WorldWideScience

Sample records for borono-phenylalanine-fructose complex bpa-fr

  1. 123I-BPA and 123I-BPA-fructose complex as a new radiopharmaceutical for the imaging of amino acid transport in tumor

    International Nuclear Information System (INIS)

    Choi, T. H.; Choi, C. W.; Woo, K. S.; Chung, W. S.; Lim, S. J.; Lee, S. J.; Hong, S. W.; Lim, S. M.

    1999-01-01

    Boronophenylalanine (BPA) as derivative of phenylalanine, was used to treatment for glioma and melanoma in BNCT. We labeled BPA with radioiodides for tumor imaging of amino acid transport with gamma camera. Because of limited solubility of BAP, I-BPA-Fructose(I-BPA was complexed with fructose) to increase solubility. I-BPA was labeled by chloramine T coated bead method. Serum stability of I-BPA analyzed by HPLC at 37 .deg. C. Cellular uptake of I-BPA and I-BPA-Fructose was compared in 9L glioma and B16 melanoma. To see biodistribution, I-BPA 9x10 5 Bq(20 μg/100 μl) or I-BPA-Fructose 9x10 5 Bq(20 μg/fructose 55 μg/100 μl) was injected to B16 melanoma bearing C57 mice. In tumor bearing mice at 30 min, 1, 2, 24 hr after injection of tracers (n-4 per group). In 24hr, radiochemical purity of I-BPA in serum was retained above 90%. In cultured cells the maximum uptake was observed at 60min. In 9L glioma cells, %uptake of I-BPA and I-BPA-Fructose was 2.05, 2.6 at 60min. But in B16 melanoma, %uptake of I-BPA and I-BPA and-Fructose was 2.57, 6.62 at 60 min. In melanoma bearing mice, tumor/muscle ratio of I-BPA in 30 min, 1hr, 2hr, 24hr after injection was 1.48, 2.19, 2.28, 0.29 and %ID/g of tumor was 6.25, 5.17, 3.52, 0.29. Tumor/muscle ratio of I-BPA-Fructose was 1.51, 2.05, 2.1, 2.84 in 30 min, 1hr, 2hr, 24hr post-injection and %ID/g of tumor was 4.61, 3.65, 2.93, 0.71. The radioactivity was excreted mainly via hepatobiliary tract to the intestine. I-BPA was stable in serum upto 24hr. Uptake of I-BPA-Fructose was higher than I-BPA in melanoma cells. I-BPA-Fructose, is a promising tumor imaging radiopharmaceutical in some tumors

  2. Predominant contribution of L-type amino acid transporter to 4-borono-2-18F-fluoro-phenylalanine uptake in human glioblastoma cells

    International Nuclear Information System (INIS)

    Yoshimoto, Mitsuyoshi; Kurihara, Hiroaki; Honda, Natsuki; Kawai, Keiichi; Ohe, Kazuyo; Fujii, Hirofumi; Itami, Jun; Arai, Yasuaki

    2013-01-01

    Introduction: 4-Borono-2- 18 F-fluoro-phenylalanine ( 18 F-FBPA) has been used to anticipate the therapeutic effects of boron neutron capture therapy (BNCT) with 4-borono-L-phenylalanine (BPA). Similarly, L-[methyl- 11 C]-methionine ( 11 C-MET), the most popular amino acid PET tracer, is a possible candidate for this purpose. We investigated the transport mechanism of 18 F-FBPA and compared it with that of 14 C-MET in human glioblastoma cell lines. Methods: Uptake of 18 F-FBPA and 14 C-MET was examined in A172, T98G, and U-87MG cells using 2-aminobicyclo-(2.2.1)-heptane-2-carboxylic acid (a system L-specific substrate), 2-(methylamino)-isobutyric acid (a system A-specific substrate), and BPA. Gene expression was analyzed by quantitative real time polymerase chain reaction. Results: System L was mainly involved in the uptake of 18 F-FBPA (74.5%–81.1% of total uptake) and 14 C-MET (48.3%–59.4%). System A and ASC also contributed to the uptake of 14 C-MET. Inhibition experiments revealed that BPA significantly decreased the uptake of 18 F-FBPA, whereas 31%–42% of total 14 C-MET uptake was transported by BPA non-sensitive transporters. In addition, 18 F-FBPA uptake correlated with LAT1 and total LAT expressions. Conclusion: This study demonstrated that 18 F-FBPA was predominantly transported by system L in human glioblastoma cells compared to 14 C-MET. Although further studies are needed to elucidate the correlation between 18 F-FBPA uptake and BPA content in tumor tissues, 18 F-FBPA is suitable for the selection of patients who benefit from BNCT with BPA

  3. 10B-NMR determination of 10B-BPA, 10B-BPA–fructose complex and total 10B in blood for BNCT

    International Nuclear Information System (INIS)

    Yoshino, K.; Yabe, T.; Hattori, T.; Saito, K.; Ishikawa, A.; Ohki, H.

    2014-01-01

    First spontaneous, noninvasive determination method of 10 B-BPA, 10 B-BPA–fructose complex, and total 10 B in blood is described. 10 B-NMR measurement with 100,000 FT accumulation enables us to obtain the result within 100 min/sample. The detection limits for the simultaneous analysis were 3 ppm, 3 ppm and 6 ppm for 10 B-BPA, 10 B-BPA–fructose complex and total 10 B respectively in this study. By this method, we can actually discuss behavior of the 10 B-BPA–fructose complex in blood. - Highlights: • First 10 B-NMR determination of 10 B-BPA and 10 B-BPA–fructose complex in blood. • Total 10 B concentration in blood could be obtained by this method • The detection limit was 3 ppm for total 10 B

  4. Boron neutron capture therapy for clear cell sarcoma (CCS): Biodistribution study of p-borono-L-phenylalanine in CCS-bearing animal models

    International Nuclear Information System (INIS)

    Andoh, T.; Fujimoto, T.; Sudo, T.; Fujita, I.; Imabori, M.; Moritake, H.; Sugimoto, T.; Sakuma, Y.; Takeuchi, T.; Kawabata, S.; Kirihata, M.; Akisue, T.; Yayama, K.; Kurosaka, M.; Miyatake, S.; Fukumori, Y.; Ichikawa, H.

    2011-01-01

    Clear cell sarcoma (CCS) is a rare melanocytic malignant tumor with a poor prognosis. Our previous study demonstrated that in vitro cultured CCS cells have the ability to highly uptake L-BPA and thus boron neutron capture therapy could be a new option for CCS treatment. This paper proved that a remarkably high accumulation of 10 B (45–74 ppm) in tumor was obtained even in a CCS-bearing animal with a well-controlled biodistribution followed by intravenous administration of L-BPA-fructose complex (500 mg BPA/kg).

  5. Boron neutron capture therapy for clear cell sarcoma (CCS): Biodistribution study of p-borono-L-phenylalanine in CCS-bearing animal models

    Energy Technology Data Exchange (ETDEWEB)

    Andoh, T. [Laboratory of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Cooperative Research Center of Life Sciences, Kobe Gakuin University, Kobe 650-8586 (Japan); Fujimoto, T. [Department of Orthopaedic Surgery, Hyogo Cancer Center, Akashi 673-0021 (Japan); Sudo, T. [Section of Translational Research, Hyogo Cancer Center, Akashi 673-0021 (Japan); Fujita, I.; Imabori, M. [Department of Orthopaedic Surgery, Hyogo Cancer Center, Akashi 673-0021 (Japan); Moritake, H. [Department of Pediatrics, Miyazaki University, Kiyotake 889-1692 (Japan); Sugimoto, T. [Department of Pediatrics, Saiseikai Shigaken Hospital, Ritto 520-3046 (Japan); Sakuma, Y. [Department of Pathology, Hyogo Cancer Center, Akashi 673-0021 (Japan); Takeuchi, T. [Department of Pathology, Kochi University, Nangoku 783-8505 (Japan); Kawabata, S. [Department of Neurosurgery, Osaka Medical College, Osaka 569-8686 (Japan); Kirihata, M. [Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531 (Japan); Akisue, T. [Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Yayama, K. [Laboratory of Cardiovascular Pharmacology, Faculty of Pharmaceutical Sciences and Cooperative Research Center of Life Sciences, Kobe Gakuin University, Kobe 650-8586 (Japan); Kurosaka, M. [Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Miyatake, S. [Department of Neurosurgery, Osaka Medical College, Osaka 569-8686 (Japan); Fukumori, Y. [Laboratory of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Cooperative Research Center of Life Sciences, Kobe Gakuin University, Kobe 650-8586 (Japan); Ichikawa, H., E-mail: ichikawa@pharm.kobegakuin.ac.jp [Laboratory of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Cooperative Research Center of Life Sciences, Kobe Gakuin University, Kobe 650-8586 (Japan)

    2011-12-15

    Clear cell sarcoma (CCS) is a rare melanocytic malignant tumor with a poor prognosis. Our previous study demonstrated that in vitro cultured CCS cells have the ability to highly uptake L-BPA and thus boron neutron capture therapy could be a new option for CCS treatment. This paper proved that a remarkably high accumulation of {sup 10}B (45-74 ppm) in tumor was obtained even in a CCS-bearing animal with a well-controlled biodistribution followed by intravenous administration of L-BPA-fructose complex (500 mg BPA/kg).

  6. Evaluation of BPA uptake in clear cell sarcoma (CCS) in vitro and development of an in vivo model of CCS for BNCT studies.

    Science.gov (United States)

    Fujimoto, T; Andoh, T; Sudo, T; Fujita, I; Imabori, M; Moritake, H; Sugimoto, T; Sakuma, Y; Takeuchi, T; Sonobe, H; Epstein, Alan L; Akisue, T; Kirihata, M; Kurosaka, M; Fukumori, Y; Ichikawa, H

    2011-12-01

    Clear cell sarcoma (CCS), a rare malignant tumor with a predilection for young adults, is of poor prognosis. Recently however, boron neutron capture therapy (BNCT) with the use of p-borono-L-phenylalanine (BPA) for malignant melanoma has provided good results. CCS also produces melanin; therefore, the uptake of BPA is the key to the application of BNCT to CCS. We describe, for the first time, the high accumulation of boron in CCS and the CCS tumor-bearing animal model generated for BNCT studies. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Boron neutron capture therapy for clear cell sarcoma (CCS): biodistribution study of p-borono-L-phenylalanine in CCS-bearing animal models.

    Science.gov (United States)

    Andoh, T; Fujimoto, T; Sudo, T; Fujita, I; Imabori, M; Moritake, H; Sugimoto, T; Sakuma, Y; Takeuchi, T; Kawabata, S; Kirihata, M; Akisue, T; Yayama, K; Kurosaka, M; Miyatake, S; Fukumori, Y; Ichikawa, H

    2011-12-01

    Clear cell sarcoma (CCS) is a rare melanocytic malignant tumor with a poor prognosis. Our previous study demonstrated that in vitro cultured CCS cells have the ability to highly uptake l-BPA and thus boron neutron capture therapy could be a new option for CCS treatment. This paper proved that a remarkably high accumulation of (10)B (45-74 ppm) in tumor was obtained even in a CCS-bearing animal with a well-controlled biodistribution followed by intravenous administration of L-BPA-fructose complex (500 mg BPA/kg). Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Study of the interaction of boron-containing amino acids for the neutron capture therapy with biologically interesting compounds by using 'three-spot zone electrophoresis'

    International Nuclear Information System (INIS)

    Kitaoka, Yoshinori; Kobayashi, Mitsue; Morimoto, Tsuguhiro; Kirihata, Mitsunori; Ichimoto, Itsuo.

    1995-01-01

    As the boron carriers for boron neutron capture therapy, p-borono phenylalanine (BPA) is the boron compound which has been clinically used together with sodium borocaptate. It was found by the electrophoresis behavior that the BPA interacted with organic carboxylic acids in its dissolved state. In this paper, the electrophoresis behavior of general amino acids as seen in three-spot zone electrophoresis and the peculiar interaction of the amino acids having dihydroxyboryl radical are described. Zone electrophoresis has been developed as separation means, and three-spot process excludes the errors due to accidental factors as far as possible. The behaviors of zone electrophoresis of ordinary neutral amino acids, orthoboric acid and p-BPA are reported. For utilizing the features of boron neutron capture therapy, it is necessary to develop the carrier which is singularly taken into cancer cells. There is not a good method for discriminating normal cells and cancer cells. As for the administration of BPA to patients, its solubility is insufficient, therefore, its fructose complex has been used. The research on the biochemical peculiarity of boron is important. (K.I.)

  9. Models for estimation of the 10B concentration after BPA-fructose complex infusion in patients during epithermal neutron irradiation in BNCT

    International Nuclear Information System (INIS)

    Ryynaenen, Paeivi M.; Kortesniemi, Mika; Coderre, Jeffrey A.; Diaz, Aidnag Z.; Hiismaeki, Pekka; Savolainen, Sauli E.

    2000-01-01

    Purpose: To create simple and reliable models for clinical practice for estimating the blood 10 B time-concentration curve after p-boronophenylalanine fructose complex (BPA-F) infusion in patients during neutron irradiation in boron neutron capture therapy (BNCT). Methods and Materials: BPA-F (290 mg BPA/kg body weight) was infused i.v. during two hours to 10 glioblastoma multiforme patients. Blood samples were collected during and after the infusion. Compartmental models and bi-exponential function fit were constructed based on the 10 B blood time-concentration curve. The constructed models were tested with data from six additional patients who received various amounts of infused BPA-F and data from one patient who received a one-hour infusion of 170 mg BPA/kg body weight. Results: The resulting open two-compartment model and bi-exponential function estimate the clearance of 10 B after 290 mg BPA/kg body weight infusion from the blood with satisfactory accuracy during the first irradiation field (1 ppm, i.e., 7%). The accuracy of the two models in predicting the clearance of 10 B during the second irradiation field are for two-compartment model 1.0 ppm (8%) and 0.2 ppm (2%) for bi-exponential function. The models predict the average blood 10 B concentration with an increasing accuracy as more data points are available during the treatment. Conclusion: By combining the two models, a robust and practical modeling tool is created for the estimation of the 10 B concentration in blood after BPA-F infusion

  10. 1H MRS of a boron neutron capture therapy 10B-carrier, L-p-boronophenylalanine-fructose complex, BPA-F: phantom studies at 1.5 and 3.0 T

    International Nuclear Information System (INIS)

    Heikkinen, S; Kangasmaeki, A; Timonen, M; Kankaanranta, L; Haekkinen, A-M; Lundbom, N; Vaehaetalo, J; Savolainen, S

    2003-01-01

    The quantification of a BNCT 10 B-carrier, L-p-boronophenylalanine-fructose complex (BPA-F), was evaluated using 1 H magnetic resonance spectroscopy ( 1 H MRS) with phantoms at 1.5 and 3.0 T. For proper quantification, relaxation times T 1 and T 2 are needed. While T 1 is relatively easy to determine, the determination of T 2 of a coupled spin system of aromatic protons of BPA is not straightforward with standard MRS sequences. In addition, an uncoupled concentration reference for aromatic protons of BPA must be used with caution. In order to determine T 2 , the response of an aromatic proton spin system to the MRS sequence PRESS with various echo times was calculated and the product of the response curve with exponential decay was fitted to the measured intensities. Furthermore, the response curve can be used to correct the intensities, when an uncoupled resonance is used as a concentration reference. BPA was quantified using both phantom replacement and internal water referencing methods with accuracies of ±5% and ±15%. Our phantom results suggest that in vivo studies on BPA concentration determination will be feasible

  11. Boron neutron capture therapy of glioblastoma multiforme using the p- boronophenylalanine-fructose complex and epithermal neutrons

    International Nuclear Information System (INIS)

    Coderre, J.A.; Chanana, A.D.; Joel, D.D.; Liu, H.B.; Slatkin, D.N.; Wielopolski, L.; Bergland, R.; Elowitz, E.; Chadha, M.

    1994-01-01

    The amino acid analogue p-boronophenylalanine (BPA) is under investigation as a neutron capture agent for BNCT of glioblastoma multiforme. A series of patients undergoing surgical removal of tumor received BPA orally as the free amino acid. Favorable tumor/blood boron concentration ratios were obtained but the absolute amount of boron in the tumor would have been insufficient for BNCT. BPA can be solubilized at neutral pH by complexation with fructose (BPA-F). Studies with rats suggest that intraperitoneal injection of BPA-F complex produces a much higher tumor boron concentration to rat intracerebral 9L gliosarcoma that were possible with oral BPA. Higher boron concentrations have allowed higher tumor radiation doses to be delivered while maintaining the dose to the normal brain vascular endothelium below the threshold of tolerance. The experience to date of the administration of BPA-F to one patient is provided in this report

  12. Boron neutron capture therapy of glioblastoma multiforme using the p- boronophenylalanine-fructose complex and epithermal neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Coderre, J.A.; Chanana, A.D.; Joel, D.D.; Liu, H.B.; Slatkin, D.N.; Wielopolski, L. [Brookhaven National Lab., Upton, NY (United States); Bergland, R.; Elowitz, E. [Beth Israel Medical Center, New York, NY (United States). Dept. of Neurosurgery; Chadha, M. [Beth Israel Medical Center, New York, NY (United States). Dept. of Radiation Oncology

    1994-12-31

    The amino acid analogue p-boronophenylalanine (BPA) is under investigation as a neutron capture agent for BNCT of glioblastoma multiforme. A series of patients undergoing surgical removal of tumor received BPA orally as the free amino acid. Favorable tumor/blood boron concentration ratios were obtained but the absolute amount of boron in the tumor would have been insufficient for BNCT. BPA can be solubilized at neutral pH by complexation with fructose (BPA-F). Studies with rats suggest that intraperitoneal injection of BPA-F complex produces a much higher tumor boron concentration to rat intracerebral 9L gliosarcoma that were possible with oral BPA. Higher boron concentrations have allowed higher tumor radiation doses to be delivered while maintaining the dose to the normal brain vascular endothelium below the threshold of tolerance. The experience to date of the administration of BPA-F to one patient is provided in this report.

  13. Intracellular uptake of 123I-boronophenylalanine-fructose

    International Nuclear Information System (INIS)

    Woo, K. S.; Choi, T. H.; Choi, C. Y.; Jung, W. S.; Lim, S. J.; Lee, S. J.; Lim, S. M.

    1999-01-01

    Boronophenylalanine (BPA) has been used in malignant glioma or melanoma uptake for BNCT. We labeled BPA with 123 I for in vivo quantitation of BPA in BNCT, and tumor imaging with gamma camera. We investigated the amino acid BPA as a boron delivery agent fro BNCT. As the free amino acid, BPA has a limited solubility at physiological pH, which makes it unsuitable for IV or IP injection. Recent studies of the chemistry of BPA have yielded a method of solubilizing BPA at neutral pH using fructose, a common fruit sugar. The use of BPA-fructose has significantly improved high uptake compared to BPA alone in melanoma

  14. Evaluation of D-isomers of 4-borono-2-18F-fluoro-phenylalanine and O-11C-methyl-tyrosine as brain tumor imaging agents: a comparative PET study with their L-isomers in rat brain glioma.

    Science.gov (United States)

    Kanazawa, Masakatsu; Nishiyama, Shingo; Hashimoto, Fumio; Kakiuchi, Takeharu; Tsukada, Hideo

    2018-06-13

    The potential of the D-isomerization of 4-borono-2- 18 F-fluoro-phenylalanine ( 18 F-FBPA) to improve its target tumor to non-target normal brain tissue ratio (TBR) was evaluated in rat brain glioma and compared with those of L- and D- 11 C-methyl-tyrosine ( 11 C-CMT). The L- or D-isomer of 18 F-FBPA was injected into rats through the tail vein, and their whole body kinetics and distributions were assessed using the tissue dissection method up to 90 min after the injection. The kinetics of L- and D- 18 F-FBPA or L- and D- 11 C-CMT in the C-6 glioma-inoculated rat brain were measured for 90 or 60 min, respectively, using high-resolution animal PET, and their TBRs were assessed. Tissue dissection analyses showed that D- 18 F-FBPA uptake was significantly lower than that of L- 18 F-FBPA in the brain and abdominal organs, except for the kidney and bladder, reflecting the faster elimination rate of D- 18 F-FBPA than L- 18 F-FBPA from the blood to the urinary tract. PET imaging using 18 F-FBPA revealed that although the brain uptake of D- 18 F-FBPA was significantly lower than that of L- 18 F-FBPA, the TBR of the D-isomer improved to 6.93 from 1.45 for the L-isomer. Similar results were obtained with PET imaging using 11 C-CMT with a smaller improvement in TBR to 1.75 for D- 11 C-CMT from 1.33 for L- 11 C-CMT. The present results indicate that D- 18 F-FBPA is a better brain tumor imaging agent with higher TBR than its original L-isomer and previously reported tyrosine-based PET imaging agents. This improved TBR of D- 18 F-FBPA without any pre-treatments, such as tentative blood-brain barrier disruption using hyperosmotic agents or sonication, suggests that the D-isomerization of BPA results in the more selective accumulation of 10 B in tumor cells that is more effective and less toxic than conventional L-BPA.

  15. Boron biodistribution in Beagles after intravenous infusion of 4-dihydroxyborylphenylalanine-fructose complex

    International Nuclear Information System (INIS)

    Kulvik, M.E.; Vaehaetalo, J.K.; Benczik, J.; Snellman, M.; Laakso, J.; Hermans, R.; Jaerviluoma, E.; Rasilainen, M.; Faerkkilae, M.; Kallio, M.E.

    2004-01-01

    Boron biodistribution after intravenous infusion of 4-dihydroxyborylphenylalanine-fructose (BPA-F) complex was investigated in six dogs. Blood samples were evaluated during and following doses of 205 and 250 mg/kgbw BPA in a 30 min infusion, and 500 mg/kgbw in a 1 h infusion. Samples from whole blood, urine, brain and other organs were analysed for boron content after varying times following the onset of infusion. The whole blood boron concentrations declined from 27 to 8.4 ppm over the period of 39-165 min after the onset of infusion and the levels increased from 1.9 to 12 ppm in the grey matter of the brain over the same period. The boron concentrations in whole blood decreased steadily, whereas the boron values in brain tissue rose steadily with time. It was concluded that whole blood boron concentrations do not seem to reflect accurately the boron concentration in brain tissue at respective time points

  16. Adjustment methodology for preliminary study on the distribution of bone tissue boron. Potential therapeutic applications

    International Nuclear Information System (INIS)

    Brandizzi, D; Dagrosa, A; Carpano, M.; Olivera, M. S.; Nievas, S; Cabrini, R.L.

    2013-01-01

    Boron is an element that has an affinity for bone tissue and represents a considered element in bone health . Other boron compounds are used in the Boron Neutron Capture Therapy (BNCT ) in the form of sodium borocaptate (BSH ) and borono phenylalanine (BPA). The results of clinical trials up to date are encouraging but not conclusive . At an experimental level , some groups have applied BNCT in osteosarcomas . We present preliminary methodological adjustments for the presence of boron in bone. (author)

  17. BPA uptake in rat tissues after partial hepatectomy

    Energy Technology Data Exchange (ETDEWEB)

    Slatkin, D.N.; Nawrocky, M.M.; Coderre, J.A.; Fisher, C.D.; Joel, D.D.; Lombardo, D.T.; Micca, P.L.

    1996-12-31

    In boron neutron capture therapy (BNCT), boron given as boronophenylalanine (BPA) accumulates transiently not only in tumors but also in normal tissues. Average boron concentrations in transplanted 9L gliosarcoma tumors of 20 rats were 2.5 to 3.7 times concentrations found in blood. Although boron levels in a variety of tissues were also higher than blood the concentrations were less than the lowest found in the tumor. Further note than although BPA is a structural analogue of phenylalanine (Phe), the pathway of BPA uptake into regenerating liver may not be linked to Phe uptake mechanisms.

  18. Complex formation of p-carboxybenzeneboronic acid with fructose

    International Nuclear Information System (INIS)

    Bulbul Islam, T.M.; Yoshino, K.

    2000-01-01

    To increase the solubility of p-caboxybenzeneboronic acid (PCBA) in physiological pH 7.4, the complex formation of PCBA with fructose has been studied by 11 B-NMR. PCBA formed complex with fructose and the complex increased the solubility of PCBA. The complex formation constant (log K) was obtained in pH 7.4 as 2.75 from the 11 B-NMR spectra. Based on this result the complex formation ability of PCBA with fructose has been discussed. (author)

  19. Boron neutron capture therapy (BNCT) as a new approach for clear cell sarcoma (CCS) treatment: Trial using a lung metastasis model of CCS.

    Science.gov (United States)

    Andoh, Tooru; Fujimoto, Takuya; Suzuki, Minoru; Sudo, Tamotsu; Sakurai, Yoshinori; Tanaka, Hiroki; Fujita, Ikuo; Fukase, Naomasa; Moritake, Hiroshi; Sugimoto, Tohru; Sakuma, Toshiko; Sasai, Hiroshi; Kawamoto, Teruya; Kirihata, Mitsunori; Fukumori, Yoshinobu; Akisue, Toshihiro; Ono, Koji; Ichikawa, Hideki

    2015-12-01

    Clear cell sarcoma (CCS) is a rare malignant tumor with a poor prognosis. In the present study, we established a lung metastasis animal model of CCS and investigated the therapeutic effect of boron neutron capture therapy (BNCT) using p-borono-L-phenylalanine (L-BPA). Biodistribution data revealed tumor-selective accumulation of (10)B. Unlike conventional gamma-ray irradiation, BNCT significantly suppressed tumor growth without damaging normal tissues, suggesting that it may be a potential new therapeutic option to treat CCS lung metastases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Structural Analysis of the Bacterial Proteasome Activator Bpa in Complex with the 20S Proteasome.

    Science.gov (United States)

    Bolten, Marcel; Delley, Cyrille L; Leibundgut, Marc; Boehringer, Daniel; Ban, Nenad; Weber-Ban, Eilika

    2016-12-06

    Mycobacterium tuberculosis harbors proteasomes that recruit substrates for degradation through an ubiquitin-like modification pathway. Recently, a non-ATPase activator termed Bpa (bacterial proteasome activator) was shown to support an alternate proteasomal degradation pathway. Here, we present the cryo-electron microscopy (cryo-EM) structure of Bpa in complex with the 20S core particle (CP). For docking into the cryo-EM density, we solved the X-ray structure of Bpa, showing that it forms tight four-helix bundles arranged into a 12-membered ring with a 40 Å wide central pore and the C-terminal helix of each protomer protruding from the ring. The Bpa model was fitted into the cryo-EM map of the Bpa-CP complex, revealing its architecture and striking symmetry mismatch. The Bpa-CP interface was resolved to 3.5 Å, showing the interactions between the C-terminal GQYL motif of Bpa and the proteasome α-rings. This docking mode is related to the one observed for eukaryotic activators with features specific to the bacterial complex. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. The results of a non-linear mathematical model for the kinetics of 10B after BPA-F infusion in BNCT

    International Nuclear Information System (INIS)

    Ryynaenen, P.; Savolainen, S.; Hiismaeki, P.; Kangasmaeki, A.

    2001-01-01

    The aim of this study was to create a model for the kinetics of 10 B in glioma patients after p-boronophenylalanine fructose complex (BPA-F) infusion in order to predict the 10 B concentration in blood during the neutron irradiations in BNCT. The more specific aim was to create a flexible model that would work with variable infusion duration and variable amounts of infused BRA, by forehand carrying out only 1 to 2 kinetic studies per different trials. Previously used bi-exponential fitting and open compartmental model are capable, but, however, heavy kinetic studies are needed before they are reliable enough. A model probe with a memory effect based on phenomenological findings was created. The model development was based on the data from 10 glioblastoma multiforme patients from the Brookhaven National Laboratory BNCT trials. These patients received i.v. 290 mg BPA/kg body weight as a fructose complex during two hours. Blood samples were collected during and after the infusion. The accuracy of the model was verified with distinctive fitting of 10 new glioma patient data from the Finnish BNCT-trials. The 10 B- concentration in whole blood samples was determined by ICP-AES method. In the study it is concluded that the constructed non-linear model is flexible and capable in describing the kinetics of 10 B concentration in blood after a single infusion of BPA-F. (author)

  2. Arylboronate ester based diazeniumdiolates (BORO/NO), a class of hydrogen peroxide inducible nitric oxide (NO) donors.

    Science.gov (United States)

    Dharmaraja, Allimuthu T; Ravikumar, Govindan; Chakrapani, Harinath

    2014-05-16

    Here, we report the design, synthesis, and evaluation of arylboronate ester based diazeniumdiolates (BORO/NO), a class of nitric oxide (NO) donors activated by hydrogen peroxide (H2O2), a reactive oxygen species (ROS), to generate NO. We provide evidence for the NO donors' ability to permeate bacteria to produce NO when exposed to H2O2 supporting possible applications for BORO/NO to study molecular mechanisms of NO generation in response to elevated ROS.

  3. Neutron capture therapy for melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Coderre, J.A.; Glass, J.D.; Micca, P.; Fairchild, R.G.

    1988-01-01

    The development of boron-containing compounds which localize selectively in tumor may require a tumor-by-tumor type of approach that exploits any metabolic pathways unique to the particular type of tumor. Melanin-producing melanomas actively transport and metabolize aromatic amino acids for use as precursors in the synthesis of the pigment melanin. It has been shown that the boron-containing amino acid analog p-borono-phenylalanine (BPA) is selectively accumulated in melanoma tissue, producing boron concentrations in tumor that are within the range estimated to be necessary for successful boron neutron capture therapy (BNCT). We report here the results of therapy experiments carried out at the Brookhaven Medical Research Reactor (BMRR). 21 refs., 5 figs., 3 tabs.

  4. Neutron capture therapy for melanoma

    International Nuclear Information System (INIS)

    Coderre, J.A.; Glass, J.D.; Micca, P.; Fairchild, R.G.

    1988-01-01

    The development of boron-containing compounds which localize selectively in tumor may require a tumor-by-tumor type of approach that exploits any metabolic pathways unique to the particular type of tumor. Melanin-producing melanomas actively transport and metabolize aromatic amino acids for use as precursors in the synthesis of the pigment melanin. It has been shown that the boron-containing amino acid analog p-borono-phenylalanine (BPA) is selectively accumulated in melanoma tissue, producing boron concentrations in tumor that are within the range estimated to be necessary for successful boron neutron capture therapy (BNCT). We report here the results of therapy experiments carried out at the Brookhaven Medical Research Reactor (BMRR). 21 refs., 5 figs., 3 tabs

  5. Labelling of 4-dihydroxyborylphenylalanine(BPA) with 99Tcm and biodistribution of 99Tcm-DMG-BPA

    International Nuclear Information System (INIS)

    Xiao Yan; Tu Jing; Tang Xiuhuan; Tang Lingtian; Wang Xiangyun

    2005-01-01

    BPA(4-dihydroxyborylphenylalanine) has being used in clinical trials for treatment of cancer with boron neutron capture therapy (BNCT) technology for its selective accumulation in tumors. BPA is prepared according to the published synthetic procedure. A new BATO complex is synthesized with dimethylglyoxime, BPA, and 99 Tc m O 4 - as the starting materials via a template reaction. The biodistribution of 99 Tc m -DMG-BPA is studied. The results demonstrate that the complex is selectively accumulated in tumor and slowly cleared from it, the uptake in tumor is higher than in blood, heart, muscle and most of the other organs. The uptake ratio of tumor-to-tissue increased along with time. At 4 hour after injection, the uptake ratio of tumor to muscle reached 6.0, tumor/blood 4.5, tumor/heart 6.0, tumor/lung 3.0, tumor/liver 0.41, and tumor/kidney 0.134. The possible molecular structure of 99 Tc m -DMG-BPA complex is predicated by ab inito MO calculation. (authors)

  6. Metabolic Fate of Fructose Ingested with and without Glucose in a Mixed Meal

    Directory of Open Access Journals (Sweden)

    Fanny Theytaz

    2014-07-01

    Full Text Available Ingestion of pure fructose stimulates de novo lipogenesis and gluconeogenesis. This may however not be relevant to typical nutritional situations, where fructose is invariably ingested with glucose. We therefore assessed the metabolic fate of fructose incorporated in a mixed meal without or with glucose in eight healthy volunteers. Each participant was studied over six hours after the ingestion of liquid meals containing either 13C-labelled fructose, unlabeled glucose, lipids and protein (Fr + G or 13C-labelled fructose, lipids and protein, but without glucose (Fr, or protein and lipids alone (ProLip. After Fr + G, plasma 13C-glucose production accounted for 19.0% ± 1.5% and 13CO2 production for 32.2% ± 1.3% of 13C-fructose carbons. After Fr, 13C-glucose production (26.5% ± 1.4% and 13CO2 production (36.6% ± 1.9% were higher (p < 0.05 than with Fr + G. 13C-lactate concentration and very low density lipoprotein VLDL 13C-palmitate concentrations increased to the same extent with Fr + G and Fr, while chylomicron 13C-palmitate tended to increase more with Fr + G. These data indicate that gluconeogenesis, lactic acid production and both intestinal and hepatic de novo lipogenesis contributed to the disposal of fructose carbons ingested together with a mixed meal. Co-ingestion of glucose decreased fructose oxidation and gluconeogenesis and tended to increase 13C-pamitate concentration in gut-derived chylomicrons, but not in hepatic-borne VLDL-triacylglycerol (TG. This trial was approved by clinicaltrial. gov. Identifier is NCT01792089.

  7. Computer modeling the boron compound factor in normal brain tissue

    International Nuclear Information System (INIS)

    Gavin, P.R.; Huiskamp, R.; Wheeler, F.J.; Griebenow, M.L.

    1993-01-01

    The macroscopic distribution of borocaptate sodium (Na 2 B 12 H 11 SH or BSH) in normal tissues has been determined and can be accurately predicted from the blood concentration. The compound para-borono-phenylalanine (p-BPA) has also been studied in dogs and normal tissue distribution has been determined. The total physical dose required to reach a biological isoeffect appears to increase directly as the proportion of boron capture dose increases. This effect, together with knowledge of the macrodistribution, led to estimates of the influence of the microdistribution of the BSH compound. This paper reports a computer model that was used to predict the compound factor for BSH and p-BPA and, hence, the equivalent radiation in normal tissues. The compound factor would need to be calculated for other compounds with different distributions. This information is needed to design appropriate normal tissue tolerance studies for different organ systems and/or different boron compounds

  8. Tumor cell killing effect of boronated dipeptide. Boromethylglycylphenylalanine on boron neutron capture therapy for malignant brain tumors

    International Nuclear Information System (INIS)

    Takagaki, Masao; Ono, Koji; Masunaga, Shinichiro; Kinashi, Yuko; Kobayashi, Toru; Oda, Yoshifumi; Kikuchi, Haruhiko; Spielvogel, B.F.

    1994-01-01

    The killing effect of Boron Neutron Capture Therapy; BNCT, is dependant on the boron concentration ratio of tumor to normal brain (T/N ratio), and also that of tumor to blood (T/B ratio). The clinical boron carrier of boro-captate (BSH) showed the large T/N ratio of ca. 8, however the T/B ratio was around 1, which indicated nonselective accumulation into tumor. Indeed high boron concentration of blood restrict the neutron irradiation dose in order to circumvent the normal endothelial damage, especially in the case of deeply seated tumor. Phenylalanine analogue of para borono-phenylalanine (BPA) is an effective boron carrier on BNCT for malignant melanoma. For the BNCT on brain tumors, however, BPA concentration in normal brain was reported to be intolerably high. In order to improve the T/N ratio of BPA in brain, therefore, a dipeptide of boromethylglycylphenylalanine (BMGP) was synthesized deriving from trimethylglycine conjugated with BPA. It is expected to be selectively accumulated into tumor with little uptake into normal brain. Because a dipeptide might not pass through the normal blood brain barrier (BBB). Its killing effect on cultured glioma cell, T98G, and its distribution in rat brain bearing 9L glioma have been investigated in this paper. The BNCT effect of BMGP on cultured cells was nearly triple in comparison with DL-BPA. The neutron dose yielding 1% survival ratio were 7x10 12 nvt for BMGP and 2x10 13 nvt for BPA respectively on BNCT after boron loading for 16 hrs in the same B-10 concentration of 20ppm. Quantitative study of boron concentration via the α-auto radiography and the prompt gamma ray assay on 9L brain tumor rats revealed that T/N ratio and T/B ratio are 12.0 and 3.0 respectively. Those values are excellent for BNCT use. (author)

  9. Long-term BPA infusions. Evaluation in the rat brain tumor and rat spinal cord models

    International Nuclear Information System (INIS)

    Coderre, J.A.; Micca, P.L.; Nawrocky, M.M.; Joel, D.D.; Morris, G.M.

    2000-01-01

    In the BPA-based dose escalation clinical trial, the observations of tumor recurrence in areas of extremely high calculated tumor doses suggest that the BPA distribution is non-uniform. Longer (6-hour) i.v. infusions of BPA are evaluated in the rat brain tumor and spinal cord models to address the questions of whether long-term infusions are more effective against the tumor and whether long-term infusions are detrimental in the central nervous system. In the rat spinal cord, the 50% effective doses (ED 50 ) for myeloparesis were not significantly different after a single i.p. injection of BPA-fructose or a 6 hour i.v. infusion. In the rat 9L gliosarcoma brain tumor model, BNCT following 2-hr or 6-hr infusions of BPA-F produced similar levels of long term survival. (author)

  10. Fructose-fed streptozotocin-injected rat: an alternative model for type 2 diabetes.

    Science.gov (United States)

    Wilson, Rachel D; Islam, Md Shahidul

    2012-01-01

    The main objective of the study was to develop an alternative non-genetic rat model for type 2 diabetes (T2D). Six-week-old male Sprague-Dawley rats (190.56 ± 23.60 g) were randomly divided into six groups, namely: Normal Control (NC), Diabetic Control (DBC), Fructose-10 (FR10), Fructose-20 (FR20), Fructose-30 (FR30) and Fructose-40 (FR40) and were fed a normal rat pellet diet ad libitum for 2 weeks. During this period, the two control groups received normal drinking water whilst the fructose groups received 10, 20, 30 and 40% fructose in drinking water ad libitum, respectively. After two weeks of dietary manipulation, all groups except the NC group received a single injection (i.p.) of streptozotocin (STZ) (40 mg/kg b.w.) dissolved in citrate buffer (pH 4.4). The NC group received only a vehicle buffer injection (i.p.). One week after the STZ injection, animals with non-fasting blood glucose levels > 300 mg/dl were considered as diabetic. Three weeks after the STZ injection, the animals in FR20, FR30 and FR40 groups were eliminated from the study due to the severity of diabetes and the FR10 group was selected for the remainder of the 11 weeks experimental period. The significantly (p < 0.05) higher fluid intake, blood glucose, serum lipids, liver glycogen, liver function enzymes and insulin resistance (HOMA-IR) and significantly (p < 0.05) lower body weight, oral glucose tolerance, number of pancreatic β-cells and pancreatic β-cell functions (HOMA-β) of FR10 group demonstrate that the 10% fructose-fed followed by 40 mg/kg of BWSTZ injected rat can be a new and alternative model for T2D.

  11. Chiral separation of substituted phenylalanine analogues using chiral palladium phosphine complexes with enantioselective liquid-liquid extraction

    NARCIS (Netherlands)

    Verkuijl, B.J.V.; Schuur, B.; Minnaard, A.J.; Vries, de J.G.; Feringa, B.L.

    2010-01-01

    Chiral palladium phosphine complexes have been employed in the chiral separation of amino acids and phenylalanine analogues in particular. The use of (S)-xylyl-BINAP as a ligand for the palladium complex in enantioselective liquid–liquid extraction allowed the separation of the phenylalanine

  12. Complex formation of uranium(VI) with fructose and glucose phosphates

    International Nuclear Information System (INIS)

    Koban, A.; Geipel, G.; Bernhard, G.; Fanghaenel, T.

    2002-01-01

    The uptake of heavy metals into plants is commonly quantified by the soil-plant transfer factor. Up to now little is known about the chemical speciation of actinides in plants. To compare the obtained spectroscopic data of uranium complexes in plants with model compounds, we investigate the complexation of uranium with relevant bioligands of various functionalities. A very important class of ligands consists of phosphate esters, which serve as phosphate group and energy transmitters as well as energy storage media in biological systems. Heavy metal ions bound to the phosphate esters can be transported into living cells and then deposited. Therefore, in our study we present the results of uranium complexation with glucose-6-phosphate (G6P), and fructose-6-phosphate (F6P) obtained by time-resolved laser-induced fluorescence spectroscopy (TRLFS). The experiments were performed at a fixed uranyl concentration (10 -5 M) as a function of the ligand concentrations (10 -5 to 10 -3 M) in a pH range from 2 to 4.5. For the glucose phosphate system we observed, using increasing ligand concentrations, a decrease in the fluorescence intensity and a small red shift of the emission bands. From this we conclude that the complexed uranyl glucose phosphate species show only minor or no fluorescence properties. The TRLFS spectra of the glucose phosphate samples indicated the presence of a single species with fluorescence properties. This species has a lifetime of approximately 1.5 μs and was identified as the free uranyl ion. An opposite phenomenon was observed for the fructose phosphate system: there was no decrease in fluorescence intensity. However, a strong red shift of the spectra was observed, illustrating the fluorescence properties of the uranyl fructose phosphate complex. The TRLFS spectra of the fructose phosphate system showed a second lifetime ( 2 2+ UO 2 (lig) x (2-y)+ + y H + (lig = sugar phosphate). Applying the mass action law and transformation to the logarithmic

  13. A cancer research UK pharmacokinetic study of BPA-mannitol in patients with high grade glioma to optimise uptake parameters for clinical trials of BNCT

    International Nuclear Information System (INIS)

    Green, S.; James, N.D.; Cruickshank, G.S.

    2006-01-01

    This presentation will describe a human pharmacokinetic study which is scheduled to begin recruitment in Summer 2006. The study has been ongoing for approximately 4 years to develop the necessary protocols, validate boron assays and to develop a new formulation of BPA. The study population will be patients with glioblastoma multiforme and the study focuses on the route of infusion (intra venous or intra carotid artery) and in each will assess the effect of administration of mannitol (as a blood-brain barrier disrupter). Mannitol will be administered as a bolus at the beginning of a two hour infusion of BPA. The BPA formulation (BPA - mannitol) is also new and avoids some of the problems of low solubility associated with BPA-fructose as well as the potential risk of fructose intolerance. The approach will include stereotactic biopsy which is necessary to confirm diagnosis. Tissue samples collected will include needle biopsy samples of tumour and brain around tumour for estimation of BPA transporter expression, together with microdialysis catheter collection of extra-cellular fluid and routine collection of blood and urine for BPA levels. Where possible, according to surgical plan and the route of entry, samples of cerebro-spinal will also be collected. These data will be used to develop a pharmacokinetic model following the general approach already established by others in the field. This paper presents initial pre-clinical studies on the BPA-mannitol formulation and some assay validation work together with suggestions for approaches to normalisation of the macroscopic boron assays using simultaneous measurement of Mg levels in tissue. (author)

  14. Chemical states of p-boronophenylalanine in aqueous carboxylic acids and polyols

    International Nuclear Information System (INIS)

    Kobayashi, Mitsue; Kitaoka, Yoshinori

    1995-01-01

    Chemical states of p-boronophenylalanine were studied by infrared (IR) spectroscopy in aqueous carboxylic acids and in aqueous fructose. For BPA in water, the absorption band due to the B-O stretching of trigonal boron was observed, while that of tetrahedral boron was observed for BPA in aqueous oxalic acid. This means BPA forms a complex of tetrahedral boron with oxalate. It was proved that BPA also formed complexes of tetrahedral boron with citric acid as well as with fructose. No appreciable interaction was detected between BPA and maleic acid. (author)

  15. Proton magnetic resonance spectroscopy of a boron neutron capture therapy 10B-carrier, L-p-boronophenylalanine-fructose complex

    Energy Technology Data Exchange (ETDEWEB)

    Timonen, M.

    2010-07-01

    Boron neutron capture therapy (BNCT) is a radiotherapy that has mainly been used to treat malignant brain tumours, melanomas, and head and neck cancer. In BNCT, the patient receives an intravenous infusion of a 10B-carrier, which accumulates in the tumour area. The tumour is irradiated with epithermal or thermal neutrons, which result in a boron neutron capture reaction that generates heavy particles to damage tumour cells. In Finland, boronophenylalanine fructose (BPA-F) is used as the 10B-carrier. Currently, the drifting of boron from blood to tumour as well as the spatial and temporal accumulation of boron in the brain, are not precisely known. Proton magnetic resonance spectroscopy (1H MRS) could be used for selective BPA-F detection and quantification as aromatic protons of BPA resonate in the spectrum region, which is clear of brain metabolite signals. This study, which included both phantom and in vivo studies, examined the validity of 1H MRS as a tool for BPA detection. In the phantom study, BPA quantification was studied at 1.5 and 3.0 T with single voxel 1H MRS, and at 1.5 T with magnetic resonance imaging (MRSI). The detection limit of BPA was determined in phantom conditions at 1.5 T and 3.0 T using single voxel 1H MRS, and at 1.5 T using MRSI. In phantom conditions, BPA quantification accuracy of +- 5% and +- 15% were achieved with single voxel MRS using external or internal (internal water signal) concentration references, respectively. For MRSI, a quantification accuracy of <5% was obtained using an internal concentration reference (creatine). The detection limits of BPA in phantom conditions for the PRESS sequence were 0.7 (3.0 T) and 1.4 mM (1.5 T) mM with 20 x 20 single voxel MRS, and 1.0 mM with acquisition-weighted MRSI, respectively. In the in vivo study, an MRSI or single voxel MRS or both was performed for ten patients (patients 1-10) on the day of BNCT. Three patients had glioblastoma multiforme (GBM), and five patients had a recurrent or

  16. Biodistribution of p-borophenylalanine (BPA) in dogs with spontaneous undifferentiated thyroid carcinoma (UTC)

    International Nuclear Information System (INIS)

    Dagrosa, M.A.; Viaggi, M.; Rebagliati, R. Jimenez; Castillo, V.A.; Batistoni, D.; Cabrini, R.L.; Castiglia, S.; Juvenal, G.J.; Pisarev, M.A.

    2004-01-01

    Human undifferentiated thyroid carcinoma (UTC) is a very aggressive tumor which lacks an adequate treatment. The UTC human cell line ARO has a selective uptake of BPA in vitro and after transplanting into nude mice. Applications of boron neutron capture therapy (BNCT) to mice showed a 100% control of growth and a 50% histological cure of tumors with an initial volume of 50 mm 3 or less. As a further step towards the potential application in humans we have performed the present studies. Four dogs with diagnosis of spontaneous UTC were studied. A BPA-fructose solution was infused during 60 min and dogs were submitted to thyroidectomy. Samples of blood and from different areas of the tumors (and in one dog from normal thyroid) were obtained and the boron was determined by ICP-OES. Selective BPA uptake by the tumor was found in all animals, the tumor/blood ratios ranged between 2.02 and 3.76, while the tumor/normal thyroid ratio was 6.78. Individual samples had tumor/blood ratios between 8.36 and 0.33. These ratios were related to the two histological patterns observed: homogeneous and heterogeneous tumors. We confirm the selective uptake of BPA by spontaneous UTC in dogs and plan to apply BNCT in the future

  17. Biodistribution of p-borophenylalanine (BPA) in dogs with spontaneous undifferentiated thyroid carcinoma (UTC)

    Energy Technology Data Exchange (ETDEWEB)

    Dagrosa, M.A. E-mail: aledagrosa@fibertel.com.ar; Viaggi, M.; Rebagliati, R. Jimenez; Castillo, V.A.; Batistoni, D.; Cabrini, R.L.; Castiglia, S.; Juvenal, G.J.; Pisarev, M.A

    2004-11-01

    Human undifferentiated thyroid carcinoma (UTC) is a very aggressive tumor which lacks an adequate treatment. The UTC human cell line ARO has a selective uptake of BPA in vitro and after transplanting into nude mice. Applications of boron neutron capture therapy (BNCT) to mice showed a 100% control of growth and a 50% histological cure of tumors with an initial volume of 50 mm{sup 3} or less. As a further step towards the potential application in humans we have performed the present studies. Four dogs with diagnosis of spontaneous UTC were studied. A BPA-fructose solution was infused during 60 min and dogs were submitted to thyroidectomy. Samples of blood and from different areas of the tumors (and in one dog from normal thyroid) were obtained and the boron was determined by ICP-OES. Selective BPA uptake by the tumor was found in all animals, the tumor/blood ratios ranged between 2.02 and 3.76, while the tumor/normal thyroid ratio was 6.78. Individual samples had tumor/blood ratios between 8.36 and 0.33. These ratios were related to the two histological patterns observed: homogeneous and heterogeneous tumors. We confirm the selective uptake of BPA by spontaneous UTC in dogs and plan to apply BNCT in the future.

  18. BPA Facts

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-03-01

    The Bonneville Power Administration is a federal nonprofit power marketing administration based in the Pacific Northwest . Although BPA is part of the U .S . Department of Energy, it is self-funding and covers its costs by selling its products and services . BPA markets wholesale electrical power from 31 federal hydro projects in the Columbia River Basin, one nonfederal nuclear plant and several small nonfederal power plants . The dams are operated by the U .S . Army Corps of Engineers and the Bureau of Reclamation . About 30 percent of the electric power used in the Northwest comes from BPA . BPA’s resources — primarily hydroelectric — make its power nearly carbon free . BPA also operates and maintains about three- fourths of the high-voltage transmission in its service territory . BPA’s service territory includes Idaho, Oregon, Washington, western Montana and small parts of eastern Montana, California, Nevada, Utah and Wyoming . BPA promotes energy efficiency, renewable resources and new technologies that improve its ability to deliver on its mission . BPA also funds regional efforts to protect and enhance fish and wildlife populations affected by hydropower development in the Columbia River Basin . BPA is committed to public service and seeks to make its decisions in a manner that provides opportunities for input from stakeholders . In its vision statement, BPA dedicates itself to providing high system reliability, low rates consistent with sound business principles, environmental stewardship and accountability

  19. Impact of Fish Oil Supplementation and Interruption of Fructose Ingestion on Glucose and Lipid Homeostasis of Rats Drinking Different Concentrations of Fructose

    Science.gov (United States)

    Sulis, Paola M.; Motta, Katia; Barbosa, Amanda M.; Besen, Matheus H.; da Silva, Julia S.; Nunes, Everson A.

    2017-01-01

    Background. Continuous fructose consumption may cause elevation of circulating triacylglycerol. However, how much of this alteration is reverted after the removal of fructose intake is not known. We explored this question and compared the efficacy of this approach with fish oil supplementation. Methods. Male Wistar rats were divided into the following groups: control (C), fructose (F) (water intake with 10% or 30% fructose for 9 weeks), fish oil (FO), and fructose/fish oil (FFO). Fish oil was supplemented only for the last 33 days of fructose ingestion. Half of the F group remained for additional 8 weeks without fructose ingestion (FR). Results. Fructose ingestion reduced food intake to compensate for the increased energy obtained through water ingestion, independent of fructose concentration. Fish oil supplementation exerted no impact on these parameters, but the removal of fructose from water recovered both ingestion behaviors. Plasma triacylglycerol augmented significantly during the second and third weeks (both fructose groups). Fish oil supplementation did not attenuate the elevation in triacylglycerol caused by fructose intake, but the interruption of sugar consumption normalized this parameter. Conclusion. Elevation in triacylglyceridemia may be recovered by removing fructose from diet, suggesting that it is never too late to repair improper dietary habits. PMID:28929113

  20. Impact of low-dose chronic exposure to Bisphenol A (BPA) on adult male zebrafish adaption to the environmental complexity: Disturbing the color preference patterns and reliving the anxiety behavior.

    Science.gov (United States)

    Li, Xiang; Sun, Ming-Zhu; Li, Xu; Zhang, Shu-Hui; Dai, Liang-Ti; Liu, Xing-Yu; Zhao, Xin; Chen, Dong-Yan; Feng, Xi-Zeng

    2017-11-01

    The extensive usage of xenobiotic endocrine disrupting chemicals (XEDCs), such as Bisphenol A (BPA), has created obvious threat to aquatic ecosystems worldwide. Although a comprehensive understanding of the adverse effect of BPA on behaviors and physiology have been proven, the potential impact of low-dose BPA on altering the basic ability of aquatic organism in adapting to the surrounded complex environment still remains elusive. In this research, we report that treatment of adult male zebrafish with chronic (7 weeks) low-dose (0.22 nM-2.2 nM) BPA, altered the ability in adapting the complex environment by disturbing the natural color preference patterns. In addition, chronic 50 ng/L (0.22 nM) BPA exposure alleviated the anxiety behavior of male zebrafish confronted with the novel environment by enhancing the preference towards light in the light/dark preference test. This phenotype was associated with less expression of serotonin (5-TH) in the hypothalamus and the down-regulation of tyrosine hydroxylase (TH) in brain tissues. As such, our results show that low-dose BPA remnant in surface waters altered zebrafish behavior that are known to have ecological and evolutionary consequences. Here we reported that the impact of chronic low-dose BPA exposure on the basic capability of zebrafish to adapt to the environmental complexity. Specifically, BPA at low concentration, under the environmental safety level and 3000-fold lower than the accepted human daily exposure, interfered with the ability to discriminate color and alleviate anxiety induced by the novel environment, which finally altered the capability of male zebrafish to adapt to the environmental complexity. These findings revealed the ecological effect of low-dose BPA and regular BPA concentration standard are not necessarily safe. The result also provided the consideration of retuning the hazard concentration level of BPA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Evaluation of the In Vivo and In Vitro Effects of Fructose on Respiratory Chain Complexes in Tissues of Young Rats

    Directory of Open Access Journals (Sweden)

    Ernesto António Macongonde

    2015-01-01

    Full Text Available Hereditary fructose intolerance (HFI is an autosomal-recessive disorder characterized by fructose and fructose-1-phosphate accumulation in tissues and biological fluids of patients. This disease results from a deficiency of aldolase B, which metabolizes fructose in the liver, kidney, and small intestine. We here investigated the effect of acute fructose administration on the activities of mitochondrial respiratory chain complexes, succinate dehydrogenase (SDH, and malate dehydrogenase (MDH in cerebral cortex, liver, kidney, and skeletal muscle of male 30-day-old Wistar rats. The rats received subcutaneous injection of sodium chloride (0.9%; control group or fructose solution (5 μmol/g; treated group. One hour later, the animals were euthanized and the cerebral cortex, liver, kidney, and skeletal muscle were isolated and homogenized for the investigations. Acute fructose administration increased complex I-III activity in liver. On the other hand, decreased complexes II and II-III activities in skeletal muscle and MDH in kidney were found. Interestingly, none of these parameters were affected in vitro. Our present data indicate that fructose administration elicits impairment of mitochondrial energy metabolism, which may contribute to the pathogenesis of the HFI patients.

  2. First clinical results on the finnish study on BPA-mediated BNCT in glioblastoma

    International Nuclear Information System (INIS)

    Kankaanranta, L.; Seppaelae, T.; Kallio, M.

    2000-01-01

    An open phase I dose-escalation boron neutron capture therapy (BNCT) study on glioblastoma multiforme (GBM) was initiated at the BNCT facility FiR 1, Espoo, Finland, in May 1999. The aim of the study is to investigate the safety of boronophenylalanine (BPA)-mediated BNCT. Ten GBM patients were treated with a 2-field treatment plan using one fraction. BPA-F was used as the 10 B carrier infused as a fructose solution 290 mg BPA/kg over 2-hours prior to irradiation with epithermal neutrons. Average doses to the normal brain, contrast enhancing tumour, and the target ranged from 3.0 to 5.6 Gy (W), from 35.1 to 66.7 Gy (W), and from 29.6 to 53.6 Gy (W), respectively. BNCT was associated with acceptable toxicity. The median follow-up is 9 months (range, 3 to 16 months) post diagnosis in July 2000. Seven of the 10 patients have recurrent or persistent GBM, and the median time to progression is 8 months. Only one patient has died, and the estimated 1-year overall survival is 86%. Five of the recurrent tumours were treated with external beam photon radiation therapy to the total dose of 30-40 Gy with few acute side-effects. These preliminary findings suggest that acute toxicity of BPA-mediated BNCT is acceptable when average brain doses of 5.6 Gy (W) or less are used. The followup time is too short to evaluate survival, but the estimated 1-year survival of 86% achieved with BNCT followed by conventional photon irradiation at the time of tumour progression is encouraging and emphasises the need of further investigation of BPA-mediated BNCT. (author)

  3. [Fructose and fructose intolerance].

    Science.gov (United States)

    Buzás, György Miklós

    2016-10-01

    Although fructose was discovered in 1794, it was realised in recent decades only that its malabsorption can lead to intestinal symptoms while its excessive consumption induces metabolic disturbances. Fructose is a monosaccharide found naturally in most fruits and vegetables. Dietary intake of fructose has gradually increased in the past decades, especially because of the consumption of high fructose corn syrup. With its 16.4 kg/year consumption, Hungary ranks secondly after the United States. Fructose is absorbed in the small intestine by facilitated transport mediated by glucose transporter proteins-2 and -5, and arrives in the liver cells. Here it is transformed enzymatically into fructose-1-phosphate and then, fructose-1,5-diphosphate, which splits further into glyceraldehyde and dihydroxyacetone-phosphate, entering the process of glycolysis, triglyceride and uric acid production. The prevalence of fructose intolerance varies strongly, depending on the method used. The leading symptoms of fructose intolerance are similar, but less severe than those of lactose intolerance. Multiple secondary symptoms can also occur. A symptom-based diagnosis of fructose intolerance is possible, but the gold standard is the H 2 breath test, though this is less accurate than in lactose testing. Measuring fructosaemia is costly, cumbersome and not widely used. Fructose intolerance increases intestinal motility and sensitivity, promotes biofilm formation and contributes to the development of gastrooesophageal reflux. Long-term use of fructose fosters the development of dental caries and non-alcoholic steatohepatitis. Its role in carcinogenesis is presently investigated. The cornerstone of dietary management for fructose intolerance is the individual reduction of fructose intake and the FODMAP diet, led by a trained dietetician. The newly introduced xylose-isomerase is efficient in reducing the symptoms of fructose intolerance. Orv. Hetil., 2016, 157(43), 1708-1716.

  4. Evaluation of F-18-labeled amino acid derivatives and [18F]FDG as PET probes in a brain tumor-bearing animal model

    International Nuclear Information System (INIS)

    Wang, H.-E.; Wu, S.-Y.; Chang, C.-W.; Liu, R.-S.; Hwang, L.-C.; Lee, T.-W.; Chen, J.-C.; Hwang, J.-J.

    2005-01-01

    2-Deoxy-2-[ 18 F]fluoro-D-glucose ([ 18 F]FDG) has been extensively used as positron emission tomography (PET) tracer in clinical tumor imaging. This study compared the pharmacokinetics of two 18 F-labeled amino acid derivatives, O-2-[ 18 F]fluoroethyl-L-tyrosine (L-[ 18 F]FET) and 4-borono-2-[ 18 F]fluoro-L-phenylalanine-fructose (L-[ 18 F]FBPA-Fr), to that of [ 18 F]FDG in an animal brain tumor model. Methods: A self-modified automated PET tracer synthesizer was used to produce no-carrier-added (nca) L-[ 18 F]FET. The cellular uptake, biodistribution, autoradiography and microPET imaging of L-[ 18 F]FET, L-[ 18 F]FBPA-Fr and [ 18 F]FDG were performed with F98 glioma cell culture and F98 glioma-bearing Fischer344 rats. Results: The radiochemical purity of L-[ 18 F]FET was >98% and the radiochemical yield was 50% in average of 16 runs. The uptake of L-[ 18 F]FET and L-[ 18 F]FBPA-Fr in the F98 glioma cells increased rapidly for the first 5 min and reached a steady-state level after 10 min of incubation, whereas the cellular uptake of [ 18 F]FDG kept increasing during the study period. The biodistribution of L-[ 18 F]FET, L-[ 18 F]FBPA-Fr and [ 18 F]FDG in the brain tumors was 1.26±0.22, 0.86±0.08 and 2.77±0.44 %ID/g at 60 min postinjection, respectively, while the tumor-to-normal brain ratios of L-[ 18 F]FET (3.15) and L-[ 18 F]FBPA-Fr (3.44) were higher than that of [ 18 F]FDG (1.44). Both microPET images and autoradiograms of L-[ 18 F]FET and L-[ 18 F]FBPA-Fr exhibited remarkable uptake with high contrast in the brain tumor, whereas [ 18 F]FDG showed high uptake in the normal brain and gave blurred brain tumor images. Conclusion: Both L-[ 18 F]FET and L-[ 18 F]FBPA-Fr are superior to [ 18 F]FDG for the brain tumor imaging as shown in this study with microPET

  5. Molecular complexes of L-phenylalanine with substituted 1,4-benzoquinones in aqueous medium: Spectral and theoretical investigations

    Science.gov (United States)

    Ganesh, K.; El-Mossalamy, E. H.; Satheshkumar, A.; Balraj, C.; Elango, K. P.

    2013-12-01

    Various spectral techniques such as UV-Vis, FT-IR, and fluorescence have been employed to investigate the charge transfer interaction of L-phenylalanine (LPA) with substituted 1,4-benzoquinones (MQ1-4). Kinetic and thermodynamic properties of the complexes were determined in aqueous medium at physiological condition (pH = 7). The interaction of MQ1-4 with L-phenylalanine (LPA) was found to proceed through the formation of donor-acceptor complex, yielding a radical anion. The stoichiometry of the complexes was determined by Jobs continuous variation method and was found to be 1:1 in all the cases. Fluorescence quenching studies showed that the interaction between the donor and the acceptors is spontaneous. The results indicated that the progressive replacement of chlorine atom (-I effect) by methoxy group (+M effect) in the quinone decreased the electron acceptor property of the quinone. The order of the experimentally measured association constant of these complexes was well supported by DFT/B3LYP calculations.

  6. BPA Statutes.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1999-08-01

    This report contains the Bonneville Power Administration's (BPA's) authorizing statutes--the Bonneville Project Act, the Federal Columbia River Transmission System Act, the Pacific Northwest Electric Power Planning and Conservation Act and other laws that contain provisions that define BPA's mission and affect the way it is carried out.

  7. Comparison of the image-derived radioactivity and blood-sample radioactivity for estimating the clinical indicators of the efficacy of boron neutron capture therapy (BNCT): 4-borono-2-18F-fluoro-phenylalanine (FBPA) PET study.

    Science.gov (United States)

    Isohashi, Kayako; Shimosegawa, Eku; Naka, Sadahiro; Kanai, Yasukazu; Horitsugi, Genki; Mochida, Ikuko; Matsunaga, Keiko; Watabe, Tadashi; Kato, Hiroki; Tatsumi, Mitsuaki; Hatazawa, Jun

    2016-12-01

    In boron neutron capture therapy (BNCT), positron emission tomography (PET) with 4-borono-2- 18 F-fluoro-phenylalanine (FBPA) is the only method to estimate an accumulation of 10 B to target tumor and surrounding normal tissue after administering 10 B carrier of L-paraboronophenylalanine and to search the indication of BNCT for individual patient. Absolute concentration of 10 B in tumor has been estimated by multiplying 10 B concentration in blood during BNCT by tumor to blood radioactivity (T/B) ratio derived from FBPA PET. However, the method to measure blood radioactivity either by blood sampling or image data has not been standardized. We compared image-derived blood radioactivity of FBPA with blood sampling data and studied appropriate timing and location for measuring image-derived blood counts. We obtained 7 repeated whole-body PET scans in five healthy subjects. Arterialized venous blood samples were obtained from the antecubital vein, heated in a heating blanket. Time-activity curves (TACs) of image-derived blood radioactivity were obtained using volumes of interest (VOIs) over ascending aorta, aortic arch, pulmonary artery, left and right ventricles, inferior vena cava, and abdominal aorta. Image-derived blood radioactivity was compared with those measured by blood sampling data in each location. Both the TACs of blood sampling radioactivity in each subject, and the TACs of image-derived blood radioactivity showed a peak within 5 min after the tracer injection, and promptly decreased soon thereafter. Linear relationship was found between blood sampling radioactivity and image-derived blood radioactivity in all the VOIs at any timing of data sampling (p radioactivity measured in the left and right ventricles 30 min after injection showed high correlation with blood radioactivity. Image-derived blood radioactivity was lower than blood sampling radioactivity data by 20 %. Reduction of blood radioactivity of FBPA in left ventricle after 30 min of FBPA

  8. Bisphenol A (BPA)

    Science.gov (United States)

    ... Smoke Cockroaches Dust Mites Pets & Animals Pollen Aloe Vera Arsenic Bisphenol A (BPA) Bisphenol A (BPA) Cell ... including use in some food and drink packaging, e.g., water and infant bottles, compact discs, impact- ...

  9. In vivo19F MR imaging and spectroscopy for the BNCT optimization

    International Nuclear Information System (INIS)

    Porcari, P.; Capuani, S.; D'Amore, E.; Lecce, M.; La Bella, A.; Fasano, F.; Migneco, L.M.; Campanella, R.; Maraviglia, B.; Pastore, F.S.

    2009-01-01

    The aim of this study was to evaluate in vivo the boron biodistribution and pharmacokinetics of 4-borono-2-fluorophenylalanine ( 19 F-BPA) using 19 F MR Imaging ( 19 F MRI) and Spectroscopy ( 19 F MRS). The correlation between the results obtained by both techniques, 19 F MRI on rat brain and 19 F MRS on blood samples, showed the maximum 19 F-BPA uptake in C6 glioma model at 2.5 h after infusion determining the optimal irradiation time. Moreover, the effect of L-DOPA as potential enhancer of 19 F-BPA tumour intake was assessed using 19 F MRI.

  10. Quantitative evaluation of boron neutron capture therapy (BNCT) drugs for boron delivery and retention at subcellular scale resolution in human glioblastoma cells with imaging secondary ion mass spectrometry (SIMS)

    Science.gov (United States)

    Chandra, S.; Ahmad, T.; Barth, R. F.; Kabalka, G. W.

    2014-01-01

    Boron neutron capture therapy (BNCT) of cancer depends on the selective delivery of a sufficient number of boron-10 (10B) atoms to individual tumor cells. Cell killing results from the 10B (n, α)7Li neutron capture and fission reactions that occur if a sufficient number of 10B atoms are localized in the tumor cells. Intranuclear 10B localization enhances the efficiency of cell killing via damage to the DNA. The net cellular content of 10B atoms reflects both bound and free pools of boron in individual tumor cells. The assessment of these pools, delivered by a boron delivery agent, currently cannot be made at subcellular scale resolution by clinically applicable techniques such as PET and MRI. In this study, secondary ion mass spectrometry (SIMS) based imaging instrument, a CAMECA IMS 3f ion microscope, capable of 500 nm spatial resolution was employed. Cryogenically prepared cultured human T98G glioblastoma cells were evaluated for boron uptake and retention of two delivery agents. The first, L-p-boronophenylalanine (BPA), has been used clinically for BNCT of high grade gliomas, recurrent tumors of the head and neck region and melanomas. The second, a boron analogue of an unnatural amino acid, 1-amino-3-borono-cyclopentanecarboxylic acid (cis-ABCPC), has been studied in rodent glioma and melanoma models by quantification of boron in the nucleus and cytoplasm of individual tumor cells. The bound and free pools of boron were assessed by exposure of cells to boron-free nutrient medium. Both BPA and cis-ABCPC delivered almost 70% of the pool of boron in the free or loosely bound form to the nucleus and cytoplasm of human glioblastoma cells. This free pool of boron could be easily mobilized out of the cell and was in some sort of equilibrium with extracellular boron. In the case of BPA, the intracellular free pool of boron also was affected by the presence of phenylalanine in the nutrient medium. This suggests that it might be advantageous if patients were placed on a

  11. {sup 11}B-NMR spectroscopic study on the interaction of epinephrine and p-BPA

    Energy Technology Data Exchange (ETDEWEB)

    Ichihara, K.; Yoshino, K. [Shinshu Univ., Department of Chemistry, Matsumoto, Nagano (Japan)

    2000-10-01

    It is studied that p-BPA (p-bronophenylalanine) which formed complex with catechol functional group has interaction with epinephrine by {sup 11}B-NMR. Two {sup 11}B-NMR resonance signals were observed at pH 7.0. The signal at 29.6 ppm is assigned to p-BPA and at 10.8 ppm is assigned to that of complex. We can determine complex formation constants (logK') in various pH. (author)

  12. Phenylalanine-a biogenic ligand with flexible η6- and η6:κ1-coordination at ruthenium(ii) centres

    KAUST Repository

    Reiner, Thomas; Jantke, Dominik; Miao, Xiaohe; Marziale, Alexander N.; Kiefer, Florian J.; Eppinger, Jö rg

    2013-01-01

    The reaction of (S)-2,5-dihydrophenylalanine 1 with ruthenium(iii) chloride yields the μ-chloro-bridged dimeric η6-phenylalanine ethyl ester complex 3, which can be converted into the monomeric analogue, η6:κ1-phenylalanine ethyl ester complex 12, under basic conditions. Studies were carried out to determine the stability and reactivity of complexes bearing η6- and η6: κ1-chelating phenylalanine ligands under various conditions. Reaction of 3 with ethylenediamine derivatives N-p-tosylethylenediamine or 1,4-di-N-p-tosylethylenediamine results in the formation of monomeric η6:κ1-phenylalanine ethyl ester complexes 14 and 15, which could be saponified yielding complexes 16 and 17 without changing the inner coordination sphere of the metal centre. The structure of η6:κ1-phenylalanine complex 17 and an N-κ1-phenylalanine complex 13 resulting from the reaction of 3 with an excess of pyridine were confirmed by X-ray crystallography. © 2013 The Royal Society of Chemistry.

  13. Molecular analysis of the apoptotic effects of BPA in acute myeloid leukemia cells

    Directory of Open Access Journals (Sweden)

    Del Pozzo Giovanna

    2009-06-01

    Full Text Available Abstract Background: BPA (bisphenol A or 2,2-bis(4-hydroxy-phenolpropane is present in the manufacture of polycarbonate plastic and epoxy resins, which can be used in impact-resistant safety equipment and baby bottles, as protective coatings inside metal food containers, and as composites and sealants in dentistry. Recently, attention has focused on the estrogen-like and carcinogenic adverse effects of BPA. Thus, it is necessary to investigate the cytotoxicity and apoptosis-inducing activity of this compound. Methods: Cell cycle, apoptosis and differentiation analyses; western blots. Results: BPA is able to induce cell cycle arrest and apoptosis in three different acute myeloid leukemias. Although some granulocytic differentiation concomitantly occurred in NB4 cells upon BPA treatment, the major action was the induction of apoptosis. BPA mediated apoptosis was caspase dependent and occurred by activation of extrinsic and intrinsic cell death pathways modulating both FAS and TRAIL and by inducing BAD phosphorylation in NB4 cells. Finally, also non genomic actions such as the early decrease of both ERK and AKT phosphorylation were induced by BPA thus indicating that a complex intersection of regulations occur for the apoptotic action of BPA. Conclusion: BPA is able to induce apoptosis in leukemia cells via caspase activation and involvement of both intrinsic and extrinsic pathways of apoptosis.

  14. EXTRACTION-CHROMATOGRAPHIC DETERMINATION OF GLUCOSE AND FRUCTOSE IN THE PRESENCE OF AROMATIC AMINO ACIDS

    Directory of Open Access Journals (Sweden)

    Y. I. Korenman

    2012-01-01

    Full Text Available The extraction of glucose and fructose from aqueous salt solutions containing aromatic amino acids (phenylalanine, tryptophan, tyrosine, hydrophilic solvents (aliphatic alcohols, alkyl acetates, ketones have been studied. The quantitative characteric of the process (the distribution coefficients, the degree of extraction, separation factors are calculeted. The dependence of distribution ratios of monosaccharides from the amino acid content in the solution has been established. A mobile phase for analysis of the concentrate by ascending thin layer chromatography have been developed.

  15. Phenylalanine-coupled solid lipid nanoparticles for brain tumor targeting

    Energy Technology Data Exchange (ETDEWEB)

    Kharya, Parul; Jain, Ashish; Gulbake, Arvind; Shilpi, Satish; Jain, Ankit; Hurkat, Pooja [Dr. Hari Singh Gour University, Pharmaceutical Research Projects Laboratory, Department of Pharmaceutical Sciences (India); Majumdar, Subrata [Bose Institute, Division of Molecular Medicine (India); Jain, Sanjay K., E-mail: drskjainin@yahoo.com [Dr. Hari Singh Gour University, Pharmaceutical Research Projects Laboratory, Department of Pharmaceutical Sciences (India)

    2013-11-15

    The purpose of this study is to investigate the targeting potential of amino acid (phenylalanine)-coupled solid lipid nanoparticles (SLN) loaded with ionically complexed doxorubicin HCl (Dox). Ionic complexation was used to enhance the loading efficiency and release characteristics of water soluble form of Dox. l-Type amino acid transporters (LAT1) are highly expressed on blood brain barrier as well as on many brain cancer cells, thus targeting LAT1 using phenylalanine improved anticancer activity of prepared nanocarrier. The phenylalanine-coupled SLN were characterized by fourier transform infrared spectroscopy, scanning electron microscope, transmission electron microscopy, particle size, zeta potential, entrapment efficiency and in vitro release. The particle size of the resulting SLN was found to be in the range of 163.3 ± 5.2 to 113.0 ± 2.6 nm, with a slightly negative surface charge. In ex vivo study on C6 glioma cell lines, the cellular cytotoxicity of the SLN was highly increased when coupled with phenylalanine. In addition, stealthing sheath of PEG present on the surface of the SLN enhanced the cellular uptake of the SLN on C6 glioma cell line. Results of biodistribution and fluorescence studies clearly revealed that phenylalanine-coupled SLN could deliver high amount of drug into the brain tumor cells and showed the brain-targeting potential.

  16. Therapeutic implication of L-phenylalanine aggregation mechanism and its modulation by D-phenylalanine in phenylketonuria

    Science.gov (United States)

    Singh, Virender; Rai, Ratan Kumar; Arora, Ashish; Sinha, Neeraj; Thakur, Ashwani Kumar

    2014-01-01

    Self-assembly of phenylalanine is linked to amyloid formation toxicity in phenylketonuria disease. We are demonstrating that L-phenylalanine self-assembles to amyloid fibrils at varying experimental conditions and transforms to a gel state at saturated concentration. Biophysical methods including nuclear magnetic resonance, resistance by alpha-phenylglycine to fibril formation and preference of protected phenylalanine to self-assemble show that this behaviour of L-phenylalanine is governed mainly by hydrophobic interactions. Interestingly, D-phenylalanine arrests the fibre formation by L-phenylalanine and gives rise to flakes. These flakes do not propagate further and prevent fibre formation by L-phenylalanine. This suggests the use of D-phenylalanine as modulator of L-phenylalanine amyloid formation and may qualify as a therapeutic molecule in phenylketonuria. PMID:24464217

  17. Bisphenol A (BPA) in U.S. food.

    Science.gov (United States)

    Schecter, Arnold; Malik, Noor; Haffner, Darrah; Smith, Sarah; Harris, T Robert; Paepke, Olaf; Birnbaum, Linda

    2010-12-15

    Bisphenol A (BPA) is a chemical used for lining metal cans and in polycarbonate plastics, such as baby bottles. In rodents, BPA is associated with early sexual maturation, altered behavior, and effects on prostate and mammary glands. In humans, BPA is associated with cardiovascular disease, diabetes, and male sexual dysfunction in exposed workers. Food is a major exposure source. We know of no studies reporting BPA in U.S. fresh food, canned food, and food in plastic packaging in peer reviewed journals. We measured BPA levels in 105 fresh and canned foods, foods sold in plastic packaging, and in cat and dog foods in cans and plastic packaging. We detected BPA in 63 of 105 samples, including fresh turkey, canned green beans, and canned infant formula. Ninety-three of these samples were triplicates which had similar detected levels. Detected levels ranged from 0.23 to 65.0 ng/g ww and were not associated with type of food or packaging but did vary with pH. BPA levels were higher for foods of pH 5 compared to more acidic and alkaline foods. Detected levels were comparable to those found by others. Further research is indicated to determine BPA levels in U.S. food in larger, representative sampling.

  18. [Substance monograph on bisphenol A (BPA) - reference and human biomonitoring (HBM) values for BPA in urine. Opinion of the Human Biomonitoring Commission of the German Federal Environment Agency (UBA)].

    Science.gov (United States)

    2012-09-01

    Bisphenol A (BPA) is used for the production of polycarbonates and synthetic resins. Many of the items that contain BPA, for example polycarbonate bottles and coated cans, are commodities from which BPA can migrate into food and drinks, resulting in ubiquitous exposure of the population. Numerous animal studies and in vitro tests have shown that BPA acts as an "endocrine disruptor". Because of the still incomplete understanding of the complex and contradictory effects of BPA at doses below the NOAEL, the toxicological significance of recent findings is uncertain. The German HBM Commission takes notice that the risk assessment is currently in flux and that in the EU and other countries precautionary bans on BPA have been introduced. In the light of the extensive and growing body of literature, the Commission does not see itself in a position to resolve this controversy, nor to answer the question of the relevance of observed effects of low BPA doses on human health. The Commission has derived reference values (RV95) and TDI-based HBM I values for total BPA in urine. The RV95 values are 30 μg/l for 3-5 year olds, 15 μg/l for 6-14 year olds, and 7 μg/l for 20-29 year olds. The HBM I value for children is 1.5 mg/l and 2.5 mg/l for adults, respectively. The Commission emphasizes that the HBM values will require immediate adjustment should the current TDI of 0.05 mg/kg bw/day be changed. For the practical application of HBM, the Commission recommends an assessment based on the RV95. Confirmed exceedance of the RV95 by repeat measurements should prompt a search for the possible source(s), following the ALARA principle.

  19. Hereditary fructose intolerance

    Science.gov (United States)

    Fructosemia; Fructose intolerance; Fructose aldolase B-deficiency; Fructose-1, 6-bisphosphate aldolase deficiency ... B. This substance is needed to break down fructose. If a person without this substance eats fructose ...

  20. Glycomacropeptide in children with phenylketonuria: does its phenylalanine content affect blood phenylalanine control?

    Science.gov (United States)

    Daly, A; Evans, S; Chahal, S; Santra, S; MacDonald, A

    2017-08-01

    In phenylketonuria (PKU), there are no data available for children with respect to evaluating casein glycomacropeptide (CGMP) as an alternative to phenylalanine-free protein substitutes [Phe-free L-amino acid (AA)]. CGMP contains a residual amount of phenylalanine, which may alter blood phenylalanine control. In a prospective 6-month pilot study, we investigated the effect on blood phenylalanine control of CGMP-amino acid (CGMP-AA) protein substitute in 22 PKU subjects (13 boys, nine girls), median age (range) 11 years (6-16 years). Twelve received CGMP-AA and nine received Phe-free L-AA, (1 CGMP-AA withdrawal). Subjects partially or wholly replaced Phe-free L-AA with CGMP-AA. If blood phenylalanine exceeded the target range, the CGMP-AA dose was reduced and replaced with Phe-free L-amino acids. The control group remained on Phe-free L-AAs. Phenylalanine, tyrosine and Phe : Tyr ratio concentrations were compared with the results for the previous year. In the CGMP-AA group, there was a significant increase in blood phenylalanine concentrations (pre-study, 275 μmol L -1 ; CGMP-AA, 317 μmol L -1 ; P = 0.02), a decrease in tyrosine concentrations (pre-study, 50 μmol L -1 ; CGMP-AA, 40 μmol L -1 ; P = 0.03) and an increase in Phe : Tyr ratios (pre-study, Phe : Tyr 4.9:1; CGMP-AA, Phe : Tyr 8:1; P = 0.02). In the control group there was a non-significant fall in phenylalanine concentrations (pre-study 325μmol/L: study 280μmol/L [p = 0.9], and no significant changes for tyrosine or phe/tyr ratios [p = 0.9]. Children taking the CGMP-AA found it more acceptable to L-AA. Blood phenylalanine control declined with CGMP-AA but, by titrating the dose of CGMP-AA, blood phenylalanine control remained within target range. The additional intake of phenylalanine may have contributed to the change in blood phenylalanine concentration. CGMP-AA use requires careful monitoring in children. © 2017 The British Dietetic Association Ltd.

  1. 1,5-Anhydro-D-fructose from D-fructose

    DEFF Research Database (Denmark)

    Dekany, Gyula; Lundt, Inge; Niedermaier, Fabian

    2007-01-01

    1,5-Anhydro-D-fructose was efficiently prepared from D-fructose via regiospecific 1,5-anhydro ring formation of 2,3-O-isopropylidene-1-O-methyl(tolyl)sulfonyl-D-fructopyranose and subsequent deprotection.......1,5-Anhydro-D-fructose was efficiently prepared from D-fructose via regiospecific 1,5-anhydro ring formation of 2,3-O-isopropylidene-1-O-methyl(tolyl)sulfonyl-D-fructopyranose and subsequent deprotection....

  2. Air, hand wipe, and surface wipe sampling for Bisphenol A (BPA) among workers in industries that manufacture and use BPA in the United States.

    Science.gov (United States)

    Hines, Cynthia J; Jackson, Matthew V; Christianson, Annette L; Clark, John C; Arnold, James E; Pretty, Jack R; Deddens, James A

    2017-11-01

    For decades, bisphenol A (BPA) has been used in making polycarbonate, epoxy, and phenolic resins and certain investment casting waxes, yet published exposure data are lacking for U.S. manufacturing workers. In 2013-2014, BPA air and hand exposures were quantified for 78 workers at six U.S. companies making BPA or BPA-based products. Exposure measures included an inhalable-fraction personal air sample on each of two consecutive work days (n = 146), pre- and end-shift hand wipe samples on the second day (n = 74 each), and surface wipe samples (n = 88). Potential determinants of BPA air and end-shift hand exposures (after natural log transformation) were assessed in univariate and multiple regression mixed models. The geometric mean (GM) BPA air concentration was 4.0 µg/m 3 (maximum 920 µg/m 3 ). The end-shift GM BPA hand level (26 µg/sample) was 10-times higher than the pre-shift level (2.6 µg/sample). BPA air and hand exposures differed significantly by industry and job. BPA air concentrations and end-shift hand levels were highest in the BPA-filled wax manufacturing/reclaim industry (GM Air = 48 µg/m 3 , GM Hand-End = 130 µg/sample) and in the job of working with molten BPA-filled wax (GM Air = 43 µg/m 3 , GM Hand-End = 180 µg/sample), and lowest in the phenolic resins industry (GM Air = 0.85 µg/m 3 , GM Hand-End = 0.43 µg/sample) and in the job of flaking phenolic resins (GM AIR = 0.62 µg/m 3 , GM Hand-End = 0.38 µg/sample). Determinants of increased BPA air concentration were industry, handling BPA containers, spilling BPA, and spending ≥50% of the shift in production areas; increasing age was associated with lower air concentrations. BPA hand exposure determinants were influenced by high values for two workers; for all other workers, tasks involving contact with BPA-containing materials and spending ≥50% of the shift in production areas were associated with increased BPA hand levels. Surface wipe BPA levels were significantly lower in

  3. Competitive binding assay for fructose 2,6-bisphosphate

    International Nuclear Information System (INIS)

    Thomas, H.; Uyeda, K.

