majority of the eighth- to fourteenth-century glasses from Pergamon indicate the existence of a late Byzantine glass type that is characterised by high alumina levels. Judging from the trace element patterns and elevated boron and lithium concentrations, these glasses were produced with a mineral soda different to the Egyptian natron from the Wadi Natrun, suggesting a possible regional Byzantine primary glass production in Asia Minor.

  9. Late Byzantine mineral soda high alumina glasses from Asia Minor: a new primary glass production group.

    Directory of Open Access Journals (Sweden)

    Nadine Schibille

    Full Text Available The chemical characterisation of archaeological glass allows the discrimination between different glass groups and the identification of raw materials and technological traditions of their production. Several lines of evidence point towards the large-scale production of first millennium CE glass in a limited number of glass making factories from a mixture of Egyptian mineral soda and a locally available silica source. Fundamental changes in the manufacturing processes occurred from the eight/ninth century CE onwards, when Egyptian mineral soda was gradually replaced by soda-rich plant ash in Egypt as well as the Islamic Middle East. In order to elucidate the supply and consumption of glass during this transitional period, 31 glass samples from the assemblage found at Pergamon (Turkey that date to the fourth to fourteenth centuries CE were analysed by electron microprobe analysis (EPMA and by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS. The statistical evaluation of the data revealed that the Byzantine glasses from Pergamon represent at least three different glass production technologies, one of which had not previously been recognised in the glass making traditions of the Mediterranean. While the chemical characteristics of the late antique and early medieval fragments confirm the current model of glass production and distribution at the time, the elemental make-up of the majority of the eighth- to fourteenth-century glasses from Pergamon indicate the existence of a late Byzantine glass type that is characterised by high alumina levels. Judging from the trace element patterns and elevated boron and lithium concentrations, these glasses were produced with a mineral soda different to the Egyptian natron from the Wadi Natrun, suggesting a possible regional Byzantine primary glass production in Asia Minor.

  10. Ultrasonic Characterization of Glass Beads

    Science.gov (United States)

    Lassila, I.; Siiriä, S.; Gates, F. K.; Hæggström, E.

    2008-02-01

    We report on the progress in developing a method for an in-line granule size measurement using ultrasonic through transmission method. The knowledge of granule size is important in the production of pharmaceutical dosage forms where the current optical and rheological methods have limitations such as fouling of the optical windows. The phase velocity of a wave propagated through interstitial air between glass balls of 1, 2 and 10 mm in diameter was 254±5 m/s, 261±3 m/s and 320±9 m/s, respectively. The power spectral density of the received signals showed that high frequencies were attenuated more in case of smaller beads due to increased scattering.

  11. Glass slides to DNA microarrays

    Directory of Open Access Journals (Sweden)

    Samuel D Conzone

    2004-03-01

    Full Text Available A tremendous interest in deoxyribonucleic acid (DNA characterization tools was spurred by the mapping and sequencing of the human genome. New tools were needed, beginning in the early 1990s, to cope with the unprecedented amount of genomic information that was being discovered. Such needs led to the development of DNA microarrays; tiny gene-based sensors traditionally prepared on coated glass microscope slides. The following review is intended to provide historical insight into the advent of the DNA microarray, followed by a description of the technology from both the application and fabrication points of view. Finally, the unmet challenges and needs associated with DNA microarrays will be described to define areas of potential future developments for the materials researcher.

  12. Liquidus Temperature Data for DWPF Glass

    Energy Technology Data Exchange (ETDEWEB)

    Hrma, Pavel R.(BATTELLE (PACIFIC NW LAB)); Vienna, John D.(BATTELLE (PACIFIC NW LAB)); Mika, Martin (ASSOC WESTERN UNIVERSITY); Crum, Jarrod V.(BATTELLE (PACIFIC NW LAB)); Piepel, Gregory F.(BATTELLE (PACIFIC NW LAB))

    1998-12-01

    A liquidus temperature (T{sub L}) database has been developed at the Pacific Northwest Laboratory (PNNL) for the Defense Waste Processing Facility (DWPF) glass composition region to support DWPF process control schemes. A test matrix consisting of 53 glasses (including two duplicates) was generated at the Savannah River Technology Center (SRTC) using statistical experimental design methods. To ensure homogeneity, glasses were melted twice. Both melts were performed at T = T{sub 5} + {Delta}T, where T{sub 5} is the temperature at which the melt viscosity is 5 Pa{center_dot}s and {Delta}T {ge} 100 C. The T{sub 5} value was estimated using a PNNL viscosity database. Its span for the test matrix was 1007 C to 1284 C. Melting at T > T{sub 5} (from 1107 C to 1400 C) was necessary to dissolve (and possibly volatilize) some of the RuO{sub 2}. All glasses contained a large fraction of 0.09 mass% RuO{sub 2}, which prevented a reliable detection of spinel near the liquidus temperature (T{sub L}) when the melting temperature was T{sub 5}. T{sub L} was measured by heat-treating glass samples over a range of constant temperatures. They used optical microscopy to detect the presence or absence of crystals in the samples. T{sub L} was determined from observing crystallization within the bulk glass (more than 0.5 mm from the glass surface). The T{sub L} values were adjusted by measuring the T{sub L} of an internal PNNL standard glass in each furnace and checked by a National Bureau of Stands (NBS) standard glass. All measured T{sub L} values are summarized in Table I-S. The accuracy of values is estimated at {+-} 10 C, based on the accuracy of calibrated thermocouples and the ability to discern spinel crystals in glass near T{sub L}. Another possible source of error is glass redox connected with the difference between the melting temperature and T{sub L}. The heat treatment period of samples was long enough to ensure equilibrating the glass with atmospheric air. However, repeated

  13. Glass powder blended cement hydration modelling

    Science.gov (United States)

    Saeed, Huda

    The use of waste materials in construction is among the most attractive options to consume these materials without affecting the environment. Glass is among these types of potential waste materials. In this research, waste glass in powder form, i.e. glass powder (GP) is examined for potential use in enhancing the characteristics of concrete on the basis that it is a pozzolanic material. The experimental and the theoretical components of the work are carried out primarily to prove that glass powder belongs to the "family" of the pozzolanic materials. The chemical and physical properties of the hydrated activated glass powder and the hydrated glass powder cement on the microstructure level have been studied experimentally and theoretically. The work presented in this thesis consists of two main phases. The first phase contains experimental investigations of the reaction of glass powder with calcium hydroxide (CH) and water. In addition, it includes experiments that are aimed at determining the consumption of water and CH with time. The reactivity, degree of hydration, and nature of the pore solution of the glass powder-blended cement pastes and the effect of adding different ratios of glass powder on cement hydration is also investigated. The experiments proved that glass powder has a pozzolanic effect on cement hydration; hence it enhances the chemical and physical properties of cement paste. Based on the experimental test results, it is recommended to use a glass powder-to-cement ratio (GP/C) of 10% as an optimum ratio to achieve the best hydration and best properties of the paste. Two different chemical formulas for the produced GP C-S-H gel due to the pure GP and GP-CH pozzolanic reaction hydration are proposed. For the pure GP hydration, the produced GP C-S-H gel has a calcium-to-silica ratio (C/S) of 0.164, water-to-silica ratio (H/S) of 1.3 and sodium/silica ratio (N/S) of 0.18. However, for the GP-CH hydration, the produced GP C-S-H gel has a C/S ratio of 1

  14. HGMS: Glasses and Nanocomposites for Hydrogen Storage.

    Energy Technology Data Exchange (ETDEWEB)

    Lipinska, Kris [PI; Hemmers, Oliver

    2013-02-17

    The primary goal of this project is to fabricate and investigate different glass systems and glass-derived nanocrystalline composite materials. These glass-based, two-phased materials will contain nanocrystals that can attract hydrogen and be of potential interest as hydrogen storage media. The glass materials with intrinsic void spaces that are able to precipitate functional nanocrystals capable to attract hydrogen are of particular interest. Proposed previously, but never practically implemented, one of promising concepts for storing hydrogen are micro-containers built of glass and shaped into hollow microspheres. The project expanded this concept to the exploration of glass-derived nanocrystalline composites as potential hydrogen storage media. It is known that the most desirable materials for hydrogen storage do not interact chemically with hydrogen and possess a high surface area to host substantial amounts of hydrogen. Glasses are built of disordered networks with ample void spaces that make them permeable to hydrogen even at room temperature. Glass-derived nanocrystalline composites (two-phased materials), combination of glasses (networks with ample voids) and functional nanocrystals (capable to attract hydrogen), appear to be promising candidates for hydrogen storage media. Key advantages of glass materials include simplicity of preparation, flexibility of composition, chemical durability, non-toxicity and mechanical strength, as well as low production costs and environmental friendliness. This project encompasses a fundamental research into physics and chemistry of glasses and nanocrystalline composite materials, derived from glass. Studies are aimed to answer questions essential for considering glass-based materials and composites as potential hydrogen storage media. Of particular interest are two-phased materials that combine glasses with intrinsic voids spaces for physisorption of hydrogen and nanocrystals capable of chemisorption. This project does not

  15. Solid oxide fuel cell having a glass composite seal

    Science.gov (United States)

    De Rose, Anthony J.; Mukerjee, Subhasish; Haltiner, Jr., Karl Jacob

    2013-04-16

    A solid oxide fuel cell stack having a plurality of cassettes and a glass composite seal disposed between the sealing surfaces of adjacent cassettes, thereby joining the cassettes and providing a hermetic seal therebetween. The glass composite seal includes an alkaline earth aluminosilicate (AEAS) glass disposed about a viscous glass such that the AEAS glass retains the viscous glass in a predetermined position between the first and second sealing surfaces. The AEAS glass provides geometric stability to the glass composite seal to maintain the proper distance between the adjacent cassettes while the viscous glass provides for a compliant and self-healing seal. The glass composite seal may include fibers, powders, and/or beads of zirconium oxide, aluminum oxide, yttria-stabilized zirconia (YSZ), or mixtures thereof, to enhance the desirable properties of the glass composite seal.

  16. Enhancement effect of pre-reacted glass on strength of glass-ionomer cement.

    Science.gov (United States)

    Monmaturapoj, Naruporn; Soodsawang, Wiwaporn; Tanodekaew, Siriporn

    2012-02-03

    In this paper, we report on the enhanced strength of glass ionomer cement (GIC) by using the process of pre acid-base reaction and spray drying in glass preparation. The pre acid-base reaction was induced by prior mixing of the glass powder with poly(alkenoic acid). The weight ratios of glass powder to poly(alkenoic acid) were varied to investigate the extent of the pre acid-base reaction of the glass. The effect of the spray drying process which produced spherical glass particles on cement strength was also studied and discussed. The results show that adding 2%-wt of poly(alkenoic acid) liquid in the pre-reacted step improved cement strength. GICs prepared using a mixture of pre-reacted glass with both spherical and irregular powders at 60:40 by weight exhibited the highest compressive strength at 138.64±7.73 MPa. It was concluded that glass ionomer cements containing pre-reacted glass with mixed glass morphology using both spherical and irregular forms are promising as restorative dental materials with improved mechanical properties and handling characteristics.

  17. Crystallization in high-level waste glass: A review of glass theory and noteworthy literature

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-08-18

    There is a fundamental need to continue research aimed at understanding nepheline and spinel crystal formation in high-level waste (HLW) glass. Specifically, the formation of nepheline solids (K/NaAlSiO4) during slow cooling of HLW glass can reduce the chemical durability of the glass, which can cause a decrease in the overall durability of the glass waste form. The accumulation of spinel solids ((Fe, Ni, Mn, Zn)(Fe, Cr)2O4), while not detrimental to glass durability, can cause an array of processing problems inside HLW glass melters. In this review, the fundamental differences between glass and solid-crystals are explained using kinetic, thermodynamic, and viscosity arguments, and several highlights of glass-crystallization research, as it pertains to high-level waste vitrification, are described. In terms of mitigating spinel in the melter and both spinel and nepheline formation in the canister, the complexity of HLW glass and the intricate interplay between thermal, chemical, and kinetic factors further complicates this understanding. However, new experiments seeking to elucidate the contributing factors of crystal nucleation and growth in waste glass, and the compilation of data from older experiments, may go a long way towards helping to achieve higher waste loadings while developing more efficient processing strategies. Higher waste loadings and more efficient processing strategies will reduce the overall HLW Hanford Tank Waste Treatment and Immobilization Plant (WTP) vitrification facilities mission life.

  18. Crystallization in high-level waste glass: A review of glass theory and noteworthy literature

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-08-01

    There is a fundamental need to continue research aimed at understanding nepheline and spinel crystal formation in high-level waste (HLW) glass. Specifically, the formation of nepheline solids (K/NaAlSiO₄) during slow cooling of HLW glass can reduce the chemical durability of the glass, which can cause a decrease in the overall durability of the glass waste form. The accumulation of spinel solids ((Fe, Ni, Mn, Zn)(Fe,Cr)₂O₄), while not detrimental to glass durability, can cause an array of processing problems inside of HLW glass melters. In this review, the fundamental differences between glass and solid-crystals are explained using kinetic, thermodynamic, and viscosity arguments, and several highlights of glass-crystallization research, as it pertains to high-level waste vitrification, are described. In terms of mitigating spinel in the melter and both spinel and nepheline formation in the canister, the complexity of HLW glass and the intricate interplay between thermal, chemical, and kinetic factors further complicates this understanding. However, new experiments seeking to elucidate the contributing factors of crystal nucleation and growth in waste glass, and the compilation of data from older experiments, may go a long way towards helping to achieve higher waste loadings while developing more efficient processing strategies.

  19. Current status of photoprotection by window glass, automobile glass, window films, and sunglasses.

    Science.gov (United States)

    Almutawa, Fahad; Vandal, Robert; Wang, Steven Q; Lim, Henry W

    2013-04-01

    Ultraviolet radiation (UVR) has known adverse effects on the skin and eyes. Practitioners are becoming more aware of the importance of outdoor photoprotection. However, little attention is directed to the exposure of the skin and eyes to UVR through the window glass or sunglasses. The amount of ultraviolet transmission through glass depends mainly on the type of the glass. All types of commercial and automobile glass block the majority of ultraviolet-B; however, the degree of ultraviolet-A transmission depends on the type of glass. Laminated glass offers better UVA protection than tempered glass; new safety regulations for automobiles may result in increased use of laminated glass for side windows. Window films can be applied to glass to increase UVR protection. Sunglasses need to be compliant with one of the national standards; a wraparound style or side shields offer the best protection. Increased understanding by practitioners on the transmission of UVR through glass, window films, and sunglasses would allow them to better educate the public and to better manage photosensitive patients.

  20. Studies on the Potential of Waste Soda Lime Silica Glass in Glass Ionomer Cement Production

    Directory of Open Access Journals (Sweden)

    V. W. Francis Thoo

    2013-01-01

    Full Text Available Glass ionomer cements (GIC are produced through acid base reaction between calcium-fluoroaluminosilicate glass powder and polyacrylic acid (PAA. Soda lime silica glasses (SLS, mainly composed of silica (SiO2, have been utilized in this study as the source of SiO2 for synthesis of Ca-fluoroaluminosilicate glass. Therefore, the main objective of this study was to investigate the potential of SLS waste glass in producing GIC. Two glasses, GWX 1 (analytical grade SiO2 and GWX 2 (replacing SiO2 with waste SLS, were synthesized and then characterized using X-ray diffraction (XRD and energy dispersive X-ray (EDX. Synthesized glasses were then used to produce GIC, in which the properties were characterized using Fourier transform infrared spectroscopy (FT-IR and compressive test (from 1 to 28 days. XRD results showed that amorphous glass was produced by using SLS waste glass (GWX 2, which is similar to glass produced using analytical grade SiO2 (GWX 1. Results from FT-IR showed that the setting reaction of GWX 2 cements is slower compared to cement GWX 1. Compressive strengths for GWX 1 cements reached up to 76 MPa at 28 days, whereas GWX 2 cements showed a slightly higher value, which is 80 MPa.

  1. Critical review of glass performance modeling

    Energy Technology Data Exchange (ETDEWEB)

    Bourcier, W.L. [Lawrence Livermore National Lab., CA (United States)

    1994-07-01

    Borosilicate glass is to be used for permanent disposal of high-level nuclear waste in a geologic repository. Mechanistic chemical models are used to predict the rate at which radionuclides will be released from the glass under repository conditions. The most successful and useful of these models link reaction path geochemical modeling programs with a glass dissolution rate law that is consistent with transition state theory. These models have been used to simulate several types of short-term laboratory tests of glass dissolution and to predict the long-term performance of the glass in a repository. Although mechanistically based, the current models are limited by a lack of unambiguous experimental support for some of their assumptions. The most severe problem of this type is the lack of an existing validated mechanism that controls long-term glass dissolution rates. Current models can be improved by performing carefully designed experiments and using the experimental results to validate the rate-controlling mechanisms implicit in the models. These models should be supported with long-term experiments to be used for model validation. The mechanistic basis of the models should be explored by using modern molecular simulations such as molecular orbital and molecular dynamics to investigate both the glass structure and its dissolution process.

  2. Temperature effects on waste glass performance

    Energy Technology Data Exchange (ETDEWEB)

    Mazer, J.J.

    1991-02-01

    The temperature dependence of glass durability, particularly that of nuclear waste glasses, is assessed by reviewing past studies. The reaction mechanism for glass dissolution in water is complex and involves multiple simultaneous reaction proceeded, including molecular water diffusion, ion exchange, surface reaction, and precipitation. These processes can change in relative importance or dominance with time or changes in temperature. The temperature dependence of each reaction process has been shown to follow an Arrhenius relationship in studies where the reaction process has been isolated, but the overall temperature dependence for nuclear waste glass reaction mechanisms is less well understood, Nuclear waste glass studies have often neglected to identify and characterize the reaction mechanism because of difficulties in performing microanalyses; thus, it is unclear if such results can be extrapolated to other temperatures or reaction times. Recent developments in analytical capabilities suggest that investigations of nuclear waste glass reactions with water can lead to better understandings of their reaction mechanisms and their temperature dependences. Until a better understanding of glass reaction mechanisms is available, caution should be exercised in using temperature as an accelerating parameter. 76 refs., 1 tab.

  3. Crystal growth in zinc borosilicate glasses

    Science.gov (United States)

    Kullberg, Ana T. G.; Lopes, Andreia A. S.; Veiga, João P. B.; Monteiro, Regina C. C.

    2017-01-01

    Glass samples with a molar composition (64+x)ZnO-(16-x)B2O3-20SiO2, where x=0 or 1, were successfully synthesized using a melt-quenching technique. Based on differential thermal analysis data, the produced glass samples were submitted to controlled heat-treatments at selected temperatures (610, 615 and 620 °C) during various times ranging from 8 to 30 h. The crystallization of willemite (Zn2SiO4) within the glass matrix was confirmed by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). Under specific heat-treatment conditions, transparent nanocomposite glass-ceramics were obtained, as confirmed by UV-vis spectroscopy. The influence of temperature, holding time and glass composition on crystal growth was investigated. The mean crystallite size was determined by image analysis on SEM micrographs. The results indicated an increase on the crystallite size and density with time and temperature. The change of crystallite size with time for the heat-treatments at 615 and 620 °C depended on the glass composition. Under fixed heat-treatment conditions, the crystallite density was comparatively higher for the glass composition with higher ZnO content.

  4. Corrosion by a Heavy Metal Oxide Glass

    Institute of Scientific and Technical Information of China (English)

    B.B.Rana

    2005-01-01

    Melts of lead bismuth gallate compositions are highly corrosive and attack on crucibles of different materials. In the present study, corrosion by a base glass (50PbO-30Bi2O3-20Ga2O3 in mole fraction) melted using different crucibles and the effect onUV-VIS and IR edges were studied. By melting the base glass in platinum/2% rhodium, gold zirconia and alumina crucibles showed less effect on the IR edge and therefore shifted the infrared edge to longer wavelength, whereas silica crucible contaminated the glass, causing a severe deterioration in the infrared and hence shifted infrared edge to much shorter wavelength. In the UV-VIS region, base glass melted in platinum/2% rhodium crucible shifted the edge to the longest wavelength whereas silica crucible shifted the edge to shorter wavelength.The contaminants from gold, zirconia and alumina crucibles caused the UV-VIS edge of the base glass to lie between the two extremes of Pt/2% Rh and SiO2 crucibles. The glasses melted in above mentioned crucibles were also characterized with inductively coupled plasma spectroscopy (ICP) analysis to measure the level of contamination from the crucibles. Depending upon crucible used, the colors of glasses obtained ranged from red to yellow.

  5. Topological principles of borosilicate glass chemistry.

    Science.gov (United States)

    Smedskjaer, Morten M; Mauro, John C; Youngman, Randall E; Hogue, Carrie L; Potuzak, Marcel; Yue, Yuanzheng

    2011-11-10

    Borosilicate glasses display a rich complexity of chemical behavior depending on the details of their composition and thermal history. Noted for their high chemical durability and thermal shock resistance, borosilicate glasses have found a variety of important uses from common household and laboratory glassware to high-tech applications such as liquid crystal displays. In this paper, we investigate the topological principles of borosilicate glass chemistry covering the extremes from pure borate to pure silicate end members. Based on NMR measurements, we present a two-state statistical mechanical model of boron speciation in which addition of network modifiers leads to a competition between the formation of nonbridging oxygen and the conversion of boron from trigonal to tetrahedral configuration. Using this model, we derive a detailed topological representation of alkali-alkaline earth-borosilicate glasses that enables the accurate prediction of properties such as glass transition temperature, liquid fragility, and hardness. The modeling approach enables an understanding of the microscopic mechanisms governing macroscopic properties. The implications of the glass topology are discussed in terms of both the temperature and thermal history dependence of the atomic bond constraints and the influence on relaxation behavior. We also observe a nonlinear evolution of the jump in isobaric heat capacity at the glass transition when substituting SiO(2) for B(2)O(3), which can be accurately predicted using a combined topological and thermodynamic modeling approach.

  6. Dynamics and thermodynamics of polymer glasses.

    Science.gov (United States)

    Cangialosi, D

    2014-04-16

    The fate of matter when decreasing the temperature at constant pressure is that of passing from gas to liquid and, subsequently, from liquid to crystal. However, a class of materials can exist in an amorphous phase below the melting temperature. On cooling such materials, a glass is formed; that is, a material with the rigidity of a solid but exhibiting no long-range order. The study of the thermodynamics and dynamics of glass-forming systems is the subject of continuous research. Within the wide variety of glass formers, an important sub-class is represented by glass forming polymers. The presence of chain connectivity and, in some cases, conformational disorder are unfavourable factors from the point of view of crystallization. Furthermore, many of them, such as amorphous thermoplastics, thermosets and rubbers, are widely employed in many applications. In this review, the peculiarities of the thermodynamics and dynamics of glass-forming polymers are discussed, with particular emphasis on those topics currently the subject of debate. In particular, the following aspects will be reviewed in the present work: (i) the connection between the pronounced slowing down of glassy dynamics on cooling towards the glass transition temperature (Tg) and the thermodynamics; and, (ii) the fate of the dynamics and thermodynamics below Tg. Both aspects are reviewed in light of the possible presence of a singularity at a finite temperature with diverging relaxation time and zero configurational entropy. In this context, the specificity of glass-forming polymers is emphasized.

  7. Bioactive glass-ceramics coatings on alumina

    Energy Technology Data Exchange (ETDEWEB)

    Vitale Brovarone, C.; Verne, E.; Lupo, F. [Politecnico di Torino (Italy). Materials Science and Chemical Eng. Dept.; Moisescu, C. [Jena Univ. (Germany). Otto-Schott-Inst. fuer Glaschemie; Zanardi, L.; Bosetti, M.; Cannas, M. [Eastern Piemont Univ., Novara (Italy). Medical Science Dept.

    2001-07-01

    In this work, aiming to combine the mechanical performances of alumina with the surface properties of a bioactive material, we coated full density alumina substrates by a bioactive glass-ceramic GC. This latter was specially tailored, in term of costituents and specific quantity to have a thermal expansion coefficient close to that of alumina (8.5-9{sup *}10{sup -6}/ C) which is lower than most of the bioactive glasses and glass-ceramics already in use. In this way, we sought to avoid, as much as possible, the crack formation and propagation due to residual stresses generated by the thermal expansion coefficients mismatch. Furthermore, the high reactivity of alumina toward the glass-ceramic was carefully controlled to avoid deep compositional modification of the GC that will negatively affect its bioactivity. At this purpose, an intermediate layer of an appropriate glass G was coated prior to coat the bioactive glass-ceramic. On the materials obtained, preliminary biological tests have been done to evaluate glass-ceramic biocompatibility respect to alumina. (orig.)

  8. IR Laser Plasma Interaction with Glass

    Directory of Open Access Journals (Sweden)

    Rabia Qindeel

    2007-01-01

    Full Text Available The interaction of laser plasma with respect to glass surface is reported in this paper. A Q-switched Nd:YAG laser was used as ablation source. Glass material is utilized as target specimen. Aluminum plate is used as a rotating substrate. The dynamic expansion of the plasma was visualized by using CCD video camera and permanently recorded via image processing system. The exposed glass material was examined under photomicroscope and scanning electron microscope (SEM. The optical radiation from the plasma was observed by using spectrum analyzer. The results obtained show that the plasma is expanded linearly with laser energy. At low level energy symmetrical damage was found. Elongated hole is formed at high level energy. The progressive exposure on glass results in drilling process. The hole diameter is expanded non-linearly while the depth is increased linearly. The glass clusters were uniformly deposited on the aluminum substrate. The size of the glass clusters are in the range of nano and micro meter. The glass-plasma emitted radiation with majority lines of 390 and 450 nm.

  9. Relationship between topological order and glass forming ability in densely packed enstatite and forsterite composition glasses.

    Science.gov (United States)

    Kohara, S; Akola, J; Morita, H; Suzuya, K; Weber, J K R; Wilding, M C; Benmore, C J

    2011-09-06

    The atomic structures of magnesium silicate melts are key to understanding processes related to the evolution of the Earth's mantle and represent precursors to the formation of most igneous rocks. Magnesium silicate compositions also represent a major component of many glass ceramics, and depending on their composition can span the entire fragility range of glass formation. The silica rich enstatite (MgSiO(3)) composition is a good glass former, whereas the forsterite (Mg(2)SiO(4)) composition is at the limit of glass formation. Here, the structure of MgSiO(3) and Mg(2)SiO(4) composition glasses obtained from levitated liquids have been modeled using Reverse Monte Carlo fits to diffraction data and by density functional theory. A ring statistics analysis suggests that the lower glass forming ability of the Mg(2)SiO(4) glass is associated with a topologically ordered and very narrow ring distribution. The MgO(x) polyhedra have a variety of irregular shapes in MgSiO(3) and Mg(2)SiO(4) glasses and a cavity analysis demonstrates that both glasses have almost no free volume due to a large contribution from edge sharing of MgO(x)-MgO(x) polyhedra. It is found that while the atomic volume of Mg cations in the glasses increases compared to that of the crystalline phases, the number of Mg-O contacts is reduced, although the effective chemical interaction of Mg(2+) remains similar. This unusual structure-property relation of Mg(2)SiO(4) glass demonstrates that by using containerless processing it may be possible to synthesize new families of dense glasses and glass ceramics with zero porosity.