    1986-01-01

    A new direct assay method for fructose 2,6-bisphosphate has been developed based on competitive binding of labeled and unlabeled fructose 2,6-P 2 to phosphofructokinase. Phosphofructokinase (0.5-1.3 pmol promoter) is incubated with saturating concentrations (5.0-5.5 pmol) of fructose 2,6[2- 32 P]P 2 and samples containing varying concentrations of fructose 2,6-P 2 . The resulting stable binary complex is retained on nitrocellulose filters with a binding efficiency of up to 70%. Standard curves obtained with this assay show strict linearity with varying fructose 2,6-P 2 in the range of 0.5 to 45 pmol, which exceeds the sensitivity of most of the previously described assay methods. Fructose 2,6-P 2 , ATP, and high concentrations of phosphate interfere with this assay. However, the extent of this inhibition is negligible since their tissue contents are one-half to one-tenth that examined. The new assay is simple, direct, rapid, and does not require pretreatment

  4. Sustainability at BPA 2013

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-12-01

    THIS IS THE THIRD YEAR BPA has reported on sustainability program accomplishments. The report provides an opportunity to review progress made on sustainability initiatives, evaluate how far we have come and how much we can improve. The program has demonstrated maturation as the concepts of sustainability and resource conservation are communicated and understood. The sustainability program started as an employee-driven “grass roots” effort in 2010. Sustainability is becoming a consideration in how work is performed. The establishment of several policies supporting sustainability efforts proves the positive progress being made. In 2009, BPA became a founder and member of The Climate Registry, a nonprofit collaboration that sets standards to calculate, verify and report greenhouse gas emissions. This year, BPA completed and published our Greenhouse Gas inventory for the years of 2009, 2010 and 2011. The 2012 inventory is currently in the process of third-party verification and scheduled for public release in January 2014. These inventories provide a concrete measure of the progress we are making.

  5. Neurotoxicity of low bisphenol A (BPA) exposure for young male mice: Implications for children exposed to environmental levels of BPA

    International Nuclear Information System (INIS)

    Zhou, Yuanxiu; Wang, Zhouyu; Xia, Minghan; Zhuang, Siyi; Gong, Xiaobing; Pan, Jianwen; Li, Chuhua; Fan, Ruifang; Pang, Qihua; Lu, Shaoyou

    2017-01-01

    To investigate the neuron toxicities of low-dose exposure to bisphenol A (BPA) in children, mice were used as an animal model. We examined brain cell damage and the effects of learning and memory ability after BPA exposure in male mice (4 weeks of age) that were divided into four groups and chronically received different BPA treatments for 8 weeks. The comet assay and hippocampal neuron counting were used to detect the brain cell damage. The Y-maze test was applied to test alterations in learning and memory ability. Long term potentiation induction by BPA exposure was performed to study the potential mechanism of performance. The percentages of tail DNA, tail length and tail moment in brain cells increased with increasing BPA exposure concentrations. Significant differences in DNA damage were observed among the groups, including between the low-dose and control groups. In the Y-maze test, the other three groups qualified for the learned standard one day earlier than the high-exposed group. Furthermore, the ratio of qualified mice in the high-exposed group was always the lowest among the groups, indicating that high BPA treatment significantly altered the spatial memory performance of mice. Different BPA treatments exerted different effects on the neuron numbers of different regions in the hippocampus. In the CA1 region, the high-exposed group had a significant decrease in neuron numbers. A non-monotonic relationship was observed between the exposure concentrations and neuron quantity in the CA3 region. The hippocampal slices in the control and medium-exposed groups generated long-term potentiation after induction by theta burst stimulation, but the low-exposed group did not. A significant difference was observed between the control and low-exposed groups. In conclusion, chronic exposure to a low level of BPA had adverse effects on brain cells and altered the learning and memory ability of adolescent mice. - Highlights: • Low dose BPA exposure could lead to DNA

  6. Determination of fructose metabolic pathways in normal and fructose-intolerant children: A 13C NMR study using [U-13C]fructose

    International Nuclear Information System (INIS)

    Gopher, A.; Lapidot, A.; Vaisman, N.; Mandel, H.

    1990-01-01

    An inborn deficiency in the ability of aldolase B to split fructose 1-phosphate is found in humans with hereditary fructose intolerance (HFI). A stable isotope procedure to elucidate the mechanism of conversion of fructose to glucose in normal children and in HFI children has been developed. A constant infusion of D-[U- 13 C]fructose was given nasogastrically to control and to HFI children. Hepatic fructose conversion to glucose was estimated by examination of 13 C NMR spectra of plasma glucose. Significantly lower values (∼3-fold) for fructose conversion to glucose were obtained for the HFI patients as compared to the controls. A quantitative determination of the metabolic pathways of fructose conversion to glucose was derived from 13 C NMR measurement of plasma [ 13 C]glucose isotopomer populations. The finding of isotopomer populations of three adjacent 13 C atoms at glucose C-4 ( 13 C 3 - 13 C 4 - 13 C 5 ) suggests that there is a direct pathway from fructose, by-passing fructose-1-phosphate aldolase, to fructose 1,6-bisphosphate. The metabolism of fructose by fructose-1-phosphate aldolase activity accounts for only ∼50% of the total amount of hepatic fructose conversion to glucose. In view of the marked decline by 67% in synthesis of glucose from fructose in HFI subjects found in this study, the extent of [ 13 C]glucose formation from a trace amount of [U- 13 C]fructose infused into the patient can be used as a safe and noninvasive diagnostic test for inherent faulty fructose metabolism

  7. Environmental Effects of BPA

    Directory of Open Access Journals (Sweden)

    Laura Canesi

    2015-07-01

    Full Text Available Research on bisphenol A (BPA as an environmental contaminant has now major regulatory implications toward the ecosystem health, and hence it is incumbent on scientists to do their research to the highest standards possible, in order that the most appropriate decisions are made to mitigate the impacts to aquatic wildlife. However, the contribution given so far appears rather fragmented. The present overview aims to collect available information on the effects of BPA on aquatic vertebrates and invertebrates to provide a general scenario and to suggest future developments toward more comprehensive approaches useful for aquatic species protection.

  8. Bisphenol A (BPA) in the serum of pet dogs following short-term consumption of canned dog food and potential health consequences of exposure to BPA.

    Science.gov (United States)

    Koestel, Zoe L; Backus, Robert C; Tsuruta, Kaoru; Spollen, William G; Johnson, Sarah A; Javurek, Angela B; Ellersieck, Mark R; Wiedmeyer, Charles E; Kannan, Kurunthachalam; Xue, Jingchuan; Bivens, Nathan J; Givan, Scott A; Rosenfeld, Cheryl S

    2017-02-01

    Bisphenol A (BPA) is a widely present endocrine disruptor chemical found in many household items. Moreover, this chemical can bioaccumulate in various terrestrial and aquatic sources; thereby ensuring continual exposure of animals and humans. For most species, including humans, diet is considered the primary route of exposure. However, there has been little investigation whether commercial-brands of dog foods contain BPA and potential health ramifications of BPA-dietary exposure in dogs. We sought to determine BPA content within dog food, whether short-term consumption of these diets increases serum concentrations of BPA, and potential health consequences, as assessed by potential hematological, serum chemistry, cortisol, DNA methylation, and gut microbiome changes, in dogs associated with short-term dietary exposure to BPA. Fourteen healthy privately-owned dogs were used in this study. Blood and fecal samples were collected prior to dogs being placed for two-weeks on one of two diets (with one considered to be BPA-free), and blood and fecal samples were collected again. Serum/plasma samples were analyzed for chemistry and hematology profiles, cortisol concentrations, 5-methylcytosine in lymphocytes, and total BPA concentrations. Fecal samples were used for microbiome assessments. Both diets contained BPA, and after two-weeks of being on either diet, dogs had a significant increase in circulating BPA concentrations (pre-samples=0.7±0.15ng/mL, post-samples=2.2±0.15ng/mL, pfood increased circulating BPA concentrations in dogs comparable to amounts detected in humans, and greater BPA concentrations were associated with serum chemistry and microbiome changes. Dogs, who share our internal and external environments with us, are likely excellent indicators of potential human health concerns to BPA and other environmental chemicals. These findings may also have relevance to aquatic and terrestrial wildlife. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Fructose and NAFLD: The Multifaceted Aspects of Fructose Metabolism

    Science.gov (United States)

    Jegatheesan, Prasanthi; De Bandt, Jean-Pascal

    2017-01-01

    Among various factors, such as an unhealthy diet or a sedentarity lifestyle, excessive fructose consumption is known to favor nonalcoholic fatty liver disease (NAFLD), as fructose is both a substrate and an inducer of hepatic de novo lipogenesis. The present review presents some well-established mechanisms and new clues to better understand the pathophysiology of fructose-induced NAFLD. Beyond its lipogenic effect, fructose intake is also at the onset of hepatic inflammation and cellular stress, such as oxidative and endoplasmic stress, that are key factors contributing to the progression of simple steatosis to nonalcoholic steatohepatitis (NASH). Beyond its hepatic effects, this carbohydrate may exert direct and indirect effects at the peripheral level. Excessive fructose consumption is associated, for example, with the release by the liver of several key mediators leading to alterations in the communication between the liver and the gut, muscles, and adipose tissue and to disease aggravation. These multifaceted aspects of fructose properties are in part specific to fructose, but are also shared in part with sucrose and glucose present in energy–dense beverages and foods. All these aspects must be taken into account in the development of new therapeutic strategies and thereby to better prevent NAFLD. PMID:28273805

  10. Presence and leaching of bisphenol a (BPA) from dental materials

    Science.gov (United States)

    Becher, Rune; Wellendorf, Hanne; Sakhi, Amrit Kaur; Samuelsen, Jan Tore; Thomsen, Cathrine; Bølling, Anette Kocbach; Kopperud, Hilde Molvig

    2018-01-01

    Abstract BPA has been reported to leach from some resin based dental restorative materials and materials used for orthodontic treatment. To confirm and update previous findings, especially in light of the new temporary lower threshold value for tolerable daily BPA intake, we have investigated the leaching of BPA from 4 composite filling materials, 3 sealants and 2 orthodontic bonding materials. The materials were either uncured and dissolved in methanol or cured. The cured materials were kept in deionized water for 24 hours or 2 weeks. Samples were subsequently analyzed by ultra-performance liquid chromatography coupled to mass spectrometry (UPLC-MS-MS). The composite filling material Tetric EvoFlow® and the fissure sealant DELTON® showed significantly higher levels of BPA leaching compared to control samples for all test conditions (uncured, 24 h leaching and 2 weeks leaching). There were no significant differences in amount of leached BPA for any of the tested materials after 24 hours compared to 2 weeks. These results show that BPA is still released from some dental materials despite the general concern about potential adverse effects of BPA. However, the amounts of BPA were relatively low and most likely represent a very small contribution to the total BPA exposure. PMID:29868625

  11. Urinary fructose: a potential biomarker for dietary fructose intake in children.

    Science.gov (United States)

    Johner, S A; Libuda, L; Shi, L; Retzlaff, A; Joslowski, G; Remer, T

    2010-11-01

    Recently, urinary fructose and sucrose excretion in 24-h urine have been established experimentally as new biomarkers for dietary sugar intake in adults. Our objective was to investigate 1) whether the fructose biomarker is also applicable in free-living children and 2) for what kind of sugar it is standing for. Intakes of added and total sugar (including additional sugar from fruit and fruit juices) were assessed by 3-day weighed dietary records in 114 healthy prepubertal children; corresponding 24-h urinary fructose excretion was measured photometrically. The associations between dietary sugar intakes and urinary fructose excretion were examined using linear regression models. To determine whether one of the two sugar variables may be better associated with the urinary biomarker, the statistical Pitman's test was used. Added and total sugar correlated significantly with urinary fructose, but the linear regression indicated a weak association between intake of added sugar and urinary log-fructose excretion (β=0.0026, R(2)=0.055, P=0.01). The association between total sugar intake and log-urinary fructose (β=0.0040, R(2)=0.181, Pestimation of total sugar intake than for the estimation of added dietary sugar intake in children. However, as excreted fructose stems almost exclusively from the diet (both from food-intrinsic and added intakes), it can be assumed that urinary fructose represents a potential biomarker for total dietary fructose intake, irrespective of its source.

  12. Fructose malabsorption and intolerance: effects of fructose with and without simultaneous glucose ingestion.

    Science.gov (United States)

    Latulippe, Marie E; Skoog, Suzanne M

    2011-08-01

    Concern exists that increasing fructose consumption, particularly in the form of high-fructose corn syrup, is resulting in increasing rates of fructose intolerance and aggravation of clinical symptoms in individuals with irritable bowel syndrome. Most clinical trials designed to test this hypothesis have used pure fructose, a form not commonly found in the food supply, often in quantities and concentrations that exceed typical fructose intake levels. In addition, the amount of fructose provided in tests for malabsorption, which is thought to be a key cause of intolerance, often exceeds the normal physiological absorption capacity for this sugar. To help health professionals accurately identify and treat this condition, this article reviews clinical data related to understanding fructose malabsorption and intolerance (i.e., malabsorption that manifests with symptoms) relative to usual fructose and other carbohydrate intake. Because simultaneous consumption of glucose attenuates fructose malabsorption, information on the fructose and glucose content of foods, beverages, and ingredients representing a variety of food categories is provided.

  13. Fructose content in popular beverages made with and without high-fructose corn syrup.

    Science.gov (United States)

    Walker, Ryan W; Dumke, Kelly A; Goran, Michael I

    2014-01-01

    Excess fructose consumption is hypothesized to be associated with risk for metabolic disease. Actual fructose consumption levels are difficult to estimate because of the unlabeled quantity of fructose in beverages. The aims of this study were threefold: 1) re-examine the fructose content in previously tested beverages using two additional assay methods capable of detecting other sugars, especially maltose, 2) compare data across all methods to determine the actual free fructose-to-glucose ratio in beverages made either with or without high-fructose corn syrup (HFCS), and 3) expand the analysis to determine fructose content in commonly consumed juice products. Sugar-sweetened beverages (SSBs) and fruit juice drinks that were either made with or without HFCS were analyzed in separate, independent laboratories via three different methods to determine sugar profiles. For SSBs, the three independent laboratory methods showed consistent and reproducible results. In SSBs made with HFCS, fructose constituted 60.6% ± 2.7% of sugar content. In juices sweetened with HFCS, fructose accounted for 52.1% ± 5.9% of sugar content, although in some juices made from 100% fruit, fructose concentration reached 65.35 g/L accounting for 67% of sugars. Our results provide evidence of higher than expected amounts of free fructose in some beverages. Popular beverages made with HFCS have a fructose-to-glucose ratio of approximately 60:40, and thus contain 50% more fructose than glucose. Some pure fruit juices have twice as much fructose as glucose. These findings suggest that beverages made with HFCS and some juices have a sugar profile very different than sucrose, in which amounts of fructose and glucose are equivalent. Current dietary analyses may underestimate actual fructose consumption. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Challenging the Fructose Hypothesis: New Perspectives on Fructose Consumption and Metabolism123

    Science.gov (United States)

    White, John S.

    2013-01-01

    The field of sugar metabolism, and fructose metabolism in particular, has experienced a resurgence of interest in the past decade. The “fructose hypothesis” alleges that the fructose component common to all major caloric sweeteners (sucrose, high-fructose corn syrup, honey, and fruit juice concentrates) plays a unique and causative role in the increasing rates of cardiovascular disease, hypertension, diabetes, cancer, and nonalcoholic fatty liver disease. This review challenges the fructose hypothesis by comparing normal U.S. levels and patterns of fructose intake with contemporary experimental models and looking for substantive cause-and-effect evidence from real-world diets. It is concluded that 1) fructose intake at normal population levels and patterns does not cause biochemical outcomes substantially different from other dietary sugars and 2) extreme experimental models that feature hyperdosing or significantly alter the usual dietary glucose-to-fructose ratio are not predictive of typical human outcomes or useful to public health policymakers. It is recommended that granting agencies and journal editors require more physiologically relevant experimental designs and clinically important outcomes for fructose research. PMID:23493541

  15. [Kinetic study on inhibition effects of dansyl-L-phenylalanine and L-phenylalanine on calf intestinal alkaline phosphatase].

    Science.gov (United States)

    Li, Li-Na; Wu, Yu-Qing; Buchet, René

    2009-10-01

    To evaluate the inhibition effect of dansyl-L-phenylalanine on calf intestinal alkaline phosphatase (CIAP), UV-Vis spectrophotometric method was employed. It was found that dansyl-L-phenylalanine can selectively inhibit CIAP. The kinetic inhibition processes of dansyl-L-phenylalanine and L-phenylalanine were comparatively studied. The authors' finding elucidates that at the optimized alkaline pH of alkaline phosphatase (pH 10.4) and 37 degrees C, dansyl-L-phenylalanine can inhibit alkaline phosphatase activity of CIAP efficiently and specifically, similar as L-phenylalanine. Both inhibition types were uncompetitive inhibition resulting from the double reciprocal curve fitting of upsilon versus substrate concentrations, and the inhibition constants Ki of both inhibitors were determined to be 2.3 and 1.1 mmol L(-1) respectively, both of which were at millimolar level. The investigation of the inhibition effect of dansyl modified L-phenylalanine on calf intestinal alkaline phosphatase not only helped get insight into the detailed inhibition mechanism of L-phenylalanine on tissue specific alkaline phosphatase, such as in the case of intestinal alkaline phosphatase, but also provided the possibility to employ fluorescence spectroscopy by labeling the specific inhibitors of alkaline phosphatase with chromophoric groups.

  16. Fructose Malabsorption and Intolerance: Effects of Fructose with and without Simultaneous Glucose Ingestion

    OpenAIRE

    Latulippe, Marie E.; Skoog, Suzanne M.

    2011-01-01

    Concern exists that increasing fructose consumption, particularly in the form of high-fructose corn syrup, is resulting in increasing rates of fructose intolerance and aggravation of clinical symptoms in individuals with irritable bowel syndrome. Most clinical trials designed to test this hypothesis have used pure fructose, a form not commonly found in the food supply, often in quantities and concentrations that exceed typical fructose intake levels. In addition, the amount of fructose provid...

  17. Hereditaire fructose-intolerantie

    NARCIS (Netherlands)

    Rumping, Lynne; Waterham, Hans R.; Kok, Irene; van Hasselt, Peter M.; Visser, Gepke

    2014-01-01

    Hereditary fructose intolerance (HFI) is a rare metabolic disease affecting fructose metabolism. After ingestion of fructose, patients may present with clinical symptoms varying from indefinite gastrointestinal symptoms to life-threatening hypoglycaemia and hepatic failure. A 13-year-old boy was

  18. [Research on characteristic of interrelationship between toxic organic compound BPA and Chlorella vulgaris].

    Science.gov (United States)

    Chen, Shan-Jia; Chen, Xiu-Rong; Yan, Long; Zhao, Jian-Guo; Zhang, Fei; Jiang, Zi-Jian

    2014-04-01

    The effects of different concentrations of bisphenol A (BPA) on Chlorella vulgaris and removal capacity of BPA by Chlorella vulgaris were investigated. Results showed that a low concentration (0-20 mg x L(-1)) of BPA promoted the growth of Chlorella vulgaris, whereas a relative high concentration (20-50 mg x L(-1)) of BPA inhibited the growth of Chlorella vulgaris, and the inhibition effect was positively correlated with the concentration of BPA. Likewise, a high dose of initial BPA (> 20 mg x L(-1)) led to a decline in the content of chlorephyll a. Chlorella vulgaris had BPA removal capacity when initial BPA concentration ranged from 2 mg x L(-1) to 50 mg x L(-1). There was positive correlation between the removal rate of BPA per cell and initial BPA concentration. The removal rate of BPA was the highest when initial BPA was 50 mg x L(-1), which appeared between lag phase and logarithmic phase.

  19. Incorporation of exogenous L-phenylalanine into C-glycosylflavones in buckwheat cotyledons

    International Nuclear Information System (INIS)

    Margna, U.; Margna, E.

    1978-01-01

    By tracer experiments it was demonstrated that in excised buckwheat cotyledons L-phenylalanine fed exogeneously was incorporated predominantly into the luteolinic C-glycosylflavones orientin and iso-orientin, but not into their simpler apigeninic analogues vitexin and isovitexin, as it could be expected theoretically. Evidence is presented that L-phenylalanine supplied exogenously does not mix with the endogenous pool of that precursor, and that ratios of L-phenylalanine distribution between pathways of apigeninic and luteolinic C-glycosylflavones are different depending on wether the flavonoids are synthesized from endogenous or exogenous material. This phenomenon is suggested to be caused by the differences between enzyme complexes responsible for the biosynthesis of separate C-glycosylflavones in their capability of consuming common endogenous precursors. (author)

  20. Comparison of breath testing with fructose and high fructose corn syrups in health and IBS.

    Science.gov (United States)

    Skoog, S M; Bharucha, A E; Zinsmeister, A R

    2008-05-01

    Although incomplete fructose absorption has been implicated to cause gastrointestinal symptoms, foods containing high fructose corn syrup (HFCS) contain glucose. Glucose increases fructose absorption in healthy subjects. Our hypothesis was that fructose intolerance is less prevalent after HFCS consumption compared to fructose alone in healthy subjects and irritable bowel syndrome (IBS). Breath hydrogen levels and gastrointestinal symptoms were assessed after 40 g of fructose (12% solution) prepared either in water or as HFCS, administered in double-blind randomized order on 2 days in 20 healthy subjects and 30 patients with IBS. Gastrointestinal symptoms were recorded on 100-mm Visual Analogue Scales. Breath hydrogen excretion was more frequently abnormal (P fructose (68%) than HFCS (26%) in controls and patients. Fructose intolerance (i.e. abnormal breath test and symptoms) was more prevalent after fructose than HFCS in healthy subjects (25% vs. 0%, P = 0.002) and patients (40% vs. 7%, P = 0.062). Scores for several symptoms (e.g. bloating r = 0.35) were correlated (P fructose but not HFCS; in the fructose group, this association did not differ between healthy subjects and patients. Symptoms were not significantly different after fructose compared to HFCS. Fructose intolerance is more prevalent with fructose alone than with HFCS in health and in IBS. The prevalence of fructose intolerance is not significantly different between health and IBS. Current methods for identifying fructose intolerance should be modified to more closely reproduce fructose ingestion in daily life.

  1. The role of fructose transporters in diseases linked to excessive fructose intake

    Science.gov (United States)

    Douard, Veronique; Ferraris, Ronaldo P

    2013-01-01

    Fructose intake has increased dramatically since humans were hunter-gatherers, probably outpacing the capacity of human evolution to make physiologically healthy adaptations. Epidemiological data indicate that this increasing trend continued until recently. Excessive intakes that chronically increase portal and peripheral blood fructose concentrations to >1 and 0.1 mm, respectively, are now associated with numerous diseases and syndromes. The role of the fructose transporters GLUT5 and GLUT2 in causing, contributing to or exacerbating these diseases is not well known. GLUT5 expression seems extremely low in neonatal intestines, and limited absorptive capacities for fructose may explain the high incidence of malabsorption in infants and cause problems in adults unable to upregulate GLUT5 levels to match fructose concentrations in the diet. GLUT5- and GLUT2-mediated fructose effects on intestinal electrolyte transporters, hepatic uric acid metabolism, as well as renal and cardiomyocyte function, may play a role in fructose-induced hypertension. Likewise, GLUT2 may contribute to the development of non-alcoholic fatty liver disease by facilitating the uptake of fructose. Finally, GLUT5 may play a role in the atypical growth of certain cancers and fat tissues. We also highlight research areas that should yield information needed to better understand the role of these GLUTs in fructose-induced diseases. PMID:23129794

  2. Fructose Malabsorption in Systemic Sclerosis

    Science.gov (United States)

    Marie, Isabelle; Leroi, Anne-Marie; Gourcerol, Guillaume; Levesque, Hervé; Ménard, Jean-François; Ducrotte, Philippe

    2015-01-01

    Abstract The deleterious effect of fructose, which is increasingly incorporated in many beverages, dairy products, and processed foods, has been described; fructose malabsorption has thus been reported in up to 2.4% of healthy subjects, leading to digestive clinical symptoms (eg, pain, distension, diarrhea). Because digestive involvement is frequent in patients with systemic sclerosis (SSc), we hypothesized that fructose malabsorption could be responsible for intestinal manifestations in these patients. The aims of this prospective study were to: determine the prevalence of fructose malabsorption, in SSc; predict which SSc patients are at risk of developing fructose malabsorption; and assess the outcome of digestive symptoms in SSc patients after initiation of standardized low-fructose diet. Eighty consecutive patients with SSc underwent fructose breath test. All SSc patients also completed a questionnaire on digestive symptoms, and a global symptom score (GSS) was calculated. The prevalence of fructose malabsorption was as high as 40% in SSc patients. We also observed a marked correlation between the presence of fructose malabsorption and: higher values of GSS score of digestive symptoms (P = 0.000004); and absence of delayed gastric emptying (P = 0.007). Furthermore, in SSc patients with fructose malabsorption, the median value of GSS score of digestive symptoms was lower after initiation of standardized low-fructose diet (4 before vs. 1 after; P = 0.0009). Our study underscores that fructose malabsorption often occurs in SSc patients. Our findings are thus relevant for clinical practice, highlighting that fructose breath test is a helpful, noninvasive method by: demonstrating fructose intolerance in patients with SSc; and identifying the group of SSc patients with fructose intolerance who may benefit from low-fructose diet. Interestingly, because the present series also shows that low-fructose diet resulted in a marked decrease of gastrointestinal

  3. Synthesis of d‐ and l‐Phenylalanine Derivatives by Phenylalanine Ammonia Lyases: A Multienzymatic Cascade Process†

    Science.gov (United States)

    Parmeggiani, Fabio; Lovelock, Sarah L.; Weise, Nicholas J.; Ahmed, Syed T.

    2015-01-01

    Abstract The synthesis of substituted d‐phenylalanines in high yield and excellent optical purity, starting from inexpensive cinnamic acids, has been achieved with a novel one‐pot approach by coupling phenylalanine ammonia lyase (PAL) amination with a chemoenzymatic deracemization (based on stereoselective oxidation and nonselective reduction). A simple high‐throughput solid‐phase screening method has also been developed to identify PALs with higher rates of formation of non‐natural d‐phenylalanines. The best variants were exploited in the chemoenzymatic cascade, thus increasing the yield and ee value of the d‐configured product. Furthermore, the system was extended to the preparation of those l‐phenylalanines which are obtained with a low ee value using PAL amination. PMID:27478261

  4. Synthesis of d- and l-Phenylalanine Derivatives by Phenylalanine Ammonia Lyases: A Multienzymatic Cascade Process**

    Science.gov (United States)

    Parmeggiani, Fabio; Lovelock, Sarah L; Weise, Nicholas J; Ahmed, Syed T; Turner, Nicholas J

    2015-01-01

    The synthesis of substituted d-phenylalanines in high yield and excellent optical purity, starting from inexpensive cinnamic acids, has been achieved with a novel one-pot approach by coupling phenylalanine ammonia lyase (PAL) amination with a chemoenzymatic deracemization (based on stereoselective oxidation and nonselective reduction). A simple high-throughput solid-phase screening method has also been developed to identify PALs with higher rates of formation of non-natural d-phenylalanines. The best variants were exploited in the chemoenzymatic cascade, thus increasing the yield and ee value of the d-configured product. Furthermore, the system was extended to the preparation of those l-phenylalanines which are obtained with a low ee value using PAL amination. PMID:25728350

  5. A cancer research UK pharmacokinetic study of BPA-mannitol in patients with high grade glioma to optimise uptake parameters for clinical trials of BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Cruickshank, G.S. [University of Birmingham and University Hospital Birmingham, Birmingham (United Kingdom)], E-mail: garth.cruickshank@uhb.nhs.uk; Ngoga, D.; Detta, A.; Green, S.; James, N.D.; Wojnecki, C.; Doran, J.; Hardie, J.; Chester, M.; Graham, N.; Ghani, Z. [University of Birmingham and University Hospital Birmingham, Birmingham (United Kingdom); Halbert, G.; Elliot, M.; Ford, S. [CR-UK Formulation Unit, University of Strathclyde, Glasgow (United Kingdom); Braithwaite, R.; Sheehan, T.M.T. [Regional Laboratory for Toxicology, Sandwell and West Birmingham Hospitals Trust, Birmingham (United Kingdom); Vickerman, J.; Lockyer, N. [Surface Analysis Research Centre, University of Manchester, Manchester (United Kingdom); Steinfeldt, H.; Croswell, G. [CR-UK Drug Development Office, London (United Kingdom)] (and others)

    2009-07-15

    This paper describes results to-date from a human pharmacokinetic study which began recruitment in December 2007. Results are presented for a single patient recruited in December 2007. A second patient was recruited in July 2008 but detailed data are not available at the time of writing. The trial is an open-label, non-comparative, non-therapeutic study of BPA-mannitol in patients with high-grade glioma, who will be undergoing stereotactic brain biopsy as part of the diagnostic process before definitive treatment. The study investigates the route of infusion (intra-venous (IV) or intra-carotid artery) and in each case will assess the effect of administration of mannitol as a blood-brain barrier disrupter. All cohorts will receive a 2 h infusion of BPA-mannitol, and for some cohorts an additional mannitol bolus will be administered at the beginning of this infusion. Measurements are made by inductively coupled plasma mass spectrometry (ICP-MS) of {sup 10}B concentration in samples of blood, urine, extra-cellular fluid in normal brain (via a dialysis probe), brain tissue around tumour and tumour tissue. Additional analysis of the tumour tissue is performed using secondary ion mass spectrometry (SIMS). The first patient was part of the cohort having intra-venous infusion without mannitol bolus. No serious clinical problems were experienced and the assay results can be compared with available patient data from other BNCT centres. In particular we note that the peak {sup 10}B concentration in blood was 28.1 mg/ml for a total BPA administration of 350 mg/kg which is very consistent with the previous experience with BPA-fructose reported by the Helsinki group.

  6. A cancer research UK pharmacokinetic study of BPA-mannitol in patients with high grade glioma to optimise uptake parameters for clinical trials of BNCT

    International Nuclear Information System (INIS)

    Cruickshank, G.S.; Ngoga, D.; Detta, A.; Green, S.; James, N.D.; Wojnecki, C.; Doran, J.; Hardie, J.; Chester, M.; Graham, N.; Ghani, Z.; Halbert, G.; Elliot, M.; Ford, S.; Braithwaite, R.; Sheehan, T.M.T.; Vickerman, J.; Lockyer, N.; Steinfeldt, H.; Croswell, G.

    2009-01-01

    This paper describes results to-date from a human pharmacokinetic study which began recruitment in December 2007. Results are presented for a single patient recruited in December 2007. A second patient was recruited in July 2008 but detailed data are not available at the time of writing. The trial is an open-label, non-comparative, non-therapeutic study of BPA-mannitol in patients with high-grade glioma, who will be undergoing stereotactic brain biopsy as part of the diagnostic process before definitive treatment. The study investigates the route of infusion (intra-venous (IV) or intra-carotid artery) and in each case will assess the effect of administration of mannitol as a blood-brain barrier disrupter. All cohorts will receive a 2 h infusion of BPA-mannitol, and for some cohorts an additional mannitol bolus will be administered at the beginning of this infusion. Measurements are made by inductively coupled plasma mass spectrometry (ICP-MS) of 10 B concentration in samples of blood, urine, extra-cellular fluid in normal brain (via a dialysis probe), brain tissue around tumour and tumour tissue. Additional analysis of the tumour tissue is performed using secondary ion mass spectrometry (SIMS). The first patient was part of the cohort having intra-venous infusion without mannitol bolus. No serious clinical problems were experienced and the assay results can be compared with available patient data from other BNCT centres. In particular we note that the peak 10 B concentration in blood was 28.1 mg/ml for a total BPA administration of 350 mg/kg which is very consistent with the previous experience with BPA-fructose reported by the Helsinki group.

  7. Androgen and Progesterone Receptors Are Targets for Bisphenol A (BPA, 4-Methyl-2,4-bis-(P-HydroxyphenylPent-1-Ene--A Potent Metabolite of BPA, and 4-Tert-Octylphenol: A Computational Insight.

    Directory of Open Access Journals (Sweden)

    Mohd Rehan

    Full Text Available Exposure to toxic industrial chemicals that have capacity to disrupt the endocrine system, also known as endocrine disrupting chemicals (EDCs, has been increasingly associated with reproductive problems in human population. Bisphenol A (BPA; 4,4'-(propane-2,2-diyldiphenol and 4-tert-octylphenol (OP; 4-(1,1,3,3-tetramethylbutylphenol are among the most common environmental contaminants possessing endocrine disruption properties and are present in plastics, epoxy resins, detergents and other commercial products of common personal and industrial use. A metabolite of BPA, 4-Methyl-2,4-bis(4-hydroxyphenylpent-1-ene (MBP is about 1000 times more biologically active compared to BPA. Epidemiological, clinical, and experimental studies have shown association of BPA and OP with adverse effects on male and female reproductive system in human and animals. The endocrine disruption activity can occur through multiple pathways including binding to steroid receptors. Androgen receptor (AR and progesterone receptor (PR are critical for reproductive tract growth and function. Structural binding characterization of BPA, MBP, and OP with AR and PR using molecular docking simulation approaches revealed novel interactions of BPA with PR, and MBP and OP with AR and PR. For BPA, MBP, and OP, five AR interacting residues Leu-701, Leu-704, Asn-705, Met-742, and Phe-764 overlapped with those of native AR ligand testosterone, and four PR interacting residues Leu-715, Leu-718, Met-756, and Met-759 overlapped with those of PR co-complex ligand, norethindrone. For both the receptors the binding strength of MBP was maximum among the three compounds. Thus, these compounds have the potential to block or interfere in the binding of the endogenous native AR and PR ligands and, hence, resulting in dysfunction. The knowledge of the key interactions and the important amino-acid residues also allows better prediction of potential of xenobiotic molecules for disrupting AR- and PR

  8. Biomonitoring Equivalents for bisphenol A (BPA).

    Science.gov (United States)

    Krishnan, Kannan; Gagné, Michelle; Nong, Andy; Aylward, Lesa L; Hays, Sean M

    2010-10-01

    Recent efforts worldwide have resulted in a growing database of measured concentrations of chemicals in blood and urine samples taken from the general population. However, few tools exist to assist in the interpretation of the measured values in a health risk context. Biomonitoring Equivalents (BEs) are defined as the concentration or range of concentrations of a chemical or its metabolite in a biological medium (blood, urine, or other medium) that is consistent with an existing health-based exposure guideline. BE values are derived by integrating available data on pharmacokinetics with existing chemical risk assessments. This study reviews available health-based exposure guidance values for bisphenol A (BPA) from Health Canada, the United States Environmental Protection Agency (USEPA) and the European Food Safety Authority (EFSA). BE values were derived based on data on BPA urinary excretion in humans. The BE value corresponding to the oral provisional tolerable daily intake (pTDI) of 25 microg/kg-d from Health Canada is 1mg/L (1.3mg/g creatinine); value corresponding to the US EPA reference dose (RfD) and EFSA tolerable daily intake (TDI) estimates (both of which are equal to 50 microg/kg-d) is 2mg/L (2.6 mg/g creatinine). These values are estimates of the 24-h average urinary BPA concentrations that are consistent with steady-state exposure at the respective exposure guidance values. These BE values may be used as screening tools for evaluation of central tendency measures of population biomonitoring data for BPA in a risk assessment context and can assist in prioritization of the potential need for additional risk assessment efforts for BPA relative to other chemicals. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  9. Assessment of brain phenylalanine dynamics in phenylketonuria patients

    International Nuclear Information System (INIS)

    Bik-Multanowski, M.; Pietrzyk, J. J.; Pasowicz, M.; Banys, R.P.

    2006-01-01

    Phenylketonuria (PKU) is the most common inborn error of metabolism in man. Brain phenylalanine kinetics can determine neurological treatment outcome in phenylketonuria. The aim of our study wa sto test a simplified magnetic resonance spectroscopy method for assessment of brain phenylalanine dynamics in PKU patients. Brain phenylalanine concentration (measured by means of magnetic resonance spectroscopy) and blood phenylalanine concentrations changes occurring within 24 hours after oral phenylalanine loading were analyzed in 5 PKU patients. The brain/blood phenylalanine ratio in 3 persons with normal intelligence was lower than in 2 with borderline intelligence or mild mental retardation. In our opinion the proposed method could be useful for assessment of brain phenylalanine dynamics in PKU patients. (author)

  10. Comparison of breath testing with fructose and high fructose corn syrups in health and IBS

    OpenAIRE

    Skoog, S. M.; Bharucha, A. E.; Zinsmeister, A. R.

    2008-01-01

    Although incomplete fructose absorption has been implicated to cause gastrointestinal symptoms, foods containing high fructose corn syrup (HFCS) contain glucose. Glucose increases fructose absorption in healthy subjects. Our hypothesis was that fructose intolerance is less prevalent after HFCS consumption compared to fructose alone in healthy subjects and irritable bowel syndrome (IBS). Breath hydrogen levels and gastrointestinal symptoms were assessed after 40 g of fructose (12% solution) pr...

  11. Early Life Exposure to Fructose Alters Maternal, Fetal and Neonatal Hepatic Gene Expression and Leads to Sex-Dependent Changes in Lipid Metabolism in Rat Offspring

    Science.gov (United States)

    Clayton, Zoe E.; Vickers, Mark H.; Bernal, Angelica; Yap, Cassandra; Sloboda, Deborah M.

    2015-01-01

    Aim Fructose consumption is associated with altered hepatic function and metabolic compromise and not surprisingly has become a focus for perinatal studies. We have previously shown that maternal fructose intake results in sex specific changes in fetal, placental and neonatal outcomes. In this follow-up study we investigated effects on maternal, fetal and neonatal hepatic fatty acid metabolism and immune modulation. Methods Pregnant rats were randomised to either control (CON) or high-fructose (FR) diets. Fructose was given in solution and comprised 20% of total caloric intake. Blood and liver samples were collected at embryonic day 21 (E21) and postnatal day (P)10. Maternal liver samples were also collected at E21 and P10. Liver triglyceride and glycogen content was measured with standard assays. Hepatic gene expression was measured with qPCR. Results Maternal fructose intake during pregnancy resulted in maternal hepatic ER stress, hepatocellular injury and increased levels of genes that favour lipogenesis. These changes were associated with a reduction in the NLRP3 inflammasome. Fetuses of mothers fed a high fructose diet displayed increased hepatic fructose transporter and reduced fructokinase mRNA levels and by 10 days of postnatal age, also have hepatic ER stress, and elevated IL1β mRNA levels. At P10, FR neonates demonstrated increased hepatic triglyceride content and particularly in males, associated changes in the expression of genes regulating beta oxidation and the NLRP3 inflammasome. Further, prenatal fructose results in sex-dependant changes in levels of key clock genes. Conclusions Maternal fructose intake results in age and sex-specific alterations in maternal fetal and neonatal free fatty acid metabolism, which may be associated in disruptions in core clock gene machinery. How these changes are associated with hepatic inflammatory processes is still unclear, although suppression of the hepatic inflammasome, as least in mothers and male neonates may

  12. BPA/Lower Valley transmission project. Final environmental impact statement

    International Nuclear Information System (INIS)

    1998-06-01

    Bonneville Power Administration and Lower Valley Power and Light, Inc. propose to solve a voltage stability problem in the Jackson and Afton, Wyoming areas. Lower Valley buys electricity from BPA and then supplies it to the residences and businesses of the Jackson and Afton, Wyoming areas. BPA is considering five alternatives. For the Agency Proposed Action, BPA and Lower Valley would construct a new 115-kV line from BPA's Swan Valley Substation near Swan Valley in Bonneville County, Idaho about 58 km (36 miles) east to BPA's Teton Substation near Jackson in Teton County, Wyoming. The new line would be next to an existing 115-kV line. The Single-Circuit Line Alternative has all the components of the Agency Proposed Action except that the entire line would be supported by single-circuit wood pole H-frame structures. the Short Line Alternative has all the components of the Single-Circuit Line Alternative except it would only be half as long. BPA would also construct a new switching station near the existing right-of-way, west or north of Targhee Tap. Targhee Tap would then be removed. For the Static Var Compensation Alternative, BPA would install a Static Var Compensator (SVC) at Teton or Jackson Substation. An SVC is a group of electrical equipment placed at a substation to help control voltage on a transmission system. The No Action Alternative assumes that no new transmission line is built, and no other equipment is added to the transmission system

  13. Binding of radiation-induced phenylalanine radicals to DNA

    International Nuclear Information System (INIS)

    Schans, G.P. van der; Rijn, C.J.S. van; Bleichrodt, J.F.

    1975-11-01

    When an aqueous solution of double-stranded DNA of bacteriophage PM2 containing phenylalanine and saturated with N 2 O is irradiated with γ-rays, radiation-induced phenylalanine radicals are bound covalently. Under the conditions used about 25 phenylalanine molecules may be bound per lethal hit. Also for single-stranded PM2 DNA, most of the phenylalanine radicals bound are non-lethal. Evidence is presented that in double-stranded DNA an appreciable fraction of the single-strand breaks is induced by phenylalanine radicals. Radiation products of phenylalanine and the phenylalanine bound to the DNA decrease the sensitivity of the DNA to the induction of single-strand breaks. There are indications that the high efficiency of protection by radiation products of phenylalanine is due to their positive charge, which will result in a relatively high concentration of these compounds in the vicinity of the negatively charged DNA molecules

  14. The rate of incorporation and degradation of phenylalanine-14C by tissue slices of roosters fed a phenylalanine-free diet

    International Nuclear Information System (INIS)

    Ishibashi, Teru; Kametaka, Masao

    1975-01-01

    To investigate the reason why adult roosters maintain nitrogen equilibrium on a phenylalanine-free diet for long periods, the rates of incorporation and of degradation of phenylalanine, tyrosine- and isoleucine- 14 C by tissue slices of roosters on the control, phenylalanine-free or isoleucine-free diets were measured. The degradation rate of isoleucine by liver and muscle slices decreased significantly for the isoleucine-free diet. However, the degradation rate of phenylalanine- 14 C by liver slices for the phenylalanine-free diet was not significantly lower than that for the control diet in contrast to the previous observation in vivo. The incorporation rates of 14 C into liver and muscle proteins were not affected by the dietary conditions in this experiment except in the case of phenylalanine- 14 C by muscle slices for the phenylalanine-free diet. (auth.)

  15. Crystal structures of D-tagatose 3-epimerase from Pseudomonas cichorii and its complexes with D-tagatose and D-fructose.

    Science.gov (United States)

    Yoshida, Hiromi; Yamada, Mitsugu; Nishitani, Takeyori; Takada, Goro; Izumori, Ken; Kamitori, Shigehiro

    2007-11-23

    Pseudomonas cichoriiid-tagatose 3-epimerase (P. cichoriid-TE) can efficiently catalyze the epimerization of not only d-tagatose to d-sorbose, but also d-fructose to d-psicose, and is used for the production of d-psicose from d-fructose. The crystal structures of P. cichoriid-TE alone and in complexes with d-tagatose and d-fructose were determined at resolutions of 1.79, 2.28, and 2.06 A, respectively. A subunit of P. cichoriid-TE adopts a (beta/alpha)(8) barrel structure, and a metal ion (Mn(2+)) found in the active site is coordinated by Glu152, Asp185, His211, and Glu246 at the end of the beta-barrel. P. cichoriid-TE forms a stable dimer to give a favorable accessible surface for substrate binding on the front side of the dimer. The simulated omit map indicates that O2 and O3 of d-tagatose and/or d-fructose coordinate Mn(2+), and that C3-O3 is located between carboxyl groups of Glu152 and Glu246, supporting the previously proposed mechanism of deprotonation/protonation at C3 by two Glu residues. Although the electron density is poor at the 4-, 5-, and 6-positions of the substrates, substrate-enzyme interactions can be deduced from the significant electron density at O6. The O6 possibly interacts with Cys66 via hydrogen bonding, whereas O4 and O5 in d-tagatose and O4 in d-fructose do not undergo hydrogen bonding to the enzyme and are in a hydrophobic environment created by Phe7, Trp15, Trp113, and Phe248. Due to the lack of specific interactions between the enzyme and its substrates at the 4- and 5-positions, P. cichoriid-TE loosely recognizes substrates in this region, allowing it to efficiently catalyze the epimerization of d-tagatose and d-fructose (C4 epimer of d-tagatose) as well. Furthermore, a C3-O3 proton-exchange mechanism for P. cichoriid-TE is suggested by X-ray structural analysis, providing a clear explanation for the regulation of the ionization state of Glu152 and Glu246.

  16. Phenylketonuria: Direct and indirect effects of phenylalanine.

    Science.gov (United States)

    Schlegel, Gudrun; Scholz, Ralf; Ullrich, Kurt; Santer, René; Rune, Gabriele M

    2016-07-01

    High phenylalanine concentrations in the brain due to dysfunctional phenylalanine hydroxylase (Pah) are considered to account for mental retardation in phenylketonuria (PKU). In this study, we treated hippocampal cultures with the amino acid in order to determine the role of elevated levels of phenylalanine in PKU-related mental retardation. Synapse density and dendritic length were dramatically reduced in hippocampal cultures treated with phenylalanine. Changes in cofilin expression and phosphorylation status, which were restored by NMDA, as well as reduced activation of the small GTPase Rac1, likely underlie these structural alterations. In the Pah(enu2) mouse, which carries a mutated Pah gene, we previously found higher synaptic density due to delayed synaptic pruning in response to insufficient microglia function. Microglia activity and C3 complement expression, both of which were reduced in the Pah(enu2) mouse, however, were unaffected in hippocampal cultures treated with phenylalanine. The lack of a direct effect of phenylalanine on microglia is the key to the opposite effects regarding synapse stability in vitro and in the Pah(enu2) mouse. Judging from our data, it appears that another player is required for the inactivation of microglia in the Pah(enu2) mouse, rather than high concentrations of phenylalanine alone. Altogether, the data underscore the necessity of a lifelong phenylalanine-restricted diet. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. SGLT5 Reabsorbs Fructose in the Kidney but Its Deficiency Paradoxically Exacerbates Hepatic Steatosis Induced by Fructose

    Science.gov (United States)

    Fukuzawa, Taku; Fukazawa, Masanori; Ueda, Otoya; Shimada, Hideaki; Kito, Aki; Kakefuda, Mami; Kawase, Yosuke; Wada, Naoko A.; Goto, Chisato; Fukushima, Naoshi; Jishage, Kou-ichi; Honda, Kiyofumi; King, George L.; Kawabe, Yoshiki

    2013-01-01

    Although excessive fructose intake is epidemiologically linked with dyslipidemia, obesity, and diabetes, the mechanisms regulating plasma fructose are not well known. Cells transfected with sodium/glucose cotransporter 5 (SGLT5), which is expressed exclusively in the kidney, transport fructose in vitro; however, the physiological role of this transporter in fructose metabolism remains unclear. To determine whether SGLT5 functions as a fructose transporter in vivo, we established a line of mice lacking the gene encoding SGLT5. Sodium-dependent fructose uptake disappeared in renal brush border membrane vesicles from SGLT5-deficient mice, and the increased urinary fructose in SGLT5-deficient mice indicated that SGLT5 was the major fructose reabsorption transporter in the kidney. From this, we hypothesized that urinary fructose excretion induced by SGLT5 deficiency would ameliorate fructose-induced hepatic steatosis. To test this hypothesis we compared SGLT5-deficient mice with wild-type mice under conditions of long-term fructose consumption. Paradoxically, however, fructose-induced hepatic steatosis was exacerbated in the SGLT5-deficient mice, and the massive urinary fructose excretion was accompanied by reduced levels of plasma triglycerides and epididymal fat but fasting hyperinsulinemia compared with fructose-fed wild-type mice. There was no difference in food consumption, water intake, or plasma fructose between the two types of mice. No compensatory effect by other transporters reportedly involved in fructose uptake in the liver and kidney were indicated at the mRNA level. These surprising findings indicated a previously unrecognized link through SGLT5 between renal fructose reabsorption and hepatic lipid metabolism. PMID:23451068

  18. Bacterial proteasome activator bpa (rv3780) is a novel ring-shaped interactor of the mycobacterial proteasome.

    Science.gov (United States)

    Delley, Cyrille L; Laederach, Juerg; Ziemski, Michal; Bolten, Marcel; Boehringer, Daniel; Weber-Ban, Eilika

    2014-01-01

    The occurrence of the proteasome in bacteria is limited to the phylum of actinobacteria, where it is maintained in parallel to the usual bacterial compartmentalizing proteases. The role it plays in these organisms is still not fully understood, but in the human pathogen Mycobacterium tuberculosis (Mtb) the proteasome supports persistence in the host. In complex with the ring-shaped ATPase Mpa (called ARC in other actinobacteria), the proteasome can degrade proteins that have been post-translationally modified with the prokaryotic ubiquitin-like protein Pup. Unlike for the eukaryotic proteasome core particle, no other bacterial proteasome interactors have been identified to date. Here we describe and characterize a novel bacterial proteasome activator of Mycobacterium tuberculosis we termed Bpa (Rv3780), using a combination of biochemical and biophysical methods. Bpa features a canonical C-terminal proteasome interaction motif referred to as the HbYX motif, and its orthologs are only found in those actinobacteria encoding the proteasomal subunits. Bpa can inhibit degradation of Pup-tagged substrates in vitro by competing with Mpa for association with the proteasome. Using negative-stain electron microscopy, we show that Bpa forms a ring-shaped homooligomer that can bind coaxially to the face of the proteasome cylinder. Interestingly, Bpa can stimulate the proteasomal degradation of the model substrate β-casein, which suggests it could play a role in the removal of non-native or damaged proteins.

  19. Evidence that bisphenol A (BPA) can be accurately measured without contamination in human serum and urine, and that BPA causes numerous hazards from multiple routes of exposure

    Science.gov (United States)

    vom Saal, Frederick S.; Welshons, Wade V.

    2016-01-01

    There is extensive evidence that bisphenol A (BPA) is related to a wide range of adverse health effects based on both human and experimental animal studies. However, a number of regulatory agencies have ignored all hazard findings. Reports of high levels of unconjugated (bioactive) serum BPA in dozens of human biomonitoring studies have also been rejected based on the prediction that the findings are due to assay contamination and that virtually all ingested BPA is rapidly converted to inactive metabolites. NIH and industry-sponsored round robin studies have demonstrated that serum BPA can be accurately assayed without contamination, while the FDA lab has acknowledged uncontrolled assay contamination. In reviewing the published BPA biomonitoring data, we find that assay contamination is, in fact, well controlled in most labs, and cannot be used as the basis for discounting evidence that significant and virtually continuous exposure to BPA must be occurring from multiple sources. PMID:25304273

  20. Inflow forecasting at BPA

    Energy Technology Data Exchange (ETDEWEB)

    McManamon, A. [Bonneville Power Administration, Portland, OR (United States)

    2007-07-01

    The Columbia River Power System operates with consideration for flood control, endangered species, navigation, irrigation, water supply, recreation, other fish and wildlife concerns and power production. The Bonneville Power Association (BPA) located in Portland, Oregon is responsible for 35-40 per cent of the power consumed within the region. This presentation discussed inflow power concerns at BPA. The presentation illustrated elevational relief of projects; annual and daily variability; the hydrologic cycle; national river service weather forecasting service (NRSWFS); components of NRSWFS; and hydrologic forecast locations. Project operations and inventory were included along with a comparison of the 71-year average unregulated flow with regulated flow at the Dalles. Consistency between short-term and long-term forecasts and long-term streamflow forecasts were also illustrated in graphical format. The presentation also discussed the issue of reducing model and parameter uncertainty; reducing initial conditions uncertainty; snow updating; and reducing meteorological uncertainty. tabs., figs.

  1. Complete Sucrose Metabolism Requires Fructose Phosphotransferase Activity in Corynebacterium glutamicum To Ensure Phosphorylation of Liberated Fructose

    OpenAIRE

    Dominguez, H.; Lindley, N. D.

    1996-01-01

    Sucrose uptake by Corynebacterium glutamicum involves a phosphoenolpyruvate-dependent sucrose phosphotransferase (PTS), but in the absence of fructokinase, further metabolism of the liberated fructose requires efflux of the fructose and reassimilation via the fructose PTS. Mutant strains lacking detectable fructose-transporting PTS activity accumulated fructose extracellularly but consumed sucrose at rates comparable to those of the wild-type strain.

  2. Characteristics of BPA removal from water by PACl-Al13 in coagulation process.

    Science.gov (United States)

    Xiaoying, Ma; Guangming, Zeng; Chang, Zhang; Zisong, Wang; Jian, Yu; Jianbing, Li; Guohe, Huang; Hongliang, Liu

    2009-09-15

    This paper discussed the coagulation characteristics of BPA with polyaluminum chloride (PACl-Al(13)) as coagulant, examined the impact of coagulation pH, PACl-Al(13) dosage, TOC (total organic carbon) and turbidity on BPA removal, and analyzed the possible dominant mechanisms in water coagulation process. Formation and performance of flocs during coagulation processes were monitored using photometric dispersion analyzer (PDA). When the concentration of humic acid matters and turbidity was low in the solution, the experimental results showed that the removal of BPA experienced increase and subsequently decrease with the PACl-Al(13) dosage increasing. The optimal PACl-Al(13) dosage was found at BPA/PACl-Al(13)=1:2.6(M/M) under our experiment conditions. Results show that the maximum BPA removal efficiency occurred at pH 9.0 due to the adsorption by Al(13) aggregates onto BPA rather than charge neutralization mechanism by polynuclear aluminous salts in the solution. The humic acid matters and kaolin in the solution have significant effect on BPA removal with PACl-Al(13) in the coagulation. The BPA removal will be weakened at high humic matters. The removal rate of BPA increased and subsequently decreased with the turbidity increasing.

  3. Bisulphite complexation in the resin catalysed epimerisation of D-fructose-radiotracer investigations [Paper No. AR-27

    International Nuclear Information System (INIS)

    Murlidharan, B.; Mallika, S.; Viswanathan, K.V.

    1982-01-01

    Tracer methods were used to study the conversion of D-Fructose- 16 C to its aldose epimers. D-Fructose- 14 C sorbed on Dowex-1-X8(OH - form) columns on elution with dilute sulphurous acid (>0.1M) was converted mainly to D-Glucose- 14 C accompanied by excessive degradation. Treatment of D-Fructose- 14 C with Dowex-1-X4 in carbonate and bisulphite forms at 50degC in 50 per cent ethanol gave an epimeric mixture containing more than 25 per cent of D-Mannose- 14 C. (author)

  4. Adding glucose to food and solutions to enhance fructose absorption is not effective in preventing fructose-induced functional gastrointestinal symptoms: randomised controlled trials in patients with fructose malabsorption.

    Science.gov (United States)

    Tuck, C J; Ross, L A; Gibson, P R; Barrett, J S; Muir, J G

    2017-02-01

    In healthy individuals, the absorption of fructose in excess of glucose in solution is enhanced by the addition of glucose. The present study aimed to assess the effects of glucose addition to fructose or fructans on absorption patterns and genesis of gastrointestinal symptoms in patients with functional bowel disorders. Randomised, blinded, cross-over studies were performed in healthy subjects and functional bowel disorder patients with fructose malabsorption. The area-under-the-curve (AUC) was determined for breath hydrogen and symptom responses to: (i) six sugar solutions (fructose in solution) (glucose; sucrose; fructose; fructose + glucose; fructan; fructan + glucose) and (ii) whole foods (fructose in foods) containing fructose in excess of glucose given with and without additional glucose. Intake of fermentable short chain carbohydrates (FODMAPs; fermentable, oligo-, di-, monosaccharides and polyols) was controlled. For the fructose in solution study, in 26 patients with functional bowel disorders, breath hydrogen was reduced after glucose was added to fructose compared to fructose alone [mean (SD) AUC 92 (107) versus 859 (980) ppm 4 h -1 , respectively; P = 0.034). Glucose had no effect on breath hydrogen response to fructans (P = 1.000). The six healthy controls showed breath hydrogen patterns similar to those with functional bowel disorders. No differences in symptoms were experienced with the addition of glucose, except more nausea when glucose was added to fructose (P = 0.049). In the fructose in foods study, glucose addition to whole foods containing fructose in excess of glucose in nine patients with functional bowel disorders and nine healthy controls had no significant effect on breath hydrogen production or symptom response. The absence of a favourable response on symptoms does not support the concomitant intake of glucose with foods high in either fructose or fructans in patients with functional bowel disorders. © 2016 The British Dietetic

  5. Fructose and satiety.

    Science.gov (United States)

    Moran, Timothy H

    2009-06-01

    A role for the increased intake of dietary fructose in general and high-fructose corn syrup (HFCS) in particular in the current obesity epidemic has been proposed. Consumed fructose and glucose have different rates of gastric emptying, are differentially absorbed from the gastrointestinal tract, result in different endocrine profiles, and have different metabolic fates, providing multiple opportunities for the 2 saccharides to differentially affect food intake. The consequences of fructose and glucose on eating have been studied under a variety of experimental situations in both model systems and man. The results have been inconsistent, and the particular findings appear to depend on the timing of saccharide administration or ingestion relative to a test meal situation, whether the saccharides are administered as pure sugars or as components of a dietary preload, and the overall volume of the preload. These factors rather than intrinsic differences in the saccharides' ability to induce satiety appear to carry many of the differential effects on food intake that have been found. On balance, the case for fructose being less satiating than glucose or HFCS being less satiating than sucrose is not compelling.

  6. The health implications of sucrose, high-fructose corn syrup, and fructose: what do we really know?

    Science.gov (United States)

    Rippe, James M

    2010-07-01

    The epidemic of obesity and related metabolic diseases continues to extract an enormous health toll. Multiple potential causes for obesity have been suggested, including increased fat consumption, increased carbohydrate consumption, decreased physical activity, and, most recently, increased fructose consumption. Most literature cited in support of arguments suggesting a link between obesity and fructose consumption is epidemiologic and does not establish cause and effect. The causes of obesity are well-known and involve the overconsumption of calories from all sources. Research employing a pure fructose model distorts the real-world situation of fructose consumption, which predominantly comes from sweeteners containing roughly equal proportions of glucose and fructose. The fructose hypothesis has the potential to distract us from further exploration and amelioration of known causes of obesity. Randomized prospective trials of metabolic consequences of fructose consumption at normal population levels and from sources typically found in the human diet such as sucrose and high-fructose corn syrup are urgently needed. 2010 Diabetes Technology Society.

  7. Consumption of fructose and high fructose corn syrup increase postprandial triglycerides, LDL-cholesterol, and apolipoprotein-B in young men and women.

    Science.gov (United States)

    Stanhope, Kimber L; Bremer, Andrew A; Medici, Valentina; Nakajima, Katsuyuki; Ito, Yasuki; Nakano, Takamitsu; Chen, Guoxia; Fong, Tak Hou; Lee, Vivien; Menorca, Roseanne I; Keim, Nancy L; Havel, Peter J

    2011-10-01

    The American Heart Association Nutrition Committee recommends women and men consume no more than 100 and 150 kcal of added sugar per day, respectively, whereas the Dietary Guidelines for Americans, 2010, suggests a maximal added sugar intake of 25% or less of total energy. To address this discrepancy, we compared the effects of consuming glucose, fructose, or high-fructose corn syrup (HFCS) at 25% of energy requirements (E) on risk factors for cardiovascular disease. PARTICIPANTS, DESIGN AND SETTING, AND INTERVENTION: Forty-eight adults (aged 18-40 yr; body mass index 18-35 kg/m(2)) resided at the Clinical Research Center for 3.5 d of baseline testing while consuming energy-balanced diets containing 55% E complex carbohydrate. For 12 outpatient days, they consumed usual ad libitum diets along with three servings per day of glucose, fructose, or HFCS-sweetened beverages (n = 16/group), which provided 25% E requirements. Subjects then consumed energy-balanced diets containing 25% E sugar-sweetened beverages/30% E complex carbohydrate during 3.5 d of inpatient intervention testing. Twenty-four-hour triglyceride area under the curve, fasting plasma low-density lipoprotein (LDL), and apolipoprotein B (apoB) concentrations were measured. Twenty-four-hour triglyceride area under the curve was increased compared with baseline during consumption of fructose (+4.7 ± 1.2 mmol/liter × 24 h, P = 0.0032) and HFCS (+1.8 ± 1.4 mmol/liter × 24 h, P = 0.035) but not glucose (-1.9 ± 0.9 mmol/liter × 24 h, P = 0.14). Fasting LDL and apoB concentrations were increased during consumption of fructose (LDL: +0.29 ± 0.082 mmol/liter, P = 0.0023; apoB: +0.093 ± 0.022 g/liter, P = 0.0005) and HFCS (LDL: +0.42 ± 0.11 mmol/liter, P glucose (LDL: +0.012 ± 0.071 mmol/liter, P = 0.86; apoB: +0.0097 ± 0.019 g/liter, P = 0.90). Consumption of HFCS-sweetened beverages for 2 wk at 25% E increased risk factors for cardiovascular disease comparably with fructose and more than glucose in

  8. Endocrine and metabolic effects of consuming beverages sweetened with fructose, glucose, sucrose, or high-fructose corn syrup.

    Science.gov (United States)

    Stanhope, Kimber L; Havel, Peter J

    2008-12-01

    Our laboratory has investigated 2 hypotheses regarding the effects of fructose consumption: 1) the endocrine effects of fructose consumption favor a positive energy balance, and 2) fructose consumption promotes the development of an atherogenic lipid profile. In previous short- and long-term studies, we showed that consumption of fructose-sweetened beverages with 3 meals results in lower 24-h plasma concentrations of glucose, insulin, and leptin in humans than does consumption of glucose-sweetened beverages. We have also tested whether prolonged consumption of high-fructose diets leads to increased caloric intake or decreased energy expenditure, thereby contributing to weight gain and obesity. Results from a study conducted in rhesus monkeys produced equivocal results. Carefully controlled and adequately powered long-term studies are needed to address these hypotheses. In both short- and long-term studies, we showed that consumption of fructose-sweetened beverages substantially increases postprandial triacylglycerol concentrations compared with glucose-sweetened beverages. In the long-term studies, apolipoprotein B concentrations were also increased in subjects consuming fructose, but not in those consuming glucose. Data from a short-term study comparing consumption of beverages sweetened with fructose, glucose, high-fructose corn syrup, and sucrose suggest that high-fructose corn syrup and sucrose increase postprandial triacylglycerol to an extent comparable with that induced by 100% fructose alone. Increased consumption of fructose-sweetened beverages along with increased prevalence of obesity, metabolic syndrome, and type 2 diabetes underscore the importance of investigating the metabolic consequences of fructose consumption in carefully controlled experiments.

  9. Review of BPA funded sturgeon, resident fish and wildlife projects

    International Nuclear Information System (INIS)

    1990-12-01

    The Bonneville Power Administration (BPA) held a public meeting on November 19--21, 1991, for the purpose of review, coordination, and consultation of the BPA-funded projects for sturgeon, resident fish, and wildlife in the Columbia River Basin (Basin). The comments received after the meeting were favorable and the participants agreed that the meeting was stimulating and productive. The information exchanged should lead to better coordination with other projects throughout the Basin. This document list the projects by title, the project leaders and BPA's project officers, and an abstract of each leader's presentation

  10. SGLT5 Reabsorbs Fructose in the Kidney but Its Deficiency Paradoxically Exacerbates Hepatic Steatosis Induced by Fructose

    OpenAIRE

    Fukuzawa, Taku; Fukazawa, Masanori; Ueda, Otoya; Shimada, Hideaki; Kito, Aki; Kakefuda, Mami; Kawase, Yosuke; Wada, Naoko A.; Goto, Chisato; Fukushima, Naoshi; Jishage, Kou-ichi; Honda, Kiyofumi; King, George L.; Kawabe, Yoshiki

    2013-01-01

    Although excessive fructose intake is epidemiologically linked with dyslipidemia, obesity, and diabetes, the mechanisms regulating plasma fructose are not well known. Cells transfected with sodium/glucose cotransporter 5 (SGLT5), which is expressed exclusively in the kidney, transport fructose in vitro; however, the physiological role of this transporter in fructose metabolism remains unclear. To determine whether SGLT5 functions as a fructose transporter in vivo, we established a line of mic...

  11. Stability of bisphenol A (BPA) in oil-in water emulsions under riboflavin photosensitization.

    Science.gov (United States)

    Jang, Eun Yeong; Park, Chan Uk; Kim, Mi-Ja; Lee, JaeHwan

    2012-08-01

    Effects of riboflavin photosensitization on the degradation of bisphenol A (BPA) were determined in oil-in-water (O/W) emulsions containing ethylenediaminetetraacetic acid (EDTA) or sodium azide, which are a metal chelator or a singlet oxygen quencher, respectively. Also, the distribution of BPA between the continuous and dispersed phases in O/W emulsions was analyzed by high-performance liquid chromatography (HPLC). The concentration of BPA in O/W emulsions significantly decreased by 38.6% after 2 h under visible light irradiation and in the presence of riboflavin (P riboflavin photosensitization (P riboflavin photodegradation in O/W emulsions. Concentration of BPA, an endocrine disrupting chemical, was decreased significantly in oil-in-water emulsions under riboflavin and visible light irradiation. BPA in continuous aqueous phase was major target of riboflavin photosensitization. However, BPA was distributed more densely in lipid phase and more protected from riboflavin photosensitized O/W emulsions. This study can help to decrease the level of BPA in foods made of O/W emulsions containing riboflavin, which could be displayed under visible light irradiation. © 2012 Institute of Food Technologists®

  12. Dietary fructose augments ethanol-induced liver pathology.

    Science.gov (United States)

    Thomes, Paul G; Benbow, Jennifer H; Brandon-Warner, Elizabeth; Thompson, Kyle J; Jacobs, Carl; Donohue, Terrence M; Schrum, Laura W

    2017-05-01

    Certain dietary components when combined with alcohol exacerbate alcohol-induced liver injury (ALI). Here, we tested whether fructose, a major ingredient of the western diet, enhances the severity of ALI. We fed mice ethanol for 8 weeks in the following Lieber-DeCarli diets: (a) Regular (contains olive oil); (b) corn oil (contains corn oil); (c) fructose (contains fructose and olive oil) and (d) corn+fructose (contains fructose and corn oil). We compared indices of metabolic function and liver pathology among the different groups. Mice fed fructose-free and fructose-containing ethanol diets exhibited similar levels of blood alcohol, blood glucose and signs of disrupted hepatic insulin signaling. However, only mice given fructose-ethanol diets showed lower insulin levels than their respective controls. Compared with their respective pair-fed controls, all ethanol-fed mice exhibited elevated levels of serum ALT; the inflammatory cytokines TNF-α, MCP-1 and MIP-2; hepatic lipid peroxides and triglycerides. All the latter parameters were significantly higher in mice given fructose-ethanol diets than those fed fructose-free ethanol diets. Mice given fructose-free or fructose-containing ethanol diets each had higher levels of hepatic lipogenic enzymes than controls. However, the level of the lipogenic enzyme fatty acid synthase (FAS) was significantly higher in livers of mice given fructose control and fructose-ethanol diets than in all other groups. Our findings indicate that dietary fructose exacerbates ethanol-induced steatosis, oxidant stress, inflammation and liver injury, irrespective of the dietary fat source, to suggest that inclusion of fructose in or along with alcoholic beverages increases the risk of more severe ALI in heavy drinkers. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. From BPA to its analogues: Is it a safe journey?

    Science.gov (United States)

    Usman, Afia; Ahmad, Masood

    2016-09-01

    Bisphenol-A (BPA) is one of the most abundant synthetic chemicals in the world due to its uses in plastics. Its widespread exposure vis-a-vis low dose effects led to a reduction in its safety dose and imposition of ban on its use in infant feeding bottles. This restriction paved the way for the gradual market entry of its analogues. However, their structural similarity to BPA has put them under surveillance for endocrine disrupting potential. The application of these analogues is increasing and so are the studies reporting their toxicity. This review highlights the reasons which led to the ban of BPA and also reports the exposure and toxicological data available on its analogues. Hence, this compilation is expected to answer in a better way whether the replacement of BPA by these analogues is safer or more harmful? Copyright © 2016. Published by Elsevier Ltd.

  14. Signaling Role of Fructose Mediated by FINS1/FBP in Arabidopsis thaliana

    Science.gov (United States)

    Cho, Young-Hee; Yoo, Sang-Dong

    2011-01-01

    Sugars are evolutionarily conserved signaling molecules that regulate the growth and development of both unicellular and multicellular organisms. As sugar-producing photosynthetic organisms, plants utilize glucose as one of their major signaling molecules. However, the details of other sugar signaling molecules and their regulatory factors have remained elusive, due to the complexity of the metabolite and hormone interactions that control physiological and developmental programs in plants. We combined information from a gain-of-function cell-based screen and a loss-of-function reverse-genetic analysis to demonstrate that fructose acts as a signaling molecule in Arabidopsis thaliana. Fructose signaling induced seedling developmental arrest and interacted with plant stress hormone signaling in a manner similar to that of glucose. For fructose signaling responses, the plant glucose sensor HEXOKINASE1 (HXK1) was dispensable, while FRUCTOSE INSENSITIVE1 (FINS1), a putative FRUCTOSE-1,6-BISPHOSPHATASE, played a crucial role. Interestingly, FINS1 function in fructose signaling appeared to be independent of its catalytic activity in sugar metabolism. Genetic analysis further indicated that FINS1–dependent fructose signaling may act downstream of the abscisic acid pathway, in spite of the fact that HXK1–dependent glucose signaling works upstream of hormone synthesis. Our findings revealed that multiple layers of controls by fructose, glucose, and abscisic acid finely tune the plant autotrophic transition and modulate early seedling establishment after seed germination. PMID:21253566

  15. Developmental exposure to bisphenol A (BPA) alters sexual differentiation in painted turtles (Chrysemys picta)

    Science.gov (United States)

    Jandegian, Caitlin M.; Deem, Sharon L.; Bhandari, Ramji K.; Holliday, Casey M.; Nicks, Diane; Rosenfeld, Cheryl S.; Selcer, Kyle; Tillitt, Donald E.; vom Saal, Fredrick S.; Velez, Vanessa; Yang, Ying; Holliday, Dawn K.

    2015-01-01

    Environmental chemicals can disrupt endocrine signaling and adversely impact sexual differentiation in wildlife. Bisphenol A (BPA) is an estrogenic chemical commonly found in a variety of habitats. In this study, we used painted turtles (Chrysemys picta), which have temperature-dependent sex determination (TSD), as an animal model for ontogenetic endocrine disruption by BPA. We hypothesized that BPA would override TSD and disrupt sexual development. We incubated farm-raised turtle eggs at the male-producing temperature (26 °C), randomly assigned individuals to treatment groups: control, vehicle control, 17β-estradiol (E2, 20 ng/g-egg) or 0.01, 1.0, 100 μg BPA/g-egg and harvested tissues at hatch. Typical female gonads were present in 89% of the E2-treated “males”, but in none of the control males (n = 35). Gonads of BPA-exposed turtles had varying amounts of ovarian-like cortical (OLC) tissue and disorganized testicular tubules in the medulla. Although the percentage of males with OLCs increased with BPA dose (BPA-low = 30%, BPA-medium = 33%, BPA-high = 39%), this difference was not significant (p = 0.85). In all three BPA treatments, SOX9 patterns revealed disorganized medullary testicular tubules and β-catenin expression in a thickened cortex. Liver vitellogenin, a female-specific liver protein commonly used as an exposure biomarker, was not induced by any of the treatments. Notably, these results suggest that developmental exposure to BPA disrupts sexual differentiation in painted turtles. Further examination is necessary to determine the underlying mechanisms of sex reversal in reptiles and how these translate to EDC exposure in wild populations.

  16. Moessbauer study of iron-sugar complexes

    International Nuclear Information System (INIS)

    Tonkovic, M.; Music, S.; Hadzija, O.; Nagy-Czako, I.; Vertes, A.

    1982-01-01

    Ferric-fructose complex has been prepared using FeCl 3 and Fe(NO 3 ) 3 solutions. Molecular weight determination and Moessbauer spectroscopic measurements proved that the ferric-fructose complex is polymeric in solid state and also in aqueous solution. The synthesis of a new iron-sorbose complex has been performed. Its Moessbauer spectra indicate a structure similar to that of the iron-fructose complex. (author)

  17. Fructose, insulin resistance, and metabolic dyslipidemia

    Directory of Open Access Journals (Sweden)

    Adeli Khosrow

    2005-02-01

    Full Text Available Abstract Obesity and type 2 diabetes are occurring at epidemic rates in the United States and many parts of the world. The "obesity epidemic" appears to have emerged largely from changes in our diet and reduced physical activity. An important but not well-appreciated dietary change has been the substantial increase in the amount of dietary fructose consumption from high intake of sucrose and high fructose corn syrup, a common sweetener used in the food industry. A high flux of fructose to the liver, the main organ capable of metabolizing this simple carbohydrate, perturbs glucose metabolism and glucose uptake pathways, and leads to a significantly enhanced rate of de novo lipogenesis and triglyceride (TG synthesis, driven by the high flux of glycerol and acyl portions of TG molecules from fructose catabolism. These metabolic disturbances appear to underlie the induction of insulin resistance commonly observed with high fructose feeding in both humans and animal models. Fructose-induced insulin resistant states are commonly characterized by a profound metabolic dyslipidemia, which appears to result from hepatic and intestinal overproduction of atherogenic lipoprotein particles. Thus, emerging evidence from recent epidemiological and biochemical studies clearly suggests that the high dietary intake of fructose has rapidly become an important causative factor in the development of the metabolic syndrome. There is an urgent need for increased public awareness of the risks associated with high fructose consumption and greater efforts should be made to curb the supplementation of packaged foods with high fructose additives. The present review will discuss the trends in fructose consumption, the metabolic consequences of increased fructose intake, and the molecular mechanisms leading to fructose-induced lipogenesis, insulin resistance and metabolic dyslipidemia.

  18. Fructose: it's "alcohol without the buzz".

    Science.gov (United States)

    Lustig, Robert H

    2013-03-01

    What do the Atkins Diet and the traditional Japanese diet have in common? The Atkins Diet is low in carbohydrate and usually high in fat; the Japanese diet is high in carbohydrate and usually low in fat. Yet both work to promote weight loss. One commonality of both diets is that they both eliminate the monosaccharide fructose. Sucrose (table sugar) and its synthetic sister high fructose corn syrup consist of 2 molecules, glucose and fructose. Glucose is the molecule that when polymerized forms starch, which has a high glycemic index, generates an insulin response, and is not particularly sweet. Fructose is found in fruit, does not generate an insulin response, and is very sweet. Fructose consumption has increased worldwide, paralleling the obesity and chronic metabolic disease pandemic. Sugar (i.e., fructose-containing mixtures) has been vilified by nutritionists for ages as a source of "empty calories," no different from any other empty calorie. However, fructose is unlike glucose. In the hypercaloric glycogen-replete state, intermediary metabolites from fructose metabolism overwhelm hepatic mitochondrial capacity, which promotes de novo lipogenesis and leads to hepatic insulin resistance, which drives chronic metabolic disease. Fructose also promotes reactive oxygen species formation, which leads to cellular dysfunction and aging, and promotes changes in the brain's reward system, which drives excessive consumption. Thus, fructose can exert detrimental health effects beyond its calories and in ways that mimic those of ethanol, its metabolic cousin. Indeed, the only distinction is that because fructose is not metabolized in the central nervous system, it does not exert the acute neuronal depression experienced by those imbibing ethanol. These metabolic and hedonic analogies argue that fructose should be thought of as "alcohol without the buzz."

  19. Exposure assessment to bisphenol A (BPA) in Portuguese children by human biomonitoring.

    Science.gov (United States)

    Correia-Sá, Luísa; Kasper-Sonnenberg, Monika; Schütze, André; Pälmke, Claudia; Norberto, Sónia; Calhau, Conceição; Domingues, Valentina F; Koch, Holger M

    2017-12-01

    Exposure to bisphenol A (BPA) is known to be widespread and available data suggests that BPA can act as an endocrine disruptor. Diet is generally regarded as the dominant BPA exposure source, namely through leaching to food from packaging materials. The aim of this study was to evaluate the exposure of 110 Portuguese children (4-18 years old), divided in two groups: the regular diet group (n = 43) comprised healthy normal weight/underweight children with no dietary control; the healthy diet group (n = 67) comprised children diagnosed for obesity/overweight (without other known associated diseases) that were set on a healthy diet for weight control. First morning urine samples were collected and total urinary BPA was analyzed after enzymatic hydrolysis via on-line HPLC-MS/MS with isotope dilution quantification. Virtually, all the children were exposed to BPA, with 91% of the samples above the LOQ (limit of quantification) of 0.1 μg/L. The median (95th percentile) urinary BPA levels for non-normalized and creatinine-corrected values were 1.89 μg/L (16.0) and 1.92 μg/g creatinine (14.4), respectively. BPA levels in the regular diet group were higher than in the healthy diet group, but differences were not significant. Calculated daily BPA intakes, however, were significantly higher in children of the regular diet group than in children of healthy diet group. Median (95th percentile) daily intakes amounted to 41.6 (467) ng/kg body weight/day in the regular diet group, and 23.2 (197) ng/kg body weight/day in the healthy diet group. Multiple logistic regression analysis revealed that children in the healthy diet group had 33% lower intakes than children in the regular diet group (OR 0.67; 95% CI 0.51-0.89). For both groups, however, urinary BPA levels and daily BPA intakes were within the range reported for other children's populations and were well below health guidance values such as the European Food Safety Authority (EFSA) temporary tolerable daily intake

  20. Synthesis of specifically labelled L-phenylalanines using phenylalanine ammonia lyase activity

    International Nuclear Information System (INIS)

    Haedener, A.; Tamm, Ch.

    1987-01-01

    Specifically labelled L-phenylalanines have been prepared using a variety of classical synthetic methods in combination with phenylalanine ammonia lyase (PAL) enzyme activity of the yeast Rhodosporidium toruloides ATCC 10788 or Rhodotorula glutinis IFO 0559, respectively. Thus, L-[2- 2 H]phenyl-[2- 2 H]alanine was formed from (E) -[2,2'- 2 H 2 ]cinnamic acid and ammonia in 46% yield, whereas L-phenyl-[2- 13 C, 15 N]alanine was obtained from (E)-[2- 13 C]cinnamic acid in 45% overall yield. Generally, labelled cinnamic acids were recovered in pure form from the reaction mixture, with a loss of 6-8%. Likewise, unchanged 15 NH 3 was reisolated as 15 NH 4 Cl after steam distillation with overall losses of less than 4%. Labelled cinnamic acids were prepared by Knoevenagel condensations between appropriately labelled benzaldehydes and malonic acids. [2- 2 H]Benzaldehyde was obtained from 2-bromotoluene by decomposition of the corresponding Grignard reagent with 2 H 2 O and subsequent oxidation. Since simple molecules, most of them commercially available in labelled form or otherwise easily accessible, may serve as starting material, and due to its defined stereochemistry, the reaction catalysed by PAL opens a short and attractive route to specifically labelled L-phenylalanines. (author)

  1. Excess free fructose, high-fructose corn syrup and adult asthma: the Framingham Offspring Cohort.

    Science.gov (United States)

    DeChristopher, Luanne R; Tucker, Katherine L

    2018-05-01

    There is growing evidence that intakes of high-fructose corn syrup (HFCS), HFCS-sweetened soda, fruit drinks and apple juice - a high-fructose 100 % juice - are associated with asthma, possibly because of the high fructose:glucose ratios and underlying fructose malabsorption, which may contribute to enteral formation of pro-inflammatory advanced glycation end products, which bind receptors that are mediators of asthma. Cox proportional hazards models were used to assess associations between intakes of these beverages and asthma risk, with data from the Framingham Offspring Cohort. Diet soda and orange juice - a 100 % juice with a 1:1 fructose:glucose ratio - were included for comparison. Increasing intake of any combination of HFCS-sweetened soda, fruit drinks and apple juice was significantly associated with progressively higher asthma risk, plateauing at 5-7 times/week v. never/seldom, independent of potential confounders (hazard ratio 1·91, Pfructose:glucose ratios, and fructose malabsorption. Recommendations to reduce consumption may be inadequate to address asthma risk, as associations are evident even with moderate intake of these beverages, including apple juice - a 100 % juice. The juice reductions in the US Special Supplemental Nutrition Program for Women, Infants, and Children in 2009, and the plateauing/decreasing asthma prevalence (2010-2013), particularly among non-Hispanic black children, may be related. Further research regarding the consequences of fructose malabsorption is needed.

  2. Load Composition Model Workflow (BPA TIP-371 Deliverable 1A)

    Energy Technology Data Exchange (ETDEWEB)

    Chassin, David P.; Cezar, Gustavo V.; /SLAC

    2017-07-17

    This project is funded under Bonneville Power Administration (BPA) Strategic Partnership Project (SPP) 17-005 between BPA and SLAC National Accelerator Laboratory. The project in a BPA Technology Improvement Project (TIP) that builds on and validates the Composite Load Model developed by the Western Electric Coordinating Council's (WECC) Load Modeling Task Force (LMTF). The composite load model is used by the WECC Modeling and Validation Work Group to study the stability and security of the western electricity interconnection. The work includes development of load composition data sets, collection of load disturbance data, and model development and validation. This work supports reliable and economic operation of the power system. This report was produced for Deliverable 1A of the BPA TIP-371 Project entitled \\TIP 371: Advancing the Load Composition Model". The deliverable documents the proposed work ow for the Composite Load Model, which provides the basis for the instrumentation, data acquisition, analysis and data dissemination activities addressed by later phases of the project.

  3. Sensitive and fast detection of fructose in complex media via symmetry breaking and signal amplification using surface-enhanced Raman spectroscopy.

    Science.gov (United States)

    Sun, Fang; Bai, Tao; Zhang, Lei; Ella-Menye, Jean-Rene; Liu, Sijun; Nowinski, Ann K; Jiang, Shaoyi; Yu, Qiuming

    2014-03-04

    A new strategy is proposed to sensitively and rapidly detect analytes with weak Raman signals in complex media using surface-enhanced Raman spectroscopy (SERS) via detecting the SERS signal changes of the immobilized probe molecules on SERS-active substrates upon binding of the analytes. In this work, 4-mercaptophenylboronic acid (4-MPBA) was selected as the probe molecule which was immobilized on the gold surface of a quasi-three-dimensional plasmonic nanostructure array (Q3D-PNA) SERS substrate to detect fructose. The molecule of 4-MPBA possesses three key functions: molecule recognition and reversible binding of the analyte via the boronic acid group, amplification of SERS signals by the phenyl group and thus shielding of the background noise of complex media, and immobilization on the surface of SERS-active substrates via the thiol group. Most importantly, the symmetry breaking of the 4-MPBA molecule upon fructose binding leads to the change of area ratio between totally symmetric 8a ring mode and nontotally symmetric 8b ring mode, which enables the detection. The detection curves were obtained in phosphate-buffered saline (PBS) and in undiluted artificial urine at clinically relevant concentrations, and the limit of detection of 0.05 mM was achieved.

  4. Boron neutron capture therapy induces apoptosis of glioma cells through Bcl-2/Bax

    International Nuclear Information System (INIS)

    Wang, Peng; Zhen, Haining; Jiang, Xinbiao; Zhang, Wei; Cheng, Xin; Guo, Geng; Mao, Xinggang; Zhang, Xiang

    2010-01-01

    Boron neutron capture therapy (BNCT) is an alternative treatment modality for patients with glioma. The aim of this study was to determine whether induction of apoptosis contributes to the main therapeutic efficacy of BNCT and to compare the relative biological effect (RBE) of BNCT, γ-ray and reactor neutron irradiation. The neutron beam was obtained from the Xi'an Pulsed Reactor (XAPR) and γ-rays were obtained from [ 60 Co] γ source of the Fourth Military Medical University (FMMU) in China. Human glioma cells (the U87, U251, and SHG44 cell lines) were irradiated by neutron beams at the XAPR or [ 60 Co] γ-rays at the FMMU with different protocols: Group A included control nonirradiated cells; Group B included cells treated with 4 Gy of [ 60 Co] γ-rays; Group C included cells treated with 8 Gy of [ 60 Co] γ-rays; Group D included cells treated with 4 Gy BPA (p-borono-phenylalanine)-BNCT; Group E included cells treated with 8 Gy BPA-BNCT; Group F included cells irradiated in the reactor for the same treatment period as used for Group D; Group G included cells irradiated in the reactor for the same treatment period as used for Group E; Group H included cells irradiated with 4 Gy in the reactor; and Group I included cells irradiated with 8 Gy in the reactor. Cell survival was determined using the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium (MTT) cytotoxicity assay. The morphology of cells was detected by Hoechst33342 staining and transmission electron microscope (TEM). The apoptosis rate was detected by flow cytometer (FCM). The level of Bcl-2 and Bax protein was measured by western blot analysis. Proliferation of U87, U251, and SHG44 cells was much more strongly inhibited by BPA-BNCT than by irradiation with [ 60 Co] γ-rays (P < 0.01). Nuclear condensation was determined using both a fluorescence technique and electron microscopy in all cell lines treated with BPA-BNCT. Furthermore, the cellular apoptotic rates in Group D and Group E treated with

  5. Short-term dietary supplementation with fructose accelerates gastric emptying of a fructose but not a glucose solution.

    Science.gov (United States)

    Yau, Adora M W; McLaughlin, John; Maughan, Ronald J; Gilmore, William; Evans, Gethin H

    2014-01-01

    Short-term dietary glucose supplementation has been shown to accelerate the gastric emptying rate of both glucose and fructose solutions. The aim of this study was to examine gastric emptying rate responses to monosaccharide ingestion following short-term dietary fructose supplementation. The gastric emptying rate of a fructose solution containing 36 g of fructose and an equicaloric glucose solution containing 39.6 g glucose monohydrate were measured in 10 healthy non-smoking men with and without prior fructose supplementation (water control) using a randomized crossover design. Gastric emptying rate was assessed for a period of 1 h using the [(13)C]breath test with sample collections at baseline and 10-min intervals following drink ingestion. Additionally, appetite ratings of hunger, fullness, and prospective food consumption were recorded at baseline and every 10 min using visual analog scales. Increased dietary fructose ingestion resulted in significantly accelerated half-emptying time of a fructose solution (mean = 48, SD = 6 versus 58, SD = 14 min control; P = 0.037), whereas the emptying of a glucose solution remained unchanged (mean = 85, SD = 31 versus 78, SD = 27 min control; P = 0.273). Time of maximal emptying rate of fructose was also significantly accelerated following increased dietary fructose intake (mean = 33, SD = 6 versus 38, SD = 9 min control; P = 0.042), while it remained unchanged for glucose (mean = 45, SD = 14 versus 44, SD = 14 min control; P = 0.757). No effects of supplementation were observed for appetite measures. Three d of supplementation with 120 g/d of fructose resulted in an acceleration of gastric emptying rate of a fructose solution but not a glucose solution. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Genetics Home Reference: hereditary fructose intolerance

    Science.gov (United States)

    ... Twitter Home Health Conditions Hereditary fructose intolerance Hereditary fructose intolerance Printable PDF Open All Close All Enable ... to view the expand/collapse boxes. Description Hereditary fructose intolerance is a condition that affects a person's ...

  7. Extensive metabolism and route-dependent pharmacokinetics of bisphenol A (BPA) in neonatal mice following oral or subcutaneous administration

    International Nuclear Information System (INIS)

    Draganov, Dragomir I.; Markham, Dan A.; Beyer, Dieter; Waechter, John M.; Dimond, Stephen S.; Budinsky, Robert A.; Shiotsuka, Ronald N.; Snyder, Stephanie A.; Ehman, Kimberly D.; Hentges, Steven G.

    2015-01-01

    Orally administered bisphenol A (BPA) undergoes efficient first-pass metabolism to produce the inactive conjugates BPA-glucuronide (BPA-G) and BPA-sulfate (BPA-S). This study was conducted to evaluate the pharmacokinetics of BPA, BPA-G and BPA-S in neonatal mice following the administration of a single oral or subcutaneous (SC) dose. This study consisted of 3 phases: (1) mass-balance phase in which effective dose delivery procedures for oral or SC administration of 3 H-BPA to postnatal day three (PND3) mice were developed; (2) pharmacokinetic phase during which systemic exposure to total 3 H-BPA-derived radioactivity in female PND3 mice was established; and (3) metabolite profiling phase in which 50 female PND3 pups received either a single oral or SC dose of 3 H-BPA. Blood was collected from 5 pups/route/time-point at various times post-dosing, the blood plasma samples were pooled by group, and time-point and samples were profiled by HPLC with fraction collection. Fractions were analyzed for total radioactivity and data used to reconstruct radiochromatograms and to integrate individual peaks. The identity of the BPA, BPA-G, and BPA-S peaks was confirmed using authentic standards and LC–MS/MS analysis. The result of this study revealed that female PND3 mice have the capacity to metabolize BPA to BPA-G, BPA-S and other metabolites after both routes of administration. Systemic exposure to free BPA is route-dependent as the plasma concentrations were lower following oral administration compared to SC injection

  8. Synthesis of specifically labelled L-phenylalanines using phenylalanine ammonia lyase activity

    Energy Technology Data Exchange (ETDEWEB)

    Haedener, A.; Tamm, Ch.

    1987-11-01

    Specifically labelled L-phenylalanines have been prepared using a variety of classical synthetic methods in combination with phenylalanine ammonia lyase (PAL) enzyme activity of the yeast Rhodosporidium toruloides ATCC 10788 or Rhodotorula glutinis IFO 0559, respectively. Thus, L-(2-/sup 2/H)phenyl-(2-/sup 2/H)alanine was formed from (E) -(2,2'-/sup 2/H/sub 2/)cinnamic acid and ammonia in 46% yield, whereas L-phenyl-(2-/sup 13/C, /sup 15/N)alanine was obtained from (E)-(2-/sup 13/C)cinnamic acid in 45% overall yield. Generally, labelled cinnamic acids were recovered in pure form from the reaction mixture, with a loss of 6-8%. Likewise, unchanged /sup 15/NH/sub 3/ was reisolated as /sup 15/NH/sub 4/Cl after steam distillation with overall losses of less than 4%. Labelled cinnamic acids were prepared by Knoevenagel condensations between appropriately labelled benzaldehydes and malonic acids. (2-/sup 2/H)Benzaldehyde was obtained from 2-bromotoluene by decomposition of the corresponding Grignard reagent with /sup 2/H/sub 2/O and subsequent oxidation. Since simple molecules, most of them commercially available in labelled form or otherwise easily accessible, may serve as starting material, and due to its defined stereochemistry, the reaction catalysed by PAL opens a short and attractive route to specifically labelled L-phenylalanines.

  9. Effect of dietary fructose on portal and systemic serum fructose levels in rats and in KHK−/− and GLUT5−/− mice

    Science.gov (United States)

    Patel, Chirag; Sugimoto, Keiichiro; Douard, Veronique; Shah, Ami; Inui, Hiroshi; Yamanouchi, Toshikazu

    2015-01-01

    Elevated blood fructose concentrations constitute the basis for organ dysfunction in fructose-induced metabolic syndrome. We hypothesized that diet-induced changes in blood fructose concentrations are regulated by ketohexokinase (KHK) and the fructose transporter GLUT5. Portal and systemic fructose concentrations determined by HPLC in wild-type mice fed for 7 days 0% free fructose were fructose levels, however, increased markedly in those fed isocaloric 20% fructose, causing significant hyperglycemia. Deletion of KHK prevented fructose-induced hyperglycemia, but caused dramatic hyperfructosemia (>1 mM) with reversed portal to systemic gradients. Systemic fructose in wild-type and KHK−/− mice changed by 0.34 and 1.8 mM, respectively, for every millimolar increase in portal fructose concentration. Systemic glucose varied strongly with systemic, but not portal, fructose levels in wild-type, and was independent of systemic and portal fructose in KHK−/−, mice. With ad libitum feeding for 12 wk, fructose-induced hyperglycemia in wild-type, but not hyperfructosemia in KHK−/− mice, increased HbA1c concentrations. Increasing dietary fructose to 40% intensified the hyperfructosemia of KHK−/− and the fructose-induced hyperglycemia of wild-type mice. Fructose perfusion or feeding in rats also caused duration- and dose-dependent hyperfructosemia and hyperglycemia. Significant levels of blood fructose are maintained independent of dietary fructose, KHK, and GLUT5, probably by endogenous synthesis of fructose. KHK prevents hyperfructosemia and fructose-induced hyperglycemia that would markedly increase HbA1c levels. These findings explain the hyperfructosemia of human hereditary fructosuria as well as the hyperglycemia of fructose-induced metabolic syndrome. PMID:26316589

  10. Endocrine and metabolic effects of consuming beverages sweetened with fructose, glucose, sucrose, or high fructose corn syrup

    OpenAIRE

    Stanhope, Kimber L.; Havel, Peter J.

    2008-01-01

    Our laboratory has investigated two hypotheses regarding the effects of fructose consumption: 1) The endocrine effects of fructose consumption favor a positive energy balance, and 2) Fructose consumption promotes the development of an atherogenic lipid profile. In previous short- and long-term studies, we demonstrated that consumption of fructose-sweetened beverages with 3 meals results in lower 24-hour plasma concentrations of glucose, insulin, and leptin in humans compared with consumption ...

  11. Efficient preparation of enantiopure D-phenylalanine through asymmetric resolution using immobilized phenylalanine ammonia-lyase from Rhodotorula glutinis JN-1 in a recirculating packed-bed reactor.

    Directory of Open Access Journals (Sweden)

    Longbao Zhu

    Full Text Available An efficient enzymatic process was developed to produce optically pure D-phenylalanine through asymmetric resolution of the racemic DL-phenylalanine using immobilized phenylalanine ammonia-lyase (RgPAL from Rhodotorula glutinis JN-1. RgPAL was immobilized on a modified mesoporous silica support (MCM-41-NH-GA. The resulting MCM-41-NH-GA-RgPAL showed high activity and stability. The resolution efficiency using MCM-41-NH-GA-RgPAL in a recirculating packed-bed reactor (RPBR was higher than that in a stirred-tank reactor. Under optimal operational conditions, the volumetric conversion rate of L-phenylalanine and the productivity of D-phenylalanine reached 96.7 mM h⁻¹ and 0.32 g L⁻¹ h⁻¹, respectively. The optical purity (eeD of D-phenylalanine exceeded 99%. The RPBR ran continuously for 16 batches, the conversion ratio did not decrease. The reactor was scaled up 25-fold, and the productivity of D-phenylalanine (eeD>99% in the scaled-up reactor reached 7.2 g L⁻¹ h⁻¹. These results suggest that the resolution process is an alternative method to produce highly pure D-phenylalanine.

  12. Efficient preparation of enantiopure D-phenylalanine through asymmetric resolution using immobilized phenylalanine ammonia-lyase from Rhodotorula glutinis JN-1 in a recirculating packed-bed reactor.

    Science.gov (United States)

    Zhu, Longbao; Zhou, Li; Huang, Nan; Cui, Wenjing; Liu, Zhongmei; Xiao, Ke; Zhou, Zhemin

    2014-01-01

    An efficient enzymatic process was developed to produce optically pure D-phenylalanine through asymmetric resolution of the racemic DL-phenylalanine using immobilized phenylalanine ammonia-lyase (RgPAL) from Rhodotorula glutinis JN-1. RgPAL was immobilized on a modified mesoporous silica support (MCM-41-NH-GA). The resulting MCM-41-NH-GA-RgPAL showed high activity and stability. The resolution efficiency using MCM-41-NH-GA-RgPAL in a recirculating packed-bed reactor (RPBR) was higher than that in a stirred-tank reactor. Under optimal operational conditions, the volumetric conversion rate of L-phenylalanine and the productivity of D-phenylalanine reached 96.7 mM h⁻¹ and 0.32 g L⁻¹ h⁻¹, respectively. The optical purity (eeD) of D-phenylalanine exceeded 99%. The RPBR ran continuously for 16 batches, the conversion ratio did not decrease. The reactor was scaled up 25-fold, and the productivity of D-phenylalanine (eeD>99%) in the scaled-up reactor reached 7.2 g L⁻¹ h⁻¹. These results suggest that the resolution process is an alternative method to produce highly pure D-phenylalanine.

  13. Temporal metabolomic responses of cultured HepG2 liver cells to high fructose and high glucose exposures.

    Science.gov (United States)

    Meissen, John K; Hirahatake, Kristin M; Adams, Sean H; Fiehn, Oliver

    2015-06-01

    High fructose consumption has been implicated with deleterious effects on human health, including hyperlipidemia elicited through de novo lipogenesis. However, more global effects of fructose on cellular metabolism have not been elucidated. In order to explore the metabolic impact of fructose-containing nutrients, we applied both GC-TOF and HILIC-QTOF mass spectrometry metabolomic strategies using extracts from cultured HepG2 cells exposed to fructose, glucose, or fructose + glucose. Cellular responses were analyzed in a time-dependent manner, incubated in media containing 5.5 mM glucose + 5.0 mM fructose in comparison to controls incubated in media containing either 5.5 mM glucose or 10.5 mM glucose. Mass spectrometry identified 156 unique known metabolites and a large number of unknown compounds, which revealed metabolite changes due to both utilization of fructose and high-carbohydrate loads independent of hexose structure. Fructose was shown to be partially converted to sorbitol, and generated higher levels of fructose-1-phosphate as a precursor for glycolytic intermediates. Differentially regulated ratios of 3-phosphoglycerate to serine pathway intermediates in high fructose media indicated a diversion of carbon backbones away from energy metabolism. Additionally, high fructose conditions changed levels of complex lipids toward phosphatidylethanolamines. Patterns of acylcarnitines in response to high hexose exposure (10.5 mM glucose or glucose/fructose combination) suggested a reduction in mitochondrial beta-oxidation.

  14. A Review of Hereditary Fructose Intolerance

    Directory of Open Access Journals (Sweden)

    Mogoş Tiberius

    2016-03-01

    Full Text Available Fructose intolerance is a metabolic disorder with hereditary determinism, clinically manifested on terms of fructose intake. Untreated, hereditary fructose intolerance may result in renal and hepatic failure. Unfortunately, there are no formal diagnostic and surveillance guidelines for this disease. If identified and treated before the occurrence of permanent organ damage, patients can improve their symptoms and self-rated health. Implementation and adherence to a strict fructose free diet is often difficult, but not impossible.

  15. Fluctuations in phenylalanine concentrations in phenylketonuria: a review of possible relationships with outcomes.

    Science.gov (United States)

    Cleary, Maureen; Trefz, Friedrich; Muntau, Ania C; Feillet, François; van Spronsen, Francjan J; Burlina, Alberto; Bélanger-Quintana, Amaya; Giżewska, Maria; Gasteyger, Christoph; Bettiol, Esther; Blau, Nenad; MacDonald, Anita

    2013-12-01

    Fluctuations in blood phenylalanine concentrations may be an important determinant of intellectual outcome in patients with early and continuously treated phenylketonuria (PKU). This review evaluates the studies on phenylalanine fluctuations, factors affecting fluctuations, and if stabilizing phenylalanine concentrations affects outcomes, particularly neurocognitive outcome. Electronic literature searches of Embase and PubMed were performed for English-language publications, and the bibliographies of identified publications were also searched. In patients with PKU, phenylalanine concentrations are highest in the morning. Factors that can affect phenylalanine fluctuations include age, diet, timing and dosing of protein substitute and energy intake, dietary adherence, phenylalanine hydroxylase genotype, changes in dietary phenylalanine intake and protein metabolism, illness, and growth rate. Even distribution of phenylalanine-free protein substitute intake throughout 24h may reduce blood phenylalanine fluctuations. Patients responsive to and treated with 6R-tetrahydrobiopterin seem to have less fluctuation in their blood phenylalanine concentrations than controls. An increase in blood phenylalanine concentration may result in increased brain and cerebrospinal fluid phenylalanine concentrations within hours. Although some evidence suggests that stabilization of blood phenylalanine concentrations may have benefits in patients with PKU, more studies are needed to distinguish the effects of blood phenylalanine fluctuations from those of poor metabolic control. © 2013.

  16. Evaluation of Chitosan/Fructose Model as an Antioxidant and Antimicrobial Agent for Shelf Life Extension of Beef Meat During Freezing

    Directory of Open Access Journals (Sweden)

    Shaheen Mohmed S.

    2016-12-01

    Full Text Available In the present study the effect of chitosan/fructose Maillard reaction products (CF-MRPs as antioxidant and antimicrobial agents was evaluated and applied on minced beef meat during frozen storage. Antioxidant and antimicrobial properties of chitosan-fructose complexes were tested. Anti-oxidant properties were measured by the DPPH, β-carotene and ABTS methods. These three methods showed the same profile of antioxidant activity. Chitosan with 4% fructose autoclaved for 45 min (CF9 showed to have the most effective antioxidant activity. It was demonstrated that the browning product exhibited antioxidant activity. For antimicrobial activity, most chitosan-fructose complexes were less effective than chitosan. Thus, MRPs derived from chitosan-sugar model system can be promoted as a novel antioxidant to prevent lipid oxidation in minced beef. Chitosan-sugar complex could be a potential alternative natural product for synthetic food additive replacement that would additionally meet consumer safety requirement.

  17. Fructose and NAFLD: The Multifaceted Aspects of  Fructose Metabolism.

    Science.gov (United States)

    Jegatheesan, Prasanthi; De Bandt, Jean-Pascal

    2017-03-03

    Among various factors, such as an unhealthy diet or a sedentarity lifestyle, excessive fructose consumption is known to favor nonalcoholic fatty liver disease (NAFLD), as fructose is both a substrate and an inducer of hepatic de novo lipogenesis. The present review presents some well-established mechanisms and new clues to better understand the pathophysiology of fructose-induced NAFLD. Beyond its lipogenic effect, fructose intake is also at the onset of hepatic inflammation and cellular stress, such as oxidative and endoplasmic stress, that are key factors contributing to the progression of simple steatosis to nonalcoholic steatohepatitis (NASH). Beyond its hepatic effects, this carbohydrate may exert direct and indirect effects at the peripheral level. Excessive fructose consumption is associated, for example, with the release by the liver of several key mediators leading to alterations in the communication between the liver and the gut, muscles, and adipose tissue and to disease aggravation. These multifaceted aspects of fructose properties are in part specific to fructose, but are also shared in part with sucrose and glucose present in energy- dense beverages and foods. All these aspects must be taken into account in the development of new therapeutic strategies and thereby to better prevent NAFLD.

  18. Occupational exposure to bisphenol A (BPA) in a plastic injection molding factory in Malaysia.

    Science.gov (United States)

    Kouidhi, Wided; Thannimalay, Letchumi; Soon, Chen Sau; Ali Mohd, Mustafa

    2017-07-14

    The purpose of this study has been to assess ambient bisphenol A (BPA) levels in workplaces and urine levels of workers and to establish a BPA database for different populations in Malaysia. Urine samples were collected from plastic factory workers and from control subjects after their shift. Air samples were collected using gas analyzers from 5 sampling positions in the injection molding unit work area and from ambient air. The level of BPA in airborne and urine samples was quantified by the gas chromatography mass spectrometry - selected ion monitoring (GCMS-SIM) analysis. Bisphenol A was detected in the median range of 8-28.3 ng/m³ and 2.4-3.59 ng/m³ for the 5 sampling points in the plastic molding factory and in the ambient air respectively. The median urinary BPA concentration was significantly higher in the workers (3.81 ng/ml) than in control subjects (0.73 ng/ml). The urinary BPA concentration was significantly associated with airborne BPA levels (ρ = 0.55, p Malaysia are occupationally exposed to BPA. Int J Occup Med Environ Health 2017;30(5):743-750. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  19. The role of fructose in metabolism and cancer.

    Science.gov (United States)

    Charrez, Bérénice; Qiao, Liang; Hebbard, Lionel

    2015-05-01

    Fructose consumption has dramatically increased in the last 30 years. The principal form has been in the form of high-fructose corn syrup found in soft drinks and processed food. The effect of excessive fructose consumption on human health is only beginning to be understood. Fructose has been confirmed to induce several obesity-related complications associated with the metabolic syndrome. Here we present an overview of fructose metabolism and how it contrasts with that of glucose. In addition, we examine how excessive fructose consumption can affect de novo lipogenesis, insulin resistance, inflammation, and reactive oxygen species production. Fructose can also induce a change in the gut permeability and promote the release of inflammatory factors to the liver, which has potential implications in increasing hepatic inflammation. Moreover, fructose has been associated with colon, pancreas, and liver cancers, and we shall discuss the evidence for these observations. Taken together, data suggest that sustained fructose consumption should be curtailed as it is detrimental to long-term human health.

  20. Exposure to the BPA-Substitute Bisphenol S Causes Unique Alterations of Germline Function.

    Directory of Open Access Journals (Sweden)

    Yichang Chen

    2016-07-01

    Full Text Available Concerns about the safety of Bisphenol A, a chemical found in plastics, receipts, food packaging and more, have led to its replacement with substitutes now found in a multitude of consumer products. However, several popular BPA-free alternatives, such as Bisphenol S, share a high degree of structural similarity with BPA, suggesting that these substitutes may disrupt similar developmental and reproductive pathways. We compared the effects of BPA and BPS on germline and reproductive functions using the genetic model system Caenorhabditis elegans. We found that, similarly to BPA, BPS caused severe reproductive defects including germline apoptosis and embryonic lethality. However, meiotic recombination, targeted gene expression, whole transcriptome and ontology analyses as well as ToxCast data mining all indicate that these effects are partly achieved via mechanisms distinct from BPAs. These findings therefore raise new concerns about the safety of BPA alternatives and the risk associated with human exposure to mixtures.

  1. Biocatalytic strategies for the production of high fructose syrup from inulin.

    Science.gov (United States)

    Singh, R S; Chauhan, Kanika; Pandey, Ashok; Larroche, Christian

    2018-04-03

    The consumption of natural and low calorie sugars has increased enormously from the past few decades. To fulfil the demands, the production of healthy sweeteners as an alternative to sucrose has recently received considerable interest. Fructose is the most health beneficial and safest sugar amongst them. It is generally recognised as safe (GRAS) and has become an important food ingredient due its sweetening and various health promising functional properties. Commercially, high fructose syrup is prepared from starch by multienzymatic process. Single-step enzymatic hydrolysis of inulin using inulinase has emerged as an alternate to the conventional approach to reduce complexity, time and cost. The present review, outlines the enzymatic strategies used for the preparation of high fructose syrup from inulin/inulin-rich plant materials in batch and continuous systems, and its conclusions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Boron neutron capture therapy induces apoptosis of glioma cells through Bcl-2/Bax

    Directory of Open Access Journals (Sweden)

    Mao Xinggang

    2010-12-01

    Full Text Available Abstract Background Boron neutron capture therapy (BNCT is an alternative treatment modality for patients with glioma. The aim of this study was to determine whether induction of apoptosis contributes to the main therapeutic efficacy of BNCT and to compare the relative biological effect (RBE of BNCT, γ-ray and reactor neutron irradiation. Methods The neutron beam was obtained from the Xi'an Pulsed Reactor (XAPR and γ-rays were obtained from [60Co] γ source of the Fourth Military Medical University (FMMU in China. Human glioma cells (the U87, U251, and SHG44 cell lines were irradiated by neutron beams at the XAPR or [60Co] γ-rays at the FMMU with different protocols: Group A included control nonirradiated cells; Group B included cells treated with 4 Gy of [60Co] γ-rays; Group C included cells treated with 8 Gy of [60Co] γ-rays; Group D included cells treated with 4 Gy BPA (p-borono-phenylalanine-BNCT; Group E included cells treated with 8 Gy BPA-BNCT; Group F included cells irradiated in the reactor for the same treatment period as used for Group D; Group G included cells irradiated in the reactor for the same treatment period as used for Group E; Group H included cells irradiated with 4 Gy in the reactor; and Group I included cells irradiated with 8 Gy in the reactor. Cell survival was determined using the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium (MTT cytotoxicity assay. The morphology of cells was detected by Hoechst33342 staining and transmission electron microscope (TEM. The apoptosis rate was detected by flow cytometer (FCM. The level of Bcl-2 and Bax protein was measured by western blot analysis. Results Proliferation of U87, U251, and SHG44 cells was much more strongly inhibited by BPA-BNCT than by irradiation with [60Co] γ-rays (P 60Co] γ-rays (P P Conclusions Compared with ��-ray and reactor neutron irradiation, a higher RBE can be achieved upon treatment of glioma cells with BNCT. Glioma cell apoptosis induced by

  3. Normal Roles for Dietary Fructose in Carbohydrate Metabolism

    Directory of Open Access Journals (Sweden)

    Maren R. Laughlin

    2014-08-01

    Full Text Available Although there are many well-documented metabolic effects linked to the fructose component of a very high sugar diet, a healthy diet is also likely to contain appreciable fructose, even if confined to that found in fruits and vegetables. These normal levels of fructose are metabolized in specialized pathways that synergize with glucose at several metabolic steps. Glucose potentiates fructose absorption from the gut, while fructose catalyzes glucose uptake and storage in the liver. Fructose accelerates carbohydrate oxidation after a meal. In addition, emerging evidence suggests that fructose may also play a role in the secretion of insulin and GLP-1, and in the maturation of preadipocytes to increase fat storage capacity. Therefore, fructose undergoing its normal metabolism has the interesting property of potentiating the disposal of a dietary carbohydrate load through several routes.

  4. Study of interaction between tryptophan, tyrosine, and phenylalanine separately with silver nanoparticles by fluorescence quenching method

    International Nuclear Information System (INIS)

    Roy, S.; Das, T.K.

    2015-01-01

    Using the spectroscopic method, the individual interaction of the three biochemically important amino acids, which are constituents of protein, namely, tryptophan, tyrosine, and phenylalanine with biologically synthesized silver nanoparticles has been investigated. The obtained UV-Vis spectra show the formation of ground-state complexes between tryptophan, tyrosine, and phenylalanine with silver nanoparticles. Silver nanoparticles possess the ability to quench the intrinsic fluorescence of the aforesaid amino acids by a dynamic quenching process. The binding constant, number of binding sites, and corresponding thermodynamic parameters (ΔH, ΔS, and ΔG) based on the interaction system were calculated for 293, 303, and 313 K. In the case of tryptophan and phenylalanine, with increase in temperature, the binding constant K was found to decrease; conversely, it was found to increase with increase in temperature in the case of tyrosine. The thermodynamic results revealed that the binding process was spontaneous; hydrogen bonding and van der Waals interaction were the predominant forces responsible for the complex stabilization in the case of tryptophan and phenylalanine, respectively, whereas in the case of tyrosine, hydrophobic interaction was the sole force conferring stability. Moreover, the Förster non-radiation energy transfer theory has been applied to calculate the average binding distance among the above amino acids and silver nanoparticles. The results show a binding distance of <7 nm, which ensures that energy transfer does occur between the said amino acids and silver nanoparticles. (authors)

  5. Fructose, pregnancy and later life impacts.

    Science.gov (United States)

    Regnault, Timothy R H; Gentili, Sheridan; Sarr, Ousseynou; Toop, Carla R; Sloboda, Deborah M

    2013-11-01

    Fructose is an increasingly common constituent of the Westernized diet due to cost and production efficiencies. Although an integral component of our pre-industrial revolution diet, over the past two decades human and animal studies have highlighted that excessive fructose intake appears to be associated with adverse metabolic effects. Excessive intake of fructose is the combined result of increased total energy consumption and increased portion sizes of foods, which often incorporate the fructose-containing sugars sucrose and high-fructose corn-syrup (HFCS). The adverse metabolic effects following excessive fructose consumption have become a hot topic in mainstream media and there is now rigorous scientific debate regarding periods of exposure, dosage levels, interactive effects with other sugars and fats and mechanisms underlying the actions of fructose. There is still a degree of controversy regarding the extent to which sugars such as sucrose and HFCS have contributed to the current epidemic of obesity and diabetes. Furthermore, an increasing number of infants are being exposed to sugar-sweetened food and beverages before birth and during early postnatal life, highlighting the importance of determining the long-term effects of this perinatal exposure on the developing offspring. There are limited human observational and controlled studies identifying associations of excessive sweetened food and beverage consumption with poor pregnancy outcomes. Animal research has demonstrated an increased incidence of gestational diabetes as well as altered maternal, fetal and offspring metabolic function, although the long-term effects and the mechanism underlying these perturbations are ill defined. This review aims to understand the role of early life fructose exposure in modifying postnatal risk of disease in the offspring, focusing on fructose intake during pregnancy and in early postnatal life. © 2013 Wiley Publishing Asia Pty Ltd.

  6. The ecologic validity of fructose feeding trials: Supraphysiological feeding of fructose in human trials requires careful consideration when drawing conclusions on cardiometabolic risk

    OpenAIRE

    Vivian L Choo; Vivian L Choo; John L Sievenpiper; John L Sievenpiper; John L Sievenpiper

    2015-01-01

    Background: Select trials of fructose overfeeding have been used to implicate fructose as a driver of cardiometabolic risk.Objective: We examined temporal trends of fructose dose in human controlled feeding trials of fructose and cardiometabolic risk.Methods: We combined studies from eight meta-analyses on fructose and cardiometabolic risk to assess the average fructose dose used in these trials. Two types of trials were identified: 1) substitution trials, in which energy from fructose was e...

  7. Draft Environmental Impact Statement: BPA/Puget Power Northwest Washington Transmission Project

    International Nuclear Information System (INIS)

    1993-11-01

    Bonneville Power Administration (BPS) and Puget Sound Power ampersand Light (Puget Power) propose to upgrade the existing high-voltage transmission system in the Whatcom and Skagit County area between the towns of Custer and Sedro Woolley, including within the city of Bellingham starting in 1995. The upgrades of the interconnected 230,000 volt (230-kV) and 115-kV systems are needed to increase the reliability of the local transmission system and to increase the import capacity on a nearby US-Canada 500-kV intertie by about 850 megawatts (MW). The increase in north-south transfer capability would be shared by BPA and Puget Power (about 425 MW each). Other actions would include replacement of an existing BPA 230-kV single-circuit, wood-pole H-frame transmission line with a lattice-steel double-circuit line; an existing Puget Power 115-kV single wood-pole transmission line rebuild, two short 115-kV Puget Power lines added at BPA's Bellingham Substation; and improvements made at existing BPA and Puget Power substations

  8. Cationized phenylalanine conformations characterized by IRMPD and computation for singly and doubly charged ions

    NARCIS (Netherlands)

    Dunbar, R.C.; Steill, J.D.; Oomens, J.

    2010-01-01

    Electrospray ionization produces phenylalanine (Phe) complexes of the alkali metal ion series, plus Ag+ and Ba2+. Infrared multiple photon dissociation (IRMPD) spectroscopy using the FELIX free electron laser light source is used to characterize the conformations of the ions, in conjunction with

  9. Fructose; a Hidden Threat for Chronic Diseases

    Directory of Open Access Journals (Sweden)

    Ahmet Korkmaz

    2008-08-01

    Full Text Available Incremental usage of the fructose derived from corn by processed-food manufacturers has become a crucial threat in terms of human health. Although it is known as fruit sugar, the most important source of dietary fructose is now, processed-food prepared by using high-fructose corn syrup. Basically, fructose is metabolized within liver and its energy load is equal to glucose. Nevertheless, it does not make up satiety and fullness. Therefore, fructose-rich foods and beverages can be consumed in large amount because the absence of satiety. Studies performed recently unveil a connection between amount of fructose consumed and metabolic disorders such as cardiovascular diseases, type 2 diabetes, hypertension and obesity. The incidence of metabolic diseases which are already affecting more than half of the adults has been increasing among children. Moreover, these types of foods are generally consumed by children. Therefore, in order to reduce the frequency of metabolic disorders in all ages, the amount of fructose in processed-foods and beverages should also be taken into consideration. [TAF Prev Med Bull 2008; 7(4.000: 343-346

  10. Phenylalanine kinetics in human adipose tissue.

    OpenAIRE

    Coppack, S W; Persson, M; Miles, J M

    1996-01-01

    Very little is known about the regulation of protein metabolism in adipose tissue. In this study systemic, adipose tissue, and forearm phenylalanine kinetics were determined in healthy postabsorptive volunteers before and during a 2-h glucose infusion (7 mg.kg-1.min-1). [3H]Phenylalanine was infused and blood was sampled from a radial artery, a subcutaneous abdominal vein, and a deep forearm vein. Adipose tissue and forearm blood flow were measured with 133Xe and plethysmography, respectively...

  11. BPA's Eighth Annual Energy Conservation Management Conference : Proceedings.

    Energy Technology Data Exchange (ETDEWEB)

    Energy Conservation Management Conference (8th : 1981); United States. Bonneville Power Administration.

    1981-01-01

    The five-year energy conservation program at Bonneville Power Administration (BPA) is described at the conference. An overview of the program is presented. Topics covered in panel discussions include: how utilities can work effectively with weatherization contractors, homebuilders, energy auditors, and weatherization material suppliers; mechanisms for implementing conservation programs in the commercial sector; experiences gained in existing residential weatherization programs; and streamlining relationships between consumers, utilities, and BPA in providing services and getting feedback. The planning, programming, technical assistance, and engineering thrusts of BPA's conservation programs are discussed. Indoor air quality, renewable energy, and the regulator's role in relationships to energy conservation are discussed. Passive solar programs, DOE initiatives in solar and conservation for buildings, conservation potential in the commercial and industrial sectors, and current conservation research and development are also discussed. (MCW)

  12. Surface modification of hydroxyapatite nanoparticles by poly(L-phenylalanine) via ROP of L-phenylalanine N-carboxyanhydride (Pha-NCA)

    International Nuclear Information System (INIS)

    Dai Yanfeng; Xu Min; Wei Junchao; Zhang Haobin; Chen Yiwang

    2012-01-01

    The surface of hydroxyapatite nanoparticles was modified by poly(L-phenylalanine) via the ring opening polymerization (ROP) of L-phenylalanine N-carboxyanhydride. The preparation procedure was monitored by Fourier transform infrared spectroscopy (FTIR), and the modified hydroxyapatite was characterized by thermal gravimetric analysis (TGA) and X-ray diffraction (XRD). The results showed that the surface grafting amounts of poly(L-phenylalanine) on HA ranging from 20.26% to 38.92% can be achieved by tuning the reaction condition. The XRD patterns demonstrated that the crystalline structure of the modified hydroxyapatite was nearly the same with that of HA, implying that the ROP was an efficient surface modification method. The MTT assay proved that the biocompatibility of modified HA was very good, which showed the potential application of modified HA in bone tissue engineering.

  13. Biodistribution of BPA and BSH after single, repeated and simultaneous administrations for neutron-capture therapy of cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, H. [Faculty of Pharmaceutical Sciences and Cooperative Research Center of Life Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586 (Japan)], E-mail: ichikawa@pharm.kobegakuin.ac.jp; Taniguchi, E. [Faculty of Pharmaceutical Sciences and Cooperative Research Center of Life Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586 (Japan); Fujimoto, T. [Department of Orthopaedic Surgery, Hyogo Cancer Center, Akashi 673-0021 (Japan); Fukumori, Y. [Faculty of Pharmaceutical Sciences and Cooperative Research Center of Life Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586 (Japan)

    2009-07-15

    The effect of administration mode of L-BPA and BSH on the biodistribution in the melanoma-bearing hamsters was investigated. In single intravenous (i.v.) administration, BSH (100 mg BSH/kg) showed no significant retention of {sup 10}B in all the tissues, including tumors, while long-term retention of {sup 10}B in the tumor, muscle and brain was observed with L-BPA (500 mg BPA/kg). The dose escalation of L-BPA and the simultaneous single administration of L-BPA and BSH were not so effective at increasing boron accumulation in tumor after bolus i.v. injection. The boron concentration in tumor was 41 {mu}g B/g after single bolus i.v. injection even at the dose of 1000 mg BPA/kg. In contrast, two sequential bolus i.v. injections of L-BPA with the dose of 500 mg BPA/kg each was found to be effective at increasing {sup 10}B accumulation in the tumor; the maximum {sup 10}B concentration in the tumor reached 52 {mu}g B/g at 3 h after the second i.v. injection.

  14. Severe NAFLD with hepatic necroinflammatory changes in mice fed trans fats and a high-fructose corn syrup equivalent

    OpenAIRE

    Tetri, Laura H.; Basaranoglu, Metin; Brunt, Elizabeth M.; Yerian, Lisa M.; Neuschwander-Tetri, Brent A.

    2008-01-01

    The aims of this study were to determine whether combining features of a western lifestyle in mice with trans fats in a high-fat diet, high-fructose corn syrup in the water, and interventions designed to promote sedentary behavior would cause the hepatic histopathological and metabolic abnormalities that characterize nonalcoholic steatohepatitis (NASH). Male C57BL/6 mice fed ad libitum high-fat chow containing trans fats (partially hydrogenated vegetable oil) and relevant amounts of a high-fr...

  15. Developmental programming: interaction between prenatal BPA exposure and postnatal adiposity on metabolic variables in female sheep.

    Science.gov (United States)

    Veiga-Lopez, Almudena; Moeller, Jacob; Sreedharan, Rohit; Singer, Kanakadurga; Lumeng, Carey; Ye, Wen; Pease, Anthony; Padmanabhan, Vasantha

    2016-02-01

    Among potential contributors for the increased incidence of metabolic diseases is the developmental exposure to endocrine-disrupting chemicals such as bisphenol A (BPA). BPA is an estrogenic chemical used in a variety of consumer products. Evidence points to interactions of BPA with the prevailing environment. The aim of this study was to assess the effects of prenatal exposure to BPA on postnatal metabolic outcomes, including insulin resistance, adipose tissue distribution, adipocyte morphometry, and expression of inflammatory markers in adipose tissue as well as to assess whether postnatal overfeeding would exacerbate these effects. Findings indicate that prenatal BPA exposure leads to insulin resistance in adulthood in the first breeder cohort (study 1), but not in the second cohort (study 2), which is suggestive of potential differences in genetic susceptibility. BPA exposure induced adipocyte hypertrophy in the visceral fat depot without an accompanying increase in visceral fat mass or increased CD68, a marker of macrophage infiltration, in the subcutaneous fat depot. Cohens effect size analysis found the ratio of visceral to subcutaneous fat depot in the prenatal BPA-treated overfed group to be higher compared with the control-overfed group. Altogether, these results suggest that exposure to BPA during fetal life at levels found in humans can program metabolic outcomes that lead to insulin resistance, a forerunner of type 2 diabetes, with postnatal obesity failing to manifest any interaction with prenatal BPA relative to insulin resistance and adipocyte hypertrophy. Copyright © 2016 the American Physiological Society.

  16. Effects of riboflavin photosensitization on the degradation of bisphenol A (BPA) in model and real-food systems.

    Science.gov (United States)

    Ha, Dong-Oh; Jeong, Min Kyu; Park, Chan Uk; Park, Min Hee; Chang, Pahn-Shick; Lee, Jae Hwan

    2009-06-01

    Effects of riboflavin photosensitizations on the stability of bisphenol A (BPA), a well-known endocrine disrupting chemical, were studied in model and real-food systems by high-performance liquid chromatography (HPLC). Concentration of BPA was significantly decreased under light exposure (P 0.05). Addition of 50, 100, and 200 microM sodium azide significantly increased the stability of BPA in riboflavin photosensitization with concentration dependent manner (P canned tea beverages with different phenolic contents. BPA was more stable in the beverage sample with higher total phenolic contents and free radical scavenging ability. The photodegradation of BPA in riboflavin photosensitization can be an efficient way to decrease the concentration of BPA from environmental or food systems.

  17. 21 CFR 184.1866 - High fructose corn syrup.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true High fructose corn syrup. 184.1866 Section 184.1866... Listing of Specific Substances Affirmed as GRAS § 184.1866 High fructose corn syrup. (a) High fructose... partial enzymatic conversion of glucose (dextrose) to fructose using an insoluble glucose isomerase enzyme...

  18. The Ecologic Validity of Fructose Feeding Trials: Supraphysiological Feeding of Fructose in Human Trials Requires Careful Consideration When Drawing Conclusions on Cardiometabolic Risk

    OpenAIRE

    Choo, Vivian L.; Sievenpiper, John L.

    2015-01-01

    Background Select trials of fructose overfeeding have been used to implicate fructose as a driver of cardiometabolic risk. Objective We examined temporal trends of fructose dose in human controlled feeding trials of fructose and cardiometabolic risk. Methods We combined studies from eight meta-analyses on fructose and cardiometabolic risk to assess the average fructose dose used in these trials. Two types of trials were identified: (1) substitution trials, in which energy f...

  19. Fluorinated Phenylalanine Precursor Resistance in Yeast

    Directory of Open Access Journals (Sweden)

    Ian S. Murdoch

    2018-06-01

    Full Text Available Development of a counter-selection method for phenylalanine auxotrophy could be a useful tool in the repertoire of yeast genetics. Fluorinated and sulfurated precursors of phenylalanine were tested for toxicity in Saccharomyces cerevisiae. One such precursor, 4-fluorophenylpyruvate (FPP, was found to be toxic to several strains from the Saccharomyces and Candida genera. Toxicity was partially dependent on ARO8 and ARO9, and correlated with a strain’s ability to convert FPP into 4-fluorophenylalanine (FPA. Thus, strains with deletions in ARO8 and ARO9, having a mild phenylalanine auxotrophy, could be separated from a culture of wild-type strains using FPP. Tetrad analysis suggests FPP resistance in one strain is due to two genes. Strains resistant to FPA have previously been shown to exhibit increased phenylethanol production. However, FPP resistant isolates did not follow this trend. These results suggest that FPP could effectively be used for counter-selection but not for enhanced phenylethanol production.

  20. Effect of oleic acid on the production of ethanol and fructose from glucose/fructose mixtures in an immobilized cell reactor

    Energy Technology Data Exchange (ETDEWEB)

    Guenette, M E [Ottawa Univ., ON (Canada). Dept. of Chemical Engineering; [IOGEN Corp., Ottawa, ON (Canada); Duvnjak, Z [Ottawa Univ., ON (Canada). Dept. of Chemical Engineering; [IOGEN Corp., Ottawa, ON (Canada)

    1996-12-31

    Saccharomyces cerevisiae ATCC 39859 was immobilized onto small cubes of wood to produce ethanol and very enriched fructose syrup from glucose/fructose mixtures through the selective fermentation of glucose. A maximum ethanol productivity of 21.9 g/l.h was attained from a feed containing 9.7% (w/v) glucose and 9.9% (w/v) fructose. An ethanol concentration, glucose conversion and fructose yield of 29.6 g/l, 62% and 99% were obtained, respectively. This resulted in a final fructose/glucose ratio of 2.7. At lower ethanol productivity levels the fructose/glucose ratio increases, as does the ethanol concentration in the effluent. The addition of 30 mg/l oleic acid to the medium increased the ethanol productivity and its concentration by 13% at a dilution rate of 0.74 h{sup -1}. (orig.)

  1. High-Fructose Corn-Syrup-Sweetened Beverage Intake Increases 5-Hour Breast Milk Fructose Concentrations in Lactating Women.

    Science.gov (United States)

    Berger, Paige K; Fields, David A; Demerath, Ellen W; Fujiwara, Hideji; Goran, Michael I

    2018-05-24

    This study determined the effects of consuming a high-fructose corn syrup (HFCS)-sweetened beverage on breast milk fructose, glucose, and lactose concentrations in lactating women. At six weeks postpartum, lactating mothers ( n = 41) were randomized to a crossover study to consume a commercially available HFCS-sweetened beverage or artificially sweetened control beverage. At each session, mothers pumped a complete breast milk expression every hour for six consecutive hours. The baseline fasting concentrations of breast milk fructose, glucose, and lactose were 5.0 ± 1.3 µg/mL, 0.6 ± 0.3 mg/mL, and 6.8 ± 1.6 g/dL, respectively. The changes over time in breast milk sugars were significant only for fructose (treatment × time, p fructose at 120 min (8.8 ± 2.1 vs. 5.3 ± 1.9 µg/mL), 180 min (9.4 ± 1.9 vs. 5.2 ± 2.2 µg/mL), 240 min (7.8 ± 1.7 vs. 5.1 ± 1.9 µg/mL), and 300 min (6.9 ± 1.4 vs. 4.9 ± 1.9 µg/mL) (all p fructose was also different between treatments (14.7 ± 1.2 vs. -2.60 ± 1.2 µg/mL × 360 min, p glucose or lactose. Our data suggest that the consumption of an HFCS-sweetened beverage increased breast milk fructose concentrations, which remained elevated up to five hours post-consumption.

  2. The conversion of phenylalanine to tyrosine in man. Direct measurement by continuous intravenous tracer infusions of L-[ring-2H5]phenylalanine and L-[1-13C] tyrosine in the postabsorptive state

    International Nuclear Information System (INIS)

    Clarke, J.T.; Bier, D.M.

    1982-01-01

    Steady state phenylalanine and tyrosine turnover and the rate of conversion of phenylalanine of tyrosine in vivo were determined in 6 healthy postabsorptive adult volunteers. Continuous infusions of tracer amounts of L-[ring- 2 H5]phenylalanine were determined intravenously for 13-14 hr. After 9-10 hr, a priming dose followed by a continuous infusion of L-[1- 13 C]tyrosine was added and maintained, along with the [ 2 H5]phenylalanine infusion, for 4 hr. Venous plasma samples were obtained before the initiation of each infusion and every 30 min during the course of the combined [ 2 H5]phenylalanine and [ 13 C]tyrosine infusion for determination of isotopic enrichments of [ 2 H5]phenylalanine, [ 13 C]tyrosine, and [ 2 H4]tyrosine by gas chromatograph-mass spectrometric analysis of the N-trifluoroacetyl-, methyl ester derivatives of the amino acids. Calculated from the observed enrichments, free phenylalanine and tyrosine turnover rates were 36.1 +/- 5.1 mumole . kg-1 . h-1 and 39.8 +/- 3.5 mumole . kg-1 . h-1, respectively. Phenylalanine was converted to tyrosine at the rate of 5.83 +/- 0.59 mumole . kg-1 . h-1, accounting for approximately 16% of either the phenylalanine or the tyrosine flux. The results indicate that the normal basal steady state phenylalanine hydroxylase activity in vivo in man is lower than that obtained from phenylalanine loading studies. This supports the existence of some type of substance activation of the enzyme as reflected in the previously reported exponential relationship between phenylalanine concentration and phenylalanine hydroxylase activity in vitro. The use of continuous simultaneous infusions of tracer amounts of stable isotope-labeled phenylalanine and tyrosine provides a direct means for studying physiological regulation of phenylalanine hydroxylase activity in vivo

  3. Amino acid tolerance test using L-β-phenylalanine-125I

    International Nuclear Information System (INIS)

    Hafiez, A.A.; Megahed, Y.M.; Ismail, A.A.; Abdel-Wahab, M.F.; Khater, R.A.

    1978-01-01

    An amino acid tolerance test is described. L-β-phenylalanine- 125 I was used as representative of L-amino acids. The change in radioactivity of the blood after giving a test dose of tagged L-β-phenylalanine was also investigated. L-β-phenylalanine- 125 I tolerance curves were found to be irreproducible when the test dose was given without a carrier. The addition of 2.5 g untagged phenylalanine as a carrier to the test dose allowed a reproducible and precise type of tolerance curves. Metformin in a dose of 0.5 g t.d.s. for three days induced an inhibitory effect on amino acid absorption in normal persons. (author)

  4. Fructose Consumption, Lipogenesis, and Non-Alcoholic Fatty Liver Disease.

    Science.gov (United States)

    Ter Horst, Kasper W; Serlie, Mireille J

    2017-09-06

    Increased fructose consumption has been suggested to contribute to non-alcoholic fatty liver disease (NAFLD), dyslipidemia, and insulin resistance, but a causal role of fructose in these metabolic diseases remains debated. Mechanistically, hepatic fructose metabolism yields precursors that can be used for gluconeogenesis and de novo lipogenesis (DNL). Fructose-derived precursors also act as nutritional regulators of the transcription factors, including ChREBP and SREBP1c, that regulate the expression of hepatic gluconeogenesis and DNL genes. In support of these mechanisms, fructose intake increases hepatic gluconeogenesis and DNL and raises plasma glucose and triglyceride levels in humans. However, epidemiological and fructose-intervention studies have had inconclusive results with respect to liver fat, and there is currently no good human evidence that fructose, when consumed in isocaloric amounts, causes more liver fat accumulation than other energy-dense nutrients. In this review, we aim to provide an overview of the seemingly contradicting literature on fructose and NAFLD. We outline fructose physiology, the mechanisms that link fructose to NAFLD, and the available evidence from human studies. From this framework, we conclude that the cellular mechanisms underlying hepatic fructose metabolism will likely reveal novel targets for the treatment of NAFLD, dyslipidemia, and hepatic insulin resistance. Finally, fructose-containing sugars are a major source of excess calories, suggesting that a reduction of their intake has potential for the prevention of NAFLD and other obesity-related diseases.

  5. Fructose and NAFLD: The Multifaceted Aspects of  Fructose Metabolism

    Directory of Open Access Journals (Sweden)

    Prasanthi Jegatheesan

    2017-03-01

    Full Text Available Among various factors, such as an unhealthy diet or a sedentarity lifestyle, excessive fructose consumption is known to favor nonalcoholic fatty liver disease (NAFLD, as fructose is both a substrate and an inducer of hepatic de novo lipogenesis. The present review presents some well‐established mechanisms and new clues to better understand the pathophysiology of fructose‐induced NAFLD. Beyond its lipogenic effect, fructose intake is also at the onset of hepatic inflammation and cellular stress, such as oxidative and endoplasmic stress, that are key factors contributing to the progression of simple steatosis to nonalcoholic steatohepatitis (NASH. Beyond its hepatic effects, this carbohydrate may exert direct and indirect effects at the peripheral level. Excessive fructose consumption is associated, for example, with the release by the liver of several key mediators leading to alterations in the communication between the liver and the gut, muscles, and adipose tissue and to disease aggravation. These multifaceted aspects of fructose properties are in part specific to fructose, but are also shared in part with sucrose and glucose present in energy– dense beverages and foods. All these aspects must be taken into account in the development of new therapeutic strategies and thereby to better prevent NAFLD.

  6. Lower Doses of Fructose Extend Lifespan in Caenorhabditis elegans.

    Science.gov (United States)

    Zheng, Jolene; Gao, Chenfei; Wang, Mingming; Tran, Phuongmai; Mai, Nancy; Finley, John W; Heymsfield, Steven B; Greenway, Frank L; Li, Zhaoping; Heber, David; Burton, Jeffrey H; Johnson, William D; Laine, Roger A

    2017-05-04

    Epidemiological studies indicate that the increased consumption of sugars including sucrose and fructose in beverages correlate with the prevalence of obesity, type-2 diabetes, insulin resistance, hyperinsulinemia, hypertriglyceridemia, and hypertension in humans. A few reports suggest that fructose extends lifespan in Saccharomyces cerevisiae. In Anopheles gambiae, fructose, glucose, or glucose plus fructose also extended lifespan. New results presented here suggest that fructose extends lifespan in Caenorhabditis elegans (C. elegans) wild type (N2). C. elegans were fed standard laboratory food source (E. coli OP50), maintained in liquid culture. Experimental groups received additional glucose (111 mM), fructose (55 mM, 111 mM, or 555 mM), sucrose (55 mM, 111 mM, or 555 mM), glucose (167 mM) plus fructose (167 mM) (G&F), or high fructose corn syrup (HFCS, 333 mM). In four replicate experiments, fructose dose-dependently increased mean lifespan at 55 mM or 111 m Min N2, but decreased lifespan at 555 mM (P Glucose reduced lifespan (P fructose (555 mM), glucose (111 mM), and sucrose (55 mM, 111 mM, and 555 mM). Here we report a biphasic effect of fructose increasing lifespan at lower doses and shortening lifespan at higher doses with an inverse effect on IFD. In view of reports that fructose increases lifespan in yeast, mosquitoes and now nematodes, while decreasing fat deposition (in nematodes) at lower concentrations, further research into the relationship of fructose to lifespan and fat accumulation in vertebrates and mammals is indicated.

  7. Effects of high-fructose corn syrup and sucrose on the pharmacokinetics of fructose and acute metabolic and hemodynamic responses in healthy subjects.

    Science.gov (United States)

    Le, Myphuong T; Frye, Reginald F; Rivard, Christopher J; Cheng, Jing; McFann, Kim K; Segal, Mark S; Johnson, Richard J; Johnson, Julie A

    2012-05-01

    It is unclear whether high-fructose corn syrup (HFCS), which contains a higher amount of fructose and provides an immediate source of free fructose, induces greater systemic concentrations of fructose as compared with sucrose. It is also unclear whether exposure to higher levels of fructose leads to increased fructose-induced adverse effects. The objective was to prospectively compare the effects of HFCS- vs sucrose-sweetened soft drinks on acute metabolic and hemodynamic effects. Forty men and women consumed 24 oz of HFCS- or sucrose-sweetened beverages in a randomized crossover design study. Blood and urine samples were collected over 6 hours. Blood pressure, heart rate, fructose, and a variety of other metabolic biomarkers were measured. Fructose area under the curve and maximum concentration, dose-normalized glucose area under the curve and maximum concentration, relative bioavailability of glucose, changes in postprandial concentrations of serum uric acid, and systolic blood pressure maximum levels were higher when HFCS-sweetened beverages were consumed as compared with sucrose-sweetened beverages. Compared with sucrose, HFCS leads to greater fructose systemic exposure and significantly different acute metabolic effects. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Effects of high fructose corn syrup and sucrose on the pharmacokinetics of fructose and acute metabolic and hemodynamic responses in healthy subjects

    Science.gov (United States)

    Le, MyPhuong T.; Frye, Reginald F.; Rivard, Christopher J.; Cheng, Jing; McFann, Kim K.; Segal, Mark S.; Johnson, Richard J.; Johnson, Julie A.

    2011-01-01

    Objective It is unclear whether high fructose corn syrup (HFCS), which contains a higher amount of fructose and provides an immediate source of free fructose, induces greater systemic concentrations of fructose as compared to sucrose. It is also unclear whether exposure to higher levels of fructose leads to increased fructose-induced adverse effects. The objective was to prospectively compare the effects of HFCS- versus sucrose-sweetened soft drinks on acute metabolic and hemodynamic effects. Materials/Methods Forty men and women consumed 24 oz of HFCS- or sucrose-sweetened beverages in a randomized crossover design study. Blood and urine samples were collected over 6 hr. Blood pressure, heart rate, fructose, and a variety of other metabolic biomarkers were measured. Results Fructose area under the curve and maximum concentration, dose normalized glucose area under the curve and maximum concentration, relative bioavailability of glucose, changes in postprandial concentrations of serum uric acid, and systolic blood pressure maximum levels were higher when HFCS-sweetened beverages were consumed as compared to sucrose-sweetened beverages. Conclusions Compared to sucrose, HFCS leads to greater fructose systemic exposure and significantly different acute metabolic effects. PMID:22152650

  9. Chromatographic separation of fructose from date syrup.

    Science.gov (United States)

    Al Eid, Salah M

    2006-01-01

    The objective of this study is to provide a process for separating fructose from a mixture of sugars containing essentially fructose and glucose, obtained from date palm fruits. The extraction procedure of date syrup from fresh dates gave a yield of 86.5% solids after vacuum drying. A process for separating fructose from an aqueous solution of date syrup involved adding the date syrup solutions (20, 30 and 40% by weight) to a chromatographic column filled with Dowex polystyrene strong cation exchange gel matrix resin Ca2 + and divinylbenzene, a functional group, sulfonic acid, particle size 320 microm, with a flow rate of 0.025 and 0.05 bed volume/min, under 30 and 70 degrees C column temperature. After the date sugar solution batch, a calculated quantity of water was added to the column. Glucose was retained by the resin more weakly than fructose and proceeded faster into the water batch flowing ahead. Three fractions were collected: a glucose-rich fraction, a return fraction, and a fructose-rich fraction. The return fraction is based on when the peaks of fructose and glucose were reached, which could be determined by means of an analyzer (polarimeter) based on the property of glucose and fructose solutions to turn the polarization level of polarized light. A high yield of fructose is obtained at 70 degrees C column temperature with a flow rate of 0.025 bed volume/min and date syrup solution containing 40% sugar concentration. The low recovery by weight obtained using date syrup solutions having a sugar concentration of 20 and 30%, encourages the use of a concentration of 40%. However, with the 40% date syrup supply the average concentrations of glucose and fructose in the return fractions were more than 40%, which can be used for diluting the thick date syrup solution extracted from dates.

  10. Developmental programming: Prenatal BPA treatment disrupts timing of LH surge and ovarian follicular wave dynamics in adult sheep

    International Nuclear Information System (INIS)

    Veiga-Lopez, A.; Beckett, E.M.; Abi Salloum, B.; Ye, W.; Padmanabhan, V.

    2014-01-01

    Developmental exposure to BPA adversely affects reproductive function. In sheep, prenatal BPA treatment induces reproductive neuroendocrine defects, manifested as LH excess and dampened LH surge and perturbs early ovarian gene expression. In this study we hypothesized that prenatal BPA treatment will also disrupt ovarian follicular dynamics. Pregnant sheep were treated from days 30 to 90 of gestation with 3 different BPA doses (0.05, 0.5, or 5 mg/kg BW/day). All female offspring were estrus synchronized and transrectal ultrasonography was performed daily for 22 days to monitor ovarian follicular and corpora lutea dynamics. Blood samples were collected to assess preovulatory hormonal changes and luteal progesterone dynamics. Statistical analysis revealed that the time interval between the estradiol rise and the preovulatory LH surge was shortened in the BPA-treated females. None of the three BPA doses had an effect on corpora lutea, progestogenic cycles, and mean number or duration of ovulatory and non-ovulatory follicles. However, differences in follicular count trajectories were evident in all three follicular size classes (2–3 mm, 4–5 mm, and ≥ 6 mm) of prenatal BPA-treated animals compared to controls. Number of follicular waves tended also to be more variable in the prenatal BPA-treated groups ranging from 2 to 5 follicular waves per cycle, while this was restricted to 3 to 4 waves in control females. These changes in ovarian follicular dynamics coupled with defects in time interval between estradiol rise and preovulatory LH release are likely to lead to subfertility in prenatal BPA-treated females. - Highlights: • Prenatal BPA shortens interval between estradiol rise and preovulatory LH surge. • Prenatal BPA affects follicular count trajectory and follicular wave occurrence. • Prenatal BPA does not affect ovulatory rate and progesterone dynamics

  11. Developmental programming: Prenatal BPA treatment disrupts timing of LH surge and ovarian follicular wave dynamics in adult sheep

    Energy Technology Data Exchange (ETDEWEB)

    Veiga-Lopez, A.; Beckett, E.M.; Abi Salloum, B. [Department of Pediatrics, University of Michigan, Ann Arbor, MI (United States); Ye, W. [Department of Biostatistics, University of Michigan, Ann Arbor, MI (United States); Padmanabhan, V., E-mail: vasantha@umich.edu [Department of Pediatrics, University of Michigan, Ann Arbor, MI (United States); The Reproductive Sciences Program, University of Michigan, Ann Arbor, MI (United States)

    2014-09-01

    Developmental exposure to BPA adversely affects reproductive function. In sheep, prenatal BPA treatment induces reproductive neuroendocrine defects, manifested as LH excess and dampened LH surge and perturbs early ovarian gene expression. In this study we hypothesized that prenatal BPA treatment will also disrupt ovarian follicular dynamics. Pregnant sheep were treated from days 30 to 90 of gestation with 3 different BPA doses (0.05, 0.5, or 5 mg/kg BW/day). All female offspring were estrus synchronized and transrectal ultrasonography was performed daily for 22 days to monitor ovarian follicular and corpora lutea dynamics. Blood samples were collected to assess preovulatory hormonal changes and luteal progesterone dynamics. Statistical analysis revealed that the time interval between the estradiol rise and the preovulatory LH surge was shortened in the BPA-treated females. None of the three BPA doses had an effect on corpora lutea, progestogenic cycles, and mean number or duration of ovulatory and non-ovulatory follicles. However, differences in follicular count trajectories were evident in all three follicular size classes (2–3 mm, 4–5 mm, and ≥ 6 mm) of prenatal BPA-treated animals compared to controls. Number of follicular waves tended also to be more variable in the prenatal BPA-treated groups ranging from 2 to 5 follicular waves per cycle, while this was restricted to 3 to 4 waves in control females. These changes in ovarian follicular dynamics coupled with defects in time interval between estradiol rise and preovulatory LH release are likely to lead to subfertility in prenatal BPA-treated females. - Highlights: • Prenatal BPA shortens interval between estradiol rise and preovulatory LH surge. • Prenatal BPA affects follicular count trajectory and follicular wave occurrence. • Prenatal BPA does not affect ovulatory rate and progesterone dynamics.

  12. Exposure assessment of adult intake of bisphenol A (BPA) with emphasis on canned food dietary exposures

    OpenAIRE

    Lorber, Matthew; Schecter, Arnold; Paepke, Olaf; Shropshire, William; Christensen, Krista; Birnbaum, Linda

    2015-01-01

    Bisphenol A (BPA) is a high-volume, synthetic compound found in epoxy resins and plastics used in food packaging. Food is believed to be a major source of BPA intake. In this study, we measured the concentration of BPA in convenience samplings of foodstuffs purchased in Dallas, Texas. Sampling entailed collection of 204 samples of fresh, frozen, and canned foods in two rounds in 2010. BPA was positive in 73% of the canned food samples, while it was found in only 7% of non-canned foods at low ...

  13. Occupational exposure to bisphenol A (BPA) in a plastic injection molding factory in Malaysia

    OpenAIRE

    Wided Kouidhi; Letchumi Thannimalay; Chen Sau Soon; Mustafa Ali Mohd

    2017-01-01

    Objectives: The purpose of this study has been to assess ambient bisphenol A (BPA) levels in workplaces and urine levels of workers and to establish a BPA database for different populations in Malaysia. Material and Methods: Urine samples were collected from plastic factory workers and from control subjects after their shift. Air samples were collected using gas analyzers from 5 sampling positions in the injection molding unit work area and from ambient air. The level of BPA in airborne and u...

  14. Diet-dependent gene expression in honey bees: honey vs. sucrose or high fructose corn syrup.

    Science.gov (United States)

    Wheeler, Marsha M; Robinson, Gene E

    2014-07-17

    Severe declines in honey bee populations have made it imperative to understand key factors impacting honey bee health. Of major concern is nutrition, as malnutrition in honey bees is associated with immune system impairment and increased pesticide susceptibility. Beekeepers often feed high fructose corn syrup (HFCS) or sucrose after harvesting honey or during periods of nectar dearth. We report that, relative to honey, chronic feeding of either of these two alternative carbohydrate sources elicited hundreds of differences in gene expression in the fat body, a peripheral nutrient-sensing tissue analogous to vertebrate liver and adipose tissues. These expression differences included genes involved in protein metabolism and oxidation-reduction, including some involved in tyrosine and phenylalanine metabolism. Differences between HFCS and sucrose diets were much more subtle and included a few genes involved in carbohydrate and lipid metabolism. Our results suggest that bees receive nutritional components from honey that are not provided by alternative food sources widely used in apiculture.

  15. Low-dose BPA exposure alters the mesenchymal and epithelial transcriptomes of the mouse fetal mammary gland.

    Directory of Open Access Journals (Sweden)

    Perinaaz R Wadia

    Full Text Available Exposure of rodent fetuses to low doses of the endocrine disruptor bisphenol A (BPA causes subtle morphological changes in the prenatal mammary gland and results in pre-cancerous and cancerous lesions during adulthood. To examine whether the BPA-induced morphological alterations of the fetal mouse mammary glands are a associated with changes in mRNA expression reflecting estrogenic actions and/or b dependent on the estrogen receptor α (ERα, we compared the transcriptomal effects of BPA and the steroidal estrogen ethinylestradiol (EE2 on fetal mammary tissues of wild type and ERα knock-out mice. Mammary glands from fetuses of dams exposed to vehicle, 250 ng BPA/kg BW/d or 10 ng EE2/kg BW/d from embryonic day (E 8 were harvested at E19. Transcriptomal analyses on the ductal epithelium and periductal stroma revealed altered expression of genes involved in the focal adhesion and adipogenesis pathways in the BPA-exposed stroma while genes regulating the apoptosis pathway changed their expression in the BPA-exposed epithelium. These changes in gene expression correlated with previously reported histological changes in matrix organization, adipogenesis, and lumen formation resulting in enhanced maturation of the fat-pad and delayed lumen formation in the epithelium of BPA-exposed fetal mammary glands. Overall similarities in the transcriptomal effects of BPA and EE2 were more pronounced in the epithelium, than in the stroma. In addition, the effects of BPA and EE2 on the expression of various genes involved in mammary stromal-epithelial interactions were suppressed in the absence of ERα. These observations support a model whereby BPA and EE2 act directly on the stroma, which expresses ERα, ERβ and GPR30 in fetal mammary glands, and that the stroma, in turn, affects gene expression in the epithelium, where ERα and ERβ are below the level of detection at this stage of development.

  16. Elevated levels of plasma phenylalanine in schizophrenia: a guanosine triphosphate cyclohydrolase-1 metabolic pathway abnormality?

    Directory of Open Access Journals (Sweden)

    Olaoluwa Okusaga

    Full Text Available BACKGROUND: Phenylalanine and tyrosine are precursor amino acids required for the synthesis of dopamine, the main neurotransmitter implicated in the neurobiology of schizophrenia. Inflammation, increasingly implicated in schizophrenia, can impair the function of the enzyme Phenylalanine hydroxylase (PAH; which catalyzes the conversion of phenylalanine to tyrosine and thus lead to elevated phenylalanine levels and reduced tyrosine levels. This study aimed to compare phenylalanine, tyrosine, and their ratio (a proxy for PAH function in a relatively large sample of schizophrenia patients and healthy controls. METHODS: We measured non-fasting plasma phenylalanine and tyrosine in 950 schizophrenia patients and 1000 healthy controls. We carried out multivariate analyses to compare log transformed phenylalanine, tyrosine, and phenylalanine:tyrosine ratio between patients and controls. RESULTS: Compared to controls, schizophrenia patients had higher phenylalanine (p<0.0001 and phenylalanine: tyrosine ratio (p<0.0001 but tyrosine did not differ between the two groups (p = 0.596. CONCLUSIONS: Elevated phenylalanine and phenylalanine:tyrosine ratio in the blood of schizophrenia patients have to be replicated in longitudinal studies. The results may relate to an abnormal PAH function in schizophrenia that could become a target for novel preventative and interventional approaches.

  17. Draft environmental impact statement - BPA/Lower Valley transmission project

    International Nuclear Information System (INIS)

    1997-06-01

    Bonneville Power Administration and Lower Valley Power and Light, Inc., propose to solve a voltage stability problem in the Jackson and Afton, Wyoming areas. For the Agency Proposed Action, BPA and Lower Valley would construct a new 115-kV line from BPA's Swan Valley Substation near Swan Valley in Bonneville County, Idaho about 58 km (36 miles) east to BPA's Teton Substation near Jackson in Teton County, Wyoming. The new line would be next to an existing 115-kV line. Most of the line would be supported by a mix of single-circuit wood pole H-frame structures would be used. The Single-Circuit Line Alternative has all the components of the Agency Proposed Action except that the entire line would be supported by single-circuit structures. The Short Line Alternative has all the components of the Single-Circuit Line Alternative except it would then be removed. For the Static Var Compensation Alternative, BPA would install a Static Var Compensator (SVC) at Teton or Jackson Substation. An SVC is a group of electrical equipment placed at a substation to help control voltage on a transmission system. The No Action Alternative assumes that no new transmission line is built, and no other equipment is added to the transmission system. The USFS (Targhee and Bridger-Teton National Forests) must select al alternative based on their needs and objectives, decide if the project complies with currently approved forest plans, decide if special use permits or easements are needed for construction, operation, and maintenance of project facilities, and decide if they would issue special use permits and letters of consent to grant easements for the project

  18. [A clinical trial of neutron capture therapy for brain tumors

    International Nuclear Information System (INIS)

    Zamenhof, R.G.

    1990-01-01

    This document briefly describes recent advances in the author's laboratory. Topics described include neutron beam design, high- resolution autoradiography, boronated phenylalanine (BPA) distribution and survival studies in glioma bearing mice, computer- aided treatment planning, prompt gamma boron 10 analysis facility at MITI-II, non-rodent BPA toxicity studies, and preparations for clinical studies

  19. Bisphenol A (BPA) in China: a review of sources, environmental levels, and potential human health impacts.

    Science.gov (United States)

    Huang, Y Q; Wong, C K C; Zheng, J S; Bouwman, H; Barra, R; Wahlström, B; Neretin, L; Wong, M H

    2012-07-01

    Bisphenol A (BPA), identified as an endocrine disruptor, is an industrially important chemical that is used as a raw material in the manufacture of many products such as engineering plastics (e.g., epoxy resins/polycarbonate plastics), food cans (i.e., lacquer coatings), and dental composites/sealants. The demand and production capacity of BPA in China have grown rapidly. This trend will lead to much more BPA contamination in the environmental media and in the general population in China. This paper reviews the current literature concerning the pollution status of BPA in China (the mainland, Hong Kong, and Taiwan) and its potential impact on human health. Due to potential human health risks from long-term exposure to BPA, body burden of the contaminant should be monitored. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Estrogens in the wrong place at the wrong time: Fetal BPA exposure and mammary cancer.

    Science.gov (United States)

    Paulose, Tessie; Speroni, Lucia; Sonnenschein, Carlos; Soto, Ana M

    2015-07-01

    Iatrogenic gestational exposure to diethylstilbestrol (DES) induced alterations of the genital tract and predisposed individuals to develop clear cell carcinoma of the vagina as well as breast cancer later in life. Gestational exposure of rodents to a related compound, the xenoestrogen bisphenol-A (BPA) increases the propensity to develop mammary cancer during adulthood, long after cessation of exposure. Exposure to BPA during gestation induces morphological alterations in both the stroma and the epithelium of the fetal mammary gland at 18 days of age. We postulate that the primary target of BPA is the fetal stroma, the only mammary tissue expressing estrogen receptors during fetal life. BPA would then alter the reciprocal stroma-epithelial interactions that mediate mammogenesis. In addition to this direct effect on the mammary gland, BPA is postulated to affect the hypothalamus and thus in turn affect the regulation of mammotropic hormones at puberty and beyond. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Prediction and evaluation of route dependent dosimetry of BPA in rats at different life stages using a physiologically based pharmacokinetic model

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaoxia, E-mail: Xiaoxia.Yang@fda.hhs.gov; Doerge, Daniel R.; Fisher, Jeffrey W.

    2013-07-01

    Bisphenol A (BPA) has received considerable attention throughout the last decade due to its widespread use in consumer products. For the first time a physiologically based pharmacokinetic (PBPK) model was developed in neonatal and adult rats to quantitatively evaluate age-dependent pharmacokinetics of BPA and its phase II metabolites. The PBPK model was calibrated in adult rats using studies on BPA metabolism and excretion in the liver and gastrointestinal tract, and pharmacokinetic data with BPA in adult rats. For immature rats the hepatic and gastrointestinal metabolism of BPA was inferred from studies on the maturation of phase II enzymes coupled with serum time course data in pups. The calibrated model predicted the measured serum concentrations of BPA and BPA conjugates after administration of 100 μg/kg of d6-BPA in adult rats (oral gavage and intravenous administration) and postnatal days 3, 10, and 21 pups (oral gavage). The observed age-dependent BPA serum concentrations were partially attributed to the immature metabolic capacity of pups. A comparison of the dosimetry of BPA across immature rats and monkeys suggests that dose adjustments would be necessary to extrapolate toxicity studies from neonatal rats to infant humans. - Highlights: • A PBPK model predicts the kinetics of bisphenol A (BPA) in young and adult rats. • BPA metabolism within enterocytes is required for fitting of oral BPA kinetic data. • BPA dosimetry in young rats is different than adult rats and young monkeys.

  2. Prediction and evaluation of route dependent dosimetry of BPA in rats at different life stages using a physiologically based pharmacokinetic model

    International Nuclear Information System (INIS)

    Yang, Xiaoxia; Doerge, Daniel R.; Fisher, Jeffrey W.

    2013-01-01

    Bisphenol A (BPA) has received considerable attention throughout the last decade due to its widespread use in consumer products. For the first time a physiologically based pharmacokinetic (PBPK) model was developed in neonatal and adult rats to quantitatively evaluate age-dependent pharmacokinetics of BPA and its phase II metabolites. The PBPK model was calibrated in adult rats using studies on BPA metabolism and excretion in the liver and gastrointestinal tract, and pharmacokinetic data with BPA in adult rats. For immature rats the hepatic and gastrointestinal metabolism of BPA was inferred from studies on the maturation of phase II enzymes coupled with serum time course data in pups. The calibrated model predicted the measured serum concentrations of BPA and BPA conjugates after administration of 100 μg/kg of d6-BPA in adult rats (oral gavage and intravenous administration) and postnatal days 3, 10, and 21 pups (oral gavage). The observed age-dependent BPA serum concentrations were partially attributed to the immature metabolic capacity of pups. A comparison of the dosimetry of BPA across immature rats and monkeys suggests that dose adjustments would be necessary to extrapolate toxicity studies from neonatal rats to infant humans. - Highlights: • A PBPK model predicts the kinetics of bisphenol A (BPA) in young and adult rats. • BPA metabolism within enterocytes is required for fitting of oral BPA kinetic data. • BPA dosimetry in young rats is different than adult rats and young monkeys

  3. Clinical Research Strategies for Fructose Metabolism12

    Science.gov (United States)

    Laughlin, Maren R.; Bantle, John P.; Havel, Peter J.; Parks, Elizabeth; Klurfeld, David M.; Teff, Karen; Maruvada, Padma

    2014-01-01

    Fructose and simple sugars are a substantial part of the western diet, and their influence on human health remains controversial. Clinical studies in fructose nutrition have proven very difficult to conduct and interpret. NIH and USDA sponsored a workshop on 13–14 November 2012, “Research Strategies for Fructose Metabolism,” to identify important scientific questions and parameters to be considered while designing clinical studies. Research is needed to ascertain whether there is an obesogenic role for fructose-containing sugars via effects on eating behavior and energy balance and whether there is a dose threshold beyond which these sugars promote progression toward diabetes and liver and cardiovascular disease, especially in susceptible populations. Studies tend to fall into 2 categories, and design criteria for each are described. Mechanistic studies are meant to validate observations made in animals or to elucidate the pathways of fructose metabolism in humans. These highly controlled studies often compare the pure monosaccharides glucose and fructose. Other studies are focused on clinically significant disease outcomes or health behaviors attributable to amounts of fructose-containing sugars typically found in the American diet. These are designed to test hypotheses generated from short-term mechanistic or epidemiologic studies and provide data for health policy. Discussion brought out the opinion that, although many mechanistic questions concerning the metabolism of monosaccharide sugars in humans remain to be addressed experimentally in small highly controlled studies, health outcomes research meant to inform health policy should use large, long-term studies using combinations of sugars found in the typical American diet rather than pure fructose or glucose. PMID:24829471

  4. Perinatal BPA Exposure Induces Hyperglycemia, Oxidative Stress and Decreased Adiponectin Production in Later Life of Male Rat Offspring

    Directory of Open Access Journals (Sweden)

    Shunzhe Song

    2014-04-01

    Full Text Available The main object of the present study was to explore the effect of perinatal bisphenol A (BPA exposure on glucose metabolism in early and later life of male rat offspring, and to establish the potential mechanism of BPA-induced dysglycemia. Pregnant rats were treated with either vehicle or BPA by drinking water at concentrations of 1 and 10 µg/mL BPA from gestation day 6 through the end of lactation. We measured the levels of fasting serum glucose, insulin, adiponectin and parameters of oxidative stress on postnatal day (PND 50 and PND100 in male offspring, and adiponectin mRNA and protein expression in adipose tissue were also examined. Our results showed that perinatal exposure to 1 or 10 µg/mL BPA induced hyperglycemia with insulin resistance on PND100, but only 10 µg/mL BPA exposure had similar effects as early as PND50. In addition, increased oxidative stress and decreased adiponectin production were also observed in BPA exposed male offspring. Our findings indicated that perinatal exposure to BPA resulted in abnormal glucose metabolism in later life of male offspring, with an earlier and more exacerbated effect at higher doses. Down-regulated expression of adiponectin gene and increased oxidative stress induced by BPA may be associated with insulin resistance.

  5. Mechanistic, Mutational, and Structural Evaluation of a Taxus Phenylalanine Aminomutase

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Lei; Wanninayake, Udayanga; Strom, Susan; Geiger, James; Walker, Kevin D. (MSU)

    2014-10-02

    The structure of a phenylalanine aminomutase (TcPAM) from Taxus canadensis has been determined at 2.4 {angstrom} resolution. The active site of the TcPAM contains the signature 4-methylidene-1H-imidazol-5(4H)-one prosthesis, observed in all catalysts of the class I lyase-like family. This catalyst isomerizes (S)-{alpha}-phenylalanine to the (R)-{beta}-isomer by exchange of the NH{sub 2}/H pair. The stereochemistry of the TcPAM reaction product is opposite of the (S)-{beta}-tyrosine made by the mechanistically related tyrosine aminomutase (SgTAM) from Streptomyces globisporus. Since TcPAM and SgTAM share similar tertiary- and quaternary-structures and have several highly conserved aliphatic residues positioned analogously in their active sites for substrate recognition, the divergent product stereochemistries of these catalysts likely cannot be explained by differences in active site architecture. The active site of the TcPAM structure also is in complex with (E)-cinnamate; the latter functions as both a substrate and an intermediate. To account for the distinct (3R)-{beta}-amino acid stereochemistry catalyzed by TcPAM, the cinnamate skeleton must rotate the C{sub 1}-C{sub {alpha}} and C{sub ipso}-C{sub {beta}} bonds 180{sup o} in the active site prior to exchange and rebinding of the NH{sub 2}/H pair to the cinnamate, an event that is not required for the corresponding acrylate intermediate in the SgTAM reaction. Moreover, the aromatic ring of the intermediate makes only one direct hydrophobic interaction with Leu-104. A L104A mutant of TcPAM demonstrated an 1.5-fold increase in k{sub cat} and a decrease in K{sub M} values for sterically demanding 3'-methyl-{alpha}-phenylalanine and styryl-{alpha}-alanine substrates, compared to the kinetic parameters for TcPAM. These parameters did not change significantly for the mutant with 4'-methyl-{alpha}-phenylalanine compared to those for TcPAM.

  6. High fructose diet-induced metabolic syndrome: Pathophysiological mechanism and treatment by traditional Chinese medicine.

    Science.gov (United States)

    Pan, Ying; Kong, Ling-Dong

    2018-04-01

    Fructose is a natural monosaccharide broadly used in modern society. Over the past few decades, epidemiological studies have demonstrated that high fructose intake is an etiological factor of metabolic syndrome (MetS). This review highlights research advances on fructose-induced MetS, especially the underlying pathophysiological mechanism as well as pharmacotherapy by traditional Chinese medicine (TCM), using the PubMed, Web of science, China National Knowledge Infrastructure, China Science and Technology Journal and Wanfang Data. This review focuses on de novo lipogenesis (DNL) and uric acid (UA) production, two unique features of fructolysis different from glucose glycolysis. High level of DNL and UA production can result in insulin resistance, the key pathological event in developing MetS, mostly through oxidative stress and inflammation. Some other pathologies like the disturbance in brain and gut microbiota in the development of fructose-induced MetS in the past years, are also discussed. In management of MetS, TCM is an excellent representative in alternative and complementary medicine with a complete theory system and substantial herbal remedies. TCMs against MetS or MetS components, including Chinese patent medicines, TCM compound formulas, single TCM herbs and active compounds of TCM herbs, are reviewed on their effects and molecular mechanisms. TCMs with hypouricemic activity, which specially target fructose-induced MetS, are highlighted. And new technologies and strategies (such as high-throughput assay and systems biology) in this field are further discussed. In summary, fructose-induced MetS is a multifactorial disorder with the underlying complex mechanisms. Current clinical and pre-clinical evidence supports the potential of TCMs in management of MetS. Additionally, TCMs may show some advantages against complex MetS as their holistic feature through multiple target actions. However, further work is needed to confirm the effectivity and safety of TCMs

  7. Minimally invasive (13)C-breath test to examine phenylalanine metabolism in children with phenylketonuria.

    Science.gov (United States)

    Turki, Abrar; Murthy, Gayathri; Ueda, Keiko; Cheng, Barbara; Giezen, Alette; Stockler-Ipsiroglu, Sylvia; Elango, Rajavel

    2015-01-01

    Phenylketonuria (PKU) is an autosomal recessive disorder caused by deficiency of hepatic phenylalanine hydroxylase (PAH) leading to increased levels of phenylalanine in the plasma. Phenylalanine levels and phenylalanine hydroxylase (PAH) activity monitoring are currently limited to conventional blood dot testing. 1-(13)C-phenylalanine, a stable isotope can be used to examine phenylalanine metabolism, as the conversion of phenylalanine to tyrosine occurs in vivo via PAH and subsequently releases the carboxyl labeled (13)C as (13)CO2 in breath. Our objective was to examine phenylalanine metabolism in children with PKU using a minimally-invasive 1-(13)C-phenylalanine breath test ((13)C-PBT). Nine children (7 M: 2 F, mean age 12.5 ± 2.87 y) with PKU participated in the study twice: once before and once after sapropterin supplementation. Children were provided 6 mg/kg oral dose of 1-(13)C-phenylalanine and breath samples were collected at 20 min intervals for a period of 2h. Rate of CO2 production was measured at 60 min post-oral dose using indirect calorimetry. The percentage of 1-(13)C-phenylalanine exhaled as (13)CO2 was measured over a 2h period. Prior to studying children with PKU, we tested the study protocol in healthy children (n = 6; 4M: 2F, mean age 10.2 ± 2.48 y) as proof of principle. Production of a peak enrichment (Cmax) of (13)CO2 (% of dose) in all healthy children occurred at 20 min ranging from 17-29% of dose, with a subsequent return to ~5% by the end of 2h. Production of (13)CO2 from 1-(13)C-phenylalanine in all children with PKU prior to sapropterin treatment remained low. Following sapropterin supplementation for a week, production of (13)CO2 significantly increased in five children with a subsequent decline in blood phenylalanine levels, suggesting improved PAH activity. Sapropterin treatment was not effective in three children whose (13)CO2 production remained unchanged, and did not show a reduction in blood phenylalanine levels and improvement

  8. Fructose: It’s “Alcohol Without the Buzz”123

    Science.gov (United States)

    Lustig, Robert H.

    2013-01-01

    What do the Atkins Diet and the traditional Japanese diet have in common? The Atkins Diet is low in carbohydrate and usually high in fat; the Japanese diet is high in carbohydrate and usually low in fat. Yet both work to promote weight loss. One commonality of both diets is that they both eliminate the monosaccharide fructose. Sucrose (table sugar) and its synthetic sister high fructose corn syrup consist of 2 molecules, glucose and fructose. Glucose is the molecule that when polymerized forms starch, which has a high glycemic index, generates an insulin response, and is not particularly sweet. Fructose is found in fruit, does not generate an insulin response, and is very sweet. Fructose consumption has increased worldwide, paralleling the obesity and chronic metabolic disease pandemic. Sugar (i.e., fructose-containing mixtures) has been vilified by nutritionists for ages as a source of “empty calories,” no different from any other empty calorie. However, fructose is unlike glucose. In the hypercaloric glycogen-replete state, intermediary metabolites from fructose metabolism overwhelm hepatic mitochondrial capacity, which promotes de novo lipogenesis and leads to hepatic insulin resistance, which drives chronic metabolic disease. Fructose also promotes reactive oxygen species formation, which leads to cellular dysfunction and aging, and promotes changes in the brain’s reward system, which drives excessive consumption. Thus, fructose can exert detrimental health effects beyond its calories and in ways that mimic those of ethanol, its metabolic cousin. Indeed, the only distinction is that because fructose is not metabolized in the central nervous system, it does not exert the acute neuronal depression experienced by those imbibing ethanol. These metabolic and hedonic analogies argue that fructose should be thought of as “alcohol without the buzz.” PMID:23493539

  9. Phenylalanine ammonia-lyase (PAL) gene activity in response to ...

    African Journals Online (AJOL)

    Phenylalanine ammonia-lyase (PAL) catalyzes the biosynthesis of rosmarinic acid (RA), tyrosine and phenylalanine are the precursors of RA, while proline drives metabolite precursors toward Shikimate and phenylpropanoid pathway ending with the production of RA. The aim of this study was to investigate the PAL gene ...