  10. Thermally Tempering Open End Glass Containers.

    Science.gov (United States)

    1980-01-01

    III, IV, and V 25 10 Tempering apparatus 26 11 Apparatus used for cutting glass jars and bottles (From Fisher Scientific Company catalog) 27 12 Method...of holding glass container while in the kiln 28 13 Heating curve used to heat jars and bottles for eventual tempering 29 14 Stress patterns developed...Commercially available fibers 1.72 GPa (250,000 psi) Fibers in plastic 1.06 GPa (150,000 psi) Pressed ware 55 MPa (8,000 psi) Bulk glass design strength 3.45

  11. Large size metallic glass gratings by embossing

    Science.gov (United States)

    Ma, J.; Yi, J.; Zhao, D. Q.; Pan, M. X.; Wang, W. H.

    2012-09-01

    Bulk metallic glasses have excellent thermoforming ability in their wide supercooled liquid region. We show that large-size metallic glass grating (˜8 × 8 mm2) with fine periodicity and ultra smooth surface feature can be readily fabricated by hot embossing. The method for fabrication of gratings is proved to be much cheaper, and requires low pressure and short time (less than 30 s). The metallic glass gratings exhibit comparable optical properties such as rainbow-like spectrum when shone by fluorescent lamp light.

  12. Heat Generation by Polypyrrole Coated Glass Fabric

    Directory of Open Access Journals (Sweden)

    A. M. Rehan Abbasi

    2013-01-01

    Full Text Available Vapor deposition technique was employed to coat polypyrrole (PPy on glass substrate using FeCl3 as oxidant and p-toluenesulfonic acid (−OTs as doping agent. The Joule heating effect of PPy coated E-glass fabric was studied by supplying various DC electric fields. The coated fabric exhibited reasonable electrical stability, possessed medium electrical conductivity and was effective in heat generation. An increase in temperature of conductive fabric subjected to constant voltage was observed whereas decrease in power consumption was recorded. Thickness of PPy coating on glass fibers was analyzed by Laser confocal microscope and scanning electron microscope.

  13. Pulmonary function in commercial glass blowers.

    Science.gov (United States)

    Munn, N J; Thomas, S W; DeMesquita, S

    1990-10-01

    This study examined the pulmonary function of 87 male commercial glass factory workers. Statistical analysis of the data indicated that workers with full-time glass blowing job descriptions had significantly higher percent predicted values for FVC, FEV1 and significantly higher maximal inspiratory and expiratory muscle pressures than their cohorts with minimal or nonglass blowing job descriptions. The results of this study indicate that persons using their respiratory muscles as full-time blowers to manufacture commercial blown glass products have significantly greater lung function values than part-time blowers or their nonglass blowing co-workers.

  14. Modeling of Residual Stresses In Toughened Glass

    DEFF Research Database (Denmark)

    Nielsen, Jens Henrik

    2006-01-01

    -depth knowledge of the residual stresses in toughened glass near holes and edges where the total stress state is a combination of contact stresses and residual stresses. The present paper, presenting the derivation and results for a model predicting the residual stresses in a glass plate far from edges and holes......, is a step towards such a model. The model is based on the Instant Freeze concept with a few modifications. Current work, using a partial differential equation approach for the modeling and state-of-the-art in modeling residual stresses in glass is briefly presented, and a short description of the toughening...

  15. Glass devices for efficient second harmonic generation

    DEFF Research Database (Denmark)

    Fage-Pedersen, Jacob; Jacobsen, Rune Shim; Kristensen, Martin

    2005-01-01

    We show here that quasi-phase matched (QPM) planar nonlinear devices of high quality can be fabricated by means of periodic poling of the glass. The devices, used for second-harmonic generation (SHG), have accurately-controlled centre wavelengths, and the normalised conversion efficiencies...... are approximately one order of magnitude higher than what has previously been reported for periodically poled glass. In conclusion, we have demonstrated that high-quality nonlinear QPM devices can be fabricated in glass-on-silicon. The technology is easily adaptable to any desired wavelength (e.g. 1550 nm) and can...

  16. Multicomponent glass fiber optic integrated structures

    Science.gov (United States)

    Pysz, Dariusz; Kujawa, Ireneusz; Szarniak, Przemyslaw; Franczyk, Marcin; Stepien, Ryszard; Buczynski, Ryszard

    2005-09-01

    A range of integrated fiber optic structures - lightguides, image guides, multicapillary arrays, microstructured (photonic) fibers - manufactured in the Institute of Electronic Materials Technology (ITME) is described. All these structures are made of multicomponent glasses (a part of them melted in ITME). They can be manufactured in similar multistep process that involves drawing glass or lightguide rods and tubes preparing glass performs, stacking a bundle with rods and (or) tubes, drawing multifiber or multicapillary performs. Structure formation, technological process, characterization and applications of different integrated structures are presented.

  17. The Glass Ceiling for Remotely Piloted Aircraft

    Science.gov (United States)

    2013-08-01

    Views July–August 2013 Air & Space Power Journal | 101 The Glass Ceiling for Remotely Piloted Aircraft Lt Col Lawrence Spinetta, PhD, USAF Those...number. 1. REPORT DATE AUG 2013 2. REPORT TYPE 3. DATES COVERED 00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE The Glass Ceiling for Remotely...promotion to flag rank. By design or effect, a bottleneck exists that guarantees a glass ceiling (i.e., a barrier to advancement) for RPA officers. This

  18. Fluoride Glass Fiber Sources: Problems and Prospects

    Science.gov (United States)

    2010-09-01

    in collaboration with P.Brun’s laboratory at Rennes University ZBLAN glass compositions were characterized in 1980. [Furukawa (Shibata & Oshawa...PGICZ 30 PbF2, 22GaF3,13 InF3,18 CdF2,13 ZnF2,2 GdF3, 2 NaF ( n = 1.595 ) General physical properties PROPERTY HMFG ZBLAN Glass transition...fibers Large potential May be achieved with ZBLAN glass Probably more difficult than silica or chalcogenides Thermal properties of ZBLAN offer extended

  19. Effects of Gravity on ZBLAN Glass Crystallization

    Science.gov (United States)

    Tucker, Dennis S.; Ethridge, Edwin C.; Smith, Guy A.; Workman, Gary

    2004-01-01

    The effects of gravity on the crystallization of ZrF(4)-BaF(2)-LaF(3)-AIF(3)-NaF glasses have been studied using the NASA KC-135 and a sounding rocket. Fibers and cylinders of ZBLAN glass were heated to the crystallization temperature in unit and reduced gravity. When processed in unit gravity the glass crystallized, but when processed in reduced gravity, crystallization was suppressed. A possible explanation involving shear thinning is presented to explain these results.

  20. Preliminary characterization of glass fiber sizing

    DEFF Research Database (Denmark)

    Petersen, Helga Nørgaard; Kusano, Yukihiro; Brøndsted, Povl

    2013-01-01

    Glass fiber surfaces are treated with sizing during manufacturing. Sizing consists of several components, including a film former and a silane coupling agent that is important for adhesion between glass fibers and a matrix. Although the sizing highly affects the composite interface and thus...... the strength of the composites, little is known about the structure and chemistry of the sizing. A part of sizing was extracted by soxhlet extraction. The fibers were subsequently burned and some fibers were merely burned for analysis of glass fiber and sizing. The results showed that the analyzed fibers had...

  1. Anisotropy and sound propagation in glass wool

    DEFF Research Database (Denmark)

    Tarnow, Viggo

    1999-01-01

    Sound propagation in glass wool is studied theoretically and experimentally. Theoretical computation of attenuation and phase velocity for plane, harmonic waves will be presented. Glass wool is a highly anisotropic material, and sound waves propagating in different directions in the material...... by regarding it as a continuous medium described by its elastic moduli and mass density. The computed attenuation of sound waves, for frequencies 50–5000 Hz, will be compared with experimental results for glass wool with fiber diameters of 6.8 micrometers, mass density of 15 and 30 kg/m3, and elastic moduli...... of 2000 and 16 000 Pa (sound wave vector perpendicular to fibers)....

  2. Measurement of Density Inhomogeneity for Glass Pendulum

    Institute of Scientific and Technical Information of China (English)

    LIU Lin-Xia; LIU Qi; SHAO Cheng-Gang; ZHANG Ya-Ting; LUO Jun; Vadim Milyukov

    2008-01-01

    @@ The density inhomogeneity of a glass pendulum is determined by an optical interference method.The relative variations of the densities over a volume with sizes of 5 × 5 × 5mm3 are (0.64±0.97) × 10-5 and (0.99 ± 0.92) ×10-5 for the K9 glass and silica glass pendulum, respectively.These variations of densities contributing to the relative uncertainties of the Newtonian gravitational constant G are 0.20 ppm and 0.21 ppm in our experiment on measurement of G.

  3. Making bulk-conductive glass microchannel plates

    Science.gov (United States)

    Yi, Jay J. L.; Niu, Lihong

    2008-02-01

    The fabrication of microchannel plate (MCP) with bulk-conductive characteristics has been studied. Semiconducting clad glass and leachable core glass were used for drawing fibers and making MCP. Co-axial single fiber was drawn from a platinum double-crucible in an automatic fiberizing system, and the fibers were stacked and redrawn into multifiber by a special gripping mechanism. The multifibers were stacked again and the boule was made and sliced into discs. New MCPs were made after chemically leaching process without the traditional hydrogen firing. It was shown that bulk-conductive glass MCP can operate at higher voltage with lower noise.

  4. Plasmonic molecules via glass annealing in hydrogen

    Science.gov (United States)

    Redkov, Alexey; Chervinskii, Semen; Baklanov, Alexander; Reduto, Igor; Zhurikhina, Valentina; Lipovskii, Andrey

    2014-11-01

    Growth of self-assembled metal nanoislands on the surface of silver ion-exchanged glasses via their thermal processing in hydrogen followed by out-diffusion of neutral silver is studied. The combination of thermal poling of the ion-exchanged glass with structured electrode and silver out-diffusion was used for simple formation of separated groups of several metal nanoislands presenting plasmonic molecules. The kinetics of nanoisland formation and temporal evolution of their size distribution on the surface of poled and unpoled glass are modeled.

  5. Digital photoelasticity of glass: A comprehensive review

    Science.gov (United States)

    Ramesh, K.; Ramakrishnan, Vivek

    2016-12-01

    The recent advances in digital photoelasticity have made it possible to use it conveniently for the stress analysis of articles and components made of glass. Depending on the application, the retardation levels to be measured range from a few nanometres to several thousand nanometres, which necessitates different techniques and associated equipments. This paper reviews the recent advances in the photoelasticity of glass with a focus on the techniques/methods developed in the last decade. A brief introduction to the residual stress in glass is provided initially to bring out its tensorial nature. The subsequent sections are organised thematically rather than chronologically, for better readability and easy access of information.

  6. Bioactive glasses materials, properties and applications

    CERN Document Server

    Ylänen, Heimo

    2011-01-01

    Due to their biocompatibility and bioactivity, bioactive glasses are used as highly effective implant materials throughout the human body to replace or repair damaged tissue. As a result, they have been in continuous use since shortly after their invention in the late 1960s and are the subject of extensive research worldwide.Bioactive glasses provides readers with a detailed review of the current status of this unique material, its properties, technologies and applications. Chapters in part one deal with the materials and mechanical properties of bioactive glass, examining topics such

  7. New glass developments for fiber optics

    Science.gov (United States)

    Higby, Paige L.; Holst, Karen; Tabor, Kevin; James, William; Chase, Elizabeth; Pucilowski, Sally; Gober-Mangan, Elizabeth; Klimek, Ronald; Karetta, Frank; Schreder, Bianca

    2014-02-01

    Fiber optic components for lighting and imaging applications have been in use for decades. Recent requirements such as a need for RoHS compliance, attractive market pricing, or particular optical properties, such as numerical aperture (NA) or transmission, have required SCHOTT to develop and implement new glasses for these applications. From Puravis™ lead-free fibers for lighting applications, to new glasses for digital X-ray imaging and sensor applications, the challenges for SCHOTT scientists are considerable. Pertinent properties of these glasses and methods of determination for suitability will be discussed.

  8. Bleaching versus poling: Comparison of electric field induced phenomena in glasses and glass-metal nanocomposites

    Science.gov (United States)

    Lipovskii, A. A.; Melehin, V. G.; Petrov, M. I.; Svirko, Yu. P.; Zhurikhina, V. V.

    2011-01-01

    By examining the electric field induced processes in glasses and glass-metal nanocomposites (GMN) we propose mechanism of the electric field assisted dissolution (EFAD) of metal nanoparticles in glass. We show that in both glass poling and EFAD processes, the strong (up to 1 V/nm) local electric field in the subanodic region is due to the presence of "slow" hydrogen ions bonded to nonbridging oxygen atoms in glass matrix. However, the origin of these hydrogen ions in glass and GMN is different. Specifically, when we apply the electric field to a virgin glass, the enrichment of the glass with hydrogen species takes place in the course of the poling. In GMN, the hydrogen ions have been incorporated into the glass matrix during metal nanoparticles formation via reduction in a metal by hydrogen, i.e., before the electric field was applied. The EFAD of metal nanoparticles resembles the electric field stimulated diffusion of metal film in glass (the important difference however is that in GMN, there is no direct contact of dissolving metal entity with anodic electrode). This similarity makes it possible to estimate the energy of thermal activated transition of silver atoms from a nanoparticle to glass matrix as ˜1.3 eV. Electroneutrality of the GMN requires emission of electrons from nanoparticles. Photoconductivity spectra of soda-lime glasses and the results of numerical calculations of band structure of fused silica, sodium disilicate and sodium-calcium-silicate glass enable us to evaluate the bandgap and the position of electron mobility edge in soda-lime glass. The evaluated values are ˜6 eV and ˜1.2 eV below vacuum level, respectively. The bent of the glass band structure in strong electric field permits a direct tunneling of Fermi electrons from silver nanoparticle (4.6 eV below the vacuum level) to the glass conductivity band. Evaluated in accordance with the Fowler-Nordheim equation the magnitude of electric field necessary to establish comparable electron

  9. SLUDGE BATCH 7B GLASS VARIABILITY STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, F.; Edwards, T.

    2011-10-25

    The Defense Waste Processing Facility (DWPF) is preparing to initiate processing Sludge Batch 7b (SB7b). In support of the upcoming processing, the Savannah River National Laboratory (SRNL) provided a recommendation to utilize Frits 418 with a 6% Na{sub 2}O addition (26 wt% Na{sub 2}O in sludge) and 702 with a 4% Na{sub 2}O addition (24 wt% Na{sub 2}O in sludge) to process SB7b. This recommendation was based on assessments of the compositional projections for SB7b available at the time from the Savannah River Remediation (SRR). To support qualification of SB7b, SRNL executed a variability study to assess the applicability of the current durability models for SB7b. The durability models were assessed over the expected composition range of SB7b, including potential caustic additions, combined with Frits 702 and 418 over a 32-40% waste loading (WL) range. Thirty four glasses were selected based on Frits 418 and 702 coupled with the sludge projections with an additional 4-6% Na{sub 2}O to reflect the potential caustic addition. Six of these glasses, based on average nominal sludge compositions including the appropriate caustic addition, were developed for both Frit 418 and Frit 702 at 32, 36 and 40% WL to provide coverage in the center of the anticipated SB7b glass region. All glasses were fabricated and characterized using chemical composition analysis, X-ray diffraction (XRD) and the Product Consistency Test (PCT). To comply with the DWPF Glass Product Control Program, a total of thirty four glasses were fabricated to assess the applicability of the current DWPF PCCS durability models. Based on the measured PCT response, all of the glasses were acceptable with respect to the Environmental Assessment (EA) benchmark glass regardless of thermal history. The NL[B] values of the SB7b variability study glasses were less than 1.99 g/L as compared to 16.695 g/L for EA. A small number of the D-optimally selected 'outer layer' extreme vertices (EV) glasses were not

  10. High-Entropy Metallic Glasses

    Science.gov (United States)

    Wang, W. H.

    2014-10-01

    The high-entropy alloys are defined as solid-solution alloys containing five or more than five principal elements in equal or near-equal atomic percent. The concept of high mixing entropy introduces a new way for developing advanced metallic materials with unique physical and mechanical properties that cannot be achieved by the conventional microalloying approach based on only a single base element. The metallic glass (MG) is the metallic alloy rapidly quenched from the liquid state, and at room temperature it still shows an amorphous liquid-like structure. Bulk MGs represent a particular class of amorphous alloys usually with three or more than three components but based on a single principal element such as Zr, Cu, Ce, and Fe. These materials are very attractive for applications because of their excellent mechanical properties such as ultrahigh (near theoretical) strength, wear resistance, and hardness, and physical properties such as soft magnetic properties. In this article, we review the formation and properties of a series of high-mixing-entropy bulk MGs based on multiple major elements. It is found that the strategy and route for development of the high-entropy alloys can be applied to the development of the MGs with excellent glass-forming ability. The high-mixing-entropy bulk MGs are then loosely defined as metallic glassy alloys containing five or more than five elements in equal or near-equal atomic percent, which have relatively high mixing entropy compared with the conventional MGs based on a single principal element. The formation mechanism, especially the role of the mixing entropy in the formation of the high-entropy MGs, is discussed. The unique physical, mechanical, chemical, and biomedical properties of the high-entropy MGs in comparison with the conventional metallic alloys are introduced. We show that the high-mixing-entropy MGs, along the formation idea and strategy of the high-entropy alloys and based on multiple major elements, might provide

  11. PsyGlass: Capitalizing on Google Glass for naturalistic data collection.

    Science.gov (United States)

    Paxton, Alexandra; Rodriguez, Kevin; Dale, Rick

    2015-09-01

    As commercial technology moves further into wearable technologies, cognitive and psychological scientists can capitalize on these devices to facilitate naturalistic research designs while still maintaining strong experimental control. One such wearable technology is Google Glass (Google, Inc.: www.google.com/glass), which can present wearers with audio and visual stimuli while tracking a host of multimodal data. In this article, we introduce PsyGlass, a framework for incorporating Google Glass into experimental work that is freely available for download and community improvement over time (www.github.com/a-paxton/PsyGlass). As a proof of concept, we use this framework to investigate dual-task pressures on naturalistic interaction. The preliminary study demonstrates how designs from classic experimental psychology may be integrated in naturalistic interactive designs with emerging technologies. We close with a series of recommendations for using PsyGlass and a discussion of how wearable technology more broadly may contribute to new or adapted naturalistic research designs.

  12. Bioactive Glass and Glass-Ceramic Scaffolds for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Aldo R. Boccaccini

    2010-07-01

    Full Text Available Traditionally, bioactive glasses have been used to fill and restore bone defects. More recently, this category of biomaterials has become an emerging research field for bone tissue engineering applications. Here, we review and discuss current knowledge on porous bone tissue engineering scaffolds on the basis of melt-derived bioactive silicate glass compositions and relevant composite structures. Starting with an excerpt on the history of bioactive glasses, as well as on fundamental requirements for bone tissue engineering scaffolds, a detailed overview on recent developments of bioactive glass and glass-ceramic scaffolds will be given, including a summary of common fabrication methods and a discussion on the microstructural-mechanical properties of scaffolds in relation to human bone (structure-property and structure-function relationship. In addition, ion release effects of bioactive glasses concerning osteogenic and angiogenic responses are addressed. Finally, areas of future research are highlighted in this review.

  13. Magnetoelectric Coupling Induced Electric Dipole Glass State in Heisenberg Spin Glass

    Institute of Scientific and Technical Information of China (English)

    LIU Jun-Ming; CHAN-WONG Lai-Wa; CHOY Chung-Loong

    2009-01-01

    Multiferroic behavior in an isotropic Heisenberg spin glass with Gaussian random fields,incorporated bymagnetoelectric coupling derived from the Landau symmetry argument,are investigated.Electric dipole glass transitions at finite ternperature,due to coupling,are demonstrated by Monte Carlo simulation.This electric dipole glass state is solely ascribed to the coupling term with chiral symmetry of the magnetization,while the term associated with the spatial derivative of the squared magnetization has no contribution.

  14. Precision glass molding of complex shaped chalcogenide glass lenses for IR applications

    Science.gov (United States)

    Staasmeyer, Jan-Helge; Wang, Yang; Liu, Gang; Dambon, Olaf; Klocke, Fritz

    2016-09-01

    The use of chalcogenide glass in the thermal infrared domain is an emerging alternative to commonly used crystalline materials such as germanium. The main advantage of chalcogenide glass is the possibility of mass production of complex shaped geometries with replicative processes such as precision glass molding. Thus costly single point diamond turning processes are shifted to mold manufacturing and do not have to be applied to every single lens produced. The usage of FEM-Simulation is mandatory for developing a molding process for complex e.g. non rotational symmetric chalcogenide glass lenses in order to predict the flow of glass. This talk will present state of the art modelling of the precision glass molding process for chalcogenide glass lenses, based on thermal- and mechanical models. Input data for modelling are a set of material properties of the specific chalcogenide glass in conjunction with properties of mold material and wear protective coatings. Specific properties for the mold-glass interaction such as stress relaxation or friction at the glassmold interface cannot be obtained from datasheets and must be determined experimentally. A qualified model is a powerful tool to optimize mold and preform designs in advance in order to achieve sufficient mold filling and compensate for glass shrinkage. Application of these models in an FEM-Simulation "case study" for molding a complex shaped non-rotational symmetric lens is shown. The outlook will examine relevant issues for modelling the precision glass molding process of chalcogenide glasses in order to realize scaled up production in terms of multi cavity- and wafer level molding.

  15. Polymeric, Metallic, and Other Glasses in Introductory Chemistry

    Science.gov (United States)

    Hawkes, Stephen J.

    2008-01-01

    Non-ceramic glasses are not adequately discussed in introductory chemistry. Such glasses include polycarbonate, which many corrective lenses are made of, amber, enamel, gelatin, hard candy, coal, refrigerated glycerol, and metallic glasses that have been marketed in recent decades. What is usually discussed in elementary texts is siliceous glass,…

  16. Community Geothermal Technology Program: Hawaii glass project. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Miller, N. [comp.; Irwin, B.

    1988-01-20

    Objective was to develop a glass utilizing the silica waste material from geothermal energy production, and to supply local artists with this glass to make artistic objects. A glass composed of 93% indigenous Hawaiian materials was developed; 24 artists made 110 objects from this glass. A market was found for art objects made from this material.

  17. Modelling aqueous corrosion of nuclear waste phosphate glass

    Science.gov (United States)

    Poluektov, Pavel P.; Schmidt, Olga V.; Kascheev, Vladimir A.; Ojovan, Michael I.

    2017-02-01

    A model is presented on nuclear sodium alumina phosphate (NAP) glass aqueous corrosion accounting for dissolution of radioactive glass and formation of corrosion products surface layer on the glass contacting ground water of a disposal environment. Modelling is used to process available experimental data demonstrating the generic inhibiting role of corrosion products on the NAP glass surface.

  18. A Method to Produce Foam Glasses

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to a production process of foam glass from a mixture of glass cullet or slag or fly ash with a foaming agent and an oxidizing agent and heating to below 1100 C under low oxygen atmosphere. The invention relates more particularly to a process wherein pure carbon...... or a compound which yields pure carbon as the foaming agent is oxidized by a sufficient amount of an efficient oxidizing agent essentially added to the glass-carbon powder mixture, where the oxidizing agent supplies oxygen in the relevant temperature range, to release CO/CO2 gas mixture in the softened glass...... at elevated temperature, to form a foamed material with CO2 gas filled cells....

  19. A topologically driven glass in ring polymers

    Science.gov (United States)

    Michieletto, Davide

    2016-05-01

    The static and dynamic properties of ring polymers in concentrated solutions remains one of the last deep unsolved questions in polymer physics. At the same time, the nature of the glass transition in polymeric systems is also not well understood. In this work, we study a novel glass transition in systems made of circular polymers by exploiting the topological constraints that are conjectured to populate concentrated solutions of rings. We show that such rings strongly interpenetrate through one another, generating an extensive network of topological interactions that dramatically affects their dynamics. We show that a kinetically arrested state can be induced by randomly pinning a small fraction of the rings. This occurs well above the classical glass transition temperature at which microscopic mobility is lost. Our work both demonstrates the existence of long-lived inter-ring penetrations and realizes a novel, topologically induced, glass transition.

  20. Elimination of Glass Artifacts and Object Segmentation

    CERN Document Server

    Katyal, Vini; Srivastava, Deepesh

    2012-01-01

    Many images nowadays are captured from behind the glasses and may have certain stains discrepancy because of glass and must be processed to make differentiation between the glass and objects behind it. This research paper proposes an algorithm to remove the damaged or corrupted part of the image and make it consistent with other part of the image and to segment objects behind the glass. The damaged part is removed using total variation inpainting method and segmentation is done using kmeans clustering, anisotropic diffusion and watershed transformation. The final output is obtained by interpolation. This algorithm can be useful to applications in which some part of the images are corrupted due to data transmission or needs to segment objects from an image for further processing.

  1. Elimination of Glass Artifacts and Object Segmentation

    Science.gov (United States)

    Katyal, Vini; Aviral, Aviral; Srivastava, Deepesh

    2012-04-01

    Many images nowadays are captured from behind the glasses and may have certain stains discrepancy because of glass and must be processed to make differentiation between the glass and objects behind it. This research paper proposes an algorithm to remove the damaged or corrupted part of the image and make it consistent with other part of the image and to segment objects behind the glass. The damaged part is removed using total variation inpainting method and segmentation is done using kmeans clustering, anisotropic diffusion and watershed transformation. The final output is obtained by interpolation. This algorithm can be useful to applications in which some part of the images are corrupted due to data transmission or needs to segment objects from an image for further processing.

  2. Crystallization of heavy metal fluoride glasses

    Science.gov (United States)

    Bansal, Narottam P.; Bruce, Allan J.; Doremus, R. H.; Moynihan, C. T.

    1984-01-01

    The kinetics of crystallization of a number of fluorozirconate glasses were studied using isothermal and dynamic differential scanning calorimetry and X-ray diffraction. The addition of the fluorides LiF, NaF, AlF3, LaF3 to a base glass composition of ZrF4-BaF2 reduced the tendency to crystallize, probably by modifying the viscosity-temperature relation. ZrF4-BaF2-LaF3-AlF3-NaF glass was the most stable against devitrification and perhaps is the best composition for optical fibers with low scattering loss. Some glasses first crystallize out into metastable beta-BaZr2F10 and beta-BaZrF6 phases, which transform into the most stable alpha-phases when heated to higher temperatures. The size of the crystallites was estimated to be about 600 A from X-ray diffraction.