  10. The sweet path to metabolic demise: fructose and lipid synthesis

    Science.gov (United States)

    Herman, Mark A.; Samuel, Varman T.

    2016-01-01

    Epidemiological studies link fructose consumption with metabolic disease, an association attributable in part to fructose mediated lipogenesis. The mechanisms governing fructose-induced lipogenesis and disease remain debated. Acutely, fructose increases de novo lipogenesis through the efficient and uninhibited action of Ketohexokinase and Aldolase B, which yields substrates for fatty-acid synthesis. Chronic fructose consumption further enhances the capacity for hepatic fructose metabolism via activation of several key transcription factors (i.e. SREBP1c and ChREBP), which augment expression of lipogenic enzymes, increasing lipogenesis, further compounding hypertriglyceridemia, and hepatic steatosis. Hepatic insulin resistance develops from diacylglycerol-PKCε mediated impairment of insulin signaling and possibly additional mechanisms. Initiatives that decrease fructose consumption and therapies that block fructose mediated lipogenesis are needed to avert future metabolic pandemics. PMID:27387598

  11. Maternal fructose intake disturbs ovarian estradiol synthesis in rats.

    Science.gov (United States)

    Munetsuna, Eiji; Yamada, Hiroya; Yamazaki, Mirai; Ando, Yoshitaka; Mizuno, Genki; Ota, Takeru; Hattori, Yuji; Sadamoto, Nao; Suzuki, Koji; Ishikawa, Hiroaki; Hashimoto, Shuji; Ohashi, Koji

    2018-06-01

    Recent increases in fructose consumption have raised concerns regarding the potential adverse intergenerational effects, as maternal fructose intake may induce physiological dysfunction in offspring. However, no reports are available regarding the effect of excess maternal fructose on reproductive tissues such as the ovary. Notably, the maternal intrauterine environment has been demonstrated to affect ovarian development in the subsequent generation. Given the fructose is transferred to the fetus, excess fructose consumption may affect offspring ovarian development. As ovarian development and its function is maintained by 17β-estradiol, we therefore investigated whether excess maternal fructose intake influences offspring ovarian estradiol synthesis. Rats received a 20% fructose solution during gestation and lactation. After weaning, offspring ovaries were isolated. Offspring from fructose-fed dams showed reduced StAR and P450(17α) mRNA levels, along with decreased protein expression levels. Conversely, attenuated P450arom protein level was found in the absence of mRNA expression alteration. Consistent with these phenomena, decreased circulating levels of estradiol were observed. Furthermore, estrogen receptor α (ERα) protein levels were also down-regulated. In accordance, the mRNA for progesterone receptor, a transcriptional target of ERα, was decreased. These results suggest that maternal fructose might alter ovarian physiology in the subsequent generation. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Sodium sulfite pH-buffering effect for improved xylose-phenylalanine conversion to N-(1-deoxy-d-xylulos-1-yl)-phenylalanine during an aqueous Maillard reaction.

    Science.gov (United States)

    Cui, Heping; Duhoranimana, Emmanuel; Karangwa, Eric; Jia, Chengsheng; Zhang, Xiaoming

    2018-04-25

    The yield of the Maillard reaction intermediate (MRI), prepared in aqueous medium, is usually unsatisfactory. However, the addition of sodium sulfite could improve the conversion of xylose-phenylalanine (Xyl-Phe) to the MRI (N-(1-deoxy-d-xylulos-1-yl)-phenylalanine) in aqueous medium. Sodium sulfite (Na 2 SO 3 ) showed a significant pH-buffering effect during the Maillard reaction, which accounted for its facilitation of the N-(1-deoxy-d-xylulos-1-yl)-phenylalanine yield. The results revealed that the pH could be maintained at a relatively high level (above 7.0) for an optimized pH-buffering effect when Na 2 SO 3 (4.0%) was added before the reaction of Xyl-Phe. Thus, the conversion of Xyl-Phe to N-(1-deoxy-d-xylulos-1-yl)-phenylalanine increased from 47.23% to 74.86%. Furthermore, the addition moment of Na 2 SO 3 and corresponding solution pH were crucial factors in regulating the pH-buffering effect of Na 2 SO 3 on N-(1-deoxy-d-xylulos-1-yl)-phenylalanine yield. Based on the pH-buffering effect of Na 2 SO 3 and maintaining the optimal pH 7.4 relatively stable, the conversion of Xyl-Phe to N-(1-deoxy-d-xylulos-1-yl)-phenylalanine was successfully improved. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. High-Fructose Corn-Syrup-Sweetened Beverage Intake Increases 5-Hour Breast Milk Fructose Concentrations in Lactating Women

    Directory of Open Access Journals (Sweden)

    Paige K. Berger

    2018-05-01

    Full Text Available This study determined the effects of consuming a high-fructose corn syrup (HFCS-sweetened beverage on breast milk fructose, glucose, and lactose concentrations in lactating women. At six weeks postpartum, lactating mothers (n = 41 were randomized to a crossover study to consume a commercially available HFCS-sweetened beverage or artificially sweetened control beverage. At each session, mothers pumped a complete breast milk expression every hour for six consecutive hours. The baseline fasting concentrations of breast milk fructose, glucose, and lactose were 5.0 ± 1.3 µg/mL, 0.6 ± 0.3 mg/mL, and 6.8 ± 1.6 g/dL, respectively. The changes over time in breast milk sugars were significant only for fructose (treatment × time, p < 0.01. Post hoc comparisons showed the HFCS-sweetened beverage vs. control beverage increased breast milk fructose at 120 min (8.8 ± 2.1 vs. 5.3 ± 1.9 µg/mL, 180 min (9.4 ± 1.9 vs. 5.2 ± 2.2 µg/mL, 240 min (7.8 ± 1.7 vs. 5.1 ± 1.9 µg/mL, and 300 min (6.9 ± 1.4 vs. 4.9 ± 1.9 µg/mL (all p < 0.05. The mean incremental area under the curve for breast milk fructose was also different between treatments (14.7 ± 1.2 vs. −2.60 ± 1.2 µg/mL × 360 min, p < 0.01. There was no treatment × time interaction for breast milk glucose or lactose. Our data suggest that the consumption of an HFCS-sweetened beverage increased breast milk fructose concentrations, which remained elevated up to five hours post-consumption.

  14. Energy and fructose from beverages sweetened with sugar or high-fructose corn syrup pose a health risk for some people.

    Science.gov (United States)

    Bray, George A

    2013-03-01

    Sugar intake in the United States has increased by >40 fold since the American Revolution. The health concerns that have been raised about the amounts of sugar that are in the current diet, primarily as beverages, are the subject of this review. Just less than 50% of the added sugars (sugar and high-fructose corn syrup) are found in soft drinks and fruit drinks. The intake of soft drinks has increased 5-fold between 1950 and 2000. Most meta-analyses have shown that the risk of obesity, diabetes, cardiovascular disease, and metabolic syndrome are related to consumption of beverages sweetened with sugar or high-fructose corn syrup. Calorically sweetened beverage intake has also been related to the risk of nonalcoholic fatty liver disease, and, in men, gout. Calorically sweetened beverages contribute to obesity through their caloric load, and the intake of beverages does not produce a corresponding reduction in the intake of other food, suggesting that beverage calories are "add-on" calories. The increase in plasma triglyceride concentrations by sugar-sweetened beverages can be attributed to fructose rather than glucose in sugar. Several randomized trials of sugar-containing soft drinks versus low-calorie or calorie-free beverages show that either sugar, 50% of which is fructose, or fructose alone increases triglycerides, body weight, visceral adipose tissue, muscle fat, and liver fat. Fructose is metabolized primarily in the liver. When it is taken up by the liver, ATP decreases rapidly as the phosphate is transferred to fructose in a form that makes it easy to convert to lipid precursors. Fructose intake enhances lipogenesis and the production of uric acid. By worsening blood lipids, contributing to obesity, diabetes, fatty liver, and gout, fructose in the amounts currently consumed is hazardous to the health of some people.

  15. An investigation into the fructose block associated with the brewing process

    International Nuclear Information System (INIS)

    Cason, D.T.

    1986-01-01

    The uptake of fructose in Saccharomyces cerevisiae 2036 is via a biphasic transport system, in which the first component is a high affinity, low capacity, dry weight, proton symport which does not transport glucose and is independant of the maltose proton symport. The presence of glucose has no effect on the uptake of fructose via the symport. The stoichiometry of uptake is one proton per molecule of fructose. Maltose and ethanol non-competitively inhibit fructose uptake via the proton symport. The second component is a lower affinity, higher capacity facilitated diffusion system which transports both glucose and fructose. Glucose uptake is monophasic and has the highest affinity, Km = 1.3 mM, of all sugars for this transport system. In the fermentations containing glucose and fructose together, glucose competitively inhibits fructose uptake causing preferential utilization of glucose over fructose. The methods of experimentation then include the use of tritium-labelled glucose and 14 C-labelled fructose. Ethanol non-competitively inhibits glucose uptake of the facilitated diffusion system. A consequence of slower fructose utilization results in residual fructose concentrations remaining at the end of fermentation when sucrose adjuncts are used, hence causing the 'fructose block'. Amelioration of the 'fructose block' is multifaceted. The residual fructose concentrations in wort for the last three days of fermentation are inversely proportional to the pitching rate

  16. Fructose use in clinical nutrition: metabolic effects and potential consequences.

    Science.gov (United States)

    Moulin, Sandra; Seematter, Gérald; Seyssel, Kevin

    2017-07-01

    The current article presents recent findings on the metabolic effects of fructose. Fructose has always been considered as a simple 'caloric' hexose only metabolized by splanchnic tissues. Nevertheless, there is growing evidence that fructose acts as a second messenger and induces effects throughout the human body. Recent discoveries made possible with the evolution of technology have highlighted that fructose induces pleiotropic effects on different tissues. The fact that all these tissues express the specific fructose carrier GLUT5 let us reconsider that fructose is not only a caloric hexose, but could also be a potential actor of some behaviors and metabolic pathways. The physiological relevance of fructose as a metabolic driver is pertinent regarding recent scientific literature.

  17. FRUCTOSE MALABSORPTION IN CHILDREN WITH FUNCTIONAL DIGESTIVE DISORDERS

    Directory of Open Access Journals (Sweden)

    Adriana Chebar LOZINSKY

    2013-09-01

    Full Text Available Context Fructose is a monosaccharide frequently present in natural and artificial juice fruits. When the concentration of fructose in certain food is present in excess of glucose concentration some individuals may develop fructose malabsorption. Objectives To report the frequency of fructose malabsorption utilizing the hydrogen breath test in children with gastrointestinal and/or nutritional disorders. Methods Between July 2011 and July 2012, 43 patients with gastrointestinal and/or nutritional disorders, from both sexes, were consecutively studied, utilizing the hydrogen breath test with loads of the following carbohydrates: lactose, glucose, fructose and lactulose. Fructose was offered in a 10% aqueous solution in the dose of 1 g/kg body weight. Samples were collected fasting and at every 15 minutes after the intake of the aqueous solution for a 2 hour period. Malabsorption was considered when there was an increase of >20 ppm of hydrogen over the fasting level, and intolerance was diagnosed if gastrointestinal symptoms would appear. Results The age of the patients varied from 3 months to 16 years, 24 were boys. The following diagnosis were established: irritable bowel syndrome with diarrhea in 16, functional abdominal pain in 8, short stature in 10, lactose intolerance in 3, celiac disease in 1, food allergy in 1 and giardiasis in 1 patient. Fructose malabsorption was characterized in 13 (30.2% patients, and intolerance in 1 (2.3% patient. The most frequent fructose malabsorption was characterized in 7 (16.3% patients with irritable bowel syndrome and in 4 (9.3% patients with functional abdominal pain. Conclusions Patients with irritable bowel syndrome and functional abdominal pain were the main cause of fructose malabsorption.

  18. Exposure to BPA in Children—Media-Based and Biomonitoring-Based Approaches

    Directory of Open Access Journals (Sweden)

    Krista L.Y. Christensen

    2014-04-01

    Full Text Available Bisphenol A (BPA is used in numerous industrial and consumer product applications resulting in ubiquitous exposure. Children’s exposure is of particular concern because of evidence of developmental effects. Childhood exposure is estimated for different age groups in two ways. The “forward” approach uses information on BPA concentrations in food and other environmental media (air, water, etc. combined with average contact rates for each medium. The “backward” approach relies on urinary biomonitoring, extrapolating backward to the intake which would have led to the observed biomarker level. The forward analysis shows that BPA intakes are dominated by canned food consumption, and that intakes are higher for younger ages. Mean intake estimates ranged from ~125 ng/kg-day for 1 year-olds to ~73 ng/kg-day among 16–20 years olds. Biomonitoring-based intakes show the same trend of lower intakes for older children, with an estimate of 121 (median to 153 (mean ng/kg-day for 2–6 years, compared with 33 (median to 53–66 (mean ng/kg-day for 16–20 years. Infant intakes were estimated to range from ~46 to 137 ng/kg-day. Recognizing uncertainties and limitations, this analysis suggests that the “forward” and “backward” methods provide comparable results and identify canned foods as a potentially important source of BPA exposure for children.

  19. Lysine 356 is a critical residue for binding the C-6 phospho group of fructose 2,6-bisphosphate to the fructose-2,6-bisphosphatase domain of rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase.

    Science.gov (United States)

    Li, L; Lin, K; Correia, J J; Pilkis, S J

    1992-08-15

    Lysine 356 has been implicated by protein modification studies as a fructose-2,6-bisphosphate binding site residue in the 6-phosphofructo-2-kinase domain of rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (Kitajima, S., Thomas, H., and Uyeda, K. (1985) J. Biol. Chem. 260, 13995-14002). However, Lys-356 is found in the fructose-2,6-bisphosphatase domain (Bazan, F., Fletterick, R., and Pilkis, S. J. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 9642-9646). In order to ascertain whether Lys-356 is involved in fructose-2,6-bisphosphatase catalysis and/or domain/domain interactions of the bifunctional enzyme, Lys-356 was mutated to Ala, expressed in Escherichia coli, and then purified to homogeneity. Circular dichroism experiments indicated that the secondary structure of the Lys-356-Ala mutant was not significantly different from that of the wild-type enzyme. The Km for fructose 2,6-bisphosphate and the Ki for the noncompetitive inhibitor, fructose 6-phosphate, for the fructose-2,6-bisphosphatase of the Lys-356-Ala mutant were 2700- and 2200-fold higher, respectively, than those of the wild-type enzyme. However, the maximal velocity and the Ki for the competitive product inhibitor, inorganic phosphate, were unchanged compared to the corresponding values of the wild-type enzyme. Furthermore, in contrast to the wild-type enzyme, which exhibits substrate inhibition, there was no inhibition by substrate of the Lys-356-Ala mutant. In the presence of saturating substrate, inorganic phosphate, which acts by relieving fructose-6-phosphate and substrate inhibition, is an activator of the bisphosphatase. The Ka for inorganic phosphate of the Lys-356-Ala mutant was 1300-fold higher than that of the wild-type enzyme. The kinetic properties of the 6-phosphofructo-2-kinase of the Lys-356-Ala mutant were essentially identical with that of the wild-type enzyme. The results demonstrate that: 1) Lys-356 is a critical residue in fructose-2,6-bisphosphatase for binding the 6

  20. The effect of streptozotocin-induced diabetes on phenylalanine hydroxylase expression in rat liver.

    OpenAIRE

    Taylor, D S; Dahl, H H; Mercer, J F; Green, A K; Fisher, M J

    1989-01-01

    The impact of experimentally induced diabetes on the expression of rat liver phenylalanine hydroxylase has been investigated. A significant elevation in maximal enzymic activity was observed in diabetes. This was associated with significant increases in the amount of enzyme, the phenylalanine hydroxylase-specific translational activity of hepatic RNA and the abundance of phenylalanine hydroxylase-specific mRNA. These changes in phenylalanine hydroxylase expression were not observed when diabe...

  1. Effects of impurities on crystal growth in fructose crystallization

    Science.gov (United States)

    Chu, Y. D.; Shiau, L. D.; Berglund, K. A.

    1989-10-01

    The influence of impurities on the crystallization of anhydrous fructose from aqueous solution was studied. The growth kinetics of fructose crystals in the fructose-water-glucose and fructose-water-difructose dianhydrides systems were investigated using photomicroscopic contact nucleation techniques. Glucose is the major impurity likely to be present in fructose syrup formed during corn wet milling, while several difructose dianhydrides are formed in situ under crystallization conditions and have been proposed as a cause in the decrease of overall yields. Both sets of impurities were found to cause inhibition of crystal growth, but the mechanisms responsible in each case are different. It was found that the presence of glucose increases the solubility of fructose in water and thus lowers the supersaturation of the solution. This is probably the main effect responsible for the decrease of crystal growth. Since the molecular structures of difructose dianhydrides are similar to that of fructose, they are probably "tailor-made" impurities. The decrease of crystal growth is probably caused by the incorporation of these impurities into or adsorption to the crystal surface which would accept fructose molecules in the orientation that existed in the difructose dianhydride.

  2. PKU: high plasma phenylalanine concentrations are associated with increased prevalence of mood swings.

    Science.gov (United States)

    Anjema, Karen; van Rijn, Margreet; Verkerk, Paul H; Burgerhof, Johannes G M; Heiner-Fokkema, M Rebecca; van Spronsen, Francjan J

    2011-11-01

    In phenylketonuria, knowledge about the relation between behavior and plasma phenylalanine is scarce. The aim of this study was to determine whether high phenylalanine is associated with disturbed behavior noticed by the patient and or close environment (parents or partners). 48 early treated PKU patients (median age 8.5, range 0-35 years) participated (median phenylalanine concentration in total sample 277 (range 89-1171) μmol/l; and in patients introvert or extravert behavior. The interviewer as well as the respondents were blinded with regard to the phenylalanine concentration. Patients reported less deviant behavior compared to close environment. Mood swings were positively associated with phenylalanine concentrations in the total group (P=0.039) and patients introvert and extravert behavior were not statistically significant. there is a positive association between phenylalanine concentrations and mood swings. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Physiological handling of dietary fructose-containing sugars: implications for health.

    Science.gov (United States)

    Campos, V C; Tappy, L

    2016-03-01

    Fructose has always been present in our diet, but its consumption has increased markedly over the past 200 years. This is mainly due to consumption of sucrose or high-fructose corn syrup in industrial foods and beverages. Unlike glucose, fructose cannot be directly used as an energy source by all cells of the human body and needs first to be converted into glucose, lactate or fatty acids in the liver, intestine and kidney. Because of this specific two-step metabolism, some energy is consumed in splanchnic organs to convert fructose into other substrates, resulting in a lower net energy efficiency of fructose compared with glucose. A high intake of fructose-containing sugars is associated with body weight gain in large cohort studies, and fructose can certainly contribute to energy imbalance leading to obesity. Whether fructose-containing foods promote obesity more than other energy-dense foods remains controversial, however. A short-term (days-weeks) high-fructose intake is not associated with an increased fasting glycemia nor to an impaired insulin-mediated glucose transport in healthy subjects. It, however, increases hepatic glucose production, basal and postprandial blood triglyceride concentrations and intrahepatic fat content. Whether these metabolic alterations are early markers of metabolic dysfunction or merely adaptations to the specific two-step fructose metabolism remain unknown.

  4. Electroenzymatic oxidation of bisphenol A (BPA) based on the hemoglobin (Hb) film in a membraneless electrochemical reactor

    International Nuclear Information System (INIS)

    Tang Tiantian; Hou Juying; Ai Shiyun; Qiu Yanyan; Ma Qiang; Han Ruixia

    2010-01-01

    This paper presents a novel electroenzymatic method for the treatment of bisphenol A (BPA) in a membraneless electrochemical reactor. The electrochemical reactor was arranged with a stainless steel and an enzymatic film as anode and cathode, respectively. The enzymatic film was formed by immobilizing hemoglobin (Hb) on carbon fiber. In the membraneless electrochemical reactor, hydrogen peroxide (H 2 O 2 ) was generated in situ in cathode and BPA was oxidated and removed by the combining Hb with H 2 O 2 . The experimental conditions for electrogeneration of H 2 O 2 and electroremoval of BPA were optimized. Experimental results showed that in supplied voltage 2.4 V, pH 5.0 and oxygen flow rate 25 mL/min, the electrogeneration of H 2 O 2 and the electroenzymatic removal of BPA were highest. Under optimal operation conditions, the removal efficiency of BPA reached 50.7% in 120 min and then kept constant when further prolonging the period of reaction. Compared with electrochemical and biochemical methods, the removal of BPA through electroenzymatic method was comparatively favorable.

  5. Four cases of facial melanoma treated by BNCT with 10B-p-boronophenylalanine

    International Nuclear Information System (INIS)

    Fukuda, H.; Mishima, Y.; Hiratsuka, J.; Kobayashi, T.; Karashima, H.; Yoshino, K.; Tsuru, K.; Araki, K.; Ichihashi, M.

    2000-01-01

    We treated four cases of facial melanoma by BNCT with 10 B-paraboronophenylalanine · fructose complex (BPA). The patients received 180 to 200 mg BPA/kg-BW intravenously for 3 to 5 hours. One to two hours after the end of BPA administration, they were irradiated with a thermal neutron beam at the Kyoto University Reactor (KUR). The local control of the tumors was good and complete regression was achieved in all cases. The acute and subacute skin reactions ranged from dry desquamation to erosion and were within tolerable limits. After 2 to 3 months, the skin recovered from damage with slight pigmentation or depigmentation and without serious functional or cosmetic problems. Our results indicate BNCT of facial melanoma is promising not only for tumor cure but also for good QOL of the patients, although surgery is the standard and first choice for the treatment of malignant melanoma. (author)

  6. Lipocalin-2 in Fructose-Induced Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Jessica Lambertz

    2017-11-01

    Full Text Available The intake of excess dietary fructose most often leads to non-alcoholic fatty liver disease (NAFLD. Fructose is metabolized mainly in the liver and its chronic consumption results in lipogenic gene expression in this organ. However, precisely how fructose is involved in NAFLD progression is still not fully understood, limiting therapy. Lipocalin-2 (LCN2 is a small secreted transport protein that binds to fatty acids, phospholipids, steroids, retinol, and pheromones. LCN2 regulates lipid and energy metabolism in obesity and is upregulated in response to insulin. We previously discovered that LCN2 has a hepatoprotective effect during hepatic insult, and that its upregulation is a marker of liver damage and inflammation. To investigate if LCN2 has impact on the metabolism of fructose and thereby arising liver damage, we fed wild type and Lcn2−/− mice for 4 or 8 weeks on diets that were enriched in fructose either by adding this sugar to the drinking water (30% w/v, or by feeding a chow containing 60% (w/w fructose. Body weight and daily intake of food and water of these mice was then measured. Fat content in liver sections was visualized using Oil Red O stain, and expression levels of genes involved in fat and sugar metabolism were measured by qRT-PCR and Western blot analysis. We found that fructose-induced steatosis and liver damage was more prominent in female than in male mice, but that the most severe hepatic damage occurred in female mice lacking LCN2. Unexpectedly, consumption of elevated fructose did not induce de novo lipogenesis or fat accumulation. We conclude that LCN2 acts in a lipid-independent manner to protect the liver against fructose-induced damage.

  7. Fructose diet alleviates acetaminophen-induced hepatotoxicity in mice.

    Science.gov (United States)

    Cho, Sungjoon; Tripathi, Ashutosh; Chlipala, George; Green, Stefan; Lee, Hyunwoo; Chang, Eugene B; Jeong, Hyunyoung

    2017-01-01

    Acetaminophen (APAP) is a commonly used analgesic and antipyretic that can cause hepatotoxicity due to production of toxic metabolites via cytochrome P450 (Cyp) 1a2 and Cyp2e1. Previous studies have shown conflicting effects of fructose (the major component in Western diet) on the susceptibility to APAP-induced hepatotoxicity. To evaluate the role of fructose-supplemented diet in modulating the extent of APAP-induced liver injury, male C57BL/6J mice were given 30% (w/v) fructose in water (or regular water) for 8 weeks, followed by oral administration of APAP. APAP-induced liver injury (determined by serum levels of liver enzymes) was decreased by two-fold in mice pretreated with fructose. Fructose-treated mice exhibited (~1.5 fold) higher basal glutathione levels and (~2 fold) lower basal (mRNA and activity) levels of Cyp1a2 and Cyp2e1, suggesting decreased bioactivation of APAP and increased detoxification of toxic metabolite in fructose-fed mice. Hepatic mRNA expression of heat shock protein 70 was also found increased in fructose-fed mice. Analysis of bacterial 16S rRNA gene amplicons from the cecal samples of vehicle groups showed that the fructose diet altered gut bacterial community, leading to increased α-diversity. The abundance of several bacterial taxa including the genus Anaerostipes was found to be significantly correlated with the levels of hepatic Cyp2e1, Cyp1a2 mRNA, and glutathione. Together, these results suggest that the fructose-supplemented diet decreases APAP-induced liver injury in mice, in part by reducing metabolic activation of APAP and inducing detoxification of toxic metabolites, potentially through altered composition of gut microbiota.

  8. Fructose diet alleviates acetaminophen-induced hepatotoxicity in mice.

    Directory of Open Access Journals (Sweden)

    Sungjoon Cho

    Full Text Available Acetaminophen (APAP is a commonly used analgesic and antipyretic that can cause hepatotoxicity due to production of toxic metabolites via cytochrome P450 (Cyp 1a2 and Cyp2e1. Previous studies have shown conflicting effects of fructose (the major component in Western diet on the susceptibility to APAP-induced hepatotoxicity. To evaluate the role of fructose-supplemented diet in modulating the extent of APAP-induced liver injury, male C57BL/6J mice were given 30% (w/v fructose in water (or regular water for 8 weeks, followed by oral administration of APAP. APAP-induced liver injury (determined by serum levels of liver enzymes was decreased by two-fold in mice pretreated with fructose. Fructose-treated mice exhibited (~1.5 fold higher basal glutathione levels and (~2 fold lower basal (mRNA and activity levels of Cyp1a2 and Cyp2e1, suggesting decreased bioactivation of APAP and increased detoxification of toxic metabolite in fructose-fed mice. Hepatic mRNA expression of heat shock protein 70 was also found increased in fructose-fed mice. Analysis of bacterial 16S rRNA gene amplicons from the cecal samples of vehicle groups showed that the fructose diet altered gut bacterial community, leading to increased α-diversity. The abundance of several bacterial taxa including the genus Anaerostipes was found to be significantly correlated with the levels of hepatic Cyp2e1, Cyp1a2 mRNA, and glutathione. Together, these results suggest that the fructose-supplemented diet decreases APAP-induced liver injury in mice, in part by reducing metabolic activation of APAP and inducing detoxification of toxic metabolites, potentially through altered composition of gut microbiota.

  9. Developmental programming: Prenatal BPA treatment disrupts timing of LH surge and ovarian follicular wave dynamics in adult sheep

    Science.gov (United States)

    Veiga-Lopez, A; Beckett, EM; Abi Salloum, B; Ye, W; Padmanabhan, V

    2014-01-01

    Developmental exposure to BPA adversely affects reproductive function. In sheep, prenatal BPA treatment induces reproductive neuroendocrine defects, manifested as LH excess and dampened LH surge and perturbs early ovarian gene expression. In this study we hypothesized that prenatal BPA treatment will also disrupt ovarian follicular dynamics. Pregnant sheep were treated from days 30 to 90 of gestation with 3 different BPA doses (0.05, 0.5, or 5 mg/kg BW/day). All female offspring were estrus synchronized and transrectal ultrasonography was performed daily for 22 days to monitor ovarian follicular and corpora lutea dynamics. Blood samples were collected to assess hormonal preovulatory changes and luteal progesterone dynamics. Statistical analysis revealed that the time interval between the estradiol rise and the preovulatory LH surge was shortened in the BPA-treated females. None of the three BPA doses had an effect on corpora lutea, progestogenic cycles, and mean or duration of ovulatory and non-ovulatory follicles. However, differences in follicular count trajectories were evident in all three follicular size classes (2–3 mm, 4–5 mm, and ≥ 6 mm) of prenatal BPA-treated animals compared to controls. Number of follicular waves tended also to be more variable in the prenatal BPA-treated groups ranging from 2 to 5 follicular waves per cycle, while this was restricted to 3 to 4 waves in control females. These changes in ovarian follicular dynamics coupled with defects in time interval between estradiol rise and preovulatory LH release are likely to lead to subfertility in prenatal BPA-treated females. PMID:24923655

  10. Activation of Kupffer Cells Is Associated with a Specific Dysbiosis Induced by Fructose or High Fat Diet in Mice.

    Directory of Open Access Journals (Sweden)

    Gladys Ferrere

    Full Text Available The increase consumption of fructose in diet is associated with liver inflammation. As a specific fructan substrate, fructose may modify the gut microbiota which is involved in obesity-induced liver disease. Here, we aimed to assess whether fructose-induced liver damage was associated with a specific dysbiosis, especially in mice fed a high fat diet (HFD. To this end, four groups of mice were fed with normal and HFD added or not with fructose. Body weight and glucose sensitivity, liver inflammation, dysbiosis and the phenotype of Kupffer cells were determined after 16 weeks of diet. Food intake was increased in the two groups of mice fed with the HFD. Mice fed with HFD and fructose showed a higher infiltration of lymphocytes into the liver and a lower inflammatory profile of Kupffer cells than mice fed with the HFD without fructose. The dysbiosis associated with diets showed that fructose specifically prevented the decrease of Mouse intestinal bacteria in HFD fed mice and increased Erysipelotrichi in mice fed with fructose, independently of the amount of fat. In conclusion, fructose, used as a sweetener, induced a dysbiosis which is different in presence of fat in the diet. Consequently, the activation of Kupffer cells involved in mice model of HFD-induced liver inflammation was not observed in an HFD/fructose combined diet. These data highlight that the complexity of diet composition could highly impact the development of liver lesions during obesity. Specific dysbiosis associated with the diet could explain that the progressions of liver damage are different.

  11. Crystal structure of β-d,l-fructose

    Directory of Open Access Journals (Sweden)

    Tomohiko Ishii

    2015-10-01

    Full Text Available The title compound, C6H12O6, was crystallized from an aqueous solution of equimolar mixture of d- and l-fructose (1,3,4,5,6-pentahydroxyhexan-2-one, arabino-hexulose or levulose, and it was confirmed that d-fructose (or l-fructose formed β-pyranose with a 2C5 (or 5C2 conformation. In the crystal, two O—H...O hydrogen bonds between the hydroxy groups at the C-1 and C-3 positions, and at the C-4 and C-5 positions connect homochiral molecules into a column along the a axis. The columns are linked by other O—H...O hydrogen bonds between d- and l-fructose molecules, forming a three-dimensional network.

  12. BPA Prepares for the 21st Century.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1998-04-01

    This is a brief review of the state of the Bonneville Power Administration. It reviews BPA`s competitive status, fish and wildlife funding, cost structure of the federal system, subscription sales of electricity, emergency cost recovery, cost reduction measures, transmission access and operation, and the 1998 power rate case decision making process.

  13. Radical-induced dephosphorylation of fructose phosphates in aqueous solution

    International Nuclear Information System (INIS)

    Zegota, H.; Sonntag, C. von

    1981-01-01

    Oxygen free N 2 O-saturated aqueous solutions of D-fructose-1-phosphate and D-fructose-6-phosphate were γ-irradiated. Inorganic phosphate and phosphate free sugars (containing four to six carbon atoms) were identified and their G-values measured. D-Fructose-1-phosphate yields (G-values in parentheses) inorganic phosphate (1.6), hexos-2-ulose (0.12), 6-deoxy-2,5-hexodiulose (0.16), tetrulose (0.05) and 3-deoxytetrulose (0.15). D-Fructose-6-phosphate yields inorganic phosphate (1.7), hexos-5-ulose (0.1), 6-deoxy-2,5-hexodiulose (0.36), 3-deoxy-2,5-hexodiulose and 2-deoxyhexos-5-ulose (together 0.18). On treatment with alkaline phosphatase further deoxy sugars were recognized and in fructose-1-phosphate G(6-deoxy-2,5-hexodiulose) was increased to a G-value of 0.4. Dephosphorylation is considered to occur mainly after OH attack at C-5 and C-1 in fructose-1-phosphate and at C-5 and C-6 in fructose-6-phosphate. Reaction mechanisms are discussed. (orig.)

  14. The Impact of Fructose on Renal Function and Blood Pressure

    Directory of Open Access Journals (Sweden)

    Marek Kretowicz

    2011-01-01

    Full Text Available Fructose is a sugar present in sucrose, high-fructose corn syrup, honey, and fruits. Fructose intake has increased markedly in the last two centuries, primarily due to increased intake of added sugars. Increasing evidence suggests that the excessive intake of fructose may induce fatty liver, insulin resistance, dyslipidemia, hypertension, and kidney disease. These studies suggest that excessive intake of fructose might have an etiologic role in the epidemic of obesity, diabetes, and cardiorenal disease.

  15. Sucrose, high-fructose corn syrup, and fructose, their metabolism and potential health effects: what do we really know?

    Science.gov (United States)

    Rippe, James M; Angelopoulos, Theodore J

    2013-03-01

    Both controversy and confusion exist concerning fructose, sucrose, and high-fructose corn syrup (HFCS) with respect to their metabolism and health effects. These concerns have often been fueled by speculation based on limited data or animal studies. In retrospect, recent controversies arose when a scientific commentary was published suggesting a possible unique link between HFCS consumption and obesity. Since then, a broad scientific consensus has emerged that there are no metabolic or endocrine response differences between HFCS and sucrose related to obesity or any other adverse health outcome. This equivalence is not surprising given that both of these sugars contain approximately equal amounts of fructose and glucose, contain the same number of calories, possess the same level of sweetness, and are absorbed identically through the gastrointestinal tract. Research comparing pure fructose with pure glucose, although interesting from a scientific point of view, has limited application to human nutrition given that neither is consumed to an appreciable degree in isolation in the human diet. Whether there is a link between fructose, HFCS, or sucrose and increased risk of heart disease, metabolic syndrome, or fatty infiltration of the liver or muscle remains in dispute with different studies using different methodologies arriving at different conclusions. Further randomized clinical trials are needed to resolve many of these issues. The purpose of this review is to summarize current knowledge about the metabolism, endocrine responses, and potential health effects of sucrose, HFCS, and fructose.

  16. Fructose Consumption, Lipogenesis, and Non-Alcoholic Fatty Liver Disease

    NARCIS (Netherlands)

    ter Horst, Kasper W.; Serlie, Mireille J.

    2017-01-01

    Increased fructose consumption has been suggested to contribute to non-alcoholic fatty liver disease (NAFLD), dyslipidemia, and insulin resistance, but a causal role of fructose in these metabolic diseases remains debated. Mechanistically, hepatic fructose metabolism yields precursors that can be

  17. Simvastatin-induced cardiac autonomic control improvement in fructose-fed female rats

    Directory of Open Access Journals (Sweden)

    Renata Juliana da Silva

    2011-01-01

    Full Text Available OBJECTIVE: Because autonomic dysfunction has been found to lead to cardiometabolic disorders and because studies have reported that simvastatin treatment has neuroprotective effects, the objective of the present study was to investigate the effects of simvastatin treatment on cardiovascular and autonomic changes in fructose-fed female rats. METHODS: Female Wistar rats were divided into three groups: controls (n=8, fructose (n=8, and fructose+ simvastatin (n=8. Fructose overload was induced by supplementing the drinking water with fructose (100 mg/L, 18 wks. Simvastatin treatment (5 mg/kg/day for 2 wks was performed by gavage. The arterial pressure was recorded using a data acquisition system. Autonomic control was evaluated by pharmacological blockade. RESULTS: Fructose overload induced an increase in the fasting blood glucose and triglyceride levels and insulin resistance. The constant rate of glucose disappearance during the insulin intolerance test was reduced in the fructose group (3.4+ 0.32%/min relative to that in the control group (4.4+ 0.29%/min. Fructose+simvastatin rats exhibited increased insulin sensitivity (5.4+0.66%/min. The fructose and fructose+simvastatin groups demonstrated an increase in the mean arterial pressure compared with controls rats (fructose: 124+2 mmHg and fructose+simvastatin: 126 + 3 mmHg vs. controls: 112 + 2 mmHg. The sympathetic effect was enhanced in the fructose group (73 + 7 bpm compared with that in the control (48 + 7 bpm and fructose+simvastatin groups (31+8 bpm. The vagal effect was increased in fructose+simvastatin animals (84 + 7 bpm compared with that in control (49 + 9 bpm and fructose animals (46+5 bpm. CONCLUSION: Simvastatin treatment improved insulin sensitivity and cardiac autonomic control in an experimental model of metabolic syndrome in female rats. These effects were independent of the improvements in the classical plasma lipid profile and of reductions in arterial pressure. These results

  18. Electroenzymatic oxidation of bisphenol A (BPA) based on the hemoglobin (Hb) film in a membraneless electrochemical reactor.

    Science.gov (United States)

    Tang, Tiantian; Hou, Juying; Ai, Shiyun; Qiu, Yanyan; Ma, Qiang; Han, Ruixia

    2010-09-15

    This paper presents a novel electroenzymatic method for the treatment of bisphenol A (BPA) in a membraneless electrochemical reactor. The electrochemical reactor was arranged with a stainless steel and an enzymatic film as anode and cathode, respectively. The enzymatic film was formed by immobilizing hemoglobin (Hb) on carbon fiber. In the membraneless electrochemical reactor, hydrogen peroxide (H(2)O(2)) was generated in situ in cathode and BPA was oxidated and removed by the combining Hb with H(2)O(2). The experimental conditions for electrogeneration of H(2)O(2) and electroremoval of BPA were optimized. Experimental results showed that in supplied voltage 2.4 V, pH 5.0 and oxygen flow rate 25 mL/min, the electrogeneration of H(2)O(2) and the electroenzymatic removal of BPA were highest. Under optimal operation conditions, the removal efficiency of BPA reached 50.7% in 120 min and then kept constant when further prolonging the period of reaction. Compared with electrochemical and biochemical methods, the removal of BPA through electroenzymatic method was comparatively favorable. Copyright 2010 Elsevier B.V. All rights reserved.

  19. Determination of Phenylalanine and Tyrosine by High Performance Liquid Chromatography-Tandem Mass Spectrometry.

    Science.gov (United States)

    Peat, Judy; Garg, Uttam

    2016-01-01

    Hyperphenylalaninemia/phenylketonuria (PKU) is one of the most common inborn errors of amino acid metabolism affecting about 1:15,000 infants in the United States. PKU is an autosomal recessive disorder that if untreated results in mental retardation. The most common cause of PKU is deficiency of the enzyme phenylalanine hydroxylase that converts phenylalanine to tyrosine. Tyrosine deficiency results in impaired synthesis of catecholamines and thyroxine. Less commonly, it can result from defects in the synthesis or regeneration of tetrahydrobiopterin (BH4), an essential cofactor for the enzyme phenylalanine hydroxylase. Increased phenylalanine and decreased tyrosine in blood are used in the diagnosis and follow-up of patients with PKU. LC/MS/MS method is described for the quantification of phenylalanine and tyrosine.

  20. Phenylalanine metabolism in isolated rat liver cells. Effects of glucagon and diabetes.

    OpenAIRE

    Carr, F P; Pogson, C I

    1981-01-01

    1. Methods are described for monitoring the metabolic flux through phenylalanine hydroxylase, the tyrosine catabolic pathway and phenylalanine: pyruvate transaminase in isolated liver cell incubations. 2. The relationship between hydroxylase flux and phenylalanine concentration is sigmoidal. 3. Glucagon increases hydroxylase activity at low, near-physiological, substrate concentrations only. The hormone does not affect the rate of formation of phenylpyruvate. 4. Experimental diabetes (for 10 ...

  1. Dietary fructose and glucose differentially affect lipid and glucose homeostasis.

    Science.gov (United States)

    Schaefer, Ernst J; Gleason, Joi A; Dansinger, Michael L

    2009-06-01

    Absorbed glucose and fructose differ in that glucose largely escapes first-pass removal by the liver, whereas fructose does not, resulting in different metabolic effects of these 2 monosaccharides. In short-term controlled feeding studies, dietary fructose significantly increases postprandial triglyceride (TG) levels and has little effect on serum glucose concentrations, whereas dietary glucose has the opposite effects. When dietary glucose and fructose have been directly compared at approximately 20-25% of energy over a 4- to 6-wk period, dietary fructose caused significant increases in fasting TG and LDL cholesterol concentrations, whereas dietary glucose did not, but dietary glucose did increase serum glucose and insulin concentrations in the postprandial state whereas dietary fructose did not. When fructose at 30-60 g ( approximately 4-12% of energy) was added to the diet in the free-living state, there were no significant effects on lipid or glucose biomarkers. Sucrose and high-fructose corn syrup (HFCS) contain approximately equal amounts of fructose and glucose and no metabolic differences between them have been noted. Controlled feeding studies at more physiologic dietary intakes of fructose and glucose need to be conducted. In our view, to decrease the current high prevalence of obesity, dyslipidemia, insulin resistance, and diabetes, the focus should be on restricting the intake of excess energy, sucrose, HFCS, and animal and trans fats and increasing exercise and the intake of vegetables, vegetable oils, fish, fruit, whole grains, and fiber.

  2. Inborn Errors of Fructose Metabolism. What Can We Learn from Them?

    Directory of Open Access Journals (Sweden)

    Christel Tran

    2017-04-01

    Full Text Available Fructose is one of the main sweetening agents in the human diet and its ingestion is increasing globally. Dietary sugar has particular effects on those whose capacity to metabolize fructose is limited. If intolerance to carbohydrates is a frequent finding in children, inborn errors of carbohydrate metabolism are rare conditions. Three inborn errors are known in the pathway of fructose metabolism; (1 essential or benign fructosuria due to fructokinase deficiency; (2 hereditary fructose intolerance; and (3 fructose-1,6-bisphosphatase deficiency. In this review the focus is set on the description of the clinical symptoms and biochemical anomalies in the three inborn errors of metabolism. The potential toxic effects of fructose in healthy humans also are discussed. Studies conducted in patients with inborn errors of fructose metabolism helped to understand fructose metabolism and its potential toxicity in healthy human. Influence of fructose on the glycolytic pathway and on purine catabolism is the cause of hypoglycemia, lactic acidosis and hyperuricemia. The discovery that fructose-mediated generation of uric acid may have a causal role in diabetes and obesity provided new understandings into pathogenesis for these frequent diseases.

  3. Positron emission tomography and [{sup 18}F]BPA: A perspective application to assess tumour extraction of boron in BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Menichetti, L. [Department of PET and Radiopharmaceutical Chemistry, C.N.R. Institute of Clinical Physiology, Pisa (Italy)], E-mail: luca.menichetti@ifc.cnr.it; Cionini, L. [Unit of Radiotherapy, AOUP-University Hospital, Pisa (Italy); Sauerwein, W.A. [Department of Radiation Oncology, University Duisburg-Essen, University Hospital Essen (Germany); Altieri, S. [University of Pavia, Department of Nuclear Physics, Pavia (Italy); Solin, O.; Minn, H. [Turku PET Centre, University of Turku (Finland); Salvadori, P.A. [Department of PET and Radiopharmaceutical Chemistry, C.N.R. Institute of Clinical Physiology, Pisa (Italy)

    2009-07-15

    Positron emission tomography (PET) has become a key imaging tool in clinical practice and biomedical research to quantify and study biochemical processes in vivo. Physiologically active compounds are tagged with positron emitters (e.g. {sup 18}F, {sup 11}C, {sup 124}I) while maintaining their biological properties, and are administered intravenously in tracer amounts (10{sup -9}-10{sup -12} M quantities). The recent physical integration of PET and computed tomography (CT) in hybrid PET/CT scanners allows a combined anatomical and functional imaging: nowadays PET molecular imaging is emerging as powerful pharmacological tool in oncology, neurology and for treatment planning as guidance for radiation therapy. The in vivo pharmacokinetics of boron carrier for BNCT and the quantification of {sup 10}B in living tissue were performed by PET in the late nineties using compartmental models based on PET data. Nowadays PET and PET/CT have been used to address the issue of pharmacokinetic, metabolism and accumulation of BPA in target tissue. The added value of the use of L-[{sup 18}F]FBPA and PET/CT in BNCT is to provide key data on the tumour extraction of {sup 10}B-BPA versus normal tissue and to predict the efficacy of the treatment based on a single-study patient analysis. Due to the complexity of a binary treatment like BNCT, the role of PET/CT is currently to design new criteria for patient enrolment in treatment protocols: the L-[{sup 18}F]BPA/PET methodology could be considered as an important tool in newly designed clinical trials to better estimate the concentration ratio of BPA in the tumour as compared to neighbouring normal tissues. Based on these values for individual patients the decision could be made whether BNCT treatment could be advantageous due to a selective accumulation of BPA in an individual tumour. This approach, applicable in different tumour entities like melanoma, glioblastoma and head and neck malignancies, make this methodology as reliable

  4. BPA/Puget Power Northwest Washington Transmission Project. Supplemental Draft Environmental Impact Statement

    International Nuclear Information System (INIS)

    1995-04-01

    Bonneville Power Administration and Puget Sound Power ampersand Light Company propose to upgrade the existing high-voltage transmission system in the Whatcom and Skagit County area between the towns of Custer and Sedro Woolley, including within the City of Bellingham, starting in 1995. The upgrades of the interconnected 230-kV and 115-kV systems are needed to increase the import capacity on a nearby U.S.-Canada 500-kV intertie by about 850 megawatts (MW). BPA and Puget Power would share the increase in north-south transfer capability. An existing BPA 230-kV single-circuit, wood-pole H-frame transmission line would be upgraded to a 230-kV lattice-steel double-circuit line. A Draft Environmental Impact Statement (DEIS) for the project was issued in November 1993. New 1994 studies showed that other improvements to Puget Power's system, and the addition of local generation has lessened local reliability problems. Also in 1994, BPA reevaluated all existing projects with this goal in mind. BPA and Puget determined that benefits would still result from this project, and that additional transfer capacity and improved system integrity warrant the expenditures. Given the changes in need, BPA decided to issue a Supplemental DEIS, and provide a second public review-and-comment period. The proposed action is designated Option 1. Impacts would be low to moderate and localized. Effects on soils and water resources in sensitive areas would be low to moderate; there would be little increase in magnetic fields, noise levels would approximate existing levels; and land use and property value impacts would be low. Threatened and endangered species would not be adversely affected, and all proposed Sections in wetlands would be covered by Nationwide Permit. Visual and socioeconomic impacts would be low to moderate. No cultural resources listed on the National Register of Historic Places would be affected

  5. GLUCOSE-FRUCTOSE INDEX IN THE GRAPES

    Directory of Open Access Journals (Sweden)

    N. V. Gnilomedova

    2016-01-01

    Full Text Available Results summarize literature and experimental data on the content of glucose and fructose of different varieties in grapes belonging to different botanical species of Vitis. The ratio of glucose and fructose indicator can be used for fermentation control and prevention of under fermentation in the production of dry wines, as well as an identification parameter to assess the authenticity of grape juice and concentratedmust. The object of the study were grapes of red and white winemaking European and autochthonous varieties, belonging to Vitis, as well as varieties of new selection (Aligote, Albilio, Verdelho, Sersial, Rkatsiteli, White Muscat, Cabernet-Sauvignon, Bastardo of Magarach, Kephesiya, Ekim kara, Golubok. Sugar content in grape samples was inthe range of 180-260 g/l. Total hexoses were determined by HPLC method according to a modified methodology developed by the Department of Chemistry and Biochemistry of Wine of "FSBSI "Magarach ". It was established that the value range of the glucose-fructose index in the grapes cultivated in different viniviticultural regions of the world makes 0.74-1.19. It has been revealed that the glucose-fructose index decreases with the ripening of berries. Low index values are characteristic for the grape that ripens at high temperatures and was cultivated in regions with hot climate. High index valuesare characteristic of table grapes and winemaking grape varieties of the species Vitis labrusca, Vitis amurensis and interspecific hybrids. Within the botanical species we canidentify varieties that tend to accumulate higher volumes of either glucose or fructose. These patterns are equally characteristic of white and red grape varieties. The analytical analyzes of the Crimean winemaking grape varieties resulted in the establishment of the glucose-fructose index for the first time, varying within the range of 0.9-1.06.

  6. Separation of glucose and fructose by freezing crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Silva, A.T.C.R.; Martinez, K.C.L. [Federal University of Sao Carlos, Chemical Engineering Department, Industrial Crystallization Laboratory - Rod. Washington Luis km 235, P.O. Box 676, CEP:13565-905, Sao Carlos-SP (Brazil); Brito, A.B.N. [Federal University of Espirito Santo, Engineering and Computing Dept. - Rodovia BR 101 Norte, Km. 60, Bairro Litoraneo, CEP 29932-540, Sao Mateus-ES (Brazil); Giulietti, M. [Laboratory of Chemical Process and Particle Technology of Institute for Technological Research, Av. Prof. Almeida Prado 532 -Universitary City, CEP:05508-901, Sao Paulo-SP (Brazil)

    2010-10-15

    This work comprises the implementation of a methodology for the study of an industrial crystallization process by freezing and cooling to be applied in the separation of sugars with industrial relevance (glucose and fructose). The main interest is the production of fructose. This sugar is obtained by sucrose hydrolysis in acidic solutions, which yields an equimolar mixture of glucose and fructose. The developed separation process is based on the solubility difference between the sugars. Experiments were carried out in a jacketed glass crystallizer where the solution coming from the sucrose acid inversion was submitted to a slow cooling. Since glucose has lower solubility than fructose, it crystallizes in the bulk as the temperature is lowered, thus it can be removed from the solution by filtration or centrifugation. Best fructose-glucose separation was achieved for a total sugar concentration of 50 wt%. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Sucrose, High-Fructose Corn Syrup, and Fructose, Their Metabolism and Potential Health Effects: What Do We Really Know?12

    Science.gov (United States)

    Rippe, James M.; Angelopoulos, Theodore J.

    2013-01-01

    Both controversy and confusion exist concerning fructose, sucrose, and high-fructose corn syrup (HFCS) with respect to their metabolism and health effects. These concerns have often been fueled by speculation based on limited data or animal studies. In retrospect, recent controversies arose when a scientific commentary was published suggesting a possible unique link between HFCS consumption and obesity. Since then, a broad scientific consensus has emerged that there are no metabolic or endocrine response differences between HFCS and sucrose related to obesity or any other adverse health outcome. This equivalence is not surprising given that both of these sugars contain approximately equal amounts of fructose and glucose, contain the same number of calories, possess the same level of sweetness, and are absorbed identically through the gastrointestinal tract. Research comparing pure fructose with pure glucose, although interesting from a scientific point of view, has limited application to human nutrition given that neither is consumed to an appreciable degree in isolation in the human diet. Whether there is a link between fructose, HFCS, or sucrose and increased risk of heart disease, metabolic syndrome, or fatty infiltration of the liver or muscle remains in dispute with different studies using different methodologies arriving at different conclusions. Further randomized clinical trials are needed to resolve many of these issues. The purpose of this review is to summarize current knowledge about the metabolism, endocrine responses, and potential health effects of sucrose, HFCS, and fructose. PMID:23493540

  8. Twenty-four-hour endocrine and metabolic profiles following consumption of high-fructose corn syrup-, sucrose-, fructose-, and glucose-sweetened beverages with meals.

    Science.gov (United States)

    Stanhope, Kimber L; Griffen, Steven C; Bair, Brandi R; Swarbrick, Michael M; Keim, Nancy L; Havel, Peter J

    2008-05-01

    We have reported that, compared with glucose-sweetened beverages, consuming fructose-sweetened beverages with meals results in lower 24-h circulating glucose, insulin, and leptin concentrations and elevated triacylglycerol (TG). However, pure fructose and glucose are not commonly used as sweeteners. High-fructose corn syrup (HFCS) has replaced sucrose as the predominant sweetener in beverages in the United States. We compared the metabolic/endocrine effects of HFCS with sucrose and, in a subset of subjects, with pure fructose and glucose. Thirty-four men and women consumed 3 isocaloric meals with either sucrose- or HFCS-sweetened beverages, and blood samples were collected over 24 h. Eight of the male subjects were also studied when fructose- or glucose-sweetened beverages were consumed. In 34 subjects, 24-h glucose, insulin, leptin, ghrelin, and TG profiles were similar between days that sucrose or HFCS was consumed. Postprandial TG excursions after HFCS or sucrose were larger in men than in women. In the men in whom the effects of 4 sweeteners were compared, the 24-h glucose and insulin responses induced by HFCS and sucrose were intermediate between the lower responses during consumption of fructose and the higher responses during glucose. Unexpectedly, postprandial TG profiles after HFCS or sucrose were not intermediate but comparably high as after pure fructose. Sucrose and HFCS do not have substantially different short-term endocrine/metabolic effects. In male subjects, short-term consumption of sucrose and HFCS resulted in postprandial TG responses comparable to those induced by fructose.

  9. The Health Implications of Sucrose, High-Fructose Corn Syrup, and Fructose: What Do We Really Know?

    OpenAIRE

    Rippe, James M.

    2010-01-01

    The epidemic of obesity and related metabolic diseases continues to extract an enormous health toll. Multiple potential causes for obesity have been suggested, including increased fat consumption, increased carbohydrate consumption, decreased physical activity, and, most recently, increased fructose consumption. Most literature cited in support of arguments suggesting a link between obesity and fructose consumption is epidemiologic and does not establish cause and effect. The causes of obesit...

  10. Health implications of fructose consumption: A review of recent data

    Directory of Open Access Journals (Sweden)

    Rizkalla Salwa W

    2010-11-01

    Full Text Available Abstract This paper reviews evidence in the context of current research linking dietary fructose to health risk markers. Fructose intake has recently received considerable media attention, most of which has been negative. The assertion has been that dietary fructose is less satiating and more lipogenic than other sugars. However, no fully relevant data have been presented to account for a direct link between dietary fructose intake and health risk markers such as obesity, triglyceride accumulation and insulin resistance in humans. First: a re-evaluation of published epidemiological studies concerning the consumption of dietary fructose or mainly high fructose corn syrup shows that most of such studies have been cross-sectional or based on passive inaccurate surveillance, especially in children and adolescents, and thus have not established direct causal links. Second: research evidence of the short or acute term satiating power or increasing food intake after fructose consumption as compared to that resulting from normal patterns of sugar consumption, such as sucrose, remains inconclusive. Third: the results of longer-term intervention studies depend mainly on the type of sugar used for comparison. Typically aspartame, glucose, or sucrose is used and no negative effects are found when sucrose is used as a control group. Negative conclusions have been drawn from studies in rodents or in humans attempting to elucidate the mechanisms and biological pathways underlying fructose consumption by using unrealistically high fructose amounts. The issue of dietary fructose and health is linked to the quantity consumed, which is the same issue for any macro- or micro nutrients. It has been considered that moderate fructose consumption of ≤50g/day or ~10% of energy has no deleterious effect on lipid and glucose control and of ≤100g/day does not influence body weight. No fully relevant data account for a direct link between moderate dietary fructose

  11. [Kinetic properties of the fructose influx across the brush border of the rat jejunum. Effects of a diet rich in fructose].

    Science.gov (United States)

    Crouzoulon, G

    1978-10-01

    The unidirectional influx (i.e. initial rate of uptake) of D-fructose across the brush border of rat jejunum is a saturable function of concentration, with a Kt of 125 mM, which implicates a carrier mechanism. This mechanism appears to be very specific for fructose in view of the lack of influx inhibition observed in the presence of large concentrations of the sugars or polyols, D-glucose, D-galactose, D-mannose, D-xylose, L-sorbose, D-tagatose, sorbitol or mannitol. D-Fructose uptake is inhibited by incubation, preceded by a 30-min preincubation in the same inhibitory conditions, in the absence of Na, or in the presence of metabolic poisons, NaF, 2,4-dinitrophenol, monoiodoacetate. Phloridzin (10-3 M), with or without preincubation, has no effect on uptake. D-Fructose influx is stimulated by fructose feeding, mainly because the augmentation of the number of active sites of transfer: Jmax is increased two-fold, Kt is more weakly affected.

  12. Application of the boron neutron capture therapy to undifferentiated thyroid cancer using two boron compounds (BPA and BOPP)

    International Nuclear Information System (INIS)

    Viaggi, Mabel; Dagrosa, Maria A.; Juvenal, Guillermo J.; Pisarev, Mario A.; Longhino, Juan M.; Blaumann, Hernan R.; Calzetta Larrieu, Osvaldo A.; Kahl, Stephen B.

    2004-01-01

    We have shown the selective uptake of boronophenylalanine (BPA) by undifferentiated thyroid cancer (UTC) human cell line ARO, both in vitro and in vivo. Moreover, a 50% histologic cure of mice bearing the tumor was observed when the complete boron neutron capture therapy was applied. More recently we have analyzed the biodistribution of BOPP (tetrakis-carborane carboxylate ester of 2,4-bis-(ba-dihydroxyethyl)-deutero-porphyrin IX) and showed that when BOPP was injected 5 days before BPA, and the animals were sacrificed 60 min after the ip injection of BPA, a significant increase in boron uptake by the tumor was found (38-45ppm with both compounds Vs. 20 ppm with BPA alone). Five days post the ip BOPP injection and 1 hr after BPA, the ratios were: tumor/blood 3,75; tumor /distal skin 2. Other important ratios were tumor/thyroid 6,65 and tumor/lung 3,8. The present studies were performed in mice transplanted with ARO cells and injected with BOPP and BPA. Only in mice treated with the neutron beam and injected with the boronated compounds we observed a 100% control of tumor growth. Two groups of mice received different total absorbed doses: 3.00 and 6.01 Gy, but no further improvement in the outcome was found compared to the previous results using BPA alone (4.3 Gy). (author)

  13. Transport, metabolism, and endosomal trafficking-dependent regulation of intestinal fructose absorption

    Science.gov (United States)

    Patel, Chirag; Douard, Veronique; Yu, Shiyan; Gao, Nan; Ferraris, Ronaldo P.

    2015-01-01

    Dietary fructose that is linked to metabolic abnormalities can up-regulate its own absorption, but the underlying regulatory mechanisms are not known. We hypothesized that glucose transporter (GLUT) protein, member 5 (GLUT5) is the primary fructose transporter and that fructose absorption via GLUT5, metabolism via ketohexokinase (KHK), as well as GLUT5 trafficking to the apical membrane via the Ras-related protein-in-brain 11 (Rab11)a-dependent endosomes are each required for regulation. Introducing fructose but not lysine and glucose solutions into the lumen increased by 2- to 10-fold the heterogeneous nuclear RNA, mRNA, protein, and activity levels of GLUT5 in adult wild-type mice consuming chow. Levels of GLUT5 were >100-fold that of candidate apical fructose transporters GLUTs 7, 8, and 12 whose expression, and that of GLUT 2 and the sodium-dependent glucose transporter protein 1 (SGLT1), was not regulated by luminal fructose. GLUT5-knockout (KO) mice exhibited no facilitative fructose transport and no compensatory increases in activity and expression of SGLT1 and other GLUTs. Fructose could not up-regulate GLUT5 in GLUT5-KO, KHK-KO, and intestinal epithelial cell-specific Rab11a-KO mice. The fructose-specific metabolite glyceraldehyde did not increase GLUT5 expression. GLUT5 is the primary transporter responsible for facilitative absorption of fructose, and its regulation specifically requires fructose uptake and metabolism and normal GLUT5 trafficking to the apical membrane.—Patel, C., Douard, V., Yu, S., Gao, N., Ferraris, R. P. Transport, metabolism, and endosomal trafficking-dependent regulation of intestinal fructose absorption. PMID:26071406

  14. Enhancing Skin Permeation of Biphenylacetic Acid (BPA) Using Salt Formation with Organic and Alkali Metal Bases.

    Science.gov (United States)

    Pawar, Vijay; Naik, Prashant; Giridhar, Rajani; Yadav, Mange Ram

    2015-01-01

    In the present study, a series of organic and alkali metal salts of biphenylacetic acid (BPA) have been prepared and evaluated in vitro for percutaneous drug delivery. The physicochemical properties of BPA salts were determined using solubility measurements, DSC, and IR. The DSC thermogram and FTIR spectra confirmed the salt formation with organic and alkali metal bases. Among the series, salts with organic amines (ethanolamine, diethanolamine, triethanolamine, and diethylamine) had lowered melting points while the alkali metal salt (sodium) had a higher melting point than BPA. The in vitro study showed that salt formation improves the physicochemical properties of BPA, leading to improved permeability through the skin. Amongst all the prepared salts, ethanolamine salt (1b) showed 7.2- and 5.4-fold higher skin permeation than the parent drug at pH 7.4 and 5.0, respectively, using rat skin.

  15. Bisphenol A (BPA) aggravates multiple low-dose streptozotocin-induced Type 1 diabetes in C57BL/6 mice.

    Science.gov (United States)

    Cetkovic-Cvrlje, Marina; Thinamany, Sinduja; Bruner, Kylie A

    2017-12-01

    Type 1 diabetes (T1D) is a T-cell-mediated autoimmune disorder characterized by destruction of insulin-producing pancreatic β-cells. Whereas epidemiological data implicate environmental factors in the increasing incidence of T1D, their identity remains unknown. Though exposure to bisphenol A (BPA) has been associated with several disorders, no epidemiologic evidence has linked BPA exposure and T1D. The goal of this study was to elucidate diabetogenic potentials of BPA and underlying mechanisms in the context of T-cell immunity, in a multiple low-dose streptozotocin (MLDSTZ)-induced autoimmune mouse T1D model. C57BL/6 mice were orally exposed to 1 or 10 mg BPA/L starting at 4 wk of age; diabetes was induced at 9 wk of age with STZ. T-cell composition, function, and insulitis levels were studied at Days 11 and 50 during diabetes development (i.e. post-first STZ injection). Results showed both BPA doses increased diabetes incidence and affected T-cell immunity. However, mechanisms of diabetogenic action appeared divergent based on dose. Low-dose BPA fits a profile of an agent that exhibits pro-diabetogenic effects via T-cell immunomodulation in the early stages of disease development, i.e. decreases in splenic T-cell subpopulations [especially CD4 + T-cells] along with a trend in elevation of splenic T-cell formation of pro-inflammatory cytokines (IFN-γ, TNF-α, and IL-6). In contrast, high-dose BPA did not affect T-cell populations and led to decreased levels of IFN-γ and TNF-α. Both treatments did not affect insulitis levels at the disease early stage, but aggravated it later on. By the study end, besides decreasing T-cell proliferative capacity, low-dose BPA did not affect other T-cell-related parameters, including cytokine secretion, comparable to the effects of high-dose BPA. In conclusion, this study confirmed BPA as a potential diabetogenic compound with immunomodulatory mechanisms of action - in the context of T-cell immunity - that seemed to be dose

  16. The molecular mechanism of bisphenol A (BPA as an endocrine disruptor by interacting with nuclear receptors: insights from molecular dynamics (MD simulations.

    Directory of Open Access Journals (Sweden)

    Lanlan Li

    Full Text Available Bisphenol A (BPA can interact with nuclear receptors and affect the normal function of nuclear receptors in very low doses, which causes BPA to be one of the most controversial endocrine disruptors. However, the detailed molecular mechanism about how BPA interferes the normal function of nuclear receptors is still undiscovered. Herein, molecular dynamics simulations were performed to explore the detailed interaction mechanism between BPA with three typical nuclear receptors, including hERα, hERRγ and hPPARγ. The simulation results and calculated binding free energies indicate that BPA can bind to these three nuclear receptors. The binding affinities of BPA were slightly lower than that of E2 to these three receptors. The simulation results proved that the binding process was mainly driven by direct hydrogen bond and hydrophobic interactions. In addition, structural analysis suggested that BPA could interact with these nuclear receptors by mimicking the action of natural hormone and keeping the nuclear receptors in active conformations. The present work provided the structural evidence to recognize BPA as an endocrine disruptor and would be important guidance for seeking safer substitutions of BPA.

  17. Free radical scavenging reverses fructose-induced salt-sensitive hypertension

    Directory of Open Access Journals (Sweden)

    Zenner ZP

    2017-12-01

    Full Text Available Zachary P Zenner, Kevin L Gordish, William H Beierwaltes Department of Internal Medicine, Hypertension and Vascular Research Division, Henry Ford Hospital, Detroit, MI, USA Abstract: We have previously reported that a moderate dietary supplementation of 20% fructose but not glucose leads to a salt-sensitive hypertension related to increased proximal sodium–hydrogen exchanger activity and increased renal sodium retention. We also found that while high salt increased renal nitric oxide formation, this was retarded in the presence of fructose intake. We hypothesized that at least part of the pathway leading to fructose-induced salt-sensitive hypertension could be due to fructose-induced formation of reactive oxygen species and inappropriate stimulation of renin secretion, all of which would contribute to an increase in blood pressure. We found that both 20% fructose intake and a high-salt diet stimulated 8-isoprostane excretion. The superoxide dismutase (SOD mimetic tempol significantly reduced this elevated excretion. Next, we placed rats on a high-salt diet (4% for 1 week in combination with normal rat chow or 20% fructose with or without chronic tempol administration. A fructose plus high-salt diet induced a rapid increase (15 mmHg in systolic blood pressure and reversed high salt suppression of plasma renin activity. Tempol treatment reversed the pressor response and restored high salt suppression of renin. We conclude that fructose-induced salt-sensitive hypertension is driven by increased renal reactive oxygen species formation associated with salt retention and an enhanced renin–angiotensin system. Keywords: reactive oxygen species, tempol, sodium, renin, oxidative stress

  18. Retroviral-mediated gene transfer and expression of human phenylalanine hydroxylase in primary mouse hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Peng, H.; Armentano, D.; Mackenzie-Graham, L.; Shen, R.F.; Darlington, G.; Ledley, F.D.; Woo, S.L.C. (Baylor College of Medicine, Houston, TX (USA))

    1988-11-01

    Genetic therapy for phenylketonuria (severe phenylalanine hydroxylase deficiency) may require introduction of a normal phenylalanine hydroxylase gene into hepatic cells of patients. The authors report development of a recombinant retrovirus based on the N2 vector for gene transfer and expression of human phenylalanine hydroxylase cDNA in primary mouse hepatocytes. This construct contains an internal promoter of the human {alpha}{sub 1}-antitrypsin gene driving transcription of the phenylalanine hydroxylase cDNA. Primary mouse hepatocytes were isolated from newborn mice, infected with the recombinant virus, and selected for expression of the neomycin-resistance gene. Hepatocytes transformed with the recombinant virus contained high levels of human phenylalanine hydroxylase mRNA transcripts originating from the retroviral and internal promoters. These results demonstrate that the transcriptional regulatory elements of the {alpha}{sub 1} antitrypsin gene retain their tissue-specific function in the recombinant provirus and establish a method for efficient transfer and high-level expression of human phenylalanine hydroxylase in primary hepatocytes.

  19. Retroviral-mediated gene transfer and expression of human phenylalanine hydroxylase in primary mouse hepatocytes

    International Nuclear Information System (INIS)

    Peng, H.; Armentano, D.; Mackenzie-Graham, L.; Shen, R.F.; Darlington, G.; Ledley, F.D.; Woo, S.L.C.

    1988-01-01

    Genetic therapy for phenylketonuria (severe phenylalanine hydroxylase deficiency) may require introduction of a normal phenylalanine hydroxylase gene into hepatic cells of patients. The authors report development of a recombinant retrovirus based on the N2 vector for gene transfer and expression of human phenylalanine hydroxylase cDNA in primary mouse hepatocytes. This construct contains an internal promoter of the human α 1 -antitrypsin gene driving transcription of the phenylalanine hydroxylase cDNA. Primary mouse hepatocytes were isolated from newborn mice, infected with the recombinant virus, and selected for expression of the neomycin-resistance gene. Hepatocytes transformed with the recombinant virus contained high levels of human phenylalanine hydroxylase mRNA transcripts originating from the retroviral and internal promoters. These results demonstrate that the transcriptional regulatory elements of the α 1 antitrypsin gene retain their tissue-specific function in the recombinant provirus and establish a method for efficient transfer and high-level expression of human phenylalanine hydroxylase in primary hepatocytes

  20. CLARITY-BPA: Effects of chronic bisphenol A exposure on the immune system: Part 2 - Characterization of lymphoproliferative and immune effector responses by splenic leukocytes.

    Science.gov (United States)

    Li, Jinpeng; Bach, Anthony; Crawford, Robert B; Phadnis-Moghe, Ashwini S; Chen, Weimin; D'Ingillo, Shawna; Kovalova, Natalia; Suarez-Martinez, Jose E; Zhou, Jiajun; Kaplan, Barbara L F; Kaminski, Norbert E

    2018-03-01

    Bisphenol A (BPA) is commonly used in the manufacturing of a wide range of consumer products, including polycarbonate plastics, epoxy resin that lines beverage and food cans, and some dental sealants. Consumption of food and beverages containing BPA represents the primary route of human BPA exposure, which is virtually ubiquitous. An increasing number of studies have evaluated the effects of BPA on immune responses in laboratory animals that have reported a variety of effects some of which have been contradictory. To address the divergent findings surrounding BPA exposure, a comprehensive chronic treatment study of BPA was conducted in Sprague-Dawley rats, termed the Consortium Linking Academic and Regulatory Insights on Toxicity of BPA (CLARITY-BPA). As a participant in the CLARITY-BPA project, our studies evaluated the effects of BPA on a broad range of immune function endpoints using spleen cells isolated from BPA or vehicle treated rats. This comprehensive assessment included measurements of lymphoproliferation in response to mitogenic stimuli, immunoglobulin production by B cells, and cellular activation of T cells, NK cells, monocytes, granulocytes, macrophages and dendritic cells. In total, 630 different measurements in BPA treated rats were performed of which 35 measurements were statistically different from vehicle controls. The most substantive alteration associated with BPA treatment was the augmentation of lymphoproliferation in response to pokeweed mitogen stimulations in 1 year old male rats, which was also observed in the reference estrogen ethinyl estradiol treated groups. With the exception of the aforementioned, the statistically significant changes associated with BPA treatment were mostly sporadic and not dose-dependent with only one out of five BPA dose groups showing a statistical difference. In addition, the observed BPA-associated alterations were mostly moderate in magnitude and showed no persistent trend over the one-year time period

  1. Impairment of learning and memory performances induced by BPA: Evidences from the literature of a MoA mediated through an ED.

    Science.gov (United States)

    Mhaouty-Kodja, Sakina; Belzunces, Luc P; Canivenc, Marie-Chantal; Schroeder, Henri; Chevrier, Cécile; Pasquier, Elodie

    2018-03-29

    Many rodent studies and a few non-human primate data report impairments of spatial and non-spatial memory induced by exposure to bisphenol A (BPA), which are associated with neural modifications, particularly in processes involved in synaptic plasticity. BPA-induced alterations involve disruption of the estrogenic pathway as established by reversal of BPA-induced effects with estrogenic receptor antagonist or by interference of BPA with administered estradiol in ovariectomised animals. Sex differences in hormonal impregnation during critical periods of development and their influence on maturation of learning and memory processes may explain the sexual dimorphism observed in BPA-induced effects in some studies. Altogether, these data highly support the plausibility that alteration of learning and memory and synaptic plasticity by BPA is essentially mediated by disturbance of the estrogenic pathways. As memory function in humans involves similar signaling pathways, this mode of action of BPA has the potential to alter human cognitive abilities. Copyright © 2018. Published by Elsevier B.V.

  2. Eosin-sensitized photooxidation of substituted phenylalanines and tyrosines

    Energy Technology Data Exchange (ETDEWEB)

    Rizzuto, F.; Spikes, J.D.

    1977-01-01

    The cosin-sensitized photooxidation of tyrosine and a number of compounds related to tyrosine (substituted phenylalanines) was studied by steady-state kinetic and flash photolysis techniques. In particular, the role of the phenolic group and the amino and carboxyl groups of the alanyl side chain in the photooxidation mechanism was investigated in detail. Several relationships between substrate structure and susceptibility to photooxidation as well as effects of substrate structure on photooxidation mechanisms were found. For example, phenylalanine is not photooxidizable, but substitution of electron-donating (activating) groups such as -OH (as in tyrosine) or -NH/sub 2/ (as in p-aminophenylalanine) results in rapidly photooxidized derivatives. However, substituting deactivating groups such as -Cl (as in p-chlorophenylalanine) or weakly activating groups such as -OCH/sub 3/ (as in 4-methoxyphenylalanine) result in non-photooxidizable derivatives. Substitution of additional activating groups to the ring of hydroxy-substituted phenylalanines results in increased rates of photooxidation, whereas additional deactivating groups result in decreased photooxidation rates. The rate-determining step in the photooxidation mechanism is shown to be dependent on the presence and position of an electron-donating substituent on the benzenoid ring. Only minor involvement of the side chain amino and carboxyl groups was found. Both singlet oxygen and hydrogen abstraction mechanisms are involved in the eosin-sensitized photooxidation of hydroxy-substituted phenylalanines (e.g., tyrosine). The hydrogen abstraction mechanism probably predominates at both pH 8 and 11.

  3. A highly sensitive and specific capacitive aptasensor for rapid and label-free trace analysis of Bisphenol A (BPA) in canned foods.

    Science.gov (United States)

    Mirzajani, Hadi; Cheng, Cheng; Wu, Jayne; Chen, Jiangang; Eda, Shigotoshi; Najafi Aghdam, Esmaeil; Badri Ghavifekr, Habib

    2017-03-15

    A rapid, highly sensitive, specific and low-cost capacitive affinity biosensor is presented here for label-free and single step detection of Bisphenol A (BPA). The sensor design allows rapid prototyping at low-cost using printed circuit board material by benchtop equipment. High sensitivity detection is achieved through the use of a BPA-specific aptamer as probe molecule and large electrodes to enhance AC-electroelectrothermal effect for long-range transport of BPA molecules toward electrode surface. Capacitive sensing technique is used to determine the bounded BPA level by measuring the sample/electrode interfacial capacitance of the sensor. The developed biosensor can detect BPA level in 20s and exhibits a large linear range from 1 fM to 10 pM, with a limit of detection (LOD) of 152.93 aM. This biosensor was applied to test BPA in canned food samples and could successfully recover the levels of spiked BPA. This sensor technology is demonstrated to be highly promising and reliable for rapid, sensitive and on-site monitoring of BPA in food samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Fructose malabsorption in people with and without gout: A case-control study.

    Science.gov (United States)

    Batt, Caitlin; Fanning, Niamh; Drake, Jill; Frampton, Christopher; Gearry, Richard B; Stamp, Lisa K

    2017-10-01

    Higher fructose intake has been associated with hyperuricaemia and gout. Some individuals malabsorb fructose in the small intestine. The aims of this study were to determine the rate of fructose malabsorption and the effects of gout and fructose malabsorption on serum urate in people with and without gout. A total of 100 people with gout (cases) were age and gender matched with one control without gout. After a low fructose diet, fructose malabsorption was measured using a hydrogen and methane breath test with a 35g fructose load. In a subgroup of 35 cases and 35 controls, serum urate response to the fructose load over 240 minutes was measured. There was no significant difference in the rate of fructose malabsorption between cases and controls (48% vs. 52%; p = 0.67). Cases had a significantly lower mean (SEM) serum urate cumulative incremental concentration from baseline-240 minutes (iAUC 0-240 ) compared to controls 0.97 (0.56) vs. 4.78 (0.55); p gout. Allopurinol inhibits the increase in serum urate induced by a fructose load suggesting that people with gout receiving allopurinol may not need to restrict dietary intake of fructose. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Might iodomethyl-α-tyrosine be a surrogate for BPA in BNCT?

    International Nuclear Information System (INIS)

    Miura, Michiko; Micca, P.L.; Nawrocky, M.M.; Slatkin, D.N.

    1996-01-01

    A single-photon emission computed tomography [SPECT] imaging agent that is an analogue of a boron carrier for boron neutron-capture therapy [BNCT] of cerebral gliomas would be useful for assessing the kinetics of boron uptake in tumors and in the surrounding brain tissues noninvasively. BNCT is based on the interaction of thermalized neutrons with 10 B nuclei in the targeted tumor. For BNCT of brain tumors, it is crucial that 10 B concentrations in radiosensitive regions of the brain be minimal since malignant cells and vital brain tissues are often inter-mingled at the margins of the tumor. Currently, boronophenylalanine [BPA]-mediated BNCT is undergoing preliminary clinical study for postoperative radiotherapy of glioblastorna multiforme at Brookhaven National Laboratory. Investigators in Japan are developing 18 F-fluoroboronophenylaianine [FBPA] as a positron 18 F (T 1/2 = 110 min), which is usually emission tomography [PET] surrogate for BPA. generated at a cyclotron dedicated to PET, is generally a minimally perturbing substitute for the 2-H on the aromatic ring because of its small size and the strong covalent bond it forms with carbon. However, SPECT has potential advantages over PET: (1) SPECT is clinically more widely available at lower cost; (2) most radioisotopes for the synthesis of SPECT agents can be purchased; (3) SPECT is less difficult to implement. It is thought that the quality of images derived from the two techniques would each be sufficiently informative for BNCT treatment planning purposes, provided that the SPECT and PET agents being considered were both pharmacokinetic surrogates for BPA. This study evaluated the use of 123 I alpha methyltyrosine as a surrogate for BPA in BNCT

  6. Might iodomethyl-{alpha}-tyrosine be a surrogate for BPA in BNCT?

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Michiko; Micca, P.L.; Nawrocky, M.M.; Slatkin, D.N.

    1996-12-31

    A single-photon emission computed tomography [SPECT] imaging agent that is an analogue of a boron carrier for boron neutron-capture therapy [BNCT] of cerebral gliomas would be useful for assessing the kinetics of boron uptake in tumors and in the surrounding brain tissues noninvasively. BNCT is based on the interaction of thermalized neutrons with {sup 10}B nuclei in the targeted tumor. For BNCT of brain tumors, it is crucial that {sup 10}B concentrations in radiosensitive regions of the brain be minimal since malignant cells and vital brain tissues are often inter-mingled at the margins of the tumor. Currently, boronophenylalanine [BPA]-mediated BNCT is undergoing preliminary clinical study for postoperative radiotherapy of glioblastorna multiforme at Brookhaven National Laboratory. Investigators in Japan are developing {sup 18}F-fluoroboronophenylaianine [FBPA] as a positron {sup 18}F (T{sub 1/2} = 110 min), which is usually emission tomography [PET] surrogate for BPA. generated at a cyclotron dedicated to PET, is generally a minimally perturbing substitute for the 2-H on the aromatic ring because of its small size and the strong covalent bond it forms with carbon. However, SPECT has potential advantages over PET: (1) SPECT is clinically more widely available at lower cost; (2) most radioisotopes for the synthesis of SPECT agents can be purchased; (3) SPECT is less difficult to implement. It is thought that the quality of images derived from the two techniques would each be sufficiently informative for BNCT treatment planning purposes, provided that the SPECT and PET agents being considered were both pharmacokinetic surrogates for BPA. This study evaluated the use of {sup 123}I alpha methyltyrosine as a surrogate for BPA in BNCT.

  7. Preliminary estimation of infantile exposure to BPA based on the standard quality of baby bottles distributed in Isfahan urban society

    Directory of Open Access Journals (Sweden)

    Zohreh Abdi Moghadam

    2013-01-01

    Full Text Available Aims: This study was aimed to estimate the bisphenol A (BPA intake from baby bottles, considering the diversity and the standard quality of the baby bottles distributed in an Isfahan urban society. Materials and Methods: A cross-sectional study was performed in Isfahan in 2011. Baby shops ( n = 33 and drug stores ( n = 7 in four district areas were included in the study. The distribution of baby bottles was investigated regarding their brand, origin, and being labeled "BPA free." Estimation of exposure to BPA from baby bottles was made based on the national and international representative data. Results: The products marked as "BPA free" were found among the western products and limited to two of the selected areas. No "BPA free" marked baby bottle was distinguished among the Iranian made products. Of the 8% exclusively formula-fed infants, 90% may be the high consumers of BPA from polycarbonate baby bottles, with an intake of 1.5-2 μg/kg b.w./day for the moderate and 7.5-10 μg/kg b.w./day in case of worse condition. Conclusion: Considering the current globally accepted threshold daily intake (TDI for BPA, primary exposure estimation is that feeding using non-BPA-free baby bottles is not a serious health concern in Iran. Thought that threshold level of TDI is discussed to be reduced in future, improvement and revision of the national standards can be effective in reducing the exposure to BPA in Iranian infants so as to provide large margin of safety for them.

  8. Analog kefir production with a low phenylalanine for Phenylketonuria

    OpenAIRE

    Amir Yari; Yousef Ramezan

    2017-01-01

    Phenylketonuria (PKU) is one of the most prevalent types of hereditary metabolic disorders which is caused due to an absence or reduction of the activity of the Phenylalanine hydroxylase enzyme in the liver which in turn, inhibits the transformation of phenylalanine (Phe) to tyrosine. In clinical terms, this disorder is displayed with severe, permanent and irreversible mental retardation. This research was aimed at development of a highly nutrient and acceptable suitable analogue Kefir drink ...

  9. Urinary BPA measurements in children and mothers from six European member states

    DEFF Research Database (Denmark)

    Covaci, Adrian; Hond, Elly Den; Geens, Tinne

    2015-01-01

    -mother pairs were recruited through schools or population registers from six European member states (Belgium, Denmark, Luxembourg, Slovenia, Spain and Sweden). Children (5-12y) and mothers donated a urine sample. Information on socio-demographic characteristics, life style, dietary habits, and educational...... determinants. Consumption of canned food and social class (represented by the highest educational level of the family) were the most important predictors for the urinary levels of BPA in mothers and children. The individual BPA levels in children were significantly correlated with the levels in their mothers...

  10. The expression and activity of antioxidant enzymes in the liver of rats exposed to high-fructose diet in the period from weaning to adulthood.

    Science.gov (United States)

    Glban, Alhadi M; Vasiljević, Ana; Veličković, Nataša; Nikolić-Kokić, Aleksandra; Blagojević, Duško; Matić, Gordana; Nestorov, Jelena

    2015-08-30

    Increased fructose consumption correlates with rising prevalence of various metabolic disorders, some of which were linked to oxidative stress. The relationship between fructose consumption and oxidative stress is complex and effects of a fructose-rich diet on the young population have not been fully elucidated. The aim of this study was to investigate whether high-fructose diet applied in the period from weaning to adulthood induces oxidative stress in the liver, thus contributing to induction or aggravation of metabolic disturbances in later adulthood. To that end we examined the effects of high-fructose diet on expression and activity of antioxidant enzymes, markers of lipid peroxidation and protein damage in the liver as the main fructose metabolizing tissue. High-fructose diet increased only SOD2 (mitochondrial manganese superoxide dismutase) activity, with no effect on other antioxidant enzymes, lipid peroxidation or accumulation of damaged proteins in the liver. The results show that fructose-induced metabolic disturbances could not be attributed to oxidative stress, at least not at young age. The absence of oxidative stress in the liver observed herein implies that young organisms are capable of maintaining redox homeostasis when challenged by fructose-derived energy overload. © 2014 Society of Chemical Industry.

  11. No difference in ad libitum energy intake in healthy men and women consuming beverages sweetened with fructose, glucose, or high-fructose corn syrup: a randomized trial.