  3. Radiopaque Strontium Fluoroapatite Glass-Ceramics

    Science.gov (United States)

    Höland, Wolfram; Schweiger, Marcel; Dittmer, Marc; Ritzberger, Christian

    2015-01-01

    The controlled precipitation of strontium fluoroapatite crystals was studied in four base glass compositions derived from the SiO2–Al2O3–Y2O3–SrO–Na2O–K2O/Rb2O/Cs2O–P2O5–F system. The crystal phase formation of these glasses and the main properties of the glass-ceramics, such as thermal and optical properties and radiopacity were compared with a fifth, a reference glass-ceramic. The reference glass-ceramic was characterized as Ca-fluoroapatite glass-ceramic. The four strontium fluoroapatite glass-ceramics showed the following crystal phases: (a) Sr5(PO4)3F – leucite, KAlSi2O6, (b) Sr5(PO4)3F – leucite, KAlSi2O6, and nano-sized NaSrPO4, (c) Sr5(PO4)3F – pollucite, CsAlSi2O6, and nano-sized NaSrPO4, and (d) Sr5(PO4)3F – Rb-leucite, RbAlSi2O6, and nano-sized NaSrPO4. The proof of crystal phase formation was possible by X-ray diffraction. The microstructures, which were studied using scanning electron microscopy, demonstrated a uniform distribution of the crystals in the glass matrix. The Sr-fluoroapatites were precipitated based on an internal crystallization process, and the crystals demonstrated a needle-like morphology. The study of the crystal growth of needle-like Sr-fluoroapatites gave a clear evidence of an Ostwald ripening mechanism. The formation of leucite, pollucite, and Rb-leucite was based on a surface crystallization mechanism. Therefore, a twofold crystallization mechanism was successfully applied to develop these types of glass-ceramics. The main focus of this study was the controlled development of glass-ceramics exhibiting high radiopacity in comparison to the reference glass-ceramic. This goal could be achieved with all four glass-ceramics with the preferred development of the Sr-fluoroapatite – pollucite-type glass-ceramic. In addition to this main development, it was possible to control the thermal properties. Especially the Rb-leucite containing glass-ceramic showed the highest coefficient of thermal

  4. Origin of Inhomogeneity in Glass Melts

    DEFF Research Database (Denmark)

    Jensen, Martin; Keding, Ralf; Yue, Yuanzheng

    The homogeneity of a glass plays a crucial role in many applications as the inhomogeneities can provide local changes in mechanical properties, optical properties, and thermal expansion coefficient. Homogeneity is not a single property of the glass, instead, it consists of several factors...... such as bubbles, striae, trace element concentration, undissolved species, and crystallised species. As it is not possible to address all the factors in a single study, this work focuses on one of the major factors: chemical striae. Up to now, the quantification of chemical striae in glasses, particularly......, in less transparent glasses, has been a challenge due to the lack of an applicable method. In this study, we have established a simple and accurate method for quantifying the extent of the striae, which is based on the scanning and picture processing through the Fourier transformation. By performing...

  5. Tellurite glasses handbook physical properties and data

    CERN Document Server

    El-Mallawany, Raouf AH

    2011-01-01

    This is a useful reference book summarizing all of the published data about the telluride glass system with an emphasis on their optical, thermal and electrical properties.-- Carlo Pantano, Pennsylvania State University

  6. Diversity, culture and the glass ceiling.

    Science.gov (United States)

    Wilson, Eleanor

    2014-01-01

    A reference to the term, the glass ceiling, has come to embody more than gender equality among women and men. Today the term embraces the quest of all minorities and their journey towards equality in the workplace. The purpose of this article is to bring attention to the subject of diversity, culture, and the glass ceiling. The article will discuss the history of the glass ceiling and how its broadened meaning is relevant in today's workplace. It will also provide statistics showing how diversity and culture are lacking among the top echelon of today's executives, the barriers faced by minorities as they journey towards executive leadership, and how to overcome these barriers to truly shatter the glass ceiling.

  7. Nonlinear Properties of Soft Glass Waveguides

    DEFF Research Database (Denmark)

    Steffensen, Henrik

    This thesis builds around the investigation into using soft glass materials for midinfrared and THz applications. Soft glasses is a term that cov ers a wide range of chemical compositions where many are yet to be fully investigated. The work in this thesis is separated in two parts, the mid......-infrared applications and the THz applications. In the mid-infrared, it is investigated whether soft glasses are a suitable candidate for supercontinuum generation (SCG). A few commercially available fluoride fibers are tested for their zero dispersion wavelength (ZDW), a key property when determining the possibility...... of SCG in a fiber. A group of soft glasses, namely the chalcogenides, are known to display two photon absorption (TPA) which could potentially limit the SCG when this is initiated within the frequency range where this nonlinear process occur. An analytic model is presented to estimate the soliton self...

  8. Liquidus Temperature Data for DWPF Glass

    Energy Technology Data Exchange (ETDEWEB)

    GF Piepel; JD Vienna; JV Crum; M Mika; P Hrma

    1999-05-21

    This report provides new liquidus temperature (TL) versus composition data that can be used to reduce uncertainty in TL calculation for DWPF glass. According to the test plan and test matrix design PNNL has measured TL for 53 glasses within and just outside of the current DWPF processing composition window. The TL database generated under this task will directly support developing and enhancing the current TL process-control model. Preliminary calculations have shown a high probability of increasing HLW loading in glass produced at the SRS and Hanford. This increase in waste loading will decrease the lifecycle tank cleanup costs by decreasing process time and the volume of waste glass produced.

  9. Radiopaque Strontium Fluoroapatite Glass-Ceramics.

    Science.gov (United States)

    Höland, Wolfram; Schweiger, Marcel; Dittmer, Marc; Ritzberger, Christian

    2015-01-01

    The controlled precipitation of strontium fluoroapatite crystals was studied in four base glass compositions derived from the SiO2-Al2O3-Y2O3-SrO-Na2O-K2O/Rb2O/Cs2O-P2O5-F system. The crystal phase formation of these glasses and the main properties of the glass-ceramics, such as thermal and optical properties and radiopacity were compared with a fifth, a reference glass-ceramic. The reference glass-ceramic was characterized as Ca-fluoroapatite glass-ceramic. The four strontium fluoroapatite glass-ceramics showed the following crystal phases: (a) Sr5(PO4)3F - leucite, KAlSi2O6, (b) Sr5(PO4)3F - leucite, KAlSi2O6, and nano-sized NaSrPO4, (c) Sr5(PO4)3F - pollucite, CsAlSi2O6, and nano-sized NaSrPO4, and (d) Sr5(PO4)3F - Rb-leucite, RbAlSi2O6, and nano-sized NaSrPO4. The proof of crystal phase formation was possible by X-ray diffraction. The microstructures, which were studied using scanning electron microscopy, demonstrated a uniform distribution of the crystals in the glass matrix. The Sr-fluoroapatites were precipitated based on an internal crystallization process, and the crystals demonstrated a needle-like morphology. The study of the crystal growth of needle-like Sr-fluoroapatites gave a clear evidence of an Ostwald ripening mechanism. The formation of leucite, pollucite, and Rb-leucite was based on a surface crystallization mechanism. Therefore, a twofold crystallization mechanism was successfully applied to develop these types of glass-ceramics. The main focus of this study was the controlled development of glass-ceramics exhibiting high radiopacity in comparison to the reference glass-ceramic. This goal could be achieved with all four glass-ceramics with the preferred development of the Sr-fluoroapatite - pollucite-type glass-ceramic. In addition to this main development, it was possible to control the thermal properties. Especially the Rb-leucite containing glass-ceramic showed the highest coefficient of thermal expansion (CTE). These

  10. Hollow glass waveguides for broadband infrared transmission.

    Science.gov (United States)

    Abel, T; Hirsch, J; Harrington, J A

    1994-07-15

    Broadband hollow glass waveguides have been fabricated with losses as low as 0.15 dB/m at 10.6 microm. We make these hollow glass waveguides by coating the inside of polyimide-coated silica-glass tubing with a metallic layer followed by a thin dielectric coating of a metal halide. The bore sizes of the guides range from 320 to 700 microm, and we have made lengths as long as 3 m. The bending radii of the waveguides are less than 5 cm for bore sizes less than 500 microm. We have used these waveguides to deliver greater than 80 W of CO(2) laser power and 5 W of Er:YAG laser power. The hollow glass guides are inexpensive, robust, and quite flexible and therefore a good infrared fiber for power and sensor applications.

  11. Application of Glass Sealant for SOFC

    Institute of Scientific and Technical Information of China (English)

    Piao Jinhua; Sun Kening; Zhang Naiqing; Zhou Derui

    2004-01-01

    Glass and glass-ceramic materials were investigated as SOFC seals at 800 ~ 850 ℃. The material was based on the glass and glass-ceramic in the BaO-CaO-Al2O3-SiO2-La2O3-B2O3 system. The sealant has a minimum thermal expansion mismatch with yttria-stabilized zirconia (YSZ)electrolyte and Ni/gYSZ for the anode. The sealant has a superior stability during the process of operation in SOFC and can withstand thermal shock during the process of thermal cycling. The results show that the BaO-CaO-Al2O3-SiO2-La2O3-B2O3 system sealant can be used as sealing materials for SOFC.

  12. Bioactivity of mica/apatite glass ceramics

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The bioactivity of mica/apatite glass ceramic composites, including the in vitro behavior in simulated body fluid and the histological appearance of the interface between the mica/apatite glass ceramics and the rabbit mandible defect in vivo under a dynamic condition. The results show that biological apatite layer forms on the surface of the mica/apatite glass ceramics after 1 d of immersion in the simulated body fluid, and becomes dense after 14 d. In vivo tests indicate that bone formation occurs after implantation for 14 d, and strong bonding of bone to the implant occurs after 42 d. No aseptic loosening occurs during 42 d of implantation. The finding shows that mica/apatite glass ceramics have good bioactivity and osteoconductivity for constructing bone graft, and can be promising for biomedical application.

  13. Pile-up glass microreactor.

    Science.gov (United States)

    Kikutani, Yoshikuni; Hibara, Akihide; Uchiyama, Kenji; Hisamoto, Hideaki; Tokeshi, Manabu; Kitamori, Takehiko

    2002-11-01

    We made a 'pile-up' microreactor in which ten levels of microchannel circuits were integrated to form a single glass entity. Solutions were distributed to each layer via cylindrical holes with a diameter much larger than that of the microchannel. Fabrication of the pile-up reactor was completed using only conventional photolithography, wet etching and thermal bonding techniques, and no special facilities or instruments were required. An amide formation reaction between amine in aqueous solution and acid chloride in organic solution was carried out using the pile-up reactor. The yield of the amide formation reaction is dependent on the size of the specific surface area between the two solutions, and the small space inside the microchannels is good for acquiring a large specific surface area without any stirring processes. The maximum throughput for the ten-layered pile-up reactor was ten times larger than that of a single-layered one, yet the reaction yield was still high. Productivity of the pile-up reactor for the reaction was as high as on a gram per hour scale. This value suggests that many conventional plants producing fine chemicals can be replaced by microreactors through the numbering-up technology.

  14. [Glass maze in women's leadership].

    Science.gov (United States)

    Barberá Heredia, Ester; Ramos López, Amparo; Candela Agulló, Carlos

    2011-04-01

    Psychological gender discrimination explanations have changed over the past thirty years, becoming more complex in order to obtain a better understanding of the social reality. At the present moment, one of the most interesting research areas is the one referring to the 'glass maze' phenomenon in women's management careers. The main purpose of this work is to reveal the theoretical evolution in an attempt to explain the leadership study from a gender perspective. The consecutive hypotheses, starting with the labour sexual division idea, are becoming more interactive in order to understand the current labour-social situation. Social psychology has underlined the role of beliefs, observed via gender stereotyped roles, prejudiced attitudes against women, sexist and neo-sexist ideology, or masculine, feminine and androgynous identity development. New psychological interpretations insist on the variability of the gender concept, where gender is sometimes observed through men and women's behaviours, and other times through those behaviour expectations. But gender is mainly observed though the power relations between men and women during social interactions in labour organizations.

  15. Insulation. [In the glass industry

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, J.M.; Horsfield, M.; Jackson, J.D.J.; Woodhead, D.

    1990-12-01

    Furnace insulation in the glass industry is becoming increasingly important as fuel prices rise. Refractory materials with a large number of small pores separated from each other by very thin membranes of refractory produce good insulation. Four main types are used to cope efficiently with the range of temperature involved and the different areas of application. Insulation intended for use at very high temperatures is not as efficient as some of the low temperature materials consequently the insulation is built up in several layers to obtain the optimum efficiency. Insulating bricks are available for various temperatures up to 1850{sup 0}C depending on their chemical composition. Castables, produced by mixing high alumina cements and light-weight refractory aggregates, are quick to install and can be formed into any shape or size. Ceramic fibres felted together to form low density, highly porous, blankets, boards, paper and modules can be used up to 1600{sup 0}C. Microporous insulation based on an ultrafine powder of amorphous silica has a limited temperature range, is subject to chemical attack and abrasion, but has the lowest thermal conductivity of any insulation material available. Criteria for the use of materials in different furnace areas and examples of their application are given. (U.K.).

  16. Behavior of expelled glass fragments during projectile penetration and perforation of glass.

    Science.gov (United States)

    Haag, Lucien C

    2012-03-01

    Bullets striking common forms of flat glass with an orthogonal intercept angle result in a cloud of ejected glass fragments that are in concert with the exiting bullet's flight path. This is not the case with strikes at angles other than orthogonal. In these situations, the expelled glass fragments follow a very different course from that of the exiting projectile. This is both counterintuitive and a potential source of serious error in the evaluation and reconstruction of a shooting victim's position and orientation at the moment the victim was struck by a bullet that has passed through a nearby source of glass such as a vehicle side window or a window in a building. The flight path of the ejected glass fragments is, however, predictable and is dictated by the orientation of the plane of the glass opposite the projectile's impact site.In all cases, these expelled glass particles have considerable velocity and can produce pseudostippling of the skin in individuals located downrange of bullet-struck glass and near the projectile's exit site. The distribution and location of such pseudostippling and its relationship to the associated bullet hole in glass have important reconstructive value. A proper and reliable reconstruction of the victim's position in such cases will require the integration of scene information with the autopsy findings.

  17. Spin-glass transition of the three-dimensional Heisenberg spin glass.

    Science.gov (United States)

    Campos, I; Cotallo-Aban, M; Martin-Mayor, V; Perez-Gaviro, S; Tarancon, A

    2006-11-24

    It is shown, by means of Monte Carlo simulation and finite size scaling analysis, that the Heisenberg spin glass undergoes a finite-temperature phase transition in three dimensions. There is a single critical temperature, at which both a spin glass and a chiral glass ordering develop. The Monte Carlo algorithm, adapted from lattice gauge theory simulations, makes it possible to thermalize lattices of size L = 32, larger than in any previous spin-glass simulation in three dimensions. High accuracy is reached thanks to the use of the Marenostrum supercomputer. The large range of system sizes studied allows us to consider scaling corrections.

  18. Water dynamics in glass ionomer cements

    Science.gov (United States)

    Berg, M. C.; Jacobsen, J.; Momsen, N. C. R.; Benetti, A. R.; Telling, M. T. F.; Seydel, T.; Bordallo, H. N.

    2016-07-01

    Glass ionomer cements (GIC) are an alternative for preventive dentistry. However, these dental cements are complex systems where important motions related to the different states of the hydrogen atoms evolve in a confined porous structure. In this paper, we studied the water dynamics of two different liquids used to prepare either conventional or resin-modified glass ionomer cement. By combining thermal analysis with neutron scattering data we were able to relate the water structure in the liquids to the materials properties.

  19. Thermal Jamming of a Colloidal Glass

    KAUST Repository

    Agarwal, Praveen

    2011-12-01

    We investigate the effect of temperature on structure and dynamics of a colloidal glass created by tethering polymers to the surface of inorganic nanoparticles. Contrary to the conventional assumption, an increase in temperature slows down glassy dynamics of the material, yet causes no change in its static structure factor. We show that these findings can be explained within the soft glassy rheology framework if the noise temperature X of the glass phase is correlated with thermodynamic temperature. © 2011 American Physical Society.

  20. Critical fatigue behaviour in brittle glasses

    Indian Academy of Sciences (India)

    Rajat Banerjee; Bikas K Chakrabarti

    2001-04-01

    The dynamic fatigue fracture behaviour in different glasses under various sub-threshold loading conditions are analysed here employing an anomalous diffusion model. Critical dynamical behaviour in the time-to-fracture and the growth of the micro-crack sizes, similar to that observed in such materials in the case of quasi-static (``instantaneous”) failures for above-threshold conditions, are predicted and compared with some of the experimental observations in different glasses.

  1. THE COLOUR GLASS CONDENSATE: AN INTRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    IANCU,E.; LEONIDOV,A.; MCLERRAN,L.

    2001-08-06

    In these lectures, the authors develop the theory of the Colour Glass Condensate. This is the matter made of gluons in the high density environment characteristic of deep inelastic scattering or hadron-hadron collisions at very high energy. The lectures are self contained and comprehensive. They start with a phenomenological introduction, develop the theory of classical gluon fields appropriate for the Colour Glass, and end with a derivation and discussion of the renormalization group equations which determine this effective theory.

  2. Materials processing apparatus development for fluoride glass

    Science.gov (United States)

    Smith, Guy A.; Kosten, Sue; Workman, Gary L.

    1994-01-01

    Fluoride glasses have great potential for optical fiber communications due to the high transmittance when no microcrystallites occur during drawing operations. This work has developed apparatus to test the occurrence of microcrystallites during recrystallization in reduced gravity on the KC-135. The apparatus allows fluoride glass fiber, such as ZBLAN, to be melted and recrystallized during both the low and high g portions the parabolic flight.

  3. Luminescence of erbium ions in tellurite glasses

    Energy Technology Data Exchange (ETDEWEB)

    Savikin, Alexander P.; Grishin, Igor A.; Sharkov, Valery V.; Budruev, Andrei V., E-mail: budruev@gmail.com

    2013-11-15

    Optical characteristics of new generation of tellurite glasses having high stability against crystallization have been studied. As the initial reagents for the glasses synthesis on the base of tellurium oxide (TeO{sub 2}) there were used such oxides as WO{sub 3}, MoO{sub 3}, La{sub 2}O{sub 3}, Li{sub 2}CO{sub 3}, ZnO—Bi{sub 2}O{sub 2}CO{sub 3} and active components such as high purity Er{sub 2}O{sub 3}, Yb{sub 2}O{sub 3}, ErF{sub 3} and YbF{sub 3}. Intensities of luminescence at 1.53 µm of the erbium ions were determined after excitation at 975 nm. Experimental data obtained have shown the possibility to use the studied glasses doped by Er{sup 3+} and Yb{sup 3+} as active elements for fiber and integrated optics. - Graphical abstract: In contrast to the case of ZBLAN glass the TeO{sub 2}–WO{sub 3} (Er{sup 3+}) glass has bright intensity of luminescence at 1.53 µm for erbium ions that should be caused by excitation at 975 nm. Experimental data obtained have shown the possibility to use the studied glasses doped by Er{sup 3+} and Yb{sup 3+} as active elements for fiber and integrated optics. Display Omitted - Highlights: • We examined changes in growth of luminescence in doubly-doped tellurite glasses. • We found that luminescence grows in two orders by using Er{sup 3+} and Yb{sup 3+} at 1.53 μm. • We see possibility to use those glasses as active elements for integrated optics.

  4. Raman scattering study of glass crystallization kinetics

    Science.gov (United States)

    Balkanski, M.; Haro, E.; Espinosa, G. P.; Phillips, J. C.

    1984-08-01

    Laser induced glass-crystalline transition is studied by light scattering. Three significant effects are observed depending on the incident laser energy density: (i) Spectral band narrowing indicating cluster enlargement constitutes a precursor effect, (ii) an intensity increase effect indicates a rapid rise of the density of clusters attaining microcrystalline size and (iii) a dynamical reversal effect indicative of glass-crystalline instability. Cluster volume and crystallization appear as separate but related threshold phenomena.

  5. Measurement of sound propagation in glass wool

    DEFF Research Database (Denmark)

    Tarnow, Viggo

    1995-01-01

    A new acoustic method for directly measuring the flow resistance, and the compressibility of fibrous materials such as glass wool, is given. Measured results for monochromatic sound in glass wool are presented and compared with theoretically calculated results. The agreement between experimental...... results and theory is good. Results of measurements of characteristic impedance, attenuation, and phase shift for plane monochromatic traveling waves are presented and compared with theoretically calculated ones. Good agreement between experimental and theoretical results was found....

  6. Modeling of Microimprinting of Bulk Metallic Glasses

    Institute of Scientific and Technical Information of China (English)

    Ming CHENG; John A. Wert

    2006-01-01

    A finite element analysis (FEA) model has been developed to analyze microimprinting of bulk metallic glasses (BMG) near the glass transition temperature (Tg). The results reveal an approximately universal imprinting response for BMG, independent of surface feature length scale. The scale-independent nature of BMG imprinting derives from the flow characteristics of BMG in the temperature range above Tg. It also shows that the lubrication condition has a mild influence on BMG imprinting in the temperature range above Tg.

  7. Chalcogenide glass hollow core microstructured optical fibers

    Science.gov (United States)

    Shiryaev, Vladimir S.

    2015-03-01

    The recent developments on chalcogenide glass hollow core microstructured optical fibers (HC-MOFs) are presented. The comparative analysis of simulated optical properties for chalcogenide HC-MOFs of negative-curvature with different size and number of capillaries is given. The technique for the manufacture of microstructured chalcogenide preforms, which includes the assembly of the substrate glass tube and 8-10 capillaries, is described. Further trends to improve the optical transmission in chalcogenide NCHCFs are considered.

  8. CLAY SOIL STABILISATION USING POWDERED GLASS

    OpenAIRE

    2014-01-01

    This paper assesses the stabilizing effect of powdered glass on clay soil. Broken waste glass was collected and ground into powder form suitable for addition to the clay soil in varying proportions namely 1%, 2%, 5%, 10% and 15% along with 15% cement (base) by weight of the soil sample throughout. Consequently, the moisture content, specific gravity, particle size distribution and Atterberg limits tests were carried out to classify the soil using the ASSHTO classification system. Based on the...

  9. Break-glass handling exceptional situations in access control

    CERN Document Server

    Petritsch, Helmut

    2014-01-01

    Helmut Petritsch describes the first holistic approach to Break-Glass which covers the whole life-cycle: from access control modeling (pre-access), to logging the security-relevant system state during Break-Glass accesses (at-access), and the automated analysis of Break-Glass accesses (post-access). Break-Glass allows users to override security restrictions in exceptional situations. While several Break-Glass models specific to given access control models have already been discussed in research (e.g., extending RBAC with Break-Glass), the author introduces a generic Break-Glass model. The pres

  10. Stress relaxation in tempered glass caused by heat soak testing

    DEFF Research Database (Denmark)

    Schneider, Jens; Hilcken, Jonas; Aronen, Antti;

    2016-01-01

    Heat soak testing of tempered glass is a thermal process required after the tempering process itself to bring glasses of commercial soda-lime-silica-glass to failure that are contaminated with nickel sulphide inclusions, diameter 50 mm to 500 mm typically. Thus, the tests avoid a so-called "spont......Heat soak testing of tempered glass is a thermal process required after the tempering process itself to bring glasses of commercial soda-lime-silica-glass to failure that are contaminated with nickel sulphide inclusions, diameter 50 mm to 500 mm typically. Thus, the tests avoid a so...... of commercial soda-lime-silica glass, it causes stress relaxation in tempered glass and the fracture pattern of the glass changes accordingly, especially thin glasses are affected. Based on the Tool-Narayanaswamy-Model, this paper comprises the theoretical background of the stress...

  11. Optimization of spectroscopic properties of ytterbium-doped laser glasses

    Institute of Scientific and Technical Information of China (English)

    姜淳[1; 张俊洲[2; 邓佩珍[3; 黄国松[4; 毛涵芬[5; 干福熹[6

    1999-01-01

    Four laser glasses with high emission cross sections are experimentally obtained. The laser performance parameters are determined from the spectroscopic parameters of these glasses and compared with those of developing laser glasses abroad. It is shown that Yb3--doped telluorogermanate, Yb3+-doped niobosilicate glasses have the highest emission cross section and gain coefficient, the smallest minimum pumping intensity and saturation pumping intensity, and the lowest minimum fraction of excited ions. Yb3+-doped borate glass follows just behind them. These glasses have some spectroscopic advantages over laser glasses developed recently elsewhere. Yb3+-doped phosphate glass is comparable to phosphate laser glass which had high emission cross section and was developed recently by HOYA Corporation in Japan.The domestic glasses with optimum spectroscopic properties may be promising candidates for applications in high-average power and high-peak power solid state lasers, especially laser for the ne

  12. Results of a polishing study for SCHOTT XLD glasses

    Science.gov (United States)

    Jedamzik, Ralf; Yadwad, Harshwadhan; Dietrich, Volker

    2015-09-01

    Extremely low dispersion glasses (e.g. SCHOTT XLD glasses) play an essential role in the color correction of optical systems. Together with short flint glasses (KZFS Types) they can be used for apochromatic color correction in the visible spectrum or even for broadband color correction in combination with lanthanum crown glasses (LAK Types). Unfortunately the chemical composition of those glasses leads to a high coefficient of thermal expansion, low hardness and low resistance against chemical attacks. As a consequence these glasses tend to be difficult in processing. Therefore the glass engineer's task is to improve processing characteristics while keeping their special optical properties. N-FK58 XLD is an example of a new generation of XLD glasses from SCHOTT with improved workability. In 2014 a processing study has been conducted to optimize the polishing of XLD glasses. This presentation will show the results of this study for N-FK58 XLD and the application to other fluorophosphates glasses.

  13. Detection of structural heterogeneity of glass melts

    DEFF Research Database (Denmark)

    Yue, Yuanzheng

    2004-01-01

    The structural heterogeneity of both supercooled liquid and molten states of silicate has been studied using calorimetric method. The objects of this study are basaltic glasses and liquids. Two experimental approaches are taken to detect the structural heterogeneity of the liquids. One is the hyp......The structural heterogeneity of both supercooled liquid and molten states of silicate has been studied using calorimetric method. The objects of this study are basaltic glasses and liquids. Two experimental approaches are taken to detect the structural heterogeneity of the liquids. One...... and the crystal-memory effect of the liquids above their liquidus temperature are detected. Clear dependences of the structural heterogeneity of the liquids on the maximum upscan temperature and on the chemical composition are found by conducting calorimetric measurements. The origin of such dependences...... is discussed. The ordered structure of glass melts above the liquidus temperature is indirectly characterized by use of X-ray diffraction method. The new approaches are of importance for monitoring the glass melting and forming process and for improving the physical properties of glasses and glass fibers....

  14. Modifying glass surfaces via internal diffusion

    DEFF Research Database (Denmark)

    Smedskjaer, M.M.; Yue, Y.Z.; Deubener, J.

    2010-01-01

    - ions in the network and their strong attraction to the modifying ions, whereas the latter is due to the requirement of the charge neutrality. The role of N3- in driving OD is verified by the composition profile of the surface layer of the glass treated in pure N-2 gas. The OD exerts pronounced impacts......The surface chemistry and structure of iron-bearing silicate glasses have been modified by means of heat-treatment around the glass transition temperature under different gaseous media at ambient pressure. When the glasses are heat-treated in atmospheric air, oxidation of Fe2+ to Fe3+ occurs, which...... leads to outward diffusion (OD) of divalent cations (primarily Mg2+), i.e., diffusion from the interior of the glass to the surface, and thereby, to formation of an oxide surface nano-layer. in contrast, when the glasses are heat-treated in H-2/N-2 gas containing 10 vol.% H-2, reduction of Fe3+ to Fe2...

  15. Rapid bonding of Pyrex glass microchips.

    Science.gov (United States)

    Akiyama, Yoshitake; Morishima, Keisuke; Kogi, Atsuna; Kikutani, Yoshikuni; Tokeshi, Manabu; Kitamori, Takehiko

    2007-03-01

    A newly developed vacuum hot press system has been specially designed for the thermal bonding of glass substrates in the fabrication process of Pyrex glass microchemical chips. This system includes a vacuum chamber equipped with a high-pressure piston cylinder and carbon plate heaters. A temperature of up to 900 degrees C and a force of as much as 9800 N could be applied to the substrates in a vacuum atmosphere. The Pyrex substrates bonded with this system under different temperatures, pressures, and heating times were evaluated by tensile strength tests, by measurements of thickness, and by observations of the cross-sectional shapes of the microchannels. The optimal bonding conditions of the Pyrex glass substrates were 570 degrees C for 10 min under 4.7 N/mm(2) of applied pressure. Whereas more than 16 h is required for thermal bonding with a conventional furnace, the new system could complete the whole bonding processes within just 79 min, including heating and cooling periods. Such improvements should considerably enhance the production rate of Pyrex glass microchemical chips. Whereas flat and dust-free surfaces are required for conventional thermal bonding, especially without long and repeated heating periods, our hot press system could press a fine dust into glass substrates so that even the areas around the dust were bonded. Using this capability, we were able to successfully integrate Pt/Ti thin film electrodes into a Pyrex glass microchip.

  16. Bioactive borate glass coatings for titanium alloys.

    Science.gov (United States)

    Peddi, Laxmikanth; Brow, Richard K; Brown, Roger F

    2008-09-01

    Bioactive borate glass coatings have been developed for titanium and titanium alloys. Glasses from the Na(2)O-CaO-B(2)O(3) system, modified by additions of SiO(2), Al(2)O(3), and P(2)O(5), were characterized and compositions with thermal expansion matches to titanium were identified. Infrared and X-ray diffraction analyses indicate that a hydroxyapatite surface layer forms on the borate glasses after exposure to a simulated body fluid for 2 weeks at 37 degrees C; similar layers form on 45S5 Bioglass((R)) exposed to the same conditions. Assays with MC3T3-E1 pre-osteoblastic cells show the borate glasses exhibit in vitro biocompatibility similar to that of the 45S5 Bioglass((R)). An enameling technique was developed to form adherent borate glass coatings on Ti6Al4V alloy, with adhesive strengths of 36 +/- 2 MPa on polished substrates. The results show these new borate glasses to be promising candidates for forming bioactive coatings on titanium substrates.

  17. Toward Molecular Engineering of Polymer Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Freed, Karl F [Univ. of Chicago, IL (United States); Xu, Wen-Sheng [Univ. of Chicago, IL (United States); Dudowicz, Jacek B [Univ. of Chicago, IL (United States); Douglas, Jack F [National Inst. of Standards and Technology (NIST), Boulder, CO (United States)

    2017-04-05

    Glass formation has been central to fabrication technologies since the dawn of civilization. Glasses not only encompass window panes, the insulation in our homes, the optical fibers supplying our cable TV, and vessels for eating and drinking, but they also include a vast array of ‘‘plastic’’ polymeric materials. Glasses find applications in high technology (e.g., producing microelectronic materials, etc., amorphous semiconductors), and recent advances have created ‘‘plastic metallic glasses’’ that are promising for fabricating everyday structural materials. Many commercially relevant systems, such as microemulsions and colloidal suspensions, have complex molecular structures and thus solidify by glass formation. Despite the importance of understanding the fundamental nature of glass formation for the synthesis of new materials, a predictive molecular theory has been lacking. Much of our understanding of glass formation derives from the analysis of experimental data, a process that has uncovered a number of interesting universal behaviors, namely, relations between properties that are independent of molecular details. However, these empirically derived relations and their limitations remain to be understood on the basis of theories, and, more importantly, there is strong need for theories of the explicit variation with molecular system to enable the rational design and tailoring of new materials. We have recently developed the generalized entropy theory, the only analytic, theory that enables describing the dependence of the properties of glass-formation on monomer molecular structures. These properties include the two central quantities of glass formation, the glass transition temperature and the glass fragility parameter, material dependent properties that govern how a material may be processed (e.g., by extrusion, ink jet, molding, etc.) Our recent works, which are further described below, extend the studies of glass formation in polymer systems

  18. Sealed glass coating of high temperature ceramic superconductors

    Science.gov (United States)

    Wu, Weite; Chu, Cha Y.; Goretta, Kenneth C.; Routbort, Jules L.

    1995-01-01

    A method and article of manufacture of a lead oxide based glass coating on a high temperature superconductor. The method includes preparing a dispersion of glass powders in a solution, applying the dispersion to the superconductor, drying the dispersion before applying another coating and heating the glass powder dispersion at temperatures below oxygen diffusion onset and above the glass melting point to form a continuous glass coating on the superconductor to establish compressive stresses which enhance the fracture strength of the superconductor.

  19. Optical glass compatibility for the design of apochromatic systems

    OpenAIRE

    Gruescu C.; Nicoara I.; Popov D.; Bodea R.; Hora H.

    2008-01-01

    The design of apochromatic systems is difficult because of two problems: the glass sorts compatibility and the c1/ca arbitrary input ratio. The optical glass manufacturers offer a wide range of sorts, so that the choice of triplet compatible glasses becomes itself an important separate problem. The paper provides a solution of mathematical modeling for the glass compatibility and, practically, analyses the sorts presented by Schott GmbH. The original software provided 22 compatible glass trip...

  20. Water analysis of glass ceramics by FT-IR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nease, A B; Hale, M D; Kramer, D P

    1983-12-15

    A method for measuring water concentration in glasses has been described and the results of the study of ten batches of glasses have been tabulated. It has been shown that infrared spectroscopy is a satisfactory tool for measuring water concentration in glass ceramics. The water concentrations of ten batches of glass have been shown to differ significantly, and these variances are associated with environmental humidity and glass preparation method.

  1. Natural glass analogues to alteration of nuclear waste glass: A review and recommendations for further study

    Energy Technology Data Exchange (ETDEWEB)

    McKenzie, W.F.

    1990-01-01

    The purpose of this report is to review previous work on the weathering of natural glasses; and to make recommendations for further work with respect to studying the alteration of natural glasses as it relates quantifying rates of dissolution. the first task was greatly simplified by the published papers of Jercinovic and Ewing (1987) and Byers, Jercinovic, and Ewing (1987). The second task is obviously the more difficult of the two and the author makes no claim of completeness in this regard. Glasses weather in the natural environment by reacting with aqueous solutions producing a rind of secondary solid phases. It had been proposed by some workers that the thickness of this rind is a function of the age of the glass and thus could be used to estimate glass dissolution rates. However, Jercinovic and Ewing (1987) point out that in general the rind thickness does not correlate with the age of the glass owing to the differences in time of contact with the solution compared to the actual age of the sample. It should be noted that the rate of glass dissolution is also a function of the composition of both the glass and the solution, and the temperature. Quantification of the effects of these parameters (as well as time of contact with the aqueous phase and flow rates) would thus permit a prediction of the consequences of glass-fluid interactions under varying environmental conditions. Defense high- level nuclear waste (DHLW), consisting primarily of liquid and sludge, will be encapsulated by and dispersed in a borosilicate glass before permanent storage in a HLW repository. This glass containing the DHLW serves to dilute the radionuclides and to retard their dispersion into the environment. 318 refs.

  2. Applications of physical chemistry to glass technology

    Science.gov (United States)

    Stewart, Ogie Gregory

    2001-07-01

    Industrial manufacturing of glass, called float glass, involves a process in which flat pieces of glass are produced by pouring molten glass on a bath of molten tin metal. The glass is then coated with thin film coatings for such applications as solar radiation control and "privacy" glass. In this thesis, principles of physical chemistry are applied to selected aspects of glass production and thin film coatings in an effort to better understand these processes with the hope of improving film and glass quality. The research described here consists of three major studies. Part 1 describes the production of thin films by Atmospheric Pressure Chemical Vapor Deposition (APCVD) and characterization of the films by various analytical techniques. Vanadium oxide films were produced from vanadium (IV) chloride and each of several alcohols to determine the feasibility of this method of deposition and to investigate its use in an electrochromic device. The focus here was to investigate the levels of carbon contamination in the films. It was found that the level of carbon present in the films depend on the type of amine used. Part 2 is an investigation of the flow dynamics that occur during the two thin film deposition processes. APCVD and Powder Spray Pyrolysis (PSP). Information regarding flow dynamics and particle distribution in the region above the films' substrates were obtained and related to film formation and quality. Part 3 is a kinetic study of the gas phase reactions that occur in the vapor region above the glass during float glass production. A kinetic model of the possible reactions was devised and integrated to predict the formation of these impurities with time. An experimental setup to test the model's predictions is also discussed. The research described in this thesis lays the groundwork for several possibilities for future work. Electrochromic films can be produced by APCVD to construct an all-solid-state device. Two dimensional imaging coupled with Laser

  3. Engineering Glass Passivation Layers -Model Results

    Energy Technology Data Exchange (ETDEWEB)

    Skorski, Daniel C.; Ryan, Joseph V.; Strachan, Denis M.; Lepry, William C.

    2011-08-08

    The immobilization of radioactive waste into glass waste forms is a baseline process of nuclear waste management not only in the United States, but worldwide. The rate of radionuclide release from these glasses is a critical measure of the quality of the waste form. Over long-term tests and using extrapolations of ancient analogues, it has been shown that well designed glasses exhibit a dissolution rate that quickly decreases to a slow residual rate for the lifetime of the glass. The mechanistic cause of this decreased corrosion rate is a subject of debate, with one of the major theories suggesting that the decrease is caused by the formation of corrosion products in such a manner as to present a diffusion barrier on the surface of the glass. Although there is much evidence of this type of mechanism, there has been no attempt to engineer the effect to maximize the passivating qualities of the corrosion products. This study represents the first attempt to engineer the creation of passivating phases on the surface of glasses. Our approach utilizes interactions between the dissolving glass and elements from the disposal environment to create impermeable capping layers. By drawing from other corrosion studies in areas where passivation layers have been successfully engineered to protect the bulk material, we present here a report on mineral phases that are likely have a morphological tendency to encrust the surface of the glass. Our modeling has focused on using the AFCI glass system in a carbonate, sulfate, and phosphate rich environment. We evaluate the minerals predicted to form to determine the likelihood of the formation of a protective layer on the surface of the glass. We have also modeled individual ions in solutions vs. pH and the addition of aluminum and silicon. These results allow us to understand the pH and ion concentration dependence of mineral formation. We have determined that iron minerals are likely to form a complete incrustation layer and we plan

  4. An Insulating Glass Knowledge Base

    Energy Technology Data Exchange (ETDEWEB)

    Michael L. Doll; Gerald Hendrickson; Gerard Lagos; Russell Pylkki; Chris Christensen; Charlie Cureija

    2005-08-01

    This report will discuss issues relevant to Insulating Glass (IG) durability performance by presenting the observations and developed conclusions in a logical sequential format. This concluding effort discusses Phase II activities and focuses on beginning to quantifying IG durability issues while continuing the approach presented in the Phase I activities (Appendix 1) which discuss a qualitative assessment of durability issues. Phase II developed a focus around two specific IG design classes previously presented in Phase I of this project. The typical box spacer and thermoplastic spacer design including their Failure Modes and Effect Analysis (FMEA) and Fault Tree diagrams were chosen to address two currently used IG design options with varying components and failure modes. The system failures occur due to failures of components or their interfaces. Efforts to begin quantifying the durability issues focused on the development and delivery of an included computer based IG durability simulation program. The focus/effort to deliver the foundation for a comprehensive IG durability simulation tool is necessary to address advancements needed to meet current and future building envelope energy performance goals. This need is based upon the current lack of IG field failure data and the lengthy field observation time necessary for this data collection. Ultimately, the simulation program is intended to be used by designers throughout the current and future industry supply chain. Its use is intended to advance IG durability as expectations grow around energy conservation and with the growth of embedded technologies as required to meet energy needs. In addition the tool has the immediate benefit of providing insight for research and improvement prioritization. Included in the simulation model presentation are elements and/or methods to address IG materials, design, process, quality, induced stress (environmental and other factors), validation, etc. In addition, acquired data

  5. All-atom Molecular-level Computational Simulations of Planar Longitudinal Shockwave Interactions with Polyurea, Soda-lime Glass and Polyurea/Glass Interfaces

    Science.gov (United States)

    2014-01-01

    All-atom molecular-level computational simulations of planar longitudinal shockwave interactions with polyurea, soda- lime glass and polyurea/glass...of this paper is to study the mechanical response of polyurea, soda- lime glass (glass, for short), polyurea/glass/polyurea and glass/polyurea/glass...methods, the interaction of shockwaves with material boundaries. Keywords Polyurea, Material interface, Shockwaves, Soda- lime glass Paper type Research

  6. Computational studies of the glass-forming ability of model bulk metallic glasses.

    Science.gov (United States)

    Zhang, Kai; Wang, Minglei; Papanikolaou, Stefanos; Liu, Yanhui; Schroers, Jan; Shattuck, Mark D; O'Hern, Corey S

    2013-09-28

    Bulk metallic glasses (BMGs) are produced by rapidly thermally quenching supercooled liquid metal alloys below the glass transition temperature at rates much faster than the critical cooling rate R(c) below which crystallization occurs. The glass-forming ability of BMGs increases with decreasing R(c), and thus good glass-formers possess small values of R(c). We perform molecular dynamics simulations of binary Lennard-Jones (LJ) mixtures to quantify how key parameters, such as the stoichiometry, particle size difference, attraction strength, and heat of mixing, influence the glass-formability of model BMGs. For binary LJ mixtures, we find that the best glass-forming mixtures possess atomic size ratios (small to large) less than 0.92 and stoichiometries near 50:50 by number. In addition, weaker attractive interactions between the smaller atoms facilitate glass formation, whereas negative heats of mixing (in the experimentally relevant regime) do not change R(c) significantly. These results are tempered by the fact that the slowest cooling rates achieved in our simulations correspond to ~10(11) K/s, which is several orders of magnitude higher than R(c) for typical BMGs. Despite this, our studies represent a first step in the development of computational methods for quantitatively predicting glass-formability.

  7. Computational studies of the glass-forming ability of model bulk metallic glasses

    Science.gov (United States)

    Zhang, Kai; Wang, Minglei; Papanikolaou, Stefanos; Liu, Yanhui; Schroers, Jan; Shattuck, Mark D.; O'Hern, Corey S.

    2013-09-01

    Bulk metallic glasses (BMGs) are produced by rapidly thermally quenching supercooled liquid metal alloys below the glass transition temperature at rates much faster than the critical cooling rate Rc below which crystallization occurs. The glass-forming ability of BMGs increases with decreasing Rc, and thus good glass-formers possess small values of Rc. We perform molecular dynamics simulations of binary Lennard-Jones (LJ) mixtures to quantify how key parameters, such as the stoichiometry, particle size difference, attraction strength, and heat of mixing, influence the glass-formability of model BMGs. For binary LJ mixtures, we find that the best glass-forming mixtures possess atomic size ratios (small to large) less than 0.92 and stoichiometries near 50:50 by number. In addition, weaker attractive interactions between the smaller atoms facilitate glass formation, whereas negative heats of mixing (in the experimentally relevant regime) do not change Rc significantly. These results are tempered by the fact that the slowest cooling rates achieved in our simulations correspond to ˜1011 K/s, which is several orders of magnitude higher than Rc for typical BMGs. Despite this, our studies represent a first step in the development of computational methods for quantitatively predicting glass-formability.

  8. An Assessment of Binary Metallic Glasses: Correlations Between Structure, Glass Forming Ability and Stability (Preprint)

    Science.gov (United States)

    2011-07-01

    release; distribution unlimited. 1. Introduction It has long been suggested that metallic glass stability and glass-forming ability (GFA) are... magnetostriction of Co-Cr-Zr amorphous alloys’, Rapidly Quenched Metals, Proc. 4th International Conference on Rapidly Quenched Metals, Sendai, Japan, 861-864

  9. Radioluminescence properties of Sm-doped fluorochlorozirconate glasses and glass-ceramics

    Science.gov (United States)

    Okada, Go; Edgar, Andy; Kasap, Safa; Yanagida, Takayuki

    2016-02-01

    We have investigated X-ray induced radioluminescence (XL) properties of Sm-doped fluorochlorozirconate (FCZ) glasses and glass-ceramics. The FCZ glass is a modified ZBLAN glass which shows a very high optical transmission over a wide spectral range. The glass matrix includes Sm3+-doped nanocrystals of BaCl2 after heat-treatment at temperatures above 250 °C. The glass-ceramic emits red light under UV and X-ray exposure. Since conventional Si-based photodetectors, e.g., CCDs, have the highest quantum efficiency to red light in general, the Sm-doped FCZ glass-ceramic plate can be a good candidate as a scintillator material for indirect radiation detection. Moreover, a very broad emission is present in the glass-ceramic around 300-500 nm, which is attributed to a self-trapped exciton (STE) emissions. The temperature dependence of X-ray induced luminescence and photoluminescence are very similar. The XL light yield is linearly proportional to the X-ray exposure rate for rates higher than 20 mR/s. For low exposure rates, emissions by Sm2+ are more sensitive than others, leading to a nonlinear response.

  10. Fs Laser Fabrication of Photonic Structures in Glass: the Role of Glass Composition

    Energy Technology Data Exchange (ETDEWEB)

    Krol, D M; Chan, J W; Huser, T R; Risbud, S H; Hayden, J S

    2004-06-16

    The use of fs lasers to directly write photonic structures inside a glass has great potential as a fabrication method for three-dimensional all-optical integrated components. The ability to use this technique with different glass compositions--specifically tailored for a specific photonics application--is critical to its successful exploitation. Consequently, it is important to understand how glass composition effects waveguide fabrication with fs laser pulses and how different glasses are structurally modified after exposure to fs laser pulses. We have used confocal laser spectroscopy to monitor the changes in glass structure that are associated with waveguide fabrication. Using a low power continuous wave (cw) Ar laser as excitation source we have measured both Raman and fluorescence spectra of the modified regions. Raman spectroscopy provides us with information on the network structure, whereas fluorescence measurements reveal the presence of optically active point defects in the glass. In this paper we review our work on fs-laser fabrication and characterization of photonic structures in glass and discuss the effect of glass composition on processing parameters and structural modification.

  11. Utilization of recycled glass derived from cathode ray tube glass as fine aggregate in cement mortar.

    Science.gov (United States)

    Ling, Tung-Chai; Poon, Chi-Sun

    2011-08-30

    Rapid advances in the electronic industry led to an excessive amount of early disposal of older electronic devices such as computer monitors and old televisions (TV) before the end of their useful life. The management of cathode ray tubes (CRT), which have been a key component in computer monitors and TV sets, has become a major environmental problem worldwide. Therefore, there is a pressing need to develop sustainable alternative methods to manage hazardous CRT glass waste. This study assesses the feasibility of utilizing CRT glass as a substitute for natural aggregates in cement mortar. The CRT glass investigated was an acid-washed funnel glass of dismantled CRT from computer monitors and old TV sets. The mechanical properties of mortar mixes containing 0%, 25%, 50%, 75% and 100% of CRT glass were investigated. The potential of the alkali-silica reaction (ASR) and leachability of lead were also evaluated. The results confirmed that the properties of the mortar mixes prepared with CRT glass was similar to that of the control mortar using sand as fine aggregate, and displayed innocuous behaviour in the ASR expansion test. Incorporating CRT glass in cement mortar successfully prevented the leaching of lead. We conclude that it is feasible to utilize CRT glass in cement mortar production.

  12. The Perfect Glass Paradigm: Disordered Hyperuniform Glasses Down to Absolute Zero

    Science.gov (United States)

    Zhang, G.; Stillinger, F. H.; Torquato, S.

    2016-11-01

    Rapid cooling of liquids below a certain temperature range can result in a transition to glassy states. The traditional understanding of glasses includes their thermodynamic metastability with respect to crystals. However, here we present specific examples of interactions that eliminate the possibilities of crystalline and quasicrystalline phases, while creating mechanically stable amorphous glasses down to absolute zero temperature. We show that this can be accomplished by introducing a new ideal state of matter called a “perfect glass”. A perfect glass represents a soft-interaction analog of the maximally random jammed (MRJ) packings of hard particles. These latter states can be regarded as the epitome of a glass since they are out of equilibrium, maximally disordered, hyperuniform, mechanically rigid with infinite bulk and shear moduli, and can never crystallize due to configuration-space trapping. Our model perfect glass utilizes two-, three-, and four-body soft interactions while simultaneously retaining the salient attributes of the MRJ state. These models constitute a theoretical proof of concept for perfect glasses and broaden our fundamental understanding of glass physics. A novel feature of equilibrium systems of identical particles interacting with the perfect-glass potential at positive temperature is that they have a non-relativistic speed of sound that is infinite.

  13. THE HYDRATION OF AN ION-LEACHABLE GLASS USED IN GLASS-IONOMER CEMENTS

    Directory of Open Access Journals (Sweden)

    Jacek Klos

    2016-07-01

    Full Text Available A study is reported in which the interaction between a typical ionomer glass and water was evaluation in order to evaluate the importance of hydration in the setting of glass-ionomer cements. Glass G338 was mixed with water and the slurries were allowed to harden in metal moulds to create cylindrical specimens 6 mm high x 4 mm diameter. Samples of these specimens were found to disintegrate when placed in water. Following hardening at 37 °C for 1 hour in the moulds, one series of specimens was stored at 95% RH for 23 h, 1 week and 4 weeks, and the other stored for the same lengths of time, but sealed in the moulds. Raman spectra were recorded for glass G338 and glass-water blends stored for 24 hours and 4 weeks. The cylindrical specimens were found to have a degree of structural integrity, but proved to be extremely weak in compression (all specimens of whatever age up to 4 weeks having strengths of less that 1 MPa. Specimens lost mass on storage at 95% RH. Raman spectra showed no additional bands due to glass-water interactions compared with the dry glass itself, and changes in intensity were difficult to interpret, due to Fermi resonance in the regions of interest. It is concluded that binding in these specimens is due to hydrogen bonding between layers of water adsorbed onto glass powder surfaces.

  14. Glass science tutorial: Lecture No. 4, commercial glass melting and associated air emission issues

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, A.A.

    1995-01-01

    This document serves as a manual for a workshop on commercial glass melting and associated air emission issues. Areas covered include: An overview of the glass industry; Furnace design and construction practices; Melting furnace operation; Energy input methods and controls; Air legislation and regulations; Soda lime emission mechanisms; and, Post furnace emission controls. Supporting papers are also included.

  15. Bioactivity of Sodium Free Fluoride Containing Glasses and Glass-Ceramics

    Directory of Open Access Journals (Sweden)

    Xiaojing Chen

    2014-07-01

    Full Text Available The bioactivity of a series of fluoride-containing sodium-free calcium and strontium phosphosilicate glasses has been tested in vitro. Glasses with high fluoride content were partially crystallised to apatite and other fluoride-containing phases. The bioactivity study was carried out in Tris and SBF buffers, and apatite formation was monitored by XRD, FTIR and solid state NMR. Ion release in solutions has been measured using ICP-OES and fluoride-ion selective electrode. The results show that glasses with low amounts of fluoride that were initially amorphous degraded rapidly in Tris buffer and formed apatite as early as 3 h after immersion. The apatite was identified as fluorapatite by 19F MAS-NMR after 6 h of immersion. Glass degradation and apatite formation was significantly slower in SBF solution compared to Tris. On immersion of the partially crystallised glasses, the fraction of apatite increased at 3 h compared to the amount of apatite prior to the treatment. Thus, partial crystallisation of the glasses has not affected bioactivity significantly. Fast dissolution of the amorphous phase was also indicated. There was no difference in kinetics between Tris and SBF studies when the glass was partially crystallised to apatite before immersion. Two different mechanisms of apatite formation for amorphous or partially crystallised glasses are discussed.

  16. The effect of glass synthesis route on mechanical and physical properties of resultant glass ionomer cements.

    Science.gov (United States)

    Wren, A; Clarkin, O M; Laffir, F R; Ohtsuki, C; Kim, I Y; Towler, M R

    2009-10-01

    Glass ionomer cements (GICs) have potential orthopaedic applications. Solgel processing is reported as having advantages over the traditional melt-quench route for synthesizing the glass phase of GICs, including far lower processing temperatures and higher levels of glass purity and homogeneity. This work investigates a novel glass formulation, BT 101 (0.48 SiO(2)-0.36 ZnO-0.12 CaO-0.04 SrO) produced by both the melt-quench and the solgel route. The glass phase was characterised by X-ray diffraction (XRD) to determine whether the material was amorphous and differential thermal analysis (DTA) to measure the glass transition temperature (T (g)). Particle size analysis (PSA) was used to determine the mean particle size and X-ray photoelectron spectroscopy (XPS) was used to investigate the structure and composition of the glass. Both glasses, the melt-quench BT 101 and the solgel BT 101, were mixed with 50 wt% polyacrylic acid (M (w), 80,800) and water to form a GIC and the working time (T (w)) and the setting time (T (s)) of the resultant cements were then determined. The cement based on the solgel glass had a longer T (w) (78 s) as compared to the cement based on the melt derived glass (19 s). T (s) was also much longer for the cement based on the solgel (1,644 s) glass than for the cement based on the melt-derived glass (25 s). The cements based on the melt derived glass produced higher strengths in both compression (sigma(c)) and biaxial flexure (sigma(f)), where the highest strength was found to be 63 MPa in compression, at both 1 and 7 days. The differences in setting and mechanical properties can be associated to structural differences within the glass as determined by XPS which revealed the absence of Ca in the solgel system and a much greater concentration of bridging oxygens (BO) as compared to the melt-derived system.

  17. Composition-dependent metallic glass alloys correlate atomic mobility with collective glass surface dynamics.

    Science.gov (United States)

    Nguyen, Duc; Zhu, Zhi-Guang; Pringle, Brian; Lyding, Joseph; Wang, Wei-Hua; Gruebele, Martin

    2016-06-22

    Glassy metallic alloys are richly tunable model systems for surface glassy dynamics. Here we study the correlation between atomic mobility, and the hopping rate of surface regions (clusters) that rearrange collectively on a minute to hour time scale. Increasing the proportion of low-mobility copper atoms in La-Ni-Al-Cu alloys reduces the cluster hopping rate, thus establishing a microscopic connection between atomic mobility and dynamics of collective rearrangements at a glass surface made from freshly exposed bulk glass. One composition, La60Ni15Al15Cu10, has a surface resistant to re-crystallization after three heating cycles. When thermally cycled, surface clusters grow in size from about 5 glass-forming units to about 8 glass-forming units, evidence of surface aging without crystal formation, although its bulk clearly forms larger crystalline domains. Such kinetically stable glass surfaces may be of use in applications where glassy coatings stable against heating are needed.

  18. Tribological Behaviour of E-Glass /Epoxy & E-Glass /polyester Composites for Automotive Body Application

    Directory of Open Access Journals (Sweden)

    Esmael Adem

    2015-10-01

    Full Text Available Experimental characterization of the mechanical properties of E-glass/Epoxy & Eglass/Polyester composite was conducted. The objectives of this paper is to present processing techniques of specimen preparation, conducting experiment to obtain mechanical properties and conduct experimental observation using Scanning Electron Microscopy (SEM to know in homogeneity, porosity and fracture behavior. The effect of strain rate on E-glass/epoxy and E-glass/polyester has been investigated & experimentation was performed to determine property data for material specifications. E-glass/polyester laminates were obtained by compression moulding process and E-glass/epoxy laminate by hand lay-up vacuum assisted technique. The laminates were cut to obtain ASTM standards. This investigation deals with the testing of tensile, compression, shear and flexural strength on a universal testing machine. The graphs that are obtained from the tests were documented. This research indicates that the mechanical properties are mainly dependent on the strain rate.

  19. Structural relaxation in bismuth and lead borate glasses

    Science.gov (United States)

    Bajaj, Anu; Khanna, Atul

    2012-06-01

    Bismuth and lead borate glasses were prepared by melt quench technique. Effects of heat treatment on the density and thermal properties of bismuth and lead borate glasses was studied by annealing the glasses at 350°C for 500 h. Density of all bismuth borate glasses increases by about 0.5-0.7% with annealing and the effect is more in glasses with higher Bi2O3 concentration. In bismuth borate glasses with 50 and 55 mol % Bi2O3 we found an extraordinary large increase of Tg by 15°C after thermal annealing. All bismuth borate glasses remained completely clear and transparent on annealing. Lead borate glasses become cloudy on thermal annealing indicating occurrence of phase separation in these glasses.