    Science.gov (United States)

    Kuzma, Jessica N; Cromer, Gail; Hagman, Derek K; Breymeyer, Kara L; Roth, Christian L; Foster-Schubert, Karen E; Holte, Sarah E; Callahan, Holly S; Weigle, David S; Kratz, Mario

    2015-12-01

    Increased energy intake is consistently observed in individuals consuming sugar-sweetened beverages (SSBs), likely mainly because of an inadequate satiety response to liquid calories. However, SSBs have a high content of fructose, the consumption of which acutely fails to trigger responses in key signals involved in energy homeostasis. It is unclear whether the fructose content of SSBs contributes to the increased energy intake in individuals drinking SSBs. We investigated whether the relative amounts of fructose and glucose in SSBs modifies ad libitum energy intake over 8 d in healthy adults without fructose malabsorption. We conducted 2 randomized, controlled, double-blind crossover studies to compare the effects of consuming 4 servings/d of a fructose-, glucose-, or aspartame-sweetened beverage (study A; n = 9) or a fructose-, glucose-, or high-fructose corn syrup (HFCS)-sweetened beverage (study B; n = 24) for 8 d on overall energy intake. SSBs were provided at 25% of estimated energy requirement, or an equivalent volume of the aspartame-sweetened beverage, and consumption was mandatory. All solid foods were provided at 125% of estimated energy requirements and were consumed ad libitum. In study A, ad libitum energy intake was 120% ± 10%, 117% ± 12%, and 102% ± 15% of estimated energy requirements when subjects consumed the fructose-, glucose-, and aspartame-sweetened beverages. Energy intake was significantly higher in the fructose and glucose phases than in the aspartame phase (P fructose and glucose phases (P = 0.462). In study B, total energy intake during the fructose, HFCS, and glucose phases was 116% ± 14%, 116% ± 16%, and 116% ± 16% of the subject's estimated total energy requirements (P = 0.880). In healthy adults, total 8-d ad libitum energy intake was increased in individuals consuming SSBs compared with aspartame-sweetened beverages. The energy overconsumption observed in individuals consuming SSBs occurred independently of the relative

  12. Use of deuterated tyrosine and phenylalanine in the study of catecholamine and aromatic acid metabolism

    International Nuclear Information System (INIS)

    Curtius, H.C.; Redweik, U.; Steinmann, B.; Leimbacher, W.; Wegmann, H.

    1975-01-01

    Deuterated tyrosine and phenylalanine have been used for the study of their respective metabolism in patients with phenylketonuria (PKU) and in healthy persons. Urinary excretion of dopamine and its metabolites was studied by GC-MS after oral administration of deuterated L-tyrosine in 2 patients with PKU and in normal controls at low and high plasma phenylalanine levels. From these studies it seemed that the in vivo tyrosine 3-hydroxylase activity and thus the formation of L-dopa depend on the phenylalanine concentration in plasma and also in tissues. After loading 3 mentally retarded patients with 3,5-[ 2 H 2 ]-4-hydroxyphenylalanine, we found, among others, excretion of deuterated m-hydroxyphenyl-hydracrylic acid, p-hydroxymandelic acid, p-hydroxybenzoic acid, p-hydroxyhippuric acid, benzoic acid and hippuric acid. An intramolecular rearrangement is postulated. Deuterated phenylalanine was used to investigate phenylalanine and dopa metabolism in PKU. In addition, one untreated person with PKU of normal intelligence and normal excretion of catecholamines at high plasma phenylalanine concentration was investigated in order to see whether there exists an alternative metabolic pathway from phenylalanine to dopa formation

  13. Health Implications of High-Fructose Intake and Current Research12

    Science.gov (United States)

    Dornas, Waleska C; de Lima, Wanderson G; Pedrosa, Maria L; Silva, Marcelo E

    2015-01-01

    Although fructose consumption has dramatically increased and is suspected to be causally linked to metabolic abnormalities, the mechanisms involved are still only partially understood. We discuss the available data and investigate the effects of dietary fructose on risk factors associated with metabolic disorders. The evidence suggests that fructose may be a predisposing cause in the development of insulin resistance in association with the induction of hypertriglyceridemia. Experiments in animals have shown this relation when they are fed diets very high in fructose or sucrose, and human studies also show this relation, although with conflicting results due to the heterogeneity of the studies. The link between increased fructose consumption and increases in uric acid also has been confirmed as a potential risk factor for metabolic syndrome, and insulin resistance/hyperinsulinemia may be causally related to the development of hypertension. Collectively, these results suggest a link between high fructose intake and insulin resistance, although future studies must be of reasonable duration, use defined populations, and improve comparisons regarding the effects of relevant doses of nutrients on specific endpoints to fully understand the effect of fructose intake in the absence of potential confounding factors. PMID:26567197

  14. A Phase 1 trial of intravenous boronophenylalanine-fructose complex in patients with glioblastoma multiforme

    International Nuclear Information System (INIS)

    Bergland, R.; Elowitz, E.; Chadha, M.; Coderre, J.A.; Joel, D.

    1996-01-01

    Boron neutron capture therapy (BNCT) of glioblastoma multiforme was initially performed at the Brookhaven National Laboratory in the early 1950's While this treatment for malignant brain tumors has continued in Japan, new worldwide interest has been stimulated by the development of new and more selective boron compounds. Boronophenylalanine (BPA) is a blood-brain barrier penetrating compound that has been used in BNCT of malignant melanomas. SPA has been employed experimentally in BNCT of rat gliosarcoma and has potential use in the treatment of human glioblastoma. As a preface to clinical BNCT trials, we studied the biodistribution of SPA in patients with glioblastoma

  15. Radiation-induced degradation of D-fructose in aerated condition

    International Nuclear Information System (INIS)

    Kito, Yukio; Kawakishi, Shunro; Namiki, Mitsuo

    1981-01-01

    Gamma-radiolysis of fructose in aqueous solution under aerated conditions formed various oxidized products, such as dicarbonyl hexoses, lower molecular aldoses and aldonic acids. Among these radiolytic products, D-arabinohexosulose (1, G = 2.2) and D-threo-2,5-hexodiulose (2, G = 1.5) were identified as major hexose derivatives, and D-threo-2,3-hexodiulose (3) and D-lyxo-hexos-5-ulose (4) as minor products. The radiolytic processes were found to be derived through fructose radicals, similarly to anaerobic radiolysis of fructose. The mechanism of radiolysis was proposed to be initiated by hydrogen abstraction with hydroxyl radical, followed by formation and degradation of fructose hydroperoxy radicals. (author)

  16. Fast probing of glucose and fructose in plant tissues via plasmonic affinity sandwich assay with molecularly-imprinted extraction microprobes.

    Science.gov (United States)

    Muhammad, Pir; Liu, Jia; Xing, Rongrong; Wen, Yanrong; Wang, Yijia; Liu, Zhen

    2017-12-01

    Determination of specific target compounds in agriculture food and natural plant products is essential for many purposes; however, it is often challenging due to the complexity of the sample matrices. Herein we present a new approach called plasmonic affinity sandwich assay for the facile and rapid probing of glucose and fructose in plant tissues. The approach mainly relies on molecularly imprinted plasmonic extraction microprobes, which were prepared on gold-coated acupuncture needles via boronate affinity controllable oriented surface imprinting with the target monosaccharide as the template molecules. An extraction microprobe was inserted into plant tissues under investigation, which allowed for the specific extraction of glucose or fructose from the tissues. The glucose or fructose molecules extracted on the microprobe were labeled with boronic acid-functionalized Raman-active silver nanoparticles, and thus affinity sandwich complexes were formed on the microprobes. After excess Raman nanotags were washed away, the microprobe was subjected to Raman detection. Upon being irradiated with a laser beam, surface plasmon on the gold-coated microprobes was generated, which further produced plasmon-enhanced Raman scattering of the silver-based nanotags and thereby provided sensitive detection. Apple fruits, which contain abundant glucose and fructose, were used as a model of plant tissues. The approach exhibited high specificity, good sensitivity (limit of detection, 1 μg mL -1 ), and fast speed (the whole procedure required only 20 min). The spatial distribution profiles of glucose and fructose within an apple were investigated by the developed approach. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. In vitro neutron irradiation of glioma and endothelial cultured cells

    Energy Technology Data Exchange (ETDEWEB)

    Menichetti, L. [Department of PET and Radiopharmaceutical Chemistry, C.N.R. Institute of Clinical Physiology, Pisa (Italy)], E-mail: luca.menichetti@ifc.cnr.it; Gaetano, L. [University Scuola Superiore Sant' Anna, Pisa (Italy); Zampolli, A.; Del Turco, S. [Department of PET and Radiopharmaceutical Chemistry, C.N.R. Institute of Clinical Physiology, Pisa (Italy); Ferrari, C. [University of Pavia, Department of Surgery, Laboratory of experimental Surgery, Pavia (Italy); Bortolussi, S.; Stella, S.; Altieri, S. [University of Pavia, Department of Nuclear Physics, Pavia (Italy); National Institute for Nuclear Physics (INFN), Section of Pavia (Italy); Salvadori, P.A. [Department of PET and Radiopharmaceutical Chemistry, C.N.R. Institute of Clinical Physiology, Pisa (Italy); Cionini, L. [Unit of Radiotherapy, AOUP-University Hospital, Pisa (Italy)

    2009-07-15

    To fully develop its potential boron neutron capture therapy (BNCT) requires the combination of a suitable thermal/epithermal neutron flux together with a selective intake of {sup 10}B-boron nuclei in the target tissue. The latter condition is the most critical to be realized as none of the boron carriers used for experimental or clinical purposes proved at the moment an optimal selectivity for cancer cells compared to normal cells. In addition to complex physical factors, the assessment of the intracellular concentration of boron represent a crucial parameter to predict the dose delivered to the cancer cells during the treatment. Nowadays the dosimetry calculation and then the prediction of the treatment effectiveness are made using Monte Carlo simulations, but some of the model assumption are still uncertain: the radiobiological dose efficacy and the probability of tumour cell survival are crucial parameters that needs a more reliable experimental approach. The aim of this work was to evaluate the differential ability of two cell lines to selectively concentrate the boron-10 administered as di-hydroxyboryl-phenylalanine (BPA)-fructose adduct, and the effect of the differential boron intake on the damage produced by the irradiation with thermal neutrons; the two cell lines were selected to be representative one of normal tissues involved in the active/passive transport of boron carriers, and one of the tumour. Recent in vitro studies demonstrated how BPA is taken by proliferating cells, however the mechanism of BPA uptake and the parameters driving the kinetics of influx and the elimination of BPA are still not clarified. In these preliminary studies we analysed the survival of F98 and human umbilical vein endothelial cells (HUVEC) cells line after irradiation, using different thermal fluencies at the same level of density population and boron concentration in the growing medium prior the irradiation. This is first study performed on endothelium model obtained by

  18. Fe (III), Co(II), Ni(II), Cu(II) and Zn(II) complexes of schiff bases based-on glycine and phenylalanine: Synthesis, magnetic/thermal properties and antimicrobial activity

    Science.gov (United States)

    Sevgi, Fatih; Bagkesici, Ugur; Kursunlu, Ahmed Nuri; Guler, Ersin

    2018-02-01

    Zinc (II), copper (II), nickel (II), cobalt (II) and iron (III) complexes of Schiff bases (LG, LP) derived from 2-hydroxynaphthaldehyde with glycine and phenylalanine were reported and characterized by 1H NMR, 13C NMR, elemental analyses, melting point, FT-IR, magnetic susceptibility and thermal analyses (TGA). TGA data show that iron and cobalt include to the coordinated water and metal:ligand ratio is 1:2 while the complex stoichiometry for Ni (II), Cu (II) and Zn (II) complexes is 1:1. As expected, Ni (II) and Zn (II) complexes are diamagnetic; Cu (II), Co (II) and Fe (III) complexes are paramagnetic character due to a strong ligand of LG and LP. The LG, LP and their metal complexes were screened for their antimicrobial activities against five Gram-positive (Staphylococcus aureus, Methicillin resistant Staphylococcus aureus (MRSA), Bacillus cereus, Streptococcus mutans and Enterococcus faecalis) and three Gram-negative (Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa) and one fungi (Candida albicans) by using broth microdilution techniques. The activity data show that ligands and their metal complexes exhibited moderate to good activity against Gram-positive bacteria and fungi.

  19. Stimulation of glucose phosphorylation by fructose in isolated rat hepatocytes.

    Science.gov (United States)

    Van Schaftingen, E; Vandercammen, A

    1989-01-15

    The phosphorylation of glucose was measured by the formation of [3H]H2O from [2-3H]glucose in suspensions of freshly isolated rat hepatocytes. Fructose (0.2 mM) stimulated 2-4-fold the rate of phosphorylation of 5 mM glucose although not of 40 mM glucose, thus increasing the apparent affinity of the glucose phosphorylating system. A half-maximal stimulatory effect was observed at about 50 microM fructose. Stimulation was maximal 5 min after addition of the ketose and was stable for at least 40 min, during which period 60% of the fructose was consumed. The effect of fructose was reversible upon removal of the ketose. Sorbitol and tagatose were as potent as fructose in stimulating the phosphorylation of 5 mM glucose. D-Glyceraldehyde also had a stimulatory effect but at tenfold higher concentrations. In contrast, dihydroxyacetone had no significant effect and glycerol inhibited the detritiation of glucose. Oleate did not affect the phosphorylation of glucose, even in the presence of fructose, although it stimulated the formation of ketone bodies severalfold, indicating that it was converted to its acyl-CoA derivative. These results allow the conclusion that fructose stimulates glucokinase in the intact hepatocyte. They also suggest that this effect is mediated through the formation of fructose 1-phosphate, which presumably interacts with a competitive inhibitor of glucokinase other than long-chain acyl-CoAs.

  20. Exposure assessment of adult intake of bisphenol A (BPA) with emphasis on canned food dietary exposures.

    Science.gov (United States)

    Lorber, Matthew; Schecter, Arnold; Paepke, Olaf; Shropshire, William; Christensen, Krista; Birnbaum, Linda

    2015-04-01

    Bisphenol A (BPA) is a high-volume, synthetic compound found in epoxy resins and plastics used in food packaging. Food is believed to be a major source of BPA intake. In this study, we measured the concentration of BPA in convenience samplings of foodstuffs purchased in Dallas, Texas. Sampling entailed collection of 204 samples of fresh, frozen, and canned foods in two rounds in 2010. BPA was positive in 73% of the canned food samples, while it was found in only 7% of non-canned foods at low concentrations. The results of this food sampling program were used to calculate adult dietary intakes of BPA. A pathway approach combined food intakes, a "canned fraction" parameter which described what portion of total intake of that food came from canned products, and measured food concentrations. Dietary intakes were calculated as 12.6 ng/kg-day, of which 12.4 ng/kg-day was from canned foods. Canned vegetable intakes alone were 11.9 ng/kg-day. This dietary intake was compared to total intakes of BPA estimated from urine measurements of the National Health and Nutrition Examination Survey (NHANES). Total adult central tendency intakes ranged from 30 to 70 ng/kg-day for NHANES cycles between 2005 and 2010. Three possibilities were explored to explain the difference between these two approaches for intake estimation. Not all foods which may have been canned, particularly canned beverages such as soft drinks, were sampled in our food sampling program. Second, non-food pathways of exposure may be important for adults, including thermal paper exposures, and dust and air exposures. Finally, our canned food concentrations may not be adequately representative of canned foods in the United States; they were found to be generally lower compared to canned food concentrations measured in six other worldwide food surveys including three in North America. Our finding that canned food concentrations greatly exceeded non-canned concentrations was consistent with other studies, and

  1. Differential effects of acute and chronic fructose administration on pyruvate dehydrogenase activity and lipogenesis

    International Nuclear Information System (INIS)

    Wilson, L.

    1988-01-01

    These studies were undertaken to distinguish between the acute and chronic effects of fructose administration. In vivo, liver lipogenesis, as measured by 3 H 2 O incorporation, was greater in rats fed 60% fructose than in their glucose fed controls. Both fructose feeding, and fructose feeding plus intraperitoneal fructose injection increased the activities of 6-phosphogluconate dehydrogenase and malic enzyme. Liver PDH activity was increased by fructose feeding, and was increased even more by fructose feeding and injection of fructose, but this was not associated with any changes in hepatic ATP concentrations

  2. Highest Plasma Phenylalanine Levels in (Very Premature Infants on Intravenous Feeding; A Need for Concern.

    Directory of Open Access Journals (Sweden)

    Ernesto Cortés-Castell

    Full Text Available To analyse the association in newborns between blood levels of phenylalanine and feeding method and gestational age.This observational, cross-sectional study included a sample of 11,829 infants between 2008 and 2013 in a Spanish region. Data were recorded on phenylalanine values, feeding method [breast, formula, mixed (breast plus formula, or partial or fully intravenous feeding], gestational age in weeks (<32, 32-37, ≥37, gender and days since birth at the moment of blood collection. Outcomes were [phenylalanine] and [phenylalanine] ≥95th percentile. Associations were analysed using multivariate models [linear (means difference and logistic regression (adjusted odds ratios].Higher phenylalanine values were associated with lower gestational age (p<0.001 and with intravenous feeding (p<0.001.The degree of prematurity and intravenous feeding influenced the plasma concentration of phenylalanine in the newborn. Caution should be taken in [phenylalanine] for newborns with intravenous feeding, monitoring them carefully. Very preterm infants given the recommended amount of amino acids should also be strictly monitored. These findings should be taken into consideration and call for adapting the amounts to the needs of the infant.

  3. No difference in ad libitum energy intake in healthy men and women consuming beverages sweetened with fructose, glucose, or high-fructose corn syrup: a randomized trial1

    Science.gov (United States)

    Kuzma, Jessica N; Cromer, Gail; Hagman, Derek K; Breymeyer, Kara L; Roth, Christian L; Foster-Schubert, Karen E; Holte, Sarah E; Callahan, Holly S; Weigle, David S; Kratz, Mario

    2015-01-01

    Background: Increased energy intake is consistently observed in individuals consuming sugar-sweetened beverages (SSBs), likely mainly because of an inadequate satiety response to liquid calories. However, SSBs have a high content of fructose, the consumption of which acutely fails to trigger responses in key signals involved in energy homeostasis. It is unclear whether the fructose content of SSBs contributes to the increased energy intake in individuals drinking SSBs. Objective: We investigated whether the relative amounts of fructose and glucose in SSBs modifies ad libitum energy intake over 8 d in healthy adults without fructose malabsorption. Design: We conducted 2 randomized, controlled, double-blind crossover studies to compare the effects of consuming 4 servings/d of a fructose-, glucose-, or aspartame-sweetened beverage (study A; n = 9) or a fructose-, glucose-, or high-fructose corn syrup (HFCS)–sweetened beverage (study B; n = 24) for 8 d on overall energy intake. SSBs were provided at 25% of estimated energy requirement, or an equivalent volume of the aspartame-sweetened beverage, and consumption was mandatory. All solid foods were provided at 125% of estimated energy requirements and were consumed ad libitum. Results: In study A, ad libitum energy intake was 120% ± 10%, 117% ± 12%, and 102% ± 15% of estimated energy requirements when subjects consumed the fructose-, glucose-, and aspartame-sweetened beverages. Energy intake was significantly higher in the fructose and glucose phases than in the aspartame phase (P fructose and glucose phases (P = 0.462). In study B, total energy intake during the fructose, HFCS, and glucose phases was 116% ± 14%, 116% ± 16%, and 116% ± 16% of the subject’s estimated total energy requirements (P = 0.880). Conclusions: In healthy adults, total 8-d ad libitum energy intake was increased in individuals consuming SSBs compared with aspartame-sweetened beverages. The energy overconsumption observed in individuals

  4. Characterisation of the Aspergillus nidulans frA1 mutant: hexose phosphorylation and apparent lack of involvement of hexokinase in glucose repression.

    NARCIS (Netherlands)

    Ruijter, G.J.G.; Panneman, H.; Broeck, van den H.C.; Bennett, J.M.; Visser, J.

    1996-01-01

    Hexose phosphorylation was studied in Aspergillus nidulans wild-type and in a fructose non-utilising mutant (frA). The data indicate the presence of at least one hexokinase and one glucokinase in wild-type A. nidulans, while the frA1 mutant lacks hexokinase activity. The A. nidulans gene encoding

  5. The status of Tsukuba BNCT trial: BPA-based boron neutron capture therapy combined with X-ray irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, T., E-mail: tetsu_tsukuba@yahoo.co.jp [Department of Neurosurgery, Graduate School of Comprehensive Human Science, University of Tsukuba, Tennodai 1-1-1, Tsukuba (Japan)] [Department of Radiation Oncology, Graduate School of Comprehensive Human Science, University of Tsukuba, Tennodai 1-1-1, Tsukuba (Japan); Nakai, K. [Department of Neurosurgery, Graduate School of Comprehensive Human Science, University of Tsukuba, Tennodai 1-1-1, Tsukuba (Japan); Nariai, T. [Department of Neurosurgery, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo (Japan); Kumada, H.; Okumura, T.; Mizumoto, M.; Tsuboi, K. [Department of Radiation Oncology, Graduate School of Comprehensive Human Science, University of Tsukuba, Tennodai 1-1-1, Tsukuba (Japan); Zaboronok, A.; Ishikawa, E.; Aiyama, H.; Endo, K.; Takada, T.; Yoshida, F.; Shibata, Y.; Matsumura, A. [Department of Neurosurgery, Graduate School of Comprehensive Human Science, University of Tsukuba, Tennodai 1-1-1, Tsukuba (Japan)

    2011-12-15

    The phase II trial has been prepared to assess the effectiveness of BPA (250 mg/kg)-based NCT combined with X-ray irradiation and temozolomide (75 mg/m{sup 2}) for the treatment of newly diagnosed GBM. BPA uptake is determined by {sup 18}F-BPA-PET and/or {sup 11}C-MET-PET, and a tumor with the lesion to normal ratio of 2 or more is indicated for BNCT. The maximum normal brain point dose prescribed was limited to 13.0 Gy or less. Primary end point is overall survival.

  6. Fructose Induced Endotoxemia in Pediatric Nonalcoholic Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Ran Jin

    2014-01-01

    Full Text Available In preclinical studies of fructose-induced NAFLD, endotoxin appears to play an important role. We retrospectively examined samples from three pediatric cohorts (1 to investigate whether endotoxemia is associated with the presence of hepatic steatosis; (2 to evaluate postprandial endotoxin levels in response to fructose beverage in an acute 24-hour feeding challenge, and (3 to determine the change of fasting endotoxin amounts in a 4-week randomized controlled trial comparing fructose to glucose beverages in NAFLD. We found that adolescents with hepatic steatosis had elevated endotoxin levels compared to obese controls and that the endotoxin level correlated with insulin resistance and several inflammatory cytokines. In a 24-hour feeding study, endotoxin levels in NAFLD adolescents increased after fructose beverages (consumed with meals as compared to healthy children. Similarly, endotoxin was significantly increased after adolescents consumed fructose beverages for 2 weeks and remained high although not significantly at 4 weeks. In conclusion, these data provide support for the concept of low level endotoxemia contributing to pediatric NAFLD and the possible role of fructose in this process. Further studies are needed to determine if manipulation of the microbiome or other methods of endotoxin reduction would be useful as a therapy for pediatric NAFLD.

  7. Effect of the fructose and glucose concentration on the rheological ...

    African Journals Online (AJOL)

    The objective of this work was to study the effect of fructose and glucose content on the rheological behavior of syrups. Initially, high fructose syrup from the fructans present in leaves, bases and head of Agave tequilana Weber blue was obtained. Then, its contents of moisture, ash, fructose, glucose and direct and total ...

  8. Neutron beam measurement dosimetry

    International Nuclear Information System (INIS)

    Amaro, C.R.

    1995-01-01

    This report describes animal dosimetry studies and phantom measurements. During 1994, 12 dogs were irradiated at BMRR as part of a 4 fraction dose tolerance study. The animals were first infused with BSH and irradiated daily for 4 consecutive days. BNL irradiated 2 beagles as part of their dose tolerance study using BPA fructose. In addition, a dog at WSU was irradiated at BMRR after an infusion of BPA fructose. During 1994, the INEL BNCT dosimetry team measured neutron flux and gamma dose profiles in two phantoms exposed to the epithermal neutron beam at the BMRR. These measurements were performed as a preparatory step to the commencement of human clinical trials in progress at the BMRR

  9. Holding thermal receipt paper and eating food after using hand sanitizer results in high serum bioactive and urine total levels of bisphenol A (BPA.

    Directory of Open Access Journals (Sweden)

    Annette M Hormann

    Full Text Available Bisphenol A (BPA is an endocrine disrupting environmental contaminant used in a wide variety of products, and BPA metabolites are found in almost everyone's urine, suggesting widespread exposure from multiple sources. Regulatory agencies estimate that virtually all BPA exposure is from food and beverage packaging. However, free BPA is applied to the outer layer of thermal receipt paper present in very high (∼20 mg BPA/g paper quantities as a print developer. Not taken into account when considering thermal paper as a source of BPA exposure is that some commonly used hand sanitizers, as well as other skin care products, contain mixtures of dermal penetration enhancing chemicals that can increase by up to 100 fold the dermal absorption of lipophilic compounds such as BPA. We found that when men and women held thermal receipt paper immediately after using a hand sanitizer with penetration enhancing chemicals, significant free BPA was transferred to their hands and then to French fries that were eaten, and the combination of dermal and oral BPA absorption led to a rapid and dramatic average maximum increase (Cmax in unconjugated (bioactive BPA of ∼7 ng/mL in serum and ∼20 µg total BPA/g creatinine in urine within 90 min. The default method used by regulatory agencies to test for hazards posed by chemicals is intra-gastric gavage. For BPA this approach results in less than 1% of the administered dose being bioavailable in blood. It also ignores dermal absorption as well as sublingual absorption in the mouth that both bypass first-pass liver metabolism. The elevated levels of BPA that we observed due to holding thermal paper after using a product containing dermal penetration enhancing chemicals have been related to an increased risk for a wide range of developmental abnormalities as well as diseases in adults.

  10. Holding thermal receipt paper and eating food after using hand sanitizer results in high serum bioactive and urine total levels of bisphenol A (BPA).

    Science.gov (United States)

    Hormann, Annette M; Vom Saal, Frederick S; Nagel, Susan C; Stahlhut, Richard W; Moyer, Carol L; Ellersieck, Mark R; Welshons, Wade V; Toutain, Pierre-Louis; Taylor, Julia A

    2014-01-01

    Bisphenol A (BPA) is an endocrine disrupting environmental contaminant used in a wide variety of products, and BPA metabolites are found in almost everyone's urine, suggesting widespread exposure from multiple sources. Regulatory agencies estimate that virtually all BPA exposure is from food and beverage packaging. However, free BPA is applied to the outer layer of thermal receipt paper present in very high (∼20 mg BPA/g paper) quantities as a print developer. Not taken into account when considering thermal paper as a source of BPA exposure is that some commonly used hand sanitizers, as well as other skin care products, contain mixtures of dermal penetration enhancing chemicals that can increase by up to 100 fold the dermal absorption of lipophilic compounds such as BPA. We found that when men and women held thermal receipt paper immediately after using a hand sanitizer with penetration enhancing chemicals, significant free BPA was transferred to their hands and then to French fries that were eaten, and the combination of dermal and oral BPA absorption led to a rapid and dramatic average maximum increase (Cmax) in unconjugated (bioactive) BPA of ∼7 ng/mL in serum and ∼20 µg total BPA/g creatinine in urine within 90 min. The default method used by regulatory agencies to test for hazards posed by chemicals is intra-gastric gavage. For BPA this approach results in less than 1% of the administered dose being bioavailable in blood. It also ignores dermal absorption as well as sublingual absorption in the mouth that both bypass first-pass liver metabolism. The elevated levels of BPA that we observed due to holding thermal paper after using a product containing dermal penetration enhancing chemicals have been related to an increased risk for a wide range of developmental abnormalities as well as diseases in adults.

  11. Holding Thermal Receipt Paper and Eating Food after Using Hand Sanitizer Results in High Serum Bioactive and Urine Total Levels of Bisphenol A (BPA)

    Science.gov (United States)

    Hormann, Annette M.; vom Saal, Frederick S.; Nagel, Susan C.; Stahlhut, Richard W.; Moyer, Carol L.; Ellersieck, Mark R.; Welshons, Wade V.; Toutain, Pierre-Louis; Taylor, Julia A.

    2014-01-01

    Bisphenol A (BPA) is an endocrine disrupting environmental contaminant used in a wide variety of products, and BPA metabolites are found in almost everyone’s urine, suggesting widespread exposure from multiple sources. Regulatory agencies estimate that virtually all BPA exposure is from food and beverage packaging. However, free BPA is applied to the outer layer of thermal receipt paper present in very high (∼20 mg BPA/g paper) quantities as a print developer. Not taken into account when considering thermal paper as a source of BPA exposure is that some commonly used hand sanitizers, as well as other skin care products, contain mixtures of dermal penetration enhancing chemicals that can increase by up to 100 fold the dermal absorption of lipophilic compounds such as BPA. We found that when men and women held thermal receipt paper immediately after using a hand sanitizer with penetration enhancing chemicals, significant free BPA was transferred to their hands and then to French fries that were eaten, and the combination of dermal and oral BPA absorption led to a rapid and dramatic average maximum increase (Cmax) in unconjugated (bioactive) BPA of ∼7 ng/mL in serum and ∼20 µg total BPA/g creatinine in urine within 90 min. The default method used by regulatory agencies to test for hazards posed by chemicals is intra-gastric gavage. For BPA this approach results in less than 1% of the administered dose being bioavailable in blood. It also ignores dermal absorption as well as sublingual absorption in the mouth that both bypass first-pass liver metabolism. The elevated levels of BPA that we observed due to holding thermal paper after using a product containing dermal penetration enhancing chemicals have been related to an increased risk for a wide range of developmental abnormalities as well as diseases in adults. PMID:25337790

  12. Effects of Restricted Fructose Access on Body Weight and Blood Pressure Circadian Rhythms

    Directory of Open Access Journals (Sweden)

    Danielle Senador

    2012-01-01

    Full Text Available High-fructose diet is known to produce cardiovascular and metabolic pathologies. The objective was to determine whether the timing of high fructose (10% liquid solution intake affect the metabolic and cardiovascular outcomes. Male C57BL mice with radiotelemetric probes were divided into four groups: (1 24 h water (control; (2 24 h fructose (F24; (3 12 h fructose during the light phase (F12L; (4 12 h fructose during the dark phase (F12D. All fructose groups had higher fluid intake. Body weight was increased in mice on restricted access with no difference in total caloric intake. Fasting glycemia was higher in groups with restricted access. F24 mice showed a fructose-induced blood pressure increase during the dark period. Blood pressure circadian rhythms were absent in F12L mice. Results suggest that the timing of fructose intake is an important variable in the etiology of cardiovascular and metabolic pathologies produced by high fructose consumption.

  13. Fructose, high-fructose corn syrup, sucrose, and nonalcoholic fatty liver disease or indexes of liver health: a systematic review and meta-analysis.

    Science.gov (United States)

    Chung, Mei; Ma, Jiantao; Patel, Kamal; Berger, Samantha; Lau, Joseph; Lichtenstein, Alice H

    2014-09-01

    Concerns have been raised about the concurrent temporal trend between simple sugar intakes, especially of fructose or high-fructose corn syrup (HFCS), and rates of nonalcoholic fatty liver disease (NAFLD) in the United States. We examined the effect of different amounts and forms of dietary fructose on the incidence or prevalence of NAFLD and indexes of liver health in humans. We conducted a systematic review of English-language, human studies of any design in children and adults with low to no alcohol intake and that reported at least one predetermined measure of liver health. The strength of the evidence was evaluated by considering risk of bias, consistency, directness, and precision. Six observational studies and 21 intervention studies met the inclusion criteria. The overall strength of evidence for observational studies was rated insufficient because of high risk of biases and inconsistent study findings. Of 21 intervention studies, 19 studies were in adults without NAFLD (predominantly healthy, young men) and 1 study each in adults or children with NAFLD. We found a low level of evidence that a hypercaloric fructose diet (supplemented by pure fructose) increases liver fat and aspartate aminotransferase (AST) concentrations in healthy men compared with the consumption of a weight-maintenance diet. In addition, there was a low level of evidence that hypercaloric fructose and glucose diets have similar effects on liver fat and liver enzymes in healthy adults. There was insufficient evidence to draw a conclusion for effects of HFCS or sucrose on NAFLD. On the basis of indirect comparisons across study findings, the apparent association between indexes of liver health (ie, liver fat, hepatic de novo lipogenesis, alanine aminotransferase, AST, and γ-glutamyl transpeptase) and fructose or sucrose intake appear to be confounded by excessive energy intake. Overall, the available evidence is not sufficiently robust to draw conclusions regarding effects of fructose

  14. Application of drug delivery system to boron neutron capture therapy for cancer.

    Science.gov (United States)

    Yanagië, Hironobu; Ogata, Aya; Sugiyama, Hirotaka; Eriguchi, Masazumi; Takamoto, Shinichi; Takahashi, Hiroyuki

    2008-04-01

    Tumor cell destruction in boron neutron capture therapy (BNCT) is due to the nuclear reaction between (10)B and thermal neutrons ((10)B + (1)n --> (7)Li + (4)He (alpha) + 2.31 MeV (93.7 %)/2.79 MeV (6.3 %)). The resulting lithium ions and alphaparticles are high linear energy transfer (LET) particles which give a high biological effect. Their short range in tissue (5 - 9 mum) restricts radiation damage to those cells in which boron atoms are located at the time of neutron irradiation. BNCT has been applied clinically for the treatment of malignant brain tumors, malignant melanoma, head and neck cancer and hepatoma. Sodium mercaptoundecahydro-dodecaborate (Na(2)(10)B(12)H(11)SH: BSH) and borono-phenylalanine ((10)BPA) are currently being used in clinical treatments. These low molecule compounds are easily cleared from cancer cells and blood, so high accumulation and selective delivery of boron compounds into tumor tissues and cancer cells are most important to achieve effective BNCT and to avoid damage to adjacent healthy cells. In order to achieve the selective delivery of boron atoms to cancer cells, a drug delivery system (DDS) is an attractive intelligent technology for targeting and controlled release of drugs. We performed literature searches related to boron delivery systems in vitro and in vivo. We describe several DDS technologies for boron delivery to cancer tissues and cancer cells from the past to current status. We are convinced that it will be possible to use liposomes, monoclonal antibodies and WOW emulsions as boron delivery systems for BNCT clinically in accordance with the preparation of good commercial product (GCP) grade materials.

  15. Age–related psychophysiological vulnerability to phenylalanine in phenylketonuria

    Directory of Open Access Journals (Sweden)

    Vincenzo eLeuzzi

    2014-06-01

    Full Text Available Background. Phenylketonuria (PKU is caused by the inherited defect of the phenylalanine hydroxylase enzyme, which converts phenylalanine (Phe into tyrosine (Tyr. Neonatal screening programs and early treatment have radically changed the natural history of PKU. Nevertheless, an increased risk of neurocognitive and psychiatric problems in adulthood remains a challenging aspect of the disease. In order to assess the vulnerability of complex skills to Phe, we explored: a the effect of a rapid increase in blood Phe levels on event-related potentials (ERP in PKU subjects during their second decade of life; b the association (if existing between psychophysiological and neurocognitive features.Methods. Seventeen early-treated PKU subjects, aged 10 to 20, underwent ERP (Mismatch Negativity, auditory P300, Contingent Negative Variation (CNV, and Intensity Dependence of Auditory Evoked Potentials recording before and 2 hours after an oral loading of Phe. Neurocognitive functioning, historical and concurrent biochemical values of blood Phe, Tyr, and Phe/Tyr ratio, were all included in the statistical analysis.Results. ERP components were normally detected in all the subjects. In subjects younger than 13 CNV amplitude, W2-CNV area, P3b latency, and Reaction Times in motor responses were negatively influenced by Phe loading. Independently from the psychophysiological vulnerability, some neurocognitive skills were more impaired in younger patients. No correlation was found between biochemical alterations and neurocognitive and psychophysiological findings. Conclusion. The vulnerability of the emerging neurocognitive functions to Phe suggests a strict metabolic control in adolescents affected by PKU and a neurodevelopmental approach in the study of neurocognitive outcome in PKU.

  16. The effects of high fructose syrup.

    Science.gov (United States)

    Moeller, Suzen M; Fryhofer, Sandra Adamson; Osbahr, Albert J; Robinowitz, Carolyn B

    2009-12-01

    High fructose corn syrup (HFCS) has become an increasingly common food ingredient in the last 40 years. However, there is concern that HFCS consumption increases the risk for obesity and other adverse health outcomes compared to other caloric sweeteners. The most commonly used types of HFCS (HFCS-42 and HFCS-55) are similar in composition to sucrose (table sugar), consisting of roughly equal amounts of fructose and glucose. The primary difference is that these monosaccharides exist free in solution in HFCS, but in disaccharide form in sucrose. The disaccharide sucrose is easily cleaved in the small intestine, so free fructose and glucose are absorbed from both sucrose and HFCS. The advantage to food manufacturers is that the free monosaccharides in HFCS provide better flavor enhancement, stability, freshness, texture, color, pourability, and consistency in foods in comparison to sucrose. Because the composition of HFCS and sucrose is so similar, particularly on absorption by the body, it appears unlikely that HFCS contributes more to obesity or other conditions than sucrose does. Nevertheless, few studies have evaluated the potentially differential effect of various sweeteners, particularly as they relate to health conditions such as obesity, which develop over relatively long periods of time. Improved nutrient databases are needed to analyze food consumption in epidemiologic studies, as are more strongly designed experimental studies, including those on the mechanism of action and relationship between fructose dose and response. At the present time, there is insufficient evidence to ban or otherwise restrict use of HFCS or other fructose-containing sweeteners in the food supply or to require the use of warning labels on products containing HFCS. Nevertheless, dietary advice to limit consumption of all added caloric sweeteners, including HFCS, is warranted.

  17. Maternal dietary free or bound fructose diversely influence developmental programming of lipogenesis.

    Science.gov (United States)

    Yuruk, Armagan Aytug; Nergiz-Unal, Reyhan

    2017-12-01

    Maternal dietary choices throughout preconception, pregnancy, and lactation irreversibly affect the development of fetal tissues and organs, known as fetal programming. Recommendations tend to emphasize reducing added sugars. However, the impact of maternal dietary free or bound fructose in added sugars on developmental programming of lipogenesis is unknown. Virgin Sprague-Dawley rats were randomly divided into five groups. Rats were given feed and plain water (control) or water containing maltodextrin (vehicle), fructose, high-fructose corn syrup (HFCS) containing 55% fructose, sucrose (20% w/v) for 12 weeks before mating and throughout the pregnancy and lactation periods. Body weight, water, and feed intake were measured throughout the study. At the end of the lactation period, blood was drawn to determine the fasting levels of glucose, insulin, triglycerides, and non-esterified fatty acids (NEFA) in blood. Triglycerides and acetyl Co-A Carboxylase-1 (ACC1) levels in livers were analyzed, and insulin resistance was calculated. The energy intake of dams in the HFCS group was higher than in the fructose group, while weight gain was less in the HFCS group than in the fructose group. HFCS resulted in greater insulin resistance in dams, whereas free fructose had a robust effect on the fetal programming of insulin resistance. Free fructose and HFCS in the maternal diet increased blood and liver triglycerides and NEFA content in pups. Furthermore, fructose and HFCS exposure increased phosphorylated ACC1 as compared to maltodextrin and control, indicating greater fatty acid synthesis in pups and dams. Different types of added sugar in the maternal diet have different metabolic effects on the developmental programming of lipogenesis. Consequently, high fructose intake via processed foods may increase the risk for chronic diseases, and free fructose might contribute to developmental programming of chronic diseases more than bound fructose.

  18. Surface plasmon resonance spectroscopic study of UV-addressable phenylalanine sensing based on a self-assembled spirooxazine derivative monolayer

    International Nuclear Information System (INIS)

    Suk, Shinae; Suh, Hee-Jung; Gun An, Won; Kim, Jae-Ho; Jin, Sung-Ho; Kim, Sung-Hoon; Gal, Yeong-Soon; Koh, Kwangnak

    2004-01-01

    Light-addressable compounds are very interesting due to the possibilities of their practical use such as optical switches and memories or variable transmission materials. For example, transportation of phenylalanine across liposomal bilayers mediated by a photoresponsive carrier like spirooxazine through electrostatic interaction between phenylalanine and spirooxazine derivative. Thus, the spirooxazine is expected to form a UV-addressable phenylalanine sensing interface. In this study, we prepared phenylalanine sensing interface of a spirooxazine derivative by self-assembly technique and evaluated interaction between a spirooxazine moiety and phenylalanine with a surface plasmon resonance (SPR). The refractive index change of monolayer caused by interaction between a spirooxazine derivative and phenylalanine led to the SPR angle shifts upon UV irradiation. The SPR angle shift increased with increasing the concentration of phenylalanine solution. These results indicated that the spirooxazine derivative self-assembled monolayer (SAM) has an application potential for UV-addressable phenylalanine sensing

  19. D-tagatose, a stereoisomer of D-fructose, increases blood uric acid concentration.

    Science.gov (United States)

    Buemann, B; Toubro, S; Holst, J J; Rehfeld, J F; Bibby, B M; Astrup, A

    2000-08-01

    D-Fructose has been found to increase uric acid production by accelerating the degradation of purine nucleotides, probably due to hepatocellular depletion of inorganic phosphate (Pi) by an accumulation of ketohexose-1-phosphate. The hyperuricemic effect of D-tagatose, a stereoisomer of D-fructose, may be greater than that of D-fructose, as the subsequent degradation of D-tagatose-1-phosphate is slower than the degradation of D-fructose-1-phosphate. We tested the effect of 30 g oral D-tagatose versus D-fructose on plasma uric acid and other metabolic parameters in 8 male subjects by a double-blind crossover design. Both the peak concentration and 4-hour area under the curve (AUC) of serum uric acid were significantly higher after D-tagatose compared with either 30 g D-fructose or plain water. The decline in serum Pi concentration was greater at 50 minutes after D-tagatose versus D-fructose. The thermogenic and lactacidemic responses to D-tagatose were blunted compared with D-fructose. D-Tagatose attenuated the glycemic and insulinemic responses to a meal that was consumed 255 minutes after its administration. Moreover, both fructose and D-tagatose increased plasma concentrations of cholecystokinin (CCK) and glucagon-like peptide-1 (GLP-1). The metabolic effects of D-tagatose occurred despite its putative poor absorption.

  20. Fructose Mediated Non-Alcoholic Fatty Liver Is Attenuated by HO-1-SIRT1 Module in Murine Hepatocytes and Mice Fed a High Fructose Diet.

    Directory of Open Access Journals (Sweden)

    Komal Sodhi

    Full Text Available Oxidative stress underlies the etiopathogenesis of nonalcoholic fatty liver disease (NAFLD, obesity and cardiovascular disease (CVD. Heme Oxygenase-1 (HO-1 is a potent endogenous antioxidant gene that plays a key role in decreasing oxidative stress. Sirtuin1 (SIRT1 belongs to the family of NAD-dependent de-acyetylases and is modulated by cellular redox.We hypothesize that fructose-induced obesity creates an inflammatory and oxidative environment conducive to the development of NAFLD and metabolic syndrome. The aim of this study is to determine whether HO-1 acts through SIRT1 to form a functional module within hepatocytes to attenuate steatohepatitis, hepatic fibrosis and cardiovascular dysfunction.We examined the effect of fructose, on hepatocyte lipid accumulation and fibrosis in murine hepatocytes and in mice fed a high fructose diet in the presence and absence of CoPP, an inducer of HO-1, and SnMP, an inhibitor of HO activity. Fructose increased oxidative stress markers and decreased HO-1 and SIRT1 levels in hepatocytes (p<0.05. Further fructose supplementation increased FAS, PPARα, pAMPK and triglycerides levels; CoPP negated this increase. Concurrent treatment with CoPP and SIRT1 siRNA in hepatocytes increased FAS, PPARα, pAMPK and triglycerides levels suggesting that HO-1 is upstream of SIRT1 and suppression of SIRT1 attenuates the beneficial effects of HO-1. A high fructose diet increased insulin resistance, blood pressure, markers of oxidative stress and lipogenesis along with fibrotic markers in mice (p<0.05. Increased levels of HO-1 increased SIRT1 levels and ameliorated fructose-mediated lipid accumulation and fibrosis in liver along with decreasing vascular dysfunction (p<0.05 vs. fructose. These beneficial effects of CoPP were reversed by SnMP.Taken together, our study demonstrates, for the first time, that HO-1 induction attenuates fructose-induced hepatic lipid deposition, prevents the development of hepatic fibrosis and abates

  1. Kinetic and stoichiometric modelling of acidogenic fermentation of glucose and fructose

    International Nuclear Information System (INIS)

    Fernandez, F.J.; Villasenor, J.; Infantes, D.

    2011-01-01

    In this work, a model based on Monod equation for the description of the acidogenic fermentation of glucose and fructose as the main substrates contained in the winery wastewater was developed. The data used for calibration and validation of the model parameters were obtained from an acidogenic mixed culture fermenting glucose and fructose in a batch reactor at 35 o C and pH 5. The calibrated model accurately describes the experimental results from biomass growth, substrate consumption and fermentation products generation. The results showed that the microorganisms growth rate and biomass yield were higher when glucose was used as substrate: μ max-Glucose = 0.163 h -1 , μ max-Fructose = 0.108 h -1 , Y x-Glucose = 0.027 g VSS per mmol Glucose and Y x-Fructose 0.017 g VSS per mmol Fructose. Regarding to the fermentation products, the acetic acid was the main fermentation product obtained in both fermentations, followed by lactic and butyric acid. Comparing glucose and fructose fermentations, the main difference was the yield of butyric acid in both fermentations, 0.249 mol per mol Glucose and 0.131 mol per mol Fructose since the other acids concentration were quite similar. In the case of the H 2 production, it was 0.76 mol H 2 per mol Glucose while 0.85 was the yield in fructose fermentation. -- Highlights: → Acidogenic fermentation of glucose and fructose was studied. → A model describing the kinetics and stoichiometry of the fermentation was developed. → The model developed predicted accurately the substrate, products and biomass profiles along the fermentation process. → The microorganisms growth rate was higher in the glucose fermentation. → The fructose fermentation presented higher hydrogen yields.

  2. Divergent effects of glucose and fructose on hepatic lipogenesis and insulin signaling.

    Science.gov (United States)

    Softic, Samir; Gupta, Manoj K; Wang, Guo-Xiao; Fujisaka, Shiho; O'Neill, Brian T; Rao, Tata Nageswara; Willoughby, Jennifer; Harbison, Carole; Fitzgerald, Kevin; Ilkayeva, Olga; Newgard, Christopher B; Cohen, David E; Kahn, C Ronald

    2017-11-01

    Overconsumption of high-fat diet (HFD) and sugar-sweetened beverages are risk factors for developing obesity, insulin resistance, and fatty liver disease. Here we have dissected mechanisms underlying this association using mice fed either chow or HFD with or without fructose- or glucose-supplemented water. In chow-fed mice, there was no major physiological difference between fructose and glucose supplementation. On the other hand, mice on HFD supplemented with fructose developed more pronounced obesity, glucose intolerance, and hepatomegaly as compared to glucose-supplemented HFD mice, despite similar caloric intake. Fructose and glucose supplementation also had distinct effects on expression of the lipogenic transcription factors ChREBP and SREBP1c. While both sugars increased ChREBP-β, fructose supplementation uniquely increased SREBP1c and downstream fatty acid synthesis genes, resulting in reduced liver insulin signaling. In contrast, glucose enhanced total ChREBP expression and triglyceride synthesis but was associated with improved hepatic insulin signaling. Metabolomic and RNA sequence analysis confirmed dichotomous effects of fructose and glucose supplementation on liver metabolism in spite of inducing similar hepatic lipid accumulation. Ketohexokinase, the first enzyme of fructose metabolism, was increased in fructose-fed mice and in obese humans with steatohepatitis. Knockdown of ketohexokinase in liver improved hepatic steatosis and glucose tolerance in fructose-supplemented mice. Thus, fructose is a component of dietary sugar that is distinctively associated with poor metabolic outcomes, whereas increased glucose intake may be protective.

  3. Short-term fructose ingestion affects the brain independently from establishment of metabolic syndrome.

    Science.gov (United States)

    Jiménez-Maldonado, Alberto; Ying, Zhe; Byun, Hyae Ran; Gomez-Pinilla, Fernando

    2018-01-01

    Chronic fructose ingestion is linked to the global epidemic of metabolic syndrome (MetS), and poses a serious threat to brain function. We asked whether a short period (one week) of fructose ingestion potentially insufficient to establish peripheral metabolic disorder could impact brain function. We report that the fructose treatment had no effect on liver/body weight ratio, weight gain, glucose tolerance and insulin sensitivity, was sufficient to reduce several aspects of hippocampal plasticity. Fructose consumption reduced the levels of the neuronal nuclear protein NeuN, Myelin Basic Protein, and the axonal growth-associated protein 43, concomitant with a decline in hippocampal weight. A reduction in peroxisome proliferator-activated receptor gamma coactivator-1 alpha and Cytochrome c oxidase subunit II by fructose treatment is indicative of mitochondrial dysfunction. Furthermore, the GLUT5 fructose transporter was increased in the hippocampus after fructose ingestion suggesting that fructose may facilitate its own transport to brain. Fructose elevated levels of ketohexokinase in the liver but did not affect SIRT1 levels, suggesting that fructose is metabolized in the liver, without severely affecting liver function commensurable to an absence of metabolic syndrome condition. These results advocate that a short period of fructose can influence brain plasticity without a major peripheral metabolic dysfunction. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Contribution of a submerged membrane bioreactor in the treatment of synthetic effluent contaminated by Bisphenol-A: Mechanism of BPA removal and membrane fouling

    International Nuclear Information System (INIS)

    Seyhi, Brahima; Drogui, Patrick; Buelna, Gerardo; Azaïs, Antonin; Heran, Marc

    2013-01-01

    A submerged membrane bioreactor has been operated at the laboratory scale for the treatment of a synthetic effluent containing Bisphenol-A (BPA). COD, NH 4 –N, PO 4 –P and BPA were eliminated respectively, at 99%, 99%, 61% and 99%. The increase of volumetric loading rate from 0 to 21.6 g/m 3 /d did not affect the performance of the MBR system. However, the removal rate decreased rapidly when the BPA loading rate increased above 21.6 g/m 3 /d. The adsorption process of BPA on the biomass was very well described by Freundlich and Langmuir isotherms. Subsequently, biodegradation of BPA occurred and followed the first order kinetic reaction, with a constant rate of 1.13 ± 0.22 h −1 . During treatment, membrane fouling was reversible in the first 84 h of filtration, and then became irreversible. The membrane fouling was mainly due to the accumulation of suspended solid and development of biofilm on the membrane surface. -- Highlights: •High BPA removal rates (up to 99%) were obtained in the MBR. •A limit of the toxicity of 21.6 g/m 3 /d of BPA was recorded for the MBR. •The first order kinetic model described very well the biodegradation process for BPA. •The kinetic rates (0.61–1.13 h −1 ) depend on BPA loading (0.10–0.50 mg/g TSS). •The initial organic loading (0.04 and 0.20 g COD g −1 TSS) did not affect the kinetic. -- High BPA removal rates (up to 99%) were obtained in the MBR, with a limit of the toxicity closed to 21.6 g/m 3 /d of BPA

  5. Microcirculatory effects of zinc on fructose-fed hamsters.

    Science.gov (United States)

    Castiglione, R C; Barros, C M M R; Boa, B C S; Bouskela, E

    2016-04-01

    Fructose is a major dietary component directly related to vascular dysfunction and diseases such as obesity, diabetes, and hypertension. Zinc is considered a non-pharmacological alternative for treating diabetes due to its antioxidant and hyperglycemia-lowering effects in diabetic animals. Therefore, the aim of this study was to evaluate the effects of dietary zinc supplementation on the microcirculatory parameters of fructose-fed hamsters. Male hamsters (Mesocricetus auratus) were fed drinking water substituted by 10% fructose solution for 60 days, whereas control animals were fed drinking water alone. Their microcirculatory function was evaluated using cheek pouch preparation, as well as their blood glucose and serum insulin levels. Their microcirculatory responses to acetylcholine (ACh, an endothelium-dependent vasodilator) and to sodium nitroprusside (SNP, an endothelium-independent vasodilator) as well as the increase in macromolecular permeability induced by 30 min of ischemia/reperfusion (I/R) were noted. Endothelium-dependent vasodilation was significantly increased in control animals with high zinc supplementation compared to the groups without zinc supplementation. Zinc was able to protect against plasma leakage induced by I/R in all control and fructose-fed groups, although the microvascular permeability was higher in animals fed drinking water substituted by 10% fructose solution compared to those fed filtered drinking water alone. Our results indicate that dietary zinc supplementation can improve microvascular dysfunction by increasing endothelial-dependent dilatation and reducing the increase in macromolecular permeability induced by I/R in fructose-fed animals. Copyright © 2015 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by Elsevier B.V. All rights reserved.

  6. Effects of high fructose diets on central appetite signaling and cognitive function

    Directory of Open Access Journals (Sweden)

    Katrien eLowette

    2015-03-01

    Full Text Available The consumption of fructose has increased tremendously over the last five decades, which is to a large extent due to the development of high fructose corn syrup (HFCS, a commercial sugar additive that contains high amounts of free fructose. HFCS is often added to processed food and beverages partly because it is a powerful sweetener but even more so because the production is cheap. Although fructose in combination with fiber, vitamins and minerals, as present in fruits, is a healthy source of energy, isolated fructose, in processed food products has been associated with several health disorders such as insulin resistance and hypertension. Apart from its metabolic consequences, a growing body of literature suggests that free fructose can also affect neuronal systems. High fructose intake may on the one hand affect central appetite regulation by altering specific components of the endocannabinoid system. On the other hand it appears to impact on cognitive function by affecting phosphorylation levels of insulin receptor, synapsin 1 and synaptophysin. The present report reviews the recent evidence showing a negative effect of free fructose consumption on central appetite control, as well as cognitive function.

  7. Staphylococcus aureus host cell invasion and virulence in sepsis is facilitated by the multiple repeats within FnBPA.

    Directory of Open Access Journals (Sweden)

    Andrew M Edwards

    2010-06-01

    Full Text Available Entry of Staphylococcus aureus into the bloodstream can lead to metastatic abscess formation and infective endocarditis. Crucial to the development of both these conditions is the interaction of S. aureus with endothelial cells. In vivo and in vitro studies have shown that the staphylococcal invasin FnBPA triggers bacterial invasion of endothelial cells via a process that involves fibronectin (Fn bridging to alpha(5beta(1 integrins. The Fn-binding region of FnBPA usually contains 11 non-identical repeats (FnBRs with differing affinities for Fn, which facilitate the binding of multiple Fn molecules and may promote integrin clustering. We thus hypothesized that multiple repeats are necessary to trigger the invasion of endothelial cells by S. aureus. To test this we constructed variants of fnbA containing various combinations of FnBRs. In vitro assays revealed that endothelial cell invasion can be facilitated by a single high-affinity, but not low-affinity FnBR. Studies using a nisin-inducible system that controlled surface expression of FnBPA revealed that variants encoding fewer FnBRs required higher levels of surface expression to mediate invasion. High expression levels of FnBPA bearing a single low affinity FnBR bound Fn but did not invade, suggesting that FnBPA affinity for Fn is crucial for triggering internalization. In addition, multiple FnBRs increased the speed of internalization, as did higher expression levels of FnBPA, without altering the uptake mechanism. The relevance of these findings to pathogenesis was demonstrated using a murine sepsis model, which showed that multiple FnBRs were required for virulence. In conclusion, multiple FnBRs within FnBPA facilitate efficient Fn adhesion, trigger rapid bacterial uptake and are required for pathogenesis.

  8. Carbonyl complexes of rhodium with N-donor ligands: factors determining the formation of terminal versus bridging carbonyls

    NARCIS (Netherlands)

    Dzik, W.I.; Creusen, C.; de Gelder, R.; Peters, T.P.J.; Smits, J.M.M.; de Bruin, B.

    2010-01-01

    Cationic rhodium carbonyl complexes supported by a series of different N-3- and N-4-donor ligands were prepared, and their ability to form carbonyl-bridged species was evaluated. Complex [Rh(K3-bpa)(cod)r (1(+)) (bpa = bis(2-picolyBamine, cod = cis,cis-1,5-cyclooctadiene) reacts with I bar of CO to

  9. Selected Phytochemicals and Culinary Plant Extracts Inhibit Fructose Uptake in Caco-2 Cells.

    Science.gov (United States)

    Lee, Yurim; Lim, Yeni; Kwon, Oran

    2015-09-18

    This study compared the ability of nine culinary plant extracts containing a wide array of phytochemicals to inhibit fructose uptake and then explored the involvement of intestinal fructose transporters and phytochemicals for selected samples. The chemical signature was characterized by high performance liquid chromatography with mass spectrometry. Inhibition of [(14)C]-fructose uptake was tested by using human intestinal Caco-2 cells. Then, the relative contribution of the two apical-facing intestinal fructose transporters, GLUT2 and GLUT5, and the signature components for fructose uptake inhibition was confirmed in naive, phloretin-treated and forskolin-treated Caco-2 cells. HPLC/MS analysis of the chemical signature revealed that guava leaf contained quercetin and catechin, and turmeric contained curcumin, bisdemethoxycurcumin and dimethoxycurcumin. Similar inhibition of fructose uptake (by ~50%) was observed with guava leaf and turmeric in Caco-2 cells, but with a higher contribution of GLUT2 for turmeric and that of GLUT5 for guava leaf. The data suggested that, in turmeric, demethoxycurcumin specifically contributed to GLUT2-mediated fructose uptake inhibition, and curcumin did the same to GLUT5-mediated fructose uptake inhibition, but GLUT2 inhibition was more potent. By contrast, in guava leaf, catechin specifically contributed to GLUT5-mediated fructose uptake inhibition, and quercetin affected both GLUT5- and GLUT2-mediated fructose uptake inhibition, resulting in the higher contribution of GLUT5. These results suggest that demethoxycurcumin is an important contributor to GLUT2-mediated fructose uptake inhibition for turmeric extract, and catechin is the same to GLUT5-mediated fructose uptake inhibition for guava leaf extract. Quercetin, curcumin and bisdemethoxycurcumin contributed to both GLUT5- and GLUT2-mediated fructose uptake inhibition, but the contribution to GLUT5 inhibition was higher than the contribution to GLUT2 inhibition.

  10. High fructose intake fails to induce symptomatic adaptation but may induce intestinal carriers

    Directory of Open Access Journals (Sweden)

    Debra Heilpern

    2010-01-01

    Full Text Available Fructose has several interactions in man, including intolerance and promotion of some diseases. However, fructose in fruits and in prebiotics may be associated with benefits. Adaptation to regular fructose ingestion as defined for lactose could support a beneficial rather than a deleterious effect. This study was undertaken to evaluate symptomatic response and potential underlying mechanisms of fecal bacterial change and breath hydrogen response to short term regular fructose supplementation. Forty-five participants were recruited for a 3 day recall diet questionnaire and a 50 g fructose challenge. Breath hydrogen was measured for 4.5 hrs and symptoms were recorded. Thirty-eight subjects provided stool samples for analysis by selective culture of 4 groups of bacteria, including bifidobacteria and lactobacilli. Intolerant subjects returned a second time 15 days later. Ten of these served as controls and 16 received 30 g fructose twice a day. Ten of the latter returned 27 days later, after stopping fructose for a third challenge test. Student’s paired, unpaired t-tests and Pearson correlations were used. Significance was accepted at P<0.05. After fructose rechallenge there were no significant reductions in symptoms scores in volunteers in either the fructose supplemented or non supplemented groups. However, total breath hydrogen was reduced between test 1 and test 2 (P=0.03 or test 3 (P=0.04 in the group given fructose then discontinued, compared with controls. There were no statistically significant changes in bacterial numbers between test 2 and 1. This study shows that regular consumption of high dose fructose does not follow the lactose model of adaptation. Observed changes in hydrogen breath tests raise the possibility that intestinal carriers of fructose may be induced potentially aggravating medical problems attributed to fructose.

  11. Fructose, high-fructose corn syrup, sucrose, and nonalcoholic fatty liver disease or indexes of liver health: a systematic review and meta-analysis1234

    Science.gov (United States)

    Chung, Mei; Ma, Jiantao; Patel, Kamal; Berger, Samantha; Lau, Joseph; Lichtenstein, Alice H

    2014-01-01

    Background: Concerns have been raised about the concurrent temporal trend between simple sugar intakes, especially of fructose or high-fructose corn syrup (HFCS), and rates of nonalcoholic fatty liver disease (NAFLD) in the United States. Objective: We examined the effect of different amounts and forms of dietary fructose on the incidence or prevalence of NAFLD and indexes of liver health in humans. Design: We conducted a systematic review of English-language, human studies of any design in children and adults with low to no alcohol intake and that reported at least one predetermined measure of liver health. The strength of the evidence was evaluated by considering risk of bias, consistency, directness, and precision. Results: Six observational studies and 21 intervention studies met the inclusion criteria. The overall strength of evidence for observational studies was rated insufficient because of high risk of biases and inconsistent study findings. Of 21 intervention studies, 19 studies were in adults without NAFLD (predominantly healthy, young men) and 1 study each in adults or children with NAFLD. We found a low level of evidence that a hypercaloric fructose diet (supplemented by pure fructose) increases liver fat and aspartate aminotransferase (AST) concentrations in healthy men compared with the consumption of a weight-maintenance diet. In addition, there was a low level of evidence that hypercaloric fructose and glucose diets have similar effects on liver fat and liver enzymes in healthy adults. There was insufficient evidence to draw a conclusion for effects of HFCS or sucrose on NAFLD. Conclusions: On the basis of indirect comparisons across study findings, the apparent association between indexes of liver health (ie, liver fat, hepatic de novo lipogenesis, alanine aminotransferase, AST, and γ-glutamyl transpeptase) and fructose or sucrose intake appear to be confounded by excessive energy intake. Overall, the available evidence is not sufficiently robust

  12. Circadian Rhythmicity in the Activities of Phenylalanine Ammonia-Lyase from Lemna perpusilla and Spirodela polyrhiza 1

    Science.gov (United States)

    Gordon, William R.; Koukkari, Willard L.

    1978-01-01

    The oscillations in phenylalanine ammonia-lyase activity from Spirodela polyrhiza and phenylalanine ammonia-lyase and tyrosine ammonia-lyase activities from Lemna perpusilla displayed a circadian rhythm under continuous light. Rhythmicity in enzymic activity could not be detected in continuous darkness since under this condition phenylalanine ammonia-lyase activity remains at a fairly constantly low level. Results from our studies of the oscillatory pattern of the respective activities of phenylalanine and tyrosine ammonia-lyase support their “inseparability.” PMID:16660569

  13. Fructose and related food carbohydrates. Sources, intake, absorption, and clinical implications

    DEFF Research Database (Denmark)

    Rumessen, J J

    1992-01-01

    It is possible to point out subjects consuming considerable quantities of fructose and sorbitol, and the intake seems to be increasing both from added and natural sources. Studies of the absorption of fructose in animals are inconsistent, and the mechanisms of fructose uptake seem to vary...... in accordance with the species. In most species fructose absorption takes place by a specific carrier (facilitated transport), but it may be active in the rat. In vitro studies of human intestine are very scarce; there is no evidence of active intestinal fructose transport in the human intestine. By means...... interest. Fructans are not absorbed in the small intestine but are strongly fermented in the large bowel. Fructans may be of potential benefit for large-bowel function and blood glucose regulation....

  14. Direct site-directed photocoupling of proteins onto surfaces coated with β-cyclodextrins

    DEFF Research Database (Denmark)

    Städe, Lars W; Wimmer, Reinhard; Stensballe, Allan

    2010-01-01

    . Insertion of pBpa was verified by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectroscopy. A molecular dynamic simulation, with water as solvent, showed high solvent accessibility of the pBpa benzophenone group in N27pBpa-cutinase mutant. The formation of an inclusion......A method called Dock'n'Flash was developed to offer site-specific capture and direct UVA-induced photocoupling of recombinant proteins. The method involves the tagging of recombinant proteins with photoreactive p-benzoyl-L-phenylalanine (pBpa) by genetic engineering. The photoreactive pBpa tag...... is used for affinity capture of the recombinant protein by beta-cyclodextrin (beta-CD), which provides hydrogen atoms to be abstracted in the photocoupling process. To exemplify the method, a recombinant, folded, and active N27pBpa mutant of cutinase from Fusarium solani pisi was produced in E. coli...

  15. Preparation of 5-hydroxymethylfurfuraldehyde from high fructose corn syrup and other carbohydrates

    Energy Technology Data Exchange (ETDEWEB)

    Szmant, H H; Chundury, D D

    1981-01-01

    5-Hydroxymethylfurfuraldehyde (HMF) was prepared from high fructose corn syrup (HFCS), or crystalline D-fructose, in high yield and purity. A 95%-97% conversion of fructose to HMF was achieved using 25 mol% (based on fructose) boron trifluoride etherate catalyst in dimethyl sulphoxide, under a nitrogen atmosphere, a reaction temperature of 273 K, and 30 minutes reaction time. Inferior yields of HMF were obtained from glucose and starch.

  16. Lactose and Fructose Intolerance in Turkish Children with Chronic Abdominal Pain.

    Science.gov (United States)

    Yuce, Ozlem; Kalayci, Ayhan Gazi; Comba, Atakan; Eren, Esra; Caltepe, Gonul

    2016-05-08

    To investigate the prevalence of lactose and fructose intolerance in children with chronic abdominal pain. Hydrogen breath tests were done to detect lactose and fructose malabsorption in 86 children with chronic abdominal pain (44 irritable bowel syndrome, 24 functional abdominal pain and 17 functional abdominal pain syndrome as per Rome III criteria) presenting to a Pediatric Gastroentreology department. 14 (16.3%) of patients were diagnosed with lactose intolerance and 11 (12.8%) with fructose intolerance. Lactose and fructose intolerance in children can lead to chronic abdominal pain and symptoms improve with dietary modifications.

  17. Dynamics of bisphenol A (BPA) and bisphenol S (BPS) in the European paper cycle: Need for concern?

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn; Laner, David; Astrup, Thomas Fruergaard

    2018-01-01

    in toxicological profiles have raised concerns that the use of bisphenol S (BPS) as a substitute for BPA may result in yet another situation of a problematic chemical being distributed in consumer products. This study provides a comprehensive evaluation of the current knowledge of BPA and BPS use in thermal paper...

  18. Malabsorption of fructose-sorbitol mixtures. Interactions causing abdominal distress

    DEFF Research Database (Denmark)

    Rumessen, J J; Gudmand-Høyer, E

    1987-01-01

    Hydrogen breath tests were performed on 10 healthy adults after they had ingested a mixture of sorbitol and fructose, in which these substances were present in amounts corresponding to the individual absorption capacities. A significant malabsorption of this mixture was evident in 7 of 10 subjects....... The mixture caused mild to severe gastrointestinal distress in five subjects. When the carbohydrates were given separately, symptoms were absent. There was a significant correlation between the individual absorption capacities of fructose and of sorbitol. A mixture containing a similar amount of fructose......, but given as sucrose, and a similar amount of sorbitol was further given to four of the seven subjects showing malabsorption of the fructose-sorbitol mixture. Malabsorption now failed to appear, and symptoms were absent. These findings are of potential importance for the understanding of the physiologic...

  19. Neutrotoxic effects of fructose administration in rat brain: implications for fructosemia

    Directory of Open Access Journals (Sweden)

    Ernesto A. Macongonde

    2015-08-01

    Full Text Available Fructose accumulates in tissue and body fluids of patients affected by hereditary fructose intolerance (HFI, a disorder caused by the deficiency of aldolase B. We investigated the effect of acute fructose administration on the biochemical profile and on the activities of the Krebs cycle enzymes in the cerebral cortex of young rats. Rats received a subcutaneous injection of NaCl (0.9 %; control group or fructose solution (5 μmol/g; treated group. Twelve or 24 h after the administration, the animals were euthanized and the cerebral cortices were isolated. Peripheral blood (to obtain the serum and cerebral spinal fluid (CSF from the animals were also collected. It was observed that albumin levels were decreased and cholesterol levels were increased in CSF of animals 12 h after the administration of fructose. In addition, serum lactate levels were increased 12 h after the administration, as compared to control group. Furthermore, malate dehydrogenase activity was increased in cerebral cortex from treated group 24 h after the administration of this carbohydrate. Herein we demonstrate that fructose administration alters biochemical parameters in CSF and serum and bioenergetics parameters in the cerebral cortex. These findings indicate a possible role of fructose on brain alterations found in HFI patients.

  20. Vascular parameters continue to decrease post-exposure with simultaneous, but not individual exposure to BPA and hypoxia in zebrafish larvae.

    Science.gov (United States)

    Cypher, Alysha D; Fetterman, Bryce; Bagatto, Brian

    2018-04-01

    How fish respond to hypoxia, a common stressor, can be altered by simultaneous exposure to pollutants like bisphenol A (BPA), a plasticizer. BPA is cardiotoxic and interferes with the hypoxia inducible factor pathway (HIF-1α), therefore disrupting the hypoxic response. Co-exposure to hypoxia and BPA also causes severe bradycardia and reduced cardiac output in zebrafish larvae. The purpose of this work was to determine how the cardiovascular effects of co-exposure vary with BPA concentration and persist beyond exposure. Zebrafish embryos were exposed to 0, 0.01, 0.1, 1, and 100 μg/L of BPA during normoxia (>6.0 mg/L O 2 ) and hypoxia (2.0 ± 0.5 mg/L O 2 ) between 1 h post fertilization (hpf) and late hatching (72-96 hpf). Heart rate, cardiac output, and red blood cell (RBC) velocity were determined through video microscopy and digital motion analysis at late hatching and 10 days post fertilization (dpf), several days post exposure. In comparison to the hypoxic control, RBC velocity was 25% lower with 0.01 μg/L BPA and hypoxia at late hatching. At 10 dpf, the difference in RBC velocity between these treatments doubled, despite several days of recovery. This coincided with a 24% thinner outer diameter for caudal vein but no effect on cardiac or developmental parameters. Statistical interactions between BPA and oxygen concentration were found for arterial RBC velocity at both ages. Because the co-occurrence of both stressors is extremely common, it would be beneficial to understand how BPA and hypoxia interact to affect cardiovascular function during and after exposure. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Prenatal exposure to BPA alters the epigenome of the rat mammary gland and increases the propensity to neoplastic development.

    Directory of Open Access Journals (Sweden)

    Eugen Dhimolea

    Full Text Available Exposure to environmental estrogens (xenoestrogens may play a causal role in the increased breast cancer incidence which has been observed in Europe and the US over the last 50 years. The xenoestrogen bisphenol A (BPA leaches from plastic food/beverage containers and dental materials. Fetal exposure to BPA induces preneoplastic and neoplastic lesions in the adult rat mammary gland. Previous results suggest that BPA acts through the estrogen receptors which are detected exclusively in the mesenchyme during the exposure period by directly altering gene expression, leading to alterations of the reciprocal interactions between mesenchyme and epithelium. This initiates a long sequence of altered morphogenetic events leading to neoplastic transformation. Additionally, BPA induces epigenetic changes in some tissues. To explore this mechanism in the mammary gland, Wistar-Furth rats were exposed subcutaneously via osmotic pumps to vehicle or 250 µg BPA/kg BW/day, a dose that induced ductal carcinomas in situ. Females exposed from gestational day 9 to postnatal day (PND 1 were sacrificed at PND4, PND21 and at first estrus after PND50. Genomic DNA (gDNA was isolated from the mammary tissue and immuno-precipitated using anti-5-methylcytosine antibodies. Detection and quantification of gDNA methylation status using the Nimblegen ChIP array revealed 7412 differentially methylated gDNA segments (out of 58207 segments, with the majority of changes occurring at PND21. Transcriptomal analysis revealed that the majority of gene expression differences between BPA- and vehicle-treated animals were observed later (PND50. BPA exposure resulted in higher levels of pro-activation histone H3K4 trimethylation at the transcriptional initiation site of the alpha-lactalbumin gene at PND4, concomitantly enhancing mRNA expression of this gene. These results show that fetal BPA exposure triggers changes in the postnatal and adult mammary gland epigenome and alters gene

  2. Fructose and cardiometabolic disorders: the controversy will, and must, continue

    Directory of Open Access Journals (Sweden)

    Nicolas Wiernsperger

    2010-01-01

    Full Text Available The present review updates the current knowledge on the question of whether high fructose consumption is harmful or not and details new findings which further pushes this old debate. Due to large differences in its metabolic handling when compared to glucose, fructose was indeed suggested to be beneficial for the diet of diabetic patients. However its growing industrial use as a sweetener, especially in soft drinks, has focused attention on its potential harmfulness, possibly leading to dyslipidemia, obesity, insulin resistance/metabolic syndrome and even diabetes. Many new data have been generated over the last years, confirming the lipogenic effect of fructose as well as risks of vascular dysfunction and hypertension. Fructose exerts various direct effects in the liver, affecting both hepatocytes and Kupffer cells and resulting in non-alcoholic steatotic hepatitis, a well known precursor of the metabolic syndrome. Hepatic metabolic abnormalities underlie indirect peripheral metabolic and vascular disturbances, for which uric acid is possibly the culprit. Nevertheless major caveats exist (species, gender, source of fructose, study protocols which are detailed in this review and presently prevent any firm conclusion. New studies taking into account these confounding factors should be undertaken in order to ascertain whether or not high fructose diet is harmful.

  3. PKU : high plasma phenylalanine concentrations are associated with increased prevalence of mood swings

    NARCIS (Netherlands)

    Anjema, Karen; van Rijn, Margreet; Verkerk, Paul H; Burgerhof, Johannes G M; van Spronsen, Francjan J; Fokkema, Margaretha

    2011-01-01

    UNLABELLED: In phenylketonuria, knowledge about the relation between behavior and plasma phenylalanine is scarce. The aim of this study was to determine whether high phenylalanine is associated with disturbed behavior noticed by the patient and or close environment (parents or partners). 48 early

  4. PKU : high plasma phenylalanine concentrations are associated with increased prevalence of mood swings

    NARCIS (Netherlands)

    Anjema, Karen; van Rijn, Margreet; Verkerk, Paul H; Burgerhof, Johannes G M; van Spronsen, Francjan J; Fokkema, Margaretha

    UNLABELLED: In phenylketonuria, knowledge about the relation between behavior and plasma phenylalanine is scarce. The aim of this study was to determine whether high phenylalanine is associated with disturbed behavior noticed by the patient and or close environment (parents or partners). 48 early

  5. Early Life Exposure to Fructose and Offspring Phenotype: Implications for Long Term Metabolic Homeostasis

    Science.gov (United States)

    Sloboda, Deborah M.; Li, Minglan; Patel, Rachna; Clayton, Zoe E.; Yap, Cassandra; Vickers, Mark H.

    2014-01-01

    The consumption of artificially sweetened processed foods, particularly high in fructose or high fructose corn syrup, has increased significantly in the past few decades. As such, interest into the long term outcomes of consuming high levels of fructose has increased significantly, particularly when the exposure is early in life. Epidemiological and experimental evidence has linked fructose consumption to the metabolic syndrome and associated comorbidities—implicating fructose as a potential factor in the obesity epidemic. Yet, despite the widespread consumption of fructose-containing foods and beverages and the rising incidence of maternal obesity, little attention has been paid to the possible adverse effects of maternal fructose consumption on the developing fetus and long term effects on offspring. In this paper we review studies investigating the effects of fructose intake on metabolic outcomes in both mother and offspring using human and experimental studies. PMID:24864200

  6. Fructose production by Zymomonas mobilis in fed-batch culture with minimal sorbitol formation

    Energy Technology Data Exchange (ETDEWEB)

    Edye, L A; Johns, M R; Ewings, K N

    1989-08-01

    Fed-batch cultures of Zymomonas mobilis (UQM 2864), a mutant unable to metabolise fructose, grown on diluted sugar cane syrup (200 g/l sucrose) achieved yields of 90.5 g/l fructose and 48.3 g/l ethanol with minimal sorbitol formation and complete utilization of the substrate. The effect of inoculum size on sorbitol formation in the batch stage of fed-batch fermentation are reported. Fermentation of sucrose (350 g/l) supplemented with nutrients yielded 142 g/l fructose and 76.5 g/l ethanol. Some fructose product loss at high fructose concentrations was observed. The fed-batch fermentation process offers a method for obtaining high concentrations of fructose and ethanol from sucrose materials. (orig.).

  7. Resistance Exercise Attenuates High-Fructose, High-Fat-Induced Postprandial Lipemia

    OpenAIRE

    Jessie R. Wilburn; Jeffrey Bourquin; Andrea Wysong; Christopher L. Melby

    2015-01-01

    Introduction Meals rich in both fructose and fat are commonly consumed by many Americans, especially young men, which can produce a significant postprandial lipemic response. Increasing evidence suggests that aerobic exercise can attenuate the postprandial increase in plasma triacylglycerols (TAGs) in response to a high-fat or a high-fructose meal. However, it is unknown if resistance exercise can dampen the postprandial lipemic response to a meal rich in both fructose and fat. Methods Eight ...

  8. Developmental bisphenol A (BPA) exposure leads to sex-specific modification of hepatic gene expression and epigenome at birth that may exacerbate high-fat diet-induced hepatic steatosis

    International Nuclear Information System (INIS)

    Strakovsky, Rita S.; Wang, Huan; Engeseth, Nicki J.; Flaws, Jodi A.; Helferich, William G.; Pan, Yuan-Xiang; Lezmi, Stéphane

    2015-01-01

    Developmental bisphenol A (BPA) exposure increases adulthood hepatic steatosis with reduced mitochondrial function. To investigate the potential epigenetic mechanisms behind developmental BPA-induced hepatic steatosis, pregnant Sprague–Dawley rats were dosed with vehicle (oil) or BPA (100 μg/kg/day) from gestational day 6 until postnatal day (PND) 21. After weaning, offspring were either challenged with a high-fat (HF; 45% fat) or remained on a control (C) diet until PND110. From PND60 to 90, both BPA and HF diet increased the fat/lean ratio in males only, and the combination of BPA and HF diet appeared to cause the highest ratio. On PND110, Oil-HF, BPA-C, and BPA-HF males had higher hepatic lipid accumulation than Oil-C, with microvesicular steatosis being marked in the BPA-HF group. Furthermore, on PND1, BPA increased and modified hepatic triglyceride (TG) and free fatty acid (FFA) compositions in males only. In PND1 males, BPA increased hepatic expression of FFA uptake gene Fat/Cd36, and decreased the expression of TG synthesis- and β-oxidation-related genes (Dgat, Agpat6, Cebpα, Cebpβ, Pck1, Acox1, Cpt1a, Cybb). BPA altered DNA methylation and histone marks (H3Ac, H4Ac, H3Me2K4, H3Me3K36), and decreased the binding of several transcription factors (Pol II, C/EBPβ, SREBP1) within the male Cpt1a gene, the key β-oxidation enzyme. In PND1 females, BPA only increased the expression of genes involved in FFA uptake and TG synthesis (Lpl, Fasn, and Dgat). These data suggest that developmental BPA exposure alters and reprograms hepatic β-oxidation capacity in males, potentially through the epigenetic regulation of genes, and further alters the response to a HF diet. - Highlights: • Developmental BPA exposure exacerbates HF-diet induced steatosis in adult males. • Gestational BPA exposure increases hepatic lipid accumulation in neonatal males. • BPA decreases Cpt1a and other hepatic β-oxidation genes in neonatal males. • BPA alters neonatal male Cpt1a

  9. Developmental bisphenol A (BPA) exposure leads to sex-specific modification of hepatic gene expression and epigenome at birth that may exacerbate high-fat diet-induced hepatic steatosis

    Energy Technology Data Exchange (ETDEWEB)

    Strakovsky, Rita S.; Wang, Huan; Engeseth, Nicki J. [Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign (United States); Flaws, Jodi A. [Department of Comparative Biosciences, University of Illinois Urbana-Champaign (United States); Helferich, William G. [Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign (United States); Pan, Yuan-Xiang, E-mail: yxpan@illinois.edu [Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign (United States); Lezmi, Stéphane, E-mail: slezmi@illinois.edu [Department of Pathobiology, University of Illinois Urbana-Champaign (United States)

    2015-04-15

    Developmental bisphenol A (BPA) exposure increases adulthood hepatic steatosis with reduced mitochondrial function. To investigate the potential epigenetic mechanisms behind developmental BPA-induced hepatic steatosis, pregnant Sprague–Dawley rats were dosed with vehicle (oil) or BPA (100 μg/kg/day) from gestational day 6 until postnatal day (PND) 21. After weaning, offspring were either challenged with a high-fat (HF; 45% fat) or remained on a control (C) diet until PND110. From PND60 to 90, both BPA and HF diet increased the fat/lean ratio in males only, and the combination of BPA and HF diet appeared to cause the highest ratio. On PND110, Oil-HF, BPA-C, and BPA-HF males had higher hepatic lipid accumulation than Oil-C, with microvesicular steatosis being marked in the BPA-HF group. Furthermore, on PND1, BPA increased and modified hepatic triglyceride (TG) and free fatty acid (FFA) compositions in males only. In PND1 males, BPA increased hepatic expression of FFA uptake gene Fat/Cd36, and decreased the expression of TG synthesis- and β-oxidation-related genes (Dgat, Agpat6, Cebpα, Cebpβ, Pck1, Acox1, Cpt1a, Cybb). BPA altered DNA methylation and histone marks (H3Ac, H4Ac, H3Me2K4, H3Me3K36), and decreased the binding of several transcription factors (Pol II, C/EBPβ, SREBP1) within the male Cpt1a gene, the key β-oxidation enzyme. In PND1 females, BPA only increased the expression of genes involved in FFA uptake and TG synthesis (Lpl, Fasn, and Dgat). These data suggest that developmental BPA exposure alters and reprograms hepatic β-oxidation capacity in males, potentially through the epigenetic regulation of genes, and further alters the response to a HF diet. - Highlights: • Developmental BPA exposure exacerbates HF-diet induced steatosis in adult males. • Gestational BPA exposure increases hepatic lipid accumulation in neonatal males. • BPA decreases Cpt1a and other hepatic β-oxidation genes in neonatal males. • BPA alters neonatal male Cpt1a

  10. Clinical results of BNCT for malignant gliomas using BSH and BPA simultaneously

    International Nuclear Information System (INIS)

    Miyatake, Shin-ichi; Kawabata, Shinji; Kajimoto, Yoshinaga

    2006-01-01

    Since 2002 to 2006, we applied BNCT for 41 cases of malignant gliomas. We used 3 different protocols. In each protocol, we used BSH and BPA simultaneously. In protocol 1, BSH 5g/body and BPA 250 mg/kg were used for consecutive 13 cases. Median survival time (MST) of newly diagnosed 4 cases of GB was 23 months after diagnosis. 2 cases were still alive. All cases including recurrent ones showed radiographic improvement. Eight out of 12 cases showed more than 50% mass reduction on images. Major cause of death was CSF dissemination. In protocol 2, BNCT were applied for 4 patients, two times with one to 2 week-interval. MST after BNCT was 13.3 months. In protocol 3, BPA 700 mg/kg were used with 20 to 30 Gy XRT after BNCT. XRT boost was applied especially for deeper part of the tumor. In protocol 3, 6 newly diagnosed GB patients were observed more than 16 months. 3 were dead and 3 were still alive on the preparation of this abstract. MST of these 6 patients was 17.3 months after diagnosis. In each protocol, radiation necrosis was the problem for recurrent cases, while removal of the necrosis prolonged the survival and recovered the neurological deficits. (author)

  11. Relationship Between Abdominal Symptoms and Fructose Ingestion in Children with Chronic Abdominal Pain.

    Science.gov (United States)

    Hammer, Veronika; Hammer, Katharina; Memaran, Nima; Huber, Wolf-Dietrich; Hammer, Karin; Hammer, Johann

    2018-05-01

    Limited valid data are available regarding the association of fructose-induced symptoms, fructose malabsorption, and clinical symptoms. To develop a questionnaire for valid symptom assessment before and during a carbohydrate breath test and to correlate symptoms with fructose breath test results in children/adolescents with functional abdominal pain. A Likert-type questionnaire assessing symptoms considered relevant for hydrogen breath test in children was developed and underwent initial validation. Fructose malabsorption was determined by increased breath hydrogen in 82 pediatric patients with functional abdominal pain disorders; fructose-induced symptoms were quantified by symptom score ≥2 and relevant symptom increase over baseline. The results were correlated with clinical symptoms. The time course of symptoms during the breath test was assessed. The questionnaire exhibited good psychometric properties in a standardized assessment of the severity of carbohydrate-related symptoms. A total of 40 % (n = 33) had malabsorption; symptoms were induced in 38 % (n = 31), but only 46 % (n = 15) with malabsorption were symptomatic. There was no significant correlation between fructose malabsorption and fructose-induced symptoms. Clinical symptoms correlated with symptoms evoked during the breath test (p Fructose-induced symptoms but not fructose malabsorption are related to increased abdominal symptoms and have distinct timing patterns.