  20. Impact of glass corrosion on drug substance stability.

    Science.gov (United States)

    Watkins, Michael A; Iacocca, Ronald G; Shelbourn, Timothy L; Dong, Xia; Stobba-Wiley, Carolyn

    2014-08-01

    The delamination of glass contact surfaces because of hydrolytic instability has been well documented. However, the lack of glass surface integrity can also lead to other undesirable outcomes prior to visible glass delamination. This work shows how the early stages of delamination, namely, glass corrosion, can influence the chemical stability of active pharmaceutical ingredient (API) solutions contained within a glass container, even prior to the observation of visible delamination. Multiple containers, all constructed of glass classified as USP Type I, were evaluated for hydrolytic stability and how they influence the chemical stability of the API in question. The glass composition of these analytical consumables, the vendor source, and presumably manufacturing process were examined. The implications of glass container durability on product development decisions, the influence on analytical results, and the practice of like-for-like glass container interchangeability are considered.

  1. Surface modification of bioactive glasses and preparation of PDLLA/bioactive glass composite films.

    Science.gov (United States)

    Gao, Yuan; Chang, Jiang

    2009-08-01

    In order to improve the homogeneous dispersion of particles in the polymeric matrix, 45S5, mesoporous 58S, and 58S bioactive glasses were surface modified by esterification reactions with dodecyl alcohol at reflux temperature of 260 degrees C (named as m-45S5, m-mesoporous 58S, and m-58S, respectively). The modified particles showed better hydrophobicity and longer time of suspension in organic matrix. The PDLLA/bioactive glass composite films were fabricated using surface modified bioactive glass particles through solvent casting-evaporation method. Surface morphology, mechanical property, and bioactivity were investigated. The results revealed that the inorganic particle distribution and tensile strength of the composite films with modified bioactive glass particles were significantly improved while great bioactive properties were maintained. Scanning electron microscopy (SEM) observation illustrated that the modified bioactive glass particles were homogeneously dispersed in the PDLLA matrix. The maximum tensile strengths of composite films with modified bioactive glass particles were higher than that of composite films with unmodified bioactive glass particles. The bioactivity of the composite films were evaluated by being soaked in the simulated body fluid (SBF) and the SEM observation of the films suggested that the modified composite films were still bioactive in that they could induce the formation of HAp on its surface and the distribution of HAp was even more homogeneous on the film. The results mentioned above indicated that the surface modification of bioactive glasses with dodecyl alcohol was an effective method to prepare PDLLA/bioactive glass composites with enhanced properties. By studying the comparisons of modification effects among the three types of bioactive glasses, we could get the conclusion that the size and morphology of the inorganic particles would greatly affect the modification effects and the properties of composites.

  2. Properties of Desert Sand and CMAS Glass

    Science.gov (United States)

    Bansal, Narottam P.; Choi, Sung R.

    2014-01-01

    As-received desert sand from a Middle East country has been characterized for its phase composition and thermal stability. X-ray diffraction analysis showed the presence of quartz (SiO2), calcite (CaCO3), gypsum (CaSO4.2H2O), and NaAlSi3O8 phases in as-received desert sand and showed weight loss of approx. 35 percent due to decomposition of CaCO3 and CaSO4.2H2O when heated to 1400 C. A batch of as-received desert sand was melted into calcium magnesium aluminosilicate (CMAS) glass at approx. 1500 C. From inductively coupled plasma-atomic emission spectrometry, chemical composition of the CMAS glass was analyzed to be 27.8CaO-4MgO-5Al2O3-61.6SiO2-0.6Fe2O3-1K2O (mole percent). Various physical, thermal and mechanical properties of the glass have been evaluated. Bulk density of CMAS glass was 2.69 g/cc, Young's modulus 92 GPa, Shear modulus 36 GPa, Poisson's ratio 0.28, dilatometric glass transition temperature (T (sub g)) 706 C, softening point (T (sub d)) 764 C, Vickers microhardness 6.3 +/- 0.4 GPa, indentation fracture toughness 0.75 +/- 0.15 MPa.m (sup 1/2), and coefficient of thermal expansion (CTE) 9.8 x 10 (exp -6)/degC in the temperature range 25 to 700 C. Temperature dependence of viscosity has also been estimated from various reference points of the CMAS glass using the Vogel-Fulcher-Tamman (VFT) equation. The glass remained amorphous after heat treating at 850 C for 10 hr but crystallized into CaSiO3 and Ca-Mg-Al silicate phases at 900 C or higher temperatures. Crystallization kinetics of the CMAS glass has also been investigated by differential thermal analysis (DTA). Activation energies for the crystallization of two different phases in the glass were calculated to be 403 and 483 kJ/mol, respectively.

  3. Paleomagnetism of Lonar Crater Impact Glass

    Science.gov (United States)

    Garrick-Bethell, I.; Weiss, B. P.; Maloof, A. C.; Stewart, S. T.; Louzada, K. L.; Soule, S. A.; Swanson-Hysell, N.

    2006-12-01

    The source of magnetic fields on extraterrestrial bodies is largely unknown. There is particularly little information about magnetic fields on asteroids and the Moon for the last 3 billion years because most samples from these bodies predate this time. An exception is the small amount of impact-melt which has been continuously created by hypervelocity impactors over most of solar system history. Impact melt can be used to test the controversial hypothesis that magnetic fields on extraterrestrial bodies were predominantly the product of impact-produced plasmas rather than of core dynamos. However, to date only a small amount of impact melt has been analyzed paleomagnetically. To assess the quality of impact melts as recorders of magnetic fields, in January 2004 and January 2005 we collected thousands of samples of basaltic glass from the perimeter of Lonar Crater, a 1.8 km diameter impact crater which formed approximately 50,000 years ago in the Deccan Traps in Maharashtra, India. Lonar crater is a unique extraterrestrial analog because it is the only fresh impact crater on the Earth in a basaltic target. Most glass samples have rounded features and are between 0.01 and 1 cm in size, indicating that they are fladen and impact spherules (microtektites) formed from molten ejecta that cooled in mid-air while subject to rotational and aerodynamic forces. We have found that both types of glasses are strongly magnetic (saturation remanence of ~2 A m-1), contain ferromagnetic crystals that are predominantly single domain in size, and have no significant remanence anisotropy. The glasses also carry a natural remanent magnetization (NRM) presumably acquired just after the impact. However, alternating field demagnetization results in large directional changes of the magnetic moment, with little decrease in moment intensity. We interpret this unusual behavior as progressive removal of different coercivity components that cooled while the orientation of the spinning glasses

  4. Preparation and properties of scintillating glass doped with organic activators

    Institute of Scientific and Technical Information of China (English)

    ZHU Dong-mei; LUO Fa; ZHAO Hong-sheng; ZHOU Wan-cheng

    2006-01-01

    A series of scintillating glasses were developed by doping organic activators into low melting temperature glasses according to different ratios. The fluorescence spectra and the transmission spectra of some scintillating glasses were explored and the actual concentration organic in scintillating glass was estimated. The results show that it is feasible to prepare the scintillating glass by doing organic scintillating activators into the low-melting glasses. There are two main reasons for the weak optical properties of the scintillation glasses: one is that the actual concentration of organic activators doped in the glasses is very low,and the other is the existence of lots of defects formed in the scintillating glasses due to the evaporation of organic activator,lowering the transmission of glasses. The fluorescence emission peaks of the glasses move to a longer wavelength compared with those in organic matrixes. To increase the light output of the glass,the optical transmittance of the glasses must be improved and the concentration of activators in the glasses must be increased.

  5. Glass viscosity calculation based on a global statistical modelling approach

    Energy Technology Data Exchange (ETDEWEB)

    Fluegel, Alex

    2007-02-01

    A global statistical glass viscosity model was developed for predicting the complete viscosity curve, based on more than 2200 composition-property data of silicate glasses from the scientific literature, including soda-lime-silica container and float glasses, TV panel glasses, borosilicate fiber wool and E type glasses, low expansion borosilicate glasses, glasses for nuclear waste vitrification, lead crystal glasses, binary alkali silicates, and various further compositions from over half a century. It is shown that within a measurement series from a specific laboratory the reported viscosity values are often over-estimated at higher temperatures due to alkali and boron oxide evaporation during the measurement and glass preparation, including data by Lakatos et al. (1972) and the recently published High temperature glass melt property database for process modeling by Seward et al. (2005). Similarly, in the glass transition range many experimental data of borosilicate glasses are reported too high due to phase separation effects. The developed global model corrects those errors. The model standard error was 9-17°C, with R^2 = 0.985-0.989. The prediction 95% confidence interval for glass in mass production largely depends on the glass composition of interest, the composition uncertainty, and the viscosity level. New insights in the mixed-alkali effect are provided.

  6. Retention of Halogens in Waste Glass

    Energy Technology Data Exchange (ETDEWEB)

    Hrma, Pavel R.

    2010-05-01

    In spite of their potential roles as melting rate accelerators and foam breakers, halogens are generally viewed as troublesome components for glass processing. Of five halogens, F, Cl, Br, I, and At, all but At may occur in nuclear waste. A nuclear waste feed may contain up to 10 g of F, 4 g of Cl, and ≤100 mg of Br and I per kg of glass. The main concern is halogen volatility, producing hazardous fumes and particulates, and the radioactive iodine 129 isotope of 1.7x10^7-year half life. Because F and Cl are soluble in oxide glasses and tend to precipitate on cooling, they can be retained in the waste glass in the form of dissolved constituents or as dispersed crystalline inclusions. This report compiles known halogen-retention data in both high-level waste (HLW) and low-activity waste (LAW) glasses. Because of its radioactivity, the main focus is on I. Available data on F and Cl were compiled for comparison. Though Br is present in nuclear wastes, it is usually ignored; no data on Br retention were found.

  7. Spectroscopic studies of lead halo borate glasses

    Science.gov (United States)

    Sekhar, K. Chandra; Hameed, Abdul; Chary, M. Narasimha; Shareefuddin, Md.

    2015-06-01

    Glasses in the system xPbF2-(30-x) PbO-69B2O3-1CuO (x=5, 10, 15, 20, & 25 mole %) were prepared by melt quenching method and they are characterized by XRD to confirm the glassy nature. Electron Paramagnetic Resonance (EPR) studies at room temperature in the X-band frequencies and FTIR studies on prepared glass systems were reported. The non-linear variation of spin-Hamiltonian parameters with PbF2 content indicated the change in the ligand field strength around Cu2+ ions in the host glass. The ground state of Cu2+ ions in the glass is designated as dx2-y2 orbital (2B1g) while the observed symmetry around it is tetragonally distorted octahedral. The molecular orbital coefficients α2, β2 and β12 are evaluated for Cu2+ doped samples. From the FTIR studies it was observed that the glass made up of BO3 and BO4 units.

  8. Optical glass: standards - present state and outlook

    Science.gov (United States)

    Hartmann, Peter

    2015-10-01

    In 1996, the international organization for standardization ISO started the standards series ISO 10110 specifying indications in drawings of optical elements. Three parts cover material properties: part 2 (stress birefringence), 3 (bubbles and inclusions), and 4 (inhomogeneity and striae). Customers used to just send optical element drawings to glass manufacturers often leading to uncertainty, overspecification, and delivery problems. The raw glass standard ISO 12123 of 2010 allows direct addressing of raw glass specifications. Harmonizing ISO 10110 with ISO 12123 and progress in inspection methods require updating of the material specifying parts. A new part 18 containing all properties is under preparation and is meant to replace parts 2-4. ISO 12123 will be amended by introducing definitions for relative partial dispersions and reference normal lines and grade denominations for tolerance ranges. The working draft ISO/WD 10110 part 18 extends indication possibilities to allow relating to ISO 12123 while ensuring backward compatibility. Default optical glass quality and direct specification of raw glass simplify tolerancing considerably. Annexes support selection of appropriate quality classes referring to optical element size categories. Test and inspection standards on chemical resistances, hardness, stress birefringence, and optical homogeneity will be maintained. Standards for water resistance, refractive index, and striae inspection are being prepared.

  9. Density of States Simulations of Confined Glasses

    Science.gov (United States)

    Faller, Roland; Ghosh, Jayeeta

    2008-03-01

    Glassy systems under confinement have been studied with great enthusiasm and effort for the last decades. They are relevant both fundamentally and technically because there is still debate about the nature of glass transition in small geometries which is important for lithographic processes in the semiconductor and other industries. In this work we are using the Wang-Landau approach also known as Density of States Monte Carlo to study glassy systems in bulk and under confinement. We apply the technique to a model binary Lennard Jones glass as well as the small organic glass former Ortho-terphenyl (OTP). For Lennard Jones glasses we use a well tested model. For OTP we start from a united atom model and then derive systematically a coarse grained representation by replacing each phenyl ring with a bead and using the Iterative Boltzmann Inversion. The properties of bulk Lennard Jones model show very good agreement with literature values. The atomistic and coarse grained representations of ortho-terphenyl in the bulk are in good agreement with experiments. Unsupported freestanding films show a lower glass transition than the bulk value.

  10. Glass forming ability of calcium aluminosilicate melts

    DEFF Research Database (Denmark)

    Moesgaard, Mette; Yue, Yuanzheng

    2011-01-01

    The glass forming ability (GFA) of two series of calcium aluminosilicate melts is studied by measuring their viscous behavior and crystallization tendency. The first series consists of five compositions on the joining line between the eutectic point of anorthite-wollastonite-tridymite and that of......The glass forming ability (GFA) of two series of calcium aluminosilicate melts is studied by measuring their viscous behavior and crystallization tendency. The first series consists of five compositions on the joining line between the eutectic point of anorthite......-wollastonite-tridymite and that of anorthite-wollastonite-gehlenite. The series includes the eutectic compositions as end members. The second series consists of five compositions on a line parallel to the joining line on the alumina rich side. In the present work, GFA is described in terms of glass stability, i.e., the ability of a glass....... However, this proportionality is only valid for comparison of the glasses in the same series of compositions. The eutectic composition of anorthite-wollastonite-tridymite is found to exhibit the highest GFA of the melts under investigation....

  11. Conductivity studies on microwave synthesized glasses

    Indian Academy of Sciences (India)

    Asha Rajiv; M Sudhakara Reddy; R Viswanatha; Jayagopal Uchil; C Narayana Reddy

    2015-08-01

    Conductivity measurements have been made on 2O5 − (100 − ) [0.5 Na2O + 0.5 B2O3] (where 10 ≤ ≤ 50) glasses prepared by using microwave method. DC conductivity () measurements exhibit temperature-and compositional-dependent trends. It has been found that conductivity in these glasses changes from the predominantly ‘ionic’ to predominantly ‘electronic’ depending upon the chemical composition. The dc conductivity passes through a deep minimum, which is attributed to network disruption. Also, this nonlinear variation in dc and activation energy can be interpreted using ion–polaron correlation effect. Electron paramagnetic resonance (EPR) and impedance spectroscopic techniques have been used to elucidate the nature of conduction mechanism. The EPR spectra reveals, in least modified (25 Na2O mol%) glasses, conduction is due to the transfer of electrons via aliovalent vanadium sites, while in highly modified (45 Na2O mol%) glasses Na+ ion transport dominates the electrical conduction. For highly modified glasses, frequency-dependent conductivity has been analysed using electrical modulus formalism and the observations have been discussed.

  12. Dynamics of window glass fracture in explosions

    Energy Technology Data Exchange (ETDEWEB)

    Beauchamp, E.K.; Matalucci, R.V.

    1998-05-01

    An exploratory study was conducted under the Architectural Surety Program to examine the possibility of modifying fracture of glass in the shock-wave environment associated with terrorist bombings. The intent was to explore strategies to reduce the number and severity of injuries resulting from those attacks. The study consisted of a series of three experiments at the Energetic Materials Research and Testing Center (EMRTC) of the New Mexico Institute of Mining and Technology at Socorro, NM, in which annealed and tempered glass sheets were exposed to blast waves at several different levels of overpressure and specific impulse. A preliminary assessment of the response of tempered glass to the blast environment suggested that inducing early failure would result in lowering fragment velocity as well as reducing the loading from the window to the structure. To test that possibility, two different and novel procedures (indentation flaws and spot annealing) were used to reduce the failure strength of the tempered glass while maintaining its ability to fracture into small cube-shaped fragments. Each experiment involved a comparison of the performance of four sheets of glass with different treatments.

  13. Pulverized glass as an alternative filter medium

    Energy Technology Data Exchange (ETDEWEB)

    Piccirillo, J.B.; Letterman, R.D.

    1998-07-01

    A significant amount of low-value, recycled glass is stockpiled at recycling facilities or landfilled. This study was conducted to investigate the use of pulverized recycled glass as a filter medium in slow sand filtration. The glass was pulverized using a flail mill-type pulverizer. The size distribution of the pulverizer output was adjusted by sieving to meet the grain size requirements of the Ten States Standards and the USEPA for filter media were compared to a fourth unit containing silica sand media. The filter influent was spiked with clay, coliform group bacteria and the cysts and oocyst of Giardia lamblia and Cryptosporidium parvum. Over an 8 month period of continuous operation, the performance of the glass sand filter media was as good as or better than the silica sand, with removals of 56% to 96% for turbidity; 99.78% to 100.0% for coliform bacteria; 99.995% to 99.997% for giardia cysts; and 99.92% to 99.97% for cryptosporidium oocysts. According to a cost-benefit analysis, converting waste glass into filter media may be economically advantageous for recycling facilities.

  14. Glass Frit Clumping And Dusting

    Energy Technology Data Exchange (ETDEWEB)

    Steimke, J. L.

    2013-09-26

    DWPF mixes a slurry of glass frit (Frit 418) and dilute (1.5 wt%) formic acid solution with high level waste in the Slurry Mix Evaporator (SME). There would be advantages to introducing the frit in a non-slurry form to minimize water addition to the SME, however, adding completely dry frit has the potential to generate dust which could clog filters or condensers. Prior testing with another type of frit, Frit 320, and using a minimal amount of water reduced dust generation, however, the formation of hard clumps was observed. To examine options and behavior, a TTQAP [McCabe and Stone, 2013] was written to initiate tests that would address these concerns. Tests were conducted with four types of glass frit; Frit 320, DWPF Frit 418, Bekeson Frit 418 and Multi-Aspirator Frit 418. The last two frits are chemically identical to DWPF Frit 418 but smaller particles were removed by the respective vendors. Test results on Frit Clumping and Dusting are provided in this report. This report addresses the following seven questions. Short answers are provided below with more detailed answers to follow. 1. Will the addition of a small amount of water, 1.5 wt%, to dry DWPF Frit 418 greatly reduce the dust generation during handling at DWPF? a. Yes, a small scale test showed that adding a little water to the frit greatly reduced dust generation during handling. 2. Will the addition of small amounts of water to the frit cause clumping that will impair frit handling at DWPF? a. No, not with Frit 418. Although clumps were observed to form when 1.5 wt% water was mixed with DWPF Frit 418, then compressed and air-dried overnight, the clumps were easily crushed and did not form the hardened material noted when Frit 320 was tested. 3. What is the measured size distribution of dust generated when dry frit is handled? (This affects the feasibility and choice of processing equipment for removing the dust generating fraction of the frit before it is added to the SME.) a. The size distribution for

  15. Glass Frit Clumping And Dusting

    Energy Technology Data Exchange (ETDEWEB)

    Steimke, J. L.

    2013-09-26

    DWPF mixes a slurry of glass frit (Frit 418) and dilute (1.5 wt%) formic acid solution with high level waste in the Slurry Mix Evaporator (SME). There would be advantages to introducing the frit in a non-slurry form to minimize water addition to the SME, however, adding completely dry frit has the potential to generate dust which could clog filters or condensers. Prior testing with another type of frit, Frit 320, and using a minimal amount of water reduced dust generation, however, the formation of hard clumps was observed. To examine options and behavior, a TTQAP [McCabe and Stone, 2013] was written to initiate tests that would address these concerns. Tests were conducted with four types of glass frit; Frit 320, DWPF Frit 418, Bekeson Frit 418 and Multi-Aspirator Frit 418. The last two frits are chemically identical to DWPF Frit 418 but smaller particles were removed by the respective vendors. Test results on Frit Clumping and Dusting are provided in this report. This report addresses the following seven questions. Short answers are provided below with more detailed answers to follow. 1. Will the addition of a small amount of water, 1.5 wt%, to dry DWPF Frit 418 greatly reduce the dust generation during handling at DWPF? a. Yes, a small scale test showed that adding a little water to the frit greatly reduced dust generation during handling. 2. Will the addition of small amounts of water to the frit cause clumping that will impair frit handling at DWPF? a. No, not with Frit 418. Although clumps were observed to form when 1.5 wt% water was mixed with DWPF Frit 418, then compressed and air-dried overnight, the clumps were easily crushed and did not form the hardened material noted when Frit 320 was tested. 3. What is the measured size distribution of dust generated when dry frit is handled? (This affects the feasibility and choice of processing equipment for removing the dust generating fraction of the frit before it is added to the SME.) a. The size distribution for

  16. Glass Furnace Combustion and Melting Research Facility.

    Energy Technology Data Exchange (ETDEWEB)

    Connors, John J. (PPG Industries, Inc., Pittsburgh, PA); McConnell, John F. (JFM Consulting, Inc., Pittsburgh, PA); Henry, Vincent I. (Henry Technology Solutions, LLC, Ann Arbor, MI); MacDonald, Blake A.; Gallagher, Robert J.; Field, William B. (Lilja Corp., Livermore, CA); Walsh, Peter M.; Simmons, Michael C. (Lilja Corp., Livermore, CA); Adams, Michael E. (Lilja Corp., Rochester, NY); Leadbetter, James M. (A.C. Leadbetter and Son, Inc., Toledo, OH); Tomasewski, Jack W. (A.C. Leadbetter and Son, Inc., Toledo, OH); Operacz, Walter J. (A.C. Leadbetter and Son, Inc., Toledo, OH); Houf, William G.; Davis, James W. (A.C. Leadbetter and Son, Inc., Toledo, OH); Marvin, Bart G. (A.C. Leadbetter and Son, Inc., Toledo, OH); Gunner, Bruce E. (A.C. Leadbetter and Son, Inc., Toledo, OH); Farrell, Rick G. (A.C. Leadbetter and Son, Inc., Toledo, OH); Bivins, David P. (PPG Industries, Inc., Pittsburgh, PA); Curtis, Warren (PPG Industries, Inc., Pittsburgh, PA); Harris, James E. (PPG Industries, Inc., Pittsburgh, PA)

    2004-08-01

    The need for a Combustion and Melting Research Facility focused on the solution of glass manufacturing problems common to all segments of the glass industry was given high priority in the earliest version of the Glass Industry Technology Roadmap (Eisenhauer et al., 1997). Visteon Glass Systems and, later, PPG Industries proposed to meet this requirement, in partnership with the DOE/OIT Glass Program and Sandia National Laboratories, by designing and building a research furnace equipped with state-of-the-art diagnostics in the DOE Combustion Research Facility located at the Sandia site in Livermore, CA. Input on the configuration and objectives of the facility was sought from the entire industry by a variety of routes: (1) through a survey distributed to industry leaders by GMIC, (2) by conducting an open workshop following the OIT Glass Industry Project Review in September 1999, (3) from discussions with numerous glass engineers, scientists, and executives, and (4) during visits to glass manufacturing plants and research centers. The recommendations from industry were that the melting tank be made large enough to reproduce the essential processes and features of industrial furnaces yet flexible enough to be operated in as many as possible of the configurations found in industry as well as in ways never before attempted in practice. Realization of these objectives, while still providing access to the glass bath and combustion space for optical diagnostics and measurements using conventional probes, was the principal challenge in the development of the tank furnace design. The present report describes a facility having the requirements identified as important by members of the glass industry and equipped to do the work that the industry recommended should be the focus of research. The intent is that the laboratory would be available to U.S. glass manufacturers for collaboration with Sandia scientists and engineers on both precompetitive basic research and the

  17. Kinetics of Glass Transition and Crystallization in Carbon Nanotube Reinforced Mg-Cu-Gd Bulk Metallic Glass

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Mg65Cu25Gd10 bulk metallic glass and its carbon nanotube reinforced composite were prepared. Differential scanning calorimeter (DSC) was used to investigate the kinetics of glass transition and crystallization processes. The influence of CNTs addition to the glass matrix on the glass transition and crystallization kinetics was studied. It is shown that the kinetic effect on glass transition and crystallization are preserved for both the monothetic glass and its glass composite.Adding CNTs in to the glass matrix reduces the influence of the heating rate on the crystallization process. In addition, the CNTs increase the energetic barrier for the glass transition. This results in the decrease of GFA. The mechanism of the GFA decrease was also discussed.

  18. Patch electrode glass composition affects ion channel currents.

    OpenAIRE

    Furman, R E; Tanaka, J C

    1988-01-01

    The influence of patch electrode glass composition on macroscopic IV relations in inside-out patches of the cGMP-activated ion channel from rod photoreceptors was examined for a soda lime glass, a Kovar sealing glass, a borosilicate glass, and several soft lead glasses. In several glasses the shape or magnitude of the currents changed as the concentration of EGTA or EDTA was increased from 200 microM to 10 mM. The changes in IV response suggest that, at low concentrations of chelator, divalen...

  19. Composition-structure-property relation of oxide glasses

    DEFF Research Database (Denmark)

    Hermansen, Christian

    The composition of glass can be varied continuously within their glass-forming regions. This compositional flexibility makes it possible to tailor the properties of a glass for a variety of specific uses. In the industry such tailoring is done on a trial-and-error basis with only the intuition...... also increases such properties. Yet, these rules are not strictly followed even for the simplest binary oxide glasses, such as alkali silicates, borates and phosphates. In this thesis it is argued that the missing link between composition and properties is the glass structure. Structural models...... capable of ab initio prediction of the oxide glass properties from composition....

  20. Single-Mode Soft Glass Fibres

    Science.gov (United States)

    Jedrzejewski, Kazimierz

    1990-01-01

    The technology of single-mode optical soft glass fibres is developed. The well-known rod in tube technique with multiple sleeving was taken to achieve proper dimensions. The ultrasonic mill-drill was used to prepare different structures: high ▵ , high birefringent, D-shaped, multicore, metal wire/glass compound and doped. The temperature processes were carried out very carefully to avoid glass decomposition. The geometry, refractive index profiles, mode near field patterns and λc agreed with the predicted and material data. The losses were reasonably low, better then 370 dB/km (800 nm). The enhanced Verdet constants and nonlinear coefficients values, high dopants levels and other special properties including low process temperatures are very attractive for fibre short range applications, sensors and devices e.g. polarizers, couplers, lasers, filters.

  1. A cellular glass substrate solar concentrator

    Science.gov (United States)

    Bedard, R.; Bell, D.

    1980-01-01

    The design of a second generation point focusing solar concentration is discussed. The design is based on reflective gores fabricated of thin glass mirror bonded continuously to a contoured substrate of cellular glass. The concentrator aperture and structural stiffness was optimized for minimum concentrator cost given the performance requirement of delivering 56 kWth to a 22 cm diameter receiver aperture with a direct normal insolation of 845 watts sq m and an operating wind of 50 kmph. The reflective panel, support structure, drives, foundation and instrumentation and control subsystem designs, optimized for minimum cost, are summarized. The use of cellular glass as a reflective panel substrate material is shown to offer significant weight and cost advantages compared to existing technology materials.

  2. Shaping metallic glasses by electromagnetic pulsing

    Science.gov (United States)

    Kaltenboeck, Georg; Demetriou, Marios D.; Roberts, Scott; Johnson, William L.