  12. PKU: High plasma phenylalanine concentrations are associated with increased prevalence of mood swings

    NARCIS (Netherlands)

    Anjema, K.; Rijn, M. van; Verkerk, P.H.; Burgerhof, J.G.M.; Heiner-Fokkema, M.R.; Spronsen, F.J. van

    2011-01-01

    In phenylketonuria, knowledge about the relation between behavior and plasma phenylalanine is scarce. The aim of this study was to determine whether high phenylalanine is associated with disturbed behavior noticed by the patient and or close environment (parents or partners). 48 early treated PKU

  13. Early Life Exposure to Fructose and Offspring Phenotype: Implications for Long Term Metabolic Homeostasis

    Directory of Open Access Journals (Sweden)

    Deborah M. Sloboda

    2014-01-01

    Full Text Available The consumption of artificially sweetened processed foods, particularly high in fructose or high fructose corn syrup, has increased significantly in the past few decades. As such, interest into the long term outcomes of consuming high levels of fructose has increased significantly, particularly when the exposure is early in life. Epidemiological and experimental evidence has linked fructose consumption to the metabolic syndrome and associated comorbidities—implicating fructose as a potential factor in the obesity epidemic. Yet, despite the widespread consumption of fructose-containing foods and beverages and the rising incidence of maternal obesity, little attention has been paid to the possible adverse effects of maternal fructose consumption on the developing fetus and long term effects on offspring. In this paper we review studies investigating the effects of fructose intake on metabolic outcomes in both mother and offspring using human and experimental studies.

  14. A novel theranostic nanobioconjugate. "1"2"5/"1"3"1I labeled phenylalanine conjugated boron nitride nanotubes

    International Nuclear Information System (INIS)

    Ozge Kozgus Guldu; Perihan Unak; Suna Timur

    2017-01-01

    Here we report the synthesis of boron nitride nanotubes (BNNTs) via a chemical vapor deposition method, as potential agents for boron neutron capture therapy. BNNTs were functionalized with PAMAM[G-2] dendrimer and then, conjugated with l-Phe using EDC/NHS. After that, BNNTs were radiolabeled with "1"2"5/"1"3"1I, which are commonly used for both therapy and diagnosis in clinical and pre-clinical studies. BNNTs were radiolabeled with a maximum yield with "1"2"5/"1"3"1I in compared with 4-borono-l-phenyalanine which is currently used as a commercial drug. Radiolabeling parameters were optimized with thin layer radiochromatography and high performance liquid radiochromatography. BNNTs are promising nanobioconjugates as new theranostic agents. (author)

  15. Probe the Binding Mode of Aristololactam-β-D-glucoside to Phenylalanine Transfer RNA in Silico

    DEFF Research Database (Denmark)

    Xiao, Xingqing; Zhao, Binwu; Yang, Li

    2016-01-01

    Understanding the interactions of drug molecules with biomacromolecules at a micro-scale level is essential to design potent drugs for the treatments of human genome diseases. To unravel the mechanism of binding of aristololactam-β-D-glucoside (ADG) and phenylalanine transfer RNA (t...... on the tRNAPhe, and atomistic MD simulations were conducted to examine the thermal stability of five predicted binding poses for the complex of ADG and the tRNAPhe. The binding free energies of the five complexes were then calculated using the molecular mechanics/generalized born surface area approach...

  16. Phenylketonuria : tyrosine supplementation in phenylalanine-restricted diets

    NARCIS (Netherlands)

    van Spronsen, FJ; van Rijn, M; Bekhof, J; Koch, R; Smit, PGA

    Treatment of phenylketonuria (PKU) consists of restriction of natural protein and provision of a protein substitute that lacks phenylalanine but is enriched in tyrosine. Large and unexplained differences exist, however, in the tyrosine enrichment of the protein substitutes. Furthermore, some

  17. Fructose levels are markedly elevated in cerebrospinal fluid compared to plasma in pregnant women.

    Directory of Open Access Journals (Sweden)

    Janice J Hwang

    Full Text Available Fructose, unlike glucose, promotes feeding behavior in rodents and its ingestion exerts differential effects in the human brain. However, plasma fructose is typically 1/1000 th of glucose levels and it is unclear to what extent fructose crosses the blood-brain barrier. We investigated whether local endogenous central nervous system (CNS fructose production from glucose via the polyol pathway (glucose → sorbitol → fructose contributes to brain exposure to fructose.In this observational study, fasting glucose, sorbitol and fructose concentrations were measured using gas-chromatography-liquid mass spectroscopy in cerebrospinal fluid (CSF, maternal plasma, and venous cord blood collected from 25 pregnant women (6 lean, 10 overweight/obese, and 9 T2DM/gestational DM undergoing spinal anesthesia and elective cesarean section.As expected, CSF glucose was ~ 60% of plasma glucose levels. In contrast, fructose was nearly 20-fold higher in CSF than in plasma (p < 0.001, and CSF sorbitol was ~ 9-times higher than plasma levels (p < 0.001. Moreover, CSF fructose correlated positively with CSF glucose (ρ 0.45, p = 0.02 and sorbitol levels (ρ 0.75, p < 0.001. Cord blood sorbitol was also ~ 7-fold higher than maternal plasma sorbitol levels (p = 0.001. There were no differences in plasma, CSF, and cord blood glucose, fructose, or sorbitol levels between groups.These data raise the possibility that fructose may be produced endogenously in the human brain and that the effects of fructose in the human brain and placenta may extend beyond its dietary consumption.

  18. Fructose levels are markedly elevated in cerebrospinal fluid compared to plasma in pregnant women.

    Science.gov (United States)

    Hwang, Janice J; Johnson, Andrea; Cline, Gary; Belfort-DeAguiar, Renata; Snegovskikh, Denis; Khokhar, Babar; Han, Christina S; Sherwin, Robert S

    2015-01-01

    Fructose, unlike glucose, promotes feeding behavior in rodents and its ingestion exerts differential effects in the human brain. However, plasma fructose is typically 1/1000 th of glucose levels and it is unclear to what extent fructose crosses the blood-brain barrier. We investigated whether local endogenous central nervous system (CNS) fructose production from glucose via the polyol pathway (glucose → sorbitol → fructose) contributes to brain exposure to fructose. In this observational study, fasting glucose, sorbitol and fructose concentrations were measured using gas-chromatography-liquid mass spectroscopy in cerebrospinal fluid (CSF), maternal plasma, and venous cord blood collected from 25 pregnant women (6 lean, 10 overweight/obese, and 9 T2DM/gestational DM) undergoing spinal anesthesia and elective cesarean section. As expected, CSF glucose was ~ 60% of plasma glucose levels. In contrast, fructose was nearly 20-fold higher in CSF than in plasma (p < 0.001), and CSF sorbitol was ~ 9-times higher than plasma levels (p < 0.001). Moreover, CSF fructose correlated positively with CSF glucose (ρ 0.45, p = 0.02) and sorbitol levels (ρ 0.75, p < 0.001). Cord blood sorbitol was also ~ 7-fold higher than maternal plasma sorbitol levels (p = 0.001). There were no differences in plasma, CSF, and cord blood glucose, fructose, or sorbitol levels between groups. These data raise the possibility that fructose may be produced endogenously in the human brain and that the effects of fructose in the human brain and placenta may extend beyond its dietary consumption.

  19. Fructose, Glucocorticoids and Adipose Tissue: Implications for the Metabolic Syndrome.

    Science.gov (United States)

    Legeza, Balázs; Marcolongo, Paola; Gamberucci, Alessandra; Varga, Viola; Bánhegyi, Gábor; Benedetti, Angiolo; Odermatt, Alex

    2017-04-26

    The modern Western society lifestyle is characterized by a hyperenergetic, high sugar containing food intake. Sugar intake increased dramatically during the last few decades, due to the excessive consumption of high-sugar drinks and high-fructose corn syrup. Current evidence suggests that high fructose intake when combined with overeating and adiposity promotes adverse metabolic health effects including dyslipidemia, insulin resistance, type II diabetes, and inflammation. Similarly, elevated glucocorticoid levels, especially the enhanced generation of active glucocorticoids in the adipose tissue due to increased 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) activity, have been associated with metabolic diseases. Moreover, recent evidence suggests that fructose stimulates the 11β-HSD1-mediated glucocorticoid activation by enhancing the availability of its cofactor NADPH. In adipocytes, fructose was found to stimulate 11β-HSD1 expression and activity, thereby promoting the adipogenic effects of glucocorticoids. This article aims to highlight the interconnections between overwhelmed fructose metabolism, intracellular glucocorticoid activation in adipose tissue, and their metabolic effects on the progression of the metabolic syndrome.

  20. Formation of tyrosine isomers in aqueous phenylalanine solutions by gamma irradiation

    International Nuclear Information System (INIS)

    Aflaki, F.; Salahinejad, M.; Roozbehani, A.

    2009-01-01

    Ortho-tyrosine detection method can be used for detection of irradiated protein rich foods. Tyrosine isomers produced by gamma radiation of aqueous phenylalanine solutions at wide dose levels (0.1-50 k Gy) were examined to obtain basic information for o-tyrosine detection method of irradiated foods. Determination of tyrosines produced in aqueous phenylalanine solutions were carried out by high performance liquid chromatography and fluorescence detection. The detection limit of o-tyrosine was 0.01 ppm and the linear range of calibration and the relative standard deviation of analysis was 50 ng and 4-13%, respectively. The amounts of the tyrosines increased with the irradiation level up to 10 k Gy and no further tyrosine formation was observed when the dose level was increased. At a constant dose level, the yield of tyrosines initially increased with the phenylalanine concentration, while with further increase of phenylalanine concentration no effect on increase of tyrosine yield was observed. When the dose rate was varying from 2.3 k Gy/h to 1.2 k Gy/h with a total amount of 10 k Gy in each case, there was no significant effect on tyrosine isomers formation was observed. Also the results showed that tyrosine yield was affected by temperature, p H and the presence of oxygen

  1. Doxycycline hinders phenylalanine fibril assemblies revealing a potential novel therapeutic approach in phenylketonuria.

    Science.gov (United States)

    De Luigi, Ada; Mariani, Alessandro; De Paola, Massimiliano; Re Depaolini, Andrea; Colombo, Laura; Russo, Luca; Rondelli, Valeria; Brocca, Paola; Adler-Abramovich, Lihi; Gazit, Ehud; Del Favero, Elena; Cantù, Laura; Salmona, Mario

    2015-10-29

    A new paradigm for the aetiopathology of phenylketonuria suggests the presence of amyloid-like assemblies in the brains of transgenic mouse models and patients with phenylketonuria, possibly shedding light on the selective cognitive deficit associated with this disease. Paralleling the amyloidogenic route that identifies different stages of peptide aggregation, corresponding to different levels of toxicity, we experimentally address for the first time, the physico-chemical properties of phenylalanine aggregates via Small Angle, Wide Angle X-ray Scattering and Atomic Force Microscopy. Results are consistent with the presence of well-structured, aligned fibres generated by milliMolar concentrations of phenylalanine. Moreover, the amyloid-modulating doxycycline agent affects the local structure of phenylalanine aggregates, preventing the formation of well-ordered crystalline structures. Phenylalanine assemblies prove toxic in vitro to immortalized cell lines and primary neuronal cells. Furthermore, these assemblies also cause dendritic sprouting alterations and synaptic protein impairment in neurons. Doxycycline counteracts these toxic effects, suggesting an approach for the development of future innovative non-dietary preventive therapies.

  2. Production of high fructose corn syrup Streptomyces sp

    Energy Technology Data Exchange (ETDEWEB)

    Bhatia, M; Prabhu, K A

    1978-01-01

    A Streptomyces strain exhibiting considerable glucose isomerase activity was isolated from soil. The cell free extract of the culture was able to convert glucose to fructose in a period of 48 ha and gave 40% conversion. With acid hydrolyzates of corn and bagasse as substrates, the cell-free extract gave glucose to fructose conversions of 39.8 and 29%, respectively.

  3. influence of fructose on the mechanisms for ethanol- induced ...

    African Journals Online (AJOL)

    Mgina

    TAG production. Table 1, shows that ethanol + fructose consumption increased plasma VLDL- and. HDL- but decreased LDL- components. These data suggest that in the presence of fructose, ethanol may produce accelerated clearance of LDL, decreased conversion of. VLDL to LDL or increased hepatic synthesis of VLDL.

  4. Chronic Fructose Consumption As a Model of Polycystic Ovary ...

    African Journals Online (AJOL)

    Group 2 served as Chronic fructose group and was fed ad libitum on a special diet ... by cardiac puncture for measurement of serum insulin, estradiol, progesterone, ... fructose fed pregnant rats are consistent with findings in other models of PCOS. ... polycystic ovary morphology, hyperandrogenism, and insulin resistance.

  5. Fructose effect to enhance liver glycogen deposition is due to inhibition of glycogenolysis

    International Nuclear Information System (INIS)

    Youn, J.; Kaslow, H.; Bergman, R.

    1987-01-01

    The effect of fructose on glycogen degradation was examined by measuring flux of [ 14 C] from prelabeled glycogen in perfused rat livers. During 2 h refeeding of fasted rats hepatic glycogen was labeled by injection of [U 14 C] galactose (0.1 mg and 0.02 μCi/g of body weight). Refed livers were perfused for 30 min with glucose only (10 mM) and for 60 min with glucose (10 mM) without (n=5) or with fructose (1, 2, 10 mM; n=5 for each). With fructose, label production immediately declined and remained suppressed through the end of perfusion (P < 0.05). Suppression was dose-dependent: steady state label production was suppressed 45, 64, and 72% by 1, 2, and 10 mM fructose (P < 0.0001), without significant changes in glycogen synthase or phosphorylase. These results suggest the existence of allosteric inhibition of phosphorylase in the presence of fructose. Fructose 1-phosphate (F1P) accumulated in proportion to fructose (0.11 +/- 0.01 without fructose, 0.86 +/- 0.03, 1.81 +/- 0.18, and 8.23 +/- 0.6 μmoles/g of liver with 1, 2, and 10 mM fructose. Maximum inhibition of phosphorylase was 82%; FIP concentration for half inhibition was 0.57 μmoles/g of liver, well within the concentration of F1P attained in refeeding. Fructose enhances net glycogen synthesis in liver by suppressing glycogenolysis and the suppression is presumably caused by allosteric inhibition of phosphorylase by F1P

  6. Central and Metabolic Effects of High Fructose Consumption: Evidence from Animal and Human Studies

    Directory of Open Access Journals (Sweden)

    Alexandra Stoianov

    2014-12-01

    Full Text Available Fructose consumption has increased dramatically in the last 40 years, and its role in the pathogenesis of the metabolic syndrome has been implicated by many studies. It is most often encountered in the diet as sucrose (glucose and fructose or high-fructose corn syrup (55% fructose. At high levels, dietary exposure to fructose triggers a series of metabolic changes originating in the liver, leading to hepatic steatosis, hypertriglyceridemia, insulin resistance, and decreased leptin sensitivity. Fructose has been identified to alter biological pathways in other tissues including the central nervous system (CNS, adipose tissue, and the gastrointestinal system. Unlike glucose, consumption of fructose produces smaller increases in the circulating satiety hormone glucagon-like peptide 1 (GLP-1, and does not attenuate levels of the appetite suppressing hormone ghrelin. In the brain, fructose contributes to increased food consumption by activating appetite and reward pathways, and stimulating hypothalamic AMPK activity, a nutrient-sensitive regulator of food intake. Recent studies investigating the neurophysiological factors linking fructose consumption and weight gain in humans have demonstrated differential activation of brain regions that govern appetite, motivation and reward processing. Compared to fructose, glucose ingestion produces a greater reduction of hypothalamic neuronal activity, and increases functional connectivity between the hypothalamus and other reward regions of the brain, indicating that these two sugars regulate feeding behavior through distinct neural circuits. This review article outlines the current findings in fructose-feeding studies in both human and animal models, and discusses the central effects on the CNS that may lead to increased appetite and food intake. Keywords: Fructose, Metabolic syndrome, Appetite, Central nervous system

  7. A simple and rapid method for measurement of 10B-para-boronophenylalanine in the blood for boron neutron capture therapy using fluorescence spectrophotometry

    International Nuclear Information System (INIS)

    Kashino, Genro; Fukutani, Satoshi; Suzuki, Minoru

    2009-01-01

    10 B deriving from 10 B-para-boronophenylalanine (BPA) and 10 B-borocaptate sodium (BSH) have been detected in blood samples of patients undergoing boron neutron capture therapy (BNCT) using prompt gamma ray spectrometer or Inductively Coupled Plasma (ICP) method, respectively. However, the concentration of each compound cannot be ascertained because boron atoms in both molecules are the target in these assays. Here, we propose a simple and rapid method to measure only BPA by detecting fluorescence based on the characteristics of phenylalanine. 10 B concentrations of blood samples from human or mice were estimated by the fluorescence intensities at 275 nm of a BPA excited by light of wavelength 257 nm using a fluorescence spectrophotometer. The relationship between fluorescence to increased BPA concentration showed a positive linear correlation. Moreover, we established an adequate condition for BPA measurement in blood samples containing BPA, and the estimated 10 B concentrations of blood samples derived from BPA treated mice were similar between the values obtained by our method and those by ICP method. This new assay will be useful to estimate BPA concentration in blood samples obtained from patients undergoing BNCT especially in a combination use of BSH and BPA. (author)

  8. Ursodeoxycholic Acid Ameliorates Fructose-Induced Metabolic Syndrome in Rats

    Science.gov (United States)

    2014-01-01

    The metabolic syndrome (MS) is characterized by insulin resistance, dyslipidemia and hypertension. It is associated with increased risk of cardiovascular diseases and type-2 diabetes. Consumption of fructose is linked to increased prevalence of MS. Ursodeoxycholic acid (UDCA) is a steroid bile acid with antioxidant, anti-inflammatory activities and has been shown to improve insulin resistance. The current study aims to investigate the effect of UDCA (150 mg/kg) on MS induced in rats by fructose administration (10%) in drinking water for 12 weeks. The effects of UDCA were compared to fenofibrate (100 mg/kg), an agonist of PPAR-α receptors. Treatment with UDCA or fenofibrate started from the 6th week after fructose administration once daily. Fructose administration resulted in significant increase in body weight, elevations of blood glucose, serum insulin, cholesterol, triglycerides, advanced glycation end products (AGEs), uric acid levels, insulin resistance index and blood pressure compared to control rats. Moreover, fructose increased oxidative stress in aortic tissues indicated by significant increases of malondialdehyde (MDA), expression of iNOS and reduction of reduced glutathione (GSH) content. These disturbances were associated with decreased eNOS expression, increased infiltration of leukocytes and loss of aortic vascular elasticity. Treatment with UDCA successfully ameliorated the deleterious effects of fructose. The protective effect of UDCA could be attributed to its ability to decrease uric acid level, improve insulin resistance and diminish oxidative stress in vascular tissues. These results might support possible clinical application of UDCA in MS patients especially those present with liver diseases, taking into account its tolerability and safety. However, further investigations on human subjects are needed before the clinical application of UDCA for this indication. PMID:25202970

  9. Increased utilization of fructose has a positive effect on the development of breast cancer

    Directory of Open Access Journals (Sweden)

    Xiajing Fan

    2017-09-01

    Full Text Available Rapid proliferation and Warburg effect make cancer cells consume plenty of glucose, which induces a low glucose micro-environment within the tumor. Up to date, how cancer cells keep proliferating in the condition of glucose insufficiency still remains to be explored. Recent studies have revealed a close correlation between excessive fructose consumption and breast cancer genesis and progression, but there is no convincing evidence showing that fructose could directly promote breast cancer development. Herein, we found that fructose, not amino acids, could functionally replace glucose to support proliferation of breast cancer cells. Fructose endowed breast cancer cells with the colony formation ability and migratory capacity as effective as glucose. Interestingly, although fructose was readily used by breast cancer cells, it failed to restore proliferation of non-tumor cells in the absence of glucose. These results suggest that fructose could be relatively selectively employed by breast cancer cells. Indeed, we observed that a main transporter of fructose, GLUT5, was highly expressed in breast cancer cells and tumor tissues but not in their normal counterparts. Furthermore, we demonstrated that the fructose diet promoted metastasis of 4T1 cells in the mouse models. Taken together, our data show that fructose can be used by breast cancer cells specifically in glucose-deficiency, and suggest that the high-fructose diet could accelerate the progress of breast cancer in vivo.

  10. RELATIONSHIP BETWEEN FRUCTOSE CONTENT OF A NORMAL KUWAITI DIET AND THE OBESITY EPIDEMIC

    Directory of Open Access Journals (Sweden)

    Dana Al-Salem

    2012-06-01

    Full Text Available This project investigates the prevalence of fructose intake in a normal Kuwaiti diet. The prevalence of metabolic syndrome and obesity in Kuwait has been on the rise in the last 2 decades; at the moment just over 74 percent of the population is overweight or obese, according to the World Health Organization. Fructose intake has recently received considerable negative media attention, as the use of high fructose corn syrups has become more widely used. Fructose intake has been believed to be linked with a rise in Metabolic Syndrome and an increase in obesity. It has been considered that moderate fructose consumption of ≤50g/day or ∼10% of total energy has no harmful effect on lipids and of ≤100g/day does not influence body weight. In this study 60 adult participants filled out a two day detailed food diary including quantities. The diaries were then analyzed by a dietitian using the USDA nutrient database and the Food Processor program version 9.9.0, and the total fructose intake per day of the normal Kuwaiti diet was calculated. In addition a 24- hour urine collection for fructose was measured to correlate the results with the food diaries. Once the results were tabulated and verified, a mean fructose intake of 27.9 grams was calculated, ranging in daily fructose intakes from 2.8 g to 101.6g per day. In conclusion the results showed an average daily intake of 27.9 grams of fructose, which is lower than the estimated moderate intake therefore, cannot be the major cause of metabolic syndrome or obesity in Kuwait.

  11. A mathematical analysis of adaptations to the metabolic fate of fructose in essential fructosuria subjects.

    Science.gov (United States)

    Allen, R J; Musante, Cynthia J

    2018-04-17

    Fructose is a major component of Western diets and is implicated in the pathogenesis of obesity and type 2 diabetes. In response to an oral challenge, the majority of fructose is cleared during "first-pass" liver metabolism, primarily via phosphorylation by ketohexokinase (KHK). A rare benign genetic deficiency in KHK, called essential fructosuria (EF), leads to altered fructose metabolism. The only reported symptom of EF is the appearance of fructose in the urine following either oral or intravenous fructose administration. Here we develop and use a mathematical model to investigate the adaptations to altered fructose metabolism in people with EF. Firstly, the model is calibrated to fit available data in normal healthy subjects. Then, to mathematically represent EF subjects we systematically implement metabolic adaptations such that model simulations match available data for this phenotype. We hypothesize that these modifications represent the major metabolic adaptations present in these subjects. This modeling approach suggests that several other aspects of fructose metabolism, beyond hepatic KHK deficiency, are altered and contribute to the etiology of this benign condition. Specifically, we predict that fructose absorption into the portal vein is altered, peripheral metabolism is slowed, renal re-absorption of fructose is mostly ablated and that alternate pathways for hepatic metabolism of fructose are up-regulated. Moreover, these findings have implications for drug discovery and development, suggesting that the therapeutic targeting of fructose metabolism could lead to unexpected metabolic adaptations, potentially due to a physiological response to high fructose conditions.

  12. Cooperative double deprotonation of Bis(2-picolyl)amine leading to unexpected bimetallic mixed valence (M(-1), M(1)) rhodium and iIridium complexes

    NARCIS (Netherlands)

    Tejel, C.; del Río, M.P.; Asensio, L.; van den Bruele, F.J.; Ciriano, M.A.; Tsichlis i Spithas, N.; Hetterscheid, D.G.H.; de Bruin, B.

    2011-01-01

    Cooperative reductive double deprotonation of the complex [RhI(bpa)(cod)]+ ([4]+, bpa = PyCH2NHCH2Py) with one molar equivalent of base produces the bimetallic species [(cod)Rh(bpa-2H)Rh(cod)] (7), which displays a large Rh-I,RhI contribution to its electronic structure. The doubly deprotonated

  13. Evaluation of the toxic effect of endocrine disruptor Bisphenol A (BPA) in the acute and chronic toxicity tests with Pomacea lineata gastropod.

    Science.gov (United States)

    de Andrade, André Lucas Correa; Soares, Priscila Rafaela Leão; da Silva, Stephannie Caroline Barros Lucas; da Silva, Marília Cordeiro Galvão; Santos, Thamiris Pinheiro; Cadena, Marilia Ribeiro Sales; Soares, Pierre Castro; Cadena, Pabyton Gonçalves

    2017-07-01

    Bisphenol A (BPA) is a plasticizer and a risk when it interacts with organisms, and can cause changes in the development and reproduction of them. This study aimed to evaluate the effects of BPA, by acute and chronic toxicity tests with neonates and adults of Pomacea lineata. Adults and neonates were divided into groups exposed to BPA (1-20mg/L), or 17β-estradiol (1mg/L) and control in the acute and chronic toxicity tests. Behavior, heart rate, reproduction and hemolymph biochemical analysis were measured. In the acute toxicity test, the 96-h LC 50 with adults was 11.09 and with neonates was 3.14mg/L. In this test, it was observed lethargic behavior and an increase of 77.6% of aspartate aminotransferase in the adults' hemolymph (ptest, it was observed behaviors associated with reproduction, as Copulate, in the groups exposed to BPA. The results that were found in this study proved that BPA is a potentially toxic agent to Pomacea lineata according to biological parameters evaluated. These data contribute to the understanding of BPA toxic effects' in the aquatic invertebrates. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Cytoprotection by fructose and other ketohexoses during bile salt-induced apoptosis of hepatocytes.

    Science.gov (United States)

    Zeid, I M; Bronk, S F; Fesmier, P J; Gores, G J

    1997-01-01

    Toxic bile salts cause hepatocyte necrosis at high concentrations and apoptosis at lower concentrations. Although fructose prevents bile salt-induced necrosis, the effect of fructose on bile salt-induced apoptosis is unclear. Our aim was to determine if fructose also protects against bile salt-induced apoptosis. Fructose inhibited glycochenodeoxycholate (GCDC)-induced apoptosis in a concentration-dependent manner with a maximum inhibition of 72% +/- 10% at 10 mmol/L. First, we determined if fructose inhibited apoptosis by decreasing adenosine triphosphate (ATP) and intracellular pH (pHi). Although fructose decreased ATP to effects, alterations in the expression of bcl-2, or metal chelation, we next determined if the poorly metabolized ketohexoses, tagatose and sorbose, also inhibited apoptosis; unexpectedly, both ketohexoses inhibited apoptosis. Because bile salt-induced apoptosis and necrosis are inhibited by fructose, these data suggest that similar processes initiate bile salt-induced hepatocyte necrosis and apoptosis. In contrast, acidosis, which inhibits necrosis, potentiates apoptosis. Thus, ketohexose-sensitive pathways appear to initiate both bile salt-induced cell apoptosis and necrosis, whereas dissimilar, pH-sensitive, effector mechanisms execute these two different cell death processes.

  15. Phenylalanine Removal from Water by Fe3O4 Nanoparticles Functionalized with Two Different Surfactants

    Directory of Open Access Journals (Sweden)

    Ameneh Heidari

    2016-07-01

    Full Text Available In the present study, the application for the removal of phenylalanine by using two nano sorbents, namely, cetyltrimethylammonium bromide –Coated and BKC (benzal-conium chloride-Coated Fe3O4 nanoparticles was investigated. Solid-phase extraction (SPE and ultra violet–visible spectroscopy were used for studying the removal ability of each nano-sorbent in this study. Scanning Electron Microscopy, X-ray diffraction and Fourier infrared were used to characterize the synthesized magnetite nanoparticles. Batch adsorption studies were carried out to study the effect of various parameters, such as contact time, solution pH and concentration of phenylalanine. The equilibrium adsorption data of phenylalanine onto Fe3O4 nanoparticles (non-functionalized sample, cetyltrimethylammonium bromide -Coated and BKC -Coated were analyzed using Freundlich and Langmuir adsorption isotherms. The results indicated that adsorption of phenylalanine increased with increasing solution pH and maximum removal of phenylalanine was obtained at pH=9.0. Correlation coefficient were determined by analyzing each isotherm. It was found that the Freundlich equation showed better correlation with the experimental data than the Langmuir.

  16. Fructose stimulates GLP-1 but not GIP secretion in mice, rats, and humans

    DEFF Research Database (Denmark)

    Kuhre, Rune Ehrenreich; Gribble, Fiona M; Hartmann, Bolette

    2014-01-01

    Nutrients often stimulate gut hormone secretion, but the effects of fructose are incompletely understood. We studied the effects of fructose on a number of gut hormones with particular focus on glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). In healthy humans......, fructose intake caused a rise in blood glucose and plasma insulin and GLP-1, albeit to a lower degree than isocaloric glucose. Cholecystokinin secretion was stimulated similarly by both carbohydrates, but neither peptide YY3-36 nor glucagon secretion was affected by either treatment. Remarkably, while...... glucose potently stimulated GIP release, fructose was without effect. Similar patterns were found in the mouse and rat, with both fructose and glucose stimulating GLP-1 secretion, whereas only glucose caused GIP secretion. In GLUTag cells, a murine cell line used as model for L cells, fructose...

  17. Enhancing Skin Permeation of Biphenylacetic Acid (BPA) Using Salt Formation with Organic and Alkali Metal Bases

    OpenAIRE

    PAWAR, Vijay; NAIK, Prashant; GIRIDHAR, Rajani; YADAV, Mange Ram

    2014-01-01

    In the present study, a series of organic and alkali metal salts of biphenylacetic acid (BPA) have been prepared and evaluated in vitro for percutaneous drug delivery. The physicochemical properties of BPA salts were determined using solubility measurements, DSC, and IR. The DSC thermogram and FTIR spectra confirmed the salt formation with organic and alkali metal bases. Among the series, salts with organic amines (ethanolamine, diethanolamine, triethanol-amine, and diethylamine) had lowered ...

  18. Dietary Fructose and Glucose Differentially Affect Lipid and Glucose Homeostasis1–3

    OpenAIRE

    Schaefer, Ernst J.; Gleason, Joi A.; Dansinger, Michael L.

    2009-01-01

    Absorbed glucose and fructose differ in that glucose largely escapes first-pass removal by the liver, whereas fructose does not, resulting in different metabolic effects of these 2 monosaccharides. In short-term controlled feeding studies, dietary fructose significantly increases postprandial triglyceride (TG) levels and has little effect on serum glucose concentrations, whereas dietary glucose has the opposite effects. When dietary glucose and fructose have been directly compared at ∼20–25% ...

  19. Soft drink consumption and obesity: it is all about fructose.

    Science.gov (United States)

    Bray, George A

    2010-02-01

    The purpose of the review is to suggest that fructose, a component of both sucrose (common sugar) and high fructose corn syrup, should be of concern to both healthcare providers and the public. Consumption of sugar-sweetened beverages has increased steadily over the past century and with this increase has come more and more reports associating their use with the risk of overweight, diabetes and cardiometabolic disease. In a meta-analysis of the relationship between soft drink consumption and cardiometabolic risk, there was a 24% overall increased risk comparing the top and bottom quantiles of consumption. Several factors might account for this increased risk, including increased carbohydrate load and increased amounts of dietary fructose. Fructose acutely increases thermogenesis, triglycerides and lipogenesis as well as blood pressure, but has a smaller effect on leptin and insulin release than comparable amounts of glucose. In controlled feeding studies, changes in body weight, fat storage and triglycerides are observed as well as an increase in inflammatory markers. The present review concludes on the basis of the data assembled here that in the amounts currently consumed, fructose is hazardous to the cardiometabolic health of many children, adolescents and adults.

  20. Effects of intragastric fructose and dextrose on mesenteric microvascular inflammation and postprandial hyperemia in the rat.

    Science.gov (United States)

    Mattioli, Leone F; Thomas, James H; Holloway, Naomi B; Schropp, Kurt P; Wood, John G

    2011-03-01

    Fructose superfused on the mesenteric venules of rats induces microvascular inflammation via oxidative stress. It is unknown whether intragastric fructose exerts a similar effect and whether fructose impairs postprandial hyperemia (PPH). The goals were to determine whether intragastric fructose administration promotes leukocyte adherence and whether fructose, owing to its oxidative properties, may also impair nitric oxide-dependent PPH in the mesenteric microcirculation of rats. Leukocyte adherence to mesenteric venules, arteriolar velocity, and diameter were measured in Sprague-Dawley rats before and 30 minutes after intragastric (1 mL 0.5 M, ~0.3 g/kg) dextrose (n = 5), fructose (n = 6), and fructose after intravenous injection of the antioxidant α-lipoic acid (ALA, n = 6). Only fructose increased leukocyte adherence: control 2.3 ± 0.3 per 100 µm; fructose 9.7 ± 1.4 per 100 µm (P .05, r(2) = 0.083 for shear rate vs leukocyte adherence). Dextrose had no effect on leukocyte adherence: control 1.52 ± 0.13 per 100 µm; dextrose 2.0 ± 0.7 per 100 µm (P > .05). ALA prevented fructose-induced leukocyte adherence: control 1.9 ± 0.2 per 100 µm; fructose + ALA 1.8 ± 0.3 per 100 µm (P > .05). Neither fructose nor dextrose induced PPH: arteriolar velocity: control 3.3 ± 0.49 cm/s, fructose 3.06 ± 0.34 cm/s (P > .05); control 3.3 ± 1.0 cm/s, dextrose 3.15 ± 1.1 cm/s (P > .05); arteriolar diameter: control 19.9 ± 1.10 µm, fructose 19.7 ± 1.0 µm (P > .05); control 21.5 ± 2.6, dextrose 20.0 ± 2.7 µm (P > .05). Intragastric fructose induced leukocyte adherence via oxidative stress. Neither dextrose nor fructose induced PPH, likely because of the inhibitory effect of anesthesia on splanchnic vasomotor tone.

  1. Structure of fructose bisphosphate aldolase from Bartonella henselae bound to fructose 1,6-bisphosphate

    International Nuclear Information System (INIS)

    Gardberg, Anna; Abendroth, Jan; Bhandari, Janhavi; Sankaran, Banumathi; Staker, Bart

    2011-01-01

    While other aldolases crystallize readily in the apo form, diffraction-quality crystals of B. henselae aldolase could only be obtained in the presence of the native substrate. The quaternary structure is tetrameric, as is typical of aldolases. Fructose bisphosphate aldolase (FBPA) enzymes have been found in a broad range of eukaryotic and prokaryotic organisms. FBPA catalyses the cleavage of fructose 1,6-bisphosphate into glyceraldehyde 3-phosphate and dihydroxyacetone phosphate. The SSGCID has reported several FBPA structures from pathogenic sources, including the bacterium Brucella melitensis and the protozoan Babesia bovis. Bioinformatic analysis of the Bartonella henselae genome revealed an FBPA homolog. The B. henselae FBPA enzyme was recombinantly expressed and purified for X-ray crystallographic studies. The purified enzyme crystallized in the apo form but failed to diffract; however, well diffracting crystals could be obtained by cocrystallization in the presence of the native substrate fructose 1,6-bisphosphate. A data set to 2.35 Å resolution was collected from a single crystal at 100 K. The crystal belonged to the orthorhombic space group P2 1 2 1 2 1 , with unit-cell parameters a = 72.39, b = 127.71, c = 157.63 Å. The structure was refined to a final free R factor of 22.2%. The structure shares the typical barrel tertiary structure and tetrameric quaternary structure reported for previous FBPA structures and exhibits the same Schiff base in the active site

  2. Uric Acid Stimulates Fructokinase and Accelerates Fructose Metabolism in the Development of Fatty Liver

    Science.gov (United States)

    Lanaspa, Miguel A.; Sanchez-Lozada, Laura G.; Cicerchi, Christina; Li, Nanxing; Roncal-Jimenez, Carlos A.; Ishimoto, Takuji; Le, Myphuong; Garcia, Gabriela E.; Thomas, Jeffrey B.; Rivard, Christopher J.; Andres-Hernando, Ana; Hunter, Brandi; Schreiner, George; Rodriguez-Iturbe, Bernardo; Sautin, Yuri Y.; Johnson, Richard J.

    2012-01-01

    Excessive dietary fructose intake may have an important role in the current epidemics of fatty liver, obesity and diabetes as its intake parallels the development of these syndromes and because it can induce features of metabolic syndrome. The effects of fructose to induce fatty liver, hypertriglyceridemia and insulin resistance, however, vary dramatically among individuals. The first step in fructose metabolism is mediated by fructokinase (KHK), which phosphorylates fructose to fructose-1-phosphate; intracellular uric acid is also generated as a consequence of the transient ATP depletion that occurs during this reaction. Here we show in human hepatocytes that uric acid up-regulates KHK expression thus leading to the amplification of the lipogenic effects of fructose. Inhibition of uric acid production markedly blocked fructose-induced triglyceride accumulation in hepatocytes in vitro and in vivo. The mechanism whereby uric acid stimulates KHK expression involves the activation of the transcription factor ChREBP, which, in turn, results in the transcriptional activation of KHK by binding to a specific sequence within its promoter. Since subjects sensitive to fructose often develop phenotypes associated with hyperuricemia, uric acid may be an underlying factor in sensitizing hepatocytes to fructose metabolism during the development of fatty liver. PMID:23112875

  3. The Role of Carbohydrate Response Element Binding Protein in Intestinal and Hepatic Fructose Metabolism

    Directory of Open Access Journals (Sweden)

    Katsumi Iizuka

    2017-02-01

    Full Text Available Many articles have discussed the relationship between fructose consumption and the incidence of obesity and related diseases. Fructose is absorbed in the intestine and metabolized in the liver to glucose, lactate, glycogen, and, to a lesser extent, lipids. Unabsorbed fructose causes bacterial fermentation, resulting in irritable bowl syndrome. Therefore, understanding the mechanisms underlying intestinal and hepatic fructose metabolism is important for the treatment of metabolic syndrome and fructose malabsorption. Carbohydrate response element binding protein (ChREBP is a glucose-activated transcription factor that controls approximately 50% of de novo lipogenesis in the liver. ChREBP target genes are involved in glycolysis (Glut2, liver pyruvate kinase, fructolysis (Glut5, ketohexokinase, and lipogenesis (acetyl CoA carboxylase, fatty acid synthase. ChREBP gene deletion protects against high sucrose diet-induced and leptin-deficient obesity, because Chrebp−/− mice cannot consume fructose or sucrose. Moreover, ChREBP contributes to some of the physiological effects of fructose on sweet taste preference and glucose production through regulation of ChREBP target genes, such as fibroblast growth factor-21 and glucose-6-phosphatase catalytic subunits. Thus, ChREBP might play roles in fructose metabolism. Restriction of excess fructose intake will be beneficial for preventing not only metabolic syndrome but also irritable bowl syndrome.

  4. Fructose-Rich Diet Affects Mitochondrial DNA Damage and Repair in Rats.

    Science.gov (United States)

    Cioffi, Federica; Senese, Rosalba; Lasala, Pasquale; Ziello, Angela; Mazzoli, Arianna; Crescenzo, Raffaella; Liverini, Giovanna; Lanni, Antonia; Goglia, Fernando; Iossa, Susanna

    2017-03-24

    Evidence indicates that many forms of fructose-induced metabolic disturbance are associated with oxidative stress and mitochondrial dysfunction. Mitochondria are prominent targets of oxidative damage; however, it is not clear whether mitochondrial DNA (mtDNA) damage and/or its lack of repair are events involved in metabolic disease resulting from a fructose-rich diet. In the present study, we evaluated the degree of oxidative damage to liver mtDNA and its repair, in addition to the state of oxidative stress and antioxidant defense in the liver of rats fed a high-fructose diet. We used male rats feeding on a high-fructose or control diet for eight weeks. Our results showed an increase in mtDNA damage in the liver of rats fed a high-fructose diet and this damage, as evaluated by the expression of DNA polymerase γ, was not repaired; in addition, the mtDNA copy number was found to be significantly reduced. A reduction in the mtDNA copy number is indicative of impaired mitochondrial biogenesis, as is the finding of a reduction in the expression of genes involved in mitochondrial biogenesis. In conclusion, a fructose-rich diet leads to mitochondrial and mtDNA damage, which consequently may have a role in liver dysfunction and metabolic diseases.

  5. Racemization of aspartic acid and phenylalanine in the sweetener aspartame at 100 degrees C.

    Science.gov (United States)

    Boehm, M F; Bada, J L

    1984-01-01

    The racemization half-lives (i.e., the time required to reach a D/L = 0.33) at pH 6.8 for aspartic acid and phenylalanine in the sweetener aspartame (L-aspartyl-L-phenylalanine methyl ester) were determined to be 13 and 23 hours, respectively, at 100 degrees C. Racemization at this pH does not occur in aspartame but rather in its diketopiperazine decomposition product. Our results indicate that the use of aspartame to sweeten neutral pH foods and beverages that are then heated at elevated temperature could generate D-aspartic acid and D-phenylalanine. The nutritive consequences of these D-amino acids in the human diet are not well established, and thus aspartame should probably not be used as a sweetener when the exposure of neutral pH foods and beverages to elevated temperatures is required. At pH 4, a typical pH of most foods and beverages that might be sweetened with aspartame, the half-lives are 47 hours for aspartic acid and 1200 hours for phenylalanine at 100 degrees C. Racemization at pH 4 takes place in aspartame itself. Although the racemization rates at pH 4 are slow and no appreciable racemization of aspartic acid and phenylalanine should occur during the normal use of aspartame, some food and beverage components could conceivably act as catalysts. Additional studies are required to evaluate whether the use of aspartame as a sugar substitute might not in turn result in an increased human consumption of D-aspartic acid and D-phenylalanine. PMID:6591191

  6. Nuclear magnetic resonance studies of phenylalanine analog interactions with normal and sicklen hemoglobin

    International Nuclear Information System (INIS)

    Lee, Y.H.

    1985-01-01

    Several phenylalanine derivatives have been found to inhibit the gelation of deoxygenated sickle hemoglobin (deoxy HbS). Proton and 19 F-NMR techniques were used to monitor the interaction of selected phenylalanine derivatives with the Hb molecule by using fluorine containing phenylalanine derivatives, Hb labeled at the β93 position with N-(2,2,2-trifluoroethyl) iodoacetamide (IA-F 3 ), and by monitoring the relaxation rates of the C2 and C4 histidine protons. The results show that the 19 F spin-spin relaxation times of L-phenylalanin-4-fluorobenzylamide (PheNBz1-F), which has a deoxy HbS antigelling activity comparable to that of the amino acid, tryptophan, are affected much more strongly by interaction with Hb than are those of glycin-4-fluorobenzylamide (GlyNBz1-F). In contrast, it is shown that N-(2,2,5,5-tetramethylpyrrolidin-1-oxy-3-carboxyl)-L-phenylalanine t-butyl ester (SL-Phe) exhibits specific binding to Hb, and an antigelling activity more than two orders of magnitude greater than that of phenylalanine. These results indicate that the fluorine nuclei strongly influenced by the presence of spin label nitroxide are located in a conformation within a few angstroms of the SL-Phe binding site. Proton NMR relaxation measurements of the C2 and C4 proton resonances from the β2, 4b143 and β146 histidine residues show significant and selective effects from the binding of SL-Phe to Hb, indicating that the SL-Phe binding site must be close to the side chains of these three residues. The strong antigelation activity of SL-Phe suggests that this binding site may be one of the intermolecular contact sites of importance to the deoxy HbS aggregation process

  7. Regulation of dual glycolytic pathways for fructose metabolism in heterofermentative Lactobacillus panis PM1.

    Science.gov (United States)

    Kang, Tae Sun; Korber, Darren R; Tanaka, Takuji

    2013-12-01

    Lactobacillus panis PM1 belongs to the group III heterofermentative lactobacilli that use the 6-phosphogluconate/phosphoketolase (6-PG/PK) pathway as their central metabolic pathway and are reportedly unable to grow on fructose as a sole carbon source. We isolated a variant PM1 strain capable of sporadic growth on fructose medium and observed its distinctive characteristics of fructose metabolism. The end product pattern was different from what is expected in typical group III lactobacilli using the 6-PG/PK pathway (i.e., more lactate, less acetate, and no mannitol). In addition, in silico analysis revealed the presence of genes encoding most of critical enzymes in the Embden-Meyerhof (EM) pathway. These observations indicated that fructose was metabolized via two pathways. Fructose metabolism in the PM1 strain was influenced by the activities of two enzymes, triosephosphate isomerase (TPI) and glucose 6-phosphate isomerase (PGI). A lack of TPI resulted in the intracellular accumulation of dihydroxyacetone phosphate (DHAP) in PM1, the toxicity of which caused early growth cessation during fructose fermentation. The activity of PGI was enhanced by the presence of glyceraldehyde 3-phosphate (GAP), which allowed additional fructose to enter into the 6-PG/PK pathway to avoid toxicity by DHAP. Exogenous TPI gene expression shifted fructose metabolism from heterolactic to homolactic fermentation, indicating that TPI enabled the PM1 strain to mainly use the EM pathway for fructose fermentation. These findings clearly demonstrate that the balance in the accumulation of GAP and DHAP determines the fate of fructose metabolism and the activity of TPI plays a critical role during fructose fermentation via the EM pathway in L. panis PM1.

  8. Estrogenic effects of several BPA analogs in the developing zebrafish brain

    Directory of Open Access Journals (Sweden)

    Joel eCano-Nicolau

    2016-03-01

    Full Text Available Important set of studies have demonstrated the endocrine disrupting activity of Bisphenol A (BPA. The present work aimed at defining estrogenic-like activity of several BPA structural analogs, including BPS, BPF, BPAF, and BPAP, on 4-day or 7-day post-fertilization (dpf zebrafish larva as an in vivo model. We measured the induction level of the estrogen-sensitive marker cyp19a1b gene (Aromatase B, expressed in the brain, using three different in situ/in vivo strategies: 1 Quantification of cyp19a1b transcripts using RT-qPCR in wild type 7-dpf larva brains exposed to bisphenols ; 2 Detection and distribution of cyp19a1b transcripts using in situ hybridization on 7-dpf brain sections (hypothalamus; and 3 Quantification of the cyp19a1b promoter activity in live cyp19a1b-GFP transgenic zebrafish (EASZY assay at 4-dpf larval stage. These three different experimental approaches demonstrated that BPS, BPF or BPAF exposure, similarly to BPA, significantly activates the expression of the estrogenic marker in the brain of developing zebrafish. In vitro experiments using both reporter gene assay in a glial cell context and competitive ligand binding assays strongly suggested that up-regulation of cyp19a1b is largely mediated by the zebrafish estrogen nuclear receptor alpha (zfERα. Importantly, and in contrast to other tested bisphenol A analogs, the bisphenol AP (BPAP did not show estrogenic activity in our model.

  9. Chronic fructose intake accelerates non-alcoholic fatty liver disease in the presence of essential hypertension.

    Science.gov (United States)

    Lírio, Layla Mendonça; Forechi, Ludimila; Zanardo, Tadeu Caliman; Batista, Hiago Martins; Meira, Eduardo Frizera; Nogueira, Breno Valentim; Mill, José Geraldo; Baldo, Marcelo Perim

    2016-01-01

    The growing epidemic of metabolic syndrome has been related to the increased use of fructose by the food industry. In fact, the use of fructose as an ingredient has increased in sweetened beverages, such as sodas and juices. We thus hypothesized that fructose intake by hypertensive rats would have a worse prognosis in developing metabolic disorder and non-alcoholic fatty liver disease. Male Wistar and SHR rats aged 6weeks were given water or fructose (10%) for 6weeks. Blood glucose was measured every two weeks, and insulin and glucose sensitivity tests were assessed at the end of the follow-up. Systolic blood pressure was measure by plethysmography. Lean mass and abdominal fat mass were collected and weighed. Liver tissue was analyzed to determine interstitial fat deposition and fibrosis. Fasting glucose increased in animals that underwent a high fructose intake, independent of blood pressure levels. Also, insulin resistance was observed in normotensive and mostly in hypertensive rats after fructose intake. Fructose intake caused a 2.5-fold increase in triglycerides levels in both groups. Fructose intake did not change lean mass. However, we found that fructose intake significantly increased abdominal fat mass deposition in normotensive but not in hypertensive rats. Nevertheless, chronic fructose intake only increased fat deposition and fibrosis in the liver in hypertensive rats. We demonstrated that, in normotensive and hypertensive rats, fructose intake increased triglycerides and abdominal fat deposition, and caused insulin resistance. However, hypertensive rats that underwent fructose intake also developed interstitial fat deposition and fibrosis in liver. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Indoor temperature changes after retrofit: inferences based on electricity billing data for nonparticipants and participants in the BPA Residential Weatherization Program

    Energy Technology Data Exchange (ETDEWEB)

    Hirst, E.; White, D.

    1985-07-01

    This report discusses changes in indoor temperatures in response to retrofit improvements. The data on which this analysis is based are from an evaluation of the Bonneville Power Administration (BPA) interim Residential Weatherization Program. The BPA program, operated through participating private and public utilities throughout the Pacific Northwest, offered financial assistance (generally a cash rebate) to encourage installation of energy-efficiency improvements to existing homes in the region. These retrofits included attic, wall, floor and heating duct insulation; storm windows and doors; clock thermostats; and caulking and weatherstripping. This program, which operated during 1982 and 1983, weatherized 104 thousand homes at a total cost to BPA of $157 million. In mid-1983, staff at Oak Ridge National Laboratory and Evaluation Research Corporation began an evaluation of the BPA program. The primary focus of this evaluation was assessment of the actual electricity saving that can be attributed to the program (Hirst, et al., 1985). These savings estimates were used to help assess the economic attractiveness of the program to participants, the BPA power system, and the Pacific Northwest region as a whole.

  11. Structure of Toxoplasma gondii fructose-1,6-bisphosphate aldolase

    International Nuclear Information System (INIS)

    Boucher, Lauren E.; Bosch, Jürgen

    2014-01-01

    The structure of T. gondii fructose-1,6-bisphosphate aldolase, a glycolytic enzyme and structural component of the invasion machinery, was determined to a resolution of 2.0 Å. The apicomplexan parasite Toxoplasma gondii must invade host cells to continue its lifecycle. It invades different cell types using an actomyosin motor that is connected to extracellular adhesins via the bridging protein fructose-1,6-@@bisphosphate aldolase. During invasion, aldolase serves in the role of a structural bridging protein, as opposed to its normal enzymatic role in the glycolysis pathway. Crystal structures of the homologous Plasmodium falciparum fructose-1,6-bisphosphate aldolase have been described previously. Here, T. gondii fructose-1,6-bisphosphate aldolase has been crystallized in space group P22 1 2 1 , with the biologically relevant tetramer in the asymmetric unit, and the structure has been determined via molecular replacement to a resolution of 2.0 Å. An analysis of the quality of the model and of the differences between the four chains in the asymmetric unit and a comparison between the T. gondii and P. falciparum aldolase structures is presented

  12. CLARITY-BPA: Effects of chronic Bisphenol A exposure on the immune system: Part 1 - Quantification of the relative number and proportion of leukocyte populations in the spleen and thymus.

    Science.gov (United States)

    Li, Jinpeng; Bach, Anthony; Crawford, Robert B; Phadnis-Moghe, Ashwini S; Chen, Weimin; D'Ingillo, Shawna; Kovalova, Natalia; Suarez-Martinez, Jose E; Zhou, Jiajun; Kaplan, Barbara L F; Kaminski, Norbert E

    2018-03-01

    Bisphenol A (BPA) is extensively used in manufacturing of a broad range of consumer products worldwide. Due to its widespread use, human exposure to BPA is virtually ubiquitous. Broad human exposure coupled with a large scientific literature describing estrogenic activity of BPA in animals has raised public health concerns. To comprehensively evaluate the health effects of BPA exposure, a chronic toxicity study using a wide-range of BPA doses (2.5-25000 μg/kg bw/day) was conducted jointly by the NTP, thirteen NIEHS-supported grantees, and the FDA, which is called the Consortium Linking Academic and Regulatory Insights on Toxicity of BPA (CLARITY-BPA). As a participant in the CLARITY-BPA project, the objective of the current study was to evaluate the effects of chronic BPA exposure in Sprague-Dawley rats on the relative number and proportion of defined leukocyte populations in the spleen and the thymus. Toward this end, lymphoid tissues from a total of 641 rats were assayed after being continuously dosed with BPA or controls for up to one year. To comprehensively evaluate the effects of BPA on leukocyte compositions, extensive endpoints that cover major populations of leukocytes were assessed, including B cells, T cells, NK cells, granulocytes, monocytes, macrophages and dendritic cells. In total, of the 530 measurements in BPA-treated rats, 10 measurements were statistically different from vehicle controls and were mainly associated with either the macrophage or dendritic cell populations. Most, if not all, of these alterations were found to be transient with no persistent trend over the one-year time period. In addition, the observed BPA-associated alterations were mostly moderate in magnitude and not dose-dependent. Due to the aforementioned, it is unlikely that the observed BPA-mediated changes alone would adversely affect immune competence. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Absorption capacity of fructose in healthy adults. Comparison with sucrose and its constituent monosaccharides

    DEFF Research Database (Denmark)

    Rumessen, J J; Gudmand-Høyer, E

    1986-01-01

    The capacity to absorb fructose in 10 healthy adults was investigated by means of hydrogen breath analysis. Fructose absorption was quantified with lactulose standards. Significant hydrogen production (greater than or equal to 20 ppm rise of breath hydrogen) was found after challenge with 10......% solutions of 50, 37.5, 25, 20, and 15 g fructose in eight, seven, five, four and one subjects, respectively. One subject showed malabsorption after a 10 g dose and possibly also 5 g fructose. In contrast, no malabsorption could be detected in any of the 10 subjects after ingestion of 100 g, 75 g, or 50 g...... sucrose or a mixture of 50 g glucose and 50 g fructose. After ingestion of mixtures of 50 g fructose +25 g glucose and 50 g fructose +12.5 g glucose malabsorption was present in three and seven subjects, respectively. Symptoms during all challenges were mild, or absent. It is concluded that in the healthy...

  14. Analog kefir production with a low phenylalanine for Phenylketonuria

    Directory of Open Access Journals (Sweden)

    Amir Yari

    2017-06-01

    Full Text Available Phenylketonuria (PKU is one of the most prevalent types of hereditary metabolic disorders which is caused due to an absence or reduction of the activity of the Phenylalanine hydroxylase enzyme in the liver which in turn, inhibits the transformation of phenylalanine (Phe to tyrosine. In clinical terms, this disorder is displayed with severe, permanent and irreversible mental retardation. This research was aimed at development of a highly nutrient and acceptable suitable analogue Kefir drink for these patients. The mentioned drink is based on milk permeate, cream powder and includes glycomacropeptide (GMP as a source of protein, starter as a fermentation source, the trance glutamines (TG enzyme, dough stabilizer and modified corn starch as tissue maker, salt and water. The GMP used in this analogue drink is intended for enrichment of the product and therefore it was added by 3% to one formula. The aforementioned sample had a lower calculated amount of pH and alcohol percentage in comparison with the 16 samples which did not have GMP. The results of this study showed that the analog kefir has a low level of phenylalanine (30.40 mg/100g and in that regard, it can be considered to be useful for patients with PKU.

  15. Metabolic Syndrome and Hypertension Resulting from Fructose Enriched Diet in Wistar Rats

    Directory of Open Access Journals (Sweden)

    Julie Dupas

    2017-01-01

    Full Text Available Increased sugar consumption, especially fructose, is strongly related to the development of type 2 diabetes (T2D and metabolic syndrome. The aim of this study was to evaluate long term effects of fructose supplementation on Wistar rats. Three-week-old male rats were randomly divided into 2 groups: control (C; n=14 and fructose fed (FF; n=18, with a fructose enriched drink (20–25% w/v fructose in water for 21 weeks. Systolic blood pressure, fasting glycemia, and bodyweight were regularly measured. Glucose tolerance was evaluated three times using an oral glucose tolerance test. Insulin levels were measured concomitantly and insulin resistance markers were evaluated (HOMA 2-IR, Insulin Sensitivity Index for glycemia (ISI-gly. Lipids profile was evaluated on plasma. This fructose supplementation resulted in the early induction of hypertension without renal failure (stable theoretical creatinine clearance and in the progressive development of fasting hyperglycemia and insulin resistance (higher HOMA 2-IR, lower ISI-gly without modification of glucose tolerance. FF rats presented dyslipidemia (higher plasma triglycerides and early sign of liver malfunction (higher liver weight. Although abdominal fat weight was increased in FF rats, no significant overweight was found. In Wistar rats, 21 weeks of fructose supplementation induced a metabolic syndrome (hypertension, insulin resistance, and dyslipidemia but not T2D.

  16. Self-assembled block copolymer photonic crystal for selective fructose detection.

    Science.gov (United States)

    Ayyub, Omar B; Ibrahim, Michael B; Briber, Robert M; Kofinas, Peter

    2013-08-15

    The use of one-dimensional photonic crystals fabricated from a self-assembled lamellar block copolymer as a sensitive and selective fructose sensor is investigated. The polystyrene-b-poly(2-vinyl pyridine) (PS-b-P2VP) films are functionalized with 2-(bromomethyl)phenylboronic acid. The boronic acid moiety confined within the lamellar morphology can reversibly bind to sugars such as fructose, imparting the photonic properties of the PS-b-P2VP film. The films exhibit a detection limit of 500 μM in water and 1mM in phosphate buffered saline. Exposure to a 50 mM solution of fructose invokes a highly visible color change from blue to orange. The films are also able to selectively recognize and respond to fructose in competitive studies in the presence of glucose, mannose and sucrose. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Application of drug delivery system for boron neutron capture therapy. Basic research toward clinical application

    International Nuclear Information System (INIS)

    Yanagie, Hironobu; Takahashi, Hiroyuki

    2010-01-01

    Tumour cell destruction in boron neutron-capture therapy (BNCT) is due to the nuclear reaction between 10 B and thermal neutrons ( 10 B+ 1 n → 7 Li+ 4 He (α) +2.31 MeV (93.7%)/2.79 MeV (6.3%)). The resulting lithium ions and αparticles are high linear energy transfer (LET) particles which give high biological effect. Their short range in tissue (5-9 μm) restricts radiation damage to those cells in which boron atoms are located at the time of neutron irradiation. BNCT has been applied clinically for the treatment of malignant brain tumors, malignant melanoma, head and neck cancer and hepatoma etc, recently. Sodium borocaptate (Na 2 10 B 12 H 11 SH; BSH) and borono-phenylalanine ( 10 BPA) are currently being used in clinical treatments. To achieve the selective delivery of boron atoms to cancer cells, drug delivery system (DDS) becomes an attractive intelligent technology as targeting and controlled release of drugs. We have firstly reported that 10 B atoms delivered by immunoliposomes are cytotoxic to human pancreatic carcinoma cells (AsPC-1) after thermal neutron irradiation in vitro. The intra-tumoural injection of boronated immunoliposomes can increase the retention of 10 B atoms in tumour cells, causing suppression of tumour growth in vivo following thermal neutron irradiation. We prepared polyethylene-glycol binding liposomes (PEG-liposomes) as an effective 10 B carrier to obviate phagocytosis by reticuloendotherial systems. We had prepared 10 BSH entrapped Water-in-Oil-in-Water (WOW) emulsion. The 10 B concentration in VX-2 tumour after intra-arterial injection of 10 BSH entrapped WOW emulsion was superior to the groups of 10 BSH entrapped conventional Lipiodol mix emulsion. 10 Boron entrapped WOW emulsion is one of the most useful for intra-arterial boron delivery carrier on BNCT to hepatocellular carcinoma. (author)

  18. Insulin Resistance Induced by Short term Fructose Feeding may not ...

    African Journals Online (AJOL)

    Fructose feeding causes insulin resistance and invariably Non-Insulin Dependent Diabetes Mellitus (NIDDM) in rats and genetically predisposed humans. The effect of insulin resistance induced by short term fructose feeding on fertility in female rats was investigated using the following parameters: oestrous phase and ...

  19. 1,5-Anhydro-D-fructose: regioselective acylation with fatty acids

    DEFF Research Database (Denmark)

    Lundt, Inge; Andersen, Søren Møller; Marcussen, Jan

    1999-01-01

    Regioselective acylation of 1,5-anhydro-D-fructose was performed with dodecanoic acid to give 1,5-anhydro-6-O-dodecanoyl-D-fructose, chemically in 50% yield and enzymatically in quantitative yield. Quantitative conversions were also obtained using hexadecanoic and octadecanoic acids as acyl donors...

  20. New LASER fluorometric HPLC detection for ortho-tyrosine in gamma-irradiated phenylalanine solution and pork

    International Nuclear Information System (INIS)

    Miyahara, Makoto; Toyoda, Masatake; Saito, Yukio; Nagasawa, Taeko; Izumi, Keiko; Kitamura, Mayumi

    1999-01-01

    New analytical procedure for o-tyrosine was studied to investigate effects of gamma irradiation on aqueous phenylalanine solution and pork. The process includes extraction and hydrolysis of protein, derivatization of the free amino acid by fluororeagent, and finally separation and detection by LASER fluorometric HPLC. The detection limit was 25ng. To study how the procedure works, irradiated phenylalanine solution and pork were analyzed. The samples were irradiated at doses up to 10 kGy at room temperature. Three tyrosine isomers were detected in phenylalanine solution, and 2 isomers (o-and p-tyrosine) were found in pork. Dose response was found in the formation of the isomers both in phenylalanine solution and in pork. O-tyrosine peak obtained from irradiated pork was separated from interference successfully. Those findings illustrate the procedure may be applicable to detection of irradiated food. (author)

  1. High Dietary Fructose Intake on Cardiovascular Disease Related Parameters in Growing Rats.

    Science.gov (United States)

    Yoo, SooYeon; Ahn, Hyejin; Park, Yoo Kyoung

    2016-12-26

    The objective of this study was to determine the effects of a high-fructose diet on cardiovascular disease (CVD)-related parameters in growing rats. Three-week-old female Sprague Dawley rats were randomly assigned to four experimental groups; a regular diet group (RD: fed regular diet based on AIN-93G, n = 8), a high-fructose diet group (30Frc: fed regular diet with 30% fructose, n = 8), a high-fat diet group (45Fat: fed regular diet with 45 kcal% fat, n = 8) or a high fructose with high-fat diet group (30Frc + 45Fat, fed diet 30% fructose with 45 kcal% fat, n = 8). After an eight-week treatment period, the body weight, total-fat weight, serum glucose, insulin, lipid profiles and pro-inflammatory cytokines, abdominal aortic wall thickness, and expressions of eNOS and ET-1 mRNA were analyzed. The result showed that total-fat weight was higher in the 30Frc, 45Fat, and 30Frc + 45Fat groups compared to the RD group ( p fructose consumption and high fat consumption in growing rats had similar negative effects on CVD-related parameters.

  2. d-Fructose-Decorated Poly(ethylene imine) for Human Breast Cancer Cell Targeting.

    Science.gov (United States)

    Englert, Christoph; Pröhl, Michael; Czaplewska, Justyna A; Fritzsche, Carolin; Preußger, Elisabeth; Schubert, Ulrich S; Traeger, Anja; Gottschaldt, Michael

    2017-08-01

    The high affinity of GLUT5 transporter for d-fructose in breast cancer cells has been discussed intensely. In this contribution, high molar mass linear poly(ethylene imine) (LPEI) is functionalized with d-fructose moieties to combine the selectivity for the GLUT5 transporter with the delivery potential of PEI for genetic material. The four-step synthesis of a thiol-group bearing d-fructose enables the decoration of a cationic polymer backbone with d-fructose via thiol-ene photoaddition. The functionalization of LPEI is confirmed by 2D NMR techniques, elemental analysis, and size exclusion chromatography. Importantly, a d-fructose decoration of 16% renders the polymers water-soluble and eliminates the cytotoxicity of PEI in noncancer L929 cells, accompanied by a reduced unspecific cellular uptake of the genetic material. In contrast, the cytotoxicity as well as the cell specific uptake is increased for triple negative MDA-MB-231 breast cancer cells. Therefore, the introduction of d-fructose shows superior potential for cell targeting, which can be assumed to be GLUT5 dependent. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. The Effect of D-Tagatose on Fructose Absorption in a Rat Model.

    Science.gov (United States)

    Williams, Jarrod; Spitnale, Michael; Lodder, Robert

    D-tagatose is in development as a medication for the treatment of type 2 diabetes. The effect of oral D-tagatose on the absorption of D-fructose was assessed when co-administered in this study. In the pilot study, male Sprague-Dawley rats were fed C14 labeled fructose and glucose concomitantly to establish dose levels for the treatment group of rats fed C14 labeled fructose together with D-tagatose. Rats were administered 0, 600, 2000, 6000, or 12000 mg/kg of D-tagatose along with 2000 mg/kg of fructose. Blood samples were taken over 60 minutes and were assessed using scintillation counting. 600, 2000, and 6000 mg/kg of D-tagatose decreased fructose absorption by 1%, 26%, and 30% respectively (12000 mg/kg group was stopped short of completion due to intolerance) as measured by AUC of scintillation counts. The 600 and 2000 mg/kg of D-tagatose groups showed no difference in plasma glucose concentrations compared to placebo while a rise in glucose was seen in the 6000 mg/kg of D-tagatose groups. The results indicate that D-tagatose may be useful in reducing fructose absorption, which could lead to a beneficial outcome.

  4. Aerobic capacity of rats recovered from fetal malnutrition with a fructose-rich diet.

    Science.gov (United States)

    Cambri, Lucieli Teresa; Dalia, Rodrigo Augusto; Ribeiro, Carla; Rostom de Mello, Maria Alice

    2010-08-01

    The objective of this study was to analyze the aerobic capacity, through the maximal lactate steady-state (MLSS) protocol, of rats subjected to fetal protein malnutrition and recovered with a fructose-rich diet. Pregnant adult Wistar rats that were fed a balanced (17% protein) diet or a low-protein (6% protein) diet were used. After birth, the offspring were distributed into groups according to diet until 60 days of age: balanced (B), balanced diet during the whole experimental period; balanced-fructose (BF), balanced diet until birth and fructose-rich diet (60% fructose) until 60 days; low protein-balanced (LB), low-protein diet until birth and balanced diet until 60 days; and low protein-fructose (LF), low protein diet until birth and fructose-rich diet until 60 days. It was verified that the fructose-rich diet reduced body growth, mainly in the BF group. There was no difference among the groups in the load corresponding to the MLSS (B, 7.5+/-0.5%; BF, 7.4+/-0.6%; LB, 7.7+/-0.4%; and LF, 7.7+/-0.6% relative to body weight). However, the BF group presented higher blood lactate concentrations (4.8+/-0.9 mmol.L(-1)) at 25 min in the load corresponding to the MLSS (B, 3.2+/-0.9 mmol.L(-1); LB, 3.4+/-0.9 mmol.L(-1); and LF, 3.2+/-1.0 mmol.L(-1)). Taken together, these results indicate that the ability of young rats to perform exercise was not altered by intrauterine malnutrition or a fructose-rich diet, although the high fructose intake after the balanced diet in utero increased blood lactate during swimming exercises in rats.

  5. The effect of experimental diabetes on phenylalanine metabolism in isolated liver cells.

    OpenAIRE

    Santana, M A; Fisher, M J; Bate, A J; Pogson, C I

    1985-01-01

    Chronic (10-day) diabetes was associated with increased metabolic flux through phenylalanine hydroxylase in isolated liver cells. This flux was stimulated by 0.1 microM-glucagon, but not by 10 microM-noradrenaline; 0.1 microM-insulin affected neither basal nor glucagon-stimulated flux. The increased rate of phenylalanine hydroxylation in diabetes was accompanied by parallel increases in enzyme activity (as measured with artificial cofactor) and immunoreactive-enzyme-protein content. In contra...

  6. High fructose diet feeding accelerates diabetic nephropathy in Spontaneously Diabetic Torii (SDT) rats.

    Science.gov (United States)

    Toyoda, Kaoru; Suzuki, Yusuke; Muta, Kyotaka; Masuyama, Taku; Kakimoto, Kochi; Kobayashi, Akio; Shoda, Toshiyuki; Sugai, Shoichiro

    2018-01-01

    Diabetic nephropathy (DN) is one of the complications of diabetes and is now the most common cause of end-stage renal disease. Fructose is a simple carbohydrate that is present in fruits and honey and is used as a sweetener because of its sweet taste. Fructose has been reported to have the potential to progress diabetes and DN in humans even though fructose itself does not increase postprandial plasma glucose levels. In this study, we investigated the effects of high fructose intake on the kidney of the Spontaneously Diabetic Torii (SDT) rats which have renal lesions similar to those in DN patients and compared these with the effects in normal SD rats. This study revealed that a 4-week feeding of the high fructose diet increased urinary excretion of kidney injury makers for tubular injury and accelerated mainly renal tubular and interstitial lesions in the SDT rats but not in normal rats. The progression of the nephropathy in the SDT rats was considered to be related to increased internal uric acid and blood glucose levels due to the high fructose intake. In conclusion, high fructose intake exaggerated the renal lesions in the SDT rats probably due to effects on the tubules and interstitium through metabolic implications for uric acid and glucose.

  7. Fructose as a key player in the development of fatty liver disease.

    Science.gov (United States)

    Basaranoglu, Metin; Basaranoglu, Gokcen; Sabuncu, Tevfik; Sentürk, Hakan

    2013-02-28

    We aimed to investigate whether increased consumption of fructose is linked to the increased prevalence of fatty liver. The prevalence of nonalcoholic steatohepatitis (NASH) is 3% and 20% in nonobese and obese subjects, respectively. Obesity is a low-grade chronic inflammatory condition and obesity-related cytokines such as interleukin-6, adiponectin, leptin, and tumor necrosis factor-α may play important roles in the development of nonalcoholic fatty liver disease (NAFLD). Additionally, the prevalence of NASH associated with both cirrhosis and hepatocellular carcinoma was reported to be high among patients with type 2 diabetes with or without obesity. Our research group previously showed that consumption of fructose is associated with adverse alterations of plasma lipid profiles and metabolic changes in mice, the American Lifestyle-Induced Obesity Syndrome model, which included consumption of a high-fructose corn syrup in amounts relevant to that consumed by some Americans. The observation reinforces the concerns about the role of fructose in the obesity epidemic. Increased availability of fructose (e.g., high-fructose corn syrup) increases not only abnormal glucose flux but also fructose metabolism in the hepatocyte. Thus, the anatomic position of the liver places it in a strategic buffering position for absorbed carbohydrates and amino acids. Fructose was previously accepted as a beneficial dietary component because it does not stimulate insulin secretion. However, since insulin signaling plays an important role in central mechanisms of NAFLD, this property of fructose may be undesirable. Fructose has a selective hepatic metabolism, and provokes a hepatic stress response involving activation of c-Jun N-terminal kinases and subsequent reduced hepatic insulin signaling. As high fat diet alone produces obesity, insulin resistance, and some degree of fatty liver with minimal inflammation and no fibrosis, the fast food diet which includes fructose and fats produces

  8. Uptake and metabolism of fructose by rat neocortical cells in vivo and by isolated nerve terminals in vitro.

    Science.gov (United States)

    Hassel, Bjørnar; Elsais, Ahmed; Frøland, Anne-Sofie; Taubøll, Erik; Gjerstad, Leif; Quan, Yi; Dingledine, Raymond; Rise, Frode

    2015-05-01

    Fructose reacts spontaneously with proteins in the brain to form advanced glycation end products (AGE) that may elicit neuroinflammation and cause brain pathology, including Alzheimer's disease. We investigated whether fructose is eliminated by oxidative metabolism in neocortex. Injection of [(14) C]fructose or its AGE-prone metabolite [(14) C]glyceraldehyde into rat neocortex in vivo led to formation of (14) C-labeled alanine, glutamate, aspartate, GABA, and glutamine. In isolated neocortical nerve terminals, [(14) C]fructose-labeled glutamate, GABA, and aspartate, indicating uptake of fructose into nerve terminals and oxidative fructose metabolism in these structures. This was supported by high expression of hexokinase 1, which channels fructose into glycolysis, and whose activity was similar with fructose or glucose as substrates. By contrast, the fructose-specific ketohexokinase was weakly expressed. The fructose transporter Glut5 was expressed at only 4% of the level of neuronal glucose transporter Glut3, suggesting transport across plasma membranes of brain cells as the limiting factor in removal of extracellular fructose. The genes encoding aldose reductase and sorbitol dehydrogenase, enzymes of the polyol pathway that forms glucose from fructose, were expressed in rat neocortex. These results point to fructose being transported into neocortical cells, including nerve terminals, and that it is metabolized and thereby detoxified primarily through hexokinase activity. We asked how the brain handles fructose, which may react spontaneously with proteins to form 'advanced glycation end products' and trigger inflammation. Neocortical cells took up and metabolized extracellular fructose oxidatively in vivo, and isolated nerve terminals did so in vitro. The low expression of fructose transporter Glut5 limited uptake of extracellular fructose. Hexokinase was a main pathway for fructose metabolism, but ketohexokinase (which leads to glyceraldehyde formation) was

  9. Mapping the functional landscape of frequent phenylalanine hydroxylase (PAH) genotypes promotes personalised medicine in phenylketonuria.

    Science.gov (United States)

    Danecka, Marta K; Woidy, Mathias; Zschocke, Johannes; Feillet, François; Muntau, Ania C; Gersting, Søren W

    2015-03-01

    In phenylketonuria, genetic heterogeneity, frequent compound heterozygosity, and the lack of functional data for phenylalanine hydroxylase genotypes hamper reliable phenotype prediction and individualised treatment. A literature search revealed 690 different phenylalanine hydroxylase genotypes in 3066 phenylketonuria patients from Europe and the Middle East. We determined phenylalanine hydroxylase function of 30 frequent homozygous and compound heterozygous genotypes covering 55% of the study population, generated activity landscapes, and assessed the phenylalanine hydroxylase working range in the metabolic (phenylalanine) and therapeutic (tetrahydrobiopterin) space. Shared patterns in genotype-specific functional landscapes were linked to biochemical and pharmacological phenotypes, where (1) residual activity below 3.5% was associated with classical phenylketonuria unresponsive to pharmacological treatment; (2) lack of defined peak activity induced loss of response to tetrahydrobiopterin; (3) a higher cofactor need was linked to inconsistent clinical phenotypes and low rates of tetrahydrobiopterin response; and (4) residual activity above 5%, a defined peak of activity, and a normal cofactor need were associated with pharmacologically treatable mild phenotypes. In addition, we provide a web application for retrieving country-specific information on genotypes and genotype-specific phenylalanine hydroxylase function that warrants continuous extension, updates, and research on demand. The combination of genotype-specific functional analyses with biochemical, clinical, and therapeutic data of individual patients may serve as a powerful tool to enable phenotype prediction and to establish personalised medicine strategies for dietary regimens and pharmacological treatment in phenylketonuria. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  10. A highly conserved phenylalanine in the alpha, beta-T cell receptor (TCR) constant region determines the integrity of TCR/CD3 complexes

    DEFF Research Database (Denmark)

    Caspar-Bauguil, S; Arnaud, J; Huchenq, A

    1994-01-01

    In the present study, we have investigated the importance of a phenylalanine (phe195) in the Tcr-C alpha region on Tcr-alpha,beta/CD3 membrane expression. An exchange of phe195 with a tyrosine residue does not affect Tcr/CD3 membrane expression; however, exchange with aspartic acid, histidine or ...

  11. HO-1 Upregulation Attenuates Adipocyte Dysfunction, Obesity, and Isoprostane Levels in Mice Fed High Fructose Diets

    Directory of Open Access Journals (Sweden)

    Zeid Khitan

    2014-01-01

    Full Text Available Background. Fructose metabolism is an unregulated metabolic pathway and excessive fructose consumption is known to activate ROS. HO-1 is a potent antioxidant gene that plays a key role in decreasing ROS and isoprostanes. We examined whether the fructose-mediated increase in adipocyte dysfunction involves an increase in isoprostanes and that pharmacological induction of HO-1 would decrease both isoprostane levels and adipogenesis. Methods and Results. We examined the effect of fructose, on adipogenesis in human MSCs in the presence and absence of CoPP, an inducer of HO-1. Fructose increased adipogenesis and the number of large lipid droplets while decreasing the number of small lipid droplets (P<0.05. Levels of heme and isoprostane in fructose treated MSC-derived adipocytes were increased. CoPP reversed these effects and markedly increased HO-1 and the Wnt signaling pathway. The high fructose diet increased heme levels in adipose tissue and increased circulating isoprostane levels (P<0.05 versus control. Fructose diets decreased HO-1 and adiponectin levels in adipose tissue. Induction of HO-1 by CoPP decreased isoprostane synthesis (P<0.05 versus fructose. Conclusion. Fructose treatment resulted in increased isoprostane production and adipocyte dysfunction, which was reversed by the increased expression of HO-1.

  12. Evaluation of (CO2)-C-13 breath tests for the detection of fructose malabsorption

    NARCIS (Netherlands)

    Hoekstra, JH; VandenAker, JHL; Kneepkens, CMF; Stellaard, F; Geypens, B; Ghoos, YF

    Breath hydrogen (H-2) studies have made clear that small intestinal absorption of fructose is limited, especially in toddlers. Malabsorption of fructose may be a cause of recurrent abdominal pain and chronic nonspecific diarrhea (toddler's diarrhea). Fructose absorption is facilitated by equimolar

  13. The Effect of D-Tagatose on Fructose Absorption in a Rat Model

    Science.gov (United States)

    Williams, Jarrod; Spitnale, Michael; Lodder, Robert

    2014-01-01

    D-tagatose is in development as a medication for the treatment of type 2 diabetes. The effect of oral D-tagatose on the absorption of D-fructose was assessed when co-administered in this study. In the pilot study, male Sprague-Dawley rats were fed C14 labeled fructose and glucose concomitantly to establish dose levels for the treatment group of rats fed C14 labeled fructose together with D-tagatose. Rats were administered 0, 600, 2000, 6000, or 12000 mg/kg of D-tagatose along with 2000 mg/kg of fructose. Blood samples were taken over 60 minutes and were assessed using scintillation counting. 600, 2000, and 6000 mg/kg of D-tagatose decreased fructose absorption by 1%, 26%, and 30% respectively (12000 mg/kg group was stopped short of completion due to intolerance) as measured by AUC of scintillation counts. The 600 and 2000 mg/kg of D-tagatose groups showed no difference in plasma glucose concentrations compared to placebo while a rise in glucose was seen in the 6000 mg/kg of D-tagatose groups. The results indicate that D-tagatose may be useful in reducing fructose absorption, which could lead to a beneficial outcome. PMID:25621289

  14. Fructose-driven glycolysis supports anoxia resistance in the naked mole-rat.

    Science.gov (United States)

    Park, Thomas J; Reznick, Jane; Peterson, Bethany L; Blass, Gregory; Omerbašić, Damir; Bennett, Nigel C; Kuich, P Henning J L; Zasada, Christin; Browe, Brigitte M; Hamann, Wiebke; Applegate, Daniel T; Radke, Michael H; Kosten, Tetiana; Lutermann, Heike; Gavaghan, Victoria; Eigenbrod, Ole; Bégay, Valérie; Amoroso, Vince G; Govind, Vidya; Minshall, Richard D; Smith, Ewan St J; Larson, John; Gotthardt, Michael; Kempa, Stefan; Lewin, Gary R

    2017-04-21

    The African naked mole-rat's ( Heterocephalus glaber ) social and subterranean lifestyle generates a hypoxic niche. Under experimental conditions, naked mole-rats tolerate hours of extreme hypoxia and survive 18 minutes of total oxygen deprivation (anoxia) without apparent injury. During anoxia, the naked mole-rat switches to anaerobic metabolism fueled by fructose, which is actively accumulated and metabolized to lactate in the brain. Global expression of the GLUT5 fructose transporter and high levels of ketohexokinase were identified as molecular signatures of fructose metabolism. Fructose-driven glycolytic respiration in naked mole-rat tissues avoids feedback inhibition of glycolysis via phosphofructokinase, supporting viability. The metabolic rewiring of glycolysis can circumvent the normally lethal effects of oxygen deprivation, a mechanism that could be harnessed to minimize hypoxic damage in human disease. Copyright © 2017, American Association for the Advancement of Science.

  15. Added fructose: a principal driver of type 2 diabetes mellitus and its consequences.

    Science.gov (United States)

    DiNicolantonio, James J; O'Keefe, James H; Lucan, Sean C

    2015-03-01

    Data from animal experiments and human studies implicate added sugars (eg, sucrose and high-fructose corn syrup) in the development of diabetes mellitus and related metabolic derangements that raise cardiovascular (CV) risk. Added fructose in particular (eg, as a constituent of added sucrose or as the main component of high-fructose sweeteners) may pose the greatest problem for incident diabetes, diabetes-related metabolic abnormalities, and CV risk. Conversely, whole foods that contain fructose (eg, fruits and vegetables) pose no problem for health and are likely protective against diabetes and adverse CV outcomes. Several dietary guidelines appropriately recommend consuming whole foods over foods with added sugars, but some (eg, recommendations from the American Diabetes Association) do not recommend restricting fructose-containing added sugars to any specific level. Other guidelines (such as from the Institute of Medicine) allow up to 25% of calories as fructose-containing added sugars. Intake of added fructose at such high levels would undoubtedly worsen rates of diabetes and its complications. There is no need for added fructose or any added sugars in the diet; reducing intake to 5% of total calories (the level now suggested by the World Health Organization) has been shown to improve glucose tolerance in humans and decrease the prevalence of diabetes and the metabolic derangements that often precede and accompany it. Reducing the intake of added sugars could translate to reduced diabetes-related morbidity and premature mortality for populations. Copyright © 2015 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  16. Fructose intake at current levels in the United States may cause gastrointestinal distress in normal adults.

    Science.gov (United States)

    Beyer, Peter L; Caviar, Elena M; McCallum, Richard W

    2005-10-01

    Fructose intake has increased considerably in the United States, primarily as a result of increased consumption of high-fructose corn syrup, fruits and juices, and crystalline fructose. The purpose was to determine how often fructose, in amounts commonly consumed, would result in malabsorption and/or symptoms in healthy persons. Fructose absorption was measured using 3-hour breath hydrogen tests and symptom scores were used to rate subjective responses for gas, borborygmus, abdominal pain, and loose stools. The study included 15 normal, free-living volunteers from a medical center community and was performed in a gastrointestinal specialty clinic. Subjects consumed 25- and 50-g doses of crystalline fructose with water after an overnight fast on separate test days. Mean peak breath hydrogen, time of peak, area under the curve (AUC) for breath hydrogen and gastrointestinal symptoms were measured during a 3-hour period after subjects consumed both 25- and 50-g doses of fructose. Differences in mean breath hydrogen, AUC, and symptom scores between doses were analyzed using paired t tests. Correlations among peak breath hydrogen, AUC, and symptoms were also evaluated. More than half of the 15 adults tested showed evidence of fructose malabsorption after 25 g fructose and greater than two thirds showed malabsorption after 50 g fructose. AUC, representing overall breath hydrogen response, was significantly greater after the 50-g dose. Overall symptom scores were significantly greater than baseline after each dose, but scores were only marginally greater after 50 g than 25 g. Peak hydrogen levels and AUC were highly correlated, but neither was significantly related to symptoms. Fructose, in amounts commonly consumed, may result in mild gastrointestinal distress in normal people. Additional study is warranted to evaluate the response to fructose-glucose mixtures (as in high-fructose corn syrup) and fructose taken with food in both normal people and those with

  17. Influence of fenofibrate treatment on triacylglycerides, diacylglycerides and fatty acids in fructose fed rats.

    Science.gov (United States)

    Kopf, Thomas; Schaefer, Hans-Ludwig; Troetzmueller, Martin; Koefeler, Harald; Broenstrup, Mark; Konovalova, Tatiana; Schmitz, Gerd

    2014-01-01

    Fenofibrate (FF) lowers plasma triglycerides via PPARα activation. Here, we analyzed lipidomic changes upon FF treatment of fructose fed rats. Three groups with 6 animals each were defined as control, fructose-fed and fructose-fed/FF treated. Male Wistar Unilever Rats were subjected to 10% fructose-feeding for 20 days. On day 14, fenofibrate treatment (100 mg/kg p.o.) was initiated and maintained for 7 days. Lipid species in serum were analyzed using mass spectrometry (ESI-MS/MS; LC-FT-MS, GC-MS) on days 0, 14 and 20 in all three groups. In addition, lipid levels in liver and intestine were determined. Short-chain TAGs increased in serum and liver upon fructose-feeding, while almost all TAG-species decreased under FF treatment. Long-chain unsaturated DAG-levels (36:1, 36:2, 36:4, 38:3, 38:4, 38:5) increased upon FF treatment in rat liver and decreased in rat serum. FAs, especially short-chain FAs (12:0, 14:0, 16:0) increased during fructose-challenge. VLDL secretion increased upon fructose-feeding and together with FA-levels decreased to control levels during FF treatment. Fructose challenge of de novo fatty acid synthesis through fatty acid synthase (FAS) may enhance the release of FAs ≤ 16:0 chain length, a process reversed by FF-mediated PPARα-activation.