    2016-02-01

    With damage tolerance rivalling advanced engineering alloys and thermoplastic forming capabilities analogous to conventional plastics, metallic glasses are emerging as a modern engineering material. Here, we take advantage of their unique electrical and rheological properties along with the classic Lorentz force concept to demonstrate that electromagnetic coupling of electric current and a magnetic field can thermoplastically shape a metallic glass without conventional heating sources or applied mechanical forces. Specifically, we identify a process window where application of an electric current pulse in the presence of a normally directed magnetic field can ohmically heat a metallic glass to a softened state, while simultaneously inducing a large enough magnetic body force to plastically shape it. The heating and shaping is performed on millisecond timescales, effectively bypassing crystallization producing fully amorphous-shaped parts. This electromagnetic forming approach lays the groundwork for a versatile, time- and energy-efficient manufacturing platform for ultrastrong metals.

  3. Surgical Vision: Google Glass and Surgery.

    Science.gov (United States)

    Chang, Johnny Yau Cheung; Tsui, Lok Yee; Yeung, Keith Siu Kay; Yip, Stefanie Wai Ying; Leung, Gilberto Ka Kit

    2016-08-01

    Google Glass is, in essence, a smartphone in the form of a pair of spectacles. It has a display system, a bone conduction "speaker," video camera, and connectivity via WiFi or Bluetooth technologies. It can also be controlled by voice command. Seizing Google Glass' capabilities as windows of opportunity, surgeons have been the first group of doctors trying to incorporate the technology into their daily practices. Experiences from different groups have demonstrated Google Glass' potential in improving perioperative care, intraoperative communication and documentation, surgical outcome as well as surgical training. On the other hand, the device has technical limitations, notably suboptimal image qualities and a short battery life. Its operational functions also bring forth concerns on the protection of patient privacy. Nonetheless, the technological advances that this device embodies hold promises in surgical innovations. Further studies are required, and surgeons should explore, investigate, and embrace similar technologies with keen and informed anticipation.

  4. Planar glass devices for efficient periodic poling

    DEFF Research Database (Denmark)

    Fage-Pedersen, Jacob; Jacobsen, Rune Shim; Kristensen, Martin

    2005-01-01

    We demonstrate that frequency-converting devices of high quality can be realised with glass poling. The devices, made with silica-on-silicon technology, are poled with periodic, embedded electrodes, and used for second-harmonic generation. We obtain precise control of the quasi phase-matching wav......We demonstrate that frequency-converting devices of high quality can be realised with glass poling. The devices, made with silica-on-silicon technology, are poled with periodic, embedded electrodes, and used for second-harmonic generation. We obtain precise control of the quasi phase......-matching wavelength and bandwidth, and a normalised conversion efficiency of 1.4×10-3 %/W/cm2 which, to our knowledge, is the highest obtained so far with periodic glass poling....

  5. Cooling rate calculations for silicate glasses.

    Science.gov (United States)

    Birnie, D. P., III; Dyar, M. D.

    1986-03-01

    Series solution calculations of cooling rates are applied to a variety of samples with different thermal properties, including an analog of an Apollo 15 green glass and a hypothetical silicate melt. Cooling rates for the well-studied green glass and a generalized silicate melt are tabulated for different sample sizes, equilibration temperatures and quench media. Results suggest that cooling rates are heavily dependent on sample size and quench medium and are less dependent on values of physical properties. Thus cooling histories for glasses from planetary surfaces can be estimated on the basis of size distributions alone. In addition, the variation of cooling rate with sample size and quench medium can be used to control quench rate.

  6. Etching of glass microchips with supercritical water.

    Science.gov (United States)

    Karásek, Pavel; Grym, Jakub; Roth, Michal; Planeta, Josef; Foret, František

    2015-01-07

    A novel method of etching channels in glass microchips with the most tunable solvent, water, was tested as an alternative to common hydrogen fluoride-containing etchants. The etching properties of water strongly depend on temperature and pressure, especially in the vicinity of the water critical point. The chips were etched at the subcritical, supercritical and critical temperature of water, and the resulting channel shape, width, depth and surface morphology were studied by scanning electron microscopy and 3D laser profilometry. Channels etched with the hot water were compared with the chips etched with standard hydrogen fluoride-containing solution. Depending on the water pressure and temperature, the silicate dissolved from the glass could be re-deposited on the channel surface. This interesting phenomenon is described together with the conditions necessary for its utilization. The results illustrate the versatility of pure water as a glass etching and surface morphing agent.

  7. Shaping metallic glasses by electromagnetic pulsing

    Science.gov (United States)

    Kaltenboeck, Georg; Demetriou, Marios D.; Roberts, Scott; Johnson, William L.

    2016-01-01

    With damage tolerance rivalling advanced engineering alloys and thermoplastic forming capabilities analogous to conventional plastics, metallic glasses are emerging as a modern engineering material. Here, we take advantage of their unique electrical and rheological properties along with the classic Lorentz force concept to demonstrate that electromagnetic coupling of electric current and a magnetic field can thermoplastically shape a metallic glass without conventional heating sources or applied mechanical forces. Specifically, we identify a process window where application of an electric current pulse in the presence of a normally directed magnetic field can ohmically heat a metallic glass to a softened state, while simultaneously inducing a large enough magnetic body force to plastically shape it. The heating and shaping is performed on millisecond timescales, effectively bypassing crystallization producing fully amorphous-shaped parts. This electromagnetic forming approach lays the groundwork for a versatile, time- and energy-efficient manufacturing platform for ultrastrong metals. PMID:26853460

  8. Cooling rates for glass containing lunar compositions

    Science.gov (United States)

    Fang, C. Y.; Yinnon, H.; Uhlmann, D. R.

    1983-01-01

    Cooling rates required to form glassy or partly-crystalline bodies of 14 lunar compositions have been estimated using a previously introduced, simplified model. The calculated cooling rates are found to be in good agreement with cooling rates measured for the same compositions. Measurements are also reported of the liquidus temperature and glass transition temperature for each composition. Inferred cooling rates are combined with heat flow analyses to obtain insight into the thermal histories of samples 15422, 14162, 15025, 74220, 74241, 10084, 15425, and 15427. The critical cooling rates required to form glasses of 24 lunar compositions, including the 14 compositions of the present study, are suggested to increase systematically with increasing ratio of total network modifiers/total network formers in the compositions. This reflects the importance of melt viscosity in affecting glass formation.

  9. Window company standardizes low-E glass

    Energy Technology Data Exchange (ETDEWEB)

    Trombly, J.

    Anderson Corporation announced in late 1989 that it would be standardizing low-emissivity (low-E) glass in all of its products, except the gliding windows and the basement/storm windows, starting in 1990. In addition, all its High-Performance glass ordered this year will automatically feature the argon gas filling between panes. (Filling the space between two glass panes with argon rather than air reduces the heat conduction of the window.) Low-E windows are glazed with a coating that bonds a microscopic, transparent, metallic substance to the inside surface of the double-pane windows, cutting down on the emission of long-wave infrared light, thereby reducing heat loss.

  10. Application of Glass Transition in Food Processing.

    Science.gov (United States)

    Balasubramanian, S; Devi, Apramita; Singh, K K; Bosco, S J D; Mohite, Ashish M

    2016-01-01

    The phenomenon of glass transition has been employed to food products to study their stability. It can be applied as an integrated approach along with water activity and physical and chemical changes in food in processing and storage to determine the food stability. Also associated with the changes during agglomeration crystallization, caking, sticking, collapse, oxidation reactions, nonenzymatic browning, and microbial stability of food system. Various techniques such as Differential Scanning Calorimetry, Nuclear Magnetic Resonance, etc. have been developed to determine the glass transition temperature (Tg) of food system. Also, various theories have been applied to explain the concept of Tg and its relation to changes in food system. This review summarizes the understanding of concept of glass transition, its measurement, and application in food technology.

  11. Chalcogenide glass hollow core photonic crystal fibers

    Science.gov (United States)

    Désévédavy, Frédéric; Renversez, Gilles; Troles, Johann; Houizot, Patrick; Brilland, Laurent; Vasilief, Ion; Coulombier, Quentin; Traynor, Nicholas; Smektala, Frédéric; Adam, Jean-Luc

    2010-09-01

    We report the first hollow core photonic crystal fibers (HC PCF) in chalcogenide glass. To design the required HC PCF profiles for such high index glass, we use both band diagram analysis to define the required photonic bandgap and numerical simulations of finite size HC PCFs to compute the guiding losses. The material losses have also been taken into account to compute the overall losses of the HC PCF profiles. These fibers were fabricated by the stack and draw technique from TeAsSe (TAS) glass. The fibers we drew in this work are composed of six rings of holes and regular microstructures. Two profiles are presented, one is known as a kagome lattice and the other one corresponds to a triangular lattice. Geometrical parameters are compared to the expected parameters obtained by computation. Applications of such fibers include power delivery or fiber sensors among others.

  12. Argon gas flow through glass nanopipette

    Science.gov (United States)

    Takami, Tomohide; Nishimoto, Kiwamu; Goto, Tadahiko; Ogawa, Shuichi; Iwata, Futoshi; Takakuwa, Yuji

    2016-12-01

    We have observed the flow of argon gas through a glass nanopipette in vacuum. A glass nanopipette with an inner diameter of 100 nm and a shank length of 3 mm was set between vacuum chambers, and argon gas was introduced from the top of the nanopipette to the bottom. The exit pressure was monitored with an increase in entrance pressure in the range of 50-170 kPa. Knudsen flow was observed at an entrance pressure lower than 100 kPa, and Poiseuille flow was observed at an entrance pressure higher than 120 kPa. The proposed pressure-dependent gas flow method provides a means of evaluating the glass nanopipette before using it for various applications including nanodeposition to surfaces and femtoinjection to living cells.

  13. Glass/ceramic coatings for implants

    Science.gov (United States)

    Tomsia, Antoni P.; Saiz, Eduardo; Gomez-Vega, Jose M.; Marshall, Sally J.; Marshall, Grayson W.

    2011-09-06

    Glass coatings on metals including Ti, Ti6A14V and CrCo were prepared for use as implants. The composition of the glasses was tailored to match the thermal expansion of the substrate metal. By controlling the firing atmosphere, time, and temperature, it was possible to control the reactivity between the glass and the alloy and to fabricate coatings (25-150 .mu.m thick) with excellent adhesion to the substrate. The optimum firing temperatures ranged between 800 and 840.degree. C. at times up to 1 min in air or 15 min in N.sub.2. The same basic technique was used to create multilayered coatings with concentration gradients of hydroxyapatite (HA) particles and SiO.sub.2.

  14. SEYMOUR GLASS: CONTEXTUAL AND LINGUISTIC IDENTITY

    Directory of Open Access Journals (Sweden)

    O.O. Kulchytska

    2015-09-01

    Full Text Available In the article, the personality of Seymour Glass, the chief character of the Glass family saga by J.D. Salinger, is analyzed from social and his own philosophical perspectives. Two of Salinger’s works – “A Perfect Day for Bananafish” and “Hapworth 16, 1924”, which complement each other in terms of character analysis, – are the focus of our attention. They offer answers to the questions (a how the personality of Seymour predetermines the frame structure of the whole Glass series, (b why Salinger starts with the end of Seymour’s life and ends with its beginning, and (c what are the author’s motives in writing “Hapworth” since one of its central ideas – the philosophy of reincarnation – has already been presented in “Teddy”.

  15. Immunochromatographic diagnostic test analysis using Google Glass.

    Science.gov (United States)

    Feng, Steve; Caire, Romain; Cortazar, Bingen; Turan, Mehmet; Wong, Andrew; Ozcan, Aydogan

    2014-03-25

    We demonstrate a Google Glass-based rapid diagnostic test (RDT) reader platform capable of qualitative and quantitative measurements of various lateral flow immunochromatographic assays and similar biomedical diagnostics tests. Using a custom-written Glass application and without any external hardware attachments, one or more RDTs labeled with Quick Response (QR) code identifiers are simultaneously imaged using the built-in camera of the Google Glass that is based on a hands-free and voice-controlled interface and digitally transmitted to a server for digital processing. The acquired JPEG images are automatically processed to locate all the RDTs and, for each RDT, to produce a quantitative diagnostic result, which is returned to the Google Glass (i.e., the user) and also stored on a central server along with the RDT image, QR code, and other related information (e.g., demographic data). The same server also provides a dynamic spatiotemporal map and real-time statistics for uploaded RDT results accessible through Internet browsers. We tested this Google Glass-based diagnostic platform using qualitative (i.e., yes/no) human immunodeficiency virus (HIV) and quantitative prostate-specific antigen (PSA) tests. For the quantitative RDTs, we measured activated tests at various concentrations ranging from 0 to 200 ng/mL for free and total PSA. This wearable RDT reader platform running on Google Glass combines a hands-free sensing and image capture interface with powerful servers running our custom image processing codes, and it can be quite useful for real-time spatiotemporal tracking of various diseases and personal medical conditions, providing a valuable tool for epidemiology and mobile health.

  16. Optical glass: dispersion in the near infrared

    Science.gov (United States)

    Hartmann, Peter

    2011-10-01

    With deliveries of optical glass lots measurement data are given for the visible range usually from 436 nm (g-line) to 656 nm (C-line). Sometimes the question arises if refractive index values in the near infrared can be calculated from these data. With near infrared we mean the range from the C-line up to 1700 nm in this publication. The reason is that up to 1700 nm most optical glasses have hardly any reduction in their transmission. On the basis of a large amount of production data obtained over more than ten years with precision v-block refractometer evaluations are possible up to 1014 nm. The precision spectrometer URIS developed by SCHOTT enables to analyze the refractive index with measurement uncertainty fairly below 10-5 for even longer wavelengths up to 2325 nm, however on a much smaller data basis. The variability of the IR dispersion is shown for selected glass types. Frequency distributions for the different deviation shapes give information how reliable extrapolations are from the visible range to the near IR. The precision refractometer data were used to simulate such extrapolations employing partial dispersion data from catalog data sheets and to check the consistency of simulated with real data. For some glass types extrapolations seem to be possible. However, there are also glass types, where the method using catalog partial dispersions leads to significant deviations from reality. So if extrapolations are intended to be done, a general check should be performed if this is justified for the glass type of interest.

  17. Fabrication of highly insulating foam glass made from CRT panel glass

    DEFF Research Database (Denmark)

    König, Jakob; Petersen, Rasmus Rosenlund; Yue, Yuanzheng

    2015-01-01

    We prepared low-density foam glasses from cathode-ray-tube panel glass using carbon and MnO2 as the foaming agents. We investigated the influence of the carbon and MnO2 concentrations, the glass-powder preparation and the foaming conditions on the density and homogeneity of the pore structure...... and the dependence of the thermal conductivity on the foam density. The results show that the moderate foaming effect of the carbon is greatly improved by the addition of MnO2. A density as low as 131 kg m-3 can be achieved with fine glass powder. The foam density has a slight dependence on the carbon and MnO2...... concentrations, but it is mainly affected by the foaming temperature and the time. The thermal conductivity of the foam-glass samples is lower than that of commercial foam glasses with the same density. The lowest value was determined to be 42 mW m-1 K-1 for a foam glass with a density of 131 kg m-3. A further...

  18. Effect of host glass matrix on structural and optical behavior of glass-ceramic nanocomposite scintillators

    Science.gov (United States)

    Brooke Barta, M.; Nadler, Jason H.; Kang, Zhitao; Wagner, Brent K.; Rosson, Robert; Kahn, Bernd

    2013-12-01

    Composite scintillator systems have received increased attention in recent years due to their promise for merging the radioisotope discrimination capabilities of single crystal scintillators with the high throughput scanning capabilities of portal monitors. However, producing the high light yield required for good energy resolution has proven challenging as scintillation photons are often scattered by variations in refractive index and agglomerated scintillator crystals within the composite. This investigation sought to mitigate these common problems by using glass-ceramic nanocomposite materials systems in which nanoscale scintillating crystallites are precipitated in a controlled manner from a transparent glass matrix. Precipitating crystallites in situ precludes nanoparticle agglomeration, and limiting crystallite size to 50 nm or less mitigates the effect of refractive index mismatch between the crystals and host glass. Cerium-doped gadolinium bromide (GdBr3(Ce)) scintillating crystals were incorporated into sodium-aluminosilicate (NAS) and alumino-borosilicate (ABS) host glass matrices, and the resulting glass-ceramic structures and luminescence behavior were characterized. The as-cast glass from the ABS system displayed a highly ordered microstructure that produced the highest luminescence intensity (light yield) of the samples studied. However, heat treating to form the glass-ceramic precipitated rare-earth oxide crystallites rather than rare-earth halides. This degraded light yield relative to the unaged sample.

  19. Glass transition in binary eutectic systems: best glass-forming composition.

    Science.gov (United States)

    Wang, Li-Min; Li, Zijing; Chen, Zeming; Zhao, Yue; Liu, Riping; Tian, Yongjun

    2010-09-23

    The glass transition and glass-forming ability in a binary eutectic system of methyl o-toluate (MOT) versus methyl p-toluate (MPT) are studied across the whole composition range. The phase diagram is constructed to explore the best glass-forming composition as the characteristic temperatures of the glass transition, crystallization, eutectic, and liquidus are determined. The best vitrification region is found to locate between the eutectic and the midpoint compositions of the eutectic line, indicating a remarkable deviation from the eutectic composition. The compilation of various simple binary eutectic systems covering inorganic, metallic, ionic, and molecular glass-forming liquids reproduces the rule. Kinetics and thermodynamics in binary systems are investigated to associate with the rule. The composition dependence of the structural relaxation time and the kinetic fragility are presented with dielectric measurements. It is found that whereas mixing of binary miscible liquids kinetically favors glass formation, thermodynamic contribution to the deviation of the best glass-forming composition from eutectics is implied.

  20. Augmenting a Waste Glass Mixture Experiment Study with Additional Glass Components and Experimental Runs

    Energy Technology Data Exchange (ETDEWEB)

    Piepel, Gregory F.(BATTELLE (PACIFIC NW LAB)); Cooley, Scott K.(BATTELLE (PACIFIC NW LAB)); Peeler, David K.(Savannah River Technology Center); Vienna, John D.(BATTELLE (PACIFIC NW LAB)); Edwards, Tommy B.(Savannah River Technology Center)

    2002-01-01

    A glass composition variation study (CVS) for high-level waste (HLW) stored in Idaho is being statistically designed and performed in phases over several years. The purpose of the CVS is to investigate and model how HLW-glass properties depend on glass composition. The resulting glass property-composition models will be used to develop desirable glass formulations and for other purposes. Phases 1 and 2 of the CVS have been completed and are briefly described. This paper focuses on the CVS Phase 3 experimental design, which was chosen to augment the Phase 1 and 2 data with additional data points, as well as to account for additional glass components not studied in Phases 1 and/or 2. In total, 16 glass components were varied in the Phase 3 experimental design. The paper describes how these Phase 3 experimental design augmentation challenges were addressed using the previous data, preliminary property-composition models, and statistical mixture experiment and optimal experimental design methods and software.

  1. Zinc containing borate glasses and glass-ceramics: Search for biomedical applications

    Directory of Open Access Journals (Sweden)

    Amr M. Abdelghany

    2014-12-01

    Full Text Available Ternary soda lime borate glass and samples with ZnO replacing CaO up to 10 mol% were prepared and studied for their bone bonding ability. Fourier transform infrared (FTIR absorption spectra of the prepared glasses before and after immersion in simulated body fluid (SBF, for one or two weeks, showed the appearance of calcium phosphate (hydroxyapatite (HA which is an indication of bone bonding ability. X-ray diffraction patterns were measured for the glasses and indicated the presence of small peaks related to hydroxyapatite in the samples immersed in SBF. The glasses were heat treated with controlled two-step regime to convert them to their corresponding glass-ceramic derivatives. FTIR and X-ray diffraction measurements of the glass-ceramic samples (before and after immersion in SBF confirmed the appearance of HA which is influenced by ZnO content. The overall data are explained on the basis of current views about the corrosion behaviour of borate glasses including hydrolysis and direct dissolution mechanism.

  2. Microbial colonization and alteration of basaltic glass

    Directory of Open Access Journals (Sweden)

    J. Einen

    2006-03-01

    Full Text Available Microorganisms have been reported to be associated with the alteration of the glassy margin of seafloor pillow basalts (Thorseth et al., 2001, 2003; Lysnes et al., 2004. The amount of iron and other biological important elements present in basalts and the vast abundance of basaltic glass in the earth's crust, make glass alteration an important process in global element cycling. To gain further insight into microbial communities associated with glass alteration, five microcosm experiments mimicking seafloor conditions were inoculated with seafloor basalt and incubated for one year. Mineral precipitations, microbial attachment to the glass and glass alteration were visualized by scanning electron microscopy (SEM, and the bacterial community composition was fingerprinted by PCR and denaturing gradient gel electrophoresis (DGGE in combination with sequencing. SEM analysis revealed a microbial community with low morphological diversity of mainly biofilm associated and prosthecate microorganisms. Approximately 30 nm thick alteration rims developed on the glass in all microcosms after one year of incubation; this however was also seen in non inoculated controls. Calcium carbonate precipitates showed parallel, columnar and filamentous crystallization habits in the microcosms as well as in the sterile controls. DGGE analysis showed an alteration in bacterial community profiles in the five different microcosms, as a response to the different energy and redox regimes and time. In all microcosms a reduction in number of DGGE bands, in combination with an increase in cell abundance were recorded during the experiment. Sequence analysis showed that the microcosms were dominated by four groups of organisms with phylogenetic affiliation to four taxa: The Rhodospirillaceae, a family containing phototrophic marine organisms, in which some members are capable of heterotrophic growth in darkness and N2 fixation; the family Hyphomicrobiaceae, a group

  3. [Surface changes in glass eye prostheses].

    Science.gov (United States)

    Härting, F; Flörke, O W; Bornfeld, N; Trester, W

    1984-10-01

    The exposed surface of new glass eye protheses becomes rough and is destroyed in use. The changes in the exposed surfaces have been demonstrated by scanning electron microscopy and with thin sections under optical microscopes. The alteration process depends on the length of time the artificial eye is worn. The main cause is chemical attack of the glass surface in the tear fluid, which is usually slightly alkaline. Chronic conjunctival inflammation, appearing after a long period of wearing the same artificial eye, may be caused by mechanical irritation from the surface roughness.

  4. Structure and Properties of Compressed Borate Glasses

    DEFF Research Database (Denmark)

    Smedskjær, Morten Mattrup; Bauer, U.; Behrens, H.;

    in a series of borate glasses. Upon isostatic compression, NMR experiments show that the fraction of tetrahedral boron increases, leading to an overall decrease of the molar volume of the network. We correlate these structural changes with changes in elastic moduli from Brillouin scattering experiments......While the influence of thermal history on the structure and properties of glasses has been thoroughly studied in the past century, the influence of pressure history has received considerably less attention. In this study, we investigate the pressure-induced changes in structure and properties...

  5. Towards modeling gadolinium-lead-borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Rada, S., E-mail: Simona.Rada@phys.utcluj.ro [Department of Physics, Technical University of Cluj-Napoca, 400641 Cluj-Napoca (Romania); Ristoiu, T. [Department of Physics, Technical University of Cluj-Napoca, 400641 Cluj-Napoca (Romania); Rada, M. [Department of Mechatronic, Technical University of Cluj-Napoca, 400641 Cluj-Napoca (Romania); Coroiu, I. [Department of Physics, Technical University of Cluj-Napoca, 400641 Cluj-Napoca (Romania); Maties, V. [Department of Mechatronic, Technical University of Cluj-Napoca, 400641 Cluj-Napoca (Romania); Culea, E. [Department of Physics, Technical University of Cluj-Napoca, 400641 Cluj-Napoca (Romania)

    2010-01-15

    Infrared spectra of gadolinium-lead-borate glasses of the xGd{sub 2}O{sub 3}.(100 - x)[3B{sub 2}O{sub 3}.PbO] system, where x = 0, 5, 10, 15, 25, 35 and 50 mol.%, have been recorded to explore the role of content of gadolinium ions behaving as glass modifier. The FTIR spectroscopy data for the xGd{sub 2}O{sub 3}.(1 - x)[3B{sub 2}O{sub 3}.PbO] glasses show the structural role of lead ions as a network-formers and of the gadolinium ions network modifiers. Adding of the rare earth ion up to 35 mol.% into the glass matrix, the IR bands characteristic to the studied glasses become sharper and more pronounced. Structural changes, as recognized by analyzing band shapes of IR spectra, revealed that Gd{sub 2}O{sub 3} causes a change from the continuous borate network to the continuous lead-borate network interconnected through Pb-O-B and B-O-B bridges and the transformation of some tetrahedral [BO{sub 4}] units into trigonal [BO{sub 3}] units. Then, gadolinium ions have affinity towards [BO{sub 3}] structural units which contain non-bridging oxygens necessary for the charge compensation because the more electronegative [BO{sub 3}] structural units were implied in the formation of B-O-Gd bonds and the transformation of glass network into a glass ceramic. We propose a possible structural model of building blocks for the formation of continuous random 3B{sub 2}O{sub 3}.PbO network glass used by density functional theory (DFT) calculations. DFT calculations show that lead atoms occupy three different sites in the proposed model. The first is coordinated with six oxygen atoms forming distorted octahedral geometries. The second lead atom has an octahedral oxygen environment and the five longer Pb-O bonds are considered as participating in the metal coordination scheme. The third lead atom has ionic character. In agreement with the results offered by the experimental FTIR data, the theoretical IR data confirm that our proposed structure is highly possible.

  6. Energy gap in concentrated spin glasses

    Energy Technology Data Exchange (ETDEWEB)

    Liao, S.B.; Bhagat, S.M.; Manheimer, M.A.; Moorjani, K.

    1988-04-15

    Using magnetic resonance data at several frequencies, we have obtained the temperature dependence of the field-induced magnetization (M) in three concentrated spin glasses. At every frequency, M is independent of T for Tapprox. glass transition temperatures T/sub SG/.

  7. Optical Properties of Bismuth Tellurite Based Glass

    Directory of Open Access Journals (Sweden)

    Hooi Ming Oo

    2012-04-01

    Full Text Available A series of binary tellurite based glasses (Bi2O3x (TeO2100−x was prepared by melt quenching method. The density, molar volume and refractive index increase when bismuth ions Bi3+ increase, this is due to the increased polarization of the ions Bi3+ and the enhanced formation of non-bridging oxygen (NBO. The Fourier transform infrared spectroscopy (FTIR results show the bonding of the glass sample and the optical band gap, Eopt decreases while the refractive index increases when the ion Bi3+ content increases.

  8. Optical properties of bismuth tellurite based glass.

    Science.gov (United States)

    Oo, Hooi Ming; Mohamed-Kamari, Halimah; Wan-Yusoff, Wan Mohd Daud

    2012-01-01

    A series of binary tellurite based glasses (Bi(2)O(3))(x) (TeO(2))(100-) (x) was prepared by melt quenching method. The density, molar volume and refractive index increase when bismuth ions Bi(3+) increase, this is due to the increased polarization of the ions Bi(3+) and the enhanced formation of non-bridging oxygen (NBO). The Fourier transform infrared spectroscopy (FTIR) results show the bonding of the glass sample and the optical band gap, E(opt) decreases while the refractive index increases when the ion Bi(3+) content increases.

  9. Models of agglomeration and glass transition

    CERN Document Server

    Kerner, Richard

    2007-01-01

    This book is for any physicist interested in new vistas in the domain of non-crystalline condensed matter, aperiodic and quasi-crystalline networks and especially glass physics and chemistry. Students with an elementary background in thermodynamics and statistical physics will find the book accessible. The physics of glasses is extensively covered, focusing on their thermal and mechanical properties, as well as various models leading to the formation of the glassy states of matter from overcooled liquids. The models of agglomeration and growth are also applied to describe the formation of quasicrystals, fullerenes and, in biology, to describe virus assembly pathways.