  18. Influence of fenofibrate treatment on triacylglycerides, diacylglycerides and fatty acids in fructose fed rats.

    Directory of Open Access Journals (Sweden)

    Thomas Kopf

    Full Text Available Fenofibrate (FF lowers plasma triglycerides via PPARα activation. Here, we analyzed lipidomic changes upon FF treatment of fructose fed rats. Three groups with 6 animals each were defined as control, fructose-fed and fructose-fed/FF treated. Male Wistar Unilever Rats were subjected to 10% fructose-feeding for 20 days. On day 14, fenofibrate treatment (100 mg/kg p.o. was initiated and maintained for 7 days. Lipid species in serum were analyzed using mass spectrometry (ESI-MS/MS; LC-FT-MS, GC-MS on days 0, 14 and 20 in all three groups. In addition, lipid levels in liver and intestine were determined. Short-chain TAGs increased in serum and liver upon fructose-feeding, while almost all TAG-species decreased under FF treatment. Long-chain unsaturated DAG-levels (36:1, 36:2, 36:4, 38:3, 38:4, 38:5 increased upon FF treatment in rat liver and decreased in rat serum. FAs, especially short-chain FAs (12:0, 14:0, 16:0 increased during fructose-challenge. VLDL secretion increased upon fructose-feeding and together with FA-levels decreased to control levels during FF treatment. Fructose challenge of de novo fatty acid synthesis through fatty acid synthase (FAS may enhance the release of FAs ≤ 16:0 chain length, a process reversed by FF-mediated PPARα-activation.

  19. Characterization of vascular complications in experimental model of fructose-induced metabolic syndrome.

    Science.gov (United States)

    El-Bassossy, Hany M; Dsokey, Nora; Fahmy, Ahmed

    2014-12-01

    Vascular dysfunction is an important complication associated with metabolic syndrome (MS). Here we fully characterized vascular complications in a rat model of fructose-induced MS. MS was induced by adding fructose (10%) to drinking water to male Wistar rats of 6 weeks age. Blood pressure (BP) and isolated aorta responses phenylephrine (PE), KCl, acetylcholine (ACh), and sodium nitroprusside (SNP) were recorded after 6, 9, and 12 weeks of fructose administration. In addition, serum levels of glucose, insulin, uric acid, tumor necrosis factor α (TNFα), lipids, advanced glycation end products (AGEs), and arginase activity were determined. Furthermore, aortic reactive oxygen species (ROS) generation, hemeoxygenase-1 expression, and collagen deposition were examined. Fructose administration resulted in a significant hyperinslinemia after 6 weeks which continued for 12 weeks. It was also associated with a significant increase in BP after 6 weeks which was stable for 12 weeks. Aorta isolated from MS animals showed exaggerated contractility to PE and KCl and impaired relaxation to ACh compared with control after 6 weeks which were clearer at 12 weeks of fructose administration. In addition, MS animals showed significant increases in serum levels of lipids, uric acid, AGEs, TNFα, and arginase enzyme activity after 12 weeks of fructose administration. Furthermore, aortae isolated from MS animals were characterized by increased ROS generation and collagen deposition. In conclusion, adding fructose (10%) to drinking water produces a model of MS with vascular complications after 12 weeks that are characterized by insulin resistance, hypertension, disturbed vascular reactivity and structure, hyperuricemia, dyslipidemia, and low-grade inflammation.

  20. Spirulina vesicolor Improves Insulin Sensitivity and Attenuates Hyperglycemia-Mediated Oxidative Stress in Fructose-Fed Rats

    Directory of Open Access Journals (Sweden)

    Walaa Hozayen

    2016-03-01

    Full Text Available Aim: The current study aimed to investigate the anti-hyperglycemic, anti-hyperlipidemic and insulin sensitizing effects of the cyanobacterium Spirulina vesicolor extract in fructose-fed rats. Materials and Methods: Rats were fed 30% fructose solution in drinking water for 4 weeks. Animals exhibited hyperglycemia and hyperinsulinemia were selected for further investigations. Diabetic and control rats were orally supplemented with 50 mg/kg body weight S. vesicolor extract for 4 weeks. Results: At the end of 8 weeks, fructose-fed rats showed significant increase in serum glucose, insulin, cholesterol, triglycerides, cardiovascular risk indices and insulin resistance. Treatment of the fructose-fed rats with S. vesicolor extract improved this metabolic profile. Fructose feeding produced a significant increase in serum tumor necrosis factor alpha (TNF-α and a decrease in adiponectin levels. In addition, fructose-fed rats exhibited a significant increase in liver, kidney and heart lipid peroxidation levels, and declined antioxidant defenses. Supplementation of the fructose-fed rats with S. vesicolor extract reversed these alterations. Conclusion: S. vesicolor attenuates hyperglycemia-mediated oxidative stress and inflammation, and is thus effective in improving insulin sensitivity in fructose-fed rats. [J Complement Med Res 2016; 5(1.000: 57-64

  1. Efficient microwave-assisted synthesis of 5-hydroxymethylfurfural from concentrated aqueous fructose

    DEFF Research Database (Denmark)

    Søndergaard Hansen, Thomas; Woodley, John; Riisager, Anders

    2009-01-01

    Studies on the HCl-catalysed microwave-assisted dehydration of highly concentrated aqueous fructose (27 wt %) to 5-hydroxymethylfurfural (HMF) revealed a significant increase in the fructose conversion rate over the conventional heated systems. Water, being the most benign solvent and therefore...

  2. Inulin crystal initiation via a glucose-fructose cross-link of adjacent polymer chains: atomic force microscopy and static molecular modelling.

    Science.gov (United States)

    Cooper, Peter D; Rajapaksha, K Harinda; Barclay, Thomas G; Ginic-Markovic, Milena; Gerson, Andrea R; Petrovsky, Nikolai

    2015-03-06

    Semi-crystalline microparticles of inulin (MPI) have clinical utility as potent human vaccine adjuvants but their relevant surface structure and crystal assembly remain undefined. We show inulin crystal surfaces to resemble multi-layered, discoid radial spherulites resulting from very rapid formation of complex tertiary structures, implying directed crystal initiation. Physical and in silico molecular modelling of unit cells confirm steric feasibility of initiation by hydrogen-bonded cross-linking of terminal glucose to a fructose of another chain, mimicking bonding in sucrose crystals. A strong, chelate-like dual H-bond is proposed to compel the known antiparallel alignment of inulin chains. Such cross-linking would require one extra fructose per chain in the native inulin crystal, as observed. Completion of five H-bonded internal ring-domains would 'lock in' each new 6-fructose structural unit of each antiparallel helix pair to create a new isoform. All known properties of inulin isoforms follow readily from these concepts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Suppressive effect of nobiletin and epicatechin gallate on fructose uptake in human intestinal epithelial Caco-2 cells.

    Science.gov (United States)

    Satsu, Hideo; Awara, Sohei; Unno, Tomonori; Shimizu, Makoto

    2018-04-01

    Inhibition of excessive fructose intake in the small intestine could alleviate fructose-induced diseases such as hypertension and non-alcoholic fatty liver disease. We examined the effect of phytochemicals on fructose uptake using human intestinal epithelial-like Caco-2 cells which express the fructose transporter, GLUT5. Among 35 phytochemicals tested, five, including nobiletin and epicatechin gallate (ECg), markedly inhibited fructose uptake. Nobiletin and ECg also inhibited the uptake of glucose but not of L-leucine or Gly-Sar, suggesting an inhibitory effect specific to monosaccharide transporters. Kinetic analysis further suggested that this reduction in fructose uptake was associated with a decrease in the apparent number of cell-surface GLUT5 molecules, and not with a change in the affinity of GLUT5 for fructose. Lastly, nobiletin and ECg suppressed the permeation of fructose across Caco-2 cell monolayers. These findings suggest that nobiletin and ECg are good candidates for preventing diseases caused by excessive fructose intake.

  4. Mannose and fructose metabolism in red blood cells during cold storage in SAGM.

    Science.gov (United States)

    Rolfsson, Óttar; Johannsson, Freyr; Magnusdottir, Manuela; Paglia, Giuseppe; Sigurjonsson, Ólafur E; Bordbar, Aarash; Palsson, Sirus; Brynjólfsson, Sigurður; Guðmundsson, Sveinn; Palsson, Bernhard

    2017-11-01

    Alternate sugar metabolism during red blood cell (RBC) storage is not well understood. Here we report fructose and mannose metabolism in RBCs during cold storage in SAGM and the impact that these monosaccharides have on metabolic biomarkers of RBC storage lesion. RBCs were stored in SAGM containing uniformly labeled 13 C-fructose or 13 C-mannose at 9 or 18 mmol/L concentration for 25 days. RBCs and media were sampled at 14 time points during storage and analyzed using ultraperformance liquid chromatography-mass spectrometry. Blood banking quality assurance measurements were performed. Red blood cells incorporated fructose and mannose during cold storage in the presence of glucose. Mannose was metabolized in preference to glucose via glycolysis. Fructose lowered adenosine triphosphate (ATP) levels and contributed little to ATP maintenance when added to SAGM. Both monosaccharides form the advanced glycation end product glycerate. Mannose activates enzymes in the RBC that take part in glycan synthesis. Fructose or mannose addition to RBC SAGM concentrates may not offset the shift in metabolism of RBCs that occurs after 10 days of storage. Fructose and mannose metabolism at 4°C in SAGM reflects their metabolism at physiologic temperature. Glycerate excretion is a measure of protein deglycosylation activity in stored RBCs. No cytoprotective effect was observed upon the addition of either fructose or mannose to SAGM. © 2017 AABB.

  5. Expanded BPA residential weatherization program: summary of regional health effects

    International Nuclear Information System (INIS)

    Sandusky, W.F.; Thor, P.W.; Alton, C.C.; Mellinger, P.J.; Cross, F.T.

    1984-11-01

    The Final Environmental Impact Statement (FEIS) for the Bonneville Power Administration (BPA) Expanded Residential Weatherization Program has been completed, printed, and distributed. This document incorporates numerous revisions based on both oral and written comments received during the public comment of the Draft Environmental Impact Statement (DEIS). The estimates of regional health effects were revised to incorporate results of the second Pacific Northwest Residential Energy Survey (PNWRES). The FEIS now expresses the estimated regional health effects in terms of incidence of cancers per 100,000 people exposed, which allows comparison to be made to the annual average risk of fatality by other causes. The estimates of regional health effects are also compared to health effects resulting from supplying and operating a conventional coal plant at a power level equal to the amount of energy saved from installation of additional tightening measures. Numerical results for the estimated health effects described above are provided. A summary of the comments received on the DEIS is also provided, along with estimated health effects associated with the Environmentally Preferred and BPA Preferred Alternatives to the Proposed Action. 8 refs., 3 figs., 5 tabs

  6. Molecular cloning, characterization and expression of phenylalanine ...

    African Journals Online (AJOL)

    A full-length cDNA and genomic DNA of phenylalanine ammonia-lyase gene, which catalyzes the first step in the flavonoid biosynthetic pathway, were isolated from Ginkgo biloba for the first time (designated as GbPAL, GenBank Accession No. EU071050). The cDNA and genomic DNA sequences of GbPAL were the same, ...

  7. Three months of high-fructose feeding fails to induce excessive weight gain or leptin resistance in mice.

    Directory of Open Access Journals (Sweden)

    Erik J Tillman

    Full Text Available High-fructose diets have been implicated in obesity via impairment of leptin signaling in humans and rodents. We investigated whether fructose-induced leptin resistance in mice could be used to study the metabolic consequences of fructose consumption in humans, particularly in children and adolescents. Male C57Bl/6 mice were weaned to a randomly assigned diet: high fructose, high sucrose, high fat, or control (sugar-free, low-fat. Mice were maintained on their diets for at least 14 weeks. While fructose-fed mice regularly consumed more kcal and expended more energy, there was no difference in body weight compared to control by the end of the study. Additionally, after 14 weeks, both fructose-fed and control mice displayed similar leptin sensitivity. Fructose-feeding also did not change circulating glucose, triglycerides, or free fatty acids. Though fructose has been linked to obesity in several animal models, our data fail to support a role for fructose intake through food lasting 3 months in altering of body weight and leptin signaling in mice. The lack of impact of fructose in the food of growing mice on either body weight or leptin sensitivity over this time frame was surprising, and important information for researchers interested in fructose and body weight regulation.

  8. Biodistribution study with combined administration of BPA and BSH for BNCT in the hamster cheek pouch oral cancer model

    International Nuclear Information System (INIS)

    Garabalino, M A; Heber, E M; Monti Hughes, A; Pzzi, E C C; Molinari, A J; Niggg, D W; Bauer, W; Trivillin, V A; Schwint, A E

    2012-01-01

    We previously proved the therapeutic potential of the chemically non-selective boron compound decahydrodecaborate (GB-10) as a stand-alone boron carrier for BNCT in the hamster cheek pouch oral cancer model with no toxic effects in normal or precancerous tissue. Although GB-10 is not taken up selectively by oral tumor tissue, selective tumor lethality would result from selective aberrant tumor blood vessel damage. Furthermore, BNCT efficacy was enhanced when GB-10 and boronophenylalanine (BPA) were administered jointly. The fact that sodium mercaptoundecahydro-closo-dodecaborate (BSH) is being investigated clinically as a stand-alone boron agent for BNCT of brain tumors and in combination with BPA for recurrent head and neck malignancies makes it a particularly interesting boron compound to explore. Based on the working hypothesis that BSH would conceivably behave similarly to GB-10 in oral cancer, we previously performed biodistribution studies with BSH alone in the hamster cheek pouch oral cancer model. The aim of the present study was to perform biodistribution studies of BSH + BPA administered jointly in the hamster cheek pouch oral cancer model as a starting point to contribute to the knowledge of (BSH+BPA)-BNCT radiobiology and optimize therapeutic efficacy. The right cheek pouch of Syrian hamsters was subjected to topical administration of a carcinogen twice a week for 12 weeks. Once the exophytic tumors, i.e. squamous cell carcinomas, had developed, the animals were used for biodistribution studies with BSH + BPA. Three administration protocols with different proportions of each of the compounds were assessed: 1. BSH, 50 mg 10 B/kg, iv + BPA, 15.5 mg 10 B/kg, ip; 2. BSH, 34.5 mg 10 B/kg, iv + BPA, 31 mg 10 B/kg, ip; 3. BSH, 20 mg 10 B/kg, iv + BPA, 46.5 mg 10 B/kg, ip. Groups of animals were euthanized 4 h after the administration of BSH and 3 h after the administration of BPA. Samples of blood, tumor, precancerous and normal pouch and other tissues with

  9. Post-translational suppression of expression of intestinal brush border enzymes by fructose

    DEFF Research Database (Denmark)

    Danielsen, E M

    1989-01-01

    The two major dietary sugars, fructose and sucrose, were found to suppress effectively the biosynthetic renewal of brush border enzymes in the gut. When studied in cultured explants of pig small intestine mucosa, 10-50 mM concentrations of fructose completely prevented the expression of mature...... cotranslational glycosylation that in turn triggers a rapid proteolytic breakdown. Our findings suggest that renewal of digestive brush border enzymes is transiently suppressed during intake of fructose- or sucrose-rich meals....

  10. High Dietary Fructose: Direct or Indirect Dangerous Factors Disturbing Tissue and Organ Functions.

    Science.gov (United States)

    Zhang, Dong-Mei; Jiao, Rui-Qing; Kong, Ling-Dong

    2017-03-29

    High dietary fructose is a major contributor to insulin resistance and metabolic syndrome, disturbing tissue and organ functions. Fructose is mainly absorbed into systemic circulation by glucose transporter 2 (GLUT2) and GLUT5, and metabolized in liver to produce glucose, lactate, triglyceride (TG), free fatty acid (FFA), uric acid (UA) and methylglyoxal (MG). Its extrahepatic absorption and metabolism also take place. High levels of these metabolites are the direct dangerous factors. During fructose metabolism, ATP depletion occurs and induces oxidative stress and inflammatory response, disturbing functions of local tissues and organs to overproduce inflammatory cytokine, adiponectin, leptin and endotoxin, which act as indirect dangerous factors. Fructose and its metabolites directly and/or indirectly cause oxidative stress, chronic inflammation, endothelial dysfunction, autophagy and increased intestinal permeability, and then further aggravate the metabolic syndrome with tissue and organ dysfunctions. Therefore, this review addresses fructose-induced metabolic syndrome, and the disturbance effects of direct and/or indirect dangerous factors on the functions of liver, adipose, pancreas islet, skeletal muscle, kidney, heart, brain and small intestine. It is important to find the potential correlations between direct and/or indirect risk factors and healthy problems under excess dietary fructose consumption.

  11. High Dietary Fructose: Direct or Indirect Dangerous Factors Disturbing Tissue and Organ Functions

    Directory of Open Access Journals (Sweden)

    Dong-Mei Zhang

    2017-03-01

    Full Text Available High dietary fructose is a major contributor to insulin resistance and metabolic syndrome, disturbing tissue and organ functions. Fructose is mainly absorbed into systemic circulation by glucose transporter 2 (GLUT2 and GLUT5, and metabolized in liver to produce glucose, lactate, triglyceride (TG, free fatty acid (FFA, uric acid (UA and methylglyoxal (MG. Its extrahepatic absorption and metabolism also take place. High levels of these metabolites are the direct dangerous factors. During fructose metabolism, ATP depletion occurs and induces oxidative stress and inflammatory response, disturbing functions of local tissues and organs to overproduce inflammatory cytokine, adiponectin, leptin and endotoxin, which act as indirect dangerous factors. Fructose and its metabolites directly and/or indirectly cause oxidative stress, chronic inflammation, endothelial dysfunction, autophagy and increased intestinal permeability, and then further aggravate the metabolic syndrome with tissue and organ dysfunctions. Therefore, this review addresses fructose-induced metabolic syndrome, and the disturbance effects of direct and/or indirect dangerous factors on the functions of liver, adipose, pancreas islet, skeletal muscle, kidney, heart, brain and small intestine. It is important to find the potential correlations between direct and/or indirect risk factors and healthy problems under excess dietary fructose consumption.

  12. Altered Brain Response to Drinking Glucose and Fructose in Obese Adolescents.

    Science.gov (United States)

    Jastreboff, Ania M; Sinha, Rajita; Arora, Jagriti; Giannini, Cosimo; Kubat, Jessica; Malik, Saima; Van Name, Michelle A; Santoro, Nicola; Savoye, Mary; Duran, Elvira J; Pierpont, Bridget; Cline, Gary; Constable, R Todd; Sherwin, Robert S; Caprio, Sonia

    2016-07-01

    Increased sugar-sweetened beverage consumption has been linked to higher rates of obesity. Using functional MRI, we assessed brain perfusion responses to drinking two commonly consumed monosaccharides, glucose and fructose, in obese and lean adolescents. Marked differences were observed. In response to drinking glucose, obese adolescents exhibited decreased brain perfusion in brain regions involved in executive function (prefrontal cortex [PFC]) and increased perfusion in homeostatic appetite regions of the brain (hypothalamus). Conversely, in response to drinking glucose, lean adolescents demonstrated increased PFC brain perfusion and no change in perfusion in the hypothalamus. In addition, obese adolescents demonstrated attenuated suppression of serum acyl-ghrelin and increased circulating insulin level after glucose ingestion; furthermore, the change in acyl-ghrelin and insulin levels after both glucose and fructose ingestion was associated with increased hypothalamic, thalamic, and hippocampal blood flow in obese relative to lean adolescents. Additionally, in all subjects there was greater perfusion in the ventral striatum with fructose relative to glucose ingestion. Finally, reduced connectivity between executive, homeostatic, and hedonic brain regions was observed in obese adolescents. These data demonstrate that obese adolescents have impaired prefrontal executive control responses to drinking glucose and fructose, while their homeostatic and hedonic responses appear to be heightened. Thus, obesity-related brain adaptations to glucose and fructose consumption in obese adolescents may contribute to excessive consumption of glucose and fructose, thereby promoting further weight gain. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  13. Influence of anoxia on the induction of mutations by phenylalanine radicals during gamma-irradiation of plasmid DNA in aqueous solution.

    Science.gov (United States)

    Kuipers, Gitta K; Slotman, Ben J; Reitsma-Wijker, Carola A; van Andel, Rob J; Poldervaart, Hester A; Lafleur, M Vincent M

    2004-12-21

    When DNA is irradiated in aqueous solution, most of the damage is inflicted by water-derived radicals. This is called the indirect effect of ionizing radiation. However in whole cells not only the primary formed water radicals play a role, because some cellular compounds form secondary radicals which can also damage DNA. It is known that the amino acid phenylalanine is able to react with water radicals, resulting in the production of secondary phenylalanine radicals which can damage and inactivate DNA. In a previous study the influence of the presence of phenylalanine during gamma-irradiation of DNA in aqueous solution under oxic conditions was studied. Under anoxic irradiation conditions different amounts and types of reactive water-derived radicals are formed compared to oxic conditions and also different phenylalanine radicals are formed. Therefore, this study examines the influence of the presence of phenylalanine under anoxic conditions on the gamma-radiation-induced mutation spectrum. The results indicate that phenylalanine radicals are damaging to DNA, but less effective compared to primary water radicals. On the mutational level, in the presence of phenylalanine radicals under anoxic conditions, the amount of mutations on G:C base pairs was significantly decreased as compared to oxic conditions. Furthermore, the results of this study indicate that nucleotide excision repair is involved in repair of both inactivating and mutagenic damage induced by phenylalanine radicals under anoxic conditions.

  14. First-pass metabolism of ethanol in human beings: effect of intravenous infusion of fructose

    DEFF Research Database (Denmark)

    Parlesak, Alexandr; Billinger, MH; Schäfer, C.

    2004-01-01

    Intravenous infusion of fructose has been shown to enhance reduced form of nicotinamide adenine dinucleotide reoxidation and, thereby, to enhance the metabolism of ethanol. In the current study, the effect of fructose infusion on first-pass metabolism of ethanol was studied in human volunteers....... A significantly higher first-pass metabolism of ethanol was obtained after administration of fructose in comparison with findings for control experiments with an equimolar dose of glucose. Because fructose is metabolized predominantly in the liver and can be presumed to have virtually no effects in the stomach...

  15. Synthesis of 4-O-glycosylated 1,5-anhydro-D-fructose and of 1,5-anhydro-D-tagatose from a common intermediate 2,3-O-isopropylidene -D-fructose

    DEFF Research Database (Denmark)

    Agoston, Karoly; Dekany, Gyula; Lundt, Inge

    2009-01-01

    Four novel disaccharides of glycosylated 1,5-anhydro-D-ketoses have been prepared: 1,5-anhydro-4-O-b-D-glucopyranosyl-D-fructose, 1,5-anhydro-4-O-b-D-galactopyranosyl-D-fructose, 1,5-anhydro-4-O-b-D-glucopyranosyl-D-tagatose and 1,5-anhydro-4-O-b-D-galactopyranosyl-D-tagatose. The common...... intermediate, 1,5-anhydro-2,3-O-isopropylidene-b-D-fructopyranose, was prepared from D-fructose and converted into the D-tagatose derivative by oxidation followed by stereoselective reduction to the 4-epimer. The prepared anhydro-ketoses were glycosylated and deprotected to the disaccharides....

  16. Synthesis of 4-O-glycosylated 1,5-anhydro-D-fructose and of 1,5-anhydro-D-tagatose from a common intermediate 2,3-O-isopropylidene-D-fructose.

    Science.gov (United States)

    Agoston, Károly; Dékány, Gyula; Lundt, Inge

    2009-05-26

    Four novel disaccharides of glycosylated 1,5-anhydro-D-ketoses have been prepared: 1,5-anhydro-4-O-beta-D-glucopyranosyl-D-fructose, 1,5-anhydro-4-O-beta-D-galactopyranosyl-D-fructose, 1,5-anhydro-4-O-beta-D-glucopyranosyl-D-tagatose, and 1,5-anhydro-4-O-beta-D-galactopyranosyl-D-tagatose. The common intermediate, 1,5-anhydro-2,3-O-isopropylidene-beta-D-fructopyranose, was prepared from D-fructose and was converted into the D-tagatose derivative by oxidation followed by stereoselective reduction to the 4-epimer. The anhydroketoses thus prepared were glycosylated and deprotected to give the disaccharides.

  17. Enzymatic Preparation of Low-Phenylalanine Formula Derived from ...

    African Journals Online (AJOL)

    Background: Phenylketonuria (PKU) is one of the most common inborn errors of amino acids metabolism. WHO guidelines introduced in 1979 and revised 1988 for breast-feeding infants with PKU included a formula containing low amounts of phenylalanine as a part of dietary prescription. Mental retardation can be ...

  18. Polymorphism and modulation of para-substituted L-Phenylalanine

    NARCIS (Netherlands)

    Sögütoglu, Leyla-cann; Lutz, Martin; Meekes, Hugo; De Gelder, Rene; Vlieg, Elias

    2017-01-01

    The crystal structure of para-methyl-L-phenylalanine at 230 K resembles that of the para-fluorinated analogue from the literaturebut is commensurately modulated with seven molecules in the asymmetric unit (Z′ = 7). At 100 K, the superstructure loses its modulation, leading to a unit cell with Z′ =

  19. Analytical determination of bisphenol A (BPA) and bisphenol analogues in paper products by GC-MS/MS.

    Science.gov (United States)

    Jurek, A; Leitner, E

    2017-07-01

    Bisphenol A (BPA; 4-[2-(4-hydroxyphenyl)propan-2-yl]phenol), a suspected endocrine disruptor with a weak estrogenic activity, is used in a variety of consumer products, including food-contact materials made of paper and cardboard products. Due to restrictions on the use of BPA because of its potential health risks, BPA is gradually being replaced by other bisphenols because no limitations exist for these substances. This study presents a method for the simultaneous analysis of BPA, bisphenol AF (BPAF), bisphenol B (BPB), bisphenol E (BPE), bisphenol F (BPF) and bisphenol S (BPS) in paper and board products using gas chromatography-tandem mass spectrometry (GC-MS/MS). Paper samples were extracted by liquid extraction, as well as by Folch extraction, derivatised with N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) and the results compared. The developed method showed good linearity (R 2  > 0.9965) and precision, yielding relative standard deviations (RSDs) of less than 16.6% for reproducibility and 19.8% for repeatability. The limits of detection and limits of quantification for the different bisphenols ranged from 0.23 to 2.70 µg kg - 1 paper and from 0.78 to 9.10 µg kg - 1 paper, respectively. Analysis of different paper products (recycled, virgin fibre) showed that all the analysed bisphenols were present in the samples, except for BPAF and BPB. A calculation of the 'worst-case' scenario assuming a maximum potential migration of 100% of the analytes into food showed that the analysed products can be assumed to be safe regarding the migration of bisphenols.

  20. Hibiscus sabdariffa calyx palliates insulin resistance, hyperglycemia, dyslipidemia and oxidative rout in fructose-induced metabolic syndrome rats.

    Science.gov (United States)

    Ajiboye, Taofeek O; Raji, Hikmat O; Adeleye, Abdulwasiu O; Adigun, Nurudeen S; Giwa, Oluwayemisi B; Ojewuyi, Oluwayemisi B; Oladiji, Adenike T

    2016-03-30

    The effect of Hibiscus sabdariffa calyx extract was evaluated in high-fructose-induced metabolic syndrome rats. Insulin resistance, hyperglycemia, dyslipidemia and oxidative rout were induced in rats using high-fructose diet. High-fructose diet-fed rats were administered 100 and 200 mg kg(-1) body weight of H. sabdariffa extract for 3 weeks, starting from week 7 of high-fructose diet treatment. High-fructose diet significantly (P Hibiscus extract. Overall, aqueous extract of H. sabdariffa palliates insulin resistance, hyperglycemia, dyslipidemia and oxidative rout in high-fructose-induced metabolic syndrome rats. © 2015 Society of Chemical Industry.

  1. NMR insights on the properties of ZnCl2 molten salt hydrate medium through its interaction with SnCl4 and fructose

    DEFF Research Database (Denmark)

    Qiao, Yan; Pedersen, Christian Marcus; Wang, Yingxiong

    2014-01-01

    The solvent properties of ZnCl2 molten salt medium and its synergic effect with the Lewis acid catalyst, Sn4+, for biomass conversion, were investigated by nuclear magnetic resonance. The tautomeric distribution of fructose in the ZnCl2 molten salt medium was examined, and its effect for humins...... formation during the biomass conversion was evaluated. The ion complex composed by Sn4+ and Zn2+ indicated that there is a synergic catalytic effect between these two Lewis acid ions. 13C NMR spectra of fructose in different ZnCl2 molten salt hydrate concentrations revealed that the concentration of β...

  2. Glycaemic, uricaemic and blood pressure response to beverages with partial fructose replacement of sucrose.

    Science.gov (United States)

    Rodrigues, Natasha; Peng, Mei; Oey, Indrawati; Venn, Bernard Joseph

    2018-03-20

    The European Food Safety Authority approved a health claim (ID558) relating to lowered postprandial glycaemia when fructose replaces 30% of sucrose in foods and beverages. We assessed the effects of partial replacement of sucrose with fructose on serum glucose, uric acid and blood pressure. A randomised, crossover, double blind trial of 12 normoglycaemic participants consuming beverages containing 50 g blends of fructose and sucrose in proportions; 67% sucrose/33% fructose (67%S:33%F); 50% each (50%S:50%F) and 33%S:67%F; a 100% sucrose reference beverage was tested twice. Serum glucose and uric acid concentrations were measured at 0, 15, 30, 45, 60, 90 and 120 min and incremental area-under-the-curve (iAUC) calculated. The geometric mean (95% CI) glycaemic iAUC following the 100% sucrose, 67%S:33%F, 50%S:50%F and 33%S:67%F blended beverages were 96 (63,145), 71 (46,109), 60 (39, 93) and 39 (12, 86) mmol/L min, respectively. At 33% fructose replacement, the proportionally lower iAUC of -28.5% (95% CI: -62.1, 5.2) mmol/L min was not different to sucrose alone. The response was lowered by fructose replacement of 50 and 67% and overall there was an inverse association (p beverages were 1320 (393, 2248), 3062 (1553, 4570), 3646 (2446, 4847), 3623 (2020, 5226) µmol/L min. Uric acid concentration was raised by all fructose-containing beverages with 33% fructose replacement causing an increase of 1741 (95% CI: 655, 2829) µmol/L min compared with sucrose alone. Blood pressure was not different among beverages. Reduced postprandial glycaemia was achieved by the substitution of sucrose with fructose although elevated uricaemic responses should be cautioned.

  3. Dietary fructose and risk of metabolic syndrome in adults: Tehran Lipid and Glucose study.

    Science.gov (United States)

    Hosseini-Esfahani, Firoozeh; Bahadoran, Zahra; Mirmiran, Parvin; Hosseinpour-Niazi, Somayeh; Hosseinpanah, Farhad; Azizi, Fereidoun

    2011-07-12

    Studies have shown that the excessive fructose intake may induce adverse metabolic effects. There is no direct evidence from epidemiological studies to clarify the association between usual amounts of fructose intake and the metabolic syndrome. The aim this study was to determine the association of fructose intake and prevalence of metabolic syndrome (MetS) and its components in Tehranian adults. This cross-sectional population based study was conducted on 2537 subjects (45% men) aged 19-70 y, participants of the Tehran Lipid and Glucose Study (2006-2008). Dietary data were collected using a validated 168 item semi-quantitative food frequency questionnaire. Dietary fructose intake was calculated by sum of natural fructose (NF) in fruits and vegetables and added fructose (AF) in commercial foods. MetS was defined according to the modified NCEP ATP III for Iranian adults. The mean ages of men and women were 40.5 ± 13.6 and 38.6 ± 12.8 years, respectively. Mean total dietary fructose intakes were 46.5 ± 24.5 (NF: 19.6 ± 10.7 and AF: 26.9 ± 13.9) and 37.3 ± 24.2 g/d (NF: 18.6 ± 10.5 and AF: 18.7 ± 13.6) in men and women, respectively. Compared with those in the lowest quartile of fructose intakes, men and women in the highest quartile, respectively, had 33% (95% CI, 1.15-1.47) and 20% (95% CI, 1.09-1.27) higher risk of the metabolic syndrome; 39% (CI, 1.16-1.63) and 20% (CI, 1.07-1.27) higher risk of abdominal obesity; 11% (CI, 1.02-1.17) and 9% (CI, 1.02-1.14) higher risk of hypertension; and 9% (CI, 1-1.15) and 9% (1.04-1.12) higher risk of impaired fasting glucose. Higher consumption of dietary fructose may have adverse metabolic effects.

  4. Chemical and Enzymatic Approaches to Carbohydrate-Derived Spiroketals: Di-D-Fructose Dianhydrides (DFAs

    Directory of Open Access Journals (Sweden)

    José M. García Fernández

    2008-08-01

    Full Text Available Di-D-fructose dianhydrides (DFAs comprise a unique family of stereoisomeric spiro-tricyclic disaccharides formed upon thermal and/or acidic activation of sucroseand/ or D-fructose-rich materials. The recent discovery of the presence of DFAs in food products and their remarkable nutritional features has attracted considerable interest from the food industry. DFAs behave as low-caloric sweeteners and have proven to exert beneficial prebiotic nutritional functions, favouring the growth of Bifidobacterium spp. In the era of functional foods, investigation of the beneficial properties of DFAs has become an important issue. However, the complexity of the DFA mixtures formed during caramelization or roasting of carbohydrates by traditional procedures (up to 14 diastereomeric spiroketal cores makes evaluation of their individual properties a difficult challenge. Great effort has gone into the development of efficient procedures to obtain DFAs in pure form at laboratory and industrial scale. This paper is devoted to review the recent advances in the stereoselective synthesis of DFAs by means of chemical and enzymatic approaches, their scope, limitations, and complementarities.

  5. Antibiotics protect against fructose-induced hepatic lipid accumulation in mice: role of endotoxin.

    Science.gov (United States)

    Bergheim, Ina; Weber, Synia; Vos, Miriam; Krämer, Sigrid; Volynets, Valentina; Kaserouni, Seline; McClain, Craig J; Bischoff, Stephan C

    2008-06-01

    Consumption of refined carbohydrates in soft drinks has been postulated to be a key factor in the development of non-alcoholic fatty liver disease (NAFLD). The aim of the present study was to test the effects of ad libitum access to different sugars consumed in drinking water on hepatic fat accumulation. For 8 weeks, C57BL/J6 mice had free access to solutions containing 30% glucose, fructose, sucrose, or water sweetened with artificial sweetener (AS) or plain water. Body weight, caloric intake, hepatic steatosis and lipid peroxidation were assessed. Total caloric intake and weight gain were highest in mice exposed to glucose. In contrast, hepatic lipid accumulation was significantly higher in mice consuming fructose compared to all other groups. Moreover, endotoxin levels in portal blood and lipid peroxidation as well as TNFalpha expression were significantly higher in fructose fed mice than in all other groups. Concomitant treatment of fructose fed mice with antibiotics (e.g., polymyxin B and neomycin) markedly reduced hepatic lipid accumulation in fructose fed mice. These data support the hypothesis that high fructose consumption may not only lead to liver damage through overfeeding but also may be directly pro-inflammatory by increasing intestinal translocation of endotoxin.

  6. Maximization of fructose esters synthesis by response surface methodology.

    Science.gov (United States)

    Neta, Nair Sampaio; Peres, António M; Teixeira, José A; Rodrigues, Ligia R

    2011-07-01

    Enzymatic synthesis of fructose fatty acid ester was performed in organic solvent media, using a purified lipase from Candida antartica B immobilized in acrylic resin. Response surface methodology with a central composite rotatable design based on five levels was implemented to optimize three experimental operating conditions (temperature, agitation and reaction time). A statistical significant cubic model was established. Temperature and reaction time were found to be the most significant parameters. The optimum operational conditions for maximizing the synthesis of fructose esters were 57.1°C, 100 rpm and 37.8 h. The model was validated in the identified optimal conditions to check its adequacy and accuracy, and an experimental esterification percentage of 88.4% (±0.3%) was obtained. These results showed that an improvement of the enzymatic synthesis of fructose esters was obtained under the optimized conditions. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Crystal structures of D-psicose 3-epimerase from Clostridium cellulolyticum H10 and its complex with ketohexose sugars.

    Science.gov (United States)

    Chan, Hsiu-Chien; Zhu, Yueming; Hu, Yumei; Ko, Tzu-Ping; Huang, Chun-Hsiang; Ren, Feifei; Chen, Chun-Chi; Ma, Yanhe; Guo, Rey-Ting; Sun, Yuanxia

    2012-02-01

    D-psicose 3-epimerase (DPEase) is demonstrated to be useful in the bioproduction of D-psicose, a rare hexose sugar, from D-fructose, found plenty in nature. Clostridium cellulolyticum H10 has recently been identified as a DPEase that can epimerize D-fructose to yield D-psicose with a much higher conversion rate when compared with the conventionally used DTEase. In this study, the crystal structure of the C. cellulolyticum DPEase was determined. The enzyme assembles into a tetramer and each subunit shows a (β/α)(8) TIM barrel fold with a Mn(2+) metal ion in the active site. Additional crystal structures of the enzyme in complex with substrates/products (D-psicose, D-fructose, D-tagatose and D-sorbose) were also determined. From the complex structures of C. cellulolyticum DPEase with D-psicose and D-fructose, the enzyme has much more interactions with D-psicose than D-fructose by forming more hydrogen bonds between the substrate and the active site residues. Accordingly, based on these ketohexose-bound complex structures, a C3-O3 proton-exchange mechanism for the conversion between D-psicose and D-fructose is proposed here. These results provide a clear idea for the deprotonation/protonation roles of E150 and E244 in catalysis.

  8. Exercise Training Prevents Cardiovascular Derangements Induced by Fructose Overload in Developing Rats.

    Directory of Open Access Journals (Sweden)

    Daniela Farah

    Full Text Available The risks of chronic diseases associated with the increasing consumption of fructose-laden foods are amplified by the lack of regular physical activity and have become a serious public health issue worldwide. Moreover, childhood eating habits are strongly related to metabolic syndrome in adults. Thus, we aimed to investigate the preventive role of exercise training undertaken concurrently with a high fructose diet on cardiac function, hemodynamics, cardiovascular autonomic modulation and oxidative stress in male rats after weaning. Male Wistar rats were divided into 4 groups (n = 8/group: Sedentary control (SC, Trained control (TC, Sedentary Fructose (SF and Trained Fructose (TF. Training was performed on a treadmill (8 weeks, 40-60% of maximum exercise test. Evaluations of cardiac function, hemodynamics, cardiovascular autonomic modulation and oxidative stress in plasma and in left ventricle (LV were performed. Chronic fructose overload induced glucose intolerance and an increase in white adipose tissue (WAT weight, in myocardial performance index (MPI (SF:0.42±0.04 vs. SC:0.24±0.05 and in arterial pressure (SF:122±3 vs. SC:113±1 mmHg associated with increased cardiac and vascular sympathetic modulation. Fructose also induced unfavorable changes in oxidative stress profile (plasmatic protein oxidation- SF:3.30±0.09 vs. SC:1.45±0.08 nmol/mg prot; and LV total antioxidant capacity (TRAP- SF: 2.5±0.5 vs. SC:12.7±1.7 uM trolox. The TF group showed reduced WAT, glucose intolerance, MPI (0.35±0.04, arterial pressure (118±2mmHg, sympathetic modulation, plasmatic protein oxidation and increased TRAP when compared to SF group. Therefore, our findings indicate that cardiometabolic dysfunctions induced by fructose overload early in life may be prevented by moderate aerobic exercise training.

  9. Exercise Training Prevents Cardiovascular Derangements Induced by Fructose Overload in Developing Rats

    Science.gov (United States)

    Farah, Daniela; Nunes, Jonas; Sartori, Michelle; Dias, Danielle da Silva; Sirvente, Raquel; Silva, Maikon B.; Fiorino, Patrícia; Morris, Mariana; Llesuy, Susana; Farah, Vera; Irigoyen, Maria-Cláudia; De Angelis, Kátia

    2016-01-01

    The risks of chronic diseases associated with the increasing consumption of fructose-laden foods are amplified by the lack of regular physical activity and have become a serious public health issue worldwide. Moreover, childhood eating habits are strongly related to metabolic syndrome in adults. Thus, we aimed to investigate the preventive role of exercise training undertaken concurrently with a high fructose diet on cardiac function, hemodynamics, cardiovascular autonomic modulation and oxidative stress in male rats after weaning. Male Wistar rats were divided into 4 groups (n = 8/group): Sedentary control (SC), Trained control (TC), Sedentary Fructose (SF) and Trained Fructose (TF). Training was performed on a treadmill (8 weeks, 40–60% of maximum exercise test). Evaluations of cardiac function, hemodynamics, cardiovascular autonomic modulation and oxidative stress in plasma and in left ventricle (LV) were performed. Chronic fructose overload induced glucose intolerance and an increase in white adipose tissue (WAT) weight, in myocardial performance index (MPI) (SF:0.42±0.04 vs. SC:0.24±0.05) and in arterial pressure (SF:122±3 vs. SC:113±1 mmHg) associated with increased cardiac and vascular sympathetic modulation. Fructose also induced unfavorable changes in oxidative stress profile (plasmatic protein oxidation- SF:3.30±0.09 vs. SC:1.45±0.08 nmol/mg prot; and LV total antioxidant capacity (TRAP)- SF: 2.5±0.5 vs. SC:12.7±1.7 uM trolox). The TF group showed reduced WAT, glucose intolerance, MPI (0.35±0.04), arterial pressure (118±2mmHg), sympathetic modulation, plasmatic protein oxidation and increased TRAP when compared to SF group. Therefore, our findings indicate that cardiometabolic dysfunctions induced by fructose overload early in life may be prevented by moderate aerobic exercise training. PMID:27930685

  10. Maternal Fructose Intake Induces Insulin Resistance and Oxidative Stress in Male, but Not Female, Offspring

    Directory of Open Access Journals (Sweden)

    Lourdes Rodríguez

    2015-01-01

    Full Text Available Objective. Fructose intake from added sugars correlates with the epidemic rise in metabolic syndrome and cardiovascular diseases. However, consumption of beverages containing fructose is allowed during gestation. Recently, we found that an intake of fructose (10% wt/vol throughout gestation produces an impaired fetal leptin signalling. Therefore, we have investigated whether maternal fructose intake produces subsequent changes in their progeny. Methods. Blood samples from fed and 24 h fasted female and male 90-day-old rats born from fructose-fed, glucose-fed, or control mothers were used. Results. After fasting, HOMA-IR and ISI (estimates of insulin sensitivity were worse in male descendents from fructose-fed mothers in comparison to the other two groups, and these findings were also accompanied by a higher leptinemia. Interestingly, plasma AOPP and uricemia (oxidative stress markers were augmented in male rats from fructose-fed mothers compared to the animals from control or glucose-fed mothers. In contrast, female rats did not show any differences in leptinemia between the three groups. Further, insulin sensitivity was significantly improved in fasted female rats from carbohydrate-fed mothers. In addition, plasma AOPP levels tended to be diminished in female rats from carbohydrate-fed mothers. Conclusion. Maternal fructose intake induces insulin resistance, hyperleptinemia, and plasma oxidative stress in male, but not female, progeny.

  11. Fructose- and glucose-conditioned preferences in FVB mice: strain differences in post-oral sugar appetition

    Science.gov (United States)

    Zukerman, Steven; Ackroff, Karen

    2014-01-01

    Recent studies indicate that, unlike glucose, fructose has little or no post-oral preference conditioning actions in C57BL/6J (B6) mice. The present study determined whether this is also the case for FVB mice, which overconsume fructose relative to B6 mice. In experiment 1, FVB mice strongly preferred a noncaloric 0.1% sucralose + 0.1% saccharin (S+S) solution to 8% fructose in a 2-day choice test but switched their preference to fructose after separate experience with the two sweeteners. Other FVB mice displayed a stronger preference for 8% glucose over S+S. In a second experiment, ad libitum-fed FVB mice trained 24 h/day acquired a significant preference for a flavor (CS+) paired with intragastric (IG) self-infusions of 16% fructose over a different flavor (CS−) paired with IG water infusions. IG fructose infusions also conditioned flavor preferences in food-restricted FVB mice trained 1 h/day. IG infusions of 16% glucose conditioned stronger preferences in FVB mice trained 24- or 1 h/day. Thus, fructose has post-oral flavor conditioning effects in FVB mice, but these effects are less pronounced than those produced by glucose. Further studies of the differential post-oral conditioning effects of fructose and glucose in B6 and FVB mice should enhance our understanding of the physiological processes involved in sugar reward. PMID:25320345

  12. Proteomic changes associated with metabolic syndrome in a fructose-fed rat model.

    Science.gov (United States)

    Hsieh, Cheng-Chu; Liao, Chen-Chung; Liao, Yi-Chun; Hwang, Lucy Sun; Wu, Liang-Yi; Hsieh, Shu-Chen

    2016-10-01

    Metabolic syndrome (MetS), characterized by a constellation of disorders such as hyperglycemia, insulin resistance, and hypertension, is becoming a major global public health problem. Fructose consumption has increased dramatically over the past several decades and with it the incidence of MetS. However, its molecular mechanisms remain to be explored. In this study, we used male Sprague-Dawley (SD) rats to study the pathological mechanism of fructose induced MetS. The SD rats were fed a 60% high-fructose diet for 16 weeks to induce MetS. The induction of MetS was confirmed by blood biochemistry examination. Proteomics were used to investigate the differential hepatic protein expression patterns between the normal group and the MetS group. Proteomic results revealed that fructose-induced MetS induced changes in glucose and fatty acid metabolic pathways. In addition, oxidative stress and endoplasmic reticulum stress-related proteins were modulated by high-fructose feeding. In summary, our results identify many new targets for future investigation. Further characterization of these proteins and their involvement in the link between insulin resistance and metabolic dyslipidemia may bring new insights into MetS. Copyright © 2016. Published by Elsevier B.V.

  13. Proteomic changes associated with metabolic syndrome in a fructose-fed rat model

    Directory of Open Access Journals (Sweden)

    Cheng-Chu Hsieh

    2016-10-01

    Full Text Available Metabolic syndrome (MetS, characterized by a constellation of disorders such as hyperglycemia, insulin resistance, and hypertension, is becoming a major global public health problem. Fructose consumption has increased dramatically over the past several decades and with it the incidence of MetS. However, its molecular mechanisms remain to be explored. In this study, we used male Sprague-Dawley (SD rats to study the pathological mechanism of fructose induced MetS. The SD rats were fed a 60% high-fructose diet for 16 weeks to induce MetS. The induction of MetS was confirmed by blood biochemistry examination. Proteomics were used to investigate the differential hepatic protein expression patterns between the normal group and the MetS group. Proteomic results revealed that fructose-induced MetS induced changes in glucose and fatty acid metabolic pathways. In addition, oxidative stress and endoplasmic reticulum stress-related proteins were modulated by high-fructose feeding. In summary, our results identify many new targets for future investigation. Further characterization of these proteins and their involvement in the link between insulin resistance and metabolic dyslipidemia may bring new insights into MetS.

  14. The metabolism of C14-labeled phenylalanine and tyrosine in malaria-infected Culex-females

    International Nuclear Information System (INIS)

    Maier, W.A.; Nassif-Makki, H.

    1975-01-01

    Culex females are fed on C14-phenylalanine or C14-tyrosine in sugar solution. Autoradiographic studies on homogenated females 1 or 4 days after feeding, show that the labeled amino acids are metabolized on the first day and are not detectable on the fourth day. After increase of the amino acid concentration by saturation of the sugar solution with the unlabeled amino acid, the labeled acid and its metabolites are visible over a longer period of time. Phenylalanine is metabolized to tyrosine and at least four other substances. Radioactivity on the starting point of the chromatogram can be interpreted as incorporation of tyrosine into proteins. After infection with Plasmodium cathemerium, and feeding of C14-phenylalanine C14-tyrosine is demonstrable over a longer period. (orig.) [de

  15. Fed-batch production of concentrated fructose syrup and ethanol using Saccharomyces cerevisiae ATCC 36859

    Energy Technology Data Exchange (ETDEWEB)

    Koren, D W [CANMET, Ottawa, ON (Canada); Duvnjak, Z [Univ. of Ottawa, ON (Canada). Dept. of Chemical Engineering

    1992-01-01

    A fed-batch process is used for the production of concentrated pure fructose syrup and ethanol from various glucose/fructose mixtures by S.cerevisiae ATCC 36859. Applying this technique, glucose-free fructose syrups with over 250 g/l of this sugar were obtained using High Fructose Corn Syrup and hydrolyzed Jerusalem artichoke juice. Bey encouraging ethanol evaporation from the reactor and condensing it, a separate ethanol product with a concentration of up to 350 g/l was also produced. The rates of glucose consumption and ethanol production were higher than in classical batch ethanol fermentation processes. (orig.).

  16. The protective role of low-concentration alcohol in high-fructose induced adverse cardiovascular events in mice.

    Science.gov (United States)

    Wu, Xiaoqi; Pan, Bo; Wang, Ying; Liu, Lingjuan; Huang, Xupei; Tian, Jie

    2018-01-01

    Cardiovascular disease remains a worldwide public health issue. As fructose consumption is dramatically increasing, it has been demonstrated that a fructose-rich intake would increase the risk of cardiovascular disease. In addition, emerging evidences suggest that low concentration alcohol intake may exert a protective effect on cardiovascular system. This study aimed to investigate whether low-concentration alcohol consumption would prevent the adverse effects on cardiovascular events induced by high fructose in mice. From the results of hematoxylin-eosin staining, echocardiography, heart weight/body weight ratio and the expression of hypertrophic marker ANP, we found high-fructose result in myocardial hypertrophy and the low-concentration alcohol consumption would prevent the cardiomyocyte hypertrophy from happening. In addition, we observed low-concentration alcohol consumption could inhibit mitochondria swollen induced by high-fructose. The elevated levels of glucose, triglyceride, total cholesterol in high-fructose group were reduced by low concentration alcohol. Low expression levels of SIRT1 and PPAR-γ induced by high-fructose were significantly elevated when fed with low-concentration alcohol. The histone lysine 9 acetylation (acH3K9) level was decreased in PPAR-γ promoter in high-fructose group but elevated when intake with low concentration alcohol. The binding levels of histone deacetylase SIRT1 were increased in the same region in high-fructose group, while the low concentration alcohol can prevent the increased binding levels. Overall, our study indicates that low-concentration alcohol consumption could inhibit high-fructose related myocardial hypertrophy, cardiac mitochondria damaged and disorders of glucose-lipid metabolism. Furthermore, these findings also provide new insights into histone acetylation-deacetylation mechanisms of low-concentration alcohol treatment that may contribute to the prevention of cardiovascular disease induced by high-fructose

  17. Formation of Fructose-Mediated Advanced Glycation End Products and Their Roles in Metabolic and Inflammatory Diseases.

    Science.gov (United States)

    Gugliucci, Alejandro

    2017-01-01

    Fructose is associated with the biochemical alterations that promote the development of metabolic syndrome (MetS), nonalcoholic fatty liver disease, and type 2 diabetes. Its consumption has increased in parallel with MetS. It is metabolized by the liver, where it stimulates de novo lipogenesis. The triglycerides synthesized lead to hepatic insulin resistance and dyslipidemia. Fructose-derived advanced glycation end products (AGEs) may be involved via the Maillard reaction. Fructose has not been a main focus of glycation research because of the difficulty in measuring its adducts, and, more importantly, because although it is 10 times more reactive than glucose, its plasma concentration is only 1% of that of glucose. In this focused review, I summarize exogenous and endogenous fructose metabolism, fructose glycation, and in vitro, animal, and human data. Fructose is elevated in several tissues of diabetic patients where the polyol pathway is active, reaching the same order of magnitude as glucose. It is plausible that the high reactivity of fructose, directly or via its metabolites, may contribute to the formation of intracellular AGEs and to vascular complications. The evidence, however, is still unconvincing. Two areas that have been overlooked so far and should be actively explored include the following: 1) enteral formation of fructose AGEs, generating an inflammatory response to the receptor for AGEs (which may explain the strong association between fructose consumption and asthma, chronic bronchitis, and arthritis); and 2) inactivation of hepatic AMP-activated protein kinase by a fructose-mediated increase in methylglyoxal flux (perpetuating lipogenesis, fatty liver, and insulin resistance). If proven correct, these mechanisms would put the fructose-mediated Maillard reaction in the limelight again as a contributing factor in chronic inflammatory diseases and MetS. © 2017 American Society for Nutrition.

  18. Production of fructose-containing syrup with enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Helwiig-Nielsen, B

    1981-01-01

    A review on enzymic processes used for production of fructose- high syrup from starch including liquefaction by alpha-amylase, saccharification by amyloglucosidase, and isomerization with glucose isomerase.

  19. The Effect of D-Tagatose on Fructose Absorption in a Rat Model

    OpenAIRE

    Williams, Jarrod; Spitnale, Michael; Lodder, Robert

    2013-01-01

    D-tagatose is in development as a medication for the treatment of type 2 diabetes. The effect of oral D-tagatose on the absorption of D-fructose was assessed when co-administered in this study. In the pilot study, male Sprague-Dawley rats were fed C14 labeled fructose and glucose concomitantly to establish dose levels for the treatment group of rats fed C14 labeled fructose together with D-tagatose. Rats were administered 0, 600, 2000, 6000, or 12000 mg/kg of D-tagatose along with 2000 mg/kg ...

  20. Results of a Prospective Study Concerning the Clinical Efficiency of Recent Russian-Made Specialized Foods without Phenylalanine

    Directory of Open Access Journals (Sweden)

    T. V. Bushueva

    2016-01-01

    Full Text Available Background: Specialized foods, based on aminoacids without phenilalanin, are the main source of protein for patients with phenilketonuria of all ages. Based on modern technologies, new Russian-made foods were created. They have an optimized aminoacid and micronutrient composition, which increases their bioavailability.Objective: Our aim was to investigate the clinical efficiency of the new Russian-made specialized foods based on aminoacids without phenylalanine, in patients with phenylketonuria.Methods: Evaluating physical, somatic and neuropsychic development as well as measuring phenylalanine blood level were carried out twice: before the prescription and after 1 month of using the new Russian-made specialized foods. The chemical composition of the ration was controlled using dietology methods.Results: 57 children at the age of 14 days to 15 years with phenylketonuria (which was detected in neonatal screening were picked for this study. A hypophenylalanine diet has been prescribed for all children no later than at the age of 3 months of life. In children of the first year (I group (among which there were children with high phenylalanine blood levels phenylalanine concentration decreased from 5,5 (4,0; 21,0 to 4,4 (3,7; 4,7 mg/dl (p = 0,014 while using Russian-made specialized foods. In this group of children the psychomotor and physical indices improved. In early childhood-, preschool- and school-aged patients phenylalanine blood level remained steady. The chemical composition of the ration with Russian-made foods, based on aminoacids without phenylalanine, corresponded to the reference intake of main nutrients and energy.Conclusion: Hypophenylalanine diet with new Russian-made specialized foods without phenylalanine (which is designed for phenylketonuria patients of various age groups showed high clinical efficiency of these foods.

  1. ZrFsy1, a high-affinity fructose/H+ symporter from fructophilic yeast Zygosaccharomyces rouxii.

    Directory of Open Access Journals (Sweden)

    Maria José Leandro

    Full Text Available Zygosaccharomyces rouxii is a fructophilic yeast than can grow at very high sugar concentrations. We have identified an ORF encoding a putative fructose/H(+ symporter in the Z. rouxii CBS 732 genome database. Heterologous expression of this ORF in a S. cerevisiae strain lacking its own hexose transporters (hxt-null and subsequent kinetic characterization of its sugar transport activity showed it is a high-affinity low-capacity fructose/H(+ symporter, with Km 0.45 ± 0.07 mM and Vmax 0.57 ± 0.02 mmol h(-1 (gdw(-1. We named it ZrFsy1. This protein also weakly transports xylitol and sorbose, but not glucose or other hexoses. The expression of ZrFSY1 in Z. rouxii is higher when the cells are cultivated at extremely low fructose concentrations (<0.2% and on non-fermentable carbon sources such as mannitol and xylitol, where the cells have a prolonged lag phase, longer duplication times and change their microscopic morphology. A clear phenotype was determined for the first time for the deletion of a fructose/H(+ symporter in the genome where it occurs naturally. The effect of the deletion of ZrFSY1 in Z. rouxii cells is only evident when the cells are cultivated at very low fructose concentrations, when the ZrFsy1 fructose symporter is the main active fructose transporter system.

  2. Fructose and tagatose protect against oxidative cell injury by iron chelation.

    Science.gov (United States)

    Valeri, F; Boess, F; Wolf, A; Göldlin, C; Boelsterli, U A

    1997-01-01

    To further investigate the mechanism by which fructose affords protection against oxidative cell injury, cultured rat hepatocytes were exposed to cocaine (300 microM) or nitrofurantoin (400 microM). Both drugs elicited massively increased lactate dehydrogenase release. The addition of the ketohexoses D-fructose (metabolized via glycolysis) or D-tagatose (poor glycolytic substrate) significantly attenuated cocaine- and nitrofurantoin-induced cell injury, although both fructose and tagatose caused a rapid depletion of ATP and compromised the cellular energy charge. Furthermore, fructose, tagatose, and sorbose all inhibited in a concentration-dependent manner (0-16 mM) luminolenhanced chemiluminescence (CL) in cell homogenates, indicating that these compounds inhibit the iron-dependent reactive oxygen species (ROS)-mediated peroxidation of luminol. Indeed, both Fe2+ and Fe3+ further increased cocaine-stimulated CL, which was markedly quenched following addition of the ketohexoses. The iron-independent formation of superoxide anion radicals (acetylated cytochrome c reduction) induced by the prooxidant drugs remained unaffected by fructose or tagatose. The iron-chelator deferoxamine similarly protected against prooxidant-induced cell injury. In contrast, the nonchelating aldohexoses D-glucose and D-galactose did not inhibit luminol CL nor did they protect against oxidative cell injury. These data indicate that ketohexoses can effectively protect against prooxidant-induced cell injury, independent of their glycolytic metabolism, by suppressing the iron-catalyzed formation of ROS.

  3. Dinuclear copper(II) complexes with {Cu2(mu-hydroxo)bis(mu-carboxylato)}+ cores and their reactions with sugar phosphate esters: A substrate binding model of fructose-1,6-bisphosphatase.

    Science.gov (United States)

    Kato, Merii; Tanase, Tomoaki; Mikuriya, Masahiro

    2006-04-03

    Reactions of CuX2.nH2O with the biscarboxylate ligand XDK (H2XDK = m-xylenediamine bis(Kemp's triacid imide)) in the presence of N-donor auxiliary ligands yielded a series of dicopper(II) complexes, [Cu2(mu-OH)(XDK)(L)2]X (L = N,N,N',N'-tetramethylethylenediamine (tetmen), X = NO3 (1a), Cl (1b); L = N,N,N'-trimethylethylenediamine (tmen), X = NO3 (2a), Cl (2b); L =2,2'-bipyridine (bpy), X = NO3 (3); L = 1,10-phenanthroline (phen), X = NO3 (4); L = 4,4'-dimethyl-2,2'-bipyridine (Me2bpy), X = NO3 (5); L = 4-methyl-1,10-phenanthroline (Mephen), X = NO3 (6)). Complexes 1-6 were characterized by X-ray crystallography (Cu...Cu = 3.1624(6)-3.2910(4) A), and the electrochemical and magnetic properties were also examined. Complexes 3 and 4 readily reacted with diphenyl phosphoric acid (HDPP) or bis(4-nitrophenyl) phosphoric acid (HBNPP) to give [Cu2(mu-phosphate)(XDK)(L)2]NO3 (L = bpy, phosphate = DPP (11); L = phen, phosphate = DPP (12), BNPP (13)), where the phsophate diester bridges the two copper ions in a mu-1,3-O,O' bidentate fashion (Cu...Cu = 4.268(3)-4.315(1) A). Complexes 4 and 6 with phen and Mephen have proven to be good precursors to accommodate a series of sugar monophosphate esters (Sugar-P) onto the biscarboxylate-bridged dicopper centers, yielding [Cu2(mu-Sugar-P)(XDK)(L)2] (Sugar-P = alpha-D-Glc-1-P (23a and b), D-Glc-6-P (24a and b), D-Man-6-P (25a), D-Fru-6-P (26a and b); L = phen (a), Mephen (b)) and [Cu2(mu-Gly-n-P)(XDK)(Mephen)2] (Gly-n-P = glycerol n-phosphate; n = 2 (21), 3 (22)), where Glc, Man, and Fru are glucose, mannose, and fructose, respectively. The structure of [Cu2(mu-MNPP)(XDK)(phen)2(CH3OH)] (20) was characterized as a reference compound (H2MNPP = 4-nitrophenyl phosphoric acid). Complexes 4 and 6 also reacted with d-fructose 1,6-bisphosphate (D-Fru-1,6-P2) to afford the tetranuclear copper(II) complexes formulated as [Cu4(mu-D-Fru-1,6-P2)(XDK)2(L)4] (L = phen (27a), Mephen (27b)). The detailed structure of 27a was determined by X

  4. Resistance Exercise Attenuates High-Fructose, High-Fat-Induced Postprandial Lipemia

    Directory of Open Access Journals (Sweden)

    Jessie R. Wilburn

    2015-01-01

    Full Text Available Introduction Meals rich in both fructose and fat are commonly consumed by many Americans, especially young men, which can produce a significant postprandial lipemic response. Increasing evidence suggests that aerobic exercise can attenuate the postprandial increase in plasma triacylglycerols (TAGs in response to a high-fat or a high-fructose meal. However, it is unknown if resistance exercise can dampen the postprandial lipemic response to a meal rich in both fructose and fat. Methods Eight apparently healthy men (Mean ± SEM; age = 27 ± 2 years participated in a crossover study to examine the effects of acute resistance exercise on next-day postprandial lipemia resulting from a high-fructose, high-fat meal. Participants completed three separate two-day conditions in a random order: (1 EX-COMP: a full-body weightlifting workout with the provision of additional kilocalories to compensate for the estimated net energy cost of exercise on day 1, followed by the consumption of a high-fructose, high-fat liquid test meal the next morning (day 2 (~600 kcal and the determination of the plasma glucose, lactate, insulin, and TAG responses during a six-hour postprandial period; (2 EX-DEF: same condition as EX-COMP but without exercise energy compensation on day 1; and (3 CON: no exercise control. Results The six-hour postprandial plasma insulin and lactate responses did not differ between conditions. However, the postprandial plasma TAG concentrations were 16.5% and 24.4% lower for EX-COMP (551.0 ± 80.5 mg/dL x 360 minutes and EX-DEF (499.4 ± 73.5 mg/dL x 360 minutes, respectively, compared to CON (660.2 ± 95.0 mg/dL x 360 minutes ( P < 0.05. Conclusions A single resistance exercise bout, performed ~15 hours prior to a high-fructose, high-fat meal, attenuated the postprandial TAG response, as compared to a no-exercise control condition, in healthy, resistance-trained men.

  5. Resistance Exercise Attenuates High-Fructose, High-Fat-Induced Postprandial Lipemia.

    Science.gov (United States)

    Wilburn, Jessie R; Bourquin, Jeffrey; Wysong, Andrea; Melby, Christopher L

    2015-01-01

    Meals rich in both fructose and fat are commonly consumed by many Americans, especially young men, which can produce a significant postprandial lipemic response. Increasing evidence suggests that aerobic exercise can attenuate the postprandial increase in plasma triacylglycerols (TAGs) in response to a high-fat or a high-fructose meal. However, it is unknown if resistance exercise can dampen the postprandial lipemic response to a meal rich in both fructose and fat. Eight apparently healthy men (Mean ± SEM; age = 27 ± 2 years) participated in a crossover study to examine the effects of acute resistance exercise on next-day postprandial lipemia resulting from a high-fructose, high-fat meal. Participants completed three separate two-day conditions in a random order: (1) EX-COMP: a full-body weightlifting workout with the provision of additional kilocalories to compensate for the estimated net energy cost of exercise on day 1, followed by the consumption of a high-fructose, high-fat liquid test meal the next morning (day 2) (~600 kcal) and the determination of the plasma glucose, lactate, insulin, and TAG responses during a six-hour postprandial period; (2) EX-DEF: same condition as EX-COMP but without exercise energy compensation on day 1; and (3) CON: no exercise control. The six-hour postprandial plasma insulin and lactate responses did not differ between conditions. However, the postprandial plasma TAG concentrations were 16.5% and 24.4% lower for EX-COMP (551.0 ± 80.5 mg/dL × 360 minutes) and EX-DEF (499.4 ± 73.5 mg/dL × 360 minutes), respectively, compared to CON (660.2 ± 95.0 mg/dL × 360 minutes) (P < 0.05). A single resistance exercise bout, performed ~15 hours prior to a high-fructose, high-fat meal, attenuated the postprandial TAG response, as compared to a no-exercise control condition, in healthy, resistance-trained men.

  6. New Products from 1,5-Anhydro-D-fructose

    DEFF Research Database (Denmark)

    Andreassen, Mikkel; Lundt, Inge

    1,5-Anhydro-D-fructose 1 (AF) is now available in larger amounts by enzymatic degradation of starch, and thus the utility of AF is the basis of the NEPSA project . A review covering the chemistry and biochemistry of AF has recently been published . In our ongoing research to use AF as a chiral...... investigation. EU-program : NEw Products from Starch derived Anhydro-D- fructose Andersen, S.; Lundt, I.; Marcussen, J.; Yu, S. Carb.Res. 2002, 337, 873-880 Andersen, S.; Isak, T.; Jensen, H. M.; Marcussen, J.; Yu, S. Anti-oxidant. PCT Int. Patent WO 0056838, 2000...

  7. Radiobiology of BNCT mediated by GB-10 and GB-10+BPA in experimental oral cancer

    Energy Technology Data Exchange (ETDEWEB)

    Trivillin, Veronica A.; Heber, Elisa M.; Itoiz, Maria E.; Nigg, David; Calzetta, Osvaldo; Blaumann, Herman; Longhino, Juan; Schwint, Amanda E. E-mail: schwint@cnea.gov.ar

    2004-11-01

    We previously reported biodistribution and pharmacokinetic data for GB-10 (Na{sub 2}{sup 10}B{sub 10}H{sub 10}) and the combined administration of GB-10 and boronophenylalanine (BPA) as boron delivery agents for boron neutron capture therapy (BNCT) in the hamster cheek pouch oral cancer model. The aim of the present study was to assess, for the first time, the response of hamster cheek pouch tumors, precancerous tissue and normal tissue to BNCT mediated by GB-10 and BNCT mediated by GB-10 and BPA administered jointly using the thermalized epithermal beam of the RA-6 Reactor at the Bariloche Atomic Center. GB-10 exerted 75.5% tumor control (partial+complete remission) with no damage to precancerous tissue around tumor or to normal tissue. Thus, GB-10 proved to be a therapeutically efficient boron agent in this model despite the fact that it is not taken up selectively by oral tumor tissue. GB-10 exerted a selective effect on tumor blood vessels leading to significant tumor control with a sparing effect on normal tissue. BNCT mediated by the combined administration of GB-10 and BPA resulted in a reduction in the dose to normal tissue and would thus allow for significant escalation of dose to tumor without exceeding normal tissue tolerance.

  8. Radiobiology of BNCT mediated by GB-10 and GB-10+BPA in experimental oral cancer

    International Nuclear Information System (INIS)

    Trivillin, Veronica A.; Heber, Elisa M.; Itoiz, Maria E.; Nigg, David; Calzetta, Osvaldo; Blaumann, Herman; Longhino, Juan; Schwint, Amanda E.

    2004-01-01

    We previously reported biodistribution and pharmacokinetic data for GB-10 (Na 2 10 B 10 H 10 ) and the combined administration of GB-10 and boronophenylalanine (BPA) as boron delivery agents for boron neutron capture therapy (BNCT) in the hamster cheek pouch oral cancer model. The aim of the present study was to assess, for the first time, the response of hamster cheek pouch tumors, precancerous tissue and normal tissue to BNCT mediated by GB-10 and BNCT mediated by GB-10 and BPA administered jointly using the thermalized epithermal beam of the RA-6 Reactor at the Bariloche Atomic Center. GB-10 exerted 75.5% tumor control (partial+complete remission) with no damage to precancerous tissue around tumor or to normal tissue. Thus, GB-10 proved to be a therapeutically efficient boron agent in this model despite the fact that it is not taken up selectively by oral tumor tissue. GB-10 exerted a selective effect on tumor blood vessels leading to significant tumor control with a sparing effect on normal tissue. BNCT mediated by the combined administration of GB-10 and BPA resulted in a reduction in the dose to normal tissue and would thus allow for significant escalation of dose to tumor without exceeding normal tissue tolerance

  9. Acute effects of feeding fructose, glucose and sucrose on blood lipid levels and systemic inflammation.

    Science.gov (United States)

    Jameel, Faizan; Phang, Melinda; Wood, Lisa G; Garg, Manohar L

    2014-12-16

    Recent studies have demonstrated a relationship between fructose consumption and risk of developing metabolic syndrome. Mechanisms by which dietary fructose mediates metabolic changes are poorly understood. This study compared the effects of fructose, glucose and sucrose consumption on post-postprandial lipemia and low grade inflammation measured as hs-CRP. This was a randomized, single blinded, cross-over trial involving healthy subjects (n=14). After an overnight fast, participants were given one of 3 different isocaloric drinks, containing 50 g of either fructose or glucose or sucrose dissolved in water. Blood samples were collected at baseline, 30, 60 and 120 minutes post intervention for the analysis of blood lipids, glucose, insulin and high sensitivity C-reactive protein (hs-CRP). Glucose and sucrose supplementation initially resulted in a significant increase in glucose and insulin levels compared to fructose supplementation and returned to near baseline values within 2 hours. Change in plasma cholesterol, LDL and HDL-cholesterol (measured as area under curve, AUC) was significantly higher when participants consumed fructose compared with glucose or sucrose (PAUC for plasma triglyceride levels however remained unchanged regardless of the dietary intervention. Change in AUC for hs-CRP was also significantly higher in subjects consuming fructose compared with those consuming glucose (P<0.05), but not sucrose (P=0.07). This study demonstrates that fructose as a sole source of energy modulates plasma lipids and hsCRP levels in healthy individuals. The significance of increase in HDL-cholesterol with a concurrent increase in LDL-cholesterol and elevated hs-CRP levels remains to be delineated when considering health effects of feeding fructose-rich diets. ACTRN12614000431628.

  10. Nano-structured Ni(II)-curcumin modified glassy carbon electrode for electrocatalytic oxidation of fructose

    International Nuclear Information System (INIS)

    Elahi, M. Yousef; Mousavi, M.F.; Ghasemi, S.

    2008-01-01

    A nano-structured Ni(II)-curcumin (curcumin: 1,7-bis[4-hydroxy-3-methoxyphenyl]-1,6-heptadiene-3,5-dione) film is electrodeposited on a glassy carbon electrode in alkaline solution. The morphology of polyNi(II)-curcumin (NC) was investigated by scanning electron microscopy (SEM). The SEM results show NC has a nano-globular structure in the range 20-50 nm. Using cyclic voltammetry, linear sweep voltammetry, chronoamperometry, steady-state polarization measurements and electrochemical impedance spectroscopy (EIS) showed that the nano-structure NC film acts as an efficient material for the electrocatalytic oxidation of fructose. According to the voltammetric studies, the increase in the anodic peak current and subsequent decrease in the corresponding cathodic current, fructose was oxidized on the electrode surface via an electrocatalytic mechanism. The EIS results show that the charge-transfer resistance has as a function of fructose concentration, time interval and applied potential. The increase in the fructose concentration and time interval in fructose solution results in enhanced charge transfer resistance in Nyquist plots. The EIS results indicate that fructose electrooxidation at various potentials shows different impedance behaviors. At lower potentials, a semicircle is observed in the first quadrant of impedance plot. With further increase of the potential, a transition of the semicircle from the first to the second quadrant occurs. Also, the results obtained show that the rate of fructose electrooxidation depends on concentration of OH - . Electron transfer coefficient, diffusion coefficient and rate constant of the electrocatalytic oxidation reaction are obtained. The modified electrode was used as a sensor for determination of fructose with a good dynamic range and a low detection limit

  11. An in Situ NMR Study of the Mechanism for the Catalytic Conversion of Fructose to 5-Hydroxymethylfurfural and then to Levulinic Acid Using 13 C Labeled d -Fructose

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jing [Department of Chemistry and Institute for Atom Efficient; Weitz, Eric [Department of Chemistry and Institute for Atom Efficient

    2012-04-26

    The pathways for the formation of 5-hydroxymethylfurfural (HMF) by dehydration of d-fructose and for the formation of levulinic acid and formic acid from HMF by rehydration were investigated by in situ13C and 1H NMR using both unlabeled and 13C-labeled fructose. Water or DMSO was used as the solvent with Amberlyst 70, PO43–/niobic acid, or sulfuric acid as catalysts. Only HMF is observed using NMR for fructose dehydration in DMSO with any of the three catalysts or without a catalyst. For each system, results with 13C-labeled fructose indicate that the first carbon (C-1) or sixth carbon (C-6) of fructose maps onto the corresponding carbons of HMF. For fructose dehydration in H2O with a PO43–/niobic acid catalyst, in addition to HMF, furfural was observed as a product. However, we show that furfural is not a reaction product deriving from HMF under our conditions. Rather our data indicate that there is a parallel reaction pathway open to fructose when the reaction takes place in H2O with a PO43–/niobic acid catalyst. The corresponding 13C-labeled results show that the first carbon in fructose maps onto the first carbon (aldehyde carbon) in furfural. Using 13C-enriched HMF formed from dehydration of 13C-labeled fructose in DMSO or H2O, we investigated the pathway for HMF rehydration to levulinic and formic acid. The data in different solvents and with different catalysts are consistent with a common mechanism for HMF rehydration, which results in the C-1 and C-6 carbon of HMF being transformed to the carbon of formic acid and methyl carbon (C-5) of levulinic acid, respectively.

  12. Protective Effects of Withania somnifera Root on Inflammatory Markers and Insulin Resistance in Fructose-Fed Rats

    Directory of Open Access Journals (Sweden)

    Zahra Samadi Noshahr

    2015-05-01

    Full Text Available Background: We investigated the effects of Withania somnifera root (WS on insulin resistance, tumor necrosis factor α (TNF-α, and interleukin-6 (IL-6 in fructose-fed rats. Methods: Forty-eight Wistar-Albino male rats were randomly divided into four groups (n=12; Group I as control, Group II as sham-treated with WS by 62.5mg/g per diet, Group III fructose-fed rats received 10%W/V fructose, and Group IV fructose- and WS-fed rats. After eight weeks blood samples were collected to measure glucose, insulin, IL-6, and TNF-α levels in sera. Results: Blood glucose, insulin, homeostasis model assessment for insulin resistance (HOMA-R, IL-6, and TNF-α levels were all significantly greater in the fructose-fed rats than in the controls. Treatment with WS significantly (P < 0.05 inhibited the fructose-induced increases in glucose, insulin, HOMA-R, IL-6, and TNF-α. Conclusion: Our data suggest that WS normalizes hyperglycemia in fructose-fed rats by reducing inflammatory markers and improving insulin sensitivity.

  13. Fructose 2,6-bisphosphate and its phosphorothioate analogue. Comparison of their hydrolysis and action on glycolytic and gluconeogenic enzymes.

    OpenAIRE

    Rider, M H; Kuntz, D A; Hue, L

    1988-01-01

    Purified chicken liver 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase was phosphorylated either from fructose 2,6-bis[2-32P]phosphate or fructose 2-phosphoro[35S]thioate 6-phosphate. The turnover of the thiophosphorylated enzyme intermediate as well as the overall phosphatase reaction was four times faster than with authentic fructose 2,6-bisphosphate. Fructose 2-phosphorothioate 6-phosphate was 10-100-fold less potent than authentic fructose 2,6-bisphosphate in stimulating 6-phosphofru...

  14. Dietary fructose and risk of metabolic syndrome in adults: Tehran Lipid and Glucose study

    Directory of Open Access Journals (Sweden)

    Hosseinpanah Farhad

    2011-07-01

    Full Text Available Abstract Background Studies have shown that the excessive fructose intake may induce adverse metabolic effects. There is no direct evidence from epidemiological studies to clarify the association between usual amounts of fructose intake and the metabolic syndrome. Objective The aim this study was to determine the association of fructose intake and prevalence of metabolic syndrome (MetS and its components in Tehranian adults. Methods This cross-sectional population based study was conducted on 2537 subjects (45% men aged 19-70 y, participants of the Tehran Lipid and Glucose Study (2006-2008. Dietary data were collected using a validated 168 item semi-quantitative food frequency questionnaire. Dietary fructose intake was calculated by sum of natural fructose (NF in fruits and vegetables and added fructose (AF in commercial foods. MetS was defined according to the modified NCEP ATP III for Iranian adults. Results The mean ages of men and women were 40.5 ± 13.6 and 38.6 ± 12.8 years, respectively. Mean total dietary fructose intakes were 46.5 ± 24.5 (NF: 19.6 ± 10.7 and AF: 26.9 ± 13.9 and 37.3 ± 24.2 g/d (NF: 18.6 ± 10.5 and AF: 18.7 ± 13.6 in men and women, respectively. Compared with those in the lowest quartile of fructose intakes, men and women in the highest quartile, respectively, had 33% (95% CI, 1.15-1.47 and 20% (95% CI, 1.09-1.27 higher risk of the metabolic syndrome; 39% (CI, 1.16-1.63 and 20% (CI, 1.07-1.27 higher risk of abdominal obesity; 11% (CI, 1.02-1.17 and 9% (CI, 1.02-1.14 higher risk of hypertension; and 9% (CI, 1-1.15 and 9% (1.04-1.12 higher risk of impaired fasting glucose. Conclusion Higher consumption of dietary fructose may have adverse metabolic effects.

  15. [Effects of fructose on triglycerides in individuals with diabetes: a Meta-analysis of experimental trials].

    Science.gov (United States)

    Xiang, Xuesong; Zhao, Jia; Zhu, Jing; Zhang, Peng; Wang, Zhu; Yang, Yuexin

    2015-05-01

    To assess the effects of fructose on the blood triglycerides, particularly examining treatment dose, duration, and control of food in individuals with diabetes. A systematic review and Meta-analysis of experimental clinical trials were conducted to investigate the effect of isocaloric fructose exchange for carbohydrate on triglycerides, total cholesterol. MedLine, EMBASE, The Cochrane Library, CMBdisc, CNKI (1970-2014), and some related journals were searched. Heterogeneity was assessed by 2 tests and quantified by I2. Meta-analysis was conducted by RevMan 5.3. 15 reports (21 trials) met the eligibility criteria. Isocaloric fructose exchange for carbohydrate raised triglycerides under specific conditions in individuals with type 2 diabetes. A triglyceride-raising effect without heterogeneity was seen only in type 2 diabetes when the dose was ≥ 100 g fructose/d (WMD 0.17, 95% CI0.08 - 0.25, P triglyceride-raising effect with heterogeneity was seen in type 2 diabetes when the reference carbohydrate was starch (WMD 0.13, 95% CI 0.02 - 0.23 , P = 0.02). Effect of fructose on the level of TG in type 2 diabetes patients is more sensitive than that in type 1 diabetes. The effect on triglycerides is dose dependent and depends on what kinds of carbohydrate is being exchanged with fructose.

  16. Dietary lipids do not contribute to the higher hepatic triglyceride levels of fructose- compared to glucose-fed mice

    NARCIS (Netherlands)

    Nunes, P.M.; Wright, A.J.; Veltien, A.A.; Asten, J.J.A. van; Tack, C.J.J.; Jones, J.G.; Heerschap, A.

    2014-01-01

    Fructose consumption has been associated with the surge in obesity and dyslipidemia. This may be mediated by the fructose effects on hepatic lipids and ATP levels. Fructose metabolism provides carbons for de novo lipogenesis (DNL) and stimulates enterocyte secretion of apoB48. Thus, fructose-induced

  17. A new radiochemical assay for fructose-1,6-diphosphatase in human leucocytes

    International Nuclear Information System (INIS)

    Janssen, A.J.M.; Trijbels, F.J.M.

    1982-01-01

    Fructose-1,6-diphosphatase (D-fructose-1,6-diphosphate 1-phosphohydrolase, EC 3.1.3.11, FDPase) is one of the key enzymes of the gluconeogenic pathway. Measuring the activity both in the presence and in the absence of AMP yields the true FDPase activity, corrected for non-specific phosphatase activity. In this paper the authors introduce a new radiochemical assay for FDPase, based on the decarboxylating activity of 6-phosphogluconate dehydrogenase. One molecule [U- 14 C]fructose-1,6-diphosphate yields one molecule 14 CO 2 which can be captured in strongly basic solutions and counted in a liquid scintillation counter. (Auth.)

  18. Boron biodistribution for BNCT in the hamster cheek pouch oral cancer model: Combined administration of BSH and BPA

    Energy Technology Data Exchange (ETDEWEB)

    D.W. Nigg; William Bauer; Various Others

    2014-06-01

    Sodium mercaptoundecahydro-closo-dodecaborate (BSH) is being investigated clinically for BNCT. We examined the biodistribution of BSH and BPA administered jointly in different proportions in the hamster cheek pouch oral cancer model. The 3 assayed protocols were non-toxic, and showed preferential tumor boron uptake versus precancerous and normal tissue and therapeutic tumor boron concentration values (70–85 ppm). All 3 protocols warrant assessment in BNCT studies to contribute to the knowledge of (BSH+BPA)-BNCT radiobiology for head and neck cancer and optimize therapeutic efficacy.

  19. Quantitation of deuterated and non-deuterated phenylalanine and tyrosine in human plasma using the selective ion monitoring method with combined gas chromatography-mass spectrometry

    International Nuclear Information System (INIS)

    Zagalak, M.-J.; Curtius, H.-Ch.; Leimbacher, W.; Redweik, U.