  10. Bending stresses in Facetted Glass Shells

    DEFF Research Database (Denmark)

    Bagger, Anne; Jönsson, Jeppe; Almegaard, Henrik

    2008-01-01

    A shell structure of glass combines a highly effective structural principle with a material of optimal permeability to light. A facetted shell structure has a piecewise plane geometry, and together the facets form an approximation to a curved surface. A distributed load on a plane-based facetted...... structure will locally cause bending moments in the loaded facets. The bending stresses are dependent on the stiffness of the joints. Approximate solutions are developed to estimate the magnitude of the bending stresses. A FE-model of a facetted glass shell structure is used to validate the expressions...

  11. Binary Cu-Zr Bulk Metallic Glasses

    Institute of Scientific and Technical Information of China (English)

    TANG Mei-Bo; ZHAO De-Qian; PAN Ming-Xiang; WANG Wei-Hua

    2004-01-01

    @@ We report that bulk metallic glasses (BMGs) can be produced up to 2 mm by a copper mould casting in Cux Zr1-x binary alloy with a wide glass forming composition range (45 < x < 60 at.%). We find that the formation mechanism for the binary Cu-Zr binary BMG-forming alloy is obviously different from that of the intensively studied multicomponent BMGs. Our results demonstrate that the criteria for the multicomponent alloys with composition near deep eutectic and strong liquid behaviour are no longer the major concern for designing BMGs.

  12. Raman Spectroscopy Of Glass-Crystalline Transformations

    Science.gov (United States)

    Haro, E.; Balkanski, M.

    1988-01-01

    Glass-crystalline transition is induced by laser irradiation on a GeSe bulk glass sample. The structural changes are detected by Raman spectroscopy. The speed of the crystallization process depends on the laser irradiation intensity. We have studied this crystallization process for three different powers of irradiation. It is found that the speed of crystallization increases with power. Stokes and anti-Stokes spectra were recorded during the transformation. From this data temperature was inferred at different stages of crystallization. The significance of this temperature is discussed.

  13. Hardness and incipient plasticity in silicate glasses

    DEFF Research Database (Denmark)

    Kjeldsen, Jonas; Smedskjær, Morten Mattrup; Mauro, John C.;

    2014-01-01

    The scaling of Vickers hardness (Hv) in oxide glasses with varying network modifier/modifier ratio is manifested as either a positive or negative deviation from linearity with a maximum deviation at the ratio of about 1:1. In an earlier study [J. Kjeldsen et al., J. Non-Cryst. Solids 369,61(2013)......The scaling of Vickers hardness (Hv) in oxide glasses with varying network modifier/modifier ratio is manifested as either a positive or negative deviation from linearity with a maximum deviation at the ratio of about 1:1. In an earlier study [J. Kjeldsen et al., J. Non-Cryst. Solids 369...

  14. Microbial colonization and alteration of basaltic glass

    Science.gov (United States)

    Einen, J.; Kruber, C.; Øvreås, L.; Thorseth, I. H.; Torsvik, T.

    2006-03-01

    Microorganisms have been reported to be associated with the alteration of the glassy margin of seafloor pillow basalts (Thorseth et al., 2001, 2003; Lysnes et al., 2004). The amount of iron and other biological important elements present in basalts and the vast abundance of basaltic glass in the earth's crust, make glass alteration an important process in global element cycling. To gain further insight into microbial communities associated with glass alteration, five microcosm experiments mimicking seafloor conditions were inoculated with seafloor basalt and incubated for one year. Mineral precipitations, microbial attachment to the glass and glass alteration were visualized by scanning electron microscopy (SEM), and the bacterial community composition was fingerprinted by PCR and denaturing gradient gel electrophoresis (DGGE) in combination with sequencing. SEM analysis revealed a microbial community with low morphological diversity of mainly biofilm associated and prosthecate microorganisms. Approximately 30 nm thick alteration rims developed on the glass in all microcosms after one year of incubation; this however was also seen in non inoculated controls. Calcium carbonate precipitates showed parallel, columnar and filamentous crystallization habits in the microcosms as well as in the sterile controls. DGGE analysis showed an alteration in bacterial community profiles in the five different microcosms, as a response to the different energy and redox regimes and time. In all microcosms a reduction in number of DGGE bands, in combination with an increase in cell abundance were recorded during the experiment. Sequence analysis showed that the microcosms were dominated by four groups of organisms with phylogenetic affiliation to four taxa: The Rhodospirillaceae, a family containing phototrophic marine organisms, in which some members are capable of heterotrophic growth in darkness and N2 fixation; the family Hyphomicrobiaceae, a group of prosthecate oligotrophic

  15. GLASS TRANSITION OF HYDRATED WHEAT GLIADIN POWDERS

    Institute of Scientific and Technical Information of China (English)

    Shao-min Sun; Li Zhao; Yi-hu Song; Qiang Zheng

    2011-01-01

    Modulated-temperature differential scanning calorimetric and dynamic mechanical analyses and dielectric spectroscopy were used to investigate the glass transition of hydrated wheat gliadin powders with moisture absorption ranged from 2.30 db% to 18.21 db%. Glass transition temperature (Tg) of dry wheat gliadin was estimated according to the GordonTaylor equation. Structural heterogeneity at high degrees of hydration was revealed in dielectric temperature and frequency spectra. The activation energies (Ea) of the two relaxations were calculated from Arrhenius equation.

  16. Direction of CRT waste glass processing: electronics recycling industry communication.

    Science.gov (United States)

    Mueller, Julia R; Boehm, Michael W; Drummond, Charles

    2012-08-01

    Cathode Ray Tube, CRT, waste glass recycling has plagued glass manufacturers, electronics recyclers and electronics waste policy makers for decades because the total supply of waste glass exceeds demand, and the formulations of CRT glass are ill suited for most reuse options. The solutions are to separate the undesirable components (e.g. lead oxide) in the waste and create demand for new products. Achieving this is no simple feat, however, as there are many obstacles: limited knowledge of waste glass composition; limited automation in the recycling process; transportation of recycled material; and a weak and underdeveloped market. Thus one of the main goals of this paper is to advise electronic glass recyclers on how to best manage a diverse supply of glass waste and successfully market to end users. Further, this paper offers future directions for academic and industry research. To develop the recommendations offered here, a combination of approaches were used: (1) a thorough study of historic trends in CRT glass chemistry; (2) bulk glass collection and analysis of cullet from a large-scale glass recycler; (3) conversations with industry members and a review of potential applications; and (4) evaluation of the economic viability of specific uses for recycled CRT glass. If academia and industry can solve these problems (for example by creating a database of composition organized by manufacturer and glass source) then the reuse of CRT glass can be increased.

  17. Survey of glass plutonium contents and poison selection

    Energy Technology Data Exchange (ETDEWEB)

    Plodinec, M.J.; Ramsey, W.G. [Westinghouse Savannah River Company, Aiken, SC (United States); Ellison, A.J.G.; Shaw, H. [Lawrence Livermore National Laboratory, CA (United States)

    1996-05-01

    If plutonium and other actinides are to be immobilized in glass, then achieving high concentrations in the glass is desirable. This will lead to reduced costs and more rapid immobilization. However, glasses with high actinide concentrations also bring with them undersirable characteristics, especially a greater concern about nuclear criticality, particularly in a geologic repository. The key to achieving a high concentration of actinide elements in a glass is to formulate the glass so that the solubility of actinides is high. At the same time, the glass must be formulated so that the glass also contains neutron poisons, which will prevent criticality during processing and in a geologic repository. In this paper, the solubility of actinides, particularly plutonium, in three types of glasses are discussed. Plutonium solubilities are in the 2-4 wt% range for borosilicate high-level waste (HLW) glasses of the type which will be produced in the US. This type of glass is generally melted at relatively low temperatures, ca. 1150{degrees}C. For this melting temperature, the glass can be reformulated to achieve plutonium solubilities of at least 7 wt%. This low melting temperature is desirable if one must retain volatile cesium-137 in the glass. If one is not concerned about cesium volatility, then glasses can be formulated which can contain much larger amounts of plutonium and other actinides. Plutonium concentrations of at least 15 wt% have been achieved. Thus, there is confidence that high ({ge}5 wt%) concentrations of actinides can be achieved under a variety of conditions.

  18. Development of continuous glass melting for production of Nd-doped phosphate glasses for the NIF and LMJ laser systems

    Science.gov (United States)

    Campbell, Jack H.; McLean, M. J.; Hawley-Fedder, Ruth A.; Suratwala, Tayyab I.; Ficini-Dorn, G.; Trombert, Jean-Hugues

    1999-07-01

    The NIF and LMJ laser systems require about 3380 and 4752 Nd-doped laser glass slabs, respectively. Continuous laser glass melting and forming will be used for the first time to manufacture these slabs. Two vendors have been chosen to produce the glass: Hoya Corporation and Schott Glass Technologies. The laser glass melting systems that each of these two vendors have designed, built and tested are arguably the most advanced in the world. Production of the laser glass will begin on a pilot scale in the fall of 1998.

  19. Development of continuous glass melting for production of Nd-doped phosphate glasses for the NIF and LMJ laser system

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J. H.; Ficini-Dorn, G.; Hawley-Fedder, R.; McLean, M. J.; Suratwala, T.; Trombert, J. H.

    1998-08-14

    The NIF and LMJ laser systems require about 3380 and 4752 Nd-doped laser glass slabs, respectively. Continuous laser glass melting and forming will be used for the first time to manufacture these slabs. Two vendors have been chosen to produce the glass: Hoya Corporation and Schott Glass Technologies. The laser glass melting systems that each of these two vendors have designed, built and tested are arguably the most advanced in the world. Production of the laser glass will begin on a pilot scale in the fall of 1999.

  20. PLUTONIUM SOLUBILITY IN HIGH-LEVEL WASTE ALKALI BOROSILICATE GLASS

    Energy Technology Data Exchange (ETDEWEB)

    Marra, J.; Crawford, C.; Fox, K.; Bibler, N.

    2011-01-04

    The solubility of plutonium in a Sludge Batch 6 (SB6) reference glass and the effect of incorporation of Pu in the glass on specific glass properties were evaluated. A Pu loading of 1 wt % in glass was studied. Prior to actual plutonium glass testing, surrogate testing (using Hf as a surrogate for Pu) was conducted to evaluate the homogeneity of significant quantities of Hf (Pu) in the glass, determine the most appropriate methods to evaluate homogeneity for Pu glass testing, and to evaluate the impact of Hf loading in the glass on select glass properties. Surrogate testing was conducted using Hf to represent between 0 and 1 wt % Pu in glass on an equivalent molar basis. A Pu loading of 1 wt % in glass translated to {approx}18 kg Pu per Defense Waste Processing Facility (DWPF) canister, or about 10X the current allowed limit per the Waste Acceptance Product Specifications (2500 g/m{sup 3} of glass or about 1700 g/canister) and about 30X the current allowable concentration based on the fissile material concentration limit referenced in the Yucca Mountain Project License Application (897 g/m{sup 3}3 of glass or about 600 g Pu/canister). Based on historical process throughput data, this level was considered to represent a reasonable upper bound for Pu loading based on the ability to provide Pu containing feed to the DWPF. The task elements included evaluating the distribution of Pu in the glass (e.g. homogeneity), evaluating crystallization within the glass, evaluating select glass properties (with surrogates), and evaluating durability using the Product Consistency Test -- Method A (PCT-A). The behavior of Pu in the melter was evaluated using paper studies and corresponding analyses of DWPF melter pour samples.The results of the testing indicated that at 1 wt % Pu in the glass, the Pu was homogeneously distributed and did not result in any formation of plutonium-containing crystalline phases as long as the glass was prepared under 'well-mixed' conditions

  1. Glass cullet as a new supplementary cementitious material (SCM)

    Science.gov (United States)

    Mirzahosseini, Mohammadreza

    Finely ground glass has the potential for pozzolanic reactivity and can serve as a supplementary cementitious material (SCM). Glass reaction kinetics depends on both temperature and glass composition. Uniform composition, amorphous nature, and high silica content of glass make ground glass an ideal material for studying the effects of glass type and particle size on reactivity at different temperature. This study focuses on how three narrow size ranges of clear and green glass cullet, 63--75 mum, 25--38 mum, and smaller than 25 mum, as well as combination of glass types and particle sizes affects the microstructure and performance properties of cementitious systems containing glass cullet as a SCM. Isothermal calorimetry, chemical shrinkage, thermogravimetric analysis (TGA), quantitative analysis of X-ray diffraction (XRD), and analysis of scanning electron microscope (SEM) images in backscattered (BS) mode were used to quantify the cement reaction kinetics and microstructure. Additionally, compressive strength and water sorptivity experiments were performed on mortar samples to correlate reactivity of cementitious materials containing glass to the performance of cementitious mixtures. A recently-developed modeling platform called "muic the model" was used to simulated pozzolanic reactivity of single type and fraction size and combined types and particle sizes of finely ground glass. Results showed that ground glass exhibits pozzolanic properties, especially when particles of clear and green glass below 25 mum and their combination were used at elevated temperatures, reflecting that glass cullet is a temperature-sensitive SCM. Moreover, glass composition was seen to have a large impact on reactivity. In this study, green glass showed higher reactivity than clear glass. Results also revealed that the simultaneous effect of sizes and types of glass cullet (surface area) on the degree of hydration of glass particles can be accounted for through a linear addition

  2. Structural, optical and glass transition studies on Nd{sup 3+}-doped lead bismuth borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Karthikeyan, B.; Mohan, S

    2003-07-01

    Nd{sup 3+}-doped lead bismuth borate (PbO-Bi{sub 2}O{sub 3}-B{sub 2}O{sub 3}) glasses were prepared with different concentrations of Nd{sup 3+}. The structural studies were done through FTIR spectral analysis. The glass transition studies were done through differential scanning calorimetry. The optical analysis was done by using Judd-Ofelt theory. The structural study reveals that the glass has [BiO{sub 3}], BO{sub 4}, BO{sub 3} and PbO{sub 4} units as the local structures.

  3. Oxidation and diffusion process in the ferrous iron-bearing glass fibres near glass temperature

    DEFF Research Database (Denmark)

    Yue, Yuanzheng; Korsgaard, Martin; Kirkegaard, Lise;

    2004-01-01

    modifier diffusion; 2) between the oxidation process and the glass transition. Based on these couplings, a phenomenological equation is proposed, which describes both kinetics and dynamics of the oxidation process of the Fe2+-bearing glass fibers. The equation can be used to predict the degree of oxidation......The Fe2+ oxidation and the network modifier diffusion in the Fe2+-bearing glass fibers are studied using differential scanning calorimetry (DSC), thermogravimetry (TG), and secondary neutral mass spectrometry (SNMS). The results show two couplings: 1) between the Fe2+ oxidation and the network...

  4. Equivalence of glass transition and colloidal glass transition in the hard-sphere limit.

    Science.gov (United States)

    Xu, Ning; Haxton, Thomas K; Liu, Andrea J; Nagel, Sidney R

    2009-12-11

    We show that the slowing of the dynamics in simulations of several model glass-forming liquids is equivalent to the hard-sphere glass transition in the low-pressure limit. In this limit, we find universal behavior of the relaxation time by collapsing molecular-dynamics data for all systems studied onto a single curve as a function of T/p, the ratio of the temperature to the pressure. At higher pressures, there are deviations from this universal behavior that depend on the interparticle potential, implying that additional physical processes must enter into the dynamics of glass formation.

  5. Glass-clad semiconductor core optical fibers

    Science.gov (United States)

    Morris, Stephanie Lynn

    Glass-clad optical fibers comprising a crystalline semiconductor core have garnered considerable recent attention for their potential utility as novel waveguides for applications in nonlinear optics, sensing, power delivery, and biomedicine. As research into these fibers has progressed, it has become evident that excessive losses are limiting performance and so greater understanding of the underlying materials science, coupled with advances in fiber processing, is needed. More specifically, the semiconductor core fibers possess three performance-limiting characteristics that need to be addressed: (a) thermal expansion mismatches between crystalline core and glass cladding that lead to cracks, (b) the precipitation of oxide species in the core upon fiber cooling, which results from partial dissolution of the cladding glass by the core melt, and (c) polycrystallinity; all of which lead to scattering and increased transmission losses. This dissertation systematically studies each of these effects and develops both a fundamental scientific understanding of and practical engineering methods for reducing their impact. With respect to the thermal expansion mismatch and, in part, the dissolution of oxides, for the first time to our knowledge, oxide and non-oxide glass compositions are developed for a series of semiconductor cores based on two main design criteria: (1) matching the thermal expansion coefficient between semiconductor core and glass cladding to minimize cracking and (2) matching the viscosity-temperature dependences, such that the cladding glass draws into fiber at a temperature slightly above the melting point of the semiconductor in order to minimize dissolution and improve the fiber draw process. The x[Na 2O:Al2O3] + (100 - 2x)SiO2 glass compositional family was selected due to the ability to tailor the glass properties to match the aforementioned targets through slight variations in composition and adjusting the ratios of bridging and non-bridging oxygen

  6. IMPACTS OF SMALL COLUMN ION EXCHANGE STREAMS ON DWPF GLASS FORMULATION KT07-SERIES GLASS COMPOSITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Edwards, T.

    2011-01-12

    This report is the third in a series of studies of the impacts of the addition of Crystalline Silicotitanate (CST) and Monosodium Titanate (MST) from the Small Column Ion Exchange (SCIX) process on the Defense Waste Processing Facility (DWPF) glass waste form and the applicability of the DWPF process control models. MST from the Salt Waste Processing Facility is also considered in the study. The KT07-series glasses were selected to evaluate any potential impacts of noble metals on their properties and performance. The glasses characterized thus far for the SCIX study have not included noble metals since they are not typically tracked in sludge batch composition projections. However, noble metals can act as nucleation sites in glass melts, leading to enhanced crystallization. This crystallization can potentially influence the properties and performance of the glass, such as chemical durability, viscosity, and liquidus temperature. The noble metals Ag, Pd, Rh, and Ru were added to the KT07-series glasses in concentrations based on recent measurements of Sludge Batch 6, which was considered to contain a high concentration of noble metals. The KT04-series glasses were used as the baseline compositions. After fabrication, the glasses were characterized to determine their homogeneity, chemical composition, durability, and viscosity. Liquidus temperature measurements are also underway but were not complete at the time of this report. The liquidus temperature results for the KT07-series glasses, along with several of the earlier glasses in the SCIX study, will be documented separately. All of the KT07-series glasses, both quenched and slowly cooled, were found to be amorphous by X-ray diffraction. Chemical composition measurements showed that all of the glasses met their targeted compositions. The Product Consistency Test (PCT) results showed that all of the glasses had chemical durabilities that were far better than that of the Environmental Assessment benchmark glass

  7. Technological advances in tellurite glasses properties, processing, and applications

    CERN Document Server

    Manzani, Danilo

    2017-01-01

    This book is the first to provide a comprehensive introduction to the synthesis, optical properties, and photonics applications of tellurite glasses. The book begins with an overview of tellurite glasses, followed by expert chapters on synthesis, properties, and state-of-the-art applications ranging from laser glass, optical fibers, and optical communications through color tuning, plasmonics, supercontinuum generation, and other photonic devices. The book provides in-depth information on the the structural, linear, and non-linear optical properties of tellurite glasses and their implications for device development. Real-world examples give the reader valuable insight into the applications of tellurite glass. A detailed discussion of glass production methods, including raw materials and melting and refining oxide- and fluoro-tellurite glasses, is also included. The book features an extensive reference list for further reading. This highly readable and didactic text draws on chemical composition, glass science,...

  8. Reactive Atom Plasma Processing of Slumped Glass Wedges Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Reactive Atom Plasma (RAPTM) process will be evaluated as a rapid and practical method for fabricating precision wedges in glass sheets. The glass sheets are to...

  9. Foam Glass for Construction Materials: Foaming Mechanism and Thermal Conductivity

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund

    2016-01-01

    Foaming is commonly achieved by adding foaming agents such as metal oxides or metal carbonates to glass powder. At elevated temperature, the glass melt becomes viscous and the foaming agents decompose or react to form gas, causing a foamy glass melt. Subsequent cooling to room temperature, result...... in a solid foam glass. The foam glass industry employs a range of different melt precursors and foaming agents. Recycle glass is key melt precursors. Many parameters influence the foaming process and optimising the foaming conditions is very time consuming. The most challenging and attractive goal is to make...... low density foam glass for thermal insulation applications. In this thesis, it is argued that the use of metal carbonates as foaming agents is not suitable for low density foam glass. A reaction mechanism is proposed to justify this result. Furthermore, an in situ method is developed to optimise...

  10. Spray mist cooling heat transfer in glass tempering process

    Science.gov (United States)

    Sozbir, Nedim; Yao, S. C.

    2016-10-01

    Energy saving is a very important issue in glass plants, especially in a glass tempering process, where very high velocity air jet impingement is applied during the cooling process of glass tempering. In fact, air compressor energy may be reduced by a spray cooling due to its high heat transfer capabilities. Presently, in this paper, both pure air and water mist spray cooling are investigated in the glass tempering process. The test results indicate that thin and low-cost tempered glass can be made by mist cooling without fracture. It is possible to find the optimal water flux and duration of mist application to achieve a desirable temperature distribution in the glass for deep penetration of the cooling front but without inducing cracking during the tempering. The use of mist cooling could give about 29 % air pressure reduction for 2-mm glass plate and 50 % reduction for both 3- and 4-mm glass plates.

  11. Tempered glass and thermal shock of ceramic materials

    Science.gov (United States)

    Bunnell, L. Roy

    1992-01-01

    A laboratory experiment is described that shows students the different strengths and fracture toughnesses between tempered and untempered glass. This paper also describes how glass is tempered and the materials science aspects of the process.

  12. Lunar glass compositions - Apollo 16 core sections 60002 and 60004

    Science.gov (United States)

    Meyer, H. O. A.; Tsai, H.-M.

    1975-01-01

    Approximately 500 glasses between 1 mm and 125 microns in size have been analyzed from fourteen samples from the Apollo 16 core sections 60002 and 60004. The majority of glasses have compositions comparable to those found in previous studies of lunar surface soils; however, two new and distinct glass compositions that are probably derived in part from mare material occur in the core samples. The major glass composition in all samples is that of Highland Basalt glass, but it also appears that high-K Fra Mauro Basalt (KREEP) glass is more common at the Apollo 16 site than was previously thought. The relative abundance of glasses within the core samples is random in distribution: each sample is characterized by a particular assemblage and distribution of the constituent glass compositions.

  13. Heat-shrink plastic tubing seals joints in glass tubing

    Science.gov (United States)

    Del Duca, B.; Downey, A.

    1968-01-01

    Small units of standard glass apparatus held together by short lengths of transparent heat-shrinkable polyolefin tubing. The tubing is shrunk over glass O-ring type connectors having O-rings but no lubricant.

  14. Study of recrystallization and devitrification of lunar glass

    Science.gov (United States)

    Ulrich, D. R.

    1974-01-01

    The technique of differential thermal analysis (DTA) was applied to the study of the Apollo 17 orange soil (74220,63) and the Apollo 16 glass coated anorthite (64455,21). These glasses show accentuated exotherms of strain relief in the annealing range which is indicative of rapid cooling. These are amenable to interpretation by comparison to the known history of synthetic glasses. Synthetic glasses were prepared whose similarity in behavior between the lunar glasses and their synthetic analogs is striking. Approximate rates of cooling of the lunar glasses were determined from comparative DTA of lunar and synthetic glasses and from the determination of the relation of strain relief in the annealing range to quench rate. At higher temperatures the glasses show exotherms of crystallization. The crystallization products associated with the exothermic reactions have been identified by X-ray diffraction and the surface morphologies developed by strain relief and crystallization have been characterized with scanning electron microscopy.

  15. Element Partitioning in Glass-Ceramic Designed for Actinides Immobilization

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>Glass-ceramics were designed for immobilization of actinides. In order to immobilizing more wastes in the matrix and to develop the optimum formulation for the glass-ceramic, it is necessary to study the

  16. Resin-modified and conventional glass ionomer restorations in primary teeth: 8-year results

    DEFF Research Database (Denmark)

    Qvist, V.; Manscher, E.; Teglers, P.T.

    2004-01-01

    clinical trial, cariostatic effects, dental restorations, glass ionomer cement, long-term behaviour, pedodontics, resin-modified glass ionomer......clinical trial, cariostatic effects, dental restorations, glass ionomer cement, long-term behaviour, pedodontics, resin-modified glass ionomer...

  17. 40 CFR 426.80 - Applicability; description of the glass container manufacturing subcategory.

    Science.gov (United States)

    2010-07-01

    ... glass container manufacturing subcategory. 426.80 Section 426.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GLASS MANUFACTURING POINT SOURCE CATEGORY Glass Container Manufacturing Subcategory § 426.80 Applicability; description of the glass...

  18. International Symposium on Halide Glasses (2nd) (Extended Abstracts).

    Science.gov (United States)

    1983-08-05

    method in which Pyrex 7740 is the standard material. These results will be compared with our earlier results on a fluorozirconate glass ( ZBLAN glass ...AliS 215 INTERNATIONAL SYMPOSIUM ON HALIDE GLASSES 12ND) 1/1 (EXTENDED ABSTRACTS) (U) RENSSELAER POLY’TECHNIC INST TROY NY DEPT OF MATERIALS ENGINEE...Classification) Second International Symposium on Halide Glasses (Extended Abstracts) (U) 12. PERSONAL AUTHOR(S) Cornelius T. Moynihan Chairman 13a

  19. Glass matrix composite material prepared with waste foundry sand

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhao-shu; XIA Ju-pei; ZHU Xiao-qin; LIU Fan; HE Mao-yun

    2006-01-01

    The technology of glass matrix of the composite material manufactured through a sintering process and using waste foundry sand and waste glass as the main raw materials was studied. The effects of technological factors on the performance of this material were studied. The results showed that this composite material is formed with glass as matrix, core particulate as strengthening material, it has the performance of glass and ceramics, and could be used to substitute for stone.

  20. Thermoset composite recycling: Properties of recovered glass fiber

    DEFF Research Database (Denmark)

    Beauson, Justine; Fraisse, Anthony; Toncelli, C.

    2015-01-01

    Recycling of glass fiber thermoset polymer composite is a challenging topic and a process able to recover the glass fibers original properties in a limited cost is still under investigation. This paper focuses on the recycling technique separating the glass fiber from the matrix material. Four...... different recycling processes, mechanical, burn off, pyrolysis and glycolysis are selected are compared based on the properties of the glass fiber recovered. The intention is to use the same characterization methodology....

  1. Design of apochromatic telescope without anomalous dispersion glasses

    Institute of Scientific and Technical Information of China (English)

    Qinghua Yang; Baochang Zhao; Renkui Zhou

    2008-01-01

    A novel lens 8vstem with correction of secondary spectrum without using anomalous glasses is presented.The lens system comprises four separated lens components,with three of them being subapertures.Two examples of apochromatic telescope are presented,both with the use of typical normal glasses,namely crown K9 and flint F5 glasses,and low-cost slightly anomalous dispersion glasses.Secondary spectrum and other chromatic aberrations of the two design examples are corrected.