    1977-01-01

    A specific method is described for the quantitative analysis of deutarated and non-deuterated phenylalanine and tyrosine in human plasma by gas chromatography-mass spectrometry using selective ion monitoring. From the several derivatives investigated, the N- or N,O-trifluoroacetyl methyl esters were found to be the most suitable for our purposes. DL-Phenylalanine-4-d 1 and L-tyrosine-d 7 were used as internal standards. The sensitivity of this method permits the measurement of amounts as small as ca. 2.5 ng/ml in plasma for both phenylalanine and tyrosine. The coefficients of variation were found to be ca. 1.6% (n=12) for phenylalanine and 3.0% (n=12) for tyrosine. Using this method, an in vivo determination of phenylalanine-4-monooxygenase activity in humans is possible by loading the subjects with deuterated L-phenylalanine-d 5 (accepted as substrate by phenylalanine-4-monooxygenase E.C. 1.14.16.1) and the subsequent measuring of deuterated L-tyrosine-d 4 formed and residual L-phenylalanine-d 5

  20. Influence of fructose on the diffusion of potassium hydrogen phosphate in aqueous solutions at 25 °C

    International Nuclear Information System (INIS)

    Verissimo, Luis M.P.; Teigão, Joana M.M.; Ramos, M. Luísa; Burrows, Hugh D.; Esteso, Miguel A.; Ribeiro, Ana C.F.

    2016-01-01

    Highlights: • Diffusion coefficients of aqueous systems of fructose and potassium hydrogen phosphate measured with Lobo’s cell. • Influence of the fructose on the diffusion of potassium hydrogen phosphate. • Interactions between of hydrogen phosphate anion and fructose. - Abstract: Diffusion coefficients have been measured at 25 °C for potassium hydrogen phosphate (K_2HPO_4, 0.101 mol kg"−"1) in aqueous solutions containing various concentrations of fructose from (0.001 to 0.101) mol kg"−"1, using a conductimetric cell (the Lobo cell) coupled to an automatic data acquisition system. Significant effects of fructose were observed on the diffusion of K_2HPO_4 in these mixtures, which are attributed to the interaction between HPO_4"2"− anion (or other protonated forms) and fructose. Support for this comes from "1H and "1"3C NMR spectroscopy, which are compatible with binding between the anomeric forms of D-fructose and the HPO_4"2"− anion.

  1. Selective fermentation of pitted dates by S. cerevisiae for the production of concentrated fructose syrups and ethanol

    International Nuclear Information System (INIS)

    Putra, Meilana Dharma; Abasaeed, Ahmed E; Zeinelabdeen, Mohamed A; Gaily, Mohamed H; Sulieman, Ashraf K

    2014-01-01

    About half of worldwide production of dates is unconsumed. Dates contain over 75 % reduced sugars (mostly glucose and fructose with nearly equal amount). Compared to the commercial Saccharomyces cerevisiae wild strain, the strains ATCC 36858 and 36859 could produce high concentration fructose syrups. The fructose fractions obtained were 95.9 and 97.4% for ATCC 36858 and 86.5 and 91.4% for ATCC 36859 at 30 and 33°C, respectively. Fructose yields higher than 90% were obtained using ATCC 36858 compared to those obtained using ATCC 36859 which were 87.3 and 66.1% at 30 and 33°C, respectively. The ethanol yield using ATCC 36858 was higher than that using ATCC 36859 by 16 and 9% at 30 and 33°C, respectively. Through this finding, the production of fructose and ethanol from date extract is a promising process. Moreover, the fructose fractions obtained here (about 90%) are much higher than those obtained with the commercial process, i.e. 55 % fructose syrups.

  2. Selective fermentation of pitted dates by S. cerevisiae for the production of concentrated fructose syrups and ethanol

    Science.gov (United States)

    Dharma Putra, Meilana; Abasaeed, Ahmed E.; Zeinelabdeen, Mohamed A.; Gaily, Mohamed H.; Sulieman, Ashraf K.

    2014-04-01

    About half of worldwide production of dates is unconsumed. Dates contain over 75 % reduced sugars (mostly glucose and fructose with nearly equal amount). Compared to the commercial Saccharomyces cerevisiae wild strain, the strains ATCC 36858 and 36859 could produce high concentration fructose syrups. The fructose fractions obtained were 95.9 and 97.4% for ATCC 36858 and 86.5 and 91.4% for ATCC 36859 at 30 and 33°C, respectively. Fructose yields higher than 90% were obtained using ATCC 36858 compared to those obtained using ATCC 36859 which were 87.3 and 66.1% at 30 and 33°C, respectively. The ethanol yield using ATCC 36858 was higher than that using ATCC 36859 by 16 and 9% at 30 and 33°C, respectively. Through this finding, the production of fructose and ethanol from date extract is a promising process. Moreover, the fructose fractions obtained here (about 90%) are much higher than those obtained with the commercial process, i.e. 55 % fructose syrups.

  3. Fructose-induced increases in expression of intestinal fructolytic and gluconeogenic genes are regulated by GLUT5 and KHK

    Science.gov (United States)

    Patel, Chirag; Douard, Veronique; Yu, Shiyan; Tharabenjasin, Phuntila; Gao, Nan

    2015-01-01

    Marked increases in fructose consumption have been tightly linked to metabolic diseases. One-third of ingested fructose is metabolized in the small intestine, but the underlying mechanisms regulating expression of fructose-metabolizing enzymes are not known. We used genetic mouse models to test the hypothesis that fructose absorption via glucose transporter protein, member 5 (GLUT5), metabolism via ketohexokinase (KHK), as well as GLUT5 trafficking to the apical membrane via the Ras-related protein in brain 11a (Rab11a)-dependent endosomes are required for the regulation of intestinal fructolytic and gluconeogenic enzymes. Fructose feeding increased the intestinal mRNA and protein expression of these enzymes in the small intestine of adult wild-type (WT) mice compared with those gavage fed with lysine or glucose. Fructose did not increase expression of these enzymes in the GLUT5 knockout (KO) mice. Blocking intracellular fructose metabolism by KHK ablation also prevented fructose-induced upregulation. Glycolytic hexokinase I expression was similar between WT and GLUT5- or KHK-KO mice and did not vary with feeding solution. Gavage feeding with the fructose-specific metabolite glyceraldehyde did not increase enzyme expression, suggesting that signaling occurs before the hydrolysis of fructose to three-carbon compounds. Impeding GLUT5 trafficking to the apical membrane using intestinal epithelial cell-specific Rab11a-KO mice impaired fructose-induced upregulation. KHK expression was uniformly distributed along the villus but was localized mainly in the basal region of the cytosol of enterocytes. The feedforward upregulation of fructolytic and gluconeogenic enzymes specifically requires GLUT5 and KHK and may proactively enhance the intestine's ability to process anticipated increases in dietary fructose concentrations. PMID:26084694

  4. High-fructose diet during periadolescent development increases depressive-like behavior and remodels the hypothalamic transcriptome in male rats

    Science.gov (United States)

    Harrell, Constance S.; Burgado, Jillybeth; Kelly, Sean D.; Johnson, Zachary P.; Neigh, Gretchen N.

    2015-01-01

    Fructose consumption, which promotes insulin resistance, hypertension, and dyslipidemia, has increased by over 25% since the 1970s. In addition to metabolic dysregulation, fructose ingestion stimulates the hypothalamic-pituitary-adrenal (HPA) axis leading to elevations in glucocorticoids. Adolescents are the greatest consumers of fructose, and adolescence is a critical period for maturation of the HPA axis. Repeated consumption of high levels of fructose during adolescence has the potential to promote long-term dysregulation of the stress response. Therefore, we determined the extent to which consumption of a diet high in fructose affected behavior, serum corticosterone, and hypothalamic gene expression using a whole-transcriptomics approach. In addition, we examined the potential of a high-fructose diet to interact with exposure to chronic adolescent stress. Male Wistar rats fed the periadolescent high-fructose diet showed increased anxiety-like behavior in the elevated plus maze and depressive-like behavior in the forced swim test in adulthood, irrespective of stress history. Periadolescent fructose-fed rats also exhibited elevated basal corticosterone concentrations relative to their chow-fed peers. These behavioral and hormonal responses to the high-fructose diet did not occur in rats fed fructose during adulthood only. Finally, rats fed the high-fructose diet throughout development underwent marked hypothalamic transcript expression remodeling, with 966 genes (5.6%) significantly altered and a pronounced enrichment of significantly altered transcripts in several pathways relating to regulation of the HPA axis. Collectively, the data presented herein indicate that diet, specifically one high in fructose, has the potential to alter behavior, HPA axis function, and the hypothalamic transcriptome in male rats. PMID:26356038

  5. High fructose consumption induces DNA methylation at PPARα and CPT1A promoter regions in the rat liver

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, Koji [Department of Clinical Biochemistry, Fujita Health University School of Health Sciences, Toyoake (Japan); Munetsuna, Eiji [Department of Biochemistry, Fujita Health University School of Medicine, Toyoake (Japan); Yamada, Hiroya, E-mail: hyamada@fujita-hu.ac.jp [Department of Hygiene, Fujita Health University School of Medicine, Toyoake (Japan); Ando, Yoshitaka [Department of Joint Research Laboratory of Clinical Medicine, Fujita Health University Hospital, Toyoake (Japan); Yamazaki, Mirai; Taromaru, Nao; Nagura, Ayuri; Ishikawa, Hiroaki [Department of Clinical Biochemistry, Fujita Health University School of Health Sciences, Toyoake (Japan); Suzuki, Koji [Department of Public Health, Fujita Health University School of Health Sciences, Toyoake (Japan); Teradaira, Ryoji [Department of Clinical Biochemistry, Fujita Health University School of Health Sciences, Toyoake (Japan); Hashimoto, Shuji [Department of Hygiene, Fujita Health University School of Medicine, Toyoake (Japan)

    2015-12-04

    DNA methylation status is affected by environmental factors, including nutrition. Fructose consumption is considered a risk factor for the conditions that make up metabolic syndrome such as dyslipidemia. However, the pathogenetic mechanism by which fructose consumption leads to metabolic syndrome is unclear. Based on observations that epigenetic modifications are closely related to induction of metabolic syndrome, we hypothesized that fructose-induced metabolic syndrome is caused by epigenetic alterations. Male SD rats were designated to receive water or 20% fructose solution for 14 weeks. mRNA levels for peroxisome proliferator-activated receptor alpha (PPARα) and carnitine palmitoyltransferase 1A (CPT1A) was analyzed using Real-time PCR. Restriction digestion and real-time PCR (qAMP) was used for the analysis of DNA methylation status. Hepatic lipid accumulation was also observed by fructose intake. Fructose feeding also significantly decreased mRNA levels for PPARα and CPT1A. qAMP analysis demonstrated the hypermethylation of promoter regions of PPARα and CTP1A genes. Fructose-mediated attenuated gene expression may be mediated by alterations of DNA methylation status, and pathogenesis of metabolic syndrome induced by fructose relates to DNA methylation status. - Highlights: • No general consensus has been reached regarding the molecular mechanisms of the pathogenesis of fructose-induced diseases. • Significant increase in hepatic total methylation level was observed after fructose-supplemented feeding. • Fructose feeding significantly decreased mRNA levels for PPARα and CPT1A. • qAMP analysis demonstrated the hypermethylation of promoter regions of PPARα and CTP1A genes. • Fructose-mediated attenuated gene expression may be mediated by alterations of DNA methylation status in rat liver.

  6. High fructose consumption induces DNA methylation at PPARα and CPT1A promoter regions in the rat liver

    International Nuclear Information System (INIS)

    Ohashi, Koji; Munetsuna, Eiji; Yamada, Hiroya; Ando, Yoshitaka; Yamazaki, Mirai; Taromaru, Nao; Nagura, Ayuri; Ishikawa, Hiroaki; Suzuki, Koji; Teradaira, Ryoji; Hashimoto, Shuji

    2015-01-01

    DNA methylation status is affected by environmental factors, including nutrition. Fructose consumption is considered a risk factor for the conditions that make up metabolic syndrome such as dyslipidemia. However, the pathogenetic mechanism by which fructose consumption leads to metabolic syndrome is unclear. Based on observations that epigenetic modifications are closely related to induction of metabolic syndrome, we hypothesized that fructose-induced metabolic syndrome is caused by epigenetic alterations. Male SD rats were designated to receive water or 20% fructose solution for 14 weeks. mRNA levels for peroxisome proliferator-activated receptor alpha (PPARα) and carnitine palmitoyltransferase 1A (CPT1A) was analyzed using Real-time PCR. Restriction digestion and real-time PCR (qAMP) was used for the analysis of DNA methylation status. Hepatic lipid accumulation was also observed by fructose intake. Fructose feeding also significantly decreased mRNA levels for PPARα and CPT1A. qAMP analysis demonstrated the hypermethylation of promoter regions of PPARα and CTP1A genes. Fructose-mediated attenuated gene expression may be mediated by alterations of DNA methylation status, and pathogenesis of metabolic syndrome induced by fructose relates to DNA methylation status. - Highlights: • No general consensus has been reached regarding the molecular mechanisms of the pathogenesis of fructose-induced diseases. • Significant increase in hepatic total methylation level was observed after fructose-supplemented feeding. • Fructose feeding significantly decreased mRNA levels for PPARα and CPT1A. • qAMP analysis demonstrated the hypermethylation of promoter regions of PPARα and CTP1A genes. • Fructose-mediated attenuated gene expression may be mediated by alterations of DNA methylation status in rat liver.

  7. Morphological and functional changes in the enterocyte induced by fructose

    DEFF Research Database (Denmark)

    Danielsen, E M; Hansen, Gert Helge; Wetterberg, L L

    1991-01-01

    In the presence of 10-50 mM-fructose, enterocytes of organ-cultured pig intestinal-mucosal explants fail to glycosylate correctly their newly synthesized microvillar enzymes, and instead degrade them [Danielsen (1989) J. Biol. Chem. 264, 13726-13729]. In the present work, this degradation was shown....... Thus the stack of Golgi cisternae was condensed and devoid of dilated rims, and the secretion of a non-glycosylated protein, apolipoprotein A-1, was almost completely blocked in the presence of fructose, showing that transport through the secretory pathway is disturbed even for proteins unaffected...... by the defective glycosylation. The microvilli of the brush-border membrane were markedly shortened (by about 40%) in the presence of fructose, and incorporation of newly made actin into the microvillar cytoskeleton was similarly decreased. By affecting membrane glycoprotein synthesis, the common dietary sugar...

  8. Sympathetic overactivity precedes metabolic dysfunction in a fructose model of glucose intolerance in mice

    Science.gov (United States)

    Angelis, Katia De; Senador, Danielle D.; Mostarda, Cristiano; Irigoyen, Maria C.

    2012-01-01

    Consumption of high levels of fructose in humans and animals leads to metabolic and cardiovascular dysfunction. There are questions as to the role of the autonomic changes in the time course of fructose-induced dysfunction. C57/BL male mice were given tap water or fructose water (100 g/l) to drink for up to 2 mo. Groups were control (C), 15-day fructose (F15), and 60-day fructose (F60). Light-dark patterns of arterial pressure (AP) and heart rate (HR), and their respective variabilities were measured. Plasma glucose, lipids, insulin, leptin, resistin, adiponectin, and glucose tolerance were quantified. Fructose increased systolic AP (SAP) at 15 and 60 days during both light (F15: 123 ± 2 and F60: 118 ± 2 mmHg) and dark periods (F15: 136 ± 4 and F60: 136 ± 5 mmHg) compared with controls (light: 111 ± 2 and dark: 117 ± 2 mmHg). SAP variance (VAR) and the low-frequency component (LF) were increased in F15 (>60% and >80%) and F60 (>170% and >140%) compared with C. Cardiac sympatho-vagal balance was enhanced, while baroreflex function was attenuated in fructose groups. Metabolic parameters were unchanged in F15. However, F60 showed significant increases in plasma glucose (26%), cholesterol (44%), triglycerides (22%), insulin (95%), and leptin (63%), as well as glucose intolerance. LF of SAP was positively correlated with SAP. Plasma leptin was correlated with triglycerides, insulin, and glucose tolerance. Results show that increased sympathetic modulation of vessels and heart preceded metabolic dysfunction in fructose-consuming mice. Data suggest that changes in autonomic modulation may be an initiating mechanism underlying the cluster of symptoms associated with cardiometabolic disease. PMID:22319048

  9. Fructose 1-phosphate is the one and only physiological effector of the Cra (FruR) regulator of Pseudomonas putida.

    Science.gov (United States)

    Chavarría, Max; Durante-Rodríguez, Gonzalo; Krell, Tino; Santiago, César; Brezovsky, Jan; Damborsky, Jiri; de Lorenzo, Víctor

    2014-01-01

    Fructose-1-phosphate (F1P) is the preferred effector of the catabolite repressor/activator (Cra) protein of the soil bacterium Pseudomonas putida but its ability to bind other metabolic intermediates in vivo is unclear. The Cra protein of this microorganism (Cra(PP)) was submitted to mobility shift assays with target DNA sequences (the PfruB promoter) and candidate effectors fructose-1,6-bisphosphate (FBP), glucose 6-phosphate (G6P), and fructose-6-phosphate (F6P). 1 mM F1P was sufficient to release most of the Cra protein from its operators but more than 10 mM of FBP or G6P was required to free the same complex. However, isothermal titration microcalorimetry failed to expose any specific interaction between Cra(PP) and FBP or G6P. To solve this paradox, transcriptional activity of a PfruB-lacZ fusion was measured in wild-type and ΔfruB cells growing on substrates that change the intracellular concentrations of F1P and FBP. The data indicated that PfruB activity was stimulated by fructose but not by glucose or succinate. This suggested that Cra(PP) represses expression in vivo of the cognate fruBKA operon in a fashion dependent just on F1P, ruling out any other physiological effector. Molecular docking and dynamic simulations of the Cra-agonist interaction indicated that both metabolites can bind the repressor, but the breach in the relative affinity of Cra(PP) for F1P vs FBP is three orders of magnitude larger than the equivalent distance in the Escherichia coli protein. This assigns the Cra protein of P. putida the sole role of transducing the presence of fructose in the medium into a variety of direct and indirect physiological responses.

  10. DIFFERENT ACUTE METABOLISM OF FRUCTOSE IN DIALYSIS PATIENTS COMPARED TO HEALTHY SUBJECTS

    Directory of Open Access Journals (Sweden)

    Björn Anderstam

    2012-06-01

    We conclude that a fatty meal is associated with a delayed post-prandial fructose absorption and/or metabolism, as well as increased uric acid levels in HD patients. In an ongoing new study, the fructose metabolism will be further studied in CKD patients, diabetics and healthy controls.

  11. Genetic disorder in carbohydrates metabolism: hereditary fructose intolerance associated with celiac disease.

    Science.gov (United States)

    Păcurar, Daniela; Leşanu, Gabriela; Dijmărescu, Irina; Ţincu, Iulia Florentina; Gherghiceanu, Mihaela; Orăşeanu, Dumitru

    2017-01-01

    Celiac disease (CD) has been associated with several genetic and immune disorders, but association between CD and hereditary fructose intolerance (HFI) is extremely rare. HFI is an autosomal recessive disease caused by catalytic deficiency of aldolase B (fructose-1,6-bisphosphate aldolase). We report the case of a 5-year-old boy suffering from CD, admitted with an initial diagnosis of Reye's-like syndrome. He presented with episodic unconsciousness, seizures, hypoglycemia, hepatomegaly and abnormal liver function. The patient has been on an exclusion diet for three years, but he still had symptoms: stunting, hepatomegaly, high transaminases, but tissue transglutaminase antibodies were negative. Liver biopsy showed hepatic steatosis and mitochondrial damage. The dietary history showed an aversion to fruits, vegetables and sweet-tasting foods. The fructose tolerance test was positive, revealing the diagnostic of hereditary fructose intolerance. Appropriate dietary management and precautions were recommended. The patient has been symptom-free and exhibited normal growth and development until 10 years of age.

  12. Enhancement of L-phenylalanine production by engineered Escherichia coli using phased exponential L-tyrosine feeding combined with nitrogen source optimization.

    Science.gov (United States)

    Yuan, Peipei; Cao, Weijia; Wang, Zhen; Chen, Kequan; Li, Yan; Ouyang, Pingkai

    2015-07-01

    Nitrogen source optimization combined with phased exponential L-tyrosine feeding was employed to enhance L-phenylalanine production by a tyrosine-auxotroph strain, Escherichia coli YP1617. The absence of (NH4)2SO4, the use of corn steep powder and yeast extract as composite organic nitrogen source were more suitable for cell growth and L-phenylalanine production. Moreover, the optimal initial L-tyrosine level was 0.3 g L(-1) and exponential L-tyrosine feeding slightly improved L-phenylalanine production. Nerveless, L-phenylalanine production was greatly enhanced by a strategy of phased exponential L-tyrosine feeding, where exponential feeding was started at the set specific growth rate of 0.08, 0.05, and 0.02 h(-1) after 12, 32, and 52 h, respectively. Compared with exponential L-tyrosine feeding at the set specific growth rate of 0.08 h(-1), the developed strategy obtained a 15.33% increase in L-phenylalanine production (L-phenylalanine of 56.20 g L(-1)) and a 45.28% decrease in L-tyrosine supplementation. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. Enantioselective synthesis of tetrafluorinated ribose and fructose.

    Science.gov (United States)

    Linclau, Bruno; Boydell, A James; Timofte, Roxana S; Brown, Kylie J; Vinader, Victoria; Weymouth-Wilson, Alexander C

    2009-02-21

    A perfluoroalkylidene lithium mediated cyclisation approach for the enantioselective synthesis of a tetrafluorinated aldose (ribose) and of a tetrafluorinated ketose (fructose), both in the furanose and in the pyranose form, is described.

  14. Early Life Fructose Exposure and Its Implications for Long-Term Cardiometabolic Health in Offspring.

    Science.gov (United States)

    Zheng, Jia; Feng, Qianyun; Zhang, Qian; Wang, Tong; Xiao, Xinhua

    2016-11-01

    It has become increasingly clear that maternal nutrition can strongly influence the susceptibility of adult offspring to cardiometabolic disease. For decades, it has been thought that excessive intake of fructose, such as sugar-sweetened beverages and foods, has been linked to increased risk of obesity, type 2 diabetes, and cardiovascular disease in various populations. These deleterious effects of excess fructose consumption in adults are well researched, but limited data are available on the long-term effects of high fructose exposure during gestation, lactation, and infancy. This review aims to examine the evidence linking early life fructose exposure during critical periods of development and its implications for long-term cardiometabolic health in offspring.

  15. Formation of Fructose-Mediated Advanced Glycation End Products and Their Roles in Metabolic and Inflammatory Diseases12

    Science.gov (United States)

    2017-01-01

    Fructose is associated with the biochemical alterations that promote the development of metabolic syndrome (MetS), nonalcoholic fatty liver disease, and type 2 diabetes. Its consumption has increased in parallel with MetS. It is metabolized by the liver, where it stimulates de novo lipogenesis. The triglycerides synthesized lead to hepatic insulin resistance and dyslipidemia. Fructose-derived advanced glycation end products (AGEs) may be involved via the Maillard reaction. Fructose has not been a main focus of glycation research because of the difficulty in measuring its adducts, and, more importantly, because although it is 10 times more reactive than glucose, its plasma concentration is only 1% of that of glucose. In this focused review, I summarize exogenous and endogenous fructose metabolism, fructose glycation, and in vitro, animal, and human data. Fructose is elevated in several tissues of diabetic patients where the polyol pathway is active, reaching the same order of magnitude as glucose. It is plausible that the high reactivity of fructose, directly or via its metabolites, may contribute to the formation of intracellular AGEs and to vascular complications. The evidence, however, is still unconvincing. Two areas that have been overlooked so far and should be actively explored include the following: 1) enteral formation of fructose AGEs, generating an inflammatory response to the receptor for AGEs (which may explain the strong association between fructose consumption and asthma, chronic bronchitis, and arthritis); and 2) inactivation of hepatic AMP-activated protein kinase by a fructose-mediated increase in methylglyoxal flux (perpetuating lipogenesis, fatty liver, and insulin resistance). If proven correct, these mechanisms would put the fructose-mediated Maillard reaction in the limelight again as a contributing factor in chronic inflammatory diseases and MetS. PMID:28096127

  16. Phenylalanine tolerance can already reliably be assessed at the age of 2 years in patients with PKU

    NARCIS (Netherlands)

    Spronsen, F.J. van; Rijn, M.; Dorgelo, B.; Hoeksma, M.; Bosch, A.M.; Mulder, M.F.; Klerk, J.B.C. de; Koning, T. de; Rubio-Gozalbo, M.E.; Vries, M. de; Verkerk, P.H.

    2009-01-01

    Background: The clinical severity of phenylalanine hydroxylase deficiency is usually defined by either pre-treatment phenylalanine (Phe) concentration or Phe tolerance at 5 years of age. So far, little is known about the course of Phe tolerance or the ability of both pre-treatment Phe and Phe

  17. Phenylalanine ammonia lyase catalyzed synthesis of amino acids by an MIO-cofactor independent pathway.

    Science.gov (United States)

    Lovelock, Sarah L; Lloyd, Richard C; Turner, Nicholas J

    2014-04-25

    Phenylalanine ammonia lyases (PALs) belong to a family of 4-methylideneimidazole-5-one (MIO) cofactor dependent enzymes which are responsible for the conversion of L-phenylalanine into trans-cinnamic acid in eukaryotic and prokaryotic organisms. Under conditions of high ammonia concentration, this deamination reaction is reversible and hence there is considerable interest in the development of PALs as biocatalysts for the enantioselective synthesis of non-natural amino acids. Herein the discovery of a previously unobserved competing MIO-independent reaction pathway, which proceeds in a non-stereoselective manner and results in the generation of both L- and D-phenylalanine derivatives, is described. The mechanism of the MIO-independent pathway is explored through isotopic-labeling studies and mutagenesis of key active-site residues. The results obtained are consistent with amino acid deamination occurring by a stepwise E1 cB elimination mechanism. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. High-yield production of pure tagatose from fructose by a three-step enzymatic cascade reaction.

    Science.gov (United States)

    Lee, Seon-Hwa; Hong, Seung-Hye; Kim, Kyoung-Rok; Oh, Deok-Kun

    2017-08-01

    To produce tagatose from fructose with a high conversion rate and to establish a high-yield purification method of tagatose from the reaction mixture. Fructose at 1 M (180 g l -1 ) was converted to 0.8 M (144 g l -1 ) tagatose by a three-step enzymatic cascade reaction, involving hexokinase, plus ATP, fructose-1,6-biphosphate aldolase, phytase, over 16 h with a productivity of 9 g l -1 h -1 . No byproducts were detected. Tagatose was recrystallized from ethanol to a purity of 99.9% and a yield of 96.3%. Overall, tagatose at 99.9% purity was obtained from fructose with a yield of 77%. This is the first biotechnological production of tagatose from fructose and the first application of solvent recrystallization for the purification of rare sugars.

  19. Effects of sucrose, glucose and fructose on peripheral and central appetite signals.

    Science.gov (United States)

    Lindqvist, Andreas; Baelemans, Annemie; Erlanson-Albertsson, Charlotte

    2008-10-09

    In the Western world, consumption of soft drinks has increased the last three decades and is partly responsible for the epidemic-like increase in obesity. Soft drinks, originally sweetened by sucrose, are now sweetened by other caloric sweeteners, such as fructose. In this study, we investigated the short-term effect of sucrose, glucose or fructose solutions on food intake and body weight in rats, and on peripheral and central appetite signals. Rats received water containing either of the sugars and standard rat chow for two weeks. Rats receiving water alone and standard chow were controls. All rats offered the sugar solutions increased their total caloric intake. The increased caloric intake occurred despite the fact that the rats offered either of the sugar solutions consumed less chow. As a consequence of the increased caloric intake, the sugar-drinking rats had elevated serum levels of free fatty acids, triglycerides and cholesterol. In addition, consuming sugar solutions resulted in increased serum leptin, decreased serum PYY and down-regulated hypothalamic NPY mRNA. Serum ghrelin was increased in rats receiving fructose solution. Moreover, consumption of sucrose or fructose solution resulted in up-regulated hypothalamic CB1 mRNA. Hypothalamic POMC mRNA was down-regulated in rats receiving glucose or fructose. In conclusion, consumption of glucose, sucrose or fructose solution results in caloric overconsumption and body weight gain through activation of hunger signals and depression of satiety signals as well as activation of reward components. The weight-promoting effect of these sugar solutions may possibly be ameliorated by the down-regulation of NPY mRNA and increased serum leptin.

  20. Manifestations of Renal Impairment in Fructose-induced Metabolic Syndrome.

    Science.gov (United States)

    Bratoeva, Kameliya; Stoyanov, George S; Merdzhanova, Albena; Radanova, Mariya

    2017-11-07

    Introduction International studies show an increased incidence of chronic kidney disease (CKD) in patients with metabolic syndrome (MS). It is assumed that the major components of MS - obesity, insulin resistance, dyslipidemia, and hypertension - are linked to renal damage through the systemic release of several pro-inflammatory mediators, such as uric acid (UA), C-reactive protein (CRP), and generalized oxidative stress. The aim of the present study was to investigate the extent of kidney impairment and manifestations of dysfunction in rats with fructose-induced MS. Methods We used a model of high-fructose diet in male Wistar rats with 35% glucose-fructose corn syrup in drinking water over a duration of 16 weeks. The experimental animals were divided into two groups: control and high-fructose drinking (HFD). Serum samples were obtained from both groups for laboratory study, and the kidneys were extracted for observation via light microscopy examination. Results All HFD rats developed obesity, hyperglycemia, hypertriglyceridemia, increased levels of CRP and UA (when compared to the control group), and oxidative stress with high levels of malondialdehyde and low levels of reduced glutathione. The kidneys of the HFD group revealed a significant increase in kidney weight in the absence of evidence of renal dysfunction and electrolyte disturbances. Under light microscopy, the kidneys of the HFD group revealed amyloid deposits in Kimmelstiel-Wilson-like nodules and the walls of the large caliber blood vessels, early-stage atherosclerosis with visible ruptures and scarring, hydropic change (vacuolar degeneration) in the epithelial cells covering the proximal tubules, and increased eosinophilia in the distant tubules when compared to the control group. Conclusion Under the conditions of a fructose-induced metabolic syndrome, high serum UA and CRP correlate to the development of early renal disorders without a clinical manifestation of renal dysfunction. These

  1. Insulin Resistance Induced by a High Fructose Diet in Rats Due to Hepatic Disturbance

    International Nuclear Information System (INIS)

    Heibashy, M.I.A.; Mazen, G.M.A.; Kelada, N.A.H.

    2013-01-01

    High consumption of dietary fructose is accused of being responsible for the development of the insulin resistance (IR) syndrome. Concern has arisen because of the realization that fructose, at elevated concentrations, can promote metabolic changes that are potentially deleterious. Among these changes is IR which manifests as a decreased biological response to normal levels of plasma insulin. Therefore, this experiment was designed to evaluate the role of high fructose diet on metabolic syndrome in rats. The experimental animals were divided into two batches. The control batch received a control diet; the second batch was given a high-fructose diet as the sole source of carbohydrate. The rats were continued on the dietary regimen for 1, 2 and 3 months. After the experimental periods, fructose fed rats groups showed significant elevations in the levels of glucose, insulin sensitivity, liver function tests, nitric oxide and tumor necrosis factor-α when compared to their corresponding values in the rats fed normal diet. Moreover, liver lipid peroxidation [thiobarbituric acid-reactive substance (TBARS) and lipid hydroperoxide concentrations were remarkably increased in high-fructose-fed rats according to the time of administration (1, 2 and 3 months). On the other hand, the activities of enzymatic antioxidants (glutathione reductase and glutathione peroxidase) and glyoxalase I and II were significantly declined in this group. In conclusion, high fructose feeding raises liver dysfunction and causes the features of metabolic syndrome (insulin resistance) in rats dependent on the time of administration due to different mechanisms which were discussed in this work according to available recent researches

  2. Studies on the uptake of para-boronophenylalanine in melanoma cells

    International Nuclear Information System (INIS)

    Papageorges, M.; Elstad, C.A.; Meadows, G.G.; Gavin, P.R.; Sande, R.D.; Bauer, W.F.

    1992-01-01

    Cell-associated boron levels adequate for neutron capture therapy (NCT) have been demonstrated in-vitro using cultured melanoma cells and in-vivo using xenografts in mice. Preliminary in-vivo studies performed by researchers at the College of Veterinary Medicine, Washington State University (WSU), using a spontaneous canine melanoma model, showed subtherapeutic tumor concentrations of para-boronophenylananine (p-BPA) in a large proportion of dogs. Possible explanations include poor solubility of p-BPA at physiological pH, physiological differences between transplanted and spontaneous tumors, and lack of metabolic incorporation at the cellular level. Reports of in-vitro p-BPA uptake studies are few and contradictory, and the kinetics of boron uptake at the average p-BOA blood concentration achieved in dogs (100 mg/L) is unknown. In-vitro and in-vivo experiments were designed to study boron loading in melanoma cells and to test the hypothesis that short-term tyrosine and phenylalanine deprivation can increase the uptake of p-BPA

  3. Plasma phenylalanine and tyrosine responses to different nutritional conditions (fasting/postprandial) in patients with phenylketonuria: effect of sample timing.

    Science.gov (United States)

    van Spronsen, F J; van Rijn, M; van Dijk, T; Smit, G P; Reijngoud, D J; Berger, R; Heymans, H S

    1993-10-01

    To evaluate the adequacy of dietary treatment in patients with phenylketonuria, the monitoring of plasma phenylalanine and tyrosine concentrations is of great importance. The preferable time of blood sampling in relation to the nutritional condition during the day, however, is not known. It was the aim of this study to define guidelines for the timing of blood sampling with a minimal burden for the patient. Plasma concentrations of phenylalanine and tyrosine were measured in nine patients with phenylketonuria who had no clinical evidence of tyrosine deficiency. These values were measured during the day both after a prolonged overnight fast, and before and after breakfast. Phenylalanine showed a small rise during prolonged fasting, while tyrosine decreased slightly. After an individually tailored breakfast, phenylalanine remained stable, while tyrosine showed large fluctuations. It is concluded that the patient's nutritional condition (fasting/postprandial) is not important in the evaluation of the phenylalanine intake. To detect a possible tyrosine deficiency, however, a single blood sample is not sufficient and a combination of a preprandial and postprandial blood sample on the same day is advocated.

  4. Phenylalanine tolerance can already reliably be assessed at the age of 2 years in patients with PKU

    NARCIS (Netherlands)

    van Spronsen, F. J.; van Rijn, M.; Dorgelo, B.; Hoeksma, M.; Bosch, A. M.; Mulder, M. F.; de Klerk, J. B. C.; de Koning, T.; Rubio-Gozalbo, M. Estela; de Vries, M.; Verkerk, P. H.

    The clinical severity of phenylalanine hydroxylase deficiency is usually defined by either pre-treatment phenylalanine (Phe) concentration or Phe tolerance at 5 years of age. So far, little is known about the course of Phe tolerance or the ability of both pre-treatment Phe and Phe tolerance at early

  5. Phenylalanine tolerance can already reliably be assessed at the age of 2 years in patients with PKU

    NARCIS (Netherlands)

    van Spronsen, F. J.; van Rijn, M. [=Margreet; Dorgelo, B.; Hoeksma, M.; Bosch, A. M.; Mulder, M. F.; de Klerk, J. B. C.; de Koning, T.; Rubio-Gozalbo, M. Estela; de Vries, M.; Verkerk, P. H.

    2009-01-01

    The clinical severity of phenylalanine hydroxylase deficiency is usually defined by either pre-treatment phenylalanine (Phe) concentration or Phe tolerance at 5 years of age. So far, little is known about the course of Phe tolerance or the ability of both pre-treatment Phe and Phe tolerance at early

  6. Effect of metal Ions (Ni2+, Cu2+ and Zn2+) and water coordination on the structure of L-phenylalanine, L-tyrosine, L-tryptophan and their zwitterionic forms

    NARCIS (Netherlands)

    Remko, Milan; Fitz, Daniel; Broer, Ria; Rode, Bernd Michael

    2011-01-01

    Methods of quantum chemistry have been applied to double-charged complexes involving the transition metals Ni2+, Cu2+ and Zn2+ with the aromatic amino acids (AAA) phenylalanine, tyrosine and tryptophan. The effect of hydration on the relative stability and geometry of the individual species studied

  7. Molecular dynamics simulations of the dielectric properties of fructose aqueous solutions

    International Nuclear Information System (INIS)

    Sonoda, Milton T; Dolores Elola, M; Skaf, Munir S

    2016-01-01

    The static dielectric permittivity and dielectric relaxation properties of fructose aqueous solutions of different concentrations ranging from 1.0 to 4.0 mol l −1 are investigated by means of molecular dynamics simulations. The contributions from intra- and interspecies molecular correlations were computed individually for both the static and frequency-dependent dielectric properties, and the results were compared with the available experimental data. Simulation results in the time- and frequency-domains were analyzed and indicate that the presence of fructose has little effect on the position of the fast, high-frequency (>500 cm −1 ) components of the dielectric response spectrum. The low-frequency (<0.1 cm −1 ) components, however, are markedly influenced by sugar concentration. Our analysis indicates that fructose–fructose and fructose–water interactions strongly affect the rotational-diffusion regime of molecular motions in the solutions. Increasing fructose concentration not only enhances sugar–sugar and sugar-water low frequency contributions to the dielectric loss spectrum but also slows down the reorientational dynamics of water molecules. These results are consistent with previous computer simulations carried out for other disaccharide aqueous solutions. (paper)

  8. Short-Term Fructose Feeding Induces Inflammation and Oxidative Stress in the Hippocampus of Young and Adult Rats.

    Science.gov (United States)

    Cigliano, Luisa; Spagnuolo, Maria Stefania; Crescenzo, Raffaella; Cancelliere, Rosa; Iannotta, Lucia; Mazzoli, Arianna; Liverini, Giovanna; Iossa, Susanna

    2018-04-01

    The drastic increase in the consumption of fructose encouraged the research to focus on its effects on brain physio-pathology. Although young and adults differ largely by their metabolic and physiological profiles, most of the previous studies investigated brain disturbances induced by long-term fructose feeding in adults. Therefore, we investigated whether a short-term consumption of fructose (2 weeks) produces early increase in specific markers of inflammation and oxidative stress in the hippocampus of young and adult rats. After the high-fructose diet, plasma lipopolysaccharide and tumour necrosis factor (TNF)-alpha were found significantly increased in parallel with hippocampus inflammation, evidenced by a significant rise in TNF-alpha and glial fibrillar acidic protein concentrations in both the young and adult groups. The fructose-induced inflammatory condition was associated with brain oxidative stress, as increased levels of lipid peroxidation and nitro-tyrosine were detected in the hippocampus. The degree of activation of the protein kinase B, extracellular signal-regulated kinase 1/2, and insulin receptor substrate 1 pathways found in the hippocampus after fructose feeding indicates that the detrimental effects of the fructose-rich diet might largely depend on age. Mitochondrial function in the hippocampus, together with peroxisome proliferator-activated receptor gamma coactivator 1-alpha content, was found significantly decreased in fructose-treated adult rats. In vitro studies with BV-2 microglial cells confirmed that fructose treatment induces TNF-alpha production as well as oxidative stress. In conclusion, these results suggest that unbalanced diet, rich in fructose, may be highly deleterious in young people as in adults and must be strongly discouraged for the prevention of diet-associated neuroinflammation and neurological diseases.

  9. Wood blocks as a carrier for Saccharomyces cerevisiae cells used in the production of fructose and ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Guenette, Maryse

    1993-10-01

    The selective conversion of glucose to a product more easily separated from fructose would reduce the fructose separation problem and reduce costs of fructose purification. The production of a valuable byproduct would make the process even more profitable. Accordingly, Saccharomyces cerevisiae ATCC 39859 was immobilized onto small cubes of wood in order to produce highly enriched fructose syrup from synthetic glucose/fructose mixtures, through the selective fermentation of glucose. The kinetics of growth and byproduct ethanol production rates were measured. Tests were conducted to assess the influence of substrate and product concentration on production rates, and appropriate rate equations were proposed as a design basis for continuous immobilized reactors. The growth and ethanol production rates were found to be inhibited linearly by both substrate and product concentrations. A maximum ethanol productivity of 21.9 g/l/h was attained from a feed containing 10 wt % glucose and 10 wt % fructose. The ethanol concentration was 29.6 g/l, glucose conversion was 78%, and fructose yield was 99%, resulting in a fructose to glucose ratio of 2.7. At lower ethanol productivity levels, the fructose/glucose ratio increases, as does the ethanol concentration in the effluent. Addition of oleic acid, a known anaerobic growth factor, increased the productivity by 13%. Ethanol productivity peaked at 32.6[degree]C and approached 0 near 44[degree]C. Batch fermentation productivity was not high due to low biomass concentration leaving the reactor. Addition of yeast extract or active biomass increased productivity substantially. The immobilized cell bioreactor was also used to produce sorbitol continuously from fructose. 124 refs., 28 figs., 27 tabs.

  10. The effects of resveratrol on hepatic oxidative stress in metabolic syndrome model induced by high fructose diet.

    Science.gov (United States)

    Yilmaz Demirtas, C; Bircan, F S; Pasaoglu, O T; Turkozkan, N

    2018-01-01

    The purpose of this study was to evaluate probable protective effects of resveratrol treatment on hepatic oxidative events in a rat model of metabolic syndrome (MetS). Thirty-two male adult rats were randomly divided into 4 groups: control, fructose, resveratrol, and fructose plus resveratrol. To induce MetS, fructose solution (20 % in drinking water) was used. Resveratrol (10 mg/kg/day) was given by oral gavage. All treatments were given for 8 weeks. Serum lipid profile, glucose and insulin levels, liver total oxidant status (TOS) levels and paraoxonase (PON), glutathione peroxidase (GPx), superoxide dismutase (SOD) and catalase (CAT) activities were analyzed. Fructose-fed rats displayed statistically significant increases in TOS levels, and decreases in PON activity compared to the control group. Resveratrol treatment moderately prevented the decrease in liver PON activity caused by fructose. On the other hand, resveratrol, alone or in combination with fructose, did not change the TOS levels when compared to the fructose group. The SOD and CAT activities in all groups did not change. In this experimental design, high-fructose consumption led to elevated TOS levels and low PON activities. The resveratrol therapy shown beneficial effects on PON activity. However, it was found to behave like a prooxidant when administered together with fructose and alone in some parameters. Our results can inspire the development of new clinical therapy in patients with MetS (Tab. 2, Ref. 34).

  11. Fructose intake during gestation and lactation differentially affects the expression of hippocampal neurosteroidogenic enzymes in rat offspring.

    Science.gov (United States)

    Mizuno, Genki; Munetsuna, Eiji; Yamada, Hiroya; Ando, Yoshitaka; Yamazaki, Mirai; Murase, Yuri; Kondo, Kanako; Ishikawa, Hiroaki; Teradaira, Ryoji; Suzuki, Koji; Ohashi, Koji

    2017-02-01

    Neurosteroids, steroidal hormones synthesized de novo from cholesterol within the brain, stimulate hippocampal functions such as neuron protection and synapse formation. Previously, we examined the effect of maternal fructose on the transcriptional regulation of neurosteroidogenic enzymes. We found that the mRNA expression level of the steroidogenic acute regulatory protein (StAR), peripheral benzodiazepine receptor (PBR), cytochrome P450(11β), 11β-hydroxysteroid dehydrogenase (HSD), and 17β-HSD was altered. However, we could not determine whether maternal fructose intake played a role in the gestation or lactation period because the dam rats were fed fructose solution during both periods. Thus, in this study, we analyzed the hippocampi of the offspring of dams fed fructose during the gestation or lactation period. Maternal fructose consumption during either the gestation or lactation period did not affect the mRNA levels of StAR, P450(17α), 11β-HSD-2, and 17β-HSD-1. PBR expression was down-regulated, even when rats consumed fructose during the lactation period only, while fructose consumption during gestation tended to activate the expression of P450(11β)-2. We found that maternal fructose intake during gestation and lactation differentially affected the expression of hippocampal neurosteroidogenic enzymes in the offspring.

  12. Replacing dietary glucose with fructose increases ChREBP activity and SREBP-1 protein in rat liver nucleus

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Hyun-Young [Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 905 S. Goodwin Avenue, Urbana, IL 61801 (United States); Miyashita, Michio [Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 905 S. Goodwin Avenue, Urbana, IL 61801 (United States); Department of Pediatrics, Nihon University School of Medicine, Itabashi, Tokyo (Japan); Simon Cho, B.H. [Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 905 S. Goodwin Avenue, Urbana, IL 61801 (United States); Harlan E. Moore Heart Research Foundation, 503 South Sixth Street, Champaign, IL 61820 (United States); Nakamura, Manabu T., E-mail: mtnakamu@illinois.edu [Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 905 S. Goodwin Avenue, Urbana, IL 61801 (United States)

    2009-12-11

    Diets high in fructose cause hypertriglyceridemia and insulin resistance in part due to simultaneous induction of gluconeogenic and lipogenic genes in liver. We investigated the mechanism underlying the unique pattern of gene induction by dietary fructose. Male Sprague-Dawley rats (n = 6 per group) were meal-fed (4 h/d) either 63% (w/w) glucose or 63% fructose diet. After two weeks, animals were killed at the end of the last meal. Nuclear SREBP-1 was 2.2 times higher in fructose-fed rats than glucose-fed rats. Nuclear FoxO1 was elevated 1.7 times in fructose group, but did not reach significance (P = 0.08). Unexpectedly, no difference was observed in nuclear ChREBP between two groups. However, ChREBP DNA binding was 3.9x higher in fructose-fed animals without an increase in xylulose-5-phospate, a proposed ChREBP activator. In conclusion, the gene induction by dietary fructose is likely to be mediated in part by simultaneously increased ChREBP activity, SREBP-1 and possibly FoxO1 protein in nucleus.

  13. Replacing dietary glucose with fructose increases ChREBP activity and SREBP-1 protein in rat liver nucleus

    International Nuclear Information System (INIS)

    Koo, Hyun-Young; Miyashita, Michio; Simon Cho, B.H.; Nakamura, Manabu T.

    2009-01-01

    Diets high in fructose cause hypertriglyceridemia and insulin resistance in part due to simultaneous induction of gluconeogenic and lipogenic genes in liver. We investigated the mechanism underlying the unique pattern of gene induction by dietary fructose. Male Sprague-Dawley rats (n = 6 per group) were meal-fed (4 h/d) either 63% (w/w) glucose or 63% fructose diet. After two weeks, animals were killed at the end of the last meal. Nuclear SREBP-1 was 2.2 times higher in fructose-fed rats than glucose-fed rats. Nuclear FoxO1 was elevated 1.7 times in fructose group, but did not reach significance (P = 0.08). Unexpectedly, no difference was observed in nuclear ChREBP between two groups. However, ChREBP DNA binding was 3.9x higher in fructose-fed animals without an increase in xylulose-5-phospate, a proposed ChREBP activator. In conclusion, the gene induction by dietary fructose is likely to be mediated in part by simultaneously increased ChREBP activity, SREBP-1 and possibly FoxO1 protein in nucleus.

  14. BPA and BSH accumulation in experimental tumors

    International Nuclear Information System (INIS)

    Patel, H.; Sedgwick, E.M.

    2000-01-01

    The accumulation of boronated compounds into tumors is a critical component to the success of BNCT. To date, great variability has been demonstrated in the tumor:blood ratio achieved in samples both from different patients and within samples taken from the same patient. The factors that probably influence the level of uptake include the vascular perfusion within the tumor, the permeability of these vessels and the viability of the tumor cells themselves. These experiments were designed to measure these various factors in different experimental tumor models and to relate these measurements to the uptake of both BPA (Boronophenylalanine) and BSH (Sodiumborocaptate). They demonstrate that within different tumors there can be wide variations in the vascular parameters. In addition, the viability of the tumor cells may also be an important determinant of tumor uptake. (author)

  15. Fifteen-year follow-up of pulmonary function in individuals heterozygous for the cystic fibrosis phenylalanine-508 deletion

    DEFF Research Database (Denmark)

    Dahl, Morten; Nordestgaard, B G; Lange, P

    2001-01-01

    In a cross-sectional study, we previously showed that cystic fibrosis phenylalanine-508 deletion (DeltaF508) heterozygosity may be overrepresented among individuals with asthma.......In a cross-sectional study, we previously showed that cystic fibrosis phenylalanine-508 deletion (DeltaF508) heterozygosity may be overrepresented among individuals with asthma....

  16. Metabolic effects of dietary fructose and surcose in types I and II diabetic subjects

    International Nuclear Information System (INIS)

    Bantle, J.P.; Laine, D.C.; Thomas, J.W.

    1986-01-01

    To learn more about the metabolic effects of dietary fructose and sucrose, 12 type 1 and 12 type II diabetic subjects were fed three isocaloric (or isoenergic) diets for eight days each according to a randomized, crossover design. The three diets provided, respectively, 21% of the energy as fructose, 23% of the energy as sucrose, and almost all carbohydrate energy as starch. The fructose diet resulted in significantly lower one- and two-hour postprandial plasma glucose levels, overall mean plasma glucose levels, and urinary glucose excretion in both type I and type II subjects than did the starch diet. There were no significant differences between the sucrose and starch diets in any of the measures of glycemic control in either subject group. The fructose and sucrose diets did not significantly increase serum triglyceride values when compared with the starch diet, but both increased postprandial serum lactate levels. The authors conclude that short-term replacement of other carbohydrate sources in the diabetic diet with fructose will improve glycemic control, whereas replacement with sucrose will not aggravate glycemic control

  17. Shape Memory Properties and Enzymatic Degradability of Poly(ε-caprolactone)-Based Polyurethane Urea Containing Phenylalanine-Derived Chain Extender.

    Science.gov (United States)

    Wang, Rong; Zhang, Fanjun; Lin, Weiwei; Liu, Wenkai; Li, Jiehua; Luo, Feng; Wang, Yaning; Tan, Hong

    2018-04-24

    Biodegradable shape memory polymers are promising biomaterials for minimally invasive surgical procedures. Herein, a series of linear biodegradable shape memory poly(ε-caprolactone) (PCL)-based polyurethane ureas (PUUs) containing a novel phenylalanine-derived chain extender is synthesized. The phenylalanine-derived chain extender, phenylalanine-hexamethylenediamine-phenylalanine (PHP), contains two chymotrypsin cleaving sites to enhance the enzymatic degradation of PUUs. The degradation rate, the crystallinity, and mechanical properties of PUUs are tailored by the content of PHP. Meanwhile, semicrystalline PCL is not only hydrolytically degradable but also vital for shape memory. Good shape memory ability under body temperature is achieved for PUUs due to the strong interactions in hard segments for permanent crosslinking and the crystallization-melt transition of PCL to switch temporary shape. The PUUs would have a great potential in application as implanting stent. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Differential Responses of Plasma Adropin Concentrations To Dietary Glucose or Fructose Consumption In Humans.

    Science.gov (United States)

    Butler, Andrew A; St-Onge, Marie-Pierre; Siebert, Emily A; Medici, Valentina; Stanhope, Kimber L; Havel, Peter J

    2015-10-05

    Adropin is a peptide hormone encoded by the Energy Homeostasis Associated (ENHO) gene whose physiological role in humans remains incompletely defined. Here we investigated the impact of dietary interventions that affect systemic glucose and lipid metabolism on plasma adropin concentrations in humans. Consumption of glucose or fructose as 25% of daily energy requirements (E) differentially affected plasma adropin concentrations (P Glucose consumption reduced plasma adropin from 3.55 ± 0.26 to 3.28 ± 0.23 ng/ml (N = 42). Fructose consumption increased plasma adropin from 3.63 ± 0.29 to 3.93 ± 0.34 ng/ml (N = 45). Consumption of high fructose corn syrup (HFCS) as 25% E had no effect (3.43 ± 0.32 versus 3.39 ± 0.24 ng/ml, N = 26). Overall, the effect of glucose, HFCS and fructose on circulating adropin concentrations were similar to those observed on postprandial plasma triglyceride concentrations. Furthermore, increases in plasma adropin levels with fructose intake were most robust in individuals exhibiting hypertriglyceridemia. Individuals with low plasma adropin concentrations also exhibited rapid increases in plasma levels following consumption of breakfasts supplemented with lipids. These are the first results linking plasma adropin levels with dietary sugar intake in humans, with the impact of fructose consumption linked to systemic triglyceride metabolism. In addition, dietary fat intake may also increase circulating adropin concentrations.

  19. Apparent heat capacity measurements and thermodynamic functions of D(−)-fructose by standard and temperature-modulated calorimetry

    International Nuclear Information System (INIS)

    Magoń, A.; Pyda, M.

    2013-01-01

    Highlights: ► Experimental, apparent heat capacity of fructose was investigated by advanced thermal analysis. ► Equilibrium melting parameters of fructose were determined. ► Decomposition, superheating of crystalline fructose during melting process were presented. ► TGA, DSC, and TMDSC are useful tools for characterisation of fructose. - Abstract: The qualitative and quantitative thermal analyses of crystalline and amorphous D(−)-fructose were studied utilising methods of standard differential scanning calorimetry (DSC), quasi-isothermal temperature-modulated differential scanning calorimetry (quasi-isothermal TMDSC), and thermogravimetric analysis (TGA). Advanced thermal analysis of fructose was performed based on heat capacity. The apparent total and apparent reversing heat capacities, as well as phase transition parameters were examined on heating and cooling. The melting temperature, T m , of crystalline D(−)-fructose shows a heating rate dependency, which increases with raising the heating rate and leads to superheating. The equilibrium melting temperatures: T m ∘ (onset) = 370 K and T m ∘ (peak) = 372 K, and the equilibrium enthalpy of fusion Δ fus H ° = 30.30 kJ · mol −1 , of crystalline D(−)-fructose were estimated on heating for the results at zero heating rate. Anomalies in the heat capacity in the liquid state of D(−)-fructose, assigned as possible tautomerisation equilibrium, were analysed by DSC and quasi-isothermal TMDSC, both on heating and cooling. Thermal stability of crystals in the region of the melting temperature was examined by TGA and quasi-isothermal TMDSC. Melting, mutarotation, and degradation processes occur simultaneously and there are differences in values of the liquid heat capacity of D(−)-fructose with varied thermal history, measured by quasi-isothermal TMDSC. Annealing of amorphous D(−)-fructose between the glass transition temperature, T g , and the melting temperature, T m , also leads to

  20. Exercise counteracts fatty liver disease in rats fed on fructose-rich diet

    Directory of Open Access Journals (Sweden)

    Voltarelli Fabrício A

    2010-10-01

    Full Text Available Abstract Background This study aimed to analyze the effects of exercise at the aerobic/anaerobic transition on the markers of non-alcoholic fatty liver disease (NAFLD, insulin sensitivity and the blood chemistry of rats kept on a fructose-rich diet. Methods We separated 48 Wistar rats into two groups according to diet: a control group (balanced diet AIN-93 G and a fructose-rich diet group (60% fructose. The animals were tested for maximal lactate-steady state (MLSS in order to identify the aerobic/anaerobic metabolic transition during swimming exercises at 28 and 90 days of age. One third of the animals of each group were submitted to swimming training at an intensity equivalent to the individual MLSS for 1 hours/day, 5 days/week from 28 to 120 days (early protocol. Another third were submitted to the training from 90 to 120 days (late protocol, and the others remained sedentary. The main assays performed included an insulin tolerance test (ITT and tests of serum alanine aminotransferase [ALT] and aspartate aminotransferase [AST] activities, serum triglyceride concentrations [TG] and liver total lipid concentrations. Results The fructose-fed rats showed decreased insulin sensitivity, and the late-exercise training protocol counteracted this alteration. There was no difference between the groups in levels of serum ALT, whereas AST and liver lipids increased in the fructose-fed sedentary group when compared with the other groups. Serum triglycerides concentrations were higher in the fructose-fed trained groups when compared with the corresponding control group. Conclusions The late-training protocol was effective in restoring insulin sensitivity to acceptable standards. Considering the markers here evaluated, both training protocols were successful in preventing the emergence of non-alcoholic fatty liver status disease.

  1. No differential effect of beverages sweetened with fructose, high-fructose corn syrup, or glucose on systemic or adipose tissue inflammation in normal-weight to obese adults: a randomized controlled trial.

    Science.gov (United States)

    Kuzma, Jessica N; Cromer, Gail; Hagman, Derek K; Breymeyer, Kara L; Roth, Christian L; Foster-Schubert, Karen E; Holte, Sarah E; Weigle, David S; Kratz, Mario

    2016-08-01

    Sugar-sweetened beverage (SSB) consumption and low-grade chronic inflammation are both independently associated with type 2 diabetes and cardiovascular disease. Fructose, a major component of SSBs, may acutely trigger inflammation, which may be one link between SSB consumption and cardiometabolic disease. We sought to determine whether beverages sweetened with fructose, high-fructose corn syrup (HFCS), and glucose differentially influence systemic inflammation [fasting plasma C-reactive protein and interleukin-6 (IL-6) as primary endpoints] acutely and before major changes in body weight. Secondary endpoints included adipose tissue inflammation, intestinal permeability, and plasma fetuin-A as potential mechanistic links between fructose intake and low-grade inflammation. We conducted a randomized, controlled, double-blind, crossover design dietary intervention (the Diet and Systemic Inflammation Study) in 24 normal-weight to obese adults without fructose malabsorption. Participants drank 4 servings/d of fructose-, glucose-, or HFCS-sweetened beverages accounting for 25% of estimated calorie requirements while consuming a standardized diet ad libitum for three 8-d periods. Subjects consumed 116% of their estimated calorie requirement while drinking the beverages with no difference in total energy intake or body weight between groups as reported previously. Fasting plasma concentrations of C-reactive protein and IL-6 did not differ significantly at the end of the 3 diet periods. We did not detect a consistent differential effect of the diets on measures of adipose tissue inflammation except for adiponectin gene expression in adipose tissue (P = 0.005), which was lowest after the glucose phase. We also did not detect consistent evidence of a differential impact of these sugars on measures of intestinal permeability (lactulose:mannitol test, plasma zonulin, and plasma lipopolysaccharide-binding protein). Excessive amounts of fructose, HFCS, and glucose from SSBs

  2. Effect of fructose and sucralose on flow-mediated vasodilatation in healthy, white European males

    International Nuclear Information System (INIS)

    Memon, M. Q.; Simpson, E. J.; Macdonald, I. A.

    2014-01-01

    Objective: To assess how acute consumption of fructose affects flow-mediated dilatation in brachial artery. Methods: The randomised cross-over study was conducted at the University of Nottingham's Medical School, Nottingham, United Kingdom in July 2009. Ten healthy, white European males visited the laboratory twice, on separate mornings. On each visit, the volunteers consumed water (3ml/kg body weight) and rested semi-supine on the bed. After 30 minutes, baseline diastolic brachial artery diameter and blood velocity was measured. At 60 minutes, blood velocity and five scans of brachial artery diameter were recorded before a blood pressure cuff was inflated on the forearm for 5 minutes and at 50-60-70-80 and 90 sec after cuff deflation. Fifteen minutes later, the volunteers consumed 500ml of test-drink containing either fructose (0.75 g/kg body weight) or sucralose (sweetness-matched with fructose drink); 45 minutes later, baseline and flow-mediated dilatation was re-measured. Results: Pre-drink and post-drink baseline values were similar on two occasions (p> 0.05). Brachial artery diameter increased (p < 0.05) by 7+-3% pre-fructose and by 6. 3% above baseline values post-fructose with no significant difference in these responses (p < 0.15). It increased (p < 0.05) by 5.9+-3% above baseline before and by 6.7+-2% (p < 0.01) after sucralose; a significant difference was noted in these flow-mediated dilatation responses (p < 0.02). Responses before and after sucralose were not different from those before and after fructose (p < 0.294). Conclusion: Acute ingestion of fructose or sucralose had no effect on flow-mediated dilatation measured at brachial artery. (author)

  3. Metabolic and behavioural effects of sucrose and fructose/glucose drinks in the rat.

    Science.gov (United States)

    Sheludiakova, Anastasia; Rooney, Kieron; Boakes, Robert A

    2012-06-01

    Overconsumption of sugar-sweetened beverages, in particular carbonated soft drinks, promotes the development of overweight and obesity and is associated with metabolic disturbances, including intrahepatic fat accumulation and metabolic syndrome. One theory proposes that drinks sweetened with high-fructose corn syrup are particularly detrimental to health, as they contain fructose in its 'free' monosaccharide form. This experiment tested whether consuming 'free' fructose had a greater impact on body weight and metabolic abnormalities than when consumed 'bound' within the disaccharide sucrose. Male Hooded Wistar rats were given free access for 56 days to 10% sucrose (Group Suc), 10%, 50/50 fructose/glucose (Group FrucGluc) or water control drinks (Group Control), plus chow. Caloric intake and body weights were measured throughout the protocol, and the following metabolic indices were determined between days 54 and 56: serum triglycerides, liver triglycerides, retroperitoneal fat and oral glucose tolerance. Animals with access to sugar beverages consumed 20% more calories, but did not show greater weight gain than controls. Nevertheless, they developed larger abdominal fat pads, higher triglyceride levels and exhibited impaired insulin/glucose homeostasis. Comparison of the two sugars revealed increased fasting glycaemia in the FrucGluc group, but not in Suc group, whereas the Suc group was more active in an open field. A metabolic profile indicating increased risk of diabetes mellitus and cardiovascular disease was observed in animals given access to sugar-sweetened beverages. Notably, 'free' fructose disrupted glucose homeostasis more than did 'bound' fructose, thus posing a greater risk of progression to type 2 diabetes.

  4. SMB chromatography applied to the separation/purification of fructose from cashew apple juice

    Directory of Open Access Journals (Sweden)

    D.C.S. Azevedo

    2000-12-01

    Full Text Available The simulated moving-bed (SMB technology has been successfully used in separations in petrochemical, food and fine chemical industries. This work is intended to show a potencial economic alternative for the industrial processing of the cashew apple juice. The cashew tree is a native tropical plant abundant in Northeastern Brazil, whose commercial value relies mainly on the processing of its nut. The penduncle of the fruit is called the cashew apple. Despite its high nutrition value, around 90% of the crop spoils on the soil. Simulation and experimental results are presented for SMB separation of fructose from glucose, both present (~40 kg/m³ in the aqueous phase of comercial cashew apple juice. Kinetic and equilibrium data for fructose and glucose on packed columns using cation-exchange resins are reported. Experimental results for SMB operation indicate close to 90% purity in each product (fructose-rich extract and glucose-rich raffinate. Simulated unit performance and internal profiles agree well with experimental values. To increase the added-value and versatility of the products, either a step of isomerization of the raffinate or diverse SMB fluid-solid flowrate ratios may be applied. By this way, a wide range of products may be obtained, from nearly pure fructose to 42%, 55% and 90% solutions, which are the standard high fructose syrup concentrations. If solids content is conveniently raised to the usual HFCS (high fructose corn syrup comercial standards, these products may be used as food additives, thus confirming a potentially attractive use of cashew apple juice.

  5. The interaction of low-energy electrons with fructose molecules

    Science.gov (United States)

    Chernyshova, I. V.; Kontrosh, E. E.; Markush, P. P.; Shpenik, O. B.

    2017-11-01

    Using a hypocycloidal electronic spectrometer, the interactions of low energy electrons (0-8.50 eV) with fructose molecules, namely, electron scattering and dissociative attachment, are studied. The results of these studies showed that the fragmentation of fructose molecules occurs effectively even at an electron energy close to zero. In the total electron-scattering cross section by molecules, resonance features (at energies 3.10 and 5.00 eV) were first observed near the formation thresholds of light ion fragments OH- and H-. The correlation of the features observed in the cross sections of electron scattering and dissociative attachment is analyzed.

  6. Antihypertension and anti-cardiovascular remodeling by phenylalanine in spontaneously hypertensive rats: effectiveness and mechanisms.

    Science.gov (United States)

    Zhao, G; Li, Z; Gu, T

    2001-03-01

    To investigate mechanisms of anti-hypertension and anti-cardiovascular remodeling by phenylalanine (phe) in spontaneously hypertensive rats (SHRs). The comparison of blood pressure (BP) increment with the ages and cardiovascular changes of SHRs was made between the 3% phe-intervented group (SHR-phe) and the control SHRs group. Detection of the structural changes with the VIDAS digital vedio-frequency processing technique and light and electron microscopy were made. The cell growth and proliferation of cultured smooth muscle cells (CSMCs) of the thoracic aortas or myocardial fibroblasts were evaluated by measuring the 3H-thymidine counts per minute (cpm) incorporated into the new synthesized desoxyribonucleic acid (DNA) and determining the cell number with the crystal violet stain technique. The Ca2+ influx was measured in counts/min of 45CaCl2 after incubating it with 5 different concentrations of phenylalanine and the intracellular [Ca2+]i by Fura-II/Am indicator. The total messenger ribonucleic acid (mRNA) of the myocardium was extracted and Northern blot analysis was performed with the probe collagen alpha 2 (I) cDNA. The tyrosine hydroxylase (TH) activity was measured by high-performance liquid chromatography (HPLC) with electrochemical detector after having reacted with its substrate tyrosine and other reagents. The catecholamine contents in brain homogenat were detected by HPLC method. The comparison of pharmacokinetics of phenylalanine among SHR-phe, SHRs and control Wistar Kyoto (WKY) rats was made after intravenous injection of 3H-L-phe (1 ml/kg) by PK-GRAPH Program for kinetic calculation. The 3H-L-phe uptake by CSMCs after incubating for definite intervals was also detected and compared. Phenylalanine could prevent the increase of BP with ages and the heart weight (heart/body weight index). The aortic media thickness and the collagen content in the myocardium were decreased significantly in SHR-phe. Whereas the dearranged cardiovascular structure was

  7. Advanced glycation endproducts form during ovalbumin digestion in the presence of fructose: Inhibition by chlorogenic acid.

    Science.gov (United States)

    Bains, Yasmin; Gugliucci, Alejandro; Caccavello, Russell

    2017-07-01

    One mechanism by which fructose could exert deleterious effects is through intestinal formation and absorption of pro-inflammatory advanced glycation endproducts via the Maillard reaction. We employed simulated stomach and duodenum digestion of ovalbumin (OVA) to test the hypothesis that advanced glycation endproducts (AGEs) are formed by fructose during simulated digestion of a ubiquitous food protein under model physiological conditions. OVA was subjected to simulated gastric and intestinal digestion using standard models, in presence of fructose or glucose (0-100mM). Peptide fractions were analyzed by fluorescence spectroscopy and intensity at Excitation: λ370nm, Emission: λ 440nm. AGE adducts formed between fructose and OVA, evidenced by the peptide fractions (fructose-AGE formation on a ubiquitous dietary protein under model physiological conditions. Our study also suggests ways to decrease the damage: enteral fructose-AGE formation may be partially inhibited by co-intake of beverages, fruits and vegetables with concentrations of phenolics high enough to serve as anti-glycation agents. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Man made disease: clinical manifestations of low phenylalanine levels in an inadequately treated phenylketonuria patient and mouse study.

    Science.gov (United States)

    Pode-Shakked, Ben; Shemer-Meiri, Lilach; Harmelin, Alon; Stettner, Noa; Brenner, Ori; Abraham, Smadar; Schwartz, Gerard; Anikster, Yair

    2013-01-01

    Phenylalanine (Phe) deficiency and its clinical manifestations have been previously described mostly as sporadic case reports dating back to the 1960's and 1970's. In these reports, low plasma Phe levels were associated with listlessness, eczematous eruptions and failure to gain weight, most often in infants in their first year of life. Herein we describe a 9 month old female patient with known phenylketonuria, who presented with an unusual constellation of symptoms, including severe erythema and desquamation, alopecia, keratomalacia, corneal perforation, failure to thrive and prolonged diarrhea. The diagnostic possibilities of acrodermatitis enteropathica and vitamin deficiencies were ruled out, and further investigation into her medical history led to the conclusion that during the weeks preceding the hospitalization, the patient's diet consisted of the phenylalanine-free medical formula alone, without the addition of a standard infant formula or food as recommended. Subsequently, dietary control of the blood phenylalanine levels brought swift and marked resolution of the dermatological lesions, with renewal of hair growth. Following this experience, and due to the relative paucity of data regarding the clinical manifestations of low serum phenylalanine levels in humans and their putative pathogenetic mechanisms, we sought to further investigate the effects of a phenylalanine-free diet in a mouse study. For this purpose, twenty mice were randomly allocated to receive either a phenylalanine-deficient diet (n=10) or a normal diet (n=10). Weight was measured weekly, and laboratory tests were obtained including complete blood count, electrolyte studies, and phenylalanine and tyrosine levels. Finally, necropsies and histopathological examinations of different tissues were performed in selected mice, either early after diet initiation, late after diet initiation or following re-introduction of normal diets. The study was then repeated in additional two groups of mice

  9. Fructose content and composition of commercial HFCS-sweetened carbonated beverages.

    Science.gov (United States)

    White, J S; Hobbs, L J; Fernandez, S

    2015-01-01

    The obesigenic and related health effects of caloric sweeteners are subjects of much current research. Consumers can properly adjust their diets to conform to nutritional recommendations only if the sugars composition of foods and beverages is accurately measured and reported, a matter of recent concern. We tested the hypothesis that high-fructose corn syrup (HFCS) used in commercial carbonated beverages conforms to commonly assumed fructose percentages and industry technical specifications, and fulfills beverage product label regulations and Food Chemicals Codex-stipulated standards. A high-pressure liquid chromatography method was developed and verified for analysis of sugars in carbonated beverages sweetened with HFCS-55. The method was used to measure percent fructose in three carbonated beverage categories. Method verification was demonstrated by acceptable linearity (R(2)>0.99), accuracy (94-104% recovery) and precision (RSD canned and bottled products and met the US Federal requirements for nutritional labeling and nutrient claims. Prior concerns about composition were likely owing to use of improper and unverified methodology.

  10. The Fas/Fas ligand death receptor pathway contributes to phenylalanine-induced apoptosis in cortical neurons.

    Directory of Open Access Journals (Sweden)

    Xiaodong Huang

    Full Text Available Phenylketonuria (PKU, an autosomal recessive disorder of amino acid metabolism caused by mutations in the phenylalanine hydroxylase (PAH gene, leads to childhood mental retardation by exposing neurons to cytotoxic levels of phenylalanine (Phe. A recent study showed that the mitochondria-mediated (intrinsic apoptotic pathway is involved in Phe-induced apoptosis in cultured cortical neurons, but it is not known if the death receptor (extrinsic apoptotic pathway and endoplasmic reticulum (ER stress-associated apoptosis also contribute to neurodegeneration in PKU. To answer this question, we used specific inhibitors to block each apoptotic pathway in cortical neurons under neurotoxic levels of Phe. The caspase-8 inhibitor Z-IETD-FMK strongly attenuated apoptosis in Phe-treated neurons (0.9 mM, 18 h, suggesting involvement of the Fas receptor (FasR-mediated cell death receptor pathway in Phe toxicity. In addition, Phe significantly increased cell surface Fas expression and formation of the Fas/FasL complex. Blocking Fas/FasL signaling using an anti-Fas antibody markedly inhibited apoptosis caused by Phe. In contrast, blocking the ER stress-induced cell death pathway with salubrinal had no effect on apoptosis in Phe-treated cortical neurons. These experiments demonstrate that the Fas death receptor pathway contributes to Phe-induced apoptosis and suggest that inhibition of the death receptor pathway may be a novel target for neuroprotection in PKU patients.

  11. Possible consequences of the sucrose replacement by a fructose-glucose syrup

    OpenAIRE

    Judit Süli; Ingrid Hamarová; Anna Sobeková

    2017-01-01

    The fructose-glucose syrup is currently used instead of sucrose in bakery products for economic and technological reasons. The authors investigated the extent to which this change affects the formation of non-enzymatic browning products (Advanced Glycation End - AGE-Products and melanoidins). Formation of these products in model systems - mixtures of various sugars (sucrose, fructose, glucose - concentration 6%) with glycine (concentration 0.7%) or/and lysine (concentration 0.3%), heat-treate...

  12. The metabolism of sorbitol and fructose in isolated chloroplasts of Santa Rosa plum leaves

    International Nuclear Information System (INIS)

    De Villiers, O.T.

    1979-01-01

    Aqueously as well as non-aqueously isolated chloroplasts from Santa Rosa plum leaves readily metabolised sorbitol- 14 C to fructose, glucose and sucrose. Likewise, fructose- 14 C was converted to sorbitol, glucose and sucrose [af

  13. Fructose induced neurogenic hypertension mediated by overactivation of p38 MAPK to impair insulin signaling transduction caused central insulin resistance.

    Science.gov (United States)

    Cheng, Pei-Wen; Lin, Yu-Te; Ho, Wen-Yu; Lu, Pei-Jung; Chen, Hsin-Hung; Lai, Chi-Cheng; Sun, Gwo-Ching; Yeh, Tung-Chen; Hsiao, Michael; Tseng, Ching-Jiunn; Liu, Chun-Peng

    2017-11-01

    Type 2 diabetes are at a high risk of complications related to hypertension, and reports have indicated that insulin levels may be associated with blood pressure (BP). Fructose intake has recently been reported to promote insulin resistance and superoxide formation. The aim of this study is to investigate whether fructose intake can enhance superoxide generation and impair insulin signaling in the NTS and subsequently elevate BP in rats with fructose-induced hypertension. Treatment with fructose for 4 weeks increased the BP, serum fasting insulin, glucose, homeostatic model assessment-insulin resistance, and triglyceride levels and reduced the serum direct high-density lipoprotein level in the fructose group. The Tempol treatment recovered the fructose-induced decrease in nitric oxide production in the NTS. Immunoblotting and immunofluorescence analyses further showed that fructose increased the p38- and fructose-induced phosphorylation of insulin receptor substrate 1 (IRS1 S307 ) and suppressed Akt S473 and neuronal nitric oxide synthase phosphorylation. Similarly, fructose was able to impair insulin sensitivity and increase insulin levels in the NTS. Fructose intake also increased the production of superoxide in the NTS. The results of this study suggest that fructose might induce central insulin resistance and elevate BP by enhancing superoxide production and activating p38 phosphorylation in the NTS. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Efficient Isomerization of Glucose to Fructose over Zeolites in Consecutive Reactions in Alcohol and Aqueous Media

    DEFF Research Database (Denmark)

    Shunmugavel, Saravanamurugan; Paniagua, Marta; Melero, Juan A

    2013-01-01

    glucose isomerization to fructose and subsequent reaction with methanol to form methyl fructoside (step 1), followed by hydrolysis to re-form fructose after water addition (step 2). NMR analysis with (13)C-labeled sugars confirmed this reaction pathway. Conversion of glucose for 1 h at 120 °C with H......-USY (Si/Al = 6) gave a remarkable 55% yield of fructose after the second reaction step. A main advantage of applying alcohol media and a catalyst that combines Brønsted and Lewis acid sites is that glucose is isomerized to fructose at low temperatures, while direct conversion to industrially important...

  15. Fructose consumption in the Netherlands: the Dutch national food consumption survey 2007-2010

    NARCIS (Netherlands)

    Sluik, D.; Engelen, A.I.P.; Feskens, E.J.M.

    2015-01-01

    Background/objectives: Despite the worldwide scientific and media attention, the actual fructose consumption in many non-US populations is not clear. The aim of this study was to estimate the fructose consumption and its main food sources in a representative sample of the general Dutch population.

  16. Effects of Natural Products on Fructose-Induced Nonalcoholic Fatty Liver Disease (NAFLD

    Directory of Open Access Journals (Sweden)

    Qian Chen

    2017-01-01

    Full Text Available As a sugar additive, fructose is widely used in processed foods and beverages. Excessive fructose consumption can cause hepatic steatosis and dyslipidemia, leading to the development of metabolic syndrome. Recent research revealed that fructose-induced nonalcoholic fatty liver disease (NAFLD is related to several pathological processes, including: (1 augmenting lipogenesis; (2 leading to mitochondrial dysfunction; (3 stimulating the activation of inflammatory pathways; and (4 causing insulin resistance. Cellular signaling research indicated that partial factors play significant roles in fructose-induced NAFLD, involving liver X receptor (LXRα, sterol regulatory element binding protein (SREBP-1/1c, acetyl-CoA carboxylase (ACC, fatty acid synthase (FAS, stearoyl-CoA desaturase (SCD, peroxisome proliferator–activated receptor α (PPARα, leptin nuclear factor-erythroid 2-related factor 2 (Nrf2, nuclear factor kappa B (NF-κB, tumor necrosis factor α (TNF-α, c-Jun amino terminal kinase (JNK, phosphatidylinositol 3-kinase (PI3K and adenosine 5′-monophosphate (AMP-activated protein kinase (AMPK. Until now, a series of natural products have been reported as regulators of NAFLD in vivo and in vitro. This paper reviews the natural products (e.g., curcumin, resveratrol, and (−-epicatechin and their mechanisms of ameliorating fructose-induced NAFLD over the past years. Although, as lead compounds, natural products usually have fewer activities compared with synthesized compounds, it will shed light on studies aiming to discover new drugs for NAFLD.

  17. Exercise training modulates the hepatic renin-angiotensin system in fructose-fed rats.

    Science.gov (United States)

    Frantz, Eliete Dalla Corte; Medeiros, Renata Frauches; Giori, Isabele Gomes; Lima, Juliana Bittencourt Silveira; Bento-Bernardes, Thais; Gaique, Thaiane Gadioli; Fernandes-Santos, Caroline; Fernandes, Tiago; Oliveira, Edilamar Menezes; Vieira, Carla Paulo; Conte-Junior, Carlos Adam; Oliveira, Karen Jesus; Nobrega, Antonio Claudio Lucas

    2017-09-01

    What is the central question of this study? What are the effects of exercise training on the hepatic renin-angiotensin system and their contribution to damage resulting from fructose overload in rats? What is the main finding and its importance? Exercise training attenuated the deleterious actions of the angiotensin-converting enzyme/angiotensin II/angiotensin II type 1 receptor axis and increased expression of the counter-regulatory (angiotensin-converting enzyme 2/angiotensin (1-7)/Mas receptor) axis in the liver. Therefore, our study provides evidence that exercise training modulates the hepatic renin-angiotensin system, which contributes to reducing the progression of metabolic dysfunction and non-alcoholic fatty liver disease in fructose-fed rats. The renin-angiotensin system (RAS) has been implicated in the development of metabolic syndrome. We investigated whether the hepatic RAS is modulated by exercise training and whether this modulation improves the deleterious effects of fructose overload in rats. Male Wistar rats were divided into (n = 8 each) control (CT), exercise control (CT-Ex), high-fructose (HFr) and exercise high-fructose (HFr-Ex) groups. Fructose-drinking rats received d-fructose (100 g l -1 ). After 2 weeks, CT-Ex and HFr-Ex rats were assigned to a treadmill training protocol at moderate intensity for 8 weeks (60 min day -1 , 4 days per week). We assessed body mass, glucose and lipid metabolism, hepatic histopathology, angiotensin-converting enzyme (ACE) and angiotensin-converting enzyme 2 (ACE2) activity, the angiotensin concentration and the expression profile of proteins affecting the hepatic RAS, gluconeogenesis and inflammation. Neither fructose overload nor exercise training influenced body mass gain and serum ACE and ACE2 activity. The HFr group showed hyperinsulinaemia, but exercise training normalized this parameter. Exercise training was effective in preventing hepatic steatosis and in preventing triacylglycerol and

  18. Fructose during pregnancy provokes fetal oxidative stress: The key role of the placental heme oxygenase-1.

    Science.gov (United States)

    Rodrigo, Silvia; Rodríguez, Lourdes; Otero, Paola; Panadero, María I; García, Antonia; Barbas, Coral; Roglans, Núria; Ramos, Sonia; Goya, Luis; Laguna, Juan C; Álvarez-Millán, Juan J; Bocos, Carlos

    2016-12-01

    One of the features of metabolic syndrome caused by liquid fructose intake is an impairment of redox status. We have investigated whether maternal fructose ingestion modifies the redox status in pregnant rats and their fetuses. Fructose (10% wt/vol) in the drinking water of rats throughout gestation, leads to maternal hepatic oxidative stress. However, this change was also observed in glucose-fed rats and, in fact, both carbohydrates produced a decrease in antioxidant enzyme activity. Surprisingly, mothers fed carbohydrates displayed low plasma lipid oxidation. In contrast, fetuses from fructose-fed mothers showed elevated levels of plasma lipoperoxides versus fetuses from control or glucose-fed mothers. Interestingly, a clearly augmented oxidative stress was observed in placenta of fructose-fed mothers, accompanied by a lower expression of the transcription factor Nuclear factor-erythroid 2-related factor-2 (Nrf2) and its target gene, heme oxygenase-1 (HO-1), a potent antioxidant molecule. Moreover, histone deacetylase 3 (HDAC3) that has been proposed to upregulate HO-1 expression by stabilizing Nrf2, exhibited a diminished expression in placenta of fructose-supplemented mothers. Maternal fructose intake provoked an imbalanced redox status in placenta and a clear diminution of HO-1 expression, which could be responsible for the augmented oxidative stress found in their fetuses. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Production of 5-ketofructose from fructose or sucrose using genetically modified Gluconobacter oxydans strains.

    Science.gov (United States)

    Siemen, Anna; Kosciow, Konrad; Schweiger, Paul; Deppenmeier, Uwe

    2018-02-01

    The growing consumer demand for low-calorie, sugar-free foodstuff motivated us to search for alternative non-nutritive sweeteners. A promising sweet-tasting compound is 5-keto-D-fructose (5-KF), which is formed by membrane-bound fructose dehydrogenases (Fdh) in some Gluconobacter strains. The plasmid-based expression of the fdh genes in Gluconobacter (G.) oxydans resulted in a much higher Fdh activity in comparison to the native host G. japonicus. Growth experiments with G. oxydans fdh in fructose-containing media indicated that 5-KF was rapidly formed with a conversion efficiency of 90%. 5-KF production from fructose was also observed using resting cells with a yield of about 100%. In addition, a new approach was tested for the production of the sweetener 5-KF by using sucrose as a substrate. To this end, a two-strain system composed of the fdh-expressing strain and a G. oxydans strain that produced the sucrose hydrolyzing SacC was developed. The strains were co-cultured in sucrose medium and converted 92.5% of the available fructose units into 5-KF. The glucose moiety of sucrose was converted to 2-ketogluconate and acetate. With regard to the development of a sustainable and resource-saving process for the production of 5-KF, sugar beet extract was used as substrate for the two-strain system. Fructose as product from sucrose cleavage was mainly oxidized to 5-KF which was detected in a concentration of over 200 mM at the end of the fermentation process. In summary, the two-strain system was able to convert fructose units of sugar beet extract to 5-KF with an efficiency of 82 ± 5%.

  20. Genetically Engineered Escherichia coli Nissle 1917 Synbiotics Reduce Metabolic Effects Induced by Chronic Consumption of Dietary Fructose.

    Directory of Open Access Journals (Sweden)

    Chaudhari Archana Somabhai

    Full Text Available To assess protective efficacy of genetically modified Escherichia coli Nissle 1917 (EcN on metabolic effects induced by chronic consumption of dietary fructose.EcN was genetically modified with fructose dehydrogenase (fdh gene for conversion of fructose to 5-keto-D-fructose and mannitol-2-dehydrogenase (mtlK gene for conversion to mannitol, a prebiotic. Charles foster rats weighing 150-200 g were fed with 20% fructose in drinking water for two months. Probiotic treatment of EcN (pqq, EcN (pqq-glf-mtlK, EcN (pqq-fdh was given once per week 109 cells for two months. Furthermore, blood and liver parameters for oxidative stress, dyslipidemia and hyperglycemia were estimated. Fecal samples were collected to determine the production of short chain fatty acids and pyrroloquinoline quinone (PQQ production.EcN (pqq-glf-mtlK, EcN (pqq-fdh transformants were confirmed by restriction digestion and functionality was checked by PQQ estimation and HPLC analysis. There was significant increase in body weight, serum glucose, liver injury markers, lipid profile in serum and liver, and decrease in antioxidant enzyme activity in high-fructose-fed rats. However the rats treated with EcN (pqq-glf-mtlK and EcN (pqq-fdh showed significant reduction in lipid peroxidation along with increase in serum and hepatic antioxidant enzyme activities. Restoration of liver injury marker enzymes was also seen. Increase in short chain fatty acids (SCFA demonstrated the prebiotic effects of mannitol and gluconic acid.Our study demonstrated the effectiveness of probiotic EcN producing PQQ and fructose metabolizing enzymes against the fructose induced hepatic steatosis suggesting that its potential for use in treating fructose induced metabolic syndrome.