  2. Temperature Modeling of the Molten Glass in Tin Bath

    Institute of Scientific and Technical Information of China (English)

    WEI Zhihua; CHEN Jinshu; NIE Yingsong

    2009-01-01

    Based on the experimental investigation by quantitative analysis, temperature fields of the molten glass in tin bath were numerically simulated by the finite elememt method. The ex-perimental results show that the cooling rate of glass is directly proportional to the draught speed, but inversely proportional to the thickness of the glass. This model lays the foundation for computer simulation system about float glass.

  3. STRESS RELAXATION CHARACTERISTICS OF SELECTED COMMERCIALLY PRODUCED GLASSES

    Directory of Open Access Journals (Sweden)

    Chocholoušek J.

    2013-06-01

    Full Text Available This paper describes a quantitative method of stress relaxation measurement in prismatic glass samples during two different time-temperature regimes using the Sénarmont compensator. Four types of glass (Barium crystal glass, Eutal, Simax, and Container glass were subjected to observation in an assembled measuring device. Results will be used for parameterization of the Tool-Narayanaswamy-Mazurin model and consequently implemented in a finite element method code.

  4. Antireflective Coatings for Glass and Transparent Polymers

    NARCIS (Netherlands)

    Buskens, P.; Burghoorn, M.; Danho Mourad, M.C.; Vroon, Z.

    2016-01-01

    Antireflective coatings (ARCs) are applied to reduce surface reflections. We review coatings that reduce the reflection of the surface of the transparent substrates float glass, polyethylene terephthalate, poly(methyl methacrylate), and polycarbonate. Three main coating concepts exist to lower the r

  5. Laser implantation of plasmonic nanostructures into glass

    Science.gov (United States)

    Henley, Simon J.; Beliatis, Michail J.; Stolojan, Vlad; Silva, S. Ravi. P.

    2013-01-01

    A laser direct-writing method producing high-resolution patterns of gold, silver and alloy plasmonic nanoparticles implanted into the surface of glass substrates is demonstrated, by scanning a pulsed UV laser beam across selected areas of ultra-thin metal films. The nanoparticles are incorporated beneath the surface of the glass and hence the patterns are scratch-resistant. The physical mechanisms controlling the process are investigated and we demonstrate that this technique can be used to fabricate a wide range of plasmonic optical structures such as wavelength selected diffraction gratings and high-density substrates for lab-on-chip surface-enhanced Raman spectroscopy.A laser direct-writing method producing high-resolution patterns of gold, silver and alloy plasmonic nanoparticles implanted into the surface of glass substrates is demonstrated, by scanning a pulsed UV laser beam across selected areas of ultra-thin metal films. The nanoparticles are incorporated beneath the surface of the glass and hence the patterns are scratch-resistant. The physical mechanisms controlling the process are investigated and we demonstrate that this technique can be used to fabricate a wide range of plasmonic optical structures such as wavelength selected diffraction gratings and high-density substrates for lab-on-chip surface-enhanced Raman spectroscopy. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr33629d

  6. Nonlinear Integrated Optical Waveguides in Chalcogenide Glasses

    Institute of Scientific and Technical Information of China (English)

    Yinlan; Ruan; Barry; Luther-Davies; Weitang; Li; Andrei; Rode; Marek; Samoc

    2003-01-01

    This paper reports on the study and measurement of the third order optical nonlinearity in bulk sulfide-based chalcogenide glasses; The fabrication process of the ultrafast laser deposited As-S-(Se)-based chalcogenide films and optical waveguides using two techniques: wet chemistry etching and plasma etching.

  7. Cavitation and pore blocking in nanoporous glasses.

    Science.gov (United States)

    Reichenbach, C; Kalies, G; Enke, D; Klank, D

    2011-09-06

    In gas adsorption studies, porous glasses are frequently referred to as model materials for highly disordered mesopore systems. Numerous works suggest that an accurate interpretation of physisorption isotherms requires a complete understanding of network effects upon adsorption and desorption, respectively. The present article deals with nitrogen and argon adsorption at different temperatures (77 and 87 K) performed on a series of novel nanoporous glasses (NPG) with different mean pore widths. NPG samples contain smaller mesopores and significantly higher microporosity than porous Vycor glass or controlled pore glass. Since the mean pore width of NPG can be tuned sensitively, the evolution of adsorption characteristics with respect to a broadening pore network can be investigated starting from the narrowest nanopore width. With an increasing mean pore width, a H2-type hysteresis develops gradually which finally transforms into a H1-type. In this connection, a transition from a cavitation-induced desorption toward desorption controlled by pore blocking can be observed. Furthermore, we find concrete hints for a pore size dependence of the relative pressure of cavitation in highly disordered pore systems. By comparing nitrogen and argon adsorption, a comprehensive insight into adsorption mechanisms in novel disordered materials is provided.

  8. The Language of Stained-Glass Windows

    Science.gov (United States)

    Brew, Charl Anne

    2010-01-01

    The splendor and beauty of stained glass punctuates any room. In this article, the author describes a cross-curriculum project which incorporated the French classes' research and written study of France in the Middle Ages. For the project the author suggested Sainte-Chapelle which is considered a reliquary and was built by Louis IX to house the…

  9. Biological Glasses : nature's way to preserve life

    NARCIS (Netherlands)

    Buitink, J.

    2000-01-01

    As a result of drying, the cytoplasm of desiccation-tolerant organisms, such as seed and pollen, enters into a highly viscous, solid-like, semi-equilibrium state: the glassy state. The work in this dissertation is focussed on the function and characteristics of intracellular glasses in these organis

  10. Sintering behavior of LZSA glass-ceramics

    Directory of Open Access Journals (Sweden)

    Oscar Rubem Klegues Montedo

    2009-06-01

    Full Text Available The LZSA glass-ceramic system (Li2O-ZrO2-SiO2-Al2O 3 shows interesting properties, such as good chemical resistance, low thermal expansion, high abrasion resistance, and a low dielectric constant. However, in order to obtain a high performance material for specific applications, the sintering behavior must be better understood so that the porosity may be reduced and other properties improved. In this context, a sintering investigation for a specific LZSA glass-ceramic system composition was carried out. A 18.8Li2O-8.3ZrO2-64.2SiO2-8.7Al 2O3 glass was prepared by melting the solids, quenching the melt in water, and grinding the resulting solid in order to obtain a powder (3.68 μm average particle diameter. Subsequently, the glass powder was characterized (chemical analysis and determination of thermal properties and the sintering behavior was investigated using optical non-contact dilatometry measurements. The results showed that the crystallization process strongly reduced the sintering in the temperature interval from 785 to 940 °C, and a maximum thermal shrinkage of 15.4% was obtained with operating conditions of 1020 °C and 180 minutes.

  11. Glass Ceiling for Women in Higher Education.

    Science.gov (United States)

    Schedler, Petra; Glastra, Folke; Hake, Barry

    2003-01-01

    Discusses the place of women in higher education in the Netherlands. Suggests that it is not a question of numbers but of orientation, field, and the glass ceiling. Asserts that despite some improvement, higher education may be one of the last bastions against the recognition of women's worth. (Contains 42 references.) (JOW)

  12. The Real Glass Ceiling. Your Career.

    Science.gov (United States)

    Savage, Adrian

    2002-01-01

    There is a powerful and common glass ceiling (barrier that prevents capable employees from being promoted) that affects men as much as women. Between middle management and the executive level, corporate culture shifts to one based on power and a worker must play by new rules even if these have never been explained. (JOW)

  13. Forming of bulk metallic glass microcomponents

    DEFF Research Database (Denmark)

    Wert, John A.; Thomsen, Christian; Jensen, Rune Debel

    2009-01-01

    The present article considers forward extrusion, closed-die forging and backward extrusion processes for fabrication of individual microcomponents from two bulk metallic glass (BMG) compositions: Mg60Cu30Y10 and Zr44Cu40Ag8Al8. Two types of tooling were used in the present work: relatively massive...

  14. Evaporation experiments and modelling for glass melts

    NARCIS (Netherlands)

    Limpt, J.A.C. van; Beerkens, R.G.C.

    2007-01-01

    A laboratory test facility has been developed to measure evaporation rates of different volatile components from commercial and model glass compositions. In the set-up the furnace atmosphere, temperature level, gas velocity and batch composition are controlled. Evaporation rates have been measured f

  15. Organic Entrainment and Preservation in Volcanic Glasses

    Science.gov (United States)

    Wilhelm, Mary Beth; Ojha, Lujendra; Brunner, Anna E.; Dufek, Josef D.; Wray, James Joseph

    2014-01-01

    Unaltered pyroclastic deposits have previously been deemed to have "low" potential for the formation, concentration and preservation of organic material on the Martian surface. Yet volcanic glasses that have solidified very quickly after an eruption may be good candidates for containment and preservation of refractory organic material that existed in a biologic system pre-eruption due to their impermeability and ability to attenuate UV radiation. Analysis using NanoSIMS of volcanic glass could then be performed to both deduce carbon isotope ratios that indicate biologic origin and confirm entrainment during eruption. Terrestrial contamination is one of the biggest barriers to definitive Martian organic identification in soil and rock samples. While there is a greater potential to concentrate organics in sedimentary strata, volcanic glasses may better encapsulate and preserve organics over long time scales, and are widespread on Mars. If volcanic glass from many sites on Earth could be shown to contain biologically derived organics from the original environment, there could be significant implications for the search for biomarkers in ancient Martian environments.

  16. Refractive index engineering in silica glass

    DEFF Research Database (Denmark)

    Kristensen, Martin

    2003-01-01

    by freezing a semi-permanent electric field into the glass. The non-linear properties obtained this way are very stable and show small dispersion with wavelength. Therefore they are potentially useful for applications ranging from electro-optic switching and modulation to wavelength conversion. Unfortunately...

  17. Janus neodymium glass laser operations manual

    Energy Technology Data Exchange (ETDEWEB)

    Auerbach, J.M.; Holmes, N.C.; Trainor, R.J.

    1978-09-29

    A manual, prepared to guide personnel in operating and maintaining the Janus glass laser system, is presented. System components are described in detail. Step-by-step procedures are presented for firing the laser and for performing routine maintenance and calibration procedures.

  18. Lightweight and thermally insulating aerogel glass materials

    Science.gov (United States)

    Gao, Tao; Jelle, Bjørn Petter; Gustavsen, Arild; He, Jianying

    2014-07-01

    Glass represents an important and widely used building material, and crucial aspects to be addressed include thermal conductivity, visible light transmittance, and weight for windows with improved energy efficiency. In this work, by sintering monolithic silica aerogel precursors at elevated temperatures, aerogel glass materials were successfully prepared, which were characterized by low thermal conductivity [k ≈ 0.17-0.18 W/(mK)], high visible transparency (T vis ≈ 91-96 % at 500 nm), low density (ρ ≈ 1.60-1.79 g/cm3), and enhanced mechanical strength (typical elastic modulus E r ≈ 2.0-6.4 GPa). These improved properties were derived from a series of successive gelation and aging steps during the desiccation of silica aerogels. The involved sol → gel → glass transformation was investigated by means of thermo-gravimetric analysis, scanning electron microscopy, nanoindentation, and Fourier transform infrared spectroscopy. Strategies of improving further the mechanical strength of the obtained aerogel glass materials are also discussed.

  19. Glass molding process with mold lubrication

    Science.gov (United States)

    Davey, Richard G.

    1978-06-27

    Improvements are provided in glass forming processes of the type wherein hot metal blank molds are employed by using the complementary action of a solid film lubricant layer, of graphite dispersed in a cured thermoset organopolysiloxane, along with an overspray of a lubricating oil.

  20. Ultrabroadband terahertz spectroscopy of chalcogenide glasses

    DEFF Research Database (Denmark)

    Zalkovskij, Maksim; Bisgaard, Christer Zoffmann; Novitsky, Andrey;

    2012-01-01

    and absorption coefficient is found for both glasses. We observe the breakdown of the universal power-law dependence of the absorption coefficient due to atomic vibrations observed at low THz frequencies in disordered materials, and see the transition to localized vibrational dynamics for the As2S3 compound...

  1. Additive manufacturing of glass for optical applications

    Science.gov (United States)

    Luo, Junjie; Gilbert, Luke J.; Bristow, Douglas A.; Landers, Robert G.; Goldstein, Jonathan T.; Urbas, Augustine M.; Kinzel, Edward C.

    2016-04-01

    Glasses including fused quartz have significant scientific and engineering applications including optics, communications, electronics, and hermetic seals. This paper investigates a filament fed process for Additive Manufacturing (AM) of fused quartz. Additive manufacturing has several potential benefits including increased design freedom, faster prototyping, and lower processing costs for small production volumes. However, current research in AM of glasses is limited and has focused on non-optical applications. Fused quartz is studied here because of its desirability for high-quality optics due to its high transmissivity and thermal stability. Fused quartz also has a higher working temperature than soda lime glass which poses a challenge for AM. In this work, fused quartz filaments are fed into a CO2 laser generated melt pool, smoothly depositing material onto the work piece. Single tracks are printed to explore the effects that different process parameters have on the morphology of printed fused quartz. A spectrometer is used to measure the thermal radiation incandescently emitted from the melt pool. Thin-walls are printed to study the effects of layer-to-layer height. Finally, a 3D fused quartz cube is printed using the newly acquired layer height and polished on each surface. The transmittance and index homogeneity of the polished cube are both measured. These results show that the filament fed process has the potential to print fused quartz with optical transparency and of index of refraction uniformity approaching bulk processed glass.

  2. DWPF Glass Melter Technology Manual: Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    Iverson, D.C.

    1993-12-31

    This document details information about the design of a glass melter to be used at the Defense Waste Processing Facility located at the Savannah River Site. Topics discussed include: Information collected during testing, equipment, materials, design basis, feed tubes, and an evaluation of the performance of various components. Information is conveyed using many diagrams and photographs.

  3. Plutonium immobilization in glass and ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Knecht, D.A. [Lockheed Martin Idaho Technologies, Idaho Falls (United States); Murphy, W.M. [Southwest Research Institute, San Antonio, TX (United States)

    1996-05-01

    The Materials Research Society Nineteenth Annual Symposium on the Scientific Basis for Nuclear Waste Management was held in Boston on November 27 to December 1, 1995. Over 150 papers were presented at the Symposium dealing with all aspects of nuclear waste management and disposal. Fourteen oral sessions and on poster session included a Plenary session on surplus plutonium dispositioning and waste forms. The proceedings, to be published in April, 1996, will provide a highly respected, referred compilation of the state of scientific development in the field of nuclear waste management. This paper provides a brief overview of the selected Symposium papers that are applicable to plutonium immobilization and plutonium waste form performance. Waste forms that were described at the Symposium cover most of the candidate Pu immobilization options under consideration, including borosilicate glass with a melting temperature of 1150 {degrees}C, a higher temperature (1450 {degrees}C) lanthanide glass, single phase ceramics, multi-phase ceramics, and multi-phase crystal-glass composites (glass-ceramics or slags). These Symposium papers selected for this overview provide the current status of the technology in these areas and give references to the relevant literature.

  4. DWPF Glass Melter Technology Manual: Volume 4

    Energy Technology Data Exchange (ETDEWEB)

    Iverson, D.C.

    1993-12-31

    This document details information about the design of a glass melter to be used at the Defense Waste Processing Facility located at the Savannah River Plant. Information contained in this document consists solely of a machine drawing and parts list and purchase orders with specifications of equipment used in the development of the melter.

  5. Stability of Glass Fiber-Plastic Composites

    Science.gov (United States)

    1974-11-01

    These treatments were 1. As-received, 2. heat treated 0.5 hours at 550°C, 3. washed in acetone, and 4. washed in aqua regla . 1. Microscopy S-glass... regla . No apparent effect on the surface of the fibers is visible as a result of these surface treatments. Figures 30-33 show the results of the

  6. Corrosion effects on soda lime glass

    NARCIS (Netherlands)

    Veer, F.A.; Rodichev, Y.M.

    2010-01-01

    Although soda lime glass is the most common used transparent material in architecture, little is known about the corrosion effects on long term strength and the interaction between corrosion and defects. Extensive testing on soda lime bars under different environmental conditions and different degre

  7. Preparation of basalt-based glass ceramics

    Directory of Open Access Journals (Sweden)

    MIHOVIL LOGAR

    2003-06-01

    Full Text Available Local and conventional raw materials–massive basalt from the Vrelo locality on Kopaonik mountain–have been used as starting materials to test their suitability for the production of glass-ceramics. Crystallization phenomena of glasses of the fused basalt rocks were studied by X-ray phase analysis, optical microscopy and other techniques. Various heat treatments were used, and their influences, on controlling the microstructures and properties of the products were studied with the aim of developing high strength glass-ceramic materials. Diopside CaMg(SiO32 and hypersthene ((Mg,FeSiO3 were identifies as the crystalline phases. The final products contained considerable amounts of a glassy phase. The crystalline size was in range of 8–480 mm with plate or needle shape. Microhardness, crashing strength and wears resistence of the glass-ceramics ranged from 6.5–7.5, from 2000–6300 kg/cm2 and from 0.1–0.2 g/cm, respectively.

  8. Warming of Water in a Glass

    Science.gov (United States)

    Paulins, Paulis; Krauze, Armands; Ozolinsh, Maris; Muiznieks, Andris

    2016-01-01

    The article focuses on the process of water warming from 0 °C in a glass. An experiment is performed that analyzes the temperature in the top and bottom layers of water during warming. The experimental equipment is very simple and can be easily set up using devices available in schools. The temperature curves obtained from the experiment help us…

  9. Bruno Taut and the Glass House

    DEFF Research Database (Denmark)

    Beim, Anne

    1997-01-01

    The Paper presents a tectonic analysis of the Glass House of Bruno Taut,  exhibited at the 1925 Wrkbund Exposition in Cologne, 1925. This is discussed in correlation with the cultural ideas and artistic inspiration he was influenced by and the innovative technological development that ruled the e...

  10. Multiplexed ionic current sensing with glass nanopores.

    Science.gov (United States)

    Bell, Nicholas A W; Thacker, Vivek V; Hernández-Ainsa, Silvia; Fuentes-Perez, Maria E; Moreno-Herrero, Fernando; Liedl, Tim; Keyser, Ulrich F

    2013-05-21

    We report a method for simultaneous ionic current measurements of single molecules across up to 16 solid state nanopore channels. Each device, costing less than $20, contains 16 glass nanopores made by laser assisted capillary pulling. We demonstrate simultaneous multichannel detection of double stranded DNA and trapping of DNA origami nanostructures to form hybrid nanopores.

  11. Philip Glass : "Koyaanisqatsi" muutub üha aktuaalsemaks / Philip Glass ; interv. Romi Erlach

    Index Scriptorium Estoniae

    Glass, Philip, 1937-

    2003-01-01

    Philip Glass ja tema ansambel esitavad 2. detsembril PÖFFil oma filmimuusika Godfrey Reggio filmile "Koyaanisqatsi" selle linastusel Tallinna linnahallis. Helilooja räägib oma muusikast, ka Arvo Pärdist

  12. Rare earth-doped lead borate glasses and transparent glass-ceramics: Structure-property relationship

    Science.gov (United States)

    Pisarski, W. A.; Pisarska, J.; Mączka, M.; Lisiecki, R.; Grobelny, Ł.; Goryczka, T.; Dominiak-Dzik, G.; Ryba-Romanowski, W.

    2011-08-01

    Correlation between structure and optical properties of rare earth ions in lead borate glasses and glass-ceramics was evidenced by X-ray-diffraction, Raman, FT-IR and luminescence spectroscopy. The rare earths were limited to Eu 3+ and Er 3+ ions. The observed BO 3 ↔ BO 4 conversion strongly depends on the relative PbO/B 2O 3 ratios in glass composition, giving important contribution to the luminescence intensities associated to 5D 0- 7F 2 and 5D 0- 7F 1 transitions of Eu 3+. The near-infrared luminescence and up-conversion spectra for Er 3+ ions in lead borate glasses before and after heat treatment were measured. The more intense and narrowing luminescence lines suggest partial incorporation of Er 3+ ions into the orthorhombic PbF 2 crystalline phase, which was identified using X-ray diffraction analysis.

  13. The "wonderful properties of glass": Liebig's Kaliapparat and the practice of chemistry in glass.

    Science.gov (United States)

    Jackson, Catherine M

    2015-03-01

    Everybody knows that glass is and always has been an important presence in chemical laboratories. Yet the very self-evidence of this notion tends to obscure a supremely important change in chemical practice during the early decades of the nineteenth century. This essay uses manuals of specifically chemical glassblowing published between about 1825 and 1835 to show that early nineteenth-century chemists began using glass in distinctly new ways and that their appropriation of glassblowing skill had profoundly important effects on the emerging discipline of chemistry. The new practice of chemistry in glass-exemplified in this essay by Justus Liebig's introduction of a new item of chemical glassware for organic analysis, the Kaliapparat--transformed not merely the material culture of chemistry but also its geography, its pedagogy, and, ultimately, its institutions. Moving chemistry into glass--a change so important that it warrants the term "glassware revolution"--had far-reaching consequences.

  14. Spectroscopic investigations on glasses, glass-ceramics and ceramics developed for nuclear waste immobilization

    Science.gov (United States)

    Caurant, D.

    2014-05-01

    Highly radioactive nuclear waste must be immobilized in very durable matrices such as glasses, glass-ceramics and ceramics in order to avoid their dispersion in the biosphere during their radioactivity decay. In this paper, we present various examples of spectroscopic investigations (optical absorption, Raman, NMR, EPR) performed to study the local structure of different kinds of such matrices used or envisaged to immobilize different kinds of radioactive wastes. A particular attention has been paid on the incorporation and the structural role of rare earths—both as fission products and actinide surrogates—in silicate glasses and glass-ceramics. An example of structural study by EPR of a ceramic (hollandite) irradiated by electrons (to simulate the effect of the β-irradiation of radioactive cesium) is also presented.

  15. Rare earth-doped lead borate glasses and transparent glass-ceramics: structure-property relationship.

    Science.gov (United States)

    Pisarski, W A; Pisarska, J; Mączka, M; Lisiecki, R; Grobelny, Ł; Goryczka, T; Dominiak-Dzik, G; Ryba-Romanowski, W

    2011-08-15

    Correlation between structure and optical properties of rare earth ions in lead borate glasses and glass-ceramics was evidenced by X-ray-diffraction, Raman, FT-IR and luminescence spectroscopy. The rare earths were limited to Eu(3+) and Er(3+) ions. The observed BO(3)↔BO(4) conversion strongly depends on the relative PbO/B(2)O(3) ratios in glass composition, giving important contribution to the luminescence intensities associated to (5)D(0)-(7)F(2) and (5)D(0)-(7)F(1) transitions of Eu(3+). The near-infrared luminescence and up-conversion spectra for Er(3+) ions in lead borate glasses before and after heat treatment were measured. The more intense and narrowing luminescence lines suggest partial incorporation of Er(3+) ions into the orthorhombic PbF(2) crystalline phase, which was identified using X-ray diffraction analysis.

  16. Spectroscopic properties of Eu-doped antimony-germanate glass and glass-ceramics

    Science.gov (United States)

    Zmojda, J.; Kochanowicz, M.; Miluski, P.; Ragin, T.; Dorosz, D.; ZajÄ c, A.

    2016-09-01

    In our work we focused on possibility of obtaining phosphate nano-phase structures in antimony-germanate glasses doped with europium ions. The glasses with molar composition of 50(Sb2O3 - GeO2) - 50(SiO2 - Al2O3 - Na2O) doped with 0.5mol% Eu2O3 were prepared by standard melt-quenching method. In order to optimize glass-ceramic system the influence of phosphate concentration (up to 10mol%) on spectroscopic properties have been investigated. The symmetry nature of molecular structure around europium ions have been determined from the intensity ratio between (5D0 →7F2)/(5D0 →7F1) transitions. The effect of prominent Stark splitting of luminescence band at 612 nm characterised as "hypersensitive transition" into 3 sub-wavelength was observed in glasses with 1mol% and 3mol% of P2O5.

  17. Super-Potts glass: A disordered model for glass-forming liquids

    Science.gov (United States)

    Angelini, Maria Chiara; Biroli, Giulio

    2014-12-01

    We introduce a disordered system, the super-Potts model, which is a more frustrated version of the Potts glass. Its elementary degrees of freedom are variables that can take M values and are coupled via pairwise interactions. Its exact solution on a completely connected lattice demonstrates that, for large enough M , it belongs to the class of mean-field systems solved by a one-step replica symmetry breaking ansatz. Numerical simulations by the parallel tempering technique show that in three dimensions it displays a phenomenological behavior similar to the one of glass-forming liquids. The super-Potts glass is therefore a disordered model allowing one to perform extensive and detailed studies of the random first-order transition in finite dimensions. We also discuss its behavior for small values of M , which is similar to the one of spin glasses in a field.

  18. Orientational glass: Full replica symmetry breaking in generalized spin glass-like models without reflection symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Tareyeva, E.E. [Institute for High Pressure Physics, Russian Academy of Sciences, 142190 Troitsk (Russian Federation); Schelkacheva, T.I., E-mail: tanschelk@gmail.com [Institute for High Pressure Physics, Russian Academy of Sciences, 142190 Troitsk (Russian Federation); Chtchelkatchev, N.M. [Institute for High Pressure Physics, Russian Academy of Sciences, 142190 Troitsk (Russian Federation); L.D. Landau Institute for Theoretical Physics, Russian Academy of Sciences, 117940 Moscow (Russian Federation); Department of Theoretical Physics, Moscow Institute of Physics and Technology, 141700 Moscow (Russian Federation)

    2013-02-15

    We investigate near the point of glass transition the expansion of the free energy corresponding to the generalized Sherrington–Kirkpatrick model with arbitrary diagonal operators U{sup -hat} standing instead of Ising spins. We focus on the case when U{sup -hat} is an operator with broken reflection symmetry. Such a consideration is important for understanding the behavior of spin glass-like phases in a number of real physical systems, mainly in orientational glasses in mixed molecular crystals which present just the case. We build explicitly a full replica symmetry breaking (FRSB) solution of the equations for the orientational glass order parameters when the nonsymmetric part of U{sup -hat} is small. This particular result presents a counterexample in the context of usually adopted conjecture of the absence of FRSB solution in systems with no reflection symmetry.

  19. Nanodiamond in tellurite glass Part I: origin of loss in nanodiamond-doped glass

    CERN Document Server

    Ebendorff-Heidepriem, Heike; Ji, Hong; Greentree, Andrew D; Gibson, Brant C; Monro, Tanya M

    2014-01-01

    Tellurite glass fibers with embedded nanodiamond are attractive materials for quantum photonic applications. Reducing the loss of these fibers in the 600-800 nm wavelength range of nanodiamond fluorescence is essential to exploit the unique properties of nanodiamond in the new hybrid material. In the first part of this study, we report the effect of interaction of the tellurite glass melt with the embedded nanodiamond on the loss of the glasses. The glass fabrication conditions such as melting temperature and concentration of NDs added to the melt were found to have critical influence on the interaction. Based on this understanding, we identified promising fabrication conditions for decreasing the loss to levels required for practical applications.

  20. Influence of the glass particle size on the foaming process and physical characteristics of foam glasses

    DEFF Research Database (Denmark)

    König, Jakob; Petersen, Rasmus Rosenlund; Yue, Yuanzheng

    2016-01-01

    We have prepared low-density foam glasses from cathode-ray-tube panel glass using carbon and MnO2 as the foaming agents. The effect of the glass particle size on the foaming process, the apparent density and the pore morphology is revealed. The results show that the foaming is mainly caused...... by the reduction of manganese. Foam glasses with a density of particle size is ≤33 μm (D50). The foams have a homogeneous pore distribution and a major fraction of the pores are smaller than 0.5 mm. Only when using the smallest particles (13 μm) does the pore size increase to 1...